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Abstract. We consider the problem of evacuating two robots from a
bounded area, through an unknown exit located on the boundary. Ini-
tially, the robots are in the center of the area and throughout the evac-
uation process they can only communicate with each other when they
are at the same point at the same time. Having a visibility range of 0,
the robots can only identify the location of the exit if they are already
at the exit position. The task is to minimize the time it takes until
both robots reach the exit, for a worst-case placement of the exit. For
unit disks, an upper bound of 5.628 for the evacuation time is presented
in [8]. Using the insight that, perhaps surprisingly, a forced meeting of
the two robots as performed in the respective algorithm does not pro-
vide an exchange of any non-trivial information, we design a simpler
algorithm that achieves an upper bound of 5.625. Our numerical sim-
ulations suggest that this bound is optimal for the considered natural
class of algorithms. For dealing with the technical difficulties in ana-
lyzing the algorithm, we formulate a powerful new criterion that, for a
given algorithm, reduces the number of possible worst-case exits rad-
ically. This criterion is of independent interest and can be applied to
any area shape. Due to space restrictions, this version of the paper con-
tains no proofs or illustrating figures; the full version can be found at
http://disco.ethz.ch/publications/ciac2017-robotevac.pdf.

1 Introduction

Imagine that two robots are trapped in the middle of a room with a single door.
Their goal is to evacuate both of them via the door in the shortest possible time.
However, there is a problem: The position of the door is unknown to them in the
beginning. Moreover, the robots have no sight and no wireless communication;
they cannot see the door or the other robot except when they are right on top of
it, and they can only communicate when they are at the same point at the same
time. However, they do know the shape of the room and share all information
before they start searching for the door. How should they divide the work of
scouring the boundary for the door? Which routes should they take? Does it
make sense to meet at some predefined point in order to exchange information?
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We consider the above problem for the most fundamental room shape pos-
sible, namely, the unit disk. More formally, the goal is to minimize the time for
evacuating both robots from the room where the exit is assumed to be worst-case
placed and the robots move with unit speed. The state-of-the-art algorithm for
this problem due to Czyzowicz et al. [8] proceeds roughly as follows: First, both
robots move to the same point on the perimeter, then they search the perimeter
in different directions until they meet at the opposite point. At some predefined
point in time during their search along the perimeter they leave the perimeter
on symmetric non-linear routes in order to meet inside the circle upon which
they return to their search. If a robot finds the exit at any point in time, then it
immediately calculates the shortest route for meeting the other robot and sub-
sequently brings the other robot to the exit. The authors of [8] show that this
algorithm achieves an evacuation time of 5.628 and remark that it is possible to
improve upon this result by truncating the detour to the middle slightly.

We note that the forced meeting of the robots cannot be used to exchange any
non-trivial information. Moreover, the requirement to meet introduces dependen-
cies between the parameters of the detour such as position, length, shape and
angle. We prove that removing this requirement indeed allows for an improved
algorithm that utilizes the independence of the aforementioned parameters while
preserving the simplicity of the algorithm. In fact, we present an algorithm that
simplifies the algorithm described above by omitting the forced meeting and
instead using one (symmetric) detour (per robot) that is a straight line with
fixed depth. An important point in omitting the forced meeting is that there is
actually an implicit exchange of information between the robots even before any
meeting: When a robot finds the exit, the best it can do is to meet the other
robot as quickly as possible in order to communicate the location of the exit.
Conversely, from not being visited by the other robot up to some point a robot
can deduce that the exit does not lie in a certain part of the perimeter.

Furthermore, we show that, surprisingly, the shape of the detour and its angle
to the perimeter do not affect the evacuation time if they are chosen from some
reasonable range. In particular, our linear detour is optimal for the parameters
chosen for the depth and the position of the detour.

Our algorithm achieves an evacuation time of 5.625, thereby slightly improv-
ing upon the previously best known upper bound. For the class of algorithms as
described above with exactly one symmetric detour per robot, our numerical sim-
ulations suggest that this bound is optimal (up to numerical precision, of course).
A theoretical substantiation for this optimality claim is given by the fact that
for our algorithm there are three different worst-case exit placements with the
same evacuation time (again, up to numerical precision). These three exit posi-
tions are characteristic for the algorithms from the mentioned class—it stands to
reason that, in an optimal algorithm, they have to exhibit the same evacuation
time (since otherwise the parameters of the algorithm could be changed locally
in a way that improves the evacuation time for the worst of the three points)
and that there is only one algorithm that has the same worst-case evacuation
time for these three exit positions.
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A fundamental problem regarding evacuation from a disk is that the evacua-
tion time for a fixed algorithm and a fixed exit placement is usually the solution
to some equation of the kind x = cos(x) (only more complex). For equations of
this kind no closed-form solutions are known in general, which makes it difficult
to find the worst-case exit placement for a fixed algorithm, not to mention to
find an algorithm with an improved worst-case evacuation time. We take a sub-
stantial step in remedying this problem by proving that a very specific condition
must be satisfied for an exit in order to be worst-case placed. In “reasonable”
algorithms this condition is satisfied at only a few exit positions which makes
it a powerful tool for determining that an exit is not worst-case placed. In fact,
in order for an exit to be worst-case placed, it must satisfy one of the two fol-
lowing conditions: (1) The movement of one of the two robots at the exit point,
resp. pick-up point1, is not differentiable, or (2) the angles β and γ between the
line connecting exit and pick-up point and the directions of movement of the
robots at the exit, resp. the pick-up point, satisfy 2 cos β + cos γ = 1. Moreover,
the presented tool is not restricted to the disk—it can be applied to any room
shape. For the analysis of our aforementioned algorithm, we rely heavily on this
tool. In fact, one might consider the development of this tool as the foremost
contribution of this work, while its application to the disk scenario may serve as
an example of its practicability.

1.1 Related Work

A thriving area in the context of problems involving mobile agents are search
problems in all its diversity. Such problems include ants searching for food
(cf. [11–13]), rendezvous problems (cf. [1,10,17]), pursuit-evasion games (cf.
[14,20,21]) and graph exploration problems (cf. [15,16,19]). Another example
are evacuation problems, where one or multiple robot(s) search for one or multi-
ple exit(s) through which usually all of the robots have to evacuate. Evacuation
problems have been studied in a centralized setting in which the robots know
the search terrain and where the other robots are, and in a distributed setting
where the knowledge of the robots is restricted to the area they have already
explored. Very recent results concerning optimal strategies on graphs in both
settings can be found in [4]. In the following, we assume that the area is known
to the robots, the exit is worst-case placed and the robots move with unit speed.

Evacuation problems can be grouped into two main categories, namely, evac-
uation problems on graphs and geometric evacuation problems. Since our paper
deals with a problem from the latter class, we will focus on the related work
in this domain. Another distinction is given by the model of communication
between the robots: Here, we distinguish between instantaneous wireless com-
munication and non-wireless communication where explicit communication can
only take place when the communicating entities are at the same point.

1 Recall that upon finding the exit, a robot immediately takes the shortest possible
tour to meet the other robot and communicate the location of the exit. We call the
point where this meeting happens the pick-up point.
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In the geometric setting, research has considered different areas from which
the robots have to escape. The famous cow-path problem asks how long it takes
a single robot (or cow) to evacuate through a worst-case placed exit on a line,
in terms of the distance d between initial position and exit. The correct answer
of 9d (up to lower order terms) was given by Beck and Newman [3] already in
1970, and later rediscovered by Baeza-Yates et al. [2]. In [5], Chrobak et al. show
that, somewhat surprisingly, the same is true for the evacuation time of multiple
robots on the line in the non-wireless communication model.

For the case of two robots in equilateral triangles and squares, Czyzowicz
et al. [9] present optimal evacuation trajectories, given wireless communication.

Study of the unit disk as the confining environment was initiated by Czy-
zowicz et al. in [7]. The authors present upper bounds of 3 + 2π/k and
3 + π/k + O(k−4/3) and lower bounds of 3 + 2π/k − O(k−2) and 3 + π/k for
the non-wireless and the wireless communication model, respectively, where k is
the number of robots. Moreover, they give better upper and lower bounds for
the case of 2 and 3 robots, amongst them a lower bound of approximately 5.199
and an upper bound of approximately 5.74 for the case of two robots in the non-
wireless model. In [8], Czyzowicz et al. improve the latter two bounds to a lower
bound of approximately 5.255 and an upper bound of 5.628. Lamprou et al. [18]
present (partly matching) upper and lower bounds for two robots in the wireless
model where one robot, deviating from the above, has speed of larger than 1.
Finally, in [6], Czyzowicz et al. consider variations of the problem of evacuating
from a disk where the two robots do not know their own initial locations.

For our paper, the algorithms from [7] and [8] that achieve the upper bounds
for two robots in the non-wireless communication model are of particular interest.
The algorithm from [7] proceeds as follows: Starting in the center M of the disk,
both robots move to the same point A on the perimeter and start searching for
the exit in opposite directions. When one of the robots finds the exit, it picks
the other robot up as fast as possible and returns with it to the exit. This results
in an upper bound of approximately 5.74. The authors of [8] improve on this
algorithm by incorporating a forced meeting of the two robots before all of the
perimeter is searched. For this, the robots leave the perimeter in a straight line,
symmetric to each other, until they meet, and then return to their search of the
perimeter if the exit has not been found yet. The authors were able to improve
on this algorithm even more by moving towards the meeting point in a triangular
fashion. The reasons for this further improvement are explained in Sect. 3.1.

1.2 Model

The specifics of the model for our robot evacuation problem, developed in [7],
are as follows: The area from which the robots have to escape is a disk of radius
1. Somewhere on its perimeter, there is a point, called exit, which two robots,
initially placed in the center of the disk, have to find and evacuate through. The
task of the robots is to minimize the time until both robots have reached the
exit, which we call the evacuation time. We assume that the location of the exit
on the perimeter is worst-case for the algorithm the two robots perform, i.e., the



108 S. Brandt et al.

exit position maximizes the evacuation time. The robots itself are point-shaped
and move at unit speed. Changing direction takes no time and communication is
also instantaneous, but only possible if both robots are at the same point.2 Since
this is the case in the beginning, the robots can exchange all information about
each others algorithm before they start searching for the exit. The robots have
no vision, and therefore can only identify the exit position when they are at the
exact location of the exit. Computation also takes no time and we assume that
the robots are able to actually perform all necessary computations. The robots
know the shape of the area and they have the same sense of direction, i.e., we
may assume that they have the same underlying coordinate system.

1.3 Notation

In the following, we give an overview of the notation and the most important
terms we use.

R1 and R2 References for the two robots. We will call the robot that finds the
exit first R1, and the other robot R2.

˜AB For two points A and B on the perimeter, ˜AB denotes the shorter arc from
A to B along the perimeter.

AB Denotes the straight line between A and B.
|˜AB| or |AB| Denote the lengths of ˜AB, resp. AB.
Cut. A movement of a robot from the perimeter onto the disk and back to the

point where the perimeter was left. Note that a cut can take any shape in
general. However, in our algorithm, the term cut describes a linear cut, i.e.,
a movement from the perimeter onto the disk and back on a straight line.

Cut length. The distance traveled when moving along a cut.
Cut depth. Only used if the cut is linear, in which case the cut depth is defined

as half of the cut length.
Cut position. Point where a robot leaves the perimeter to perform a cut.
Meeting protocol. A term coined in [8]. When R1 finds the exit, the best it

can do to minimize the evacuation time is to compute (and take) the shortest
route to meet R2. Since R1 knows the algorithm R2 follows (and therefore
also that R2 has not found the exit so far), R1 can actually determine this
shortest route.3 Note that this route is always a straight line since otherwise
there would be a shorter route, by the triangle inequality. After meeting each
other, both robots travel straight to the exit. This process of picking the other

2 Note that a robot can also infer information from the fact that the other robot is
not at the same point as it is. For instance, it may conclude that the other robot has
not already found the exit in some specific segment of the perimeter, since otherwise
the other robot would have picked him up at the latest at the current position.
This indirect information transfer plays an important role in our arguments that the
robots cannot infer any non-trivial information from a forced meeting.

3 We emphasize that R1 does not calculate a shortest route to the point where R2 is
when R1 finds the exit, but rather the shortest route for picking R2 up, knowing
that and how R2 will move until being picked up.
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robot up after finding the exit and traveling to the exit together is called the
meeting protocol. If R1 finds the exit at time t and the aforementioned shortest
route has length x, then the evacuation time is t + 2x.

Pick-up point. The point where R1 picks R2 up, following the meeting
protocol.

2 Determining the Worst-Case Placement of the Exit

If an algorithm for the two robots is fixed, it is still a challenging task to deter-
mine the worst-case exit placement and thereby the evacuation time. One reason
is that already determining the pick-up point for a fixed exit placement often
involves solving equations where polynomial and trigonometric functions in some
variable x occur side by side. For equations of this kind no closed-form solutions
are known in general. In this section, we develop a new technique to determine
possible candidates for the worst-case placement of the exit. More precisely, we
give a criterion that determines for a pair (exit, pick-up point) whether the exit
can be excluded from the list of candidates of worst-case placed exits, by only
looking at the behaviour of the algorithm in ε-neighborhoods of the exit B and
the pick-up point C. The criterion is quite strong in the following sense: Let β
denote the angle between the straight line from exit to pick-up point and the
direction of the movement of R1 at the exit. Let γ denote the angle between the
straight line from exit to pick-up point and the direction of the movement of R2

at the pick-up point. Then, a very specific relation between β and γ has to be
satisfied in order that the exit is not excluded from the list of possible worst-case
placed exits. The key result is the following theorem:

Theorem 1. If the trajectories of the two robots are differentiable around B
and C and 2 cos β + cos γ �= 1, then there is an exit position that yields a larger
evacuation time than placing the exit at B.

The proof of the theorem is long and involved and can be found in the full
version of the paper. According to the theorem, in order to be able to exclude an
exit, the movement of the two robots at the exit and the corresponding pick-up
point have to be differentiable. However, in reasonable algorithms, this property
holds for almost all possible exit points. Out of these exit points, the only ones
that are not excluded are those that satisfy 2 cos β + cos γ = 1, yielding a large
reduction in the number of possible exit points. We note that our considerations
are independent of the shape of the area, i.e., they hold for arbitrarily shaped
areas, allowing us, for instance, to finally tackle fundamental shapes like circles.

Another interesting information can be obtained from the proof of
Theorem 1: On which side of 1 the term 2 cos β +cos γ lies, determines to which
direction one has to move the exit in order to obtain an exit with a larger evac-
uation time. If 2 cos β + cos γ < 1, then shifting the exit at B in the direction of
the movement of R1 (if it did not find the exit at B) will provide an exit position
with larger evacuation time (than the exit position at B). If 2 cos β + cos γ > 1,
then shifting the exit at B in the reverse direction will provide an exit position
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with larger evacuation time. We note that it does not matter if the two robots
move to the same side of the infinite line through B and C or to the same side.

3 Evacuating from a Disk

In this section we use the criterion 2 cos β + cos γ �= 1, which we developed in
Sect. 2, in order to improve the upper bound for evacuating two robots from
a unit disk to 5.625. Like the algorithm presented in [8], which achieves the
previously best known upper bound of 5.628, our algorithm consists of each
robot exploring its assigned half of the perimeter, only interrupted by exactly
one detour each, called cut, to the inside of the circle (and symmetric to the
other’s cut). In contrast, the algorithm from [8] additionally contains a forced
meeting of the two robots at the far end of the cuts.

We will show that, perhaps counterintuitively, the robots cannot infer any
non-trivial information from this meeting that they could not have inferred from
the previous course of events. Thus, such a meeting can be omitted. We will see
in more detail that all the advantages of the meeting come from the actual move-
ment of cutting to the middle and not from an explicit exchange of information.

Without the condition that the two robots actually have to meet at the end-
point of their (symmetric) cuts, many cuts are possible candidates for improving
the runtime of the evacuation algorithm. A cut is determined by four properties:
the position on the perimeter where the cut starts and ends, the shape of the
cut, the angle at which the cut protrudes from the perimeter and the size of the
cut, which corresponds to the cut depth in the case of a linear cut. As we will
show, somewhat surprisingly, the shape of the cut is optimal if it is linear, for
the choices of the other three parameters made in our algorithm. Similarly, we
will show that the angle does not influence the performance of the algorithm if
it is chosen in a reasonable range. We will provide a choice of the remaining two
parameters for linear cuts that achieves the stated bound of 5.625. Moreover, we
give a rigorous proof for the evacuation time.

3.1 The Algorithm A(y, α, d)

In this section, we describe a parameterized evacuation algorithm and provide a
partitioning of R1’s half of the perimeter into segments that will be useful in the
evacuation time analysis. We show that the forced meeting in the previously best
algorithm from [8] does not help in exchanging non-trivial information between
the robots. In Sect. 3.2, we prove that the parameters can actually be chosen in
a way that improves the previously best known upper bound.

Our parameterized algorithm A(y, α, d) is similar to the algorithm proposed
in [8]: From the center of the disk, both robots move to the same point A of the
perimeter and continue on the perimeter in opposite directions. At some point
C, resp. B, where ˜AC = ˜AB = y, the robots leave the perimeter at angle α in a
straight line, until they reach depth d and then return straight to point C, resp.
B. Then both robots continue to search along the perimeter until they meet at
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point D. If a robot finds the exit at any point in time, it immediately performs
the meeting protocol to pick the other robot up and evacuate through the exit.
Note that, for convenience, α denotes the angle between the cuts and BC.

Now we examine Algorithm A(y, α, d) in more detail, laying the foundation
for the analysis of the evacuation time for a specific choice of the parameters y,
α and d in Sect. 3.2. Since the described algorithm is symmetric, it is sufficient
to analyze possible exit positions on one side of the symmetry axis, i.e., for
one of the two robots. Without loss of generality, we assume that the exit lies
on the arc from A to D that contains C, which implies that the robot that
explores this arc is called R1 and the other one R2. We partition this arc into
four segments by specifying the points on the arc where one segment ends and
the next one begins. Note that, for simplicity, we include any of these dividing
points in both its adjacent segments if not explicitly specified otherwise. The
choice of the segments depends on the parameters of our algorithm.

1. Segment ˜AI1: Here, I1 is the point with the following property: If the exit
is at I1, then R1 will pick R2 up at point B before R2 performs its cut, i.e.,
I1 satisfies |˜AI1| + |I1B| = |AB|. This segment contains exactly those exit
positions for which the evacuation time is not influenced by the cut.

2. Segment ¯I1I2: Here, I2 is the point with the following property: If the exit
is at I2, then R1 will pick R2 up at point B after R2 performs its cut, i.e., I2
satisfies |˜AI2| + |I2B| = |AB| + 2d. This segment contains exactly those exit
positions for which the pick-up point lies on the cut.

3. Segment ¯I2I3: Here, I3 = C. The exit positions in this segment are those
for which R1 finds the exit before performing its cut, but R2 is picked up
after performing its cut.

4. Segment ¯I3D: For this segment, we explicitly specify that I3 itself does not
belong to the segment. This segment contains exactly those exit positions
that R1 reaches after performing its cut.

One main difference of our general algorithm to the one suggested in [8] is
that in the latter the robots always cut far enough to meet each other. In the
following, we argue that this meeting is not necessary since no real information
can be shared. Consider the following three cases for the algorithm from [8]:

Case 1: The exit is located in one of the first three segments, excluding I3. If
R1 went now immediately to the meeting point on a straight line, then it
would arrive there earlier than if it had not found the exit before performing
its cut. Because of symmetry reasons, it would also arrive earlier than R2 at
the meeting point. Hence, by using the meeting protocol upon finding the
exit, R1 picks R2 up before R2 reaches the meeting point. Thus, R2 never
reaches the meeting point and therefore no information can be shared.

Case 2: The exit is located at I3. In this case, there actually is an exchange
of information at the meeting point, but the reason is that the predefined
meeting point happens to be the pick-up point for the exit position at I3.
In other words, if R1 (but not R2) followed a completely different algorithm
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without a forced meeting but with the property that it finds the exit at I3
at the same time as in Algorithm A(y, α, d), then it would still pick R2 up at
the same point at the same time and the resulting evacuation time would not
change. Thus, even in this specific case, the benefit in the algorithm from [8]
does not come from the forced meeting, but from the fact that R2 cuts far
enough in the direction of the exit to be picked up at the tip of its cut.

Case 3: The exit lies behind R1’s cut, in the fourth segment. At the meeting
point, the only relevant information that can be shared is that neither robot
has found the exit yet. However, both robots can deduce this information
from the fact that they have not been picked up yet (see Case 1).

Note that in [8], two algorithms were presented, as described in Sect. 1.1:
One with a linear cut and an improved one where the robots cut to the meeting
point in a triangular fashion. In the latter, the exit position at I3 is also dealt
with by the explanations in the above Case 1, while Case 2 is not needed at all.

We can conclude that the meeting itself does not contribute to a better run-
time of the algorithm. But it does limit the algorithm by introducing a depen-
dency between cut position and cut length. At first sight it might seem as if the
improvement between the two algorithms presented in [8] simply comes from the
shape of the cut and therefore a shortening of the pick-up distance. However, the
possibility to find parameters for the algorithm with the triangular cut that give
an improved evacuation time essentially comes from a decoupling of cut position
and cut length. Yet there is still some correlation between cut position and cut
length which is completely nullified in our algorithm A(y, α, d).

3.2 The Evacuation Time for y = 2.62843, α = π/4 and d = 0.48793

In this section, we show an evacuation time of 5.625 for Algorithm A(y, α, d) for
the parameters y = 2.62843, α = π/4 and d = 0.48793.4 To do so we determine,
for each of the four segments defined in Sect. 3.1, the potential candidates for the
worst-case exit position and then take the maximum over the evacuation times
for those exits positions. For determining these candidates we use our findings
from Sect. 2. To this end, for any pair (exit position, pick-up point), let β and
γ denote the same angles as in Sect. 2, i.e., β is the angle between the direction
of movement of R1 at the (potential) exit position and the line connecting exit
position and pick-up point and γ the angle between this line and the direction
of movement of R2 at the (potential) pick-up point. Note that when both robots
move along the perimeter, we have β = γ for reasons of symmetry.

For calculating distances, observe that for any two points on the perimeter
with a distance of w along the perimeter, their euclidian distance is 2 sin(w/2).
For instance, the value of |˜AI1| is equal to the solution of the equation x +

4 These parameters are chosen in a way that for the (only) three possible global worst-
case exit positions (determined in the following), the evacuation times are the same
up to numerical precision. While the parameter values were determined numerically,
we give a rigorous proof for the correctness of the claimed evacuation time.
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2 sin((x + y)/2) = y, where in our case y = 2.62843. For the given parameters,
we obtain |˜AI1| ≈ 0.63196, |˜AI2| ≈ 2.5837 and |˜AI3| = 2.62843. Examining the
first three segments one by one, we obtain the following lemma:

Lemma 2. If there is a (global) worst-case exit position in the first segment,
then this exit position is at I1. If there is a (global) worst-case exit position in
the second segment, then it is at I1 or I2. If there is a (global) worst-case exit
position in the third segment, then it is at I2 or I3.

For our examination of the fourth segment, we add a virtual point I ′
3 to the

fourth segment that coincides with I3, but has the additional property that if
the exit is at I ′

3, then R1 will only find the exit after performing its cut. The
reason for this is that without the addition of I ′

3 the fourth segment is half-open
which makes it possible that there is a sequence of exit positions with increasing
evacuation times that converges towards I3 and for which there is no exit position
that has a larger evacuation time than all exit positions in the sequence.

Lemma 3. If there is a (global) worst-case exit position in the fourth segment,
then this exit position is at I ′

3.

Observe that the evacuation time for the exit at I ′
3 cannot be smaller than the

evacuation time for the exit at I3 since in the latter case R1 could just simulate
the former case which is worse than activating the meeting protocol right away.
Combining this fact with Lemmas 2 and 3, we obtain the following theorem:

Theorem 4. For y = 2.62843, α = π/4 and d = 0.48793, the worst-case exit
placement for Algorithm A(y, α, d) is at I1, I2 or I ′

3.

In order to determine the evacuation time for the worst-case exit, we simply
take the maximum of the evacuation times for the exit placements at these
three locations. We obtain evacuation times of approximately 5.6249, 5.62488
and 5.62491 for I1, I2 and I ′

3, respectively. Hence, the evacuation time for the
worst-case exit is approximately 5.62491. Thus, we obtain the following corollary:

Corollary 5. For y = 2.62843, α = π/4 and d = 0.48793, the evacuation time
of Algorithm A(y, α, d) is at most 5.625.

Observe that, if the length of the cut is not changed, then altering the shape
or angle of the cut does not affect the evacuation times for the exit positions at
I1, I2 and I ′

3. Thus, by Theorem 4, in such a case the overall evacuation time
cannot decrease. We cast this insight into the following corollary:

Corollary 6. For y = 2.62843, α = π/4 and d = 0.48793, the evacuation time
of Algorithm A(y, α, d) cannot be improved by altering shape or angle of the cut.

Since all the inequalities in Lemmas 2 and 3 are not sharp, we can choose α
in some reasonable range without compromising our evacuation time.5 As long
as the chosen α ensures that there is no worst-case exit placement such that R2

is picked up on the cut (without the start and end points of the cut), Corollary
5 holds. The value of exactly π/4 for α is chosen for the reason of convenience.
5 The same holds for the shape of the cut, by the same reason.
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4 Conclusion

In this paper, we studied the evacuation of two robots from a disk using non-
wireless communication. We presented a new tool for the analysis of evacuation
algorithms for any area shape by showing that a strong local condition has to
be satisfied in order for an exit to be worst-case placed. Using this tool and
further insights, e.g., about the nature of forced meetings and the irrelevance
of the chosen shape and angle in some range, we improved the state-of-the-art
algorithm and gave indicators for where to look for further improvement.

However, we believe that our improved upper bound on the evacuation time
is already very close to the tight bound that is the correct answer. We do not
believe that our upper bound is optimal (up to numerical precision) because of
the following reason: Imagine an additional second cut of very small depth (“ε-
cut”) close to the point opposite of the point on the perimeter where the robots
start their search. If we choose the position (and the angle and depth) of this
ε-cut appropriately, then the evacuation time for the exit at I ′

3 will be improved
since R1 will pick R2 up at around the tip of the ε-cut which is somewhat
closer to I ′

3 than if there was no such ε-cut. Now we can make small changes
to position and depth of the first cut that result in improving the evacuation
times for the exit positions at I1 and I2 while increasing the previously decreased
evacuation time for the exit position at I ′

3. By finding the parameters that again
lead to equal evacuation times for these three exits, the overall evacuation time
is improved. If one is careful not to let other points become worse exit positions,
this approach can even be applied iteratively. However, the improvement in the
evacuation time achieved by the collection of these very small cuts is negligibly
small, even compared to the improvement given by our algorithm.

While the lower bound is still a long way from our upper bound, it is hard to
imagine how an improvement to our algorithm apart from the ε-cuts might look
like. In fact, we conjecture that, apart from these ε-cuts and numerical precision,
the algorithm we presented is indeed optimal.
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