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Preface

This volume contains the papers selected for presentation at CIAC 2017, the 10th
International Conference on Algorithms and Complexity, held at the National Tech-
nical University of Athens, Greece, during May 24–26, 2017. This series of confer-
ences presents original research contributions in the theory and applications of
algorithms and computational complexity.

The volume begins with abstracts of the invited lectures, continues with contributed
papers, arranged alphabetically by the last names of their authors, and concludes with
an article devoted to the celebration of the 70th birthday of Stathis Zachos. The volume
contains 36 accepted papers, selected by the Program Committee from 90 submissions
received. Each submission was reviewed by at least three Program Committee mem-
bers. Paper selection was based on originality, technical quality, and relevance.

We thank all the authors who submitted papers, the members of the Program
Committee, and the external reviewers who assisted the Program Committee in the
evaluation process. We are grateful to the three invited speakers, Giuseppe Italiano
(Università di Roma “Tor Vergata”, Italy), Klaus Jansen (University of Kiel, Ger-
many), and Christos Papadimitriou (University of California at Berkeley, USA), who
kindly accepted our invitation to give plenary lectures at CIAC 2017.

Springer sponsored a CIAC 2017 best paper award, which was shared by two
papers: one by Hans L. Bodlaender and Tom C. van der Zanden on “Improved Lower
Bounds for Graph Embedding Problems” and the other by Robert Bredereck, Christian
Komusiewicz, Stefan Kratsch, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge
on “Assessing the Computational Complexity of Multi-Layer Subgraph Detection.”
Our warmest congratulations to all of them for these achievements! We also thank the
members of the Best Paper Award Committee for selecting these papers.

We gratefully acknowledge the support from the National Technical University of
Athens and its School of Electrical and Computer Engineering, the Institute of Com-
munications and Computer Systems, Springer, and the European Association for
Theoretical Computer Science (EATCS).

We would also like to thank Euripides Markou, Ioannis Milis, Dimitris Sakavalas,
and Vassilis Zissimopoulos, who served in the Organizing Committee, as well as the
local Arrangements Committee, and in particular, Alexandros Angelopoulos, Antonis
Antonopoulos, Aggeliki Chalki, Eleni Iskou, Stratis Skoulakis, and Lydia Zakynthinou
for their active participation in several organization tasks.

March 2017 Dimitris Fotakis
Aris Pagourtzis

Vangelis Th. Paschos
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TFNP: An Update

Paul W. Goldberg1 and Christos H. Papadimitriou2

1 University of Oxford, Oxford, UK
paul.goldberg@cs.ox.ac.uk

2 University of California at Berkeley, Berkeley, USA
christos@cs.berkeley.edu

Abstract. The class TFNP was introduced a quarter of a century ago to capture
problems in NP that have a witness for all inputs. A decade ago, this line of
research culminated in the proof that the NASH equilibrium problem is complete
for the subclass PPAD. Here we review some interesting developments since.



2-Edge and 2-Vertex Connectivity
in Directed Graphs

Giuseppe F. Italiano

University of Rome Tor Vergata, Italy
giuseppe.italiano@uniroma2.it

Abstract. We survey some recent results on 2-edge and 2-vertex connectivity
problems in directed graphs. Despite being complete analogs of the corre-
sponding notions on undirected graphs, in digraphs 2-vertex and 2-edge con-
nectivity have a much richer and more complicated structure. It is thus not
surprising that 2-connectivity problems on directed graphs appear to be more
difficult than on undirected graphs. For undirected graphs it has been known for
over 40 years how to compute all bridges, articulation points, 2-edge- and
2-vertex-connected components in linear time, by simply using depth-first
search. In the case of digraphs, however, the very same problems have been
much more challenging and required the development of new tools and
techniques.



New Algorithmic Results for Bin Packing
and Scheduling

Klaus Jansen

Institut für Informatik, Christian-Albrechts-Universität zu Kiel,
24098 Kiel, Germany

kj@informatik.uni-kiel.de

Abstract. In this paper we present an overview about new results for bin
packing and related scheduling problems. During the last years we have worked
on the design of efficient exact and approximation algorithms for packing and
scheduling problems. In order to obtain faster algorithms we studied integer
linear programming (ILP) formulations for these problems and proved structural
results for optimum solutions of the corresponding ILPs.
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TFNP: An Update

Paul W. Goldberg1 and Christos H. Papadimitriou2(B)

1 University of Oxford, Oxford, UK
paul.goldberg@cs.ox.ac.uk

2 University of California at Berkeley, Berkeley, USA
christos@cs.berkeley.edu

Abstract. The class TFNP was introduced a quarter of a century ago
to capture problems in NP that have a witness for all inputs. A decade
ago, this line of research culminated in the proof that the Nash equilib-
rium problem is complete for the subclass PPAD. Here we review some
interesting developments since.

1 Introduction

Many apparently intractable problems in NP are total, that is, they are guaran-
teed to have a solution for all inputs. Factoring (given a non-prime integer,
find a prime factor) is perhaps the most accessible example of such a problem,
and was the first to be identified, but by now many natural problems of this
sort are known. (The hardness of Factoring stands in contrast with primality
testing, which is well known to be polynomial-time solvable [1].) This computa-
tional phenomenon is captured by the class TFNP (the initials stand for total
functions in NP) [19,20].

How does one provide evidence of intractability for such a problem? Since
problems in TFNP are unlikely to be NP-complete, and TFNP appears to have
no complete problems ([22], Sect. 6 constructs an oracle relative to which there is
no single TFNP problem to which all others reduce), focus quickly shifted to sub-
classes of TFNP with complete problems. To show that a problem is in TFNP,
one must establish a theorem of the form ∀x∃yΦ(x, y) stating that in all situa-
tions x of some kind (for example, in every bimatrix game) corresponding to the
problem’s input, a certain pattern y can be found (a solution, in this example a
Nash equilibrium). If the proof of this theorem is constructive in a computation-
ally meaningful sense, then the problem is in P. Hence, all intractable problems
in TFNP must harbor an exponentially non-constructive step in their proof,
presumably a combinatorial lemma guaranteeing the existence of a particular
kind of element in an exponential structure. A productive classification of the
problems in TFNP is in terms of the particular combinatorial lemma of the form
∀x∃yΦ(x, y) employed in their proof. The following subclasses of TFNP had been
known since the early 1990s.

1. PPP, for polynomial pigeonhole principle, the combinatorial lemma stating
that “for every function f : {0, 1}n �→ {0, 1}n there must be either an x ∈
{0, 1}n such that f(x) = 0n, or x, y ∈ {0, 1}n, x �= y such that f(x) = f(y).”

c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 3–9, 2017.
DOI: 10.1007/978-3-319-57586-5 1
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2. PPA, for polynomial parity argument: “In every finite graph containing an
odd-degree node, a second such node must exist.”

3. PPAD, for polynomial parity argument for directed graphs: “In every finite
directed graph containing an unbalanced (in-degree �= out-degree) node, a sec-
ond such node must exist.” It is not hard to see that PPAD is a subset of
PPA, and also of PPP.

4. PPADS. A variant of PPAD, based on a slightly stronger lemma stating that
“a second oppositely unbalanced node must exist.” PPADS includes PPAD.

5. PLS, for polynomial local search: “Every dag has a sink.”

It is often quite nontrivial to capture these classes in terms of a concrete
“basic complete problem,” but in all these cases it can be done [16,21]; typically,
the class is then defined as all search problems reducible to the basic complete
problem. In the case of PPAD, the basic complete problem is called End of
the Line, seeking a second degree-one node in a directed graph where no node
has in-degree or out-degree greater than one, and 0n has in-degree zero and
out-degree one.

But are these classes different from P and one another? In [3] and elsewhere
evidence was provided, through oracle constructions, that essentially all these
classes are “compellingly different” from P and from each other, and that no
easy inclusions seem to hold beyond the ones noted above.

Arguably, the whole TFNP research direction was motivated by one main
quest, establishing that the Nash problem mentioned above is intractable; this
was resolved in 2006 [7,8], by showing that Nash is PPAD-complete.

2 Recent Developments

Rogue Problems. The Factoring problem does not immediately belong to any
of these classes, as its totality seems to draw from the Fundamental Theorem
of Arithmetic: “any non-prime has a prime divisor that is smaller”. What is
the relation between this important total problem and the subclasses of TFNP
already defined? Recently, Emil Jeřábek [15] employed elementary algebraic
number theory to show that Factoring belongs to both PPAD and PPP through
randomized reductions. Combinatorial Nullstellensatz, another “rogue” problem,
was recently shown to be in PPA [24]. There are further rogue problems still defy-
ing classification within TFNP. Two examples are Ramsey: “Given a Boolean
circuit encoding the edges of a graph with 4n nodes, find n nodes that are either
a clique or an independent set” and Bertrand-Chebyshev: “Given n, produce
a prime between n and 2n”, both embodying important and classical eponymous
existence theorems in combinatorics and number theory, respectively.

The Class CLS. There had been a number of interesting total problems which
have, frustratingly, defied polynomial-time algorithms for too long, and which
were known to be inside both PPAD and PLS. Examples: finding an approximate
fixpoint of a contraction map; finding the max-min of a simple stochastic game;
finding a solution of a linear complementarity problem with a P-matrix; finding
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a Nash equilibrium in a network coordination, or congestion, game; or finding
a stationary point of a multivariate polynomial. A new class called CLS (for
“continuous local search”) lying within (and probably well within) the intersec-
tion of the two classes PLS and PPAD was defined in [9]; there are no known
non-generic complete problems for this class (roughly, generic problems are ones
whose instances contain generic boolean circuits). Very recently, a new problem
was added to this collection, a version of the End of the Line problem in which
there is only one line starting at zero (no floating cycles or paths) and the nodes
of the line are numbered 0, 1, 2, 3, . . ., while the remaining nodes are numbered
∞. This new problem, End of the Metered Line, renders existing black-box
complexity lower bounds for PPAD and PLS [25], as well as cryptographic lower
bounds (see next), applicable to CLS as well.

Cryptographic Assumptions. There are obvious connections between TFNP
classes and Cryptography, as cryptosystems can be based on intractable TFNP
problems such as Factoring. In the other direction, if there are hashing
functions that are secure with respect to collisions, then PPP is clearly not
P. Recently, sophisticated arguments were articulated establishing hardness
for other subclasses of TFNP, based on other standard (if not universally
accepted) cryptographic assumptions. In [5,11] it is shown that, if indistinguisha-
bility obfuscation of software is possible, then PPAD (and therefore Nash) is
intractable. Such results can be extended to CLS, as noted above. Furthermore,
it was recently established in [14] that, under the assumption that NP has a prob-
lem that is hard on the average for some distribution (an assumption that has
many consequences of interest to cryptography but is not per se cryptographic),
then PPAD also has such a problem. A new paper [17] shows that hardness of
Ramsey follows from the existence of collision-resistant hash functions.

Approximate Nash. The major concrete problem in complexity left open by the
establishment of the PPAD-completeness of Nash had been whether there is a
PTAS for approximate Nash equilibria, or whether there is a finite ε such that
finding an ε-approximate Nash equilibrium is PPAD-complete. This was recently
resolved by Rubinstein [23] in favor of the latter eventuality through a brilliant
PCP construction for PPAD.

Finitary Lemmata. One of the curiosities of the class TFNP and its subclasses
is the surprising poverty (or, depending on your point of view, parsimony) of
proof techniques needed to establish totality of functions in NP: in a quarter of
a century, no new classes, no new combinatorial lemmata, have been added to
the original five (we are not counting CLS, which lies within the intersection of
all five classes). A look at the list of the five “combinatorial lemmata” reveals
that they share an intriguing property: They are all finitary, that is, they fail
to hold if the underlying structure is infinite. It has been recently pointed out
in [12], by using a classical theorem from Logic [13], that this is necessary: Any
combinatorial lemma that is not finitary must yield a subclass of TFNP that is
necessarily a subset of P — an observation that may help focus the pursuit of a
sixth combinatorial lemma.
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Provable TFNP and Wrong Proof

The fragmented nature of TFNP has been quite productive over the years, but
it is also intriguing, and a little disturbing. Is there a way to unify all these
genres of totality? Are there problems, perhaps complete for a master class, that
generalize all total problems known to be complete for the subclasses?1 Can we
think of the phenomenon of total problems as a whole?

We have recently proposed such a unified theory [12]. The idea is to define
a new class that we call provable TFNP, or PTFNP, which includes all total
problems whose totality is proven within some minimalistic logical framework.
The logical framework should be strong enough to supply proofs of the five lem-
mata, and versatile enough for the other important mission, namely identifying
a complete problem for the whole class.

In [12] this was achieved through the framework of a first-order propositional
logic. The language has a polynomial (in the underlying complexity parameter
n) collection of Boolean variables of the form xi, as well as the Boolean con-
stants 0–1, connectives such as ∨,→ and quantifiers ∀,∃, all with the standard
meaning. Importantly, the framework also allows an exponential collection of
n-ary Boolean function symbols, represented as fi(x1, . . . , xn), where “f” is a
symbol of the language and the index i is expressed in binary (it is at present an
open question whether these function symbols are necessary). The framework
also includes a rather standard axiom system, encompassing a complete seman-
tic understanding of the roles of connectives, functions, and quantifiers (see [12]
for details).

Once we have all that, and having fixed the complexity parameter n, we can
now have succinctly represented proofs (a concept studied earlier in [18]) in our
system; these proofs play an important role in providing us with a complete
problem (and from that, as it is common with total functions, a definition of the
class PTFNP). In particular, consider a Boolean circuit C, with n input gates
and of size polynomial in n, which maps an input j (a binary integer with n
bits) to C(j) where C(j) can be of one of two forms:

Either C(j) is a sentence that holds due to an axiom (and this can be
checked easily), or it is of the form (F (j), k, �), where F (j) is (the Boolean
encoding of) a logical formula in the language, and k, � are integers smaller
than j, such that F (j) follows from F (k) and F (�) due to an inference rule.

Call the above condition “correctness of C at j.” Note that a circuit C satisfying
the correctness condition at all j = 0, . . . , 2n − 1 encodes a proof of length 2n in
our system.

But suppose now that we are given such a circuit C standing for a purported
proof in our language (it will be an actual proof if it is correct at all j), and we

1 Notice immediately that there is a trivial way of combining any finite number of
classes with complete problems via some kind of “direct product” construction to
obtain one all-encompassing class and complete problem. The challenge is to do this
in a way that does not explicitly refer to the parts.



TFNP: An Update 7

notice that the last line C(2n−1) is of the form (F (2n−1), k, �) with F (2n−1) =
False. Since our logical system is consistent, it must be the case that there is
a j < 2n such that C is not correct at j. The point is that finding this j may be
nontrivial!

This is the total problem which we call Wrong Proof:. Given n and a
Boolean circuit C polynomial in n such that F (2n − 1) = False, find a j such
that C is not correct at j. Finally, we define PTFNP (for provable TFNP) as the
class of all search problems in NP that reduce to Wrong Proof.

The main theorem in [12] is the following:

Theorem 1. PTFNP contains the five classes.

We note that, in related work, Arnold Beckmann and Sam Buss prove in a
recent paper [4] certain results that appear to be closely related to Theorem 1.
They define two problems similar to Wrong Proof, one corresponding to Frege
systems, and another to extended Frege, and show these complete for two classes
of total function problems in NP whose totality is provable within the bounded
arithmetic [6] systems U1

2 and V 1
2 , respectively. Theorem 1 differs from [4] in that

we reduce TFNP problems to a propositional proof system capable of encoding
concisely instances of these problems, without resorting to bounded arithmetic.

3 Open Problems

There are many proof systems, some of them more powerful than others. It is
possible that the one we propose in [12] can be simplified, while continuing to
generalise PPP and the related complexity classes. So, one direction of future
research is to look for minimal proof systems that continue to have this capability.
One can also look in the opposite direction, and study more powerful proof
systems, which may allow us to construct a hierarchy of increasingly general
TFNP problems.

Some more concrete open problems include the following:

– Is factoring in PPAD? is a consequential and tempting conjecture, as the
problem is in both PPP and PPA, the two important classes containing PPAD.
Note that inclusion in PPAD would probably be through randomized reduc-
tions, as such are the reductions of [15] to PPP and PPA.

– How about the remaining “rogue problems” Bertrand-Chebyshev and
Ramsey, discussed in the introduction? We conjecture that they are both
in PPP.

– Are there natural complete problems for PPA? Even though several discrete
fixpoint-type problems are by now known to be PPA-complete, they all contain
in their input the description of a computational device such as a circuit or a
Turing machine; see [10] for an intriguing possibility.

– How about PPP? It is shown in [2] that several natural problems in PPP such
as Equal Sums (given n integers, find two subsets with the same sum modulo
2n − 1) and Dirichlet (Given n rational numbers and integer n find 1

Nq
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approximations for some denominator q) can be reduced to Minkowski (given
an matrix A with determinant less than one, find a nontrivial combination of
its rows within the unit square) and thus the latter becomes an interesting
target in which to encode all of PPP.

– How robust is PPP? The class PPP can be parametrised as PPPK(n), for any
function K: given f : {0, 1}n �→ {0, 1}n identify either a collision x �= y with
f(x) = f(y), or a x ∈ {0, 1}n such that f(x) ≤ K(n), where ≤ is meant in
the standard binary notation. Obviously, PPP0 is the standard PPP, and it
is easy to see that PPPp(n) = PPP, and PPP2n−p(n) = P for all polynomials
p(n). But what happens for faster growing K(n), for example if K(n) = 2n−1

(the case known as “weak pigeonhole principle”)? Are there oracle separation
results?

– Prove that one of the problems known to be in CLS is CLS-complete. Alter-
natively, show that CLS is in P.
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Abstract. In this paper we present an overview about new results for
bin packing and related scheduling problems. During the last years we
have worked on the design of efficient exact and approximation algo-
rithms for packing and scheduling problems. In order to obtain faster
algorithms we studied integer linear programming (ILP) formulations
for these problems and proved structural results for optimum solutions
of the corresponding ILPs.

1 Introduction

In the first part of the paper we focus on the running times of approximation
schemes for scheduling problems. A problem admits a polynomial-time approxi-
mation scheme (PTAS) for a minimization problem, if there is a family of algo-
rithms {Aε | ε > 0} such that for any ε > 0 and any instance I, Aε produces
a (1 + ε)-approximate solution in time polynomial in the size of the input. Two
important restricted classes of approximation schemes were defined to distinguish
the running times. An efficient polynomial-time approximation scheme (EPTAS)
is a PTAS with running time of the form f(1/ε) · poly(|I|), while a fully time
polynomial time approximation scheme (FPTAS) runs in time poly(|I|, 1/ε).

In the second part we consider the classical bin packing problem and focus
on the design of fixed parameter tractable (FPT) algorithms where the running
time of the algorithm on an instance I is at most f(k(I)) · poly(|I|). Here f is
a computable function and k the parameterization. A natural parameter k for
bin packing is e.g. the optimum number OPT (I) of bins used or the number d
of different bin sizes.

2 Scheduling Problems

Minimum makespan scheduling is one of the fundamental problems in the lit-
erature on approximation algorithms [7,8]. In the identical machine setting the
problem asks for an assignment of a set of n jobs J to a set of m identical
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machines M. Each job j ∈ J is characterized by a non-negative processing time
pj ∈ Z>0. The load of a machine is the total processing time of jobs assigned to
it, and our objective is to minimize the makespan, that is, the maximum machine
load. This problem is usually denoted P ||Cmax.

For the setting with uniform machines the problem Q||Cmax is defined as
follows. Suppose that we are given a set J of n independent jobs Jj with
processing time pj and a set M of m non-identical machines Mi that run at
different speeds si. If job Jj is executed on machine Mi, the machine needs
pj/si time units to complete the job. The problem is to find an assignment
a : J → M for the jobs to the machines that minimizes the total execution time
maxi=1,...,m

∑
Jj :a(Jj)=Pi

pj/si. This is the minimum time needed to complete
the execution of all jobs on the processors.

2.1 Known Results

It is well known that P ||Cmax admits a polynomial time approximation scheme
(PTAS) [10], and there has been many subsequent works improving the running
time or deriving PTAS’s for more general settings. The first PTAS was found
by Hochbaum and Shmoys [10] and had a running time of (n/ε)O((1/ε)2) =
nO((1/ε)2 log(1/ε)). This was improved to nO((1/ε) log2(1/ε)) by Leung [17]. Subse-
quent articles improved further the running time. In particular Hochbaum and
Shmoys (see [12]) and Alon et al. [1,2] obtained an efficient PTAS (EPTAS)
with running time 2(1/ε)poly(1/ε)

+ O(n log n); doubly exponentional in 1/ε.
The fastest previous known PTAS for P ||Cmax achieved a running time of
2O(1/ε2) log3(1/ε)) + O(n log n) for (1 + ε)-approximate solutions [13].

For uniform processors, the decision problem for the scheduling problem with
makespan at most T can be interpreted as a bin packing problem with different
bin sizes. Using an ε-relaxed version of this bin packing problem, Hochbaum
and Shmoys [11] were able to obtain a PTAS for scheduling jobs on uniform
processors Q||Cmax with running time (n/ε)O(1/ε2). The existence of an EPTAS
for uniform processors was mentioned as an open problem by Epstein and Sgall
[5]. Some years ago we found an EPTAS [13] with an improved running time
for Q||Cmax based on an MILP formulation with a constant number of integral
variables. For any ε > 0 our algorithm Aε produces a schedule for the jobs of
length Aε(I) ≤ (1 + ε)OPT (I). The running time of Aε is 2O(1/ε2 log(1/ε)3) +
poly(n).

Very recently, Chen et al. [3] showed that, assuming the exponential time
hypothesis (ETH), there is no PTAS that yields (1 + ε)-approximate solutions
for ε > 0 with running time 2(1/ε)1−δ

+ poly(n) for any δ > 0 [3].

2.2 New Results

We describe in this section the main new ideas for the identical machines set-
ting; for the uniform setting we refer to [14]. Given a guess T ∈ N on the
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optimal makespan, which can be found with binary search, the problem reduces
to deciding the existence of a packing of the jobs to m machines (or bins) of
capacity T . If we aim for a (1 + ε)-approximate solution, for some ε > 0, we
can assume that all processing times are integral and T is a constant number,
namely T ∈ O(1/ε2). This can be achieved with well known rounding and scaling
techniques [1,2,12]. Let π1 < π2 < . . . < πd be the job sizes appearing in the
instance after rounding, and let bk denote the number of jobs of size πk. The
mentioned rounding procedure implies that the number of different job sizes is
d = O((1/ε) log(1/ε)). Hence, for large n we obtain a highly symmetric problem
where several jobs will have the same processing time. Consider the knapsack
polytope P = {c ∈ R

d
≥0 : π · c ≤ T}. A packing on one machine can be expressed

as a vector c ∈ Q = Z
d ∩ P, where ck denotes the number of jobs of size πk

assigned to the machine. Elements in Q = Z
d ∩ P are called configurations.

Considering a variable xc ∈ Z≥0 that decides the multiplicity of configuration
c in the solution, our problem reduces to solving the following linear integer
program (ILP):

[conf − ILP]
∑

c∈Q

c · xc = b, (1)

∑

c∈Q

xc = m, (2)

xc ∈ Z≥0 for all c ∈ Q. (3)

In this paper we derive new insights on this ILP that help us to design faster
algorithms for P ||Cmax. We prove the following result.

Theorem 1 [14]. The scheduling problem on identical machines admits an effi-
cient polynomial time approximation scheme (EPTAS) with running time

2O((1/ε) log4(1/ε)) + O(n).

Hence, our algorithm is best possible up to polylogarithmic factors in the
exponent assuming the ETH [3].

The support supp(x) of a solution vector x = (xc) is defined as the set of
non-negative components xc > 0. Eisenbrand and Shmonin [4] proved that there
always exists an optimum solution x of the configuration ILP with |supp(x)| ≤
2(d + 1) log(4(d + 1)T ).

Our main technical contribution is a new structural result on the configura-
tion ILP. More precisely, we show the existence of a highly symmetric and sparse
optimal solution, in which all but a constant number of machines are assigned
a configuration with small support. We say that a configuration c is simple if
its support (or number of non-negative components ck > 0) is of size at most
log(T + 1), otherwise it is complex. Then we can prove the following structural
result:
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Theorem 2 [14] . Suppose that the [conf-ILP] is feasible. Then there exists a
feasible solution x to [conf-ILP] such that

(1) if xc > 1 then the configuration c is simple,
(2) the support of x satisfies |supp(x)| ≤ 4(d + 1) log(4(d + 1)T ), and
(3)

∑
c∈Qc

xc ≤ 2(d + 1) log(4(d + 1)T ), where Qc denotes the set of complex
configurations.

This structure can then be exploited by integer programming techniques
[16,18] and dynamic programming. Interestingly, the result can be gener-
alized also to the uniform machine setting with the same running time
2O((1/ε) log4(1/ε)) + O(n) using an MILP formulation and the same structural
result. We believe that our structural result is of independent interest and should
find applications to other settings.

3 Bin Packing

We consider the classical bin packing problem with d different item sizes
s1, . . . , sd and build upon the results by Goemans and Rothvoß [6] to obtain
a new polynomial time algorithm for the bin packing problem when d is con-
stant [15]. Therefore, we present new techniques on how solutions of an instance
can be modified and we give a new structural theorem that relies on the set of
vertices of the underlying integer polytope.

3.1 Known Results

Given a polytope P = {x ∈ R
d | Ax ≤ c} for some matrix A ∈ Z

m×d and a
vector c ∈ Z

d. We consider the integer cone

int.cone(P ∩ Z
d) = {

∑

p∈P∩Zd

λpp | λ ∈ Z
P∩Z

d

≥0 }

of integral points inside the polytope P. When we choose P to be the knapsack
polytope, i.e. P = {x ∈ Z

d
≥0 | sT x ≤ 1}, then each integral point of the polytope

represents one possibility of packing a single bin with items from s1, . . . , sd.
Hence a vector λ ∈ Z

P∩Z
d

≥0 of int.cone(P ∩ Z
d) represents a packing of the bin

packing problem.
A long standing open question was, whether the bin packing problem can be

solved in polynomial time when the number of different item sizes d is constant.
This problem was recently solved by Goemans and Rothvoß [6] using structural
properties of the integer cone. Essentially, they proved the existence of a dis-
tinguished set X ⊆ P ∩ Z

d of bounded size |X| ≤ mddO(d)(log Δ)d such that
for every vector b ∈ int.cone(P ∩ Z

d) there exists an integral vector λ ∈ Z
P∩Z

d

≥0

where most of the weight lies in X.

3.2 New Results

In this section we show that a similar structural theorem holds for a rather
natural choice of the distinguished set X. Therefore, we consider the so called
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integer polytope PI . It is defined by the convex hull of all integer points inside
P, i.e. PI = Conv(P ∩ Z

d). Let VI be the vertices of the integer polytope PI

i.e. PI = Conv(VI). Based on the set VI , we can show the following structural
result for solutions λ of int.cone(P ∩ Z

d):

Theorem 3 [15]. Let P = {x ∈ R
d | Ax ≤ c} be a polytope with A ∈ Z

m×d, c ∈
Z

d
≥0 and let supp(λ) be the set of non-zero components of λ. Then for any vector

b ∈ int.cone(P ∩ Z
d), there exists an integral vector λ ∈ Z

P∩Z
d

≥0 such that b =∑
p∈P∩Zd λpp and

(1) λp ≤ 22
O(d) ∀p ∈ (P ∩ Z

d) \ VI ,
(2) |supp(λ) ∩ VI | ≤ d · 2d,
(3) |supp(λ) \ VI | ≤ 22d.

As a consequence of our structural result, we obtain an algorithm for the
bin packing problem with a running time of |VI |2O(d) · log(Δ)O(1), where Δ is
the maximum over all multiplicities b and denominators in s. Since |VI | ≥ d + 1
this is an FPT-algorithm parameterized by the number of vertices of the integer
knapsack polytope VI .

Theorem 4 [15]. The bin packing problem can be solved in time |VI |2O(d) ·
(log Δ)O(1) and hence in FPT-time, parameterized by the number of vertices VI .

This algorithmic result shows that the bin packing problem can be solved
efficiently when the underlying knapsack polytope has an easy structure, i.e. has
not too many vertices. However, since the total number of vertices is bounded
by O(log Δ)d (see also [9]) the algorithm has a worst case running time of
(log Δ)2

O(d)
, which is identical to the running time of the algorithm by Goemans

and Rothvoß [6].
Furthermore, we were able to complement this result by giving a matching

lower bound. We prove that the double exponential bound of the structure the-
orem is actually tight, even in the mentioned special case of bin packing, when
all items sizes s1, . . . , sd are of the form si = 1

ai
for some ai ∈ Z≥1.
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1 Introduction

Transportation and telecommunication networks are important backbones of
modern infrastructure and have been a major focus of research in combinatorial
optimization and other areas. Research on such networks usually concentrates
on optimizing their usage, for example by maximizing throughput or minimizing
costs. In the majority of the studied optimization models it is assumed that the
network is permanently available, and our choices only consist in deciding which
parts of the network to use at each point in time.

Practical transportation and telecommunication networks, however, can gen-
erally not be used non-stop. Be it due to wear-and-tear, repairs, or moderniza-
tions of the network, there are times when parts of the network are unavailable.
We study how to schedule and coordinate such maintenance in different parts of
the network to ensure connectivity.

While network problems and scheduling problems individually are fairly well
understood, the combination of both areas that results from scheduling network
maintenance has only recently received some attention [1,2,4,11,16] and is the-
oretically hardly understood.

Problem Definition. In this paper, we study connectivity problems which are
fundamental in this context. In these problems, we aim to schedule the mainte-
nance of edges in a network in such a way as to preserve connectivity between
two designated vertices. Given a network and maintenance jobs with processing
times and feasible time windows, we need to decide on the temporal allocation
of the maintenance jobs. While a maintenance on an edge is performed, the
edge is not available. We distinguish between MINCONNECTIVITY, the prob-
lem in which we minimize the total time in which the network is disconnected,
and MAXCONNECTIVITY, the problem in which we maximize the total time in
which it is connected.

In both of these problems, we are given an undirected graph G = (V,E)
with two distinguished vertices s+, s− ∈ V . We assume w. l. o. g. that the graph
is simple; we can replace a parallel edge {u,w} by a new node v and two edges
{u, v} , {v, w}. Every edge e ∈ E needs to undergo pe ∈ Z≥0 time units of
maintenance within the time window [re, de] with re, de ∈ Z≥0, where re is
called the release date and de is called the deadline of the maintenance job for
edge e. An edge e = {u, v} ∈ E that is maintained at time t, is not available at t
in the graph G. We consider preemptive and non-preemptive maintenance jobs.
If a job must be scheduled non-preemptively then, once it is started, it must run
until completion without any interruption. If a job is allowed to be preempted,
then its processing can be interrupted at any time and may resume at any later
time without incurring extra cost.

A schedule S for G assigns the maintenance job of every edge e ∈ E to
a single time interval (if non-preemptive) or a set of disjoint time intervals (if
preemptive) S(e) := {[a1, b1], . . . , [ak, bk]} with re ≤ ai ≤ bi ≤ de for i ∈ [k] and∑

[a,b]∈S(e)(b − a) = pe. If not specified differently, we define T := maxe∈E de

as our time horizon. We do not limit the number of simultaneously maintained
edges.
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For a given maintenance schedule, we say that the network G is disconnected
at time t if there is no path from s+ to s− in G at time t, otherwise we call
the network G connected at time t. The goal is to find a maintenance schedule
for the network G so that the total time where G is disconnected is minimized
(MINCONNECTIVITY). We also study the maximization variant of the problem,
in which we want to find a schedule that maximizes the total time where G is
connected (MAXCONNECTIVITY).

Our Results. For preemptive maintenance jobs, we show that we can solve
both problems, MAXCONNECTIVITY and MINCONNECTIVITY, efficiently in
arbitrary networks (Theorem 1). This result crucially requires that we are free
to preempt jobs at arbitrary points in time. Under the restriction that we can
preempt jobs only at integral points in time, the problem becomes NP-hard.
More specifically, MAXCONNECTIVITY does not admit a (2 − ε)-approximation
algorithm for any ε > 0 in this case, and MINCONNECTIVITY is inapproximable
(Theorem 2), unless P = NP. By inapproximable, we mean that it is NP-complete
to decide whether the optimal objective value is zero or positive, leading to
unbounded approximation factors.

This is true even for unit-size jobs. This complexity result is interesting and
may be surprising, as it is in contrast to results for standard scheduling prob-
lems, without an underlying network. Here, the restriction to integral preemption
typically does not increase the problem complexity when all other input parame-
ters are integral. However, the same question remains open in a related problem
concerning the busy-time in scheduling, studied in [7,8].

For non-preemptive instances, we establish that there is no (c 3
√|E|)-ap-

proximation algorithm for MAXCONNECTIVITY for some constant c > 0 and
that MINCONNECTIVITY is inapproximable even on disjoint paths between two
nodes s and t, unless P = NP (Theorems 3 and 4). On the positive side, we
provide an (�+1)-approximation algorithm for MAXCONNECTIVITY in general
graphs (Theorem 6), where � is the number of distinct latest start times (deadline
minus processing time) for jobs.

We use the notion power of preemption to capture the benefit of allowing
arbitrary job preemption. The power of preemption is a commonly used measure
for the impact of preemption in scheduling [6,10,18,19]. Other terms used in this
context include price of non-preemption [9], benefit of preemption [17] and gain
of preemption [12]. It is defined as the maximum ratio of the objective values
of an optimal non-preemptive and an optimal preemptive solution. We show
that the power of preemption is Θ(log |E|) for MINCONNECTIVITY on a path
(Theorem 7) and unbounded for MAXCONNECTIVITY on a path (Theorem8).
This is in contrast to other scheduling problems, where the power of preemption
is constant, e. g. [10,18].

On paths, we show that mixed instances, which have both preemptive and
non-preemptive jobs, are weakly NP-hard (Theorem 9). This hardness result
is of particular interest, as both purely non-preemptive and purely preemp-
tive instances can be solved efficiently on a path (see Theorem 1 and [14]).
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Furthermore, we give a simple 2-approximation algorithm for mixed instances
of MINCONNECTIVITY (Theorem 10).

Related Work. The concept of combining scheduling with network problems
has been considered by different communities lately. However, the specific prob-
lem of only maintaining connectivity over time between two designated nodes
has not been studied to our knowledge. Boland et al. [2–4] study the combina-
tion of non-preemptive arc maintenance in a transport network, motivated by
annual maintenance planning for the Hunter Valley Coal Chain [5]. Their goal is
to schedule maintenance such that the maximum s-t-flow over time in the net-
work with zero transit times is maximized. They show strong NP-hardness for
their problem and describe various heuristics and IP based methods to address
it. Also, they show in [3] that in their non-preemptive setting, if the input is
integer, there is always an optimal solution that starts all jobs at integer time
points. In [2], they consider a variant of their problem, where the number of
concurrently performable maintenances is bounded by a constant.

Their model generalizes ours in two ways – it has capacities and the objec-
tive is to maximize the total flow value. As a consequence of this, their IP-based
methods carry over to our setting, but these methods are of course not efficient.
Their hardness results do not carry over, since they rely on the capacities and the
different objective. However, our hardness results – in particular our approxima-
tion hardness results – carry over to their setting, illustrating why their IP-based
models are a good approach for some of these problems.

Bley et al. [1] study how to upgrade a telecommunication network to a new
technology employing a bounded number of technicians. Their goal is to minimize
the total service disruption caused by downtimes. A major difference to our
problem is that there is a set of given paths that shall be upgraded and a path
can only be used if it is either completely upgraded or not upgraded. They give
ILP-based approaches for solving this problem and show strong NP-hardness
for a non-constant number of paths by reduction from the linear arrangement
problem.

Nurre et al. [16] consider the problem of restoring arcs in a network after a
major disruption, with restoration per time step being bounded by the available
work force. Such network design problems over time have also been considered
by Kalinowski et al. [13].

In scheduling, minimizing the busy time refers to minimizing the amount of
time for which a machine is used. Such problems have applications for instance
in the context of energy management [15] or fiber management in optical net-
works [11]. They have been studied from the complexity and approximation point
of view in [7,11,14,15]. The problem of minimizing the busy time is equivalent
to our problem in the case of a path, because there we have connectivity at a
time point when no edge in the path is maintained, i. e., no machine is busy.

Thus, the results of Khandekar et al. [14] and Chang et al. [7] have direct
implications for us. They show that minimizing busy time can be done efficiently
for purely non-preemptive and purely preemptive instances, respectively.
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2 Preemptive Scheduling

In this section, we consider problem instances where all maintenance jobs can
be preempted.

Theorem 1. Both MAXCONNECTIVITY and MINCONNECTIVITY with pre-
emptive jobs can be solved optimally in polynomial time on arbitrary graphs.

Proof. We establish a linear program (LP) for MAXCONNECTIVITY. Let TP =
{0}∪{re, de : e ∈ E} = {t0, t1, . . . , tk} be the set of all relevant time points with
t0 < t1 < · · · < tk. We define Ii := [ti−1, ti] and wi := |Ii| to be the length of
interval Ii for i = 1, . . . , k.

In our linear program we model connectivity during interval Ii by an (s+, s−)-
flow x(i), i ∈ {1, . . . , k}. To do so, we add for every undirected edge e = {u, v}
two directed arcs (u, v) and (v, u). Let A be the resulting arc set. With each
edge/arc we associate a capacity variable y

(i)
e , which represents the fraction of

availability of edge e in interval Ii. Hence, 1 − y
(i)
e gives the relative amount

of time spent on the maintenance of edge e in Ii. Additionally, the variable fi

expresses the fraction of availability for interval Ii.

max
k∑

i=1

wi · fi (1)

s.t.
∑

u:(v,u)∈A

x
(i)
(v,u) −

∑

u:(u,v)∈A

x
(i)
(u,v) =

⎧
⎪⎨

⎪⎩

fi ∀ i ∈ [k], v = s+,

0 ∀ i ∈ [k], v ∈ V \ {s+, s−},

−fi ∀ i ∈ [k], v = s−,

(2)
∑

i:Ii⊆[re,de]

(1 − y(i)
e )wi ≥ pe ∀ e ∈ E, (3)

x
(i)
(u,v), x

(i)
(v,u) ≤ y

(i)
{u,v} ∀ i ∈ [k], {u, v} ∈ E, (4)

fi ≤ 1 ∀ i ∈ [k], (5)

x
(i)
(u,v), x

(i)
(v,u), y

(i)
{u,v} ∈ [0, 1] ∀ i ∈ [k], {u, v} ∈ E. (6)

Notice that the LP is polynomial in the input size, since k ≤ 2|E|. We show
in Lemma 1 that this LP is a relaxation of preemptive MAXCONNECTIVITY on
general graphs and in Lemma2 that any optimal solution to it can be turned into
a feasible schedule with the same objective function value in polynomial time,
which proves the claim for MAXCONNECTIVITY. For MINCONNECTIVITY,
notice that any solution that maximizes the time in which s and t are con-
nected also minimizes the time in which s and t are disconnected – thus, we can
use the above LP there as well. ��
Lemma 1. The given LP is a relaxation of preemptive MAXCONNECTIVITY
on general graphs.
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Lemma 2. Any feasible LP solution can be turned into a feasible maintenance
schedule at no loss in the objective function value in polynomial time.

The statement of Theorem 1 crucially relies on the fact that we may preempt
jobs arbitrarily. However, if preemption is only possible at integral time points,
the problem becomes NP-hard even for unit-size jobs. This follows from the proof
of Theorem 3 for t1 = 0, t2 = 1, and T = 2.

Theorem 2. MAXCONNECTIVITY with preemption only at integral time points
is NP-hard and does not admit a (2 − ε)-approximation algorithm for any
ε > 0, unless P = NP. Furthermore, MINCONNECTIVITY with preemption only
at integral time points is inapproximable.

3 Non-preemptive Scheduling

We consider problem instances in which no job can be preempted. We show
that there is no (c 3

√|E|)-approximation algorithm for MAXCONNECTIVITY for
some c > 0. We also show that MINCONNECTIVITY is inapproximable, unless
P = NP. Furthermore, we give an (� + 1)-approximation algorithm, where � :=
| {de − pe | e ∈ E} | is the number of distinct latest start times for jobs.

To show the strong hardness of approximation for MAXCONNECTIVITY, we
begin with a weaker result which provides us with a crucial gadget.

Theorem 3. Non-preemptive MAXCONNECTIVITY does not admit a (2 − ε)-
approximation algorithm, for ε > 0, and non-preemptive MINCONNECTIVITY is
inapproximable, unless P = NP. This holds even for unit-size jobs.

Proof (Sketch). This is shown by a reduction from 3SAT. We construct a network
such that connectivity is possible only within two disjoint time slots [t1, t1 + 1]
and [t2, t2 + 1].

We show that this network admits a schedule with total connectivity time
greater than one if and only if the 3SAT-instance is a YES-instance. Further-
more, we show that if the total connectivity time is greater than one, then there
is a schedule with maximum total connectivity time of two. For this, we distin-
guish between variable paths and clause paths. By construction, variable paths
exist only in [t2, t2 + 1] and clause paths only in [t1, t1 + 1]. These paths walk
through variable gadgets which encapsulate the decision whether to set a vari-
able to TRUE or FALSE. A variable path ensures that we have a valid variable
assignment, and a clause path sets literals in a clause to TRUE. If and only if
both types of paths exist, then the 3SAT-instance is a YES-instance.

For t1 = 0, t2 = 1, and T = 2, this construction uses only unit-size jobs, and
in the MINCONNECTIVITY case YES-instances have an objective value of 0 and
NO-instances a value of 1. ��

We reuse the construction in the proof of Theorem3 repeatedly to obtain the
following improved lower bound.
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Theorem 4. Unless P = NP, there is no (c 3
√|E|)-approximation algorithm for

non-preemptive MAXCONNECTIVITY, for some constant c > 0.

Proof (Sketch). We show this by reduction from 3SAT. Let n be the number
of variables in the given 3SAT instance. Using the construction from Theorem3
repeatedly allows us to construct a network that has maximum connectivity
time n if the given 3SAT instance is a YES-instance and maximum connectivity
time 1 otherwise. This implies that there cannot be an (n − ε)-approximation
algorithm for non-preemptive MAXCONNECTIVITY, unless P = NP. Notice that
the construction in the proof of Theorem 3 has Θ(n) maintenance jobs and we
will introduce Θ(n2) copies of the construction, yielding |E| ≤ c · n3 for some
c > 0. Hence, we have n ≥ c′ 3

√|E| for some c′ > 0.
For the construction, we use n2−n copies of the 3SAT-network from the proof

of Theorem 3, where each copy uses different (t1, t2)-combinations with t1, t2 ∈
{0, . . . , n−1} and t1 	= t2. Considering special (s+, s−)-paths, a path labeled with
k allows connectivity only during [k, k +1], k = 0, . . . , n− 1, and passes through
every 3SAT-network with t1 = k or t2 = k. Notice that within a 3SAT-network we
have connectivity during both time slots if and only if the corresponding 3SAT-
instance is a YES-instance. Also, we know due to [3] that there is an optimal
solution which starts all jobs at integral times. Now, if the 3SAT-instance is a
YES-instance, there is a global schedule such that its restriction to every 3SAT-
network allows connectivity during both intervals. Thus each path with label
k ∈ {0, . . . , n − 1} allows connectivity during [k, k + 1]. This implies that the
maximum connectivity time is n.

Conversely, suppose there exists a global schedule with connectivity during
two time slots. Then there must exist two paths P1, P2 from s+ to s− with two
distinct labels, each realizing connectivity during one of both intervals. By con-
struction there is one 3SAT-network they both use. This implies by the proof of
Theorem 3, that the global schedule restricted to this 3SAT-network corresponds
to a satisfying truth assignment for the 3SAT-instance. ��

The results above hold for general graph classes, but even for graphs as simple
as disjoint paths between s and t, the problem remains strongly NP-hard.

Theorem 5. Non-preemptive MAXCONNECTIVITY is strongly NP-hard, and
non-preemptive MINCONNECTIVITY is inapproximable even if the given graph
consists only of disjoint paths between s and t.

We give an algorithm that computes an (� + 1)-approximation for non-
preemptive MAXCONNECTIVITY, where � ≤ |E| is the number of different time
points de−pe, e ∈ E. The basic idea is that we consider a set of �+1 feasible main-
tenance schedules, whose total time of connectivity upper bounds the maximum
total connectivity time of a single schedule. Then the schedule with maximum
connectivity time among our set of � + 1 schedules is an (� + 1)-approximation.

The schedules we consider start every job either immediately at its release
date, or at the latest possible time. In the latter case it finishes exactly at the
deadline. More precisely, for a fixed time point t, we start the maintenance of all
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edges e ∈ E with de − pe ≥ t at their latest possible start time de − pe. All other
edges start maintenance at their release date re. This yields at most � + 1 ≤
|E| + 1 different schedules St, as for increasing t, each time point where de − pe

is passed for some edge e defines a new schedule. Algorithm 1 formally describes
this procedure, where E(t) := {e ∈ E : e is not maintained at t}.

Algorithm 1. Approx. Algorithm for Non-preemptive MAXCONNECTIVITY
1: Let t1 < · · · < t� be all different time points de − pe, e ∈ E, t0 = 0 and t�+1 = T .
2: Let Si be the schedule, where all edges e with de − pe < ti start maintenance at re

and all other edges at de − pe, i = 1, . . . , � + 1.
3: For each Si, initialize total connectivity time c(ti) ← 0, i = 1, . . . , � + 1.
4: for i = 1 to � + 1 do
5: Partition the interval [ti−1, ti] into subintervals such that each time point re, re+

pe, de, e ∈ E, in this interval defines a subinterval bound.
6: for all subintervals [a, b] ⊆ [ti−1, ti] do
7: if (V, E(1/2 · (a + b))) contains an (s+, s−)-path for Si then
8: Increase c(ti) by b − a.
9: return Schedule Si for which c(ti), i = 1, . . . , � + 1, is maximized.

Algorithm 1 considers finitely many intervals, as all (sub-)interval bounds are
defined by a time point re, re + pe, de − pe or de of some e ∈ E. As we can check
the network for (s+, s−)-connectivity in polynomial time, and the algorithm does
this for each (sub-)interval, Algorithm1 runs in polynomial time.

Theorem 6. Algorithm1 is an (� + 1)-approximation algorithm for non-pre-
emptive MAXCONNECTIVITY on general graphs, with � ≤ |E| being the number
of different time points de − pe, e ∈ E.

4 Power of Preemption

We first focus on MINCONNECTIVITY on a path and analyze how much we
can gain by allowing preemption. First, we show that there is an algorithm that
computes a non-preemptive schedule whose value is bounded by O(log |E|) times
the value of an optimal preemptive schedule. Second, we argue that one cannot
gain more than a factor of Ω(log |E|) by allowing preemption.

Theorem 7. The power of preemption is Θ(log |E|) for MINCONNECTIVITY
on a path.

Proof. Observe that if at least one edge of a path is maintained at time t, then the
whole path is disconnected at t. We give an algorithm for MINCONNECTIVITY
on a path that constructs a non-preemptive schedule with cost at most O(log |E|)
times the cost of an optimal preemptive schedule.

We first compute an optimal preemptive schedule. This can be done in poly-
nomial time by Theorem 1. Let xt be a variable that is 1 if there exists a job j
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that is processed at time t and 0 otherwise. We shall refer to x also as the main-
tenance profile. Furthermore, let a :=

∫ T

0
xt dt be the active time, i.e., the total

time of maintenance. Then we apply the following splitting procedure. We com-
pute the time point t̄ where half of the maintenance is done, i.e.,

∫ t̄

0
xt dt = a/2.

Let E(t) := {e ∈ E | re ≤ t ∧ de ≥ t} and pmax := maxe∈E(t) pe. We reserve the
interval [t̄ − pmax, t̄ + pmax] for the maintenance of the jobs in E(t̄), although we
might not need the whole interval. We schedule each job in E(t̄) around t̄ so that
the processing time before and after t̄ is the same. If the release date (deadline)
of a jobs does not allow this, then we start (complete) the job at its release date
(deadline). Then we mark the jobs in E(t̄) as scheduled and delete them from
the preemptive schedule.

This splitting procedure splits the whole problem into two separate instances
E1 := {e ∈ E | de < t̄} and E2 := {e ∈ E | re > t̄}. Note that in each of these
sub-instances the total active time in the preemptive schedule is at most a/2.
We apply the splitting procedure to both sub-instances and follow the recursive
structure of the splitting procedure until all jobs are scheduled. ��
Lemma 3. For MINCONNECTIVITY on a path, the given algorithm constructs
a non-preemptive schedule with cost O(log |E|) times the cost of an optimal pre-
emptive schedule.

Proof. The progression of the algorithm can be described by a binary tree in
which a node corresponds to a partial schedule generated by the splitting pro-
cedure for a subset of the job and edge set E. The root node corresponds to the
partial schedule for E(t̄) and the (possibly) two children of the root correspond
to the partial schedules generated by the splitting procedure for the two sub-
problems with initial job sets E1 and E2. We can cut a branch if the initial set
of jobs is empty in the corresponding subproblem. We associate with every node
v of this tree B two values (sv, av) where sv is the number of scheduled jobs in
the subproblem corresponding to v and av is the amount of maintenance time
spent for the scheduled jobs.

The binary tree B has the following properties. First, sv ≥ 1 holds for all
v ∈ B, because the preemptive schedule processes some job at the midpoint
t̄v which means that there must be a job e ∈ E with re ≤ t̄v ∧ de ≥ t̄v. This
observation implies that the tree B can have at most |E| nodes and since we
want to bound the worst total cost we can assume w.l.o.g. that B has exactly
|E| nodes. Second,

∑
v∈B av =

∫ T

0
yt dt where yt is the maintenance profile of

the non-preemptive solution.
The cost av of the root node (level-0 node) is bounded by 2pmax ≤ 2a. The

cost of each level-1 node is bounded by 2 · a/2 = a, so the total cost on level 1
is also at most 2a. It is easy to verify that this is invariant, i.e., the total cost at
level i is at most 2a for all i ≥ 0, since the worst node cost av halves from level
i to level i + 1, but the number of nodes doubles in the worst case. We obtain
the worst total cost when B is a complete balanced binary tree. This tree has
at most O(log |E|) levels and therefore the worst total cost is a · O(log |E|). The
total cost of the preemptive schedule is a. ��
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We now provide a matching lower bound for the power of preemption on a path.

Lemma 4. The power of non-preemption is Ω(log |E|) for MINCONNECTIVITY
on a path.

Proof. We construct a path with |E| edges and divide the |E| jobs into � levels
such that level i contains exactly i jobs for 1 ≤ i ≤ �. Hence, we have |E| =
�(�+1)/2 jobs. Let P be a sufficiently large integer such that all of the following
numbers are integers. Let the jth job of level i have release date (j − 1)P/i,
deadline (j/i)P , and processing time P/i, where 1 ≤ j ≤ i. Note that now no
job has flexibility within its time window, and thus the value of the resulting
schedule is P .

We now modify the instance as follows. At every time point t where at least
one job has a release date and another job has a deadline, we stretch the time
horizon by inserting a gap of size P. This stretching at time t can be done by
adding a value of P to all time points after the time point t, and also adding
a value of P to all release dates at time t. The deadlines up to time t remain
the same. Observe that the value of the optimal preemptive schedule is still P ,
because when introducing the gaps we can move the initial schedule accordingly
such that we do not maintain any job within the gaps of size P .

Let us consider the optimal non-preemptive schedule. The cost of scheduling
the only job at level 1 is P . In parallel to this job we can schedule at most one
job from each other level, without having additional cost. This is guaranteed
by the introduced gaps. At level 2 we can fix the remaining job with additional
cost P/2. As before, in parallel to this fixed job, we can schedule at most one
job from each level i where 3 ≤ i ≤ �. Applying the same argument to the next
levels, we notice that for each level i we introduce an additional cost of value
P/i. Thus the total cost is at least

∑�
i=1 P/i ∈ Ω(P log �) with � ∈ Θ(

√|E|). ��
Theorem 8. For non-preemptive MAXCONNECTIVITY on a path the power of
preemption is unbounded.

5 Mixed Scheduling

We know that both the non-preemptive and preemptive MAXCONNECTIVITY
and MINCONNECTIVITY on a path are solvable in polynomial time by Theo-
rem 1 and [14, Theorem 9], respectively. Notice that the parameter g in [14] is in
our setting ∞. Interestingly, the complexity changes when mixing the two job
types – even on a simple path.

Theorem 9. MAXCONNECTIVITY and MINCONNECTIVITY with preemptive
and non-preemptive maintenance jobs is weakly NP-hard, even on a path.

Theorem 10. There is a 2-approximation algorithm for MINCONNECTIVITY
on a path with preemptive and non-preemptive maintenance jobs.
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6 Conclusion

Combining network flows with scheduling aspects is a very recent field of
research. While there are solutions using IP based methods and heuristics, exact
and approximation algorithms have not been considered extensively. We provide
strong hardness results for connectivity problems, which is inherent to all forms
of maintenance scheduling, and give algorithms for tractable cases.

In particular, the absence of c 3
√|E|-approximation algorithms for some c > 0

for general graphs indicates that heuristics and IP-based methods [2–4] are a
good way of approaching this problem. An interesting open question is whether
the inapproximability results carry over to series-parallel graphs, as the network
motivating [2–4] is series-parallel. Our results on the power of preemption as well
as the efficient algorithm for preemptive instances show that allowing preemption
is very desirable. Thus, it could be interesting to study models where preemption
is allowed, but comes at a cost to make it more realistic.

On a path, our results have implications for minimizing busy time, as we want
to minimize the number of times where some edge on the path is maintained.
Here, an interesting open question is whether the 2-approximation for the mixed
case can be improved, e.g. by finding a pseudo-polynomial algorithm, a better
approximation ratio, or conversely, to show an inapproximability result for it.

Acknowledgements. We thank the anonymous reviewers for their helpful comments.
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Abstract. For a family of graphs F , the F-Contraction problem
takes as an input a graph G and an integer k, and the goal is to decide
whether there exists F ⊆ E(G) of size at most k such that G/F belongs
to F . When F is the family of paths, trees or cacti, then the correspond-
ing problems are Path Contraction, Tree Contraction and Cac-
tus Contraction, respectively. It is known that Tree Contraction
and Cactus Contraction do not admit a polynomial kernel unless
NP ⊆ coNP/poly, while Path Contraction admits a kernel with O(k)
vertices. The starting point of this article are the following natural ques-
tions: What is the structure of the family of paths that allows Path Con-
traction to admit a polynomial kernel? Apart from the size of the solu-
tion, what other additional parameters should we consider so that we can
design polynomial kernels for these basic contraction problems? With the
goal of designing polynomial kernels, we consider the family of trees with
bounded number of leaves (note that the family of paths are trees with at
most two leaves). In particular, we study Bounded Tree Contraction
(Bounded TC). Here, an input is a graph G, integers k and �, and the
goal is to decide whether or not, there exists a subset F ⊆ E(G) of size at
most k such that G/F is a tree with at most � leaves. We design a kernel
for Bounded TC with O(k�) vertices and O(k2 + k�) edges. Finally, we
study Bounded Cactus Contraction (Bounded CC) which takes as
input a graph G and integers k and �. The goal is to decide whether there
exists a subset F ⊆ E(G) of size at most k such that G/F is a cactus
graph with at most � leaf blocks in the corresponding block decomposi-
tion. For Bounded CC we design a kernel with O(k2 + k�) vertices and
O(k2 + k�) edges. We complement our results by giving kernelization
lower bounds for Bounded TC, Bounded OTC and Bounded CC by
showing that unless NP ⊆ coNP/poly the size of the kernel we obtain is
optimal.

1 Introduction

Graph editing problems are one of the central problems in graph theory that
have received lot of attention in the realm of parameterized complexity. Some
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of the important graph editing operations are vertex deletion, edge deletion,
edge addition and edge contraction. For a family of graphs F , the F-Editing
problem takes as an input a graph G and an integer k, and the objective is to
decide if at most k edit operations can result in a graph that belongs to the
graph family F . In fact, the F-Editing problem, where the edit operations are
restricted to vertex deletion or edge deletion or edge addition or edge contrac-
tion alone have also been studied extensively in parameterized complexity. When
we just focus on deletion operation (vertex/edge deletion) then the correspond-
ing problem is called F-Vertex (Edge) Deletion problem. For instance, the
F-Editing problems encompasses several NP-hard problems such as Vertex
Cover, Feedback vertex set, Planar F-Deletion, Interval Vertex
Deletion, Chordal Vertex Deletion, Odd cycle transversal, Edge
Bipartization, Tree Contraction, Path Contraction, Split Contrac-
tion, Clique Contraction etc. However, most of the study in paramterized
complexity or classical complexity, have been restricted to combination of vertex
deletion, edge deletion or edge addition [2,3,6–9,12–18,22,24,26,28,29]. Only
recently, edge contraction as an edit operation has started to gain attention
in the realm of parameterized complexity. In this paper we study three edge-
contraction problems from the perspective of kernelization complexity – one of
the established subarea in parameterized complexity.

In parameterized complexity each problem instance is accompanied by a
parameter k. A central notion in this field is the one of fixed parameter tractable
(FPT). This means, for a given instance (I, k), solvability in time O(f(k)|I|O(1))
where f is some function of k. Other important notion in parameterized complex-
ity is kernelization, which captures the efficiency of data reduction techniques.
A parameterized problem Π admits a kernel of size g(k) (or g(k)-kernel) if there
is a polynomial time algorithm (called kernelization algorithm) which takes as
an input (I, k), and in time O(|I|O(1)) returns an equivalent instance (I ′, k′) of
Π such that |I ′| + k′ ≤ g(k). Here, g(·) is a computable function whose value
depends only on k. Depending on whether the function g(·) is linear, polynomial
or exponential, the problem is said to admit a linear, polynomial or exponen-
tial kernel, respectively. It turns out that linear and polynomial kernels are most
interesting from the kernelization perspective, because any problem that is fixed-
parameter tractable admits an exponential kernel [10]. In this paper whenever
we say kernel, we will refer to polynomial or linear kernels.

For several families of graphs F , early papers by Watanabe et al. [30,31] and
Asano and Hirata [1] showed that F-Edge Contraction is NP-complete. In
the framework of parameterized complexity (or even the classical complexity),
these problems exhibit properties that are quite different than those of problems
where we only delete or add vertices and edges. For instance deleting k edges
from a graph such that the resulting graph is a tree is polynomial time solv-
able. On the other hand, Asano and Hirata showed that Tree Contraction
is NP-hard [1]. Furthermore, a well-known result by Cai [4] states that in case
F is a hereditary family of graphs with a finite set of forbidden induced sub-
graphs, then the graph modification problem defined by F and the edit oper-
ations restricted to vertex deletion, edge deletion and edge addition admits a
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simple FPT algorithm. Indeed, for these problems, the result by Cai [4] does
not hold when the edit operation is edge contraction. In particular, Lokshtanov
et al. [27] and Cai and Guo [5] independently showed that if F is either the
family of P�-free graphs for some � ≥ 5 or the family of C�-free graphs for some
� ≥ 4, then F-Edge Contraction is W[2]-hard. To the best of our knowledge,
Heggernes et al. [21] were the first to explicitly study F-Edge Contraction
from the viewpoint of Parameterized Complexity. They showed that in case F is
the family of trees, F-Edge Contraction is FPT but does not admit a poly-
nomial kernel, while in case F is the family of paths, the corresponding problem
admits a faster algorithm and an O(k)-vertex kernel. Golovach et al. [19] proved
that if F is the family of planar graphs, then F-Edge Contraction is again
FPT. Moreover, Cai and Guo [5] showed that in case F is the family of cliques,
F-Edge Contraction is solvable in time 2O(k log k) · nO(1), while in case F is
the family of chordal graphs, the problem is W[2]-hard. Heggernes et al. [23]
developed an FPT algorithm for the case where F is the family of bipartite
graphs. Later, a faster algorithm was proposed by Guillemot and Marx [20].

It is evident from our discussion that the complexity of the graph editing
problem when restricted to edge contraction seems to be more difficult than their
vertex or edge deletion counterparts. The starting point of our research is the
following result by Heggernes et al. [21] who showed that Tree Contraction
does not admit a polynomial kernel unless NP ⊆ coNP/poly [21] and Path
Contraction admits a linear vertex kernel.

We wanted to understand the structure of the family of paths that allows
Path Contraction to admit a polynomial kernel. Apart from the size of the
solution, what other additional parameters should we consider so that we can
design polynomial kernels for these basic contraction problems? One of the nat-
ural candidate for such an extension is to consider family of trees with the
bounded number of leaves. With the goal to apprehend the understanding on
role the number of leaves plays in the kernelization complexity for contracting
to “path-like” graph, we study the problem which we call as Bounded Tree
Contraction (Bounded TC). Formally, the problem is defined below.

Bounded Tree Contraction (Bounded TC) Parameter: k + �
Input: A graph G and integers k, �
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a
tree with at most � leaves?

We give a kernel for Bounded TC with O(k�) vertices and O(k2 + k�) edges.
The approach we follow is similar to the one Heggernes et al. [21] used to obtain
a linear kernel for Path Contraction. We observe that our algorithms works
even when the input is a directed graph. In particular, we consider Bounded
Out-Tree Contraction (Bounded OTC), which is defined as follows.

Bounded Out-Tree Contraction (Bounded OTC) Parameter: k + �
Input: A digraph D and integers k, �
Question: Does there exist F ⊆ A(D) of size at most k such that D/A is an
out-tree with at most � leaves?
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We give a kernel for Bounded OTC with O(k2 + k�) vertices and arcs.
We also study the contraction problem for a class of graphs which generalizes

trees – the family of cacti. Formally, the problem we study is defined as follows.

Bounded Cactus Contraction (Bounded CC) Parameter: k + �
Input: A graph G and integers k, �
Question: Does there exist F ⊆ E(G) of size at most k such that G/F is a
cactus with at most � leaf blocks in its block decomposition?

For Bounded CC we give a kernel with O(k2+k�) vertices and edges. Finally, we
give kernelization lower bound result. We complement all our kernelization algo-
rithms by giving a matching lower bound. In particular, we show that Bounded
TC, Bounded OTC and Bounded CC do not admit better kernels unless NP
⊆ coNP/poly.

2 Preliminaries

For an undirected graph G, by V (G) and E(G) we denote the set of vertices
and edges in G respectively. For a directed graph (or digraph) D, by V (D) and
A(D) we denote the sets of vertices and directed edges (arcs) in D, respectively.
The neighbourhood of a vertex v, in G denoted by NG(v), is the set {u ∈
V (G) | uv ∈ E(G)}. For a vertex v ∈ V (D), N−

D (v) denotes the set {u ∈
V (D) | uv ∈ A(D)}, of its in-neighbors and N+

D (v) denotes the set {u ∈ V (D) |
vu ∈ A(D)}, of its out-neighbors. The neighbourhood of a vertex v ∈ V (D)
is the set ND(v) = N+

D (v) ∪ N−
D (v). The closed neighbourhood of a vertex is

NG[v] = NG(v) ∪ {v}. Degree of a vertex degG(u), is the cardinality of the set
NG(v). In case of digraphs, the in-degree and out-degree of a vertex v, denoted
by deg−

D(v), deg+D(v), is |N−
D (v)| and |N+

D (v)| respectively. The (total) degree of
v, denoted by degG(v), is the sum of its in-degree and out-degree. The subscripts
in the notation for neighbourhood and degree will be omitted if the context is
clear. For F ⊆ E(G), V (F ) denotes the set of endpoints of edges (or arcs) in
F . For a subset S ⊆ V (G), by G − S and G[S] we denote the graph obtained
by deleting vertices in S from G and the graph obtained by removing vertices
in V (G) \ S from G, respectively. For F ⊆ E(G), G − F is graph obtained by
deleting edges in F from G. For X,Y ⊆ V (G), we say X,Y are adjacent if there
exist an edge with one end point in X and other in Y .

A leaf is a vertex with degG(v) = 1. An out-tree is a digraph where each
vertex has in-degree at most one and underlying undirected graph is a tree.
A vertex v of an out-tree T is called a leaf if deg−(v) = 1 and deg+(v) = 0. The
root of an out-tree is the unique vertex that has no in-neighbours. A cactus is
an undirected graph such that every edge part of at most one cycle.

A component of a graph is a maximal connected subgraph. A cut-vertex
in G is a vertex v such that the number of components in G \ {v} is strictly
more than the number of components in G. A graph that has no cut-vertex
is called a 2-connected graph. An edge uv of a graph G is called a cut-edge if
the number of connected components in G − {uv} is more than the number
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of connected components in G. We note that the number of connected com-
ponents after removal of an edge can increase by at most 1. A digraph D is
connected (disconnected, 2-connected) if its underlying undirected graph is con-
nected (disconnected, 2-connected). An arc uv of a digraph D is called a cut-arc
if the number of connected components in D − {uv} is more than the number
of connected components in D.

A maximal 2-connected subgraph of a graph G is called a block. Two distinct
blocks in G can intersect in at most one vertex. A vertex which is contained in at
least two block must be a cut-vertex in G. Let K be the set of cut-vertices and B
be the set of blocks in G. A block-decomposition of G is a bipartite graph D with
the vertex set bipartitioned into K and B. Furthermore, aB ∈ E(D) for a ∈ K
and B ∈ B if and only if a ∈ V (B). It is known that a block decomposition of
a connected graph is unique and is a tree [11]. For the sake of clarity, we call
vertices in D as nodes. A block in a cactus can be either a cycle or an edge or
an isolated vertex. The number of leaves in a cactus is defined to be the number
of leaves in its block decomposition.

For a digraph D, contracting an arc e = uv in D results in a digraph with
vertex set as V ′ = (V (D) \ {u, v}) ∪ {w} and arc set as A(D/e) = {xy | x, y ∈
V (D) \ {u, v}, xy ∈ A(D)} ∪ {wx| x ∈ (N+

D (u) ∪ N+
D (v)) \ {u, v}} ∪ {xw| x ∈

(N−
D (u)∪N−

D (v))\{u, v}}. For a set of edges F ⊆ E(G), G/F denotes the graph
obtained from G by sequentially contracting the edges in F . G/F is oblivious
to the order in which edges in F are contracted. A graph G is isomorphic to
a graph H if there exists a one-to-one and onto function ϕ : V (G) → V (H)
such that for u, v ∈ V (G), (u, v) ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H).
A graph G is contractible to a graph H, if there exists F ⊆ E(G) such that G/F
is isomorphic to H. In other words, G is contractible to H if there exists a onto
function ψ : V (G) → V (H) such that the following properties hold.

– For all h ∈ V (H) with W (h) = {v ∈ V (G) | ψ(v) = h}, G[W (h)] is connected
– For all h, h′ ∈ V (H), hh′ ∈ E(H) if and only if W (h) and W (h′) in G are

adjacent.

For digraphs, we define the notion of contraction in an analogous way. Let
W = {W (h) | h ∈ V (H)}. We call W an H-witness structure of G. The sets in
W are called witness sets. If a witness set contains more than one vertex of G
then it is a big witness-set, otherwise it is a small witness set. A graph G is said
to be k-contractible to a graph H if there exists F ⊆ E(G) such that G/F is
isomorphic to H and |F | ≤ k. We will use the following observation in designing
our algorithms.

Observation 1. Let G be a graph which is k-contractible to a graph H and W
be an H-witness structure of G. Then,

– |V (G)| ≤ |V (H)| + k;
– No witness set in W contains more than k + 1 vertices;
– W has at most k big witness sets;
– The union of big witness sets in W contains at most 2k vertices.
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Definition 1. A polynomial compression of a parameterized language Q ⊆ Σ∗×
N into a language Π ⊆ Σ∗ is an algorithm that takes as input an instance
(x, k) ∈ Σ∗ × N, and in time polynomial in |x| + k returns a string y such that:

– |y| ≤ p(k) for some polynomial p(·), and
– y ∈ Π if and only if (x, k) ∈ Q.

3 Kernel for Bounded Out-Tree Contraction

In this section we design a polynomial kernel for Bounded Out-Tree Con-
traction. Our algorithm is inspired by the kernelization algorithm for Path
Contraction presented in [21]. We first give the following useful observation.

Observation 2. Let T be an out-tree and T ′ be the digraph obtained from T by
contracting an arc v1v2 ∈ A(T ). If T is an out-tree with at most � leaves then,
T ′ is an out-tree with at most � leaves.

Let T be an out-tree, v be a vertex in T with w being its unique in-neighbor
and L,R be a partition of N+(v) such that R �= ∅. Let T ′ be the digraph
obtained from T by replacing v by a cut-arc v1v2 in T ′. Formally, V (T ′) =
(V (T )\{v})∪{v1, v2} and A(T ′) = (A(T )\ ({vu | u ∈ N+(v)}∪{wv}))∪{v1u |
u ∈ L} ∪ {v2u | u ∈ R} ∪ {wv1, v1v2}. The following lemma proves a property of
T ′ that will be useful later in designing our algorithm.

Lemma 1. [∗]1 Let T be an out-tree and T ′ be the out-tree obtained from T as
described above. If T is an out-tree with at most � leaves then, T ′ is an out-tree
with at most � leaves.

We now move to the description of the kernelization algorithm. Let (D, k, �)
be an instance of Bounded OTC. Without loss of generality we assume that D
is connected, otherwise, (D, k, �) is a NO instance. Recall that by our definition,
D is connected if its underlying graph GD is connected. The algorithm has only
one reduction rule. To state the reduction rule, we first define notions of a nice
path and a reducible-tuple. An induced directed path P from s to z in D together
with a distinguished arc xy of P , which is a cut-arc in D, is called as a nice path
if the following conditions are satisfied.

1. For each v ∈ V (P ), deg−
D(v) = deg+D(v) = 1;

2. The sub-path Px of P from s to x has at least k + 3 vertices;
3. The sub-path Py of P from y to z has at least k + 3 vertices.
4. In D/(A(P ) \ {xy}), xy is a cut-arc.

We note that whenever we talk about the number of vertices in a path P
from x to y, then x, y are also considered as vertices of P . For a nice path P
from s to z in D, with a distinguished arc xy, we refer to the tuple (Px, x, y, Py)
as a reducible-tuple. Here, Px and Py are the sub-paths of P from s to x and y
to z, respectively.

We are now ready to state the Reduction Rule.
1 Proofs of results marked with [∗] are omitted due to space constraints.
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Reduction Rule 1. Let (Px, x, y, Py) be a reducible-tuple in D. Then contract
the arc xy and let the resulting instance be (D′, k, �), where D′ = D/{xy}.

Lemma 2 proves that the Reduction Rule 1 is safe and can be applied in
polynomial time.

Lemma 2. Reduction rule 1 is safe and can be applied in polynomial time.

Proof. Let (Px, x, y, Py) be a reducible-tuple in D, D′ = D/{xy} and x∗ be the
vertex obtained after contracting the arc xy. We need to show that (D, k, �) is
a YES instance of Bounded OTC if and only if (D′, k, �) is a YES instance
of Bounded OTC. Clearly, in polynomial time, given D and (Px, x, y, Py) one
can apply Reduction Rule 1 and also find a reducible-tuple, if it exists.

In the forward direction let (D, k, �) be a YES instance of Bounded OTC
and F ⊆ A(D) such that |F | ≤ k and T = D/F is an out-tree with at most �
leaves. By Observation 2, we know that D/(F ∪{xy}) is also an out tree with at
most � leaves. However, D/(F ∪{xy}) = (D/{xy})/(F \{xy}) = D′/(F \{xy}) is
an out-tree with at most � leaves. This implies that D′/(F \ {xy}) is an our-tree
with at most � leaves and |F \ {xy}| ≤ |F | ≤ k. Hence, it follows that (D′, k, �)
is a YES instance of Bounded OTC.

In the reverse direction let (D′, k, �) be a YES instance of Bounded OTC
and let F ′ ⊆ A(D′) of size at most k such that T ′ = D′/F ′ is an out-tree with at
most � leaves with W ′ being the underlying T ′-witness structure of D′. Since xy
is a cut-arc in D, x∗ is a cut-vertex in D′. Let t∗ ∈ V (T ′) such that x∗ ∈ W (t∗).
Consider the set W (t) = (W (t∗) \ {x∗}) ∪ {x, y}. Observe that xy is a cut-arc
in D[W (t)]. Let Cx and Cy be the connected components in D[W (t)] − {xy}
containing x and y, respectively. Further, we let Wx = V (Cx), Wy = V (Cy) and
W = (W ′ \ W (t∗)) ∪ {Wx,Wy}. Notice that W partitions V (D) and for each
W ∈ W, D[W ] is connected. Let T be the digraph for which W is a T -witness
structure of D. Let tx, ty ∈ V (T ) be the vertices such that W (tx) = Wx and
W (ty) = Wy, respectively. We now argue that T is out-tree with at most � leaves.
Towards this we prove the following claim.

Claim 1. deg+T (ty) ≥ 1 and deg−
T (tx) ≥ 1.

Proof. In this proof whenever we use the term nearest or farthest, it is defined by
traversing the path P from y to z. Suppose deg+T (ty) = 0, then we let z′ ∈ V (Py)
nearest to y such that z′ /∈ W (ty) and W (tz′) to be the witness set containing
z′. Existence of z′ is guaranteed by following facts: (a) |W (ty)| ≤ k + 1 which in
turn is implied from Observation 1, (b) |V (Py)| ≥ k + 3, and (c) F ′ is a solution
to (D′, k, �). Further, we let y′ to be the farthest vertex of V (Py) in W (ty) (it
can be same as y). Observe that y′z′ ∈ A(D) and tz′ �= ty. But then, ty has an
out-neighbor, namely tz′ which contradicts out assumption that deg+T (ty) = 0. �

We are now ready to prove that T is an out-tree with at most � leaves. We first
show that T is an out-tree. It is sufficient to argue that underlying undirected graph
of T is connected and every vertex of T except the root (the vertex of in-degree
0) has in-degree at most 1. Note that t∗ has at most one in-neighbor in T ′. From



38 A. Agrawal et al.

Claim 1 it follows that t∗ must have an in-neighbor in T ′. Since T ′ is an out-tree, we
let tq to be the unique in-neighbor of t∗. From Claim 1 it holds that tqtx ∈ A(T ).
Since xy ∈ A(D) is a cut-arc, it holds that tqty /∈ A(T ). For any t′ ∈ N+

T ′(t∗),
if txt′, tyt′ ∈ A(T ) then W (tx),W (t′) are adjacent in D, and W (ty),W (t′) are
adjacent in D, contradicting that xy is a cut-arc in D. This implies that N+

T ′(t∗)
can be partitioned into L = N+

T (tx) and R = N+
T (ty). From Claim 1 it follows that

R is non-empty. Hence digraph T is obtained from out-tree T ′ by replacing t′ by
a cut-arc tx, ty such that the out-neighbors of tx is L and out-neighbors of ty is R.
By Lemma 1, T is an out-tree with at most � leaves. �
Lemma 3. [∗] Let (D, k, �) be a YES instance of Bounded OTC on which
Reduction Rule 1 is not applicable. Then, D has at most O(k2 +k�) vertices and
O(k2 + k�) arcs.

Theorem 1. Bounded OTC admits a kernel of size O(k2 + k�).

Proof. Given an instance (D, k, �), the algorithm repeatedly applies Reduction
Rule 1, if applicable. By Lemma2, we know that Reduction Rule 1 is safe and can
be applied in polynomial time. Each application of reduction rule decreases the
number of arcs and thus it can be applied only |A(D)| times. If Reduction Rule 1
is not applicable then either the size of the instance is bounded by O(k2+k�), in
which case we return a kernel of desired size. Otherwise, the algorithm correctly
concludes that the instance is a NO instance of Bounded OTC. The correctness
of this step is given by Lemma 3. �
Following a similar approach we show the following results.

Theorem 2. [∗] Bounded TC admits a kernel of size O(k2 + k�).

Theorem 3. [∗] Bounded CC admits a kernel of size O(k2 + k�).

4 Kernel Lower Bounds

In this section we show that the kernelization algorithm that we gave in Sect. 3
for Bounded OTC, Bounded TC and Bounded CC are optimal assuming
NP �⊆ coNP/poly.

The problem of Red-Blue Dominating Set (RBDS) takes as an input a
bipartite graph G, with vertex bi-partitions as R,B and an integer k. The goal
is to decide if there exists R′ ⊆ R of size at most k such that for each b ∈ B,
R′ ∩N(B) �= ∅. The problem Dominating Set takes as an input a graph G and
an integer k, and the goal is to decide whether there exists X ⊆ V (G) of size at
most k, such that for each v ∈ V (G), X ∩ N [v] �= ∅. Jansen and Pieterse proved
that Dominating Set does not admit a compression of bit size O(n2−ε), for
any ε > 0 unless NP ⊆ coNP/poly, where n is the number of vertices in the input
graph [25]. As an immediate corollary to this we have the following Proposition;
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Proposition 1. [∗] Red-Blue Dominating Set does not admit a polynomial
compression of bit size O(n2−ε), for any ε > 0 unless NP ⊆ coNP/poly. Here, n
is the number of vertices in the input graph.

In light Proposition 1, we show that the kernelization algorithms we designed
for Bounded OTC, Bounded TC and Bounded CC are optimal. Given an
instance (G,R,B, k) of RBDS, we create an instance (D, k′, �′) of Bounded
OTC. We will show that indeed (G′

D, k′, �′), where G′
D is the underlying undi-

rected graph of D serves as an instance of Bounded TC and Bounded CC
respectively, for proving the desired kernel lower bounds.

r1
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b|B|

x1

y1

z1

x2

y2

z2

x|B|
y|B|
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BR

X

...

...

...

Fig. 1. Kernel lower bound for Bounded OTC.

Reduction. Let (G,R,B, k) be an instance of RBDS. We construct a digraph
D as the following (refer Fig. 1). Initially, V (D) = V (G) and A(D) = {br | b ∈
B, r ∈ R and br ∈ E(G)}. We add a vertex a in V (D) and for each r ∈ R, add
the arc ar to A(D). For each bi ∈ B, we add three new vertices xi, yi, zi to V (D)
and arcs bixi, biyi, bizi to A(D). We let X = {xi, yi, zi | bi ∈ B}. For each x ∈ X,
we add the arc ax to A(D). Finally, we set k′ = |B| + k and �′ = |R| + 3|B| − k.
We let G′

D to be the underlying undirected graph of D.

4.1 Lower bound for Bounded OTC

We prove the following Lemmas that will be useful in establishing the equivalence
of the instance.
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Lemma 4. [∗] Let (D, k′, �′) be a YES instance of Bounded OTC. For any
a solution F ⊆ A(D) of size at most k′, for each bi ∈ B one of the following
holds.

– bi ∈ W (ta);
– All of xi, yi, zi belong to W (ta);
– All of xi, yi, zi belong to W (tbi).

Here, W is the underlying D/F -witness structure of D with W (ta),W (tb) being
the witness sets containing a, bi, respectively.

Lemma 5. (G,R,B, k) is a YES instance of RBDS if and only if (D, k′, �′)
is a YES instance of Bounded OTC.

Proof. In the forward direction let (G,R,B, k) be a YES instance of RBDS and
S ⊆ R of size k such that S dominates every vertex in B. Here, if S contains
less than k vertices, then we take any superset of it which is of size exactly k.
For each b ∈ B, there is an rb ∈ S such that b ∈ NG(rb), if there are multiple rbs
then we arbitrarily choose one of them. Let F = {brb | b ∈ B} ∪ {ar | r ∈ S},
T = D/F and W be the underlying T -witness structure of D. Observe that
|F | = |B| + k = k′ and D[V (F )] is connected. For ta ∈ V (T ), such that a ∈
W (ta), S ∪ B ⊆ W (ta). For each v ∈ (R ∪ X) \ S, t ∈ T such that v ∈ W (t),
|W (t)| = 1. Furthermore, X ′ = {tv | v ∈ (R ∪ X) \ S} is an independent set T
of size |R| + 3|B| − k = �′ and for all v ∈ X ′, av ∈ A(T ). Therefore, T is an
out-tree with �′ leaves. This implies that F is a solution to Bounded OTC for
(D, k′, �′).

In the reverse direction, let (D, k′, �′) be a YES instance of Bounded OTC
and F ⊆ A(D) be one of its solution. Then by Lemma4, for all bi ∈ B, either
bi ∈ W (ta) or xi, yi, zi ∈ W (ta) or xi, yi, zi ∈ W (tb). Here, W is the D/F -witness
structure of D and ta ∈ V (D/F ) such that a ∈ W (ta). We partition B based on
the cases in Lemma 4. Let Bg = {bi ∈ B | bi ∈ W (ta)}. For each b ∈ Bg, since
none of ba or ab is in A(D), D[W (ta)] is connected and B is an independent set
in D, therefore there must exist rb ∈ R ∪ X such that rb ∈ W (ta). We create a
set Sg as the following, which initially is an empty set. For each b ∈ Bg, if there
is rb ∈ R∩W (ta) such that b ∈ N(rb) then we add rb to Sg. For each b ∈ B such
that there is no rb ∈ R ∩ W (ta) such that b ∈ N(rb), then we arbitrarily add a
neighbor of b in R to Sg. We create another set Sw which initially is empty set.
For each b ∈ B\Bg, we add an arbitrary neighbor of b in R to Sw. Notice that for
every b ∈ Bg, arcs brb and arb are contained in the solution F . For every vertex
bi ∈ B\Bg, either xi, yi, zi are in W (ta) or xi, yi, zi are in W (tb). By construction,
xi, yi, zi are adjacent to only a or bi and hence {axi, ayi, azi} or {bixi, biyi, bizi}
are in solution F . Hence for every vertex bi ∈ B \ Bg, there are three arcs in F .
It follows that |Bg| + |Sg| + 3|B \ Bg| ≤ |F |. We know that |Sw| ≤ |B \ Bg| and
hence |Bg| + |Sg| + 3|B \ Bg| = |Sg| + |Bg| + |Sw| + 2|B \ Bg| ≤ |F | = k + |B|.
This implies that |Sg| + |Sw| ≤ k. Furthermore, by choice of vertices in Sg ∪ Sw,
it dominates all the vertices in B. This concludes the proof. �
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Theorem 4. [∗] Bounded Out-Tree Contraction does not admit a com-
pression of size O((k2 + k�)1−ε), for any ε > 0.

Similarly, we can prove the following Theorems.

Theorem 5. [∗] Bounded Tree Contraction does not admit a compression
of size O((k2 + k�)1−ε), for any ε > 0.

Theorem 6. [∗] Bounded Cactus Contraction does not admit a compres-
sion of size O((k2 + k�)1−ε), for any ε > 0.
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21. Heggernes, P., van’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contracting
graphs to paths and trees. Algorithmica 68(1), 109–132 (2014)

22. Heggernes, P., van’t Hof, P., Jansen, B.M.P., Kratsch, S., Villanger, Y.: Parameter-
ized complexity of vertex deletion into perfect graph classes. In: FCT, pp. 240–251
(2011)

23. Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph
by contracting few edges. SIAM J. Discrete Math. 27(4), 2143–2156 (2013)

24. Jansen, B.M.P., Lokshtanov, D., Saurabh, S.: A near-optimal planarization algo-
rithm. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, 5–7 January 2014, pp.
1802–1811 (2014)

25. Jansen, B.M.P., Pieterse, A.: Sparsification upper and lower bounds for graphs
problems and not-all-equal SAT. In: 10th International Symposium on Parameter-
ized and Exact Computation, IPEC, pp. 163–174 (2015)

26. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.:
Linear kernels and single-exponential algorithms via protrusion decompositions.
In Proceedings of the 40th International Colloquium Automata, Languages, and
Programming - ICALP , Riga, Latvia, 8–12 July, Part I, pp. 613–624 (2013)

27. Lokshtanov, D., Misra, N., Saurabh, S.: On the hardness of eliminating small
induced subgraphs by contracting edges. In: Gutin, G., Szeider, S. (eds.) IPEC
2013. LNCS, vol. 8246, pp. 243–254. Springer, Cham (2013). doi:10.1007/
978-3-319-03898-8 21

28. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–
768 (2010)

29. Reed, B.A., Smith, K., Adrian, V.: Finding odd cycle transversals. Oper. Res. Lett.
32(4), 299–301 (2004)

30. Watanabe, T., Ae, T., Nakamura, A.: On the removal of forbidden graphs by edge-
deletion or by edge-contraction. Discrete Appl. Math. 3(2), 151–153 (1981)

31. Watanabe, T., Ae, T., Nakamura, A.: On the NP-hardness of edge-deletion and-
contraction problems. Discrete Appl. Math. 6(1), 63–78 (1983)

http://dx.doi.org/10.1007/978-3-319-03898-8_21
http://dx.doi.org/10.1007/978-3-319-03898-8_21


Temporal Flows in Temporal Networks

Eleni C. Akrida1(B), Jurek Czyzowicz2, Leszek G ↪asieniec1, �Lukasz Kuszner3,
and Paul G. Spirakis1,4

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{E.Akrida,L.A.Gasieniec,P.Spirakis}@liverpool.ac.uk
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Abstract. We introduce temporal flows on temporal networks [17,19],
i.e., networks the links of which exist only at certain moments of time.
Such networks are ephemeral in the sense that no link exists after some
time. Our flow model is new and differs from the “flows over time” model,
also called “dynamic flows” in the literature. We show that the problem
of finding the maximum amount of flow that can pass from a source
vertex s to a sink vertex t up to a given time is solvable in Polynomial
time, even when node buffers are bounded. We then examine mainly the
case of unbounded node buffers. We provide a simplified static Time-
Extended network (STEG), which is of polynomial size to the input and
whose static flow rates are equivalent to the respective temporal flow of
the temporal network; using STEG, we prove that the maximum tem-
poral flow is equal to the minimum temporal s-t cut. We further show
that temporal flows can always be decomposed into flows, each of which
moves only through a journey, i.e., a directed path whose successive
edges have strictly increasing moments of existence. We partially char-
acterise networks with random edge availabilities that tend to eliminate
the s → t temporal flow. We then consider mixed temporal networks,
which have some edges with specified availabilities and some edges with
random availabilities; we show that it is #P-hard to compute the tails
and expectations of the maximum temporal flow (which is now a random
variable) in a mixed temporal network.
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1 Introduction and Motivation

1.1 Our Model, the Problem, and Our Results

It is generally accepted to describe a network topology using a graph, whose
vertices represent the communicating entities and edges correspond to the com-
munication opportunities between them. Consider a directed graph (network)
G(V,E) with a set V of n vertices (nodes) and a set E of m edges (links). Let
s, t ∈ V be two special vertices called the source and the sink, respectively; for
simplicity, assume that no edge enters the source s and no edge leaves the sink t.
We also assume that an infinite amount of a quantity, say, a liquid, is available
in s at time zero. However, our network is ephemeral ; each edge is available for
use only at certain days in time, described by positive integers, and after some
(finite) day in time, no edge becomes available again; the reader may think of
these days as instances of availability of that edge. Our liquid, located initially
at node s, can flow in this ephemeral network through edges only at days at
which the edges are available.

Each edge e ∈ E in the network is also equipped with a capacity ce > 0 which
is a positive integer, unless otherwise specified. We also consider each node v ∈ V
to have an internal buffer (storage) B(v) of maximum size Bv; here, Bv is also
a positive integer; initially, we shall consider both the case where Bv = +∞, for
all v ∈ V , and the case where all nodes have finite buffers. From Sect. 3 on, we
only consider unbounded (infinite) buffers.

The semantics of the flow of our liquid within G are the following:

– Let an amount xv of liquid be at node v, i.e., in B(v), at the beginning of day
l, for some l ∈ N. Let e = (v, w) be an edge that exists at day l. Then, v may
push some of the amount xv through e at day l, as long as that amount is at
most ce. This quantity will arrive to w at the end of the same day, l, and will
be stored in B(w).

– At the end of day l, for any node w, some flows may arrive from edges (v, w)
that were available at day l. Since each such quantity of liquid has to be
stored in w, the sum of all flows incoming to w plus the amount of liquid that
is already in w at the end of day l, after w has sent any flow out of it at the
beginning of day l, must not exceed Bw.

– Flow arriving at w at (the end of) day l can leave w only via edges existing
at days l′ > l.

Thus, our flows are not flow rates, but flow amounts (similar to considerations
in transshipment problems [14,16]). Notice that we assume above that we have
absolute knowledge of the days of existence of each edge. Admittedly, the encod-
ing of the input in our temporal network problems is quite detailed but specific
description of the edge availabilities (or lack thereof) may be required in a range
of network infrastructure settings where there is a planned schedule of link exis-
tence, e.g., one may need to have detailed information on planned maintenance
on pipe-sections in a water network to assure restoration of the network services.
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On the positive side, some problems that are weakly NP-hard in similar dynamic
flow models become polynomially solvable in our model.

Our Results. We provide polynomial-time solutions to the Maximum temporal
flow problem (MTF): Given a directed graph G with edge availabilities, distin-
guished nodes s, t, edge capacities and node buffers as previously described, and
also given a specific day l′ > 0, find the maximum value of the quantity of liquid
that can arrive to t by (the end of) day l′.

For the case of infinite buffers, we give a simplified static Time-Extended net-
work (STEG) which, in contrast to all previous dynamic flows literature and due
to the encoding of our input, is of linear size to the input, and not exponential.
The static flow rates of STEG are equivalent to the respective temporal flow of
the temporal network; using it, we prove that the maximum temporal flow is
equal to the minimum temporal s-t cut. We also show that temporal flows can
always be decomposed into flows, each of which moves only through a journey,
i.e., a directed path whose successive edges have strictly increasing moments of
existence.

In many practical scenarios it is reasonable to assume that not all edge avail-
abilities are known in advance, e.g., in a water network where there may be
unplanned disruptions at one or more pipe sections; in these cases, one may
have statistical information on the pattern of link availabilities. We partially
characterise networks with random edge availabilities that tend to eliminate the
s → t temporal flow. We also introduce and study here flows in mixed temporal
networks for the first time; these are networks in which the availabilities of some
edges are random and the availabilities of some other edges are specified. In
such networks, the value of the maximum temporal flow is a random variable.
Consider, for example, the temporal flow network of Fig. 1 where there are n
directed disjoint two-edge paths from s to t. Assume that every edge indepen-
dently selects a single label uniformly at random from the set {1, . . . , α}, α ∈ N

∗.
The edge capacities are the numbers drawn in the boxes, with w′

i ≥ wi for all i.
Here, the value of the maximum s → t flow is a random variable that is the sum
of Bernoulli random variables. This already indicates that the exact calculation
of the maximum flow in mixed networks is a hard problem; we show for mixed
networks that it is #P-hard to compute tails and expectations of the maximum
temporal flow.

s t

w1 w1

wi wi
wn wn

v1

vi

vn

...

...

Fig. 1. A mixed temporal network
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1.2 Previous Work

The traditional (static) network flows were extensively studied in the seminal
book of Ford and Fulkerson [13] (see also Ahuja et al. [1]) and the relevant liter-
ature is vast. They have recently been re-examined for the purpose of approxi-
mating their maximum value or improving their time complexity [8,18,20,23,24].
Dynamic network flows (also called flows over time) [15] refer to static directed
networks, the edges of which have capacities as well as transit times. Ford and
Fulkerson [13] formulated and solved the dynamic maximum flow problem. For
excellent surveys on dynamic network flows, the reader is also referred to the
work of Aronson [6], the work of Powell [22], and the great survey by Skutella [25].

Temporal networks, defined by Kempe et al. [17], are graphs the edges of
which exist only at certain instants of time, called labels (see also [19]). So,
they are a type of dynamic networks. Various aspects of temporal (and other
dynamic) networks were also considered in the work of Erlebach et al. [12] and
in [4,5,7,9]; as far as we know, this is the first work to examine flows on temporal
networks. There is also literature on models of temporal networks with random
edge availabilities [3,10,11], but to the best of our knowledge, ours is the first
work on flows in such temporal networks.

Perhaps the closest model in the flows literature to our model is the
“Dynamic1 dynamic network flows”, studied by Hoppe in his PhD thesis
[15, Chap. 8]. Hoppe introduces mortal edges that exist between a start and
an end time; still, Hoppe assumes transmission rates on the edges and the abil-
ity to hold any amount of flow on a node (infinite node buffers). Thus, our model
is an extreme case of the latter, since we assume that edges exist only at specific
days (instants) and that our transit rates are virtually unbounded, since at one
instant any amount of flow can be sent through an edge if the capacity allows.

1.3 Formal Definitions

Definition 1 ((Directed) Temporal Graph). Let G = (V,E) be a directed
graph. A (directed) temporal graph on G is an ordered triple G(L) = (V,E,L),
where L = {Le ⊆ N : e ∈ E} assigns a finite set Le of discrete labels to every
edge (arc) e of G. L is called the labelling of G. The labels, Le, of an edge e ∈ E
are the integer time instances (e.g., days) at which e is available.

Definition 2 (Time edge). Let e = (u, v) be an edge of the underlying digraph
of a temporal graph and consider a label l ∈ Le. The ordered triplet (u, v, l),
also denoted as (e, l), is called time edge. We denote the set of time edges of a
temporal graph G(L) by EL.

A basic assumption that we follow is that when a (flow) entity passes through
an available edge e at time t, then it can pass through a subsequent edge only
at some time t′ ≥ t + 1 and only at a time at which that edge is available.
In the tradition of assigning “transit times” in the dynamic flows literature,

1 The first “dynamic” term refers to the dynamic nature of the underlying graph.
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one may think that any edge e of the graph has some transit time, tte, with
0 < tte < 1, but otherwise arbitrary and not specified. Henceforth, we assume
tte = 0.5, ∀e ∈ E, without loss of generality; any value of tte between 0 and 1
will lead to the same results in our paper.

Definition 3 (Journey). A journey from a vertex u to a vertex v (u → v
journey) is a sequence of time edges (u, u1, l1), . . . , (uk−1, v, lk), such that li <
li+1, ∀i = 1, . . . , k−1. The last label, lk, is called the arrival time of the journey.

Definition 4 (Foremost journey). A u → v journey in a temporal graph
is called foremost journey if its arrival time is the minimum arrival time of all
u → v journeys’ arrival times, under the labels assigned to the underlying graph’s
edges. We call this arrival time the temporal distance, δ(u, v), of v from u.

Thus, no flow arrives to t (starting from s) on or before any time l < δ(s, t).

Definition 5 (Temporal Flow Network). A temporal flow network(
G(L), s, t, c, B

)
is a temporal graph G(L) = (V,E,L) equipped with:

1. a source vertex s and a sink (target) vertex t.
2. for each edge e, a capacity ce > 0; usually the capacities are assumed to be

integers.
3. for each node v, a buffer B(v) of storage capacity Bv > 0; we assume Bs =

Bt = +∞.

If all node capacities are infinite, we denote the network by
(
G(L), s, t, c

)
.

Definition 6 (Temporal Flows in Temporal Flow Networks). Let(
G(L) = (V,E,L), s, t, c, B

)
be a temporal flow network. Denote by δ+u the out-

going edges from u and by δ−
u the incoming edges to u. Let LR(u) be the set

of labels on all edges incident to u along with an extra label 0 (artificial label
for initialization), i.e., LR(u) =

⋃
e∈δ+

u ∪δ−
u

Le ∪ {0}. A temporal flow on G(L)
consists of a non-negative real number f(e, l) for each time-edge (e, l), and real
numbers b−

u (l), bμ
u(l), b+u (l) for each node u ∈ V and each “day” l, such that:

1. 0 ≤ f(e, l) ≤ ce, for every time edge (e, l),
2. 0 ≤ b−

u (l) ≤ Bu, 0 ≤ bμ
u(l) ≤ Bu, 0 ≤ b+u (l) ≤ Bu, for every node u and every

l ∈ LR(u),
3. for every e ∈ E, f(e, 0) = 0,
4. for every v ∈ V \ {s}, b−

v (0) = bμ
v (0) = b+v (0) = 0,

5. for every e ∈ E and l 
∈ Le, f(e, l) = 0,
6. at time 0 there is an infinite amount of flow “units” available at the source s,
7. for every v ∈ V \ {s} and for every l ∈ L, b−

v (l) = b+v (lprev), where lprev is
the largest label in LR(v) that is smaller than l,

8. (Flow out on day l) for every v ∈ V \ {s} and for every l, bμ
v (l) = b−

v (l) −∑
e∈δ+

v
f(e, l),

9. (Flow in on day l) for every v ∈ V \ {s} and for every l, b+v (l) = bμ
v (l) +∑

e∈δ−
v

f(e, l).
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Note 1. One may think of b−
v (l), bμ

v (l), b+v (l) as the buffer content of liquid in v
at the “morning”,“noon”, i.e., after the departures of flow from v, and “evening”,
i.e., after the arrivals of flow to v, of day l.

Note 2. For a temporal flow f on an acyclic G(L), if one could guess the (real)
numbers f(e, l) for each time-edge (e, l), then the numbers b−

v (l), bμ
v (l), b+v (l), for

every v ∈ V , can be computed by a single pass over an order of the vertices of
G(L) from s to t. This can be done by following (6) through (6) from Definition 6
from s to t.

Definition 7 (Value of a Temporal Flow). The value v(f) of a temporal flow
f is b+t (lmax) under f , i.e., the amount of liquid that, via f , reaches t during
the lifetime of the network (lmax is the maximum label in L). If b+t (lmax) > 0
for a particular flow f , we say that f is feasible.

Definition 8 (Mixed temporal networks). Given a directed graph G =
(V,E) with a source s and a sink t in V , let E = E1 ∪ E2, so that E1 ∩ E2 = ∅,
and:

1. the labels (availabilities) of edges in E1 are specified, and
2. each of the labels of the edges in E2 is drawn uniformly at random from the

set {1, 2, . . . , α}, for some even integer α2, independently of the others.

We call such a network “Mixed Temporal Network [1, α]” and denote it by
G(E1, E2, α).

Note that (traditional) temporal networks as previously defined are a special
case of the mixed temporal networks, in which E2 = ∅. However, with some
edges being available at random times, the value of a temporal flow (until time
α) becomes a random variable and the study of relevant problems requires a
different approach than the one needed for (traditional) temporal networks.

Problem 1 (Maximum Temporal Flow (MTF)). Given a temporal flow
network

(
G(L), s, t, c, B

)
and a day d ∈ N

∗, compute the maximum b+t (d) over
all flows f in the network.

2 LP for the MTF Problem with or Without Bounded
Buffers

In the description of the MTF problem, if d is not a label in L, it is enough to
compute the maximum b+t (lm) over all flows, where lm is the maximum label
in L that is smaller than d. Henceforth, we assume d = lmax unless otherwise
specified; the analysis does not change: if d < lmax, one can remove all time-edges
with labels larger than b and solve MTF in the resulting network.
2 We choose an even integer to simplify the calculations in the remainder of the paper.

However, with careful adjustments, the results would still hold for an arbitrary
integer.
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Let Σ be the set of conditions of Definition 6. The optimization problem, Π:
{

max (over allf) b+t (d)
subject to Σ

}

is a linear program with unknown variables {f(e, l), b−
v (l), b+v (l)}, ∀l ∈ L,∀v ∈ V ,

since each condition in Σ is either a linear equation or a linear inequality in the
unknown variables. Therefore, by noticing that the number of equations and
inequalities are polynomial in the size of the input of Π, we get the following:

Lemma 1. Maximum Temporal Flow is in P, i.e., can be solved in polynomial
time in the size of the input, even when the node buffers are finite, i.e., bounded.

Note 3. Recall that EL is the set of time edges of a temporal graph. If n = |V |,
m = |E| and k = |EL| =

∑
e |Le|, then MTF can be solved in sequential time

polynomial in n + m + k when the capacities and buffer sizes can be represented
with polynomial in n number of bits. In the remainder of the paper, we shall
investigate more efficient approaches for MTF.

3 Temporal Networks with Unbounded Buffers at Nodes

3.1 Basic Remarks

We consider here the MTF problem for temporal networks on underlying graphs
with Bv = +∞, ∀v ∈ V .

Definition 9 (Temporal Cut). Let
(
G(L), s, t, c

)
be a temporal flow network

on a digraph G. A set of time-edges, S, is called a temporal cut (separating s
and t) if the removal from the network of S results in a temporal flow network
with no s → t journey.

Definition 10 (Minimal Temporal Cut). A set of time-edges, S, is called a
minimal temporal cut (separating s and t) if S is a temporal cut, and no proper
subset of S is a temporal cut.

Definition 11. Let S be a temporal cut of
(
G(L) = (V,E,L), s, t, c

)
. The capac-

ity of the cut is c(S) :=
∑

(e,l)∈S c(e, l), where c(e, l) = ce, ∀l.

Lemma 2. Let S be a (minimal) temporal cut in
(
G(L) = (V,E,L), s, t, c

)
. If

we remove S from G(L), no flow can ever arrive to t during the lifetime of G(L).

3.2 The Time-Extended Flow Network and Its Simplification

Let
(
G(L) = (V,E,L), s, t, c

)
be a temporal flow network on a directed graph G.

Let EL be the set of time edges of G(L). Following the tradition in literature [13],
we construct the time-extended static flow network that corresponds to G(L),
denoted by TEG(L) = (V ∗, E∗). By construction, TEG(L) admits the same
maximum flow as G(L). TEG(L) is constructed as follows: for every vertex
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v ∈ V and for every time step i = 0, 1, . . . , lmax, V ∗ contains a copy, vi, of
v. Also, for every time edge (x, v, l), l ∈ N, x ∈ V of G(L), V ∗ contains a copy
vl+0.5 of v. E∗ has a directed edge (called vertical) from a copy of vertex v to
the next copy of v, for any v ∈ V , where the order of the copies is defined by
their indices; every vertical edge has infinite capacity (as the node whose copies
it connects). Furthermore, for every time edge (u, v, l) of G(L), E∗ has a directed
edge (called crossing) (ul, vl+0.5) with capacity equal to the capacity of the edge
(u, v). The source and target vertices in TEG(L) are the first copy of s and
the last copy of t in V ∗, respectively. Note that |V ∗| ≤ |V | · lmax + |EL| and
|E∗| ≤ |V | · lmax + 2|EL|.

We now “simplify” TEG(L) as follows: we convert vertical edges between
consecutive copies of the same vertex into a single vertical edge (with infinite
capacity) from the first to the last copy in the sequence and we remove all
intermediate copies; we only perform this simplification when no intermediate
node is an endpoint of a crossing edge. We call the resulting network simplified
time-extended network and we denote it by STEG(L) = (V ′, E′). Note that
|V ′| ≤ |V | + 2|EL| and |E′| ≤ |V | + 3|EL|.

Let the first copy of any vertex v ∈ V in the time-extended network be vcopy0 ,
the second copy vcopy1 , etc. An s → t flow f in G(L) defines an s → t flow in
the time-extended network STEG(L) as follows:

– The flow from the first copy of s to the next copy is the sum of all flow units
that “leave” s in G(L) throughout the time the network exists.

– The flow from the first copy of any other vertex to the next copy is zero.
– The flow on any crossing edge that connects some copy ul of vertex u ∈ V

and the copy vl+0.5 of some other vertex v ∈ V is exactly the flow on the time
edge (u, v, l).

– The flow between two consecutive copies vx and vy, for some x, y, of the same
vertex v ∈ V corresponds to the units of flow stored in v from time x up to
time y and is the difference between the flow received at the first copy through
all incoming edges and the flow sent from the first copy through all outgoing
crossing edges.

Using TEG(L) and STEG(L), we can prove the following (for the proof, see [2]):

Theorem 1. The maximum temporal flow in
(
G(L) = (V,E,L), s, t, c

)
is equal

to the minimum capacity (minimal) temporal cut.

Lemma 3. Any static flow rate algorithm A that computes the maximum flow in
a static, directed, s-t network G of n vertices and m edges in time T (n,m), also
computes the maximum temporal flow in a

(
G(L) = (V,E,L), s, t, c

)
temporal

flow network in time T (n′,m′), where n′ ≤ n + 2|EL| and m′ ≤ n + 3|EL|.
Corollary 1 (Journeys flow decomposition). Let

(
G(L) = (V,E,L), s, t, c

)

be a temporal flow network on a directed graph G. Let f be a temporal flow in
G(L) (f is given by the values of f(e, l) for the time-edges (e, l) ∈ EL). Then,
there is a collection of s → t journeys j1, j2, . . . , jk such that:
1. k ≤ |EL|
2. v(f) = v(f1) + . . . v(fk)
3. fi sends positive flow only on the time-edges of ji.
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4 Mixed Temporal Networks and Their Hardness

Mixed temporal networks of the form G(E1, E2, α) (see Definition 8) can model
practical cases, where some edge availabilities are exactly specified, while some
other edge availabilities are randomly chosen (due to security reasons, faults,
etc.); for example, in a water network, one may have planned disruptions for
maintenance in some water pipes, but unplanned (random) disruptions in some
others. With some edges being available at random times, the value of the max-
imum temporal flow (until time α) now becomes a random variable.

4.1 Temporal Networks with Random Availabilities that are Flow
Cutters

We study here a special case of the mixed temporal networks G(E1, E2, α),
where E1 = ∅, i.e., all edges become available at random time instances, and
we partially characterise such networks that eliminate the flow that arrives at t
asymptotically almost surely. All missing proofs can be found in the full version
of the paper [2].

Let G = (V,E) be a directed graph of n vertices with a distinguished source,
s, and a distinguished sink, t. Suppose that each edge e ∈ E is available only
at a unique moment in time (i.e., day) selected uniformly at random from the
set {1, 2, . . . , α}, for some even3 integer α ∈ N, α > 1; suppose also that the
selections of the edges’ labels are independent. Let us call such a network a
Temporal Network with unique random availabilities of edges, and denote it by
URTN(α). Then, the following holds:

Lemma 4. Let Pk be a directed s → t path of length k in G. Then, Pk becomes
a journey in URTN(α) with probability at most 1

k! .

Now, consider directed graphs as described above, in which the distance from
s to t is at least c log n, for a constant integer c > 2; so any directed s → t path
has at least c log n edges. Let us call such graphs “ c-long s → t graphs” or simply
c-long. A c-long s → t graph is called thin if the number of simple directed s → t
paths is at most nβ , for some constant β. It can be proven that:

Lemma 5. Consider a URTN(α) with an underlying graph G being any partic-
ular c-long and thin digraph. Then, the probability that the amount of flow from
s arriving at t is positive tends to zero as n tends to +∞.

Randomly labelled c-long and thin graphs is not the only case of temporal
networks that disallows flow to arrive to t asymptotically almost surely.

Definition 12. A cut C in a (traditional) flow network G is a set of edges, the
removal of which from the network leaves no directed s → t paths in G.

3 We choose an even integer to simplify the calculations. However, with careful adjust-
ments in the calculations, the results would still hold for an arbitrary integer.
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Definition 13. A cut C1 precedes a cut C2 in a flow network G (denoted by
C1 → C2) if any directed s → t path that goes through an edge in C1 must also
later go through an edge in C2.

Definition 14 (Multiblock graphs). A flow network is called a (c, d)-
multiblock graph if it has at least c log n disjoint cuts C1, . . . , Cc log n such that
Ci → Ci+1, i = 1, . . . , c log n − 1, and for all i = 1, . . . , c log n, |Ci| ≤ d, for
some constants c > 2, d ≥ 2.

Note that (c, d)-multiblocks and (c-long,thin)-graphs are two different graph
classes. Figure 2 shows a (c, 2)-multiblock of n = c

√
k + 2, k ∈ N, vertices which

is not thin.

s v1 v2 v3 vc
√
k t

. . .

Fig. 2. A (c, 2)-multiblock which is not thin.

Lemma 6. Consider a URTN(α) with an underlying graph G being any par-
ticular (c, d)-multiblock. Then, the probability that the amount of flow from s
arriving at t is positive tends to zero as n tends to +∞.

4.2 The Complexity of Computing the Expected Maximum
Temporal Flow

We consider here the following problem:

Problem 2 (Expected Maximum Temporal Flow). What is the time com-
plexity of computing the expected value of the maximum temporal flow, v, in
G(E1, E2, α)?

Definition 15 [21, p. 441]. Let Q be a polynomially balanced, polynomial-time
decidable binary relation. The counting problem associated with Q is: Given x,
how many y are there such that (x, y) ∈ Q? #P is the class of all counting prob-
lems associated with polynomially balanced polynomial-time decidable functions.

Loosely speaking, a problem is said to be #P-hard if a polynomial-time algo-
rithm for it implies that #P=FP, where FP is the set of functions from {0, 1}∗

to {0, 1}∗ computable by a deterministic polynomial-time Turing machine4. For
a more formal definition, see [21]. We show the following:

Lemma 7. Given an integer C > 0, it is #P-hard to compute the probability
that the maximum flow value v in G(E1, E2, α) is at most C, Pr[v ≤ C].

4 {0, 1}∗ = ∪n≥0{0, 1}n, where {0, 1}n is the set of all strings (of bits 0, 1) of length
n.
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Now, given a mixed temporal network G(E1, E2, α), let v be the random
variable representing the maximum temporal flow in G.

Definition 16. The truncated by B expected maximum temporal flow of
G(E1, E2, α), denoted by E[v,B], is defined as: E[v,B] =

∑B
i=1 iPr[v = i].

Clearly, it is E[v] = E[v,+∞].

The following is the main theorem of this section.

Theorem 2. It is #P-hard to compute the expected maximum truncated Tem-
poral Flow in a Mixed Temporal Network G(E1, E2, α).

Open Problem 1. Is there an FPTAS for the expected maximum flow value in
mixed temporal networks?

Open Problem 2. What is the complexity of the maximum flow problem in
periodic temporal graphs? These are graphs each edge e of which appears every
xe days (“edge period”). The maximum flow from s to t would then, in gen-
eral, increase as we increase the day by which we wish to compute the flow that
arrives at t. It seems that this problem requires a different approach than the one
presented here, that also takes into account the different edge periods.
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Abstract. Counting problems with easy decision are the only ones
among problems in complexity class #P that are likely to be (randomly)
approximable, under the assumption RP �= NP. TotP is a subclass of #P
that contains many of these problems. TotP and #P share some com-
plete problems under Cook reductions, the approximability of which does
not extend to all problems in these classes (if RP �= NP); the reason is
that such reductions do not preserve the function value. Therefore Cook
reductions do not seem useful in obtaining (in)approximability results
for counting problems in TotP and #P.

On the other hand, the existence of TotP-complete problems (apart
from the generic one) under stronger reductions that preserve the func-
tion value has remained an open question thus far. In this paper we
present the first such problems, the definitions of which are related to
satisfiability of Boolean circuits and formulas. We also discuss implica-
tions of our results to the complexity and approximability of counting
problems in general.

1 Introduction

Since Valiant introduced #P [25], the class of functions that count the num-
ber of accepting paths of a NPTM (Nondeterministic Polynomial Time Turing
Machine), many counting classes arose in the literature. In [20] the class #PE
was defined, as a subclass of #P that contains all functions of #P with easy
decision version, that is, for a function f ∈ #PE the problem “f(x) �= 0?” is
in P. #PE contains important problems such as Permanent [25], a special
case of which is equivalent to counting perfect matchings in bipartite graphs.
Another well known member of #PE is #DNF-Sat, i.e. the problem of count-
ing satisfying assignments to DNF boolean formulas; for more such problems see
[26]. Notably it was shown in [25,26] that Permanent, #DNF-Sat, as well as
several problems presented in [26] are #P-complete, showing that counting is
likely to be harder than decision (existence checking) for all these problems.

A subclass of #PE, namely TotP, was defined as the class of functions that
count the total number of computation paths of the computation tree of a binary
c© Springer International Publishing AG 2017
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NPTM minus one [16]. Equivalently, for f ∈ TotP, f(x) is the number of branch-
ings of the computation tree of a binary NPTM. TotP contains Permanent
and #DNF-Sat, as well as all self-reducible problems of #PE under a natural
notion of self-reducibility for counting problems. It is intriguing that problems
in TotP have varying approximability status. In particular, TotP contains well
approximable problems (e.g. #DNF-Sat), not approximable (within a polyno-
mial factor) problems unless NP = RP (e.g. #IS that is the number of indepen-
dent sets of all sizes), and also problems of yet unknown approximability status,
conjectured to be “intermediate” (e.g. #BIS that is the number of independent
sets of all sizes of bipartite graphs).

It is known that #PE contains TotP [16] and moreover that TotP is exactly
the Karp closure of self-reducible functions of #PE [21]. There is a great number
of self-reducible problems with easy decision which are therefore in TotP: count-
ing matchings, computing the determinant of a matrix, computing the partition
function of several models from statistical physics, like the Ising and the hard-
core model, counting colorings of a graph with a number of colors greater than
the maximum degree, counting bases of a matroid, computing the volume of
a convex body, counting independent sets, and many more. TotP-completeness
results can shed light to the complexity and approximability of all these problems
and help treat such questions in a uniform way.

Regarding completeness results, as mentioned above, there are several #P-
complete problems, which belong to TotP and therefore are TotP-complete under
Cook reductions. More precisely, TotP and #P are interreducible under Cook
reductions [16,17].

On the other hand, the situation is different when completeness under Karp
(parsimonious) reductions is considered. In particular, there is no #P-complete
problem in TotP, unless P = NP. For example, Permanent cannot be #P-
complete under Karp reductions unless P = NP. Furthermore it also seems
unlikely that Permanent is TotP-complete under Karp reductions. This is
because such reductions preserve approximability and Permanent admits a
FPRAS, while other problems in TotP, like #IS, are not likely to do so, as they
are AP-interreducible with #Sat [9]. In this perspective completeness results
in TotP and classes inside TotP may shed light on approximability of many
counting problems.

In this paper, we present a first TotP-complete problem under parsimo-
nious reductions, namely #Monotone-Circuit-Sat: given the encoding of a
monotone circuit with respect to a specific partial order (to be defined later),
compute the number of inputs for which the circuit accepts. Then we reduce this
to other problems, proving them to be also TotP-complete under parsimonious
reductions. Finally we discuss some implications of our results in the last section.

1.1 Related Work

In recent years there has been great interest in classifying the approximation
complexity of counting problems. This interest derives from the fact that very
few counting problems have been proved to be in FP. At the same time the
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counting problems in #P with NP-complete decision version cannot have a poly-
nomial time approximation, unless P = NP. Moreover in [9] it was proved that
these problems are complete for #P under approximation-preserving reductions.
Thus there is no FPRAS for any of them, unless NP = RP. Counting problems
that could have efficient approximation algorithms (FPRAS, FPTAS) are count-
ing problems with easy decision version. Such algorithms for counting problems
can be found in [8,12,14,15]. Especially, the steady progress in determining the
complexity of counting graph homomorphisms [10] contributed to the study of
approximation counting complexity. Also the connection of counting problems
with statistical physics have led to important results in this area [1–3,11].

Regarding subclasses of #P, counting classes like #L, SpanL [4], #PE [20],
TotP [16], #RΣ2 [23], #RHΠ1 [9] have been defined. A significant open question
concerns the relation between each of these classes and the problems that admit a
FPRAS. We are particularly interested in the class TotP, which is related to other
subclasses of #P in the following way: FP ⊆ SpanL ⊆ TotP ⊆ #PE ⊆ #P.

Furthermore, TotP is equal to IFLN
t , the class of interval size functions defined

on total p-orders with efficiently computable lexicographically nearest function
[7]. This was based on [13], in which Hemaspaandra et al. defined classes of
interval size functions and characterized #P in terms of such functions.

2 Preliminaries

The model of computation is the nondeterministic polynomial-time bounded
Turing machine (NPTM), i.e. there is some polynomial p such that for any
input x from an alphabet Σ∗, all computation paths have length at most p(|x|),
where |x| is the length of the input. In [25] Valiant introduced the class #P:

Definition 1. Let R be a polynomial-time decidable binary relation and p a
polynomial. Let f be the function such that given x ∈ Σ∗, f(x) =

∣
∣{y : |y| =

p(|x|) ∧ R(x, y)}∣∣. #P is the class of all these functions. Equivalently, #P =
{accM : M is a NPTM}, where accM (x) = #accepting paths of M on input x.

The decision version of a function f ∈ #P is the following problem: Given x,
is f(x) nonzero? Equivalently, is there at least one accepting path of M on input
x? For each function f the related language Lf = {x : f(x) > 0} can be defined.
If a function f corresponds to the counting version of a search problem (i.e. f
counts how many solutions are there for a given instance) then Lf corresponds
to the existence of a solution.

Definition 2. TotP = {totM : M is a NPTM}, where totM (x) = #(all compu-
tation paths of M on input x) − 1.

A second class of functions with similar properties was introduced in [20].
#PE is the class that contains all the functions in #P such that their decision
version is polynomial-time decidable.

Definition 3. #PE = {f : f ∈ #P and Lf is polynomial time computable}.
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Reductions between functions can be defined in a similar manner to the
Cook/Turing and Karp/many-one reductions between languages. The latter kind
of reduction is often called parsimonious, when referring to functions that count
the number of solutions to NP problems. We use the terms “Cook” and “Karp”,
as shortcuts for “poly-time Turing” and “poly-time many-one” respectively:

Definition 4. Polynomial-time reductions between functions:

– Cook (poly-time Turing) f ≤p
T g: f ∈ FPg.

– Karp (poly-time many-one) f ≤p
m g: ∃h ∈ FP, ∀x ∈ Σ∗ f(x) = g(h(x)).

The relations among #P, #PE and TotP were explored in [21]. The notion
of self-reducibility is crucial for this investigation.

Definition 5. A function f : Σ∗ → IN is called poly-time self-reducible if there
exist polynomials r and q, and polynomial time computable functions h : Σ∗ ×
IN → Σ∗, g : Σ∗ × IN → IN, and t : Σ∗ → IN such that for all x ∈ Σ∗:

(a) f(x) = t(x) +
∑r(|x|)

i=0 g(x, i)f(h(x, i)), that is, f can be processed recursively
by reducing x to h(x, i) (0 ≤ i ≤ r(|x|)), and

(b) the recursion terminates after at most polynomial depth (that is,
f
(

h(...h(h(x, i1), i2)..., iq(|x|))
)

can be computed in polynomial time).
(c) |h(...h(h(x, i1), i2)..., iq(|x|)| ∈ O

(

poly(|x|)).
Note that if |h(x, i)| < |x| for every x and i, 0 ≤ i ≤ r(|x|), then requirement (b)
holds trivially. Moreover, (c) requires that f must be computed only on inputs
of polynomial length in |x|, which also holds if h is of decreasing length.

Theorem 1 [21]. (a) FP ⊆ TotP ⊆ #PE ⊆ #P. The inclusions are proper
unless P = NP.
(b) TotP is the Karp closure of self-reducible #PE functions.

Although, TotP, #PE and #P are Cook-equivalent, they are not Karp equiv-
alent unless P = NP. This means that:

– Under Karp reductions, #P-complete, #PE-complete and TotP-complete
problems constitute disjoint classes, unless P = NP.

– Under Cook reductions, TotP-complete problems are contained in #PE-
complete problems which are contained in #P-complete problems.

In order to fully classify a problem, we need to prove that it is complete for a
class under Karp reductions. As it can be easily observed, the fact that a problem
is #P-complete under Cook reductions does not give enough information about
its complexity, since it could belong in TotP. Cook reductions blur structural
differences between classes.

In the rest of this section, we present definitions and observations useful for
the main proof of this paper.
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A tree is called (a) binary if every node has at most two children, (b) full
binary if every node has either zero or two children, (c) perfect binary if it is
binary, all interior nodes have two children and all leaves have the same depth.

Let M be a NPTM. We can modify M , without changing the total number
of its paths, so that it has at most two nondeterministic choices at each step.
Therefore, the computation of M on input x can be seen as a binary tree TM(x),
i.e. a branching is created in the computation tree whenever M has to select
between two choices. If there is only one choice for some state-symbol combina-
tion, we consider that the tree has no branching at this point. We conclude that
we can restrict ourselves to full binary computation trees. So, it is not hard to
see that totM (x) = #(all paths of M on input x) − 1 = #branchings of TM(x).

Furthermore, the nondeterministic choices of the computation of M can be
represented as a binary string y (a left branching corresponds to “0” and a right
branching to “1”). When we write M(x, y) we refer to the output of the Turing
machine M on input x and nondeterministic choices y. Specifically, M(x, y) = 1
if M accepts x with nondeterministic choices y, and M(x, y) = 0 otherwise.

In the following sections we make use of two mappings from natural numbers
to binary strings, as well as a special partial order on natural numbers.

Definition 6. We define the tree partial order, denoted by ≤tree, of IN as fol-
lows. It is reflexive and transitive and, if y = 2x+1 or y = 2x+2 then x ≤tree y.

Note that the graph of this partial order is an infinite perfect binary tree
denoted by T , the nodes of which are labeled with natural numbers, in such a
way that the left to right BFS traversal of this tree yields the natural order of
IN (assuming that the left child of x is 2x + 1 and the right one is 2x + 2). Its
root is labeled with 0, and x ≤tree y if and only if y is a descendant of x on this
tree. The structure of T is illustrated in Fig. 1.

Using the notion of the infinite tree T we can define mappings between nat-
ural numbers and strings:

Definition 7. 1. path : IN → {0, 1}∗. It maps n to the binary string that
describes the path that starts from the root of T and ends at the node with
label n. For example, path(3) = 00, path(9) = 010, path(0) = ε, where ε is
the empty string.

2. num : {0, 1}∗ → IN. It is defined as the inverse mapping of path.
3. bink : {0, 1, . . . , 2k − 1} → {0, 1}k. It maps n to its binary representation

padded with leading zeros, so as to have length k. For example, bin6(3) =
000011, bin4(9) = 1001, and bin3(9) is not defined.

In addition, bin−1
k is the inverse of bink. For simplicity, we slightly abuse

notation and use bin and bin−1, when the length of the binary representation is
clear from the context. The functions path, num, bink and bin−1

k are polynomial-
time computable.

Definition 8. If we restrict ≤tree on {0, 1, . . . , 2k−1} and apply bink, we obtain
a partial order of {0, 1}k, which, abusing notation, we also denote by ≤tree.

Let T k denote the complete binary tree representing ≤tree on {0, 1}k; an
illustration of T 3 is given in Fig. 2.
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3 #Monotone-Circuit-Sat is TotP-complete Under Karp
Reductions

In this section we define a new counting problem and we prove that it is TotP-
complete. Let Cn denote a Boolean circuit (see [5]) with n input gates, and let
Cn(z) be the output of Cn on input z ∈ {0, 1}n.

Definition 9. We call a Boolean circuit Cn non-increasing with respect to ≤tree

if for every x, y ∈ {0, 1}n, x ≤tree y implies that Cn(x) ≥ Cn(y).

Definition 10. #Monotone-Circuit-Sat, denoted also by f#MC

Input: A Boolean circuit Cn, non-increasing with respect to ≤tree.
Output: f#MC(Cn) := |{y ∈ {0, 1}n : Cn(y) = 1}|, i.e. the number of satisfying
assignments for Cn.

3.1 #Monotone-Circuit-Sat is TotP-hard

We prove that the function f#MC is TotP-hard by reducing the computation of
any function h ∈ TotP to f#MC .

The key observation is the following. There is a NPTM M such that for any
input x, h(x) = totM (x); let TM(x) denote the corresponding computation tree.
Consider extending TM(x) to a perfect binary tree SM(x) with the same height,
so that all leaves of the original TM(x) tree and all their descendants are labeled
“halting”. Therefore h(x) = #(branching nodes of TM(x)) = #(non-“halting”
nodes of SM(x)).

We construct a circuit C non-increasing w.r.t. ≤tree, such that the number
of accepting inputs of C equals h(x). The idea is to describe a bijection between
inputs of C and paths from the root to nodes of SM(x). C accepts an input if
and only if the corresponding path ends at a non-“halting” node of SM(x), which
in turn corresponds to a branching node of TM(x).

Theorem 2. If h ∈ TotP then h ≤p
m f#MC .

Proof. Let h ∈ TotP, and M the corresponding binary NPTM. Recall that for
every input x, h(x) = totM (x) = #branchings of TM(x), where TM(x) is the
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computation tree of M(x). Let p be a polynomial bounding the running time of
M , thus the height of TM(x) is at most p(|x|). Given the description of M we
can construct a NPTM M ′ such that for every input x of M :

(i) TM ′(x) is a perfect binary tree of height p(|x|) + 1.
(ii) #(accepting paths of M ′(x)) = #(branchings of TM(x)).
(iii) For y1, y2 ∈ {0, 1}p(|x|)+1, if y1 ≤tree y2, then M ′(x, y1) ≥ M ′(x, y2).

In order to describe M ′ we make use of the functions path and bin defined in
Definition 7. The operation of M ′ on input x proceeds as follows:

1. Guess a binary string y of length p(|x|) + 1. Let ny = bin−1(y).
2. Compute z = path(ny).
3. Simulate M on input x and nondeterministic choices z.

– If the simulation reaches a halting state of M (possibly using only a prefix
of z), then output 0.

– If the simulation uses all bits of z without reaching a halting state of M ,
then output 1.

We now show that properties (i), (ii), (iii) hold:

(i) The computation tree of M ′ is a perfect binary tree of height p(|x|) +
1, since the only nondeterministic choices are made in Step 1 (Step 3 is
deterministic).

(ii) The number of accepting paths of M ′ equals the number of branchings of
M , since M ′ outputs 1 if and only if z corresponds to a computation path
of M ending at a branching; recall that bin and path are bijective.

(iii) To prove the third property, it suffices to show that for all y1, y2 such that
y1 ≤tree y2 we have M ′(x, y1) = 0 ⇒ M ′(x, y2) = 0. If y1 ≤tree y2, then
z1 = path(bin−1(y1)) is a prefix of z2 = path(bin−1(y2)). This means that
whenever M ′ simulates M with nondeterministic choices determined by
z2, it first passes through the same states as when it simulates M with
nondeterministic choices determined by z1. So, M ′(x, y1) = 0 means that
the simulation of M reaches a halting state using (some of) the bits of
z1. Thus the remaining bits of z2 are ignored and 0 is returned, therefore
M ′(x, y2) = 0.

In order to complete the proof, we have to construct for each input x of h a
circuit Cx

n with n = p(|x|) + 1 input gates, that simulates the computation of
M ′ on input x, i.e. for all y ∈ {0, 1}n, Cx

n(y) = M ′(x, y). It is well known
that such a construction can be done in polynomial time (see e.g. [22, pp. 171–
172]). Cx

n is non-increasing w.r.t. ≤tree since M ′ has this property (due to (iii)).
Thus, we have that |{y ∈ {0, 1}n : Cx

n(y) = 1}| = #accM ′(x) = totM (x), i.e.
f#MC(Cx

n) = h(x) so the reduction is parsimonious. �
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3.2 #Monotone-Circuit-Sat Is in TotP

By Theorem 1(b), it suffices to prove that f#MC is a self-reducible #PE function.

Proposition 1. f#MC ∈ #PE.

Proof sketch. It is not difficult to see that f#MC ∈ #P. Moreover, the decision
version is easy since it suffices to simulate Cn on input 0n. �
Proposition 2. f#MC is self-reducible.

Proof sketch. For proving that f#MC is self-reducible, the intuition is that the
number of satisfying assignments of a circuit Cn non-increasing w.r.t. ≤tree,
equals 0 iff 0n is not a satisfying assignment. Otherwise it is equal to (the number
of satisfying assignments that lie on the left subtree of Tn) + (the number of
satisfying assignments that lie on the right subtree of Tn) +1. The proof consists
of showing that we can efficiently construct two circuits non-increasing w.r.t.
≤tree: C0

n−1, with values compatible with the values of Cn on the left subtree of
Tn, and C1

n−1 the corresponding for the right. �
Corollary 1. f#MC ∈ TotP.

Remark. Note that f#MC is a “promise” problem, since it is not known how to
check if a circuit is non-increasing w.r.t. ≤tree. This is not an essential issue, as
we can extend the function f#MC on non-valid inputs to be equal to totM (x),
where M is the NPTM implied by the membership of f#MC in TotP (on valid
inputs).

4 More TotP-complete Problems

In this section we will show several problems to be TotP-complete. The proofs,
omitted due to space limitations, will appear in the full version of the paper.

Definition 11. Let U be a partially ordered set. A subset V ⊆ U is called a
lower-set (downwards closed) if for all y, x ∈ U , (y ∈ V and x < y) ⇒ x ∈ V .

Definition 12. Let a circuit Cn with n input gates. We will call a subset V of
{0, 1}n accepting for Cn if for all x ∈ V , Cn(x) = 1.

Definition 13. We define the problem Max-Lower-Set-Size.
Input: A circuit Cn with n input gates.
Output: The size of the maximum lower set w.r.t. ≤tree, that is accepting for Cn.

Theorem 3. The problem Max-Lower-Set-Size is TotP-complete.

In the following we assume that each n ∈ IN is encoded by path(n), and let
T be the infinite perfect binary tree representing ≤tree on IN (Fig. 1).

The next problem is intuitively the problem of counting the number of nodes
of a subtree S of T , where S is given in a succinct way, i.e. not explicitly, but
rather by a predicate that tells us whether a node v of T belongs to S.
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Definition 14. Size-of-Subtree, denoted by fss

Input: (MA, u ∈ IN, 1k, 1t) where MA is a deterministic TM computing a predi-
cate A : IN → {0, 1} and t ∈ IN.
Output: The size of the maximal subtree of S with root u, where S = {v ∈ T |
distance(u, v) ≤ k,A(v) = 1 and A(v) is computed by MA in at most t steps}.
Theorem 4. fss is TotP-complete.

We next show another TotP-complete problem which is a special case of
#Sat. Namely, the valid input formulas have the following special properties
based on a clustering of the space of solutions {0, 1}n, where each cluster contains
all assignments with their first k variables fixed to some values: (a) there is at
most one satisfying assignment in each cluster, and it is easy to decide whether
such an assignment exists and, if so, easy to find it, and (b) if we label each cluster
according to their fixed values, then there is a certain kind of monotonicity among
the clusters, described below.

Definition 15. 1. For a 3-CNF formula φ and k ∈ IN we define fk
φ : {0, 1}k →

IN such that fk
φ (a) = #(satisfying assignments of φ with prefix a) for a ∈

{0, 1}k.
2. A 3-CNF formula φ with n variables is called (k, n)-clustered-monotone for

some k ≤ n, if for every a, b ∈ {0, 1}k such that a ≤tree b, fk
φ (a) = 0 implies

fk
φ (b) = 0.

Definition 16. 1. Y = {(1k, 1n, φ,M, 1t) | k, n, t ∈ IN, φ ∈ Φ, deterministic
TM M : {0, 1}k × Φ → IN},where Φ is the set of 3-CNF formulas on n
variables.

2. U ⊂ Y is the set of tuples (1k, 1n, φ,M, 1t) where φ is (k, n)-clustered
monotone, and M is a deterministic TM s.t. ∀a ∈ {0, 1}k, M(a, φ) =
#(satisfying assignments of φ with prefix a), and t is an upper bound for
the running time of M on every a, and on the given φ.

Note that in the above definition, the operation of the TM M is differentiated
w.r.t. whether the instance is on U or Y \ U . In U we have the promise that φ
is clustered monotone and that M counts the number of satisfying assignments
in each clusters. In Y , both φ and M can be arbitrary.

Definition 17. #Clustered-Monotone-Sat, denoted by f#CMS

Input: y = (1k, 1n, φ,M, 1t) ∈ Y

Output: f#CMS(y) =
{

#satisfying assignments of φ , if y ∈ U
∑

a∈S M(a, φ) , if y ∈ Y \ U

where S ⊆ T k is the largest subtree of T k containing 0k s.t. ∀a ∈ S [M(a, φ) > 0
and M(a, φ) is computed within t steps].

Theorem 5. f#CMS is TotP-complete.

By introducing #Clustered-Monotone-Sat, which is a special case of
#Sat, the intuition we want to capture is the following. Every problem in TotP
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is reduced, as made clear from the above proof, to a 3-CNF formula that is
clustered monotone, and for all formulas created in this way we have an efficient
algorithm that returns the number of satisfying assignments in each cluster. So
this TotP-complete special case of #Sat is much more structured than the #P-
complete version. This fact, combined with other known results concerning the
approximability of counting problems, may have interesting consequences, as we
will discuss in the next section.

It is also worth noting that #Clustered-Monotone-Sat is a special case
of another #Sat variant which is SpanP-complete: given a formula φ on n
variables, and a number k ≤ n, compute the number of satisfying assignments
that are different in the first k variables [19].

5 Discussion on Approximability Implications

On the Approximability of TotP. It is known that there are problems in
TotP, e.g. #IS (as shown in [21]), that do not admit a FPRAS unless NP = RP
[9], not even a polynomial factor approximation. This follows from the fact that
for self-reducible problems a polynomial factor approximation would yield a
FPRAS [24].

However, it turns out that the class TotP admits some kind of polyno-
mial time approximation: the problem Size-of-Subtree is a special case of
the backtracking-tree problem, studied in [18]; in that paper Knuth proposed
a randomized algorithm. By appropriate adaptation we can use it to approxi-
mate Size-of-Subtree. The expected output value of the algorithm is exactly
the desired value, but the variance can be exponential in the worst case. Thus
this algorithm would not yield a FPRAS. Approximation algorithms under other
notions of approximability for Size-of-Subtree were studied in [6].

The TotP-completeness of Size-of-Subtree under Karp reductions implies
that the above algorithmic results can be applied to every problem in TotP.
Recall that TotP contains self-reducible hard counting problems with easy deci-
sion version [21]. On the other hand these simple algorithms are essentially the
best we can hope for, unless NP = RP, since #IS belongs to TotP.

On the Approximability of #P and Connections to Statistical Physics.
Another interesting implication comes from the TotP-completeness of the prob-
lem #Clustered-Monotone-Sat (Definition 17), i.e. the problem of counting
the number of satisfying assignments of formulas such that: (a) a solution can
easily be found if one exists, and (b) their set of solutions is connected in a spe-
cific way as described before Definition 15. Combining this completeness result
with the fact that #Sat can be reduced to #IS ∈ TotP (i.e. counting inde-
pendent sets) by a reduction that preserves approximability [9], we get that
approximating the number of satisfying assignments of an arbitrary formula is
as difficult as approximating the number of satisfying assignments of a formula
with the above properties.

This is particularly interesting since there is a series of papers that relate
counting complexity to statistical physics [1–3], from which we know that, for the
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“difficult” instances of Sat, the set of satisfying assignments is widely scattered
in the space of all assignments (i.e. the boolean hypercube of n dimensions), and
this scattering might be responsible for the hardness of Sat. Our results show
that we can reduce (with an approximation-preserving reduction) an arbitrary
instance with a set of solutions that are disconnected and for which it is hard to
find even one solution, to an instance with a set of solutions that are connected
in a way that we have described explicitly, and for which we can easily find one
solution.

This can be viewed in two ways: For an optimist it shows that approximating
#Sat may be not so difficult after all (e.g. perhaps NP = RP). On the other
hand, a pessimist may conclude that #Sat is not only hard in general, but also
(by such “hardness amplification”) even seemingly easy (e.g. structured) cases
would possess the same hardness.

6 Conclusion and Open Problems

We have made an important step towards a better understanding of the com-
plexity class TotP by presenting problems that are TotP-complete under par-
simonious reductions. However, these problems are not among the well-studied
problems in TotP such as #IS, Permanent, etc. The completeness of such
problems constitutes an intriguing open question. Note that, if Permanent is
TotP-complete under parsimonious reductions, then NP = RP.

Another interesting direction would be to explore the approximability status
of the problems presented in this paper. The positive approximability of these
problems would transfer to every problem in TotP.

Acknowledgments. We would like to thank Antonis Antonopoulos for many useful
discussions as well as the anonymous reviewers for their observations and corrections.
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4. Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theoret. Comput.
Sci. 107(1), 3–30 (1993)

5. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge
University Press, New York (2009)

6. Bakali, E.: Self-reducible with easy decision version counting problems admit addi-
tive error approximation. Connections to counting complexity, exponential time
complexity, and circuit lower bounds. CoRR abs/1611.01706 (2016)



66 E. Bakali et al.

7. Bampas, E., Gobel, A., Pagourtzis, A., Tentes, A.: On the connection between
interval size functions and path counting. Comput. Complex., 1–47 (2016). doi:10.
1007/s00037-016-0137-8. Springer

8. Dyer, M.: Approximate counting by dynamic programming. In: Proceedings of 35th
Annual ACM Symposium on Theory of Computing (STOC), pp. 693–699 (2003)

9. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity
of approximate counting problems. Algorithmica 38(3), 471–500 (2003)

10. Galanis, A., Goldberg, L.A., Jerrum, M.: Approximately counting H-colourings is
#BIS-hard. SIAM J. Comput. 45(3), 680–711 (2016)

11. Goldberg, L.A., Jerrum, M.: The complexity of ferromagnetic ising with local fields.
Comb. Probab. Comput. 16(1), 43–61 (2007)
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Abstract. We consider several problems dealing with tracking of mov-
ing objects (e.g., vehicles) in networks. Given a graph G = (V,E) and
two vertices s, t ∈ V , a set of vertices T ⊆ V is a tracking set for G (w.r.t.
paths from s to t), if one can distinguish between any two paths from s
to t by the order in which the vertices of T appear (or do not appear)
in them. We prove that the problem of finding a minimum-cardinality
tracking set w.r.t. shortest paths from s to t is NP-hard and even APX-
hard. On the other hand, for the common case where G is planar, we
present a 2-approximation algorithm for this problem. We also consider
the following related problem: Given a graph G, two vertices s and t, and
a set of forbidden vertices VF ⊆ V − {s, t}, find a minimum-cardinality
set of trackers V ∗ ⊂ V , such that a shortest path P from s to t passes
through a forbidden vertex if and only if it passes through a vertex of
V ∗. We present a polynomial-time (exact) algorithm for this problem.

1 Introduction

Tracking of moving objects has received considerable attention among
researchers. Much of the work on this subject has dealt with objects moving
in an underlying network. One objective of a network tracking system might
be to derive movement patters of the objects of interest (e.g., vehicles), or to
reconstruct the exact route followed by a specific object when needed, or to
detect potential flaws in the network. Tracking of moving objects (not necessar-
ily in an underlying network) is closely related to surveillance and monitoring,
whether indoor or outdoor, and to intruder detection. In a typical (physical)
tracking problem, we need to place tracking devices (e.g., wireless sensors) in a
way that both serves our goals and is economical. See [3] for a survey of tar-
get tracking protocols using wireless sensor network. Although this is an active
area of research, most of the work in this area is heuristic-based and much of it
concentrates on power management of the sensors, see e.g. [6].

In this paper we study several location-awareness problems in the physical
world. More precisely, we focus on (vehicle) tracking problems in an underlying
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network. Most of our ideas apply of course to other types of objects as well as
to computer networks. To the best of our knowledge, these problems have not
been previously studied from a theoretical point of view.

Let G = (V,E) be a network (i.e., a graph). We assume that G has a unique
entry vertex s and a unique exit vertex t. (The case where the network has several
entry points and several exit points can be handled by adding two special vertices
and connecting them to all entry vertices and to all exit vertices, respectively.)
Our goal is to place trackers at some of the vertices in a way that would allow us
to reconstruct the path from s to t which has been traversed. (When a vehicle
passes through a vertex with a tracker, the tracker is activated and sends a signal
to the control center.) Let λ be any path and A ⊂ V any set of vertices. We
denote by T A

λ the sequence of vertices of A obtained from λ by deleting the
vertices that do not belong to A. For two given vertices s and t and a set of
paths Λ between s and t, a set of vertices A is a tracking set w.r.t. Λ, if for any
two paths λ1 and λ2 in Λ, T A

λ1
�= T A

λ2
. We focus on the case where Λ is the set of

all shortest paths from s to t and consider the following problems:

Problem 1 (Tracking set for shortest paths (TSSP)). Given a graph G
and two vertices s and t, find a minimum cardinality tracking set for G, w.r.t.
shortest paths from s to t.

Problem 2 (TSSP given an initial set of trackers). Given G, two vertices
s and t, and a set A of trackers, find a minimum cardinality set B of trackers,
such that A ∪ B is a tracking set for G, w.r.t. shortest paths from s to t.

Another variant that we consider is where there are some vertices (locations)
in which one cannot place a tracker for various reasons (e.g., geographical or
climate conditions, security issues, or high costs). We call such vertices blocked
vertices, and we are interested in finding a tracking set which does not contain
any of the blocked vertices (if exists).

Problem 3 (TSSP with blocked vertices). Given G, two vertices s and t,
and a set of blocked vertices VB ⊂ V , find a minimum cardinality tracking set
for G, w.r.t. shortest paths from s to t, which does not contain vertices from VB.

The next problem deals with the reconstruction process.

Problem 4 (Path reconstruction). Given G, two vertices s and t, and a
tracking set A for G w.r.t. shortest paths, preprocess G and A so that given a
sequence T A

λ , the path λ can be reconstructed “quickly”.

Another problem that we consider is Catching the intruder. In this problem,
vehicles are not allowed to pass through some of the vertices (for various reasons).
Our goal now is to “catch” any vehicle that has entered one or more of these
forbidden vertices. More precisely, the problem is defined as follows:

Problem 5 (Catching the intruder). Given G, two vertices s and t, and a
set of forbidden vertices VF ⊂ V , find a minimum-cardinality set of vertices V ∗,
such that a shortest path between s and t passes through a forbidden vertex if
and only if it passes through a vertex of V ∗.
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A closely related problem is the feedback vertex set problem. A feedback
vertex set of a graph G is a subset of vertices that contains at least one vertex
from every cycle in G.

Problem (Feedback vertex set [1]). Given a graph G, find a feedback vertex
set of G of minimum cardinality.

Karp [8] showed that the feedback vertex set problem for directed graphs
is APX-complete, which directly follows from the APX-completeness of the
vertex cover problem and the existence of an approximation preserving L-
reduction from the vertex cover problem to the feedback vertex set problem [5,8].
The best known approximation algorithm for undirected graphs computes a
2-approximation [1]. See remarks at the end of Sect. 3 discussing connections
between our problems and the feedback vertex set problem.

Our Results. In Sect. 2, we prove that Problem2 and Problem1 are NP-hard.
We also prove APX-hardness of Problem1. In Sect. 3, we present a direct 2-
approximation algorithm for TSSP, for the special and important case where
the underlying graph is planar. In Sect. 4, we consider Problem 5 and provide a
polynomial-time algorithm for solving it optimally. Finally, see remarks at the
end of Sect. 3 for additional results that can be found in the full version of this
paper.

2 Hardness Results

In this section we first prove that Problem 2 (TSSP given an initial set of trackers)
is NP-hard. Then we prove that Problem1 (TSSP) is NP-hard. Finally, we prove
that Problem 1 does not admit a PTAS, i.e., it is APX-hard.

Lemma 1. Problem 2 is NP-hard.

Proof. We show a reduction from vertex cover. A vertex cover of a graph G is
a subset of the vertices of G, such that each edge of G is incident on at least
one vertex of the subset. Given a positive integer k, determining whether there
exists a vertex cover of size k is an NP-complete problem [8]. Let {G(V,E), k}
be any instance of the vertex cover problem. We construct the graph G′(V ′, E′)
from G(V,E) as follows. We create a vertex in G′ for each vertex in G and for
each edge in G. We also create vertices s and t, so that V ′ = V ∪ E ∪ {s, t}. In
G′ there is an edge between a vertex v ∈ V and a vertex e ∈ E if e is incident on
v in G. For each vertex v ∈ V , we create an edge between v and s in G′, and for
each vertex e ∈ E we create an edge between e and t in G′ (see Fig. 1, ignoring
the vertices a, b, d). Finally, let B = E be the given set of trackers. Consider
any tracking set A ⊂ V ′ for the set of all shortest paths from s and t. Observe
that any shortest path between s and t is of length three. Any vertex e ∈ V ′

corresponding to an edge e ∈ E is incident on two vertices vi and vj such that e
is the edge between vi and vj in G. To distinguish between the paths (s, vi, e, t)
and (s, vj , e, t), A must contain either vi or vj . Hence A \ B is a vertex cover
for G.
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Consider any vertex cover V ∗ ⊂ V for G. We show that V ∗ ∪ B is a tracking
set for all shortest paths from s to t in G′. Suppose there exists two paths
(s, vi, ej , t) and (s, vk, el, t) which are indistinguishable. If ej �= el, then clearly
(s, vi, ej , t) and (s, vk, el, t) are distinguishable because ej , el ∈ B. Hence without
loss of generality assume ej = el. Therefore, as (s, vi, ej , t) and (s, vk, el, t) are
indistinguishable, both vi and vk are not in V ∗. But this contradicts the fact
that V ∗ is a vertex cover for G. Hence the result holds. ��

Next we show that Problem 1 (TSSP) is hard. Let G(V,E) be any graph. We
begin by constructing the graph G′(V ′, E′) from G(V,E) as before. Next, we
add to V ′ the vertices a, b, d and to E′ the edges (s, a), (s, b), (d, t). We also add
to E′ the edges (a, x), for each x ∈ E ∪ {d}, and the edge (b, d) (see Fig. 1).
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Fig. 1. Illustration of Lemma 2.

Lemma 2. There exists a vertex cover for graph G of size k if and only if there
exists a tracking set for G′ of size k + |E| + 1.

Proof. Let |V ∗| = k be any vertex cover for G. Consider the tracking set V ∗ ∪
E ∪ {a} for G′. Observe that it is possible to track all shortest paths between s
and t passing through d, because there are only two such paths, one with a single
tracker at a and the other without any tracker. It is also possible to track all
paths of the form (s, a, ek, t), because each of them has two trackers, one at a and
one at ek. Suppose now that there exist two paths (s, vi, ek, t) and (s, vj , el, t)
which are indistinguishable. This implies that ek = el and that both vi and vj

are not present in V ∗. But this is impossible since V ∗ is a vertex cover for G.
Now suppose there exists a tracking set T for G′ of size k + |E| + 1. Observe

that T contains either a or b to distinguish between the paths (s, a, d, t) and
(s, b, d, t). As (s, b, d, t) is the only path passing through b we can assume that
there is a tracker at a.

To distinguish between the paths (s, a, x, t), where x ∈ E∪{d}, all vertices in
E∪{d} except one must contain a tracker. As a contains a tracker we can assume
that each vertex in E contains a tracker (and d does not). Now T \(E∪{a}) ⊂ V
is of size k, and it is easy to verify that T \ (E ∪ {a}) is a vertex cover for G. ��
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We thus conclude that

Theorem 3. Problem 1 is NP-hard.

It is well known that minimum vertex cover is APX-hard, where the best
inapproximability result is due to Dinur and Safra [5] who proved that it is NP-
hard to approximate minimum vertex cover to within a factor of τ = 1.3606.
Next we prove that Problem 1 is APX-hard, by showing that if there exists a
polynomial-time algorithm to approximate minimum tracking set to within a
factor of τ − δ, for some 0 < δ < τ − 1, then there also exists a polynomial-time
algorithm to approximate minimum vertex cover to within a factor of τ .

Theorem 4. Given a graph G, it is NP-hard to approximate minimum tracking
set for shortest paths to within a factor of τ − δ, for any 0 < δ < τ − 1.

Proof. Let G(V,E) be any graph, where |V | = n and |E| = m. We construct the
graph G′(V ′, E′) as follows. We create m sets of vertices {V1, . . . ,Vm}, where
Vi = {vij : 1 ≤ j ≤ n}, and set V ′ = (∪1≤i≤mVi) ∪ E ∪ {s0, s1, . . . , sm} ∪
{s, t, a, b, d}. We add the following sets of edges to E′ (see Fig. 2): (i) {(s, si) :
0 ≤ i ≤ m}, (ii) {(si, x) : x ∈ Vi}, for i = 1, . . . ,m, (iii) {(si, b) : 0 ≤ i ≤ m},
(iv) {(s0, a)}, (v) {(vij , ek) : 1 ≤ j ≤ n, ek ∈ E, ek is incident on vj in G}, for
i = 1, . . . , m, (vi) {(a, x) : x ∈ E ∪ {d}}, (vii) {(b, d)}, and (viii) {(x, t) : x ∈
E ∪ {d}}.

v21 v2n

e1 em
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b
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Fig. 2. The graph G′.

Let k be the size of a minimum vertex cover for G. Using arguments similar
to those in Lemma 2, one can show that the size of an optimal tracking set for
G′ is mk + 2m + 1. Assume there exists a polynomial-time algorithm which
produces tracking sets of size at most (τ − δ0) times the optimal size, where
0 < δ0 < τ − 1. Then, such an algorithm will return a tracking set T for G′

of size at most (τ − δ0)(mk + 2m + 1). We know already that T must contain
E ∪ {a}, and we observe that it must also contain the set {s0, . . . , sm} except
for one arbitrary member of the set. Let αk, α ≥ 1, be the number of vertices
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of Vi in T , for i = 1, . . . , m. (For symmetry reasons we may assume that for
any i, i′ the number of vertices of Vi in T and the number of vertices of Vi′ in
T are equal.) We thus have |T | = 2m + 1 + mαk ≤ (τ − δ0)(mk + 2m + 1) or
α ≤ τ − δ0 + (τ − 1 − δ0) 2m+1

mk .
Now, we may assume that k is at least, say, 3(τ − 1)/δ0, since otherwise we

can find a minimum vertex cover for G. But if so, we get that α < τ , implying
that there exists an algorithm to approximate minimum vertex cover to within
a factor of τ , which, as mentioned above, is impossible unless P = NP [5]. ��

Corollary 5. Problem 1 is APX-hard.

3 Tracking Paths in Planar Graphs

In this section we present a 2-approximation algorithm for TSSP where the
underlying graph is planar. Before presenting the algorithm, we make a few
observations which are valid for any graph, not necessarily planar.

We are given a graph G (which is not necessarily planar) and two vertices s
and t, and we are interested in a minimum cardinality tracking set for G, w.r.t.
shortest paths from s to t. Without loss of generality, we assume that all the
vertices and edges of G appear in some shortest path from s to t, otherwise
we can delete all unnecessary vertices and edges in O(|V | + |E|) time using
Algorithm 1.

Algorithm 1. Removing all “unnecessary” vertices and edges.
1 Input: A graph G(V,E).
2 Output: A graph G′(V ′, E′), where V ′ ⊂ V and E′ ⊂ E and v ∈ V ′ (e ∈ E′) if

and only if there exists a shortest path from s to t in G that passes through v
(e).

3 Run a BFS in G and assign a level to each vertex vi ∈ V depending on its
distance from s.

4 Let lmax be the level assigned to t.
5 Delete all vertices which were not assigned a finite level (i.e., which are not

reachable from s).
6 Delete all edges between vertices in the same level.
7 Delete all vertices with level ≥ lmax, except t, and the edges connected to them.
8 for l ← lmax − 1 down to 1 do
9 Delete all vertices v ∈ V in level l with degout(v) = 0.

10 Delete all edges with an endpoint at a deleted vertex.

Since we are only interested in shortest paths from s to t, we can think of G
as a directed graph. The vertices of G can be divided into levels—all vertices at
distance d from s are considered to be in level d (s is considered to be in level
0). Let lmax be the level of t. We denote the set of vertices participating in a
path P or cycle C by V (P ) and V (C), respectively.
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Definition 1. Given a simple cycle C, we say that (i) v ∈ V (C) is an entry
vertex in C if there does not exist a vertex in V (C) of level lower than that of v,
i.e., l(v) ≤ l(u), for each u ∈ V (C). (ii) v ∈ V (C) is an exit vertex in C if there
does not exist a vertex in V (C) of level higher than that of v, i.e., l(v) ≥ l(u),
for each u ∈ V (C). (iii) If v ∈ V (C) is not an entry nor an exit vertex, then it
is a middle vertex in C.

Observation 1. v is an entry vertex in C if and only if it is connected to two
other vertices of C in a higher level than v, and v is an exit vertex in C if and
only if it is connected to two other vertices of C in a lower level than v.

Definition 2. A path P = (v1, v2, . . . , vk) in G is an increasing path if l(vi+1) =
l(vi) + 1, for i = 1, . . . , k − 1. A relevant cycle is a simple cycle formed by two
increasing paths between the same two vertices, where the paths are vertex-
disjoint except of course for their common beginning and ending vertices.

Note that a relevant cycle C has a unique entry vertex and a unique exit
vertex; these are the first and last vertices of the two increasing paths forming
the cycle. We denote the entry vertex and the exit vertex of relevant cycle Ci by
vi

in and vi
out, respectively.

Observation 2. A relevant cycle Ci is composed of two (vertex-disjoint)
increasing paths from vi

in to vi
out, both of which consisting of the same num-

ber of vertices.

Lemma 6. F is a tracking set for G if and only if there is at least one middle
vertex from each relevant cycle of G in F .

Proof. Assume F is a tracking set for G, we show that there is at least one
middle vertex from each relevant cycle of G in F . Any relevant cycle Ci of G is
composed of two vertex-disjoint paths, of equal length, from vi

in to vi
out, denote

these paths by P1 and P2. In order to distinguish between P1 and P2 one of the
vertices in {V (P1) ∪ V (P2)} \ {vi

in ∪ vi
out} must contain a tracker.

We now show that if there is at least one middle vertex from each relevant
cycle of G in F , then F is a tracking set for G. Let us assume that F is not a
tracking set for G. Then, there must be at least two indistinguishable paths from
s to t, denote these paths by P1 and P2. There must exist a relevant cycle C in
G, such that P1 traverses its left part, and P2 traverses its right part (see Fig. 3)
and there is no tracker on either side (otherwise we would be able to distinguish
between them), but this means that there is no tracker in any of C’s middle
vertices—a contradiction to the definition of F . ��

Next we assume that G is planar and that a planar embedding of G is pro-
vided, and we present a 2-approximation algorithm for TSSP. Recall that we
assume that all vertices and edges of G appear in some shortest path between s
and t; otherwise, we can remove them by running Algorithm1.

By Lemma 6 we know that



74 A. Banik et al.

s t

P1

P2

t1

t2

t3 t4

t5

t6

C

Fig. 3. A graph with a set of trackers {ti}. The paths P1 (red) and P2 (blue) are
indistinguishable because there is no tracker at a middle vertex of the relevant cycle C.
(Color figure online)

Observation 3. Each face Fi of G must contain a tracker in one of its middle
vertices.

Lemma 7. The size of any tracking set for G w.r.t. shortest paths from s to t
is at least m/2, where m is the number of faces in G.

Proof. Each face must have a tracker in one of its middle vertices (by Observa-
tion 3). Moreover, a vertex can appear as a middle vertex in at most two faces.
Therefore, any tracking set must have at least m/2 trackers. ��
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Fig. 4. Illustration of the proof of Theorem 8.

We now present a 2−approximation algorithm for TSSP, by presenting an
iterative algorithm that finds a tracking set for G of size m.

Theorem 8. There exists a tracking set of size m for G, where m is the number
of faces in G.

Proof. Denote the level of a vertex v by l(v). We prove by induction the following
stronger statement (from which the theorem follows immediately):
For any planar graph G with m faces, one can place m trackers, such that, for
any two vertices u and v, there do not exist two different shortest paths between
u and v with the same set of trackers. Notice that we view G as a directed graph,
so an edge (a, b) ∈ E can be part of a shortest path only if l(a) < l(b).
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Base Case: m = 1, i.e., the graph contains only one (bounded) face F . Assume
u and v are two vertices such that there exist two shortest paths between u and
v and over all such pairs of vertices |l(u) − l(v)| is minimum (see Fig. 4(a)). Let
these two paths be P1 and P2. Observe that P1 ∪ P2 is the face F . Choose any
middle vertex vt of F and place a tracker at vt. Now the two paths between u
and v are distinguishable, and for any other pair of vertices u′ and v′ such that
there exist two shortest paths between u′ and v′, one of the paths is a superset
of P1 and the other is a superset of P2. Therefore one contains vt and the other
does not. Hence for any pair of vertices, if there exist two shortest paths between
them, then they are distinguishable.

Induction Step: Consider any graph G with m + 1 faces. Let F be any face of
G which shares at least one edge with the outer face F o (see Fig. 4(b)). Observe
that such a face always exists. Consider the set of vertices VF in F ∩F o. Observe
that at least one of the vertices in VF is a middle vertex of F . (Otherwise, VF

consists of the two verices vin and vout. But, there is another path between
vin and vout with the same number of vertices (Observation 2), which implies
that there are two edges connecting between vin and vout, which is impossible.)
Choose one of the middle vertices va in VF and place a tracker at va.

The outer face F o contains two (not necessarily disjoint) paths from s to t.
Denote them by λ1 and λ2. As va is a middle vertex, va belongs to exactly one
of these paths. Without loss of generality assume va ∈ λ1. Consider the (open)
chain μ shared by F and λ1, i.e., μ consists of all vertices and edges of the
chain F ∩ λ1, except for the two extreme vertices (see Fig. 4(b)). Delete μ from
G. Now the remaining graph G′ has m faces, and by the induction hypothesis,
there exists a set T of m trackers, such that for any two vertices u and v in
G′, there do not exist two different shortest paths with the same set of trackers.
We claim that T ∪ {va} is a set of trackers, such that for any two vertices u
and v in G, there do not exist two different shortest paths with the same set of
trackers. Suppose there are two shortest paths P1 and P2 in G with the same
set of trackers. There can be three cases.

Case i: P1 and P2 do not intersect μ. Then, P1 and P2 are paths in G′, contra-
dicting the induction hypothesis.
Case ii: Exactly one of P1 and P2 intersects μ, say P1. Observe that if a path
intersects μ it contains μ, since μ or parts of it do not “belong” to any other
face. Hence P1 contains va and P2 does not. Thus they are distinguishable.
Case iii: Both P1 and P2 intersect μ. In this case, both paths contain μ (and
va). But since they are different, there exist two vertices u and v in G′, such that
in G′ there exist two different shortest paths between u and v with the same set
of trackers, and these paths are contained in P1 and P2, respectively. But this
contradicts the induction hypothesis. ��

Theorem 8 immediately implies an iterative algorithm to find a tracking set of
size m for G. Using the DCEL structure for representing planar subdivisions [4],
the algorithm can be implemented in linear time. By Lemma 7 we know that the
optimal solution consists of at least m/2 trackers. Hence, we have the following
result.
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Theorem 9. There exists a linear-time algorithm for computing a 2-
approximation for TSSP in planar graphs.

Remark. In the full version of this paper, we also present a linear-time heuristic
for TSSP in general graphs. The heuristic is based on a variant of the feedback
vertex set problem in which one is given a set of blackout vertices, i.e., vertices
that may not appear in the solution; see Bar-Yehuda et al. [2]. The heuristic can
be adjusted to serve as a heuristic for the blocked vertices variant (Problem4).

Remark. In the full version of this paper, we also study Problem4. Specifically,
we construct a data structure of size O(|A|·|V |), where A is the tracking set w.r.t.
shortest paths computed for G, such that given a sequence of visited trackers,
one can reconstruct the traversed path P in O(|P |) time.

Remark. Consider a slightly different model, where a tracker at a vertex v does
not only report a vehicle that passes through v, but also reports the edges by
which the vehicle entered and exited v. In this model, any feedback vertex set of
a general graph G is necessarily a tracking set for G. Given a feedback vertex set,
assuming it is not a tracking set and considering two shortest indistinguishable
paths (starting and ending at the same vertices) implies a relevant cycle without
a tracker (since if there existed a tracker in any of the vertices of the cycle,
one would be able to distinguish between the given paths using the additional
information provided by the tracker).

4 Catching the Intruder

In this section, we consider a variant of TSSP, where the goal is to “catch”
trespassers: Given a graph G = (V,E), two vertices s,t, and a set of forbidden
vertices VF ⊂ V , find a minimum-cardinality set of vertices V ∗, such that a
shortest path between s and t passes through at least one of the forbidden vertices
if and only if it passes through at least one of the vertices of V ∗. Formally, for
a given shortest path P , VF ∩ V (P ) �= ∅ if and only if V ∗ ∩ V (P ) �= ∅.

Definition 3. The set of extended forbidden vertices is the set of all vertices
FV ⊆ V , such that, if a shortest path P from s to t passes through one of them,
i.e., V (P ) ∩ FV �= ∅, then P must also pass through a forbidden vertex, i.e.,
V (P ) ∩ VF �= ∅. (Clearly, VF ⊂ FV .) A forbidden path is then a path which
passes through at least one vertex from the extended forbidden vertices set.

We first find the set of extended forbidden vertices by running Algorithm2.
(As before, we assume that all vertices and edges of G appear in some shortest
path between s and t; otherwise, we remove all unnecessary vertices and edges
by running Algorithm1). Notice that Algorithm 2 requires O(|V | + |E|) time.

Definition 4. A vertex v ∈ V is a first vertex, if v ∈ FV and there exists a
shortest path from s to v which does not pass through any other vertex of FV .
A vertex v ∈ V is a last vertex, if v ∈ FV and there exists a shortest path from
v to t which does not pass through any other vertex of FV .
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Next, we find all first vertices and last vertices by running a BFS in G. First
vertices are found by running a BFS from s, each time an extended forbidden
vertex v is encountered for the first time, it is added to the set of first vertices
and the subtree rooted at v is not explored (since all following vertices would
not be first for this specific path, however, if they are first for some other path,
then they will be added at a later stage). Last vertices are found by running a
similar procedure from t.

Algorithm 2. Finding the set of extended forbidden vertices.
1 Input: A directed graph G(V,E) and a set of forbidden vertices VF ⊂ V .
2 Output: The set of extended forbidden vertices FV .
3 Run a BFS in G and assign a level to each vertex v ∈ V depending on its

distance from s.
4 lmax ← l(t)
5 FE ← ∅
6 FV ← VF

7 for l ← 1 to lmax − 1 do
8 foreach v s.t. l(v) = l do
9 if {all edges entering v} ⊆ FE then

10 FV ← FV ∪ {v}
11 if v ∈ FV then
12 FE ← FE ∪ {all edges exiting v}
13 for l ← lmax − 1 down to 1 do
14 foreach v s.t. l(v) = l do
15 if {all edges exiting v} ⊆ FE then
16 FV ← FV ∪ {v}
17 if v ∈ FV then
18 FE ← FE ∪ {all edges entering v}
19 return FV

Denote the set of first vertices by Vfirst and the set of last vertices by Vlast.
We connect all first vertices to a source vsrc and all last vertices to a sink vsink,
denote all these edges by E∗. Finally, we construct the forbidden paths graph
G′ = (V ′, E′) where V ′ = FV ∪ {vsrc, vsink}, E′ = EF ∪ E∗, where EF ⊆ E is
the of edges for which both endpoints belong to the extended forbidden vertices
set FV . An example of the construction can be seen in Fig. 5.

Observation 4. The desired vertex set V ∗ must be a subset of FV = V ′ −
{vsrc, vsink}. Otherwise, there is a forbidden path which is not represented in G′

– which is not possible due to the way G′ was constructed.

In order to solve our problem, we must find a minimum vertex cut between
vsrc and vsink in G′, i.e., a minimum-cardinality set of vertices Vmc such that if
we remove the vertices of Vmc from G′ there would be no path from vsrc to vsink.

We find a minimum vertex cut in the following manner: for each vertex
vi ∈ V ′ we create two new vertices vi1, vi2 connected by the edge (vi1, vi2). All
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Fig. 5. The forbidden paths graph G′ (middle) of a given graph G (left), and the graph
constructed from G′ in which we find a minimum edge cut (right). VF = {v1, v2, v8},
FV = {v1, v2, v3, v7, v8}, Vfirst = {v1, v2, v7}, Vlast = {v3, v8}.

edges originally entering vi will now enter vi1, and all edges originally exiting vi

will now exit vi2. An example of the construction can be seen in Fig. 5. Notice
that the size of a minimum vertex cut in G′ is at least the size of a minimum
edge cut in the new graph. We run a minimum edge cut algorithm in the new
graph, and denote by Emc the minimum cut returned. We define a minimum
vertex cut Vmc as follows: for each e ∈ Emc, if e is an edge connecting between
vi1, vi2 for some i, then vi is added to Vmc. Removing vi in this case has the
same effect as removing e. Otherwise, if e = (vi2, vj1) where i �= j, then vj is
added to Vmc. In this case, notice that one can replace e in the cut by the edge
e′ = (vj1, vj2) and still have a cut. The new edge corresponds to the vertex vj

which is added to the vertex cut to achieve a similar effect. Obviously we have
described a polynomial-time algorithm, since computing a minimum edge cut is
polynomial. Finally, set V ∗ = Vmc.

Lemma 10. V ∗ is the desired solution.

Proof. Assume it is not, so, if we remove the vertices in Vmc from G, we are
still left with a path P = (s, . . . , vf , . . . , t) which passes through a forbid-
den vertex vf ∈ VF . By the construction of G′, there must still be a path
P ′ = (vsrc, . . . , vf , . . . , vsink) in G′, after removing the vertices from Vmc – a
contradiction. Thus, Vmc must be the desired set, and its minimality follows
from the construction. ��

Running Time. Constructing G′ and splitting each vertex requires O(|V |+|E|)
time. On the resulting graph we run an algorithm for finding a minimum edge
cut. The most efficient such algorithm is the randomized O(n2 log3 n)-time algo-
rithm of Karger and Stein [7]. We thus reach a total running time of O(n2 log3 n).
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1 Université Paris-Dauphine, PSL Research University,
CNRS, LAMSADE, 75016 Paris, France

{bazgan,thomas.pontoizeau}@lamsade.dauphine.fr
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Abstract. An independent 2-clique of a graph is a subset of vertices
that is an independent set and such that any two vertices inside have a
common neighbor outside. In this paper, we study the complexity of find-
ing an independent 2-clique of maximum size in several graph classes and
we compare its complexity with the complexity of maximum independent
set. We prove that this problem is NP-hard on apex graphs, APX-hard
on line graphs, not n1/2−ε-approximable on bipartite graphs and not
n1−ε-approximable on split graphs, while it is polynomial-time solvable
on graphs of bounded degree and their complements, graphs of bounded
treewidth, planar graphs, (C3, C6)-free graphs, threshold graphs, interval
graphs and cographs.
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1 Introduction

Community detection is a well established research field in the area of social
networks. It can find many applications in this area with the recent development
of social networks like Facebook or Linkedin. A social network can be easily
modeled by a graph in which vertices represent members and edges represent
relationships between those members.

There are several ways to define a community. Intuitively, a community cor-
responds to a dense subgraph, that is to say a subgraph with a lot of edges.
If a community is defined as a group of maximum size such that all members
know each other, it corresponds to the well known NP-hard problem of finding a
maximum clique. However, such a condition is strong and is not always relevant
to describe a community.
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Another way to define a community is to relax the strong condition of a
clique and focus on the distance between members of a social network. Different
measures have been studied to describe it. Luce introduced in [12] the notion
of k-cliques while Mokken extended this notion in [13] by defining k-clubs. A
k-clique (resp. a k-club) of G is a subgraph S in which any two vertices are at
distance at most k in G (resp. in the subgraph induced by S). The standard
term ‘clique’ means both a 1-clique and a 1-club.

With the recent development of social networks and particularly online dat-
ing services, it could be interesting to investigate the detection of some group of
people who do not know each other, but are related by their other relationships.
Such a group could be considered as a ‘potential’ community since it does not
form a community in the first place, but could become one thanks to their prox-
imity. This may find various applications in online dating and meet-up services
in which members expect not to know the other members.

More precisely, considering a graph G, we want to define potential communi-
ties by looking at independent sets in which any two members are related within
a specified distance in G. Contrary to a k-club, the distance between two vertices
must be realized via vertices outside of the subgraph. We call such a subset of
vertices an independent k-clique, where k is the largest distance between ver-
tices of S in the original graph. In this paper, we study the problem of finding
an independent 2-clique of maximum size.

We investigate the complexity of finding an independent 2-clique of maximum
size in several graph classes. Since this problem is close to finding an independent
set of maximum size, we also compare the hardness of the two problems. Figure 1
summarizes the results we prove in the paper.

The paper is structured as follows. In Sect. 2 we introduce formally some
notation and definitions. In Sect. 3 we show that the complexity of Max Inde-
pendent 2-Clique jumps from polynomial-time solvable to NP-hard when the
input class is extended from planar graphs to apex graphs. In Sect. 4 we present
polynomial algorithms to solve Max Independent 2-Clique in some graph
classes. In Sect. 5 we show NP-hardness and non-approximability of Max Inde-
pendent 2-Clique in some other graph classes. Conclusions are given in Sect. 6.
Due to space limit, some proofs will be given in a journal version.

2 Preliminaries

In this paper, all considered graphs are undirected. The complement G = (V,E)
of a graph G = (V,E) is the graph in which uv ∈ E if and only if uv /∈ E, for
all vertex pairs u, v ∈ V . A k-cycle is a cycle of length k. The maximum degree
of a vertex in a graph G will be denoted by the usual notation Δ(G).

We recall that a clique in a graph is a set of mutually adjacent vertices. A
set of vertices is called a 2-clique if any two vertices of the set are at distance
at most 2 in G. An independent set in a graph is a set of vertices such that no
two of them are joint by an edge. An independent 2-clique is a subset of vertices
which is an independent set and a 2-clique at the same time.
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Fig. 1. Relationship among some classes of (connected) graphs, where each child is a
subset of its parent. We compare the hardness of Max Independent 2-Clique and
Max Independent Set in studied graph classes. Max Independent 2-Clique is
NP-hard on graph classes at the top (hatched area) and is polynomial-time solvable on
graph classes at the bottom (non-hatched area). Max Independent Set is NP-hard
on graph classes on the left (dotted area) and is polynomial-time solvable on graph
classes on the right (non-dotted area).

In this paper we are interested in the following optimization problem:

Max Independent 2-Clique
Input: A graph G = (V,E).
Output: A subset S ⊂ V which is an independent 2-clique of maximum size.

The Max Independent 2-Clique problem is closely related to another well
known one:

Max Independent Set
Input : A graph G = (V,E).
Output : A subset S ⊂ V such that S is an independent set of maximum size.

Given a graph G, the standard notation for the maximum size of an inde-
pendent set in G is α(G). The maximum number of vertices in an independent
2-clique of G will be denoted by α=2(G). The subscript ‘=2’ intends to express
that the distance between any two vertices of the independent set is exactly 2.

Note that α=2(G) ≥ 2 whenever at least one connected component of G
is not a complete graph. (Indeed, any such component contains two vertices at
distance exactly two, hence forming an independent 2-clique of size 2.) Moreover,
if G is disconnected and has components G1, . . . , Gk then

α=2(G) = max
1≤i≤k

α=2(Gi)
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For these reasons we assume throughout that G is a non-complete, connected
graph (although some of the algorithms also need to handle disconnected graphs
temporarily).

Some Classes of Graphs. A cactus is a graph in which each edge occurs in
at most one cycle. A (C3, C6)-free graph is a graph containing no triangle C3

and no induced cycle of length 6. An interval graph is a graph for which there
exists a family of intervals on the real line and a bijection between the vertices
of the graph and the intervals of the family in such a way that two vertices
are joined by an edge if and only if the intersection of the two corresponding
intervals is non-empty. A threshold graph is a graph which can be constructed
from the empty graph by a sequence of two operations: insertion of an isolated
vertex, and insertion of a dominating vertex (i.e., a vertex adjacent to all the
other vertices). A cograph is a graph that can be generated from the single-
vertex graph by (repeated applications of) complementation and vertex-disjoint
union. A split graph is a graph whose vertex set can be partitioned into two
subsets, one inducing an independent set S and the other one inducing a clique
K. We denote by Kp,m the complete bipartite graph with p and m vertices in
its vertex parts. The line graph of a graph G is the graph L(G) whose vertices
represent the edges of G, and two vertices of L(G) are adjacent if and only if the
corresponding two edges of G share a vertex. A graph is outerplanar if it has a
crossing-free embedding in the plane such that all vertices are on the same face.
A graph is k-outerplanar if for k = 1, G is outerplanar and for k > 1 the graph
has a planar embedding such that if all vertices on the exterior face are deleted,
the connected components of the remaining graph are all (k − 1)-outerplanar. A
graph G is apex if it contains a vertex v such that G \ v is planar. A family of
graphs on n vertices is δ-dense if it has at least δn2

2 edges. It is everywhere-δ-
dense if the minimum degree is at least δn. A family of graphs is dense (resp.
everywhere-dense) if there is a constant δ > 0 such that all members of this
family are δ-dense (resp. everywhere-δ-dense).

3 Complexity Jump from Planar Graphs
to Apex Graphs

According to [8], Max Independent Set is known to be NP-hard in planar
graphs, and thus also in apex graphs. On the other hand, we prove that Max
Independent 2-Clique is polynomial-time solvable on planar graphs but NP-
hard on apex graphs. This shows that inserting or removing a single vertex
in a graph may dramatically change the complexity of Max Independent 2-
Clique.

Theorem 1. Max Independent 2-Clique is NP-hard on apex graphs.

Proof. We establish a polynomial reduction from Max Independent Set on
cubic planar graphs, which is proved NP-hard in [8], to Max Independent
2-Clique on apex graphs. Let G = (V,E) be a cubic planar graph, an instance
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of Max Independent Set. The instance G′ = (V ′, E′) of Max Independent
2-Clique is defined by inserting an additional vertex z that is adjacent to every
vertex of V . It is easy to see that {z} itself is a one-element non-extendable
independent 2-clique, while the independent 2-cliques of G′ not containing z are
precisely the independent sets of G. �

This first theorem implies another interesting result:

Corollary 2. Max Independent 2-Clique is NP-hard on the class of graphs
of average degree at most 5.

Proof. Cubic graphs on n vertices have 3n/2 edges, thus the graph constructed
in the proof of Theorem 1 is of order n + 1 and has 5n/2 edges, yielding average
degree less than 5. �

Now, in order to prove that Max Independent 2-Clique is polynomial-
time solvable on planar graphs, we use a famous theorem introduced by Courcelle
in [6] which states that any problem expressible in Monadic Second-Order Logic
is linear-time solvable for graphs of bounded treewidth. This allows to show first
the following:

Theorem 3. Max Independent 2-Clique is linear-time solvable on graphs
with bounded treewidth.

Proof. We observe that the property ‘Independent 2-Clique’ is expressible in
Monadic Second-Order Logic:

I2C(S) := ∀x∀y(Sx ∧ Sy) → (¬edg(x, y) ∧ (∃z, edg(x, z) ∧ edg(y, z)))

Since any problem expressible in Monadic Second-Order Logic is linear-time
solvable for graphs of bounded treewidth (see [6]), α=2 can be determined in
linear time in graphs of bounded treewidth. �

Based on this result, we prove the following result.

Theorem 4. Max Independent 2-Clique is polynomial-time solvable on pla-
nar graphs.

Proof. Let G = (V,E) be a planar graph and v ∈ V any vertex. Then all the
other vertices in an independent 2-clique S containing v are at distance exactly
2 apart from v. Further, the 2-clique property for S \ {v} is ensured by vertices
within distance at most 3 from v. Thus, the vertices relevant for S to be an
independent 2-clique induce a subgraph G′ in G such that G′ belongs to the
class of ‘4-outerplanar’ graphs. Graphs which are 4-outerplanar have treewidth
at most 11 (more generally, all k-outerplanar graphs have treewidth at most
3k − 1, due to [3]). Then, using Theorem 3, a polynomial-time algorithm for
Max Independent 2-Clique in planar graphs consists in solving the prob-
lem for all subgraphs G′ (which have treewidth at most 11) defined from each
vertex v. �
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4 Graph Classes with Polynomial-Time Algorithms

In the following we identify some graph classes on which Max Independent
2-Clique is computable in polynomial time, while Max Independent Set is
not always polynomial-time solvable.

First, it is interesting to notice that, according to the next propositions,
Max Independent 2-Clique is polynomial-time solvable on graphs of bounded
degree and also on complements of graphs of bounded degree, while Max Inde-
pendent Set is NP-hard on graphs of bounded degree [8] but polynomial-time
solvable on their complements (using exhaustive search in the non-neighborhood
of each vertex, which can be done in linear time).

Proposition 5. Max Independent 2-Clique is linear-time solvable on graphs
withboundedmaximumdegree,andalsoongraphsofminimumdegreeat least (n−d),
where d is constant.

Now, notice that a natural way to find an independent 2-clique is to take an
independent set included in the neighborhood of one vertex. Then, it is interest-
ing to investigate the properties of a graph in which an independent 2-clique is
not included in the neighborhood of one vertex. We show in Lemma 6 that such
a graph necessarily contains a cycle of length 3 or 6, and cannot be a cactus if
such an independent 2-clique has a certain size. Such properties allow to get an
easy polynomial-time algorithm for Max Independent 2-Clique on (C3, C6)-
free graphs, while Max Independent Set is NP-hard on this class of graphs
(see [1]). From Theorem 4 we already know that Max Independent 2-Clique
is linear-time solvable on cactus graphs, but the property of Lemma 6 allows to
give a simpler algorithm for this class of graph.

Lemma 6. Let G = (V,E) be a graph. Suppose that there exists an independent
2-clique S not contained in the neighborhood of a single vertex. Then G contains
an induced cycle of length 3 or 6. Moreover, if |S| ≥ 4, G is not a cactus.

This lemma implies the following theorem:

Theorem 7. Any (C3, C6)-free graph G satisfies α=2(G) = Δ(G) and Max
Independent 2-Clique is linear-time solvable on it.

Recalling that a tree does not contain any cycle, for the classical class of trees
we obtain the following:

Corollary 8. Any tree T satisfies α=2(T ) = Δ(T ) and Max Independent
2-Clique is linear-time solvable on it.

Finally, Lemma 6 allows to give a polynomial-time algorithm for Max Inde-
pendent 2-Clique on cactus.

Proposition 9. Max Independent 2-Clique is linear-time solvable on cactus
graphs.
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We focus in the following part of this section on classes of graphs on
which both Max Independent 2-Clique and Max Independent Set are
polynomial-time solvable. We first investigate a subclass of split graphs, namely
threshold graphs. It follows from the definitions that a threshold graph G =
(V,E) is a split graph with the following property: the vertices of the independent
set S can be ordered as v1, . . . , vp such that NG(v1) ⊆ NG(v2) ⊆ . . . ⊆ NG(vp).
We denote by u1, . . . , uq the vertices of the clique K, and we suppose that
dG(u1) ≤ dG(u2) ≤ . . . ≤ dG(uq). Without loss of generality, we assume that
there is no isolated vertex in G. Note that a threshold graph can be recognized
in linear time (see [10]).

Proposition 10. Max Independent 2-Clique is linear-time solvable on
threshold graphs. Moreover, in every threshold graph G without isolated vertices
we have α=2(G) = α(G).

Proof. Let G = (V,E) be a threshold graph with the previous decomposition into
S and K. Let NG(vp) = {ur, ur+1, . . . , uq}, for some r ≥ 1. Then a maximum
independent 2-clique in G is S if K \NG(vp) = ∅, and otherwise it is S∪{z} with
any z ∈ K\NG(vp), since in both cases the common neighbor of all these vertices
is uq. Since Max Independent Set can be solved in linear time in threshold
graphs [7], Max Independent 2-Clique can be solved in linear time. �

The previous result can be extended in two directions, for interval graphs
and for cographs.

Using the results of Booth and Lueker [4] it can be tested in linear time
whether a graph G is an interval graph; and if it is, then an interval representation
I1, . . . , In of G can also be generated.

Proposition 11. Max Independent 2-Clique is polynomial-time solvable on
interval graphs.

Proof. Consider any G = (V,E) and let I1, . . . , In be an interval representation
of G. In order to determine α=2(G), first notice that all vertices of an independent
2-clique S of G must have a common neighbor. Indeed, if I and I ′ are the leftmost
and the rightmost intervals of S then any of their common neighbors intersects
all intervals located between them, and therefore is a common neighbor of all
members of S. Then, for every vertex I, we compute a maximum independent
set in the subgraph induced by the neighborhood of I. An optimal solution is
such an independent set with maximum size. Since Max Independent Set is
polynomial-time solvable on interval graphs [9], the result follows. �

We consider now the class of cographs, that contains all threshold graphs.

Proposition 12. Max Independent 2-Clique is polynomial-time solvable on
cographs.

Notice that since Max Independent Set is linear-time solvable on chordal
graphs [7], it is also polynomial-time solvable on interval graphs and threshold
graphs. Moreover, Max Independent Set is also polynomial-time solvable on
cographs by bottom-up tree computation [5].
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5 NP-hardness and Non-approximability

Using the reduction from the proof of Theorem 1, we can conclude:

• Max Independent 2-Clique is NP-hard on dense (resp. everywhere dense)
graphs, since Max Independent Set is NP-hard on dense (resp. every-
where dense) graphs. Moreover, Max Independent 2-Clique is not n1−ε-
approximable for any ε > 0, if P = NP, on everywhere dense graphs (and
respectively dense graphs) since the same result holds for Max Independent
Set on everywhere dense graphs (and respectively dense graphs). In order to
get this last result, we use the same inaproximability result for Max Indepen-
dent Set on general graphs [15] and a reduction preserving approximation
from general graphs to everywhere dense graphs (that consists of adding a
clique of the same size as the size of the graph and joining every vertex from
the original graph to all vertices in this clique).

• Max Independent 2-Clique is NP-hard on K4-free graphs, since Max
Independent Set is NP-hard on K3-free graphs [1].

We now investigate graph classes in which Max Independent 2-Clique is
NP-hard while Max Independent Set is polynomial-time solvable. We first
consider a graph class containing threshold graphs, namely the class of split
graphs, for which Max Independent 2-Clique becomes NP-hard (and even
not n1−ε-approximable). Since Max Independent Set is polynomial-time solv-
able on chordal graphs [7], it is also polynomial-time solvable on split graphs.

Theorem 13. On split graphs, Max Independent 2-Clique is NP-hard and
it is not n1−ε-approximable in polynomial time unless P = NP .

We prove now that Max Independent 2-Clique is NP-hard (and even
not n1/2−ε-approximable) on bipartite graphs while Max Independent Set is
polynomial-time solvable since the number of vertices in a maximum independent
set equals the number of edges in a minimum edge covering.

Theorem 14. On bipartite graphs, Max Independent 2-Clique is NP-hard
and is not n1/2−ε-approximable in polynomial time, unless P = NP .

Proof. First we prove the NP-hardness. Max Independent Set is known to
be NP-hard on 3-regular graphs [8], so Max Clique is also NP-hard on (n−4)-
regular graphs (where n is the number of vertices), by considering its comple-
ment. We reduce Max Clique on (n−4)-regular graphs to Max Independent
2-Clique on bipartite graphs. Let G = (V,E) be an (n − 4)-regular graph. We
construct an instance of G′ = (V ′, E′) of Max Independent 2-Clique on
bipartite graphs as follows (see Fig. 2).

Let V1, V2, V3, V4 be four copies of V . Let E1 be a set of |E| vertices corre-
sponding to the edges in E, and define V ′ := V1 ∪ V2 ∪ V3 ∪ V4 ∪ E1. Let there
exist an edge in E′ between a vertex v in Vi, i ∈ {1, 2, 3, 4} and a vertex e in E1
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V1

E1

V2 V3 V4

Fig. 2. The bipartite graph G′, an instance of Max Independent 2-Clique

if and only if the corresponding vertex v in V is incident with the corresponding
edge e in E.

Now we show that G contains a clique of size at least k if and only if G′

contains an independent 2-clique of size at least 4k.
Given a clique C ⊆ V of size at least k in G, the union of the four copies of

C in G′ is an independent 2-clique of size at least 4k.
For the other direction, notice first that the value of a maximum independent

set in a 3-regular graph is at least �n
4 �. Then, the value of a maximum clique

in an (n − 4)-regular graph is also at least �n
4 �. Thus the size of a maximum

independent 2-clique in G′ is at least n.
We consider now a solution C ′ of Max Independent 2-Clique in G′ with

at least 4k ≥ n vertices (this restriction is always possible because of the previous
comment). Notice that C ′ cannot contain both a vertex from E1 and a vertex
from V ′ \ E1 since the distance between any two vertices of C ′ must be 2.
A solution which is a subset of E1 would mean pairwise intersecting edges in G,
hence would have size at most max(3, n−4) < n. Therefore C ′ must be a subset
of V ′ \ E1. Notice that for any i ∈ {1, 2, 3, 4}, C ′ ∩ Vi must be a copy of a clique
in G. Then C ′ is a union of copies of four cliques in G, and |C ′| ≥ 4k. Let C0

be the copy of largest size, which thus has |C0| ≥ k. Then C0 is the copy of a
clique C of G of size at least k.

For the proof of non-approximability, we construct an E-reduction (see [11])
from Max Clique. Let I = (V,E) be an instance of Max Clique. Consider a
reduction similar to the one for the proof of NP-hardness, except that we now con-
sider � = |V | copies V1, . . . , V� instead of four copies of V ; adjacencies are defined
in the same way as before. We denote by I ′ = (V ′, E′) the corresponding instance
of Max Independent 2-Clique from the reduction. As in previous proof, start-
ing with a clique of size opt(I), we can construct an independent 2-clique of size
� · opt(I) in G′ and thus opt(I ′) ≥ � · opt(I). Let S′ be any independent 2-clique
in I ′ of size at least � (it always exists, take e.g. the � copies of the same vertex,
one copy in each Vi). As before, S′ cannot contain both a vertex of E1 and a ver-
tex from V \ E1 since two vertices of S′ must have distance 2 in G′, and S′ cannot
contain only vertices from E1 since any independent 2-clique included in E1 is of
size at most max(3,Δ(G)) < � − 1. Moreover, each subset Vi ∩ S′ corresponds
to a clique in G. Let S be the subset Vi ∩ S′ of largest size. We have |S| ≥ |S′|

�
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and then opt(I) ≥ |S| ≥ |S′|
� = opt(I′)

� when S′ is an optimal solution. Using that
opt(I ′) ≥ � · opt(I) we get opt(I ′) = � · opt(I) and we obtain:

ε(I, S) =
opt(I)

|S| − 1 ≤ � · opt(I ′)
� · |S′| − 1 = ε(I ′, S′)

Since we clearly have opt(I ′) ≤ p(|I|) · opt(I) with a polynomial p, the reduc-
tion is an E-reduction. Then, since Max Clique is not �1−ε-approximable unless
P = NP [15], the same property holds for Max Independent 2-Clique. Thus
Max Independent 2-Clique is not n1/2−ε approximable where n = |V ′| since
n = �2 + |E|. �

Finally we prove that Max Independent 2-Clique is NP-hard (and even
APX-hard) on line graphs, while Max Independent Set is polynomial-time
solvable since it consists in a maximum matching in the original graph.

Theorem 15. On line graphs, Max Independent 2-Clique is NP-hard and
even APX-hard.

Proof. First we prove the NP-hardness. We establish a reduction from the Max
Clique problem on graphs of minimum degree at least n − 4. Consider an
instance G = (V,E) of Max Clique with |V | = n. We construct a graph
G′ = (V ′, E′) (see Fig. 3) as follows. Let G0 = (V0, E0) be a copy of G. Let
V ′ be V0 ∪ A ∪ B ∪ C where A,B,C are three sets of n vertices. Then, let
E′ = E0 ∪E1 ∪E2 ∪E3 ∪E4 such that E1 is a perfect matching between V0 and
A, E2 is the set of all possible edges (i.e., a complete bipartite graph) between
the vertices of A and the vertices of B, E3 is a perfect matching between B
and C, and E4 is the set of all possible edges between any two vertices of C (a
complete subgraph). The line graph of G′, denoted by L(G′), is an instance of
Max Independent 2-Clique. Notice that an independent 2-clique in L(G′)
corresponds to a set of edges in G′ such that, for each pair of edges {e1, e2} in
the set, e1 and e2 are not adjacent but are joined by an edge. We show that G
contains a clique of size at least k if and only if L(G′) contains an independent
2-clique of size at least k + n.

Consider a clique S of size k in G, and let S0 be its copy in G′. We define
a set of edges S′ of size at least k + n in G′ as follows. For any vertex v ∈ S0,

V0 A B C

Fig. 3. The graph G′ for which the corresponding line graph L(G′) is an instance of
Max Independent 2-Clique
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add in S′ its adjacent edge in E1. Moreover add the entire E3 to S′. We show
now that any pair of edges in S′ have an adjacent edge in common. Two edges
of S′ ∩ E1 have a common adjacent edge in E0 since the subgraph induced by
S0 is a clique. Similarly, two edges of E3 have a common adjacent edge in E4.
Moreover, an edge of S′ ∩ E1 and an edge of E3 have a common adjacent edge
in E2 since the subgraph induced by A∪B is Kn,n. Then, the corresponding set
of vertices in L(G′) is an independent 2-clique of size k + n.

In the other direction, consider an independent 2-clique in L(G′) of size k+n.
Notice that it is always possible to take the set of vertices in L(G′) corresponding
to E3 in G′ and two edges in E1 whose vertices in V0 are neighbors in G′, hence
we can suppose that k ≥ 2. Let S′ be the set of all corresponding edges in G′.
Suppose first that there is exactly one edge from E0 in S′. Then, there are at
most n − 2 edges from E1 in S′, and there are at most 2 edges from E2 in S′,
due to the constraints of an independent 2-clique. There cannot be edges from
E3 ∪E4 in S′ since they would not be joined to the edge of E0 ∩S′ by any edge.
Then, S′ contains at most n + 1 edges in S′, which contradicts k ≥ 2. Suppose
now that there are at least two edges from E0 in S′. Name two of them e0,1

and e0,2. Then, there are at most n − 4 edges from E1 in S′ but there is no
edge from E2 in S′. Indeed, an edge e2 from E2 in S′ can be joined by an edge
to at most one of e0,1 and e0,2. Then the size of S′ does not exceed n, which
contradicts k ≥ 2. Thus, we can assume that there is no edge from E0 in S′.
Similarly, there is no edge from E4 in S′. Now, notice that |S′ ∩ (E2 ∪ E3)| ≤ n
since if S′ ∩ (E2 ∪ E3) contained n + 1 edges then at least two of these edges
would have a common endpoint. Consequently, |S′ ∩E1| ≥ k. Moreover, any two
edges from S′ ∩ E1 must have a common adjacent edge in E0 since they cannot
have a common adjacent edge in E2. Then, the subgraph of G induced by the
set of vertices in V0 which are the endpoints of the edges in S′ ∩ E1 must be a
clique whose size is at least k.

For the proof of APX-hardness, we prove that the reduction above is an L-
reduction (see [14]). We proved in the NP-hardness part that any independent
2-clique in I ′ has a size at most 2n. Then opt(I ′) ≤ 2n = 8 · n

4 ≤ 8 ·opt(I) follows
since opt(I) ≥ n

4 in graphs of degree at least n − 4. Moreover, starting with a
clique of size opt(I), we can construct an independent 2-clique of size opt(I) + n
and therefore opt(I ′) ≥ +n + opt(I). Let S′ be an independent 2-clique in I ′

of size at least n + 2 (we proved in the NP-hardness part that it always exists
and that such a set must be included in E1 ∪ E2 ∪ E3). Let S be the set of
vertices in V0 which are incident with edges in E1 ∩ S′. We have |S′| − |S| ≤ n
which implies n + |S| ≥ |S′|. Then we obtain opt(I) − |S| ≤ opt(I ′) − n − |S| =
opt(I ′)−(n+|S|) ≤ opt(I ′)−|S′|. Since Max Independent Set is APX-hard on
the class of graphs of maximum degree 3 [2], Max Clique is also APX-hard on
the class of graphs of minimum degree at least n−4. Thus, Max Independent
2-Clique is APX-hard on line graphs. �
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6 Conclusion

Even if Max Independent 2-Clique and Max Independent Set are similar
problems, their complexity can be very different depending on the graph class
we try to solve the problem in. We showed that Max Independent 2-Clique
is NP-hard on apex, dense and everywhere dense, K4-free, split, bipartite and
line graphs while it is polynomial-time solvable on bounded treewidth, planar,
bounded degree (and complement of bounded degree), (C3, C6)-free, interval
graphs and on cographs. Many further types of graphs may be of interest, con-
cerning separation of graph classes in which the problem is NP-hard from the
ones where the problem is solvable in polynomial-time.
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Abstract. In this paper, we give new, tight subexponential lower
bounds for a number of graph embedding problems. We introduce two
related combinatorial problems, which we call String Crafting and
Orthogonal Vector crafting, and show that these cannot be solved
in time 2o(|s|/ log |s|), unless the Exponential Time Hypothesis fails.

These results are used to obtain simplified hardness results for several
graph embedding problems, on more restricted graph classes than previ-
ously known: assuming the Exponential Time Hypothesis, there do not
exist algorithms that run in 2o(n/ log n) time for Subgraph Isomorphism
on graphs of pathwidth 1, Induced Subgraph Isomorphism on graphs
of pathwidth 1, Graph Minor on graphs of pathwidth 1, Induced
Graph Minor on graphs of pathwidth 1, Intervalizing 5-Colored
Graphs on trees, and finding a tree or path decomposition with width
at most c with a minimum number of bags, for any fixed c ≥ 16.

2Θ(n/ log n) appears to be the “correct” running time for many pack-
ing and embedding problems on restricted graph classes, and we think
String Crafting and Orthogonal Vector Crafting form a useful
framework for establishing lower bounds of this form.

1 Introduction

Many NP-complete graph problems admit faster algorithms when restricted to
planar graphs. In almost all cases, these algorithms have running times that
are exponential in a square root function of either the size of the instance n

or some parameter k (e.g. 2O(
√

n), nO(
√

k) or 2O(
√

k)nO(1)) and most of these
results are tight, assuming the Exponential Time Hypothesis. This seemingly
universal behaviour has been dubbed the “Square Root Phenomenon” [1]. The
open question [2] of whether the Square Root Phenomenon holds for Subgraph
Isomorphism in planar graphs, has recently been answered in the negative:
assuming the Exponential Time Hypothesis, there is no 2o(n/ log n)-time algo-
rithm for Subgraph Isomorphism, even when restricted to (planar) graphs
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of pathwidth 2 [3]. The same lower bound holds for Induced Subgraph and
(Induced) Minor and is in fact tight: the problems admit 2O(n/ log n)-time
algorithms on H-minor free graphs [3].

The lower bounds in [3] follow by reductions from a problem called String
3-Groups. We introduce a new problem, String Crafting, and establish
a 2Ω(|s|/ log |s|)-time lower bound under the ETH for this problem by giving a
direct reduction from 3-Satisfiability. Using this result, we show that the
2Ω(|s|/ log |s|)-time lower bounds for (Induced) Subgraph and (Induced) Minor
hold even on graphs of pathwidth 1.

Alongside String Crafting, we introduce the related Orthogonal Vec-
tor Crafting problem. Using this problem, we show 2Ω(|n|/ log |n|)-time lower
bounds for deciding whether a 5-coloured tree is the subgraph of an interval
graph (for which the same colouring is proper) and for deciding whether a graph
admits a tree (or path) decomposition of width 16 with at most a given number
of bags.

For any fixed k, Intervalizing k-Coloured Graphs can be solved in time
2O(n/ log n) [4]. Bodlaender and Nederlof [5] conjecture a lower bound (under
the Exponential Time Hypothesis) of 2Ω(n/ log n) time for k ≥ 6; we settle this
conjecture and show that it in fact holds for k ≥ 5, even when restricted to trees.
To complement this result for a fixed number of colours, we also show that there
is no algorithm solving Intervalizing Coloured Graphs (with an arbitrary
number of colours) in time 2o(n), even when restricted to trees.

The minimum size path and tree decomposition problems can also be solved
in 2O(n/ log n) time on graphs of bounded treewidth. This is known to be tight
under the Exponential Time Hypothesis for k ≥ 39 [5]. We improve this to
k ≥ 16; our proof is also simpler than that in [5].

Our results show that String Crafting and Orthogonal Vector
Crafting are a useful framework for establishing lower bounds of the form
2Ω(n/ log n) under the Exponential Time Hypothesis. It appears that for many
packing and embedding problems on restricted graph classes, this bound is tight.

For some omitted proofs, we refer to the full version of this paper [6].

2 Preliminaries

Strings. We work with the alphabet {0, 1}; i.e., strings are elements of {0, 1}∗.
The length of a string s is denoted by |s|. The ith character of a string s is
denoted by s(i). Given a string s ∈ {0, 1}∗, s denotes binary complement of s,
that is, each occurrence of a 0 is replaced by a 1 and vice versa; i.e., |s| = |s|, and
for 1 ≤ i ≤ |s|, s(i) = 1−s(i). E.g., if s = 100, then s = 011. With sR, we denote
the string s in reverse order; e.g., if s = 100, then sR = 001. The concatenation
of strings s and t is denoted by s · t. A string s is a palindrome, when s = sR.
By 0n (resp. 1n) we denote the string that consists of n 0’s (resp. 1’s).

Graphs. Given a graph G, we let V (G) denote its vertex set and E(G) its edge
set. Let Nb(v) denote the open neighbourhood of v, that is, the vertices adjacent
to v, excluding v itself. We assume all graphs are simple.
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Treewidth and Pathwidth. A tree decomposition of a graph G = (V,E) is a tree
T with vertices t1, . . . , ts with for each vertex ti a bag Xi ⊆ V such that for all
v ∈ V , the set {ti ∈ {t1, . . . , ts} | v ∈ Xi} is non-empty and induces a connected
subtree of T and for all (u, v) ∈ E there exists a bag Xi such that {u, v} ∈ Xi.
The width of a tree decomposition is maxi{|Xi|−1} and the treewidth of a graph
G is the minimum width of a tree decomposition of G. A path decomposition is
a tree decomposition where T is a path, and the pathwidth of a graph G is the
minimum width of a path decomposition of G.

A graph is a caterpillar tree if it is connected and has pathwidth 1.

Subgraphs and Isomorphism. H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆
E(G); we say the subgraph is induced if moreover E(H) = E(G)∩{{u, v} | u, v ∈
V (H)}. We say a graph H is isomorphic to a graph G if there is a bijection
f : V (H) → V (G) so that (u, v) ∈ E(H) ⇐⇒ (f(u), f(v)) ∈ E(G).

Contractions, Minors. We say a graph G′ is obtained from G by contracting
edge (u, v), if G′ is obtained from G by replacing vertices u, v with a new vertex
w which is made adjacent to all vertices in Nb(u)∪Nb(v). A graph G′ is a minor
of G if a graph isomorphic to G′ can be obtained from G by contractions and
deleting vertices and/or edges. G′ is an induced minor if we can obtain it by
contractions and deleting vertices (but not edges).

We say G′ is an r-shallow minor if G′ can be obtained as a minor of G and
any subgraph of G that is contracted to form some vertex of G′ has radius at
most r (that is, there is a central vertex within distance at most r from any other
vertex in the subgraph). Finally, G′ is a topological minor if we can subdivide
the edges of G′ to obtain a graph G′′ that is isomorphic to a subgraph of G (that
is, we may repeatedly take an edge (u, v) and replace it by a new vertex w and
edges (u,w) and (w, v)).

For each of (induced) subgraph, induced (minor), topological minor and shal-
low minor, we define the corresponding decision problem, that is, to decide
whether a pattern graph P is isomorphic to an (induced) subgraph/(induced)
minor/topological minor/shallow minor of a host graph G.

3 String Crafting and Orthogonal Vector Crafting

We now formally introduce the String Crafting problem:

String Crafting
Given: String s, and n strings t1, . . . , tn, with |s| =

∑n
i=1 |ti|.

Question: Is there a permutation Π : {1, . . . , n} → {1, . . . , n}, such that
the string tΠ = tΠ(1) · tΠ(2) · · · tΠ(n) fulfils that for each i, 1 ≤ i ≤ |s|,
s(i) ≥ tΠ(i).

i.e., we permute the collection of strings {t1, t2, . . . tn}, then concatenate these,
and should obtain a resulting string tΠ (that necessarily has the same length as
s) such that on every position where tΠ has a 1, s also has a 1.
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We also introduce the following variation of String Crafting, where,
instead of requiring that whenever tΠ has a 1, s has a 1 as well, we require
that whenever tΠ has a 1, s has a 0 (i.e. the strings tΠ and s, viewed as vectors
over the reals, are orthogonal). These problems are closely related, and have the
same complexity. However, sometimes one problem will be more convenient as
a starting point for a reduction than the other.

Orthogonal Vector Crafting
Given: String s, and n strings t1, . . . , tn, with |s| =

∑n
i=1 |ti|.

Question: Is there a permutation Π : {1, . . . , n} → {1, . . . , n}, such that
the string tΠ = tΠ(1) · tΠ(2) · · · tΠ(n) fulfils that for each i, 1 ≤ i ≤ |s|,
s(i) · tΠ(i) = 0, i.e., when viewed as vectors, s is orthogonal to tΠ .

Theorem 1. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm that solves the String Crafting problem in 2o(|s|/ log |s|) time, even
when all strings ti are palindromes and start and end with a 1.

Proof. Suppose we have an instance of 3-Satisfiability with n variables and
m clauses. We number the variables x1 to xn and for convenience, we number
the clauses Cn+1 to Cn+m+1.

We assume by the sparsification lemma that m = O(n) [7, Corollary 2].
Let q = �log(n + m)�, and let r = 4q + 2. We first assign an r-bit number to

each variable and clause; more precisely, we give a mapping id : {1, . . . , n+m} →
{0, 1}r. Let nb(i) be the q-bit binary representation of i. We set, for 1 ≤ i ≤ n+m:

id(i) = 1 · nb(i) · nb(i) · nb(i)
R · nb(i)R · 1

Note that each id(i) is an r-bit string that is a palindrome, ending and starting
with a 1.

We first build s, by taking the concatenation of n strings, one for each
variable.

Suppose the literal xi appears ci times in a clause, and the literal ¬xi appears
di times in a clause. Set fi = ci + di. Assign the following strings to the pair of
literals xi and ¬xi:

– axi is the concatenation of the id’s of all clauses in which xi appears, followed
by di copies of the string 1 · 0r−2 · 1.

– a¬xi is the concatenation of the id’s of all clauses in which ¬xi appears, fol-
lowed by ci copies of the string 1 · 0r−2 · 1.

– bi = id(i) · axi · id(i) · a¬xi · id(i).

Now, we set s = b1 · b2 · · · bn−1 · bn.
We now build the collection of strings ti. We have three different types of

strings:

– Variable selection: For each variable xi we have one string of length (fi + 2)r
of the form id(i) · 0r·fi · id(i).

– Clause verification: For each clause Ci, we have a string of the form id(i).
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– Filler strings: A filler string is of the form 1 · 0r−2 · 1. We have n + 2m filler
strings.

Thus, the collection of strings ti consists of n variable selection strings (of
total length (3m + 2n)r), m clause verification strings (of length r), and n + 2m
filler strings (also of length r). Notice that each of these strings is a palindrome
and ends and starts with a 1.

The idea behind the reduction is that s consists of a list of variable identifiers
followed by which clauses a true/false assignment to that variable would satisfy.
The variable selection gadget can be placed in s in two ways: either covering all
the clauses satisfied by assigning true to the variable, or covering all the clauses
satisfied by assigning false. The clause verification strings then fit into s only
if we have not covered all of the places where the clause can fit with variable
selection strings (corresponding to that we have made some assignment that
satisfies the clause).

Furthermore, note that since Σn
i=1fi = 3m, the length of s is (3n+6m)r, the

combined length of the variable selection strings is (2n + 3m)r, the combined
length of the clause verification strings is mr, and the filler strings have combined
length (n + 2m)r.

In the following, we say a string ti is mapped to a substring s′ of s if s′ is
the substring of s corresponding to the position (and length) of ti in tΠ .

Lemma 1. The instance of 3-Satisfiability is satisfiable, if and only if the
constructed instance of String Crafting has a solution.

Proof. First, we show the reverse implication. Suppose we have a satisfying
assignment to the 3-Satisfiability instance. Consider the substring of s formed
by bi, which is of the form id(i) ·axi · id(i) ·a¬xi · id(i). If in the satisfying assign-
ment xi is true, we choose the permutation Π so that variable selection string
id(i)·0r·fi ·id(i) corresponding to xi is mapped to the substring id(i)·a¬xi ·id(i); if
xi is false, we map the variable selection string onto the substring id(i)·axi ·id(i).
A filler string is mapped to the other instance of id(i) in the substring.

Now, we show how the clause verification strings can be mapped. Suppose
clause Cj is satisfied by a literal xi (resp. ¬xi). Since xi is true (resp. false), the
substring axi (resp. a¬xi) of s is not yet used by a variable selection gadget and
contains id(j) as a substring, to which we can map the clause verification string
corresponding to Cj .

Note that in s now remain a number of strings of the form 1 · 0r−2 · 1 and
a number of strings corresponding to id’s of clauses, together 2m such strings,
which is exactly the number of filler strings we have left. These can thus be
mapped to these strings, and we obtain a solution to the String Crafting
instance. It is easy to see that with this construction, s has a 1 whenever the
string constructed from the permutation does.

Next, for the forward implication, consider a solution Π to the String
Crafting instance. We require the following lemma:

Lemma 2. Suppose that ti = id(j). Then the substring w of s corresponding to
the position of ti in tΠ is id(j).
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Proof. Because the length of each string is a multiple of r, w is either id(k)
for some k, or the string 1 · 0r−2 · 1. Clearly, w can not be 1 · 0r−2 · 1 because
the construction of id(i) ensures that it has more than 2 non-zero characters,
so at some position w would have a 1 where w′ does not. Recall that id(i) =

1 ·nb(i) ·nb(i) ·nb(i)
R ·nb(i)R ·1. If j = k, then either at some position nb(k) has

a 0 where nb(j) has a 1 (contradicting that Π is a solution) or at some position
nb(k) has a 0 where nb(j) has a 1 (again contradicting that Π is a solution).
Therefore j = k. ��

Clearly, for any i, there are only two possible places in tΠ where the variable
selection string id(i) · 0r·fi · id(i) can be mapped to: either in the place of id(i) ·
axi · id(i) in s or in the place of id(i) ·a¬xi · id(i), since these are the only (integer
multiple of r) positions where id(i) occurs in s. If the former place is used we
set xi to false, otherwise we set xi to true.

Now, consider a clause Cj , and the place where the corresponding clause
verification gadget id(j) is mapped to. Suppose it is mapped to some substring
of id(i) · axi · id(i) · a¬xi · id(i). If id(j) is mapped to a substring of axi then (by
construction of axi) xi appears as a positive literal in Cj and our chosen assign-
ment satisfies Cj (since we have set xi to true). Otherwise, if id(j) is mapped to
a substring of a¬xi xi appears negated in Cj and our chosen assignment satisfies
Cj (since we have set xi to false).

We thus obtain a satisfying assignment for the 3-Satisfiability instance.
��

Since in the constructed instance, |s| = (3n + 6m)r and r = O(log n),m =
O(n), we have that |s| = O(n log n). A 2o(|s|/ log |s|)-time algorithm for String
Crafting would give a 2o(n log n/ log (n log n)) = 2o(n)-time algorithm for deciding
3-Satisfiability, violating the ETH. ��

Note that we can also restrict all strings ti to start and end with a 0 by a
slight modification of the proof.

Theorem 2. Assuming the Exponential Time Hypothesis, Orthogonal Vec-
tor Crafting can not be solved in 2o(|s|/ log |s|) time, even when all strings ti
are palindromes and start and end with a 1.

Proof. This follows from the result for String Crafting, by taking the com-
plement of the string s. ��

Again, we can also restrict all strings ti to start and end with a 0.
As illustrated by the following theorem, these lower bounds are tight. The

algorithm is a simpler example of the techniques used in [3–5].

Theorem 3. There exists algorithms, solving String Crafting and Orthog-
onal Vector Crafting in 2O(|s|/ log |s|).
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4 Lower Bounds for Graph Embedding Problems

Theorem 4. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving Subgraph Isomorphism in 2o(n/ log n) time, even if G is a
caterpillar tree of maximum degree 3 or G is connected, planar, has pathwidth 2
and has only one vertex of degree greater than 3 and P is a tree.

Proof. By reduction from String Crafting. We first give the proof for the
case that G is a caterpillar tree of maximum degree 3, We construct G from s
as follows: we take a path of vertices v1, . . . , v|s| (path vertices). If s(i) = 1, we
add a hair vertex hi and edge (vi, hi) to G (obtaining a caterpillar tree). We
construct P from the strings ti by, for each string ti repeating this construction,
and taking the disjoint union of the caterpillars created in this way (resulting
in a graph that is a forest of caterpillar trees, i.e., a graph of pathwidth 1). An
example of this construction is depicted in Fig. 1. The constructed instance of
G contains P as a subgraph, if and only if the instance of String Crafting
has a solution: the order in which the caterpillars are embedded in G gives the
permutation of the strings: when a caterpillar in P has a hair, G must have a hair
at the specific position, which implies that a position with a 1 in the constructed
string t must be a position where s also has a 1.

Fig. 1. Simplified example of the graphs created in the hardness reduction for Theo-
rem4. The bottom caterpillar represents the host graph (corresponding to string s), the
top caterpillars represent the strings ti and form the guest graph. Here s = 101110101
and t1 = 1010, t2 = 101 and t3 = 00.

Since the constructed instance has O(|s|) vertices, this establishes the first
part of the lemma. For the case that G is connected, we add to the graph G
constructed in the first part of the proof a vertex u and, for each path vertex vi,
an edge (vi, u). To P we add a vertex u′ that has an edge to some path vertex of
each component. By virtue of their high degrees, u must be mapped to u′ and
the remainder of the reduction proceeds in the same way as in the first part of
the proof. ��

This proof can be adapted to show hardness for a number of other problems:

Theorem 5. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving Induced Subgraph, (Induced) Minor, Shallor Minor
or Topological Minor in 2o(n/ log n) time, even if G is a caterpillar tree of
maximum degree 3 or G is connected, planar, has pathwidth 2 and has only one
vertex of degree greater than 3 and P is a tree.
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5 Tree and Path Decompositions with Few Bags

In this section, we study the following problem, and its analogously defined vari-
ant Minimum Size Path Decomposition (k-MSPD). Theorem 6 is an improve-
ment over Theorem 3 of [5], where the same was shown for k ≥ 39; our proof is
also simpler.

Minimum Size Tree Decomposition of width k (k-MSTD)
Given: A graph G, integer b.
Question: Does G have a tree decomposition of width at most k, that has

at most b bags?

Theorem 6. Let k ≥ 16. Suppose the Exponential Time Hypothesis holds, then
there is no algorithm for k-MSPD or k-MSTD using 2o(n/ log n) time.

Proof. By reduction from Orthogonal Vector Crafting. We begin by
showing the case for MSPD, but note the same reduction is used for MSTD.

For the string s, we create a connected component in the graph G as follows:
for 1 ≤ i ≤ |s| + 1 we create a clique Ci of size 6, and (for 1 ≤ i ≤ |s|) make
all vertices of Ci adjacent to all vertices of Ci+1. For 1 ≤ i ≤ |s|, if s(i) = 1, we
create a vertex si and make it adjacent to the vertices of Ci and Ci+1.

For each string ti, we create a component in the same way as for s, but
rather than using cliques of size 6, we use cliques of size 2: for each 1 ≤ i ≤ n
and 1 ≤ j ≤ |ti| + 1 create a clique Ti,j of size 2 and (for 1 ≤ j ≤ |ti|) make all
vertices of Ti,j adjacent to all vertices of Ti,j+1. For 1 ≤ j ≤ |ti|, if ti(j) = 1,
create a vertex ti,j and make it adjacent to the vertices of Ti,j and Ti,j+1.

An example of the construction (for s = 10110 and t1 = 01001) is shown
in Fig. 2. We now ask whether a path decomposition of width 16 exists with at
most |s| bags. Due to space constraints, we omit the correctness proof of the
construction. ��

6 6 6 6 6 6

2 2 2 2 2 2

1 11 1 1

Fig. 2. Simplified example of the graph created in the hardness reduction for The-
orem6. The circles and ellipses represent cliques of various sizes. The component
depicted in the top of the picture corresponds to t1 = 01001, while the component
at the bottom corresponds to s = 10110.
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6 Intervalizing Coloured Graphs

In this section, we consider the following problem:

Intervalizing Coloured Graphs
Given: A graph G = (V,E) together with a proper colouring c : V →

{1, 2, . . . , k}.
Question: Is there an interval graph G′ on the vertex set V , for which c

is a proper colouring, and which is a supergraph of G?

Intervalizing Coloured Graphs is known to be NP-complete, even for 4-
coloured caterpillars (with hairs of unbounded length) [8]. In contrast with this
result we require five colours instead of four, and the result only holds for trees
instead of caterpillars. However, we obtain a 2Ω(n/ log n) lower bound under
the Exponential Time Hypothesis, whereas the reduction in [8] is from Multi-
processor Scheduling and to our knowledge, the best lower bound obtained
from it is 2Ω( 5√n) (the reduction is weakly polynomial in the length of the jobs,
which is Θ(n4), as following from the reduction from 3-Partition in [9]). In
contrast to these hardness results, for the case with 3 colours there is an O(n2)
time algorithm [10,11].

Theorem 7. Intervalizing Coloured Graphs does not admit a 2o(n/ log n)-
time algorithm, even for 5-coloured trees, unless the Exponential Time Hypoth-
esis fails.

Proof. Let s, t1, . . . , tn be an instance of Orthogonal Vector Crafting. We
construct G = (V,E) in the following way:

S-String Path. We create a path of length 2|s| − 1 with vertices p0, . . . p2|s|−2,
and set c(pi) = 1 if i is even and c(pi) = 2 if i is odd. Furthermore, for even
0 ≤ i ≤ 2|s| − 2, we create a neighbour ni with c(ni) = 3.

Barriers. To each endpoint of the path, we attach the barrier gadget, depicted
in Fig. 3. The gray vertices are not part of the barrier gadget itself, and represent
p0 and n0 (resp. p2|s|−2 and n2|s|−2). Note that the barrier gadget operates on
similar principles as the barrier gadget due to Alvarez et al. [8]. We shall refer
to the barrier attached to p0 as the left barrier, and to the barrier attached to
p2|s|−2 as the right barrier.

The barrier consists of a central vertex with colour 1, to which we connect
eight neighbours (clique vertices), two of each of the four remaining colours. Each
of the clique vertices is given a neighbour with colour 1. To one of the clique
vertices with colour 2 we connect a vertex with colour 3, to which a vertex with
colour 2 is connected (blocking vertices). This clique vertex shall be the barrier’s
endpoint. Note that the neighbour with colour 1 of this vertex is not considered
part of the barrier gadget, as it is instead a path vertex. We let Cl (el) denote
the center (endpoint) of the left barrier, and Cr (er) the center (endpoint) of the
right barrier.
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(a) Barrier Gadget
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(b) Interval Representation

Fig. 3. (a) Barrier Gadget. The gray vertices are not part of the barrier gadget itself,
and show how it connects to the rest of the graph. (b) How the barrier gadget may
(must) be intervalized.

T-String Paths. Now, for each string ti, we create a path of length 2|ti|+1 with
vertices qi,0, . . . , qi,2|ti| and set c(qi,j) = 3 if j is odd and set c(qi,j) = 2 if j is
even. We make qi,1 adjacent to U . Furthermore, for odd 1 ≤ j ≤ 2|ti| − 1, we
create a neighbour mj with c(mj) = 1. We also create two endpoint vertices of
colour 3, one of which is adjacent to qi,0 and the other to qi,2|ti|,

Connector Vertex. Next, we create a connector vertex of colour 5, which is made
adjacent to p1 and to qi,1 for all 1 ≤ i ≤ n. This vertex serves to make the entire
graph connected.

Marking Vertices. Finally, for each 1 ≤ i ≤ |s| (resp. for each 1 ≤ i ≤ n and
1 ≤ j ≤ |ti|), if s(i) = 1 (resp. ti(j) = 1), we give p2i−1 (resp. qi,2j−1) two
neighbours (called the marking vertices) with colour 4. For each of the marking
vertices, we create a neighbour with colour 3.

This construction is depicted in Fig. 4. In this example s = 10100, t1 = 01
and t2 = 001. Note that this instance of Orthogonal Vector Crafting is
illustrative, and does not satisfy the restrictions required in the proof.

Informally, the construction works as follows: the barriers at the end of the
path of p-vertices can not be passed by the remaining vertices, meaning we have
to “weave” the shorter q-paths into the long p-path. The colours enforce that
the paths are in “lockstep”, that is, we have to traverse them at the same speed.
We have to map every q-vertex with colour 3 to a p-vertex with colour 2, but
the marking vertices prevent us from doing so if both bitstrings have a 1 at that
particular position.

Due to space constraints, we omit the correctness proof of the construction.
The number of vertices of G is linear in |s|, and we thus obtain a 2o(n/ log n)

lower bound under the Exponential Time Hypothesis. ��
Note that the graph created in this reduction only has one vertex of super-

constant degree. This is tight, since the problem is polynomial-time solvable for
bounded degree graphs (for any fixed number of colours) [12].
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Fig. 4. Example of the graph created in the hardness reduction for Theorem 7.

To complement this result for a bounded number of colours, we also show a
2Ω(n)-time lower bound for graphs with an unbounded number of colors, assum-
ing the ETH. Note that this result implies that the algorithm from [4] is optimal.

Theorem 8. Assuming the Exponential Time Hypothesis, there is no algorithm
solving Intervalizing Coloured Graphs in time 2o(n), even when restricted
to trees.

7 Conclusions

In this paper, we have shown for several problems that, under the Exponential
Time Hypothesis, 2Θ(n/ log n) is the best achievable running time - even when the
instances are very restricted (for example in terms of pathwidth or planarity).
For each of these problems, algorithms that match this lower bound are known
and thus 2Θ(n/ log n) is (likely) the asymptotically optimal running time.

For problems where planarity or bounded treewidth of the instances (or,
through bidimensionality, of the solutions) can be exploited, the optimal run-
ning time is often 2Θ(

√
n) (or features the square root in some other way). On

the other hand, each of problems studied in this paper exhibits some kind of
“packing” or “embedding” behaviour. For such problems, 2Θ(n/ log n) is often
the optimal running time. We have introduced two artificial problems, String
Crafting and Orthogonal Vector Crafting, that form a useful frame-
work for proving such lower bounds.

It would be interesting to study which other problems exhibit such behav-
iour, or to find yet other types of running times that are “natural” under the
Exponential Time Hypothesis. The loss of the log n-factor in the exponent is due
to the fact that log n bits or vertices are needed to “encode” n distinct elements;
it would be interesting to see if there are any problems or graph classes where a
more compact encoding is possible (for instance only log1−ε n vertices required,
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leading to a tighter lower bound) or where an encoding is less compact (for
instance log2 n vertices required, leading to a weaker lower bound) and whether
this can be exploited algorithmically.

Acknowledgement. We thank Jesper Nederlof for helpful comments and discussions.
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Abstract. We consider the problem of evacuating two robots from a
bounded area, through an unknown exit located on the boundary. Ini-
tially, the robots are in the center of the area and throughout the evac-
uation process they can only communicate with each other when they
are at the same point at the same time. Having a visibility range of 0,
the robots can only identify the location of the exit if they are already
at the exit position. The task is to minimize the time it takes until
both robots reach the exit, for a worst-case placement of the exit. For
unit disks, an upper bound of 5.628 for the evacuation time is presented
in [8]. Using the insight that, perhaps surprisingly, a forced meeting of
the two robots as performed in the respective algorithm does not pro-
vide an exchange of any non-trivial information, we design a simpler
algorithm that achieves an upper bound of 5.625. Our numerical sim-
ulations suggest that this bound is optimal for the considered natural
class of algorithms. For dealing with the technical difficulties in ana-
lyzing the algorithm, we formulate a powerful new criterion that, for a
given algorithm, reduces the number of possible worst-case exits rad-
ically. This criterion is of independent interest and can be applied to
any area shape. Due to space restrictions, this version of the paper con-
tains no proofs or illustrating figures; the full version can be found at
http://disco.ethz.ch/publications/ciac2017-robotevac.pdf.

1 Introduction

Imagine that two robots are trapped in the middle of a room with a single door.
Their goal is to evacuate both of them via the door in the shortest possible time.
However, there is a problem: The position of the door is unknown to them in the
beginning. Moreover, the robots have no sight and no wireless communication;
they cannot see the door or the other robot except when they are right on top of
it, and they can only communicate when they are at the same point at the same
time. However, they do know the shape of the room and share all information
before they start searching for the door. How should they divide the work of
scouring the boundary for the door? Which routes should they take? Does it
make sense to meet at some predefined point in order to exchange information?
c© Springer International Publishing AG 2017
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We consider the above problem for the most fundamental room shape pos-
sible, namely, the unit disk. More formally, the goal is to minimize the time for
evacuating both robots from the room where the exit is assumed to be worst-case
placed and the robots move with unit speed. The state-of-the-art algorithm for
this problem due to Czyzowicz et al. [8] proceeds roughly as follows: First, both
robots move to the same point on the perimeter, then they search the perimeter
in different directions until they meet at the opposite point. At some predefined
point in time during their search along the perimeter they leave the perimeter
on symmetric non-linear routes in order to meet inside the circle upon which
they return to their search. If a robot finds the exit at any point in time, then it
immediately calculates the shortest route for meeting the other robot and sub-
sequently brings the other robot to the exit. The authors of [8] show that this
algorithm achieves an evacuation time of 5.628 and remark that it is possible to
improve upon this result by truncating the detour to the middle slightly.

We note that the forced meeting of the robots cannot be used to exchange any
non-trivial information. Moreover, the requirement to meet introduces dependen-
cies between the parameters of the detour such as position, length, shape and
angle. We prove that removing this requirement indeed allows for an improved
algorithm that utilizes the independence of the aforementioned parameters while
preserving the simplicity of the algorithm. In fact, we present an algorithm that
simplifies the algorithm described above by omitting the forced meeting and
instead using one (symmetric) detour (per robot) that is a straight line with
fixed depth. An important point in omitting the forced meeting is that there is
actually an implicit exchange of information between the robots even before any
meeting: When a robot finds the exit, the best it can do is to meet the other
robot as quickly as possible in order to communicate the location of the exit.
Conversely, from not being visited by the other robot up to some point a robot
can deduce that the exit does not lie in a certain part of the perimeter.

Furthermore, we show that, surprisingly, the shape of the detour and its angle
to the perimeter do not affect the evacuation time if they are chosen from some
reasonable range. In particular, our linear detour is optimal for the parameters
chosen for the depth and the position of the detour.

Our algorithm achieves an evacuation time of 5.625, thereby slightly improv-
ing upon the previously best known upper bound. For the class of algorithms as
described above with exactly one symmetric detour per robot, our numerical sim-
ulations suggest that this bound is optimal (up to numerical precision, of course).
A theoretical substantiation for this optimality claim is given by the fact that
for our algorithm there are three different worst-case exit placements with the
same evacuation time (again, up to numerical precision). These three exit posi-
tions are characteristic for the algorithms from the mentioned class—it stands to
reason that, in an optimal algorithm, they have to exhibit the same evacuation
time (since otherwise the parameters of the algorithm could be changed locally
in a way that improves the evacuation time for the worst of the three points)
and that there is only one algorithm that has the same worst-case evacuation
time for these three exit positions.
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A fundamental problem regarding evacuation from a disk is that the evacua-
tion time for a fixed algorithm and a fixed exit placement is usually the solution
to some equation of the kind x = cos(x) (only more complex). For equations of
this kind no closed-form solutions are known in general, which makes it difficult
to find the worst-case exit placement for a fixed algorithm, not to mention to
find an algorithm with an improved worst-case evacuation time. We take a sub-
stantial step in remedying this problem by proving that a very specific condition
must be satisfied for an exit in order to be worst-case placed. In “reasonable”
algorithms this condition is satisfied at only a few exit positions which makes
it a powerful tool for determining that an exit is not worst-case placed. In fact,
in order for an exit to be worst-case placed, it must satisfy one of the two fol-
lowing conditions: (1) The movement of one of the two robots at the exit point,
resp. pick-up point1, is not differentiable, or (2) the angles β and γ between the
line connecting exit and pick-up point and the directions of movement of the
robots at the exit, resp. the pick-up point, satisfy 2 cos β + cos γ = 1. Moreover,
the presented tool is not restricted to the disk—it can be applied to any room
shape. For the analysis of our aforementioned algorithm, we rely heavily on this
tool. In fact, one might consider the development of this tool as the foremost
contribution of this work, while its application to the disk scenario may serve as
an example of its practicability.

1.1 Related Work

A thriving area in the context of problems involving mobile agents are search
problems in all its diversity. Such problems include ants searching for food
(cf. [11–13]), rendezvous problems (cf. [1,10,17]), pursuit-evasion games (cf.
[14,20,21]) and graph exploration problems (cf. [15,16,19]). Another example
are evacuation problems, where one or multiple robot(s) search for one or multi-
ple exit(s) through which usually all of the robots have to evacuate. Evacuation
problems have been studied in a centralized setting in which the robots know
the search terrain and where the other robots are, and in a distributed setting
where the knowledge of the robots is restricted to the area they have already
explored. Very recent results concerning optimal strategies on graphs in both
settings can be found in [4]. In the following, we assume that the area is known
to the robots, the exit is worst-case placed and the robots move with unit speed.

Evacuation problems can be grouped into two main categories, namely, evac-
uation problems on graphs and geometric evacuation problems. Since our paper
deals with a problem from the latter class, we will focus on the related work
in this domain. Another distinction is given by the model of communication
between the robots: Here, we distinguish between instantaneous wireless com-
munication and non-wireless communication where explicit communication can
only take place when the communicating entities are at the same point.

1 Recall that upon finding the exit, a robot immediately takes the shortest possible
tour to meet the other robot and communicate the location of the exit. We call the
point where this meeting happens the pick-up point.
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In the geometric setting, research has considered different areas from which
the robots have to escape. The famous cow-path problem asks how long it takes
a single robot (or cow) to evacuate through a worst-case placed exit on a line,
in terms of the distance d between initial position and exit. The correct answer
of 9d (up to lower order terms) was given by Beck and Newman [3] already in
1970, and later rediscovered by Baeza-Yates et al. [2]. In [5], Chrobak et al. show
that, somewhat surprisingly, the same is true for the evacuation time of multiple
robots on the line in the non-wireless communication model.

For the case of two robots in equilateral triangles and squares, Czyzowicz
et al. [9] present optimal evacuation trajectories, given wireless communication.

Study of the unit disk as the confining environment was initiated by Czy-
zowicz et al. in [7]. The authors present upper bounds of 3 + 2π/k and
3 + π/k + O(k−4/3) and lower bounds of 3 + 2π/k − O(k−2) and 3 + π/k for
the non-wireless and the wireless communication model, respectively, where k is
the number of robots. Moreover, they give better upper and lower bounds for
the case of 2 and 3 robots, amongst them a lower bound of approximately 5.199
and an upper bound of approximately 5.74 for the case of two robots in the non-
wireless model. In [8], Czyzowicz et al. improve the latter two bounds to a lower
bound of approximately 5.255 and an upper bound of 5.628. Lamprou et al. [18]
present (partly matching) upper and lower bounds for two robots in the wireless
model where one robot, deviating from the above, has speed of larger than 1.
Finally, in [6], Czyzowicz et al. consider variations of the problem of evacuating
from a disk where the two robots do not know their own initial locations.

For our paper, the algorithms from [7] and [8] that achieve the upper bounds
for two robots in the non-wireless communication model are of particular interest.
The algorithm from [7] proceeds as follows: Starting in the center M of the disk,
both robots move to the same point A on the perimeter and start searching for
the exit in opposite directions. When one of the robots finds the exit, it picks
the other robot up as fast as possible and returns with it to the exit. This results
in an upper bound of approximately 5.74. The authors of [8] improve on this
algorithm by incorporating a forced meeting of the two robots before all of the
perimeter is searched. For this, the robots leave the perimeter in a straight line,
symmetric to each other, until they meet, and then return to their search of the
perimeter if the exit has not been found yet. The authors were able to improve
on this algorithm even more by moving towards the meeting point in a triangular
fashion. The reasons for this further improvement are explained in Sect. 3.1.

1.2 Model

The specifics of the model for our robot evacuation problem, developed in [7],
are as follows: The area from which the robots have to escape is a disk of radius
1. Somewhere on its perimeter, there is a point, called exit, which two robots,
initially placed in the center of the disk, have to find and evacuate through. The
task of the robots is to minimize the time until both robots have reached the
exit, which we call the evacuation time. We assume that the location of the exit
on the perimeter is worst-case for the algorithm the two robots perform, i.e., the
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exit position maximizes the evacuation time. The robots itself are point-shaped
and move at unit speed. Changing direction takes no time and communication is
also instantaneous, but only possible if both robots are at the same point.2 Since
this is the case in the beginning, the robots can exchange all information about
each others algorithm before they start searching for the exit. The robots have
no vision, and therefore can only identify the exit position when they are at the
exact location of the exit. Computation also takes no time and we assume that
the robots are able to actually perform all necessary computations. The robots
know the shape of the area and they have the same sense of direction, i.e., we
may assume that they have the same underlying coordinate system.

1.3 Notation

In the following, we give an overview of the notation and the most important
terms we use.

R1 and R2 References for the two robots. We will call the robot that finds the
exit first R1, and the other robot R2.

˜AB For two points A and B on the perimeter, ˜AB denotes the shorter arc from
A to B along the perimeter.

AB Denotes the straight line between A and B.
|˜AB| or |AB| Denote the lengths of ˜AB, resp. AB.
Cut. A movement of a robot from the perimeter onto the disk and back to the

point where the perimeter was left. Note that a cut can take any shape in
general. However, in our algorithm, the term cut describes a linear cut, i.e.,
a movement from the perimeter onto the disk and back on a straight line.

Cut length. The distance traveled when moving along a cut.
Cut depth. Only used if the cut is linear, in which case the cut depth is defined

as half of the cut length.
Cut position. Point where a robot leaves the perimeter to perform a cut.
Meeting protocol. A term coined in [8]. When R1 finds the exit, the best it

can do to minimize the evacuation time is to compute (and take) the shortest
route to meet R2. Since R1 knows the algorithm R2 follows (and therefore
also that R2 has not found the exit so far), R1 can actually determine this
shortest route.3 Note that this route is always a straight line since otherwise
there would be a shorter route, by the triangle inequality. After meeting each
other, both robots travel straight to the exit. This process of picking the other

2 Note that a robot can also infer information from the fact that the other robot is
not at the same point as it is. For instance, it may conclude that the other robot has
not already found the exit in some specific segment of the perimeter, since otherwise
the other robot would have picked him up at the latest at the current position.
This indirect information transfer plays an important role in our arguments that the
robots cannot infer any non-trivial information from a forced meeting.

3 We emphasize that R1 does not calculate a shortest route to the point where R2 is
when R1 finds the exit, but rather the shortest route for picking R2 up, knowing
that and how R2 will move until being picked up.
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robot up after finding the exit and traveling to the exit together is called the
meeting protocol. If R1 finds the exit at time t and the aforementioned shortest
route has length x, then the evacuation time is t + 2x.

Pick-up point. The point where R1 picks R2 up, following the meeting
protocol.

2 Determining the Worst-Case Placement of the Exit

If an algorithm for the two robots is fixed, it is still a challenging task to deter-
mine the worst-case exit placement and thereby the evacuation time. One reason
is that already determining the pick-up point for a fixed exit placement often
involves solving equations where polynomial and trigonometric functions in some
variable x occur side by side. For equations of this kind no closed-form solutions
are known in general. In this section, we develop a new technique to determine
possible candidates for the worst-case placement of the exit. More precisely, we
give a criterion that determines for a pair (exit, pick-up point) whether the exit
can be excluded from the list of candidates of worst-case placed exits, by only
looking at the behaviour of the algorithm in ε-neighborhoods of the exit B and
the pick-up point C. The criterion is quite strong in the following sense: Let β
denote the angle between the straight line from exit to pick-up point and the
direction of the movement of R1 at the exit. Let γ denote the angle between the
straight line from exit to pick-up point and the direction of the movement of R2

at the pick-up point. Then, a very specific relation between β and γ has to be
satisfied in order that the exit is not excluded from the list of possible worst-case
placed exits. The key result is the following theorem:

Theorem 1. If the trajectories of the two robots are differentiable around B
and C and 2 cos β + cos γ �= 1, then there is an exit position that yields a larger
evacuation time than placing the exit at B.

The proof of the theorem is long and involved and can be found in the full
version of the paper. According to the theorem, in order to be able to exclude an
exit, the movement of the two robots at the exit and the corresponding pick-up
point have to be differentiable. However, in reasonable algorithms, this property
holds for almost all possible exit points. Out of these exit points, the only ones
that are not excluded are those that satisfy 2 cos β + cos γ = 1, yielding a large
reduction in the number of possible exit points. We note that our considerations
are independent of the shape of the area, i.e., they hold for arbitrarily shaped
areas, allowing us, for instance, to finally tackle fundamental shapes like circles.

Another interesting information can be obtained from the proof of
Theorem 1: On which side of 1 the term 2 cos β +cos γ lies, determines to which
direction one has to move the exit in order to obtain an exit with a larger evac-
uation time. If 2 cos β + cos γ < 1, then shifting the exit at B in the direction of
the movement of R1 (if it did not find the exit at B) will provide an exit position
with larger evacuation time (than the exit position at B). If 2 cos β + cos γ > 1,
then shifting the exit at B in the reverse direction will provide an exit position
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with larger evacuation time. We note that it does not matter if the two robots
move to the same side of the infinite line through B and C or to the same side.

3 Evacuating from a Disk

In this section we use the criterion 2 cos β + cos γ �= 1, which we developed in
Sect. 2, in order to improve the upper bound for evacuating two robots from
a unit disk to 5.625. Like the algorithm presented in [8], which achieves the
previously best known upper bound of 5.628, our algorithm consists of each
robot exploring its assigned half of the perimeter, only interrupted by exactly
one detour each, called cut, to the inside of the circle (and symmetric to the
other’s cut). In contrast, the algorithm from [8] additionally contains a forced
meeting of the two robots at the far end of the cuts.

We will show that, perhaps counterintuitively, the robots cannot infer any
non-trivial information from this meeting that they could not have inferred from
the previous course of events. Thus, such a meeting can be omitted. We will see
in more detail that all the advantages of the meeting come from the actual move-
ment of cutting to the middle and not from an explicit exchange of information.

Without the condition that the two robots actually have to meet at the end-
point of their (symmetric) cuts, many cuts are possible candidates for improving
the runtime of the evacuation algorithm. A cut is determined by four properties:
the position on the perimeter where the cut starts and ends, the shape of the
cut, the angle at which the cut protrudes from the perimeter and the size of the
cut, which corresponds to the cut depth in the case of a linear cut. As we will
show, somewhat surprisingly, the shape of the cut is optimal if it is linear, for
the choices of the other three parameters made in our algorithm. Similarly, we
will show that the angle does not influence the performance of the algorithm if
it is chosen in a reasonable range. We will provide a choice of the remaining two
parameters for linear cuts that achieves the stated bound of 5.625. Moreover, we
give a rigorous proof for the evacuation time.

3.1 The Algorithm A(y, α, d)

In this section, we describe a parameterized evacuation algorithm and provide a
partitioning of R1’s half of the perimeter into segments that will be useful in the
evacuation time analysis. We show that the forced meeting in the previously best
algorithm from [8] does not help in exchanging non-trivial information between
the robots. In Sect. 3.2, we prove that the parameters can actually be chosen in
a way that improves the previously best known upper bound.

Our parameterized algorithm A(y, α, d) is similar to the algorithm proposed
in [8]: From the center of the disk, both robots move to the same point A of the
perimeter and continue on the perimeter in opposite directions. At some point
C, resp. B, where ˜AC = ˜AB = y, the robots leave the perimeter at angle α in a
straight line, until they reach depth d and then return straight to point C, resp.
B. Then both robots continue to search along the perimeter until they meet at
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point D. If a robot finds the exit at any point in time, it immediately performs
the meeting protocol to pick the other robot up and evacuate through the exit.
Note that, for convenience, α denotes the angle between the cuts and BC.

Now we examine Algorithm A(y, α, d) in more detail, laying the foundation
for the analysis of the evacuation time for a specific choice of the parameters y,
α and d in Sect. 3.2. Since the described algorithm is symmetric, it is sufficient
to analyze possible exit positions on one side of the symmetry axis, i.e., for
one of the two robots. Without loss of generality, we assume that the exit lies
on the arc from A to D that contains C, which implies that the robot that
explores this arc is called R1 and the other one R2. We partition this arc into
four segments by specifying the points on the arc where one segment ends and
the next one begins. Note that, for simplicity, we include any of these dividing
points in both its adjacent segments if not explicitly specified otherwise. The
choice of the segments depends on the parameters of our algorithm.

1. Segment ˜AI1: Here, I1 is the point with the following property: If the exit
is at I1, then R1 will pick R2 up at point B before R2 performs its cut, i.e.,
I1 satisfies |˜AI1| + |I1B| = |AB|. This segment contains exactly those exit
positions for which the evacuation time is not influenced by the cut.

2. Segment ¯I1I2: Here, I2 is the point with the following property: If the exit
is at I2, then R1 will pick R2 up at point B after R2 performs its cut, i.e., I2
satisfies |˜AI2| + |I2B| = |AB| + 2d. This segment contains exactly those exit
positions for which the pick-up point lies on the cut.

3. Segment ¯I2I3: Here, I3 = C. The exit positions in this segment are those
for which R1 finds the exit before performing its cut, but R2 is picked up
after performing its cut.

4. Segment ¯I3D: For this segment, we explicitly specify that I3 itself does not
belong to the segment. This segment contains exactly those exit positions
that R1 reaches after performing its cut.

One main difference of our general algorithm to the one suggested in [8] is
that in the latter the robots always cut far enough to meet each other. In the
following, we argue that this meeting is not necessary since no real information
can be shared. Consider the following three cases for the algorithm from [8]:

Case 1: The exit is located in one of the first three segments, excluding I3. If
R1 went now immediately to the meeting point on a straight line, then it
would arrive there earlier than if it had not found the exit before performing
its cut. Because of symmetry reasons, it would also arrive earlier than R2 at
the meeting point. Hence, by using the meeting protocol upon finding the
exit, R1 picks R2 up before R2 reaches the meeting point. Thus, R2 never
reaches the meeting point and therefore no information can be shared.

Case 2: The exit is located at I3. In this case, there actually is an exchange
of information at the meeting point, but the reason is that the predefined
meeting point happens to be the pick-up point for the exit position at I3.
In other words, if R1 (but not R2) followed a completely different algorithm
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without a forced meeting but with the property that it finds the exit at I3
at the same time as in Algorithm A(y, α, d), then it would still pick R2 up at
the same point at the same time and the resulting evacuation time would not
change. Thus, even in this specific case, the benefit in the algorithm from [8]
does not come from the forced meeting, but from the fact that R2 cuts far
enough in the direction of the exit to be picked up at the tip of its cut.

Case 3: The exit lies behind R1’s cut, in the fourth segment. At the meeting
point, the only relevant information that can be shared is that neither robot
has found the exit yet. However, both robots can deduce this information
from the fact that they have not been picked up yet (see Case 1).

Note that in [8], two algorithms were presented, as described in Sect. 1.1:
One with a linear cut and an improved one where the robots cut to the meeting
point in a triangular fashion. In the latter, the exit position at I3 is also dealt
with by the explanations in the above Case 1, while Case 2 is not needed at all.

We can conclude that the meeting itself does not contribute to a better run-
time of the algorithm. But it does limit the algorithm by introducing a depen-
dency between cut position and cut length. At first sight it might seem as if the
improvement between the two algorithms presented in [8] simply comes from the
shape of the cut and therefore a shortening of the pick-up distance. However, the
possibility to find parameters for the algorithm with the triangular cut that give
an improved evacuation time essentially comes from a decoupling of cut position
and cut length. Yet there is still some correlation between cut position and cut
length which is completely nullified in our algorithm A(y, α, d).

3.2 The Evacuation Time for y = 2.62843, α = π/4 and d = 0.48793

In this section, we show an evacuation time of 5.625 for Algorithm A(y, α, d) for
the parameters y = 2.62843, α = π/4 and d = 0.48793.4 To do so we determine,
for each of the four segments defined in Sect. 3.1, the potential candidates for the
worst-case exit position and then take the maximum over the evacuation times
for those exits positions. For determining these candidates we use our findings
from Sect. 2. To this end, for any pair (exit position, pick-up point), let β and
γ denote the same angles as in Sect. 2, i.e., β is the angle between the direction
of movement of R1 at the (potential) exit position and the line connecting exit
position and pick-up point and γ the angle between this line and the direction
of movement of R2 at the (potential) pick-up point. Note that when both robots
move along the perimeter, we have β = γ for reasons of symmetry.

For calculating distances, observe that for any two points on the perimeter
with a distance of w along the perimeter, their euclidian distance is 2 sin(w/2).
For instance, the value of |˜AI1| is equal to the solution of the equation x +

4 These parameters are chosen in a way that for the (only) three possible global worst-
case exit positions (determined in the following), the evacuation times are the same
up to numerical precision. While the parameter values were determined numerically,
we give a rigorous proof for the correctness of the claimed evacuation time.
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2 sin((x + y)/2) = y, where in our case y = 2.62843. For the given parameters,
we obtain |˜AI1| ≈ 0.63196, |˜AI2| ≈ 2.5837 and |˜AI3| = 2.62843. Examining the
first three segments one by one, we obtain the following lemma:

Lemma 2. If there is a (global) worst-case exit position in the first segment,
then this exit position is at I1. If there is a (global) worst-case exit position in
the second segment, then it is at I1 or I2. If there is a (global) worst-case exit
position in the third segment, then it is at I2 or I3.

For our examination of the fourth segment, we add a virtual point I ′
3 to the

fourth segment that coincides with I3, but has the additional property that if
the exit is at I ′

3, then R1 will only find the exit after performing its cut. The
reason for this is that without the addition of I ′

3 the fourth segment is half-open
which makes it possible that there is a sequence of exit positions with increasing
evacuation times that converges towards I3 and for which there is no exit position
that has a larger evacuation time than all exit positions in the sequence.

Lemma 3. If there is a (global) worst-case exit position in the fourth segment,
then this exit position is at I ′

3.

Observe that the evacuation time for the exit at I ′
3 cannot be smaller than the

evacuation time for the exit at I3 since in the latter case R1 could just simulate
the former case which is worse than activating the meeting protocol right away.
Combining this fact with Lemmas 2 and 3, we obtain the following theorem:

Theorem 4. For y = 2.62843, α = π/4 and d = 0.48793, the worst-case exit
placement for Algorithm A(y, α, d) is at I1, I2 or I ′

3.

In order to determine the evacuation time for the worst-case exit, we simply
take the maximum of the evacuation times for the exit placements at these
three locations. We obtain evacuation times of approximately 5.6249, 5.62488
and 5.62491 for I1, I2 and I ′

3, respectively. Hence, the evacuation time for the
worst-case exit is approximately 5.62491. Thus, we obtain the following corollary:

Corollary 5. For y = 2.62843, α = π/4 and d = 0.48793, the evacuation time
of Algorithm A(y, α, d) is at most 5.625.

Observe that, if the length of the cut is not changed, then altering the shape
or angle of the cut does not affect the evacuation times for the exit positions at
I1, I2 and I ′

3. Thus, by Theorem 4, in such a case the overall evacuation time
cannot decrease. We cast this insight into the following corollary:

Corollary 6. For y = 2.62843, α = π/4 and d = 0.48793, the evacuation time
of Algorithm A(y, α, d) cannot be improved by altering shape or angle of the cut.

Since all the inequalities in Lemmas 2 and 3 are not sharp, we can choose α
in some reasonable range without compromising our evacuation time.5 As long
as the chosen α ensures that there is no worst-case exit placement such that R2

is picked up on the cut (without the start and end points of the cut), Corollary
5 holds. The value of exactly π/4 for α is chosen for the reason of convenience.
5 The same holds for the shape of the cut, by the same reason.
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4 Conclusion

In this paper, we studied the evacuation of two robots from a disk using non-
wireless communication. We presented a new tool for the analysis of evacuation
algorithms for any area shape by showing that a strong local condition has to
be satisfied in order for an exit to be worst-case placed. Using this tool and
further insights, e.g., about the nature of forced meetings and the irrelevance
of the chosen shape and angle in some range, we improved the state-of-the-art
algorithm and gave indicators for where to look for further improvement.

However, we believe that our improved upper bound on the evacuation time
is already very close to the tight bound that is the correct answer. We do not
believe that our upper bound is optimal (up to numerical precision) because of
the following reason: Imagine an additional second cut of very small depth (“ε-
cut”) close to the point opposite of the point on the perimeter where the robots
start their search. If we choose the position (and the angle and depth) of this
ε-cut appropriately, then the evacuation time for the exit at I ′

3 will be improved
since R1 will pick R2 up at around the tip of the ε-cut which is somewhat
closer to I ′

3 than if there was no such ε-cut. Now we can make small changes
to position and depth of the first cut that result in improving the evacuation
times for the exit positions at I1 and I2 while increasing the previously decreased
evacuation time for the exit position at I ′

3. By finding the parameters that again
lead to equal evacuation times for these three exits, the overall evacuation time
is improved. If one is careful not to let other points become worse exit positions,
this approach can even be applied iteratively. However, the improvement in the
evacuation time achieved by the collection of these very small cuts is negligibly
small, even compared to the improvement given by our algorithm.

While the lower bound is still a long way from our upper bound, it is hard to
imagine how an improvement to our algorithm apart from the ε-cuts might look
like. In fact, we conjecture that, apart from these ε-cuts and numerical precision,
the algorithm we presented is indeed optimal.
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Abstract. Metric facility location and K-means are well-known prob-
lems of combinatorial optimization. Both admit a fairly simple heuris-
tic called single-swap, which adds, drops or swaps open facilities until
it reaches a local optimum. For both problems, it is known that this
algorithm produces a solution that is at most a constant factor worse
than the respective global optimum. In this paper, we show that single-
swap applied to the weighted metric uncapacitated facility location and
weighted discrete K-means problem is tightly PLS-complete and hence
has exponential worst-case running time.

1 Introduction

Facility location is an important optimization problem in operations research
and computational geometry. Generally speaking, the goal is to choose a set of
locations, called facilities, minimizing the cost of serving a given set of clients.
The service cost of a client is usually measured in some form of distance from
the client to its nearest open facility. To prevent the trivial solution of opening
a facility at each possible location, we usually introduce some sort of opening
cost penalizing large sets of open facilities. This general framework comprises a
plethora of problems using different functions to measure distance and combina-
tions of opening and service cost. In this paper, we discuss two popular problems
closely related to facility location: Metric Uncapacitated Facility Loca-
tion (MUFL) and Discrete K-means (DKM).

1.1 Problem Definitions

In an Uncapacitated Facility Location (UFL) problem we are given a set
of clients C, a weight function w : C → N on the clients, a set of facilities F , an
opening cost function f : F → R, and a distance function d : C × F → R. The
goal is to find a subset of facilities O ⊂ F minimizing

φFL(C,F,O) =
∑

c∈C

w(c)min
o∈O

{d(c, o)} +
∑

o∈O

f(o).

This problem is uncapacitated in the sense, that any open facility can serve,
i.e. be the nearest open facility to, any number of clients. Simply speaking,
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opening a lot of facilities incurs high opening cost, but small service cost, and
vice versa. MUFL is a special case of this problem, where we require the distance
function d to be a metric on C ∪ F .

DKM is a problem closely related to UFL, where we do not differentiate
between clients and facilities, but are given a single set of points C ⊂ R

D. We
measure distance between points p, q ∈ C as d(p, q) = ‖p − q‖2. Furthermore,
instead of imposing an opening cost, we allow at most K locations to be opened.
Hence, the goal is to find O ⊂ C with |O| = K minimizing

φKM (C,O) =
∑

c∈C

w(c)min
o∈O

{‖c − o‖2}.

Notice, that we consider the weighted variant of both MUFL and DKM,
where each client is associated with a positive weight. Such a weight can be
interpreted as the importance of serving the client or as multiple clients present
in the same location.

1.2 Local Search

A popular approach to solving hard problems of combinatorial optimization
is local search. The general idea of a local search algorithm is to define a small
neighbourhood for each feasible solution. Given a problem instance and an initial
solution, the algorithm replaces the current solution by a better solution from its
neighbourhood. This is repeated until the algorithm finds no improvement, hence
has found a solution that is not worse than any solution in its neighbourhood.
The runtime and the quality of the produced solutions of a local search algorithm
depend heavily on its definition of neighbourhood.

Theoretical aspects of local search are captured in the definition of the com-
plexity class PLS. There is a special type of reduction, called PLS-reduction,
with respect to which PLS has complete problems [10]. Notably, there are PLS-
complete problems, which exhibit two important properties. First, given an
instance and an initial solution, it is PSPACE-complete to find a locally optimal
solution computed by a local search started with the given initialization. Second,
there is an instance and an initial solution, such that this initial solution is expo-
nentially many local search steps away from every locally optimal solution [13].
There is a stronger version of PLS-reductions, so-called tight PLS-reductions
which are of special interest, as they preserve both of these properties [14]. PLS-
complete problems having these two properties are therefore sometimes called
tightly PLS-complete.

In the following, we examine a local search algorithm for MUFL und DKM
called the single-swap heuristic. For MUFL, we allow the algorithm to either close
an open facility, newly open a closed facility or do both in one step (swap an
open facility). Since feasible DKM solutions consist of exactly K open facilities,
we do not allow the algorithm to solely open or close a facility, but only to swap
open facilities. Formally, we define these respective neighbourhoods as
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NMUFL(O) = {O′ ⊂ F | |O \ O′| ≤ 1 ∧ |O′ \ O| ≤ 1} and
NDKM (O) = {O′ ⊂ C | |O \ O′| = 1 ∧ |O′ \ O| = 1}.

By MUFL/Swap and DKM/Swap we denote the respective problem as a PLS-
problem associated with the described single-swap neighbourhood.

1.3 Related Work

Approximating MUFL has been subject to considerable amount of research
using different algorithmic techniques. The problem can be 4-approximated using
LP-rounding [17], 3-approximated using a Primal-Dual technique [9], and 1.61-
approximated using a greedy algorithm [8]. However, it is known that there is
no polynomial time algorithm approximating MUFL better than 1.463 unless
NP ⊆ DTIME(nlog log n) [7]. Arya et al. showed that the standard local search
algorithm of MUFL/Swap computes a 3-approximation for MUFL [2].

A popular generalization of DKM called K-means admits facilities to be
opened anywhere in the R

D instead of restricting possible locations to the loca-
tions of the clients. The most popular local search algorithm for the K-means
problem is called K-means algorithm, or Lloyd’s algorithm [12]. It is well-known
that the solutions produced by the K-means algorithm can be arbitrarily bad
in comparison to an optimal solution. Furthermore, it was shown that in the
worst case, the K-means algorithm requires exponentially many improvement
steps to reach a local optimum, even if D = 2 [18]. Recently, Roughgarden
and Wang proved that, given a K-means instance and an initial solution, it is
PSPACE-complete to determine the local optimum computed by the K-means
algorithm started on the given initial solution [15]. This is in line with several
papers proving the same result for the simplex method using different pivoting
rules [1,5]. Kanungo et al. proved that the standard local search algorithm of
DKM/Swap computes an O(1)-approximation for DKM and hence also for gen-
eral K-means [11]. They argue that a variation of the single-swap neighbourhood,
where we impose some lower bound on the improvement of a single step, yields
an algorithm with polynomial runtime but a slightly worse approximation ratio.
However, there is no known upper bound on the runtime of the exact single-
swap heuristic, even for unweighted point sets. Another variation of single-swap
is the multi-swap heuristic, where we allow the algorithm to simultaneously swap
more than one facility in each iteration. For a large enough neighbourhood, i.e.
swapping enough facilities in a single iteration, this heuristic yields a PTAS in
Euclidean space with fixed dimension [4] and in metric spaces with bounded
doubling dimension [6].

1.4 Our Contribution

In this paper, we analyze the PLS complexity of MUFL/Swap and DKM/Swap.
By presenting a tight reduction from Max 2-Sat, we show that both prob-
lems are tightly PLS-complete, hence that both local search algorithms require
exponentially many steps in the worst case and that given some initial solution
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it is PSPACE-complete to find the solution computed by the respective algo-
rithm started on this initial set of open facilities. Our reduction only works for
the, previously introduced, weighted variants of MUFL and DKM. That is, we
construct instances with a non-trivial weight for each client. Furthermore, our
reduction for DKM requires the dimension of the point set to be on the order
of the number of points. The performance of the single-swap heuristic is basi-
cally unaffected from using the more general variants of MUFL and DKM, since
the known approximation bounds also hold for the weighted version of both
problems, and since the runtime of the heuristic only depends linearly on the
weights and the dimension. However, this means that our reduction is weaker
than a proof of the same properties for the unweighted variants or for a constant
number of dimensions would be.

Theorem 1. MUFL/Swap and DKM/Swap are tightly PLS-complete.

We prove the two parts of Theorem1 in Sects. 3 and 4.

2 Preliminaries

We present Max 2-Sat (SAT), a variant of the classic satisfiability problem,
which is elementary in the study of PLS. An instance of SAT is a Boolean
formula in conjunctive normal form, where each clause consists of exactly 2
literals and has some positive integer weight assigned to it. The cost of a truth
assignment is the sum of the weights of all satisfied clauses. The PLS problem
SAT/Flip consists of SAT, where the neighbourhood of an assignment is given
by all assignments obtained by changing the truth value of a single variable.

Theorem 2 [16]. SAT/Flip is tightly PLS-complete.

For each clause set B and truth assignment T we denote the SAT cost of T
with respect to B by w(B, T ). For a literal x we denote the set of all clauses in B
containing x by B(x). Further, we denote the set of all clauses in B satisfied by
T by Bt(T ) and let Bf (T ) = B \ Bt(T ). Finally, we set wB

max = maxb∈B{w(b)}.

3 The Facility Location Reduction

In the following, we formulate and prove one of our main results.

Proposition 3. SAT/Flip ≤PLS MUFL/Swap and this reduction is tight.

The following proof of Proposition 3 is divided into three parts. First, we
present our construction of a PLS-reduction (Φ, Ψ), second, we argue on the
correctness of this reduction and finally we show that the reduction is tight.
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3.1 Construction of Φ and Ψ

First, we construct the function Φ mapping an instance (B,w) ∈ Max 2-Sat
over the variables {xn}n∈[N ] to an instance (C,ω, F, f, d) ∈ Metric Uncapaci-
tated Facility Location. In the following, we denote M ··= |B|. Each variable
xn appears as a facility twice, once as a positive and once as a negative literal.
Formally, we set F = {xn, x̄n}n∈[N ]. We further locate a client at each facility
and a client corresponding to each clause, so C = F ∪ B. We set the distance
function d : C ∪ F × C ∪ F → R to

d(p, q) = d(q, p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if p = q

1 if p = xn ∧ q = x̄n

4
3 if (p = xn ∨ p = x̄n) ∧ q = bm ∧ p ∈ bm
5
3 if (p = xn ∨ p = x̄n) ∧ q = bm ∧ p̄ ∈ bm

2 else.

Simply speaking, a literal has distance 1 from its negation, clauses have
distance 4/3 from literals they contain, distance 5/3 from literals whose negation
they contain, and all other clients/facilities have distance 2 from each other. It
is easy to see that d is a metric. The weight of a client corresponding to a clause
is the same as the weight of the clause. If a client corresponds to a literal, then
its weight is W = M · wB

max.

ω(p) =

{
w(bm) if p = bm

W else

The opening cost function is constant f ≡ 2W .
Second, we construct the function Ψ mapping solutions of Φ(B,w) back to

solutions of (B,w). Given a set O ⊂ F we let each variable xn be true if the
facility xn ∈ O and let it be false otherwise.

In the following, we denote Φ(B,w) = (C,ω, F, 2W,d), Ψ(B,w,O) = TO, and
d(c,O) = mino∈O{d(c, o)}.

3.2 (Φ, Ψ) Is a PLS-Reduction

To prove that (Φ, Ψ) is a PLS-reduction we need to argue that Ψ(B,w,O) is
locally optimal for (B,w) if O is locally optimal for Φ(B,w). Observe, that Ψ
is not injective, since Φ(B,w) has more feasible solutions than (B,w). We can
tackle this problem by characterizing a subset of solutions for Φ(B,w) we call
reasonable solutions.

Definition 4. Let O ⊂ F . We call O reasonable if |O| = N and

∀n ∈ [N ] : xn ∈ O ∨ x̄n ∈ O.
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Reasonable solutions have several useful properties, which we prove in the
following. The restriction of Ψ to reasonable solutions is a bijection, the MUFL
cost of a reasonable solution is closely related to the SAT cost of its image under
Ψ , and all locally optimal solutions of Φ(B,w) are reasonable. This characteriza-
tion of solutions is crucial to proving correctness and tightness of our reduction.

Lemma 5. If O,O′ are reasonable solutions for Φ(B,w), then

w(B, TO) < w(B, TO′) ⇔ φFL(C,F,O) > φFL(C,F,O′).

We obtain Lemma 5 from the fact that the MUFL cost of a reasonable solu-
tion O are a scaled variant of the SAT cost of TO. Formally, we have that

φFL(C,F,O) =
4
3

∑

bm∈Bt(TO)

w(bm) +
5
3

∑

bm∈Bf (TO)

w(bm) + 3WN.

A full proof of this claim can be found in the full version of this paper [3].

Lemma 6. If O is a locally optimal solution for Φ(B,w), then O is reasonable.

A detailed proof of Lemma 6 can be found in Sect. 3.3. We can combine these
results to obtain the correctness of our reduction.

Corollary 7. If O is locally optimal for Φ(B,w), then TO is locally optimal for
(B,w).

Proof. Assume to the contrary that TO is not locally optimal. If O is not rea-
sonable, then it is not locally optimal by Lemma6. Therefore, assume that O
is reasonable. Since TO is not locally optimal, we know that there exists an
n ∈ [N ], such that w(B, T n̄

O) > w(B, TO), where T n̄
O denotes TO with an inverted

assignment of the nth variable. Since On̄ ··= (O \ {xn}) ∪ {x̄n} is reasonable,
Ψ(B,w,On̄) = T n̄

O and by Lemma 5 we know that

φFL(C,F,On̄) < φFL(C,F,O),

and hence can conclude that O is not locally optimal. ��

3.3 Proof of Lemma 6

The following proof of Lemma6 is presented in two steps. First, we argue in
Lemma 8 that no locally optimal solution can contain both a literal and its nega-
tion. Second, we show in Lemma 9 that every locally optimal solution contains a
facility corresponding to each of the variables. Combining these two results gives
us Lemma 6 as a corollary. From the following results we can moreover conclude
that once the single-swap algorithm has reached a reasonable solution, it will
always stay at a reasonable solution. We take up on this fact in Sect. 3.4, where
we argue on the tightness of our reduction.
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Lemma 8. If xn, x̄n ∈ O, then O is not locally optimal.

Proof. We show that closing the facility located at xn strictly decreases the
cost, and hence that O can not be locally optimal. When closing the facility xn,
we have to let all clients previously served by this facility (including the client
located at xn) be served by another facility. Choosing x̄n as the replacement, we
do not increase the cost by too much. More specifically, we can pay the additional
cost with the cost we save from not opening xn. Recall, that B(xn) is the set of
all clauses containing the literal xn, hence that |B(xn)| ≤ M . Observe, that no
client in C \ B(xn) (except xn) is closer to xn than it is to x̄n. We obtain

φFL(C,F,O) =
∑

c∈C\B(xn)
c �=xn

ω(c)d(c,O) +
∑

bm∈B(xn)

ω(bm)
4
3

+ |O| 2W

>
∑

c∈C\B(xn)
c �=xn

ω(c)d(c,O) +
∑

bm∈B(xn)

ω(bm)
5
3

+ W + (|O| − 1)2W

≥ φFL(C,F,O \ {xn}).

��
Lemma 9. If xn, x̄n �∈ O, then O is not locally optimal.

Proof. Similar to before, we show that opening a facility at xn strictly decreases
the cost. When opening the facility at xn we have to save enough service cost by
serving locations from it, that we can pay for opening the facility. Connecting
the clients located at xn and x̄n to the newly opened facility is sufficient. We
obtain

φFL(C,F,O) =
∑

c∈C\{xn,x̄n}
ω(c)d(c,O) +

∑

c∈{xn,x̄n}
ω(c)d(c,O)

︸ ︷︷ ︸
=4W

+ |O| 2W

>
∑

c∈C\{xn,x̄n}
ω(c)d(c,O) + W + (|O| + 1)2W

≥ φFL(C,F,O ∪ {xn}).

��

3.4 (Φ, Ψ) Is a Tight Reduction

We show that (Φ, Ψ) is a tight reduction by only considering its behaviour on
reasonable solutions. Lemma 6 tells us that restricted to reasonable solutions, the
single-swap local search behaves on Φ(B,w) exactly the same as the flip local
search behaves on (B,w). Additionally, we use the fact that once single-swap
has reached a reasonable solution, it will always stay at a reasonable solution.
Formally, we need to find a set of feasible solutions R for (C,ω, F, 2W,d), such
that
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1. R contains all local optima.
2. for every feasible solution T of (B,w), we can compute O ∈ R with TO = T

in polynomial time.
3. if the transition graph TG(C,ω, F, 2W,d) contains a directed path O � O′,

with O,O′ ∈ R but all internal path vertices outside of R, then TG(B,w)
contains the edge (TO, TO′) or TO = TO′ .

Let R be the set of all reasonable solutions. R contains all local optima of
(C,ω, F, 2W,d), by Lemma 6. The restriction of Ψ to R is bijective and we can
obviously compute the inverse in polynomial time. To prove the final property of
tight reductions, we use the following result, which is a byproduct of the proof
of Lemma 6.

Corollary 10. If O ∈ R and O′ �∈ R, then (O,O′) �∈ TG(C,ω, F, 2W,d).

Assume O � O′ is a directed path in TG(C,ω, F, 2W,d), with O,O′ ∈ R but
all internal path vertices outside of R. By Corollary 10, this path consists of the
single edge (O,O′). This means that φFL(C,F,O) > φFL(C,F,O′) and thus, by
Lemma 5, we obtain w(B, TO) < w(B, TO′). Hence, we conclude the tightness
proof by observing that (TO, TO′) ∈ TG(B,w).

4 The K-means Reduction

We complement our results by showing that we can obtain tight PLS-
completeness for DKM/Swap, as well.

Proposition 11. SAT/Flip ≤PLS DKM/Swap and this reduction is tight.

To prove Proposition 11, we can basically use the reduction presented in
Sect. 3.1. We need to change some of the constants involved in the construction
to make sure that we find a set of points in R

D with the required interpoint dis-
tances. However, the general approach stays the same and we obtain essentially the
same intermediate results. In the following, we will point out the differences in the
construction of (Φ, Ψ) and indicate which proofs require adjustments. After prov-
ing the hardness result based on the abstract definition of C, we show that there
is indeed a point set in R

D exhibiting the required squared Euclidean distances.

4.1 Modifications to (Φ, Ψ)

As before, let (B,w) be a Max 2-Sat instance over the variables {xn}n∈[N ]. We
construct an instance (C,ω,K) ∈ Discrete K-means. Abstractly define the
point set C = {xn, x̄n}n∈[N ] ∪B. The distance function d : C ×C → R is similar
to before

d(p, q) = d(q, p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if p = q

1 if p = xn ∧ q = x̄n

1 + ε if (p = xn ∨ p = x̄n) ∧ q = bm ∧ p ∈ bm

1 + cε if (p = xn ∨ p = x̄n) ∧ q = bm ∧ p̄ ∈ bm

1 + 2ε else,

where 1 < c < 2 and ε = 1/(4N + 2M).
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While the distances are scaled in comparison to the MUFL reduction, the
central structure remains unchanged. The points closest to each other are literals
and their negation. Clauses are closer to literals they contain, than to the literal’s
negation. All other point pairs have the same, even larger, distance to each other.

The weight function remains unchanged. That is, the weight of a point cor-
responding to a clause is the SAT weight of the clause, the weight of a point
corresponding to a (negated) literal is W = M ·wB

max. Finally, we choose K = N .
Like the weight function, Ψ remains unchanged. We denote Φ(B,w) = (C,ω,N).

4.2 Correctness of the DKM Reduction

Just as before, we have the problem that Ψ is not injective. However, we can
again solve the problem using the previously introduced notion of reasonable
solutions. While the first condition (|O| = N) is trivially fulfilled, we utilize the
second property to ensure that Ψ becomes a bijection when being restricted to
reasonable solutions. Moreover, we obtain results analogous to Lemmas 5 and 6.

Lemma 12. If O,O′ are reasonable solutions for Φ(B,w), then

w(B, TO) < w(B, TO′) ⇔ φKM (C,O) > φKM (C,O′).

The proof for Lemma 12 can be obtained by substituting the modified con-
stants into the proof of Lemma5. Almost all of the additional work required for
the DKM correctness goes into the proof of the following Lemma13. Here, we
have to ensure that locally optimal solutions do not contain points correspond-
ing to clauses. This was not an issue in the MUFL proof, since clauses are not
available for opening in that case.

Lemma 13. If O is a locally optimal solution for Φ(B,w), then O is reasonable.

Using these intermediate results we can see that this is a tight reduction
following the same arguments presented in Sect. 3.4.

4.3 Proof of Lemma 13

Observe, that each point bm ∈ C has exactly two points at distance 1+ε and two
points at distance 1 + cε (the points corresponding to the literals in the clause
bm and their negations, respectively). In the following, we call these four points
adjacent to bm. All the other points have distance 1 + 2ε to bm and are hence
strictly farther away. Assume to the contrary that there exists an n ∈ [N ], such
that xn, x̄n �∈ O.

Case 1: There exists an m ∈ [M ] : bm ∈ O, such that bm = {xo, xp} (where one
or both of these literals might be negated). One important observation is that if
we exchange bm for some other location then only its own cost and the cost of
its adjacent points can increase. All other points, which might be connected to
bm, are at distance 1 + 2ε and can hence be connected to any other location for
at most the same cost.
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Case 1.1: xo, x̄o, xp, x̄p �∈ O. Each point adjacent to bm has weight W and
has distance at least 1 + ε to every other points in P . Hence, we have that
φ({bm, xo, x̄o, xp, x̄p}, O) ≥ (4 + 4ε)W . However,

φ({bm, xo, x̄o, xp, x̄p}, {xo}) ≤ (1 + cε)ω(bm) + W + (2 + 4ε)W
< (4 + 4ε)W,

and hence (O\{bm})∪{xo} is in the neighbourhood of O and has strictly smaller
cost.

Case 1.2: xp ∈ O ∨ x̄p ∈ O and xo, x̄o �∈ O. In this case, removing bm from O
does not affect the cost of xp and x̄p. We obtain φ({bm, xo, x̄o}, O) ≥ (2+2ε)W .
Observe, that

φ({bm, xo, x̄o}, (O \ {bm}) ∪ {xo}) ≤ (1 + cε)ω(bm) + W < 2W.

Case 1.3: xp ∈ O ∨ x̄p ∈ O and xo ∈ O ∨ x̄o ∈ O. Here we have that removing
bm from O does not affect the cost of its adjacent points at all. However, similar
to before we have φ({bm, xn, x̄n}, O) ≥ (2 + 2ε)W . Again, we obtain

φ({bm, xn, x̄n}, (C \ {bm}) ∪ {xn}) ≤ (1 + cε)ω(bm) + W < 2W.

Case 2: There is no m ∈ [M ], such that bm ∈ O. Consequently, there is an
o ∈ [N ], o �= n : xo, x̄o ∈ O. W.l.o.g. assume that |B(xo)| < M (otherwise just
exchange xo for x̄o in the following argument). Observe that

φ(B(xo) ∪ {xo, xn, x̄n}, O) = (2 + 4ε)W + (1 + ε)
∑

bm∈B(xo)

ω(bm).

The only points affected by removing xo from O are xo and the points corre-
sponding to clauses in B(xo). Hence,

φ(C\(B(xo)∪{xo, xn, x̄n}), O) ≥ φ(C\(B(xo)∪{xo, xn, x̄n}), (O\{xo})∪{xn}).

However, recall that the points in B(xo) are at distance (1 + cε) from x̄o ∈ O.
We obtain

φ(B(xo) ∪ {xo, xn, x̄n}, (O \ {xo}) ∪ {xn})
≤ φ(B(xo) ∪ {xo, x̄n}, {x̄o, xn})

= 2W + (1 + ε)
∑

bm∈B(xo)

ω(bm) + ((c − 1)ε)
∑

bm∈B(xo)

ω(bm)

< 2W + (1 + ε)
∑

bm∈B(xo)

ω(bm) + εW

< (2 + 4ε)W + (1 + ε)
∑

bm∈B(xo)

ω(bm) = φ(B(xo) ∪ {xo, xn, x̄n}, O).

��
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4.4 Embedding C into �22

So far, we regarded C as an abstract point set, only given by fixed pairwise
interpoint distances. Due to space constraints, we only present the result that
there is an isometric embedding of C into �22. A detailed proof of the following
lemma can be found in the full version of this paper [3].

Lemma 14. Let {c1, . . . , c2N+M} be some numbering of the set C as it is defined
in Sect. 4.1. There is a polynomial-time algorithm that computes a matrix P
whose rows form a set {pn}n∈[2N+M ], such that ‖pi − pj‖2 = d(ci, cj).

5 Related Problems and Future Work

In this work, we explore the local search complexity of the single-swap heuristic
for MUFL and DKM. While we prove that the problem is tightly PLS-complete
in general, our reduction requires arbitrarily many dimensions, number of clus-
ters and a non trivial weight function on the clients. In the full version [3] we
show that we can further modify our reduction and obtain the same result for
the so-called Discrete Fuzzy K-means problem, a soft generalization of the
Discrete K-means problem.

One of the first follow-up question is if we can reduce the number of dimen-
sions D down to a constant. Moreover, it is interesting to examine whether we
can obtain our results for unweighted variants of these problems. The fact that
the K-means method has exponential worst-case runtime even for unweighted
point sets with D = 2 indicates that this might be possible. A potential approach
to reduce the number of dimension is e.g. to embed our abstract point set using
different techniques than the one presented here, since this is the only point in
the proof that requires high dimensionality.

The major open result is still the conjecture of Roughgarden and Wang,
that computing a local minimum of the K-means algorithm is a PLS-hard prob-
lem [15].

Acknowledgments. The author would like to thank Johannes Blömer, Jakob Juhnke
and the anonymous reviewers for helpful comments which increased the quality of the
paper, and Alexander Skopalik for bringing PLS to his attention.
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Abstract. Multi-layer graphs consist of several graphs (layers) over the
same vertex set. They are motivated by real-world problems where enti-
ties (vertices) are associated via multiple types of relationships (edges in
different layers). We chart the border of computational (in)tractability
for the class of subgraph detection problems on multi-layer graphs,
including fundamental problems such as maximum matching, finding
certain clique relaxations (motivated by community detection), or path
problems. Mostly encountering hardness results, sometimes even for two
or three layers, we can also spot some islands of tractability.

1 Introduction

Multi-layer graphs consist of several layers where the vertex set of all layers
is the same but each layer has an individual edge set [4,20]. They are also
known as multi-dimensional networks [3], multiplex networks [24], and edge-
colored multigraphs [1,9]. In recent years, multi-layer graphs have gained a lot
of attention in the social network analysis and data mining communities because
observational data often comes in a multimodal nature. Typical topics studied
here include clustering [5,16], detection of network communities [19,28], data
privacy [26], and general network properties [3].

In several of these applications, researchers identify vertex subsets of a multi-
layer graph that exhibit a certain structure in each of the layers. For example,
motivated by applications in genome comparison in computational biology, Gai
et al. [14] searched for maximal vertex subsets in a two-layer graph that induce
a connected graph in each of the layers. Jiang and Pei [16] and Boden et al. [5]
searched for vertex subsets that induce dense subgraphs in many layers. Such
vertex subsets model communities in a multimodal social network.

To the best of our knowledge, there is, however, no systematic work on
computational complexity classification beyond typically observing the gener-
alization of hardness results for the one-layer case to the multi-layer one [5,16].
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 128–139, 2017.
DOI: 10.1007/978-3-319-57586-5 12
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Our aim in this article is hence to provide a general foundation for studying
multi-layer subgraph problems, and to provide some initial results that pave the
way for more specific complexity analyses.

We first give a general problem definition that encompasses the problems
sketched above. Vaguely, they can be phrased as finding a large vertex subset
that induces graphs with an interesting property in many layers. Motivated by
the multitude of the desired properties, our problem definition is parameterized
by a graph property Π, that is, any fixed set of graphs.

Π Multi-layer Subgraph (Π-ML-Subgraph)
Input: A set of graphs G1, . . . , Gt all on the same vertex set V and two
positive integers k and �.
Question: Is there a vertex set X ⊆ V with |X| ≥ k such that for at
least � of the input graphs Gi it holds that Gi[X] ∈ Π?

We study Π-ML-Subgraph mostly in the context of parameterized com-
plexity. As parameters we use the most natural candidates: the number t of
layers, the order k of the desired subgraph, and the number � of layers in which
we search for our subgraph, as well as their dual deletion parameters |V |−k and
t − �. Observe that NP-hardness and W[1]-hardness with respect to either k or
|V | − k in the single-layer case directly implies hardness of the multi-layer case.

Our analysis of Π-ML-Subgraph starts with several easy results on hered-
itary graph properties Π, that is, Π is closed under taking induced subgraphs.
Such properties are well-studied in the single-layer case. Using Ramsey argu-
ments and a theorem of Khot and Raman [18], we get a trichotomy for the com-
plexity of Π-ML-Subgraph with respect to polynomial-time solvability and
fixed-parameter tractability with respect to k and � (Proposition 1). Second, we
generalize a fixed-parameter tractability result of Cai’s [8] by showing that, for
graph properties Π characterized by a finite number of forbidden induced sub-
graphs, Π-ML-Subgraph is fixed-parameter tractable with respect to combined
parameter t− � and |V |−k, and that it admits a polynomial-size problem kernel
(Proposition 2).

Subsequently, we turn to graph properties that are not necessarily heredi-
tary. For finding connected graphs of order at least k in � of t layers, there is a
simple fixed-parameter tractability result with respect to t which also gives an
XP-algorithm with respect to t − � or with respect to �. This algorithm admits
a generalization to each graph property that implies certain good-natured par-
titions of the input graphs (Proposition 3), for example c-cores and c-trusses.
As a counterpart, we offer a W[1]-hardness result for Π-ML-Subgraph for the
combined parameter k and � for a large class of graph properties Π that includes
connected graphs, c-cores, and c-trusses, for example (Theorem 1).

Finally, we exhibit simple graph properties Π for which already a small
number of layers leads to NP-hardness and W[1]-hardness of Π-ML-Subgraph:
While finding a vertex subset that induces subgraphs of order k with a perfect
matching in two layers is polynomial-time solvable, it becomes NP-hard and
W[1]-hard with respect to k in three layers (Theorem 2). Additionally, while
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finding a k-path, that is, a k-vertex graph containing a Hamiltonian path, is
fixed-parameter tractable with respect to k in one layer [23], it becomes W[1]-
hard in two layers (Theorem 3).

Apart from aiming to provide a broad overview on the complexity of Π-ML-
Subgraph, the main technical contributions are conditions on Π that make
Π-ML-Subgraph computationally hard (Theorem1) and understanding the
transition from tractability to hardness for perfectly matchable subgraphs (The-
orem 2) and Hamiltonian subgraphs (Theorem3). Due to the lack of space, most
proofs have been deferred to a full version of this paper1.

Related Work. As mentioned in the beginning, despite the numerous practi-
cal studies related to multi-layer networks, we are not aware of systematic work
pertaining to the computational complexity of Π-ML-Subgraph. The following
special cases were studied from this viewpoint. Gai et al. [14] and Bui-Xuan et
al. [7] studied the case where Π is the set of all connected graphs and t = � = 2.
They showed that the resulting problem is polynomial-time solvable. In con-
trast, Cai and Ye [9] studied a modified version of this problem, where the
desired vertex subset shall be of size exactly k instead of at least k. They showed
NP-hardness and W[1]-hardness with respect to k and with respect to |V | − k.
Agrawal et al. [1] gave a 23tk · poly(n, t)-time algorithm for the case in which Π
is the set of all cycle free graphs and t = �.

Edge-colored graphs and multigraphs, which are equivalent to multi-layer
graphs, were studied extensively. For surveys, see Bang-Jensen and Gutin [2,
Chapter 16] and Kano and Li [17]. Most of the results therein, in the multi-layer
terminology, pertain to paths and cycles which do not contain two consecutive
edges in the same layer and to related questions like connectedness and Hamil-
tonicity using this notion of paths or cycles.

Preliminaries. We use the framework of parameterized complexity: Let p be a
parameter for Π-ML-Subgraph, that is, any integer depending on the input.
We aim to prove fixed-parameter tractability (FPT ) by giving an algorithm that
produces a solution in f(p) · poly(|V |, t) time, where f is a computable func-
tion, or we aim to show that such an algorithm is unlikely (W[1]-hardness for
p). A problem kernel is a model for efficient data reduction. Formally, it is a
polynomial-time many-one self-reduction such that the size of each resulting
instance is upper-bounded by a function of the parameter p. For precise defini-
tions and methodology we refer the reader to the literature [11].

All graphs are undirected and without self-loops or multiple edges. We use
standard graph notation. A graph property Π is hereditary if removing any
vertex from a graph in Π results again in a graph in Π. We use the following
graph properties. A graph is a c-core if each vertex has degree at least c [27]. A
graph is a c-truss if each edge is contained in at least c − 2 triangles [10]. We
say that a graph is Hamiltonian if it contains a simple path that comprises all
vertices in the graph. A c-factor in a graph is a subset of the edges such that each
vertex is incident with exactly c edges. In sans serif font face we often denote
1 A preliminary full version containing all proofs is available at arXiv:1604.07724.

http://arxiv.org/abs/1604.07724
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graph properties. For example, c-Truss is the set of all c-trusses. By Matching we
refer to the set of all graphs containing a perfect matching and by c-Factor to
the set of all graphs containing a c-factor.

2 Hereditary Graph Properties

In this section we study the (parameterized) complexity of Π-ML-Subgraph
with respect to graph properties Π which are hereditary or whose complement
is hereditary. Many natural graph properties fall into one of these categories.

First, we investigate the computational complexity of Π-ML-Subgraph for
hereditary properties Π. We give a trichotomy with regard to polynomial-time
solvability, NP-hardness, and the complexity with respect to parameters k and �,
and we observe fixed-parameter tractability for the “deletion parameters” |V |−k
and t−�. The single-layer case has been studied by Lewis and Yannakakis [21] as
well as Khot and Raman [18], the latter studied the parameterized complexity.
We generalize the mentioned results to the multi-layer case.

Proposition 1. Let Π be a hereditary graph property.

1. If Π excludes at least one complete graph and at least one edgeless graph,
then Π-ML-Subgraph is solvable in polynomial time.

2. If Π includes all complete graphs and all edgeless graphs, then Π-ML-
Subgraph is NP-hard and FPT when parameterized by k and � combined.

3. If Π includes either all complete graphs or all edgeless graphs, then Π-ML-
Subgraph is NP-hard and W[1]-hard when parameterized by k for all �.

Note that every hereditary graph property falls into one of the three cases of
Proposition 1. We remark that properties that fall into the first case are exactly
those containing only a finite number of graphs. The second case is a mere
classification result. In the following corollary, we give a number of hereditary
properties Π and the corresponding complexity results for Π-ML-Subgraph
implied by Proposition 1. For their definitions we refer to the literature [6,15].

Corollary 1. Π-ML-Subgraph is NP-hard and FPT when parameterized by k
and � combined for Π ∈ {Perfect Graph, Interval Graph, Chordal Graph, Split
Graph, Asteroidal Triple Free Graph, Comparability Graph, Permutation Graph}.

Π-ML-Subgraph is NP-hard and W[1]-hard when parameterized by k for
all � for Π ∈ {Edgeless Graph, Complete Graph, Complete Multipartite Graph,
Planar Graph, c-Colorable Graph, Forest}.
Second, we consider properties Π whose complements are hereditary. For these
we can observe that polynomial-time solvability transfers to the multi-layer case.

Observation 1. Let Π be a graph property such that, if G ∈ Π for some
graph G and H[X] = G for some graph H and vertex set X, then H ∈ Π. Equiv-
alently, the complement property (containing all graphs not in Π) is hereditary.
If Π can be decided in f(n) time for some function f , then Π-ML-Subgraph
can be decided in O(t · f(n)) for all k and �.

In the following corollary, we give two properties Π for which Π-ML-Subgraph
is solvable in polynomial time according to Observation 1.
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Corollary 2. Π-ML-Subgraph is solvable in polynomial time for:

– Π = “The graph has maximum degree of at least x.”
– Π = “The graph has an h-index [12] of at least x.”

Finally, we consider the dual parameterizations for hereditary graph proper-
ties characterized by a finite number of forbidden subgraphs. In the single-layer
case, this problem has been studied by Lewis and Yannakakis [21] and Cai [8].

Proposition 2. Let Π be a hereditary graph property that is characterized by
finitely many forbidden induced subgraphs. Then Π-ML-Subgraph is NP-hard
and FPT when parameterized by the number t − � of layers to delete and the
number |V | − k of vertices to delete combined. It also admits a polynomial-size
problem kernel with respect to these parameters.

In the following corollary, we give a number of hereditary properties Π char-
acterizable with a finite number of forbidden subgraphs and, hence, for which
Π-ML-Subgraph is fixed-parameter tractable with respect to the combined
parameter number t−� of layers to delete and number |V |−k of vertices to delete.

Corollary 3. Π-ML-Subgraph is NP-hard and FPT when parameterized
by t − � and |V | − k combined for Π ∈ {Cluster Graph, Cograph, Line Graph,
Split Graph}.

3 Non-hereditary Graph Properties

In this section, we give two results related to graph properties that are not nec-
essarily hereditary. First, motivated by Connectivity, we give an FPT-algorithm
with respect to t for graph properties in which each graph admits a certain nice
vertex partitioning; this algorithm is also an XP-algorithm with respect to �.
Second, we give a general W[1]-hardness reduction for the combined parame-
ter k and �, capturing many classes of graph properties such as c-Core, c-Truss,
Connectivity, and Matching.

Vertex-partitionable graphs. We start with investigating graph properties Π that
allow for efficiently computable partitions of the graph into maximal components
that each satisfy Π. It turns out that finding large Π-subgraphs in all input
networks is tractable. This can be seen as a generalization of the component-
detection algorithm in two layers by Gai et al. [14].

Proposition 3. Let Π be a graph property such that for every graph G = (V,E)
there is a partition P := {X1, . . . , Xx} of V such that:

– G[Xi] ∈ Π for all Xi ∈ P,
– for all X ⊆ V such that G[X] ∈ Π, we have X ⊆ Xi for some Xi ∈ P, and
– P can be computed in T (|V |, |E|) time where T is non-decreasing in both

arguments.

Then, Π-ML-Subgraph is solvable in
(

t
�

)·O(|V |·�)·max1≤i≤t(|Ei|+T (|V |, |Ei|))
time.
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Proof. We call a partition P a Π-partition if it fulfills the conditions of Propo-
sition 3 with respect to Π. We describe an algorithm that outputs all maximal
sets X ⊆ V such that Gi[X] ∈ Π for all input graphs Gi. We refer to these sets
as solutions in the following. The algorithm maintains a partition P of V where,
initially, P = {V }.

The algorithm checks whether there is a Y ∈ P such that Gi[Y ] /∈ Π. If Y ∈ P,
then it computes in T (|V |, |Ei|) time a Π-partition PY of Gi[Y ]. The partition P is
replaced by (P \ {Y }) ∪ PY . If Y �∈ P, then the algorithm outputs all Y ∈ P.

To see the correctness of the algorithm, first observe that for each output Y ,
we have Gi[Y ] ∈ Π for all input graphs Gi. To show maximality of each Y ,
we show that the algorithm maintains the invariant that each solution X is a
subset of some Y ∈ P. This invariant is trivially fulfilled for the initial parti-
tion {V }. Now consider a set Y that is further partitioned by the algorithm. By
the invariant, any solution X that has nonempty intersection with Y is a subset
of Y . Furthermore, since PY is a Π-partition of Gi[Y ], there is no solution X
that contains vertices of two distinct sets Y1, Y2 of PY . Thus, each solution that
is a subset of Y is also a subset of some Y ′ ∈ PY . Hence, each output set X
is a solution since it is an element of the final partition P and all solutions are
subsets of elements of P.

For the running time, observe that for each Y ∈ P, we can test in O(� ·
max1≤i≤t T (|V |, |Ei|)) time whether it needs to be partitioned further. At
most |V | partitioning steps are performed and if a set Y ∈ P does not need
to be partitioned further, then it can be discarded for the remainder of the algo-
rithm. Thus, in O(|V |) applications of the “maximality test” the result is that Y
is a solution and in O(|V |) applications of the maximality test, Y is further
partitioned. Hence, the overall number of sets Y that are elements of P at some
point is O(|V |). The overall running time now follows from the assumptions
on T and from the fact that the induced subgraphs for all Gi can be computed
in O(|Y | + � · max1≤i≤t |Ei|) time for each Y . ��

Examples of graph properties covered by Proposition 3 are Connectivity and
c-Edge-Connectivity. If we assume that graphs on one vertex are considered as
(trivial) c-cores, then the c-Core property is covered: the nontrivial c-core of a
graph is uniquely determined (it is the subgraph remaining after deleting any
vertex with degree less than c). Similarly, the c-Truss property is covered by
Proposition 3 if we allow one-vertex graphs to be considered as c-trusses. Observe
that we can easily choose to either incorporate or disregard connectivity from
the c-core and c-truss definitions.

If T is a polynomial function, as in all the examples above, then Π-ML-
Subgraph is fixed-parameter tractable with respect to t and polynomial time-
solvable if � or t − � are constants.

Corollary 4. Π-ML-Subgraph is FPT when parameterized by t and
polynomial-time solvable if � or t − � are constants for Π ∈ {Connectivity, c-
Edge-Connectivity, c-Truss, c-Core}.
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General hardness reduction. Finally, we aim to give a general description of
properties Π for which Π-ML-Subgraph is NP-hard and W[1]-hard when para-
meterized by k and � combined. The next theorem is somewhat technical but
covers many natural graph properties which are not covered by Corollary 1.
Furthermore, it covers all graph properties from Corollary 4 and shows that
for those properties Π-ML-Subgraph becomes intractable when parameterized
by � instead of t. We list some of those properties in Corollary 5.

Intuitively, the following theorem covers graph properties Π such that for
any three natural numbers x and y, and α ≤ x it is possible to construct a
graph G that has the following three different types of vertices2 with the following
property: First, there may be a fixed number z ≥ 0 of obligatory vertices; second,
there are x optional vertices; third, there are y forbidden vertices. Any induced
subgraph of G of size at least α + z that has property Π has to include all
obligatory vertices and may not include any forbidden vertices.

Theorem 1. Let Π be a graph property. Π-ML-Subgraph is W[1]-hard when
parameterized by k and � combined if there is an algorithm A that takes as input
a vertex set W , a vertex set W ′ ⊆ W , and an integer α and computes a graph
G = (V,E) such that the following conditions hold.

– For each v ∈ W there is a vertex set Xv with |Xv| = f(α) for some function f ,
– {Xv | v ∈ W}∪{Y } is a partition of V for some Y with |Y | = f ′(α) for some

function f ′,
– for all X ⊆ V with |X| ≥ α · f(α) + f ′(α) we have that

G[X] ∈ Π ⇔ ∃W ′′ ⊆ W ′ such that X =
⋃

v∈W ′′
Xv ∪ Y,

– and A has running time f ′′(α) · |W |O(1) for some function f ′′.

If f ′′ is polynomial, then we additionally get NP-hardness of Π-ML-Subgraph.

The intuition is that each set Xv corresponds to one vertex v ∈ W and every
set X such that G[X] ∈ Π either fully contains Xv or not. Furthermore, Y con-
tains vertices that have to be included in X in order to have that G[X] ∈ Π and
all sets Xv that correspond to vertices in v ∈ W \ W ′ have to be fully excluded
from X in order to have that G[X] ∈ Π. For the proof, we reduce from Biclique,
which is W[1]-hard when parameterized by the size h of the biclique [22].

Proof. We give a parameterized reduction from Biclique which, given an undi-
rected graph H and a positive integer h, asks whether H contains a complete
bipartite subgraph Kh,h. Let (H = (U,F ), h) be an instance of Biclique and
let h ≥ 2. We construct an instance of Π-ML-Subgraph in the following way.

For all v ∈ U , let NH(v) be the neighborhood of v with respect to H. Run
Algorithm A on input (U,NH(v), h) to create graphs Gv for each v ∈ U . Set

2 This actually describes the special case that the sets Xv from Theorem 1 all have
size one.
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k = h · f(h) + f ′(h) and � = h. Now we show that ({Gv}, k, �) is a yes-instance
of Π-ML-Subgraph if and only if (H,h) is a yes-instance of Biclique.

“⇒”: Assume that (H,h) is a yes-instance of Biclique and let (C,D)
with C,D ⊆ U and |C| = |D| = h be a biclique. Then for X =

⋃
v∈C Xv ∪ Y

and v′ ∈ D, we have that all v, such that Xv ⊂ X, are neighbors of v′ and hence
Gv′ [X] ∈ Π. Note that |X| = h · f(h) + f ′(h) and |{Gv | v ∈ D}| = h, therefore
it is a solution of Π-ML-Subgraph.

“⇐”: Assume that ({Gv}, k, �) is a yes-instance of Π-ML-Subgraph. There
are graphs Gi, with i ∈ L, L ⊆ U , |L| ≥ h, and a vertex set X ⊆ V with |X| ≥ k,
such that Gi[X] ∈ Π for all i ∈ L. By the construction of Gi, we know
that X =

⋃
v∈W ′ Xv ∪ Y for some W ′ ⊆ U with |W ′| ≥ h. Furthermore, we

know that if i ∈ L then for all j ∈ W ′ (that is Xj ⊂ X) we have that i is
neighbor of j. Lastly, we have that i ∈ L implies that Xi �⊂ X and hence i /∈ W ′.
Hence we have that (L,W ′) is a biclique in H with |L| ≥ h and |W ′| ≥ h. ��
In the following corollary, we give several properties that are polynomial-time
solvable in the single-layer case but NP-hard and W[1]-hard when parameterized
by k and � combined in the multi-layer case.

Corollary 5. Π-ML-Subgraph is NP-hard and W[1]-hard when parameterized
by k and � combined for Π ∈ {Connectivity, Tree, Star, c-Core, c-Connectivity,
c-Truss, Matching, c-Factor}.
Proof (Sketch). We sketch Algorithm A from Theorem 1 for all properties listed
above.

– Connectivity, Tree, Star, 1-Core: Let Xv := {v} and Y := {u}. Create an edge
{u, v} for each vertex v ∈ W ′.

– c-Core, c-Connectivity, c > 1: Let Xv := {v} and Y := {u1, . . . , uc}. Create all
edges {u, v} with u ∈ Y and v ∈ W ′.

– c-Truss: Let Xv := {v} and Y := {u1, . . . , uc+1}. Create all edges {u, v} with
u ∈ Y and v ∈ W ′ ∪ Y and u �= v.

– Matching: Let Xv := {v1, v2} for each v ∈ W and create edge {v1, v2} if v ∈ W ′.
– c-Factor: For each v ∈ W ′, add a connected c-regular graph of size f(c) to G,

for each v ∈ W \ W ′, add f(c) vertices to V , for some function f .
– Hamiltonian: Let Xv := {v} and create all edges {u, v} with u, v ∈ W ′. ��

A particular consequence of Corollary 5 is that the connected component
detection algorithm for two layers by Gai et al. [14] does not generalize to Con-
nectivity-ML-Subgraph with � � t without significant running time overhead.

4 Matchings, c-Factors, and Hamiltonian Subgraphs

In this section we first consider the problem of finding a set X of at least k
vertices that induces in � of t layers a subgraph that has a perfect matching.
We also consider the more general c-factor property, asking for a subset of edges
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such that each vertex is incident with exactly c edges. A perfect matching is a
1-factor. Finding c-factors in single-layer graphs is polynomial-time solvable for
all c (see Plummer [25] for an overview on graph factors).

Furthermore, we consider the problem of finding a set X of at least k vertices
that induces in � of t layers a subgraph that admits a Hamiltonian path.

Matchings and c-Factors. Corollary 5 states that Matching-ML-Subgraph is
W[1]-hard when parameterized by k and � combined. Through closer inspec-
tion we can get a stronger result. We show that Matching-ML-Subgraph is
polynomial-time solvable for � ≤ 2 and becomes W[1]-hard when parameterized
by k already for � ≥ 3. For c-Factor-ML-Subgraph we show that it is already
W[1]-hard when parameterized by k if � ≥ 2.

For � = 1, we can simply check whether there is a c-factor in any of the layers.
For � = 2 Matching-ML-Subgraph can be solved by reducing it to Maximum
Weight Matching. To this end, let G1 = (V,E1) and G2 = (V,E2) be two
input graphs for which we would like to know whether there is an X ⊆ V of size
at least k such that both G1[X] and G2[X] have a perfect matching. We solve
the problem by a simple reduction to Maximum Weight Matching, where
we assume that the graph has edge weights and the task is to find a matching
with maximum edge weights.

Lemma 1. Given two graphs G1 = (V,E1) and G2 = (V,E2), define a graph
G′ = (V ′, E′) as follows:

– V ′ = {v1, v2 | v ∈ V } and
– E′ = {{v1, v2} | v ∈ V } ∪ {{ui, vi} | {u, v} ∈ Ei}.

Define a weight function w : E′ → N as follows; let n := |V |:

w({ui, vj}) =

{
n if i �= j and u = v,

n + 1 if i = j (and u �= v).

Let k ∈ N. Then there is a set X ⊆ V of size at least k such that both G1[X]
and G2[X] have a perfect matching if and only if the graph G′ has a matching
of w-weight at least n2 + k.

Due to space constraints, we omit the proof. To show that Matching-ML-
Subgraph remains W[1]-hard when parameterized by k for � ≥ 3, we reduce
from Multicolored Clique which is known to be W[1]-hard when parame-
terized by the solution size [13]. Intuitively, the reason for the computational
complexity transition from two layers to three layers is as follows. Overlaying
two matchings one may get cycles and paths but without connections between
them. We can cope with this by finding a maximum weighted matching in an
auxiliary graph. Adding a third layer, however, allows arbitrary connections
between cycles and paths.
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Theorem 2. Matching-ML-Subgraph can be solved in polynomial time if � ≤
2. It is NP-hard and W[1]-hard when parameterized by k for all � ≥ 3 and t ≥ �.

For c ≥ 2, c-Factor-ML-Subgraph is NP-hard and W[1]-hard when parame-
terized by k for all � ≥ 2 and t ≥ �.

Proof (Sketch). The polynomial-time solvability of Matching-ML-Subgraph for
the case of � ≤ 2 is due to Lemma 1. For the case of � ≥ 3 we give a parameter-
ized reduction from Multicolored Clique. Due to space constraints, we only
present the contruction of the reduction. This reduction can be adapted to the
c-factor case.

In Multicolored Clique, we are given an h-partite graph H = (U1 �
. . . � Uh, F ) and need to determine whether it contains a clique of size h. (Such
a clique necessarily contains exactly one vertex from each set Ui and cliques
of more than h vertices are impossible.) Without loss of generality, we assume
that the number h of colors is even. We construct an instance of Matching-ML-
Subgraph for t = � = 3 as follows and then argue that the construction is easily
generalizable.

Vertices. First, create h − 1 vertices for each vertex in graph H (one vertex
for each color other than his own color). Formally, for each color 1 ≤ j ≤ h
and each ui ∈ Uj create the vertex set Vi consisting of the vertices v(i,j′), j′ ∈
({1, . . . , h}\{j}). Second, create one color vertex wj for each color j ∈ {1, . . . , h}.
We denote the set of color vertices as W :=

⋃
1≤j≤h{wj}.

Vertex selection gadget by graph G1 and G2. For each color 1 ≤ j ≤ h create
for each ui ∈ Uj one cycle on {wj}∪Vi in the graph G1 ∪G2 such that the edges
are alternating from G1 and from G2. These |Uj | cycles are all of length h and
share only color vertex wj . To realize this, create the following edges. For each
1 ≤ z ≤ h − 2 create an edge in graph G(z mod 2)+1 between v(i,z) and v(i,z+1) if
z < j − 1, between v(i,z+1) and v(i,z+2) if z ≥ j, and between v(i,z) and v(i,z+2)

if z = j − 1. Create an edge between wj and v(i,1) in graph G2, between v(i,h)
and wj in graph G1 if j �= h, and between v(i,h−1) and wj in graph G1 if j = h.

Validation gadget by graph G3. For each adjacent vertex pair ui, ui′ with ui ∈
Uj and ui′ ∈ Uj′ , we create an edge between v(i,j′) and v(i′,j) in G3. Furthermore,
create the edge {wj , wj+h/2} for each 1 ≤ j ≤ h/2.

Finally, by setting k = h2 and t = � = 3 we complete the construction, which
can clearly be performed in polynomial time. It remains to show that graph H
has a clique that contains each color exactly once if and only if there is a vertex
set X ⊆ V with |X| ≥ k such that graph Gz[X] contains a perfect matching for
each 1 ≤ z ≤ 3. ��

Hamiltonian Subgraphs. In the following we investigate the problem variant
of finding Hamiltonian subgraphs. Corollary 5 states that Hamiltonian-ML-
Subgraph is W[1]-hard when parameterized by k and � combined. Through
closer inspection we can get a stronger result. Hamiltonian-Subgraph is known
to be FPT when parameterized by the size of the subgraph k [23]. For the multi-
layer case, we can show that it is already W[1]-hard when parameterized by k
for any � ≥ 2 using a reduction from Multicolored Biclique.
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Theorem 3. Hamiltonian-ML-Subgraph is NP-hard and W[1]-hard when
parameterized by k for all � ≥ 2 and t ≥ �.

5 Conclusion

We started a systematic study of subgraph detection problems in multi-layer net-
works. In particular, we have shown hardness results for many multi-layer sub-
graph detection problems that are solvable in polynomial time in the single-layer
case. We showed that Matching-ML-Subgraph is solvable in polynomial time in
the two-layer case, whereas it is W[1]-hard when parameterized by k for three or
more layers. Considering acyclic subgraphs Agrawal et al. [1] also showed special-
ized algorithms for the two-layer case. Thus, it would be interesting to systemati-
cally determine which subgraph detection problems become tractable in the two-
layer case and to identify problems that behave differently for two and three lay-
ers. Finally, in many applications the input graphs are directed. One of our hard-
ness results transfers directly to this case: The reduction from Multicolored
Biclique to Hamiltonian-ML-Subgraph (Theorem 3) can be easily adapted to
yield directed acyclic graphs. Hence, for directed acyclic graphs the complexity
gap between the cases with one and two layers is even bigger because finding a
longest path in single-layer directed acyclic graphs is polynomial-time solvable.
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Abstract. Roughly speaking, an (n, (r, s))-Cover Free Family (CFF) is
a small set of n-bit strings such that: “in any d := r+s indices we see all
patterns of weight r”. CFFs have been of interest for a long time both in
discrete mathematics as part of block design theory, and in theoretical
computer science where they have found a variety of applications, for
example, in parametrized algorithms where they were introduced in the
recent breakthrough work of Fomin, Lokshtanov and Saurabh [16] under
the name ‘lopsided universal sets’.

In this paper we give the first explicit construction of cover-free fam-
ilies of optimal size up to lower order multiplicative terms, for any r
and s. In fact, our construction time is almost linear in the size of the
family. Before our work, such a result existed only for r = do(1), and
r = ω(d/(log log d log log log d)).

As a sample application, we improve the running times of parame-
terized algorithms from the recent work of Gabizon, Lokshtanov and
Pilipczuk [18].

1 Introduction

The purpose of this paper is to give an explicit almost optimal construction of
cover free families [20]. Before giving a formal definition, let us describe the
special case of group testing. The problem of group testing was first presented
during World War II and described as follows [10,26]: Among n soldiers, at
most s carry a fatal virus. We would like to blood test the soldiers to detect
the infected ones. Testing each one separately will give n tests. To minimize the
number of tests we can mix the blood of several soldiers and test the mixture. If
the test comes negative then none of the tested soldiers are infected. If the test
comes out positive, we know that at least one of them is infected. The problem
is to come up with a small number of tests.

To obtain a non-adaptive algorithm for this problem, a little thought shows
that what is required is a set of tests such that for any subset T of s soldiers, and
any soldier i /∈ T , there is a test including soldier i, and precluding all soldiers
in T . Let d = s + 1. Viewing a test as a characteristic vector a ∈ {0, 1}n of the
soldiers it includes, the desired property is equivalent to the following. Find a
small set F ⊆ {0, 1}n such that for every 1 ≤ i1 < i2 < · · · < id ≤ n, and every
1 ≤ j ≤ d, there is a ∈ F such that aij = 1 and aik = 0 for all k �= j.

c© Springer International Publishing AG 2017
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1.1 Cover-Free Families

We can view F described above as a set of strings such that “in any d indices
we see all patterns of weight one”. We can generalize this property by choosing
an integer 1 ≤ r < d and requesting to see “in any d indices all patterns of
weight r”.

Definition 1 (Cover-Free Family). Fix positive integers r, s, n with r, s < n
and let d := r + s. An (n, (r, s))-Cover Free Family (CFF) is a set F ⊆ {0, 1}n

such that for every 1 ≤ i1 < i2 < · · · < id ≤ n and every J ⊂ [d] of size |J | = r
there is a ∈ F such that aij = 1 for j ∈ J and aik = 0 for k /∈ J .

We will always assume r ≤ d/2 (and therefore r ≤ s): If not, construct an
(n, (s, r)) -CFF and take the set of complement vectors.

We note that the definition of CFFs usually given is a different equivalent
one which we now describe. Given an (n, (r, s))-CFF F , denote N = |F| and
construct the N × n boolean matrix A whose rows are the elements of F . Now,
let X be a set of N elements and think of the columns of A as characteristic
vectors of subsets, which we will call blocks, B ⊆ X. That is, if we denote by
B = {B1, . . . , Bn} the set of blocks corresponding to these columns, then A is the
incidence matrix of B, i.e. the i’th element of X is in Bj if and only if Ai,j = 1.

For this view, the CFF property of F implies the following: For any blocks
B1, . . . , Br ∈ B and any other s blocks A1, . . . , As ∈ B (distinct from the B’s),
there is an element of X contained in all the B’s but not in any of the A’s, i.e.

r⋂

i=1

Bi �⊆
s⋃

j=1

Aj .

This property is the usual way to define CFFs [20].

Notation: Let us denote by N(n, (r, s)) the minimal integer N such that there
exists an (n, (r, s))-CFF F of size |F| = N .

1.2 Previous Results

It is known that, [32], N(n, (r, s)) ≥ Ω(N(r, s) · log n) where

N(r, s) :=
d
(
d
r

)

log
(
d
r

) .

Using the union bound it is easy to show that for d = r + s = o(n), r ≤ s, we
have

N(n, (r, s)) ≤ O

(√
r log

(
d

r

)
· N(r, s) · log n

)
.

D’yachkov et al.’s breakthrough result, [14], implies that for s, n → ∞
N(n, (r, s)) = Θ (N(r, s) · log n) . (1)



142 N.H. Bshouty and A. Gabizon

The two above bounds are non-constructive.
Before proceeding to describe previous results and ours, we introduce some

convenient terminology:
We will think of the parameter d = r + s as going to infinity and always use

the notation o(1) for a term that is independent of n, and goes to 0 as d �→ ∞.
We say an (n, (r, s))-CFF F is almost optimal, if its size N = |F| satisfies

N = N(r, s)1+o(1) · log n =
dr+1+o(1) log n if r = O(1)
(

d
r

)r+o(r)
log n if r = ω(1), r = o(d)

2H2(r/d)d+o(d) log n if r = O(d)
.

where H2(x) is the binary intopy function.
We say that such F can be constructed in linear time if it can be constructed

in time O(N(r, s)1+o(1) ·log n·n). In this terminology, our goal is to obtain almost
optimal CFFs that are constructible in linear time.

Let us first consider the case of constant r. It is not hard to see that in this
case an (n, (r, s))-CFF F of size dr+1 log n is almost optimal by our definition
(and in fact exceeds the optimal size in (2) only by a multiplicative log d factor).
Bshouty [8] constructs F of such size in linear time and thus solves the case of
constant r. In fact, calculation shows that for any r = do(1), F of size

N = 2O(r) · dr+1 · log n

is almost optimal. Bshouty [7,8] constructs such F in linear time for any r = o(d).
We proceed to the case of larger r. It follows from [31], that for an infinite

sequence of integers n, an (n, (r, s))-CFF of size

M = O
(
(rd)log

∗ n log n
)

can be constructed in polynomial time. This was the first nontrivial non-optimal
construction. Fomin et al. [16] construct an (n, (r, s))-CFF of size

(
d

r

)
2O( d

log log(d) ) log n (2)

in linear time. This is almost optimal when r = ω (d/(log log d log log log d)). To
the best of our knowledge there is no explicit construction of almost optimal
(n, (r, s))-CFFs when do(1) < r < ω(d/(log log d log log log d).

Note that in this range (and even for r = ω(1) and r = o(d)), F is almost
optimal if and only if it has size

N =
(

d

r

)1+o(1)

log n =
(

d

r

)r(1+o(1))

· log n.

Gabizon et al. [18] made a significant step for general r and constructed an
(n, (r, s))-CFF of size O((d/r)2·r ·2O(r) ·log n) in linear time. This is quadratically
larger than optimal.
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1.3 New Result

As mentioned before, there is no explicit construction of almost optimal
(n, (r, s))-CFFs when do(1) < r < ω(d/(log log d log log log d) and the result of
[18] is quadratically larger than optimal. In this paper we close this quadratic
gap and give an explicit construction of an almost optimal (n, (r, s))-CFF for all
r and s. Our main result is

Theorem 1. Fix any integers r < s < d with d = r + s. There is an almost
optimal (n, (r, s))-CFF, i.e., of size

N(r, s)1+o(1) · log n,

that can be constructed in linear time. That is, in time O(N(r, s)1+o(1) ·n · log n).

2 Applications of Result

2.1 Application to Learning Hypergraphs

Let Gs,r be a set of all labeled hypergraphs of rank at most r (the maximum
size of an edge e ⊆ V in the hypergraph) on the set of vertices V = {1, 2, . . . , n}
with at most s edges. Given a hidden Sperner hypergraph1 G ∈ Gs,r, we need
to identify it by asking edge-detecting queries. An edge-detecting query QG(S),
for S ⊆ V is: Does S contain at least one edge of G? Our objective is to non-
adaptively learn the hypergraph G by asking as few queries as possible.

This problem has many applications in chemical reactions, molecular biology
and genome sequencing, where deterministic non-adaptive algorithms are most
desirable. In chemical reactions, we are given a set of chemicals, some of which
react and some which do not. When multiple chemicals are combined in one test
tube, a reaction is detectable if and only if at least one set of the chemicals in
the tube reacts. The goal is to identify which sets react using as few experiments
as possible. The time needed to compute which experiments to do is a secondary
consideration, though it is polynomial for the algorithms we present. See [3]
and references within for more details and many other applications in molecular
biology.

The above hypergraph Gs,r learning problem is equivalent to the problem of
exact learning a monotone DNF with at most s monomials (monotone terms),
where each monomial contains at most r variables (s-term r-MDNF) from mem-
bership queries [1,4]. A membership query, for an assignment a ∈ {0, 1}n returns
f(a) where f is the hidden s-term r-MDNF.

The non-adaptive learnability of s-term r-MDNF was studied in [9,11,17,
24,25,33]. All the algorithms are either deterministic algorithms that uses non-
optimal constructions of (n, (s, r))-CFF or randomized algorithms that uses ran-
domized constructions of (n, (s, r))-CFF. Our construction in this paper gives,
for the deterministic algorithm, a better query complexity and changes the ran-
domized algorithm to deterministic. Recently, our construction is used in [3] to
give a polynomial time almost optimal algorithm for learning Gs,r.
1 The hypergraph is Sperner hypergraph if no edge is a subset of another. If it is not

Sperner hypergraph then learning is not possible.
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2.2 Application to r-Simple k-Path

Gabizon et al. [18] recently constructed deterministic algorithms for parame-
trized problems with ‘relaxed disjointness constraints’. For example, rather than
searching for a simple path of length k in a graph of n vertices, we can search
for a path of length k where no vertex is visited more than r times, for some
‘relaxation parameter’ r. We call the problem of deciding whether such a path
exists r-Simple k-Path. Abasi et al. [2] were the first to study r-Simple k-Path
and presented a randomized algorithm running in time O∗(r2k/r). What is per-
haps surprising, is that the running time can significantly improve as r grows.
Derandoming the result of [2,18] obtained a deterministic algorithm for r-Simple
k-Path with running time O∗(r12k/r · 2O(k/r)). At the core of their derandom-
ization is the notion of a ‘multiset separator’ - a small family of ‘witnesses’ for
the fact that two multisets do not ‘intersect too much’ on any particular ele-
ment. How small this family of witnesses can be in turn depends on how small
an (n, (2k/r, k −2k/r))-CFF one can construct (details on these connections are
given in full paper). Plugging in our new construction into the machinery of [18],
we get

Theorem 2. r-Simple k-Path can be solved in deterministic time
O(r8k/r+o(k/r) · 2O(k/r) · kO(1) · n3 · log n).

For example, when both k/r and r tend to infinity, we get running time
O∗(r8k/r+o(k/r)) and [18] get O∗ (r12k/r+o(k/r)).

In a well-known work, Koutis [21] observed that practically all parametrized
problems can be viewed as special cases of ‘multilinear monomial detection’. [18]
also studied the relaxed version of this more general problem: Given an arith-
metic circuit C computing an n-variate polynomial f ∈ Z[X1, . . . , Xn], determine
whether f contains a monomial of total degree k and individual degree at most r.
We call this problem (r, k)-Monomial Detection. [18] define such a circuit C
to be non-canceling if it contains only variables at its leaves (i.e., no constants),
and only addition and multiplication gates (i.e., no substractions). [18] showed
that for non-canceling C, (r, k)-Monomial Detection can be solved in time
O∗(|C| · r18k/r · 2O(k/r)). We obtain

Theorem 3. Given a non-canceling arithmetic circuit C computing f ∈ Z[X1,
. . . , Xn], (r, k)-Monomial Detection can be solved in deterministic time
O(|C| · r12k/r+o(k/r) · 2O(k/r) · kO(1) · n3 · log n).

Organization of Paper

In Sect. 3 we give an informal description of our CFF construction. In Sect. 4
we give a simple construction that proves Theorem 1 for any log2 d ≤ r ≤
d/(log log d)ω(1). In the full paper we close the gap and give the proof for
d/(log d)ω(1) ≤ r ≤ d/ω(1).
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3 Proof Overview

Our construction is essentially a generalization of [18] allowing a more flexible
choices of parameters. For simplicity, we first describe the construction of [18]
and then explain our improvements.

To illustrate the ideas in a simple way, the following ‘adaptive’ viewpoint will
be convenient: We are given two disjoint subsets C,D ⊆ [n] of sizes |C| = r and
|D| = s. We wish to divide [n] into two separate buckets such that all elements
of C fall into the first, and all elements of D fall into the second. Of course the
point in CFFs is that we do not know C and D in advance. However, the number
of different possibilites for the division that will come up in the process will be
a bound on the size of an analogous (n, (r, s))-CFF- which will contain a vector
a ∈ {0, 1}n corresponding to each way of separating [n] into two buckets that
came up in the adpative process.

As a first step we use a perfect hash function h to divide [n] into r buckets
such that each bucket contains exactly one element of C. Using a construction
of Naor et al. [28], h can be chosen from a family of size 2O(r) · log n. Let us
call these buckets B1, . . . , Br. Now, suppose that we knew, for each i ∈ [r], the
number of elements si from D that fell into bucket Bi. In that case we could use
an (n, (1, si))-CFF Fi to separate the element of C in Bi from the si elements
of D, and put each in the correct final bucket.

We have such Fi of size c ·s2i · log n for universal constant c. Thus, the number
of different choices in all buckets is

∏r
i=1 c · s2i · log n ≤ cr · (s/r)2r · logr n, as the

product of the si’s is maximized when s1 = . . . sr = s/r. Furthermore, [18] show
this can be improved to roughly (s/r)r · log n ≤ (d/r)r · log n where d = r + s.
This is done using the hitting sets for combinatorial rectangles of Linial et al.
[22] (we do not go into details on this stage here). Of course, we do not know
the si’s. However, it is not too costly to simply guess them! Or rather, try all
options: The number of choices for non-negative integers s1, . . . , sr such that
s1 + . . . + sr = s is at most

(
d − 1
r − 1

)
≤

(
d

r

)
≤ (ed/r)r.

Combining all stages, this gives us an (n, (r, s))-CFF of size roughly
(d/r)2r+O(1) · log n. To get an almost optimal construction, we need to get the
2 in the exponent down to a 1. We achieve this by reducing the cost of the
‘guessing stage’. Instead of r buckets, we begin by dividing [n] into k buckets for
some k = o(r), such that every bucket will contain r/k elements of C. This is
done using splitters [28]. For concreteness, think of k = r/ log log d. (In the final
construction we need to choose k more delicately). Now as we only have k si’s,
there will be less possibilites to go over such that s1 + . . . + sk = s - specifically
less than (ed/k)k. On the other hand, our task in each bucket is now more costly
- we need to separate r/k elements of C from si elements of D, rather than just
one element of C. A careful choice of parameters show this process can be done
while going over at most (d/r)1+o(1) options for the partition into two buckets.
There are now two main technical issues left to deal with.
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– The splitter construction of [28] was not analyzed as being almost-linear time,
but rather, only polynomial time. We give a more careful analysis of it’s
runtime.

– We need to generalize a component from the construction of [18], into what
we call “multi-CFFs”. Roughly speaking, this is a small set of strings of length
n · � that are ‘simultaneously a CFF on each n-bit block’. That is, if we think
of the string as divided into � blocks of length n, and wish to see in each block
a certain pattern of weight ri in some subset of di indices of that block, there
will be one string in the multi-CFF that simultaneously exhibits all patterns.
We construct a small multi-CFF using a combination of “dense separating
hash functions” and the hitting sets for combinatorial rectangles of [22]. See
the full paper for details.

4 The First Construction

In this section we give the first construction.

4.1 Preliminary Results for the First Construction

We begin by giving some definitions and preliminary results that we will need
for our first construction. The results in this subsection are from [8,28].

Let n, q and d be integers. Let F be a set of boolean functions f : [q]d →
{0, 1}. Let H be a family of functions h : [n] → [q]. We say that H is an
(n,F)-restriction family ((n,F)-RF) if for every {i1, . . . , id} ⊆ [n], 1 ≤ i1 <
i2 < · · · < id ≤ n and every f ∈ F there is a function h ∈ H such that
f(h(i1), . . . , h(id)) = 1.

We say that a construction of an (n,F)-restriction family H is a linear time
construction, if it runs in time Õ(|H| · n) = |H| · n · poly(log |H|, log n).

Let H be a family of functions h : [n] → [q]. For d ≤ q we say that H is
an (n, q, d)-perfect hash family ((n, q, d)-PHF) if for every subset S ⊆ [n] of size
|S| = d there is a hash function h ∈ H such that h|S is injective (one-to-one) on
S, i.e., |h(S)| = d. Obviously, an (n, q, d)-PHF is an (n,F)-RF when F = {f},
for some f : [q]d → {0, 1} satisfying f(σ1, . . . , σd) = 1 iff σ1, . . . , σd are distinct.

In [8] Bshouty proved

Lemma 1. Let q be a power of prime. If q > 4(d(d − 1)/2 + 1) then there is a
linear time construction of an (n, q, d)-PHF of size O

(
d2 log n/log(q/d2)

)
.

The following is a folklore result

Lemma 2. Let F be a set of boolean functions f : [q]d → {0, 1}. If there
is a linear time construction of an (m,F)-RF where m > 4(d(d − 1)/2 + 1)
of size s then there is a linear time construction of an (n,F)-RF of size
O

(
sd2 log n/log(m/d2)

)
.

Proof. Let H1 be an (m,F)-RF and let H2 be the (n,m, d)-PHF constructed in
Lemma 1. Then it is easy to see that H1(H2) := {h1(h2) | h2 ∈ H2, h1 ∈ H1} is
an (n,F)-RF. �
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Another restriction family that will be used here is splitters [28]. An (n, r, k)-
splitter is a family of functions H from [n] to [k] such that for all S ⊆ [n] with
|S| = r, there is h ∈ H that splits S perfectly, i.e., for all j ∈ [k], |h−1(j) ∩ S| ∈
{�r/k�, �r/k�}. Obviously, an (n, q, d)-PHF is an (n, d, q)-splitter. Define

σ(r, k) :=
(

2πr

k

)k/2

ek2/(12r). (3)

From the union bound it can be shown that there exists an (n, r, k)-splitter of size
O(

√
rσ(r, k) log n), [28]. Naor et al. [28], use the r-wise independent probability

space to construct an (m, r, k)-splitter. They show
Lemma 3. For k ≤ r, an (m, r, k)-splitter of size O(

√
rσ(r, k) log m) can be

constructed in time O
(√

r · σ(r, k)m2r log m
)
.

When k = ω(
√

r), Naor et al. in [28], constructed an (n, r, k)-splitter of size
O(σ(r, k)1+o(1) log n) in polynomial time. We here show that the same construc-
tion can be done in linear time. They first construct an ((r/z)2, r/z, k/z)-splitter
using Lemma 3 where z = Θ(r log k/(k log(2r/k))). They then use Lemma 2 to
construct an (r2, r/z, k/z)-splitter. Then compose z pieces of the latter to con-
struct an (r2, r, k)-splitter and then again use Lemma2 to construct the final
(n, r, k)-splitter.

Note here that we assume that z|k|r. The result can be extended to any z, k
and r.

We now prove
Lemma 4. For k = ω(

√
r) and z = 16r log k/(k log(4r/k)). An (n, r, k)-splitter

of size rO(z)σ(r, k) log n = σ(r, k)1+o(1) log n can be constructed in time O(σ
(r, k)1+o(1) log n).

Proof. It is easy to see that (see the full paper) z is a monotonic decreas-
ing function in k and 16

√
r ≥ z ≥ 8 log r for

√
r ≤ k ≤ r. First we con-

struct an ((r/z)2, r/z, k/z)-splitter using Lemma 3. By Lemma 3, this takes time
O(

√
r/z ·σ(r/z, k/z)((r/z)2)2r/z log(r/z)) = o(σ(r, k)). By Lemma 3, the size of

this splitter is O(
√

r/z · σ(r/z, k/z) log(r/z)). By Lemma 2, using the above
splitter, an (r2, r/z, k/z)-splitter H of size O((r/z)2.5σ(r/z, k/z) log(r/z) log r)
can be constructed in linear time. Now, for every choice of 0 = i0 < i1 <
i2 < · · · < iz−1 < iz = r2 and h0, h1, . . . , hz−1 ∈ H define the function
h(j) = ht(j) + (k/z)t if it < j ≤ it+1. It is easy to see that this gives an
(r2, r, k)-splitter. The splitter can be constructed in linear time and its size
is

(
r2

z−1

) (
c1(r/z)2.5σ(r/z, k/z) log(r/z) log r

)z = rc2zσ(r, k) for some constants
c1 and c2. Now by Lemma 2, an (n, r, k)-splitter can be constructed in time
O(r2(rc2zσ(r, k)) log n) = rO(z)σ(r, k) log n = σ(r, k)1+o(1) log n. �
The following is from [8]
Lemma 5. There is an (n, (r, s))-CFF of size

O

(
rs

(
2rs

r

)
log n

)

that can be constructed in linear time.
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4.2 Construction I

Let r ≤ s be integers and d = r + s. Obviously, 1 ≤ r ≤ d/2 and d/2 ≤ s ≤ d.
We may also assume that

r > poly(log d) = do(1). (4)

See the table in Sect. 1.2 and the discussion following it.
We first use Lemma 2 to reduce the problem to constructing a (q, (r, s))-CFF

for q = O(d3). We then do the following. Suppose 1 ≤ i1 < i2 < · · · < id ≤ q and
let (ξ1, . . . , ξd) ∈ {0, 1}d with r ones (and s zeros) that is supposed to be assigned
to (i1, i2, · · · , id). Let ij1 , . . . , ijr be the entries for which ξj1 , . . . , ξjr are equal
to 1. The main idea of the construction is to first deal with entries ij1 , . . . , ijr
that are assigned to one and distribute them equally into k buckets, where k
will be determined later. This can be done using a (q, r, k)-splitter. Each bucket
will contains r/k ones and an unknown number of zeros. We do not know how
many zeros, say di − (r/k), fall in bucket i but we know that d1 + · · · + dk = d.
That is, bucket i contains di indices of i1, i2, · · · , id for which r/k of them are
ones. We take all possible d1 + · · · + dk = d and for each bucket i construct
(q, di − (r/k), r/k)-CFF. Taking all possible functions in each bucket for each
possible d1 + · · · + dk = d solves the problem.

Let H1 be an (n, q, d)-PHF such that d3 < q ≤ 2d3 is a power of prime and
d = r + s. The following follows from Lemma 2.

Lemma 6. If H is a (q, (r, s))-CFF then {h1(h) |h1 ∈ H1, h ∈ H} is (n, (r, s))-
CFF of size |H| · |H1|.

We now construct a (q, (r, s))-CFF. Let H2 be a (q, r, k)-splitter where k < r
will be determined later. Let H ′

3[d
′] and H ′′

3 [d′] be a (q, d′ − �r/k�, �r/k�)-CFF
and (q, d′ − �r/k�, �r/k�)-CFF respectively and define H3[d′] := H ′

3[d
′] ∪ H ′′

3 [d′]
where d ≥ d′ ≥ �r/k�. For every (h1, . . . , hk) ∈ H3[d1] × · · · × H3[dk] where
d1 + · · · + dk = d and g ∈ H2 define the function Hh1,...,hk,g(i) = hg(i)(i).

We first prove

Lemma 7. The set of all Hh1,...,hk,g where (h1, . . . , hk) ∈ H3[d1] × · · · × H3[dk]
for some d1 + · · · + dk = d and g ∈ H2 is a (q, (r, s))-CFF.

Proof. Consider any 1 ≤ i1 < i2 < · · · < id ≤ q and any (ξ1, . . . , ξd) of weight r.
Let S = {i1, . . . , id}. Consider I = {ij | ξj = 1}. Since H2 is a (q, r, k)-splitter
there is g ∈ H2 such that |g−1(j) ∩ I| ∈ {�r/k�, �r/k�} for all j = 1, . . . , k. Let
dj = |g−1(j) ∩ S| for j = 1, . . . , k. Then d1 + d2 + · · · + dk = d. Since H3[dj ] is a
(q, dj − �r/k�, �r/k�)-CFF and (q, dj − �r/k�, �r/k�)-CFF, there is hj ∈ H3[dj ]
such that hj(g−1(j) ∩ I) = {1} and hj(g−1(j) ∩ (S\I)) = {0}.

Now, if ξ� = 1 then i� ∈ I. Suppose g(i�) = j. Then i� ∈ g−1(j) ∩ I and
Hh1,...,hk,g(i�) = hj(i�) ∈ hj(g−1(j) ∩ I) = {1}. If ξ� = 0 then i� ∈ S\I. Suppose
g(i�) = j. Then i� ∈ g−1(j) ∩ (S\I) and Hh1,...,hk,g(i�) = hj(i�) ∈ hj(g−1(j) ∩
(S\I)) = {0}.



Almost Optimal Cover-Free Families 149

4.3 Size of Construction I

We now analyze the size of the construction. We will use c1, c2, . . . for constants
that are independent of r, s and n.

Let d3 < q ≤ 2d3 be a power of prime. By Lemmas 6 and 7 the size of the
construction is

N := |H1| · |H2| ·
∣∣∣∣∣

⋃

d1+···+dk=d

H3[d1] × · · · × H3[dk]

∣∣∣∣∣

where H1 is an (n, q, d)-PHF, H2 is a (q, r, k)-splitter and H3[d′] is a (q, d′ −
�r/k�, �r/k�)-CFF and (q, d′ − �r/k�, �r/k�)-CFF.

Let z = 16r log k/(k log(4r/k)). By Lemmas 1, 4, 5 we have

N ≤ c1
d2 log n

log d
· rO(z)σ(r, k)(log d) ·

∑

d1+···+dk=d

k∏

i=1

c2
dir

k

(
2di�r/k�

�r/k�

)
log d

≤ c1d
2rO(z)

(
2πr

k

)k/2

ek
2/(12r)(log n) ·

ck3

(
r log d

k

)k ∑

d1+···+dk=d

k∏

i=1

(2edi)
r/k+1di (5)

≤ ck4d2rO(z)ek
2/(12r)

(
r3 log2 d

k3

)k/2

(2e)r(log n)
∑

d1+···+dk=d

k∏

i=1

d
r/k+2
i

≤ ck5d2rO(z)ek
2/(12r)

(
r3 log2 d

k3

)k/2

(2e)r(log n)

(
d

k

)k

max
d1+···+dk=d

(
k∏

i=1

di

)r/k+2

(6)

≤ ck6d2rO(z)ek
2/(12r)

(
r3 log2 d

k3

)k/2

(2e)r
(

d

k

)r+3k

log n (7)

≤ ck6d2rO(z)ek
2/(12r)

(
r3d6 log2 d

k9

)k/2(
2er

k

)r (
d

r

)r

log n

(5) follows from (3) and the fact that
(
a
b

) ≤ (ea/b)b. (6) follows from the
fact that the number of k-tuples (d1, . . . , dk) such that d1 + · · · + dk = d
is

(
d+k−1

k−1

) ≤ ck(d/k)k for some constant c. (7) follows from the fact that
maxd1+···+dk=d

∏k
i=1 di = (d/k)k.

In summary, we have

N ≤ ck
6d

2rO(z)ek2/(12r)

(
r3d6 log2 d

k9

)k/2 (
2er

k

)r (
d

r

)r

log n.

Now assume r > log2 d (see (4)) and let k := r/ log log d.
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Since

z log r =
16r log k log r

k log(4r/k)
≤ c7

log2 r log log d

log log log d
= o(r),

k2

12r
=

r

12(log log d)2
= o(r),

(
r3d6 log2 d

k9

)k/2

= cr
8

(
d

r

)3k

= cr
8

(
d

r

)o(r)

,

and d/r ≥ 2, we have,

N ≤ (c9 log log d)r (d/r)r(1+o(1)) log n.

This is (
d

r

)r(1+o(1))

log n = N(r, s)1+o(1) log n

when log2 d ≤ r ≤ d/(log log d)ω(1).
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Abstract. A complete weighted graph G = (V, E, w) is called Δβ-
metric, for some β ≥ 1/2, if G satisfies the β-triangle inequality, i.e.,
w(u, v) ≤ β · (w(u, x) + w(x, v)) for all vertices u, v, x ∈ V . Given a Δβ-
metric graph G = (V, E, w) and a center c ∈ V , and an integer p, the
Δβ-Star p-Hub Center Problem (Δβ-SpHCP) is to find a depth-2
spanning tree T of G rooted at c such that c has exactly p children and
the diameter of T is minimized. The children of c in T are called hubs. For
β = 1, Δβ-SpHCP is NP-hard. (Chen et al., COCOON 2016) proved that
for any ε > 0, it is NP-hard to approximate the Δβ-SpHCP to within a
ratio 1.5− ε for β = 1. In the same paper, a 5

3
-approximation algorithm

was given for Δβ-SpHCP for β = 1. In this paper, we study Δβ-SpHCP
for all β ≥ 1

2
. We show that for any ε > 0, to approximate the Δβ-

SpHCP to a ratio g(β) − ε is NP-hard and we give r(β)-approximation
algorithms for the same problem where g(β) and r(β) are functions of β.

If β ≤ 3−√
3

2
, we have r(β) = g(β) = 1, i.e., Δβ-SpHCP is polynomial

time solvable. If 3−√
3

2
< β ≤ 2

3
, we have r(β) = g(β) = 1+2β−2β2

4(1−β)
.

For 2
3

≤ β ≤ 1, r(β) = min{ 1+2β−2β2

4(1−β)
, 1 + 4β2

5β+1
}. Moreover, for β ≥ 1,
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we have r(β) = min{β+ 4β2−2β
2+β

, 2β+1}. For β ≥ 2, the approximability
of the problem (i.e., upper and lower bound) is linear in β.

1 Introduction

The hub location problems have various applications in transportation and
telecommunication systems. Variants of hub location problems have been defined
and well-studied in the literatures (see the two survey papers [1,15]). Suppose
that we have a set of demand nodes that want to communicate with each other
through some hubs in a network. A single allocation hub location problem requests
each demand node can only be served by exactly one hub. Conversely, if a demand
node can be served by several hubs, then this kind of hub location problem
is called multi-allocation. Classical hub location problems ask to minimize the
total cost of all origin-destination pairs (see e.g., [27]). However, minimizing the
total routing cost would lead to the result that the poorest service quality is
extremely bad. In this paper, we consider a single hub location problem with
min-max criterion, called Δβ-Star p-Hub Center Problem which is different
from the classic hub location problems. The min-max criterion is able to avoid
the drawback of minimizing the total cost.

A complete weighted graph G = (V,E,w) is called Δβ-metric, for some
β ≥ 1/2, if the distance function w(·, ·) satisfies w(v, v) = 0, w(u, v) = w(v, u),
and the β-triangle inequality, i.e., w(u, v) ≤ β ·(w(u, x)+w(x, v)) for all vertices
u, v, x ∈ V . (If β > 1 then we speak about relaxed triangle inequality, and if
β < 1 we speak about sharpened triangle inequality.) Let u, v be two vertices in
a tree T . Use dT (u, v) to denote the distance between u, v in T . Define D(T ) =
maxu,v∈T dT (u, v) called the diameter of T . We give the definition of the Δβ-
Star p-Hub Center Problem as follows.

Δβ-Star p-Hub Center Problem (Δβ-SpHCP).
Input: A Δβ-metric graph G = (V,E,w), a center vertex c ∈ V , and a

positive integer p, |V | ≥ 2p + 1.
Output: A depth-2 spanning tree T ∗ rooted at c (called the central hub) such

that c has exactly p children (called hubs) and the diameter of T ∗,
D(T ∗), is minimized.

Here, we assume that the number of non-hubs is at least as many as the
number of hubs, i.e., |V | ≥ 2p + 1. The assumption |V | ≥ 2p + 1 is reasonable
because in real applications, a hub could be a post office or an airport, and a
non-hub could be a mail post, a customer, or a passenger.

The Δβ-SpHCP problem is a general version of the original Star p-Hub
Center Problem (SpHCP) since the original problem assumes the input
graph to be a metric graph, i.e., β = 1. We use SpHCP to denote the Δβ-
SpHCP for β = 1. Yaman and Elloumi [28] showed that SpHCP is NP-hard and
gave two integer programming formulations for the same problem. Liang [24]
showed that SpHCP does not admit a (1.25 − ε)-approximation algorithm for
any ε > 0 unless P = NP and gave a 3.5-approximation algorithm. Recently,
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Chen et al. [17] reduced the gap between the upper and lower bounds of approx-
imability of SpHCP. They showed that for any ε > 0, to approximate SpHCP
to a ratio 1.5 − ε is NP-hard and gave 2-approximation and 5

3 -approximation
algorithms for SpHCP.

The Single Allocation p-Hub Center Problem was introduced in [14,
26] which is similar to SpHCP with min-max criterion and well-studied in [16,18,
23,25]. The difference between the two problems is that the Single Allocation
p-Hub Center Problem assumes that hubs are fully interconnected. Thus,
for the Single Allocation p-Hub Center Problem, the communication
between hubs is not necessary to go through a specified central hub c.

If β = 1, Δβ-SpHCP is NP-hard and even NP-hard to have a (1.5 − ε)-
approximation algorithm for any ε > 0 [17]. In this paper, we investigate the
complexity of Δβ-SpHCP parameterized by β-triangle inequality. The motiva-
tion of this research for β < 1 is to investigate whether there exists a large sub-
classes of input instances of Δβ-SpHCP that can be solved in polynomial time
or admit polynomial-time approximation algorithms with a reasonable approx-
imation ratio. For β ≥ 1, it is an interesting issue to see whether there exists
a polynomial-time approximation algorithm with an approximation ratio linear
in β.

The well-known concept of stability of approximation [10,12,22] is used in
our study. The idea behind this concept is to find a parameter (characteris-
tic) of the input instances that captures the hardness of particular inputs. An
approximation algorithm is called stable with respect to this parameter, if its
approximation ratio grows with this parameter but not with the size of the
input instances. A nice example is the Traveling Salesman Problem (TSP) that
does not admit any polynomial-time approximation algorithm with an approx-
imation ratio bounded by a polynomial in the size of the input instance, but is
3
2 -approximable for metric input instances. Here, one can characterize the input
instances by their “distance” to metric instances. This can be expressed by the
β-triangle inequality for any β ≥ 1

2 .
In a sequence of papers [2,3,5,9–11,13], it was shown that one can partition

the set of all input instances of TSP into infinitely many subclasses according to
the degree of violation of the triangle inequality, and for each subclass one can
guarantee upper and lower bounds on the approximation ratio. Similar studies
were performed for the problem of constructing 2-connected spanning subgraphs
of a given complete graph whose edge weights obey the β-triangle inequality [6],
and for the problem of finding, for a given positive integer k ≥ 2 and an edge-
weighted graph G, a minimum k-edge- or k-vertex-connected spanning subgraph
[7,8], demonstrating that for these problems the β-triangle inequality can serve
as a measure of hardness of the input instances.

In Table 1, we list the main results of this paper. We prove that for any ε > 0,
to approximate Δβ-SpHCP to a ratio g(β) − ε is NP-hard where β ≥ 3−√

3
2 and

g(β) is a function of β. We give r(β)-approximation algorithms for Δβ-SpHCP.
If β ≤ 3−√

3
2 , we have r(β) = g(β) = 1, i.e., Δβ-SpHCP is polynomial time

solvable. If 3−√
3

2 < β ≤ 2
3 , we have r(β) = g(β). For 2

3 ≤ β ≤ 1, r(β) =
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Table 1. The main results where Δβ-SpHCP cannot be approximated within g(β) and
has an r(β)-approximation algorithm.

β Lower bound g(β) Upper bound r(β)

[ 1
2
, 3−√

3
2

] 1 1

( 3−√
3

2
, 2
3
] 1+2β−2β2

4(1−β)
1+2β−2β2

4(1−β)

[ 2
3
, 0.7737 . . .] 5β+1

4
1+2β−2β2

4(1−β)

[0.7737 . . . , 1] 5β+1
4

1 + 4β2

5β+1

[1, 2] β + 1
2

β + 4β2−2β
2+β

[2, ∞) β + 1
2

2β + 1

min{ 1+2β−2β2

4(1−β) , 1+ 4β2

5β+1} and g(β) = 5β+1
4 . Moreover, for β ≥ 1, we have r(β) =

min{β + 4β2−2β
2+β , 2β + 1} and g(β) = β + 1

2 . For β ≥ 2, the approximability of
the problem (i.e., upper and lower bound) is linear in β.

For a vertex v in a tree T , we use NT (v) to denote the set of vertices adjacent
to v in T and NT [v] = NT (v)∪{v}. Let f(v) be the parent of v in T and f(v) = v
if v is the root of T . Let T ∗ be an optimal solution of Δβ-SpHCP in a given β-
metric graph G = (V,E,w). For a non-hub x in T ∗, we use f∗(x) to denote the
hub in T ∗ that is adjacent to x. We use T̃ to denote the best solution among
all solutions in T where T is the collection of all solutions satisfying that all
non-hubs are adjacent to the same hub for Δβ-SpHCP in a given β-metric graph
G = (V,E,w).

We close this section with the following theorem. Due to the limitation of
space, we omit the proof.

Theorem 1. Let β > 3−√
3

2 . For any ε > 0, to approximate Δβ-SpHCP to a
factor g(β) − ε is NP-hard where

(i) g(β) = 1+2β−2β2

4(1−β) if 3−√
3

2 < β ≤ 2
3 ;

(ii) g(β) = 5β+1
4 if 2

3 ≤ β ≤ 1;
(iii) g(β) = β + 1

2 if β ≥ 1.

2 Polynomial Time Algorithms

In this section, we show that for 1
2 ≤ β ≤ 3−√

3
2 , Δβ-SpHCP can be solved in

polynomial time. Besides, we give polynomial time approximation algorithms
for Δβ-SpHCP for β > 3−√

3
2 . For 3−√

3
2 < β ≤ 2

3 , our approximation algorithm
achieves the factor that closes the gap between the upper and lower bounds of
approximability for Δβ-SpHCP.

Due to the limitation of space, we omit some proofs in this section.
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Lemma 1. Let 1
2 ≤ β < 1. Then the following statements hold.

(i) There exists a solution T̃ satisfying that all non-hubs are adjacent to the
same hub and D(T̃ ) ≤ max{1, 1+2β−2β2

4(1−β) } · D(T ∗).
(ii) There exists a polynomial time algorithm to compute a solution T such that

D(T ) = D(T̃ ).

According to Lemma 1, we obtain the following results.

Lemma 2. Let 1
2 ≤ β ≤ 0.7737 . . .. Then the following statements hold.

1. If β ≤ 3−√
3

2 , then Δβ-SpHCP can be solved in polynomial time.
2. If 3−√

3
2 < β ≤ 0.7737 . . ., there is a 1+2β−2β2

4(1−β) -approximation algorithm for
Δβ-SpHCP.

Proof. Let T ∗ denote an optimal solution of the Δβ-SpHCP problem. According
to Lemma 1, there is a polynomial time algorithm for Δβ-SpHCP to compute a
solution T such that D(T ) ≤ max{1, 1+2β−2β2

4(1−β) } · D(T ∗).

If β ≤ 3−√
3

2 , D(T ) ≤ max{1, 1+2β−2β2

4(1−β) } · D(T ∗) = D(T ∗).

If 3−√
3

2 < β ≤ 0.7737 . . .,

D(T ) ≤ max{1,
1 + 2β − 2β2

4(1 − β)
} · D(T ∗) =

1 + 2β − 2β2

4(1 − β)
· D(T ∗).

This completes the proof. ��

Lemma 3. Let 0.7737 . . . ≤ β ≤ 1. Then, there is a (1 + 4β2

5β+1 )-approximation
algorithm for Δβ-SpHCP.

Proof. It is not hard to see that Algorithm 1 runs in polynomial time. Let T ∗ be
an optimal solution of Δβ-SpHCP. In this lemma, we show that for 0.7737 . . . ≤
β ≤ 1, Algorithm 1 returns a solution T such that D(T ) ≤ (1 + 4β2

5β+1 ) · D(T ∗).
Let � be the largest edge cost in T ∗ with one end vertex as a hub and the other
end vertex as a non-hub. Note that both Algorithm APX1 and Algorithm APX2
guess all possible edges (y, z) to be the longest edge in T ∗ with y as a hub and z
as a non-hub. Let T1 and T2 be the best solutions returned by Algorithm APX1
and Algorithm APX2, respectively.

Claim 1. D(T1) ≤ D(T ∗) + 4β�.

Proof of Claim. We first show that for any two hubs u, v in T1, dT1(u, v) =
w(u, c) + w(v, c) ≤ D(T ∗). Let T ∗ be an optimal solution of Δβ-SpHCP. Let
f∗(u) and f∗(v) be the parents of u and v in T ∗ respectively.

If f∗(u) �= f∗(v), there are three cases.
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Algorithm 1. Approximation algorithm for Δβ-SpHCP (G, c).

(i) Run Algorithm APX1.
(ii) Run Algorithm APX2.
(iii) Return the best solution found by Algorithms APX1 and APX2.

Algorithm APX1

Guess the correct edge (y, z) where w(y, z) = � is the largest edge cost in an optimal
solution T ∗ with y as a hub and z as a non-hub. Let U := V \ {c} and h1 = y. Let
T1 be the tree found by the following steps and H be the set of children of c in T1.
Initialize H = ∅.
(i) Add edge (h1, c) in the tree T , let H := H ∪ {h1}, and let U := U \ {h1}.
(ii) For x ∈ U , if w(h1, x) ≤ �, add edges (x, h1) in T and let U := U \ {x}.
(iii) While i = |H| + 1 ≤ p and U �= ∅,

– choose v ∈ U , let hi = v, add edge (hi, c) in T , let U := U \ {v}, and let
H := H ∪ {hi};

– for x ∈ U , if w(x, hi) ≤ 2β�, then add edge (x, hi) in T and U := U \ {x}.
(iv) If |H| < p and U = ∅, we change the shape of T by selecting p − |H| vertices

closest to c from the second layer to be the children of c, call the new tree T1;
otherwise let T1 := T .

Algorithm APX2

Guess the correct edge (y, z) where w(y, z) = � is the largest edge cost in an optimal
solution T ∗ with y as a hub and z as a non-hub. Let T2 be the tree found by the
following steps.

(i) Let y be the child of c in T2.
(ii) Pick (p − 1) vertices {v1, v2, . . . , vp−1} closest to c from U \ {y, z}. Let NT2(c) =

{y, v1, v2, . . . , vp−1}.
(iii) Let all vertices in U \ {v1, v2, . . . , vp−1, y} be the children of y.

– Suppose that f∗(u) = c and f∗(v) �= u. Then

dT1(u, v) = w(u, c) + w(v, c) ≤ w(u, c) + w(c, f∗(v)) + w(f∗(v), v)
= dT ∗(u, v) ≤ D(T ∗).

– Suppose that f∗(u) = c and f∗(v) = u. Since w(u, v) ≤ 2β�, v is selected as a
hub in Step (iv) of Algorithm APX1. Since in Step (iv), the algorithm select
(p − |H|) vertices closest to c from the second layer as hubs, there exists y′

which is a hub in T ∗ and a non-hub in T1 satisfying w(y′, c) ≥ w(v, c). Thus,

dT1(u, v) = w(u, c) + w(v, c) ≤ w(u, c) + w(y′, c) = dT ∗(u, y′) ≤ D(T ∗).

– Suppose that f∗(u) �= c. Then

dT1(u, v) = w(u, c) + w(v, c)
≤ w(u, f∗(u)) + w(f∗(u), c) + w(c, f∗(v)) + w(f∗(v), v)
= dT ∗(u, v) ≤ D(T ∗).
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If f∗(u) = f∗(v) = c, dT1(u, v) = dT ∗(u, v) ≤ D(T ∗).
If f∗(u) = f∗(v) �= c, then at most one of u, v is selected as a hub in Step (iii)

of Algorithm APX1 since w(u, v) ≤ 2β�, or both u and v are selected as hubs in
Step (iv).

Suppose that u is selected as a hub in Step (iii) and and v is selected as a
hub in Step (iv). We see that in Step (iv), the algorithms select (p−|H|) vertices
closest to c from the second layer as hubs. Thus, there exists y′ which is a hub
in T ∗ and a non-hub in T1 satisfying w(y′, c) ≥ w(v, c). We obtain that

dT1(u, v) = w(u, c) + w(v, c) ≤ dT ∗(u, c) + w(y′, c) = dT ∗(u, y′) ≤ D(T ∗).

Suppose that both u, v are selected as hubs in Step (iv). We see that in
Step (iv), the algorithm selects (p − |H|) vertices closest to c from the second
layer as hubs. Thus, there exist y1, y2 which are hubs in T ∗ and non-hubs in T1

satisfying w(y1, c) ≥ w(u, c) and w(y2, c) ≥ w(v, c). We obtain that

dT1(u, v) = w(u, c) + w(v, c) ≤ w(y1, c) + w(y2, c) = dT ∗(y1, y2) ≤ D(T ∗).

Notice that each non-hub v in T1 is adjacent to a hub f(v) in T1 if w(v, f(v))
≤ 2β�.

Thus, for u, v in T1, dT1(u, v) ≤ D(T ∗)+4β� and D(T1) ≤ D(T ∗)+4β�. This
completes the proof of the claim. �
Claim 2. D(T2) ≤ max{D(T ∗), (D(T ∗) − �) + β(D(T ∗) − �)}.

Proof of Claim. Let T ∗ be an optimal solution. For a vertex v, use f∗(v) to
denote the parent of v in T ∗. Notice that Algorithm APX2 guesses all possible
edges (y, z) to be a longest edge in T ∗ with one end vertex as a hub and the other
end vertex as a non-hub. In the following we assume that w(y, z) = � is the largest
edge cost in T ∗ with y as a hub and z as a non-hub. Since Algorithm APX2 picks
(p − 1) vertices closest to c, y is a hub in both T ∗ and T2, and w(y, z) = �, we
see that for any hub v in T2, dT2(v, y) ≤ D(T ∗) − �.

For two non-hubs u, v in T2, we have the following three cases.

– f∗(u) = f∗(v) = y, we see that dT2(u, v) = dT ∗(u, v) ≤ D(T ∗).
– f∗(u) = y and f∗(v) �= y, we see that

dT2(u, v) = w(u, y)+w(v, y) ≤ �+β ·dT ∗(v, y) ≤ �+β · (D(T ∗)− �) ≤ D(T ∗).

– f∗(u) �= y and f∗(v) �= y, we see that

dT2(u, v) = w(u, y) + w(v, y) ≤ β · dT ∗(u, y) + β · dT ∗(v, y)
≤ 2β(D(T ∗) − �) ≤ (D(T ∗) − �) + β(D(T ∗) − �).

For a non-hub u and a hub v in T2, there are two cases.

– If f∗(u) = y, we see that

dT2(u, v) = w(u, y) + dT2(v, y) ≤ � + D(T ∗) − � = D(T ∗).
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– If f∗(u) �= y, we see that

dT2(u, v) = w(u, y) + dT2(v, y) ≤ β · (D(T ∗) − �) + (D(T ∗) − �).

For two hubs u, v in T2, u �= y and v �= y, we see that dT2(u, v) ≤ D(T ∗) since
y is a hub in T ∗ and Algorithm APX2 picks the other (p − 1) vertices closest to
c as hubs.

Thus, D(T2) ≤ max{D(T ∗), (D(T ∗) − �) + β(D(T ∗) − �)}. This completes
the proof of the claim. �

Notice that if �
D(T ∗) ≥ β

1+β , D(T2) = D(T ∗). Thus, the worst case approxi-

mation ratio happens when �
D(T ∗) < β

1+β .

If �
D(T ∗) < β

1+β , D(T2) ≤ D(T ∗)−�+β(D(T ∗)−�). We see that the approxi-

mation ratio of Algorithm 1 is r(β) = min{ D(T1)
D(T ∗) ,

D(T2)
D(T ∗)}. The worst case approx-

imation ratio of Algorithm 1 happens when D(T1) = D(T2), i.e.,

D(T ∗) + 4β� = (D(T ∗) − �) + β · (D(T ∗) − �)

We obtain that �
D(T ∗) = β

5β+1 . Thus,

r(β) = min{ D(T1)
D(T ∗) ,

D(T2)
D(T ∗)} ≤ min{1 + 4β2

5β+1 , 1 − β
5β+1 + β(1 − β

5β+1 )}
= 1 + 4β2

5β+1 .

This completes the proof. ��

In Lemma 4, we prove that if 1 ≤ β ≤ 2, Algorithm 1 is a (β + 4β2−2β
2+β )-

approximation algorithm for Δβ-SpHCP.

Lemma 4. Let 1 ≤ β ≤ 2. Then, there is a (β + 4β2−2β
2+β )-approximation algo-

rithm for Δβ-SpHCP.

If β ≥ 2, we give Algorithm 2 to solve Δβ-SpHCP and prove that Algorithm 2
is a (2β + 1)-approximation algorithm in Lemma5.

Lemma 5. Let β ≥ 2. Then, there is a (2β + 1)-approximation algorithm for
Δβ-SpHCP.

Proof. Let T ∗ be an optimal solution of Δβ-SpHCP. Let (c, q) be the longest
edge incident to c in T ∗, w(c, q) = �0, i.e., �0 = maxv∈NT∗ (c){w(v, c)}. Let �1
and �2 be the largest and second largest edge costs in T ∗ with one end vertex as a
hub and the other end vertex as a non-hub. Note that it is possible that �1 = �2.
Our algorithm is presented as Algorithm 2. Line 1 of Algorithm 2 guesses the
values of �0, �1 and �2. We certainly do not know their exact values. However,
since each of them has only polynomially many possible values, we can run the
algorithm for all of their possible values and take the best solution. Therefore,
in the following we assume that we know �0, �1 and �2. It is easy to see that
D(T ∗) ≥ �0 + �1 and D(T ∗) ≥ �1 + �2.
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Algorithm 2. Approximation algorithm for Δβ-SpHCP (G, c).

1. Guess the correct values of �0, �1 and �2. Their meanings are provided in the proof.
2. H ← {v ∈ V \ {c} | w(v, c) ≤ �0}.
3. Create an instance J of the k-center problem with forbidden centers, in which

V \ {c} is the set of input vertices, H is the set of allowed centers, k = p, and
the distance function (satisfying the β-triangle inequality) is the restriction of w
to V \ {c}.

4. Apply the greedy approximation algorithm for the k-center problem with forbidden
centers (Algorithm3), to obtain an approximate solution of J . Assume that H∗ ⊆
H is the set of centers opened in the solution.

5. return the solution that opens H∗ as the set of p hubs and assigns each vertex in
V \ {c} to its nearest hub in H∗.

Algorithm 3. Approximation algorithm for k-center with forbidden centers.

1. // Let C be the input vertex set, C′ ⊆ C be the set of allowed centers, and w be the
distance function on C satisfying the β-triangle inequality. Assume w.l.o.g. that
k ≤ |C′|.

2. R ← C; S ← ∅.
3. while R �= ∅ and |S| < k do
4. Choose an arbitrary vertex v ∈ C′ ∩ R.
5. B(v) ← {u ∈ R | w(u, v) ≤ β(�1 + �2)}.
6. R ← R \ B(v); S ← S ∪ {v}.
7. end
8. if |S| < k and R = ∅ then
9. select an arbitrary vertex set S′ ⊆ (C′ \ S) of size k − |S|; S ← S ∪ S′.

10. return S

Let T denote the solution returned by Algorithm 2. We next prove that
Algorithm 2 is indeed a (2β + 1)-approximation algorithm for Δβ-SpHCP by
establishing an upper bound of D(T ). According to our choice of �0, the set
H defined in line 2 contains all hub nodes in the optimal solution NT ∗(c), i.e.,
NT ∗(c) ⊆ H. In Line 3, we create an instance J of the k-center problem with
forbidden centers. This problem is defined as follows: The input consists of a
set C of demand points in a space satisfying the β-triangle inequality, a set
C ′ ⊆ C of allowed centers, and an integer k. The goal is to open k centers in C ′

such that the maximum distance between any vertex in C and its nearest center
among the k opened centers is minimized. This problem is a generalization of
the ordinary k-center problem (in which C ′ = C), and is a special case of the
k-supplier problem (in which C ′ may not be a subset of C) [19–21]. There is
a simple greedy approximation algorithm for this problem, which is presented
in Algorithm 3. Its analysis is standard and is similar to that of the traditional
k-center problem (see [19–21]), and thus is omitted here.
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Hence, by applying the greedy approximation algorithm (Algorithm 3) to
implement line 4 of Algorithm 2, we obtain a solution H∗ of J with objective
value at most β(�1 + �2), that is,

max
v∈V \{c}

min
h∈H∗

w(v, h) ≤ β(�1 + �2). (1)

In Line 5 of Algorithm 2, a solution is returned that opens H∗ as the set of
p hubs. For each v ∈ V \ (H∗ ∪ {c}), let f ′(v) := arg minh∈H∗ w(v, h); i.e., f ′(v)
is the hub in H∗ assigned to v in the solution returned by the algorithm. Let �′

1

and �′
2 be the largest value and second-largest value in the multiset {w(v, f ′(v)) |

v ∈ V \ {c}}. By inequality (1), we have �′
1 + �′

2 ≤ 2β(�1 + �2).
Let x, y ∈ V \ {c} be the nodes achieving the maximum path length in T ,

i.e., dT (x, y) = D(T ). It suffices to show that D(T ) ≤ (2β + 1) · D(T ∗).
If f ′(x) = f ′(y), then D(T ) = w(x, f ′(x)) + w(y, f ′(y)) ≤ �′

1 + �′
2.

If f ′(x) �= f ′(y), then

D(T ) = w(x, f ′(x)) + w(f ′(x), c) + w(f ′(y), c) + w(y, f ′(y)) ≤ �′
1 + 2�0 + �′

2

where we use w(h, c) ≤ �0 for all h ∈ H by our choice of H. Combine with the
fact that D(T ∗) ≥ �0 + �1 and D(T ∗) ≥ �1 + �2, we always have

D(T ) ≤ 2�0 + �′
1 + �′

2

≤ 2�0 + 2β(�1 + �2)
≤ 2(�0 + �1) + (2β − 1)(�1 + �2) (using �2 ≤ �1)
≤ 2 · D(T ∗) + (2β − 1) · D(T ∗)
= (2β + 1) · D(T ∗),

which indicates that Algorithm 2 is a (2β + 1)-approximation algorithm for Δβ-
SpHCP. This completes the proof. ��

We close this section with the following theorem.

Theorem 2. Let β ≥ 1
2 . There exists a polynomial time r(β)-approximation

algorithm for Δβ-SpHCP where

(i) r(β) = 1 if β ≤ 3−√
3

2 ;
(ii) r(β) = 1+2β−2β2

4(1−β) if 3−√
3

2 < β ≤ 0.7737 . . .;

(iii) r(β) = 1 + 4β2

5β+1 if 0.7737 . . . ≤ β ≤ 1;

(iv) r(β) = β + 4β2−2β
2+β if 1 ≤ β ≤ 2;

(v) r(β) = 2β + 1 if β ≥ 2.

3 Conclusion

In this paper, we have studied Δβ-SpHCP for all β ≥ 1
2 . We showed that for

any ε > 0, to approximate Δβ-SpHCP to a ratio g(β) − ε is NP-hard where
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g(β) = 1+2β−2β2

4(1−β) if 3−√
3

2 < β ≤ 2
3 ; g(β) = 5β+1

4 if 2
3 < β ≤ 1; g(β) = β + 1

2 if
β ≥ 1. Moreover, we gave r(β)-approximation algorithms for the same problem.
If β ≤ 3−√

3
2 , we have r(β) = g(β) = 1, i.e., Δβ-SpHCP is polynomial time

solvable for β ≤ 3−√
3

2 . If 3−√
3

2 < β ≤ 2
3 , we have r(β) = g(β) = 1+2β−2β2

4(1−β) .

For 2
3 ≤ β ≤ 1, r(β) = min{ 1+2β−2β2

4(1−β) , 1 + 4β2

5β+1}. For β ≥ 1, we have r(β) =

min{β + 4β2−2β
2+β , 2β +1}. In the future work, it is of interest to extend the range

of β for Δβ-SpHCP such that the gap between the upper and lower bounds of
approximability can be reduced.

References

1. Alumur, S.A., Kara, B.Y.: Network hub location problems: the state of the art.
Eur. J. Oper. Res. 190, 1–21 (2008)

2. Andreae, T.: On the traveling salesman problem restricted to inputs satisfying a
relaxed triangle inequality. Networks 38, 59–67 (2001)

3. Andreae, T., Bandelt, H.-J.: Performance guarantees for approximation algorithms
depending on parameterized triangle inequalities. SIAM J. Discret. Math. 8, 1–16
(1995)

4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer, Heidelberg (1999)

5. Bender, M.A., Chekuri, C.: Performance guarantees for the TSP with a parame-
terized triangle inequality. Inf. Process. Lett. 73, 17–21 (2000)
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S., Unger, W.: On k-connectivity problems with sharpened triangle inequality. J.
Discret. Algorithms 6(4), 605–617 (2008)
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Abstract. We introduce a framework in parameterized algorithms
whose purpose is to solve resiliency versions of decision problems. In
resiliency problems, the goal is to decide whether an instance remains
positive after any (appropriately defined) perturbation has been applied
to it. To tackle these kinds of problems, some of which might be of
practical interest, we introduce a notion of resiliency for Integer Linear
Programs (ILP) and show how to use a result of Eisenbrand and Shmonin
(Math. Oper. Res., 2008) on Parametric Linear Programming to prove
that ILP Resiliency is fixed-parameter tractable (FPT) under a certain
parameterization.

To demonstrate the utility of our result, we consider natural resiliency
version of several concrete problems, and prove that they are FPT under
natural parameterizations. Our first result, for a problem which is of
interest in access control, subsumes several FPT results and solves an
open question from Crampton et al. (AAIM 2016). The second concerns
the Closest String problem, for which we extend an FPT result of Gramm
et al. (Algorithmica, 2003). We also consider problems in the fields of
scheduling and social choice. We believe that many other problems can
be tackled by our framework.

1 Introduction

Questions of ILP feasibility are typically answered by finding an integral assign-
ment of variables x satisfying Ax ≤ b. By Lenstra’s theorem [18], this problem
can be solved in O∗(f(n)) := O(f(n)LO(1)) time and space, where f is a func-
tion of the number of variables n only, and L is the size of the ILP (subsequent
research has obtained an algorithm of the above running time with f(n) = nO(n)
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and using polynomial space [12,17]). In the language of parameterized com-
plexity, this means that ILP Feasibility is fixed-parameter tractable (FPT)
parameterized by the number of variables. Note that there are a number of para-
meterized problems for which the only (known) way to prove fixed-parameter
tractability is to use Lenstra’s theorem1 [7]. For more details on this topic, we
refer the reader to [7,9].

The notion of resiliency measures the extent to which a system can tolerate
modifications to its configuration and still satisfy given criteria. An organiza-
tion might, for example, wish to know whether it will still be able to continue
functioning, even if some of its staff become unavailable. In the language of deci-
sion problems, we would like to know whether an instance is still positive after
any (appropriately defined) modification. Intuitively, the resiliency version of a
problem is likely to be harder than the problem itself; a naive algorithm would
consider every allowed modification of the input, and then see whether a solution
exists.

In this paper, we introduce a framework for dealing with resiliency problems,
and study their computational complexity through the lens of fixed-parameter
tractability. We define resiliency for Integer Linear Programs (ILP) and show
that the obtained problem can be solved in FPT time using a result of Eisenbrand
and Shmonin on Parametric Linear Programming [10]. To illustrate the fact that
our approach might be useful in different situations, we apply our framework to
several concrete problems.

Crampton et al. analyzed the parameterized tractability of the Resiliency
Checking Problem (RCP) [5], which has practical applications in the context
of access control [19], and can be seen as a generalization of a resiliency version
of the Set Cover problem. In a nutshell, given a set of p elements R and a
familly U of n subsets of R, the RCP asks whether for every S ⊆ U with |S| ≤ s,
one can find U1, . . . ,Ud ⊆ U \ S, such that Ui ∩ Uj = ∅ whenever i �= j, and for
every i ∈ [d]: |Ui| ≤ t, and

⋃
U∈Ui

U = R. Observe that Set Cover is the
particular case where s = 0 and d = 1. Thus, RCP has five natural parameters
n, p, s, d and t, among which n is assumed to be large in the practical application
we consider, relative to the other four parameters [19]. Using well-known tools
in parameterized algorithms, Crampton et al. [5] were able2 to determine the
complexity of RCP (FPT, XP, W[2]-hard, para-NP-hard or para-coNP hard)
for all but two combinations of p, s, d and t (these two combinations are p and
p, t)3. In particular, in the case where s = 0 (when no resiliency is considered),
they proved, using Lenstra’s theorem, that RCP is FPT parameterized by p.
However, they could not extend this result to the case of any s, and thus the
1 Lenstra’s theorem allows us to prove a mainly classification result, i.e. the FPT

algorithm is unlikely to be efficient in practice, nevertheless Lenstra’s theorem indi-
cates that efficient FPT algorithms are a possibility, at least for subproblems of the
problem under considerations.

2 We have also established that certain sub-cases of RCP are FPT using reductions
to the Workflow Satisfiability Problem [6].

3 By definition, a problem with several parameters p1, . . . , p� is the problem with one
parameter, the sum p1 + · · · + p�.
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complexity of RCP parameterized by p was left open. We settle this case in this
paper by showing that, in general, RCP is FPT parameterized by p. This result
gives the complete picture of the parameterized complexity of RCP depending
on the considered parameter.

We introduce an extension of the Closest String problem, a problem aris-
ing in computational biology. Informally, Closest String asks whether there
exists a string that is “sufficiently close” to each member of a set of input strings.
We modify the problem so that the input strings may be unreliable – due to tran-
scription errors, for example – and show that this resiliency version of Closest
String called Global Resiliency Closest String is FPT when parameter-
ized by the number of input strings. Our resiliency result on Closest String
is a generalization of a result of Gramm et al. for Closest String which was
proved using Lenstra’s theorem [13]4.

We introduce a resiliency version of the scheduling problem of makespan
minimization on unrelated machines. We prove that this version is FPT when
parameterized by the number of machines, the number of job types and the total
expected downtime, generalizing a result of Mnich and Wiese [21] provided the
jobs processing times are upper-bounded by a number given in unary.

Finally, we introduce a resilient swap bribery problem in the field of social
choice and prove that it is FPT when parameterized by the number of candidates.

The remainder of the paper is structured in the following way. Section 2 intro-
duces ILP resiliency and proves that it is FPT under a certain parameterization.
We then apply our framework to a number of concrete problems. We establish
the fixed-parameter tractability of RCP parameterized by p in Sect. 3. In Sect. 4,
we introduce a resiliency version of Closest String Problem and prove that
it is FPT. We study resiliency versions of scheduling and social choice problems
in Sects. 5 and 6. We conclude the paper in Sect. 7, where we discuss related
literature. Due to space limits, some proofs (of results marked by a �) as well as
another resiliency version of the Closest String problem were omitted. They
can be found in the long version of the paper [4].

2 ILP Resiliency

Recall that questions of ILP feasibility are typically answered by finding an
integral assignment of variables x satisfying Ax ≤ b. Let us introduce resiliency
for ILP as follows. We add another set of variables z, which can be seen as
“resiliency variables”. We then consider the following ILP5 denoted by R:

Ax ≤ b (1)
Cx + Dz ≤ e (2)

Fz ≤ g (3)
4 Although not being strictly the first problem proved to be FPT using Lenstra’s

theorem [23], it is considered as the one which popularized this technique [7,9].
5 To save space, we will always implicitly assume that integrality constraints are part

of every ILP of this paper.
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The idea is that inequalities (1) and (2) represent the intrinsic structure of
the problem, among which inequalities (2) represent how the resiliency vari-
ables modify the instance. Inequalities (3), finally, represent the structure of the
resiliency part. The goal of ILP Resiliency is to decide whether R is z-resilient,
i.e. whether for any integral assignment of variables z satisfying inequalities (3),
there exists an integral assignment of variables x satisfying (1) and (2).

In R, we will assume that all entries of matrices in the left hand sides and
vectors in the right hand sides are rational numbers. The dimensions of the
vectors x and z will be denoted by n and p, respectively, and the total number
of rows in A and C will be denoted by m. Let κ(R) := n + p + m.

Our main result establishes that ILP Resiliency is FPT when parameter-
ized by κ(R), provided that part of the input is given in unary. Our method
offers a generic framework to capture many situations. Firstly, it applies to ILP,
a general and powerful model for representing many combinatorial problems.
Secondly, the resiliency part of each problem can be represented as a whole ILP
with its own variables and constraints, instead of, say, a simple additive term.
Hence, we believe that our method can be applied to many other problems, as
well as many different and intricate definitions of resiliency.

To prove our main result we will use the work of Eisenbrand and Shmonin
[10]. For a rational polyhedron Q ⊆ R

m+p, define Q/Zp := {h ∈ Q
m : (h, α) ∈

Q for some α ∈ Z
p}. The Parametric Integer Linear Programming

(PILP) problem takes as input a rational matrix J ∈ Q
m×n and a rational

polyhedron Q ⊆ R
m+p, and asks whether the following expression is true:

∀h ∈ Q/Zp ∃x ∈ Z
n : Jx ≤ h

Eisenbrand and Shmonin [10, Theorem 4.2] proved that PILP is solvable in
polynomial time if the number of variables n + p is fixed. From this result, an
interesting question is whether this running time is a uniform or non-uniform
polynomial algorithm [9], and in particular for which parameters one can obtain
an FPT algorithm. By looking closer at their algorithm, one can actualy obtain
the following result:

Theorem 1. PILP can be solved in time O∗(g(n,m, p)ϕf(n,m,p)), where ϕ ≥ 2
is an upper bound on the encoding length of entries of J and f and g are some
computable functions.

Complexity Remark. Let us first mention that PILP belongs to the second
level of the polynomial hierarchy, and is ΠP

2 -complete [10]. Secondly, the poly-
hedron Q in Theorem 1 can be viewed as being defined by a system Rh+Sα ≤ t,
where h ∈ R

m and α ∈ Z
p. Then the algorithm of the theorem runs in time poly-

nomial in the encoding lengths of R, S, and in m (the “continuous dimension”),
and is FPT with respect to p (the “integer dimension”).

Corollary 1. If n,m and p are the parameters and all entries of J are given in
unary, then PILP is FPT.
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Proof. We may assume that there is an upper bound N ≥ 2 on the absolute
values of entries of A and N is given in unary. Thus, the running time of the
algorithm of Theorem 1 is O∗(g(n,m, p)(log N)F ), where F = f(n,m, p).

It was shown in [3] that (log N)F ≤ (2F log F )F + N/2F , which concludes
the proof. ��

We now prove the main result of our framework, which will be applied in the
next sections to two concrete problems.

Theorem 2. ILP Resiliency is FPT when parameterized by κ(R) provided
the entries of matrices A and C are given in unary.

Proof. We will reduce ILP Resiliency to Parametric Integer Linear Pro-
gramming. Let us first define J and Q. Let h = (h1, h2) with h1 and h2

being m1 and m2 dimensional vectors, respectively. Then the polyhedron Q
is defined as follows: h1 = b, h2 = e − Dα,Fα ≤ g. Furthermore, J is defined as:
Ax ≤ h1, Cx ≤ h2.

Recall that h1 = b and h2 = e − Dα and α satisfies Fα ≤ g, so for all
h ∈ Q/Zp there exists an integral x satisfying the above if and only if for all z
satisfying Fz ≤ g, there is an integral x satisfying (1) and (2). Moreover, the
dimension of x is n, the integer dimension of Q is p and the number of inequalities
of J is m1 + m2 = m, so applying Corollary 1 indeed yields the required FPT
algorithm. ��

3 Resiliency in Access Control

Access control is an important topic in computer security and is typically
achieved by enforcing a policy that specifies which users are authorized to access
which resources. Authorization policies are frequently augmented by additional
policies, articulating concerns such as separation of duty and resiliency. The
Resiliency Checking Problem (RCP) was introduced by Li et al. [19] and
asks whether it is always possible to allocate authorized users to teams, even if
some users are unavailable.

3.1 Definition of the Problem

Given a set of users U and set of resources R, an authorization policy is a relation
UR ⊆ U × R; we say u is authorized for resource r if (u, r) ∈ UR. For a user
u ∈ U , we define NUR(u) = {r ∈ R : (u, r) ∈ UR}, the neighborhood of u; by
extension, for V ⊆ U , we define NUR(V ) =

⋃
u∈V NUR(u), the neighborhood of

V . Thus NUR(u) represents the resources for which u is authorized, and NUR(V )
represents the resources for which the users in V are collectively authorized. We
will omit the subscript UR if the authorization policy is clear from the context.

Given an authorization policy UR ⊆ U × R, an instance of the Resiliency
Checking Problem (RCP) is defined by a resiliency policy res(P, s, d, t), where
P ⊆ R, s ≥ 0, d ≥ 1 and t ≥ 1. We say that UR satisfies res(P, s, d, t) if and
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only if for every subset S ⊆ U of at most s users, there exist d pairwise disjoint
subsets of users V1, . . . , Vd such that for all i ∈ {1, . . . , d}:

Vi ∩ S = ∅, (4)
|Vi| ≤ t and N(Vi) ⊇ P. (5)

In other words, UR satisfies res(P, s, d, t) if we can find d disjoint groups of users,
even if up to s users are unavailable, such that each group contains no more than
t users and the users in each group are collectively authorized for the resources
in P (observe that the particular case in which s = 0 and d = 1 is equivalent to
the well-known Set Cover problem) Thus, we define RCP as follows:

Resiliency Checking Problem (RCP)
Input: UR ⊆ U ×R, P ⊆ R, s ≥ 0, d ≥ 1, t ≥ 1.
Question: Does UR satisfy res(P, s, d, t) ?

In the remainder of this section, we set p = |P |. Given an instance of RCP, we
say that a set of d pairwise disjoint subsets of users V = {V1, . . . , Vd} satisfying
conditions (5) is a set of teams. For such a set of teams, we define U(V ) =

⋃d
i=1 Vi.

Given U ′ ⊆ U , the restriction of UR to U ′ is defined by UR|U ′ = UR∩ (U ′ ×R).
Finally, a set of users S ⊆ U is called a blocker set if for every set of teams
V = {V1, . . . , Vd}, we have U(V ) ∩ S �= ∅. Equivalently, observe that S is a
blocker set if and only if UR|U\S does not satisfy res(P, 0, d, t).

3.2 Fixed-Parameter Tractability of RCP

In this section we prove that RCP is FPT parameterized by p. We first introduce
some notation. In the following, UR ⊆ U × R, P ⊆ R, s ≥ 0, d ≥ 1 and t ≥ 1
will denote an input of RCP. Without loss of generality, we may assume P = R
and N(u) �= ∅ for all u ∈ U . For all N ⊆ P , let UN = {u ∈ U : N(u) = N}
(notice that we may have UN = ∅ for some N ⊆ P ).

Roughly speaking, the idea is that in order to construct a set of teams or a
blocker set, it is sufficient to know the size of its intersection with UN , for every
N ⊆ P . We first define the set of configurations.

C =

{

{N1, . . . , Nb} : b ≤ t,Ni ⊆ P, i ∈ [b],
b⋃

i=1

Ni = P

}

.

Then, for any N ⊆ P , we denote the set of configurations involving N by CN .
That is

CN = {c = {N1, . . . , Nbc} ∈ C : N = Ni for some i ∈ [bc]}

Observe that since we assume t ≤ p, we have |C| = O(2p2
). The link between sets

of teams and configurations comes from the following definition: given a set of
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teams V , we say that a team T ∈ V has configuration c ∈ C if c = {N(u), u ∈ T}.
In other words, c represents the distinct neighborhoods of users of T in P .

We define an ILP L over the set of variables x = (xc : c ∈ C) and z = (zN :
N ⊆ P ), with the following inequalities:

∑
c∈C xc ≥ d (6)

∑
N⊆P zN ≤ s (7)

∑
c∈CN

xc ≤ |UN | − zN for every N ⊆ P (8)
0 ≤ zN ≤ |UN | for every N ⊆ P (9)

0 ≤ xc ≤ d for every c ∈ C (10)

Observe that κ(L) is upper bounded by a function of p only. The idea behind
this model is to represent a set S of at most s users by variables z (by deciding
how many users to take for each set of users UN , N ⊆ P ), and to represent a set
of teams by variables x (by deciding how many teams will have configuration
c ∈ C). Then, inequalities (8) will ensure that the set of teams does not intersect
with the chosen set S. However, while we would be able to solve L in FPT time
parameterized by p by using, e.g., Lenstra’s ILP Theorem, the reader might
realize that doing so would not solve RCP directly. Nevertheless, the following
result establishes the crucial link between this system and our problem.

Lemma 1. [�] res(P, s, d, t) is satisfiable if and only if L is z-resilient.

Since, as we observed earlier, κ(L) is bounded by a function of p only, com-
bining Lemma 1 with Theorem 2, we obtain the following:

Theorem 3. RCP is FPT parameterized by p.

4 Closest String Problem

In the Closest String problem, we are given a collection of k strings s1, . . . , sk

of length L over a fixed alphabet Σ, and a non-negative integer d. The goal is
to decide whether there exists a string s (of length L) such that dH(s, si) ≤ d
for all i ∈ [k], where dH(s, si) denotes the Hamming distance between s and si.
If such a string exists, then it will be called a d-closest string.

It is common to represent an instance of the problem as a matrix C with k
rows and L columns (i.e. where each row is a string of the input); hence, in the
following, the term column will refer to a column of this matrix. As Gramm et al.
[13] observe, as the Hamming distance is measured column-wise, one can identify
some columns sharing the same structure. Let Σ = {ϕ1, . . . , ϕ|Σ|}. Gramm et
al. show [13] that after a simple preprocessing of the instance, we may assume
that for every column c of C, ϕi is the ith character that appears the most often
(in c), for i ∈ {1, . . . , |Σ|} (ties broken w.r.t. the considered ordering of Σ). Such
a preprocessed column will be called normalized, and by extension, a matrix
consisting of normalized columns will be called normalized. One can observe that
after this preprocessing, the number of different columns (called column type) is
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bounded by a function of k only, namely by the kth Bell number Bk = O(2k log2 k).
The set of all column types is denoted by T . Using this observation, Gramm et
al. [13] prove that Closest String is FPT parameterized by k, using an ILP
with a number of variables depending on k only, and then applying Lenstra’s
theorem.

4.1 Adding Resiliency

The motivation for studying resiliency with respect to this problem is the intro-
duction of experimental errors, which may change the input strings [22]. While
a solution of the Closest String problem tests whether the input strings are
consistent, a resiliency version asks whether these strings will remain consistent
after some small changes. However, there exist several ways to define how these
changes will modify the input. The version we consider here, called Global
Resiliency Closest String, allows at most m changes to appear anywhere
in the matrix C. Another version, called Column Resiliency Closest String
and studied in [4], we allow changes to appear column-wise. This situation might
be useful if experimental errors occur more often at, say, the beginning or end
of the string. It appears that both problems remain FPT parameterized by the
number of input strings, generalizing in two different ways the result of Gramm
et al. [13].

As said previously, the most natural way of defining a notion of resiliency in
the context of Closest String is to allow changes at any places of the matrix
C. The only constraint is thus an upper bound on the number of total changes.
To represent this, we simply use the Hamming distance between two matrices.

Global Resiliency Closest String (GRCS)
Input: C, a k × L normalized matrix of elements of Σ, d ∈ N, m ≤ kL.
Question: For every C ′, k × L normalized matrix of elements of Σ such
that the Hamming distance of C and C ′ is at most m, does C ′ admit a
d-closest string?

ILP Formulation. Let #t be the number of columns of type t in C. For two
types t, t′ ∈ T let δ(t, t′) be their Hamming distance (the number of different
elements). Let zt,t′ , for all t, t′ ∈ T , be a variable meaning “how many columns
of type t in C are changed to type t′ in C ′” (we allow t = t′). Thus we have the
following constraints:

∑

t′∈T

zt,t′ = #t ∀t ∈ T (11)

∑

t,t′∈T

δ(t, t′)zt,t′ ≤ m (12)

These constraints clearly capture all possible scenarios of how the input strings
can be modified in at most m places. Then let #′

t be a variable meaning “how
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many columns of C ′ are of type t”, and let xt,ϕ represent the number of columns
of type t in C ′ whose corresponding character in the solution is set to ϕ. Finally
let Δ(t, ϕ) be the number of characters of t which are different from ϕ. As the
remaining constraints correspond to our formulation of ILP Resiliency, we
have:

∑

t∈T

zt,t′ = #′
t′ ∀t′ ∈ T (13)

∑

ϕ∈Σ

xt,ϕ = #′
t ∀t ∈ T (14)

∑

t∈T

∑

ϕ∈Σ

Δ(t, ϕ)xt,ϕ ≤ d (15)

This is the standard ILP for Closest String [13], except that #′
t are now

variables, and there exists a solution x exactly when there is a string at distance
at most d from the modified strings given by the variables #′. Let L denote the
ILP composed of constraints (11), (12), (13), (14) and (15). Finally, let Z denote
variables zt,t′ and #′

t for every t, t′ ∈ T .

Lemma 2. [�] The instance is satisfiable if and only if L is Z-resilient.

It remains to observe that for the above system of constraints L, κ(L) is bounded
by a function of k (since |T | = O(2k log2 k). We thus get the following:

Theorem 4. GRCS is FPT parameterized by k.

5 Resilient Scheduling

A fundamental scheduling problem is makespan minimization on unrelated
machines, where we have m machines and n jobs, and each job has a vector
of processing times with respect to machines pj = (p1j , . . . , p

m
j ), j ∈ [n]. If the

vectors pj and pj′ are identical for two jobs j, j′, we say these jobs are of the
same type. Here we consider the case when m and the number of types θ are
parameters and the input is given as θ numbers n1, . . . , nθ of job multiplicities.
A schedule is an assignment of jobs to machines. For a particular schedule, let
ni

t be the number of jobs of type t assigned to machine i. Then, the completion
time of machine i is Ci =

∑
t∈[θ] p

i
tn

i
t and the largest Ci is the makespan of the

schedule, denoted Cmax.
The parameterization by θ and m might seem very restrictive, but note that

when m alone is a parameter, the problem is W[1]-hard even when the machines
are identical and the job lengths are given in unary [16]. Also, Asahiro et al. [1]
show that it is strongly NP-hard already for restricted assignment when there
is a number pj for each job such that for each machine i, pi

j ∈ {pj ,∞} and all
pj ∈ {1, 2} and for every job there are exactly two machines where it can run.
Mnich and Wiese [21] proved that the problem is FPT with parameters θ and m.

A natural way to introduce resiliency is when we consider unexpected delays
due to repairs, fixing software bugs, etc., but we have an upper bound K on
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the total expected downtime. We assume that the execution of jobs can be
resumed after the machine becomes available again, but cannot be moved to
another machine, that is, we assume preemption but not migration. Under these
assumptions it does not matter when specifically the downtime happens, only the
total downtime of each machine. Given m machines, n jobs and Cmax,K ∈ N,
we say that a scheduling instance has a K-tolerant makespan Cmax if, for every
d1, . . . , dm ∈ N such that

∑m
i=1 di ≤ K, there exists a schedule where each

machine i ∈ [m] finishes by the time Cmax−di. We obtain the following problem:

Resiliency Makespan Minimization on Unrelated Machines
Input: m machines, θ job types p1, . . . , pθ ∈ N

m, job multiplicities
n1, . . . , nθ, and K,Cmax ∈ N.
Question: Does this instance have a K-tolerant makespan Cmax ?

Let xi
t be a variable expressing how many jobs of type t are scheduled to

machine i. We have the following constraints, with the first constraint describing
the feasible set of delays, and the subsequent constraints assuring that every job
is scheduled on some machine and that every machine finishes by time Cmax−di:

m∑

i=1

di ≤ K

m∑

i=1

xt
i = nt ∀t ∈ [θ]

θ∑

t=1

xi
tp

i
t ≤ Cmax − di ∀i ∈ [m]

Theorem 2 and the system of constraints above implies the following result
related to the above-mentioned result of Mnich and Wiese [21].

Theorem 5. [�] Resiliency Makespan Minimization on Unrelated
Machines is FPT when parameterized by θ, m and K and with maxt∈[θ],i∈[m]

pt
i ≤ N for some number N given in unary.

6 Resilient Swap Bribery

The field of computational social choice is concerned with computational prob-
lems associated with voting in elections. Swap Bribery, where the goal is to
find the cheapest way to bribe voters such that a preferred candidate wins, has
received considerable attention. This problem models not only actual bribery,
but also processes designed to influence voting (such as campaigning). It is nat-
ural to consider the case where an adversarial counterparty first performs their
bribery, where we only have an estimate on their budget. The question becomes
if, for each such bribery, it is possible, within a given budget, to bribe the election
such that our preferred candidate still wins. The number of candidates is a well
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studied parameter [2,8]. In this section we will show that the resilient version of
Swap Bribery with unit costs (unit costs are a common setting, cf. Dorn and
Schlotter [8]) is FPT using our framework. Let us now give formal definitions.

Elections. An election E = (C, V ) consists of a set C of m candidates c1, . . . , cm

and a set V of voters (or votes). Each voter i is a linear order �i over the set C.
For distinct candidates a and b, we write a �i b if voter i prefers a over b.
We denote by rank(c, i) the position of candidate c ∈ C in the order �i. The
preferred candidate is c1.

Swaps. Let (C, V ) be an election and let �i∈ V be a voter. A swap γ = (a, b)i

in preference order �i means to exchange the positions of a and b in �i; denote
the resulting order by �γ

i ; the cost of (a, b)i is πi(a, b) (in the problem studied
in this paper, we have πi(a, b) = 1 for every voter i and candidates a, b). A
swap γ = (a, b)i is admissible in �i if rank(a, i) = rank(b, i) − 1. A set Γ of
swaps is admissible in �i if they can be applied sequentially in �i, one after the
other, in some order, such that each one of them is admissible. Note that the
obtained vote, denoted by �Γ

i , is independent from the order in which the swaps
of Γ are applied. We also extend this notation for applying swaps in several votes
and denote it V Γ .

Voting Rules. A voting rule R is a function that maps an election to a subset
of candidates, the set of winners. We will show our example for rules which
are scoring protocols, but following the framework of so-called “election systems
described by linear inequalities” [8] it is easily seen that the result below holds
for many other voting rules. With a scoring protocol s = (s1, . . . , sm) ∈ N

m, a
voter i gives s1 points to his most preferred candidate, s2 points to his second
most preferred candidate and so on. The candidate with most points wins.

Resiliency Unit Swap Bribery
Input: An election E = (C, V ) with each swap of unit cost and with a
scoring protocol s ∈ N

m, the adversary’s budget Ba, our budget B.
Question: For every adversarial bribery Γa of cost at most Ba, is there
a bribery Γ of cost at most B such that E = (C, (V Γa)Γ ) is won by c1?

Theorem 6. [�] Resiliency Unit Swap Bribery with a scoring protocol is
FPT when parameterized by the number of candidates m.

7 Discussion

For some time, Lenstra’s theorem was the only approach in parameterized algo-
rithms and complexity based on integer programming. Recently other tools based
on integer programming have been introduced: the use of Graver bases for the
n-fold integer programming problem [14], the use of ILP approaches in kernel-
ization [11], or, conversely, kernelization results for testing ILP feasibility [15],
and an integer quadratic programming analog of Lenstra’s theorem [20]. Our
approach is a new addition to this powerful arsenal.
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Push-Pull Block Puzzles are Hard
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Abstract. This paper proves that push-pull block puzzles in 3D are
PSPACE-complete to solve, and push-pull block puzzles in 2D with thin
walls are NP-hard to solve, settling an open question [19]. Push-pull
block puzzles are a type of recreational motion planning problem, similar
to Sokoban, that involve moving a ‘robot’ on a square grid with 1 × 1
obstacles. The obstacles cannot be traversed by the robot, but some can
be pushed and pulled by the robot into adjacent squares. Thin walls
prevent movement between two adjacent squares. This work follows in
a long line of algorithms and complexity work on similar problems [3–
9,14,16,18]. The 2D push-pull block puzzle shows up in the video games
Pukoban as well as The Legend of Zelda: A Link to the Past, giving
another proof of hardness for the latter [2]. This variant of block-pushing
puzzles is of particular interest because of its connections to reversibility,
since any action (e.g., push or pull) can be inverted by another valid
action (e.g., pull or push).

Keywords: Complexity · NP · PSPACE-complete · Puzzles · Motion
planning

1 Introduction

Block-pushing puzzles are a common puzzle type with one of the best known
example being Sokoban. Puzzles with the ability to push and pull blocks have
found their way into several popular video games including The Legend of Zelda
series, Starfox Adventures, Half-Life and Tomb Raider. Block-pushing puzzles
are also an abstraction of motion planning problems with movable obstacles.
In addition to these games, one could imagine real-world scenarios, like that
of a forklift in a warehouse, bearing similarity. Since motion planning is such
an important and computationally difficult problem, it can be useful to look at
simplified models to try to get a better understanding of the larger problem.

A significant amount of research has gone into characterizing the complexity
of block sliding puzzles. This includes PSPACE-completeness for well-known
puzzles like sliding-block puzzles [13], Sokoban [3,9], the 15-puzzle [15], 2048 [1],
Candy Crush [12] and Rush Hour [10]. Block pushing puzzles are a type of block
sliding puzzle in which the blocks are moved by a small robot within the puzzles.
This type of block sliding puzzle has gathered a significant amount of study.
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 177–195, 2017.
DOI: 10.1007/978-3-319-57586-5 16



178 E.D. Demaine et al.

Table 1 gives a summary of results on block pushing puzzles. Variations include
Sokoban [3,9], where blocks must reach specific targets (the Path? column),
versions where multiple blocks can be pushed [3–5,9,14,16] (the Push column),
versions where blocks continue to slide after being pushed [7,14] (the Sliding
column), versions where fixed blocks are allowed [5,8] (the Fixed? column), and
versions where the robot can pull blocks [16] (the Pull column).

We are particularly interested in the push-pull block model because any
sequence of moves in the puzzle can be undone. Having an undirected state-space
graph seems like an interesting property both mathematically and from a puzzle
stand-point. This sort of player move reversibility lead to some of our gadgets
being logically reversible, a notion that is fundamentally linked to quantum
computation and the thermodynamics of computation.

Table 1. Summary of past and new results on block pushing and/or pulling. The Push
and Pull columns describe how many blocks in a row can be moved by the robot.
Here k and l are positive integers; ∗ refers to an unlimited number of blocks. The
Fixed column notes whether fixed blocks (Yes) or thin walls (Wall) are allowed. In the
problem title, F means fixed blocks are included; W means thin walls are included.
The Path column describes whether the objective is to have the robot find a path to a
target location, or to store the blocks in a specific configuration. The Sliding column
notes whether blocks move one square or as many squares as possible before stopping.

Name Push Pull Fixed? Path? Sliding Complexity

Push-k k 0 No Path Min NP-hard [4]

Push-∗ ∗ 0 No Path Min NP-hard [14]

PushPush-k k 0 No Path Max PSPACE-c. [7]

PushPush-∗ ∗ 0 No Path Max NP-hard [14]

Push-1F 1 0 Yes Path Min NP-hard [8]

Push-kF k ≥ 2 0 Yes Path Min PSPACE-c. [5]

Push-∗F ∗ 0 Yes Path Min PSPACE-c. [5]

Sokoban 1 0 Yes Storage Min PSPACE-c. [3]

Sokoban(k, 1) k ≥ 5 1 Yes Storage Min NP-hard [9]

Pull-1 0 1 No Storage Min NP-hard [16]

Pull-kF 0 k Yes Storage Min NP-hard [16]

PullPull-kF 0 k Yes Storage Max NP-hard [16]

Push-k Pull-lW k l Wall Path Min NP-hard (Sect. 2)

3D Push-k Pull-lF k l Yes Path Min NP-hard (Sect. B)

3D Push-1 Pull-1W 1 1 Wall Path Min PSPACE-c. (Sect. 3)

3D Push-k Pull-kF k > 1 k > 1 Yes Path Min PSPACE-c. (Sect. 3)

We add several new results showing that certain block pushing puzzles, which
include the ability to push and pull blocks, are NP-hard or PSPACE-complete.
The push-pull block puzzle is instantiated in the game Pukoban and heuristics
for solving it have been studied [19], but its computational complexity was left
as an open question.
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We introduce thin walls, which prevent motion between two adjacent empty
squares. We prove that all path planning problems in 2D with thin walls or in
3D, in which the robot can push k blocks and pull l blocks for all k, l ∈ Z

+ are
NP-hard. We also show that path planning problems where the robot can push
and pull k blocks are PSPACE-complete, with thin walls needed only for k = 1.
Our results are shown in the last four lines of Table 1. To prove these results, we
introduce two new abstract gadgets, the set-verify and the 4-toggle, and prove
hardness results for questions about their the legal state transitions.

2D Push-k Pull-j is defined as follows: There is a square lattice of cells. Each
cell is connected to its orthogonal neighbors. Cells may either be empty, hold
a movable block, or hold a fixed block. Additionally, in settings that allow thin
walls, edges between cells may be omitted. There is also a robot on a cell. The
robot may move from its current cell to an unoccupied adjacent cell. The robot
may also push up to k movable blocks arranged in a straight line one cell forward,
as long as there is an open cell with no wall in that direction. Here the robot
moves into the cell occupied by the adjacent block and each subsequent block
moves into the adjacent cell in the same direction. Likewise, the robot may pull
up to j movable blocks in a straight line as long as there are no walls in the way
and there is an open cell behind the robot. The robot moves into that cell, the
block opposite that cell moves into the one the robot originally occupied, and
subsequent blocks also move once cell toward the robot. The goal of the puzzle
is for the robot to reach a specified goal cell. Given such a description, is there a
legal path for the robot from its starting cell to the goal cell? The 3D problem
is defined analogously on a cubic lattice.

2 Push-Pull Block Puzzles are NP-hard

In this section we show NP-hardness for Push-k Pull-l in 2D with thin walls
for all positive integers k, l in Sect. 2 and Push-q Pull-r in 3D for all positive
integers q, r in Sect. B.

Thin walls are a new, but natural, notion for block pushing puzzles. They
prevent blocks or the robot from passing between two adjacent, empty squares,
as though there were a thin wall blocking the path. We will prove hardness
by a reduction from 3SAT. The 3SAT problem asks whether, given a set of
variables {x1, x2, . . . xn} and a boolean formula in conjunctive normal form with
exactly three variables per clause, there exists an assignment of values to those
variables that satisfies the formula [11]. To do so we will introduce an abstract
gadget called the Set-Verify gadget. This gadget will then be used to construct
crossover gadgets (in AppendixA), and variable and clause gadgets.

Set-Verify Gadgets. The Set-Verify gadget is an abstract gadget for motion
planning problems. The gadget has four entrances/exits which have different
allowable paths between them depending on the state of the gadget. There are
four possible states of the Set-Verify gadget: Broken, Unset, Set, and Verified.
The three relevant states are depicted in Figs. 1 and 2. Entrances to the gadget
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are labeled Si, So, Vi, Vo and the directed arrows show the allowed passages in
the shown state. The state transitions for the Set-Verify are given in Table 2.
Further details are given in AppendixA.

Since the Set-Verify gadget has no hallways with length greater than 3, any
capabilities the robot may have of pushing or pulling more than one block at a
time are irrelevant. Thus, the following proof will apply for all positive values of
j and k in Push-j Pull-k.

Si

Vi

So

Vo

U
(a) Abstract Unset Set-Verify

Si

Vi

So

Vo

S
(b) Abstract Set Set-Verify

Si

Vi

So

Vo

V
(c) Abstract Verified Set-Verify

4

3

1 2

So

Si

Vo

Vi

(d) Set-Verify, unset state

1

2

So

Si

Vo

Vi

(e) Set-Verify, set state

34

1

2

So

Si

Vo

Vi

(f) Set-Verify, verified state

34

Fig. 1. Diagrams of three of the states of Set-Verify gadgets along with their construc-
tion in a push-pull block puzzle. Red blocks are moveable, black blocks are fixed, thick
black lines are thin walls. (Color figure online)

Table 2. State transitions of a Set-Verify gadget as seen in Fig. 1

Variable and Clause Gadgets. We will be making use of the Set-Verify
gadget to produce the literals in our 3SAT formula. One significant difficulty
with this model is the complete reversibility of all actions. Thus we need to take
care to ensure that going backward at any point does not allow the robot to
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cheat in solving our 3SAT instance. The directional properties of the Set-Verify
allow us to create sections where we know if the robot exits, it must have either
reset everything to the initial configuration or have correctly proceeded through
that gadget.

Our literals will be represented by Set-Verify gadgets. They are considered
true when the Vi to Vo traversal is possible, and false otherwise. Thus we can
set literals to true by allowing the robot to run through the Si to So passage
of the gadget. This allows a simple clause gadget, shown in Fig. 5, consisting of
splitting the path into three hallways, each with the corresponding verify side
of our literal. We can then pass through if any of the literals are set to true,
and cannot pass otherwise. Notice that the Unset and Set states do not have a
backward transition. Thus the only way to go back through the clause is through
the verified literal, after which the clause has been reset to the state it was in
before the robot went through it.

The variables will be encoded by a series of passages which split to allow
either the true or negated literals to be set, shown in Fig. 6. Once the robot has
gone through at least one gadget in one hallway, there are only two possibilities
remaining: either the robot can continue down the hall setting more literals to
true, or the robot can go back through the gadget it has just exited, returning
it to its unset state. Thus, before entering or after exiting a hallway all of the
literals in that hallway will be in the same state. Additionally, unset gadgets do
not allow a transition from So to Si, which means at any point while setting
variables, if the robot decides to go back it can only return through a hallway
which has been switched to the set state. Going back through these returns them
to the unset state, putting that variable gadget back in its initial configuration
before the robot interacted with it.

Theorem 1. Push-k Pull-l in 2D with thin walls is NP-hard.

Proof. We will reduce from 3SAT. Given a 3SAT instance with variables
(x1, x2, . . . xn) and clauses (xa, xb, xc), . . ., we will construct an equivalent Push-
Pull instance as follows:

First, we will set up the clause gadgets. Each clause gadget will look like
Fig. 5, with all of the Set-Verify gadgets initially in the unset state. There will
be one clause gadget for each clause in the 3SAT formula. The clauses will be
linked together in series, Ck out to Ck+1 in. At the final clause gadget’s exit, we
will place the goal square.

Next, we will set up the variable gadgets. For each variable xk, there will
be a variable gadget Xk, consisting of a positive literal pathway, connecting to
every clause where the variable is used positively, and a negative literal pathway,
connecting to every clause where the variable is negated, as shown in Fig. 6.
These variable gadgets will be linked together in series, Xk out to Xk+1 in. The
final variable gadget’s out exit will be linked to the first clause gadget’s in. Just
in front of the first variable gadget’s in entrance will be the start square.

The connections between these gadgets will consist of empty hallways, except
where such hallways would cross. The hallways inside the clause and variable gad-
gets will also need to cross, and we will handle them similarly. We need crossovers
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for this reduction, rather than reducing to a PlanarSAT variant, because we need
crossovers just to make the clause gadgets work.

At all crossings, we will place a Two Use Directed Crossover, from Fig. 8.
The orientation of the gadget will be chosen according to a specified ordering,
where the later pathway will never be used before the earlier pathway, and no
pathway will every be traversed twice in the same direction. The ordering is each
variable gadget’s hallways, in increasing order of the variable gadgets, followed
by each clause gadget’s hallways, in increasing order of clause gadgets. Within
the variable gadgets, the ordering will be from in to out along the positive and
negative lines, with the positive lines arbitrarily placed before the negative lines.
The clause gadget hallways won’t cross each other.

The construction is complete. To see that it is solvable if and only if the
corresponding SAT problem is satisfiable, first let us consider the case where the
SAT problem is satisfiable. If the SAT problem is satisfiable, then there is an
assignment of variables such that each clause is satisfied, e.g. has at least one
true literal. Therefore, the PushPull construction is solvable. It can be solved
by traversing each variable gadget via the side corresponding to the satisfying
assignment, then traversing each clause, which is passable because it is satisfied.
The crossovers do not impede traversal, since the path taken goes through each
crossover at most once of each of its pathways, and strictly in the forward direc-
tion of the ordering which determined the orientation of the crossovers. Thus,
the entire PushPull problem can be solved, as desired.

Next, let us consider the case where the SAT problem is not satisfiable.
Consider a partial traversal of the PushPull problem, from the start cell through
the variable gadgets. Regardless of any reverse transitions through a variable
gadget or interactions with its clause gadget, if the robot is beyond a given
variable gadget exactly one of the variable lines must be set and the other must
be unset. Likewise, the interactions with the crossover gadgets do not allow
any transitions other than within the variable gadgets, regardless of reversals.
Moreover, interactions with the clause gadgets only change the state of Set-
Verify gadgets corresponding to literals between the Set and Verified states. If a
Set-Verify is Unset, its state cannot be altered via its verify line (Vi − Vo).

Thus, regardless of the robot’s prior movements, the only literals that will
be Set or Verified are at most those corresponding to a single assignment for
each variable. No two literals corresponding to opposite assignments of the same
variable will every be in the Set or Verified states at the same time.

Since the SAT problem is assumed to be unsatisfiable, no assignment of
variables will satisfy every clause. Thus, as the robot exits the variable gadgets
and enters the clause gadgets, for any prior sequence of moves, there must be
some clause gadget which has all of its literals in the Unset state, corresponding
to the unsatisfied clause for this setting of variables. Since all clauses must be
traversed to reach the goal cell, and a clause cannot be traversed if all of its
literals are Unset, the robot cannot reach the goal cell. Thus, the PushPull
problem is unsolvable.
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We have demonstrated that the PushPull problem is solvable if and only if
the corresponding 3SAT instance is satisfiable. The reduction mentioned above
is polynomial time reduction, as long as the hallways are constructed reasonably.
Thus, Push-k Pull-l in 2D with thin walls is NP-hard.

3 PSPACE

In this section we show the PSPACE-completeness of 3D push-pull puzzles
with equal push and pull strength. We will prove hardness by a reduction
from True Quantified Boolean Formula (also known as TQBF and 3QSAT),
which asks whether, given a set of variables {x1, x2, . . . xn, y1, y2, . . . yn} and a
boolean formula θ(x1, . . . xn, y1 . . . yn) in conjunctive normal form with exactly
three variables per clause, the quantified boolean formula ∀y1∃x1∀y2∃x2 . . .
θ(x1, . . . xn, y1, . . . yn) is true.

We introduce a gadget called the 4-toggle and use it to simulate 3QSAT [11].
We construct the 4-toggle gadget in 3D push-pull block puzzles, completing the
reduction. In particular we prove 3D Push1-Pull1 with thin walls is PSPACE-
complete and 3D Pushi-Pullj, for all positive i = j, is PSPACE-complete. A gap
between NP and PSPACE still remains for 3D puzzles with different pull and
push values, as well as for 2D puzzles.

3.1 Toggles

We define an n-toggle to be a gadget which has n internal pathways and can be
in one of two internal states, A or B. Each pathway has a side labeled A and
another labeled B. When the toggle is in the A state, the pathways can only be
traversed from A to B and similarly in the B state it can only be traversed from
B to A. Whenever a pathway is traversed, the state of the toggle flips. A diagram
of a 4-toggle is is given in Fig. 3 and its state transition is given in Table 3.

A

1a

2a

3a

4a

1b

2b

3b

4b

(a) 4-Toggle in state A.

B

1a

2a

3a

4a

1b

2b

3b

4b

(b) 4-Toggle in state B.

Fig. 2. Diagrams of the two possible states of a 4-toggle.

Figure 3a acts as a 2-toggle. The locations 1a, 1d, 2a, and 2d, are all entrances
and exits to the 2-toggle, while 1b connects directly to 1c, and 2b connects directly



184 E.D. Demaine et al.

1d

1a

1c

1b

2d

2a

2c

2b

(a) 2-Toggle in state A. The arrows indicate
the transition to state B.

1d

1a

1c

1b

2d

2a

2c

2b

(b) 2-Toggle in state B.

Fig. 3. 2-toggles constructed in a push-pull block puzzle.

Table 3. State transitions of a 4-toggle as seen in Fig. 2

to 2c. Notice that there is a single block missing from the ring of eight blocks.
When the missing block is on top, as diagrammed, it will represent state A, and
when it is on the opposite side, we call it state B. Notice that in state A, it is
impossible to enter through entries 1d or 2d. When we enter in the 1a or 2a sides,
we can follow the moves in the series of diagrams to exit the corresponding 1d or
2d side, leaving the gadget in the B state. One can easily check that the gadget
can only be left in either state A, B, or a broken state with the empty square
left in a corner. Notice that in the broken state, every pathway except the one
just exited is blocked. If we enter through that path, it is in exactly the same
state as if it had been in an allowed state and entered through the corresponding
pathway normally. For example, in the diagram one can only enter through 1a
and after doing so the blocks are in the same position as they would be after
entering in path 1a on a 2-toggle in state A. Thus the broken state is never
more useful for solving the puzzle and can be safely ignored. To generalize to
Push-k Pull-k we simply expand the number of blocks between entrances and
exists. Instead of having 3 blocks between each entrance and exit, we have 2k+1
blocks. There is still one vacant square left in the center of one of the rows of
blocks to dictate the state of the toggle. The robot can push the row of k blocks
to the center or pull k blocks opening up a square in the center, giving us the
same function as before.

To construct a 4-toggle we essentially take two copies of the 2-toggle, rotate
them perpendicular to each other in 3D, and let them overlap on the central axis,
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where the block is missing. See Fig. 10a. We still interpret the lack of blocks in
the same positions as in the 2-toggle as states A or B. For Push1-Pull1, this
construction requires thin walls, since the exit pathways from 1b, 2b, 3b and
4b must pass immediately next to each other. For Pushk-Pullk, with k > 1,
thin walls are not necessary, since the exit pathways are separated from each
other.

3.2 Locks

A 2-toggle and lock is a gadget consisting of a 2-toggle and a separate pathway.
Traversing the separate pathway is only possible if the 2-toggle is in a specific
state, and the traversal does not change the internal state of the 2-toggle. The
2-toggle functions exactly as described above.

This gadget can be implemented using a 4-toggle by connecting the 3b and
4b entrances of the 4-toggle with an additional corridor, as shown in Fig. 11.
Traversing the resultant full pathway, from 3a to 3b to 4b to 4a, is possible only
if the initial state of the 4-toggle is A, and will leave the 4-toggle in state A.
In addition, a partial traversal, such as from 3a to 3b and back to 3a, does not
change the internal state. The two unaffected pathways of the toggle, 1 and 2,
continue to function as a 2-toggle.

A 2-toggle and lock can be extended to a 2-toggle with many locks. The
2-toggle with many locks is a gadget consisting of a 2-toggle and any number
of separate pathways which can only be traversed when the gadget is in state
B. This can be constructed using one 2-toggle and lock per separate pathway
needed and attaching the toggles in series. We orient the 2-toggles so that their
2-toggles are all passable at once in one direction. When the 2-toggle is traversed,
all of the internal locks’ states flip, rendering the gadget passable in the opposite
direction, and switching the passability and impassibility of all of the external
pathways.

3.3 Quantifiers

Existential Quantifier. An existential gadget is like a 2-toggle and many
locks, except that instead of a 2-toggle, it has a single pathway which is always
passable in both directions. Upon traversing the pathway the robot may or may
not change the internal state of the 2-toggle and many locks, as it chooses. The
variable is considered true if the 2-toggles and many locks is in state A and false
if it is in state B. This gadget is shown in Fig. 12.

Alternating Quantifier Chain. An alternating quantifier chain, shown in
Fig. 4, implements a series of alternating existential and universal variables, as
well as external literal pathways, which may be traversed if and only if their
corresponding variables are set to a prespecified value.

Traversing the quantifier chain repeatedly in the primary direction will cycle
the universal variables through all 2n possible settings. Upon each traversal, an



186 E.D. Demaine et al.

Fig. 4. A segment of the alternating quantifier chain. Each square represents the 2-
toggle part of a 2-toggle and many locks.

initial sequence of the universal variables will have their values flipped. During
the traversal, the robot will have the option to set a series of corresponding
existential variables to whatever value it wishes. These comprise the existentials
nested within the universal variables whose values were flipped. An analysis of
the Quantifier Chain can be found in AppendixC.

3.4 Clause Gadget

We construct a clause gadget by putting lock pathways of three 2-toggle with
many locks in parallel, as we did with Set-Verify gadgets in Fig. 5. Each of these
paths can be traversed only if the corresponding variable has been set to true,
or to false, depending on the orientation of that particular lock. Since they are
in parallel, only one needs to be passable for the robot to be able to continue on
to the next clause.

3.5 Beginning and End Conditions

The overall progression of the robot through the puzzle starts with the quanti-
fier chain. The robot increments the universal variables and sets the appropri-
ate existential variables arbitrarily, then traverses a series of clause gadgets to
verify that the TQBF formula represented by those clauses is true under that
setting of the variables. Then, the robot cycles around to the quantifier chain,
and repeats.

At the beginning of this procedure, the robot must be allowed to set all of
the existential variables arbitrarily. To ensure this, we will set up the quantifier
gadget in the state 01 . . . 11, with all variables set to 1 except the highest order
one. The highest order variable will be special, and will not be used in the
3CNF formula. The initial position of the robot will be at the entrance to the
quantifier gadget. This will allow the robot to flip every universal in the quantifier
gadget, from 01 . . . 11 to 10 . . . 00, and accordingly set every existential variable
arbitrarily. To force the robot to go forward through the quantifier gadget instead
of going backwards through the clause chain, we will add a literal onto the end
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of the formula gadget which is passable if and only if the highest order variable
is set to 1. After this set up, the robot will progress through the loop consisting
of the quantifier gadget and the formula gadget, demonstrating the appropriate
existential settings for each assignment of the universal quantifiers.

At each point in this process, the robot has the option to proceed through
this cycle backwards, as is guaranteed by the reversibility of the game. However,
at no point does proceeding in the reverse direction give the robot the ability to
access locations or set toggles to states that it could not have performed when it
initially encountered the toggles or locations. Thus, any progression through the
states of the alternating quantifier chain must demonstrate a TQBF solution to
the formula given.

After progressing through every possible state of the universal quantifiers,
the universals will be in the state 11 . . . 11. At this point, the robot may progress
through the quantifier gadget and exit via its special pathway, the carry pathway
of the highest order bit. This special pathway will lead to the goal location of
the puzzle. Thus, only by traversing the quantifier - formula loop repeatedly,
and demonstrating the solution to the TQBF problem, will the robot be able to
reach the goal. The robot may reach the goal if and only if the corresponding
quantified boolean formula is true.

Theorem 2. Push-k Pull-k, k > 1 in 3D with fixed blocks is PSPACE-complete.

Proof. By the above construction, TQBF can be reduced to Push-k Pull-k in
three dimensions with fixed walls, through the intermediate step of construction a
4-toggle. This implies that Pushk-Pullk is PSPACE-hard. Since Pushk-Pullk has
a polynomial-size state, the problem is in NPSPACE, and therefore in PSPACE
by Savitch’s Theorem [17]. So it is PSPACE-complete.

Theorem 3. Push-1 Pull-1 in 3D with thin walls is PSPACE-complete.

Proof. Push-1 Pull-1 in 3D with thin walls can construct a 4-toggle, and so by
the same argument as in Theorem 2, it is PSPACE-complete.

4 Conclusion

In this paper, we proved hardness results about variations of block-pushing puz-
zles in which the robot can also pull blocks. Along the way, we analyzed the
complexity of two new, simple gadgets, creating useful new toolsets with which
to attack hardness of future puzzles. The results themselves are obviously of
interest to game and puzzle enthusiasts, but we also hope the analysis leads to a
better understanding of motion-planning problems more generally and that the
techniques we developed allow us to better understand the complexity of related
problems.

This work leads to many open questions to pursue in future research. For
Push-Pull block puzzles, we leave several NP vs. PSPACE gaps, a feature shared
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with many block-pushing puzzles. One would hope to directly improve upon
the results here to show tight hardness results for 2D and 3D push-pull block
puzzles. One might also wonder if the gadgets used, or the introduction of thin
walls, might lead to stronger results for other block-pushing puzzles. We also
leave open the question of push-pull block puzzles without fixed blocks or walls.
In this setting, even a single 3 × 3 area of clear space allows the robot to reach
any point, making gadget creation challenging.

There are also interesting questions with respect to the abstract gadgets
introduced in our proof. We are currently studying the complexity of smaller
toggles and toggle-lock systems. It would also be interesting to know whether Set-
Verify gadgets sufficient for PSPACE-hardness or if they can build full crossover
gadgets. Also, there are also many variations within the framework of connected
blocks with traversibility which changes with passage through the gadget. Are
any other gadgets within this framework useful for capturing salient features
of motion planning problems? Finally, there is the question of whether other
computational complexity problems can make use of these gadgets to prove new
results.

A Additional Details on 2D Push-Pull Block Puzzles
Proof

This section provides some additional figures and description to help explain the
proof of Theorem 1.

Here we walk through the allowable transitions in the Set-Verify gadget and
also address the potential Broken state in the Push-Pull construction which is
not in the abstract gadget. In the Unset state, the Si → So transition is the only
possibility, changing the state to Set. In the Set state, the So → Si transition
is possible, changing the state back to Unset, as well as the Vi → Vo transition,
which changes the state to Verified. Finally, from the Verified state, the only
transitions possible are Vo → Vi, changing the state back to Set, and Vi → Vo,
leaving the state as Verified. In the Broken state, the only possible transition is
So → Si, changing the state to Unset. Any time we would enter the Broken state,
we could instead enter the Set state, which allows strictly more transitions, and
therefore will be strictly more helpful in reaching the goal. The Broken state is
not helpful towards reaching the goal, so we will disregard its existence.

For the Set-Verify gadget in the Unset state, the Si entrance is the only one
which allows the robot to move any blocks. From the Si entrance it can traverse
to So, and it can also pull block 2 down behind them. Doing so will allow a
traversal from Vi to Vo. To traverse back from So to Si, the robot must first
traverse back from Vo to Vi. Then, when the robot travels back from So to Si, it
must push block 2 back, ensuring the Vi to Vo traversal is impossible. Further,
access to any sequence of entrances will not allow the robot to alter the system
to allow traversals between the Vi and Si entrances.
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Fig. 5. Clause gadget, Ck, with
variables xa = 1, xb = 0, xc = 0.

Fig. 6. A variable gadget representing Xk

occurring in six clauses, three of those times
negated. The value of the variable has been
set to true.

Crossover Gadgets. In this section we build up the needed two use crossover
gadget from a series of weaker types of crossover gadgets. One may wonder
why we need crossover gadgets when Planar 3SAT is NP-complete. This only
guarantees that connecting the vertices to their clauses by edges results in a
planar graph, it does not ensure that we can navigate our robot between all of
these gadgets in a planar manner or that our gadgets themselves are planar. The
most obvious issue can be seen in the clause gadget (Fig. 5) where one of the
Set Verify gadgets must lie between the other two hallways, but must also be
accessible by its associated variable gadget.

Directed Destructive Crossover. This gadget, depicted in Fig. 7a, allows either a
traversal from a to a′ or b to b′. Once a traversal has occurred, that path may
be traversed in reverse, but the other is impassable unless the original traversal
is undone.

First, observe that transitions are initially only possible via the a and b
entrances, since the transitions possible through a Set-Verify in the Set state
can be entered through Vi and So, not Si. Assume without loss of generality
that the gadget is entered at a. This changes the state of the left Set-Verify to
Verified. At this point, only the right So and left Vo transitions are passable.
Taking the Vo transition either reverts all changes to the original state, or leaves
the left crossover in the Verified state, which allows strictly less future transition
than the original state. Therefore, we will disregard that option. Taking the So

transition changes the right Set-Verify to Unset, and completes the crossover.
At this point, the only possible transition is to undo the transition just made,
from a′ back to a, restoring the original state. The gadget could be entered via
a, but the robot would only be able to leave via a, possibly changing the state to
Set. Both options result in the robot exiting out its original entrance, and allow
the same or less future transitions, so we may disregard those options. Thus, the
only transition possibilities are as stated above.

In-order Directed Crossover. This gadget, depicted in Fig. 7b allows a traversal
from a to a′, followed by a traversal from b to b′. These traversals may also be
reversed.
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Fig. 7. Two types of crossover gadgets

Initially, no entrance is passable except for a, since Vo is passable only in the
Verified state, and So is passable only in the Set state. Once the left Vo → Vi

transition is made, the robot has 2 options. It can either change the left Set-
Verify gadget’s state to Set, or leave it as Verified. In either case, the Si entrance
on that toggle is impassable, since a Si entrance may only be traversed in the
Unset state. The only transition possible on the right crossover is Si → So,
changing the state from Unset to Set. This completes the first crossing.

Now, there are at most 2 transitions possible: from a′ back to a, undoing the
whole process, or entering at b. Note that entering at b is only possible if the
left Set-Verify is in the Set state, so let us assume that state change occurred.
In that case, the left So → Si transition may be performed, changing the left
Set-Verify’s state to Unset. At that point, the only possible transitions are back
to b, or through the right Set-Verify’s Vi → Vo transition, completing the second
crossover.

a

X

b

a'

1 2

b'

2 1

Fig. 8. The two use directed crossover
is constructed from a directed destruc-
tive crossover and two in-order directed
crossovers.

If the left Set-Verify was left in the
Verify state, strictly less future transi-
tions are possible compared to the case
where it was changed into the set state,
so we may disregard that possibility.

Two Use Directed Crossover. The
Two Use Directed Crossover, depicted
in Fig. 8, is the gadget needed for our
proof. It allows a traversal from a to
a′ followed by a traversal from b to b′,
or from b to b′ and then a to a′. These
transitions may also be reversed.

It is constructed out of an In-
order Directed Crossover gadget and
a Destructive Directed Crossover, as
shown in Fig. 8. The a to a′ traversal is initially passable, and goes through both
gadgets, blocking the destructive crossover but leaving the in-order crossover
open for the b to b′ traversal. If the a to a′ traversal does not occur, the b to b′

traversal is possible via the destructive crossover.
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Because of the behavior of the constituent crossovers which make up this
gadget, no transition from a to b a to b′, etc. is possible. The crossover per-
mits reversal of each of the transitions described, but the crossings can only be
reversed in queue order (last in, first out).

Two Use Crossover. Four Directed Crossovers can be combined, as shown below,
to create a crossover that can be traversed in any direction [4]. This is not
necessary for our proof but is shown for general interest. Unfortunately, the
inability to go through this gadget multiple times in the same direction without
first going back through means it likely isn’t sufficient for PSPACE-completeness.

B 3D Push-Pull is NP-hard

In this section we prove that 3D Push-k Pull-l with fixed blocks is NP-hard, for
all positive k and l. All of the hard work was done in Sect. 2. Here we will simply
show how we can use the additional dimension to tweak the previous gadgets to
build them without thin walls. We reduce from 3SAT, constructing our variables
from chains of 3D Set-Verify gadgets, and our clauses from the verify side of the
corresponding 3D Set-Verify gadget.

Theorem 4. 3D Push-k Pull-l with fixed blocks is NP-hard, for all positive k
and l.

Proof. We follow the proof of Theorem1 using a modified Set-Verify gadget,
shown in Fig. 9. It can be easily checked that this has the same properties as the
Set-Verify given in Sect. 2. The cyclic ordering of the entrances in the 3D Set-
Verify is different from that of the 2D Set-Verify, however this is not important
as we no longer need to construct crossovers. Also, this construction does not use
thin-walls. While this was critical in the prior construction due to the need for
closely packed turns, the additional dimension allows enough freedom to keep
separate hallways from being adjacent to each other. With a functional Set-
Verify gadget, the remaining constructions of variables and clauses proceeded as
in Sect. 2. No crossover gadgets are needed since we are working in 3D. Finally,
we note that all blocks are in hallways of length at most 3, thus the gadgets still
function as described for any positive push and pull values.

C Additional Details on PSPACE-Completeness Proof

This section provides some additional figures and description to help explain the
proof of Theorem2.
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So

Si

Vo

Vi

Fig. 9. A Set-Verify gadget in 3D where the entrances and exits extend upward, notated
by the diagonal arrows. This gadget is in the unset state.

(a) Diagram of a 4-toggle showing impassi-
ble surfaces.

(b) Diagram of the internals of a 4-toggle.

Fig. 10. 3D diagrams of 4-toggles. Red spheres are blocks and blue surfaces are impass-
able. (Color figure online)

Binary Counter. Universal quantifiers must iterate through all possible com-
binations of values that they can take. In this section we construct a gadget that
runs though all the states of its subcomponents as the robot progresses through
the gadget. This construction will serve as the base for our universal quantifiers.

A binary counter has a fixed number of internal bits. Whenever the binary
counter is traversed in the forwards direction, the binary number formed by the
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A

1a

2a

3a

4a

1b

2b

3b

4b

Fig. 11. Diagram of a lock. The 3a to 4a traversal is only possible in state A and
returns the toggle to state A.

A

1a

2a

3a

4a

1b

2b

3b

4b

x

A

1a

2a

3a

4a

1b

2b

3b

4b

x̄

Fig. 12. An existential gadget.

internal bits increases by one and the robot leaves via one of the exits. If the
binary counter is traversed in the reverse direction, the internal value is reduced
by one. If the binary counter is partially traversed, but then the robot leaves via
its initial entrance, the internal value does not change.

The binary counter is implemented as a series of 2-toggles, as shown in Fig. 13.
To see that this produces the desired effect, identify a toggle in state A as a 0
bit, and a toggle in state B as a 1 bit. Let the entrance toggle’s bit be the
least significant bit, and the final toggle be the most significant. When the robot
enters the binary counter in the forwards direction, it will flip the state of every
toggle it passes through. When it enters a toggle that is initially in state B, and

1a

2b

1b

2a
A

1a

2b

1b

2a
A

1a

2b

1b

2a
A

Fig. 13. The central portion of a three bit binary counter made from 2-toggles.
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thus whose bit is 1, it will flip the state/bit and proceed to the next toggle, via
the 2B − 2A pathway. When it encounters a toggle that is initially in state A
/ bit 0, it will flip the state/bit and exit via the 1A − 1B pathway. Thus, the
overall effect on the bits of the binary counter is to change a sequence of bits
ending at the least significant bit from 01 . . . 11 to 10 . . . 00, where the entrance
is at the right. This has the effect of increasing the value of the binary counter
by one. We will not examine the reverse transitions or rigorously complete the
binary counter here, as we do not use it directly in the final construction.

Analysis of the Quantifier Chain. A quantifier chain is implemented much
like a binary counter, with some additions. Every universal variable will be rep-
resented by a 2-toggle and many locks, where individual locks will serve as a
literal. The 2-toggles are hooked up in the same manner as the 2-toggles in a
binary counter gadget. This forces the 2-toggle and many locks gadgets to be
set to the corresponding values in the simulated binary counter.

Traversing the quantifier chain in the reverse direction is only possible if
the robot enters via the lowest order universal toggle whose setting is 1. The
traversal will go back one setting in the sequence of possible settings of the uni-
versal variables, and allow the robot to set all existential variables corresponding
to altered universal variables arbitrarily. No other existential variables can be
changed.

There is also a special exit, the overflow exit, which can only be reached
after all of the universal variable settings have been traversed. This is the goal
location for the robot.

The next addition is the existential variables, which consist of existential
gadgets placed just after the 2A exits of each universal variable, and just before
the 1A and 2B entrances of the next universal variable, as shown in Fig. 4.

One portion of the apparatus which has not been analyzed thus far is the
potential for the robot to re-enter the chain of existentials via a different exit
pathway than the one just exited. This would be problematic if the robot re-
entered via a universal gadget it had not just exited, both because the robot
should not be able to take any action other than reversing its prior progress,
decrementing the binary counter/universal quantifiers. Problems would also arise
if the robot got access to any existential quantifiers it did not just traverse.

After a traversal, the universal quantifiers have the settings . . .??10 . . . 00,
where the lowest significance 1 is on the pathway just exited. To prevent the
robot from re-entering via any pathway other than the one just exited, we add a
series of locks to each exit that are only passable if all lower-significance universal
toggles are in state 0, as shown in Fig. 4. This does not impede the exit that
the robot uses initially, since all lower-significance universal toggles are indeed
0. These locks do prevent re-entry into any higher-significance universal toggles,
since the lock corresponding to the lowest-significance 1 will be closed. The robot
cannot re-enter via any toggle that is in state 0, due to the arrangement of the
toggle pathways. Thus, the unique re-enterable pathway is the lowest-significance
toggle in state 1, as desired.
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Abstract. Assume n wireless mobile sensors are initially dispersed in an
ad hoc manner in a rectangular region. They are required to move to final
locations so that they can detect any intruder crossing the region in a
direction parallel to the sides of the rectangle, and thus provide weak bar-
rier coverage of the region. We study three optimization problems related
to the movement of sensors to achieve weak barrier coverage: minimizing
the number of sensors moved (MinNum), minimizing the average distance
moved by the sensors (MinSum), and minimizing the maximum distance
moved by the sensors (MinMax). We give an O(n3/2) time algorithm for
the MinNum problem for sensors of diameter 1 that are initially placed
at integer positions; in contrast we show that the problem is NP-hard
even for sensors of diameter 2 that are initially placed at integer posi-
tions. We show that the MinSum problem is solvable in O(n logn) time
for homogeneous range sensors in arbitrary initial positions for the Man-
hattan metric, while it is NP-hard for heterogeneous sensor ranges for
both Manhattan and Euclidean metrics. Finally, we prove that even very
restricted homogeneous versions of the MinMax problem are NP-hard.

1 Introduction

Intruder detection is an important application of wireless sensor networks. Each
sensor monitors a circular area centered at its location, and can immediately
alert a monitoring station if it detects the presence of an intruder. Collectively
the sensors can be deployed to monitor the entire region, providing so-called area
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coverage. However, for many applications, it is sufficient, and much more cost-
effective, to simply monitor the boundary of the region, and provide so-called
barrier coverage.

Barrier coverage was introduced in [16], and has been extensively studied
since then [2,3,7,8,12,17,19]. The problem was posed as the deployment of sen-
sors in a narrow belt-like rectangular region in such a way that any intruder
crossing the belt would be detected. A sensor network is said to provide strong
barrier coverage if an intruder is detected regardless of the path it follows across
the given barrier (see Fig. 1(a)). In contrast, a sensor network provides weak
coverage if an intruder is detected when it follows a straight-line path across the
width of the barrier. If the location of the sensors is not known to a trespasser,
weak coverage is often sufficient, and is more cost-effective.

In this paper, we consider a more general notion of weak coverage than
previously considered. Given a rectangular barrier, we aim to detect intruders
who cross the region in a straight-line path parallel to either of the axes of the
rectangle (see Fig. 1(b)).

2

(a) (b)

Fig. 1. (a) Strong coverage of the shaded square area by a homogeneous network, (b)
Weak coverage of the shaded square area by a non-homogeneous network for paths
perpendicular to the axes.

A sensor network can be deployed for the given barrier in several different
ways. In deterministic deployment, sensors are placed in pre-defined locations
that ensure intruder detection. However, when the deployment area is very large,
or the terrain in the area is difficult or dangerous, a deterministic deployment
might be costly or even impossible. In those instances a random or ad hoc deploy-
ment of sensors can be done [2]. However, this type of deployment might leave
some gaps in the coverage of the area. Two approaches have been considered
in order to deal with this problem. One is a multi-round random deployment in
which the random dispersal is repeated until the coverage of the area is assured
with very high probability [19]. The other approach is to use mobile (or relocat-
able) sensors [5]. After the initial dispersal, some or all sensors are instructed
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to relocate to new locations so that the desired barrier coverage is achieved.
Clearly, the relocation of the sensors should be performed in the most efficient
way possible. In particular, we may want to minimize the time or energy needed
to perform the relocation, or the number of sensors to be relocated.

1.1 Notation and Problem Definition

We assume that n sensors are initially located in an axis-parallel rectangular
area R of size a × b in the Cartesian plane. The n sensors S1, S2, . . . , Sn have
sensing ranges r1, r2, . . . , rn respectively. The diameter of a sensor is equal to
twice its range. We assume that

∑n
k=1 2rk ≥ max{a, b}; this ensures that placed

in appropriate locations, the sensors can achieve weak barrier coverage. A sensor
network is called homogeneous if the sensing ranges of all sensors in the network
is the same. Otherwise the network is called heterogeneous.

A configuration is a tuple (R, p1, p2, . . . , pn) where R is the rectangle to be
weakly barrier-covered and {p1, p2, . . . , pn} are the positions of the sensors. We
say a configuration is a blocking configuration if any straight line, perpendicular
to either x or y axes, crossing the rectangle R, crosses the sensing area of at least
one sensor. In other words, a blocking configuration achieves weak coverage of
the rectangle R (abbreviated WCR). A non-blocking configuration is said to have
gaps in the coverage. A given configuration (R, p1, p2, . . . , pn) is said to be an
integer configuration if pi = [ki, ji] for some integers ki, ji, for every i in the range
1 ≤ i ≤ n. We consider both the Euclidean and Manhattan metrics for distance
and denote it by d(x, y). Given an initial configuration (R, p1, p2, . . . , pn), we
study three problems related to finding a blocking configuration:

– MinSum-WCR problem: Find a blocking configuration {R, p′
1, p

′
2, . . . , p

′
n}

that minimizes
∑n

k=1 d(pk, p′
k), i.e., the sum of all movements.

– MinMax-WCR problem: Find a blocking configuration {R, p′
1, p

′
2, . . . , p

′
n}

that minimizes max{d(p1, p′
1), d(p2, p′

2), . . . , d(pn, p′
n)}, i.e., the size of the

maximal move among the sensors.
– MinNum-WCR problem: Find a blocking configuration {R, p′

1, p
′
2, . . . , p

′
n}

which minimizes the number of indices for which d(pk, p′
k) �= 0, 1 ≤ k ≤ n,

i.e., minimizes the number of relocated sensors.

1.2 Our Results

For the MinNum-WCR problem, we show that the problem is NP-complete,
even when the initial configuration is an integer configuration, and even when
all sensors have range 1. However when the initial configuration is an integer
configuration, all sensors have range 0.5, we give an O(n3/2) algorithm for solving
the MinNum-WCR problem.

When all sensors have the same range, regardless of their initial positions,
we give an O(n log n) algorithm to solve the MinSum-WCR problem using the
Manhattan metric. However, the problem is shown to be NP-complete for both
Manhattan and Euclidean metrics when the sensors can have different ranges.
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Finally, we show that the decision version of the MinMax-WCR problem is
NP-complete even for a very restricted case. More specifically, given an inte-
ger configuration, with all sensor ranges equal to 0.5, the problem of deciding
whether there is a blocking configuration with maximal move at most 1 (using
either the Manhattan or Euclidean metric) is NP-complete. This is in sharp con-
trast to the one-dimensional barrier coverage case where the MinMax problem
can be solved in polynomial time for arbitrary initial positions, and heteroge-
neous sensor ranges.

1.3 Related Work

Barrier coverage using wireless sensors was introduced as a cost-effective alter-
native to area coverage in [16]. The authors introduced and studied the notions
of both strong and weak barrier coverage in this paper, and studied coverage of
a narrow belt-like region. Since then the problem has been extensively studied,
for example, see [2,3,12,17,19].

The problem of achieving barrier coverage using mobile or relocatable sensors
was introduced in [7]. The authors studied a line segment barrier and gave a
polynomial time algorithm for the MinMax problem when all sensors have the
same range, and are initially placed on the line containing the barrier. For the
same setting, the case of heterogeneous sensors was shown to be also solvable in
polynomial time in [6], and the algorithm of [7] for the homogeneous case was
also improved. An O(n2) algorithm for the MinSum problem with homogeneous
sensors is given in [8], and an improved O(n log n) algorithm is presented in [1].
It was proved in [8] that the MinSum problem is NP-hard when sensors have
heterogeneous ranges. The MinNum problem is considered in [18], and shown to
be NP-hard for heterogeneous sensors and poly time for homogeneous sensors.

In [9], the complexity of the MinMax and MinSum problems when sensors
are initially placed in the plane and are required to relocate to cover parallel
or perpendicular barriers is studied. The authors show that while MinMax and
MinSum can be solved using dynamic programming in polynomial time if sensors
are required to move to the closest point on the barrier, even the feasibility of
covering two perpendicular barriers is NP-hard to determine.

A stochastic optimization algorithm was considered in [14]. Distributed algo-
rithms for the barrier coverage problem were studied in [10,11]. Further, [15]
provides algorithms for deciding if a set of sensors provides k-fault tolerant pro-
tection against rectilinear attacks in both one and two dimensions. To the best
of our knowledge, the problem of weak coverage of a rectangular region (in two
directions) has not been studied previously.

2 MinNum-WCR Problem

For a line segment barrier, the MinNum problem was shown to be NP-complete if
sensors have different ranges, but if all sensors have the same range, a polynomial-
time MinNum algorithm is given in [18]. In this section, we study the MinNum-
WCR problem.
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2.1 Hardness Result

We show that MinNum-WCR is NP-complete, even when all sensors have sens-
ing range 1 and the initial configuration is an integer configuration. We give a
reduction from a restricted satisfiability problem, shown to be NP-complete in
[4], and defined below:

3-Occ-Max-2SAT Problem:
Input: An integer t, a set of boolean variables x1, . . . , xn and a set of
clauses C = {C1, . . . , Cm}, each consisting of a conjunction of two literals,
such that each variable appears in exactly 3 clauses, and no variable
occurs only positively in C, nor only negatively in C.
Question: Does there exist an assignment of x1, . . . , xn that satisfies at
least t clauses of C?

Theorem 1. MinNum-WCR is NP-complete even for integer configurations in
which all sensing diameters are equal to 2.

Proof. Given a 3-Occ-Max-2SAT instance with variables x1, . . . , xn and clauses
C = {C1, . . . , Cm}, we construct a corresponding instance of the MinNum-WCR
problem consisting of a set of sensors S each having radius r = 1, and a rectangle
R to be covered. Note that m = 3

2n, since there are 3n literals in C and each
clause contains two literals.

R is defined to be a (6n + 2t) × (6n + 2t) square. The sensor set S contains
one sensor si,Cj

for each literal xi that appears in a clause Cj . We also need
two sensors αi and βi for each i ∈ [n]. Formally, S = {si,Cj

: xi occurs in clause
Cj , i ∈ [n], j ∈ [m]} ∪ {α1, . . . , αn, β1, . . . , βn}. We first describe how the sensors
of S are laid out on the y-axis, then on the x-axis. For a sensor s ∈ S, denote
by y(s) and x(s) the y and x coordinate of its center, respectively. Figure 2
illustrates the y and x positioning of the sensors.

Each variable xi has a corresponding gadget Yi on the vertical axis, where a
gadget is simply a set of sensors positioned in a particular manner. Each gadget
Yi covers the vertical range [6(i−1)..6i]. Let Cj1 , Cj2 and Ck be the three clauses
in which xi occurs. Choose j1 and j2 such that xi occurs in Cj1 and Cj2 in the
same manner (either positively in both, or negatively in both), and so that it
occurs in Ck differently. Let z = 6(i− 1) and let y(αi) = z +1, y(si,Cj1

) = z +2,
y(si,Ck

) = z+3, y(si,Cj2
) = z+4 and y(βi) = z+5. Observe that Y1, . . . , Yn cover

the range [0..6n] on the y-axis, which leaves the range (6n..6n + 2t] uncovered.
Also, note that moving αi or βi creates a gap in Yi. Moreover, si,Ck

can be
moved, or both si,Cj1

and si,Cj2
can be moved. However, moving both si,Ck

and
one of si,Cj1

or si,Cj2
creates a gap (see Fig. 2).

We now describe how the sensors are laid out on the x axis. Each clause
Ck ∈ C has a corresponding gadget Xk that covers the range [2(k − 1)..2k], and
is constructed as follows. Let xi and xj be the two variables occurring in Ck.
Then Xk contains the sensors si,Ck

and sj,Ck
, and we set x(si,Ck

) = x(sj,Ck
) =

2k − 1. Thus Xi covers the [2(k − 1)..2k] range and X1, . . . , Xm cover the range



Weak Coverage of a Rectangular Barrier 201

αi

βi
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Yi

Yn

...
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X1 Xk Xm X'1 X'i X'n
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sj,Ck αi

βi

... ...... ... ...
2t

6(i - 1)
6(i - 1) + 1
6(i - 1) + 2
6(i - 1) + 3
6(i - 1) + 4
6(i - 1) + 5
6i

{ {

Y-axis coverage X-axis coverage

uncovered

uncovered

2(i - 1) 2m+3(i - 1)2i 2m+3i

Fig. 2. An illustration of the y and x positioning of the sensors in S. The Y -axis
subfigure only shows the coverage of the sensors on the Y axis, and does not depict the x
coordinates of the sensors (and the X-axis subfigure does not depict the y coordinates).
The depicted Yi gadget corresponds to variable xi occurring in clauses Cj1 , Cj2 and
Ck, where xi occurs in the same manner in the first two. An example of these clauses
might be Cj1 = (xi ∨ x1), Cj2 = (xi ∨ x2) and Ck = (xi ∨ x3). The depicted Xk gadget
corresponds to a clause Ck containing the two variables xi and xj . Finally, the depicted
X ′

i gadget contains αi and βi, which are partially overlapping.

[0..2m]. Note that so far every sensor si,Cj
for i ∈ [n], j ∈ [m] has been placed.

We finally create one gadget X ′
i for each pair (αi, βi). More precisely, for each

i ∈ [n], let X ′
i contain the αi, βi sensors, and set x(αi) = 2m + 3(i − 1) + 1 and

x(βi) = 2m + 3(i − 1) + 2. Then X ′
i covers the range [2m + 3(i − 1)..2m + 3i],

and X1, . . . , Xm,X ′
1, . . . , X

′
n cover the range [0..2m + 3n]. Recall that m = 3

2n,
and so 2m + 3n = 6n. Therefore, the x-axis also has the range (6n..6n + 2t]
uncovered.

It is not hard to see that this construction can be carried out in polynomial
time. The proof that the 3-Occ-Max-2SAT instance admits an assignment of
x1, . . . , xn that satisfies t clauses of C if and only if it is possible to cover the
square R by moving t sensors in the corresponding MinNum instance is omitted
here for lack of space, and can be found in [20]. �

2.2 An Efficient Algorithm for Integer Configurations

We now show that there is a polynomial algorithm to solve the MinNum-WCR
problem for integer configurations when all sensor diameters are equal to 1,
and the rectangle to be covered is displaced by 0.5 from the integer grid that
contains sensor positions (see Fig. 3). It is not hard to see that there always
exists an optimal solution to the MinNum-WCR problem which produces a final
blocking configuration which is also an integer configuration.

Consider an integer configuration (R, p1, p2, . . . , pn) as specified above. The
position of a sensor is a pair (i, j) where i is said to be the row and j is the column
in which the sensor is located. A row i (or column j ) so that no sensor is located
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in it is called an row gap (resp. column gap), and some sensor needs to be moved
to cover such a row or column. Let r and c be the number of rows and columns
gaps in the initial configuration. Clearly in the final blocking configuration, there
are no uncovered rows or columns. By moving a sensor, we can cover a row or
column gap or both. For example, if row i and column j are both gaps, moving
a sensor to position (i, j) covers both row i and column j. However, moving a
sensor may also create a new row or column gap. To understand better the net
effect of moving a sensor based on the other sensors in its row and column, we
introduce the following classification of sensors (see Fig. 3 for an illustration).
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1 2

Fig. 3. (a) Classification of sensors for the MinNum algorithm. Notice that at most 2
free sensors can be removed from row 6 or column 4 without creating a new gap. (b)
A maximum free set of sensors is shown in dark gray.

Definition 1. Let Sk be a sensor in position (i, j). We say that

1. Sk is free if there is at least one other sensor located in row i and at least one
other sensor in row j.

2. Sk is of type 0 if Sk is the only sensor located in row i and the only sensor
in column j.

3. Sk is of type 1 if either there is another sensor located in row i but no other
sensor located in column j or there is no other sensor located in row i but
there is another sensor located in column j.

4. Sk is of type 2 if it is a free sensor, and there is at least one sensor of type
1 located in row i, and also at least one sensor of type 1 in column j.

5. Sk is of type 3 if it is a free sensor, and if there is at least one sensor of type
1 located in row i (column j) and only free sensors in column j (row j).

6. Sk is of type 4 if it is a free sensor, and the only sensors located in row i and
column j are all free sensors.

We call a move of a sensor a sliding move if the final position of the sensor is
either in the same row or column as its initial position. We call a move a jumping
move if the final position is in a different row and column from its initial position.
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Consider a sensor of type 0. Any sliding move of such a sensor creates an
additional row or column gap and can cover at most one other gap. Any jumping
move of this sensor creates both a row and a column gap, and it can cover at most
one previous row gap and one column gap. Thus the total number of row and
column gaps cannot decrease by moving a sensor of Type 0. In what follows, we
can therefore assume that sensors of type 0 and the rows and columns in which
they reside are not considered any further.

A sensor of Type 1 which has another sensor in its row can make a sliding
move in its column and cover a row gap. Any jumping move of this sensor can
cover one row and one column gap, but it creates a column gap. Thus the total
number of row and column gaps decreases by at most 1 by moving a sensor of
Type 1.

However, if there is a row gap i and a column gap j, then a free sensor (of
Type 2, 3, or 4) can make a jumping move to position [i, j] and cover both
row i and column j, without creating any new row or column gaps. Therefore,
moving a free sensor can reduce the total number of row and column gaps by
2. However, moving a free sensor can change the types of sensors in its row or
column, and moving multiple free sensors can create new empty rows or columns
as for example removing all free sensors from row 6 in Fig. 3.

Denote the set of free sensors by F . We define a maximum free set to be a
maximum-sized subset M of free sensors that can all be removed at the same time
without creating new row and column gaps (see Fig. 3(b) for an example). The
following theorem shows that a maximum free set can be found in polynomial
time.

Theorem 2. Given an integer configuration as input, a maximum free set M
can be found in O(n3/2) time.

Proof. Define X to be the set of rows and columns that contain only the sensors
in F , and let B ⊆ F be a minimum-sized subset of F so that every row (or
column) in X contains a sensor in B. We call B a minimum blocking set for
X. Then clearly M is a maximum free set if and only if F − M is a minimum
blocking set. Therefore, to find a maximum free set, we proceed by finding a
minimum blocking set.

Consider a graph G = (V,E) defined as follows. The vertex set V contains a
vertex corresponding to every row and column in X; we call the vertex ci if it
corresponds to column i and rj if it corresponds to row rj . We also introduce two
extra vertices x and y. For every Type 4 sensor at position (i, j), we introduce an
edge eij between the vertices ri and cj . For every Type 3 sensor that has only free
sensors in its row i (resp. column i), we introduce an edge eix between vertex
ri (resp. ci) and the vertex x. Finally, we add the edge exy between vertices
x and y.

We claim that B is a blocking set for X if and only if E′ ∪ {exy} forms an
edge cover in the above graph G, where E′ is the set of edges corresponding to
sensors in B. To see this, observe that if a sensor of type 4 at position (i, j) is in
B, then the corresponding edge eij covers both vertices ri and cj in the graph.
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Similarly, if a type 3 sensor at position (i, j) that has free sensors only in its
row (resp. column) is in B then the corresponding edge eix covers vertices ri
(resp. ci) and x. Furthermore exy covers both x and y. Since B blocks all rows
and columns in X, it follows that all vertices in G are covered by E′ ∪ {exy}.
Conversely, consider an edge cover in G. It must include the edge exy since it
is the only edge incident on y. Additionally, any set of edges that covers the
remaining vertices in G must be incident on all vertices corresponding to the set
X, and therefore corresponds to a set of sensors that blocks X. This completes
the proof of the claim.

Since an edge cover can be found via a maximum matching in O(
√

V E) =
O(n3/2) time [13], we can find a minimum blocking set, and thereafter, a maxi-
mum free set M in O(n3/2) time. �

Assume that in the given MinNum-WCR configuration there are r row gaps
and c column gaps. We can assume without loss of generality that r ≥ c. We
now give an algorithm to solve the MinNum-WCR problem:

Algorithm 1. The MinNum-WCR Algorithm
Input: I an integer configuration with r row gaps and c column gaps,
with r ≥ c

Construct the maximum free set M for I.
Recalculate the types of sensors after removing the sensors in M .
Let k be the number of free sensors in M .

Case k ≥ r: Move c sensors from M using jumping moves to cover the
first c row gaps and all c column gaps. Then r − c sensors from M use
sliding moves to cover the remaining row gaps. The total number of
sensors moved is c + (r − c) = r.

Case c ≤ k < r: Move c sensors from M using jumping moves to cover
the first c row gaps and all c column gaps. Move the remaining k − c
sensors from M to cover k−c row gaps. Finally r−k sensors of Type 1
use sliding moves to cover the remaining row gaps. The total number
of sensors moved is c + (k − c) + (r − k) = r.

Case k < c: Move k sensors from M using jumping moves to cover k row
and column gaps. Then we use sliding moves of sensors of Type 1 to
cover the remaining row and column gaps. In total k+(c−k)+(r−k) =
r + c − k sensors are moved.

Theorem 3. Given an integer configuration, where all sensor ranges are 0.5,
and the rectangle R to be covered is displaced by 0.5 in both axes, Algorithm1
solves the MinNum-WCR problem in O(n3/2) time.

Proof. First we prove that Algorithm 1 produces a blocking configuration.
Clearly, the sensors in M can be moved without creating new row or column
gaps. Assume now that all sensors in M have been used by our algorithm to
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cover the gaps, but there still remains a row gap (or column gap). Recall that
the number of sensors is assumed to be at least as large as the longer side of
the rectangle. Thus, by the pigeonhole principle, there exists a row (or column,
respectively) that contains more than one sensor. Such sensors must be of Type
1. One of them can make a sliding move along its column (or row) to cover the
row gap, without creating any column gap or any other row gap. This shows
that as long as there are gaps, there are sensors of Type 1 available to fill them
as needed in the algorithm.

Next we show that Algorithm 1 moves an optimal number of sensors. Given
an input configuration with r empty rows and c empty columns, assume without
loss of generality that r ≥ c. Observe that at least r sensors need to be moved
to cover all empty rows, thus r is a lower bound on the number of sensors to be
moved. If k ≥ c, Algorithm 1 moves exactly r sensors, and it is optimal in the
first two cases.

Suppose instead that k < c. At most k row and column gaps can be covered
with sensors from M . It follows from the maximality of M that all remaining
sensors are not free, that is, moving any of them must be done using a sliding
move, which reduces either the number of row gaps or the number of column
gaps by at most 1. Thus, in total we need to move k + (c − k) + (r − k) sensors.
Therefore Algorithm 1 moves an optimal number of sensors in this case as well.

Given a list of sensors with their coordinates, we can calculate in O(n) time
a list of the number of nodes in each row and a list of the number of nodes in
each column. By an O(n) scan of these lists we can find all nodes of Type 0 or 1,
and we can mark the rows and columns containing sensors of Type 1. Now, an
additional O(n)-time scan of the lists determines the types of all other nodes.
By Theorem 2, a maximum free set of nodes can be constructed in O(n3/2) time.
After removing the max free set of sensors M , we can update the types of nodes,
find row and column gaps, and calculate new positions in O(n) time. Thus the
total time taken by Algorithm 1 is O(n3/2). 	

Remark 1. Notice that the algorithm described in this section assumes (a) that
the sensors are initially at integer positions, and (b) that the rectangle R to
be covered is displaced from the integer grid by 0.5 in each direction and (c)
sensor diameters are 1. All these assumptions are necessary for the algorithm to
produce a valid solution.

3 MinSum-WCR Problem

In this section, we study the MinSum-WCR problem. The MinSum problem
is known to be NP-hard in the one-dimensional case of heterogeneous sensors
on a line segment barrier [8]. The following theorem is therefore an immediate
consequence:

Theorem 4. For a heterogeneous sensor network, the MinSum-WCR problem
is NP-complete for both Manhattan and Euclidean metrics.
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If the sensors are homogeneous and we consider the Manhattan metric, then
to minimize the sum of the movements we can first minimize the sum of all hori-
zontal movements by applying the known, one-dimensional, O(n log n) MinSum
algorithm [8] to the x-coordinates of the sensors, and second we minimize the
sum of all vertical movements by applying this O(n log n) MinSum algorithm
to the y-coordinates of the sensors. It is easy to see that this gives an optimal
solution. Thus we have the following result.

Theorem 5. If all sensor ranges are equal, there is an O(n log n) algorithm to
solve MinSum-WCR for the Manhattan metric.

Remark 2. Unlike the algorithm for MinNum-WCR, the algorithm for MinSum-
WCR works for arbitrary input configurations, and sensor ranges that are equal
but of arbitrary size.

4 MinMax-WCR Problem

As seen in the previous section, the complexity of MinSum-WCR is very similar
to the complexity of the MinSum barrier coverage of a line segment. However,
this is not the case for the MinMax-WCR problem. For a line segment barrier,
the MinMax problem can be solved using an O(n log n) algorithm even in the
heterogeneous case [6]. Surprisingly, the MinMax-WCR problem is NP-hard even
for a integer configuration with a very restricted possible move size, as shown in
Theorem 6 below. The proof can be found in [20].

Theorem 6. The MinMax-WCR Problem with Manhattan or Euclidean metric
is NP-complete for maximum distance D = 1.

5 Conclusion

In this paper we studied the complexity of establishing weak barrier coverage
(WCR) in a given rectangular area using mobile sensors so that the network can
detect any crossing of the area in a direction perpendicular to the sides of the
rectangle. We considered the three typical optimization measures MinSum, Min-
Max, and MinNum for movements of sensors. For the MinNum-WCR problem,
we show that the problem is NP-hard if sensors have sensing diameter 2, even
if sensors are placed initially at integer locations. On the other hand, if sensors
of sensing diameter 1 are placed at integer locations, we show an O(n3/2) algo-
rithm to solve the problem. For the MinMax-WCR problem, we show that the
problem is NP-complete for both Euclidean and Manhattan metrics even when
sensors are initially placed in integer locations. For the MinSum-WCR problem
using the Manhattan metric, we showed that the problem is NP-complete for
heterogeneous sensors, and solvable in O(n log n) time for homogeneous sensors.
The complexity of MinSum-WCR for the Euclidean metric remains unknown.
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Abstract. We study a version of the online min-cost perfect matching
with delays (MPMD) problem recently introduced by Emek et al. (STOC
2016). In this problem, requests arrive in a continuous time online fashion
and should be matched to each other. Each request emerges from one out
of n sources, with metric inter-source distances. The algorithm is allowed
to delay the matching of requests, but with a cost: when matching two
requests, it pays the distance between their respective sources and the
time each request has waited from its arrival until it was matched. In
this paper, we consider the special case of n = 2 sources that captures
the essence of the match-or-wait challenge (cf. rent-or-buy). It turns out
that even for this degenerate metric space, the problem is far from triv-
ial. Our results include a deterministic 3-competitive online algorithm
for this problem, a proof that no deterministic online algorithm can
have competitive ratio smaller than 3, and a proof that the same lower
bound applies also for the restricted family of memoryless randomized
algorithms.

1 Introduction

The abundance of hand held devices and the ease of application development
is fueling the increasing popularity of online games. With that, the demand for
head-to-head competition or players teaming up to complete a mission is growing
fast. Ranging from classic games like Chess to car racing games like Asphalt 8,
users wish to be matched with suitable opponents. The online gaming platform
tries to find a match for each player while conflicted between two desired criteria:
find a worthy opponent and find it fast. It is not hard to imagine a situation where
the only available opponents are a poor match either due to a large difference
between the players’ skills and experience or due to the network distance between
the players which may lead to significant communication delays. Should the
platform wait, risking bored (and thus, dissatisfied) users? For how long?

Emek et al. [8] recently formalized this challenge in terms of the min-cost per-
fect matching with delays (MPMD) problem. In this problem requests arrive in
an online fashion at the points of a finite metric space (known in advance).
The online algorithm serves the requests by matching them to each other
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 209–221, 2017.
DOI: 10.1007/978-3-319-57586-5 18
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(i.e., partitioning the request set into pairs), where each match incurs a space
cost equal to the metric distance between the locations of the matched requests.
The crux of this problem is that it is not mandatory to serve the requests immedi-
ately; rather, the online algorithm is allowed to delay its matching commitments,
but this incurs an additional time cost.

Some online gaming platforms will match a pending human player with a
virtual (computer) opponent if a suitable human opponent cannot be found
within a reasonable time frame. On the positive side, this allows the platform
to shorten the waiting times of its users, but on the negative side, a player
matched with a virtual opponent may be slightly disappointed: after all, it is
more enjoyable to compete with your peers. This imposes an additional algo-
rithmic challenge on behalf of the gaming platform: For how long should the
platform wait before it matches a pending user to a virtual opponent? The chal-
lenge faced by a gaming platform that is allowed to match a human player to
a virtual opponent is captured by a variant of the MPMD problem, referred to
in [8] as MPMDfp, where the algorithm can serve a pending request without
matching it to another request, paying a fixed penalty (hence the ‘fp’ abbrevia-
tion). Among other results, Emek et al. showed that the MPMDfp problem on
an n-point metric space can be reduced to the MPMD problem on a (2n)-point
metric space.

In this paper, we focus on a special case of the MPMD problem, referred
to as 2-MPMD, where the metric space consists of only two points with a unit
distance between them, that is, the requests emerge from one of two possible
sources. It turns out that even for this degenerate metric space, the problem
is far from trivial. Moreover, the 2-MPMD problem generalizes the MPMDfp
problem on a single point that corresponds to an online game in which all (user-
to-user) matches are considered equally good and it is only the waiting times
and penalties paid for matching users with a virtual opponent that affect the
platform’s total cost. This problem is interesting by its own right as it captures
the essence of the wait-or-match question (cf. rent-or-buy) while abstracting
away the space cost component arising from the distances in the metric space.

1.1 Model

An instance of the 2-source minimum cost perfect matching with delays (2-
MPMD) problem consists of two sources (denoted a and b) and a set R of
requests. Each request r ∈ R is characterized by its source x(r) ∈ {a, b} and its
arrival time t(r) ∈ R≥0. The request set R is provided to the algorithm in a
continuous time online fashion so that request r ∈ R is reported at time t(r).

Assume throughout that |R| is even. The output of the algorithm is a perfect
matching of R, namely, a partition of R into unordered request pairs. Though
this is computed online, the algorithm is allowed (and often required) to delay
the matching of any request in R. This delay comes with a cost: the time between
the arrival of a request and it being matched is added to the cost incurred by
the algorithm.
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Specifically, given two requests r1, r2 ∈ R, we denote a match operation
m(r1, r2, t) as the assignment of r1 and r2 into an unordered pair at time t ≥
max{t(r1), t(r2)}. Match m incurs two types of costs on each request: space cost
and time cost. If r1 and r2 have different sources (i.e., x(r1) �= x(r2)), referred
to hereafter as matching across, then the space cost for each of the requests is
1/2, otherwise it is 0 (this choice of space cost convention reflects the implicit
assumption that there is a unit distance between the two sources). The time
costs for requests r1 and r2 are t − t(r1) and t − t(r2), respectively. The total
cost of match operation m is denoted cost(m) and is defined to be the sum of
the space and time costs of the two involved requests. For algorithm ALG, we
denote the set of unordered pairs that have been produced by it as MALG and
the total cost incurred by the algorithm, denoted by costALG(R), is defined to
be costALG(R) =

∑
m∈MALG

cost(m).
When request r arrives, it is initially referred to as open; once the algorithm

has matched it with another request, it becomes matched. Notice that this def-
inition is only relevant in the context of a certain algorithm since two different
algorithms may have matched the requests differently or at different times.

Our goal is to minimize the total cost of the match operations that our
algorithm performs. Adhering to the common practice in the theory of online
algorithms [4], the quality of the algorithmic solutions is measured in terms of
their competitive ratio: Online algorithm ALG is said to be α-competitive if there
exists a universal constant β such that costALG(R) ≤ α · costOPT (R) + β for
every (even size) request sequence R, where OPT is an optimal offline algorithm
(the cost is taken in expectation if ALG is randomized). We notice that ALG
has no a priori knowledge of R.

1.2 Related Work

Matching is a classic problem in graph theory and combinatorial optimization
since the seminal work of Edmonds [6,7]. The matching problem has been studied
in the context of online computation as well, starting with the classic paper of
Karp et al. [11] that ignited the interest in online matching and attracted a lot
of attention to the different versions of this problem [1,3,5,9,10,12–17]. In these
online versions, it is usually assumed that the requests belong to one side of a
bipartite graph whose other side is given in advance.

Emek et al. [8] recently introduced the MPMD problem which differs from
the previously studied online matching versions in that the underlying graph
(or metric space) is known in advance and the algorithmic challenge stems
from the unknown locations and arrival times of the requests (whose number
is unbounded). They present a randomized algorithm with competitive ratio
O(log2 n + log Δ), where n is the number of points in the metric space and Δ
is the aspect ratio. Wang and Wattenhofer [18] show that the algorithm of [8]
can be modified to treat the bipartite version of the MPMD problem (left out-
side the scope of the present paper), obtaining the same competitiveness. Azar
et al. [2] devise another online MPMD algorithm with an improved logarithmic
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competitive ratio. They also prove that no (randomized) online MPMD algo-
rithm can have competitive ratio better than Ω(

√
log n) in the all-pairs version

and Ω(log1/3 n) in the bipartite version.

1.3 Our Contribution

The general case of the online MPMD problem received a lot of attention in the
last year, narrowing the asymptotic gap between the upper and lower bounds on
the competitiveness of this problem [2,8,18]. The algorithms presented in [8] and
[2] clearly imply a constant upper bound on the competitiveness of the 2-MPMD
problem, but the analyses in these papers are not necessarily tailored to optimize
this constant: the upper bound guaranteed by the analysis in [2] is 5; the upper
bound guaranteed by the analysis in [8] is even larger, however, examining [8]’s
randomized online algorithm (its 2-MPMD restriction) more carefully reveals
that its competitive ratio is at most 3. Is this optimal? Can one ensure the same
upper bound with a deterministic online algorithm?

In this paper, we answer these two questions on the affirmative. First,
in Sect. 2, we introduce a deterministic variant of the online algorithm of [8]
(restricted to the special case of the 2-MPMD problem) and establish an upper
bound of 3 on its competitive ratio. Then, in Sect. 3, we prove that any deter-
ministic online 2-MPMD algorithm must have a competitive ratio of at least
3. Finally, in Sect. 4, we investigate the competitiveness of memoryless online
2-MPMD algorithms—a family of randomized algorithms that include the algo-
rithm of [8] (refer to Sect. 4 for an exact definition)—proving that it is at least 3
as well. While the upper bound of Sect. 2 clearly holds for the MPMDfp problem
on a single point (recall that this is a special case of 2-MPMD), it is interesting
to point out that the lower bounds of Sects. 3 and 4 also hold for that problem.

2 An Online 2-MPMD Algorithm

In this section we present a deterministic online 2-MPMD algorithm (Sect. 2.1),
referred to as delayed matching on 2 sources (DM2), and prove that its com-
petitive ratio is 3 (Sect. 2.2). A matching lower bound will be established in
Sect. 3.

2.1 Algorithm DM2

In this section we present our online algorithm DM2. While DM2 is designed for
a continuous time environment, it is more easily understood when described as if
it was operating in a discrete time environment, taking discrete time steps. The
time difference dt between two consecutive steps is taken to be infinitesimally
small so that we can assume without loss of generality that every request arrives
in a separate time step.

The algorithm holds a counter T initialized to 0. For a given time step t and
a request r1 arriving during that time step, if there exists another open request
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r2 in the same source, then DM2 matches the two requests immediately. If
during this time step, there are two open requests in different sources (arriving
in this time step or in previous ones), then DM2 will increase T by dt. When
T reaches τ , DM2 matches across and resets T back to 0. Refer to Algorithm 1
for a pseudocode.

Algorithm 1. Algorithm DM2 at time step t.
1: if there exist two open requests r1 �= r2 with x(r1) = x(r2) then
2: match(r1, r2)
3: else if there exist two open requests r1 �= r2 with x(r1) �= x(r2) then
4: T ← T + dt
5: if T = τ then
6: match(r1, r2)
7: T ← 0
8: end if
9: end if

2.2 Analysis

Our goal in this section is to analyze the competitiveness of the online algorithm
presented in Sect. 2.1, establishing the following theorem.

Theorem 1. Algorithm DM2 is 3-competitive.

We say that an (online or offline) algorithm A is smart if it satisfies the
following property: If request r arrives at a source where there already exists an
open request r′ �= r, i.e., x(r′) = x(r) and t(r′) < t(r), then A matches r and
r′ immediately, that is, at time t(r). Notice that any smart algorithm will never
have more than two open requests for a positive duration of time. Algorithm
DM2 is clearly smart by definition.

Lemma 1. There exists an online method that transforms any algorithm A into
a smart algorithm Ã without increasing the total cost incurred by the algorithm.

Proof. Let R be the request sequence and consider the first occurrence of two
open requests r1, r2 with x(r1) = x(r2) and t(r1) < t(r2) that algorithm A does
not match immediately (i.e., at time t(r2)). We construct an algorithm A′ that
behaves exactly like A up to time t(r2) and matches r1 with r2 at time t(r2) and
show that the cost incurred by A′ is not greater than that of A. This argument
can then be repeated to turn A into the desired smart algorithm Ã.

Algorithm A′ will match r1 with r2 at time t(r2) and continue as follows. If A
matches r1 with r2 at a later time t′ > t(r2), then all other matching operations
of A′ are identical to those of A. In this case, costA′(R) is clearly smaller than
costA(R). The more interesting case is when A matches r1 to r′

1 �= r2 at time
t1 and r2 to r′

2 �= r1 at time t2; in this case, A′ will match r′
1 with r′

2 at time
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max{t1, t2}. Again, all other matching operations of A′ are identical to those
of A.

It remains to prove that costA′(R) ≤ costA(R) also in this case. To that end,
notice that

costA(R) − costA′(R) ≥ (t1 − t(r1) + t1 − t(r′
1) + t2 − t(r2) + t2 − t(r′

2))
− (t(r2) − t(r1) + 2max{t1, t2} − t(r′

1) − t(r′
2))

= 2 (t1 + t2 − t(r2) − max{t1, t2}) .

The last expression is non-negative since we know that t1, t2 ≥ t(r2).

We subsequently assume that OPT is smart. The cost incurred by a smart
algorithm A (online or offline) is comprised of three cost components :

(C1) the space cost incurred by A for matching across;
(C2) the time cost incurred by A while there exists a single open request; and
(C3) the time cost incurred by A while there exist two open requests (one at

each source).

Observation 1. The parity of the number of open requests is the same for DM2
and OPT at any time t.

From Observation 1 we conclude that cost component (C2) for DM2 is iden-
tical to that of OPT . We therefore ignore it in the subsequent analysis (this can
only hurt the upper bound we obtain on the competitive ratio of DM2).

Our analysis relies on partitioning the time axis into phases. Each phase
starts when the previous phase ends (the first phase starts at time 0) and ends
when DM2 performs a match across (OPT might have open requests at this
stage). Note also that a match across can only occur (Line 10) when T has
increased from 0 to τ since the last time a match across occurred (i.e., in this
phase only).

Let MA(P ) denote the set of request pairs matched by algorithm A
during phase P so the cost that algorithm A pays for P is costA(P ) =∑

m∈MA(P ) costA(m). Since we ignore cost component (C2), the cost for DM2
of any phase P is always costDM2(P ) = 1 + 2τ .

Phase P is said to be clean if when it starts, OPT does not have any open
requests. Otherwise, P is said to be dirty. Phase P is said to be even numbered
if OPT performs an even number of matches across during the time interval P .
Otherwise, P is said to be odd numbered.

Observation 2. When a dirty phase starts, OPT has exactly two open requests.

Proof. From Observation 1 we know OPT has an even number of open requests;
it can not be larger than 2 because OPT is smart and it can not be 0 because
the phase is dirty.

Observation 3. In every phase the number of requests that appear in each
source is odd.
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Proof. DM2 starts and ends each phase with no open requests, and since it also
matches across exactly once during the phase, the number of requests appearing
during the phase in each source must be odd.

Observation 4 follows from Observation 3 and from the fact that DM2
matches across exactly once (and in particular an odd number of times) in each
phase.

Observation 4. Given two consecutive phases P1 and P2, if both are clean or
both are dirty, then P1 must be an odd numbered phase. If one of them is dirty
and the other is clean, then P1 must be even numbered.

We now turn to define the notion of a super phase which consists of a clean
phase followed by a maximal (possibly empty) contiguous sequence of dirty
phases. This notion uniquely induces a partition of the phase sequence into
super phases. We denote the cost that algorithm A pays for super phase S as
costA(S) =

∑
P∈S costA(P ). By definition, when a super phase starts, both

DM2 and OPT have no open requests. This means that we can establish The-
orem 1 by proving the following lemma.

Lemma 2. There exists a choice of the parameter τ > 0 that guarantees
costDM2(S) ≤ 3 · costOPT (S) for every super phase S.

Proof. Consider some super phase S comprised of a single clean phase followed
by n ≥ 0 dirty phases. We know that DM2 pays 1 + 2τ for each phase, so
costDM2(S) = (n + 1)(1 + 2τ).

If S consists of exactly one phase P (i.e., n = 0), then by Observation 4, P is
odd numbered. Therefore, OPT matched across at least once during super phase
S, hence costOPT (S) ≥ 1. This proves the assertion under the requirement that
τ ≤ 1.

Assume hereafter that S contains n ≥ 1 dirty phases. Refer to the first (clean)
phase of S as P0 and to the subsequent n dirty phases as P1, . . . , Pn in order
of appearance. By Observation 4, phase P0 is even numbered, therefore, during
this phase, OPT either matched across at least twice or did not match across at
all. The former case implies that costOPT (P0) ≥ 2; in the latter case, we know
by the design of DM2 that OPT paid at least 2τ in time cost. This means that
costOPT (P0) ≥ min{2, 2τ}.

Since phases P1, . . . , Pn are all dirty, Observation 4 ensures that phases
P1, . . . , Pn−1 are all odd numbered, hence OPT must have matched across
at least once during each one of them. It follows that costOPT (Pi) ≥ 1 for
every 1 ≤ i ≤ n − 1. Therefore, the total cost of OPT for super phase S is
costOPT (S) ≥ min{2, 2τ} + (n − 1).

To establish the assertion, we require that (n + 1)(1 + 2τ) ≤ 3(min{2, 2τ} +
(n − 1)). To that end, we let

f(τ) = (n+1)(1+2τ)−3(min{2, 2τ}+(n−1)) = 2nτ +2τ −6min{1, τ}−2n+4
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and require that f(τ) ≤ 0. Observing that setting τ < 1 implies

f(τ) = 2nτ + 2τ − 6τ − 2n + 4 = (1 − τ)(4 − 2n)

which means that f(τ) > 0 for n = 1, forces τ to be at least 1. Recalling the
prior constraint of τ ≤ 1, we conclude that τ must be 1. Indeed, by setting τ = 1,
we obtain f(τ) = 0 as required.

3 A Lower Bound for Deterministic Algorithms

We now turn to show that the algorithm presented in Sect. 2.1 is optimal by
establishing a matching lower bound.

Theorem 2. For any δ > 0, no deterministic online 2-MPMD algorithm can
have a competitive ratio of 3 − δ.

Theorem 2 is established by proving that for every deterministic online 2-
MPMD algorithm A, there exists a request sequence R with arbitrarily large
costOPT (R) such that costA(R) ≥ (3 − δ)costOPT (R). The key ingredient in the
construction of R is a gadget G satisfying costA(G) ≥ (3 − δ)costOPT (G); the
request sequence R is then constructed by repeatedly introducing instances of
this gadget with sufficiently large time gaps between consecutive copies.

Gadget G is comprised of 2n requests, denoted by r1, . . . , rn and r′
1, . . . , r

′
n,

with x(ri) = a, x(r′
i) = b, and t(ri) = t(r′

i) for every 1 ≤ i ≤ n. Requests r1 and
r′
1 are the only requests certain to appear, while the appearance of the rest of the

requests ri, r
′
i depends on the behavior of A. Given that G includes requests ri

and r′
i (i.e., n ≥ i), let ti be the difference (in absolute value) between time t(ri)

and the time when A performed m(ri, r
′
i) (the time difference ti is well defined

since A must eventually match m(ri, r
′
i) as otherwise its competitive ratio is

unbounded). The appearance of requests ri+1 and r′
i+1 then abides the following

rule: if ti < 1, then requests ri+1 and r′
i+1 are introduced at time

t(ri+1) = t(r′
i+1) = t(ri) + ti + ε

for a sufficiently small ε > 0; otherwise, the gadget ends (i.e., n = i). This holds
until the first odd i ≥ 3 that fulfills i−2

i ≥ 1− δ after which there will appear no
more requests (i.e., n = i).

Lemma 3. For every δ > 0, the construction of G ensures that costA(G) ≥
(3 − δ)costOPT (G).

Proof. If n=1, then costA(G)=1+2t1 whereas costOPT (G)=1, thus costA(G)
costOPT (G) =

1+2t1
1 which is at least 3 since t1 ≥ 1. If n = 2, then costA(G) = 2 + 2t1 + 2t2

whereas costOPT (G) = 2t1 since OPT performs {m(r1, r2),m(r′
1, r

′
2)}. There-

fore, costA(G)
costOPT (G) = 2+2t1+2t2

2t1
= 2

2t1
+ 2t1

2t1
+ 2t2

2t1
which is at least 3 since t1 < 1 ≤ t2.

Assume hereafter that n ≥ 3 is odd (the case of even n ≥ 3 is similar and
deferred to the full version). Notice that costA(G) is always n+2t1+2t2+· · ·+2tn
whereas OPT can choose between the following options (among others).
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1. Perform a match across m(r1, r′
1, t(r1)) for the first two requests; match

all other requests by performing m(r2j , r2j+1, t(r2j+1)) and m(r′
2j , r

′
2j+1,

t(r′
2j+1)) for every 1 < j ≤ (n − 1)/2.

Ignoring ε-terms that can be made arbitrarily small, this results in costOPT

(G) = 1 + 2t2 + 2t4 + · · · + 2tn−1.
2. Perform a match across m(rn, r′

n, t(rn)) for the last two requests; match all
other requests by performing m(r2j−1, r2j , t(r2j)) and m(r′

2j−1, r
′
2j , t(r

′
2j)) for

every 1 ≤ j ≤ (n − 1)/2.
Ignoring ε-terms that can be made arbitrarily small, this results in costOPT

(G) = 1 + 2t1 + 2t3 + · · · + 2tn−2.

Denoting Todd =
∑�n/2�

j=1 t2j−1 and Teven =
∑�n/2	−1

j=1 t2j implies that
costOPT (G) can never exceed min{1 + 2Teven, 1 + 2Todd}. Since ti < 1 for every
1 ≤ i ≤ n − 1, it follows that costOPT (G) < n.

Consider the case where ti < 1 for every 1 ≤ i ≤ n − 1 and tn ≥ 1. We
examine the ratio of costA(G) and costOPT (G) to conclude that

costA(G)
costOPT (G)

=
n + 2Todd + 2Teven + 2tn
1 + 2min{Teven, Todd}

=
1 + 2Todd

1 + 2min{Teven, Todd} +
1 + 2Teven

1 + 2min{Teven, Todd} +
n − 2 + 2tn

1 + 2min{Teven, Todd}
>

1 + 2Todd

1 + 2Todd
+

1 + 2Teven

1 + 2Teven
+

n

n
= 3 .

It remains to consider the case where ti < 1 for every 1 ≤ i ≤ n which means
that n is odd and that n−2

n ≥ 1 − δ. Again, we examine the ratio of costA(G)
and costOPT (G) to conclude that

costA(G)
costOPT (G)

=
n + 2Todd + 2Teven + 2tn
1 + 2min{Teven, Todd}

=
1 + 2Todd

1 + 2min{Teven, Todd} +
1 + 2Teven

1 + 2min{Teven, Todd} +
n − 2 + 2tn

1 + 2min{Teven, Todd}
≥ 1 + 2Todd

1 + 2Todd
+

1 + 2Teven

1 + 2Teven
+

n − 2
n

≥ 3 − δ .

The assertion follows.

4 Memoryless Online Algorithms

We now turn our attention to randomized algorithms. As the deterministic algo-
rithm presented in Sect. 2 is 3-competitive and the lower bound established in



218 Y. Emek et al.

Sect. 3 states that this cannot be improved, it is natural to ask whether a ran-
domized 2-MPMD algorithm can have competitive ratio smaller than 3. While
we dot know the answer to this question in the general case yet, the current
section resolves it on the negative for a restricted family of randomized 2-MPMD
algorithms.

Recall the notion of smart algorithms presented in Sect. 2.2. Lemma 1 guar-
antees that for the sake of establishing negative results, it suffices to consider
the class of smart online algorithms as any algorithm can be transformed into a
smart algorithm without increasing the cost (since the transformation works in
an online fashion, the lemma applies to randomized algorithms as well).

Consider some randomized smart 2-MPMD algorithm ALG. By the definition
of smart algorithms, ALG is fully characterized by the parameter λ(t) ∈ R≥0,
t ≥ 0, defined so that if there is an open request in each source throughout
the infinitesimally small time interval [t − dt, t), then ALG matches across at
time t with probability λ(t)dt. (Strictly speaking, λ(t) can also take the special
value 1/dt in which case λ(t)dt = 1; in particular, the algorithm is deterministic
if λ(t) is either 0 or 1/dt for every t ≥ 0.) We say that algorithm ALG is
memoryless if there exists some λ > 0 such that λ(t) = λ for every t ≥ 0,
namely, the probability that ALG matches across at time t depends only on the
infinitesimally small time interval [t− dt, t) and is independent of the rest of the
history.

Interestingly, the restriction of the randomized online MPMD algorithm of [8]
to metric spaces with 2 sources is memoryless with parameter λ = 1. Although
the authors of [8] did not attempt to optimize the (constant) competitive ratio
of their algorithm for that special case, a careful examination of the arguments
used in the analysis of this algorithm reveals that its competitive ratio is 3. In
this section, we show that this cannot be improved.

Theorem 3. If ALG is a (randomized) memoryless 2-MPMD algorithm with
parameter λ �= 1, then its competitive ratio is greater than 3.

Proof. Consider first the case where λ < 1. Let R be the request sequence
consisting of 2n requests r1, . . . , rn and r′

1, . . . , r
′
n for some arbitrarily large n so

that

(1) x(ri) = a and x(r′
i) = b for every 1 ≤ i ≤ n;

(2) t1 = t(r1) = t(r′
1) = 0; and

(3) ti+1 = t(ri+1) = t(r′
i+1) = ti + z for some sufficiently large real z for every

1 ≤ i ≤ n − 1.

Given that z > 1, OPT will perform m(ri, r
′
i, ti) for every 1 ≤ i ≤ n for a total

cost of costOPT (R) = n.
Assuming that all previous requests are already matched by the time ri and

r′
i arrive, ALG will perform either (i) m(ri, r

′
i, ti + Yi) for some 0 ≤ Yi < z;

or (ii) m(ri, ri+1, ti+1) and m(r′
i, r

′
i+1, ti+1), recalling that ti+1 = ti + z. By the

definition of a memoryless algorithm, the probability that (ii) occurs is

P(Exp(λ) > z) = e−λz,
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where Exp(λ) is an exponential random variable with rate parameter λ. More-
over, Yi is a random variable that behaves like Exp(λ), truncated at z, namely,
Yi ∼ min {Exp(λ), z}. Standard calculation (see, e.g., the proof of Lemma 4.2 in
[8]) then yields that

E(Yi) =
1
λ

(1 − e−λz).

It follows that
lim

z→∞E (costALG(R)) = n (1 + 2/λ) > 3n,

where the last transition follows from the assumption that λ < 1.
Suppose that λ > 1 and let R be the request sequence consisting of 4n

requests r1, . . . , r2n and r′
1, . . . , r

′
2n for some arbitrarily large n so that

(1) x(ri) = a and x(r′
i) = b for every 1 ≤ i ≤ 2n;

(2) t1 = t(r1) = t(r′
1) = 0;

(3) t2i = t(r2i) = t(r′
2i) = t2i−1 + ε for some sufficiently small real ε > 0 for

every 1 ≤ i ≤ n; and
(4) t2i+1 = t(r2i+1) = t(r′

2i+1) = t2i + z for some sufficiently large real z for
every 1 ≤ i ≤ n − 1.
Given that ε < 1, OPT will perform m(r2i−1, r2i, t2i) and m(r′

2i−1, r
′
2i, t2i)

for every 1 ≤ i ≤ n for a total cost of costOPT (R) = 2εn.

Assuming that all previous requests are already matched by the time r2i−1

and r′
2i−1 arrive, ALG will perform either (i) m(r2i−1, r

′
2i−1, t2i−1 + y) for some

0 ≤ y < ε; or (ii) m(r2i−1, r2i, t2i) and m(r′
2i−1, r

′
2i, t2i), recalling that t2i =

t2i−1 + ε. Taking p to be the probability that (i) occurs, we conclude by the
definition of a memoryless algorithm that p = P(Exp(λ) < ε) = 1 − e−λε, hence

λε(1 − λε) < λε − (λε)2/2 < p < λε

by standard approximations of the exponential function.
Condition for the time being on the event that (i) occurs and notice that

ALG will now perform either (iii) m(r2i, r
′
2i, t2i + Yi) for some 0 ≤ Yi < z; or

(iv) m(r2i, r2i+1, t2i+1) and m(r′
2i, r

′
2i+1, t2i+1), recalling that t2i+1 = t2i + z.

As before, the probability that (iv) occurs is P(Exp(λ) > z) = e−λz and Yi ∼
min {Exp(λ), z} with E(Yi) = 1

λ (1−e−λz), so by taking z to be sufficiently large
with respect to n, we can assume that event (iv) never occurs. This means that
every time event (i) occurs, ALG pays, on expectation, 1+2/λ for matching r2i

and r′
2i (and that this match occurs before time t2i+1, i.e., the arrival time of

the next requests).
Since every time (i) occurs, ALG pays an additional space cost of 1 for

matching (across) r2i−1 and r′
2i−1 and every time (ii) occurs, ALG pays a time

cost of 2ε, it follows that

E (costALG(R)) ≥ n(p(2 + 2/λ) + (1 − p)2ε)
= 2n(p(1 + 1/λ) + (1 − p)ε)
> 2n(λε(1 − λε)(1 + 1/λ) + (1 − λε)ε)
= (1 − λε)2εn(λ(1 + 1/λ) + 1)
= (1 − λε)2εn(λ + 2).
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By taking 1/ε to be sufficiently large with respect to λ (yet, much smaller than
n), we conclude that E(costALG(R)) > 3costOPT (R) due to the assumption
that λ > 1.

Acknowledgments. We are indebted to Shay Kutten and Roger Wattenhofer for
their help in making this paper happen.
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Abstract. We study a model of selfish resource allocation that seeks
to incorporate dependencies among resources as they exist in modern
networked environments. Our model is inspired by utility functions with
constant elasticity of substitution (CES) which is a well-studied model
in economics. We consider congestion games with different aggregation
functions. In particular, we study Lp norms and analyze the existence
and complexity of (approximate) pure Nash equilibria. Additionally, we
give an almost tight characterization based on monotonicity properties
to describe the set of aggregation functions that guarantee the existence
of pure Nash equilibria.

Keywords: Congestion games · Aggregation · Lp norms · Complemen-
tarities · Existence of equilibria · Approximate pure Nash equilibria

1 Introduction

Modern networked environments often lack a central authority that has the
ability or the necessary information to coordinate the allocation of resources such
as bandwidths of network links, server capacities, cloud computing resources, etc.
Hence, allocation decisions are delegated to local entities or customers. Often
they are interested in allocations that optimize for themselves rather than for
overall system performance. We study the strategic interaction that arises in
such situations using game theoretic methods.

The class of congestion games [28] is a well-known model to study scenarios
in which the players allocate shared resources. In a congestion game each player
chooses a subset of resources from a collection of allowed subsets which are called
strategies. These resources may represent links in a network, servers, switches,
etc. Each resource is equipped with a cost function that is mapping from the
number of players using it to a cost value. The cost of a player is the sum of
the costs of the resources in the chosen strategy. There are several well-known
extensions to this model. In weighted congestion games [17], players can have
different weights and the cost of a resource depends on the total weight of the
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players using it. In player-specific congestion games [26], the costs of resources
can be different for different players.

However, all these models have in common that the cost of a player is defined
as the sum of the resource costs. This is well-suited to describe latencies or delays
of computer or traffic networks, for example. However, in scenarios in which
bandwidth determines the costs of players this is determined by the bottleneck
link. To that end, bottleneck congestion games have been introduced [5] in which
the cost of a player is defined as the cost of her most expensive resource.

Both models are limited in their ability to model complementarities that nat-
urally arise in scenarios where the performance of a resource depends to some
degree on the performance of other resources. For example, a cloud-based web
application may be comprised of many resources. A low performing resource neg-
atively influences the performance of other parts and hence the overall system.
Bottleneck games assume perfect complements, whereas standard congestion
games assume independence. We seek to generalize both models and allow for dif-
ferent degrees of complementarity that may even differ between players. We are
inspired by utility functions with constant elasticity of substitution (CES) [4,12],
which are a well-studied and accepted model in economics. We adapt the notion
to our needs and study the analogue version for cost functions that corresponds
to Lp norms. Clearly, both standard congestion games and bottleneck conges-
tion games are special cases of these games with L1 and L∞ norms, respectively.
Using further aggregation functions instead of Lp norms even allows to model
more complex dependencies. Based on natural monotonicity properties of these
functions, we can characterize the existence of pure Nash equilibria.

1.1 Related Work

Congestion games were introduced by Rosenthal [28] who shows that these games
are potential games. In fact, the class is isomorphic to the class of potential
games as shown by Monderer and Shapley [27]. The price of anarchy in the
context of network congestion games was first considered by Koutsopias and
Papadimitriou [22]. The related concept of smoothness, which can be used to
derive a bound on the price of anarchy, was introduced by Roughgarden [29].
Fabrikant et al. [14] show that in congestion games improvement sequences may
have exponential length, and that it is in general PLS-complete to compute a
pure Nash equilibrium. Chien and Sinclair [10] show that for symmetric conges-
tion games with a mild assumption on the cost function the approximate best-
response dynamics converge quickly to an approximate pure Nash equilibrium.
In contrast to that, Skopalik and Vöcking [31] show that it is in general even
PLS-hard to compute approximate pure Nash equilibria for any polynomially
computable approximation factor. However, if the cost functions are restricted
to linear or constant degree polynomials, approximate pure Nash equilibria can
be computed in polynomial time as shown by Caragiannis et al. [7], even for
weighted games [9] and some other variants [8,15]. Hansknecht et al. [18] use the
concept of approximate potential functions to examine approximate pure Nash
equilibria in weighted congestion games under different restrictions on the cost
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functions. For polynomial cost functions of maximal degree g they show that
(g + 1)-approximate equilibria are guaranteed to exist.

Singleton congestion games, a class of congestion games which guarantees
polynomial convergence of best-response improvement sequences to pure Nash
equilibria, are considered by Ieong et al. [21]. They show that the property of
polynomial convergence can be generalized to so called independent-resource
congestion games. It is further generalized by Ackermann et al. [2] to matroid
congestion games. They show that, for non-decreasing cost functions, the matroid
property is not only sufficient, but also necessary to guarantee the convergence
to pure Nash equilibria in polynomial time. Milchtaich [26] studies the con-
cept of player-specific congestion games and shows that in the singleton case
these games always admit pure Nash equilibria. Ackermann et al. [1] generalize
these results to matroid strategy spaces and show that the result also holds for
weighted congestion games. They also examine the question of efficient com-
putability and convergence towards these equilibria. Furthermore, they point
out that in a natural sense the matroid property is maximal for the guaran-
teed existence of pure Nash equilibria in player-specific and weighted congestion
games. Moreover, Milchtaich [26] examines congestion games in which players
are both weighted and have player-specific cost functions. By constructing a
game with three players he shows that these games, even in the case of sin-
gleton strategies, do not necessarily possess pure Nash equilibria. Mavronicalas
et al. [25] study a special case of these games in which cost functions are not
entirely player-specific. Instead, the player-specific resource costs are derived by
combining the general resource cost function and a player-specific constant via a
specified operation (e.g. addition or multiplication). They show that this restric-
tion is sufficient to guarantee the existence of pure Nash-equilibria in games with
three players. Dunkel and Schulz [13] show that the decision problem whether a
weighted network congestion game possesses a pure Nash equilibrium is NP-hard.
For player-specific network congestion games, Ackermann and Skopalik [3] show
that this problem is NP-complete both in directed and in undirected graphs.

Banner and Orda [5] introduce the class of bottleneck congestion games and
study their applicability in network routing scenarios. In particular, they derive
bounds on the price of anarchy in network bottleneck congestion games with
restricted cost functions and show that there always exists a pure Nash equilib-
rium which is socially optimal, but that the computation of this equilibrium is
NP-hard. Harks et al. [19] give an overview on bottleneck congestion games and
the complexity of computing pure Nash equilibria. Moreover, they show that in
matroid bottleneck congestion games even pure strong equilibria, which are sta-
ble against coalitional deviations, can be computed efficiently. Harks et al. [20]
introduce the so called Lexicographical Improvement Property, which guaran-
tees the existence of pure Nash equilibria through a potential function argument.
They show that bottleneck congestion games fulfill this property.

Feldotto et al. [16] generalize both variants and investigate the linear combi-
nation of standard and bottleneck congestion games. Kukushkin [24] introduces
the concept of generalized congestion games in which players may use arbitrary
monotonic aggregation functions to calculate their total cost from the costs of
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their single resources. He shows that, apart from monotonic mappings, additive
aggregation functions that fulfill certain restrictions are the only ones for which
the existence of PNE can be guaranteed. In a later paper [23], he elaborates this
result by deriving properties for the players’ aggregation functions which are suf-
ficient to establish this guarantee. Another generalization of congestion games is
given by Byde et al. [6] and Voice et al. [32]. They introduce the model of games
with congestion-averse utility functions. They show under which properties pure
Nash equilibria exist and give a polynomial time algorithm to compute them.

1.2 Our Contribution

We introduce congestion games with Lp-aggregation functions and show that
pure Nash equilibria are guaranteed only if either there is one aggregation value
p for all players or in the case of matroid congestion games. For games with linear
cost functions in which a pure Nash equilibrium exists, we derive bounds on the
price of anarchy. For general games, we show the existence of approximate pure
Nash equilibria where the approximation factor scales sublinearly with the size of
the largest strategy set. We show that this factor is tight and that it is NP-hard
to decide whether there is an approximate equilibrium with a smaller factor.
Computing an approximate PNE with that factor is PLS-hard. As a positive
result, we present two different polynomial time algorithms to compute approx-
imate equilibria in games with linear cost functions. The approximation factors
of both methods have a different dependence on the parameters of the game.
For matroid games, we show the existence of pure Nash equilibria not only for
Lp-aggregation functions but also seek to extend it to more general aggregation
functions. We can characterize the functions that guarantee existence of PNE
by certain monotonicity properties.

1.3 Model/Preliminaries

A congestion game with Lp -aggregation functions is a tuple Γ =
(
N,R, (Σi)i∈N ,

(cr)r∈R , (pi)i∈N

)
. N = {1, . . . , n} denotes the set of players, R = {r1, . . . , rm}

the set of resources. For each player i ∈ N , Σi ⊆ 2R denotes the strategy space
of player i and pi ∈ R, pi ≥ 1 denotes the player-specific aggregation value
of player i. For each resource r, cr : N → R denotes the non-decreasing cost
function associated to resource r.

In a congestion game, the state S = (S1, . . . , Sn) describes the situation that
each player i ∈ N has chosen the strategy Si ∈ Σi. In state S, we define for
each resource r ∈ R by nr(S) = |{i ∈ N | r ∈ Si}| the congestion of r. The cost
of resource r in state S is defined as cr(S) = cr (nr(S)). The cost of player i is

defined as ci(S) =
(∑

r∈Si
cr(S)pi

) 1
pi . If for all i, j ∈ N it holds that pi = pj ,

then we call Γ a congestion game with identical Lp-aggregation functions.
For a state S = (S1, . . . , Si, . . . , Sn), we denote by (S′

i, S−i) the state that is
reached if player i plays strategy S′

i while all other strategies remain unchanged.
A state S = (S1, . . . , Sn) is called a pure Nash equilibrium (PNE) if for all
i ∈ N and all S′

i ∈ Σi it holds that ci(S) ≤ ci(S′
i, S−i) and a β-approximate
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pure Nash equilibrium for a β ≥ 1 if for all i ∈ N and all S′
i ∈ Σi it holds

that ci(S) ≤ β · ci(S′
i, S−i). Additionally, we define the Price of Anarchy as the

worst-case ratio between the costs in any equilibria and the minimal possible
costs in the game. Formally, it is given by maxS∈PNE

∑
i∈N ci(S)

minS∈S
∑

i∈N ci(S∗) . A game is called
(λ, μ)-smooth for λ > 0 and μ ≤ 1 if, for every pair of states S and S′, we have∑

i∈N ci(S′
i, S−i) ≤ λ

∑
i∈N ci(S′) + μ

∑
i∈N ci(S). In a (λ, μ)-smooth game, the

Price of Anarchy is at most λ
1−μ [29].

2 Existence and Efficiency of Pure Nash Equilibria

We begin with an easy observation that congestion games in which all players
use the same Lp-norm as aggregation function always possesses a PNE.
Proposition 1. Let Γ be a congestion game with identical Lp-aggregation func-
tions. Then Γ possesses at least one pure Nash equilibrium.

However, if players are heterogeneous in the sense that they use different
aggregation functions a PNE might not exist even for two player games.

Theorem 1. For every 1 ≤ p1 < p2 there exists a 2-player congestion game
with Lp-aggregation functions Γ that does not possess a pure Nash equilibrium.

Now we will investigate the efficiency of the equilibria by analyzing
the price of anarchy. We restrict ourselves to games with linear cost func-
tions and make use of a previous result by Christodolou et al. [11]. Let
q := maxi∈N pi, let d := maxi∈N,Si∈Σi

|Si|. Furthermore, let z =⌊
1
2 ·

(

d1− 1
q +

√

5 + 6 ·
(
d1− 1

q − 1
)

+
(
d1− 1

q − 1
)2

)⌋

be the maximum integer

such that z2

z+1 ≤ d1− 1
q .

Theorem 2. A congestion game with Lp-aggregation functions Γ in which all

cost functions are linear is
(
d1− 1

p · z2+3z+1
2z+1 , d1− 1

p · 1
2z+1

)
-smooth. If Γ possesses

a pure Nash equilibrium, its price of anarchy is bounded by d1− 1
p · z2+3z+1

2z+1−d
1− 1

p
.

3 Existence of Approximate Pure Nash Equilibria

We start by giving a bound depending on the minimal and maximal pi-values
that players use and the maximal number of resources in a strategy.

Theorem 3. Let Γ be a congestion game with Lp-aggregation functions, let p =
mini∈N pi be the minimal and q = maxi∈N pi be the maximal aggregation value in
the game. Furthermore, denote by d = maxi∈N,Si∈Σi

|Si| the size of the strategy
that contains most resources. Then Γ contains a β-approximate equilibrium for
β = d

1
2 ·( 1

p− 1
q ). Moreover, a β-approximate equilibrium will be reached from an

arbitrary state after a finite number of β-improvement steps.

In the proof we show that Φ(S) =
∑

r∈R

∑nr(S)
i=1 cr(i)z is an approximate poten-

tial function where z :=
(

1
2 ·

(
1
p + 1

q

))−1

. We will now complement this result
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by showing that this approximation quality is the best achievable: i.e., we show
that for any given p < q and d ≥ 2 we can construct a game which possesses no
β-approximate PNE for any β < d

1
2 ( 1

p− 1
q ).

Theorem 4. Let p, q, d ∈ N with p < q and d ≥ 2. Then there is a congestion
game with Lp-aggregation functions Γ with N = {1, 2}, p1 = p, p2 = q, and
d = maxi∈N,Si∈Σi

|Si| such that Γ does not possess a β-approximate pure Nash
equilibrium for any β < d

1
2 ( 1

p− 1
q ).

We complete the discussion of approximate pure Nash equilibria by regarding
the computational complexity of deciding whether an approximate PNE exists
for any approximation factor smaller than β.

Theorem 5. For any p, q, d ∈ N with p < q and d ≥ 2 it is NP-hard to decide
whether a given congestion game with Lp-aggregation functions Γ , with p ≤ pi ≤
q for all i ∈ N , and d = maxi∈N,Si∈Σi

|Si| possesses a β-approximate pure Nash
equilibrium for any β < d

1
2 ·( 1

p− 1
q ).

4 Computation of Approximate Equilibria

In [31] it was shown that it is PLS-hard to compute an β-approximate PNE in
standard congestion games. Since these games are a special case of congestion
games with Lp-aggregation functions, this negative result immediately carries
over to congestion games with Lp-aggregation functions.

Proposition 2. It is PLS-hard to compute a β-approximate pure Nash equilib-
rium in a congestion game Γ with Lp-aggregation functions in which all cost
functions are non-negative and non-decreasing, for any β that is computable in
polynomial time.

In the light of this initial negative result, we consider games with restricted
cost functions. Caragiannis et al. [7] provide an algorithm that computes approx-
imate pure Nash equilibria for congestion games with polynomial cost functions.
For linear costs, the algorithm achieves an approximation quality of 2 + ε. For
polynomial functions with a maximal degree of g, the algorithm guarantees an
approximation factor of gO(g). We will reuse the algorithmic idea in two differ-
ent ways which yield to different approximation guarantees depending on the
aggregation parameters pi.

Theorem 6. Let Γ be a congestion game with Lp-aggregation functions in which
all cost functions are linear or polynomial functions of degree at most g without
negative coefficients. Furthermore, let p := mini∈N pi, let q := maxi∈N pi, let

d := maxi∈N,Si∈Σi
|Si|, and z =

(
1
2 ·

(
1
p + 1

q

))−1

.
Then an β-approximate equilibrium of Γ can be computed in polynomial time

for β = min
{

(2 + ε) · d1− 1
q , zO(1) · d

1
2 ( 1

p− 1
q )

}
(linear cost functions) and for β =

min
{

gO(g) · d1− 1
q , (g · z)O(g) · d

1
2 ( 1

p− 1
q )

}
(polynomial cost functions).
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Proof. We apply the algorithm proposed by Caragiannis et al. [7] to Γ , dis-
regarding the aggregation values. Since all cost functions are either linear or
polynomial, the algorithm computes either a (2 + ε)- or a gO(g)-approximate
equilibrium. Now we can use the proof of Theorem3 (for z = 1). We get that in
the state computed by the algorithm, which would be a either (2 + ε)- or gO(g)-
approximate PNE if all players used the L1-norm, no player i can improve her
costs according to the Lpi

-norm by more than a factor of either (2+ε)·d1− 1
pi ≤ β

or gO(g) · d1− 1
pi ≤ β. Hence, the computed state is an β-approximate pure Nash

equilibrium in Γ . As analyzed in [7], the running time of the algorithm is polyno-
mial in the size of Γ and 1

ε . For the second approximation factor and linear costs
functions we replace every c(x) in Γ by a polynomial cost function c′(x) = c(x)z

of degree z, where for simplicity z is assumed to be integral. For this game, the
algorithm given in [7] computes a state S which is a zO(z)-approximate equilib-
rium. The costs of all players are equal to the costs they would have in Γ if they
accumulated their costs according to the Lz-norm without taking the z-th root.
Following the argumentation of the proof of Theorem3, we get for any player i
and any strategy S′

i ∈ Σi:

ci(S)
ci(S′

i, S−i)
≤

((
zO(z)

) pi
z

) 1
pi ·

(
d

pi
z −1

) 1
pi = zO(1) · d

1
z − 1

pi ≤ zO(1) · d
1
2 ( 1

p− 1
q ).

Obviously, the transformation of the cost functions can be done in polynomial
time. Hence, the algorithm given in [7] computes a zO(1) · d 1

2 ( 1
p− 1

q )-approximate
equilibrium of Γ in polynomial time. For polynomial cost functions this will lead
to a game with polynomial cost functions of a degree of at most g · z. Hence,
the algorithm from [7] computes a (g · z)O(g·z)-approximate PNE. Following the
reasoning of the proof, we get that the computed state is a (g · z)O(g) · d 1

2 ( 1
p− 1

q )-
approximate PNE of the congestion game with Lp-aggregation functions. ��

We have derived two different upper bounds for the approximation quality
of approximate equilibria that can be computed in polynomial time. Generally
speaking, if d is small but players use high aggregation values, the first strategy
yields the better approximation, while otherwise the second bound is better.

5 General Aggregation Functions in Matroid Games

In this section we extend our model to a more general class of aggregation
functions. Instead of using the Lp norms in the cost functions of the player, they
are now defined by ci(S) = fi (cr1(S), cr2(S), . . . , crm

) with fi being an arbitrary
aggregation function for each player based on certain monotonicity properties.
We now consider only matroid congestion games in which the strategy spaces of
all players form the bases of a matroid on the set of resources.

Let f : Rd → R be a function that is defined on non-decreasingly ordered
vectors. Let for all b = (b1, . . . , bd) and b′ = (b′

1, . . . , b
′
d) with bi ≤ b′

i for all
1 ≤ i ≤ d hold that f(b) ≤ f(b′). Then f is called strongly monotone. Let
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x = (x1, . . . , xd) and y = (y1, . . . , yd) be vectors that differ in only one element,
i.e., there are indices j and k such that xi = yi for all i < j and i > k, xj < yk,
and xi+1 = yi for all j ≤ i < k and f(y) < f(x). Furthermore, let there be a vec-
tor z = (z1, . . . , zd−1) such that f(z1, . . . , xj , . . . , zd−1) < f(z1, . . . , yk, . . . , zd−1)
(with xj and yk at their correct positions in the non-decreasingly ordered vec-
tors). Then f is called a strongly non-monotone function. If f is not strongly
non-monotone, then f is called a weakly monotone function. We remark that
this definition of vectors that differ in only one element does not require these
elements to be at the same position in the vectors (the case j = k). It is sufficient
that the symmetric difference of the multisets containing all elements in x and
y contains exactly two elements xj and yk.

Theorem 7. Let Γ be a matroid congestion game in which each player has a
personal cost aggregation function fi according to which her costs are calculated
from her single resource costs. If for all players i ∈ N the aggregation function
fi is strongly monotone, then Γ contains a pure Nash equilibrium.

Proof. It is sufficient to show that any strategy Si = {r1, . . . , rd} that minimizes
the sum

∑d
j=1 cri

(S) in a state S also minimizes the cost fi (ci(S)), where ci(S)
denotes the non-decreasingly ordered vector of resource costs of player i in state
S. Then a pure Nash equilibrium can be computed by computing a PNE in the
corresponding game in which all players use the L1-norm. We can show that
if B = {b1, . . . , bd} is a matroid basis that is minimal w.r.t. the sum

∑d
i=1 bi,

then for any other basis B′ = {b′
1, . . . , b

′
d} and all 1 ≤ i ≤ d it holds that bi ≤ b′

i

(w.l.o.g. assume that both B and B′ are written in non-decreasing order). Hence,
if B is a basis that is optimal w.r.t. sum costs, then for all other bases B′ it holds
that f(B) ≤ f(B′), since f is a strongly monotone function. ��
Since all Lp norms are monotone functions, we can extend this result to conges-
tion games with Lp norms:

Corollary 1. Let Γ be a matroid congestion game with Lp norms, then Γ con-
tains a pure Nash equilibrium.

We have shown that strongly monotone aggregation functions are sufficient
to guarantee the existence of a PNE in matroid congestion games with player-
specific aggregation functions. This immediately gives rise to the question whe-
ther the monotonicity criterion is also necessary to achieve this guarantee. We
investigate this question by examining if, given a non-monotone aggregation
function f , we can construct a matroid congestion game in which all players
use f and which does not contain a PNE. For singletons, we can immediately
give a negative answer to this. Since in this case costs can be associated to
single resources and all players use the same aggregation function, Rosenthal’s
potential function argument [28] is applicable and shows that a PNE necessarily
exists. However, for matroid degrees of at least 2 the answer is positive if the
aggregation function fulfills the property that we call strong non-monotonicity.
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Theorem 8. Let f : R
d → R, d ≥ 2 be a strongly non-monotone function.

Then there is a 2-player matroid congestion game in which both players allocate
matroids of degree d and use the aggregation function f , which does not contain
a pure Nash equilibrium.

As argued, it is reasonable to demand that the aggregation function f in
the proof is strongly non-monotone. We will underline this by showing that the
strong non-monotonicity actually is a sharp criterion: i.e., it is both sufficient
and necessary to construct a game without a PNE from f .

Theorem 9. Let f be an aggregation function that is weakly monotone and let
Γ be a matroid congestion game in which all players use f as their aggregation
function. Then Γ possesses a pure Nash equilibrium. Furthermore, from every
state there is a sequence of best-response improvement steps that reaches a pure
Nash equilibrium after a polynomial number of steps.

Proof. Since f is weakly monotone, we have for all vectors vx and vy which differ
in exactly one component (let vx contain x and vy contain y, with x < y) that
either f(vx) ≤ f(vy) or f(vy) < f(vx) and for any vector wy that contains y
it holds that f(wy) ≤ f(wx), where wx results from wy by replacing y by x.
Hence, for all pairs (x, y) we have either f(wx) ≤ f(wy) for all wx and wy, or
f(wy) ≤ f(wx) for all wx and wy. This means that if we replace one element by
another one in an arbitrary vector, the direction in which the value of f changes
(if it changes at all) depends only on the two exchanged elements, not on the
rest of the vector. Based on this, we define the relation ≤′ on the real numbers
by determining that x ≤′ y if and only if f(wx) ≤ f(wy) for all vectors wx and
wy. As argued, this relation defines a total preorder on R. Since the number of
resources and players in the game Γ are finite, the number of different resource
costs that can occur in the game is also finite. Hence, it is possible to enumerate
all possible resource costs according to the ordering relation ≤′. We denote the
position of the cost value cr(S) in this enumeration by π(cr(S)): i.e., π(cr(S)) = 1
if and only if for all r′ ∈ R and all l ∈ N it holds that cr(S) ≤′ cr′(l). We have
that π(cr(S)) = π(cr′(S′)) if and only if cr(S) ≤′ cr′(S′) and cr′(S′) ≤′ cr(S).
We remark that ≤′ is not necessarily a total order. Thus the two cost values
need not be equal in this case.

Using this, we define the potential function Φ(S) =
∑

r∈R

∑nr(S)
i=1 π(cr(S)).

Consider a state S = (Si, S−i) in which player i can improve her cost by deviating
to the strategy S′

i, yielding the state S′ = (S′
i, S−i). Since Si and S′

i are both
bases of the same matroid M , the graph G = (V,E) with V = (Si\S′

i∪S′
i\Si) and

E = {{r, r′} | r ∈ Si, r
′ ∈ S′

i, S
′
i \ {r′} ∪ {r} ∈ M} contains a perfect matching

(see Corollary 39.12a in [30]). All edges in G correspond to resource pairs {r, r′}
such that S′

i \ {r′} ∪ {r} is a valid strategy for player i. Since S′
i is a best

response strategy to the strategy profile S−i of all other players, it must hold
for all edges {r, r′} that f(S′

i \ {r′} ∪ {r}, S−i) ≥ f(S′
i, S−i). This implies that

either cr′(S′) ≤′ cr(S) or f(S′
i\{r′}∪{r}, S−i) = f(S′

i, S−i) and cr′(S′) > cr(S).
In the latter case, the strategy S′

i \ {r′} ∪ {r} is still a best-response strategy
for player i. Repeating the argument yields that there must be a best-response
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strategy S′′
i such that in the graph defined analogously to G it holds for all edges

{r, r′} that cr′(S′′) ≤′ cr(S), where S′′ = (S′′
i , S−i).

Let T = {e1, . . . , ek} be a perfect matching in this graph. For all {r, r′} ∈ T it
holds that cr′(S′′) ≤′ cr(S), and hence π(cr′(S′′)) ≤ π(cr(S)). We have to argue
that T contains at least one edge {r, r′} with π(cr′(S′′)) < π(cr(S)). Assume
that for all {r, r′} ∈ T it held that π(cr′(S′)) = π(cr(S)), i.e., cr(S) ≤′ cr′(S′′).
Then we could transform Si into S′′

i by iteratively exchanging a single resource
r for another resource r′. Since two consecutive sets Sr and Sr′

in this sequence
differ only in the resources r and r′, and cr(S) ≤′ cr′(S′), it holds that
f(Sr) ≤ f(Sr′

). Hence, none of the steps decreases the value of f , which
contradicts the assumption that f(S′′

i , S−i) ≤ f(S′
i, S−i) < f(Si, S−i). There-

fore, there must be at least one edge {r, r′} in T with π(cr′(S′′)) < π(cr(S)),
which implies Φ(S′′) − Φ(S) =

∑
r′∈S′′

i \Si
π(cr′(S′′)) − ∑

r∈Si\S′′
i

π(cr(S)) =
∑

{r,r′}∈T (π(c′
r(S

′′)) − π(cr(S))) < 0. By construction, the value of Φ is always
integral and upper bounded by n2 · m2, where n is the number of players and m
the number of resources in Γ . Hence, Γ reaches a PNE from an arbitrary state
after at most n2 · m2 best-response improvement steps. ��

The theorem states that strong non-monotonicity is necessary to construct a
game without a PNE from a single aggregation function f . However, the tech-
nique used in the proof only requires that all aggregation functions used in the
game have the same order on vectors which differ in exactly one component. It is
irrelevant how these functions order vectors which differ in several components.

Corollary 2. Let Γ be a matroid congestion game in which the costs of player i
are computed according to her personal aggregation function fi. If for all i ∈ N
the function fi is weakly monotone and for all i, j ∈ N and all vectors v and w
that differ in exactly one component it holds that fi(v) ≤ fi(w) ⇔ fj(v) ≤ fj(w),
then Γ possesses a pure Nash equilibrium.

This corollary is interesting mainly because it establishes an almost tight bor-
der up to which the existence of PNE can be guaranteed. If we are given two
aggregation functions f and g and two vectors v and w that differ in exactly one
component, with f(v) < f(w) and g(w) < g(v), then it is obvious that we can
construct a 2-player game in which the first player uses the aggregation function
f and the second g and the two players alternate between the cost vectors v and
w, as we did in the proof of Theorem8 for strongly non-monotone functions.

6 Conclusion

For congestion games with Lp-aggregation functions, we presented methods to
compute approximate PNE and bound the price of anarchy which are based
on previous results regarding standard congestion games. It is an open point
for future work to examine if these results could be improved by specifically
designing methods for congestion games with Lp-aggregation functions. Another
interesting approach for further research would be to combine the application of
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aggregation functions with other classes of congestion games such as weighted
congestion games or non-atomic congestion games, and examine the implications
for the (approximate) pure Nash equilibria in these games.
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Abstract. The Bounded Degree Deletion problem with degree bound b :
V → Z+ (denoted b-BDD), is that of computing a minimum cost vertex
set in a graph G = (V, E) such that, when it is removed from G, the
degree of any remaining vertex v is no larger than b(v). It will be shown
that b-BDD can be approximated within max{2, b̄/2 + 1}, improving
the previous best bound for 2 ≤ b̄ ≤ 5, where b̄ is the maximum degree
bound, i.e., b̄ = max{b(v) | v ∈ V }. The new bound is attained by casting
b-BDD as the vertex deletion problem for such a property inducing a
2-polymatroid on the edge set of a graph, and then reducing it to the
submodular set cover problem.

1 Introduction

The Bounded Degree Deletion problem is a well-known basic problem in graph
theory. It has an application in computational biology [12] as well as in the
area of property testing [28], whereas its “dual problem” of finding maximum s-
plexes, introduced in 1978 [32], has applications in social network analysis [1,26].
With degree bound of b ∈ Z+, b-Bounded Degree Deletion (or b-BDD for short)
is the problem of computing a minimum cost vertex set X in a given weighted
graph G = (V,E) such that the degree of any remaining vertex v is bounded by
b when all the vertices in X are removed from G.

Clearly, b-BDD is a generalization of the Vertex Cover (VC) problem, and
this can be put into a better perspective by capturing both of them as members
of the same problem class called Vertex Deletion (VD) problems. The VD prob-
lem for a graph property π, denoted VD(π), is: Given a vertex weighted graph G,
find a vertex set of minimum weight whose deletion (along with all of the incident
edges) from G leaves a (sub)graph satisfying the property π. Here π is nontrivial
if infinitely many graphs satisfy π and infinitely many graphs fail to satisfy it.
It is hereditary on induced subgraphs if, in any graph satisfying π, every vertex-
induced subgraph also satisfies π. A number of well-studied graph properties are
nontrivial and hereditary, including “a graph has no edge” (i.e., VD(π) = VC),
and “vertex degree ≤ b” for some fixed constant b (i.e., VD(π) = b-BDD). Con-
cerning the computational complexity of VD(π), it is most fundamental that
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VD(π) is NP-hard for any π if it is nontrivial and hereditary on induced sub-
graphs [24].

Another member of VD has been recently introduced and actively studied
for the property πk = “a graph has no path Pk on k vertices”. The problem
is called under various names such as k-path vertex cover [3–5,17,20], vertex
cover Pk (VCPk) [33–36], and Pk-hitting set [6] (and all of them refer to the
same problem), and we denote this problem as k-Path Vertex Cover (k-PVC ).
A subset F of the vertex set V is called a k-path vertex cover if every path on
k vertices, not necessarily induced, in G has at least one vertex from F . The
k-path vertex cover number, ψk(G), of G is the cardinality of a minimum k-path
vertex cover for G. The k-PVC problem was introduced in [4] along with ψk(G),
motivated by its relation to secure connection in wireless networks [29]. The
vertex weighted version of the k-PVC was considered in [36] motivated by its
applications in traffic control. Clearly, ψ2(G) is the vertex cover number of G. In
addition ψ3(G) corresponds to another previously studied concept of dissociation
number of a graph, defined as follows. A subset of vertices in a graph G is called
a dissociation set if it induces a subgraph with maximum degree at most 1. The
maximum cardinality of a dissociation set in G is called the dissociation number
of G and is denoted by diss(G). Clearly ψ3(G) = |V (G)|−diss(G). The problem
of computing diss(G) was introduced by Yannakakis [39], who also proved it to be
NP-hard in the class of bipartite graphs. See [31] for a survey on the dissociation
number problem.

It must be clear by now that VC ≡ 0-BDD ≡ 2-PVC, and 1-BDD ≡ 3-PVC
(but b-BDD �≡ (b + 2)-PVC for b ≥ 2). We now summarize below algorithmic
results known for these problems.

VC Approximating VC better than simple 2-approximation has been a subject
of extensive research over the years, and it is now known approximable within
2 − Θ(1/

√
log n) [19]. Meanwhile, VC has been shown hard to approximate

within 10
√

5 − 21 ≈ 1.36 unless P = NP [11] (or within 2 − ε assuming the
unique games conjecture [21]), and so is any other VD problem for a nontrivial
and hereditary property as VC can be reduced in approximation preserving
manner to it.

b-BDD The first improvement over the simple (b + 2)-approximation based on
the hitting set formulation was attained in [14] using the local ratio method
and b-BDD was shown approximable within max{2, b + 1}. Okun and Barak
considered general b-BDD where b : V → Z+ is an arbitrary function, and
obtained an approximation bound of 2 + maxv∈V ln b(v) by combination of
the local ratio method and the greedy multicovering method [30].
More recently, b-BDD has been extensively studied in parameterized com-
plexity. It has been shown that, when parameterized by the size k of the dele-
tion set, the problem is W [2]-hard for unbounded b and FPT for each fixed
b ≥ 0 [12], whereas, when parameterized by treewidth tw, it is FPT with
parameters k and tw, and W [2]-hard with only parameter tw [2]. A linear
vertex kernel of b-BDD has been developed by generalizing the Nemhauser-
Trotter theorem for the vertex cover problem to b-BDD [9,12,38].
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Besides, 2-BDD has been recently highlighted under the name of Co-
Path/Cycle Packing [8,9,13], mostly from the viewpoint of parameterized
complexity, due to its important applications in bioinformatics.

k-PVC – A linear time algorithm is presented for trees and upper bounds on
ψk(G) were investigated in [4], while lower bounds for ψk(G) in regular graphs
were given in [3].
– A randomized approximation algorithm with an expected approximation
ratio of 23/11 was obtained for 3-PVC [20].
– 3-PVC was shown approximable within 2 [35,36], and within 1.57 on cubic
graphs [34].
– 4-PVC was shown approximable within 3 [6], and within 2 in regular
graphs [10].

1.1 Our Work and Contributions

We consider general b-BDD as in [30], where b is an arbitrary function b : V →
Z+. Previously, a general approach of reducing VD(π) to submodular optimiza-
tion was explored for a certain type of hereditary properties π [15]. We say that
a graph property π is matroidal if, on any graph G = (V,E), the edge sets of
subgraphs of G satisfying π form the family of independent sets of some matroid
defined on E. An archetypal example is π = “a graph is acyclic”, for which the
corresponding matroid is the cycle matroid on E and the corresponding VD is
the feedback vertex set problem. It was shown that VD(π) for matroidal property
π can be reduced to the submodular set cover (SSC) problem, and thus, VD(π)
for such π can be approximated by approximation algorithms for SSC. On the
other hand, b-BDD is VD(π) for π = “vertex degree of v ≤ b(v)”, and the edge
sets of subgraphs satisfying π are b-matchings in G. A family of b-matchings does
not induce a matroid in general and hence, this π is not matroidal. However,
b-matchings form a family of matroid matchings in general, or the family of “inde-
pendent sets” in a 2-polymatroid (more detailed description given below), and
this observation allows us to make use of the above-mentioned general method
even if π is not matroidal. Our major aim is to demonstrate that such a gen-
eral approach could be effective for VD(π) even if π is not matroidal but if it
induces a 2-polymatroid, using the case of b-BDD. More specifically, it will be
shown that b-BDD can be approximated by a single generic algorithm within 2
for b̄ ≤ 1 and b̄/2 + 1 for b̄ ≥ 2, where b̄ denotes maxv∈V b(v), improving the
previous best of min{max{2, b̄ + 1}, 2 + ln b̄} [14,30] for 2 ≤ b̄ ≤ 5, including the
case of Co-Path/Cycle Packing (≡ 2-BDD).

1.2 Notations and Definitions

For a graph G = (V,E), let δ(W ) denote the set of edges incident to a vertex
in W , i.e., δ(W ) = {{u, v} ∈ E | {u, v} ∩ W �= ∅}. Let δ(v) denote δ({v}) and
d(v) = |δ(v)|. To restrict edges under consideration within a certain edge set F ,
we use δF (W ) and dF (v) to denote δ(W ) ∩ F and |δ(v) ∩ F |, respectively. For
disjoint vertex sets X and Y , let E(X) = {e ∈ E | e ⊆ X} and E(X,Y ) =
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{{u, v} ∈ E | u ∈ X, v ∈ Y }. We also use shorthand notations of e(X) =
|E(X)| and e(X,Y ) = |E(X,Y )|.

2 Formulation and Submodular Optimization

2.1 BDD and Matroid Matching

Definition 1. For a finite set N , a non-decreasing, submodular, and integer-
valued function f defined on 2N with f(∅) = 0, is called a polymatroid function,
and (N, f) a polymatroid. If f additionally satisfies f({j}) ≤ k,∀j ∈ N , (N, f)
is a k-polymatroid.

Definition 2. For any polymatroid (N, f) define another set function fd such
that

fd(S) def=
∑

j∈S

f({j}) − (f(N) − f(N − S)).

Then fd is a polymatroid function and (N, fd) is called the dual polymatroid
of (N, f).

Definition 3. Let (E, f) be a 2-polymatroid.

– A subset F ⊆ E is a matching in (E, f) if f(F ) = 2|F |.
– A subset F ⊆ E is spanning in (E, f) if f(F ) = f(E).

Proposition 1. Let (E, f) be a 2-polymatroid.

– (E, fd) is a 2-polymatroid called the dual of (E, f).
– A subset F ⊆ E is a matching in (E, f) iff E − F is spanning in (E, fd).

The Matroid Matching problem, introduced by Lawler [22], is to compute
the maximum matching in a given 2-matroid. The unweighted matroid matching
problem is relatively tractable; a polynomial algorithm was obtained for linearly
represented matroids [25] and an approximation scheme for general matroids [23].
It appears much harder in the weighted case, however, and, whereas random-
ized fully polynomial-time approximation schemes are known for linearly rep-
resented matroids [7,27], only a greedy 2-approximation is known for general
matroids [18].

For a graph G = (V,E) let b : V → Z+. An edge set F ⊆ E is a b-matching
iff dF (v) ≤ b(v), ∀v ∈ V . Thus, BDD is the problem of computing X ⊆ V of
minimum cost such that V − X induces a b-matching.

Proposition 2. Define f : 2E → Z+ such that

f(F ) =
∑

v∈V

min{b(v), dF (v)}.
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Then,

– (E, f) is a 2-polymatroid.
– F ⊆ E is a matching in (E, f) iff F is a b-matching in G.

Proposition 3. Assume 1 ≤ b(v) ≤ dE(v), ∀v ∈ V .

– f(E) = b(V ) (since b(v) ≤ dE(v), ∀v ∈ V ).
– f(e) = 2, ∀e ∈ E (since 1 ≤ b(v), ∀v ∈ V ).
–

fd(E) =
∑

e∈E

f({e}) − f(E) = 2|E| − b(V ) =
∑

v∈V

(d(v) − b(v)). (1)

–

fd(F ) = 2|F | −
(

∑

v∈V

min{b(v), d(v)} −
∑

v∈V

min{b(v), dE−F (v)}
)

=
∑

v∈V

dF (v) −
∑

v∈V

max{0,min{b(v), d(v)} − dE−F (v)}

=
∑

v∈V

min{dF (v), d(v) − b(v)} (assumingb(v) ≤ d(v)) (2)

for any F ⊆ E.

2.2 BDD as Submodular Set Cover

In light of Proposition 1, it can be seen that X ⊆ V is a b-BDD solution in
G = (V,E) iff δ(X) is spanning in (E, fd) since X is a b-BDD solution iff
E − δ(X) is a b-matching in G iff E − δ(X) is a matching in (E, f). Therefore,
b-BDD on G = (V,E) can be reduced to the problem of computing X ⊆ V of
minimum cost such that δ(X) is spanning in (E, fd). More formally,

Proposition 4. Define g : V → Z+ such that g(W ) = fd(δ(W )). b-BDD on
G = (V,E) can be formulated as the problem of computing X ⊆ V of minimum
cost such that g(X) = g(V ).

It can be seen that g here is another non-decreasing polymatroid function, and
the problem of computing minimum X ⊆ V satisfying g(X) = g(V ) is known as
the Submodular Set Cover problem.

Definition 4. Let g be a non-decreasing submodular set function defined on the
subsets of a finite ground set N . The submodular set cover problem (SSC) is to
compute:

min
S⊆N

⎧
⎨

⎩
∑

j∈S

wj | g(S) = g(N)

⎫
⎬

⎭ .
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Although the greedy algorithm, together with its performance analysis, is
perhaps the most well-known heuristic for general SSC [37], another method of
using a primal-dual heuristic [16] is known to deliver better solutions for some
of more specific SSC problems. In this algorithm called PD, the contraction of
g onto N − S is the function gS defined on 2N−S s.t. gS(X) = g(X ∪ S) − g(S)
for any S ⊆ N . If g is non-decreasing and submodular on N , so is gS on N − S,
and thus, another submodular cover instance (N −S, gS) can be derived for any
S ⊆ N . The performance of PD, when applied to general SSC, was analyzed
in [16], and the following result was presented:

Proposition 5. For an SSC instance (N, g) the performance ratio of PD is
bounded by

max
{∑

j∈X gS(j)
gS(N − S)

}
(3)

where max is taken over any S ⊆ N and any minimal solution X in (N −S, gS).

To apply Proposition 5 to b-BDD, consider the graph G′ = G − S obtained
from G by removing all the vertices in S, and let us reformulate b-BDD on
G′ = (V ′, E′), where V ′ = V − S,E′ = E − δ(S), as an SSC instance
(E′, g′). To do so, let f ′ : 2E′ → Z+ be a 2-polymatroid function such
that f ′(F ) =

∑
v∈V ′ min{d′

F (v), b′(v)} for F ⊆ E′, f ′d be the dual of f ′,
and g′(T ) = f ′d(δ′(T )) for T ⊆ V ′ (Note: Here, δ′(T ) = δE′(T ), d′(v) =
dE′(v), b′(v) = min{b(v), d′(v)} for all T ⊆ V ′ and v ∈ V ′). It can be shown
then that gS(T ) = g′(T ) for any S ⊆ V and T ⊆ V − S, and in particular,
g′(v) = gS(v),∀v ∈ V ′, and g′(V ′) = gS(V = S). Hence,

Proposition 6. Let (E, g) and (E′, g′) be SSC formulations of b-BDD for G =
(V,E) and G′ = (V ′, E′), the subgraph of G induced by V ′, respectively. Then,

max
S⊆V

{∑
v∈X gS(v)

gS(V − S)

}
= max

{∑
v∈X g′(v)
g′(V ′)

}

where max in RHS is taken over any subgraph G′ of G induced by V ′ ⊆ V and
any minimal b-BDD solution X in G′.

It thus follows from Propositions 5 and 6 that the performance ratio of PD, when
applied to b-BDD, can be estimated by bounding

∑
v∈X g(v)
g(V )

for any graph G = (V,E) and any minimal solution X in G.

Lemma 1. For any minimal solution X ⊆ V and Y = V − X,

max
{
2,

(
b̄/2 + 1

)}
fd(E) ≥

∑

v∈X

fd(δ(v)). (4)

Therefore, we may conclude that
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Theorem 1. The problem b-BDD can be approximated by PD within b̄/2+1 for
b̄ ≥ 2 and within 2 when b̄ ∈ {0, 1}.
Since b̄/2 + 1 is <2 + ln b̄, the bound of Okun-Barak algorithm [30], for b̄ ≤ 5,
it follows that, when PD is applied to b-BDD with current g, it outperforms the
previous algorithms for 2 ≤ b̄ ≤ 5.

3 Analysis

Assume b(v) ≤ dE(v),∀v ∈ V , for the rest of paper as one can always reset
b(v) to = d(v) w.l.o.g. if b(v) > d(v). A vertex v ∈ V is called a tight node in
what follows if dE(v) = b(v). Let us use the following notations:

d̄(v) = d(v) − b(v)

d̃(v) = |{(v, w) ∈ δ(v) | w is not tight}| = #of nodes adjacent to v that are not
tight

for each v ∈ V , and further classify nodes in X and Y = V − X depending on
whether nodes are tight or not as follows:

Xt = {v ∈ X | v is tight}, X̃ = X − Xt, Y t = {v ∈ Y | v is tight}, Ỹ = Y − Y t.

Observation.

– Using Eq. (1), we have

fd(E) =
∑

v∈V

d̄(v) =
∑

v∈X̃∪Ỹ

d̄(v) = d̄(X̃) + d̄(Ỹ ).

– Because of Eq. (2), we have

fd(δ(v)) =
∑

u∈V

min{dδ(v)(u), d(u) − b(u)}

= (d(v) − b(v)) + (#of nodes adjacent to v that are not tight),

and hence,
∑

v∈X

fd(δ(v)) =
∑

v∈X

(d̄(v) + d̃(v)) = d̄(X̃) + d̃(X).

Since
d̃(X) = 2e(X̃) + e(X̃,Xt) + e(X, Ỹ ),

we may write
∑

v∈X

fd(δ(v)) = d̄(X̃) + 2e(X̃) + e(X̃,Xt) + e(X, Ỹ ).
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3.1 Proof of Lemma 1

It is assumed in what follows that b ≥ 2 (the proof for the case of b ≤ 1 is
omitted due to the space limitation). Because of the preceding observations, and
expanding d̄(W ) by

d̄(W ) = 2e(W ) + e(W,V − W ) − b(W )

for any W ⊆ V , the proof of this lemma is reduced to showing that
(

b̄

2
+ 1

)
fd(E) −

∑

v∈X

fd(δ(v))

=
(

b̄

2
+ 1

) (
d̄(X̃) + d̄(Ỹ )

)
−

(
d̄(X̃) + 2e(X̃) + e(X̃,Xt) + e(X, Ỹ )

)

=
(

(b̄ − 2)e(X̃) +
b̄

2
e(X̃, V − X̃) + (b̄ + 2)e(Ỹ ) +

(
b̄

2
+ 1

)
e(Ỹ , V − Ỹ )

)

−
(

e(X̃,Xt) + e(X, Ỹ ) +
b̄

2
b(X̃) +

(
b̄

2
+ 1

)
b(Ỹ )

)

≥ 0.

Observe now that
(

b̄

2
e(X̃, V − X̃) +

(
b̄

2
+ 1

)
e(Ỹ , V − Ỹ )

)
−

(
e(X̃,Xt) + e(X, Ỹ )

)

=
(
b̄e(X̃, Ỹ )+

(
b̄

2
−1

)
e(X̃,Xt)+

(
b̄

2
+1

)
e(Ỹ , Y t)+

b̄

2

(
e(X̃, Y t)+e(Xt, Ỹ )

))
,

and hence, it amounts to showing

(b̄ − 2)e(X̃) + (b̄ + 2)e(Ỹ ) + b̄e(X̃, Ỹ ) +
(

b̄

2
− 1

)
e(X̃,Xt)

+
(

b̄

2
+ 1

)
e(Ỹ , Y t) +

b̄

2

(
e(X̃, Y t) + e(Xt, Ỹ )

)

≥
(

b̄

2
b(X̃) +

(
b̄

2
+ 1

)
b(Ỹ )

)
(5)

for the proof of Eq. (4).
To prove Eq. (5), values of its LHS are distributed first to edges as fol-

lows: (b̄ − 2), (b̄ + 2), b̄, (b̄/2 − 1), (b̄/2 + 1) and b̄/2 are assigned to each edge
of E(X̃), E(Ỹ ), E(X̃, Ỹ ), E(X̃,Xt), E(Ỹ , Y t) and E(X̃, Y t)∪E(Ỹ ,Xt), respec-
tively. These values assigned on an edge e = {u, v} will be redistributed to
u and v, and the total value associated with each vertex will be shown to reach
at least b̄b(x)/2 for x ∈ X̃ and (b̄/2 + 1)b(y) for y ∈ Ỹ , thus reaching the value
of RHS in total.
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Distributing the LHS Value to Vertices.

1. Distributing (b̄ − 2) on e ∈ E(X̃) and (b̄ + 2) on e ∈ E(Ỹ ).
In either case, the value assigned on e = {u, v} is evenly split and distributed
to each of u and v. Thus, either u or v receives (b̄/2 − 1) if {u, v} ∈ E(X̃)
and it does (b̄/2 + 1) if {u, v} ∈ E(Ỹ ).

2. Distributing values assigned on edges in E(X̃,Xt) ∪ E(Ỹ , Y t) ∪ E(X̃, Y t) ∪
E(Ỹ ,Xt). In case e = {u, v} ∈ E(X̃,Xt) ∪ E(X̃, Y t) with u ∈ X̃, distribute
the whole value to u; that is, (b̄/2−1) if e ∈ E(X̃,Xt) and b̄/2 if e ∈ E(X̃, Y t),
to u. Likewise, distribute the whole value on e = {u, v} ∈ E(Ỹ , Y t)∪E(Ỹ ,Xt)
to u ∈ Ỹ ; that is, (b̄/2 + 1) if e ∈ E(Ỹ , Y t) and b̄/2 if E(Ỹ ,Xt).

3. Distributing b̄ on e = {x, y} ∈ E(X̃, Ỹ ), where x ∈ X̃, y ∈ Ỹ .
The way how to distribute will depend on the following cases of y:

– Distribute whole b̄ to x (and none to y) if dY (y) = b(y).
– Otherwise, i.e., if dY (y) < b(y), then distribute

(
b̄

2
+ 1

) (
b(y)

b(y) + 1

)

to y, and the rest to x, which is

b̄ −
(

b̄

2
+ 1

) (
b(y)

b(y) + 1

)
= b̄ − (b̄ + 2)b(y)

2(b(y) + 1)
=

b̄ − 1
2

+
b̄ − b(y) + 1
2(b(y) + 1)

.

4. Summary. The above assignment can be summarized as follows:
For each e = {u, v} ∈ E with u ∈ X̃, u receives

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b̄
2 − 1 if v ∈ X
b̄
2 if v ∈ Y t

b̄ if v ∈ Ỹ and dY (v) = b(v)
b̄−1
2 + b̄−b(y)+1

2(b(y)+1) if v ∈ Ỹ and dY (v) < b(v).

For each e = {u, v} ∈ E with v ∈ Ỹ , v receives
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b̄
2 + 1 ifu ∈ Y
b̄
2 if v ∈ Xt

0 if u ∈ X̃ and dY (v) = b(v)(
b̄
2 + 1

) (
b(y)

b(y)+1

)
ifu ∈ X̃ and dY (v) < b(v).

Estimating Total Value Assigned to y ∈ Y . Let val(y) denote the total
value assigned to y ∈ Ỹ .

– Case: dY (y) = b(y). Counting only those distributed from edges in E(Y ), we
have

val(y) ≥
(

b̄

2
+ 1

)
dY (y) =

(
b̄

2
+ 1

)
b(y).
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– Case: dY (y) < b(y). Because d(y) = dX,Y (y) + dY (y), we have

val(y) = dX,Y (y)
(

b̄

2
+ 1

) (
b(y)

b(y) + 1

)
+ dY (y)

(
b̄

2
+ 1

)

=
(

b̄

2
+ 1

) (
dX,Y (y)

(
b(y)

b(y) + 1

)
+ dY (y)

)

≥
(

b̄

2
+ 1

)
(dX,Y (y) + dY (y))

(
b(y)

b(y) + 1

)

≥
(

b̄

2
+ 1

)
b(y),

where the last inequality is due to the fact that y is not tight, i.e., d(y) ≥
b(y) + 1.

It can be thus seen that total value,
∑

y∈Ỹ val(y), assigned on Ỹ is no less than
(b̄/2 + 1)b(Ỹ ).

Estimating Total Value Assigned to x ∈ X. Let val(x) denote the total
value assigned to x ∈ X̃.

– Case: ∃{x, y} ∈ E(X̃, Ỹ ) with dY (y) = b(y). While x receives b from edge
{x, y}, the least amount of value distributed from any edge in δ(x) is

(
b̄
2 − 1

)
.

Hence,

val(x) ≥ b̄ +
(

b̄

2
− 1

)
(d(x) − 1)

≥ b̄ +
(

b̄

2
− 1

)
b(x)

=
b̄

2
b(x) + b̄ − b(x)

≥ b̄

2
b(x).

– Case: � ∃{x, y} ∈ E(X̃, Ỹ ) with dY (y) = b(y). The degree of y in G[Y ] increases
only by one when x is transfered from X to Y , and hence, the degree bound
will not be violated at any node in Y even if x is removed from X. This means,
since X must be a minimal solution, the degree violation must occur at x, and
hence, it must be the case that dX,Y (x) > b(x).
Recall that least amount of value x receives from {x, y} ∈ E(X,Y ) is either
b̄/2 or b̄−1

2 + b̄−b(y)+1
2(b(y)+1) , and observe that

b̄ − 1
2

+
b̄ − b(y) + 1
2(b(y) + 1)

≥ b̄ − 1
2

+
b̄ − b̄ + 1
2(b̄ + 1)

=
1
2

(
b̄ − 1 +

1
b̄ + 1

)
.

Since
1
2

(
b̄ − 1 +

1
b̄ + 1

)
< b̄/2
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x receives at least 1
2

(
b̄ − 1 + 1

b̄+1

)
from each {x, y} ∈ E(X,Y ). Therefore,

val(x) ≥ dX,Y (x) × 1
2

(
b̄ − 1 +

1
b̄ + 1

)

≥ (b(x) + 1)
1
2

(
b̄ − 1 +

1
b̄ + 1

)

=
1
2
b̄b(x) +

1
2

(
b̄ − 1 − b(x) +

b(x) + 1
b̄ + 1

)

≥ 1
2
b̄b(x)

since

b̄ − 1 − b(x) +
b(x) + 1

b̄ + 1
≥ 0.

Thus, x ∈ X̃ receives at b̄b(x)/2 in either case, and total value,
∑

x∈X̃ val(x),
assigned on X̃ is no less than b̄b(X̃)/2. Therefore, Eq. (5) must hold and this
completes the proof of Lemma 1.
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Abstract. We investigate the multi-agent pathfinding (MAPF) prob-
lem with n agents on graphs with n vertices: Each agent has a unique
start and goal vertex, with the objective of moving all agents in paral-
lel movements to their goal s.t. each vertex and each edge may only be
used by one agent at a time. We give a combinatorial classification of all
graphs where this problem is solvable in general, including cases where
the solvability depends on the initial agent placement.

Furthermore, we present an algorithm solving the MAPF problem in
our setting, requiring O(n2) rounds, or O(n3) moves of individual agents.
Complementing these results, we show that there are graphs where Ω(n2)
rounds and Ω(n3) moves are required for any algorithm.

1 Introduction

Pathfinding for single agents on a graph is a well studied problem. Dijkstra’s
algorithm provided a solid foundation in 1959 [1] and since then, several more
specialized adaptations have been conceived, such as the A∗ algorithm [2] for
grids and hierarchical pathfinding using the ability to pre-process maps. The
applications for multi -agent pathfinding have grown numerous in the recent
decades.

Movies such as The Lord of the Rings want to display huge armies clash-
ing, but without paying an actor for each combatant [3]. Real-time strategy
games incorporate larger and larger amounts of units and players expect pre-
dictable and efficient unit movement [4]. Building safety researchers can predict
the movement and behaviour of human crowds during an emergency evacuation
through simulation [5]. Pathfinding on graphs has also drawn attention in robot-
ics, where it is applied to the problem of multi-robot path planning [6]. Another
related field is routing in networks, where deadlock-free forwarding (pathfinding)
of packets (agents) is of interest [7].

In this paper, we focus our attention on the most congested pathfinding
case, where n agents are to be routed on n-vertex graphs, advancing the work
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 247–259, 2017.
DOI: 10.1007/978-3-319-57586-5 21
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of [8,9]. Motivated by real-world capacity constraints, but also following classical
pathfinding research [10], we allow each edge and vertex to be used by only
one agent at a time. A precise problem definition is given in Sect. 2, where we
formalize the multi-agent pathfinding (MAPF) problem in the form of a labeling
problem. Notwithstanding, we invite the reader to first study the background
Sect. 1.1.

A main interest of this article is on classifying graphs where the MAPF
problem is generally solvable with combinatorial criteria: That is, for any two
initial and desired placements of agents, is there a valid sequence of moves solving
the corresponding MAPF problem?

In Sect. 3, we give a clear-cut combinatorial classification of all graphs where
this problem is solvable in general, including cases where the solvability depends
on the initial agent placement. In the subsequent Sect. 4, we then give an
algorithm1 solving the MAPF problem in O(n2) rounds and O(n3) agent moves.
Furthermore, we provide a class of graphs where any algorithm will require Ω(n2)
rounds and Ω(n3) agent movements, matching our upper bounds. We conclude
with a summary in Sect. 5.

1.1 Background

One of the earliest scientific works on multi-agent pathfinding on graphs is by
Johnson and Story [11]: They studied the famous 15-puzzle, where 15 agents
1, 2, . . . , 15 are placed on a 4 × 4-grid, and only one agent may move at a time
to a currently unoccupied neighboring vertex. The authors showed that exactly
half of the starting positions are not solvable, if the goal is to order the agents in
an increasing pattern from 1 to 15, with the lower right vertex being unoccupied,
and also studied larger grids – with Wilson showing the connection to alternating
groups [12]. In more recent times, it was shown that finding the fastest solution
for feasible problems is NP-hard already on grids, cf. [13,14].

The model of the 15-puzzle, where one agent moves at a time to an unoccu-
pied neighboring vertex, has been studied by numerous people in various commu-
nities. One such piece of work that this article draws foundations and techniques
from, in particular for lower bounds, is Coordinating Pebble Motion On Graphs,
The Diameter Of Permutation Groups, And Applications by Kornhauser, Miller,
and Spirakis. Two versions exist, one is the Master’s Thesis of Kornhauser which
is available as a technical report [15]. A more compact version was published at
FOCS in 1984 [10], omitting some proofs. Even though Kornhauser uses a dif-
ferent model where no rotations are allowed and enforcing one unoccupied node,
we arrived at the same upper and lower bounds of O(n3), respectively Ω(n3)
agent moves. Our proof of the Ω(n3) lower bound in our model is very similar to
that of Kornhauser, as noted in Sect. 4.4. While their results are from the 1980’s,
Röger and Helmert [16] pointed out in 2012 that these findings solve some open
problems in the robotics community and are still relevant in current research.

1 Yu and Rus [8] also give a MAPF algorithm, cf. second to last paragraph of Sect. 1.1.
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The same model as in this article was previously studied by Yu and Rus in
Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning
Algorithms [8]. The authors provided an algorithm to check if a graph instance
is solvable, but did not give combinatorial criteria for feasibility as provided by
us. Hence, they could also not provide statements about when exactly half of
the MAPF problems are solvable, as we did in Sect. 3.3. Yu and Rus also give
a MAPF algorithm, differing from our methods, for which they prove an upper
bound that is equivalent to our O(n2) upper bound on the number of rotations.
However, they did not show the lower bounds.

Lastly, Driscoll and Furst published a paper [9] in 1983 that gives a O(n2)
upper bound on the diameter of a class of permutation groups. While Driscoll
and Furst’s paper does not relate permutations to multi-agent pathfinding, our
problem is in said class of permutation problems, and Driscoll and Furst’s upper
bound directly applies to the number of rotations in our problem. Driscoll and
Furst also provide a generating set that leads to a tight lower bound, however
this generating set can not be related to MAPF problems in the model discussed
in this article, since it relies on two-cycles as generators.

2 Model

In this section we will first formally introduce the problem of multi-agent
pathfinding, before providing some mathematical preliminaries for the concepts
of permutations and permutation groups. We then use these tools to reformulate
the MAPF problem as a labeling problem in Sect. 2.1. Multi-agent pathfinding
(MAPF) on a graph describes a problem where k agents are distributed on ver-
tices of a graph G(V,E) with n vertices. Each agent has a destination, its goal
vertex. Agents can move over edges to neighboring vertices. The problem is to
find a sequence of moves, such that eventually all agents are on their goal vertex.
In the problems studied here, there is always exactly one agent on each vertex,
i.e., k = n. The movement of the agents is constrained by the following rules:

– At any given time, no more than one agent can be on any vertex.
– Any edge can only be used by one agent at a time, i.e., neighboring agents

may not swap places.

The only permitted moves are thus rotations on graph cycles.

Definition 1 (rotation). In a rotation on a graph cycle v1, . . . , vm, the agent
on a vertex vi moves to the vertex vi+1 if i ∈ {1, . . . , m − 1} or the vertex v1 if
i = m.

To keep the terminology consistent with other works in Computer Science and
Mathematics, we will be dealing with labeled graphs instead of agents on graphs:

Definition 2 (labeling). Let L = {1, 2, 3, . . . , |V |} be the set of labels. A label-
ing of a graph G(V,E) is a bijective function l : V → L.
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Problems where objects are reordered are typically associated with the math-
ematical theory of permutations and permutation groups. In the following, we
will give some of the basic definitions and results from those fields.

Definition 3 (permutation). Let X = 1, . . . , n. A permutation is a bijective
function π : X → X.

There are multiple established notations for permutations. In the two-line nota-
tion one writes for each element x in the first row its image π(x) in the second
row:

π =
(

l1 l2 l3 . . . ln−1 ln
π(l1) π(l2) π(l3) . . . π(ln−1) π(ln)

)

The second notation used here is the cycle notation: Starting from some
element x ∈ X, one writes the sequence

(
x π(x) π(π(x)) . . .

)
of successive images

under π. The sequence is continued until x would appear again. Starting at a
new element not observed yet, we do the same, and write it in a new pair of
parentheses. This is repeated until every element is written down once.

Example 1.
(

1 2 3 4 5 6 7
1 5 7 2 4 3 6

)
could be written as

(
1
) (

2 5 4
) (

3 7 6
)
.

Cycles of length one are omitted, the above permutation then reads as(
2 5 4

) (
3 7 6

)
. Next, a pair of labels is called an inversion, if the order of said

labels is changed by the permutation.

Definition 4 (inversion). (li, lj) is an inversion of π, if li > lj and π(li) <
π(lj).

Definition 5 (parity of a permutation). The parity of a permutation is the
parity (odd or even) of the number of inversions it contains.

Definition 6 (composition of permutations). Two (and, iteratively, any
number of) permutations can be composed: π1◦π2 = π1π2 = π2(π1(x)) ∀x ∈ X.

The set of all permutations on 1, . . . , n with operation ◦ form the group Sn.
An important subgroup of Sn is the alternating group An. It is the subgroup
of Sn which contains all even permutations. It contains exactly half of the n!
elements of Sn. We need the following lemma to see that closure is satisfied for
An, which is proven in numerous textbooks on the subject, such as [17]:

Lemma 1. The composition of even permutations is even.

We can conclude by recursion, that the composition of any number of even per-
mutations will again result in an even permutation. The set of even permutations
is thus closed under composition.
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2.1 Reformulation of the MAPF Problem

The permitted operations in our model are rotations. They can be interpreted
as an element of Sn. We refer to Fig. 1 for an introductory case explained in
Example 2.

Example 2. If we label the bow-tie graph with labels as in Fig. 1, we can write
the permutations corresponding to the rotations in cycle notation, e.g.:

– clockwise rotation in the left cycle: πL− =
(
1 3 2

) (
4
) (

5
)

=
(
1 3 2

)
,

– counterclockwise rotation in the right cycle: πR+ =
(
1
) (

2
) (

3 4 5
)

=
(
3 4 5

)
,

In fact, rotations in our model always correspond to permutation cycles. (But
not all permutation cycles correspond to a valid move.) It is thus justified to
reformulate the MAPF problem:

3

1

2 4

5

Fig. 1. Labeled bow-
tie graph, consisting
of two odd cycles of
length three.

Main Idea. Let πgoal be the permutation that represents
the goal labeling and let PG be the set of permutations that
correspond to a valid rotation.

Find a sequence πr1 , . . . , πrm
, where πri

∈ PG such
that

πr1 ◦ πr2 ◦ . . . ◦ πrm
= πgoal (1)

This problem has a solution if and only if πgoal is an
element of the group generated by PG.

Lemma 2. Rotations on graph cycles with even length correspond to odd permu-
tations. Rotations on odd-length graph cycles correspond to even permutations.

Proof. Rotations on graph cycles with length i correspond to permutation cycles
of the same length i. It is known, cf. [17], that cyclic permutations of even length
correspond to odd permutations and vice-versa. Therefore odd i give rise to even
permutations, even i to odd ones. ��

3 Necessary and Sufficient Combinatorial Criteria
for Solvability

We will begin this section with Theorem 1, where we specify necessary and suf-
ficient combinatorial criteria for graphs on which the MAPF problem can be
generally solved.

Definition 7. The MAPF problem is generally solvable on a graph G, if the
MAPF problem is solvable on G for any combination of an initial labeling with
a goal labeling.

Theorem 1. The MAPF-problem on a graph G with n ≥ 2 vertices is generally
solvable, if and only if the following conditions hold:
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1. G is 2-edge-connected,
2. G contains at least two cycles,
3. G contains a cycle of even length.

In the following Sect. 3.1, we address the necessity of these criteria. Then, in
Sect. 3.2, we point out that graphs fulfilling the criteria are indeed solvable, i.e.,
the conditions are sufficient.

Lastly in this section, we address in Sect. 3.3 that half of the MAPF problems
are still solvable if the particular requirement that a graph must contain an even-
length cycle is not satisfied.

3.1 The Combinatorial Conditions in Theorem 1 are Necessary

We defer the proof of conditions 1 and 2 to the full version of this article.
Condition 3 is proven in the following lemma.

Lemma 3. The MAPF-problem on a graph G is not generally solvable, if the
graph does not contain an even-length cycle.

Proof. Assume Graph G contains only odd-length cycles. Lemma 2 then implies
that all πri

of Eq. 1 are even. Using Lemma 1, we see that the permutation
problem can not be solved for odd πgoal and we will always stay in An. ��
In fact, as we will see in Sect. 3.3, all problems corresponding to even πgoal are
solvable, when this last constraint is not satisfied. That is, exactly half of all
problems are still solvable in that case.

3.2 The Combinatorial Conditions in Theorem 1 are Sufficient

In this section, we show that the MAPF problem on the graphs specified in
Theorem 1 are indeed generally solvable. We will show that on such graphs it
is possible to exchange any two labels while leaving all other labels unaffected.
In terms of permutations this amounts to being able to express 2-cycles as a
sequence of the permutations corresponding to the permitted rotations. (cf. our
main idea). Since the set of all 2-cycles generates Sn (cf. [17]), this will conclude
the proof of Theorem1.

3.2.1 Swapping Two Labels in a Generally Solvable Graph

Lemma 4. Let

πa×b(x) =

⎧⎪⎨
⎪⎩

b ifx = a
a ifx = b
x otherwise

π(l1,l2)→(s1,s2)(x) =

⎧⎪⎨
⎪⎩

s1 if x = l1

s2 if x = l2

x′ otherwise
where x′ in π(l1,l2)→(s1,s2) is arbitrary, with the constraint that π(l1,l2)→(s1,s2) is
bijective.

Then,
πl1×l2 = π(l1,l2)→(s1,s2)πs1×s2π

−1
(l1,l2)→(s1,s2)

(2)
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Proof. To make notation less cumbersome, we will denote π(l1,l2)→(s1,s2)

by π. The right hand side of Eq. 2 can be rewritten as ππs1×s2π
−1 =

π−1(πs1×s2(π(x))). We distinguish cases:

Case x 	= l1 ∧ x 	= l2: Then, π(x) = x′. Since x′ 	= s1 and x′ 	= s2 we have
πs1×s2(x

′) = x′. We can then plug these values in as follows:

π−1(πs1×s2(π(x))) = π−1(πs1×s2(x
′)) = π−1(x′) = x

Case x = l1: π(l1) = s1 and πs1×s2(s1) = s2:

π−1(πs1×s2(π(x))) = π−1(πs1×s2(s1)) = π−1(s2) = l2

Case x = l2: analogously

In all cases, we have π−1(πs1×s2(π(x))) = πl1×l2(x), concluding the proof. ��
In other words, if we can swap a specific pair of labels (s1 and s2) without

affecting other labels, and we are able to move any pair of labels (l1 and l2) to
the position of the aforementioned labels, we can effectively swap any two labels
by means of Eq. 2. It remains to prove that we can express some π(l1,l2)→(s1,s2)

and the suitable πs1×s2 for any l1 and l2 by means of the permitted rotations.

Lemma 5. For any cycle c1 in a graph that is 2-edge-connected with at least
two cycles, one of the following two options holds:

1. There is a cycle c2 with which it shares exactly one vertex or
2. There are 2 vertices in c1 with 3 vertex-disjoint paths between them.

The proof of this lemma is deferred to the full version of this article. According to
this lemma, finding πs1×s2 for all 2-edge-connected graphs can be done by finding
πs1×s2 in each of the stated cases. We will now demonstrate how swapping is
possible in either case.

3.2.2 Swapping Labels in Cycles Sharing Exactly One Vertex
Let Cnl,nr

denote a graph consisting of two cycles, with sizes nl and nr, respec-
tively, that share exactly one vertex. As there are two cycles, four operations
are permitted, namely rotations in both directions on either cycle. πL− denotes
the permutation associated with a clockwise rotation in the left cycle, πL+ the
permutation associated with a counterclockwise rotation in the left cycle. πR+

and πR− are the analogous counterparts in the right cycle. Algorithm1 describes
a procedure to swap the labels l1 and m in Cnl,nr

.

Lemma 6. If nl is even, Algorithm1 terminates.

Proof. The permutations associated with the basic rotations that we use can
readily be written down in cycle notation:

πL− =
(
l1 m lnl−1 . . . l2

)
πR+ =

(
r1 r2 . . . rnr−1 m

)
πR− =

(
r1 m rnr−1 . . . r2

)
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Building on these, we can write down the composed permutations of the
algorithm:

πinit = πR−πL−πL−πR+πL−

=

(
l1 l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 m r1 r2 r3 . . . rnr−2 rnr−1

lnl−2 r1 m l1 l2 l3 l4 . . . lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 . . . rnr−2 rnr−1

)

πstep = πR−πL−πR+πL−

=

(
lnl−2 r1 m l1 l2 l3 l4 . . . lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 . . . rnr−2 rnr−1

lnl−4 lnl−2 lnl−1 r1 m l1 l2 . . . lnl−8 lnl−7 lnl−6 lnl−3 lnl−5 r2 r3 . . . rnr−2 rnr−1

)

Assuming nl is even, πstep reads in cycle notation:

πstep =
(
l1 r1 lnl−2 lnl−4 . . . l2 m lnl−1 lnl−3 . . . l3

)

We left out nl

2 − 4 labels with each “. . . ”, namely li’s with even i in the left
case and with odd i in the right. Note that the labels l1, . . . , lnl−3 always take
the place of the label with an index that is larger by 2. If nl was odd, nl − 1
would be even and lnl−1 would be in the cycle much earlier, such that not all
labels would be in the same cycle.

Applying a cyclic permutation k-fold has step the labels k steps forward in
the order of the cycle. For each label x in the permutation cycle we can count
k positions to the right in the cyclic representation of πstep to find πk

step(x). In

this way, we find π
nl
2 −1

step :

π
nl
2 −1

step =

(
lnl−2 r1 m l1 l2 l3 l4 . . . lnl−6 lnl−5 lnl−4 lnl−1 lnl−3 r2 r3 . . . rnr−2 rnr−1

m l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 l1 r1 r2 r3 . . . rnr−2 rnr−1

)

We’ve written down π
nl
2 −1

step such that it is easy to see that

πinitπ
nl
2 −1

step =

(
l1 l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 m r1 r2 r3 . . . rnr−2 rnr−1

m l2 l3 l4 l5 l6 l7 . . . lnl−3 lnl−2 lnl−1 l1 r1 r2 r3 . . . rnr−2 rnr−1

)

Which is our goal permutation. That is, after nl

2 − 1 repetitions of the loop in
Algorithm 1, we are at the desired configuration, and the algorithm terminates.

��

Algorithm 1. Swapping
Two Labels in Cnl,nr

π := πR−πL−πL−πR+πL−

πstep := πR−πL−πR+πL−

while π 	= πgoal do
π := ππstep

3.2.3 Swapping Labels in a Cycle Con-
taining 2 Vertices with Three Paths
Between Them
In the case when there are two vertices with
three vertex-disjoint paths between them,
swapping two labels is simpler, and possible
with just 3 rotations. One possibility of per-
forming such a swap is illustrated in Fig. 2.
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3.2.4 Travelling to Swapspot
It remains to express π(l1,l2)→(s1,s2) for any l1, l2, s1 and s2, where the initial
vertices of s1 and s2 are neighbors. We will do this in two phases. First, we move
l1 and l2 such that they are neighbors. Then, these neighbors are moved to the
place where they can be swapped. For details, we refer to the full version.

3.3 Solvable Problems on Not Generally Solvable Graphs

We have now specified the class of graphs on which the MAPF problem is gen-
erally solvable. On those that are not generally solvable, some problems are still
solvable. In the cases where a graph is not 2-edge connected, one can consider
each 2-edge connected component separately, as no label can cross bridges. The
solvable problems are then those where the labels only travel within subgraphs
that fulfill the constraints of Theorem1. Another case is when there is only
one cycle present, where the solvable problems are exactly those obtained by
rotations on this cycle.

However, if a graph is still 2-edge connected and contains at least two cycles,
but only contains cycles of odd length, a more interesting observation can be
made. In fact, exactly half of the problems can still be solved. In Sect. 3.2 we
presented a method to express 2-cycles as a sequence of the permitted rotations.
Without the presence of even cycles, it is possible to express 3-cycles with a
very similar method. Recall that 3-cycles are a generating set of the alternating
group An, which contains half of the elements of Sn. The details of 3-cycling are
deferred to the full version.

4 Algorithms, Lower and Upper Bounds

1

1

1

(a) Original setting

1

1

1

(b) After top rotation

1

1

1

(c) After outside rotation

1

1

1

(d) After bottom rotation

Fig. 2. Swapping in graphs with two vertices with
three vertex-disjoint paths between them.

In this section, we use the
mechanisms studied so far to
construct an algorithm that
solves the MAPF problem in
O(n3) label movements and
O(n2) rotations. We will also
present a class of graphs,
on which the MAPF prob-
lem cannot be solved with less
than Ω(n3) label movements
and Ω(n2) rotations, mean-
ing that our algorithm is opti-
mal in terms of the asymp-
totic number of operations in
the worst case.
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4.1 Complexity Measures

The complexity of a solution to the problem can be described in different ways.
In this chapter we will investigate the complexity with respect to three related
measures. An upper bound on the length of the sequence of permutations found
by the algorithm is given in all three measures, and a class of graphs is given
on which these upper bounds for all three measures are tight in an asymptotic
sense.

One way of describing the complexity of a solution is that of the total number
of rotations. In this case, every rotation increases the complexity by one. This is
effectively the length of the sequence found in our main idea. For some problem
instances, rotations can be performed in parallel. On these problems, measuring
the complexity with the number of rotations might not give a good representation
of the running time. The number of rounds thus can be used as a second measure.
However, the algorithms used in this paper never use the possibility of parallel
rotations. Therefore here, the number of rotations equals the number of rounds.
As we will see, our lower bounds are tight regardless. Lastly, the number of label
movements is studied. That is, the number of rotations a label was involved in,
summed up over all labels.

4.2 The Algorithm

We have established the notions of swapping and 3-cycling labels. Using these
mechanisms we can directly build an algorithm:

1. As long as there are labels in the wrong place, pick one wrongly placed label,
say a. Then, pick the label b := πgoal(a).

2. Set c to be an arbitrary incorrectly placed label such that a 	= c and
πgoal(a) 	= c. If no such c can be found, a and b are the only wrongly placed
labels left, and we swap them. If swapping is not possible, the problem is not
solvable. (Since the solution is only one swap away, πgoal is not in An.)

3. If a c is found, 3-cycle a, b and c. Since this only moves wrongly placed labels,
and fixes the position of a, this decreases the overall number of wrongly placed
labels by at least one.

4. Repeat until all labels are at the right place.

Note that by better choices of a,b and c, we can fix at least two labels with
every 3-cycle. However, this leads to a sequence of operations of the same asymp-
totic length.

4.3 Upper Bound on Number of Operations

Lemma 7. Swapping two labels and 3-cycling three labels without affecting any
other labels both take O(n) rotations.

For a full proof, we refer to the full article. The gist is that there is a constant
number of steps involved, each with a complexity in O(n) rotations. These com-
plexities are mainly determined by the length of paths and cycles in the graph.



Multi-agent Pathfinding with n Agents on Graphs with n Vertices 257

Theorem 2. The Algorithm described in Sect. 4.2 terminates in O(n2) rota-
tions, O(n2) rounds and O(n3) label movements.

Proof. Since on n labels and n vertices, there can be at most n wrongly placed
labels, and we fix at least one with every 3-cycle and every swap, we will need
at most n such operations. In other words, the added number of 3-cycles and
swaps performed is in O(n).

We have seen in Lemma 7 that both swapping and cycling take O(n) rota-
tions. Having O(n) swaps or cycling operations costing O(n) rotations each,
we get the claimed overall bounds of O(n2) rotations. Clearly, each rotation
moves at most n labels, which directly implies the upper bound of O(n3) label
movements.

The worst case in terms of number of rounds, is when all rotations are done
sequentially. Therefore, an upper bound on the number of rotations is also an
upper bound on the number of rounds. I.e., the upper bound of O(n2) rotations
directly implies an upper bound of O(n2) rounds. ��

4.4 Lower Bound on Number of Operations

Fig. 3. Graph LBn for the proof of
the lower bound

We will now give a class of graphs and
a MAPF problem on which any algorithm
takes at least Ω(n2) rotations, Ω(n2) rounds
and Ω(n3) label movements, providing lower
bounds that are asymptotically tight. The
class of graphs is the same as Kornhauser
et al. [10] used for their model.

Consider the graph of Fig. 3, that is the
cyclic graph on n vertices with an added edge between the �n

2 �-th and the
�n

2 + 2�-th vertex. We denote this graph by LBn.

4.4.1 Rotations and Rounds
Lemma 8. There is a MAPF problem on LBn for which any solution requires
Ω(n2) rotations.

Proof. Assume n to be odd. We define di to be the semi-circular distance
between label i and label i + 1. The semi-circular distance is the shortest path
between the labels on the cyclic graph, that does not use the added edge. The
di are maximal for di = �n

2 �, and are at least 1.
Following Kornhauser et al. [10], we define the notion of entropy as E =∑�n
2 �

i=1 di. We chose an initial labeling, for which E = �n
2 �2, with our goal config-

uration having E = �n
2 �. There are six permitted operations on LBn: A rotation

on the outer cycle, denoted by A, a rotation on the cycle
(�n

2 � �n
2 � + 1 �n

2 � + 2
)
,

denoted by B and a rotation on the cycle not including �n
2 � + 1, denoted by C,

as well as their respective inverses A−1, B−1 and C−1. We can study the effect
of the three operations on the entropy. Clearly, A and A−1 do not change the
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entropy. Rotating B or C can only change the di that include the labels on
vertices �n

2 �, �n
2 � + 1 and �n

2 � + 2, and by at most 2 each. Each rotation thus
decreases E by at most 12. Having E = �n

2 �2 at the beginning and E = �n
2 �

at the goal configuration, we can say that we need at least �n
2 �2−�n

2 �
12 ∈ Ω(n2)

operations. ��
Lemma 9. There is a MAPF problem on LBn for which any solution requires
Ω(n2) rounds.

Proof. Since all three cycles in LBn pairwise share vertices, only one rotation can
be performed at a time. Therefore, the lower bound on the number of rotations
from Lemma 8 is also a lower bound for the number of rounds. ��

4.4.2 Label Movements
We now look at the number of label movements.

Lemma 10. There is a MAPF problem on LBn where any solution requires
Ω(n3) label movements.

Proof. We can assume that in an optimal solution, no more than one consecutive
operation is performed on cycle B. (Since, e.g., BB can be replaced by B−1,
B−1B by doing nothing at all, consecutive operations on B indicate non-optimal
solutions.) We thus know, that after each operation on B, there will be one on
either A or C. Thus, if there are m operations, at least �m

2 � operations are
performed on A and C. Those require at least n − 1 label movements. (Namely,
if C is moved.) As any solution will use at least Ω(n2) rotations, so will a solution
that is optimal with respect to label movements. Hence, (n − 1)�Ω(n2)

2 � ∈ Ω(n3)
is a lower bound for the number of label movements. ��

5 Conclusion

We studied combinatorial classifications and algorithms for the multi-agent
pathfinding (MAPF) problem on graphs G with n agents. We proved that the
MAPF problem is only generally solvable, if the graphs G are 2-edge-connected,
contain at least two cycles, and contain at least one cycle of even length. Should
the last of these three combinatorial conditions be violated, we showed that
exactly half of the MAPF problems on these graphs are solvable.

Furthermore, we specified an algorithm that solves feasible MAPF problems
in O(n2) operations or O(n3) agent-movements. We also specified a class of
graphs, where at least Ω(n2) operations or Ω(n3) agent-movements are required,
meaning that on general graphs, our algorithms are asymptotically optimal.

Acknowledgements. We would like to thank the anonymous reviewers for their help-
ful comments. Klaus-Tycho Foerster is supported by the Danish Villum Foundation.
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Abstract. The classical Weisfeiler-Lehman method WL[2] uses edge
colors to produce a powerful graph invariant. It is at least as pow-
erful in its ability to distinguish non-isomorphic graphs as the most
prominent algebraic graph invariants. It determines not only the spec-
trum of a graph, and the angles between standard basis vectors and
the eigenspaces, but even the angles between projections of standard
basis vectors into the eigenspaces. Here, we investigate the combinator-
ial power of WL[2]. For sufficiently large k, WL[k] determines all com-
binatorial properties of a graph. Many traditionally used combinatorial
invariants are determined by WL[k] for small k. We focus on two funda-
mental invariants, the number of cycles Cp of length p, and the number
of cliques Kp of size p. We show that WL[2] determines the number of
cycles of lengths up to 6, but not those of length 8. Also, WL[2] does not
determine the number of 4-cliques.

Keywords: Weisfeiler-Lehman algorithm · Graph invariants · Counting
cycles · Graph isomorphism

1 Introduction

1.1 Weisfeiler-Lehman Method

Two graphs are isomorphic, if there is a bijection of their vertices mapping
edges to edges and non-edges to non-edges. An automorphism of a graph is an
isomorphism from the graph to itself. The graph isomorphism problem is closely
connected to the graph automorphism problem. Two connected graphs G and
G′ with disjoint vertex sets are isomorphic, iff their union has an automorphism
mapping one vertex of G into a vertex of G′. Obviously in this case, all vertices
of G are mapped to vertices of G′.

The most natural and most practical way to detect that two graphs are not
isomorphic is vertex classification [17]. The idea is to give different colors to two
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vertices whenever it is obvious that neither of them can be mapped to the other
one by an isomorphism. Thus vertex classification could start by coloring the
vertices by their degree. One can easily go further. If one vertex u has more
neighbors of a certain degree than another vertex v, then obviously u and v
should also be colored differently.

A simple way to capture these observations, is to start with all vertices of
G = (V,E) having the same color, and then refining the coloring in rounds. In
round i+1, vertices u and v receive different colors, if they already had different
colors in round i, or if the multisets of colors of neighbors of u and v in round i
are different.1 During each round some color classes are split into two or more
classes, until this process stops after at most n = |V | rounds. Nowadays, this
method of vertex classification is also known as WL[1]. It is at the heart of all
software tools for graph isomorphism testing.

The classical Weisfeiler-Lehman method WL[2] [18], classifies edges in a sim-
ilar way. Still, it is a bit more involved. In fact, all ordered pairs of vertices are
classified, not just the edges. In other words, we can think of handling a complete
directed graph with colored edges, including self-loops in all vertices.

At the start, the edges of the complete graph are partitioned into 3 color
classes: the previous edges, the previous non-edges, and the self-loops. In round
i + 1 every directed edge (u, v) is colored with a pair whose first component is
its previous color, and whose second component is the multiset of all pairs of
previous colors on paths of length 2 from u to v. In each round, the actually
occurring colors are lexicographically ordered and replaced by an initial segment
of the natural numbers. This time, after O(n2) rounds, the algorithm stops,
because a stable coloring is reached, i.e., no color class of edges is further divided.

Sometimes, it is useful to keep for each round the mapping assigning to each
detailed color (pair of old color and some multiset) a simplified color (small
integer). We refer to this information as the definition of colors.

It has been noticed that WL[2], has a natural k-dimensional extension WL[k]
by various researchers, including some authors of [8] who tried to prove that
WL[k] solves the graph isomorphism problem for graphs of degree at most k.
It seems that the first published definition of WL[k] has been in [7]. The CFI
algorithm [8] has introduced and popularized the term WL[k] at the suggestion of
Babai as an editor to honor the influence of Weisfeiler and Lehman [18] towards
the development of this algorithm.

Weisfeiler and Lehman did not use the WL[k] algorithm, but extended WL[2]
by individualizing a sequence of vertices. A sequence v1, . . . , v� is individualized
by giving a unique color to each vertex of the sequence before the WL[k] algo-
rithm starts. Note that WL[k+�] is at least as powerful as doing WL[k] for every
possible individualization of � vertices.

WL[k] is defined as follows. The initial color W 0(v1, . . . , vk) is according to
the isomorphism type of (v1, . . . , vk). To be precise, (u1, . . . , uk) is isomorphic
to (v1, . . . , vk) if

1 A multiset differs from a set by assigning a positive integer multiplicity to each
element.
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– for all i, j, ui = uj , iff vi = vj , and
– for all i, j, {ui, uj} ∈ E, iff {vi, vj} ∈ E.

For each coloring f : V k → C and each w ∈ V , define the operation

sift(f, (u1, u2, . . . , uk), w))
= 〈f(w, u2, . . . , uk), f(u1, w, . . . , uk), . . . , f(u1, u2, . . . , w)〉.

Hence, sift(W i, (u1, u2, . . . , uk), w)) is the k-tuple of W i colors of the k-tuples
arising from substituting w in turn for each of the k positions in (u1, u2, . . . , uk).
Thus, intuitively in each round of WL[3], triangles T are colored by the multiset
of the triples of colors used on the triangular faces of the tetrahedra with one
face being T . To be precise, actually ordered triples of vertices are used instead
of triangles. Now the next color of (u1, u2, . . . , uk) is

(f(u1, u2, . . . , uk),multiset{sift(f, (u1, u2, . . . , uk), w) | w ∈ V }).

It should be noticed that for every k, WL[k + 1] is at least as powerful as
WL[k], because every stable coloring C of the k+1-tuples defines a stable coloring
C′ of the k-tuples by C′(v1, . . . , vk) = C(v1, . . . , vk, vk), i.e., by just repeating the
last component. Thus for example WL[2] does not only color the edges, but also
the vertices. The color of a vertex v shows up as the color of the self-loop at v.
The stable partition of the k-tuples of vertices produced by WL[k +1] is at least
as fine as that produced by WL[k], because WL[k] produces the coarsest stable
partition of the k-tuples.

1.2 Graph Invariants

A graph invariant is any function defined on graphs whose value is constant
on classes of isomorphic graphs. In particular, the value does not depend on
the enumeration of the vertices. In other words, a graph invariant is a function
defined on adjacency matrices whose value does not change, when the same
permutation is applied to the rows and columns of an adjacency matrix.

Many simple combinatorial graph invariants are often used to quickly con-
clude that two graphs are non-isomorphic. Some such invariants are, the number
of vertices n, the number of edges m, the number of triangles, the degree (max-
imum number of neighbors of any vertex), the multiset of degrees of vertices.
Graph invariants can also be just boolean properties like being bipartite, being
connected, being acyclic, or containing a given graph as a subgraph or induced
subgraph.

Some more complicated invariants are obtained by counting cliques and
cycles. We use the words path and cycle to refer to a simple path or simple
cycle respectively (i.e., an open or closed vertex disjoint path). More precisely,
we refer to the set of their edges. Thus, e.g., a K3 consists of 1 cycle.

Let Cv
k be the number of k-cycles with one vertex being v. Now the multiset of

all Cv
k for fixed k and varying over all v ∈ V is a nice invariant. Similar invariants

are obtained by varying over all edges instead of vertices, and by considering
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k-cliques instead of k-cycles. We will mainly focus on the graph invariants #k-
cliques, the total number of subsets of k vertices forming a complete graph, and
#k-cycles, the number of cycles of length k which are occurring in the given
graph.

The ultimate combinatorial invariant is obtained by the WL[k] method. Its
strength increases with k, and it determines the isomorphism type for k = n.
We call the invariant WL[k] too. The invariant consists of the multiset of colors
of k-tuples in the stable refinement, together with all the definitions of colors
occurring during the coloring rounds.

A graph invariant identifies a graph G in a class of graphs, if all graphs in the
class with the same invariant as G are isomorphic to G. In other words, up to
isomorphisms, G is the only graph in the class with this invariant. A graph
invariant identifies a graph G, if it identifies G in the class of all graphs. An
invariant identifies a class of graphs, if it identifies all graphs G of this class in
the class of all graphs. For example, the spectrum does not identify the trees,
while the lexicographically first adjacency matrix (varying over all enumerations
of the vertices) identifies all graphs. Of course, no fast algorithm is known to
compute the lexicographically first adjacency matrix of a graph.

WL[n] trivially identifies all graphs of size at most n. On the other hand, even
WL[1] is sufficient to identify almost all graphs [5]. In fact, for almost all graphs,
WL[1] stops after the second round with all vertices receiving distinct colors. The
remaining graphs can be handled sufficiently fast to obtain an O(n2) expected
time algorithm [6] (linear in the input size of a random graph). Even almost all
regular graphs can be identified by WL[2], resulting in a linear expected time
algorithm for identifying the regular graphs [15]. In general, it is difficult to find
instances of graphs that are not easily identified. One source of such graphs are
strongly regular graphs, which are the graphs where WL[2] stops immediately
after assigning the initial colors without doing any refinements.

Algebraic graph invariants are among the most widely studied invariants.
Examples of algebraic invariants are the spectrum (the multiset of eigenvalues
of the adjacency matrix), the Laplacian spectrum, the multiset of angles of the
standard basis vectors with the eigenspace for a given eigenvalue. The standard
basis vectors are those with a component 1 in one vertex and components 0 in
all other vertices. Note that multisets rather than n-tuples have to be used here,
because in general no ordering of the vertices can be defined in an invariant way.

The standard algebraic graph invariants have a low distinguishing power,
compared to strong combinatorial invariants. Already WL[2] determines the
spectrum. The WL[2] color of a vertex determines the lengths of the projec-
tions of its standard basis vectors into the eigenspaces, and the WL[2] color of
an edge determines the angle between the projections of its endpoints [11] (see
also [12]). The spectrum of the k-th power of a graph G is more powerful than
the spectrum of G itself, but not as powerful as WL[2k] [2].

1.3 The Graph Isomorphism Problem

The graph isomorphism problem, i.e., testing whether two graphs are isomorphic
is not known to be in P, but not believed to be NP-complete, as this would have
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strange consequences like the collapse of the polynomial hierarchy. Babai [3,4]
has recently shown the graph isomorphism problem to be in pseudo-polynomial
time (i.e., in time 2(log n)O(1)

). This result builds on the milestone work of Luks
[16], who proved that graphs of bounded degree can be tested in polynomial
time. These results rely heavily on group theoretical methods. Since the early
eighties the author was involved in an oral debate, whether combinatorial meth-
ods could solve the bounded degree case too. In particular, it was open whether
WL[k], with k being the degree of the graph, could solve the bounded degree
graph isomorphism problem. This would be a very natural algorithm, running in
polynomial time, or more precisely, in time O(nk+1 log n). It was even not clear
whether a constant k would be sufficient for all graphs. Some support for this
possibility was provided by the result that WL[5] always makes at least some
progress [9,13,14] except for some known trivial cases.

These questions have been answered by the CFI result [8]. It shows that
WL[k] requires k = Ω(n) in order to identify all graphs of size n. We now
introduce this construction, since we use it for our proofs later. It starts with
an arbitrary graph H called the global graph. For the Ω(n) result, H has to be
an expander graph, but any low degree graph can be used for the construction.
Here we only describe the interesting case of H being regular of degree 3. We
show how to produce two similar graphs G and ˜G from H. The graphs G and ˜G
are not isomorphic, but WL[2] uses edge colors with the same multiplicities.

1. Every vertex v of H is replaced by 4 vertices v0, v1, v2, v3 of G arranged
counterclockwise in the corners of a square, but without the edges of the
square. Note, that there are 3 partitions of {v0, v1, v2, v3} into two subsets of
vertices of size two:
(a) Bottom {v0, v1}, Top {v2, v3},
(b) Left {v0, v3}, Right {v1, v2},
(c) Slash {v0, v2}, Backslash {v1, v3},

2. Consider every edge {u, v} of H to consist of 2 directed edges (u, v) and (v, u).
For every vertex u of H label the 3 outgoing edges in an arbitrary way with
the 3 partitions a, b, c, from above.

3. Now introduce 8 edges of G to replace every edge {u, v} of H. For example,
if (u, v) is labeled a, and (v, u) is labeled b, then the bottom u-nodes are
connected to the left v-nodes, and the top u-nodes are connected to the right
v-nodes. In other words, the edge {ui, vj} is introduced, if either i ∈ {0, 1}
and j ∈ {0, 3}, or i ∈ {2, 3} and j ∈ {1, 2}.

Finally, ˜G is constructed from G by picking an arbitrary edge of H and
flipping the corresponding connections in G. In the previous example, the bottom
u-nodes would be connected to the right v-nodes, and the top u-nodes would be
connected to the left v-nodes.

Fact 1. The location of a flip is undefined. It can easily be moved from an edge
incident to a vertex v of H to any of the other edges incident on v by doing
a Bottom-Top ({v0, v1} ↔ {v2, v3}) exchange and/or a Left-Right ({v0, v3} ↔
{v1, v2}) exchange. In several steps, the flip can be moved to any edge in the
same connected component.
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Fact 2. Only the parity of the flips matter. If G is manipulated by introducing
an even number of flips, we obtain a graph isomorphic to G. If G is manipulated
by introducing an odd number of flips, we obtain a graph isomorphic to ˜G.

1.4 Summary of Main Results

In this paper, we study the power of WL[2] in comparison with the graph invari-
ants #k-cliques and #k-cycles for different values of k. In the next section we
study the positive results. For cliques we only have the trivial result that 3-cliques
are identified by WL[2]. For cycles, astonishingly WL[2] is much more powerful.
Of course, 3-cycles and 4-cycles are identified, but surprisingly also 5-cycles and
6-cycles are identified. Section 3 contains the negative result for 4-cliques, and
Sect. 4 is devoted to the negative result for 8-cycles.

2 Positive Results

Recall that we use the words path and cycle to refer to the set of edges of a
simple path or cycle. Walks (not necessarily simple paths) and closed walks are
not so interesting in our context. For example, for regular graphs, their numbers
are determined by the graph size and the degree. It is not hard to see that WL[2]
can easily count walks and closed walks of any length. More interesting is the
task of counting (simple) paths and cycles.

We say that WL[k] counts the number of j-cycles or solves the problem #j-
cycles, if it produces a multiset of colors (including their definitions) that is only
produced for graphs that have exactly the same number of j-cycles. In the same
way, we define WL[k] counting the number of j-cliques or solving the #j-clique
problem. Similarly, we say that an edge {u, v} knows a certain number, if the
color of (u, v) and its definition determines that number.

Theorem 1. WL[2] counts the number of triangles.

Proof. Obviously, WL[2] trivially counts the number of triangles. After 1 round,
every edge knows the number of triangles it is involved in. Therefore, the multiset
of all colors of edges determines the total number of triangles. If cj edges are
involved in j triangles, then the total number of triangles is 1

3

∑n−2
j=1 cjj. ��

For #k-cliques, this trivial positive result is all we get. For #k-cycles we can
do much better. But first we look at the problem of counting the number of
paths of length 4 between a given pair of vertices. This could easily be used to
show that WL[2] also counts the total number of paths of length 4. We don’t
treat counting the paths of length 5, as it can be done along the lines of the
#6-cycles problem. Counting the paths of length k < 5 is easy.

We say that a coloring algorithm WL[k] computes a function or decides a
property of graphs, if the multiset of stable colors of the k-tuples determines
the function value or the property respectively. This means that whenever two
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graphs have the same multiset of colors, then they agree in the function value
or the property respectively.

Here, having the same multiset of colors of k-tuples can be defined in two
equivalent ways.

– The two graphs are colored simultaneously, i.e., when the names of the colors
are reduced to small integers, a small integer abbreviates the same long name
in both graphs. In this scenario, there is no need to retain the color definitions.

– Each graph is colored separately, but the definitions of the colors are included.
The two graphs must have the same number of equally defined colors. Here,
it is important to include an additional color definition, when the color parti-
tion is already stable. A key example consists of two strongly regular graphs
with the same number of vertices and edges, but with different parameters λ
(number of common neighbors of adjacent vertices) and μ (number of common
neighbors of non-adjacent vertices). In each graph the edge coloring is stable
from the beginning, as even the first refinement round has no effect. But the
new colors in the two graphs have different definitions.

Similarly, we define what it means for a k-tuple to know a function value or
a property. It means that WL[k] colors the k-tuple with a color (including its
definition) that only shows up when the function has this value or the graph has
this property respectively.

Lemma 1. WL[2] can count the number of paths of length 4 between any pair
of vertices.

Proof. We show that every edge (u, v) knows the number of paths of length 4
from u to v. Let p�

uv be the number of paths of length � from u to v. Every vertex
pair (u, v) knows p1uv from the start and p2uv after 1 round. For all �1, �

′
1 ∈ {0, 1}

and �2, �
′
2 ∈ N, after 2 rounds, (u, v) knows

n�1�2�′
1�′

2
:= #{w | w /∈ {u, v} ∧ pi

uw = �i ∧ pi
wv = �′

i for i ∈ {1, 2}}.

Then (u, v) knows the number of paths of length 4 from u to v, which is
∑

�1,�2,�′
1,�′

2

n�1�2�′
1�′

2
(�2 − p1uv �′

1)(�
′
2 − p1uv �1) −

∑

x∈V \{u,v}
p1ux(d(x) − 2)p1xv,

where d(w) is the degree of vertex w. Of course, (u,w) knows d(w) after 1 round.
For the correctness of this formula, notice when combining all paths of

length 2 from u to w with all paths of length 2 from w to v, we also encounter
two kinds of undesirable walks. First, we don’t allow the paths of length 2 from
u to w through v and from w to v through u. Finally, we subtract all walks
u, x, w, x, v for any vertex x. ��
Theorem 2. WL[2] solves #k-cycles for k ≤ 6.
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Proof. For k = 4 the result is easy. Every edge e can count the number of
quadrangles of which it is a diagonal. In one round the edge e = (u, v) knows
the number of common neighbors n(e) = p2uv. Then the over all number of
quadrangles is 1

2

∑

e∈E

(

n(e)
2

)

.
For k = 5 the result follows from the lemma. Every pair (u, v) knows the

number p4uv of paths of length 4 from u to v, and it knows whether u and v are
adjacent. Thus (u, v) knows in how many 5-cycles it is involved.

k = 6 is the interesting case. Any closed path v0, v1, . . . , v5, v0 of length 6 can
be broken down into a path of length 4 and a path of length 2 from v0 to v4.

In order to count the number of 6-cycles, we count for every fixed pair (v0, v4)
with v0 �= v4 the number of 6-cycles H = v0, v1, v2, v3, v4, v5, v0 which are sub-
graphs of the given graph G for variable v1, v2, v3, v5. From now on the pair
(v0, v4) is fixed. Let #H be the number of such subgraphs H. Let #H(∗) be
the number of subgraphs consisting of a path v0, v1, v2, v3, v4 of length 4 and a
path v0, v5, v4 of length 2 where v5 might possibly be identified with v1, v2, or
v3. Let H[u1 = w1, . . . , up = wp] be any graph obtained from a graph of type H
by identifying ui with wi for 1 ≤ i ≤ p. Then

#H = #H(∗) − #H(v1 = v5) − #H(v2 = v5) − #H(v3 = v5).

After 1 round, the pairs (v0, v2), (v2, v4), and (v0, v4) all know the number
of paths of length 2 between them. After 2 rounds, the pair (v0, v4), also knows
the number p4v0v4

of paths v0, v1, v2, v3, v4 of length 4 from v0 to v4 by Lemma 1.
Thus after 2 rounds, the pair (v0, v4) knows #H(∗) = p2v0v4

p4v0v4
, which is

the number of pairs of paths v0, v1, v2, v3, v4 and v0, v5, v4. Not every such pair
of paths can be combined to a 6-cycle. We have to subtract the number of cases,
where v5 is equal to one of the vertices v1, v2, or v3.

Let’s compute #H(v2 = v5). After 1 round (v0, v2) and (v2, v4) know the
number of triangles in which they participate. These numbers are p1v0v2

p2v0v2

and p1v2v4
p2v2v4

respectively. After 2 rounds, (v0, v2) (for varying v2) knows the
multiset of these pairs of numbers. If v0 is adjacent to v4, then each triangle
count is too high by 1, because (v0, v2) also counts the triangle v0, v2, v4 and
(v2, v4) also counts the triangle v2, v4, v0. Both these triangles don’t contribute
to a collection of pairs of paths v0, v1, v2, v3, v4 and v0, v5, v4 intersecting only in
the endpoints and in v2 = v5. Thus the number of bad subgraphs H(v2 = v5) is

#H(v2 = v5) =
∑

v2∈V \{v0,v4}
(p1v0v2

p2v0v2
− p1v0v4

)(p1v2v4
p2v2v4

− p1v0v4
).

This number is known to (v0, v4) after 2 rounds.
Now we compute #H(v1 = v5) of bad subgraphs with v1 = v5 for fixed v0

and v4, and varying v1, v2 and v3. Let #H(v1 = v5, ∗) be the number of graphs
obtained from a graph of type H(v1 = v5) by possibly identifying v2 or v3 with
v0. Then we have

#H(v1 = v5) = #H(v1 = v5, ∗)−#H(v1 = v5, v0 = v2)−#H(v1 = v5, v0 = v3).
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For � ∈ {1, 2, 3} every pair (u, v) knows the number p�
uv of paths of length �

from u to v after � − 1 rounds. Thus in particular, after 2 rounds (v0, v1) knows
p1v0v1

and p2v0v1
, (v1, v4) knows p3v1v4

, and (v0, v4) knows p1v0v4
and p2v0v4

. Thus

#H(v1 = v5, ∗) =
∑

v1∈V \{v0,v4}
p1v0v1

p3v1v4
p1v1v4

.

It is easy to see that

#H(v1 = v5, v0 = v2) =
(

p2v0v4

2

)

,

because v0 and v2 are opposite corners of a square, and

#H(v1 = v5, v0 = v3) = p1v0v1
p1v0v4

p1v1v4
(p2v0v1

− 1).

After 2 rounds, the pair (v0, v4) knows #H(v1 = v5, v0 = v2) and #H(v1 =
v5, v0 = v3).

The computation of #H(v3 = v5) is completely analog.
Now we determine the number #H(v2 = v5). Let #H(v2 = v5, ∗) be the

number of graphs obtained from a graph of type H(v2 = v5) by possibly identi-
fying v1 with v3. Then we have

#H(v2 = v5) = #H(v2 = v5, ∗) − #H(v2 = v5, v1 = v3).

After 1 round (v0, v2) and (v2, v4) know the number of triangles in which they
participate. These numbers are p1v0v2

p2v0v2
and p1v2v4

p2v2v4
respectively. After 2

rounds, (v0, v2) (for varying v2) knows the multiset of these pairs of numbers. If
v0 is adjacent to v4, then each triangle count is too high by 1, because (v0, v2) also
counts the triangle v0, v2, v4 and (v2, v4) also counts the triangle v2, v4, v0. Both
these triangles don’t contribute to a collection of pairs of paths v0, v1, v2, v3, v4
and v0, v5, v4 intersecting only in the endpoints and in v2 = v5. Thus the number
of bad subgraphs for v2 = v5 is

#H(v2 = v5, ∗) =
∑

v2∈V \{v0,v4}
(p1v0v2

p2v0v2
− p1v0v4

)(p1v2v4
p2v2v4

− p1v0v4
).

This number is known to (v0, v4) after 2 rounds.
Here, we hit a complication when we want to compute #H(v2 = v5, v1 = v3).

The subgraph H(v2 = v5, v1 = v3) is a square with a diagonal form v1 to v2.
The other corners are v0 and v4. The pair (v0, v4) does not know #H(v2 =
v5, v1 = v3). Therefore, (v0, v4) might not know the number of 6-cycles in which
the distance from v0 to v4 on the cycle is 2. Luckily, we don’t have to know
this number, but only their sum over all (v0, v4). Thus instead of counting the
number of H(v2 = v5, v1 = v3) for fixed v0 and v4, we count this number for
fixed v1 and v2. This number nv1v2 is 0, if v1 and v2 are not adjacent and

(

p
2

)

for
p = p2v1v2

otherwise, and the pair (v1, v2) knows this number. Thus instead of
computing the sum of #H(v2 = v5, v1 = v3) over all pairs (v0, v4), we compute
the sum of nv1v2 over all (v1, v2) obtaining the same result. ��
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3 WL[2] Does Not Count 4-Cliques

Proposition 1. For k ≥ 2 every k-tuple (and thus also every vertex) knows the
multiset of colors of all k-tuples of vertices of the same graph.

Note that the result does not hold for k = 1.
The definition of “knowing” immediately implies the following.

Corollary 1. For k ≥ 2 two graphs agree in the color of one k-tuple, iff they
agree in the multiset of colors of all k-tuples.

We consider the CFI construction with the global graph being the simplest
regular degree 3 graph, the 4-clique K4. Assume, the vertices v0, . . . , v3 are
arranged in consecutive corners of a square. For the vertices of G, we use double
indices. The vertex vij is the jth vertex in the ith corner (i, j ∈ {0, 1, 2, 3}).
Assume, we have assigned partition a to (vi, vi+1 mod 4), and partition c to
(vi+1 mod 4, vi). Thus partition b is assigned to the 4 diagonal directions.

For every global graph H, WL[2] produces edge colors with the same multi-
plicities in the nonisomophic graphs G and ˜G produced by the CFI construction
[8]. In fact this is the purpose of this construction. In our case with H = K4,
this is immediately clear, as the two graphs are strongly regular. Thus we have
just 3 edge colors, one for original edges, one for non-adjacent disjoint pairs, and
one for self-loops.

We say that two invariants are incomparable, if neither of them implies the
other.

Theorem 3. G and ˜G differ in their number of occurrences of the subgraph K4.
WL[2] is incomparable with the invariant #4-cliques.

Proof. Consider ˜G having the flip along the {v1, v3} diagonal edge. In both, G

and ˜G start with v00. It is adjacent to v10 and v13. The vertices v00 and v10 are
adjacent to v20 in both G and ˜G. Likewise, the vertices v00 and v20 are adjacent
to v30 in both G and ˜G. Finally, v30 is adjacent to v20 forming a clique in G,
but v30 is not adjacent to v20 forming no clique in ˜G. Likewise, for every start
in one of the vertices of v0, there are two neighbors in v1. Then there are twice
unique common neighbors of two previously chosen vertices both in G and ˜G.
Finally in G the chosen vertices in v3 and v1 are adjacent, but not in ˜G.

Considering some automorphisms, this can be verified by checking 2 cases
instead of 8. The result is G has 8 K4, while ˜G has none, even though the edge
colors have the same multiplicities in G and ˜G.

That counting K4 is sometimes weaker than WL[2] is trivial, e.g., take a path
of length 2 and a 3-cycle. ��

4 Difficult Cycles

We show that WL[2] does not identify cycles of length 8. We give a clear argu-
ment about where to look for counter examples. But the actual example is cre-
ated by computer.
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Table 1. The number of cycles of length n in G and ˜G

n Not twisted Twisted n Not twisted Twisted

1 0 0 9 34368 33920

2 48 48 10 91296 92256

3 32 32 11 211968 216192

4 60 60 12 417264 423216

5 288 288 13 670464 674304

6 1248 1248 14 822528 824448

7 4032 4032 15 678912 680960

8 11952 11688 16 284112 281232

It is difficult to find a counter example, because WL[2] is very powerful and
identifies almost all graphs. Thus we use again our example from the previous
section. The non-isomorphic graphs G and ˜G are created with the CFI method
from a tetrahedron. As the single flip in ˜G can be pushed into any edge it is
clear that the 2 graphs have the same number of occurrences of any subgraph
that does not involve all the edges of the global graph. The global graph is a
K4. It has 6 edges, but the shortest closed walk through all edges has length
8. Thus the shortest cycles that might have a different count in G and ˜G are
necessarily of length at least 8. Indeed we succeed. For all even lengths k between
the minimum 8 and the maximum 16 (Hamiltonian cycles), the counts in G and
˜G are different.

As our graphs are small, we can use a pretty brute force algorithm to count
the cycles starting at a fixed vertex. For each of the two graphs, the count Cv

k

(the number of k cycles through any given start vertex v) does not depend on
the chosen start vertex, because both graphs are vertex transitive. #k-cycles,
the total number of cycles of length k is n times Cv

k divided by the length k of
the cycles.

Theorem 4. WL[2] does not identify the number of 8-cycles.

Proof. By Computer. ��
Table 1 is the output of the Cycle Count program. It shows that for lengths

up to 7, the number of cycles is equal in the two graphs. Starting at length 8,
the number of cycles differ, i.e., WL[2], cannot count the number of 8-cycles. We
knew that for this pair of graphs, the numbers have to be the same for lengths
up to 6, because the graphs G and ˜G are constructed such that WL[2] does not
detect any difference between them. It is open whether WL[2] can always count
the number of 7-cycles.

Interestingly enough, there is other evidence that the complexity changes
after 7. For k ≤ 7, Alon et al. [1] can count k-cycles in time O(nω), where
ω < 2.373 [19] is the exponent of matrix multiplication, while Flum and Grohe
[10] show that with k as a parameter the problem of counting k-cycles is #W-
complete.
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Abstract. We study a generalisation of atomic selfish routing games
where each player may control multiple flows which she routes seek-
ing to minimise their aggregate cost. Such games emerge in various set-
tings, such as traffic routing in road networks by competing ride-sharing
applications or packet routing in communication networks by competing
service providers who seek to optimise the quality of service of their cus-
tomers. We study the existence of pure Nash equilibria in the induced
games and we exhibit a separation from the single-commodity per player
model by proving that the Shapley value is the only cost-sharing method
that guarantees it. We also prove that the price of anarchy and price of
stability is no larger than in the single-commodity model for general cost-
sharing methods and general classes of convex cost functions. We close
by giving results on the existence of pure Nash equilibria of a splittable
variant of our model.

1 Introduction

Congestion games are a well-studied abstraction of a large collection of appli-
cations which includes several network routing games. Rosenthal proposed the
model [26,27] and in the past 15 years, starting with [31], there has been a large
body of work in the area (e.g., [2,4,6–8,10,11,13,17,18,28]). Network applica-
tions have been one of the main motivations behind the success of the model and
selfish routing is the paradigmatic example in the study of existence and ineffi-
ciency of equilibrium solutions. A selfish routing game is played on a directed
graph G = (V,E). Each player i in the game is characterised by a start vertex si,
a destination vertex ti, and a flow size wi. Player i must select an si–ti path that
minimises the sum of the edge costs along the path. The edge costs are increas-
ing functions of the total flow on them and there is a predefined cost-sharing
method that dictates how edge costs are distributed among each edge’s users.
The main assumption is that players reach a Nash equilibrium and the system
performance is typically measured by comparing the worst or best Nash equilib-
rium to the optimal solution in terms of total cost. These metrics are termed the
price of anarchy (POA) and price of stability (POS), respectively [3,23]. Exis-
tence of a pure Nash equilibrium (PNE) and POA/POS performance properties
are very well understood for general cost-sharing methods in the selfish routing
model [12,14,21,22,30].
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 272–284, 2017.
DOI: 10.1007/978-3-319-57586-5 23
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In this paper, we study a generalisation of the selfish routing game, which
we term selfish routing with multi-commodity players. In this generalisation, each
player may control more than one flow in the network. Similar settings have been
studied before in the context of scheduling games [1], in the context of integer
splittable routing games [27,33], and for a special case of our model (where
each commodity has the same flow size) in [10]. More specifically, player i is
described by a set of commodities Qi. Each commodity q has a starting vertex sq,
a destination vertex tq and a flow size wq. Each player i must pick how to
route the flows in Qi, each on a single path. Applications of our model include
routing in road networks where ride-sharing platforms operate and routing in
communication networks where connections are operated by service providers.
Consider the example of ride-sharing platforms. The game is played on the road
network and there is a continuous flow of rides using either platform between
each pair of nodes in the graph. The route that each car follows is dictated
centrally by the platform that seeks to optimise the aggregate travel time of
its flows. In the packet routing application, network connections are routed by
competing service providers. Each service provider wishes to optimise the quality
of service of their clients and hence routes connections seeking to minimise their
aggregate costs.

As a concrete example, consider a network with two nodes s, t, and two
parallel edges e1, e2, from s to t. The joint cost of each edge is given as C(x) =
x2, with x the total flow on the edge. The game has two players. Player 1
wishes to route a flow of size 1 from s to t, while player 2 wishes to route
two flows, each of size 1, from s to t. Suppose the cost-sharing method dictates
that each commodity traveling through an edge pays an equal share of the joint
cost. Player 2 has three options: route both commodities on the same edge that
player 1 is using, route both commodities on the other edge, or route the two
commodities on different edges. The corresponding costs for player 2 would be 6,
4, and 3, which establishes the latter option as the best response.

1.1 Our Results

In this work, we search for cost-sharing methods that guarantee the existence
of pure Nash equilibria in multi-commodity selfish routing games. We also focus
on the inefficiency of equilibria and we conduct a comprehensive study of the
POA/POS, i.e., the ratio of the total cost in the worst/best Nash equilibrium
over the optimal total cost. Our results hold for general cost functions and cost-
sharing methods and they also extend to general congestion games.

Regarding the existence of pure Nash equilibria, we show that applying the
Shapley value per edge, with the weight of a player on an edge being the sum
of the commodity sizes she places on the edge, results in a potential game and,
hence, guarantees the existence of a pure Nash equilibrium. On the contrary, we
show that weighted Shapley values may induce games such that no pure Nash
equilibrium exists, which exhibits a separation from the single-commodity case,
where each player controls only one commodity. Given that the class of weighted
Shapley values are the unique cost-sharing methods that guarantee pure Nash
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equilibria in the single-commodity player model [15], our results suggest that
the Shapley value is essentially the unique anonymous cost-sharing method that
guarantees pure Nash equilibria in the multi-commodity player model.

With respect to the inefficiency of equilibria, we prove upper bounds on the
POA that match the ones from the single-commodity per player model. Our
bounds work for general (convex) cost functions and for general cost sharing
methods satisfying the following natural assumptions [12], which we briefly dis-
cuss afterwards and explain in more detail in Sect. 1.3:

1. Every cost function in the game is continuous, increasing and convex.
2. Cost-sharing is consistent when player sets generate costs in the same way.
3. For convex resource cost functions, the cost share of a player on a resource is

a convex function of her flow on the resource.

Assumption 1 is standard in congestion-type settings. For example, linear cost
functions have obvious applications in many network models, as do queueing
delay functions, while higher degree polynomials (such as quartic) have been
proposed as realistic models of road traffic [32]. With assumption 2, the cost
sharing method only charges player s according to how they contribute in the
total cost and there is no other way of discrimination between them. Assumption
3 asks that the curvature of the cost shares is consistent, i.e., given assumption
1, that the share of a player on a resource is a convex function of her weight
(otherwise, we would get that the cost share of the player increases in a slower
than convex way but the total cost of the constant weight of players increases
in a convex way, which we view as unfair).

The POS is an interesting concept and it is very well motivated in cases
where the players can be started in an initial configuration or where a trusted
mediator can suggest a solution to the players. This suggests that the POS is
especially interesting in cases where a pure Nash equilibrium exists. Therefore,
on the POS side, we focus on the Shapley value, the only cost-sharing method
that guarantees existence of a pure Nash equilibrium in our setting. We prove
that the POS is equal to the POS of the single-commodity case for general classes
of cost functions.

Finally, we study an extension to the splittable model, where players may split
their commodities across different paths. In particular, we study the existence
of pure Nash equilibria in that setting and mention interesting open problems.

1.2 Related Work

Previous works in [10,20,27,33] study settings that share similarities to multi-
commodity routing games. In [27], Rosenthal studies weighted routing games
where each player may split her integer flow size among different subflows of
integer size. Focusing on the proportional cost-sharing method (that charges
each player a cost proportional to her flow on an edge), he proves that there
exist such games with no PNE. In [33], the authors identify special cases where
PNE exist in Rosenthal’s model. Our approach differs from the work in [27,33].
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We study general multi-commodity players and not only players who control unit
flows with the same start vertex. In [20], it is shown that there exist games where
merging atomic players into a coalition (similarly into a multi-commodity player)
may degrade the quality of the induced PNE when proportional sharing is used.
In a small contrast, we focus on worst-case metrics and show that the POA and
POS of multi-commodity player games is no worse than in the single-commodity
case, for general cost-sharing methods. Finally, in [10], the authors focus on
coalitions of atomic players in routing games (equivalent to multi-commodity
players) and mostly on the objective of minimizing the maximum cost. For the
sum of costs objective, which we consider in this paper, they prove that the
game always admits a pure Nash equilibrium under proportional cost-sharing
and quadratic edge cost functions. We provide more comprehensive results with
respect to the existence of pure Nash equilibria for general methods and general
classes of cost functions.

On the cost-sharing side, the authors in [15] characterise the class of (gener-
alised) weighted Shapley values as the only methods to guarantee existence of
a PNE when each player controls one commodity. We exhibit a separation from
this result by showing that weighted Shapley values do not guarantee pure Nash
equilibria existence in the multi-commodity extension. With respect to the POA
and POS of cost-sharing in routing games, [12] provides general tight bounds,
which, in this work, we generalise to the multi-commodity player model.

1.3 Preliminaries

In this section, we present the notation and preliminaries for our model in terms
of a general congestion game with multi-commodity players. In such a game, there
is a set Q of k commodities which are partitioned into n ≤ k non-empty and
disjoint subsets Q1, Q2, . . . Qn. Each set of commodities Qi, for i = 1, 2, . . . , n, is
controlled by an independent player. Denote N = {1, 2, . . . , n} the set of players.
The players in N share access to a set of resources E. Each resource e ∈ E has
a flow-dependent cost function Ce : R≥0 → R≥0. As stated in assumption 1
(Sect. 1.1), we assume the cost functions of the game are drawn from a given
set C of allowable cost functions, such that every C ∈ C must be continuous,
increasing and convex. We also make the mild technical assumption that the set
C is closed under (i) scaling and (ii) dilation, meaning that if C(x) ∈ C, then (i)
C(a · x) ∈ C and also (ii) a · C(x) ∈ C, for every positive a.

Strategies. Each commodity q ∈ Q has a set of possible strategies Pq ⊆ 2E .
Associated with each commodity q is a weight wq, which has to be allocated to
a strategy in Pq. For a player i, a strategy Pi = (Pq)q∈Qi

defines the strategy
for each commodity q player i controls. An outcome P = (P1, P2, . . . , Pn) is a
tuple of strategies of the n players.

Load. For an outcome P , the flow f i
e(P ) of a player i on resource e equals the

sum of the weights of all her commodities using e, i.e., f i
e(P ) =

∑
q∈Qi,e∈Pq

wq.
The total flow on a resource e is given as fe(P ) =

∑
i∈N f i

e(P ). We use xe(P )
for the set of players who assign positive flow on resource e on an outcome P .
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Cost Shares. The cost sharing method of the game determines how the flow-
dependent joint cost of a resource Ce(fe(P )) is divided among its users. Given
an outcome P , we write χie(P ) for the cost of player i on resource e, such
that

∑
i∈N χie(P ) = Ce(fe(P )). The cost of a player i, Xi(P ), is the sum of her

costs on each resource, Xi(P ) =
∑

e∈E χie(P ). For any T ⊆ N , let fT
e (P ) be

the vector of the flows that each player in T assigns to e. Then the cost share of
player i can also be defined as a function of the player’s identity, the resource’s
cost function and the vector of flows assigned to e, i.e., χie(P ) = ξ(i, fN

e (P ), Ce).
In this paragraph we explain in more detail assumption 2 and 3 from Sect. 1.1,

which are needed for our general POA results in Sect. 3. Assumption 2 states
that the cost-sharing method only charges players based on how they contribute
to the joint cost. More specifically, assume we scale the joint cost on a resource by
a positive factor β, i.e., C ′

e(fe(P )) = β · Ce(fe(P )). Given that the same players
use this resource, the new cost shares of the players would be a scaled by factor
β version of their initial cost shares, i.e., ξ′(i, fN

e (P ), Ce) = β · ξ(i, fN
e (P ), Ce).

This is given by scaling and replication arguments. Last, we make the fairness-
related assumption 3 which states that the cost share of a player on a resource
is a convex function of her flow.

We now define a specific class of cost-sharing methods, which is important
in our analysis.

Weighted Shapley Values. The weighted Shapley value defines how the cost
Ce(·) of resource e is distributed among the players using it. Given an ordering π
of N , let F<i,π

e (P ) be the sum of flows of the players preceding i in π. Then the
marginal cost increase caused by player i is Ce(F<i,π

e (P )+f i
e(P ))−Ce(F<i,π

e (P )).
For a given distribution Π over orderings, the cost share of player i on resource e
is Eπ∼Π [Ce(F<i,π

e (P )+f i
e(P ))−Ce(F<i,π

e (P ))]. For the weighted Shapley value,
the distribution over orderings is given by a sampling parameter λi

e(P ) for each
player i. The last player in the ordering is picked proportional to the sampling
parameters λi

e(P ). Then this process is repeated iteratively for the remaining
players.

As in [12], we study a parameterised class of weighted Shapley values defined
by a parameter γ. For this class, λi

e(P ) = f i
e(P )γ for all players i and resources e.

For γ = 0, this reduces to the (standard) Shapley value, where we have a uniform
distribution over orderings.

Pure Nash Equilibrium. We now proceed with the definition of our solution
concept. The pure Nash equilibrium (PNE) condition on an outcome P states
that for every player i it must be the case that

Xi(P ) ≤ Xi(P ′
i , P−i), for any other strategy P ′

i . (1)

Social Cost. The social cost in the game is given by the sum of the player costs,
i.e.,

SC(P ) =
∑

i∈N

Xi(P ) =
∑

i∈N

∑

e∈E

ξ(i, fN
e (P ), Ce) =

∑

e∈E

Ce(fe(P )). (2)
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Price of Anarchy and Price of Stability. Let Z be the set of outcomes
and ZN be the set of pure Nash equilibria outcomes of the game. Then the price
of anarchy (POA) and the price of stability (POS) are defined as follows,

POA =
maxP∈ZN SC(P )
minP∈Z SC(P )

and POS =
minP∈ZN SC(P )
minP∈Z SC(P )

. (3)

The POA and POS for a class of games are defined as the largest such ratios
among all games in the class.

2 Existence of Pure Nash Equilibria

Our first result proves that applying the (standard) Shapley value (with respect
to the player flows f i

e(P )) on each resource, induces a potential game. Recall
that, for the Shapley value cost-sharing, we have a uniform distribution over
orderings, i.e., we use the definition of weighted Shapley values in Sect. 1.3 with
every sampling parameter equal to 1.

Theorem 1. Congestion games with multi-commodity players under Shapley
cost sharing are exact potential games.

Proof. Consider any ordering π of the players in N and let f≤i,π
e (P ) denote the

vector that we get after truncating fN
e (P ) by removing all entries for players

that succeed i in π. We prove that the following is a potential function of the
game,

Φ(P ) =
∑

e∈E

∑

i∈N

ξ(i, f≤i,π
e (P ), Ce). (4)

Hart and Mas-Colell [19] proved that (4) is independent of the ordering π in
which players are considered. Let P ′ = (P ′

i , P−i). It suffices to show that Φ(P )−
Φ(P ′) equals the change in the cost of player i. Focus on a single resource e and
let π be one of the orderings that places the flow of player i, f i

e(P ), in the last
position. Then, the potential on resource e loses a term equal to

ξ(i, f≤i,π
e (P ), Ce) = ξ(i, fN

e (P ), Ce)

and gains a term equal to

ξ(i, f≤i,π
e (P ′

i , P−i), Ce) = ξ(i, fN
e (P ′

i , P−i), Ce),

which is precisely the change in the cost of player i on e. Summing over all
edges gives the desirable Φ(P ) − Φ(P ′) = Xi(P ) − Xi(P ′), which completes the
proof. ��

One might expect that, similarly to standard congestion games, the same
potential function argument would apply under weighted Shapley values as well.
However, this is not the case.
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Theorem 2. There is a congestion game with multi-commodity players admit-
ting no PNE for any weighted Shapley value defined by sampling weights of the
form f i

e(P )γ with γ > 0 or γ < 0.

Proof. We prove this theorem by showing two examples admitting no PNE, for
γ > 0 and γ < 0. Due to page limitations, we restrict to the description of the
instances. For the γ > 0 case: Consider two players, 1 and 2, who compete for two
parallel (meaning each commodity must pick exactly one of them) resources e,e′

with identical cost functions Ce(x) = Ce′(x) = x1+δ with δ > 0 and γ
δ a large

positive number (note that for δ = 0, we have linear cost functions where in
this case we have an equilibrium. As soon as we deviate from linearity, we use
convexity to construct an example with no equilibrium). Player 1 controls a unit
commodity p ∈ Q1. Player 2 controls two commodities q, q′ ∈ Q2, with wq′ = 1
and wq = k, for k a very large number. Recall, that the sampling weight of a
player i on a resource e is given by λi

e = (f i
e)

γ . This means that smaller weights
are favoured when constructing the weighted Shapley ordering. In particular,
for k → ∞, if commodities p, q share the same resource, then the probability
that q goes last in the Shapley ordering becomes 1 and the cost of commodity q
would be (k + 1)d − 1.

We switch to the γ < 0 case: Consider players i = 1, 2, . . . , k, who compete for
two parallel resources e1, e2 with identical cost functions Ce1(x) = Ce2(x) = x3.
Player k controls two commodities p, q ∈ Qk with weights wp = k and wq = 1.
Each player i < k controls only one commodity ri ∈ Qi with wri

= 1. The
sampling weight of a player i on a resource e is given by λi

e = (f i
e)

γ , for γ < 0. ��

2.1 Alternative Cost-Sharing Based on Commodity Weights

One might consider a different way of generalizing weighted Shapley values to
multi-commodity congestion games: Apply a weighted Shapley value on the com-
modity weights by charging a player the sum of the weighted Shapley values of
the commodities controlled by her. These cost-sharing methods coincide when all
commodities have unit weights, which is equivalent to proportional cost-sharing,
i.e., every player pays a cost-share that is proportional to her flow on any given
resource. Below we use one such instance with unit commodities to prove that
applying a weighted Shapley value method on commodity weights does not guar-
antee pure Nash equilibrium existence.

Our instance is based on an example in [10], where Fotakis et al. prove that
network unweighted congestion games with linear resource cost functions and
equal cardinality coalitions do not have the finite improvement property, there-
fore they admit no potential function. Their example translates to a restricted
setting of our model where each player controls an equal number of unit com-
modities. We strengthen their result by proving non-existence of pure Nash equi-
libria for congestion games with multi-commodity players and cubic resource
cost functions (we construct even a network congestion game with no pure Nash
equilibrium).
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A similar example has already been given by Rosenthal [27]. However,
Rosenthal’s example uses concave cost functions, which we disallow in our set-
ting. In contrast, our proof uses only convex functions.

Theorem 3. There is a congestion game with multi-commodity players and
cubic cost functions admitting no pure Nash equilibrium under weighted Shapley
sharing applied on commodity weights.

3 The POA and POS of Multi-commodity Games

In this section we prove that the POA and POS of multi-commodity congestion
games are no larger than those of their single-commodity counterparts, for any
cost-sharing method and class of cost functions satisfying the natural assump-
tions in Sect. 1.3. Due to space limits, the POA proof is omitted. It follows along
the lines of the proof for the single-commodity per player model [12].

Theorem 4. The POA of multi-commodity congestion games under a cost-
sharing method ξ and with costs drawn from a given class of increasing and
convex cost functions C, such that ξ, C satisfy assumptions 1, 2, and 3, is equal
to the POA of single-commodity congestion games induced by ξ and C.

Theorem 5. The POS of Shapley value based multi-commodity congestion
games with costs drawn from a given class of increasing and convex cost func-
tions C, is equal to the corresponding POS of the single-commodity case.

Proof. We begin with the potential function of the game (4) and we prove the
following lemma which we use to prove the upper bound on POS. Briefly, the
lemma states the following. For any instance with N players and any strategy
profile, we can construct a new instance with N + 1 players by splitting one
player in half into two new players. Then this can only reduce the potential
value of the game. More precisely, we do this by splitting in half the flow of each
commodity controlled by a player i on a resource creating two new commodities,
which we assign to the new players i′ and i′′.

Lemma 1. Consider an outcome P of the game and assume that on a resource
e, we substitute the total flow of a player i with the flows of two other players
i′,i′′ such that f i′

e (P̂ ) = f i′′
e (P̂ ) = fi

e(P )
2 . Then we claim that

Φe(P ) ≥ Φ′
e(P̂ ),

where Φ′
e(P̂ ) is the potential value of resource e after the substitution.

Proof. First, rename the flows such that the substituted one f i
e(P ) to have the

highest index. Assign indices i′ and i′′ to the new ones, with i < i′ < i′′ in
ordering π. Then, for any resource e, the new potential value equals to

Φ′
e(P̂ ) =

i−1∑

j=1

ξ(j, f≤j,π
e (P ), Ce) + ξ(i′, (f<i,π

e (P ), f i′
e (P̂ )), Ce) +

+ ξ(i′′, (f<i,π
e (P ), f i′

e (P̂ ),f i′′
e (P̂ )), Ce).
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Note that the contribution to the potential value of the players before player i
is the same as before the substitution. Therefore it is enough to show that

ξ(i, f<i,π
e (P ), Ce) ≥ ξ(i′, (f<i,π

e (P ), f i′
e (P̂ )), Ce) +

+ ξ(i′′, (f<i,π
e (P ), f i′

e (P̂ ), f i′′
e (P̂ )), Ce). (5)

To simplify, in what follows call

ξ = ξ(i, fN
e (P ), Ce),

ξ′ = ξ(i′, (f<i,π
e (P ), f i′

e (P̂ )), Ce),

ξ′′ = ξ(i′′, (f<i,π
e (P ), f i′

e (P̂ ), f i′′
e (P̂ )), Ce).

Define as xi
e(π) the set of players preceding player i in π. Then, for every ordering

π and permutation τ i of set xi
e(π)∪{i}, define as F<i,π,τ i

e (P ) the sum of players’
flows who precede i in both π and τ i. Let now |xe(P )| = r. By definition of
Shapley values, we get

ξ =
1
r!

∑

τ i

(
Ce

(
F<i,π,τ i

e (P ) + f i
e(P )

)
− Ce

(
F<i,π,τ i

e (P ))
))

, (6)

ξ′ =
1
r!

∑

τ i

(
Ce

(
F<i,π,τ i

e (P ) + f i′
e (P̂ )

)
− Ce

(
F<i,π,τ i

e (P )
))

. (7)

For ξ′′, since the position of f i′
e (P̂ ) in the ordering is unspecified, we give

an upper bound for this value as follows. For any permutation τ , let A(τ) be
the marginal cost increase caused by f i′′

e (P̂ ) when she precedes f i′
e (P̂ ) in π, and

B(τ) when she succeeds. That is

A(τ) = Ce

(
F<i,π,τ i

e (P ) + f i′′
e (P̂ )

)
− Ce

(
F<i,π,τ i

e (P )
)

,

B(τ) = Ce

(
F<i,π,τ i

e (P ) + f i′
e (P̂ ) + f i′′

e (P̂ )
)

− Ce

(
F<i,π,τ i

e (P ) + f i′
e (P̂ )

)
. (8)

Let now p equal the probability of f i′
e (P̂ ) preceding f i′′

e (P̂ ). Then, the definition
of the Shapley value gives

ξ′′ = (1 − p) · 1
r!

·
∑

τ i

A(τ) + p · 1
r!

·
∑

τ i

B(τ). (9)

Due to convexity, A(τ) ≤ B(τ). Therefore, by substituting A(τ) with B(τ) in
definition (9), we get the following upper bound for ξ′′,

ξ′′ ≤ 1
r!

∑

τ i

B(τ). (10)
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Towards proving inequality (5), we have

ξ′ + ξ′′ (7),(10)

≤ 1
r!

∑

τ i

Ce

(
F<i,π,τ i

e (P ) + f i′′
e (P̂ )

)
− Ce

(
F<i,π,τ i

e (P )
)

+ Ce

(
F<i,π,τ i

e (P ) + f i′
e (P̂ ) + f i′′

e (P̂ )
)

− Ce

(
F<i,π,τ i

e (P ) + f i′
e (P̂ )

)
.

Since f i′
e (P̂ ) = f i′′

e (P̂ ) = fi
e(P )
2 , we get

ξ′ + ξ′′ ≤ 1
r!

∑

τ i

(
Ce

(
F<i,π,τ i

e (P ) + f i
e(P )

)
− Ce

(
F<i,π,τ i

e (P )
))

(6)
= ξ,

as desired. This completes Lemma’s 1 proof. ��
We now continue to the proof for the POS upper bound. By repeatedly

applying Lemma 1, we can break the total flow on each resource in flows of
infinitesimal size without increasing the value of the potential. This implies that

Φe(P ) ≥
∫ fe(P )

0

Ce(x)
x

dx. (11)

Now call P ∗ the optimal outcome and P = arg minP ′ Φ(P ′) the minimiser of the
potential function, which is, by definition, also a PNE. Then

SC(P ∗)
(4)

≥ Φ(P ∗)
Def.P≥ Φ(P )

(11)

≥
∑

e∈E

∫ fe(P )

0

Ce(x)
x

dx

=
∑

e∈E

∫ fe(P )

0
Ce(x)

x dx
∑

e∈E Ce(fe(P ))
· SC(P ) ≥ min

e∈E

∫ fe(P )

0
Ce(x)

x dx

Ce(fe(P ))
· SC(P ).

Rearranging yields the upper bound POS ≤ maxC∈C,x>0
C(x)

∫ x
0

C(x′)
x′ dx′ , which com-

pletes the proof of Theorem5.

Corollary 1. For polynomials with non-negative coefficients and degree at
most d, the POS of the Shapley value is at most d + 1, which asymptotically
matches the lower bound of [7] for single commodity per player.

4 Splittable Games

We conclude the paper with a discussion of interesting open problems on cost-
sharing in the splittable version [5,9,16,20,25,29] of congestion games with multi-
commodity players and with some results. In the splittable version of such games,
the weight wq of a commodity q ∈ Q can be split among its strategies in Pq; i.e.,
a fractional strategy of commodity q ∈ Q is a vector Pq = (wq,P )P∈Pq ∈ R

|Pq|
≥0
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with
∑

P∈Pq wq,P = wq. For the unsplittable version, vector Pq has only one
non-zero and equal to wq component, which is not necessarily the case for the
splittable games. For the single-commodity per player model, it is known that
the proportional sharing method, having players paying a cost share proportional
to their flows on each resource, guarantees existence of a pure Nash equilibrium.
Moreover, the POA of this simple cost-sharing method is well understood [29].

Understanding the POA of other cost-sharing methods both in the single-
and multi-commodity models is an interesting open question. Similarly, it is
interesting to study questions pertaining to the existence of pure Nash equilibria
in such games, which we do next.

A result from Orda et al. [25] implies the existence of pure Nash equilibria in
the multi-commodity splittable model, if the cost share of a player on a resource
is a convex function of her flow on the resource. The result in [25] is based on the
Kakutani Fixed Point theorem. This immediately gives us existence of pure Nash
equilibria for the standard Shapley cost sharing. We strengthen this result by
showing that such games are exact potential games [24] and thus best response
dynamics converge to a pure Nash equilibrium. The proof of the following theo-
rems can be found in Appendix.

Theorem 6. Splittable congestion games with multi-commodity players under
Shapley cost sharing are exact potential games.

As soon as we deviate to the weighted Shapley value method, we prove that
they do not guarantee PNE existence. Our proof uses the fact that the cost
shares of the players are not necessarily convex anymore in this setting.

Theorem 7. For parameterised weighted Shapley values with (finite) parameter
γ, PNE are not guaranteed to exist for splittable congestion games with multi-
commodity players.

For γ = ∞, we can even construct a counter example that uses only single-
commodity players.

Theorem 8. For parameterised weighted Shapley values with parameter γ =
+∞, PNE are not guaranteed to exist even for single-commodity players.
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Abstract. We show how to compute the minimum cut of a graph cache-
efficiently. Let B be the width of a cache line and M be the size of
the cache. On a graph with V vertices and E edges, we give a cache
oblivious algorithm that incurs O(�E

B
(log4 E) logM/B E�) cache misses

and a simpler one that incurs O(�V 2

B
log3 V �) cache misses.

1 Introduction

Memory bandwidth has become a key limiting factor on the performance of
computations. To improve upon this issue, modern microarchitectures feature a
hierarchy of caches. In order to really achieve better performance, it is crucial
that algorithms take these hierarchies into account: The major goal of such a
cache-efficient algorithm is to keep the number of cache misses (data loadings
into a cache) as small as possible. This can save a large amount of time, especially
for non-trivial problems of large input size.

In a two-level hierarchy, one distinguishes between a main memory of
unbounded size and a cache of size M with lines of width B. There are two
ways of modeling algorithms in memory hierarchies: the cache aware model and
the cache oblivious model. In the cache aware model, the cache parameters M
and B are used to describe the algorithm, whereas in the cache oblivious model,
these parameters must not be used in the algorithm description.

Graph problems can be especially challenging to solve cache-efficiently, since
approaches that work well in RAM (like traversing a graph) have poor spatial
locality. A common approach to design cache-efficient algorithms is to exploit a
relation between parallel and cache-efficient algorithms and to run a so-called
PRAM simulation [5,8]. The downside of PRAM simulation is that it only works
well for problems for which work-efficient parallel algorithms are known. This is
not the case for the minimum cut problem.

Improving on previous bounds, we present two cache oblivious minimum
cut algorithms. On a graph with V vertices and E edges our algorithms incur
O(�E

B (log4 E) logM/B E�) and O(�V 2

B log3 V �) cache misses, respectively.

Model. We consider two levels of memory: a main memory of unbounded size and
a fully associative cache of size M with lines of width B. We assume an optimal
replacement strategy: if a new line is loaded into the (full) cache, it evicts the
line that is accessed farthest in the future. Such a data loading is called a cache
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 285–296, 2017.
DOI: 10.1007/978-3-319-57586-5 24
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miss or a memory transfer. This idealized cache has been described by Frigo
et al. [9], who also introduced the two ways of modeling memory hierarchies,
namely the cache aware model and the cache oblivious model.

Depending on the model, one may (cache aware) or may not (cache oblivious)
use the cache parameters B and M in an algorithm description. The latter has
the advantage that bounds proven for a two-level cache extend to a multilevel
cache, which is not the case in the cache aware model. The cache aware model
is equivalent to the external memory or I/O model [1], up to constant factors.

To assume an optimal replacement strategy allows us to consider any other
strategy in order to prove upper bounds on the number of cache misses. More-
over, the number of cache misses changes only by a constant factor if the cache
evicts the least recently used line instead of the one used farthest in the future [9].

Throughout this paper, we hold on the so-called tall cache assumption, that
M ∈ Ω(B2). A tall cache is required for cache-optimal matrix transposition [16]
in the cache oblivious model. A weaker assumption, M ∈ Ω(B1+ε), is required
for cache-optimal sorting [7]. With a tall cache, transposing an N × N matrix
incurs Θ(�N2

B �) and sorting N elements incurs Θ(�N
B �logM/B N��) cache misses

[9]. One way to sort cache-optimally is to use a cache oblivious priority queue
[2], where each operation incurs O( 1

B �logM/B N�) amortized cache misses. Let:

Sort(N) := �N/B�logM/B N��. (1)

Graph Algorithms in Memory Hierarchies. Since many operations on graphs
have poor locality, it is challenging to solve graph problems cache-efficiently. For
example, although minimum spanning trees, connected components, and breadth
first search are well understood in the RAM model, in the cache oblivious model
tight bounds on the number of cache misses are still unknown for these problems
[2,5,6]. In the cache aware model, the situation is similar [3,13].

Chiang et al. [8] showed how to simulate PRAM algorithms in external mem-
ory and Blelloch et al. [5] observed that this result generalizes to the cache
oblivious model (as it relies only on scanning and sorting).

Lemma 1 (by Blelloch et al. [5] and Chiang et al. [8]). A single time step
of a PRAM algorithm using O(N) contiguous space and O(P ) processors can
be simulated in the cache oblivious model incurring O(�N

B + Sort(P )�) cache
misses.

PRAM simulations give cache-efficient algorithms for depth-first search and
other tree problems. In particular, depth-first search incurs O(Sort(V )) and
answering N least common ancestor queries incurs O(Sort(V +N)) cache misses
in a tree with V vertices [5,8].

Minimum Cut. In an undirected weighted graph G = (V, E , w) on V = |V|
vertices, E = |E| edges, and edge weights w, a cut C is a non-empty proper
subset of vertices (C ⊂ V, C �= ∅). Every cut C is associated with a value ω(C),
which is the total weight of all edges in G that have one endpoint in C and another
in V \ C and we say that C cuts those edges. Similarly, we denote by ω(v) the
total weights of all edges incident to a vertex v, which we call its capacity.
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A minimum cut is a cut with minimum value. We will focus on computing the
minimum cut value, rather than the cut itself, though all ideas can be extended
to compute minimum cuts explicitly.

Minimum Cut Algorithms. The fastest known deterministic minimum cut algo-
rithms take O(V E + V 2 log V ) time [14,18] for graphs with weighted edges and
O(E polylog V ) time for graphs with unweighted edges [12].

Randomized algorithms achieve better bounds. In this paper, we consider
two such algorithms, that find a minimum cut with high probability:

– Karger [10]. This algorithm runs in Θ(E log3 V ) time. A parallel (PRAM)
variant of this algorithm takes Θ(log3 V ) time on Θ(E+V 2/ log2 V ) processors
using O(V 2 log V ) space. Hence, a PRAM simulation of this algorithm incurs
O(�V 2

B log4 V �) cache misses. An external memory adaptation by Bushan and
Sajith [4] incurs O((c+log V )Sort(E) log V +V

B Sort(V ) log V ) memory trans-
fers on unweighted graphs, where c is the minimum cut value.

– Karger and Stein [11]. This algorithm takes Θ(V 2 log3 V ) time and incurs,
naively implemented, Θ(V 2(log2 V ) log� V

M �) cache misses.

Karger and Stein is notably good for dense graphs, while Karger is faster
for sparse graphs. For both algorithms, we present a cache oblivious variation.

Our Contribution. In Sect. 2, we adapt Karger and Stein such that it incurs
O(�V 2

B (log2 V ) log� V
M ��) cache misses, thus improving on a naive implementation

by a factor B and keeping the same running time of O(V 2 log3 V ).
In Sect. 3, we show how to transform RAM algorithms that access memory in

a monotone order into cache-efficient algorithms, at a logarithmic time overhead.
The technique allows a cache-efficient all-at-once execution of a batch of consecu-
tive updates and queries on a datastructure, which appear inherently sequential
(thus cannot easily be made cache-efficient using PRAM simulation). We solve a
semistatic simplification of the dynamic tree problem [17], that we call minimum
path: in a tree with V weighted vertices, we define a query that returns for a
questioned vertex the smallest weight in its subtree, and we define an update
that increases or decreases all weights in such a subtree. Such a query and update
incur amortized O( log3 V

B log M ) and O( log2 V
B log M ) cache misses, respectively.

We use the minimum path structure in Sect. 4, where we adapt Karger such
that it incurs O(Sort(E log4 E)) cache misses and still takes O(E polylog V )
time. On sparse graphs, this asymptotically improves upon the Ω(V 2) time and
Ω(V 2/B2) cache misses achieved by the external memory algorithm in [4].

2 A Simple Minimum Cut Algorithm for Dense Graphs

Here, we develop a cache oblivious variant of Karger and Stein [11]. This
algorithm repeatedly applies random edge contractions to the graph, where a
random edge contraction consists of choosing an edge at random with probabil-
ity proportional to its weight and then merging its two end vertices into a single
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vertex. Starting with two copies of the graph, the algorithm performs edge con-
tractions until only �V/

√
2 + 1� vertices are left. Then, each copy is duplicated

again and the algorithm continues recursively until only a constant number of
vertices is left for which the minimum cut is computed deterministically and the
smallest such found value is returned. With high probability, Θ(log2 V ) runs of
this algorithm find the minimum cut value.

In the commonly known implementations, one run of this algorithm incurs
Ω(V 2 log V

M ) cache misses. We reduce this number by a factor B, by showing how
to perform O(V ) random edge contractions using only O(�V 2

B �) cache misses.
Let {1, . . . , V } = V be the set of vertices in our graph. When we represent

the graph as an adjacency matrix, a naive way to compute the contraction of
an edge {i, j} ∈ E is to first add row j to row i and column j to column i,
and second to put zeros into row and column j and mark them as deleted.
This is not cache-efficient, since every contraction requires to traverse both rows
and columns in the matrix. Thus, if the matrix is stored in row-major order
(column-major order), traversing a column (row) leads to Ω(V ) cache misses.

There are three tasks: (1) avoid the eagerly updating of columns and rows
for every single edge contraction. (2) ensure that randomly selecting an edge
does not incur too many cache misses. (3) shrink the adjacency matrix cache-
efficiently to the new size of the graph before it is copied in the recursive process.

Lazy Edge Contraction. Let G = (V, E , w) be given as a V ×V adjacency matrix
A in row-major order, such that an entry Ai,j stores the weight of the edge {i, j}.
In addition, we use two arrays U and D of size V . In U we keep track of the
merged vertices, akin to a union find structure, where Uj = i means that j has
been merged with i. We initialize Ui := i for all i ∈ {1, . . . , V }. D is used to
store for each vertex its capacity. We call such a tuple (A,U,D) a lazy graph
representation. The lazy contraction of an edge {i, j} ∈ E involves three steps:

1. In U , replace all occurrences of j by i.
2. In A, pairwise add row j to row i and set each Ai,k to zero if Uk = i.
3. In D, set Di to the sum of all entries in the i-th row of A, and set Dj = 0.

With the first step we keep track of the merged vertices, which is especially
important since we do not add the columns. In the second step we merge new
parallel edges together and remove loops. In the third step we update the capac-
ities of the vertices, which is zero for j since it is now merged with i.

Observe that before and after an edge contraction, the current graph is
implied by the lazy graph representation: if G′ = (V ′, E ′, w) is the current graph
and i′ is the i-th vertex in V ′, then the adjacency matrix A′ is given by

A′
ij =

∑

k∈{1,...,V }, Uk=j′
Ai′k for i, j ∈ {1, . . . , |V ′|} .

Since, in steps 1 to 3, we iterate a constant number of times through data
sets of length V , each time causing O(�V

B �) cache misses, we conclude:

Lemma 2. In a graph with V vertices given in lazy graph representation, a lazy
edge contraction incurs O

(�V
B �) cache misses.
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Selecting an Edge at Random. Equivalent to choose an edge at random with
probability proportional to its weight is to select the first vertex i by its capacity,
and among all adjacent vertices, select the second vertex j by the weight of {i, j}.

We adopt this procedure to our lazy graph representation as follows: First,
we choose i with probability proportional to its capacity Di. Second, we choose
j = Uk by selecting a column k in A with probability Ai,k

Di
, which works because

the weight of {i, j} is the sum of all entries Ai,k with Uk = j.
To select an entry from an array proportional to its value, we compute the

prefix sums of the array, generate a number uniformly at random between 1
and the sum of the array and perform a binary search for this value. This takes
O(� n

B �) cache misses (where n is the length of the array), hence:

Lemma 3. In a graph with V vertices in lazy graph representation, the random
selection of an edge by its weight incurs O(�V

B �) cache misses.

The above approach takes O(n) time if the sum of all edge weights is in O(2n).
We assume this is the case, but remark that if it is not, there is a technique [11],
which implies that with high probability, a random edge can be selected incurring
amortized O(� n

B �) cache misses and taking O(n) amortized time.

Multiple Contractions. The dimensions of a lazy graph representation are not
changed by a lazy edge contraction, although the graph itself shrinks by one
vertex. If we disregard this, a contraction in one of the numerous small graphs
that appear during the recursive calls of the algorithm would incur the same cost
as a contraction in the initial graph. This would lead to Ω(V 3

B ) cache misses.
For this reason, we compact the graph before every recursive call, which means
that we let the data structures shrink to the new size of the graph.

Before we can compact the graph representation, we have to combine the
columns in A that belong to the same vertex. Since traversing columns of a
matrix in row major order is expensive, we first transpose A, using O(�V 2

B �)
cache misses at once. Then, we combine rows instead of columns:

1. In A, remove every row i with Ui �= i.
2. Transpose A.
3. Let i′ be the i-th vertex in U with Ui′ = i′. Create A′ where row i is the sum

of all rows j in A for which Uj = i′.
4. Let U and D shrink such that they only contain still existing vertices.

The first two steps incur O(�V 2

B �), the third step O(V �V
B �) and the last step

O(V ) cache misses. Therefore:

Lemma 4. To compact a graph in lazy graph representation from V to V ′ < V
vertices incurs O(V �V

B �) cache misses.

Finally, we conclude the total number of cache misses in a contracting phase:

Theorem 1. In a graph with V vertices given in lazy graph representation,
O(V ) random edges can be contracted with O(�V 2

B �) cache misses.
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Proof. By Lemmas 2 to 4, to select and contract O(V ) random edges and shrink
the graph to its new size costs O(V �V

B �) cache misses. By the tall cache assump-
tion, the matrix either fits into cache or V 2

B ∈ Ω(V ), thus V �V
B � ∈ O(�V 2

B �).
	


Let Q(V ) denote the number of cache misses in the entire algorithm (not
only in one contracting phase), starting with a graph of V vertices. Assume that
M
B > d0, where d0 is a constant such that the space used by the algorithm on V
vertices is bounded by d0V

2. We get

Q(V ) ≤
⎧
⎨

⎩
d0 ·

(
V 2

B

)
+ 1 if V 2 ≤ M

d0
,

2 · Q
(
� V√

2
+ 1�

)
+ O

(
V 2

B + 1
)

otherwise,

which resolves to Q(V ) ∈ O(V 2

B log ( V
M + 1)+1). Note that if V 2 ≤ M

d0
, the data

used by the algorithm fits into cache, and no block needs to be read twice.
In order to boost the probability of returning a minimum cut, the algorithm

is repeated Θ(log2(V )) times, which altogether results in O(�V 2

B log2 V log� V
M ��)

cache misses. The running time does not change compared to the original algo-
rithm and is still O(V 2 log3 V ).

3 Simulating Random Access Datastructures

In this section, we first describe a general simulation technique to make certain
RAM algorithms cache-efficient. Then, we apply this technique to a data struc-
ture problem which we call minimum path and which has not yet been solved
cache-efficiently. Minimum path is a semistatic simplification of dynamic trees,
which does not change the structure of the tree.

3.1 Monotone RAM simulation

The idea of our simulation technique is to ensure that operations access memory
in a monotone order. This allows us to execute a batch of operations by going
through the memory locations only once, since the state of a memory cell only
depend on memory cells with a smaller address.

Definition 1. An operation op is called a monotone RAM operation if it
accesses the memory in some given total order �. That is, if op accesses location
x at some point and location y at a later point in time, then x � y.

We demand that x � y can be evaluated in constant time, O( 1
B ) amortized

cache misses, and using O(1) local variables. Since we batch operations together
and execute them at once in order to save cache misses, the results of a query
are available only after all operations have terminated. This technique is thus
only suitable if the results are not required immediately. We will see that the
orders in which queries and updates access the memory do not need to be equal.
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In a batch of updates and queries, let �u (�q) be the memory access order of
the updates (queries). We define an explicit representation of the intermediate
state of a single operation as a tuple (l, t, s), with a unique timestamp t as the
position in the operation sequence of the batch, the next memory location l that
it will access, and the state s of its O(1) local variables.

The simulation consists of two phases: (1) run all updates and record every
intermediate state, (2) sort the intermediate states by �q and run all queries.

– Phase 1. A priority queue P contains the ongoing updates ordered by �u,
with updates to the same location sorted by timestamps. An array D stores
all changes. While P is not empty, we dequeue and run all updates to the next
location l: (•) If an update reads location l, we return the current state of l.
(•) If an update changes the current state to x at time t, we insert a new tuple
(l, t, x) into D. (•) If an update needs to access a location l′ next, we insert a
new update tuple into P with the same timestamp but with location l′.

– Phase 2. A priority queue Q contains all queries, first ordered by �q and
second by timestamps. An array R stores all results. We first sort D by �q

and timestamps. Then, while Q is not empty, we dequeue all queries to the
next location l and process these queries and D in tandem, such that we return
to a query at time t the state of l at the closest preceding time appearing in
a tuple of D. (•) If a query produces a result, we append it to R. (•) If a
query accesses some location l′ next, we insert the query into Q with the new
location l′.

Theorem 2. A batch of O(N) monotone RAM updates and queries each taking
O(f) time can be performed incurring O(Sort(Nf)) cache misses.

Proof. The number of operations in P and Q and the lengths of D and R are
bounded by the total number of reads and writes in the original RAM structure,
which is O(Nf). Thus, we get O(Sort(Nf)) cache misses in total. 	


3.2 Minimum Path

We show how to apply the monotone RAM simulation technique to a data struc-
ture called minimum path. On a tree T on V weighted vertices v1, . . . , vV with
weights w1, . . . , wV and with root ρ, the minimum path data structure supports
the following two operations:

– MinPath(vk) returns the smallest weight of a vertex on the path from vk to ρ.
– AddPath(vk, x) adds x to the weight of all vertices on the path from vk to ρ.

Dynamic tree structures [17] achieve the two operations in O(log V ) time
each, but are not amenable to cache-efficient operations. We show how to apply
a monotone RAM simulation to minimum path. In particular, we present a
O(log2 V ) time monotone RAM structure that allows a cache-efficient execution
of a batch of minimum path operations. By Theorem2, this implies the following:

Theorem 3. On a tree with V nodes, a batch of O(N) minimum path operations
is executed with O(Sort(N log2 V + V )) cache misses.

We first consider the case where T is a path and then generalize for any tree.
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Path. Let T be the path (v1, v2, . . . , vV ) with root ρ = v1. For simplicity, we
assume that V is a power of two. We define pAddPath and pMinPath analogously
to AddPath and MinPath, with the difference that these new operations only
work for paths (and not for trees in general).

We construct a complete binary tree B with (v1, v2, . . . , vV ) as its leaves
and denote the root of B by ρB . For every node b ∈ B, we denote the set of
its descendants by b↓ and the smallest weight among all descendant leaves by
min(b). For efficient updates, we do not store this value explicitly. Instead, we
only explicitly store min(ρB) and with every inner node b the difference Δ(b)
between the smallest weight in its right and left subtree. For every inner node
b ∈ B, let lb and rb denote its left and right child, respectively.

– Initialization: For each node b ∈ B, derive min(b) and Δ(b) bottom-up from
the values of its children. This takes linear time in the number of vertices.

– pMinPath(vk): For a node b ∈ B,

δ(b) := ( min
vi∈b↓,i≤k

wi) − min(b).

Hence, pMinPath(vk) = δ(ρB) + min(ρB). We compute δ(b) for each node b
on the path from vk to ρB . We start with δ(vk) = 0 and sequentially compute
the other δ(b)’s based on δ(lb), δ(rb) and Δ(b):

δ(b) =

⎧
⎪⎨

⎪⎩

δ(lb) if Δ(b) > 0 ,

δ(rb) if Δ(b) ≤ 0 , vk ∈ r↓
b , and δ(rb) + Δ(b) < 0 ,

δ(lb) − Δ(b) otherwise .

Note that whenever we consider δ(lb) or δ(rb), we either already computed
this value or it is zero. To show correctness, we make some observations.
(1) If Δ(b) > 0, then min(b) = min(lb). Otherwise min(b) = min(rb).
(2) If Δ(b) ≤ 0 and vk ∈ r↓

b , the node minimizing minvi∈b↓,i≤k wi is in b’s right
subtree if δ(rb) + Δ(b) < 0 and in b’s left subtree if δ(rb) + Δ(b) > 0, since

δ(rb) + Δ(b) = min
vi∈r↓

b ,i≤k
wi − min(lb).

(3) If vk ∈ l↓b , then {vi|vi ∈ b↓, i ≤ k} = {vi|vi ∈ l↓b , i ≤ k}, because all leaves
of b which are left of vk are in l↓b . The rest of the proof is case distinction and
computation, which we omit here.

– pAddPath(vk, x): Observe that Δ(b) of a node b only changes if vk is a descen-
dant of b. Therefore, it suffices to update only Δ values along the path from
ρB to vk. For every node b on this path, compute the difference ϕ(b) between
the new and the old minimum weight of its descendants: First, set ϕ(vk) = x,
then proceed upwards to ρB . If vk is in b’s left subtree, we already computed
ϕ(lb) and the minimum in the right subtree did not change, thus ϕ(rb) = 0.
Otherwise, we already computed ϕ(rb) and we infer that ϕ(lb) = x. Hence,
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Δ′(b) = Δ(b) + ϕ(rb) − ϕ(lb) ,

ϕ(b) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ(lb) if Δ(b) > 0 and Δ′(b) > 0 ,

ϕ(lb) − Δ(b) if Δ(b) ≤ 0 and Δ′(b) > 0 ,

ϕ(rb) if Δ(b) ≤ 0 and Δ′(b) ≤ 0 ,

ϕ(rb) + Δ(b) if Δ(b) > 0 and Δ′(b) ≤ 0 .

For b ∈ B, let min′(b) be the smallest weight among its descendants after the
update (min(b) before the update). To explain correctness, we need to show
that ϕ(b) = min′(b)−min(b). This is simply done by a case distinction, always
assuming that ϕ(lb) = min ′(lb) − min(lb) and ϕ(rb) = min ′(rb) − min(rb).

Lemma 5. Given a path (v1, ..., vV ), pMinPath and pAddPath take O(log V )
time in monotone RAM.

Tree. We show now how to solve the minimum path problem for any tree T . This
for, we partition the vertices of the tree into vertex disjoint paths, as follows:

Definition 2. A path (u1, . . . , uk) in a rooted tree T is called a bough of T if

1. the first vertex u1 is a leaf,
2. all other vertices u2, . . . , uk have a unique child in T , i.e. ui has child ui−1,
3. the last vertex uk does not have a parent with a unique child in T .

Definition 3. A path in a rooted tree T is a principal branch of T if it is a
bough of T or if it is a principal branch of the tree given by contracting all edges
incident to any vertex in any bough of T .

Observe that any root to leaf path in T intersects at most O(log V ) distinct
principal branches, since the number of leaves is at least halved whenever all
edges incident to a vertex in a bough are contracted.

For any vertex v ∈ T , both MinPath(v) and AddPath(v, x) consist of a series
of O(log V ) pMinPath and pAddPath operations, respectively. Let P denote the
set of principal branches that intersect with the path from v to ρ. For each
principle branch p ∈ P , let cp denote the vertex in p that is closest to the root,
and except for the branch that contains ρ, let fp denote the parent vertex of cp.

– Initialization: Initialize a minimum path structure for each principal branch
in T , which we identify by a depth-first traversal of T . This traversal also
associates cp and fp with every vertex in a principal branch p.

– MinPath(v): Return the smallest value found by pMinPath(v) in the principal
branch of v and by pMinPath(fp) in each principal branch that contains an
fp with p ∈ P .

– AddPath(v, x): Run pAddPath(v, x) on the principal branch that contains v
and pAddPath(fp, x) each principal branch that contains an fp with p ∈ P .

By Lemma 5 and since the size of P is in O(log V ) we conclude:

Lemma 6. In a tree T with V vertices, MinPath, AddPath, and initialization
take O(log2 V ), O(log2 V ), and O(V ) time in monotone RAM, respectively.
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4 A Minimum Cut Algorithm for Sparse Graphs

We use the monotone RAM simulation from Sect. 3.2 to compute a minimum
cut in sparse graphs cache-efficiently: We adapt Karger [10] such that it incurs
O(Sort(E log4 V )) cache misses. Karger consists of two main steps:

1. Identify a set S of O(log V ) spanning trees T1, T2, . . . T|S| of G.
2. For each Ti ∈ S, find the smallest cut in G that cuts at most two edges of Ti.

S is chosen such that, with high probability, the smallest cut found in the
second step is indeed a minimum cut. Karger finds a set of appropriate span-
ning trees in O(log3 V ) time using O(E + V log V ) processors and O(E log V )
space. PRAM simulation results in O(Sort(E log3 V + V log4 V )) cache misses
for step 1. For step 2, we compute two cuts for every tree Ti in S: the smallest
cut that cuts exactly one edge and the smallest cut that cuts exactly two edges
of Ti. Whilst the former can be parallelized efficiently, no near-linear work poly-
logarithmic span solution is known to the latter. For the computations of the
cuts, we follow the algorithms described in [10] and make them cache efficient.

Cutting One Edge of a Tree. We consider a fixed spanning tree T in S, which
we root at some vertex ρ. We denote the including set of descendants of a vertex
v in T by v↓, and we define for every edge e = {u, v} in G its least common
ancestor a(e, T ) in T : vertex w is the least common ancestor a(e, T ) of e if both
u and v are in w↓ and there is no other descendant of w for which this also holds.

Theorem 4. Given a spanning tree T of a graph G on V vertices and E edges,
computing the smallest value of a cut in G that cuts exactly one edge of T incurs
O(Sort(E)) cache misses.

Proof. Assume the edge {i, j} ∈ T is cut, where i is the parent of j, such that the
cut is defined by the set i↓. Let h(v) denote the sum of the weights of all edges
in G, which have v as their least common ancestor: h(v) :=

∑
e∈E,a(e,T )=v w(e).

Then, the cut value is ω(i↓) =
∑

v′∈i↓ ω(v′) − 2h(v′).
We first sort all edges in G by their endvertices to enable an efficient precom-

putation of the ω terms in the sum. We compute for each edge its least common
ancestor in T , using a Pram simulation [15]. Then, we sort the edges by least
common ancestors in order to compute the h values. This causes O(Sort(E))
cache misses. Finally, given all precomputed ω and h values, we compute all
ω(v↓) using treefix sums, which involves O(Sort(V )) cache misses. 	

Cutting Two Edges of a Tree. Assume the edges {i, j}, {i′, j′} ∈ T , j �= j′ are
cut, where i (i′) is the parent of j (j′). We distinguish two cases: Either j and
j′ lie on the same path from a leaf to the root or they don’t. We focus on the
second case, the first one is similar.

The algorithm repeatedly processes the boughs of T . The smallest cut of G
which cuts exactly two edges of T is computed as follows.

Initialize a minimum path structure on the tree T where each vertex v has
weight ω(v↓). For every bough of T move on the path from the leaf that it
included towards the root and do the following at every vertex v that we pass:
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1. AddPath(v, ∞).
2. For each neighbor u of v, AddPath(u, −2w({u, v}) ).
3. For each neighbor u of v, MinPath(u) and store the minimum result as rv.

After a bough has been processed, go through its vertices in reverse order
and undo all modifications by changing the sign of the second argument in the
AddPath operations. When all boughs have been processed, traverse each bough
bottom-up and determine for every vertex v its value Cv = minv′∈v↓ rv′ . Every
such vertex gives an upper-bound ω(v↓) + Cv on the result. Then, contract all
edges incident to the vertices in the boughs, and recursively repeat the procedure.

Theorem 5. Given a spanning tree T of a graph G on V vertices and E edges,
computing the smallest value of a cut in G that cuts exactly two edges of T incurs
O(Sort(E log3 V )) cache misses.

Proof. We follow the procedure described before. We shrink G and T at most
O(log V ) times, since there are at most O(log V ) principal branches on a path
from the root to a leaf. A shrinking phase costs O(Sort(E)) and a phase of
processing boughs costs O(Sort(E log2 V )) cache misses. For the shrinking, we
apply a PRAM simulation for E processors and O(E) space that replaces every
old edge by a new one using a mapping function. The bound follows by Lemma1.

Since we need the results of the MinPath operations only after processing all
boughs, we apply the batched approach from Sect. 3.2, Theorem 3. Every vertex
of a bough is accessed exactly twice: once on the way from a leaf to the root
and once in the reversed order to undo the AddPath operations. Since an edge
is accessed only when one of its endpoints is accessed, we compute the order in
which the vertices and edges are accessed by a depth-first traversal of the tree
followed by sorting a constant number of duplicates of the edges and vertices.
This allows to generate the batch of minimum path operations cache-efficiently.

The number of cache misses is dominated by the cost of O(E) minimum path
operations that, by Theorem 3, incur O(Sort(E log2 V )) cache misses. 	

Theorem 6. Computing a minimum cut of a graph G on E edges with high
probability incurs O(Sort(E log4 V )) cache misses.

Proof. Using PRAM simulation, it costs O(Sort(E log3 V + V log4 V )) cache
misses to find O(log V ) appropriate spanning trees, and by Theorems 4 and 5, it
costs O(Sort(E log3 V )) cache misses to find the cut with smallest value that
cuts at most two edges of a spanning tree. 	


5 Conclusion

We compute a minimum cut in a number of cache misses equal to scanning
the input a polylogarithmic number of times. It remains an open problem to
find a minimum path structure which takes O( 1

B �logM/B V �) amortized cache
misses per operation. Such a structure would improve the number of cache misses
and the running time of our sparse minimum cut algorithm by a factor log2 V .
The monotone RAM framework might be applicable to other semi-static data
structure problems as they also arise in computational geometry.
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Abstract. Domination is one of the classical subjects in structural
graph theory and in graph algorithms. The Minimum Dominating Set
problem and many of its variants are NP-complete and have been stud-
ied from various algorithmic perspectives. One of those variants called
irredundance is highly related to domination. For example, every min-
imal dominating set of a graph G is also a maximal irredundant set of
G. In this paper we study the enumeration of the maximal irredundant
sets of a claw-free graph. We show that an n-vertex claw-free graph has
O(1.9341n) maximal irredundant sets and these sets can be enumerated
in the same time. We complement the aforementioned upper bound with
a lower bound by providing a family of graphs having 1.5848n maximal
irredundant sets.

1 Introduction

Many problems of great theoretical importance and/or arising from real-world
applications turn out to be intractable in the general case. These problems are
typically in one of the following forms. An optimization problem asks for a best
solution (defined under some criteria) from a set of feasible solutions. A counting
problem asks for the number of feasible solutions. An enumeration problem asks
to list all feasible solutions. While optimization is ubiquitous in algorithms, in
some applications finding one or even all optimal solutions is not always satisfac-
tory. Optimization might simply not be the goal. To give an example, experts of
the domain of origin of the problem to solve it in an algorithmic way, for example
biologists, may prefer to have a large set of feasible solutions that under their
hard-to-formalize-objectives is used to find the “good solution(s)” in a non-
algorithmic way. Another motivation for the study of enumeration algorithms
is the fact that for many problems, even well-studied ones, we cannot exclude
that the essentially best algorithm is one solving a corresponding enumeration
problem.
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The classical algorithmic approach to enumeration (sometimes called output-
sensitive) has been studied since more than 50 years with an ever growing interest
in the last years. The holy grail of output-sensitive algorithms are those of poly-
nomial (or even linear) delay. Recently classical worst-case running time analysis
has been applied successfully to enumeration. Those algorithms typically have
exponential running times due to the fact that, contrary to optimization, the
output-size is exponential in the input-size. Often these (input-sensitive) enu-
meration algorithms are branching ones and a sophisticated time analysis like
Measure & Conquer is needed. The running time of an enumeration algorithm
implies in a trivial way a combinatorial upper bound on the output-size, i.e. the
(maximum) number of objects to be enumerated in an input of size n, called
an upper bound. The ultimate aim of input-sensitive enumeration are algorithms
of best possible (worst case) running times, i.e. there are inputs that indeed
show optimality of the established running time. This motivates the search for
lower bounds as a measure for optimality which are typically achieved via the
explicit construction of families of inputs having a certain number of objects
which is called a lower bound. Thus one aims at so-called matching upper and
lower bounds.

The number of papers on domination in graphs is in the thousands, and sev-
eral well known surveys and books are dedicated to the topic (see, e.g., [14,15]).
Concerning enumeration, Fomin et al. gave an O(1.7159n) time algorithm to
enumerate all (inclusion) minimal dominating sets in an n-vertex graph, thereby
showing that the maximum number of minimal dominating sets in such a graph
is at most 1.7159n; they also provided the until today best known lower bound
of 1.5704n [9]. This cornerstone paper of input-sensitive enumeration initiated a
sequence of papers on enumerating all minimal dominating sets in graphs of var-
ious graph classes achieving matching bounds for all those classes except chordal
graphs [1,6,7,22]. Motivated by a long-standing open question concerning the
output-polynomial enumeration of the minimal transversals in a hypergraph, this
enumeration problem has also been studied extensively from output-sensitive
perspective [12,13,18–21].

Irredundance in graphs is strongly related to domination. A set of vertices D
of a graph is irredundant if each vertex u ∈ D has a private vertex v in the closed
neighborhood of u that is not dominated by any other vertex of D except u (we
refer to Sect. 2 for definitions). It is folklore that every minimal dominating set is
an (inclusion) maximal irredundant set. While there is a large number of graph-
theoretic papers on irredundance (see e.g. [2,14,15]), little is know about irre-
dundance from the algorithmic viewpoint. For optimization, the lower and upper
irredundance numbers of a graph denoted by ir(G) and IR(G) were considered.
These parameters are defined as minimum and maximum size of a maximal irre-
dundant set respectively. Unsurprisingly, both corresponding decision problems
are NP-complete [11,16] and computing ir(G) is known to be NP-hard on bipar-
tite and split graphs [16,23]. On bipartite and chordal graphs, it holds that IR(G)
coincides with the independence number, and thus computing IR(G) can be done
in polynomial time [5,17] for these graph classes. Binkele et al. [2] provided a
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variety of results on the exact and parameterized complexity of irredundance,
among others, algorithms computing ir(G) and IR(G) in times O(1.9956n) and
O(1.8475n) respectively. The results of Binkele et al. [2] indicate that the irre-
dundance problems are more complicated than the closely related domination
problems. Clearly, a set of vertices D is a dominating set if and only if for each
vertex u of the graph, D contains a vertex in the closed neighborhood of u, and,
respectively, the minimal dominating sets are exactly the (inclusion) minimal
sets with this property. The all aforementioned enumeration algorithms for min-
imal dominating sets [1,6,7,9,22] heavily depend on this local property. It is not
the case for irredundant sets. In particular, a graph can have a vertex that is
not dominated by any vertex of a maximal irredundant set and this non-locality
creates difficulties for the application of standard techniques.

We consider the problem of enumeration of maximal irredundant sets for
claw-free graphs. Claw-free graphs, which form a superclass of line graph, are
well-known for their structural and algorithmic properties; to mention only the
series of papers on the structure of claw-free graphs by Chudnovsky et al., see
e.g. [4], and the polynomial time algorithms for the (weighted) independent
set problem by Minty and Sbihi [24,25]. While it is not known whether the
maximum number of maximal irredundant sets of a graph on n vertices can be
upper bounded by (2 − ε)n for some ε > 0, we show in this paper that an n-
vertex claw-free graph has O(1.9341n) maximal irredundant sets and that these
sets can be enumerated in time O(1.9341n). We complement the aforementioned
upper bound with a lower bound by providing a family of graphs having 1.5848n

maximal irredundant sets. Due to space limitations we only sketch the proofs of
our results in this extended abstract.

2 Preliminaries

We consider finite undirected graphs without loops or multiple edges. Through-
out the paper we denote by n = |V (G)| and m = |E(G)| the numbers of ver-
tices and edges of the input graph G respectively. For a graph G and a subset
U ⊆ V (G) of vertices, we write G[U ] to denote the subgraph of G induced by
U . We write G − U to denote the subgraph of G induced by V (G) \ U , and
we write G − u instead of G − {u} for a single element set. For a vertex v, we
denote by NG(v) the (open) neighborhood of v, i.e., the set of vertices that are
adjacent to v in G. The closed neighborhood NG[v] = NG(v) ∪ {v}. For a set of
vertices U ⊆ V (G), NG[U ] = ∪v∈UNG[v] and NG(U) = NG[U ] \ U . The degree
of a vertex v is dG(v) = |NG(v)|. A graph is claw-free if it does not contain the
claw, i.e. K1,3, as an induced subgraph.

A vertex v of a graph G dominates a vertex u if u ∈ NG[v]; similarly v
dominates a set of vertices U if U ⊆ NG[v]. For two sets D,U ⊆ V (G), the set
D dominates U if U ⊆ NG[D]. Let D ⊆ V (G). A vertex v is a private vertex
(or, simply, a private) for u ∈ D, if v is dominated by u but v is not dominated
by any other vertex of D; notice that a vertex can be a private for itself. A set
of vertices D is an irredundant set of G if every vertex v ∈ D has a private. An
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irredundant set D is (inclusion) maximal if D is irredundant but any proper
superset of D has not this property.

We obtain upper bounds for the number of maximal irredundant sets via
constructing recursive branching enumeration algorithms. For the analysis of the
running time and the number of sets that are produced by such an algorithm, we
use a technique based on solving recurrences for branching steps and branching
rules respectively. We refer to the book [10] for a detailed introduction.

The following proposition provides a lower bound for the number of maximal
irredundant sets of a claw-free graph.

Proposition 1. For every k ≥ 1, there is a claw-free graph with n = 5k vertices
with at least 10n/5 maximal irredundant sets.

Since 101/5 ≥ 1.5848, we obtain that there are claw-free graphs with at least
1.5848n maximal irredundant sets.

To obtain an upper bound for the number of maximal irredundant sets of a
claw-free graph, we need the following lemma.

Lemma 1. If D is an irredundant set in a claw-free graph G, then G[D] is a
disjoint union of complete graphs.

In our algorithm, we have to find a set W of minimum size in a graph G
such that G − W is a disjoint union of complete graphs. This problem is well-
known under the name Cluster Vertex Deletion. Combining the recent
result about parameterized complexity of the problem by Boral et al. [3] and
the approach for constructing exact algorithm proposed by Fomin et al. [8], we
obtain the following lemma.

Lemma 2 [8]. The Cluster Vertex Deletion problem can be solved in time
O(1.4765n).

3 Enumeration of Maximal Irredundant Sets
for Claw-Free Graphs

Now we are ready to state our main result and give a sketch of its proof.

Theorem 1. A claw-free graph has O(1.9341n) maximal irredundant sets, and
these can be enumerated in time O(1.9341n).

Proof. To prove the theorem, we construct a recursive branching algorithm that
enumerates all maximal irredundant sets of the input graph.

Consider the unique positive real root λ ≈ 1.8393 of the polynomial x3 −
x2 − x − 1 and let ε ≈ 0.4006 be the unique root of the equation

λx · 21−x = 3x · 3(1−x)/3.

We will explain the choice of λ and ε later; now we just observe that ε is used
to balance running times for two base cases and proceed with the algorithm.
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Let G be a claw-free graph. We use Lemma 2 to find a set W ⊆ V (G) of
minimum size such that G − W is a disjoint union of complete graphs. We have
two cases depending on whether |W | ≤ εn or |W | > εn. For each of these cases,
we construct enumeration algorithms that give the bound for the number of
maximal irredundant sets.

Let |W | > εn. In this case, we use the fact that by Lemma 1, each maximal
irredundant set D induces a disjoint union of complete graphs. It follows that
if P is an induced path on 3 vertices in G with V (P ) = {v1v2v3}, then either
v1 /∈ D, or v1 ∈ D and v2 /∈ D, or v1, v2 ∈ D and v3 /∈ D. Following this idea, we
construct a branching recursive algorithm that finds induced paths on 3 vertices
in the considered graph and branches as indicated above. If at some moment we
cannot find induced paths to branch any more, then we just consider all possible
variants for the remaining undecided vertices by brute-force.

This leads to the following branching recursive algorithm EnumCF-
A(S, F,X), where S, F,X ⊆ V (G) compose a partition of V (G); note that some
sets could be empty. The algorithm enumerates the maximal irredundant sets
D of G such that S ⊆ D and D ∩ F = ∅. We say that the vertices of F are
forbidden as they cannot be included in an irredundant set and the vertices of
X are free. The measure of an instance (S, F,X) is the number of free vertices
|X|. As it is standard, each step of the algorithm is executed only if the previous
steps do not apply.

EnumCF-A(S, F,X).

1. If X = ∅, then check whether S is a maximal irredundant set of G and output
it if it holds; then stop.

2. If there is an induced path P = v1v2v3 such that v1, v2, v3 ∈ S, then stop.
3. If there is an induced path P = v1v2v3 such that v1, v2, v3 ∈ S ∪ X, then let

{x1, . . . , xh} = {v1, v2, v3} ∩ X and branch:
(i) call EnumCF-A(S, F ∪ {x1},X \ {x1});
(ii) if h ≥ 2, then call EnumCF-A(S ∪ {x1}, F ∪ {x2},X \ {x1, x2});
(iii) if h = 3, then call EnumCF-A(S ∪ {x1, x2}, F ∪ {x3},X \ {x1, x2, x3}).

4. For each Y ⊆ X, call EnumCF-A(S ∪ Y, F ∪ (X \ Y ), ∅).

To enumerate the maximal irredundant sets of a graph G, EnumCF-A
(∅, ∅, V (G)) is called. Clearly, all the sets generated by the algorithm are maxi-
mal irredundant sets, because at Step 1, where we output sets, we verify whether
a generated set is a maximal irredundant set. To show that every maximal irre-
dundant set D of G is generated by the algorithm, we apply inductive arguments.
To evaluate the running time, observe that we branch on Steps 3 and 4. The
branching vector of Step 3 is either (2, 1) or (3, 2, 1) and the maximum branching
number is λ. The algorithm uses Steps 1–3 while G[S ∪ X] has induced paths
on three vertices. Suppose that we come to Step 4. Then G[S ∪ X] = G − F
has no induced paths on three vertices and, therefore, G[S ∪ X] is a disjoint
union of complete graphs. Since W ⊆ V (G) is a set of minimum size such
that G − W is a disjoint union of complete graphs, |F | ≥ |W | > εn. Hence,
|X| ≤ |S ∪X| = n− |F | ≤ (1− ε)n and the measure s of the instance for a node
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of the search tree where Step 4 is called is at most (1 − ε)n. It can be seen that
for each s ≤ n, the search tree has O∗(λn−s) nodes where Step 4 is called. On
Step 4, we check 2|X| subsets of X. Since λ < 2, we conclude that the number of
leaves of the search tree is O∗(λεn ·2(1−ε)n). The direct computations shows that
λε ·2(1−ε) < 1.9341. Then the number of the leaves is O(1.9341n). It follows that
G has O(1.9341n) maximal irredundant sets and these set can be enumerated in
time O(1.9341n).

From now we assume that |W | ≤ εn. Recall that G−W is a disjoint union of
complete graphs. Denote by H1, . . . , Hk the components of G − W . We consider
3|W | partitions (A,B,C) (some sets could be empty) of W , and for each partition,
we enumerate all maximal irredundant sets D of G such that (i) D∩W = A, (ii)
the vertices of B are private vertices of some vertices of D, and (iii) each vertex
of D has at least one private in V (G) \ C, i.e., the vertices of C are irrelevant in
the sense that they are not included in D and not needed to ensure that each
vertex of D has a private. Note that B ∩ D = ∅ and a vertex of B could be a
private for a vertex of A. Since D ∩ C = ∅ and each vertex of D has at least
one private in V (G) \ C for the considered irredundant sets, it is sufficient to
enumerate all maximal irredundant sets of G−C satisfying (i) and (ii), because
every maximal irredundant set of G satisfying (i)–(iii) is a maximal irredundant
set of G − C satisfying (i) and (ii).

Similarly to the case |W | > εn, we construct the following branching recursive
algorithm EnumCF-B(S, p, F,X), where S, F,X ⊆ V (G) compose a partition of
V (G) (note that some sets could be empty) and p : S → 2V (G)\C . The algorithm
enumerates the maximal irredundant sets D of G−C such that (a) A ⊆ S ⊆ D,
(b) B ∪ C ⊆ F and D ∩ F = ∅, and (c) for each vertex v ∈ D, there is a private
for v in p(v) with respect to D. We say that the vertices of F are forbidden as
they cannot be included in an irredundant set and the vertices of X are free.
The measure of an instance (S, p, F,X) is the number of free vertices |X|.

First, we perform the initialization as follows:

– set G = G − C and let W = A ∪ B,
– set S = A,
– set F = B,
– set X = V (G) \ W , and
– for each vertex v ∈ S, p(v) = NG[v] \ NG[S \ {v}].

It is straightforward to observe that if D is an irredundant set of G−C satisfying
(i) and (ii), then D should be enumerated by EnumCF-B(S, p, F,X) for the
above initial assignment. Notice that initially we have p(v) ⊆ NG[v]\NG[S\{v}].
Our algorithm maintains this property, i.e., the vertices of p(v) are dominated
only by v on each step. We say that a vertex u ∈ S has fixed privates if NG[p(u)]\
{u} ⊆ F . Notice that if u has fixed privates, then for any extension of S, u has
a private in p(u). The algorithm works in three stages. On Stage 1, we pick
neighbors of vertices of B that have vertices of B as their privates, and on
Stages 2 and 3, we extend the obtained sets.

On the first stage, we pick neighbors of vertices of B that have vertices of B
as their privates and check the consistency of the choice. Recall that B ∩ D = ∅
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for a maximal irredundant set D that is constructed by the algorithm and each
vertex of B should be a private for some vertex of D. Therefore, each vertex
v of B should have a unique neighbor u ∈ D. As (NG(v) \ {u}) ∩ D = ∅, the
vertices of NG(v) \ {u} should be forbidden if u is chosen to be in D. Clearly,
if v is adjacent to two vertices in S, then v cannot be a private for any vertex
of D and our choice is inconsistent. If v is adjacent to a unique vertex of S,
then v is a private for this vertex. Otherwise, we branch on each free vertex u
in NG(v) by including it in a (possible) maximal irredundant set and declaring
the vertices of NG(v) \ {u} to be forbidden. Notice that because the vertices
of NG(v) \ {u} become forbidden, we obtain that v is a private for u for any
extension of the current set. Hence, we can safely set p(u) = {v} and say that
u has fixed privates. Now we are ready to describe this stage of the algorithm
formally. When we select a neighbor of a vertex v ∈ B such that this neighbor
is included in an irredundant set, we say that v gets assigned ; otherwise, the
vertex v ∈ B is unassigned.

Stage 1. Assignment.

1. If there is v ∈ B such that |NG(v) ∩ S| ≥ 2, then stop.
2. If there is an unassigned vertex v ∈ B such that |NG(v) ∩ S| = 1, then set

p′(x) = p(x) for x ∈ S \ {u} and p′(u) = {v} for {u} = NG(v) ∩ S, set v to
be assigned, set F ′ = F ∪ (NG(v) \ {u}), X ′ = X \ NG(v). Then if F ′ �= F ,
call EnumCF-B(S, p′, F ′,X ′); otherwise, set p = p′.

3. If there is an unassigned vertex v ∈ B such that NG(v) ∩ X = ∅, then stop.
4. If there is an unassigned vertex v ∈ B, then set v assigned and for each

u ∈ NG(v) ∩ X, branch: set S′ = S ∪ {u}, set p′(x) = p(x) \ NG[u] for each
x ∈ S and set p′(u) = {v}, set F ′ = F ∪ (NG(v) \ {u}) and X ′ = X \ NG(v),
and then call EnumCF-B(S′, p′, F ′,X ′).

Before we proceed with the next stage, recall that H1, . . . , Hk are the com-
ponents of G − W and each Hi is a complete graph. After the first stage, the
current set S contains the vertices of A and some vertices of H1, . . . , Hk. Notice
that if some Hi contains two vertices of a maximal irredundant set D, then these
vertices have their privates in W , because Hi is a complete graphs. Then these
privates are in B, but all the vertices having their privates in B are selected on
Stage 1. Hence, the set S can be extended only by selecting at most one free
vertex in each Hi that does not contain vertices of S. Notice that if we select a
vertex v of Hi to be included in a maximal irredundant set, we have to ensure
that it has a private in Hi and the selection of v does not kill the privates of
some already selected vertex. It is easy to observe that we can find a private for
v if and only if Hi contains a vertex not dominated by the vertices of A and
this condition is easy to verify. Hence, the main issue is to guarantee that by
selecting v, we do not destroy privates of other vertices. It can be seen that v can
only affect privates of the vertices of A. Notice that if u ∈ A has fixed privates,
then they cannot be destroyed. Therefore, we should take care only about the
vertices of A that have non-fixed privates.

On Stage 2, we mainly apply a number of reduction steps whose aim is to
fix privates for some vertices of S and forbid some vertices of G − W . For the
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first task, we use the property that if a vertex u ∈ S has a private v such that
NG[v] \ {u} ⊆ F , then it is safe to fix v to be a private for u. We are forbidding
a vertex of G − W if its inclusion in an irredundant set impossible, because it
destroys the privates for some vertex of S. We call Hi finalized if V (Hi)∩X = ∅.
Clearly, only vertices of non-finalized graphs Hi can be added to S.

Stage 2. Reduction.

1. If X = ∅, then check whether S is a maximal irredundant set of G and output
it if it holds; then stop.

2. If there is v ∈ S such that p(v) = ∅, then stop.
3. If for a vertex u ∈ S, u ∈ p(u) �= {u} and NG(u) ⊆ F , then set p(u) = {u}.
4. If for a vertex u ∈ S, there is a finalized component Hi such that p(u) ∩

V (Hi) �= ∅, then set p(u) = p(u) ∩ V (Hi).
5. If there is a non-finalized component Hi such that V (Hi) ⊆ NG[S], then set

F ′ = F ∪ (X ∩ V (Hi)), X ′ = X \ V (Hi) and call EnumCF-B(S, p, F ′,X ′).
6. If for a vertex u ∈ S, p(u) ⊆ V (Hi) for a non-finalized component Hi, then

set F ′ = F ∪(X ∩V (Hi)), X ′ = X \V (Hi) and call EnumCF-B(S, p, F ′,X ′).
7. If for a vertex u ∈ S, there is a unique non-finalized component Hi with

NG(u)∩V (Hi) �= ∅ and if it holds that NG(u)∩V (Hi)∩X �= ∅ and u ∈ p(u),
then set F ′ = F ∪ (NG(u) ∩ V (Hi)), set p′(x) = p(x) for x ∈ S \ {u} and
p′(u) = {u}, set X ′ = X\(NG(u)∩V (Hi)) and call EnumCF-B(S, p′, F ′,X ′).

8. If there is a vertex u ∈ S such that u ∈ p(u) and u has neighbors in two
non-finalized components Hi and Hj but V (Hj) ∩ NG(u) ⊆ NG[S \ {u}] and
NG(u) ∩ V (Hi) ∩ X �= ∅, then set F ′ = F ∪ (NG(u) ∩ V (Hi)), set X ′ =
X \ (NG(u) ∩ V (Hi)) and call EnumCF-B(S, p, F ′,X ′).

Recall that in the selection of vertices in H1, . . . , Hk for the inclusion in an
irredundant set, we should ensure that we do not destroy the privates for a vertex
of A that has no fixed privates. Notice that because G is claw-free, every vertex
of A has neighbors in at most two graphs from H1, . . . , Hk. It can be shown that
after Stage 2, we have the following property: if a vertex u ∈ A has no fixed
privates, then u has neighbors in exactly two distinct non-finalized Hi and Hj

for i, j ∈ {1, . . . , k}. Moreover, u is an isolated vertex of G[W ], that is, it has
neighbors only in Hi and Hj . We call such a vertex u ∈ A an important vertex
and we say that Hi and Hj are adjacent to u. Notice that at least one neighbor
of an important vertex u should be free, because otherwise we would fix u to be
a private for itself. If v ∈ NG(u) ∩ V (Hi) ∩ X for an important vertex u ∈ A for
some Hi, we say that v is a pivot of u in Hi. Clearly, each important vertex u
has at least one pivot. We use pivots for branching on the vertices of graphs Hi

exploiting the following two observations.
Suppose that v ∈ V (Hi) ∩ X is a pivot of an important vertex u adjacent

to Hi and Hj . If v is included in a maximal irredundant set, then we have that
v is the unique vertex of the set in Hi and, respectively, other vertices of Hi

should be forbidden and, moreover, the vertices of Hj should be forbidden as
well, because u should have its privates in Hj .

Suppose that v ∈ V (Hi)∩X is not a pivot of any important vertex u adjacent
to Hi and Hj . Then there is an important vertex u adjacent to Hi and Hj that
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has a pivot w in Hj . If v is included in a maximal irredundant set, then the other
vertices of Hj should be forbidden and the vertex w should be forbidden as well,
because the inclusion of w in the irredundant set would kill all the privates of u.

For branching, we consider the auxiliary graph H whose nodes are non-
finalized graphs H1, . . . , Hk (we call them nodes to distinguish them from the
vertices of G), and two graphs Hi and Hj are adjacent in H if and only if there
is an important vertex u ∈ A that is adjacent to Hi and Hj . First, we branch
on non-isolated nodes of H using the aforementioned observations about pivots.
If H has only isolated nodes, then we have no important vertices and, therefore,
all the vertices of A have fixed privates. In this case, every non-finalized Hi

should contain exactly one vertex of a maximal irredundant set and we branch
respectively.

Stage 3. Branching.

1. If there are non-finalized Hi and Hj that are adjacent in H such that |(V (Hi)∪
V (Hj))∩X| ≥ 4, then select a pivot v of an important vertex adjacent to Hi

and Hj and branch:
(i) set S′ = S∪{v}, F ′ = F∪((V (Hi)∪V (Hj))∩(X\{v})), X ′ = X\(V (Hi)∪

V (Hj)), p′(x) = p(x) \ NG[v] for x ∈ S and p′(v) = NG[v] \ NG[S], and
call EnumCF-B(S′, p′, F ′,X ′),

(ii) set F ′ = F ∪ {v}, X ′ = X \ {v}, and call EnumCF-B(S, p, F ′,X ′).
Notice that from now we can assume that for any two Hi and Hj adjacent in
H, |V (Hi) ∩ X| + |V (Hj) ∩ X| ≤ 3.

2. If there is a node Hi of H of degree at least three, then do the following. For
v ∈ V (Hi)∩X, let Iv ⊆ {1, . . . , k} be the set of all indices such that for every
j ∈ Iv, there is an important vertex u adjacent to Hi and Hj having v as its
pivot. Denote by R the sets of pivots of the important vertices adjacent to
Hi. Then select v ∈ V (Hi) ∩ X such that |Iv| is maximum and branch:
(i) set S′ = S ∪ {v}, F ′ = F ∪ (V (Hi) \ {v}) ∪ R ∪ ⋃

j∈Iv
V (Hj), X ′ =

X \ (V (Hi) ∪ R ∪ ⋃
j∈Iv

V (Hj)), p′(x) = p(x) \ NG[v] for x ∈ S and
p′(v) = NG[v] \ NG[S], and call EnumCF-B(S′, p′, F ′,X ′),

(ii) set F ′ = F ∪ {v}, X ′ = X \ {v}, and call EnumCF-B(S, p, F ′,X ′).
3. If there is a node Hi of H of degree two such that |V (Hi)∩X| = 2, then let Hh

and Hj be its neighbors in H, and let {w1} = V (Hh)∩X, {w2} = V (Hj)∩X.

Then we branch as follows.

If V (Hi) does not contain pivots, then we select an arbitrary vertex v ∈
V (Hi) ∩ X, if there is a v ∈ X ∩ V (Hi) such that one of the following holds:
– v is a pivot of two important vertices adjacent to Hh and Hj respectively,
– v is a pivot of an important vertex adjacent to Hh and there is an important

vertex adjacent to Hi and Hj that has its pivot in Hj ,
– v is a pivot of an important vertex adjacent to Hj and there is an important

vertex adjacent to Hi and Hh that has its pivot in Hh,
then select such v. Then branch:
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(i) set S′ = S ∪ {v}, F ′ = F ∪ (V (Hi) \ {v}) ∪ {w1, w2}, X ′ = X \ (V (Hi) ∪
{w1, w2}), p′(x) = p(x) \ NG[v] for x ∈ S and p′(v) = NG[v] \ NG[S], and
call EnumCF-B(S′, p′, F ′,X ′),

(ii) set F ′ = F ∪ {v}, X ′ = X \ {v}, and call EnumCF-B(S, p, F ′,X ′).
If V (Hi)∩X = {v1, v2}, where v1 and v2 are pivots of two important vertices
u1 and u2 adjacent to Hh and Hj respectively such that u1v1, u2v2 ∈ E(G),
then branch:
(i) set S′ = S ∪ {v1}, F ′ = F ∪ {v2, w1}, X ′ = X \ {v1, v2, w1}, p′(x) =

p(x) \ NG[v1] for x ∈ S and p′(v1) = NG[v1] \ NG[S], and call EnumCF-
B(S′, p′, F ′,X ′),

(ii) set S′ = S ∪ {v2}, F ′ = F ∪ {v1, w2}, X ′ = X \ {v1, v2, w2}, p′(x) =
p(x) \ NG[v2] for x ∈ S and p′(v2) = NG[v2] \ NG[S], and call EnumCF-
B(S′, p′, F ′,X ′),

(iii) set S′ = S ∪ {w1, w2}, F ′ = F ∪ {v1, v2}, X ′ = X \ {v1, v2, w1, w2},
p′(x) = p(x)\ (NG[w1]∪NG[w2]) for x ∈ S and p′(w1) = NG[w1]\NG[S],
p′(w2) = NG[w2] \ NG[S], and call EnumCF-B(S′, p′, F ′,X ′).

Notice that from now we can assume that for any Hi of degree two in H,
|V (Hi) ∩ X| = 1.

4. If there is a component C of H that is a cycle, then select distinct nodes
Hh1 ,Hh2 ,Hh3 of C such that Hh1Hh2 ,Hh2Hh3 ∈ E(C) and do the following.
Let Hh0 be the neighbor of Hh1 in C distinct from Hh2 and let Hh4 be the
neighbor of Hh3 distinct from Hh2 (note that it can happen that Hh0 = Hh3

or Hh0 = Hh4 or Hh1 = Hh4). For i ∈ {1, 2, 3}, we select vi ∈ V (Hhi
)∩X and

branch as follows for i = 1, 2, 3: set S′ = S∪{vi}, F ′ = F ∪{vi−1, vi+1}, X ′ =
X\{vi−1, vi, vi+1}, p′(x) = p(x)\NG[vi] for x ∈ S and p′(vi) = NG[vi]\NG[S],
and call EnumCF-B(S′, p′, F ′,X ′).

5. If there is a component of H that is a path P = Hh1 . . . Hhr
of length at least

one with |V (Hh1) ∩ X| = |V (Hh2) ∩ X| = 1, then let v1 ∈ V (Hh1) ∩ X, v2 ∈
V (Hh2)∩X and branch for i = 1, 2: set S′ = S∪{vi}, F ′ = F∪({v1, v2}\{vi}),
X ′ = X \{v1, v2}, p′(x) = p(x)\NG[vi] for x ∈ S and p′(vi) = NG[vi]\NG[S],
and call EnumCF-B(S′, p′, F ′,X ′).

6. If there is a component of H that is a path P = Hh1 . . . Hhr
of length at least

one with |V (Hh1) ∩ X| = 2 and |V (Hh2) ∩ X| = 1, then let V (Hh1) ∩ X =
{v1, v2} and V (Hh2) ∩ X = {v3} and branch as follows depending on the
properties of v1, v2, v3.
If v1 and v2 are pivots of some important vertices adjacent to Hh1 and Hh2 or
v3 is a pivot of an important vertex adjacent to Hh1 and Hh2 , then branch for
i = 1, 2, 3: set S′ = S∪{vi}, F ′ = F ∪({v1, v2, v3}\{vi}), X ′ = X\{v1, v2, v3},
p′(x) = p(x)\NG[vi] for x ∈ S and p′(vi) = NG[vi]\NG[S], and call EnumCF-
B(S′, p′, F ′,X ′).
Otherwise, if v3 and exactly one of the vertices v1, v2 are not pivots of any
important vertex adjacent to Hh1 and Hh2 , branch for i = 1, 2: set S′ =
S ∪ {vi}, F ′ = F ∪ ({v1, v2} \ {vi}), X ′ = X \ {v1, v2}, p′(x) = p(x) \ NG[vi]
for x ∈ S and p′(vi) = NG[vi] \ NG[S], and call EnumCF-B(S′, p′, F ′,X ′).
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7. If every component of H is an isolated vertex, then branch: for every non-
finalized Hi and for every v ∈ V (Hi) ∩ X, set S′ = S ∪ {v}, F ′ = F ∪
(V (Hi) \ {v}), X ′ = X \ V (Hi), p′(x) = p(x) \ NG[v] for x ∈ S and p′(v) =
NG[v] \ NG[S], and call EnumCF-B(S′, p′, F ′,X ′).

It is straightforward to see that all sets generated by the algorithm are max-
imal irredundant sets of G − C, because at Step 1 of Stage 2, where we output
sets, we verify whether a generated set is a maximal irredundant set. To show
that every maximal irredundant set D of G−C such that (i) W ∩D = A and (ii)
the vertices of B are privates of some vertices of D, we use inductive arguments.

Now we evaluate the running time of EnumCF-B. To do it, we use the
standard approach (see [10]) and compute branching vectors for all branching
steps of the algorithm. Recall that the measure of an instance is the number
of free vertices s = |X|. By the analysis of the branching steps we obtain that
the branching numbers are at most 31/3. Hence, for each partition (A,B,C) of
W , the algorithm EnumCF-B produces O∗(3(n−|W |)/3) maximal irredundant
sets in time O∗(3(n−|W |)/3). Since there are at most 3|W | partitions (A,B,C),
we conclude that G has O∗(3|W | · 3(n−|W |)/3) maximal irredundant sets that
can be enumerated in time O∗(3|W | · 3(n−|W |)/3). Recall that |W | ≤ εn. As
3ε · 3(1−ε)/3 < 1.9341, G has O(1.9341n) maximal irredundant sets and these
sets can be enumerated in time O(1.9341n).

4 Conclusions

We have shown that the maximum number of maximal irredundant sets of a
claw-free graph is upper bounded by O(1.9341n) and lower bounded by 1.5848n.
The upper bound has been established by a branching algorithm to enumerate all
maximal irredundant sets of a claw-free graph having running time O(1.9341n).

The following tasks related to our research are challenging: improving upon
the 2n trivial upper bound for the number of maximal irredundant sets in general
n-vertex graphs, and upon the upper bound O(1.9341n) for line graphs which
are all claw-free. It would also be interesting to know whether it is possible to
establish an output-polynomial algorithm to enumerate the maximal irredundant
sets of claw-free graphs. Note that all cobipartite graphs are claw-free and that
the existence of an output-polynomial algorithm for cobipartite graphs would
imply the existence of an output-polynomial time enumeration algorithm for
general graphs which can be shown using the construction of the corresponding
result for enumeration of the minimal dominating sets [19].
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Abstract. The maximin share guarantee is, in the context of allocating
indivisible goods to a set of agents, a recent fairness criterion. A solu-
tion achieving a constant approximation of this guarantee always exists
and can be computed in polynomial time. We extend the problem to
the case where the goods collectively received by the agents satisfy a
matroidal constraint. Polynomial approximation algorithms for this gen-
eralization are provided: a 1/2-approximation for any number of agents,
a (1 − ε)-approximation for two agents, and a (8/9 − ε)-approximation
for three agents. Apart from the extension to matroids, the (8/9 − ε)-
approximation for three agents improves on a (7/8 − ε)-approximation
by Amanatidis et al. (ICALP 2015).
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1 Introduction

This article deals with the allocation of a set X of indivisible goods to a set N
of n agents. The agents typically have different valuations for the elements of
X and the goal is to find a fair allocation. As opposed to cake-cutting (when
divisible resources have to be shared), not every instance with indivisible goods
admits a solution that is envy-free (everyone finds her share at least as good as
the share of another agent) or proportional (everyone values her share at least
her valuation for X divided by n), even for two agents [1]. Is there any fairness
criterion that can be satisfied for indivisible goods? In the hierarchy of fairness
provided by Bouveret and Lemâıtre [2], the maximin share guarantee is known to
be less demanding than envy-freeness and proportionality. Suppose an agent is
given the opportunity to partition X in n parts but she is adversarially allocated
her least preferred subset in this partition. The maximin share of an agent is,
within the set of all partitions, her maximum value for the least preferred part.
The maximin share criterion is satisfied when there exists an allocation in which
every agent gets at least her maximin share. Every 2-agent instance satisfies this
fairness criterion popularized by Budish [3], but for n ≥ 3, Procaccia and Wang
[4] (see also [5]) have provided a family of intricate counterexamples.
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The impossibility to guarantee the existence of a fair (i.e. satisfying envy-
freeness, proportionality or maximin share) allocation of indivisible goods is
quite embarrassing. Fortunately, approximation can circumvent the obstacle.
There exist approximation results in this respect, e.g. [4,6–9], but envy-freeness
and proportionality are not amenable to multiplicative approximation within a
constant factor. Nevertheless, the recent works on maximin share have provided
algorithms with constant approximation factors, i.e. polynomial algorithms that
return an allocation in which every agent values her share at least ρ times her
maximin share. One can mention the 2/3-approximation algorithm of Procaccia
and Wang [4] which is polynomial for n constant. Recently, Amanatidis et al.
[9] have proposed two (polynomial in n) algorithms with approximation factors
1/2 and 2/3 − ε, respectively. Better ratios can be reached if n is small. The
cut-and-choose protocol gives a (1 − ε)-approximation [2,10] for two agents and
every ε > 0. For three agents, a (3/4 − ε)-approximation has been proposed [4],
followed by an improved (7/8 − ε)-approximation [9].

The need for fair solutions appears in various contexts, see e.g. [11], and these
contexts impose some constraints on which objects are collectively allocated to
the agents. The classical framework of fair division rarely integrates sophisti-
cated constraints. However, putting constraints on a set of discrete objects (the
indivisible goods) can give rise to a rich combinatorial structure that can be
exploited. The specificity of the present work is that the objects collectively
received by the agents must satisfy a given feasibility constraint modeled with a
set system, i.e. a collection F of subsets of X , such that F ⊆ X is feasible if, and
only if, F ∈ F . Let us illustrate and motivate the model with simple examples.

– Budget: There can be an upper bound on the number of objects that the
agents collectively receive.

– Mutual exclusion: For given pairs of objects, at most one element in each pair
can be allocated.

– Storage: Suppose the allocated objects must be stored in some places (each
place can accommodate at most one object within a given subset); a collective
set of objects is feasible if, and only if, all its elements can be stored.

The set system model clearly generalizes the allocation of indivisible goods.
However, it is too large to allow the existence of a general approximation algo-
rithm. Indeed, one can easily exhibit a special case in which computing a feasi-
ble allocation is, without any consideration of fairness, an intractable problem.
Therefore, a reasonable task is to identify a significant subclass in which approx-
imation is possible.

This article deals with the set system model when (X ,F) is a matroid
(defined in Sect. 2) which extends the allocation of indivisible goods (indeed,
the free matroid is such that F = 2X ). The above examples (budget, mutual
exclusion, and storage) are matroidal constraints. We resort to approxima-
tion to provide allocations that satisfy the feasibility constraint and the max-
imin share guarantee up to a constant multiplicative factor. A polynomial 1/2-
approximation algorithm that extends the one of [9] is presented in Sect. 3. It
works for any number of agents, but if we restrict ourselves to a small number
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of agents, better ratios can be reached: For any ε, polynomial approximation
algorithms with factors 1−ε and 8

9 −ε can be achieved for two and three agents,
respectively. These results are given in Sects. 4 and 5, respectively. The ( 89 − ε)-
approximation improves on the known (78 −ε)-approximation. We conclude with
possible improvements for the 3-agent case, and possible extensions of the model
to greedoids, independence systems, and the intersection of two matroids. Due
to space limitations, some proofs are omitted.

2 Set Systems and Maximin Share Fairness

A set system (X ,F) consists of a finite set of elements X = {x1, . . . , xm} and a
collection F ⊆ 2X which defines the feasible solutions. Let N = {1, . . . , n} = [n]
be a set of n agents. We suppose that every agent i has an additive valuation
function νi : X → IR≥0. For every P ⊆ X , νi(P ) is defined as

∑
x∈P νi(x), and

F|P denotes 2P ∩ F . Thus, (P,F|P ) is the restriction of (X ,F) to P .

Definition 1. For a set system (X ,F) and P ⊆ X , a feasible allocation T =
(T1, . . . , T|N |) of P for a set of agents N satisfies

– Ti ∩ Ti′ = ∅ for every pair of agents (i, i′) ∈ N2;
– (∪i∈NTi) ⊆ P ;
– (∪i∈NTi) ∈ F|P .

Ti is what agent i receives (her share). The set of all feasible allocations of
P over n agents is denoted by Πn(P,F|P ). The fact that we define a feasible
allocation for a subset of X , and not only for X , will become clear in the next
sections.

For a set system (X ,F), an agent i and P ⊆ X , βi(P,F|P ) denotes a member
of F|P for which agent i has maximum valuation. Since νi(xj) ≥ 0 for every i, j,
we will assume w.l.o.g. that βi(P ) is maximal for inclusion.

Definition 2. Given d ∈ [n], a set system (X ,F), and P ⊆ X , the d-maximin
share of an agent i with respect to P , is denoted by μi(d, P,F|P ) and defined as
maxT∈Πd(P,F|P ) minTj∈T νi(Tj). When d = n and P = X , μi(n,X ,F) is simply
called the maximin share of agent i.

Definition 3. For ρ ∈ (0, 1], a group N of n agents, and a set system (X ,F),
a ρ-approximate maximin share allocation is an allocation T ∈ Πn(X ,F) such
that νi(Ti) ≥ ρ · μi(n,X ,F), for every agent i ∈ N . A 1-approximate maximin
share allocation is simply called a maximin share allocation.

We say that an allocation T achieves the maximin share of a given agent i when
minTj∈T νi(Ti) = μi(n,X ,F).

The contribution of this article are approximation algorithms for the signifi-
cant subclass of matroids. Some elements of matroid theory are provided for the
sake of presentation.
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2.1 Basic Notions of Matroids

A matroid is a set system (X ,F) satisfying the next three properties:

(M1) ∅ ∈ F ;
(M2) if F2 ⊆ F1 and F1 ∈ F , then F2 ∈ F ;
(M3) if F1, F2 ∈ F such that |F1| < |F2|, then there exists x ∈ F2\F1 such
that F1 ∪ {x} ∈ F .

The elements of F are called independent sets. Inclusionwise maximal inde-
pendent sets are called bases. The rank of a subset P ⊆ X is defined as
rank(P ) = max{|F | : F ⊆ P, F ∈ F}. All the bases of a matroid have the
same cardinality rank(X ), also called the rank of the matroid.

Given a subset X ′ ⊂ X , the restriction of (X ,F) to X ′ is a matroid (X ′,F ′)
where F ′ = {F ∈ F : F ⊆ X ′}. If G ∈ F , then the contraction of (X ,F) by
G, denoted by (X ,F)/G, is a matroid (X \ G, F ′) where F ′ = {F ⊆ X \ G :
F ∪ G ∈ F}.

Matroids satisfy the bases exchange property [12]: let B1, B2 be two distinct
bases. Then for every e1 ∈ B1\B2, there exists e2 ∈ B2\B1 such that B1−e1+e2
and B2 −e2 +e1 are two bases. Matroids also satisfy the multiple bases exchange
properties [13–15]. Let A, B be two distinct bases.

– Then for every partition (A1, A2) of A, there exists a partition (B1, B2) of B
such that A1 ∪ B2 and A2 ∪ B1 are two bases.

– Then for every n-partition (A1, . . . , An) of A, there exists a partition
(B1, . . . , Bn) of B such that A \ Ai ∪ Bi is a base, ∀i ∈ [n]. The construction
of (B1, . . . , Bn), for (A1, . . . , An) given, can be done in polynomial time [16].

Typical examples of matroids are uniform matroids (corresponding to the
previous example called Budget), free matroids (corresponding to the “classical”
allocation of indivisible goods), partition matroids (generalizing the previous
example called Mutual exclusion), transversal matroids (corresponding to the
previous example called Storage), see [17] for the definitions.

When every element x ∈ X has a weight w(x) ∈ IR≥0, a typical optimiza-
tion problem consists in computing a base B that maximizes

∑
x∈B w(x). This

problem is solved by the greedy algorithm given in Algorithm1.

Algorithm 1. greedy
Data: (X , F), w : X → IR≥0

1 Let X = {x1, . . . , xm} such that w(xi) ≥ w(xi+1), ∀i ∈ {1, ..., m − 1}
2 B ← ∅
3 for i = 1 to m do
4 if B + xi ∈ F then
5 B ← B + xi

6 return B
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The time complexity of matroid algorithms depends on the time for testing
if a set is independent. Here, we assume that the test runs in polynomial time
with respect to the input data. For the ease of presentation, we often write that
a matroid is part of the input of an algorithm but concretely, we only require X
and the test.

2.2 The Matroidal Set System Model

In this article, we suppose that the set system (X ,F) is a matroid. The maximin
share of any agent � can be estimated as follows. Use greedy to compute a base
β�(X ,F) that has maximum valuation for agent �. The next step relies on the
following lemma.

Lemma 1 [18]. Let (X ,F) be a matroid and w : X → IR≥0 an additive weight
function. Given a base A of maximum weight and a partition of another base
B into n parts B1, . . . , Bn, there exists a partition A1, . . . , An of A satisfying
min
i∈[n]

w(Ai) ≥ min
i∈[n]

w(Bi).

Therefore, β�(X ,F) can be partitioned in (γ1, . . . , γn) in such a way that
mini∈[n] ν�(γi) = mini∈[n] ν�(Bi) where (B1, . . . , Bn) achieves the maximin share
allocation for agent �, i.e. mini∈[n] ν�(Bi) = μ�(n,X ,F). With ε ∈ [0, 1), use the
PTAS of Woeginger [10] to partition β�(X ,F) in n bundles (β�

1, . . . , β
�
n) so as to

maximize the value of the lightest bundle. We obtain a (1 − ε)-approximation
of mini∈[n] ν�(γi) = μ�(n,X ,F), together with a feasible allocation (β�

1, . . . , β
�
n)

achieving this value.

Proposition 1. For every � ∈ N and ε ∈ [0, 1), β�(X ,F) can be partitioned in
n bundles (β�

1, . . . , β
�
n) such that mini∈[n] ν�(β�

i ) ≥ (1− ε)μ�(n,X ,F). Moreover,
(β�

1, . . . , β
�
n) can be built in polynomial time.

3 A 1
2
-Approximation for Any Number of Agents

We propose an adaptation of the 1
2 -approximation algorithm of Amanatidis et al.

[9] to the matroidal set system model. The algorithm is given in Algorithm 4 but
beforehand, preliminary properties and algorithms are provided.

Claim 1. Given a matroid (X ,F), for every i ∈ N and every P ⊆ X ,

μi(|N |, P,F|P ) ≤ νi(βi(P,F|P ))
|N | ≤ νi(βi(X ,F))

|N | .

The input of the problem is a matroid (X ,F) but for the moment we consider
a contraction (X ′,F ′) of (X ,F), which is also matroid. Let S = (S1, . . . , S|N |)
be the feasible allocation returned by Greedy Round-Robin (see Algorithm2)
with input (X ′,F ′).
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Algorithm 2. Greedy Round-Robin
Data: a matroid (X ′, F ′), a set of agents N , and their valuations (νi)i∈N

1 Si = ∅ for every i ∈ N
2 Consider the agents by ascending index, proceeding in a round-robin fashion
3 while rank(∪iSi) < rank(X ′) do
4 Si ← Si ∪ {xj}, where i is the next agent to be examined in the current

round and xj is agent i’s most desired element among the currently
unallocated elements that can be added to ∪iSi without violating the
independence property (i.e. {xj} ∪ (∪iSi) ∈ F ′)

5 return S = (S1, . . . , S|N|)

Take any agent k ∈ N . Algorithm 3 does not directly contribute to the con-
struction of the final 1

2 -approximate solution but it is used in the analysis.
Algorithm 3 finds a base βk(X ′,F ′) for which agent k has maximum valua-
tion, and returns a partition (βk

1 , . . . , βk
|N |) of it with the help of the output

(S1, . . . , S|N |) of Greedy Round-Robin. We denote by {x1, . . . , xt} the elements
of ∪iSi and we suppose w.l.o.g. that xi is inserted right before xi+1 in Greedy
Round-Robin, for i = 1 . . . t − 1. Algorithm 3 gradually constructs (βk

1 , . . . , βk
|N |)

with the elements of βk(X ′,F ′). Meanwhile B, which is initially equal to
βk(X ′,F ′), is gradually modified to eventually become equal to {x1, . . . , xt}. In
the end of Algorithm 3, each xi is mapped with an element f(xi) ∈ βk(X ′,F ′);
f is a bijection.

In fact, Algorithm 3 represents the main difference between the original
approximation algorithm and its extension to the matroidal set system. It allows
to translate an allocation produced by an agent i into another allocation for
which another agent has a valuation.

Let νmax be maxi,j νi(xj) where {xj} ∈ F ′. It is the maximum valuation of
an agent for an element belonging to a feasible allocation.

Theorem 1. For any agent k ∈ N , and (S1, . . . , S|N |) and (βk
1 , . . . , βk

|N |) the
allocations returned by Algorithms 2 and 3, respectively, it holds that

νk(Sk) ≥ νk(βk(X ′,F ′))
|N | − νmax ≥ μk(|N |,X ′,F ′) − νmax.

Proof. Fix an agent k. Algorithm 3 manipulates a base ∪iSi = {x1, . . . , xt}
and a base B initially equal to βk(X ′,F ′). Algorithm 3 gradually transforms
B into {x1, . . . , xt}. For every i ∈ [t], B contains {x1, . . . , xi−1, f(xi)} and
{x1, . . . , xi−1, xi}, just before, and right after round i of the “for” loop, respec-
tively (step 11 of Algorithm3). Thus, for every i ∈ [t], there is a moment
where B is a superset of {x1, . . . , xi−1, f(xi)}. In other words, adding f(xi)
to {x1, . . . , xi−1} gives an independent set.

Take a positive integer r such that rk < t. During round rk of Greedy Round-
Robin, agent k gets her rth element, which is agent k’s most valued element that
can be added to {x1, . . . , xrk−1}. Thus, every e ∈ βk(X ′,F ′) \ {x1, . . . , xrk−1}



316 L. Gourvès and Monnot

Algorithm 3. Partition of a most valued base for agent k

Data: a matroid (X ′, F ′), a feasible allocation (S1, . . . , S|N|), and νk

1 βk(X ′, F ′) ← greedy((X ′, F ′), νk)

2 B ← βk(X ′, F ′)
3 βk

1 = βk
2 = . . . = βk

|N| = ∅
4 Let {x1, . . . , xt} be the elements of ∪iSi such that xi is inserted before xi+1 in

Greedy Round-Robin
5 for i = 1 to t do
6 Let j be such that xi ∈ Sj

7 if xi ∈ B then
8 f(xi) ← xi

9 else
10 Find f(xi) ∈ B \ {x1, . . . , xt} such that B − f(xi) + xi and

{x1, . . . , xt} − xi + f(xi) are bases (note that f(xi) exists by the bases
exchange property)

11 B ← B − f(xi) + xi

12 βk
j ← βk

j + f(xi)

13 return (βk
1 , . . . , βk

|N|)

such that {x1, . . . , xrk−1} + e ∈ F ′ satisfies νk(xrk) ≥ νk(e), and this is the case
for f(xrk), f(xrk+1), . . . , f(xt).

∀j > rk, νk(xrk) ≥ νk(f(xj)) (1)

Take a second agent �. If � ≥ k then agent � does not appear before agent k in
the ordering of Greedy Round-Robin and |Sk| = |βk

k | ≥ |βk
� |. The elements of

βk
� can be paired with some elements of Sk as follows: the jth element inserted

in βk
� with the jth element inserted in Sk. By Inequality (1), agent k prefers

the latter to the former. Therefore, νk(Sk) ≥ νk(βk
� ) by the additivity of νk.

Now suppose � < k; agent � appears before agent k in the ordering of Greedy
Round-Robin and |Sk| + 1 = |βk

k | + 1 ≥ |βk
� |. Again, some elements of βk

� can
be paired with the elements of Sk as follows: the second element inserted in βk

�

with the first element inserted in Sk, the third element inserted in βk
� with the

second element inserted in Sk, and so on. If e denotes the first element inserted
in βk

� , then Inequality (1) gives νk(Sk) ≥ νk(βk
� )− νk(e). Since νk(e) ≤ νmax, we

get that νk(Sk) ≥ νk(βk
� ) − νmax.

In all, νk(Sk) ≥ νk(βk
� )−νmax for all � �= k. Use this inequality for all � ∈ N to

get that |N | ·νk(Sk) ≥ (∑
�∈N νk(βk

� )
)−|N | ·νmax = νk(βk(X ′,F ′))−|N | ·νmax

where the last equality is due to the additivity of νk. Finally, use Claim 1 to
obtain the expected result. �

The next result (proof omitted) applies to a matroid (X ,F) and a set N of
n ≥ 2 agents.

Lemma 2 (Monotonicity property). For any agent k ∈ N and any element
x ∈ X , it holds that μk(n − 1,X \ {x},F) ≥ μk(n,X ,F).
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Algorithm 4. 1
2 -Approximation Maximin Share

Data: A matroid (X , F), a set of agents N and their valuations (νi)i∈N

1 (X ′, F ′) ← (X , F)
2 for i = 1 to |N | do
3 αi ← νi(β

i(X ′,F′))
|N|

4 while ∃i ∈ N and {xj} ∈ F ′ such that νi({xj}) ≥ αi/2 do
5 Define {xj} as the share of agent i, i.e. Si = {xj}
6 N ← N \ {i}
7 (X ′, F ′) ← contraction of (X ′, F ′) by {xj}
8 Recompute the αis

9 if N = ∅ then
10 return S = (S1, . . . , S|N|)

11 else
12 Run Greedy Round-Robin (Algorithm 2) on instance 〈(X ′, F ′), N, (νi)i∈N 〉

Theorem 2. Algorithm4 produces an allocation S = (S1, . . . , Sn) such that

νi(Si) ≥ 1
2
μi(n,X ,F), ∀i ∈ N.

Proof. Fix an agent i and suppose she was allocated a single element during the
first phase of Algorithm 4 (out of Greedy Round-Robin). Suppose at the time
when i was allocated her element, there were n1 active agents, n1 ≤ n, and that
(X ′,F ′) was the current (contracted) matroid. This means that agent i values
her element at least αi/2 = νi(β

i(X ′,F ′))
2n1

≥ µi(n1,X ′,F ′)
2 where the inequality is

by Claim 1. If we apply the monotonicity property (Lemma2) repeatedly, we get
that μi(n1,X ′,F ′) ≥ μi(n,X ,F) and we are done.

Suppose now that the share of agent i was constructed during the second
phase (Line 12 of Algorithm4), i.e. Greedy Round-Robin. Let n2 be the number
of active agents at that point, and (X ′,F ′) the input matroid of Greedy Round-
Robin. We know that νmax at that point is less than half the current value of αi

for agent i. Hence, by the additive guarantee of Greedy Round-Robin, we have
that agent i values her share at least

νi(β
i(X ′, F ′))

n2
− νmax >

νi(β
i(X ′, F ′))

n2
− αi

2
=

νi(β
i(X ′, F ′))
2n2

≥ 1

2
μi(n2, X ′, F ′).

Again, after applying the monotonicity property, we get that μi(n2,X ′,F ′) ≥
μi(n,X ,F), which completes the proof. �

4 A (1 − ε)-Approximation for Two Agents

As pointed out in [2], one can adapt cut-and-choose to construct a (1 − ε)-
approximate maximin share allocation in case of allocating indivisible goods.
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A similar approach can be used for the matroidal model (proof omitted). In
Algorithm 5, (X ,F)/S denotes the contraction of (X ,F) to S.

Proposition 2. Algorithm5, which runs in polynomial time, outputs a (1 − ε)-
approximate maximin share allocation for 2 agents.

Algorithm 5.
Data: (X , F), N = {1, 2}, ε ∈ [0, 1)

1 Compute an allocation (S1, S2) that achieves the (1 − ε)-maximin share of agent
1 (see Proposition 1)

2 B1 ← greedy ((X , F)/S2, ν2) and B2 ← greedy ((X , F)/S1, ν2)
3 if ν2(B1) ≥ ν2(B2), then return (S2, B1), else return (S1, B2)

5 A (8/9 − ε)-Approximation for Three Agents

We propose an algorithm (see Algorithm 6) inspired of the divide-ask-and-choose
protocol of [18]. For every ε ∈ [0, 1), Algorithm 6 achieves a guarantee of 8/9− ε
which improves on the best known guarantee of 7/8 − ε for three agents [9].

Algorithm 6 starts by computing an allocation (A1, A2, A3) that achieves
the (1 − ε)-approximate maximin share of agent 1 in the presence of 3 agents
(see Proposition 1). We get that ν1(Ai) ≥ μ∗

1, ∀i ∈ {1, 2, 3} where μ∗
1 =

mini∈{1,2,3}{ν1(Ai)} and μ∗
1 ≥ (1 − ε)μ1(3,X ,F). Similarly, μ∗

2 and μ∗
3 will

denote the (1 − ε)-approximate maximin shares of agent 2 and 3, respectively.
According to Proposition 1, one can partition the most valued base β�(X ,F)

of every agent � to get an allocation that achieves her maximin share. For agent
2, such a base is β2(X ,F), and by the multiple bases exchange property, there
exists a partition (β2

1 , β
2
−1) of β2(X ,F) such that β2

1 ∪ A2 ∪ A3 and A1 ∪ β2
−1

are two bases of (X ,F). As previously mentioned, (β2
1 , β

2
−1) can be obtained in

polynomial time [16]. Consider the matroid (X ,F)/β2
1 for which β2

−1 and A2∪A3

are two bases. Again, by the multiple bases exchange property, there exists (and
one can construct it in polynomial time) a partition (β2

2 , β
2
3) of β2

−1 such that
β2
2 ∪ A3 and A2 ∪ β2

3 are two bases of (X ,F)/β2
1 . We eventually get four bases

of (X ,F): (β2
1 ∪ β2

2 ∪ A3), (A1 ∪ β2
2 ∪ β2

3), (β2
1 ∪ A2 ∪ β2

3), and (β2
1 ∪ β2

2 ∪ β2
3).

Next result (proof omitted) relies on a puzzle: given a 3 × 3 array of non-
negative reals such that each row sums to 1, select two columns of the array
and output a bipartition of these two columns in order to maximize the lightest
part.

Lemma 3. There exists i ∈ {1, 2, 3} such that (X ,F)/Ai admits a base B which
can be partitioned in (Bj , Bk) and min{ν2(Bj), ν2(Bk)} ≥ 8

9μ∗
2.

For an agent �, if every element x of a matroid (X ,F) is given the weight
ν�(x), then OPT�(X ,F) denotes the maximum value of a base. The following
lemma will be used to prove the guarantee of Algorithm 6.
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Algorithm 6.
Data: (X , F), N = {1, 2, 3}, ε ∈ [0, 1)

1 ρ ← 8/9
2 Compute an allocation (A1, A2, A3) which achieves the (1 − ε)-maximin share

for agent 1 (see Proposition 1)
3 Find i ∈ {1, 2, 3} such that (X , F)/Ai admits a base B which can be partitioned

in (Bj , Bk) and min{ν2(Bj), ν2(Bk)} ≥ ρμ∗
2 (see Lemma 3)

4 Let {j, k} = {1, 2, 3} \ {i}
5 Use greedy to compute OPT3((X , F)/Ai)
6 if OPT3((X , F)/Ai) ≥ 2ρμ∗

3 then
7 Ck ← greedy ((X , F)/(Ai ∪ Bj), ν3)
8 Cj ← greedy ((X , F)/(Ai ∪ Bk), ν3)
9 if ν3(Ck) ≥ ν3(Cj), then return (Ai, Bj , Ck), else return (Ai, Bk, Cj)

10 else
11 B′

k ← greedy ((X , F)/(Ai ∪ Aj), ν2)
12 B′

j ← greedy ((X , F)/(Ai ∪ Ak), ν2)
13 if ν2(B

′
k) ≥ ν2(B

′
j) then

14 Ci ← greedy ((X , F)/(Aj ∪ B′
k), ν3)

15 return (Aj , B
′
k, Ci)

16 else
17 Ci ← greedy ((X , F)/(Ak ∪ B′

j), ν3)
18 return (Ak, B′

j , Ci)

Lemma 4. [18] Let S be an independent set of a matroid M such that
OPT (M) ≥ ρ0 and OPT (M/S) < ρ1 ≤ ρ0. Then for every base T of M/S,
OPT (M/T ) ≥ ρ0 − ρ1.

Theorem 3. Algorithm6, which runs in polynomial time, outputs a feasible (89−
ε)-approximate maximin share allocation.

Proof. We provide a bound of (1− ε)8/9, which is equivalent to 8/9− ε because
ε > 0 is a constant as small as possible.

Suppose the final allocation is the one of step 9. Agent 1 receives Ai that
she values at least μ∗

1 (see line 2). Agent 2 receives Bj or Bk that she val-
ues at least ρμ∗

2 (see line 3). By the multiple bases exchange property, there
exists a bipartition (Tj , Tk) of β3((X ,F)/Ai) such that both Bj ∪ Tk and
Bk ∪ Tj are bases of (X ,F)/Ai. Both Bj and Tj (resp., Bk and Tk) are bases of
(X ,F)/(Ai ∪ Bk) (resp., (X ,F)/(Ai ∪ Bj)). Since Ck and Cj are bases of max-
imum valuation for agent 3, we get that ν3(Ck) ≥ ν3(Tk) and ν3(Cj) ≥ ν3(Tj).
Thus, max{ν3(Ck), ν3(Cj)} ≥ max{ν3(Tk), ν3(Tj)} ≥ 1

2 (ν3(Tk) + ν3(Tj)) = 1
2ν3

(β3((X ,F)/Ai)). Since ν3(β3((X ,F)/Ai)) is equal to OPT3((X ,F)/Ai) and
OPT3((X ,F)/Ai) ≥ 2ρμ∗

3 (see line 6), we get that max{ν3(Ck), ν3(Cj)} ≥ ρμ∗
3.

Now suppose the final allocation is the one of step 15 or 18. Agent 1 receives
Aj or Ak that she values at least μ∗

1 (see line 2). Agent 2 receives B′
j or B′

k and
we are going to see that she values each of them at least ρμ∗

2. Since min{ν2(Bj),
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ν2(Bk)} ≥ μ∗
2 (see line 3), we know that OPT2((X ,F)/Ai) ≥ 2μ∗

2. By the multi-
ple bases exchange property, there exists a bipartition (Dj ,Dk) of β2((X ,F)/Ai)
such that Dj∪Ak and Dk∪Aj are two bases of (X ,F)/Ai. Both B′

j and Dj (resp.,
B′

k and Dk) are bases of (X ,F)/(Ai∪Ak) (resp., (X ,F)/(Ai∪Aj)). Since B′
k and

B′
j are base of maximum valuation for agent 2, we get that ν2(B′

k) ≥ ν2(Dk)
and ν2(B′

j) ≥ ν2(Dj). Thus, max{ν2(B′
k), ν2(B′

j)} ≥ max{ν2(Dk), ν2(Dj)} ≥
1
2ν2(Dk ∪ Dj) = 1

2ν2(β2((X ,F)/Ai)). Since min{ν2(Bj), ν2(Bk)} ≥ ρμ∗
2 (see

line 3), we get that ν2(β2((X ,F)/Ai)) = OPT2((X ,F)/Ai) ≥ 2ρμ∗
2 and then

max{ν2(B′
k), ν2(B′

j)} ≥ ρμ∗
2.

It remains to bound the valuation of agent 3 for Ci. We know that
OPT3(X ,F) ≥ 3μ∗

3 and OPT3((X ,F)/Ai) < 2ρμ∗
3 (see line 6). By Lemma 4,

we get that OPT3((X ,F)/T ) ≥ (3 − 2ρ)μ∗
3 ≥ μ∗

3 for every base T of
(X ,F)/Ai. Since Aj ∪ B′

k and Ak ∪ B′
j are bases of (X ,F)/Ai, we get that

OPT3((X ,F)/(Aj ∪ B′
k)) ≥ μ∗

3 and OPT3((X ,F)/(Ak ∪ B′
j)) ≥ μ∗

3. By con-
struction, Ci is an optimal base of (X ,F)/(Aj ∪ B′

k) or (X ,F)/(Ak ∪ B′
j) for

agent 3, so ν3(Ci) ≥ μ∗
3.

To conclude, each agent i gets a share that she values at least ρμ∗
i with

ρ = 8/9, and μ∗
i ≥ (1 − ε)μi. �

6 Conclusion

This article deals with a matroidal extension of maximin share allocations of
indivisible goods. We are able to extend the approximation algorithm with guar-
antee 1/2 for all n, but not the one with guarantee 2/3 − ε [9]. The difficulty
resides in finding disjoint parts that approximate the agents’ maximin share, and
appending these parts must form an independent set. Each task taken separately
is manageable, but their combination is problematic for more than two agents.

For the moment, we can improve the 1/2-approximation when n ∈ {2, 3}.
Since matroids generalize the allocation of indivisible goods, our (8/9 − ε)-
approximation (Theorem3) improves on the (7/8−ε)-approximation of [9]. Note
that any improvement on the 8/9 guarantee of Lemma3 (i.e. the described puz-
zle) implies an improvement on Theorem 3.

We have shown that within the set system model, matroids are particularly
amenable to (multiplicative) approximate maximin share allocations. Is it the
same for other, more general, set systems? In this respect, we can list greedoids,
independence systems and the intersection of two matroids [17,19]. We were
able to build 2-agent instances (omitted due to space limitations) showing that
the existence of a ρ-approximate maximin share for any ρ ∈ (0, 1] is not always
guaranteed with greedoids, independence systems, and the intersection of two
matroids. Thus, further extending the approximation results to set systems that
generalize matroids seems unlikely.

Finally, some special cases are known to admit a maximin share allocation
for indivisible goods, see e.g. [2,5,9], and it would be interesting to study them
under the matroidal set system model.
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Abstract. We describe space-efficient algorithms for two problems on
undirected multigraphs: Euler partition (partitioning the edges into a
minimum number of trails); and bipartite edge coloring (coloring the
edges of a bipartite multigraph with the minimum number of colors). Let
n, m and Δ ≥ 1 be the numbers of vertices and of edges and the maxi-
mum degree, respectively, of the input multigraph. For Euler partition we
reduce the amount of working memory needed by a logarithmic factor, to
O(n+m) bits, while preserving a running time of O(n+m). For bipartite
edge coloring, still using O(n+m) bits of working memory, we achieve a
running time of O(n+m min{Δ, log Δ(log∗Δ+(log m log Δ)/Δ)}). This
is O(m log Δ log∗Δ) if m = Ω(n log n log log n/log∗n), to be compared
with O(m log Δ) for the fastest known algorithm.

1 Introduction

Continuing an investigation of space-efficient yet reasonably time-efficient graph
algorithms begun in [6], we illustrate new techniques for the design of such algo-
rithms. Our model of computation is a word RAM with read-only access to its
input, write-only access to an output medium and a read-write working memory.
We say that an algorithm works with s bits if it can operate correctly with a
working memory of that size. If s is small (compared to the space requirements
of competing algorithms), the algorithm is space-efficient. By a classic algorithm
we mean one of the widely known standard algorithms in whose design economy
of space was not a primary concern.

Many reasons for the study of space-efficient algorithms have been advanced.
Maybe the input is available in the Internet for queries, but is so huge that it is
impossible or impractical to copy it to the memory of a local computer. Maybe an
algorithm is supposed to run on a handheld or embedded device that has only a
tiny amount of general-purpose memory. Or maybe most of the available memory
is of a kind for which writing is much slower than reading or can be performed
only a limited number of times. Of course, there is also the purely intellectual
challenge of discovering whether the time bounds of classic algorithms can be
met, up to a constant factor, while at the same time the space requirements are
reduced by more than a constant factor.

All algorithms considered here allow graphs to have several edges with the
same two endpoints. To emphasize this, we sometimes use the term “multi-
graph”. In the following discussion we denote by n and m the numbers of vertices
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 322–333, 2017.
DOI: 10.1007/978-3-319-57586-5 27
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and of edges, respectively, of an input graph under consideration. Many classic
graph algorithms work in linear time and space. “Linear time” usually means
O(n+m) time on a random-access machine capable of operating on (e.g., adding)
integers of Θ(log(n + m)) bits in constant time. In modern parlance, the model
used is a word RAM with a word length w of Θ(log(n + m)). Correspondingly,
“linear space” means O(n) or sometimes O(n + m) words of Θ(log(n + m)) bits
each. We use the same model and assume that w is large enough that the input
and working memories can be addressed with w bits.

The problems considered in [6] include depth-first search and its applica-
tions as well as the computation of minimum spanning forests and single-source
shortest-paths trees. The space bounds achieved there range from O(n) bits to
O(n log(n + m)) bits. Here we study “edge-centered” graph problems for which
efficient solutions appear to require at least n + m bits of working memory and
classic algorithms use Ω((n + m) log(n + m)) bits.

1.1 Related Work and New Results and Techniques

Let G = (V,E) be an undirected graph with E �= ∅. A trail in G is a walk in G
whose edges are pairwise distinct, and an Euler partition of G is a collection of
minimal cardinality of (open or closed) trails in G, the edge sets of which form a
partition of E. An algorithm for computing Euler partitions was described more
than a hundred years ago by Hierholzer [12]. The algorithm is easily implemented
to run in O(n + m) time, but it needs Θ((n + m) log(n + m)) bits of working
space. The most straightforward implementation of an algorithm of Fleury [7]
for the special case of connected graphs with at most two vertices of odd degree
runs in O(m2+1) time with Θ(m+n log(n+m)) bits. With more effort, one can
achieve a space bound of O(m) bits or, using a dynamic-connectivity algorithm
of Thorup [17], an expected-time bound of O(m log n(log log n)3). In Sect. 3 we
describe a different implementation of Hierholzer’s algorithm that still works
in O(n + m) time, but needs only O(n + m) bits of working space. A central
component of our solution is a trail structure that can keep track of all the trails
that pass through a vertex with just a constant number of bits per edge.

In Sect. 4 we apply our Euler-partition results to bipartite edge coloring. Take
an edge coloring of an undirected graph G = (V,E) with E �= ∅ to be a partition
of E into sets E1, . . . , Ek, each of which induces a graph of maximum degree 1.
The edge coloring is optimal if its cardinality k is as small as possible. Equiva-
lently, the edges in Ei can be viewed as colored with the color i, for i = 1, . . . , k,
no two edges with a common endpoint may be assigned the same color, and the
goal is to minimize the number of colors used. Whereas computing an optimal
edge coloring of a general graph is NP-hard [13], the edges of a bipartite graph
with maximum degree Δ ≥ 1 can be colored in polynomial time with Δ col-
ors, which is obviously optimal. The fastest algorithm known for this task, due
to Cole et al. [4], works in O(n + m log Δ) time using Θ((n + m) log(n + m))
bits. We reduce the amount of working memory to O(n + m) bits while
achieving a running time of O(n + m min{Δ, log Δ(log∗Δ + (log m log Δ)/Δ)}).
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If m = Ω(n log n log log n/ log∗n), the space reduction comes at a price in the
running time of only a factor of O(log∗Δ).

Besides the new Euler-partition algorithm, ingredients of our algorithm for
bipartite edge coloring include space-efficient data structures and tricks of the
trade invented for earlier algorithms for the problem [1,3,8,9,16], the closest
ancestors of our algorithm being those of Schrijver [16] and Alon [1]. All of these
algorithms use the divide-and-conquer paradigm, and to support this paradigm
in a space-efficient setting we introduce a general machinery with additional
applications outside of this paper for working with recursive calls on subgraphs
without storing these in full.

2 The Representation of Input Graphs

Let G = (V,E) be an undirected input graph with n vertices. We assume, as
is standard in graph algorithms, that V = {1, . . . , n}. Take N = {1, 2, . . .} and
N0 = N ∪ {0}. For u ∈ V , let du be the degree of u and, for all v ∈ V , denote
by mu,v the number of edges in G with endpoints u and v. Take L = {(u, k) ∈
V ×N | 1 ≤ k ≤ du}. We assume that the representation of G makes it possible to
determine n in constant time and supports constant-time evaluation of functions
deg : V → N0, head : L → V and mate : L → L with the following properties:

– For all u ∈ V , deg(u) = du;
– For all u, v ∈ V , |{(u, k) ∈ L : head(u, k) = v}| = mu,v;
– For all (u, k) ∈ L, mate(u, k) = (head(u, k), �) for some �

and mate(mate(u, k)) = (u, k).

The undirected graph G is represented essentially as its directed version, i.e.,
as the directed graph on the vertex set V that, for each undirected edge in G
with endpoints u and v, say, has a directed arc from u to v and one from v to u.
Informally, every vertex u has an incidence array with an entry for each arc out
of u, the entry for an arc a being the head of a. The operation head allows us to
index into an incidence array, and deg returns its size. The representation of an
undirected graph additionally has cross links, i.e., for all vertices u and v, every
arc from u to v is matched to an arc from v to u, called its mate, and cross links
(realized through the function mate) allow us to find the mate of a given arc.

3 Computing Euler Partitions

It will be convenient to view the elements of an Euler partition as directed trails
that we call Euler trails. When including an (undirected) edge e with endpoints
u and v in a trail, we mark the corresponding arc from u to v if we view e as
traversed in the direction from u to v and the corresponding arc from v to u
otherwise. We consider an (undirected) edge to be marked exactly if one of its
corresponding arcs is marked. Call a vertex white if it is not isolated and all of its
incident edges are unmarked, gray if it has both marked and unmarked incident
edges, and black if all of its incident edges are marked. Also call the vertex odd
or even according as the number of its incident unmarked edges is odd or even.



Space-Efficient Euler Partition and Bipartite Edge Coloring 325

3.1 Hierholzer’s Algorithm

Let G = (V,E) be an undirected graph with E �= ∅. A simple algorithm for
computing an Euler partition of G that essentially goes back to Hierholzer [12]
can be formulated as follows:

As long as not all vertices are black, repeatedly execute an iteration that
comprises the following steps: First select a vertex u that is odd if possible,
otherwise gray if possible, and white if there are neither odd nor gray vertices.
We call u the start vertex of the iteration. If u is gray and even, remember a
marked arc aold directed out of u—there always is one. Choose an arbitrary
unmarked edge incident with u, mark its corresponding arc a out of u and
initialize a new Euler trail T to consist only of a. With v equal to the head
of a, execute extend(v), which does the following: If v has no incident unmarked
edges, stop; v is the end vertex of T . Otherwise choose an arbitrary unmarked
edge incident with v, mark its corresponding arc a′ out of v, add a′ to T and
call extend(v′) recursively, where v′ is the head of a′. This process extends T
greedily as far as possible to an (open or closed) trail that begins at u and is
composed exclusively of arcs corresponding to formerly unmarked edges.

If an arc aold was remembered, replace the Euler trail Told that contains aold

by a combination of T and Told. This is possible because T is necessarily closed
and consists in the insertion of (the arcs of) T before aold and, if aold has a
predecessor apred on Told, after apred. This ends the iteration.

Hierholzer’s algorithm can easily be seen to be correct. Take n = |V | and
m = |E|. Storing each relevant set in a doubly-linked list, we can maintain the
sets of white, of gray and of odd vertices so that a suitable start vertex u of an
iteration can be found in constant time. A suitable arc aold out of a given gray
and even start vertex u can be located in constant time in the same manner,
now with a doubly-linked list of incident arcs for each vertex, and the same is
true of the first arc a of a new Euler trail and the arc a′ needed by extend .
Since every call of extend marks a previously unmarked edge, the time spent in
calls of extend sums to O(m) over the whole execution. Finally, the combination
of two Euler trails into a single Euler trail takes constant time. In conclusion,
Hierholzer’s algorithm can be executed in O(n + m) time.

The analysis above paid no attention to space issues. Even if only O(n + m)
bits of working space are available, most of the arguments still go through. In
particular, the various sets that need to be maintained can be realized with
choice dictionaries [11, Theorem 5.4]. Only the representation of the Euler trails
themselves is troublesome. A straightforward representation of each trail as a
list of integers that represent vertices or arcs requires Ω(m log(n + m)) bits.

3.2 The Trail Structures

In order to reduce the space requirements to O(n + m) bits, we equip each
vertex v with a data structure Dv, called its trail structure. If v is of degree
d ≥ 1, Dv maintains a partition of {1, . . . , d} into three sets, I, O and U , as
well as a matching, each edge of which has one endpoint in I and one in O.
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Initially, I and O are both empty. The connection to the construction of Euler
trails is immediate: Each integer k in {1, . . . , d} belongs to O if the kth arc a in
the incidence array of v is marked, to I if the mate of a is marked, and to U
if neither a nor its mate is marked, and two integers in {1, . . . , d} are matched
if and only if they correspond to edges that are consecutive on some Euler trail
and have v as a common endpoint.

Dv operates in two phases, with different sets of operations supported in the
two phases. In both phases Dv supports simple queries that ask whether U is
empty or whether a given element of {1, . . . , d} is matched or belongs to a named
set among I, O and U . In the first phase, Dv supports two additional operations:
First, leave, which selects an (arbitrary) element of U , moves it from U to O,
leaves it unmatched and returns it to the caller; leave may be called only when
U �= ∅. Second, enter , which takes an argument i ∈ U and moves i from U to I.
If subsequently U �= ∅, the operation proceeds to select an (arbitrary) element
o ∈ U , move o from U to O, match i and o, and return o; otherwise it returns
nothing. When U becomes empty, Dv enters its second phase.

In its second phase, in addition to the simple queries, Dv supports an oper-
ation that returns the element matched to a given matched element in I ∪ O
and an operation marry that takes as its arguments elements i ∈ I and o ∈ O
and matches i and o while making any other elements previously matched to i
or o unmatched. Over the life of Dv, the operation marry may be called at most
twice; thus the matching is nearly invariant during the second phase. We demon-
strate in Subsect. 3.4 how to implement Dv in O(d) bits so that all operations
take constant time, except that Θ(d) time is needed between the two phases.

Recall that a rank-select structure for a bit sequence B = (b1, . . . , bN ) sup-
ports two types of queries: rankB(j) (j ∈ {1, . . . , N}), which returns

∑j
i=1 bi;

and selectB(k) (k ∈ {1, . . . ,
∑N

i=1 bi}), which returns the smallest j ∈ {1, . . . , N}
with rankB(j) = k. Storing trail structures of sizes p1, . . . , pn compactly in an
array, we can find the start address of the kth trail structure, for k = 1, . . . , n,
as selectB(k), where B is a bit vector of size N =

∑n
j=1 pj with 1s precisely in

the positions 1 +
∑j−1

i=1 pi, for j = 1, . . . , n. Rank-select structures for sequences
of N bits that execute every operation in constant time and occupy O(N) bits
were first described by Clark [2].

3.3 Hierholzer’s Algorithm with Trail Structures

Using the trail structures postulated in the previous subsection, we can realize
the manipulation of Euler trails needed in Hierholzer’s algorithm as follows:

Consider an iteration with start vertex u. Instead of remembering the arc aold,
it will be convenient to remember the position kold of aold in the incidence array
of u. To initialize T to consist of a single arc out of u, execute the operation leave
on Du and remember the integer returned as kfirst. Informally, kfirst represents
the first arc of T . To carry out extend(v) when the arc preceding v on T is a,
execute enter(k) on Dv, where k is the position of the mate of a in the incidence
array of v (found via a cross link). If T cannot be extended beyond v, this
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fact is signaled by the absence of a return value from the call enter(k). In that
case proceed, if a value kold was remembered, to remember the last argument of
enter as klast—informally, the last arc of T—and to combine the trails Told and
T . Since Dv has now entered its second phase, this can be done by executing on
Dv the operations marry(klast, kold) and, if kold was matched to some element
kpred before the first call of marry , additionally marry(kpred, kfirst).

Note that even a closed Euler trail has a unique first arc. To output the Euler
partition, step through the arcs of the input graph, test for each whether it is
the first arc of an Euler trail and, if so, output the arcs of that trail in order. If
the position of an arc a in the incidence array of a vertex u is k, a is the first
arc of an Euler trail exactly if k is unmatched in Du. Similarly, if the position
of the mate of an arc a in the incidence array of a vertex v is k, a is the last
arc of an Euler trail exactly if k is unmatched in Dv. If a is followed by a′ on
its Euler trail, the position of a′ in the incidence array of v can be obtained as
the element matched to k in Dv. Therefore the Euler partition can be output in
constant time per vertex and arc, for a total time of O(n + m).

3.4 The Realization of the Trail Structures

The key to a space-efficient implementation of Dv is to make good use of the
freedom that the operation enter leaves concerning the choice of o. We follow a
simple rule: Viewing {1, . . . , d} as cyclic (i.e., 1 is the successor of d), in each call
of enter that starts with |U | ≥ 2 we choose o as the cyclically first element of U
that follows i. To support this, we maintain the elements of U in a doubly-linked
cyclic list by storing for each element of U the smallest cyclic distances in the
forward and backward directions to another element of U . Since the distances
sum to d for each of the two directions, they can be stored in binary in a total of
O(d) bits. Because the distances have binary representations of varying lengths,
they must in fact be stored as self-delimiting numeric values, which essentially
means that each binary representation is extended by a unary representation of
its length that can be decoded with table lookup. The number of bits needed
remains O(d). In order to support the simple queries, we also maintain the sets I,
O and U and the set of matched elements in choice dictionaries [11, Theorem 5.4].
The implementation of leave and enter is now straightforward.

Define a run of Dv as a maximal linear contiguous subsequence y of the cyclic
sequence {1, . . . , d} that consists only of elements of I ∪ O and associate with
each run y the word over the alphabet {(, )} obtained from y by replacing each
matched element in I by an opening parenthesis, (, each matched element of O
by a closing parenthesis, ), and each unmatched element by the empty word. As
long as U �= ∅, the word associated with an arbitrary run is a Dyck word, i.e.,
a balanced sequence of parentheses, and each pair of matching parentheses in
the Dyck word corresponds to elements of {1, . . . , d} that are also matched in
Dv. To see this, note that each pair of new parentheses, by induction, encloses
a Dyck word. The corresponding run may merge with the run that precedes
it and/or the run that follows it. Since the set of Dyck words is closed under
concatenation, in either case the new run is again associated with a Dyck word.
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When Dv enters its second phase, let y∗ be the Dyck word of the (d-element)
run that ends with the last element to leave U . We initialize two static O(d)-bit
data structures, namely a rank-select structure that allows us to translate in
constant time between a position in y∗ and the element of {1, . . . , d} from which
it originated and a structure that allows us, given the position of a parenthesis
in y∗, to find the position of its matching parenthesis in constant time. Both
data structures can be constructed in O(d) time [2,10,15]. Used in conjunction,
they enable us, given a matched element of I ∪O, to locate the element of O ∪ I
matched to it in constant time until the first call of marry .

Because marry may be called at most twice, we can support this final oper-
ation in a completely naive way: We store the arguments of all calls of marry in
a table of O(log d) bits and direct all operations in the second phase to begin by
searching this table of exceptions in constant time and take appropriate action
if one or more of their arguments are found there.

Theorem 1. An Euler partition of an undirected multigraph with n vertices and
m edges can be computed in O(n + m) time with O(n + m) bits.

4 Bipartite Edge Coloring

In this section we describe a space-efficient algorithm for the following problem,
called bipartite edge coloring : Given a bipartite undirected graph G with maxi-
mum degree Δ ≥ 1, output the Δ sets in an optimal edge coloring of G, one by
one, while following the elements of each set by a set-end indicator.

As observed by Gabow and Kariv [9], if we allow the number of colors used to
increase from Δ to 2�log2Δ�, the problem reduces very simply to Euler partition:
If Δ = 1, output the edge set E of the given graph G as its single color class.
Otherwise partition E into two sets E1 and E2 by assigning the edges on each
trail in an Euler partition of G alternately to E1 and to E2. The two subgraphs of
G induced by E1 and E2 have maximum degrees at most 	Δ/2
, and processing
them recursively leads to the desired result. The maximum depth of recursion
is O(log Δ), and every edge in E appears in at most one recursive instance
at every level of recursion. With Θ(m log(n + m)) bits available, mainly for
storing subgraphs on a recursion stack, the algorithm can therefore be executed
in O(n + m log Δ) time on graphs with n vertices and m edges. Wanting to get
by with O(n + m) bits, we have to work harder and to pay a small price in the
running time. This is described in the next subsection.

4.1 Recursion on Subgraphs

Consider an algorithm A that inputs a graph G = (V,E) and calls itself recur-
sively a number of times on subgraphs of G. For simplicity, assume that these
subgraphs as well as G itself have no isolated vertices. Take n = |V | and m = |E|.
We show, for frequently occurring cases, how to manage the recursion stack of
A using only O(n + m) bits, i.e., less space than what would be needed to store
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even a single incidence-array representation of a (large) subgraph of G. Because
our method has applications beyond the present paper, we describe it in slightly
greater generality than what is needed here.

Recall that, by convention, V = {1, . . . , n}. It will be convenient also to
number the arcs of G consecutively starting at 1: For j = 1, . . . , n, let dj be the
degree of the vertex j. Then, for j = 1, . . . , n and k = 1, . . . , dj , we assign the
number g(j, k) = k +

∑j−1
i=1 di to the kth arc in j’s incidence array. Let us call

g the arc-numbering function of G. In order to be able to evaluate g and g−1 in
constant time, we store a rank-select structure for a bit sequence P of length 2m
with 1s precisely in the positions 1+

∑j−1
i=1 di, for j = 1, . . . , n—as is easy to see,

g(j, k) = selectP (j)+k−1 and, for r = 1, . . . , 2m, g−1(r) = (j, r−selectP (j)+1),
where j = rankP (r). By assumption, cross links allow us to map the number of
an arc to the number of its mate in constant time.

The input graph H = (VH , EH) of every call C of A other than the top-level
call is stored incrementally with respect to the input graph H = (VH , EH) of
some proper ancestor call C of C (thus H is a subgraph of H). In concrete terms, C
pushes on the recursion stack a stack frame that contains a rank-select structure
for a bit sequence BV of length |VH | whose ith bit is 1, for i = 1, . . . , |VH |, if
and only if the ith smallest element of VH (according to the original vertex order
1, . . . , n) is still present in VH . If C numbers a vertex k, C’s number for the vertex
is selectBV(k). Conversely, if C numbers a vertex j, the vertex is present in H
exactly if the jth bit in BV is 1, and then C’s number for the vertex is rankBV(j).

We call H the reference graph of H. The reference relation induces a reference
tree on the calls of A that is similar to A’s recursion tree, but has “shortcuts”
(as after path compression). Given the number used for a vertex v by a call C of
A in a depth of t in the reference tree, the original number of v (i.e., v itself) can
be found in O(t+1) time by repeated translation along the path in the reference
tree from C to the root, with constant time spent in each tree node along the
way, and a translation in the opposite direction can also happen in O(t + 1)
time. A completely analogous rank-select structure for a bit sequence of length
2|EH | allows the corresponding translations among arc numbers within the same
time bounds. In addition, we equip each recursive call with a data structure for
evaluating the arc-numbering function g of its input graph as well as g−1.

Now standard algorithms can operate on the input graph of a call at a depth
of t in the reference tree (locally, say), albeit with a slowdown of O(t + 1).
A central operation is, given (the local number nu of) a vertex u and a positive
integer k bounded by the (local) degree of u, to determine (the local number nv

of) the head v of the kth arc in u’s (fictitious) local incidence array. To carry out
the operation, the pair (nu, k) is translated via the local arc-numbering function
to a local arc number, that local arc number is translated in O(t+1) time to an
original arc number, the latter is translated using the inverse g−1 of the original
arc-numbering function to a pair (u, k′), the one and only true input graph is
consulted to determine v, and finally v is translated in O(t+1) time to obtain nv.
The mate of a given edge and the (local) degree of a vertex can also be found in
O(t + 1) time (the latter even in constant time).
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Suppose that the algorithm A under consideration has the common property
that the size of the input graph decreases geometrically with the recursive depth,
i.e., there are constants c ∈ N and ε > 0 such that if H = (VH , EH) is the input
graph of a call of A whose recursive depth is larger by c than that of an ancestor
call with input graph H = (VH , EH), then |VH | + |EH | ≤ (1 − ε)(|VH | + |EH |).
If reference graphs are consistently chosen at small depths in the recursion tree,
the reference tree will become shallow, i.e., the slowdown will be small. On the
other hand, because reference graphs at a smaller recursive depth are larger,
the space requirements will be high. Choosing the reference graphs judiciously
and guided in part by the same principles as in [5, Sect. 5], we can guarantee
a slowdown of O(log∗t) for accesses to graphs at a recursive depth of t, while
using only O(n + m) bits and O(S + (1 + N/log(n + m))(n + m)) time for the
input graphs on the recursion stack, where S is the sum of |VH | + |EH | over all
subgraphs (VH , EH) on which A is called recursively and N is the number of
such calls with (|VH |+ |EH |) log(n+m) ≥ n+m. We obtain the following result.

Theorem 2. An edge coloring of an undirected bipartite multigraph G with n
vertices, m edges and maximum degree Δ ≥ 1 that uses at most 2�log2Δ� ≤ 2Δ−1
colors can be computed in O(n + m log Δ log∗Δ) time with O(n + m) bits.

Proof. Execute the algorithm described in the beginning of Sect. 4 with the
space-efficient recursion stack developed above, but taking care to assign the
first edge of each Euler trail to the currently smallest set among E1 and E2.
This latter specialization of the algorithm ensures that a child graph of a graph
with m′ edges has at most 	m′/2
 edges, i.e., the size of an input graph decreases
geometrically with the recursive depth, as required.

If the total effort expended by A in a given recursive depth also decreases
geometrically with the depth, the slowdown of O(log∗t) can easily be “swallowed”
by the geometric decrease, so that A can be executed entirely without a time
penalty and with the graphs on the recursion stack occupying O(n + m) bits.

4.2 Reduction to Top Matching

The algorithm of Theorem 2 reaches our goal of coloring a bipartite undirected
graph G = (V,E) of maximum degree Δ with Δ colors only if Δ is a power of 2.
Otherwise we proceed as first suggested by Gabow [8] and Gabow and Kariv [9]:
If Δ is odd, compute a matching M in G that matches at least the vertices of
maximum degree—let us call such a matching a top matching—and remove the
edges in M after outputting them as a first color class. Now, whether or not a top
matching was removed, the maximum degree is even, and we use Euler partition
as in the proof of Theorem 2 to partition the remaining edges into two set E1 and
E2 such that the graphs G1 and G2 induced by E1 and E2 are both of maximum
degree �Δ/2�. We color G1 recursively, but output only 2�Δ/2� − 2�log2Δ� of its
color classes and transfer the edges of the remaining color classes from E1 to E2.
This “fills up” G2 to maximum degree 2�log2Δ�, so that it can be colored opti-
mally with the algorithm of Theorem2. In summary, to color a graph G induced
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by m edges and with maximum degree Δ, we must compute a top matching in
G if Δ is odd, recursively color a subgraph of G induced by at most 	m/2
 edges
and with maximum degree �Δ/2�, and spend O(m log Δ log∗Δ) additional time.
Over all recursive calls, this amounts to computing top matchings in subgraphs
of G induced by at most 	m/2i
 edges and with maximum degree �Δ/2i�, for
i = 0, . . . , �log2Δ�, and spending O(m log Δ log∗Δ) additional time. Because the
recursion tree is unary, the condition set out in the last paragraph of Subsect. 4.1
is satisfied for our computation of top matchings, so we can ignore the slowdown
caused by using the space-efficient recursion stack.

The following two subsections describe a solution to the remaining problem
of finding a top matching in bipartite graphs. First, following Schrijver [16],
the problem is reduced to perfect matching in regular bipartite graphs. Sub-
sequently, using a technique introduced by Cole and Hopcroft [3] and called
edge-sparsification by Makino et al. [14], the given Δ-regular graph G with n
vertices is replaced by a subgraph G′ of G on the same vertex set and with
O(n log(Δ+1)) edges, each with a nonnegative integer weight, in which regular-
ity is replaced by weight-regularity : For each vertex v, the weights of the edges
incident on v sum to Δ. It suffices to find a perfect matching in G′, which is also
a perfect matching in G. In the full version of the paper we show how to imple-
ment the sparsification so that it runs in O(m log(Δ + 1)) time using O(m) bits
and describe a realization of Schrijver’s algorithm [16] for perfect matching that
runs in O(mΔ) time using O(m) bits. Here we describe a space-efficient version
of Alon’s perfect-matching algorithm [1]. Together the algorithms of Schrijver
and Alon work in O(m min{Δ, (log m log Δ)/Δ}) time.

Theorem 3. An optimal edge coloring of an undirected bipartite multigraph with
n vertices, m edges and maximum degree Δ ≥ 1 can be computed in O(n +
m min{Δ, log Δ(log∗Δ + (log m log Δ)/Δ)}) time with O(n + m) bits.

4.3 Reduction to Perfect Matching in Regular Bipartite Graphs

In this subsection we show how to merge vertices and add edges in a bipartite
input graph G = (V,E) with n vertices, m edges and maximum degree Δ ≥ 1
to turn G into a Δ-regular bipartite graph G = (V ,E) with O(m) edges, m of
which are old edges that correspond bijectively to those of G. At a cost of O(n)
time and O(n) bits, we assume that G has no isolated vertices.

Suppose that V is composed of left vertices and right vertices such that
every edge in E has one left and one right endpoint. Let nL be the number
of left vertices and, for i = 1, . . . , nL, let di be the degree of the ith smallest
left vertex (in the usual vertex order 1, . . . , n). Let PL and QL be bit vectors of
N = 	2m/Δ
 sectors of Δ bits each, initialized to contain only 0s and only 1s,
respectively. V will consist of N left and N right supernodes. For i = 1, . . . , N ,
the ith left supernode u corresponds to the ith sector in PL, and every 1 in that
sector will represent one of the left vertices in V merged to obtain u. QL will be
a bit-vector representation of the set of new arcs that go from left to right, i.e.,
every 1 in QL corresponds to a new arc and every 0 corresponds to an old arc.
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PL and QL are computed by taking s = 0 and then, for i = 1, . . . , nL, doing the
following: First, if �(s + di)/Δ� > �s/Δ� (informally, s+ di is in the next sector,
i.e., the ith left vertex does not fit in the current supernode), add Δ−(s mod Δ)
to s (informally, fill up the current supernode with new arcs and step to the next
supernode). Whether or not s was increased, now set the (s+1)st bit in PL to 1,
set the bits numbered s + 1, . . . , s + di in QL to 0, and add di to s. It is easy to
see that the total increase in s is bounded by

∑n
i=1 2di = 2m, so that PL and

QL are large enough for their intended use. Similar vectors PR and QR of NΔ
bits each are computed for the right supernodes.

We can number the supernodes and the arcs in G consecutively, starting at 1,
and pair the arcs with mates in a natural way that corresponds to the following
conventions: For i = 1, . . . , N , the supernode numbered i is a left supernode.
For k = 1, . . . , Δ, its kth arc a is numbered r = (i − 1)Δ + k. If bit number r in
QL is 1, a is a new arc, and its mate is numbered NΔ + selectQR

(rankQL
(r)).

Otherwise a is an old arc, and its corresponding arc in G is numbered g(j, r −
selectPL

(j)+1), where g is the arc-numbering function of G and j = rankPL
(r).

Storing rank-select structures for PL, QL, PR and QR, we can evaluate all of these
expressions and the corresponding expressions for right supernodes in constant
time and therefore navigate in G as though it were given in an incidence-array
representation. The reduction altogether works in O(n + m) time.

4.4 Alon’s Perfect Matching in Weight-Regular Bipartite Graphs

Assume that a weight-regular bipartite input graph G̃ = (V, Ẽ) has n vertices
and total edge weight m = nΔ/2, for some Δ ≥ 1. Take t = 	log2m
. Calling
the edges in Ẽ good, Alon’s algorithm first multiplies the weight of every good
edge by α = �2t/Δ� and introduces n/2 new bad edges that induce a matching
on V and respect the bipartiteness of G̃. Every bad edge is given a weight of
β = 2t mod Δ. Let G = (V,E) be the resulting bipartite weighted graph. Define
the total bad weight of an edge-weighted graph with good and bad edges to be
the sum of the weights of its bad edges. If every vertex has weight q and the
total bad weight is less than q, for some q ∈ N, we say that the graph is q-good.
Since Δα + β = 2t, G is 2t-good.

The algorithm next computes copies Gt, Gt−1, . . . , G0 of G with new weights
such that Gi is 2i-good, for i = t, . . . , 0. It finishes by returning G0, stripped of
its zero-weight edges, which is a 1-regular subgraph of G without bad edges, i.e.,
a perfect matching in the original graph G̃. Gt is simply G. For i = t − 1, . . . , 0,
Gi is computed from Gi+1 as one of two graphs G′

i and G′′
i that are copies of

Gi+1, but have different weights. If the weight of an edge e in Gi+1 is k, e is
assigned an initial weight of �k/2� in each of G′

i and G′′
i . The edges of odd weight

in Gi+1 induce a graph H in which every vertex has even degree, and the edges
of each (closed) trail in an Euler partition of H—computed with the algorithm
of Sect. 3—subsequently increase their weights by 1 alternately in G′

i and in G′′
i .

Finally Gi is chosen as one of G′
i and G′′

i of total bad weight less than 2i.
The running time is linear in the total number of edges in Gt, . . . , G0. If the

input graph G̃ resulted from the sparsification mentioned in Subsect. 4.2, this
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number is O(1+ tn log Δ) = O(1+m(log m log Δ)/Δ). In order to store the edge
weights in O(m) bits, we observe that for a given initial weight, only a limited
number of weights is possible at an arbitrary later time. For i = t−1, . . . , 0, if the
weight of some edge in Gi+1 is k, then in Gi it is either r(k) = �k/2� or r(k) =
	k/2
. For j ∈ N, r(j)(k) = �k/2j� and r(j)(k) = 	k/2j
 ≤ r(j)(k)+1, where the
superscript (j) denotes j-fold repeated function application. As a consequence,
it suffices to store for each edge in E, in addition to its initial weight, a single
bit that indicates whether the weight of the edge is “low” or “high”.
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Abstract. In the air-traffic control, the information related to each air-
plane needs to be always displayed as the label. Motivated by this appli-
cation, de Berg and Gerrits (Comput. Geom. 2012) presented free-label
maximization problem, where the goal is to maximize the number of
intersection-free labels. In this paper, we introduce an alternative label-
ing problem for the air-traffic control, called point-overlap minimization.
In this problem, we focus on the number of overlapping labels at a point
in the plane, and minimize the maximum among such numbers. Instead of
maximizing the number of readable labels as in the free-label maximiza-
tion, we here minimize the cost required for making unreadable labels
readable. We provide a 4-approximation algorithm using LP rounding for
arbitrary rectangular labels and a faster combinatorial 8-approximation
algorithm for unit-square labels.

Keywords: Map labeling · Air-traffic control · Approximation
algorithm

1 Introduction

Map labeling is the problem of placing text or symbol labels corresponding to
graphical features on input maps. This problem is important in several areas,
such as geographic information system (GIS), cartography, and graph drawing.
On maps, labels of regions, rivers, stations, etc., are placed in appropriate posi-
tions so that the corresponding features in the map can be understood. In map
labeling, points, polylines, and polygons are considered as graphical features. In
this paper, we consider map labeling for points only.

Usually, map labeling considers to place labels so that the labels are pair-
wise disjoint. In the air-traffic control, however, all labels have to be displayed
because they contain important information (e.g. altitude, velocity) other than
the air-plane position. Furthermore, the label size is fixed. In order to read the
unreadable labels, air-traffic controllers move labels by hand wasting time.
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(a) Free-label maximization (b) Point-overlap minimization

Fig. 1. The difference between optimal solutions for (a) free-label maximization and
(b) point-overlap minimization

Given the above background, de Berg and Gerrits [4] considered free-label
maximization problem. The goal of this problem is to maximize the number of
free labels which have no intersection with any other labels. By this problem
setting, the number of readable labels without moving other labels is increased.
For unreadable labels, however, the cost of moving other labels may be increased.
Figure 1(a) shows an optimal solution for free-label maximization. Here, the
number of free labels is five. However, in the sense of real application for air-
traffic control, this solution may not be good since there are overlapping labels
which make each other illegible, and so an air-traffic controller has to move at
least one among such labels by hand wasting time.

As an alternative approach to decrease the number of moving labels by hand,
we introduce the following new problem:

Definition 1 (point-overlap minimization). Given an instance I which con-
sists of a set of n points {p1, . . . , pn} (which is called as label points) in the plane
and a set of n axis-parallel rectangular labels {�1, . . . , �n}. Here, each label point
pi is associated to �i. For any point p in the plane, let a function λ(p) be the
number of labels overlapping with p. The point-overlap minimization for I is to
find a placement of all labels which minimizes the maximum λ(p) over all the
points p in the plane, and satisfies that each label contains the label point on its
boundaries.

Figure 1(b) shows an optimal solution for point-overlap minimization. Here, the
optimal value is two and the number of free labels is two. Compared with free-
label maximization, however, all labels can be read without moving any label.

In map labeling research, two models have been considered with respect to
the number of label candidates for each label point: The fixed-position model [10]
and the slider model [15]. In both models, each label is placed so that the
corresponding label point is on the boundary of the label. The fixed-position
model has a finite number of label candidates (e.g., the 2-position and 4-position
models). The label candidates of the slider model are the specified sides of the
labels (e.g., in the 2-slider (4-slider) model, two (four) sides of the label serve as
a set of label candidates). We only consider 4-position model.
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In this paper, we describe a 4-approximation algorithm using LP rounding
for arbitrary rectangular labels. In addition, we provide a faster combinato-
rial 8-approximation algorithm for unit square labels. Note that point-overlap
minimization with 4-position model or 4-slider model is NP-hard, even when
restricted to unit-square labels, because other existing NP-hard map labeling
optimization problems such as [10,15] easily reduce to it.

1.1 Related Work

Various types of map labeling have been studied so far (see e.g. [18]). There are
two typical optimization problems in map labeling. One is the label number max-
imization problem of finding the placement of a maximum cardinality subset of
labels with fixed size. The other is the label size maximization problem of placing
all labels such that the sizes of the labels are maximized under a global scale fac-
tor. Free-label maximization and point-overlap minimization are different from
them.

It is known that the label size maximization problems, except for the 1-
position and 2-position model, are APX-hard, even for unit square labels [10].
Furthermore, the label number maximization problems are known to be NP-
hard (e.g., [10,15]). Therefore, many approximation algorithms have already
been provided for both problems (e.g., [2,10,14,15]). The most work only consid-
ered unit-square or unit-height rectangular labels. On the other hand, maximum
independent set of rectangles (MISR) has been studied so far [1,7–9], and this
problem can be applied to label number maximization for arbitrary rectangular
labels.

In the past decade, map labeling for “dynamic” maps (dynamic map labeling)
was considered because the importance of dynamic maps has increased due to
several applications (e.g. personal mapping systems). There are several dynamic
cases, for example, zooming maps [3,12,16,20] and rotating maps [13,19].
Although the above problems are basically considered for 1-position model,
Buchin and Gerrits [6] showed dynamic map labeling for 4-position, 2-slider,
and 4-slider models is strongly PSPACE-complete.

For the trajectory of a point which is one of the dynamic case, Gemsa et al.
[11] treated the problem of maximizing sum of active ranges, where the active
range of a label is a contiguous range the label is displayed. This problem is
NP-hard and W[1]-hard, and they provided approximation algorithms. For the
case that all points are moving, de Berg and Gerrits [4] introduced free-label
maximization in “static” map as the first step. Furthermore, de Berg and Ger-
rits [5] considered about a trade-off between label speed and label overlap for
moving points. As in [4], point-overlap minimization is static.

2 Problem Formulation and a 4-Approximation
Algorithm

In this section, we formulate point-overlap minimization with 4-position model
by IP, and describe a 4-approximation algorithm using LP rounding. This algo-
rithm can treat a set of n arbitrary rectangular labels.
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Fig. 2. Label candidates Fig. 3. Slabs and cells

We first fix some notations. Let I be the set of instances of point-overlap
minimization with 4-position model. For a given instance I ∈ I, we denote
by ALG(I) the objective value of the solution of Algorithm ALG. Similarly, we
denote by OPT(I) the optimal value of this problem.

Let us give an IP formulation for point-overlap minimization with 4-position
model. For a label point pi, let Sij be the j-th candidate region in which the label
�i is placed. Here, j = 1, 2, 3, and 4 correspond to “upper left”, “upper right”,
“lower right”, and “lower left” label candidates, respectively (Fig. 2). The IP
have an indicator variable xij denoting whether a label �i is placed at Sij . We
define C to be a set of cells where a cell is defined as follows. We draw horizontal
lines through top and bottom sides of each label candidate. This partitions the
plane into horizontal slabs (Fig. 3), and the number of slabs is O(n). Then,
for each slab, we draw vertical lines through left and right sides of each label
candidate intersecting the slab. We define a cell as a region between consecutive
vertical lines. Since the number of cells in a slab is O(n), the number of all cells
in the plane is O(n2). The objective of the IP is to minimize τ which indicates
the maximum number of labels overlap with a point in the plane. The IP is the
following:

mininmize τ

subject to
∑

Sij∩C �=∅
xij ≤ τ C ∈ C

4∑

j=1

xij = 1 i = 1, . . . , n

xij ∈ {0, 1} i = 1, . . . , n, j = 1, 2, 3, 4

(1)

In this IP, the first set of constraints ensures that the number of labels which
overlap with each cell is at most τ . The constraints consider only cells instead
of all points in the plane because all possible cases that labels intersect at a
point is expressed by the cells. Similar constraints are used to design approx-
imation algorithms for MISR [7,8]. The second set of constraints ensures that
each label has to be placed at one of the label candidates. Therefore, the number
of constraints is O(n2).
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The LP relaxation of IP (1) is:

mininmize τ

subject to
∑

Sij∩C �=∅
xij ≤ τ C ∈ C

4∑

j=1

xij = 1 i = 1, . . . , n

xij ≥ 0 i = 1, . . . , n, j = 1, 2, 3, 4

(2)

Using this LP, we obtain a simple 4-approximation algorithm for point-overlap
minimization. The algorithm is as follows:

Step 1. Find an optimal solution to the LP (2).
Step 2. For each label point pi, pick one variable xij such that xij ≥ 1/4, and

set it to 1. Other variables are set to 0.

This algorithm is called LP-rounding (LPR).

Theorem 1. For any instance I ∈ I, LPR(I) ≤ 4OPT(I).

Proof. Algorithm LPR places just one label for each label point. Thus, the place-
ment of labels by Algorithm LPR is valid.

We consider the objective value LPR(I) of a solution found by Algorithm LPR.
We denote the optimal value of LP (2) by OPTLP(I). Since xij is at least 1/4
for each label point pi, LPR(I) is at most 4OPTLP(I). By OPTLP(I) ≤ OPT(I),
we have LPR(I) ≤ 4OPT(I), and this completes the proof. ��

The computation time of Algorithm LPR is as follows: In Step 1, we need to
construct C. It takes O(n2) time. Moreover, solving LP (2) takes O(N3L) [17]
where N is the number of variables in LP (2), and L is the bit length of LP (2).
Since N = O(n) and L = O(n3) in LP (2), Step 1 can be done in O(n6) time
in total. Step 2 takes O(n) time. Summarizing the above argument, Algorithm
LPR runs in O(n6) time.

3 A Faster Combinatorial 8-Approximation Algorithm
for Unit Square Labels

In this section, we discuss the problem with restriction on the form of labels to
the unit square, i.e., each label is a square of size 1. For ease of explanation,
we assume that each coordinate of each label point is not an integer but posi-
tive. Such label points can be obtained only by translation. Once an instance is
given, we set a square grid such that each square has size 1 and any grid point
has integral coordinates. In the following, we use the notation (·, ·) to denote
coordinates.

For positive integers s and t, let B(s, t) denote a square box of the grid whose
corners are (s − 1, t − 1), (s − 1, t), (s, t) and (s, t − 1) (Fig. 4). For convenience,
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Fig. 4. B(s, t) and its corners

we abuse B(s, t) to denote a set of points inside box B(s, t). A box is said to be
empty if there is no label point in the box; otherwise, it is said to be non-empty.
We also define row s (resp. column t) as a set of boxes B(s, h) (resp. B(h, t))
for any h. For positive integers s, t and t′ with t ≤ t′, let ms(t, t′) denote the
number of label points which belong to

⋃
t≤h≤t′ B(s, h). Let smax (resp. tmax)

be the maximum integer such that there is at least one label point in row smax

(resp. column tmax).

Lemma 1. For any instance I ∈ I,

D ≡ max
{⌈

ms(t, t′)
2(t′ − t + 2)

⌉ ∣∣∣∣ 1 ≤ s ≤ smax, 1 ≤ t ≤ t′ ≤ tmax

}
≤ OPT(I).

Proof. Let x∗ be an optimal solution of the IP formulation. Recall that x∗
ij = 1

iff the label point i receives the j-th label, where j = 1, 2, 3, and 4 correspond
to “upper left”, “upper right”, “lower right”, and “lower left”, respectively. For
a given box B(s, t), let X∗

j (s, t) denote the number of label points belonging to
B(s, t) and receive the j-th label, i.e.,

∑
i:pi∈B(s,t) x∗

ij .
Now, arbitrarily choose a row s and two columns t and t′ with t ≤ t′. Observe

that in the optimal solution x∗, the point (s − 1, t − 1) is overlapped by at least
X∗

1 (s, t) labels. This means that X∗
1 (s, t) ≤ OPT(I). Similarly, focusing on the

point (s−1, t), we have X∗
2 (s, t)+X∗

1 (s, t+1) ≤ OPT(I) (see Fig. 4). Applying the
similar argument to all the 2(t′ − t+2) corners of the boxes B(s, t), . . . , B(s, t′),
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Fig. 5. A set of ribbons

we obtain

X∗
1 (s, t) ≤ OPT(I),

X∗
2 (s, t) + X∗

1 (s, t + 1) ≤ OPT(I),
...

X∗
3 (s, t′ − 1) + X∗

4 (s, t′) ≤ OPT(I),
X∗

3 (s, t′) ≤ OPT(I).

In the above inequalities, each X∗ variable appears in exactly one inequality,
therefore, the sum of the left-hand sides is ms(t, t′). On the other hand, the sum
of the right-hand sides is 2(t′−t+2)OPT(I). To conclude, ms(t, t′)/(2(t′−t+2)) ≤
OPT(I). Then, by the integrality of OPT(I), �ms(t, t′)/(2(t′−t+2))	 ≤ OPT(I),
which completes the proof. ��

3.1 Algorithm

In the rest of this section, we propose a combinatorial algorithm with the approx-
imation ratio of 8, which we call Place-Upperside-of-Ribbon (PUR). As a prepro-
cessing, it first computes ribbons, based on which we can efficiently compute D.

Preprocessing. We define ribbon as a maximal sequence of consecutive boxes
in a row in which the leftmost and rightmost boxes are non-empty and one of
any consecutive two boxes is non-empty. See Fig. 5 for an image of the ribbons.
Note that by the definition, every non-empty box is covered by some ribbon and
the union of all the ribbons consists of O(n) boxes. The following preprocessing
finds out all ribbons and simultaneously computes D.

P-Step 1: For each label point, compute the row-coordinate s and the column-
coordinate t, that is, s and t such that B(s, t) includes the point.

P-Step 2: Sort all the label points for their row-coordinates.
P-Step 3: For each row s with at least one label point,

3-1: sort the label points belonging to row s for their column-coordinates,
3-2: make a set of ribbons {R1

s, R
2
s, . . . , R

q(s)
s } whose union covers all the

label points belonging to row s, and
3-3: compute D̃s, the maximum of �ms(t, t′)/(2(t′ − t + 2))	 over all (t, t′)

such that t ≤ t′ and both B(s, t) and B(s, t′) belong to some ribbons.
Update D̃ = max{D̃, D̃s}.
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Lemma 2. D = D̃.

Proof. Since D̃ is the value of D when restricted to the boxes in the ribbons, D ≥
D̃. Suppose that D is attained at (u, v, v′), i.e., D = �mu(v, v′)/(2(v′ − v + 2))	.
Then, B(u, v) and B(u, v′) are non-empty. If otherwise, by reducing an empty
box, we obtain a strictly better solution, which contradicts to the optimality of D.
Since the ribbons include all the non-empty boxes, (u, v, v′) must be considered
in P-Step 3-3, which implies that D = D̃. ��

Labeling Strategy. For label points in each isolated ribbon, PUR places every
label at its upper left or upper right position. In the following, we use the notation
ms(t) to denote ms(t, t), and for a given box B(s, t), let ls(t) (resp. rs(t)) denote
the number of label points in B(s, t) whose labels are placed at their upper left
(resp. upper right) positions. Note that ms(t) = ls(t)+rs(t). We below show the
strategy of PUR for a particular ribbon consisting of boxes B(s, t), . . . , B(s, t′).

L-Step 0: For label points in B(s, t), place labels so that ls(t) = min{2D,ms(t)}
and rs(t) = ms(t) − ls(t).

L-Step h: For h = {1, 2, . . . , t′ − t}, for label points in B(s, t + h), place labels
so that ls(t + h) = min{2D − rs(t + h − 1),ms(t + h)} and rs(t + h) =
ms(t + h) − ls(t + h).

At any L-Step h for h ≥ 1, 2D − rs(t + h − 1) should be non-negative; otherwise
the algorithm returns a negative as ls(t + h). The following guarantees that.

Lemma 3. For label points in ribbon consisting of boxes B(s, t), . . . , B(s, t′),
PUR places labels so that rs(t + h) ≤ 2D for any integer h with 0 ≤ h ≤ t′ − t.

Proof. We prove the claim by induction on h, that is, we prove (i) rs(t) ≤ 2D,
and (ii) rs(t + k + 1) ≤ 2D assuming rs(t + h) ≤ 2D for 0 ≤ h ≤ k.

(i) By the maximality of D, we have ms(t)/4 ≤ �ms(t)/4	 ≤ D, that is,

ms(t) ≤ 4D. (3)

If ms(t) ≤ 2D, rs(t) = 0 ≤ 2D. Otherwise, rs(t) = ms(t)−2D ≤ 2D by (3).
(ii) Observe that by the definition of ls, rs(t + k) + ls(t + k + 1) ≤ 2D. If

rs(t + k) + ls(t + k + 1) < 2D, then rs(t + k + 1) = 0 ≤ 2D. Now, suppose
that rs(t + k) + ls(t + k + 1) = 2D. In this case, there is an integer i with
−1 ≤ i ≤ k satisfying rs(t + i − 1) + ls(t + i) < 2D. Choosing the maximum
of such integers as i,

rs(t + i) = 0. (4)

By the maximality of i, we have the following (k − i + 1) equations:

rs(t + i) + ls(t + i + 1) = 2D,

...
rs(t + k) + ls(t + k + 1) = 2D.
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Taking the sum of these, we have

rs(t + i) + ms(t + i + 1, t + k) + ls(t + k + 1) = 2(k − i + 1)D
⇐⇒ ms(t + i + 1, t + k) + ls(t + k + 1) = 2(k − i + 1)D (by (4))
⇐⇒ ms(t + i + 1, t + k + 1) − rs(t + k + 1) = 2(k − i + 1)D
⇐⇒ rs(t + k + 1) = ms(t + i + 1, t + k + 1) − 2(k − i + 1)D. (5)

On the other hand, by the maximality of D, we have

ms(t + i + 1, t + k + 1)
2(k − i + 2)

≤
⌈

ms(t + i + 1, t + k + 1)
2(k − i + 2)

⌉
≤ D

⇐⇒ ms(t + i + 1, t + k + 1) ≤ 2(k − i + 2)D. (6)

By (5) and (6), we obtain rs(t + k + 1) ≤ 2D. ��
Theorem 2. For any instance I ∈ I,PUR(I) ≤ 8OPT(I).

Proof. We consider a point p ∈ B(s, t) with 1 ≤ s ≤ smax and 1 ≤ t ≤ tmax.
By algorithm PUR, p can be overlapped only by labels which cover corners of
B(s, t), i.e., (s, t), (s − 1, t), (s, t − 1) and (s − 1, t − 1). Note that by PUR, a grid
point (u, v) is overlapped by exactly ru+1(v) + lu+1(v + 1) labels, which is at
most 2D labels. Therefore p is overlapped by at most 8D labels, which implies
PUR(I) ≤ 8D. This and Lemma 1 conclude the proof. ��
For the computation time, we observe the following.

Theorem 3. Algorithm PUR runs in O(max{k2, n log n}) time, where k is the
number of non-empty boxes.

Proof. P-Step 1 is easy and can be done in O(n) time. Also, P-Step 2 can be done
in O(n log n) time. If we denote by ns the number of the label points belonging
to row s, then P-Step 3-1 can be done in O(ns log ns) time, and by scanning in
the order, P-Step 3-2 can be done in O(ns) time. Since n =

∑smax
s=1 ns, in total,

P-Step 3-1 and P-Step 3-2 require O(n log n) time in total. For P-Step 3-3, we
first prepare an array As = {ms(t1s, t) | B(s, t) ∈ ⋃

1≤q≤q(s) Rq
s} for every row

s with at least one label point, where t1s is the smallest (leftmost) column such
that B(s, t1s) is non-empty. It clearly takes O(n) time to construct all such arrays
since the label points in each row have been sorted for their column-coordinates
in P-Step 3-1. Using As, ms(t, t′) can be computed in constant time, thus it is
easy to observe that an exhaustive search requires O(k2) time in total. Once D
is computed as above, every L-Step h for a ribbon in row s runs in constant
time (again using As), which means that all labels can be placed in O(n) time.
Summarizing the above argument, we complete the proof. ��
Since k is at most n, the overall computation time is O(n2). However, for non-
trivial instances, especially for real-world instance, k must be small and hence
the computation time will be like O(n log n) in practice.
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4 Conclusion

In thispaper,we introduced thepoint-overlapminimizationproblemasanewdirec-
tion formap labeling. Point-overlapminimization seems to possess a promising and
somewhatbetterconceptfortheair-trafficcontrolcomparedtofree-labelmaximiza-
tion considered in de Berg and Gerrits [4], as illustrated in Fig. 1. For point-overlap
minimization with 4-position model, we proposed a 4-approximation algorithm
based on LP rounding, which runs in strongly polynomial time but its complexity is
high. Alternatively, with restriction on the form of labels to the unit square, we also
proposed a fully combinatorial 8-approximation algorithm, which runs much faster
than the above one.
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Abstract. The q-Coloring problem asks whether the vertices of a
graph can be properly colored with q colors. Lokshtanov et al. [SODA
2011] showed that q-Coloring on graphs with a feedback vertex set
of size k cannot be solved in time O∗((q − ε)k), for any ε > 0, unless
the Strong Exponential-Time Hypothesis (SETH) fails. In this paper we
perform a fine-grained analysis of the complexity of q-Coloring with
respect to a hierarchy of parameters. We show that unless ETH fails,
there is no universal constant θ such that q-Coloring parameterized by
vertex cover can be solved in time O∗(θk) for all fixed q. We prove that
there are O∗((q − ε)k) time algorithms where k is the vertex deletion
distance to several graph classes F for which q-Coloring is known to
be solvable in polynomial time, including all graph classes whose (q +1)-
colorable members have bounded treedepth. In contrast, we prove that
if F is the class of paths – some of the simplest graphs of unbounded
treedepth – then no such algorithm can exist unless SETH fails.

1 Introduction

In an influential paper from 2011, Lokshtanov et al. showed that for several prob-
lems, straightforward dynamic programming algorithms for graphs of bounded
treewidth are essentially optimal unless the Strong Exponential Time Hypothe-
sis (SETH) fails [12]. (Section 2 gives the definitions of the two Exponential Time
Hypotheses, see [3, Chap. 14] or the survey [14] for further details.) Some of the
lower bounds, as the one for q-Coloring, even hold for parameters such as the
feedback vertex number, which form an upper bound on the treewidth but may
be arbitrarily much larger. For other problems such as Dominating Set, the
tight lower bound of Ω((3 − ε)k) holds for the parameterization pathwidth, but
is not known for the parameterization feedback vertex set. In general, moving
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to a parameterization that takes larger values might enable running times with
a smaller base of the exponent. In this paper, we therefore investigate the para-
meterized complexity of the q-Coloring and q-List-Coloring problems from
a more fine-grained perspective.

In particular, we consider a hierarchy of graph parameters — ordered by their
expressive strength — which is a common method in parameterized complexity,
see e.g. [6] for an introduction. One of the strongest parameters for a graph
problem is the number of vertices in a graph, in the following denoted by n.
Björklund et al. showed that the chromatic number χ(G) (the smallest number of
colors q such that G is q-colorable) of a graph G can be computed in time O∗(2n)
[1], so the base of the exponent in the runtime of the algorithm is independent
of the value of χ(G). We show that if you consider a slightly weaker parameter,
the size k of a vertex cover of G, it is very unlikely that there is a constant θ,
such that q-Coloring can be solved in time O∗(θk) for all fixed q ∈ O(1): It
would imply that ETH is false.

However, we show that there is a simple algorithm that solves q-Coloring
parameterized by vertex cover, and for which the base of the exponential in its
runtime is strictly smaller than the base q that is potentially optimal for the
treewidth parameterization.

Proposition 1 (�). There is an algorithm which decides whether a graph G is
q-colorable and runs in time O∗((q−1.11)k), where k denotes the size of a given
vertex cover of G.

On the other hand, the above algorithm does not obviously generalize to other
parameterizations. To derive more general results about obtaining non-trivial
runtime bounds for parameterized q-Coloring, we study graph classes with
small vertex modulators to several graph classes F : Given a graph G = (V,E), a
vertex modulator X ⊆ V to F is a subset of its vertices such that if we remove
X from G the resulting graph is a member of F , i.e. G − X ∈ F . If |X| ≤ k, we
say that G ∈ F + kv. (For example, graphs that have a vertex cover of size at
most k are Independent+ kv graphs.) Hence, we study the following problems
which were first investigated in this parameterized setting by Cai [2].

q-(List-)Coloring on F + kv Graphs
Input: An undirected graph G and a modulator X ⊆ V (G) such that
G − X ∈ F (and lists Λ : V → 2[q]).
Parameter: |X| = k, the size of the modulator.
Question: Can we assign each vertex v a color from [q] (on its list Λ(v))
such that adjacent vertices have different colors?

Given a No-instance (G,Λ) of q-List-Coloring we call (G′, Λ′) a No-
subinstance of (G,Λ) if its answer is also No and G′ is an induced subgraph of G
with Λ(v) = Λ′(v) for all v ∈ V (G′). We show that if a graph class F has small
No-certificates for q-List-Coloring (Definition 4) then q-(List-)Coloring on
F+kv graphs can be solved in time O∗((q−ε)k), for some ε > 0. This notion was
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introduced by Jansen and Kratsch to prove the existence of polynomial kernels
for said parameterizations [11].

In addition to that, we give some further structural insight into hereditary
graph classes F , for which F + kv graphs have non-trivial algorithms: We show
that if the (q +1)-colorable members of F have bounded treedepth, then F +kv
has O∗((q−ε)k) time algorithms for q-Coloring when parameterized by the size
k of a given modulator, for some ε > 0. We prove that this treedepth-boundary is
in some sense tight: Arguably the most simple graphs of unbounded treedepth
are paths. We show that q-Coloring cannot be solved in time O∗((q − ε)k)
for any ε > 0 on Path + kv graphs, unless SETH fails — strengthening the
lower bound for Forest+ kv graphs [12] via a somewhat simpler construction.
Using this strengthened lower bound, we prove that if a hereditary graph class
F excludes a complete bipartite graph Kt,t for some constant t, then F + kv
has O∗((q − ε)k) time algorithms for q-(List-)Coloring if and only if the
(q + 1)-colorable members of F have bounded treedepth.

Throughout the paper, proofs of statements marked with (�) are deferred
to the full version [10] due to space restrictions.

2 Preliminaries

We assume the reader to be familiar with the basic notions in graph theory and
parameterized complexity and refer to [3–5,7] for an introduction. We now give
the most important definitions which are used throughout the paper.

We use the following notation: For a, b ∈ N with a < b, [a] = {1, . . . , a} and
[a..b] = {a, a + 1, . . . , b}. The O∗-notation suppresses polynomial factors in the
input size n, i.e. O∗(f(n, ·)) = O(f(n, ·) · nO(1)). For a function f : X → Y , we
denote by f|X′ the restriction of f to X ′ ⊆ X.

Graphs and Parameters. Throughout the paper a graph G with vertex set
V (G) and edge set E(G) is finite and simple. We sometimes shorthand ′V (G)′

(′E(G)′) to ′V ′ (′E′) if it is clear from the context. For graphs G,G′ we denote
by G′ ⊆ G that G′ is a subgraph of G, i.e. V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We
often use the notation n = |V | and m = |E|. For a vertex v ∈ V (G), we denote
by NG(v) (or simply N(v), if G is clear from the context) the set of neighbors
of v in G, i.e. NG(v) = {w | {v, w} ∈ E(G)}.

For a vertex set V ′ ⊆ V (G), we denote by G[V ′] the subgraph induced by
V ′, i.e. G[V ′] = (V ′, E(G)∩V ′ ×V ′). A graph class F is called hereditary, if it is
closed under taking induced subgraphs. We now list a number of graph classes
which will be important for the rest of the paper. A graph G is independent, if
E(G) = ∅. A cycle is a connected graph all of whose vertices have degree two.
A graph is a forest, if it does not contain a cycle as an induced subgraph and
a linear forest if additionally its maximum degree is at most two. A connected
forest is a tree and a tree of maximum degree at most two is a path. A graph G
is a split graph, if its vertex set V (G) can be partitioned into sets W,Z ⊆ V (G)
such that G[W ] is a clique and G[Z] is independent. We define the class

⋃
Split

containing all graphs that are disjoint unions of split graphs. A graph G is a
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cograph if it does not contain P4, a path on four vertices, as an induced subgraph.
A graph is chordal, if it does not have a cycle of length at least four as an induced
subgraph. A cochordal graph is the edge complement of a chordal graph and the
class

⋃
Cochordal contains all disjoint unions of cochordal graphs.

Let Σ be an alphabet. A parameterized problem is a set Π ⊆ Σ∗ × N, the
second component being the parameter which usually expresses a structural mea-
sure of the input. A parameterized problem is (strongly uniform) fixed-parameter
tractable (fpt) if there exists an algorithm to decide whether 〈x, k〉 ∈ Π in time
f(k) · |x|O(1) where f is a computable function.

The main focus of our research is how the function f(k) behaves for q-
Coloring w.r.t. different structural graph parameters, such as the size of a
vertex cover.

In this paper we study a hierarchy of parameters, a term which we will
now discuss. For a detailed introduction we refer to [6, Sect. 3]. For notational
convenience, we denote by Πp a parameterized problem with parameterization
p. Suppose we have a graph problem and two parameterizations p(G) and p′(G)
regarding some structural graph measure. We call parameterization p′(G) larger
than p(G) if there is a function f , such that f(p′(G)) ≥ p(G) for all graphs G.
Modulo some technicalities, we can then observe that if a problem Πp is fpt,
then Πp′ is also fpt. This induces a partial ordering on all parameterizations
based on which a hierarchy can be defined.

Exponential-Time Hypotheses. In 2001, Impagliazzo et al. made two con-
jectures about the complexity of q-SAT — the problem of finding a satisfy-
ing assignment for a Boolean formula in conjunctive normal form with clauses
of size at most q [8,9]. These conjectures are known as the Exponential-Time
Hypothesis (ETH) and Strong Exponential-Time Hypothesis (SETH), formally
defined below. For a survey of conditional lower bounds based on such conjec-
tures, see [14].

Conjecture 2 (ETH [8]). There is an ε > 0, such that 3-SAT on n variables
cannot be solved in time O∗(2εn).

Conjecture 3 (SETH [8,9]). For every ε > 0, there is a q ∈ O(1) such that q-SAT
on n variables cannot be solved in time O∗((2 − ε)n).

3 Upper Bounds

In this section we present upper bounds for parameterized q-Coloring. In par-
ticular, in Sect. 3.1 we show that if a graph class F has No-certificates of constant
size, then there exist O∗((q − ε)k) time algorithms for q-Coloring on F + kv
graphs for some ε > 0 depending on F . In Sect. 3.2 we show that if the (q + 1)-
colorable members of a hereditary graph class F have bounded treedepth, then
F has No-certificates of small size.
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3.1 Small No-Certificates

In earlier work [11], Jansen and Kratsch studied the kernelizability of q-
Coloring and established a generic method to prove the existence of poly-
nomial kernels for several parameterizations of q-Coloring. We now show that
we can use their method to prove the existence of O∗((q − ε)k) time algorithms,
for some ε > 0, for several graph classes F + kv as well.

We first introduce the necessary terminology. Let (G,Λ) be an instance of
q-List-Coloring. We call (G′, Λ′) a subinstance of (G,Λ), if G′ is an induced
subgraph of G and Λ(v) = Λ′(v) for all v ∈ V (G′).

Definition 4 (g(q)-size No-certificates). Let g :N → N be a function. A graph
class F is said to have g(q)-size No-certificates for q-List-Coloring if for all
No-instances (G,Λ) of q-List-Coloring with G ∈ F there is a No-subinstance
(G′, Λ′) on at most g(q) vertices.

Theorem 5. Let F be a graph class with g(q)-size No-certificates for q-List-
Coloring. Then, there is an ε > 0, such that q-List-Coloring (and hence,
q-Coloring) on F + kv graphs can be solved in time O∗((q − ε)k) given
a modulator to F of size at most k. In particular, the algorithm runs in

time O∗
(

g(q)·q
√

qg(q)·q − 1
k
)
, where the degree of the hidden polynomial depends

on g(q).

Proof. Let G ∈ F + kv with vertex modulator X, such that F has g(q)-size
No-certificates for q-List-Coloring. The idea of the algorithm is to enumerate
partial colorings of X, except some colorings for which it is clear that they
cannot be extended to a proper coloring of the entire instance. The latter can
occur as follows: After choosing a coloring for some vertices of X and removing
the chosen colors from the lists of their neighbors, a No-subinstance appears in
the graph G − X. If the minimal No-subinstances have constant size, then for
any given instance, either all proper colorings on X can be extended onto G−X,
or there is a way to find a constant-size set X ′ ⊆ X of vertices for which at least
one of the q|X′| colorings would trigger a No-subinstance and can therefore be
discarded. Branching on the remaining relevant colorings for X ′ then gives a
nontrivial running time. An outline is given in Algorithm1.

The main condition (line 2) checks whether the input graph G contains the
graph of a minimal No-instance as an induced subgraph. If so, we look for a
neighborhood of V (G′) in X (the sets X1, . . . , Xq), which can block the col-
ors that are on the lists Λ but not on the lists of the minimal No-instance. If
these conditions are satisfied, then we know that we can exclude the coloring on
X1, . . . , Xq which assigns each vertex v ∈ Xc the color c (for all c ∈ [q]): This
coloring induces a No-subinstance on (G,Λ). It suffices to use sets Xc of at most
g(q) vertices each. To induce the No-instance, in the worst case we need a dif-
ferent vertex in Xc for each of the g(q) vertices in H that do not have c on their
list. Hence, as described from line 4 on, we enumerate all colorings γ : X → [q]
(where X =

⋃
i Xi) except the one we just identified as not being extendible to

G − X. For each such γ, we make a copy of the current instance and ‘assign’
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Algorithm 1. q-List-Coloring for F + kv graphs where F has g(q)-size
No-certificates.
Input : A graph G ∈ F + kv with vertex modulator X and Λ : V → 2[q].
Output: Yes, if G is q-list-colorable, No otherwise.

1 Let ζ be the set of No-instances of q-List-Coloring for F of size at most g(q),
which is computed once by complete enumeration;

2 if there exist (H, ΛH) ∈ ζ, G′ ⊆ G − X and X1, . . . , Xq ⊆ X of size at most g(q)
each such that:
1. ∃ isomorphism ϕ : V (G′) → V (H)
2. For all c ∈ [q] and v ∈ Xc we have c ∈ Λ(v)
3. (∀v ∈ V (G′))(∀c ∈ Λ(v) \ ΛH(ϕ(v))) ∃w ∈ Xc with {v, w} ∈ E(G)

3 then
4 foreach proper coloring γ : X → [q] where X =

⋃
i Xi and ∀v ∈ X :

γ(v) ∈ Λ(v) do
5 if (∀c ∈ [q])(∀v ∈ Xc) : γ(v) = c then
6 Skip this coloring, it is not extendible to G − X;
7 else
8 Create a copy (G′′, Λ′′) of (G, Λ) and denote by X ′′ the vertex set in

G′′ corresponding to X in G;
9 For each vertex v ∈ X ′′ and each neighbor w of v: Remove γ(v) from

Λ′′(w);
10 Recurse on (G′′ − X ′′, Λ′′);
11 if the recursive call returns Yes then
12 Return Yes and terminate the algorithm;

13 Return No;

14 else
15 Decide whether (G[X], Λ|X) is q-list-colorable and if so, return Yes;

each vertex v corresponding to a vertex in X the color γ(v): We remove γ(v)
from the lists of its neighbors and then remove v from the copy instance. In
the worst case we therefore recurse on qq·g(q) − 1 instances with the size of the
vertex modulator decreased by q · g(q). If during a branch in the computation,
the condition in line 2 is not satisfied, then we know that there is no coloring on
the modulator that cannot be extended to the vertices outside the modulator
and hence it is sufficient to compute whether G[X] is q-list-colorable using the
standard O∗(2n) algorithm for computing the chromatic number [1]. As soon as
one branch returns Yes, we can terminate the algorithm, since we found a valid
list coloring.

Claim 6 (�). If the condition of line 2 does not hold, then G is q-list-colorable
if and only if G[X] is q-list-colorable.

Claim 7 (�). If the condition of line 5 holds, then the coloring γ cannot be
extended to a proper q-list-coloring of G.

The correctness of the procedure and the runtime bound are established in
the full version [10]. ��
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The following corollary follows by combining Theorem5 with known bounds
on the sizes of No-certificates given in Corollaries 1–2 and Lemmas 2–4 of [11].

Corollary 8. There is an ε > 0, such that the q-Coloring and q-List-Col-
oring problems on F + kv graphs can be solved in time O∗((q − ε)k) given a
modulator to F of size k, where F is one of the following classes: Independent,⋃

Split,
⋃

Cochordal and Cograph.

3.2 Bounded Treedepth

We now show that if the (q + 1)-colorable members of a hereditary graph class
F have treedepth at most t, then F has qt-size No-certificates. For a detailed
introduction to the parameter treedepth, we refer to [13, Chap. 6].

Definition 9 (Treedepth). Let G be a connected graph. A treedepth decom-
position T = (V (G), F ) is a rooted tree on the vertex set of G such that the
following holds. For v ∈ V (G), let Av denote the set of ancestors of v in T .
Then, for each edge {v, w} ∈ E(G), either v ∈ Aw or w ∈ Av.

The depth of T is the number of vertices on a longest path from the root
to a leaf. The treedepth of a connected graph is the minimum depth of all its
treedepth decompositions. The treedepth of a disconnected graph is the maximum
treedepth of its connected components.

Lemma 10 (�). Let F be a hereditary graph class whose (q+1)-colorable mem-
bers have treedepth at most t. Then, F has qt-size No-certificates for q-List-
Coloring.

To see the versatility of Lemma 10, observe that the vertices of a (q + 1)-
colorable split graph can be partitioned into a clique of size at most (q + 1)
and an independent set, which makes it easy to see that they have treedepth at
most q + 2. Since the treedepth of a disconnected graph equals the maximum
of the treedepth of its connected components, we then get a finite (qq+2) bound
on the size of minimal No-instances for q-List-Coloring on

⋃
Split graphs.

An ad-hoc argument was needed for this in earlier work [11, Lemma 2], albeit
resulting in a better bound (q + 4q).

4 Lower Bounds

In this section we prove lower bounds for q-Coloring in the parameter hier-
archy. Since in the following, the ‘F + kv’-notation is more convenient for the
presentation of our results, we will mostly refer to graphs which have a vertex
cover of size k as Independent+ kv graphs and graphs that have a feedback
vertex set of size k as Forest+ kv graphs.

In Sect. 4.1 we show that there is no universal constant θ, such that q-
Coloring on Independent+ kv graphs can be solved in time O∗(θk) for all
fixed q ∈ O(1), unless ETH fails. We generalize the lower bound modulo SETH
for Forest+ kv graphs [12] to Linear Forest+ kv (and Path+ kv) graphs
in Sect. 4.2. Note that by the constructions we give in their proofs, the lower
bounds also hold in case a modulator of size k is given in the input.
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4.1 No Universal Constant for Independent+kv Graphs

The following theorem shows that, unless ETH fails, the runtime of any
algorithm for q-Coloring parameterized by vertex cover (equivalently, on
Independent+ kv graphs), always has a term depending on q in the base of
the exponent.

Theorem 11. There is no (universal) constant θ, such that for all fixed q ∈
O(1), q-Coloring on Independent+ kv graphs can be solved in time O∗(θk),
unless ETH fails.

Proof. Assume we can solve q-Coloring on Independent+ kv graphs in time
O∗(θk). We will use this hypothetical algorithm to solve 3-SAT in O∗(2εn) time
for arbitrarily small ε > 0, contradicting ETH. We present a way to reduce an
instance ϕ of 3-SAT to an instance of 3q-List-Coloring for q an arbitrary
power of 2. The larger q is, the smaller the vertex cover of the constructed graph
will be. It will be useful to think of a color c ∈ [q] (q = 2t for some t ∈ N) as a
bitstring of length t, which naturally encodes a truth assignment to t variables.
The entire color range [3q] partitions into three consecutive blocks of q colors, so
that the same truth assignment to t variables can be encoded by three distinct
colors c, c+q, and c+2q for some c ∈ [q]. The reason for the threefold redundancy
is that clauses in ϕ have size three and will become clear later.

Given an instance ϕ of 3-SAT, we create a graph G3q and lists Λ : V (G3q) →
[3q] as follows. First, we add n/ log q� vertices v1,i (where i ∈ [n/ log q�]) to
V (G3q), whose colorings will correspond to the truth assignments of the vari-
ables x1, . . . , xn in ϕ. We let Λ(v1,i) = [q] for all these vertices. In particu-
lar, the variable xi will be encoded by vertex v1,�i/ log q�. We add two more
layers of vertices v2,i, v3,i (where i ∈ [n/ log q�]) to G3q whose lists will be
Λ(v2,i) = [(q+1)..2q] and Λ(v3,i) = [(2q+1)..3q], respectively (for all i). Through-
out the proof, we denote the set of all these variable vertices by V =

⋃
i,j vi,j ,

where i ∈ [3] and j ∈ [n/ log q�].
For each i ∈ [2] and j ∈ [n/ log q�] we do the following. For each pair of

colors c ∈ [((i−1)q+1)..(i ·q)] and c′ ∈ [(i ·q+1)..((i+1)q)] such that c+q �= c′,
we add a vertex ui,j

c,c′ with list Λ(ui,j
c,c′) = {c, c′} and make it adjacent to both

vi,j and vi+1,j . Note that this way, we add O(q2) and hence a constant number
of vertices for each such i and j. We denote the set of all vertices u·,·

·,· for all i
and j by U .

Claim 12 (�). Let i ∈ [2] and j ∈ [n/ log q�]. In any proper list-coloring of
G3q, the color c ∈ [((i−1)q+1)..(i·q)] appears on vi,j if and only if the color c+q
appears on vi+1,j. If color c ∈ [((i−1)q +1)..(i ·q)] appears on vi,j and c′ = c+q

appears on vi+1,j, then all vertices ui,j
·,· can be assigned a color from their list

that does not appear on a neighbor.

Claim 12 shows that in any proper list-coloring of V, there is a threefold redun-
dancy: If color c appears on v1,i, then color c+q appears on v2,i and c+2q appears
on v3,i. We associate a proper list-coloring of V with the truth assignment whose
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True/False assignment to the i-th block of log q consecutive variables follows
the 1/0-bit pattern in the least significant log q bits of the binary expansion of
the color of vertex v1,i. Conversely, given a truth assignment to x1, . . . , xn we
associate it to the coloring of V where the color of vertex v1,i is given by the
number whose least significant log q bits match the truth assignment to the i-th
block of log q variables, and any remaining bits are set to 0. The colors of v2,i

and v3,i are q and 2q higher than the color of v1,i.
For each clause Cj ∈ ϕ we will now add a number of clause vertices to ensure

that if Cj is not satisfied by a given truth assignment of its variables, then the
corresponding coloring of the vertices V cannot be extended to (at least) one of
these clause vertices.

Let Cj ∈ ϕ be a clause with variables xj1 , xj2 , and xj3 . Then, v1,�j1/ log q�,
v1,�j2/ log q�, and v1,�j3/ log q� denote the vertices whose colorings encode the truth
assignments of the respective variables. In the following, let j′

i = ji/ log q� for
i ∈ [3]. Note that there is precisely one truth assignment of the variables xj1 , xj2 ,
and xj3 that does not satisfy Cj . Choose �1, �2, �3 ∈ {0, 1} such that �i = 0 if and
only if the i-th variable in Cj appears negated. For i ∈ [3] let Fi ⊆ [q] be those
colors whose binary expansion differs from �i at the (ji mod (log q))-th least
significant bit, and define F+q

i
..= {q + c | c ∈ Fi} and F+2q

i
..= {2q + c | c ∈ Fi}.

This implies that the truth assignment encoded by a proper list-coloring of V
falsifies the i-th literal of Cj if and only if it uses a color from Fi on vertex v1,j′

i
.

By Claim 12, this happens if and only if it uses a color from F+q
i on vertex v2,j′

i
,

which happens if and only if it uses a color of F+2q
i on vertex v3,j′

i
. Hence the

assignment encoded by a proper list-coloring satisfies clause Cj if and only if the
colors appearing on (v1,j′

1
, v2,j′

2
, v3,j′

3
) do not belong to the set F1 ×F+q

2 ×F+2q
3 .

To encode the requirement that Cj be satisfied into the graph G3q, for each
(γ1, γ2, γ3) ∈ F1 × F+q

2 × F+2q
3 we add a vertex wγ1,γ2,γ3 to G3q that is adjacent

to v1,j′
1
, v2,j′

2
, and v3,j′

3
and whose list is {γ1, γ2, γ3}. The threefold redundancy

we incorporated ensures that the three colors in each forbidden triple are all
distinct. Therefore, if one of the three neighbors of wγ1,γ2,γ3 does not receive its
forbidden color, then wγ1,γ2,γ3 can properly receive that color. This would not
hold if there could be duplicates among the forbidden colors. The reduction is
finished by adding these vertices for each clause Cj ∈ ϕ. We denote the set of
clause vertices by W.

Claim 13. The formula ϕ has a satisfying assignment, if and only if the graph
G3q obtained via the above reduction is 3q-list-colorable.

Proof. Suppose ϕ has a satisfying assignment ψ : [n] → {0, 1}. Let γψ be the
corresponding proper coloring of V, as described above. We argue that γψ can be
extended to the vertices W as well. Let Cj ∈ ϕ be a clause on variables xj1 , xj2 ,
and xj3 and let wγ1,γ2,γ3 ∈ W be a vertex we introduced in the construction
above for Cj . For i ∈ [3], let γi

ψ = γψ(vi,�ji/ log q�).
Since γψ encodes a satisfying assignment, we know that there exists an i∗ ∈

[3], such that γi∗
ψ �= γi∗ (since otherwise, ψ is not a satisfying assignment to ϕ).

Hence, the color γi∗ is not blocked from the list of vertex wγ1,γ2,γ3 which can
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then be properly colored. By Claim 12 we know that the remaining vertices U
can be properly list-colored as well.

Conversely, suppose that G3q is properly list-colored. We show that each
proper coloring must correspond to a truth assignment that satisfies ϕ. For the
sake of a contradiction, suppose that there is a proper list-coloring γψ : V (G) →
[3q] which encodes a truth assignment ψ that does not satisfy ϕ. Let Cj ∈ ϕ
denote a clause which is not satisfied by ψ on variables xj1 , xj2 , and xj3 . For
i ∈ [3], we denote by γi

ψ = γψ(vi,�ji/ log q�) the colors of the variable vertices
encoding the truth assignment of the variables in Cj . Since ψ does not satisfy Cj

we know that we added a vertex wγ1
ψ,γ2

ψ,γ3
ψ

to W, which is adjacent to v1,�j1/ log q�,
v2,�j2/ log q�, and v3,�j3/ log q�. This means that the colors γ1

ψ, γ2
ψ, and γ3

ψ appear
on a vertex which is adjacent to wγ1

ψ,γ2
ψ,γ3

ψ
and hence the coloring γψ is improper,

a contradiction. �
We have shown how to reduce an instance of 3-SAT to an instance of 3q-List-

Coloring. We modify the graph G3q to obtain an instance of q-Coloring which
preserves the correctness of the reduction. We add a clique K3q of 3q vertices
to G3q, each of whose vertices represents one color. We make each vertex in
v ∈ V ∪W ∪U adjacent to each vertex in K3q that represents a color which does
not appear on v’s list in the list-coloring instance. (The same trick was used in
the proof of Theorem 6.1 in [12].) It follows that the graph without K3q has a
proper list-coloring if and only if the new graph has a proper 3q-coloring.

We now compute the size of G3q in terms of n and q and give a bound
on the size of a vertex cover of G3q. We observe that |V| = 3n/ log q�, |U| =
O(q2 ·n/ log q�), and clearly, |V (K3q)| = 3q. To bound the size of W, we observe
that for each clause Cj , we added (2log q−1)3 vertices (since we considered all
triples of bitstrings of length log q where one character is fixed in each string)
and hence |W| = O(q3 · m) with m the number of clauses in φ. It is easy to see
that V ∪ V (K3q) is a vertex cover of G3q and hence G3q has a vertex cover of
size 3n/ log q� + 3q.

Assuming there is an algorithm that solves q-Coloring on
Independent+ kv graphs in time O∗(θk) together with an application of the
above reduction (whose correctness follows from Claim 13) would yield an algo-
rithm for 3-SAT that runs in time

θ3�n/ log q�+3q · ((q2 + 3)n/ log q� + 3q + q3 · m)O(1) = O∗
(
2

3 log θ
log q n

)
.

Hence, for any ε > 0 we can choose a constant q large enough such that
(3 log θ)/(log q) < ε and Theorem 11 follows. ��

4.2 No Nontrivial Runtime Bound for Path+kv Graphs

We now strengthen the lower bound for Forest+ kv graphs due to [12] to
the more restrictive class of Linear Forest+ kv graphs. The key idea in our
reduction is that we treat the clause size in a satisfiability instance as a constant,
which allows for constructing a graph of polynomial size. The following lemma
describes the clause gadget that will be used in the reduction.
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Lemma 14 (�). For each q ≥ 3 there is a polynomial-time algorithm that,
given (c1, . . . , cm) ∈ [q]m, outputs a q-list-coloring instance (P,Λ) where P is a
path of size O(m) containing distinguished vertices (π1, . . . , πm), such that the
following holds. For each (d1, . . . , dm) ∈ [q]m there is a proper list-coloring γ
of P in which γ(πi) �= di for all i, if and only if (c1, . . . , cm) �= (d1, . . . , dm).

Theorem 15 (�). For any ε > 0 and constant q ≥ 3, q-Coloring on Linear
Forest+ kv graphs cannot be solved in time O∗((q − ε)k), unless SETH fails.

The reduction given in the proof of Theorem15 can easily be modified to
give a lower bound for Path+ kv graphs as well, for the details the reader is
referred to the full version [10].

Corollary 16. For any ε > 0 and constant q ≥ 3, q-Coloring on Path+ kv
graphs cannot be solved in time O∗((q − ε)k), unless SETH fails.

5 A Tighter Treedepth Boundary

In Lemma 10 we showed that if the (q + 1)-colorable members of a heredi-
tary graph class F have bounded treedepth, then F has constant-size No-
certificates for q-List-Coloring and hence F + kv has nontrivial algorithms
for q-(List-)Coloring parameterized by the size of a given modulator to F .
One might wonder whether a graph class F + kv has nontrivial algorithms for
q-Coloring parameterized by a given modulator to F if and only if all (q +1)-
colorable members in F have bounded treedepth. However, this is not the case. In
[11, Lemma 4] the authors showed that q-Coloring parameterized by the size of
a modulator to the class Cograph has nontrivial algorithms. Clearly, complete
bipartite graphs are cographs and it is easy to see that (the 2-colorable balanced
biclique) Kn,n has treedepth n + 1. In this section we show that, unless SETH
fails, bicliques are in some sense the only obstruction to this treedepth boundary.

Theorem 17 (�). Let F be a hereditary class of graphs for which there exists a
t ∈ N such that Kt,t is not contained in F , let q ≥ 3, and suppose SETH is true.
Then, q-Coloring parameterized by a given vertex modulator to F of size k has
O∗((q − ε)k) time algorithms for some ε > 0, if and only if all (q + 1)-colorable
graphs in F have bounded treedepth.

6 Conclusion

In this paper we have presented a fine-grained parameterized complexity analysis
of the q-Coloring and q-List-Coloring problems. We showed that if a graph
class F has No-certificates for q-List-Coloring of bounded size or if the (q+1)-
colorable members of F (where F is hereditary) have bounded treedepth, then
there is an algorithm that solves q-Coloring on graphs in F + kv (graphs with
vertex modulators of size k to F) in time O∗((q−ε)k) for some ε > 0 (depending
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on F). The parameter treedepth revealed itself as a boundary in some sense: We
showed that Path+ kv graphs do not have O∗((q−ε)k) time algorithms for any
ε > 0 unless SETH is false — and paths are arguably the simplest graphs of
unbounded treedepth. Furthermore we proved that if a graph class F does not
have large bicliques, then F + kv graphs have O∗((q − ε)k) time algorithms, for
some ε > 0, if and only if F has bounded treedepth.

Treedepth is an interesting graph parameter which in many cases also allows
for polynomial space algorithms where e.g. for treewidth this is typically expo-
nential. It would be interesting to see how the problems studied by Lokshtanov
et al. [12] behave when parameterized by treedepth. Naturally, a fine-grained
parameterized complexity analysis as we did might be interesting for other prob-
lems as well.
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Abstract. We consider scheduling on identical and unrelated parallel
machines with job assignment restrictions. These problems are NP-hard
and they do not admit polynomial time approximation algorithms with
approximation ratios smaller than 1.5 unless P=NP. However, if we
impose limitations on the set of machines that can process a job, the
problem sometimes becomes easier in the sense that algorithms with
approximation ratios better than 1.5 exist. We introduce three graphs,
based on the assignment restrictions and study the computational com-
plexity of the scheduling problem with respect to structural properties of
these graphs, in particular their tree- and rankwidth. We identify cases
that admit polynomial time approximation schemes or FPT algorithms,
generalizing and extending previous results in this area.

1 Introduction

We consider the problem of makespan minimization for scheduling on unrelated
parallel machines. In this problem a set J of n jobs has to be assigned to a
set M of m machines via a schedule σ : J → M. A job j has a process-
ing time pij for every machine i and the goal is to minimize the makespan
Cmax(σ) = maxi

∑
j∈σ−1(i) pij . In the three-field notation this problem is

denoted by R||Cmax. On some machines a job might have a very high, or even
infinite processing time, so it should never be processed on these machines. This
amounts to assignment restrictions in which for every job j there is a subset
M(j) of machines on which it may be processed. An important special case of
R||Cmax is given if the machines are identical in the sense that each job j has
the same processing time pj on all the machines on which it may be processed,
i.e., pij ∈ {pj ,∞}. This problem is sometimes called restricted assignment and
is denoted as P |M(j)|Cmax in the three-field notation.

We study versions of R||Cmax and P |M(j)|Cmax where the restrictions are in
some sense well structured. In particular we consider three different graphs that
are defined based on the job assignment restrictions and study how structural
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properties of these graphs affect the computational complexity of the correspond-
ing scheduling problems. We briefly describe the graphs. In the primal graph the
vertices are the jobs and two vertices are connected by an edge, iff there is a
machine on which both of the jobs can be processed. In the dual graph, on the
other hand, the machines are vertices and two of them are adjacent, iff there is
a job that can be processed by both machines. Lastly we consider the incidence
graph. This is a bipartite graph and both the jobs and machines are vertices.
A job j is adjacent to a machine i, if i ∈ M(j). In Fig. 1 an example of each
graph is given. These graphs have also been studied in the context of constraint
satisfaction (see e.g. [1] or [2]) and we adapted them for machine scheduling.

We consider the above scheduling problems in the contexts of parameterized
and approximation algorithms. For α > 1 an α-approximation for a minimization
problem computes a solution of value A(I) ≤ αOPT(I), where OPT(I) is the
optimal value for a given instance I. A family of algorithms consisting of (1+ε)-
approximations for each ε > 0 with running times polynomial in the input length
(and 1/ε) is called a (fully) polynomial time approximation scheme (F)PTAS.
Let π be some parameter defined for a given problem, and let π(I) be its value
for instance I. The problem is said to be fixed-parameter tractable (FPT) for π,
if there is an algorithm that given I and π(I) = k solves I in time O(f(k)|I|c),
where c is a constant, f any computable function and |I| the input length. This
definition can easily be extended to multiple parameters.

1
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6
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B

C

D

A B

C D

1

2 3

4

56

Fig. 1. Primal, dual and incidence graph for an instance with 6 jobs and 4 machines.

Related Work. In 1990 Lenstra, Shmoys and Tardos [3] showed, in a seminal
work, that there is a 2-approximation for R||Cmax and that the problem cannot
be approximated with a ratio better than 1.5 unless P=NP. Both bounds also
hold for P |M(j)|Cmax and have not been substantially improved since that time.
The case where the number of machines is constant is weakly NP-hard and there
is an FPTAS for this case [4]. A special case of the restricted assignment problem
called graph balancing was studied by Ebenlendr et al. [5]. In this variant each
job can be processed by at most 2 machines and therefore an instance can be
seen as a (multi-)graph where the machines are vertices and the jobs edges. They
presented a 1.75 approximation for this problem and also showed that the 1.5
inapproximability result remains true. Lee et al. [6] studied the version of graph
balancing where (in our notation) the dual graph is a tree and showed that there
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is an FPTAS for it. Moreover, the special case of graph balancing where the graph
is simple has been considered. For this problem Asahiro et al. [7] presented—
among other things—a pseudo-polynomial time algorithm for the case of graphs
with bounded treewidth. For certain cases of P |M(j)|Cmax with job assignment
restrictions that are in some sense well-structured, PTAS results are known. In
particular for the path- and tree-hierarchical cases [8,9] in which the machines
can be arranged in a path or tree and the jobs can only be processed on subpaths
starting at the leftmost machine or at the root machine respectively, and the
nested case [10], where M(j) ⊆ M(j′), M(j′) ⊆ M(j) or M(j) ∩ M(j′) = ∅
holds for each pair of jobs (j, j′).

The study of R||Cmax from the FPT perspective has started only recently.
Mnich and Wiese [11] showed that R||Cmax is FPT for the pair of parameters m
and the number of distinct processing times. The problem is also FPT for the
parameter pair max pij and the number of machine types [12]. Two machines
have the same type, if each job has the same processing time on them. Fur-
thermore Szeider [13] showed that graph balancing on simple graphs with unary
encoding of the processing times is not FPT for the parameter treewidth under
usual complexity assumptions.

Results. Tree and branch decompositions are associated with certain structural
width parameters. We consider two of them: treewidth and rankwidth. In the
following we denote the treewidth of the primal, dual and incidence graph with
twp, twd and twi, respectively. For the definitions of these concepts we refer to
Sect. 2.

Let J(i) be the set of jobs the machine i can process. In the context of
parameterized algorithms we show the following.

Theorem 1. R||Cmax is FPT for the parameter twp.

Theorem 2. R||Cmax is FPT for the parameters k1, k2 with k1 ∈ {twd, twi}
and k2 ∈ {OPT,maxi |J(i)|}.
Note that R||Cmax with constant k2 remains NP-hard [5]. In the context of
approximation we get:

Theorem 3. R||Cmax is weakly NP-hard, if twd or twi is constant and there is
an FPTAS for both of these cases.

The hardness is due to the hardness of scheduling on two identical parallel
machines P2||Cmax. The result for the dual graph is a generalization of the
result in [6] and resolves cases that were marked as open in that paper. All
results mentioned so far are discussed in Sect. 3. In the following section we
consider the rankwidth:

Theorem 4. There is a PTAS for instances of P |M(j)|Cmax where the
rankwidth of the incidence graph is bounded by a constant.
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It can be shown that instances of P |M(j)|Cmax with path- or tree-hierarchical,
or nested restrictions are special cases of the case when the incidence graph
is a bicograph. Bicographs are known [14] to have a rankwidth of at most 4
and a suitable branch decomposition can be found very easily. Therefore we
generalize and unify the known PTAS results for P |M(j)|Cmax with structured
job assignment restrictions.

Due to space limitations, we will leave out a lot of the details which can be
found in a longer version of the paper [15].

2 Preliminaries

In the following I will always denote an instance of R||Cmax or P |M(j)|Cmax

and most of the time we will assume that it is feasible. We call an instance
feasible if M(j) 	= ∅ for every job j ∈ J . A schedule is feasible if σ(j) ∈ M(j).
For a subset J ⊆ J of jobs and a subset M ⊆ M of machines we denote the
subinstance of I induced by J and M with I[J,M ]. Furthermore, for a set S of
schedules for I we let OPT(S) = minσ∈S Cmax(σ), and OPT(I) = OPT(S) if S
is the set of all schedules for I. We will sometimes use OPT(∅) = ∞. Note that
there are no schedules for instances without machines. On the other hand, if I
is an instance without jobs, we consider the empty function a feasible schedule
(with makespan 0), and have therefore OPT(I) = 0 in that case.

Dynamic Programs for R||Cmax. We sketch two basic dynamic programs
that will be needed as subprocedures in the following. The first one is based on
iterating through the machines. Let OPT(i, J) = OPT(I[J \ J, [i]]) for J ⊆ J
and i ∈ [m] := {1, . . . , m}, assuming M = [m]. Then it is easy to see that
OPT(i, J) = minJ⊆J ′⊆J max{OPT(i − 1, J ′),

∑
j∈J ′\J pij}. Using this recur-

rence relation a simple dynamic program can be formulated that computes the
values OPT(i, J). It holds that OPT(I) = OPT(m, ∅) and as usual for dynamic
programs an optimal schedule can be recovered via backtracking. The running
time of such a program can be bounded by 2O(n) ×O(m), yielding the following
trivial result:

Remark 1. R||Cmax is FPT for the parameter n.

The second dynamic program is based on iterating through the jobs. Let
λ ∈ Z

M
≥0. We call λ a load vector and say that a schedule σ fulfils λ, if λi =∑

j∈σ−1(i) pij . For j ∈ [n] let Λ(j) be the set of load vectors that are fulfilled
by some schedule for the subinstance I[[j],M], assuming J = [n]. Then Λ(j)
can also be defined recursively as the set of vectors λ with λi∗ = λ′

i∗ + pi∗j

and λi = λ′
i for i 	= i∗, where i∗ ∈ M(j) and λ′ ∈ Λ(j − 1). Using this, a

simple dynamic program can be formulated that computes Λ(j) for all j ∈ [n].
OPT(I) can be recovered from Λ(n) and a corresponding schedule can be found
via backtracking. Let there be a bound L for the number of distinct loads that
can occur on each machine, i.e. |{∑j∈σ−1(i) pij |σ schedule for I}| ≤ L for each
i ∈ M. Then the running time can be bounded by LO(m) × O(n), yielding:
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Remark 2. R||Cmax is FPT for the pair of parameters m and k with k ∈
{OPT,maxi |J(i)|}.

For this note that both OPT and 2maxi |J(i)| are bounds for the number of distinct
loads that can occur on any machine. This dynamic program can also be used to
get a simple FPTAS for R||Cmax for the case when the number of machines m
is constant. For this let B be an upper bound of OPT(I) with B ≤ 2OPT. Such
a bound can be found with the 2-approximation by Lenstra et al. [3]. Moreover
let ε > 0 and δ = ε/2. By rounding the processing time of every job up to the
next integer multiple of δB/n we get an instance I ′ whose optimum makespan
is at most εOPT(I) bigger than OPT(I). The dynamic program can easily be
modified to only consider load vectors for I ′, where all loads are bounded by
(1 + δ/n)B. Therefore there can be at most n/δ + 2 distinct load values for any
machine and an optimal schedule for I ′ can be found in time (n/ε)O(m) × O(n).
The schedule can trivially be transformed into a schedule for the original instance
without an increase in the makespan.

Tree Decompostion and Treewidth. A tree decomposition of a graph G is
a pair (T, {Xt|t ∈ V (T )}), where T is a tree, Xt ⊆ V (G) for each t ∈ V (t) is a
set of vertices of G, called a bag, and the following three conditions hold:

1.
⋃

t∈V (T ) Xt = V (G)
2. ∀{u, v} ∈ E(G)∃t ∈ V (T ) : u, v ∈ Xt

3. For every u ∈ V (G) the set Tu := {t ∈ V (T )|u ∈ Xt} induces a connected
subtree of T .

The width of the decomposition is maxt∈V (T )(|Xt|−1), and the treewidth tw(G)
of G is the minimum width of all tree decompositions of G. It is well known that
forests are exactly the graphs with treewidth one, and that the treewidth of G is
at least as big as the size of the biggest clique in G minus 1. More precisely, for
each set of vertices V ′ ⊆ V (G) inducing a clique in G, there is a node t ∈ V (T )
with V ′ ⊆ Xt (see e.g. [16]). For a given graph and a value k it can be decided in
FPT time (and linear in |V (G)|) whether the treewidth of G is at most k and in
the affirmative case a corresponding tree decomposition with O(k|V (G)|) nodes
can be computed [17]. However, deciding whether a graph has a treewidth of at
most k, is NP-hard [18].

Branch Decomposition and Rankwidth. The treewidth is a concept appro-
priate for sparse graphs, while for dense graphs G other parameters like the
clique- and rankwidth rw(G) typically are considered. We focus on the latter.

A cut of G is a partition of V (G) into two subsets. For X,Y ⊆ V (G) let
AG[X,Y ] = (axy) be the |X| × |Y | adjacency submatrix induced by X and Y ,
i.e., axy = 1 if {x, y} ∈ E(G) and axy = 0 otherwise for x ∈ X and y ∈ Y .
The cut rank of (X,Y ) is the rank of AG[X,Y ] over the field with two elements
GF(2) and denoted by cutrkG(X,Y ). A branch decomposition of V (G) is a pair
(T, η), where T is a tree with |V (G)| leaves whose internal nodes have all degree 3,
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and η is a bijection from V (G) to the leafs of T . For each e = {s, t} ∈ E(T ) there
is an induced cut {Xs,Xt} of G: For x ∈ {s, t} the set Xx contains exactly the
nodes η−1(
), where 
 ∈ V (T ) is a leaf that is in the same connected component
of T as x, if e is removed. Now the width of e (with respect to cutrkG) is
cutrkG(Xs,Xt) and the rankwidth of the decomposition (T, η) is the maximum
width over all edges of T . The rankwidth of G is the minimum rankwidth of all
branch decompositions of G. It is well known that the rankwidth of a complete
graph is equal to 1, rw(G) ≤ tw(G), and the treewidth can not be bounded by
a function of rankwidth. For a given graph and fixed k there is an algorithm
that finds a branch decomposition of width k in FPT-time (cubic in |V (G)|), or
reports correctly that none exists [19].

3 Treewidth Results

We start with some basic relationships between different restriction parameters
for R||Cmax, especially the treewidths of the different graphs for a given instance.
Similar relationships have been determined for the three graphs in the context
of constraint satisfaction.

Remark 3. twp ≥ maxi |J(i)| − 1 and twd ≥ maxj |M(j)| − 1.

To see this, note that the sets J(i) and M(j) are cliques in the primal and dual
graphs, respectively.

Remark 4. twi ≤ twp + 1 and twi ≤ twd + 1. On the other hand twp ≤ (twi + 1)
maxi |J(i)| − 1 and twd ≤ (twi + 1)maxj |M(j)| − 1.

These properties were pointed out by Kalaitis and Vardi [20] in a different con-
text. Note that this Remark together with Theorem 1 implies the results of
Theorem 2 concerning the parameter maxi |J(i)|. Furthermore, in the case of
P ||Cmax with only 1 job and m machines, or n jobs and only 1 machine, the
primal graph has treewidth 0 or n − 1, and the dual m − 1 or 0, respectively,
while the incidence graph in both cases has treewidth 1.

We show how a tree decomposition (T, {Xt|t ∈ V (T )}) of width k for any one
of the three graphs can be used to design a dynamic program for the correspond-
ing instance I of R||Cmax. Selecting a node as the root of the decompostion, the
dynamic program works in a bottom-up manner from the leaves to the root. We
assume that the decomposition has the following simple form: For each leaf node
t ∈ V (T ) the bag Xt is empty and we fix one of these nodes as the root a of
T . Furthermore each internal node t has exactly two children 
(t) and r(t) (left
and right), and each node t 	= a has one parent p(t). We denote the descendants
of t with desc(t). A decomposition of this form can be generated from any other
one without increasing the width and growing only linearly in size through the
introduction of dummy nodes. The bag of a dummy node is either empty or
identical to the one of its parent.

For each of the graphs and each node t ∈ V (T ) we define sets J̌t ⊆ J and
M̌t ⊆ M of inactive jobs and machines along with sets Jt and Mt of active jobs
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and machines. The active jobs and machines in each case are defined based on
the respective bag Xt, and the inactive ones have the property that they were
active for a descendant t ∈ desc(t) of t but are not at t. In addition there are
nearly inactive jobs J̃t and machines M̃t, which are the jobs and machines that
are deactivated when going from t to its parent p(t) (for t = a we assume them
to be empty). The sets are defined so that certain conditions hold. The first two
are that the (nearly) inactive jobs may only be processed on active or inactive
machines, and the (nearly) inactive machines can only process active or inactive
jobs:

M(J̌t ∪ J̃t) ⊆ Mt ∪ M̌t (1)

J(M̌t ∪ M̃t) ⊆ Jt ∪ J̌t (2)

Where M(J∗) =
⋃

j∈J∗ M(j) and J(M∗) =
⋃

i∈M∗ J(i) for any sets J∗ ⊆ J and
M∗ ⊆ M. Furthermore the (nearly) inactive jobs and machines of the children
of an internal t form a disjoint union of the inactive jobs and machines of t,
respectively:

J̌t = J̌�(t) ∪̇ J̃�(t) ∪̇ J̌r(t) ∪̇ J̃r(t) (3)

M̌t = M̌�(t) ∪̇ M̃�(t) ∪̇ M̌r(t) ∪̇ M̃r(t) (4)

Where A ∪̇ B for any two sets A,B emphasizes that the union A∪B is disjoint,
i.e., A ∩ B = ∅. We now consider each of the three graphs.

The Primal Graph. In the primal graph all the vertices are jobs, and
we define the active jobs of a tree node t to be exactly the jobs that are
included in the respective bag, i.e., Jt = Xt. The inactive jobs are those that
are not included in Xt but are in a bag of some descendant of t and the
nearly inactive one are those that are active at t but inactive at p(t), i.e.,
J̌t = {j ∈ J |j 	∈ Xt ∧ ∃t′ ∈ desc(t) : j ∈ Xt′} and J̃t = Jt \ Jp(t). Moreover the
inactive machines are the ones on which some inactive job may be processed, and
the (nearly in-)active machines are those that can process (nearly in-)active jobs
and are not inactive, i.e., M̌t = M(J̌t), Mt = M(Jt) \ M̌t and M̃t = M(J̃t) \ M̌t.
For these definitions the conditions (1)–(4) hold, as well as:

J(M̃t) ⊆ Jt (5)

M(J̌t ∪ J̃t) = M̃t ∪ M̌t (6)

For J ⊆ J and M ⊆ M let Γ (J,M) = {J ′ ⊆ J |∀j ∈ J ′ : M(j) ∩ M 	= ∅}.
Let t ∈ V (T ), J ∈ Γ (Jt, M̌t) and J ′ ∈ Γ (Jt \ J̃t, M̌t ∪ M̃t). We set S(t, J)
and S̃(t, J ′) to be the sets of feasible schedules for the instances I[J̌t ∪ J, M̌t]
and I[J̌t ∪ J̃t ∪ J ′, M̌t ∪ M̃t] respectively. We will consider OPT(S(t, J)) and
OPT(S̃(t, J ′)).

First note that OPT(I) = OPT(S(a, ∅)), where a is the root of T . More-
over, for a leaf node t there are neither jobs nor machines and OPT(S(t, ∅)) =
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OPT(S̃(t, ∅)) = OPT({∅}) = 0 holds. Hence let t be a non-leaf node. We first
consider how OPT(S(t, J)) can be computed from the children of t. Due to Prop-
erty 3 of the tree decomposition and (1) the jobs from J are already active on at
least one of the direct descendants of t. Because of this and (4), J may be split
in two parts J�∪̇Jr = J , where Js ∈ Γ (Js(t) \ J̃s(t), M̌s(t) ∪ M̃s(t)) for s ∈ {
, r}.
Let Φ(J) be the set of such pairs (J�, Jr). From (3), (4) and (6) we get:

Lemma 1. OPT(S(t, J)) = min(J�,Jr)∈Φ(J) maxs∈{�,r} OPT(S̃(s(t), Js)).

Consider the computation of OPT(S̃(t, J ′)). We may split J ′ and J̃t into a set
going to the nearly inactive and a set going to the inactive machines. We set
Ψ(J ′) to be the set of pairs (A,X) with J ′ ∪ J̃t = A∪̇X, A ∈ Γ (J̃t ∪ J ′, M̃t) and
X ∈ Γ (J̃t ∪ J ′, M̌t). Because of (3)–(5) we have:

Lemma 2.

OPT(S̃(t, J ′)) = min
(A,X)∈Ψ(J ′)

max{OPT(S(t,X)),OPT(I[A, M̃t])}.

Note that the values OPT(I[A, M̃t]) can be computed using the first dynamic
program from Sect. 2 in time 2O(k) × O(m).

The Dual Graph. For the dual graph the (in-)active jobs and machines
are defined dually: The active machines for a tree node t are the ones in
the respective bag, the inactive machines are those that were active for some
descendant but are not active for t, and the nearly inactive machines are
those that are active at t but inactive at its parent, i.e., Mt = Xt, M̌t =
{i ∈ M|i 	∈ Mt ∧ ∃t′ ∈ desc(t) : i ∈ Xt′} and M̃t = Mt \ M̌p(t). Furthermore the
inactive jobs are those that may be processed on some inactive machine and
the (nearly in-)active ones are those that can be processed on some (nearly in-
)active machine and are not inactive, i.e., J̌t = J(M̌t), Jt = J(Mt) \ J̌t and
J̃t = J(M̃t) \ J̌t. With these definitions the conditions (1)–(4) hold, as well as:

M(J̃t) ⊆ Mt (7)

J(M̌t ∪ M̃t) = J̃t ∪ J̌t (8)

We will need some extra notation. Like we did in Sect. 2 we will consider
load vectors λ ∈ Z

M
≥0, where M ⊆ M is a set of machines. We say that a

schedule σ fulfils λ, if λi =
∑

j∈σ−1(i) pij for each i ∈ M . For any set S of
schedules for I we denote the set of load vectors for M that are fulfilled by at
least one schedule from S with Λ(S,M). Furthermore we denote the set of all
schedules for I with S(I), and for a subset of jobs J ⊆ J , we write Λ(J,M) as a
shortcut for Λ(S(I[J,M ]),M). Let t ∈ V (T ). We set S(t) = S(I[J̌t, M̌t∪Mt]) and
S̃(t) = S(I[J̌t∪J̃t, M̌t∪Mt]). Moreover, for λ ∈ Λ(S(t),Mt) and λ′ ∈ Λ(S̃(t),Mt)
we set S(t, λ) ⊆ S(t) and S̃(t, λ′) ⊆ S̃(t) to be those schedules that fulfil λ and
λ′ respectively. We now consider OPT(S(t, λ)) and OPT(S̃(t, λ′)).
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First note OPT(I) = OPT(S(a, ∅)). Moreover, for a leaf node t we have
neither jobs nor machines and Λ(S(t),Mt) = Λ(S̃(t),Mt) = {∅}. Therefore
OPT(S(t, ∅)) = OPT(S̃(t, ∅)) = OPT({∅}) = 0. Hence, let t be a non-leaf node.
Again, we first consider how OPT(S(t, λ)) can be computed from the children
of t. Because of (3), λ may be split into a left and a right part. For two machine
sets M,M ′ let τM,M ′ : ZM

≥0 → Z
M ′
≥0 be a trasformation function for load vectors,

where the i-th entry of τM,M ′(λ) equals λi for i ∈ M ∩ M ′ and 0 otherwise. We
set Ξ(λ) to be the set of pairs (λ�, λr) with λ = τM�(t),Mt

(λ�) + τMr(t),Mt
(λr),

and λs ∈ Λ(S̃(s(t)),Ms(t)) for s ∈ {
, r}. Because of (1), (3) and (4), we have:

Lemma 3. OPT(S(t, λ)) = min(λ�,λr)∈Ξ(λ) maxs∈{�,r} OPT(S̃(s(t), λs)).

Now we consider OPT(S̃(t, λ′)). We may split λ′ into the load due to inactive
and that due to nearly inactive jobs. Note that the nearly inactive jobs can only
be processed by active machines (7). We set Υ(λ′) to be the set of pairs (α, ξ)
with λ′ = α + ξ, α ∈ Λ(J̃t,Mt) and ξ ∈ Λ(S(t),Mt). Now (3), (4) and (7) yield:

Lemma 4. OPT(S̃(t, λ′)) = min(α,ξ)∈Υ(λ′) max({OPT(S(t, ξ))}∪{λ′
i|i ∈ Mt}).

The set Λ(J̃t,Mt) can be computed using the second dynamic program described
in Sect. 2 in time LO(k) × O(n) if L is again a bound on the number of distinct
loads that can occur on each machine.

The Incidence Graph. For the incidence graph the ideas used for the two other
graphs can be combined, although the situation is slightly more complicated,
because we have to handle the jobs and machines simultaneously. If the job sets
are defined like in the primal, and the machine sets like in the dual graph case,
the conditions (1)–(4) hold and recurrence relations similar to the first two cases
can be formulated. The details are omitted in this version of the paper.

Results. Using above arguments, we can design dynamic programs with running
time 2O(k) × O(nm) in the primal case and LO(k) × O(nm) in the dual and
incidence graph cases. Optimal schedules can be found via backtracking proving
the Theorems 1 and 2. Theorem 3 follows by the combination of the dynamic
programs and a rounding scheme similar to that in Sect. 2.

4 Rankwidth Results

We study the case when the rankwidth of the incidence graph is bounded by a
constant k. First, we give some intuition on why a bounded rankwidth is useful
and then discuss the main ideas for the design of a dynamic program utilizing a
corresponding branch decomposition of the incidence graph.

For any Graph (V,E) and X ⊆ V , we say that u, v ∈ V have the same
connection type with respect to X, if N(u) ∩ X = N(v) ∩ X. If X is clear from
the context, we say that u and v have the same connection type. Now, let e =
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{a, b} ∈ E(T ) be some edge of the branch decomposition and {Xe,a,Xe,b} the
respective cut of T , i.e., Xe,x for x ∈ {a, b} is the set of vertices of T that are in the
same connected component as x when the edge e is removed. Then {Xe,a,Xe,b}
induces a partition of both the jobs and machines by Je,x := {j ∈ J |η(j) ∈ Xe,x}
and Me,x := {i ∈ M|η(i) ∈ Xe,x} for x ∈ {a, b}.

Remark 5. Let x, y ∈ {a, b} with x 	= y. The number of distinct connection types
of Je,x with respect to Me,y is bounded by 2k.

Each edge of a branch decomposition corresponds to a partition of the job
and machine sets and an optimal solution may be found by trying all possible
ways of moving jobs between partitions. At the machine-leafs all arriving jobs
have to be processed, with no jobs going out, and at the job-leafs all jobs have
to be send away, with no jobs coming in. From this the procedure can work
up to some root edge. This idea can be used to design a dynamic program
with exponential running time. However, it can be argued that it is sufficient to
consider only certain locally defined classes of job sets. The crucial part here is
that the number of these classes can be polynomially bounded, if the number
d of distinct sizes and the number of connection types of jobs are constant. We
have already argued that the number of connection types of jobs is bounded by
a function of k and can assume d to be constant using the following result. Let
I be some class of instances of P |M(j)|Cmax, which is invariant with respect to
changing the processing times of jobs and the introduction of copies of jobs.

Lemma 5 (Rounding Lemma). If there is a PTAS for instances from I, for
which the number of distinct processing times is bounded by a constant, then
there is also a PTAS for any instance from I.
It can be easily seen that the class of instances of P |M(j)|Cmax, for which the
rankwidth of the incidence graph is bounded by a constant k, is such a class I.

Dynamic Program. We now develop the recurrence relations needed for the
dynamic program. Due to space limitations we leave out a lot of the details.
In particular we leave out the considerations concerning the leafs of the branch
decomposition—which are rather simple—and concerning the splitting of job
classes at inner nodes—which are comparatively complicated.

Let e = {a, b} ∈ E(T ) again be some edge of the tree T and {Xe,a,Xe,b}
the corresponding cut of T . For x, y ∈ e with x 	= y let �Jx,y ⊆ Je,x and
Ie,x( �Jx,y, �Jy,x) = I[(Je,x \ �Jx,y)∪ �Jy,x,Me,x]. The intuition here is that �Jx,y is the
set of jobs that is scheduled on—or send to—machines from Me,y by some sched-
ule σ. There are some cases in which different sets �Jy,x, �J ′

y,x ⊆ Je,x are in some
sense similar and it holds that OPT(Ie,x( �Jx,y, �Jy,x)) = OPT(Ie,x( �Jx,y, �J ′

y,x)).
This is the case if there is a bijection α : �Jy,x → �J ′

y,x such that j and α(j) have
the same connection type with respect to Me,x and pj = pα(j) for each j ∈ �Jy,x.
By this, equivalence relations ∼e,y can be defined and we get:
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Lemma 6.

OPT(I) = min
([ 	Ja,b],[ 	Jb,a])

max{min
	J ′
a,b

OPT(Ie,a( �J ′
a,b,

�Jb,a)),min
	J ′
b,a

OPT(Ie,b( �J ′
b,a, �Ja,b))}

Note that in this equation equivalence classes [ �Jy,x] are considered belonging to
the relation ∼e,y and �Jy,x is an arbitrary representative of this class. We now
develop a sensible representation for the equivalence classes.

We assume some ordering of the different processing times, with p(i) denoting
the i-th processing time for i ∈ [d]. Any set of jobs J ′ induces a vector λ ∈ Z

d
≥0

where λi is the number of jobs in J ′ that have the i-th processing time, i.e.,
λi = |{j ∈ J ′|pj = p(i)}|. Let κ(e, b) be the number of connection types of jobs
from Je,b with respect to Me,a. Note that due to Remark 5 we get κ(e, b) ≤ 2k.
Again assuming some ordering, for i ∈ [κ(e, b)] let ϕe,b(i) be the size vector
induced by the i-th connection type of Je,b with respect to Me,a. Moreover,
let ϕe,b = (ϕe,b(1), . . . , ϕe,b(κ(e, b))). Now the equivalence classes of ∼e,b can
naturally be represented and characterized by vectors ι ≤ ϕe,b.

Remark 6. For each e ∈ E(T ) and b ∈ e there are at most nκ(e,b)d different
vectors ι ≤ ϕe,b.

We now use an intuition of up and down with e = {a, b} ∈ E(T ), a above
and b below. Let ι̂ ≤ ϕe,b and ι̌ ≤ ϕe,a be candidate job classes to be send
up and down e. Considering Lemma 6, we set OPT(e, ι̂, ι̌) to be the minimum
value OPT(Ie,b(Ĵ , J̌)) where Ĵ is represented by ι̂ and J̌ by ι̌. Furthermore, we
assume that b is an inner node with two further (lower) neighbors 
 and r, as
well as connecting edges e� = {
, b} and er = {r, b}. We argue that OPT(e, ι̂, ι̌)
can be computed from values OPT(e�, λ̂, λ̌) and OPT(er, ρ̂, ρ̌) using a recurrence
relation of the following form:

Lemma 7. OPT(e, ι̂, ι̌) = min(λ̂,λ̌,ρ̂,ρ̌) max{OPT(e�, λ̂, λ̌),OPT(er, ρ̂, ρ̌)}.
It is not immediately clear which tuples (λ̂, λ̌, ρ̂, ρ̌) should be considered. This

detail is comparatively complicated and will not be covered here. Difficulties arise
e.g. from the fact that classes of jobs defined for one edge translate into other
classes for neighboring edges. Furthermore, any set of jobs that is sent through
an edge and arrives at an internal node, will be split into two parts: one going
forth through the second and one through the third edge. And looking at it the
other way around: Any set that is sent by a schedule through an edge coming
from an inner node, is put together from two parts, one coming from the second
and one coming from the third edge. This has to be taken into account as well.

Results. With the above considerations a dynamic program for P |M(j)|Cmax

can be defined. This can be done in a way such that its running time is in
O(m2nO(d2k)), proving Theorem4 together with the Rounding Lemma and the
considerations of Sect. 2.

Acknowledgements. The Rounding Lemma in the presented form was formulated
by Lars Rohwedder and Kevin Prohn as part of a student project.
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Abstract. We study the exact complexity of the Hamiltonian Cycle and
the q-Colouring problem in disk graphs. We show that the Hamiltonian
Cycle problem can be solved in 2O(

√
n) on n-vertex disk graphs where

the ratio of the largest and smallest disk radius is O(1). We also show
that this is optimal: assuming the Exponential Time Hypothesis, there
is no 2o(

√
n)-time algorithm for Hamiltonian Cycle, even on unit disk

graphs. We give analogous results for graph colouring: under the Expo-
nential Time Hypothesis, for any fixed q, q-Colouring does not admit a
2o(

√
n)-time algorithm, even when restricted to unit disk graphs, and it

is solvable in 2O(
√
n)-time on disk graphs.

1 Introduction

Exact algorithms for NP-hard problems have received considerable attention in
recent years. The goal of research in this area is to develop ‘moderately exponen-
tial’ algorithms and to prove matching lower bounds under complexity-theoretic
assumptions. Most work in this direction concerns fundamental graph problems.

The square-root phenomenon is a well-documented occurrence among algo-
rithms on planar graphs [13]. The term illustrates that many problems that have
2O(n) algorithms on general graphs can be solved in 2O(

√
n) in planar graphs.

Moreover, matching lower bounds can be found based on the Exponential Time
Hypothesis, i.e., for most of these problems, there are no algorithms with running
time 2o(n) resp. 2o(

√
n), unless the Exponential Time Hypothesis fails.

An important question about the square-root phenomenon is whether we
can generalize the results on planar graphs to larger graph classes. One possible
direction is to extend to disk graphs: the vertices are disks in R

2, and two vertices
are adjacent if their disks intersect. Note that disk graphs where the interiors
of the disks are disjoint are exactly the planar graphs [12]. Unit disk graphs are
disk graphs where all radii are one; bounded-ratio disk graphs are disk graphs
where the ratio of the largest and smallest radius is bounded by some constant.
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c© Springer International Publishing AG 2017
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In this paper, we demonstrate the square-root phenomenon for the Hamil-
tonian Cycle problem in bounded-ratio disk graphs that are given by their geo-
metric representations. Note that in planar graphs, the problem has a 2O(

√
n)-

time algorithm [13], and a matching 2Ω(
√

n) lower bound conditional on the
Exponential Time Hypothesis. The main obstacles for Hamiltonian Cycle in
bounded-ratio disk graphs are the following.

– On the algorithmic side, the 2O(
√

n) running time often follows from the fact
that planar graphs have treewidth O(

√
n) (see e.g. [4,6,15]). In our setting,

bounded-ratio disk graphs are dense and may have unbounded treewidth.
– The lower bounds are based on reductions that planarize a graph by replacing

each crossing of edges with a crossover gadget. Since there may be quadrati-
cally many crossings in a general graph, these reductions blow up an n-vertex
graph to an n2-vertex one, which results in the 2Ω(

√
n) lower bound. In our

setting, the NP -hardness of Hamiltonian Cycle was previously only known
through its NP -hardness on grid graphs [8]. However, this reduction has a
cubic blowup, giving only a 2Ω( 3√n) lower bound and – to our knowledge – it
is an open problem whether this lower bound can be improved to match the
best known (2O(

√
n)) algorithm [6].

The cubic time blowup of the reduction in [8] showing the hardness of
Hamiltonian Cycle in grid graphs follows from two factors: the need to deal
with crossings (introducing one factor n) and the need to replace long edges
with some suitable ‘path structure’ (introducing another factor n). Compared
to grid graphs, creating a reduction for disk graphs we have one major advantage:
even though disk graphs have a structure somewhat similar to planar graphs,
they can be (locally) non-planar and the Hamiltonian cycle in a solution can
cross itself. Even so, our reduction still uses crossover gadgets and has to replace
edges with path structures.

A key technique of our reduction is that in replacing long edges with some
other structure, we need to ensure that all the vertices of this structure can be
visited even if the edge is not used in the Hamiltonian cycle. This can be achieved
with a 2 × n grid (a snake), which can either be traversed in a zigzag manner
(corresponding to using the edge in the cycle) or traversed going back and forth
(corresponding to not using the edge). Our snakes are almost identical to the
ones proposed by Itai et al. [8]. Unfortunately, it does not appear to be possible
to create a crossover gadget for two snakes. To overcome this, we modify the
reduction to ensure that some edges will certainly be included in the solution
(which we can thus replace with a simple path rather than a snake) and build our
reductions such that we only have crossings between simple paths and between
simple paths and snakes (for which we can build crossover gadgets).

To complement our results for Hamiltonian Cycle, we also show that the same
upper and lower bounds hold for q-colouring on disk graphs in the case where q
is a constant. The algorithm follows from the observation that q-colorable graphs
do not have large cliques, and a separator theorem due to Miller et al. [14]; the
lower bound uses an adaptation of a reduction due to Gräf et al. [7].

Some proofs are omitted from this extended abstract.
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2 Algorithm for Hamiltonian Cycle in Bounded-Ratio
Disk Graphs

In this section, we show that the Hamiltonian Cycle problem can be solved in
2O(

√
n) time on bounded-ratio disk graphs. Our algorithm uses techniques due

to Ito and Kadoshita [9], who show that Hamiltonian Cycle can be solved in
2O(α)nO(1) time on unit disk graphs, where α is the area of a bounding square
of the set of disks.

Theorem 1. There exists a 2O(
√

n)-time algorithm for Hamiltonian Cycle on
bounded-ratio disk graphs (where the graphs are given by their geometric repre-
sentation).

Lemma 1. Given a disk graph of ratio β = O(1) with its representation, there
are values γ = γ(β) and Δ = Δ(β) such that if we tessellate the plane using
squares of diameter γ, the vertices in each tile induce a clique and the vertices
in any given square have neighbours in at most Δ distinct other squares.

Proof. Ito and Kadoshita [9] prove this lemma for unit disk graphs, where γ = 1
and Δ = 18. The proof generalizes to bounded-ratio disk graphs. ��

Given a bounded-ratio disk graph G, the lemma gives a clique partition
Q1, . . . , Qr of G, that is, a partition of the vertices of G into cliques, such that
the vertices of each clique have neighbours in at most Δ = O(1) other cliques.

Given a graph G and sets A,B ⊆ V (G), we let E(A,B) denote the set of
edges between a vertex in A and a vertex in B. Using the notion of canonical
Hamiltonian cycle (which we do not need to consider), Ito and Kadoshita [9]
then prove the following lemma:

Lemma 2 (Ito and Kadoshita [9]). Let G have clique partition Q1, . . . , Qr

defined by a tessellation as in Lemma 1. Then for each i �= j, we can remove
all but O(Δ2) edges of E(Qi, Qj) to obtain G′, such that G′ has a Hamiltonian
cycle if and only if G has a Hamiltonian cycle.

If G′ is connected, removing the vertices from each clique of the clique par-
tition in G′ that do not have an edge to a vertex of some other clique in the
partition preserves the Hamiltonicity of G′. We thus obtain the reduced graph
G′′, which contains at most O(Δ3) vertices per tile.

Lemma 3. The reduced graph has treewidth O(
√

n). A tree decomposition of
treewidth O(

√
n) can be found in polynomial time.

Proof. Alber and Fiala [1] show that unit disk graphs have balanced separators
where the disks of the vertices in the separator cover an area of at most O(

√
n).

This also holds for bounded-ratio disk graphs, as we can consider the supergraph
obtained by making the radius of each disk equal to the largest radius. Since in
the reduced graph, each tile contains at most a constant number of points, this
gives a balanced separator of size O(

√
n) (in terms of vertices). These separators
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in turn imply that the reduced graph has treewidth O(
√

n). Using these sep-
arators we can also build a tree decomposition of width O(

√
n) in polynomial

time [16]. Note that the hidden constant depends on β. ��
Theorem 2 (Bodlaender et al. [2], Cygan et al. [5]). Given a graph with
a tree decomposition of width w, there exists an algorithm solving Hamiltonian
Cycle in 2O(w)nO(1) time.

Applying this algorithm to the reduced graph of Lemma3 finishes the proof
of Theorem 1. ��

The techniques described in this section can also be used to solve Longest
Path and Exact Path (which respectively are the problems of finding simple path
of maximum length and finding a path between two specified vertices (u, v) of
given length k):

Theorem 3. There exists a 2O(
√

n)-time algorithm for Longest Path and Exact
Path on bounded-ratio disk graphs.

Proof. Lemma 2 also holds for Longest Path and Exact Path. However, the sub-
sequent step of removing vertices from the cliques no longer works: the informa-
tion of how many vertices can be visited within each clique is essential. Instead,
from each clique of the partition, we remove every vertex that does not have an
edge to a vertex in some other clique of the partition. The removed vertices are
then replaced by a path of the same number of vertices, and every vertex of the
path is made adjacent to every (remaining) vertex of the clique. This preserves
the longest (or exact) path, while only increasing the treewidth by a constant
(compared to the reduced graph from Lemma3). Bodlaender et al. [2] and Cygan
et al. [5] also give algorithms for Longest Path and Exact Path parameterized
by treewidth, similar to those of Theorem2. Thus we obtain 2O(

√
n)-time algo-

rithms for Longest Path and Exact Path, by modifying the graph such that it
has treewidth O(

√
n) and then applying one of these algorithms. ��

3 Lower Bound for Hamiltonian Cycle in Unit Disk
Graphs

In this section, we give a tight lower bound for the running time of a Hamiltonian
cycle algorithm in UDGs, assuming the Exponential Time Hypothesis. We use
a reduction from 3-SAT.

We begin with a well-known reduction from 3-SAT to directed Hamiltonian
cycle [11], and modify it significantly. We introduce the construction briefly; see
Fig. 1 for an example of the construction with the formula (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨
x̄3 ∨ x̄4). Let n be the number of variables, and m be the number of clauses. For
each variable xi we introduce the vertices v1

i , . . . vb
i , where b = 3m + 3. On these

vertices we add a double chain (a directed path through the vertices and back);
this double chain is the row of this variable. The Hamiltonian cycle can traverse
this row left to right or right to left, which will indicate the truth setting of this



On the Exact Complexity of Hamiltonian Cycle 373

variable. We add edges from the beginning and end of a variable’s row to the
beginning and end of the next variable’s row, and we add a starting and end-
ing point vstart and vend, the arc (vend, vstart), and arcs (vstart, v

1
1), (vstart, v

b
1),

(v1
n, vend), (vb

n, vend). In order to check the clauses, we add a vertex cj for each
clause j = 1, . . . , m. We connect the vertices v3j

i and v3j+1
i to clause j if a literal

of xi is present in the j-th clause. By orienting this arc pair correctly (depending
on the sign of the literal), we make it possible for the Hamiltonian cycle to make
a detour to cj while traversing the variable’s row in the direction (left or right)
corresponding to the sign of the literal. For more details about this construction
we refer the reader to the write-up in [11].

c1 c2

v1
1 vb1

v1
4 vb4

vstart

vend

(a) Original Construction

v1
1 vb1

v1
4

vb4

vstart

vend

c0
1c0

2

c1
1

c2
1

c3
1

c4
1

c5
1

c6
1

c1
2

c2
2

c3
2

c4
2

c5
2

c6
2

(b) Modified Construction

Fig. 1. (a) The construction for (x1∨ x̄2∨x3)∧(x2∨ x̄3∨ x̄4). (b) Modified construction
with a directed cycle for each clause.

Our Construction. We replace the clause vertices by a different gadget: for
each clause ci, we introduce a directed cycle containing seven vertices, c0i , . . . , c

6
i

(see Fig. 1b). If the first literal is the j-th variable, then we add the arcs v3i
j c2i

and c1i v
3i+1
j ; if the literal is negated, we add v3i+1

j c2i and c1i v
3i
j . Similarly, we

add entry and exit arcs for the second and third literals at c3i , c
4
i and c5i , c

6
i .

This modified graph has a directed Hamiltonian cycle if and only if the original
formula is satisfiable.

Next, we reduce to undirected Hamiltonian cycle. (From this point onward,
we use the abbreviation HC for Hamiltonian cycle.) To do this, we start by
replacing each vertex u of the construction with three vertices on a path: u−, u0

and u+. An arc previously going from u to w is represented in the new graph by
the edge u+w−. This reduction from directed to undirected HC is already present
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in Karp’s famous 1972 paper [10]. It is again routine to prove that the graph
resulting from this construction has a HC if and only if the original formula is
satisfiable. We denote the undirected graph that was obtained in this way by G.

We consider a specific drawing of G depicted on Fig. 2 of the resulting graph;
we plan to emulate its properties in a unit disk graph. Intuitively, we would like
to replace the edges of this graph by paths — this can be done by using unit
disks that induce a path, making sure that the new graph has a HC if and only
if the old graph has a HC. We call the set of disks used to represent an edge in
such a way a thread. The difficulty stems from edges that are not used in the
HC: substituting such edges with threads is not allowed. Essentially, we can only
use threads if it is guaranteed by the construction that every HC has to pass
through. If this cannot be guaranteed, we use snakes, which are constructions
that allow the HC to either ‘use’ the edge uv, or to make a detour from one of
the endpoints into the gadget, visiting every vertex inside.

v+
end

v−
end

v+
start

v−
start

− +

−
+

−
+

Fig. 2. A drawing of the undirected version.
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u = u

u v
u

u v
u

u v
u

v

e

e e

Head Tail Indicator

Fig. 3. A snake and a corresponding unit disk realization. Below: simulating a HC that
passes or avoids edge uv.

Lemma 4. The maximum vertex degree in G is four, and vertices of degree four
induce a subgraph in which the maximum degree is two.

Proof. The upper bound on the vertex degree follows from the fact that the
original directed graph has maximum indegree and maximum outdegree three.

For the second statement, notice that vertices of degree four are either in-
or out-vertices inside the row of a variable xi, i.e., they are of the form (vj

i )
+

or (vj
i )

−. Moreover, notice that every vertex of degree four has a neighbour of
degree two – the middle vertex (vj

i )
0. Thus it is sufficient to show that for any

degree four vertex v there is an additional neighbour of degree at most three.
The proof is for the case (vj

i )
+. If j = 1 or j = b = 3m + 3, then (vj

i )
+

has (v2
i )− or (vb−1

i )− as a neighbour, and these are vertices of degree three: in
the directed construction, the corresponding vertices had in- and outdegree two,
because they are vertices of the form vj

i , j ≡ 2 (mod 3). If 1 < j < n, then the
vertex has a neighbour in the clause loop, where the maximum degree is three.

��

Representing Edges with Snakes. The snake is simply a 2×k grid graph for
some k ∈ N, with an extra disk at the head of the snake. In Fig. 3 we illustrate
how a snake replacing an edge uv works. We need to add a disk u′ which has the
same neighbourhood as u - (this can be done by taking an identical or slightly
perturbed copy of the disk of u). At the other end of the snake (at the tail) no
such operation on v is required. Through the snake a HC can simulate passing
the edge uv and it can also make a detour from u that covers all inner vertices
if uv is not in the original HC. We define the indicator edge of the snake to be
the edge connecting the snake to v, indicated by e in Fig. 3. It is easy to verify
that if e is not used then we must detour (corresponding to avoiding uv in the
HC), otherwise we must zigzag (corresponding to using uv).

Crossing Gadgets. Notice that in all the crossings in Fig. 2, exactly one of the
crossing edges is a thick golden edge. These edges share the property that at
least one of their endpoints has degree two, thus any Hamiltonian cycle of the
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w

w

w

w
u u

Fig. 4. Crossing a snake and a thread.

construction must pass through the golden edges. Therefore, we can replace the
golden edges by threads; all other edges can be replaced by snakes. We have a
crossing gadget for thread–snake crossings that we describe below.

The crossing gadget is depicted in Fig. 4. A Hamiltonian cycle passing
through the snake in any way cannot enter the edges spanned by the thread: it
can only enter at vertex u, and continue on one of the outgoing thread edges;
that would render one of the points w and w′ unreachable to the HC.

We note that snakes and threads can be used to represent bending edges,
and a bend introduces only constant overhead; furthermore, a vertex can be the
starting or ending point of up to five internally disjoint snakes or threads; since
the maximum degree of G is four by Lemma 4, this threshold is not reached. We
place snakes so that vertices of degree four have at most one connecting snake
head – this can be done since the vertices of degree four in G span a collection
of vertex disjoint paths and cycles by Lemma 4.

v v

w

u3

u2

u1

w u2

u3

u1

v v

odd num. of pairs

Fig. 5. Construction for degree four vertices.

Modifying the Neighbourhood of Vertices of Degree Four with
a Snake Head. All degree four vertices have a neighbour of degree two (the in-
and outvertices u+ and u− are connected to the degree two vertex u0), thus the
connecting edge is always used by all HCs in G. Let v be a degree four vertex
with neighbours w, u1, u2 and u3; let w be the neighbour of degree 2, and let u1

be the neighbour whose snake head is at v. If the vertex has a connecting snake
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head, then we modify the neighbourhood of v so that v′ is not a duplication of
the disk representing v. Connect v to the tail of the w1v snake, and connect it to
the vw2 snake together with v; the two remaining snake tails are only connected
to v′ (see Fig. 5 for the case when wv and u1v are consecutive edges of v in the
drawing). We can also ensure that the length of the vw2 snake is odd, i.e., the
snake is a 2×2k+1 grid for some k ∈ N, not including v and v′. This is required
to make sure that the HC must pass both v and v′ when the snake is used.

Finally, if wv and u1v are non-consecutive edges around v in the drawing
of G (Fig. 2), then we can change the drawing by introducing a new crossing
between vw and vu2 to make wv and u1v consecutive around v. This requires a
new snake-thread crossing, for which we can use our crossing gadget.

v− v+ w−
w+ w−

v− v+ w+

Fig. 6. Adding an extra thread-snake crossing around degree four vertices might be
necessary. Here we added an extra crossing around the brown vertex w− by changing
a thread incident to w− (in violet). (Color figure online)

The Final Construction. We begin by recreating a drawing of G in the plane
with integer coordinates for all vertices, similar to the one seen in Fig. 2. This
fits in a rectangle of size O(n + m) × O(n + m): there are O(n) variable rows
of length O(m), and they require O(1) vertical space each; together with the n
long edges, we can fit these in O(n+m) horizontal and O(n) vertical space. The
loop edges require O(m) more vertical and horizontal space.

We apply a large constant scaling to make enough room for gadgets. Next, we
define an orientation on the snakes so that degree four vertices have at most one
snake head. Such an orientation exists due to Lemma 4. We also introduce extra
crossings around degree four vertices when needed to ensure that the thread edge
and the snake head are neighbours (see the change around w− in Fig. 6). Finally,
we exchange the golden edges with threads and the snake edges with snakes
(Fig. 7); if our initial constant scaling was large enough, we have enough space to
bend threads and snakes, without introducing intersections between independent
snakes and threads. For disks representing vertices, for every incoming snake we
introduce slightly perturbed disks (according to the original definition of snakes).
These extra disks are indicated by a green number in Fig. 7.

Lemma 5. Given an initial undirected graph G corresponding to a 3-CNF for-
mula of n variables and m clauses, the unit disk graph G′ constructed above is
computable in time polynomial in n + m, has O((m + n)2) vertices and it is
equivalent to G in the sense that G′ has a HC if and only if G has a HC.

Proof. First, we show that if G′ has a HC then G has a HC. (The other implica-
tion is trivial.) Let H ′ be a HC in G′. In each thread we designate an arbitrary
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v− v+ w− w+
w

w0v0 v +

2

3

2 2

Fig. 7. The part of the final construction corresponding to Fig. 6. Snake heads are
represented by two red disks, plus multiplicity of the end vertex when needed. Golden
disks correspond to threads. (Color figure online)

inner edge as indicator. Mark an edge in G if the indicator edge of the corre-
sponding thread or snake is contained in H ′. We claim that the set of marked
edges (denoted by H) is a HC in G. Observe that a cut C ⊆ E(G) corresponds
to a cut of the same size in G′: the indicator edges corresponding to the threads
or snakes of the edges in C define a cut of G′. Consequently, for any cut C the
number of H-edges contained in it is an even, positive number, since the corre-
sponding cut C ′ is crossed by H ′ an even, positive number of times. It follows
that H is a spanning connected Eulerian subgraph.

It remains to show that the maximum degree in H is two; since the maximum
degree of G is four, it is sufficient to show that any vertex v of degree four has
degree two in H. If v has no snake heads, then this follows from the fact that
the disk corresponding to v has four independent neighbours in G′.

Let v be a vertex of degree four with a snake head. We denote by S(x, y) the
snake from x to y, with the head at x. We use the notation w, u1, u2, u3 for the
neighbours of v, where deg(w) = 2 and S(v, u1) is the snake whose head is at v
(see Fig. 5). Since there is a thread between w and v, the edge (w, v) is marked.
If H ′ uses S(v, u1), then by the odd length of the snake and our construction,
vv′ is an edge of H ′ — this can be verified by stepping back through S(v, u1)
from the indicator edge at u1. So in this case, H ′ must detour on both S(u2, v

′)
and S(u3, v

′). Otherwise (if S(v, u1) is only a detour in H ′), then one of the
neighbours of v′ in H ′ is inside S(v, u1), so H ′ can use only one of S(u2, v

′) and
S(u3, v

′). Thus, the degree of v in H is two in both cases.
The construction can be created in polynomial time from an initial graph G.

It is placed in a rectangle of size O(n + m) × O(n + m); since every point in
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this rectangle is covered by at most four disks (which can occur if there are two
snake heads at a degree three vertex), it follows that the number of disks used
is O((n + m)2). ��
Theorem 4. There is no 2o(

√
n) algorithm for Hamiltonian cycle in unit disk

graphs, unless the ETH fails.

Proof. Suppose that the initial formula has m̂ clauses and n̂ variables. Without
loss of generality, suppose that m̂ = Θ(n̂) (see the Sparsification Lemma in [3]).
The graph G can be created in polynomial time starting from our formula, and
by Lemma 5 we can create G′ in polynomial time from G. The resulting unit disk
graph G′ has a HC if and only if the original formula is satisfiable. Since the
resulting UDG has O(n̂2) vertices, a 2o(

√
n) = 2o(

√
n̂2) algorithm would mean that

we could decide the satisfiability of the formula in 2o(n̂) time, which contradicts
the Exponential Time Hypothesis. ��

4 Colouring Disk Graphs

To complement our results on Hamiltonian Cycle, we show that the square root
phenomenon also holds for q-colouring on disk graphs when q is a constant.

Theorem 5. (a) For any constant q, there is an algorithm running in time
O(2O(

√
n)) that solves the q-colouring problem on disk graphs. (b) There is no

2o(
√

n) algorithm for q-colouring in unit disk graphs for any constant q ≥ 3,
unless the ETH fails.

5 Conclusions

We have shown that the HC problem and q-colouring both have 2O(
√

n) algo-
rithms in bounded-ratio disk graphs, and matching lower bounds 2Ω(

√
n) if ETH

holds. We have also seen that in case of the colouring problem, the same result
applies in general disk graphs.

Some preliminary work shows that it should be possible to get a 2Ω(
√

n) lower
bound for HC in the more restricted case of grid graphs, although the proof and
the gadgets used will be more complicated.

A major remaining open problem is to find a 2O(
√

n) algorithm for HC in
disk graphs. Finally, we remind the reader that reducing the coefficient of

√
n in

the exponents of these running times is also a worthwhile effort; in the case of
Hamiltonian Cycle on general graphs, a steady wave of improvements yielded
impressive results; can the community achieve something similar for these
square-root type algorithms?

Acknowledgements. This work was initiated at the Lorentz Center workshop ‘Fixed-
Parameter Computational Geometry’. We are grateful to Hans L. Bodlaender and Mark
de Berg for discussions and their help with improving this paper.



380 S. Kisfaludi-Bak and T.C. van der Zanden

References

1. Alber, J., Fiala, J.: Geometric separation and exact solutions for the parameterized
independent set problem on disk graphs. J. Algorithms 52(2), 134–151 (2004).
http://dx.doi.org/10.1016/j.jalgor.2003.10.001

2. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single expo-
nential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput. 243, 86–111 (2015)

3. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015).
doi:10.1007/978-3-319-21275-3

4. Cygan, M., Kratsch, S., Nederlof, J.: Fast hamiltonicity checking via bases of per-
fect matchings. In: Proceedings of the Forty-Fifth Annual ACM Symposium on
Theory of Computing, STOC 2013, pp. 301–310. ACM, New York (2013). http://
doi.acm.org/10.1145/2488608.2488646

5. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M.,
Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in
single exponential time. In: Proceedings of the 2011 IEEE 52nd Annual Sympo-
sium on Foundations of Computer Science, FOCS 2011, Washington, DC, USA,
pp. 150–159 (2011). http://dx.doi.org/10.1109/FOCS.2011.23

6. Deineko, V.G., Klinz, B., Woeginger, G.J.: Exact algorithms for the hamil-
tonian cycle problem in planar graphs. Oper. Res. Lett. 34(3), 269–274 (2006).
http://dx.doi.org/10.1016/j.orl.2005.04.013
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1 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{kleer,schaefer}@cwi.nl

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract. We introduce a new model of congestion games that cap-
tures several extensions of the classical congestion game introduced by
Rosenthal in 1973. The idea here is to parameterize both the perceived
cost of each player and the social cost function of the system designer.
Intuitively, each player perceives the load induced by the other players
by an extent of ρ ≥ 0, while the system designer estimates that each
player perceives the load of all others by an extent of σ ≥ 0. For specific
choices of ρ and σ, we obtain extensions such as altruistic player behav-
ior, risk sensitive players and the imposition of taxes on the resources. We
derive tight bounds on the price of anarchy and the price of stability for
a large range of parameters. Our bounds provide a complete picture of
the inefficiency of equilibria for these games. As a result, we obtain tight
bounds on the price of anarchy and the price of stability for the above
mentioned extensions. Our results also reveal how one should “design”
the cost functions of the players in order to reduce the price of anarchy.
Somewhat counterintuitively, if each player cares about all other players
to the extent of ρ = 0.625 (instead of 1 in the standard setting) the price
of anarchy reduces from 2.5 to 2.155 and this is best possible.

1 Introduction

Congestion games constitute an important class of non-cooperative games which
was introduced by Rosenthal in 1973 [13]. In a congestion game, we are given a
set of resource from which a set of players can choose. Each resource is associ-
ated with a cost function which specifies the cost of this resource depending on
the total number of players using it. Every player chooses a subset of resources
(from a set of resource subsets available to her) and experiences a cost equal to
the sum of the costs of the chosen resources. Congestion games are both theo-
retically appealing and practically relevant. For example, they have applications
in network routing, resource allocation and scheduling problems.

Rosenthal [13] proved that every congestion game has a pure Nash equilib-
rium, i.e., a strategy profile such that no player can decrease her cost by unilat-
erally deviating to another feasible set of resources. This result was established
through the use of an exact potential function (known as Rosenthal potential)
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 381–392, 2017.
DOI: 10.1007/978-3-319-57586-5 32
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satisfying that the cost difference induced by a unilateral player deviation is equal
to the potential difference of the respective strategy profiles. In fact, Monderer
and Shapley [11] showed that the class of games admitting an exact potential
function is isomorphic to the class of congestion games.

One of the main research directions in algorithmic game theory focusses on
quantifying the inefficiency caused by selfish behavior. The idea is to assess the
quality of a Nash equilibrium relative to an optimal outcome. Here the quality
of an outcome is measured in terms of a given social cost objective (e.g., the sum
of the costs of all players). Koutsoupias and Papadimitriou [10] introduced the
price of anarchy as the ratio between the worst social cost of a Nash equilibrium
and the social cost of an optimum. Anshelevich et al. [1] defined the price of
stability as the ratio between the best social cost of a Nash equilibrium and the
social cost of an optimum.

In recent years, several extensions of Rosenthal’s congestion games were pro-
posed to incorporate aspects which are not captured by the standard model.
For example, these extensions include risk sensitivity of players in uncertain set-
tings [12], altruistic player behavior [4,5] and congestion games with taxes [3].
We elaborate in more detail on these extensions in Sect. 2. These games were
studied intensively with the goal to obtain a precise understanding of the price
of anarchy.

In this paper, we introduce a new model of congestion games, which we term
perception-parameterized congestion games, that captures all these extensions
(and more) in a unifying way. The key idea here is to parameterize both the
perceived cost of each player and the social cost function. Intuitively, each player
perceives the load induced by the other players by an extent of ρ ≥ 0, while the
system designer estimates that each player perceives the load of all others by an
extent of σ ≥ 0. The above mentioned extensions reduce to special cases of our
model by choosing the parameters ρ and σ accordingly.

Despite the fact that we deal with a more general class of congestion games,
we manage to derive tight bounds on the price of anarchy and the price of
stability for a large range of parameters. Our bounds provide a complete picture
of the inefficiency of equilibria for these perception-parameterized congestion
games. As a consequence, we obtain tight bounds on the price of anarchy and
the price of stability for the above mentioned extensions. While the price of
anarchy bounds are (mostly) known from previous results, the price of stability
results are new. As in [3–5,12], we focus on congestion games with affine cost
functions.

We illustrate our model by means of a simple example; formal definitions of
our perception-parameterized congestion games are given in Sect. 2. Suppose we
are given a set of m resources and that every player has to choose precisely one
of these resources. The cost of a resource e ∈ [m]1 is given by a cost function
ce that maps the load on e to a real value. In the classical setting, the load of
a resource e is defined as the total number of players xe using e. That is, the
cost that player i experiences when choosing resource e is ce(xe). In contrast, in

1 Given a positive integer m, we use [m] to refer to the set {1, . . . , m}.
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Table 1. An overview of (tight) price of anarchy and price of stability results for
certain values of ρ and σ. Here h(1) ≈ 0.625 (see Theorem 1 for a formal definition).
The respective references where these bounds were established first are given in the
column “Ref.”; an asterisk indicates that this result is new.

Model Parameters PoA Ref. PoS Ref.

Classical ρ = σ = 1 5/2 [6] 1.577 [3]

Altruism (1) σ = 1, 1 ≤ ρ ≤ 2 4ρ+1
1+ρ

[4,5]
√
3+1√

3+ρ−1
[∗]

Altruism (2) σ = 1, 2 ≤ ρ ≤ ∞ ρ + 1 [5] – –

Risk-neutral players σ = ρ = 1/2 5/3 [12] 1.447 [∗]

Wald’s minimax σ = 1/2, ρ = 1 2 [2,12] 1 [∗]

Constant universal taxes σ = 1, ρ = h(1) 2.155 [3] 2.013 [∗]

Generalized affine CG − ∞ [∗] 2 [∗]

our setting players have different perceptions of the load induced by the other
players. More precisely, the perceived load of player i choosing resource e is
1 + ρ(xe − 1), where ρ ≥ 0 is a parameter. Consequently, the perceived cost of
player i for choosing e is ce(1 + ρ(xe − 1)). Note that as ρ increases players care
more about the presence of other players.2 In addition, we introduce a similar
parameter σ ≥ 0 for the social cost objective. Intuitively, this can be seen as the
system designer’s estimate of how each player perceives the load of the other
players. In our example, the social cost is defined as

∑
e∈[m] ce(1 + σ(xe − 1))xe.

Our Results. We prove the following bounds on the price of anarchy (PoA)
and the price of stability (PoS) of affine congestion games for a large range of
parameters (ρ, σ) (specified below):

PoA ≤ max
{

ρ + 1,
2ρ(1 + σ) + 1

ρ + 1

}

and PoS ≤
√

σ(σ + 2) + σ
√

σ(σ + 2) + ρ − σ
. (1)

We prove that these bounds are tight for general affine congestion games. Fur-
ther, for the special case of symmetric network congestion games we show that
the bound of (2ρ(1 + σ) + 1)/(ρ + 1) on the price of anarchy is asymptotically
tight. In contrast, for this case we derive a better (tight) bound on the price of
stability for σ = 1 and ρ ≥ 0. An overview of the price of anarchy and the price
of stability results that we obtain from (1) for several applications known in the
literature is given in Table 1; see Fig. 2 for an illustration of our PoA bound. The
connection between these applications and our model is discussed at the end of
Sect. 2.

In light of the above bounds, we obtain an (almost) complete picture of the
inefficiency of equilibria (parameterized by ρ and σ); for example, see Fig. 1 for

2 In this work, we concentrate on the homogeneous player case.
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ρ0 h(1) ≈ 0.625 1 2

PoA(Γ, ρ, 1)

ρ + 1

4ρ + 1

ρ + 1

2.155

4

ρ(4 − ρ)

Fig. 1. Lower bounds on the price of anarchy for σ = 1. The bounds (4ρ + 1)/(ρ + 1)
and ρ + 1 are also tight upper bounds. The dotted horizontal line indicates the lower
bound following from [4, Theorem 3.7]. The bound 4/(ρ(4 − ρ)) is a lower bound for
symmetric singleton congestion games given in the proof of Theorem 5. A tight bound
for 0 < ρ ≤ h(1) remains an open problem.

σ0 1
2

1

ρ

ρ = σ

ρ = 2σ

ρ = h(σ)

ρ + 1

2ρ(1 + σ) + 1

ρ + 1

?

Fig. 2. The bound ρ+1 holds for ρ ≥ 2σ ≥ 1. The bound (2ρ(1+σ)+1)/(1+ρ) holds
for σ ≤ ρ ≤ 2σ. Roughly speaking, this bound also holds for h(σ) ≤ ρ ≤ σ, but our
proof of Theorem 1 only works for a discretized range of σ (hence the vertical dotted
lines in this area). The function h is given in Theorem 1.

an illustration of the price of anarchy if σ = 1. Note that the price of anarchy
decreases from 5

2 for ρ = 1 to 2.155 for ρ = h(1) ≈ 0.625.3

3 The price of anarchy for ρ = h(1) was first established by Caragiannis et al. [3].
However, our bounds reveal that the price of anarchy is in fact minimized at ρ = h(1)
(see also Fig. 1).
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2 Our Model, Applications and Related Work

We first formally introduce our model of congestion games with parameterized
perceptions. We then show that our model subsumes several other models that
were studied in the literature as special cases.

A congestion game Γ is given by a tuple (N,E, (Si)i∈N , (ce)e∈E) where N =
[n] is the set of players, E the set of resources (or facilities), Si ⊆ 2E the set
of strategies of player i, and ce : R≥0 → R≥0 the cost function of facility e.
Given a strategy profile s = (s1, . . . , sn) ∈ ×iSi, we define xe as the number of
players using resource e, i.e., xe = xe(s) = |{i ∈ N : e ∈ si}|. If Si = Sj for all
i, j ∈ N , the game is called symmetric. For a given graph G = (V,E), we call Γ
a (directed) network congestion game if for every player i there exist si, ti ∈ V
such that Si is the set of all (directed) (si, ti)-paths in G. An affine congestion
game has cost functions of the form ce(x) = aex + be with ae, be ≥ 0. If be = 0
for all e ∈ E, the game is called linear.

We introduce our unifying model of perception-parameterized congestion
games with affine latency functions. For a fixed parameter ρ ≥ 0, we define
the cost of player i ∈ N by

Cρ
i (s) =

∑

e∈si

ce(1 + ρ(xe − 1)) = ae[1 + ρ(xe − 1)] + be (2)

for a given strategy profile s = (s1, . . . , sn). For a fixed parameter σ ≥ 0, the
social cost of a strategy profile s is given by

Cσ(s) =
∑

i∈N

Cσ
i (s) =

∑

e∈E

xe(ae[1 + σ(xe − 1)] + be). (3)

We refer to the case ρ = σ = 1 as the classical congestion game with cost
functions ce(x) = aex + be for all e ∈ E.

A strategy profile s is a Nash equilibrium if for all players i ∈ N it holds that
Cρ

i (s) ≤ Cρ
i (s′

i, s−i) for all s′
i ∈ Si, where (s′

i, s−i) denotes the strategy profile
in which player i plays s′

i and all the other players their strategy in s. The price
of anarchy (PoA) and price of stability (PoS) of a game Γ are defined as

PoA(Γ, ρ, σ) =
maxs∈NE Cσ(s)

mins∗∈×iSi
Cσ(s∗)

and PoS (Γ, ρ, σ) =
mins∈NE Cσ(s)

mins∗∈×iSi
Cσ(s∗)

,

where NE = NE(ρ) denotes the set of Nash equilibria with respect to the
player costs as defined in (2). For a collection of games H, PoA(H, ρ, σ) =
supΓ∈H PoA(Γ, ρ, σ) and PoS(H, ρ, σ) = supΓ∈H PoS(Γ, ρ, σ). Unless stated oth-
erwise, our results refer to the class of perception-parameterized congestion
games with affine latency functions; we therefore drop the parameter H below.
Rosenthal [13] shows that classical congestion games (i.e., ρ = σ = 1) have
an exact potential function: Φ : ×iSi → R is an exact potential function for a
congestion game Γ if for every strategy profile s, for every i ∈ N and every
s′

i ∈ Si: Φ(s) − Φ(s−i, s
′
i) = Ci(s) − Ci(s−i, s

′
i). The Rosenthal potential
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Φ(s) =
∑

e∈E

∑xe

k=1 ce(k) is an exact potential function for classical congestion
games.

We review various models that fall within, or are related to, the framework
proposed above (for certain values of ρ and σ). These models sometimes interpret
the parameters differently than explained above.

Altruism [4,5]. We can rewrite the cost of player i as Cρ
i (s) =

∑
e∈si

(aexe +
be) + (ρ − 1)ae(xe − 1). The term (ρ − 1)ae(xe − 1) can be interpreted as a
“dynamic” (meaning load-dependent) tax that players using resource e have to
pay. For 1 ≤ ρ ≤ ∞ and σ = 1, this model is equivalent to the altruistic player
setting proposed by Caragiannis et al. [4]. Chen et al. [5] also study this model
of altruism for 1 ≤ ρ ≤ 2 and σ = 1.

Constant Taxes [3]. We can rewrite the cost of player i as Cρ
i (s) =

∑
e∈si

ρaexe+
(1 − ρ)ae + be. Dividing by ρ gives that s is a Nash equilibrium with respect to
Cρ

i if and only if s is a Nash equilibrium with respect to T ρ
i (s) = Cρ

i /ρ =∑
e∈si

(aexe + be/ρ) +
∑

e∈si
(1 − ρ)/ρae. That is, s is a Nash equilibrium in a

classical congestion game in which players take into account constant resource
taxes of the form (1 − ρ)/ρ · ae. Caragiannis, Kaklamanis and Kanellopoulos [3]
study this type of taxes, which they call universal tax functions, for ρ satisfying
(1− ρ)/ρ = 3/2

√
3− 2. They consider these taxes to be refundable, i.e., they are

not taken into account in the social cost, which is equivalent to the case σ = 1.
Note that the function τ : (0, 1] → [0,∞) defined by τ(ρ) = (1−ρ)/ρ is bijective.4

Caragiannis et al. [3] showed that the price of anarchy can be decreased to 2.155
by the usage of universal tax functions, which improves significantly the classical
bound of 2.5. Furthermore, from [3, Theorem 3.7] it follows that the price of
anarchy can never be better than 2.155 for 0 ≤ ρ ≤ h(1). However, in this work
we show that the price of stability increases from 1.577 (for classical games) to
2.013, for this specific set of tax functions.

Risk Sensitivity Under Uncertainty [12]. Nikolova, Piliouras and Shamma [12]
consider congestion games in which there is a (non-deterministic) order of the
players on every resource. A player is only affected by players in front of her. That
is, the load on resource e for player i in a strict ordering r, where re(i) denotes
the position of player i, is given by xe(i) = |{j ∈ N : re(j) ≤ re(i)}|. The cost of
player i is then Ci(s) =

∑
e∈si

ce(xe(i)). Note that xe(i) is a random variable if
the ordering is non-deterministic. The social cost of the model is defined by the
sum of all player costs C

1
2 (s) =

∑
e∈E

1
2aexe(xe + 1) + be which is independent

of the ordering r.5 Note that the social cost corresponds to the case σ = 1
2 in our

framework. Nikolova et al. [12] study various risk attitudes towards the ordering
r that is assumed to have a uniform distribution over all possible orderings.
The two relevant attitudes are that of risk-neutral players and players applying
Wald’s minimax principle. Risk-neutral players define their cost as the expected
cost under the ordering r, which correspond to the case ρ = 1

2 in (2). This

4 This relation between altruism (or spite) and constant taxes is also mentioned by
Caragiannis et al. [4].

5 In every ordering there is always one player first, one player second, and so on.
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can roughly be interpreted as that players expect to be scheduled in the middle
on average. Wald’s minimax principle implies that players assume a worst-case
scenario, i.e., being scheduled last on all the resources. This corresponds to the
case ρ = 1.

Approximate Nash Equilibria [7]. Suppose that s is a Nash equilibrium under
the cost functions defined in (2). Then, in particular, we have C1

i (s) ≤ Cρ
i (s) ≤

Cρ
i (s′

i, s−i) ≤ ρC1
i (s′

i, s−i) for any player i and s′
i ∈ Si and ρ ≥ 1. That is, we

have C1
i (s) ≤ ρC1

i (s′
i, s−i) which means that the profile s is a ρ-approximate

equilibrium, as studied by Christodoulou, Koutsoupias and Spirakis [7]. In par-
ticular, this implies that any upper bound on the price of anarchy, or price of
stability, in our framework yields an upper bound on the price of stability for
ρ-approximate equilibria for the same class of games. For σ = 1 and 1 ≤ ρ ≤ 2,
we obtain a bound of (

√
3 + 1)/(

√
3 + ρ − 1) on the price of stability. In partic-

ular, this also yields the same bound on the price of stability for ρ-approximate
equilibria. This bound was previously obtained by Christodoulou et al. [7]. Con-
ceptually our approach is different: We prove our bound by observing that every
Nash equilibrium in our framework yields an approximate equilibrium. In par-
ticular, this gives rise to a potential function that can be used to carry out the
technical details (namely the potential function that is exact for our congestion
game).6

Generalized Affine Congestion Games. Let A′ denote the class of all congestion
games Γ for which all resources have the same cost function c(x) = ax + b,
where a = a(Γ ) and b = b(Γ ) satisfy a ≥ 0 and a + b > 0. The class of affine
congestion games with non-negative coefficients is contained in A′ since every
such game can always be transformed7 into a game Γ ′ with ae = 1 and be = 0
for all resources e ∈ E′, where E′ is the resource set of Γ ′. Without loss of
generality we can assume that a + b = 1, since the cost functions can be scaled
by 1/(a + b). The cost functions of Γ ∈ A′ can then equivalently be written as
c(x) = ρx + (1 − ρ) for ρ ≥ 0. This is precisely the definition of Cρ

i (s) (with
ae = 1 and be = 0 taken there). In particular, if we take σ = ρ, meaning that
Cρ(s) =

∑
i∈N Cρ

i (s), we have PoA(A′) = supρ≥0 PoA(A, ρ, ρ) and PoS(A′) =
supρ≥0 PoS(A, ρ, ρ), where A denotes the class of affine congestion games with
non-negative coefficients.

Due to page limitations some material is omitted below. All missing details
can be found in the full version of this paper [9].

3 Price of Anarchy

We derive the upper bound on the price of anarchy given in (1). We start with
the bound of (2ρ(1 + σ) + 1)/(ρ + 1).
6 Nevertheless, the framework of Christodoulou et al. [7] is somewhat more general

and might be used to obtain a tight bound for the price of stability of approximate
equilibria (which is not known to the best of our knowledge).

7 This transformation can be done in such a way that both PoA and PoS of the game
do not change. For a proof the reader is referred to, e.g., [5, Lemma 4.3].
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We need the following technical lemma for the proof of Theorem1:

Lemma 1. Let s be a Nash equilibrium under the cost functions Cρ
i (s) and let

s∗ be a minimizer of Cσ(·). For ρ, σ ≥ 0 fixed, if there exist α(ρ, σ), β(ρ, σ) ≥ 0
such that

(1 + ρx)y − ρ(x − 1)x − x ≤ −β(ρ, σ)(1 + σ(x − 1))x + α(ρ, σ)(1 + σ(y − 1))y

for all non-negative integers x and y, then β(ρ, σ)Cσ(s) ≤ α(ρ, σ)Cσ(s∗).

Theorem 1. We have PoA(ρ, σ) ≤ (2ρ(1 + σ) + 1)/(ρ + 1) if

(i) 1
2 ≤ σ ≤ ρ ≤ 2σ, or

(ii) σ = 1 and h(σ) ≤ ρ ≤ 2σ, where h(σ) = g(1 + σ +
√

σ(σ + 2), σ) is the
optimum of the function

g(a, σ) =
σ(a2 − 1)

(1 + σ)a2 − (2σ + 1)a + 2σ(σ + 1)
.

Further, there exists a function Δ = Δ(σ) satisfying for every fixed σ0 ≥ 1/2: if
Δ(σ0) ≥ 0, then the stated bound is true for all h(σ0) ≤ ρ ≤ 2σ0.

Proof (Sketch). For the functions α(ρ, σ) = (2ρ(1+σ)+1)/(1+2σ) and β(ρ, σ) =
(1 + ρ)/(1 + 2σ), we prove the inequality in Lemma1. We show that for certain
functions f1 and f2, the smallest ρ satisfying the inequality of Lemma1 is given
by the quantity

h(σ) = sup
x,y∈N:f1(x,y,σ)>0

−f2(x, y, σ)
f1(x, y, σ)

.

We divide the set (x, y) ∈ N × N in lines of the form x = ay and determine
the supremum over every line. After that we take the supremum over all lines,
which then gives the desired result. We first show that the case x ≤ y is trivial.
We then focus on y < x. In this case, we show that h(σ) = max{γ1(σ), γ2(σ)}
for certain functions γ1 and γ2. Numerical experiments suggest that Δ(σ) :=
γ1(σ) − γ2(σ) ≥ 0, that is, the maximum is always attained for γ1 (which is the
definition of h given in the statement). In particular, this means that if for a
fixed σ the non-negativity of Δ(σ) is satisfied, then this yields an exact proof of
the inequality of Lemma 1 for h(σ) ≤ ρ ≤ 2σ. The function Δ is specified in the
full version of this paper [9]. 
�

Numerical experiments suggest that Δ(σ) is non-negative for all σ ≥ 1/2.
We emphasize that for a fixed σ, with Δ(σ) ≥ 0, the proof that the inequality
holds for all h(σ) ≤ ρ ≤ 2σ is exact in the parameter ρ. The first two cases of
Theorem 1 capture all the price of anarchy results from the literature.

We next show that the bound of Theorem1 is also an (asymptotic) lower
bound for linear symmetric network congestion games.8 This improves a result
8 In the the full version [9] we show tightness for general congestion games.
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in the risk-uncertainty model of Piliouras et al. [12], who only prove asymptotic
tightness for symmetric linear congestion games (for their respective values of ρ
and σ). It also improves a result in the altruism model by Chen et al. [5], who
show tightness only for general congestion games.

Christodoulou and Koutsoupias [6] showed that for symmetric congestion
games (ρ = σ = 1) the bound of 5

2 on the price of anarchy is asymptotically
tight. More recently, Correa et al. [8] proved that the bound of 5

2 is tight for
symmetric network congestion games. Our lower bound proof is a generalization
of their construction.

Theorem 2. For ρ, σ > 0 fixed, there exists a symmetric network linear con-
gestion game such that for every ε > 0, PoA(ρ, σ) ≥ (2ρ(1 + σ) + 1)/(ρ + 1) − ε.

For ρ ≥ 2σ, we can obtain a tight bound of ρ + 1 on the price of anarchy.
Remarkably, the bound itself does not depend on σ, only the range of ρ and σ
for which it holds. For the parameters σ = 1 and ρ ≥ 2 in the altruism model
of Caragiannis et al. [4], this bound is known to be tight for non-symmetric
singleton congestion games (where all strategies consist of a single resource).
We only provide tightness for general congestion games, but the construction is
significantly simpler.

Theorem 3. We have PoA(ρ, σ) ≤ ρ+1 for 1 ≤ 2σ ≤ ρ and this bound is tight.

4 Price of Stability

We show the bound given in (1) to be an (asymptotically) tight bound for the
price of stability for a large range of pairs (ρ, σ). We need the following technical
lemma.

Lemma 2. For all non-negative integers x and y, and σ ≥ 0 arbitrary, we have
(

x − y +
1
2

)2

− 1
4

+ 2σx(x − 1) + (
√

σ(σ + 2) + σ)[y(y − 1) − x(x − 1)] ≥ 0.

Theorem 4. We have

PoS(ρ, σ) ≤
√

σ(σ + 2) + σ
√

σ(σ + 2) + ρ − σ
for σ > 0 and

2σ

1 + σ +
√

σ(σ + 2)
≤ ρ ≤ 2σ

and this bound is asymptotically tight.

Our proof is similar to a technique of Christodoulou, Koutsoupias and Spirakis
[7] for upper bounding the price of stability of ρ-approximate equilibria. However,
for a general σ the analysis is more involved. The main technical contribution
comes from establishing the inequality in Lemma 2. The proof of the asymptotic
tightness is also based on a construction due to Christodoulou et al. [7] used
for obtaining a (non-tight) lower bound on the price of stability of approximate
equilibria. The lower bound proof is omitted here.
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Proof. Note that we can write Cρ
i (s) = aexe + be + (ρ − 1)aexe. By Rosenthal

[13],

Φρ(s) :=
∑

e∈E

ae
xe(xe + 1)

2
+ bexe + (ρ − 1)

∑

e∈E

ae
(xe − 1)xe

2

is an exact potential for Cρ
i (s). The idea of the proof is to combine the Nash

inequalities and the fact that the global minimum of Φρ(·) is a Nash equilibrium.
Let s denote the global minimum of Φρ and s∗ a socially optimal solution.

We can without loss of generality assume that ae = 1 and be = 0. The Nash
inequalities (as in the price of anarchy analysis) yield

∑

e∈E

xe(1 + ρ(xe − 1)) ≤
∑

e∈E

(1 + ρxe)x∗
e.

The fact that s is a global optimum of Φρ(·) yields Φρ(s) ≤ Φρ(s∗), which reduces
to

∑

e∈E

ρx2
e + (2 − ρ)xe ≤

∑

e∈E

ρ(x∗
e)

2 + (2 − ρ)x∗
e.

If we can find γ, δ ≥ 0, and some K ≥ 1, for which
(
0 ≤ ) γ

[
ρ(x∗

e)
2 + (2 − ρ)x∗

e − ρx2
e − (2 − ρ)xe

]
+ δ [(1 + ρxe)x

∗
e − xe(1 + ρ(xe − 1)]

≤ K · x∗
e [1 + σ(x∗

e − 1)] − xe[1 + σ(xe − 1)], (4)

then this implies that Cσ(s)/Cσ(s∗) ≤ K. We take δ = (K − 1)/ρ and γ =
((ρ − 1)K + 1)/(2ρ). It is not hard to see that δ ≥ 0 always holds, however, for
γ we have to be more careful. We will later verify for which combinations of ρ
and σ the parameter γ is indeed non-negative. Rewriting the expression in (4)
yields that we have to find K satisfying K ≥ f2(xe, x

∗
e, σ)/f1(xe, x

∗
e, ρ, σ), where

f2(xe, x
∗
e , σ) := (x∗

e)
2 − 2xex

∗
e + (1 + 2σ)x2

e − x∗
e + (1 − 2σ)xe

f1(xe, x
∗
e , ρ, σ) := (1 − ρ + 2σ)(x∗

e)
2 − 2xex

∗
e + (1 + ρ)x2

e + (ρ − 1 − 2σ)x∗
e − (ρ − 1)xe.

Note that this reasoning is correct only if f1(xe, x
∗
e, ρ, σ) ≥ 0. This is true

because

f1(xe, x
∗
e, ρ, σ) =

(

xe − x∗
e +

1
2

)2

− 1
4

+ (2σ − ρ)x∗
e(x

∗
e − 1) + ρxe(xe − 1)

is non-negative for all xe, x
∗
e ∈ N, σ ≥ 0 and 0 ≤ ρ ≤ 2σ. Furthermore, the

expression is zero if and only if (xe, x
∗
e) ∈ {(0, 1), (1, 1)}. But for these pairs the

nominator is also zero, and hence, the expression in (4) is therefore satisfied for
those pairs. We can write

f2(xe, x
∗
e, σ) =

(

xe − x∗
e +

1
2

)2

− 1
4

+ 2σxe(xe − 1)
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and therefore f2/f1 = A
A+(2σ−ρ)B , where

A =
(

xe − x∗
e +

1
2

)2

− 1
4

+ 2σxe(xe − 1) and B = x∗
e(x

∗
e − 1) − xe(xe − 1).

Note that if ρ = 2σ, we have f2/f1 = 1, and hence we can take K = 1. Otherwise,

A

A + (2σ − ρ)B
≤

√
σ(σ + 2) + σ

√
σ(σ + 2) + ρ − σ

=: K ⇔ A + (
√

σ(σ + 2) + σ)B ≥ 0.

The inequality on the right is true by Lemma2.
To finish the proof, we determine the pairs (ρ, σ) for which the parameter γ

is non-negative. This holds if and only if

(ρ − 1)K + 1 = (ρ − 1)

√
σ(σ + 2) + σ

√
σ(σ + 2) + ρ − σ

+ 1 ≥ 0.

Rewriting this yields the bound on ρ in the statement of the theorem. 
�
The price of anarchy bound of (1 + 2ρ(1 + σ))/(1 + ρ) is tight even for

symmetric network congestion games with linear cost functions (see Theorem 2).
In contrast, this is not true for the price of stability bound (for σ = 1):

Theorem 5. Let Γ be a linear symmetric network congestion game, then

PoS(Γ, ρ, 1) ≤
⎧
⎨

⎩

4/(ρ(4 − ρ)) if 0 ≤ ρ ≤ 1
4/(2 + ρ) if 1 ≤ ρ ≤ 2
(2 + ρ)/4 if 2 ≤ ρ < ∞.

In particular, if Γ is a symmetric congestion game on an extenstion-parallel9

graph G, then the upper bounds even hold for the price of anarchy. All bounds
are tight.

For ρ ≥ 1, the bounds were previously shown by Caragiannis et al. [4] for the
price of anarchy of singleton symmetric congestion games (which can be modeled
on an extension-parallel graph).

Since any Nash equilibrium under the player cost Cρ
i (·) is in particular a

ρ-approximate Nash equilibrium, we also obtain the following result.

Corollary 1. The price of stability for ρ-approximate equilibria, with 1 ≤ ρ ≤ 2,
is upper bounded by 4/(2 + ρ) for linear symmetric network congestion games.

Acknowledgements. We thank the anonymous referees for their very useful
comments.

9 A graph G is extension-parallel if it consists of (i) a single edge, (ii) a single edge
and an extension-parallel graph composed in series, or (iii) two extension-parallel
graphs composed in parallel.



392 P. Kleer and G. Schäfer
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Abstract. In the Eternal Domination game, a team of guard tokens
initially occupies a dominating set on a graph G. A rioter then picks a
node without a guard on it and attacks it. The guards defend against
the attack: one of them has to move to the attacked node, while each
remaining one can choose to move to one of his neighboring nodes. The
new guards’ placement must again be dominating. This attack-defend
procedure continues perpetually. The guards win if they can eternally
maintain a dominating set against any sequence of attacks, otherwise
the rioter wins.

We study rectangular grids and provide the first known general upper
bound for these graphs. Our novel strategy implements a square rotation
principle and eternally dominates m×n grids by using approximately mn

5

guards, which is asymptotically optimal even for ordinary domination.

Keywords: Eternal domination · Combinatorial game · Two players ·
Graph protection · Grid

1 Introduction

Protection and security needs have always remained topical throughout human
history. Nowadays, patrolling a network of premises, forcefully defending against
attacks and ensuring a continuum of safety are top-level affairs in any military
strategy or homeland security agenda.

Going back in time, the Roman Domination problem was introduced in [22]:
where should Emperor Constantine the Great have located his legions in order to
optimally defend against attacks in unsecured locations without leaving another
location unsecured? In computer science terms, the interest is in producing a
placement of guards on a graph such that any node without a guard has at
least one neighbor with two guards on it. In other words, we are looking for a
dominating set of the graph (i.e. each node must have a guard on it or on at
least one of its neighbors), but with some extra qualities. Some seminal work on
this topic includes [15,21].

The above modeling caters only for a single attack on an unsecured node.
A natural question is to consider special domination strategies against a sequence
of attacks on the same graph [5]. In this setting, (some of) the guards are allowed
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to move after each attack to defend against it and modify their overall placement.
The difficulty here lies in establishing a robust guards’ placement in order to
retain domination after coping with each attack. Such a sequence of attacks can
be of finite (i.e. a set of k consecutive attacks) or even infinite length.

In this paper, we focus on the latter. We wish to protect a graph against
attacks happening indefinitely on its nodes. Initially, the guards are placed on
some nodes of the graph such that they form a dominating set (a simple one; not a
Roman one). Then, an attack occurs on an unguarded node. All the guards (may)
now move in order to counter the attack: one of them moves to the attacked
node, while each of the others moves to one of his neighboring nodes such that
the new guards’ placement forms again a dominating set. This scenario takes
place ad infinitum. The attacker’s objective is to devise a sequence of attacks
which leads the guards to a non-dominating placement. On the other hand, the
guards wish to maintain a sequence of dominating sets without any interruption.
The Eternal Domination problem, studied in this paper, deals with determining
the minimum number of guards such that they perpetually protect the graph in
the above fashion. The focus is on rectangular grids, where we provide a first,
up to our knowledge, upper bound.

Related Work. Infinite order domination was originally considered by Burger
et al. [4] as an extension to finite order domination. Later on, Goddard et al.
[12] proved some first bounds with respect to some other graph-theoretic notions
(like independence and clique cover) for the one-guard-moves and all-guards-
move cases. The relationship between eternal domination and clique cover is
examined more carefully in [1]. There exists a series of other papers with several
combinatorial bounds, e.g. see [13,16,17,20].

Regarding the special case of grid graphs, Chang [6] gave many strong upper
and lower bounds for the domination number. Indeeed, Gonçalves et al. [14]
proved Chang’s construction optimal for rectangular grids where both dimen-
sions are greater or equal to 16. Moving onward to eternal domination, bounds
for 3 × n [8], 4 × n [2] and 5 × n [23] grids have been examined, where for 3 × n
the bounds are almost tight and for 4 × n exactly tight.

Due to the mobility of the guards in eternal domination and the breakdown
into alternate turns (guards vs attacker), one can view this problem as a pursuit-
evasion combinatorial game in the same context as Cops & Robber [3] and the
Surveillance Game [10,11]. In all three of them, there are two players who take
turns alternately with one of them pursuing the other possibly indefinitely.

Besides, an analogous Eternal Vertex Cover problem has been considered
[9,18], where attacks occur on the edges of the graph. In that setting, the guards
defend against an attack by traversing the attacked edge, while they move in
order to preserve a vertex cover after each turn.

For an overall picture and further references on the topic, the reader is sug-
gested to tend to a recent survey on graph protection [19].

Our Result. We make a first step towards answering an open question in [19]
and show that, in order to ensure eternal domination in rectangular grids, only
a linear number of extra guards is needed compared to domination.



Perpetually Dominating Large Grids 395

To obtain this result, we devise an elegantly unraveling strategy of successive
(counter) clockwise rotations for the guards to perpetually dominate an infinite
grid. This strategy is referred to as the Rotate-Square strategy. Then, we apply
the same strategy to finite grids with some extra guards to ensure the boundary
remains always guarded.

Overall, we show �mn
5 � + O(m + n) guards suffice to perpetually dominate a

big enough m × n grid.

Outline. In Sect. 2, we define some basic graph-theoretic notions and Eternal
Domination as a two-player combinatorial pursuit-evasion game. Forward, in
Sect. 3, we describe the basic components of the Rotate-Square strategy and
prove it can be used to dominate an infinite grid forever. Later, in Sect. 4 we
show how the strategy can be adjusted to perpetually dominate finite grids by
efficiently handling moving near the boundary and the corners. Finally, in Sect. 5,
we shortly mention some concluding remarks and open questions. Due to space
requirements, some proofs are omitted from this version.

2 Preliminaries

Let G = (V (G), E(G)) be a simple connected graph. We denote an edge between
two connected vertices, namely v and u, as (u, v) ∈ E(G) (or equivalently (v, u)).
The open-neighborhood of a subset of vertices S ⊆ V (G) is defined as N(S) =
{v ∈ V (G) \ S : ∃u ∈ S such that (u, v) ∈ E(G)} and the closed-neighborhood
as N [S] = S ∪ N(S). A path of length n − 1 ∈ N, namely Pn, is a graph where
V (Pn) = {v0, v1, . . . , vn−1} and E(Pn) = {(v0, v1), (v1, v2), . . . (vn−2, vn−1)}.
The Cartesian product of two graphs G and H is another graph denoted G�H
where V (G�H) = V (G)×V (H) and two vertices (v, v′) and (u, u′) are adjacent
if either v = u and (v′, u′) ∈ E(H) or v′ = u′ and (v, u) ∈ E(G). A grid, namely
Pm�Pn, is the Cartesian product of two paths of lengths m,n ∈ N.

A set of vertices S ⊆ V (G) is called a dominating set of G if N [S] = V (G).
That is, for each v ∈ V (G) either v ∈ S or there exists a node u ∈ S (u �= v)
such that (u, v) ∈ E(G). A minimum-size such set, say S∗, is called a minimum
dominating set of G and γ(G) = |S∗| is defined as the domination number of G.
For grids, we simplify the notation γ(Pm�Pn) to γm,n.

Eternal Domination can be regarded as a combinatorial pursuit-evasion game
played on a graph G. There exist two players: one of them controls the guards,
while the other controls the rioter (or attacker). The game takes place in rounds.
Each round consists of two turns: one for the guards and one for the rioter.

Initially (round 0), the guard tokens are placed such that they form a dom-
inating set on G. Then, without loss of generality, the rioter attacks a node
without a guard on it. A guard, dominating the attacked node, must now move
on it to counter the attack. Notice that at least one such guard exists because
their initial placement is dominating. Moreover, the rest of the guards may move;
a guard on node v can move to any node in N [{v}]. The guards wish to ensure
that their modified placement is still a dominating set for G. The game proceeds
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in a similar fashion in any subsequent rounds. Guards win if they can counter
any attack of the rioter and perpetually maintain a dominating set; that is, for
an infinite number of attacks. Otherwise, the rioter wins if she manages to force
the guards to reach a placement that is no longer dominating; then, an attack
on an undominated node suffices to win.

Definition 1. γ∞(G) stands for the eternal domination number of a graph G,
i.e. the minimum size of a guards’ team that can eternally dominate G (when
all guards can move at each turn).

As above, we simplify γ∞(Pm�Pn) to γ∞
m,n. Since the initial guards’ place-

ment is dominating, we get γ∞(G) ≥ γ(G) for any graph G. By a simple rotation,
we get γm,n = γn,m and γ∞

m,n = γ∞
n,m. Finally, multiple guards are not allowed

to lie on a single node, since this could provide an advantage for the guards [7].

3 Eternally Dominating an Infinite Grid

In this section, we describe a strategy to eternally dominate an infinite grid. We
denote an infinite grid as G∞ and define it as a pair (V (G∞), E(G∞)), where
V (G∞) = {(x, y) : x, y ∈ Z} and any node (x, y) ∈ V (G∞) is connected to
(x, y − 1), (x, y + 1), (x − 1, y) and (x + 1, y). In Fig. 1 (and those to follow),
we depict the grid as a square mesh where each cell corresponds to a node of
V (G∞) and neighbors only four other cells: the one above, below, left and right
of it. We assume row x is above row x + 1 and column y is left of column y + 1.

...
...

. . . . . .

. .
.

. .
.. . .

. . .

Fig. 1. The infinite
grid G∞

Initially, let us consider a family of dominating sets for
G∞. In the following, let Z2 := Z×Z and Z5 := {0, 1, 2, 3, 4}
stand for the group of integers modulo 5. We then define the
function f : Z2 → Z5 as f(x, y) = x + 2y (mod 5) for any
(x, y) ∈ Z

2. This function appears in [6] and is central to
providing an optimal dominating set for sufficiently large
finite grids. Now, let Dt = {(x, y)∈V (G∞) : f(x, y)= t} for
t ∈ Z5 and D(G∞) = {Dt : t ∈ Z5}. For purposes of symme-
try, let us define f ′(x, y) = f(y, x) and then D′

t = {(x, y) ∈
V (G∞) : f ′(x, y) = t} and D′(G∞) = {D′

t : t ∈ Z5}.

Proposition 1. Any D ∈ D(G∞) ∪ D′(G∞) is a dominating set for G∞.

Notice that the above constructions form perfect dominating sets, i.e. dom-
inating sets where each node is dominated by exactly one other node, since for
each node v ∈ V (G∞) exactly one node from N [{v}] lies in Dt (respectively D′

t)
by the definition of Dt (respectively D′

t).

3.1 A First Eternal Domination Strategy

Let us now consider a shifting-style strategy as the simplest and most straightfor-
ward strategy to eternally dominate G∞. The guards initially pick a placement
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Dt for some t ∈ Z5. Next, an attack occurs on some unguarded node. Since the
Dt placement perfectly dominates G∞, there exists exactly one guard adjacent
to the attacked node. Thence, it is mandatory for him to move onto the attacked
node. His move defines a direction in the grid: left, right, up or down. The rest
of the strategy reduces to each guard moving according to the defined direction.

Altogether, the guards are all shifting toward the same direction. Therefore,
they abandon their original Dt placement, but end up in a Dt′ placement where
t′ depends on t and the direction coerced by the attack. The last holds since
moving toward the same direction has the same effect to the outcome of the f(·)
function found in the definition of Dt. It is easy to see that the above strategy
can be repeated after any attack of the rioter. Thus, the guards always occupy
a placement in D(G∞) and, by Proposition 1, they dominate G∞ perpetually.

The aforementioned strategy works fine for the infinite grid, as demonstrated
above. Nonetheless, applying it (directly or modified) to a finite grid encounters
many obstacles. Shifting the guards toward one course leaves some nodes in the
very end of the opposite course (near the boundary) undominated, since there is
no longer an unlimited supply of guards to ensure protection. To overcome this
problem, we propose a different strategy whose main aim is to redistribute the
guards without creating any bias to a specific direction.

3.2 Empty Squares

The key idea toward another eternal domination strategy is to rotate the guards’
placement around some squares (i.e. subgrids of size 2 × 2) such that, intu-
itively, the overall movement is zero and the guards always occupy a placement
in D(G∞) ∪ D′(G∞) after an attack is defended.

Consider a node (x, y) ∈ V (G∞), where (x, y) ∈ Dt for some value t. Now,
assume that the guards lie on the nodes dictated in Dt and thence form a
dominating set. By looking around (x, y), we identify the existence of 4 empty
squares (i.e. sets of 4 cells with no guard on them):

– SQ0 = {(x − 1, y + 1), (x − 1, y + 2), (x, y + 1), (x, y + 2)}
– SQ1 = {(x + 1, y), (x + 1, y + 1), (x + 2, y), (x + 2, y + 1)}
– SQ2 = {(x, y − 2), (x, y − 1), (x + 1, y − 2), (x + 1, y − 1)}
– SQ3 = {(x − 2, y − 1), (x − 2, y), (x − 1, y − 1), (x − 1, y)}

One can verify that, for every (w, z) ∈ ⋃3
i=0 SQi, we get f(w, z) �= f(x, y)

and thus (w, z) /∈ Dt. Figure 2a demonstrates the above observation. Notice that
(x, y) has exactly one neighbor in each of these squares and is the only guard
who dominates these 4 neighbors, since the domination is perfect. Furthermore,
an attack on the neighbor lying in SQi would mean the guard moves there
and slides along an edge of SQ(i+1) mod 4, i.e. both its current and previous
position is neighboring to a node in SQ(i+1) mod 4. For example, in Fig. 2a, an
attack on the bottom-right cell of SQ3 would mean the guard slides along SQ0.
Finally, each square is protected by exactly 4 guards around it (one for each of
its vertices) in a formation as seen in Fig. 2a.



398 I. Lamprou et al.

SQ2SQ2

SQ2 SQ2

SQ1 SQ1

SQ1SQ1

SQ0 SQ0

SQ0 SQ0

SQ3

SQ3

SQ3

SQ3

(a) Empty squares for Dt

SQ′
2SQ′

2

SQ′
2 SQ′

2

SQ′
1 SQ′

1

SQ′
1SQ′

1

SQ′
0 SQ′

0

SQ′
0 SQ′

0

SQ′
3

SQ′
3

SQ′
3

SQ′
3

(b) Empty squares for D′
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Fig. 2. Empty squares

The aforementioned observations also extend to a node (x, y) lying on a
dominating set D′

t. We now define the 4 empty squares as follows (see Fig. 2b):

– SQ′
0 = {(x, y + 1), (x, y + 2), (x + 1, y + 1), (x + 1, y + 2)}

– SQ′
1 = {(x + 1, y − 1), (x + 1, y), (x + 2, y − 1), (x + 2, y)}

– SQ′
2 = {(x − 1, y − 2), (x, y − 1), (x, y − 2), (x, y − 1)}

– SQ′
3 = {(x − 2, y), (x − 2, y + 1), (x − 1, y), (x − 1, y + 1)}

Similarly to before, the squares are empty, since for every (w, z) ∈ ⋃3
i=0 SQ′

i

we get f ′(w, z) �= f ′(x, y) and thus (w, z) /∈ D′
t. The (x, y)-guard has exactly one

neighbor in each of these squares and protecting an attack on SQ′
i now means

sliding along the edge of SQ′
(i−1) mod 4. Finally, each square is protected by

exactly 4 guards in a formation that looks like a clockwise step of the formation
seen before for Dt.

3.3 The Rotate-Square Strategy

We hereby describe the Rotate-Square strategy and prove that it perpetually
dominates G∞. The strategy makes use of the empty squares idea and, once
an attack occurs, the square along which the defence-responsible guard slides is
identified as the pattern square. Then, the other 3 guards corresponding to the
pattern square perform a (counter) clockwise step depending on the move of the
defence-responsible guard. Let us break the guards’ turn down into some distinct
components to facilitate a formal explanation. Of course, the guards are always
assumed to move concurrently during their turn. That is, they centrally compute
the whole strategy move and then each one moves to the position dictated by
the strategy at the same time.

Initially, the guards are assumed to occupy a dominating set D in D(G∞) ∪
D′(G∞). Then, an attack occurs on a node in V (G∞) \ D. To defend against it,
the guards apply Rotate-Square:

(1) Identify the defence-responsible guard; there is exactly one since the domi-
nation is perfect.
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(2) Identify the pattern square SQj from the 4 empty squares around this guard.
(3) Rotate around SQj according to the defence-responsible guard’s move.
(4) Repeat the rotation pattern in horizontal and vertical lanes in hops of

distance 5.

Let us examine each of these strategy components more carefully. Step (1)
requires looking at the grid and spotting the guard who lies on a neighboring
node of the attack. In step (2), the pattern square is identified as described in
the previous subsection following the (i±1) mod 4 rule depending on the current
dominating set (Figs. 2a and b). In step (3), the 4 guards around the pattern
square (including the defence-responsible guard) take a (counter) clockwise step
based on the node to be defended. For an example, see Fig. 3a: the defence-
responsible guard (in black) defends against an attack on the bottom-right cell
of SQ3 by sliding along SQ0 in clockwise fashion. Then, the other 3 guards
around SQ0 (in gray) take a clockwise step sliding along an SQ0-edge as well.
The latter happens in order to preserve that SQ0 remains empty. Eventually,
in step (4), the pattern square (SQ0) is used as a guide for the move of the
rest of the guards. Consider an SQ0-guard initially lying on node (w, z). By
construction of Dt, guards lie on all nodes (w ± 5α, z ± 5β) for α, β ∈ N, since
adding multiples of 5 in both dimensions does not affect the outcome of f(·). In
the end, all these corresponding guards mimic the move of (w, z), i.e. they move
toward the same direction. This procedure is executed for all the guards of SQ0.
The rest of the guards, i.e. guards that do not correspond to any SQ0-guard,
remain still during this turn. We vizualise such an example in Fig. 3b. The circles
enclose the repetitions of the pattern square, where the original pattern square
is given in black. The dotted nodes remain still during this turn.

SQ2SQ2

SQ2 SQ2

SQ1 SQ1

SQ1SQ1

SQ0 SQ0

SQ0 SQ0

SQ3

SQ3

SQ3

SQ3

(a) A clockwise step around SQ0 in Dt (b) Step (4) of Rotate-Square

Fig. 3. Step (3) and (4) of rotate-square

Lemma 1. Assume the guards occupy a dominating placement D ⊆ V (G∞) in
D(G∞)∪D′(G∞) and an attack occurs on a node in V (G∞) \D. After applying
the Rotate-Square strategy, the guards successfully defend against the attack and
again form a dominating set in D(G∞) ∪ D′(G∞).
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Proof. In this proof, we are going to demonstrate that any of the 4 possible
attacks (one per empty square) around a node in a Dt (or D′

t) placement can
be defended by Rotate-Square and, most importantly, the guards still occupy
a placement in D(G∞) ∪ D′(G∞) after their turn. Below, in Fig. 4, we provide
pictorial details for 1 out of 8 cases (4 for Dt and 4 for D′

t); we need not care
about the value of t, since all Dt (respectively D′

t) placements are mere shifts
to each other. The defence-responsible guard is given in black, while the rest
in gray. Their previous positions are observable by a slight shade. The guards
with no shade around them are exactly the ones who do not move during their
turn. Also, notice that the guards who are mimicking the strategy of the pattern
square occupy positions (w ± 5α, z ± 5β) for α, β ∈ N, where (w, z) is the new
position of a pattern square guard. Then, f(w, z) = f(w ± 5α, z ± 5β) and
f ′(w, z) = f ′(w ± 5β, z ± 5α) since the modulo 5 operation cancels out the
addition (subtraction) of 5α and 5β. A similar observation holds for the set of
guards that stand still during their turn. We identify a model guard, say on
position (a, b), and then the rest of such guards are given by (a ± 5α, b ± 5β).
Again, the f(·) (respectively f ′(·)) values of all these nodes remain equal. For
this reason, we focus below only on the pattern square and the model guards
and demonstrate that they share the same value of f(·) (respectively f ′(·)).

We hereby consider a potential attack around a node (x, y) ∈ Dt.

Attack on (x − 1, y) (i.e. on SQ3 ). We apply Rotate-Square around SQ0. The
four guards around SQ0 and the model guard standing still move as follows
(Fig. 4): Let P stand for the set of new positions given in Table 1. The guards
now occupy positions (w, z) ∈ P where f ′(w, z) = 2x + y − 2 (mod 5) = 2x +
y + 3 (mod 5) = t′. By this fact, we get P ⊆ D′

t′ . Now, assume there exists
a node (w, z) /∈ P , but (w, z) ∈ D′

t′ . Without loss of generality, we assume
w ∈ [x−3, x+1] and z ∈ [y−1, y+3], since the configuration of the guards in this
window is copied all over the grid by the symmetry of Dt or D′

t placements. Since
(w, z) /∈ P , this is a node with no guard on it. However, by construction, any such
node is dominated by a neighboring node (w1, z1) with f ′(w1, z1) = t′. Then,
by assumption, f ′(w, z) = f ′(w1, z1) = t′, which is a contradiction because, by
definition of f ′(·), two neighboring nodes never have equal values.

Table 1. Attack on (x− 1, y) (rotate around SQ0); Fig. 4

Old position (w, z) New position (w′, z′) f ′(w′, z′) (mod 5)

(x, y) (x− 1, y) 2x + y − 2

(x− 2, y + 1) (x− 2, y + 2) 2x + y − 2

(x− 1, y + 3) (x, y + 3) 2x + y + 3

(x + 1, y + 2) (x + 1, y + 1) 2x + y + 3

(x− 3, y − 1) (x− 3, y − 1) 2x + y − 2
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All other cases can be proved in a similar fashion. Notice that an attack
against a Dt placement leads to a D′

t′ placement for some t′ and vice versa. ��
Theorem 1. The guards perpetually dominate G∞ by following the Rotate-
Square strategy starting from an initial dominating set in D(G∞) ∪ D′(G∞).

4 Eternally Dominating Finite Grids

Fig. 4. Attack on SQ3

We now apply the Rotate-Square strategy to finite
grids, i.e. graphs of the form Pm�Pn. The idea is to
follow the rules of the strategy, but to never leave
any boundary or corner node without a guard on
it. A finite m × n grid consists of nodes (i, j) where
i ∈ {0, 1, 2, . . . ,m − 1} and j ∈ {0, 1, 2, . . . , n − 1}.
Nodes (0, x), (m − 1, x), (y, 0), (y, n − 1) for x ∈
{1, 2, . . . , n − 2} and y ∈ {1, 2, . . . ,m − 2} are called
boundary nodes, while nodes (0, 0), (0, n − 1), (m −
1, 0), (m−1, n−1) are called corner nodes. Connectiv-
ity is similar to the infinite grid. However, boundary
nodes only have three neighbors, while corner nodes
only have two.

Let us consider V (t) = Dt ∩ (Pm�Pn) and V ′(t) = D′
t ∩ (Pm�Pn), respec-

tively. We cite the following counting lemma from [6].

Lemma 2 (Lemma 2.2 [6]). �mn
5 � ≤ |V (t)| ≤ �mn

5 � holds for all t, and there
exist t0, t1, such that |V (t0)| = �mn

5 � and |V (t1)| = �mn
5 � hold.

The main observation in the proof of the above lemma is that there exist
either �m

5 � or �m
5 � + 1 Dt-nodes in one column of a Pm�Pn grid. Then, a case-

analysis counting provides the above bounds. The same observation holds for
D′

t, since f ′ is defined based on the same function f : Z2 → Z5. Thence, we can
extend the above lemma for D′

t cases with the proof being identical.

Lemma 3. �mn
5 � ≤ |V ′(t)| ≤ �mn

5 � holds for all t, and there exist t0, t1, such
that |V ′(t0)| = �mn

5 � and |V ′(t1)| = �mn
5 � hold.

In order to study the domination of Pm�Pn, the analysis is based on exam-
ining V (t), but for an extended Pm+2�Pn+2 mesh. Indeed, Chang [6] showed:

Lemma 4 (Theorem 2.2 [6]). For any m,n ≥ 8, γm,n ≤ � (m+2)(n+2)
5 � − 4.

The result follows by picking an appropriate Dt placement and forcing into
the boundary of Pm�Pn the guards on the boundary of Pm+2�Pn+2. Moreover,
Chang showed how to eliminate another 4 guards; one near each corner.

Below, to facilitate the readability of our analysis, we focus on a specific
subcase of finite grids. We demonstrate an eternal dominating strategy for m×n
finite grids where m mod 5 = n mod 5 = 2. Later, we extend to the general case.
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The Strategy. Initially, we place our guards on nodes belonging to V (t) = Dt ∩
(Pm�Pn) for some value of t. Unlike the approach in [6], we do not force inside
any guards lying outside the boundary of Pm�Pn. Since a sequence of attacks
may force the guards to any V (t) or V ′(t) placement (i.e. for any value of t),
we pick an initial placement (say V (t1)) for which |V (t1)| = �mn

5 � to make sure
there are enough guards to maintain domination while transitioning from one
placement to the other. By Lemma 2, there exists such a placement. Moreover,
we cover the whole boundary by placing a guard on each boundary or corner
node with no guard on it (see Fig. 5a; the gray nodes denote the places where the
extra guards are placed). We refer to any of these added guards as a boundary
guard. This concludes the initial placement of the guards.

The guards now follow Rotate-Square limited within the grid boundaries. For
grid regions lying far from the boundary, Rotate-Square is applied in the same
way as in the infinite grid case. For pattern square repetitions happening near
the boundary or the corners, Rotate-Square’s new placement demands can be
satisfied by performing shifts of boundary guards. In other words, when a guard
needs to step out of the boundary, another guard steps inside to replace him,
while the boundary guards between them shift one step on the boundary. An
example can be found in Fig. 5b depicting a step of our strategy (from the black
to the dark gray placement). Let us examine the designated window at the top
of the boundary. Non-boundary guards move from the black to the dark gray
positions, while boundary guards (in light gray) take a step rightward to make
room for the dark gray guard moving in at the left and cover the black guard
leaving the boundary at the right. Finally, black to dark gray transitions, where
both nodes are on the boundary, mean the corresponding guards there simply
do not move; there is no need to swap them. Overall, we refer to this slightly
modified version of Rotate-Square as Finite Rotate-Square.

(a) An initial placement for the guards (b) Boundary guards’ shifting

Fig. 5. Finite rotate-square

Lemma 5. Assume m mod 5 = n mod 5 = 2 and that the guards follow Finite
Rotate-Square, for an Eternal Domination game in Pm�Pn. Then, after every
turn, their new placement P is dominating, all boundary and corner nodes have
a guard on them and, for some t, there exists a set V (t) (or V ′(t)) such that
V (t) ⊆ P (or V ′(t) ⊆ P ).
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Proof. Consider the (m−2)×(n−2) subgrid remaining if we remove the bound-
ary. Since m mod 5 = n mod 5 = 2, (m − 2) and (n − 2) perfectly divide 5. The
latter means that each row (respectively column) of the subgrid has exactly n−2

5
(respectively m−2

5 ) guards on it. Now, without loss of generality, consider row
one neighboring the upper boundary row, which is row zero. Let us assume that
a pattern square propagation obligates a row-one guard to move to the bound-
ary. Then, by symmetry of the pattern square, there exists another guard on
the boundary who needs to move downward to row one. Notice that the same
holds for each of the n−2

5 guards lying on row one, since the pattern square
move propagates in hops of distance 5. Movements in and out of the boundary
alternate due to the shape of the pattern square. Moreover, we need not care
about where the pattern square is “cut” by the left/right boundary since, due
to n−2 perfectly dividing 5, there are exactly n−2

5 full pattern squares occuring
subject to shifting. Thence, we can apply the shifting procedure demonstrated
in Fig. 5b to apply the moves and maintain a full boundary, while preserving
the number of guards on row one. Notice that it suffices to look at 12 × 12 grids
since for larger m × n grids with this property the patterns evolve similarly and
so we can omit grid regions in the middle.

The new placement P is dominating, since the (m − 2) × (n − 2) subgrid
is dominated by any V (t) or V ′(t) placement and the boundary is always full
of guards. Moreover, since we follow a modified Rotate-Square, P contains as a
subset a node set V (t) or V ′(t) after each guards’ turn. ��
Lemma 6. For m,n ≥ 7 such that m mod 5 = n mod 5 = 2, γ∞

m,n ≤ mn
5 +

8
5 (m + n) − 24

5 holds.

So far, we focused on the special case where m mod 5 = n mod 5 = 2 and
provided an upper bound for the eternal domination number. It is easy to gen-
eralize this bound for arbitrary values of m and n.

Lemma 7. For m,n ≥ 7, γ∞
m,n ≤ mn

5 + O(m + n) holds.

Gonçalves et al. [14] showed γm,n ≥ � (m+2)(n+2)
5 � − 4 for any m,n ≥ 16.

By combining this with Lemma4, we get the exact domination number γm,n =
� (m+2)(n+2)

5 �−4 for m,n ≥ 16. Then, by using Lemma 7, our main result follows.

Theorem 2. For any m,n ≥ 16, γ∞
m,n ≤ γm,n + O(m + n) holds.

5 Conclusions

We demonstrated a first strategy to eternally dominate general rectangular grids
based on the repetition of a rotation pattern. Regarding further work, a more
careful case-analysis of the boundary may lead to improvements regarding the
coefficient of the linear term. On the bigger picture, it remains open whether
this strategy can be used to obtain a constant additive gap between domination
and eternal domination in large grids. Furthermore, the existence of a stronger
lower bound than the trivial γ∞

m,n ≥ γm,n one also remains open.
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Abstract. We study the construction of the minimum cost spanning
geometric graph of a given rooted point set P where each point of P
is connected to the root by a path that satisfies a given property. We
focus on two properties, namely the monotonicity w.r.t. a single direction
(y-monotonicity) and the monotonicity w.r.t. a single pair of orthogo-
nal directions (xy-monotonicity). We propose algorithms that compute
the rooted y-monotone (xy-monotone) minimum spanning tree of P in
O(|P | log2 |P |) (resp. O(|P | log3 |P |)) time when the direction (resp. pair
of orthogonal directions) of monotonicity is given, and in O(|P |2 log |P |)
time when the optimum direction (resp. pair of orthogonal directions) has
to be determined. We also give simple algorithms which, given a rooted
connected geometric graph, decide if the root is connected to every other
vertex by paths that are all monotone w.r.t. the same direction (pair of
orthogonal directions).

1 Introduction

A geometric path W = (w0, w1, . . . , wl) is monotone in the direction of y, also
called y–monotone, if it is y-decreasing, i.e. y(w0) ≥ y(w1) ≥ . . . ≥ y(wl) or
if it is y–increasing, i.e. y(w0) ≤ y(w1) ≤ . . . ≤ y(wl), where y(p) denotes
the y coordinate of a point p. W is monotone if there exists an axis y′ s.t.
W is y′–monotone. Arkin et al. [5] proposed a polynomial time algorithm which
connects two given points by a geometric path that is monotone in a given (an
arbitrary) direction and does not cross a set of obstacles, if such a path exists.
Furthermore, the problem of drawing a directed graph as an upward graph, i.e. a
directed geometric graph such that each directed path is y–increasing, has been
studied in the field of graph drawing, e.g. see [9,11].

A geometric graph G = (P,E) is monotone if every pair of points of P is
connected by a monotone geometric path, where the direction of monotonicity
does not need to be the same for each pair. If there exists a single direction
of monotonicity, we denote the graph as uniform monotone. Uniform monotone
graphs were also denoted as 1–monotone graphs by Angelini [2]. When the direc-
tion of monotonicity is known, say y, the graph is called y–monotone. Monotone
graphs were introduced by Angelini et al. [3]. The problem of drawing a graph
as a monotone graph has been studied in the field of graph drawing; e.g. see
c© Springer International Publishing AG 2017
D. Fotakis et al. (Eds.): CIAC 2017, LNCS 10236, pp. 405–417, 2017.
DOI: 10.1007/978-3-319-57586-5 34
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[2–4,12]. The reverse problem, namely, given a point set P we are asked to
construct a monotone spanning geometric graph on the points of P , has trivial
solutions, i.e. the complete graph K|P | on the points of P as well as the path
graph W|P | which visits all points of P in increasing order of their y coordinates
are both y–monotone spanning geometric graphs of P .

The Euclidean minimum spanning tree problem, i.e. the problem of construct-
ing the minimum cost spanning geometric tree of a plane point set P (where the
cost of the tree is taken to be the sum of the Euclidean lengths of its edges), has
also received attention [22]. Shamos and Hoey [26] showed that it can be solved
in Θ(|P | log |P |) time.

Combining the Euclidean minimum spanning tree problem with the notion
of monotonicity leads to a large number of problems that, to the best of our
knowledge, have not been previously investigated. The most general problem
can be stated as follows: “Given a point set P find the minimum cost monotone
spanning geometric graph of P , i.e. the geometric graph such that every pair of
points of P is connected by a monotone path”. Since in a monotone graph the
direction of monotonicity need not be the same for all pairs of vertices, it is not
clear whether the minimum cost monotone spanning graph is a tree. We call
this problem the Monotone Minimum Spanning Graph problem. We note that
there exist point sets for which the Euclidean minimum spanning tree is not
monotone and hence does not coincide with the monotone minimum spanning
graph. Consider for example a point set with four points for which the Euclidean
minimum spanning tree is a geometric path that is not monotone.

We focus on a simple variant of the general monotone minimum spanning
graph problem. Let P be a rooted point set, i.e. a point set having a designated
point, say r, as its root. We do not insist on having monotone paths between
every pair of points of P but rather only between the root r with all other points
of P . Moreover, we insist that all paths are uniform in the sense that they are
all monotone with respect to the same direction, i.e. we build rooted uniform
monotone graphs. Actually, as it turns out (Corollary 2), in this problem the
sought graphs are trees and, thus, we refer to it as the rooted Uniform Monotone
Minimum Spanning Tree (for short, rooted UMMST ) problem. In the rooted
UMMST problem we have the freedom to select the direction of monotonicity.
When we are restricted to have monotone paths in a specific direction, say y,
we have the rooted y-Monotone Minimum Spanning Tree (for short, rooted y-
MMST ) problem. Figure 1(a) illustrates a rooted y–monotone spanning graph of
a rooted point set P , while the rooted y–MMST of P is given in Fig. 1(b).

Rooted point sets have been previously studied in the context of minimum
spanning trees. The capacitated minimum spanning tree is a tree that has a desig-
nated vertex r (its root) and each of the subtrees attached to r contains no more
than c vertices. c is called the tree capacity. Solving the capacitated minimum
spanning tree problem optimally has been shown by Jothi and Raghavachari to
be NP-hard [14]. In the same paper, they have also presented approximation
algorithms for the case where the vertices correspond to points on the Euclidean
plane.
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Fig. 1. Illustration of rooted y–monotone spanning graphs

If the geometric path W is both x–monotone and y–monotone then it is
denoted as xy–monotone. Furthermore, if there exists a Cartesian System x′y′

s.t. W is x′y′–monotone then W is 2D-monotone. Based on xy–monotone geo-
metric paths and in analogy to the (rooted) monotone, uniform monotone and
y–monotone graphs, we define the (rooted) 2D-monotone, uniform 2D-monotone
and xy–monotone graphs. 2D-monotone paths/graphs were also recently denoted
by Bonichon et al. [7] as angle-monotone paths/graphs. Bonichon et al. [7] gave a
O(|P | · |E|2) time algorithm that decides if a geometric graph G = (P,E) is 2D-
monotone. In order to do so, Bonichon et al. [7] gave a O(|E|2) time algorithm
which is used as a subroutine and decides if the graph is rooted 2D-monotone,
where the root is a specified vertex. Bonichon et al. [7] also noted that it is not
always feasible to construct a planar 2D-monotone spanning geometric graph of
a given point set. Similarly to the rooted UMMST and rooted y-MMST problems
we define the corresponding rooted Uniform 2D-Monotone Minimum Spanning
Tree (for short, rooted 2D-UMMST ) and rooted xy-Monotone Minimum Span-
ning Tree (for short, rooted xy-MMST ) problems, which ask for the minimum
cost rooted Uniform 2D-Monotone spanning tree and rooted xy-monotone span-
ning tree of a given rooted point set, respectively.

A path/curve W is increasing-chord (see [17,23]) if for every four points
p1, p2, p3, p4 traversed in this order along it, it holds that d(p2, p3) ≤ d(p1, p4)
where d(p, q) denotes the Euclidean distance between the points p and q.
A geometric graph G = (P,E) is increasing-chord if each two points of P are con-
nected by an increasing-chord path. Increasing-chord graphs were introduced by
Alamdari et al. [1]. Alamdari et al. [1] noted that any 2D-monotone path/graph
is also increasing-chord. Drawing a graph as an increasing-chord graph is studied
in [1,21]. On the other hand, constructing increasing-chord graphs that span a
given point set is studied in [1,8,19]. In all the papers that construct increasing-
chord spanning graphs of a point set, i.e. in [1,8,19], the constructed increasing-
chord paths connecting the vertices are additionally 2D-monotone.

Our Contribution

Let P be a rooted point set. We give algorithms that produce the rooted
y-MMST of P and the rooted xy–MMST of P in O(|P | log2 |P |) time and
O(|P | log3 |P |) time, respectively. We also propose algorithms that build the
rooted UMMST of P and the rooted 2D-UMMST of P in O(|P |2 log |P |) time
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when the optimum direction and the optimum pair of directions has to be deter-
mined, respectively. For all these four problems, we provide a Ω(|P | log |P |) time
lower bound which is easily derived.

We also propose simple algorithms that decide whether a given connected
geometric graph on a rooted point set is (i) rooted y–monotone, (ii) rooted uni-
form monotone, (iii) rooted xy-monotone and (iv) rooted uniform 2D-monotone.

Due to space constraints, we omit a lot of proofs, pseudocodes and details.
They can be viewed in the full version of this article [20].

2 Definitions and Preliminaries

In this article we deal with the Euclidean plane, i.e. every point set is a subset
of R2, and we consider only rooted point sets. Let x, y be the axes of a Cartesian
System. The x and y coordinates of a point p are denoted by x(p) and y(p),
respectively. W.l.o.g., we assume that the root r of the point sets coincides with
the origin of the Cartesian System, i.e., x(r) = y(r) = 0. We also assume that
the point sets are in general position, i.e. no three points are collinear.

Let P be a point set. P is called positive (negative) w.r.t. the direction of y or
y–positive (y–negative) if for each p ∈ P, y(p) ≥ 0 (resp. y(p) ≤ 0). Let a be a real
number then by Py≤a we denote the set of points of P that have y coordinate less
than or equal to a. Subsets Py≥a, Px≤a, Px≥a, P|y|≤a, P|y|≥a, P|x|≤a and P|x|≥a are
similarly defined.

Let P be a point set and p be a point of the plane, then d(p, P ) denotes the
Euclidean distance from p to the point set P , i.e. d(p, P ) = min

q∈P
d(p, q).

The line segment with endpoints p and q is denoted as pq. The slope of a line
L is the angle that we need to rotate the x axis counterclockwise s.t. the x axis
becomes parallel to L. Each slope belongs to the range [0, π).

A geometric graph G = (P,E) consists of a set P of points which are denoted
as its vertices and a set E of line segments with endpoints in P which are denoted
as its edges. If P is rooted then G is a rooted geometric graph. The cost of a
geometric graph G = (P,E), denoted as cost(G), is the sum of the Euclidean
lengths of its edges. Let G1 = (P1, E1), G2 = (P2, E2), . . . , Gn = (Pn, En) be
n geometric graphs then the union G1 ∪ G2 ∪ . . . ∪ Gn is the geometric graph
G = (P,E) s.t. P = P1 ∪ P2 ∪ . . . ∪ Pn and E = E1 ∪ E2 ∪ . . . ∪ En.

The closest point (or nearest neighbor) problem is an important problem
in computational geometry. It was initially termed as the post-office problem
by Knuth [16]. In this problem there exists a set S of points that is static (it
cannot be changed by inserting points to it or deleting points from it) and the
goal is to find the closest point (or nearest neighbor) from S to a given query
point. This problem is usually reduced to the problem of locating in which region
of a planar subdivision the query point is located [10,24]. Efficient static data
structures have been constructed to answer these queries in logarithmic time by
performing fast preprocessing algorithms, e.g. see [15,18]. Concerning the semi-
dynamic version of the closest point problem, in which insertions of points to S
are allowed, Bentley [6] gave a very useful semi-dynamic data structure.
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Fact 1 (Bentley [6]). There exists a semi-dynamic data structure that allows
only two operations, the insertion of a point and a closest point query. Where, a
closest point query takes O(log2 n) time (with n denoting the size of the structure)
and inserting n elements in the structure takes O(n log2 n) total time.

3 The Rooted y-Monotone Minimum Spanning Tree
(rooted y–MMST) Problem

In this section we study the construction of the rooted y–MMST of a rooted
point set P . We initially show that we can deal with Py≤0 and Py≥0 separately.
Then, we provide a characterization of the rooted y–MMST of rooted y–positive
(or y–negative) point sets. Using the previous two, we develop an algorithm that
constructs the rooted y–MMST of P .

Observation 1. Let P be a rooted point set and G = (P,E) be a rooted
y–monotone spanning graph of P and let pdpu ∈ E with y(pd) < 0 < y(pu).
Then, every path from the root r to a point p ∈ P \ {r} that contains pdpu is
not y–monotone since it moves “south” to pd and then “north” to pu, or vice
versa.

Corollary 1. Let P be a rooted point set, Gopt=(P,E) be the rooted y–monotone
minimum spanning graph of P and pd, pu ∈ P such that y(pd) < 0 < y(pu).
Then, pdpu /∈ E.

Lemma 1. Let P be a rooted point set and Gopt be the rooted y–monotone
minimum spanning graph of P . Furthermore, let Gopt

y≤0 and Gopt
y≥0 be the rooted

y–monotone minimum spanning graphs of Py≤0 and Py≥0, respectively. Then,
Gopt is the union of Gopt

y≤0 and Gopt
y≥0.

We now study the construction of the rooted y–monotone minimum span-
ning graph of a rooted y–positive (or y–negative) point set P with root r. We
define S[P, y] to be the sequence of points of P ordered by the following rule:
“The points of S[P, y] are ordered w.r.t. their absolute y coordinates and, if
two points have the same y coordinate, then they are ordered w.r.t. their dis-
tance from the preceding points in S[P, y].”. More formally, S[P, y] = (r =
p0, p1, p2, . . . , pn) s.t. |y(p0)| ≤ |y(p1)| ≤ |y(p2)| ≤ . . . ≤ |y(pn)| and |y(pi)| =
|y(pi+1)| implies that d(pi, {p0, p1, . . . , pi−1}) ≤ d(pi+1, {p0, p1, . . . , pi−1}) and
P = {p0, p1, p2, . . . , pn}. We now give a characterization of the rooted y–
monotone minimum spanning graph of P .

Lemma 2. Let G = (P,E) be a rooted geometric graph where P is a rooted
y–positive (or y–negative) point set with S[P, y] = (r = p0, p1, p2, . . . , pn).
Then, G is the rooted y–monotone minimum spanning graph of P if and only
if (i) pn is connected in G only with its closest point (or nearest neighbor)
from {p0, p1, . . . , pn−1}, i.e. the point pj such that d(pn, pj) = d(pn, {p0, p1, . . . ,
pn−1}), and (ii) G \ {pn} is the rooted y–monotone minimum spanning graph of
P \ {pn}.
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Lemmas 1 and 2 lead to the next Corollary.

Corollary 2. The rooted y–monotone minimum spanning graph of a rooted
point set P is a geometric tree.

Let P be a rooted y–positive (or y–negative) point set and S[P, y] = (r =
p0, p1, . . . , pn). We call the closest point to pi from {p0, p1, . . . , pi−1} the parent
of pi and we denote it as par(pi). More formally, par(pi) = pj if and only if
pj ∈ {p0, p1, . . . , pi−1} and d(pi, pj) = d(pi, {p0, p1, . . . , pi−1}). Then, Lemma 2
implies the following Corollary.

Corollary 3. The edges of the rooted y–MMST of P are exactly the line seg-
ments par(pi)pi, for i = 1, 2, . . . , n.

Corollary 3 implies a O(|P |2) time algorithm for producing the rooted y–
MMST of P . However, using the semi-dynamic data structure for closest point
queries given by Bentley [6], the time complexity of our rooted y–MMST algo-
rithm becomes O(|P | log2 |P |).
Theorem 1. The rooted y–MMST of a rooted point set P can be computed in
O(|P | log2 |P |) time.

Proof. We first construct Py≤0 and Py≥0. Then, we apply our rooted y–MMST
algorithm on Py≤0 and Py≥0 constructing Ty≤0 and Ty≥0, respectively. By
Corollary 3, Ty≤0 and Ty≥0 are the rooted y–MMSTs of Py≤0 and Py≥0,
respectively. Using Fact 1 and since O(|P |) insertions and O(|P |) closest point
queries are performed, computing Ty≤0 and Ty≥0 takes O(|P | log2 |P |) time. By
Lemma 1, Ty≤0 ∪ Ty≥0 is the rooted y–MMST of P . ��

In the next Theorem, we give a lower bound for the time complexity of any
algorithm which given a rooted point set P produces the rooted y–MMST of P .

Theorem 2. Any algorithm which given a rooted point set P , produces the
rooted y–MMST of P requires Ω(|P | log |P |) time.

Proof. We use the reduction from sorting that was given by Shamos [25]. Let
(a1, a2, . . . , an) be a sequence of nonnegative integers. We reduce this sequence
to the rooted point set P = {r = (0, 0), (a1, a

2
1), (a2, a

2
2), . . . , (an, a2

n)}. Then,
the rooted y–MMST of P contains exactly the edges rp1, p1p2, . . . , pn−1pn s.t.
a′

i = x(pi), i = 1, 2, . . . , n, where (a′
1, a

′
2, . . . , a

′
n) is the sorted permutation

of (a1, a2, . . . , an). The lower bound follows since sorting n numbers requires
Ω(n log n) time. ��

We note that using the same reduction, i.e. the reduction from sorting that
was given by Shamos [25], the same lower bound can be easily obtained for the
rooted UMMST and (rooted) Monotone Minimum Spanning Graph Problem.

We conclude this section, by showing that rooted y–monotone graphs can be
efficiently recognized. Our approach is similar to the approach employed in the
third section of the article of Arkin et al. [5].
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Theorem 3. Let G = (P,E) be a rooted connected geometric graph. Then, we
can decide in O(|E|) time if G is rooted y–monotone.

Proof. We first transform G into a directed geometric graph
−→
G in O(|E|) time,

by assigning direction to the edges and removing some of them. Let pq be an
edge of G. If p and q belong to opposite half planes w.r.t. the x axis then pq
cannot be used in a y–monotone path from the root r to a point of P \ {r} (see
Observation 1). Hence, we remove the edge pq from the graph. If y(p) = y(q) then
we insert both −→pq and −→qp in

−→
G . Otherwise, assuming w.l.o.g., that |y(p)| < |y(q)|,

we insert −→pq in
−→
G . G is rooted y–monotone if and only if r is connected with

all other points of P in
−→
G . The latter can be easily decided in O(|E|) time by a

breadth first search or a depth first search traversal. ��

4 Rooted Uniform Monotone Graphs: Minimum
Spanning Tree Construction, and Recognition

4.1 Building the Rooted UMMST

In this subsection, we focus on the rooted UMMST problem. We tackle the prob-
lem by giving a rotational sweep algorithm. Rotational sweep is a well known
technique in computational geometry in which a (directed) line is rotated coun-
terclockwise (or clockwise) and during this rotation important information about
the solution of the problem is updated.

Observation 2. Let y′ be an axis. If we rotate the y′ axis counterclockwise then
the sequence S[Py′≥0, y

′] or the sequence S[Py′≤0, y
′] changes only when the y′

axis reaches (moves away from) a line perpendicular to a line passing through
two points of P . Then, by Lemma 2 and Corollary 3, the rooted y′–MMST of P
may only change at the same time.

Observation 3. Let y′ and y′′ be axes of opposite directions. Then, the rooted y′–
MMST of P is the same as the rooted y′′–MMST of P . Hence, when computing
the rooted UMMST of P we only need to take into account the y′ axes such
that the angle that we need to rotate the x axis counterclockwise to become
codirected with the y′ is less than π.

Based on Observations 2 and 3, we define the set Θ = {θ ∈ [0, π) : θ is the
slope of a line perpendicular to a line passing through two points of P}. We also
define S[Θ] to be the sorted sequence that contains the slopes of Θ in increasing
order, i.e. S[Θ] = (θ0, θ1, . . . , θm−1), θi < θi+1, i = 0, 1, . . . ,m− 2 and m ≤ (|P |

2

)
.

We further define the set Θcritical = {θ0, θ1, . . . , θm−1} ∪ { θ0+θ1
2 , θ1+θ2

2 , . . . ,
θm−2+θm−1

2 , θm−1+π
2 } which we call the critical set of slopes since examining the

axes with slope in Θcritical is sufficient for computing the rooted UMMST of P
(see Lemma 3). |Θcritical| = O(|P |2). We now assign “names” to the axes with
slopes in Θcritical. Let y2i be the axis with slope θi, i = 0, 1, . . . ,m − 1 and let
y2i+1 be the axis with slope θi+θi+1

2 , i = 0, 1, . . . ,m − 2, and y2m−1 be the axis
with slope θm−1+π

2 .
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Lemma 3. The rooted UMMST of P is one of the rooted y′–MMST of P over
all axes y′ with slope in Θcritical and, more specifically, the one of minimum cost.

We now describe our algorithm which produces the rooted UMMST of a
rooted point set P . Our rooted UMMST algorithm is a rotational sweep algo-
rithm. It considers an axis y′, which initially coincides with y0, and then it
rotates it counterclockwise until y′ becomes opposite to the x axis. Throughout
this procedure, it updates the rooted y′–MMST of P . By Lemma 3, it only needs
to obtain each rooted yi–MMST of P , where yi is an axis with slope in Θcritical,
0 ≤ i ≤ 2m − 1. Let T opt

i be the rooted yi–MMST of P , 0 ≤ i ≤ 2m − 1. Our
rooted UMMST algorithm can now be stated as follows: It initially constructs
T opt
0 using Theorem 1. Then, it iterates for i = 1, 2, . . . , 2m − 1 obtaining at the

end of each iteration T opt
i by modifying T opt

i−1. In order to do this efficiently, it
maintains a tree T which is initially equal to T opt

0 and throughout its operation
it evolves to T opt

1 , T opt
2 , . . . , T opt

2m−1. Similarly, it maintains the sequences S−

and S+ which are initially equal to S[Py0≤0, y0] and S[Py0≥0, y0], respectively,
and evolve to S[Pyi≤0, yi] and S[Pyi≥0, yi], respectively, i = 1, 2, . . . , 2m−1. Our
algorithm stores the axis which corresponds to the produced rooted UMMST of
P , so far, in the variable “minAxis”. In its final step, it recomputes the rooted
“minAxis”-MMST of P using Theorem 1 and returns this tree.

Theorem 4. The rooted UMMST of a rooted point set P can be computed in
O(|P |2 log |P |) time.

Proof. By Lemma 3, our rooted UMMST algorithm produces the rooted
UMMST of P . We now show that its time complexity is O(|P |2 log |P |). The
axes y0, y1, . . . , y2m−1 with slopes in Θcritical can be computed in O(|P |2 log |P |)
time. Let ki be the number of pairs of points of P that have the same projection

onto the y2i axis, 0 ≤ i ≤ m−1. Then
m−1∑

i=0

ki =
(|P |

2

)
. For each i = 0, 1, . . . ,m−1,

we compute a list Li which contains these ki pairs. All Li, 0 ≤ i ≤ m − 1, can
be computed in O(|P |2 log |P |) total time.

For each point p in S− \ {r} (resp. in S+ \ {r}) we maintain a data structure
PD(p) which is a self-balancing binary search tree that contains all the points
that precede p in S− (resp. S+) accompanied with their distance from p. More
formally, let S− be equal to (r = p0, p1, . . . , ps). Then, for each pj , j = 1, 2, . . . , s,
PD(pj) contains the pairs (p0, d(p0, pj)), (p1, d(p1, pj)), . . . , (pj−1, d(pj−1, pj)).
The key of each (pl, d(pl, pj)), l = 0, 1, . . . , j − 1, is the distance d(pl, pj). Simi-
larly, we define PD(p) for each p ∈ S+\{r}. We employ these PD(p), p ∈ P \{r},
data structures since using the information stored in them we can obtain the par-
ent of each p efficiently. In more detail, for each p ∈ P \{r} the par(p) in T can be
obtained or updated in O(log |P |) time by taking into account the PD(p), since
the pair (par(p), d(par(p), p)) is the element with the minimum key in PD(p).

Computing the initial values of T, S−, S+ and PD(p), p ∈ P \{r} can be done
in O(|P |2 log |P |) time. This is true since T opt

0 , S[Py0≤0, y0] and S[Py0≥0, y0] are
computed in O(|P | · log2 |P |) time (see Theorem 1). Furthermore, computing
PD(pj) for some pj in S− \{r} (resp. in S+ \{r}), when S− (resp. S+) equals to
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S[Py0≤0, y0] (resp. S[Py0≥0, y0]) takes O(|P | log |P |) time since we have to insert
each (pi, d(pi, pj), with i < j, to PD(pj) and each such insertion takes O(log |P |)
time. Hence, the total running time for initially computing all PD(p), p ∈ P \{r},
is O(|P |2 log |P |).

Let T be equal to T opt
i−1 and let S− (resp. S+) be equal to S[Pyi−1≤0, yi−1]

(resp. S[Pyi−1≥0, yi−1]) then T and S− (resp. S+) can be updated such that
T becomes equal to T opt

i and S− (resp. S+) becomes equal to S[Pyi≤0, yi]
(resp. S[Pyi≥0, yi]) in:

1. O(k� i
2 � log |P |) time if i is even and yi is not perpendicular to a line passing

through the root r and another point in P .
2. O(k� i

2 � log |P |) time if i is odd and yi−1 is not perpendicular to a line passing
through the root r and another point in P .

3. O(|P | log |P |) time if i is even and yi is perpendicular to a line passing through
the root r and another point q ∈ P \ {r}.

4. O(|P | log |P |) time if i is odd and yi−1 is perpendicular to a line passing
through r and another point q ∈ P \ {r}.

Since
m−1∑

i=0

ki = O(|P |2), the total running time of our algorithm is

O(|P |2 log |P |). ��

4.2 Recognizing Rooted Uniform Monotone Graphs

We now proceed to the problem of deciding if a given rooted connected geometric
graph is rooted uniform monotone. Like we did for the rooted UMMST problem,
we tackle this decision problem with a rotational sweep algorithm.

We first define some auxiliary sets. Let G = (P,E) be a rooted connected
geometric graph with root r and p be a point of P \ {r}. Let A(p, y) be the
set that contains all the adjacent points to p that are on the same side with
p w.r.t. the x axis and are strictly closer to the x axis than p. More formally,
A(p, y) = {q : q ∈ Adj(p), q lies on the same half plane with p w.r.t. the x axis
and |y(q)| < |y(p)|}. Let B(y) denote the set {p : p ∈ P \ {r} and A(p, y) 	= ø}.
Let C(y) be the set that consists of the points p ∈ P \ {r} that (i) do not
belong to B(y) and (ii) are connected with some other point q with the same y
coordinate such that A(q, y) 	= ø. More formally, C(y) = {p : p ∈ P \(B(y)∪{r})
such that there exists q ∈ Adj(p) with y(q) = y(p) and A(q, y) 	= ø}. An example
of a rooted geometric graph and the corresponding sets is given in Fig. 2.

Lemma 4. Let G = (P,E) be a rooted connected geometric graph such that
for each p ∈ P \ {r}, y(p) 	= 0. Then, G is rooted y–monotone if and only if
|B(y)| + |C(y)| = |P | − 1.

Remark 1. If there exists a point p ∈ P \ {r} with y(p) = 0 then G is rooted
y–monotone if and only if (i) p is connected with r and (ii) |B(y)|+ |C(y)| equals
to |P | − 2.
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Fig. 2. A(a, y) = {b}, A(b, y) = ø, A(c, y) = {r}, A(d, y) = {b, c}, A(e, y) = ø and
A(f, y) = {e}. B(y) = {a, c, d, f} and C(y) = {e}.

Remark 2. If we know B(y), C(y) and whether there exists a point p ∈ P \ {r}
with y(p) = 0 connected to r, we can decide if G is rooted y–monotone. This
implies a O(|E|) time algorithm, different from the one given in Theorem3,
which recognizes rooted y–monotone geometric graphs.

Observation 4. Let G = (P,E) be a rooted connected geometric graph. If we
rotate an axis y′ counterclockwise, then B(y′), C(y′) and the points p in P \ {r}
with y′(p) = 0, change only when the y′ axis reaches (or moves away from) a line
that is perpendicular to an edge of G or that is perpendicular to a line passing
through the root r and a point of P \ {r}.

Using similar arguments to the ones employed for solving the rooted UMMST
problem, we define a set of critical slopes and appropriate axes which we have
to test in order to decide if the rooted connected geometric graph G = (P,E)
is rooted uniform monotone. Let Θ = {θ ∈ [0, π) : θ is the slope of a line
perpendicular to either an edge of G or to a line passing through the root r and
another point of P}. S[Θ] is the sorted sequence that contains the slopes of Θ in
increasing order, i.e. S[Θ] = (θ0, θ1, . . . , θm−1), θi < θi+1, i = 0, 1, . . . ,m−2 and
m < |E|+ |P |. We define the critical set of slopes, Θcritical = {θ0, θ1, . . . , θm−1} ∪
{ θ0+θ1

2 , θ1+θ2
2 , . . . , θm−2+θm−1

2 , θm−1+π
2 }. We now assign “names” to the axes with

slope in Θcritical. Let y2i be the axis with slope θi, 0 ≤ i ≤ m − 1. Moreover, let
y2i+1 be the axis of slope θi+θi+1

2 , 0 ≤ i ≤ m − 2 and y2m−1 be the axis of slope
θ2m−1+π

2 . In analogy to Lemma 3 we obtain the next Lemma.

Lemma 5. G is rooted uniform monotone if and only if it is rooted y′–monotone
for some y′ axis of slope in Θcritical.

We now give a rotational sweep algorithm that tests whether a given rooted
connected geometric graph G = (P,E) is rooted uniform monotone. Our rooted
uniform monotone recognition algorithm rotates an axis y′ which initially coin-
cides with y0 until it becomes opposite to the x axis. Throughout this rotation, it
checks if G is rooted y′–monotone. Taking into account Lemma5, our algorithm
only needs to test if G is rooted yi–monotone for some i = 0, 1, . . . , 2m − 1.

Theorem 5. Let G = (P,E) be a rooted connected geometric graph. Then, we
can decide in O(|E| log |P |) time if G is rooted uniform monotone.
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Proof. By Lemma 5, it is immediate that our rooted uniform monotone recogni-
tion algorithm decides if G is rooted uniform monotone. We now show that its
time complexity is O(|E| log |P |). Computing the axes y0, y1, . . . , y2m−1, with
slope in Θcritical can be done in O(|E| log |P |) time. Let ki be the number of pairs
of points of P connected by an edge perpendicular to y2i, 0 ≤ i ≤ m − 1. Then,
m−1∑

i=0

ki = |E|. For each i = 0, 1, . . . ,m − 1, we construct a list Li containing the

ki pairs of points of P that are connected by an edge perpendicular to y2i. All
Li, 0 ≤ i ≤ m − 1, can be computed in O(|E| log |P |) total time.

Let yi be the last axis taken into account. Our algorithm maintains for each
p ∈ P \ {r} a data structure A(p) which represents the set A(p, yi) (which is a
subset of the Adj(p)). A(p) contains the indices of the points of P that belong
to A(p, yi). A(p) can be implemented by any data structure which supports
insert, delete and retrieve operations in O(log |P |) time (e.g. a 2–3 tree). Our
algorithm also maintains the data structure B that represents the B(yi). In order
to performing the insert and delete operations in O(1) time, B is implemented
as an array of boolean with size O(|P |).

Computing all A(p) s.t. A(p) equals to A(p, y0), p ∈ P \ {r}, takes
O(|E| log |P |) total time. After that, computing B s.t. B equals to B(y0) takes
O(|P |) time.

Similarly to Theorem4, all the necessary updates we need to make in each
A(p), p ∈ P \ {r}, and B during the algorithm take O(|E| log |P |) total time.

Given B(y2i) and each A(p, y2i), p ∈ P \{r}, computing C(y2i), 0 ≤ i ≤ m−1,
takes O(ki) time using the list Li. Then, having B and C and knowing if yi is
perpendicular to some line passing through r and another point p of P with
pr ∈ E, we can test if G is yi–rooted-monotone in O(1) time (see Lemma 4 and
Remark 2).

From all the previous, the time complexity of the algorithm is O(|E| log |P |).
��

We note that the approach we took for deciding if a given rooted connected
geometric graph is rooted uniform monotone has some similarities with the app-
roach employed in the third section of the article of Arkin et al. [5].

5 Rooted Uniform 2D-Monotone Graphs: Minimum
Spanning Tree Production, and Recognition

In this section we study monotonicity w.r.t. two perpendicular axes. Due to
space constraints but also due to the fact that our methods are analogous to
the ones developed for the one direction case, we only state our results. For the
details see the full version of this article [20].

We use (in our rooted xy–MMST algorithm) the semi-dynamic data structure
for closest point with attribute value in specified range queries that was implicitly
produced by Bentley [6], i.e it was implicitly produced from his corresponding
static data structure (Sect. 4 of [6]) and his results about the decomposable
problems (Sect. 3 of [6]).
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Theorem 6. The rooted xy–MMST of a rooted point set P can be computed in
O(|P | · log3 |P |) time.

Theorem 7. Producing the rooted xy–MMST (or the rooted 2D-UMMST or the
rooted 2D-MMST) of a rooted point set P requires Ω(|P | log |P |) time.

Theorem 8. Let G = (P,E) be a rooted connected geometric graph. Then, we
can decide in O(|E|) time if G is rooted xy–monotone.

Theorem 9. We can produce the rooted 2D-UMMST of a rooted point set P in
O(|P |2 log |P |) time.

Theorem 10. Given a rooted connected geometric graph G = (P,E), we can
decide in O(|E| log |P |) time if G is rooted uniform 2D-monotone.

6 Conclusions and Future Work

In this article we studied the problem of constructing the minimum cost span-
ning geometric graph of a given rooted point set in which the root is connected
to all other vertices by paths that are monotone w.r.t. a single direction, i.e.
they are y-monotone (or w.r.t. a pair of orthogonal directions, i.e. they are
xy-monotone). We showed that the minimum cost spanning geometric graph is
actually a tree and we proposed polynomial time algorithms that construct it for
the case where the direction (the pair of orthogonal directions) of monotonicity
is given or remains to be determined.

Several directions for further research are open including: (1) computing the
minimum cost spanning geometric graph of a given k-rooted point set, i.e. a
point set with k designated points as its roots, containing monotone paths w.r.t.
a single direction from each root to every other point in the point set, (2) deter-
mining whether the (rooted) monotone (or 2D-monotone) minimum spanning
graph problem is solvable in polynomial time or if it is NP-hard and (3) replac-
ing the property of monotonicity with another property, e.g. the increasing-chord
property or the self-approaching (see [1,13]) property.
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Abstract. The concept of an evolutionarily stable strategy (ESS), intro-
duced by Smith and Price [4], is a refinement of Nash equilibrium in
2-player symmetric games in order to explain counter-intuitive natural
phenomena, whose existence is not guaranteed in every game. The prob-
lem of deciding whether a game possesses an ESS has been shown to
be ΣP

2 -complete by Conitzer [1] using the preceding important work by
Etessami and Lochbihler [2]. The latter, among other results, proved
that deciding the existence of ESS is both NP-hard and coNP-hard. In
this paper we introduce a reduction robustness notion and we show that
deciding the existence of an ESS remains coNP-hard for a wide range
of games even if we arbitrarily perturb within some intervals the pay-
off values of the game under consideration. In contrast, ESS exist almost
surely for large games with random and independent payoffs chosen from
the same distribution [11].

Keywords: Game theory · Computational complexity · Evolutionarily
stable strategies · Robust reduction

1 Introduction

1.1 Concepts of Evolutionary Games and Stable Strategies

Evolutionary game theory has proven itself to be invaluable when it comes to
analysing complex natural phenomena. A first attempt to apply game theoretic
tools to evolution was made by Lewontin [3] who saw the evolution of genetic
mechanisms as a game played between a species and nature. He argued that
a species would adopt the “maximin” strategy, i.e. the strategy which gives it
the best chance of survival if nature does its worst. Subsequently, his ideas were
improved by the seminal work of Smith and Price in [4] and Smith in [12] where
the study of natural selection’s processes through game theory was triggered.

The work of the second author was partially supported by the ERC Project
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For a full version with detailed examples and proofs see https://arxiv.org/abs/1701.
08108 [5].
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They proposed a model in order to decide the outcome of groups consisting of
living individuals, conflicting in a specific environment.

The key insight of evolutionary game theory is that a set of behaviours
depends on the interaction among multiple individuals in a population, and
the prosperity of any one of these individuals depends on that interaction of its
own behaviour with that of the others. An evolutionarily stable strategy
(ESS) is defined as follows: An infinite population consists of two types of infi-
nite groups with the same set of pure strategies; the incumbents, that play the
(mixed) strategy s and the mutants, that play the (mixed) strategy t �= s. The
ratio of mutants over the total population is ε. A pair of members of the total
population is picked uniformly at random to play a finite symmetric bimatrix
game Γ with payoff matrix AΓ . Strategy s is an ESS if for every t �= s there
exists a constant ratio εt of mutants over the total population, such that, if ε < εt

the expected payoff of an incumbent versus a mutant is strictly greater than the
expected payoff of a mutant versus a mutant. For convenience, we say that “s is
an ESS of the game Γ”.

The concept of ESS tries to capture resistance of a population against
invaders. This concept has been studied in two main categories: infinite pop-
ulation groups and finite population groups. The former was the one where this
Nash equilibrium refinement was first defined and presented by [4]. The lat-
ter was studied by Schaffer [10] who shows that the finite population case is a
generalization of the infinite population one. The current paper deals with the
infinite population case which can be mathematically modelled in an easier way
and in addition, its results may provide useful insight for the finite population
case. (For an example of ESS analysis in an infinite population game see the full
version [5].)

1.2 Previous Work

Searching for the exact complexity of deciding if a bimatrix game possesses an
ESS, Etessami and Lochbihler [2] invent a nice reduction from the complement
of the clique problem to a specific game with an appointed ESS, showing that
the ess problem is coNP-hard. They also accomplish a reduction from the sat
problem to ess, thus proving that ess is NP-hard too. This makes impossible
for the ess to be NP-complete, unless NP= coNP. Furthermore, they pro-
vide a proof for the general ess being contained in ΣP

2 , the second level of the
polynomial-time hierarchy, leaving open the question of what is the complexity
class in which the problem is complete.

A further improvement of those results was made by Nisan [8], showing
that, given a payoff matrix, the existence of a mixed ESS is coDP-hard. (See
Papadimitriou and Yannakakis [9] for background on this class.) A notable con-
sequence of both [2] and [8] is that the problem of recognizing a mixed ESS, once
given along with the payoff matrix, is coNP-complete. However, the question of
the exact complexity of ESS existence, given the payoff matrix, remained open.
A few years later, Conitzer finally settles this question in [1], showing that ess
is actually ΣP

2 -complete.
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On the contrary, Hart and Rinott [11] showed that if the symmetric bimatrix
game is defined by a n×n payoff matrix with elements independently randomly
chosen according to a distribution F with exponential and faster decreasing tail,
such as exponential, normal or uniform, then the probability of having an ESS
with just 2 pure strategies in the support tends to 1 as n tends to infinity. In
view of this result, and since the basic reduction of [2] used only 3 payoff values,
it is interesting to consider whether ESS existence remains hard for arbitrary
payoffs in some intervals.

1.3 Our Results

In the reduction of Etessami and Lochbihler that proves coNP-hardness of ess
the values of the payoffs used, are 0, k−1

k and 1, for k ∈ N. A natural question
is if the hardness results hold when we arbitrarily perturb the payoff values
within respective intervals (in the spirit of smoothed analysis [13]). In our work
we extend the aforementioned reduction and show that the specific reduction
remains valid even after significant changes of the payoff values.

We can easily prove that the evolutionarily stable strategies of a symmetric
bimatrix game remain the exact same if we add, subtract or multiply (or do all
of them) with a positive value its payoff matrix. However, that kind of value
modification forces the entries of the payoff matrix to change in an entirely
correlated manner, hence it does not provide an answer to our question. In
this work, we prove that if we have partitions of entries of the payoff matrix
with the same value for each partition, independent arbitrary perturbations of
those values within certain intervals do not affect the validity of our reduction.
In other words, we prove that determining ESS existence remains hard even if
we perturb the payoff values associated with the reduction. En route we give
a definition of “reduction robustness under arbitrary perturbations” and show
how the reduction under examination adheres to this definition.

In contrast, [11] show that if the payoffs of a symmetric game are random
and independently chosen from the same distribution F with “exponential or
faster decreasing tail” (e.g. exponential, normal or uniform), then an ESS (with
support of size 2) exists with probability that tends to 1 when n tends to infinity.

One could superficially get a non-tight version of our result by saying that
(under supposed continuity assumptions in the ESS definition) any small pertur-
bation of the payoff values will not destroy the reduction. However, in such a case
(a) the continuity assumptions have to be precisely stated and (b) this does not
explain why the ESS problem becomes easy when the payoffs are random [11].

In fact, the value of our technique is, firstly, to get as tight as possible ranges
of the perturbation that preserve the reduction (and the ESS hardness) without
any continuity assumptions, secondly, to indicate the basic difference from ran-
dom payoff values (which is exactly the notion of partition of payoffs into groups
in our definition of robustness, and the allowance of arbitrary perturbation within
some interval in each group), and finally, the ranges of the allowed perturbations
that we determine are quite tight. For the reduction to be preserved when we
independently perturb the values (in each of our partitions arbitrarily), one must
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show that a system of inequalities has always a feasible solution, and we manage
to show this in our final theorem. Our result seems to indicate that existence of
an ESS remains hard despite a smoothed analysis [13].

An outline of the paper is as follows: In Sect. 2 we define the robust reduction
notion and we provide a reduction, based on the one from [2], that is essentially
modified in order to be robust. In Sect. 3 we give our main result and Sect. 4
refers to further work and conclusions.

1.4 Definitions and Notation

Background from Game Theory. A finite two-player strategic form game
Γ = (S1, S2, u1, u2) is given by finite sets of pure strategies S1 and S2 and
utility, or payoff, functions u1 : S1 × S2 �→ R and u2 : S1 × S2 �→ R for the
row-player and the column-player, respectively. Such a game is called symmetric
if S1 = S2 =: S and u1(i, j) = u2(j, i) for all i, j ∈ S.

In what follows, we are only concerned with finite symmetric two-player
strategic form games, so we write (S, u1) as shorthand for (S, S, u1, u2), with
u2(j, i) = u1(i, j) for all i, j ∈ S. For simplicity assume S = 1, . . . , n, i.e.,
pure strategies are identified with integers i, 1 ≤ i ≤ n. The row-player’s payoff
matrix AΓ = (ai,j) of Γ = (S, u1) is given by ai,j = u1(i, j) for i, j ∈ S,
so BΓ = AT

Γ is the payoff matrix of the column-player. Note that AΓ is not
necessarily symmetric, even if Γ is a symmetric game.

A mixed strategy s = (s(1), . . . , s(n))T for Γ = (S, u1) is a vector that defines
a probability distribution on s and, in the sequel, we will denote by s(i) the
probability assigned by strategy s on the pure strategy i ∈ S. Thus, s ∈ X,
where X =

{
s ∈ R

n
≥0 :

∑n
i=1 s(i) = 1

}
denotes the set of mixed strategies in Γ ,

with R
n
≥0 denoting the set of non-negative real number vectors (x1, x2, . . . , xn).

s is called pure iff s(i) = 1 for some i ∈ S. In that case we identify s with i. For
brevity, we generally use “strategy” to refer to a mixed strategy s, and indicate
otherwise when the strategy is pure. In our notation, we alternatively view a
mixed strategy s as either a vector (s1, . . . , sn)T , or as a function s : S �→ R,
depending on which is more convenient in the context.

The expected payoff function, Uk : X × X �→ R for player k ∈ 1, 2 is given
by Uk(s, t) =

∑
i,j∈S s(i)t(j)uk(i, j), for all s, t ∈ X. Note that U1(s, t) = sT AΓ t

and U2(s, t) = sT AT
Γ t. Let s be a strategy for Γ = (S, u1). A strategy t ∈ X

is a best response to s if U1(t, s) = maxt′∈X U1(t′, s). The support supp(s) of s
is the set {i ∈ S : s(i) > 0} of pure strategies which are played with non-zero
probability. The extended support ext-supp(s) of s is the set {i ∈ S : U1(i, s) =
maxx∈X U1(x, s)} of all pure best responses to s.

A pair of strategies (s, t) is a Nash equilibrium (NE) for Γ if s is a best
response to t and t is a best response to s. Note that (s, t) is a NE if and only
if supp(s)⊆ ext-supp(t) and supp(t)⊆ ext-supp(s). A NE (s, t) is symmetric if
s = t.

Definition 1 (Symmetric Nash equilibrium). A strategy profile (s, s) is a
symmetric NE for the symmetric bimatrix game Γ = (S, u1) if sT AΓ s ≥ tT AΓ s
for every t ∈ X.
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A definition of ESS equivalent to that presented in Subsect. 1.1 is:

Definition 2 (Evolutionarily stable strategy). A (mixed) strategy s ∈ X is
an evolutionarily stable strategy (ESS) of a two-player symmetric game Γ if:

1. (s, s) is a symmetric NE of Γ , and
2. if t ∈ X is any best response to s and t �= s, then U1(s, t) > U1(t, t).

Due to [7], we know that every symmetric game has a symmetric Nash equi-
librium. The same does not hold for evolutionarily stable strategies (for example
“rock-paper-scissors” does not have any pure or mixed ESS).

Definition 3 (ESS problem). Given a symmetric two-player normal-form
game Γ , we are asked whether there exists an evolutionarily stable strategy of Γ .

Background from Graph Theory. An undirected graph G is an ordered pair
(V,E) consisting of a set V of vertices and a set E, disjoint from V , of edges,
together with an incidence function ψG that associates with each edge of G an
unordered pair of distinct vertices of G. If e is an edge and u and υ are vertices
such that ψG(e) = {u, υ}, then e is said to join u and υ, and the vertices u and
υ are called the ends of e. We denote the numbers of vertices and edges in G by
υ(G) and e(G); these two basic parameters are called the order and size of G,
respectively.

Definition 4 (Adjacency matrix). The adjacency matrix of the above undi-
rected graph G is the n × n matrix AG := (auυ), where auυ is the number of
edges joining vertices u and υ and n = υ(G).

Definition 5 (Clique). A clique of an undirected graph G is a complete sub-
graph of G, i.e. one whose vertices are joined with each other by edges.

Definition 6 (CLIQUE problem). Given an undirected graph G and a number
k, we are asked whether there is a clique of size k.

As mentioned earlier, in what follows, R
n
≥0 denotes the set of non-negative

real number vectors (x1, x2, . . . , xn) and n = |V |.
Theorem 1 (Motzkin and Straus [6]). Let G = (V,E) be an undirected
graph with maximum clique size d. Let Δ1 =

{
x ∈ R

n
≥0 :

∑n
i=1 xi = 1

}
. Then

maxx∈Δ1 xT AGx = d−1
d .

Corollary 1. Let G = (V,E) be an undirected graph with maximum clique size
d. Let Aτ,ρ

G be a modified adjacency matrix of graph G where its entries with
value 0 are replaced by τ ∈ R and its entries with value 1 are replaced by ρ ∈ R.
Let Δ1 =

{
x ∈ R

n
≥0 :

∑n
i=1 xi = 1

}
. Then maxx∈Δ1 xT Aτ,ρ

G x = τ + (ρ − τ)d−1
d .

Proof. xT Aτ,ρ
G x = xT [τ · 1 + (ρ − τ) · AG] x = τ + (ρ − τ) · xT AGx, where 1 is

the n×n matrix with value 1 in every entry. By Theorem1 the result follows. 	
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Corollary 2 (Etessami and Lochbihler [2]). Let G = (V,E) be an undirected
graph with maximum clique size d and let l ∈ R≥0. Let Δl =

{
x ∈ R

n
≥0 :

∑n
i=1 xi = l

}
. Then maxx∈Δl

xT AGx = d−1
d l2.

2 Robust Reductions

Definition 7 (Neighbourhood). Let v ∈ R. An (open) interval I(v) = [a, b]
(I(v) = (a, b)) with a < b where a ≤ v ≤ b, is called a neighbourhood of v of
range |b − a|.
Definition 8 (Robust reduction under arbitrary perturbations of
values). We are given a valid reduction of a problem to a strategic game that
involves a real matrix A of payoffs as entries aij. A consists of m partitions,
with each partition’s entries having the same value v(t), for t ∈ {1, 2, . . . ,m}.
Let I(v(t)) �= ∅ be a neighbourhood of v(t) and w(t) ∈ I(v(t)) be an arbitrary
value in that neighbourhood. The reduction is called robust under arbitrary per-
turbations of values if it is valid for all the possible matrices W with entries w(t).

For a first extension based on the reduction of [2], see the full version [5].

2.1 A Robust Reduction from the Complement of CLIQUE to ESS

In the sequel we extend the idea of Etessami and Lochbihler [2] by replacing
the constant payoff values they use with variables, and finding the intervals they
belong to in order for the reduction to hold. We replace the zeros and ones of
their reduction with τ ∈ R and ρ ∈ R respectively. We also replace their function
λ′(k) = 1 − 1

k with λ(k) = 1 − 1
kx , where k ∈ N and x ≥ 3. Note that we can

normalize the game’s payoff values in [0, 1] and retain the exact same ESSs.
Given an undirected graph G = (V,E) we construct the following game

Γ x
k,τ,ρ(G) := (S, u1) for suitable τ < ρ to be determined later. Note that from

now on we will only consider rational τ and ρ so that every payoff value of the
game is rational.

S = V ∪ {a, b, c} are the strategies for the players where a, b, c /∈ V .
n = |V | is the number of nodes.

– u1(i, j) = ρ for all i, j ∈ V with (i, j) ∈ E.
– u1(i, j) = τ for all i, j ∈ V with (i, j) /∈ E.
– u1(z, a) = ρ for all z ∈ S − {b, c}.
– u1(a, i) = λ(k) = 1 − 1

kx for all i ∈ V .
– u1(y, i) = ρ for all y ∈ {b, c} and i ∈ V .
– u1(y, a) = τ for all y ∈ {b, c}.
– u1(z, y) = τ for all z ∈ S and y ∈ {b, c}.
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Theorem 2. Let G = (V,E) be an undirected graph. The game Γ x
k,τ,ρ(G) with

– ρ ∈
(
1 + nx−1−2x

2xnx−1(n−1) , 1 + (n+1)x−n2x

2x(n+1)x(n−1)

]
and

τ ∈ [
(1 − ρ)(n − 1) + 1 − 1

nx−1 , 1 − 1
2x

)
or

– ρ ∈
(
1 + (n+1)x−n2x

2x(n+1)x(n−1) , +∞
)

and

τ ∈
[
(1 − ρ)(n − 1) + 1 − 1

nx−1 , (1 − ρ)(n − 1) + 1 − n
(n+1)x

)

has an ESS if and only if G has no clique of size k.

Proof. Let G = (V,E) be an undirected graph with maximum clique size d. We
consider the game Γ x

k,τ,ρ(G) defined above. Suppose s is an ESS of Γ x
k,τ,ρ(G).

For the reduction we will prove three claims by using contradiction, that
taken together show that the only possible ESS s of Γk,τ,ρ(G) is the pure strat-
egy a. Here we should note that these three claims hold not only for the afore-
mentioned intervals of τ and ρ, but for any τ, ρ ∈ R for which τ < ρ. 	

Claim 1. The support of any possible ESS of Γ x

k,τ,ρ(G) does not contain b or c
(supp(s) ∩ {b, c} = ∅).

Suppose supp(s) ∩ {b, c} �= ∅.
Let t �= s be a strategy with t(i) = s(i) for i ∈ V, t(y) = s(b) + s(c) and

t(y′) = 0 where y, y′ ∈ {b, c} such that y �= y′ and s(y) = min{s(b), s(c)}. Since
u1(b, z) = u1(c, z) for all z ∈ S,

U1(t, s) =
∑
i∈V

t(i)U1(i, s) + (t(b) + t(c))U1(b, s) + t(a)U1(a, s),

U1(s, s) =
∑
i∈V

s(i)U1(i, s) + (s(b) + s(c))U1(b, s) + s(a)U1(a, s),

which yields U1(t, s) = U1(s, s) and so t is a best response to s. Also,

U1(s, t) =
∑
i∈V

s(i)U1(i, t) + (s(b) + s(c))U1(b, t) + s(a)U1(a, t),

U1(t, t) =
∑
i∈V

t(i)U1(i, t) + (t(b) + t(c))U1(b, t) + t(a)U1(a, t),

which yields U1(s, t) = U1(t, t). But this is a contradiction since it should be
U1(s, t) > U1(t, t) as s is an ESS.

Claim 2. The support of any possible ESS of Γ x
k,τ,ρ(G) contains a (supp(s) � V ).

Suppose supp(s) ⊆ V .
Then, we denote by AG the adjacency matrix of the graph G.

U1(s, s) =
∑

i,j∈V

s(i)s(j)u1(i, j) = xT Aτ,ρ
G x

≤ τ + (ρ − τ)
d − 1

d
(by Corollary 1)

< ρ = U1(b, s) for every ρ > τ.
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But this is a contradiction since s is an ESS and therefore a NE. From Claim1
and Claim 2, it follows that a ∈ supp(s), i.e. s(a) > 0.

Claim 3. s(a) = 1.

Suppose s(a) < 1.
Since (s, s) is a NE, a is a best response to s and a �= s. Then U1(s, a) =∑

z∈supp(s) s(z)u1(s, a) = ρ = U1(a, a). But this is also a contradiction since it
should be U1(s, a) > U1(a, a) as s is an ESS.

Therefore, the only possible ESS of Γ x
k,τ,ρ(G) is the pure strategy a. Now we

show the following lemma, which concludes also the proof of Theorem 2.

Lemma 1. The game Γ x
k,τ,ρ(G) with the requirements of Theorem2 has an ESS

(strategy a) if and only if there is no clique of size k in graph G.

Proof. We consider two cases for k:
Case 1: d < k. Let t �= a be a best response to a. Then supp(t) ⊆ V ∪ {a}.
Let r =

∑
i∈V t(i). So r > 0, (t �= a) and t(a) = 1−r. Combining Corollaries 1

and 2 we get,

U1(t, t) − U1(a, t) =
∑

i,j∈V

t(i)t(j)u1(i, j) + r · t(a) · ρ

+ t(a) · r · kx − 1
kx

+ t(a)2 · ρ −
[
r · kx − 1

kx
+ t(a) · ρ

]

≤
[
τ + (ρ − τ)

d − 1
d

]
r2 + r(1 − r) · ρ

+ (1 − r)r
kx − 1

kx
+ (1 − r)2 · ρ − r

kx − 1
kx

− (1 − r) · ρ

=
r2

d
E, where E = τ − (1 − ρ)(d − 1) − (1 − d

kx
)

If we can show that E < 0 then strategy a is an ESS. We show why E < 0:
Let’s define the following function: f(k, d, ρ) = (1 − ρ)(d − 1) + 1 − d

kx with
the restrictions: k ≥ d + 1, 1 ≤ d ≤ n, x ≥ 3.
By minimizing f(k, d, ρ) with respect to k and d, we end up to 2 cases determined
by the interval to which ρ belongs. So,

τ∗ = min
k,d

f(k, d, ρ) =

⎧
⎪⎨
⎪⎩

1 − 1
2x , if ρ ≤ 1 + (n+1)x−n2x

2x(n+1)x(n−1)

(1 − ρ)(n − 1) + 1 − n
(n+1)x , if ρ > 1 + (n+1)x−n2x

2x(n+1)x(n−1)

Therefore, we can demand τ to be strictly less than τ∗, making U1(t, t)−U1(a, t)
negative. We conclude that when d < k then strategy a is an ESS.

Case 2: d ≥ k. Let C ⊆ V be a clique of G of size k. Then t with t(i) = 1
k

for i ∈ C and t(j) = 0 for j ∈ S \ C is a best response to a and t �= a, and
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U1(t, t) =
∑

i,j∈C

t(i)t(j)u1(i, j) =
(k − 1)ρ + τ

k
,

U1(a, t) =
kx − 1

kx
. Then,

U1(t, t) − U1(a, t) =
1
k

[
τ − (1 − ρ)(k − 1) − (1 − 1

kx−1
)
]

=
1
k

E′, where E′ = τ − (1 − ρ)(k − 1) − (1 − 1
kx−1

)

If E′ ≥ 0 then a cannot be an ESS. We explain why E′ ≥ 0:
Let’s define the following function:

y(k, ρ) = (1 − ρ)(k − 1) + 1 − 1
kx−1

, with the restrictions: k ≤ d.

Then we define the function z(d, ρ):

z(d, ρ) = max
k

y(k, ρ) = (1 − ρ)(d − 1) + 1 − 1
dx−1

so, τ∗∗ = max
d

z(d, ρ) = (1 − ρ)(n − 1) + 1 − 1
nx−1

,

Now, given that τ needs to be at least τ∗∗ but strictly less than τ∗ the
following should hold:

(1 − ρ)(n − 1) + 1 − 1
nx−1

< 1 − 1
2x

, or equivalently, ρ > 1 +
nx−1 − 2x

2xnx−1(n − 1)

So we conclude that when d ≥ k then strategy a is not an ESS. This completes
the proof of Lemma 1 and Theorem 2. 	

Corollary 3. The ess problem with payoff values in the domains given in
Theorem2 is coNP-hard.

3 Our Main Result

Now we can prove our main theorem:

Theorem 3. Any reduction as in Theorem2 for x = x0 ≥ 3 from the com-
plement of the clique problem to the ess problem is robust under arbitrary
perturbations of values in the intervals:

τ ∈
[
1 − 1

2x0
− D, 1 − 1

2x0
− D + B

)
,

ρ ∈
(

1 +
(n + 1)x0 − n2x0

2x0(n + 1)x0(n − 1)
, 1 +

(n + 1)x0 − n2x0

2x0(n + 1)x0(n − 1)
+ A

)
,

λ ∈
[
1 − 1

kx0
, 1 − 1

kx1

]
,

where x1 ∈ (x0, x0 logn(n + 1)), C = (n+1)x0−nx1

nx1−1(n+1)x0 (n−1)
, D = C(n − 1), any

A ∈ (0, C) and B = (C − A)(n − 1).
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Proof. We denote three partitions of the game’s payoff matrix U : Uτ , Uρ, Uλ

disjoint sets, with Uτ ∪ Uρ ∪ Uλ = U and values τ, ρ, λ of their entries respec-
tively. Each set’s entries have the same value. For every λ ∈ [

1 − 1
kx0 , 1 − 1

kx1

]
there is a x = − logk(1 − λ) in the interval [x0, x1] such that λ = 1 − 1

kx , where
x0 ≥ 3 and x1 ∈ (x0, x0 logn(n+1)). We will show that, for this x, any reduction
with the values of τ, ρ in the respective intervals stated in Theorem 2, is valid.

In Fig. 1, we show the validity area of τ depending on ρ with parameter x,
due to Theorem 2. The thin and thick plots bound the validity area (shaded) for
x = x0 and x = x1 respectively.

While x increases, the parallel lines of the lower and upper bound of τ move
to the right, the horizontal line of the upper bound of τ moves up, and the
left acute angle as well as the top obtuse angle of the plot move to the left (by
examination of the monotonicity of those bounds with respect to x).

The lower bound of τ for an x = x′ > x0 equals the upper bound of τ for
x = x0, when x′ = x0 logn(n + 1). Thus, for all x ∈ (x0,x0 logn(n + 1)) there
is a non-empty intersection between the validity areas. We have picked
an x = x1 ∈ (x0, x0 logn(n + 1)).

τ

ρ1

1 + nx1−1−2x1
2x1nx1−1(n−1)

1 + nx0−1−2x0
2x0nx0−1(n−1)

1 + (n+1)x1−n2x1
2x1(n+1)x1(n−1)

1 + (n+1)x0−n2x0
2x0(n+1)x0(n−1)

1

1 − 1
2x1

1 − 1
2x0

1 − 1
2x1 − (n+1)x1−nx1

nx1−1(n+1)x1

1 − 1
2x0 − (n+1)x0−nx0

nx0−1(n+1)x0

Fig. 1. The validity area of τ and ρ with parameter x.
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τ

ρ

1 − 1
2x0

(1 − ρ)(n − 1) + 1 − 1
nx1−1

1 + (n+1)x0−n2x0
2x0(n+1)x0(n−1)

ρC

D

A

C

B

(1 − ρ)(n − 1) + 1 − n
(n+1)x0

ϕ

Fig. 2. Detail of the validity areas’ intersection and the ρ, τ robust area (shaded).

In Fig. 2, we show a zoom-in of the intersection of the validity areas of Fig. 1.
Let the intersection of lines: 1− 1

2x0 , (1−ρ)(n−1)+1− 1
nx1−1 be at point ρ = ρC .

Then, ρC =1− 1
2x0(n − 1)

− 1
nx1−1(n − 1)

. So, C =
(n + 1)x0 − nx1

nx1−1(n + 1)x0(n − 1)
.

From the upper bound of τ as a function of ρ we can see that tan ϕ = n − 1.

Thus, D = C tan ϕ, or equivalently, D =
(n + 1)x0 − nx1

nx1−1(n + 1)x0
.

Now we can pick any A ∈ (0, C). So, it must be
B = (C − A) tan ϕ, or equivalently, B = (n − 1)(C − A).

For the rectangle with sides A,B shown in Fig. 2, the reduction is valid for
all x ∈ [x0, x1], thus for all λ ∈ [

1 − 1
kx0 , 1 − 1

kx1

]
. This completes the proof. 	


4 Conclusions and Further Work

In this work we introduce the notion of reduction robustness under arbitrary
perturbations within an interval and we provide a generalized reduction based
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on the one in [2] that proves coNP-hardness of ess. We demonstrate that our
generalised reduction is robust, thus showing that the hardness of the problem
is preserved even after certain arbitrary perturbations of the payoff values of
the derived game. As a future work we would like to examine the robustness of
reductions for other hard problems, especially game-theoretic ones.
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Abstract. We revisit the linear search problem where a robot, initially
placed at the origin on an infinite line, tries to locate a stationary tar-
get placed at an unknown position on the line. Unlike previous studies,
in which the robot travels along the line at a constant speed, we con-
sider settings where the robot’s speed can depend on the direction of
travel along the line, or on the profile of the terrain, e.g. when the line is
inclined, and the robot can accelerate. Our objective is to design search
algorithms that achieve good competitive ratios for the time spent by
the robot to complete its search versus the time spent by an omniscient
robot that knows the location of the target.

We consider several new robot mobility models in which the speed
of the robot depends on the terrain. These include (1) different con-
stant speeds for different directions, (2) speed with constant acceleration
and/or variability depending on whether a certain segment has already
been searched, (3) speed dependent on the incline of the terrain. We pro-
vide both upper and lower bounds on the competitive ratios of search
algorithms for these models, and in many cases, we derive optimal algo-
rithms for the search time.

Keywords: Search algorithm · Zig-zag algorithm · Competitive ratio ·
Linear terrain · Robot · Speed of movement

1 Introduction

Searching and exploration are fundamental problems in the areas of robotics
and autonomous mobile agents. The objective for searching is to find a target
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placed at an unknown location in the domain in a provably optimal manner. In
the linear search problem, the target is placed at a location on the infinite line
unknown to the robot. The robot moves with uniform speed, and the goal is to
find the target in minimum time. This problem was first proposed by Bellman [6]
and independently by Beck [4].

Previous studies on the linear search problem generally assume that the robot
moves with constant speed that is independent of the terrain. In this paper, we
study a generalization of the problem where the horizontal line may be replaced
by a more complicated (and hence, more realistic) continuous linear terrain.
Moreover, the speed of the robot may depend in various ways on the nature
or profile of the terrain. The robot initiates the search for the unknown target
on the terrain from a reference starting point (without loss of generality, the
origin). In our models, the robot can move with different speeds depending on
its position on the terrain, its direction of movement, its exploration history etc.
We also assume that the robot starts moving initially in the positive x-direction,
or more informally, moving to the right (the leftward movement is in the negative
x-direction).

Consider the linear search problem with a single robot. Since the position
of the target is unknown to the robot, the robot cannot proceed indefinitely
in just one direction and is forced to turn around and explore the terrain in
the opposite direction as well; this zig-zag movement is inevitable and must be
repeated periodically. The canonical zig-zag search algorithm is described
below: note that the algorithm is parametrized by an infinite sequence of positive
distances X = {xk}k≥1 from the origin that specifies the turning points. We refer
to the sequence X as the strategy. To ensure progress in searching along a given
direction, each trip away from the origin must cover more distance along the line
than the previous trip in the same direction: this is formalized in the requirement
that xk < xk+2 for all k ≥ 1.

Input: Infinite sequence of distances X = {x1, x2, . . .} with 0 < xk < xk+2 for
all k ≥ 1

for k ← 1, 2, . . . do
if k is odd (resp. even) then

move right (resp. left) a distance of xk unless the target is found enroute;
if target found then

quit search
end
turn; then move left (resp. right), return to origin;

end
end

Algorithm 1. Zig-Zag Search

A natural measure of the efficacy of the zig-zag search algorithm with strategy
X, is how well it performs in competition with an omniscient adversary that
knows the exact location of the target. Let σX(d) be the ratio between the time
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taken by the robot using the zig-zag strategy X to reach an unknown target at
distance d from the origin versus the time taken by the adversary to proceed
directly to the target. Then, σX � supd>1 σX(d) denotes the competitive
ratio of the algorithm. We denote the optimal competitive ratio by σ∗.

For strategies where xk = αrk−1 for some constant α > 0, we call r the
expansion factor of the strategy. Let D denote the doubling strategy that is a
strategy with expansion factor 2 and α = 1. Thus, D = {1, 2, 22, . . .}. When
the robot moves with unit speed in both directions, it is well-known that the
doubling strategy is optimal: σ∗ = σD = 9, see for example [2].

1.1 Our Results

A natural point of departure from traditional unit-speed models is to considering
linear terrains in which the speed of the robot depends on the nature of the
terrain or the environment. Two kinds of models are considered:

(1) Two-speed models of linear search: The robot can operate at two dis-
tinct constant speeds 1 and s > 1 in the following models.

Fig. 1. Two-speed models based on (a) absolute direction and (b) direction relative to
origin

– The absolute direction or tailwind model, viz. unit speed going left and tail-
wind speed s > 1 going right (see Fig. 1(a))

– The direction relative to the origin or the beacon model, viz. unit speed moving
away from the origin and speed s moving towards it (see Fig. 1(b))

– The exploration history model, where the robot explores unknown regions
slowly and deliberately with unit speed, but is able to search faster (with
speed s) when it encounters a region already seen earlier in its search.

For the tailwind model, we analyze a time-based zig-zag search strategy in
Subsect. 2.1, which is provably better than the doubling strategy. It turns out
that the doubling zig-zag strategy is optimal for the beacon model; we prove this
in Subsect. 2.2. We also show in Subsect. 2.3 that the exploration history model
admits an asymptotically optimal strategy, whose expansion factor depends on
the speed s.

(2) Constant acceleration models for linear terrain search: We first con-
sider a linear search model with the property that whenever the robot starts



Linear Search with Terrain-Dependent Speeds 433

from rest (i.e. either initially from the origin, or when it turns around
in the zig-zag search), its speed increases at a constant rate c until the
next turn, i.e. at time t after starting from rest, the robot’s speed is
given by s(t) = ct, see Fig. 2(a). In Subsect. 3.1, we show that for this
model, 6.36 < σ∗ < σD ≈ 11.1.

Fig. 2. Constant acceleration models: (a) Line (b) Inclined line (c) Hill (d) Valley

We then study search on inclined linear terrains. The robot can operate in
two modes where it is moving with unit speed going uphill and with constant
acceleration going downhill. The different terrains include an inclined line, a
symmetric hill with the hill-top at the origin, or a symmetric valley with the
valley-bottom at the origin as shown in Fig. 2(b), (c) and (d) respectively. Again,
at time t from rest, the robot’s speed going downhill is given by s(t) = ct. The
increase in speed due to constant acceleration going downhill on a slope is a very
natural manifestation of Newtonian physics: for example, we could interpret the
constant c as the gravitational acceleration along the incline.

We analyze the doubling zig-zag strategy and lower bounds on the optimal
strategy for the inclined line, hill, and valley models in Subsects. 3.2, 3.3, and 3.4
respectively. There are surprising differences in the nature of the results: while
the competitive ratio of the doubling strategy is unbounded in the inclined line
and hill models, we show that in the valley model, the competitive ratio is
constant.

Due to space limitations all omitted proofs appear in the full version of the
paper [16].

1.2 Related Work

Searching an environment or terrain with one or more searchers, possibly mov-
ing at different speeds, has the objective of localizing a hidden target in the
minimum amount of time. Numerous variants of the search problem have been
considered, e.g. with static or moving targets, multiple searchers with or without
communication capabilities, and in environments that may not be fully known
in advance.

The search problem has been extensively studied, e.g. see the survey by
Benkoski et al. [7]; deterministic algorithms for optimal linear search [2]; incor-
porating a turn cost when a robot changes direction during the search [18]; when
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bounds on the distance to the target are known in advance [9]; and for moving
targets or more general linear cost functions [8]. Other approaches include opti-
mal randomized algorithms for the related cow-path problem [20], and stochastic
and game theoretic investigations [1,5].

The search problem has also been studied in environments where search
occurs in graphs (see, e.g. [19]) or along dynamically evolving links of networks
[10,21]. More recently, variants of search using collections of collaborating robots
have been investigated. The robots can employ either wireless communication (at
any distance) or face-to-face communication, where communication is only pos-
sible among co-located robots. For example, the problem of evacuation [13,15]
is essentially a search problem where search is completed only when the target is
reached by the last robot. Linear group search in the face-to-face communication
model has also been studied with robots that either operate at the same speed
or with a pair of robots having distinct maximal speeds [3,11]. Finally, a new
direction of research seeks to analyze linear search with multiple robots where
some fraction of the robots may exhibit either crash faults [14] or Byzantine
faults [12].

2 Two-Speed Models of Linear Search

In this section we consider linear search problems where the robot can switch
between two different constant speeds depending on its absolute direction of
movement (the tailwind model) or its direction of movement relative to the
origin (the beacon model).

2.1 The Tailwind Model

In this model, the robot moves at speed s > 1 in the positive (right) direction
and at unit speed in the negative (left) direction as depicted in Fig. 1(a). Observe
that if we use the doubling strategy, the size of the explored segment expands by
a factor of 2 in each iteration (i.e. between turns). However, the strategy favours
the negative direction of the line in the sense that it spends less time exploring
the positive direction of the line because the speed is higher when moving right.

To account for this, we propose a different strategy, viz. one that balances
the search time on both sides of the origin. In other words, we expand the time
spent on each side of the origin, rather than the distance travelled as follows.
Fix two parameters r > 1 and α > 0. Then, our strategy is defined as sequence
X = {x1, x2, . . .} = {s, αr, r2s, αr3, . . .}, i.e. with x2k−1 = r2k−2s and x2k =
αr2k−1 for k ≥ 1.

Thus, strategy X spends even powers of r time moving to the right from the
origin, and α times odd powers of r time moving the left. In the next theorem
we show how to select the parameters α, r so as to optimize the search time. In
particular, we prove the following result.
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Theorem 1. Assume the robot has speed s ≥ 1 when moving left to right and
speed 1 otherwise. For α, r such that α = (1 − s +

√
(s − 1)2 + 4r2s)/(2r), r =√

2 + (s + 1)/
√

s, and X = {s, αr, r2s, αr3, . . .} we have that 2+1/s ≤ σ∗ ≤ σX ,

σX ≤ 1 +
s + 2

√
s + 1

s +
√

s + 1
· s + 1

2s
·
(

s + 1 +
√

(s − 1)2 + 8s + 4
√

s(s + 1)
)

(1)

Remark 1. Note that as s → ∞, the righthand side of Inequality (1) approaches
3
2 + s + o(s).

2.2 The Beacon Model

In this model the robot moves with speed 1 away from the origin and constant
speed s > 1 towards the origin of the line.

Theorem 2. The doubling strategy is optimal for the beacon model, i.e.

σ∗ = σD = 5 +
4
s
. (2)

Proof. First we prove the upper bound. Assume the robot executes Algorithm 1
with the doubling strategy, and let the target be at distance d from the origin.
Let k be such that 2k < d ≤ 2k+1. Since 2k < d, starting from the origin, by the
k-th iteration of the algorithm the robot spends search time 20 + 20/s + 21 +
21/s + · · · + 2k + 2k/s = (2k+1 − 1)(1 + 1/s) and returns to the origin without
having found the target. In the next turn, the robot again starts from the origin,
spends time 2k+1 + 2k+1/s and returns back to the origin, since the adversary
could place the target to the other side of the origin. Hence the total time spent
so far is (2k+2 − 1)(1 + 1/s). Finally, since d ≤ 2k+1, in the last turn the robot
finds the target in time d. It follows that

σD = sup
d>0

(2k+2 − 1)(1 + 1/s) + d

d
<

4d(1 + 1/s) + d

d
= 5 + 4/s.

For the lower bound, we use a lower bounding technique [17] (itself based
on [2]) used to obtain a lower bound of 9 for the unit speed model. Consider
a deterministic strategy X = (x1, x2, . . .) with xi > 0, for all 1 ≤ i < ∞. We
consider several cases depending on the position of the target.

Assume the target is between xk and xk+2. Then the time it takes to find
the target is equal to
x1 + x1/s + x2 + x2/s + · · · + xk+1 + xk+1/s + d = (1 + 1/s)

∑k+1
i=1 xi + d.

It follows that the competitive ratio is

σX = sup
k

sup
d>xk

{

1 + (1 + 1/s)
∑k+1

i=1 xi

d

}

= sup
k

{

1 + (1 + 1/s)
∑k+1

i=1 xi

xk

}

As a consequence it is easily seen that

σX ≥ 2 + 1/s + (1 + 1/s)
∑k−1

i=1 xi

xk
+ (1 + 1/s)

xk+1

xk
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and hence, σXxk ≥ (2 + 1/s)xk + (1 + 1/s)
∑k−1

i=1 xi + (1 + 1/s)xk+1. Separating
xk+1 from the last inequality we derive

xk+1 ≤ σX − (2 + 1/s)
1 + 1/s

xk −
k−1∑

i=1

xi.

If we now put μ0 = (σX − (2 + 1/s))/(1 + 1/s) and ν0 = 1, the last inequality
can be rewritten as

xk+1 ≤ μ0xk − ν0

k−1∑

i=1

xi, (3)

At this point, we can use the technique suggested in [2,17] as follows. Induc-
tion on the Inequality (3) can be used to construct two infinite sequences of
positive integers {μi : i ≥ 0} and {νi : i ≥ 0} defined via a system of recur-
rences of the form:

μm+1 = μ0μm − νm (4)
νm+1 = ν0μm + νm. (5)

for all m ≥ 0. The recurrences (4), (5) can be solved using difference equations
that yield the characteristic polynomial z3−μ0z

2+(μ0+1) = 0. This polynomial
has z = −1 as one of its roots. Dividing by z + 1 we obtain the polynomial

z2 − (μ0 + 1)z + (μ0 + 1) = 0 (6)

whose two roots are ρ1, ρ2 := µ0+1±√
D

2 , where D := (μ0 −1)2 −4 is the discrim-
inant of the quadratic Eq. (6). Note that D < 0 if and only if μ0 < 3. In turn,
μ0 < 3 is equivalent to σX being less than a certain constant c, since σX and
μ0 are related (in the original proof of the lower bound, for instance, this yields
σX < c = 9).

On the other hand, it can be shown that D being less than 0 implies that for
some k ≥ 1, the value μk is negative. This is a contradiction since μk must be
positive by the construction for all k. Hence, D must in fact be greater than or
equal to zero, and it follows that the CR σX is greater than or equal to c.

By applying the above lower bound technique to the present case, we conclude
that the roots of the resulting quadratic equation are conjugate complex numbers
with non-zero imaginary parts iff μ0 < 3, which is equivalent to σX < 5 + 4/s.
This completes the proof of the lower bound of Theorem2. �	
Remark 2. Assume that the robot moves with speed 1 towards the origin, and
speed s away from the origin of the line. A proof similar to that of Theorem2
shows that Algorithm 1 with the doubling strategy is optimal and its competitive
ratio is also 5 + 4

s . Details are left to the reader.

2.3 The Exploration History Model

We consider a robot that moves at speed 1 when searching for the target, but
the robot can move at speed s > 1 when moving over a part of the line already
explored. For example, the robot’s attention to identifying the target limits the
speed at which the robot can move.
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Theorem 3. Let r = 1 +
√

2/(s + 1), and X = (r0, r1, r2, . . .) be an expan-
sion strategy. Then, with this strategy, the zig-zag algorithm’s competitive ratio
satisfies

2 + 1/s ≤ σ∗ ≤ σX = 2 +
1
s

(
3 + 2

√
2s + 2

)
. (7)

Proof. Consider first the lower bound. The robot must visit both points +d and
−d. Without loss of generality assume that −d is the first point to be visited
by the robot. Then the adversary will place the target at +d. Therefore the
robot will traverse the segment [−d, 0] once with speed at least 1 to reach −d
from 0 and a second time with speed s on its way to +d from −d. The resulting
competitive ratio is at least (2d+d/s)/d = 2+1/s. This proves the lower bound.

Next we look at the upper bound. Consider a robot following zig-zag strategy
X = (r1, r2, r3, . . .) and that the first move of the robot is to the right with the
target located at distance d with rk < d ≤ rk+2. The time needed by the robot
to find the target is equal to

r1 + r1/s + r2 + (r2 + r1)/s + r3 − r1 + · · · + (rk + rk−2)/s + rk+1 − rk−1

+ (rk+1 + rk)/s + d − rk =
(

1 +
1
s

)
rk+1 +

2
s

k∑

i=1

ri

s
+ d

It follows that the competitive ratio of this strategy σX is

σX = sup
k≥1

(((
1 +

1
s

)
rk+1 +

2
s

k∑

i=1

ri

s
+ rk

)

/rk

)

=
(

1 +
1
s

)
r +

2r

s(r − 1)
+ 1.

To find the optimal value of r we put the derivative dσX/dr = 1 + 1/s −
2/(s(r − 1)2) equal to 0, which gives us that the competitive ratio is optimized
for r = 1 +

√
2/(s + 1) and for this r, we obtain σX = 2 + 1

s (3 + 2
√

2s + 2). �	
Remark 3. For example, if s = 1 then σ = 9, if s = 2 then σ ≈ 5.95, if s = 3 then
σ ≈ 4.88, and if s = 4 then σ ≈ 4.33. Thus as s → ∞ the value of r approaches
1 and the competitive ratio σ as given in Theorem 3 approaches 2. Therefore,
the strategy is asymptotically optimal in s.

3 Searching with Constant Acceleration

In this framework, the robot exhibits constant acceleration c > 0 in some part
of the linear terrain when starting from rest. As is well known from Newtonian
physics, at time t after the robot accelerates from rest, it will be moving with
speed s = ct and would have covered a distance of x(t) = ct2/2. Thus, to cover
distance x we need time

√
2x/c.
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3.1 Constant Acceleration in both Directions

Here we assume that the constant acceleration applies in both directions through-
out the entire terrain (see Fig. 2(a)).

Theorem 4. Assume the robot is searching with constant acceleration c in either
direction, starting from rest initially, as well as at turning points. Then:

3(
√

2 + 1/
√

2) ≤ σ∗ ≤ σD ≤ 2
√

3√
2 − 1

+
√

3 + 1 (8)

3.2 Moving on an Inclined Line

In this section we consider the situation where the robot has unit speed in one
direction, but in the other direction, due to the inclination of the line, the robot
is subjected to a constant acceleration c.

Consider a target at distance d > 1 from the origin. In the theorem below
we show that the doubling strategy has unbounded competitive ratio.

Theorem 5. Assume the robot moves with acceleration c in the positive direc-
tion, and constant speed 1 in the negative direction using the doubling strategy.
Then for any d ≥ 1,

√
2c

√
d < σD(d) ≤

√
8c ·

√
d + O(1).

Furthermore, σ∗ ≥ supd>1 min{2 +
√

2/(cd),
√

2 +
√

cd/2}.
Proof. Consider the lower bound first. The robot must visit both points +d
and −d. Assume that −d is the first point to be visited by the robot. Then
the adversary will place the target at +d. Therefore the robot will traverse
the segment [−d, 0] in time at least d and then move downhill a distance 2d
to the target. Thus σ∗ ≥ (d +

√
4d/c)/

√
2d/c =

√
cd/2 +

√
2. Now assume

that +d is the first point to be visited by the robot. Then the adversary will
place the target at −d. Therefore the robot will traverse the segment [0,+d] in
time at least

√
2d/c and then move uphill a distance 2d to the target. Thus

σ∗ ≥ (
√

2d/c + 2d)/d = 2 +
√

2/(cd), which proves the lower bound.
Next we look at the upper bound. Assume the robot executes the doubling

strategy and let the target be at distance d from the origin. Let k be such that
2k < d ≤ 2k+1 and b =

√
2/c. There are two cases to consider depending on the

parity of k.

The Target is Uphill and k is Even. Since 2k < d, starting from the origin, the
robot spends search time

b + (20 + 21) + b
√

21 + 22 + · · · + (2k−1 + 2k) + b
√

2k + 2k+1 + 2k+1 + d

= 2k+2 − 1 + b + b
√

21 + 22 + · · · + b
√

2k + 2k+1 + d

< 5d + b + b
√

3(
√

20 +
√

22 + · · · +
√

2k) = 5d + b
√

3(2k/2+1 − 1)

The target is uphill at distance d; therefore if we divide the above expression by
d, we conclude that in this case σD(d) ≤ 5 + O(d−1/2).
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The Target is Downhill and k is Odd. Starting from the origin, the robot spends
search time

T =1 + b
√

20 + 21 + 21 + 22 + · · · + b
√

2k−1 + 2k + 2k + 2k+1 + b
√

2k+1 + d

= 2k+2 − 1 + b
√

20 + 21 + · · · + b
√

2k−1 + 2k +
√

2k+1 + d

= 2k+2 − 1 + b
√

3(2(k+1)/2 − 1) +
√

2k+1 + d

Since 2k < d ≤ 2k+1, we have that

2d − 1 + b
√

3(
√

d − 1) < T < 4d + b
√

3
√

2d + b
√

3d.

The target is downhill at distance d; if we divide the above expression by b
√

d,
we conclude that in this case

2d

b
√

d
=

√
2c

√
d < σD(d) ≤ 4

b

√
d + O(1) =

√
8c ·

√
d + O(1).

�	

3.3 Starting at the Top of a Hill

This model differs from the previous one by having the origin of the line located
on the top of a hill. Thus, the speed of a robot increases when going downhill
from the origin. Namely it travels with constant speed 1 uphill but has a constant
acceleration when going downhill. The main result here is that the competitive
ratio of the optimal search algorithm is unbounded. Notice that if a robot has
initial speed 1 at the top of the hill then when going downhill with constant
acceleration c it has at time t speed 1 + ct, and to covers distance x it needs
time (

√
1 + 2cx − 1)/c.

Theorem 6. Assume that the robot travels with constant acceleration c away
from the origin, and with unit speed towards the origin. Then σD(d) = Θ(

√
d)

and this is optimal.

Proof. The upper bound proof uses the main idea of the upper bound in
Theorem 5. However, unlike in Theorem5, the analysis of the algorithm is now
symmetric. As before, let k be such that 2k < d ≤ 2k+1 and b =

√
2/c. Since

2k < d, starting from the origin, the robot spends search time

b + 1 + (
√

1 + c22 − 1)/c + 21 + (
√

1 + c23 − 1)/c + 22

+ · · · + (
√

1 + c2k+2 − 1)/c + 2k+1 + (
√

1 + cd − 1)/c

= b +
1
c
(−(k + 1) +

√
1 + cd +

k+2∑

i=2

√
1 + c2i ) +

k+1∑

i=0

2i

< b +
√

1 + cd/c + b

k+3∑

i=3

√
2i +

k+1∑

i=0

2i < b + 2k+2 + b2(k+4)/2 +
√

1 + cd/c

< b + 4d + b(1 + 4
√

d) +
√

1 + cd/c.
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The target is downhill at distance d; if we divide the above expression by b
√

d, we
get that the competitive ratio in this case is at most b+4d+b(1+4

√
d)+

√
1+cd/c

b
√
d

=
4
b

√
d + O(1).
To see the lower bound, observe that the robot must visit both points +d and

−d. Assume that −d is the first point to be visited by the robot. Then the adver-
sary will place the target at +d. Therefore the robot will traverse the segment
[−d, 0] in time at least b

√
d. To get to +d, the robot needs time at least d to get

to the origin and another (
√

1 + 2cd − 1)/c =
√

1/c2 + b2d to reach the target.
The omniscient optimal algorithm needs time b

√
d. Thus, for any strategy X,

σX(d) ≥ b
√

d + d +
√

1/c2 + b2d

b
√

d
= 1 +

√
d/b +

√
1

c2b2d
+ 1.

�	
3.4 Starting at the Bottom of a Valley

An interesting situation occurs if we reverse the speeds, i.e., the origin is located
at the bottom of a valley and thus we have constant acceleration when moving
towards the origin, but the robot moves at unit speed away from the origin
(see Fig. 2). In this case can prove the following theorem:

Theorem 7. Assume that the robot travels with constant acceleration c towards
the origin, and with unit speed away from the origin. Then for any d ≥ 1:

σD(d) ≤ 5 + O(d−1/2)

Furthermore, σ∗ ≥ 5.

4 Discussion

In this paper we have considered and analyzed several zig-zag strategies for
search on a linear terrain for cases when the speed of the robot is not constant.
Our work provides an initial step for the study of a robot searching terrains
of different profiles for a target placed at an unknown location. We study two
kinds of models of speed: two-speed models, and constant acceleration models.
An interesting observation is in our two-speed models, as in the traditional one-
speed model, the performance of the doubling algorithm vis-a-vis an omniscient
optimal algorithm gets worse as d (the distance of the target to the initial loca-
tion) increases and converges to some maximum value as d → ∞. However, in
the constant acceleration models that we studied, either the competitive ratio is
unbounded, or the performance of the doubling algorithm improves vis-a-vis an
omniscient optimal algorithm as d increases.
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Abstract. Chordal graphs form one of the most well studied graph
classes. Several graph problems that are NP-hard in general become solv-
able in polynomial time on chordal graphs, whereas many others remain
NP-hard. For a large group of problems among the latter, approxima-
tion algorithms, parameterized algorithms, and algorithms with moder-
ately exponential or sub-exponential running time have been designed.
Chordal graphs have also gained increasing interest during the recent
years in the area of enumeration algorithms. Being able to test these
algorithms on instances of chordal graphs is crucial for understanding
the concepts of tractability of hard problems on graph classes. Unfortu-
nately, only few published papers give algorithms for generating chordal
graphs. Even in these papers, only very few methods aim for generating
a large variety of chordal graphs. Surprisingly, none of these methods
is based on the “intersection of subtrees of a tree” characterization of
chordal graphs. In this paper, we give an algorithm for generating chordal
graphs, based on the characterization that a graph is chordal if and only
if it is the intersection graph of subtrees of a tree. The complexity of
our algorithm is linear in the size of the produced graph. We give test
results to show the variety of chordal graphs that are produced, and we
compare these results to existing results.

1 Introduction

Algorithms particularly tailored to exploit properties of various graph classes
have formed an increasingly important area of graph algorithms during the last
five decades. With the introduction of relatively new theories for coping with
NP-hard problems, like parameterized algorithms, algorithmic research on graph
classes has become even more popular recently, and the number of results in this
area appearing at international conferences and journals is now higher than
ever. One of the most studied graph classes in this context is the class of chordal
graphs, i.e., graphs that contain no induced cycle of length 4 or more. Chordal
graphs arise in practical applications from a wide variety of unrelated fields,
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like sparse matrix computations, database management, perfect phylogeny,
VLSI, computer vision, knowledge based systems, and Bayesian networks
[6,13,21,24,26]. This graph class that first appeared in the literature as early as
1958 [14], has steadily increased its popularity, and there are now more than 20
thousand references on chordal graphs according to Google Scholar.

With a large number of existing algorithms specially tailored for chordal
graphs, it is interesting to note that not much has been done to test these
algorithms in practice. Very few such tests are available as published articles
[2,18,22]. In particular, there seems to be no efficient and all-purpose chordal
graph generator available. Most of the work in this direction involves generating
chordal graphs tailored to test a particular algorithm or result [2,22]. This is a
clear shortcoming for the field, and it was even mentioned as an important open
task at a Dagstuhl Seminar [16]. Until some years ago, most of the algorithms
tailored for chordal graphs had polynomial running time, and testing was perhaps
not crucial. Now, however, many parameterized and exponential-time algorithms
exist for chordal graphs, for problems that remain hard on this graph class, see
e.g., [4,12,19,20]. The proven running times of such algorithms might often be
too high compared to the practical running time. Just to give some examples
from the field of enumeration, there are now several algorithms and upper bounds
on the maximum number of various objects in chordal graphs [1,11,12]. However,
the lower bound examples at hand usually do not match these upper bounds.
Tests on random chordal graphs is a good way of getting better insight about
whether the known upper bounds are too high or tight.

In this paper we present an algorithm for generating random chordal graphs.
The algorithm is based on the characterization that a graph is chordal if and only
if it is the intersection graph of subtrees of a tree. Surprisingly, this characteri-
zation does not seem to have been exploited for chordal graph generation earlier.
The running time of our algorithm is linear in the size of the generated graph, and
it generates a large variety of chordal graphs, where the variety is measured using
the characteristics of maximal cliques as already used in [22]. After proving the
correctness and the time complexity, we give extensive tests to demonstrate the
kind of chordal graphs that our algorithm generates. We compare our tests with
existing test results, and we implement one of the earlier proposed methods and
include this in our tests. According to these tests, our algorithm outperforms pre-
vious algorithms both with respect to complexity and with respect to the richness
of the family of the generated chordal graphs. Observe that graph isomorphism
is as hard on chordal graphs as on general graphs [17], which adds to the diffi-
culty of producing chordal graphs uniformly random. Still our algorithm is able
to generate every chordal graph with positive probability.

2 Background, Terminology and Existing Algorithms

In this section we give the necessary background on chordal graphs, as well as
a short review of the existing algorithms for chordal graph generation. We work
with simple and undirected graphs, and we use standard graph terminology.
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We let n denote the number of vertices and m denote the number of edges of
a graph. A maximal clique is an inclusion-wise maximal set of vertices that are
pairwise adjacent. An ordering (v1, v2, . . . , vn) of the vertices of a graph is a
perfect elimination order (peo) if the set of higher numbered neighbors of each
vertex forms a clique.

Let F = {S1, S2, . . . , Sn} be a family of sets from the same universe. A graph
G is called an intersection graph of F if there is a bijection between the set of
vertices {v1, v2, . . . , vn} of G and the sets in F such that vi and vj are adjacent
if and only if Si ∩ Sj �= ∅, for 1 ≤ i, j ≤ n. In the special case where there is a
tree T such that each set in F corresponds to the vertex set of a subtree of T ,
then G is called the intersection graph of subtrees of a tree. In this case, we call
T a host tree for G.

A tree T with a bijection between its vertex set and the set of maximal cliques
of a graph G, is called a clique tree of G if, for every vertex v of G, the set of
vertices of T that correspond to the cliques containing v induce a connected
subtree of T .

A graph is chordal if it contains no induced cycle of length 4 or more.
A chordal graph on n vertices has at most n maximal cliques [7]. Chordal graphs
have many different characterizations. For our purposes, the following will be
sufficient.

Theorem 1 [5,8–10]. Let G be a graph. The following are equivalent.

– G is chordal.
– G has a perfect elimination order.
– G is the intersection graph of subtrees of a tree.
– G has a clique tree.

Especially the last two points of Theorem1 are crucial for our algorithm and its
implementation. To make sure that there is no confusion between the vertices of
G and the vertices of a host tree or a clique tree, we will from now on refer to
vertices of a tree as nodes.

Rose, Tarjan, and Lueker [25] gave an algorithm called Maximal Cardinality
Search (MSC) that creates a perfect elimination order of a chordal graph in
time O(n + m). Blair and Peyton [3] gave a modification of MCS to list all the
maximal cliques of a chordal graph in time O(n + m). Implicit in their proofs is
the following well-known fact that is not often highlighted on its own.

Lemma 1 [3,25]. The sum of the sizes of the maximal cliques of a chordal graph
is O(n + m).

Next, we briefly mention the algorithms for generating chordal graphs from
the works of Andreou, Papadopoulou, Spirakis, Theodorides, and Xeros [2];
Pemmaraju, Penumatcha, and Raman [22]; and Markenzon, Vernet, and
Araujo [18]. Some of these algorithms create very limited chordal graphs, which
is either mentioned by the authors or clear from the algorithm. Thus, in the
following we only mention the algorithms that are general enough to be inter-
esting in our context.
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It should also be noted that the purpose of Andreou et al. [2] is not to obtain
general chordal graphs, but rather chordal graphs with a known bound on some
parameter. One of the algorithms that they propose starts from an arbitrary
graph and adds edges to obtain a chordal graph. How the edges are added is not
given in detail, but note that there are many algorithms for generating a chordal
graph from a given graph by adding a minimal set of edges and their running
time is usually O(nm), far from linear [15]. Andreou et al. [2] do not report on
the quality of chordal graphs obtained by this method.

We highlight below the algorithms that are the most promising with respect
to generating random chordal graphs. In addition to these, there is an O(n2)-
time algorithm by Markenzon et al. [18] that generates a random tree and adds
edges to this tree until a chordal graph with desired edge density is obtained.
However, no test results about the quality of the generated graphs is given.

Alg 1 [2]. The algorithm constructs a chordal graph by using a peo. At every
iteration, a new vertex is added and made adjacent to a random selection of
already existing vertices. Then necessary edges are added to turn the neighbor-
hood of the new vertex into a clique. No test results are given in the paper about
the quality of the chordal graphs this algorithm produces. As we found the algo-
rithm interesting, we have implemented it, and we compare the resulting graphs
to those generated by our algorithm in Sect. 4.

Alg 2 [18,22]. The algorithm starts from a single vertex. At each subsequent
step, a clique C in the existing graph is chosen at random, and a new vertex is
added adjacent to exactly the vertices of C. The inverse of the order in which
the vertices are added is a peo of the final graph. It is observed by the authors
of both papers that this procedure results in chordal graphs with approximately
2n edges experimentally. They propose the following changes:

Alg 2a [18] modifies the above generated graph by randomly choosing maxi-
mal cliques that are adjacent according to the clique tree and merging these until
desired edge density is obtained. Some test results about the graphs generated
by Alg 2a are provided in [18]. Although these tests are not as comprehensive
as the tests we give on our algorithm in Sect. 4, we compare our results to those
of [18] as best we can. The running time of Alg 2a is O(m + nα(2n, n)).

Alg 2b [22] is a modification of Alg 2 in a different way: instead of randomly
choosing a clique, a maximum clique is chosen and a random subset of it is made
adjacent to the new vertex. Although test results for Alg 2b are provided in [22],
the authors acknowledge that the produced graphs are still very particular with
very few large maximal cliques and many very small maximal cliques. For this
reason, we do not include Alg 2b in our comparisons.

3 Generating Chordal Graphs Using Subtrees of a Tree

We find it surprising that the intersection graph of subtrees of a tree character-
ization of chordal graphs has not been used for generation. One reason could be
that this characterization does not give a direct way to decide the number of
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edges. However, as we will see, edge density can be regulated by adjusting the
sizes of the generated subtrees. We are now ready to present our main algorithm
for generating chordal graphs on n vertices:

Algorithm ChordalGen

Input: Two integers n and k
Output: A chordal graph G on n vertices and m edges
Generate a tree T on n nodes uniformly at random
Create n random subtrees of T : {T1, . . . , Tn} of average size k
Output as G the intersection graph of the trees {T1, . . . , Tn}.

By Theorem 1 the graph generated by Algorithm ChordalGen is chordal. We
want to show that this high level definition of the algorithm is general and can
create any chordal graph. The proof of the following lemma is already implicit
in the proofs of the relevant parts of Theorem1. We give it here, as it will also
be of help in the explanation of the running time of our algorithm.

Lemma 2. Let G be a chordal graph on n vertices and m edges. There is an
execution of Algorithm ChordalGen that generates G.

Proof. First of all we want to show that there is a host tree T on exactly n
nodes, and a set of n subtrees of T , such that G is the intersection graph of these
subtrees. Let T ′ be a clique tree of G. Let us call the vertices of G: v1, v2, . . . , vn.
Define subtree T ′

i to be the subtree of T ′ that corresponds to the nodes (maximal
cliques) that contain vertex vi, for 1 ≤ i ≤ n. By the definition of a clique tree,
T ′ has at most n nodes and each T ′

i is a connected subgraph of T ′. If T ′ has
less than n nodes, we can add new nodes adjacent to arbitrary nodes of T ′ until
we get a new tree T with exactly n nodes. The subtrees stay the same. As two
vertices are adjacent in G if and only if they appear together in a clique, G is
the intersection graph of subtrees T ′

1, . . . , T
′
n of T . Finally, we simply let k be

the average size of the subtrees Ti. ��
The most interesting part of the algorithm is the generation of the subtrees

of T . For this, we propose an algorithm called SubtreeGen as follows.

Algorithm SubtreeGen

Input: A tree T on n nodes and an integer k
Output: A set of n subtrees of T of average size k

for i = 1 to n do
Select a random node x of T and set Ti = {x}
Select a random integer ki ≤ n between 1 and 2k − 1
for j = 1 to ki − 1 do

Select a random node y of Ti that has neighbors in T outside of Ti

Select a random neighbor z of y outside of Ti and add z to Ti

Output {T1, T2, . . . , Tn}
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Lemma 3. The running time of Algorithm SubtreeGen is O(n +
∑n

1=i |Ti|).
Proof. Observe first that each subtree Ti is simply a list of nodes of T . We show
that after an initial O(n) preprocessing time, each subtree Ti can be generated
in time O(|Ti|). For this, we need to be able to add a new node to Ti in constant
time, at each of the ki − 1 steps.

As selecting random elements in constant time is easier when accessing the
elements of an array directly by indices, we start with copying the nodes of T into
an array A of size n, and copying the adjacency list of each node x into an array
Ax of size deg(x). This can clearly be done in total time O(n) since T is a tree.

In general, selecting an unselected element of a set at random can be done
easily in constant time if the set is represented with an array. Let us say we
have an array S of t elements. We keep a separation index s that separates the
selected elements from the not selected ones. At the beginning s is 1. At each
step, we generate a random integer r between s and t. S[r] is our randomly
selected element. Then we swap the elements S[s] and S[r] and increase s by 1.

We can use this method both for selecting a node y of Ti that still has neigh-
bors outside and for selecting a neighbor z of y that has not yet been selected.
For the latter, whenever we select a neighbor z of y, we move z to the first part
of the array Ax using swap. When the separation index reaches the degree of y
then we know that y should not be selected to grow the subtree Ti at later steps.
Representing Ti with an array of size ki, we can use the same trick to move y to
a part of the array that we will not select from. Also, when z is added, we can
check whether it is a leaf in T in constant time, and immediately move it to the
irrelevant part of the array for Ti if so, since z can then not be used for growing
Ti at later steps. It is sufficient to check that z is a leaf of T , because otherwise
it must have neighbors outside of Ti, since T is a tree and we cannot have cycles.
When the generation of Ti is finished, the separation indices of each of its nodes
should be reset before we start generating Ti+1. The adjacency arrays need not
be reorganized, as we will anyway be selecting neighbors at random.

Note that we do not need this trick to select an initial node x of each subtree
Ti, because we should indeed be able to select the same node several times (and
grow another subtree from it perhaps in a different way).

With the described method, each step of Algorithm SubtreeGen takes O(1)
time, in addition to initial O(n) time to copy the information into appropriate
arrays. Thus the total running time is O(n +

∑n
1=i |Ti|). ��

We can now prove the total running time for chordal graph generation.

Theorem 2. Algorithm ChordalGen generates a chordal graph with n vertices
and m edges in time O(n + m).

Proof. Rodionov and Choo [23] prove that the following procedure which runs
in O(n) time generates a tree T on n nodes uniformly at random: start with a
tree T that contains only one node. Then repeat n − 1 times the following: pick
a random node x of T and add a new node adjacent to it.

We use Algorithm SubtreeGen to generate n subtrees of T . By Lemma 3,
this adds to our running time an order of the sum of the sizes of the generated
subtrees.
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To each subtree Ti, we associate a vertex vi of G. In addition to storing the
node lists Ti, we also store in the nodes of T information about which subtrees
contain that node. More precisely, at node x of T , we store the following list: {vj |
Tj contains x}. Observe that this is equivalent to each node of T representing a
clique by storing the list of graph vertices that are contained in this clique. By
Lemma 2, T then contains the information that corresponds to a clique-tree of G.
By Lemma 1 the sum of the sizes of the lists contained at the nodes is O(n+m).
As we only used the lists Ti to generate this information, the sum of the sizes
of the subtrees is also O(n + m). By methods described by Blair and Peyton [3]
it is possible to turn T into a proper clique tree for G in time O(n + m). Thus,
in total O(n + m) time we both have a representation of our output graph G
and a list of maximal cliques of it. It could, however, be desirable to output an
adjacency list representation for G. Markenzon et al. [18], using the methods of
Blair and Peyton [3], explain how this can be done in O(n + m) time. ��

As argued in the proof of Theorem2, the sum of the sizes of the generated
subtrees is O(n+m). In our test results, we give both k and the resulting number
of edges, m, to give an indication of how k affects the density of the generated
graph. It is also possible to supply Algorithm SubtreeGen with a vector of n
subtree sizes {k1, k2, . . . , kn} to generate subtrees of exactly desired size. This
does not change the running time of the algorithm. Within the same running
time, even more user control is possible, like limiting the maximum degree of each
subtree, if so desired, for instance to generate intersection graphs of paths in a
tree. In fact, a completely different method for subtree generation can be plugged
in instead of SubtreeGen in Algorithm ChordalGen. This gives the possibility
of fine-tuning the generation towards designated purposes. In the concluding
section, we mention a few other ideas for subtree generation.

4 Experimental Results

In this section, we give extensive test results to show what kind of chordal
graphs are generated by Algorithm ChordalGen. In Table 1 we show how the
selection of parameter k affects the number of resulting edges and connected
components. We also present the number of maximal cliques, and the minimum,
maximum, and mean size for the maximal cliques, along with their average
standard deviation. For each parameter pair n and average subtree size k, we
performed ten independent runs and report the average values across those then
runs. For each n, we tuned the average subtree sizes in order to approximately
achieve some selected average edge density values of 0.01, 0.1, 0.5, and 0.8, where
edge density is defined as m

n(n−1)/2 .
We want to compare our results to the results showing the kind of chordal

graphs that are generated by Alg 2a [18]. Note, however that, the results given
by [18] only contain graphs on 10000 vertices, with varying number of edges.
Most metrics presented in [18] are about the number of edges. When it comes
to the maximal cliques, they present only the average maximum clique size over
the generated graphs for each edge density. Comparing these to our numbers we
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Table 1. Experimental results of Algorithm ChordalGen

n Avg
subtree
size (k)

Density # edges #
conn.
comp.s

#
maximal
cliques

Min
clique
size

Max
clique
size

Mean
clique
size

Sd of
clique
sizes

1000 4.0 0.011 5646.6 16.5 355.7 1.0 21.4 6.16 3.41

1000 17.0 0.101 50374.8 1.0 169.6 5.2 134.1 30.62 20.26

1000 70.0 0.505 252237.8 1.0 77.6 29.6 474.0 140.24 92.23

1000 162.5 0.801 399906.4 1.0 49.1 74.8 726.2 313.27 163.59

2500 7.0 0.011 35289.6 3.0 680.5 1.1 54.0 11.58 6.96

2500 32.0 0.103 322433.4 1.0 299.0 10.5 344.8 62.07 44.47

2500 135.0 0.503 1572067.0 1.0 134.5 50.0 1196.3 291.23 206.63

2500 318.0 0.803 2509818.4 1.0 88.4 115.0 1866.1 639.35 385.94

5000 10.5 0.010 130255.1 1.2 1092.9 1.8 97.1 18.15 11.47

5000 50.5 0.098 1229487.3 1.0 476.4 15.3 650.9 100.99 77.59

5000 225.0 0.509 6361645.4 1.0 199.5 76.9 2531.3 504.05 381.98

5000 549.0 0.809 10114806.0 1.0 122.0 163.6 3695.8 1217.44 756.58

10000 16.0 0.010 506598.1 1.0 1745.7 3.4 203.5 29.05 19.98

10000 85.0 0.107 5338077.0 1.0 706.5 25.0 1366.8 181.86 148.12

10000 377.0 0.497 24832462.0 1.0 312.6 103.0 4871.6 861.59 681.79

10000 926.0 0.802 40101492.0 1.0 191.7 236.6 7294.4 2109.65 1394.89

see that graphs corresponding to edge densities 0.01, 0.1, 0.5, and 0.8 of Alg 2a
have average maximum clique sizes 727, 2847, 6875, and 8760, respectively. As
can be seen from Table 1, these numbers are quite higher than the corresponding
numbers for the graphs generated by Algorithm ChordalGen. In fact, studying
the numbers more carefully, we can conclude that the maximum clique of a
graph generated by Alg 2a contains almost all the edges of the graph. In the
case of density 0.01, such a clique contains more than half of the edges, whereas
in the case of higher densities, the largest clique contains more than 80, 94, and
95 percent of the edges, respectively. Thus there does not seem to be an even
distribution of the sizes of maximal cliques of graphs generated by Alg 2a.

As we mentioned in Sect. 2, we also implemented Alg 1 [2]. In Table 2 we
give results analogous to Table 1 for 1000, 2500, and 5000 vertices. In order to
obtain results for Table 2 comparable to those given in Table 1, we wanted to have
approximately the same edge density values. For this purpose, when determining
in Alg 2 the number of neighbors of a vertex at each step, we multiplied the total
number of candidate vertices with a coefficient between 0 and 1, which we call
upper bound coefficient. A running time analysis for this algorithm has not been
given [2]. With our implementation, this algorithm turned out to be too slow to
allow testing graphs on 10000 vertices in reasonable time. However, already from
the obtained numbers, we can reach a conclusion for Alg 1 similar to that on
Alg 2a. Observe that the maximum clique sizes obtained for 5000 vertices by Alg
1, are comparable to the maximum clique sizes obtained for 10000 vertices by
Algorithm ChordalGen. Hence, like Alg 2a, also Alg 1 seems to generate graphs
with few big maximal cliques. As can be seen in Table 2, Alg 1 outputs connected
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Table 2. Experimental results of our implementation of Alg 1 [2]

n Upper
bound
coef.

Density # edges #conn.
comp.s

#
maximal
cliques

Min
clique
size

Max
clique
size

Mean
clique
size

Sd of
clique
sizes

1000 0.00130 0.011 5368.6 1.0 935.1 2.0 56.0 4.7 8.74

1000 0.00300 0.103 51519.5 1.0 755.3 2.0 219.2 31.3 63.85

1000 0.01100 0.499 249288.5 1.0 405.2 2.0 561.8 184.3 231.81

1000 0.03500 0.808 403436.2 1.0 185.8 2.0 793.8 394.5 346.26

2500 0.00053 0.010 31978.1 1.0 2322.9 2.0 154.2 8.5 25.39

2500 0.00120 0.101 316107.4 1.0 1882.4 2.0 549.3 71.3 160.68

2500 0.00440 0.501 1565224.3 1.0 1005.7 2.0 1401.1 458.8 592.22

2500 0.01400 0.807 2519340.1 1.0 470.0 2.0 1980.7 988.2 887.66

5000 0.00027 0.011 134535.7 1.0 4628.4 2.0 320.7 16.0 56.66

5000 0.00062 0.107 1331285.2 1.0 3717.0 2.0 1144.5 144.1 339.34

5000 0.00220 0.503 6289143.9 1.0 2001.7 2.0 2804.3 919.5 1195.48

5000 0.00700 0.804 10049827 1.0 938.5 2.0 3945.8 1945.0 1787.89

chordal graphs for the selected set of average edge density values and number of
vertices. The minimum size of the maximal cliques did not show any variation
throughout our experiments and always turned out to be two. The consistency in
this measure may be an additional indication of the lack of potential to produce
a diverse range of chordal graphs.

(a) Results from Algorithm ChordalGen

(b) Results from our implementation of Alg 1 [2]

Fig. 1. Histograms of maximal clique sizes for n = 1000 and average edge densities
0.01, 0.5, and 0.8 (from left to right)

We wanted to evidence the above conclusions by investigating how the sizes of
the maximal cliques are distributed. Figures 1, 2 and 3 show the average number
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of maximal cliques across ten independent runs in intervals of width five, for
1000, 2500, and 5000 vertices and varying edge densities.

These figures consist of two sub-figures, and each subfigure is comprised of
three histograms for three different average edge density values. The top sub-
figures show the results from Algorithm ChordalGen and the second those from
our implementation of Alg 1 [2]. For a given n and average density value, the
ranges of x-axes are kept the same in order to render the histograms compara-
ble. The y-axes, however, have different ranges because maximum frequencies
in histograms corresponding to Alg 1 and Algorithm ChordalGen vary drasti-
cally. The ratios of the maximum frequencies of Alg 1 to those of Algorithm
ChordalGen range roughly from 4 to 160.

(a) Results from Algorithm ChordalGen

(b) Results from our implementation of Alg 1 [2]

Fig. 2. Histograms of maximal clique sizes for n = 2500 and average edge densities
0.01, 0.5, and 0.8 (from left to right)

As Figs. 1, 2 and 3 reveal, the vast majority of maximal cliques of graphs
output by Alg 1 have sizes of 2 to 15. With the increase in edge densities, fre-
quencies of large-size maximal cliques become visible relative to the dominant
small clique frequencies; however, all but the extremes of the range is barely
used regardless of selection of n and edge density. The restricted shape of the
distribution of clique sizes indicates that Alg 1 likely produces chordal graphs of
limited structure in general. Algorithm ChordalGen, however, does not demon-
strate such bias toward the extremes over the range of its maximal clique sizes;
output graphs contain maximal cliques of many different sizes. The fair disper-
sion of clique sizes of Algorithm ChordalGen suggests diversity of its output
graphs, which is a desired characteristic of a random chordal graph generator.
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(a) Results from Algorithm ChordalGen

(b) Results from our implementation of Alg 1 [2]

Fig. 3. Histograms of maximal clique sizes for n = 5000 and average edge densities
0.01, 0.5, and 0.8 (from left to right)

5 Concluding Remarks and Future Work

Algorithm ChordalGen is the first linear-time method in literature for generating
chordal graphs. Furthermore, as it can be seen from the test results, it generates
the most varied chordal graphs, compared to existing methods. The algorithm
is also very general and flexible in the sense that many different methods for
subtree generation can be plugged in.

As already mentioned in Sect. 3, we can further fine-tune the generation of
subtrees for special purposes, and we can use other methods for subtree gener-
ation in Algorithm ChordalGen instead of SubtreeGen. Two such possible ideas
are generating the subtrees by selecting a set of random nodes and connecting
them via the paths in the host tree, and selecting a random set of edges to remove
from the host tree and selecting one of the resulting connected components as a
subtree. We will revisit these methods in the long version of this work.
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Abstract. We consider the problem of simulating traditional popula-
tion protocols under weaker models of communication, which include
one-way interactions (as opposed to two-way interactions) and omission
faults (i.e., failure by an agent to read its partner’s state during an inter-
action), which in turn may be detectable or undetectable. We focus on
the impact of a leader, and we give a complete characterization of the
models in which the presence of a unique leader in the system allows the
construction of simulators: when simulations are possible, we give explicit
protocols; when they are not, we give proofs of impossibility. Specifically,
if each agent has only a finite amount of memory, the simulation is pos-
sible only if there are no omission faults. If agents have an unbounded
amount of memory, the simulation is possible as long as omissions are
detectable. If an upper bound on the number of omissions involving the
leader is known, the simulation is always possible, except in the one-way
model in which one side is unable to detect the interaction.

1 Introduction

1.1 Framework

Consider a system of interacting computational entities, called agents, whose
interaction is however not under their control but decided by an external sched-
uler. Such are for example systems of wireless mobile entities where two enti-
ties can interact (i.e., exchange information) when their movement brings them
into communication range of each other. However, their movements, and thus
their interactions, are unpredictable. Systems satisfying this condition, some-
times called opportunistic mobility or passive mobility, have been extensively
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examined under a variety of assumptions, especially within the context of dis-
tributed computing in highly dynamic networks and time-varying graphs (for
recent surveys see [5,9]).

In particular, in the population protocol model (PP), introduced in the sem-
inal paper [1], the entities are assumed to be finite-state and anonymous (i.e.,
identical), execute the same protocol, and interactions are always between pairs
of agents. The roles of the two agents involved in an interaction are asymmetric:
one agent is considered the starter and the other is the reactor. Still, the com-
munication is two-way: each agent receives the state of the other and executes
the protocol to update its own state based on the received information and its
own state. Furthermore, in the selection of the occurrences of the interactions,
the scheduler is constrained to satisfy some fairness assumption.

The restricted computational universe defined by the basic assumptions of
PP has been subsequently expanded in an attempt to overcome the inherent
computability limitations and to examine the computational impact of factors
such as non-constant memory (e.g., [6]), presence of a leader (e.g., [4]), storage
of information on edges (e.g., [7,8]), etc.

In all these models, including the original one, the interaction is assumed to
be fault-free. An immediate important question is what happens if interactions
are subject to failures.

Very little is know in this regard. An insight comes from the study of the
so-called one-way interaction models [2], where the starter of an interaction is
not able to see the state of the reactor (immediate transmission), or it is not
even able to detect that the interaction has taken place (immediate observation).
This study showed that, under one-way interactions, the computational power
of the agents is strictly weaker than with the usual bidirectional interactions. In
particular, if the interactions are not detectable by the starter (i.e., immediate
observation), the agents can compute only simple threshold predicates [2].

The complete range of omission failures has been classified in [11], where the
following general question was posed: under what additional system capabilities
is it possible to correctly execute every traditional two-way population protocol
in spite of dynamic omission failures? More specifically, under what conditions (if
any) it is possible to simulate the execution of every two-way population protocol
for a given class of omission failures? The simulator should be a population
protocol that, in each execution in the model defined by the considered class of
omissions, produces a correct execution of any traditional two-way population
protocol P given as input, regardless of the nature of P and the constraints its
execution might have; and it does so unobtrusively at each agent, interacting
with P only by observing its internal state, and providing to it the internal state
of another agent. In other words, a simulator provides an interface between the
simulated protocol P and the physical communication layer, giving the system
the illusion of being in a fault-free two-way environment.

The existence of simulators is important in scenarios in which we do not only
concern ourselves with the final output of a population protocol, but also with
the execution that leads to the result. We may want, for instance, to guarantee
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that our simulating agents enter some critical states exactly as many times as
they would if they were actually executing the protocol that is being simulated.

The existence of fault-tolerant one-way simulators of two-way protocols has
been investigated in [11] in terms of the amount memory required by the agents
to perform such simulations, and a variety of models and results were established.
It is shown that, with no a-priori knowledge, the simulation of two-way protocols
in the presence of omissions is impossible even if the agents have infinite memory.
In the weakest models investigated, this impossibility holds even if the number
of omission failures in each execution is limited to one. On the other hand, it
is also shown that simulation is possible if agents have unique IDs or the total
number of agents is known. Moreover, in some restricted models, simulation is
possible when an upper bound on the number of omission faults is known.

In this paper we continue this general line of research and investigate how
the presence in the system of a distinguished agent, a leader, can impact the
capability of the system to tolerate dynamic omission failures. More precisely,
we study the possibility and impossibility of simulation of two-way protocols
with the aid of a leader, with respect to the different classes of omission failures
and one-way interactions.

1.2 Main Contributions

As in [11], we consider all the computationally distinct models that arise from the
introduction of omission faults and/or one-way interactions in two-way protocols:
TW, IT, IO, Ti (i = 1, 2, 3), and Ij (j = 1, 2, 3, 4); see Fig. 2, where the transition
function δ, detailed in Sect. 2, uniquely identifies each model. In particular, TW
refers to two-way protocols without omissions; IT and IO refer to the one-way
models immediate transmission and immediate observation, introduced in [2]; the
Ti’s and Ii’s refer to the distinct two-way and one-way models with omissions,
respectively.

We consider two types of omission adversaries: informally, a “malignant”
one (UO), which is able to arbitrarily insert omission faults into “globally fair”
sequences of interactions, and a “benign” one (�NO), which inserts some omis-
sion faults, but eventually stops. To make our results stronger, we always assume
the benign adversary in the impossibility proofs and the malignant one in the
possibility proofs.

We study the negative impact that omissions have on computability, and we
show that the simulation of two-way protocols is impossible even with the aid
of a leader (Theorem 1), assuming that the amount of memory is bounded.

On the other hand, we show that the presence of both a leader and infinite
memory on each agent makes the simulation possible in the weak intermediate
one-way models I1 and I2 (Theorem 4), and thus in all the upper models of Fig. 2.
The fact that this possibility does not apply to IO and T1 is not accidental: indeed
we prove that, for these two models, the simulation is impossible even with
both a leader and infinite memory, even against the benign omission adversary
(Theorem 2).
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Finally, we study what happens when a bound on the omission failures involv-
ing the leader is known, and essentially we show that simulators exists for models
I1 and I2 (Theorem 5) and model T1 (Theorem 6), and these imply the possibility
of simulations in all other omissive models.

For non-omissive models, we show that two-way simulation is possible in
the IT model (Theorem 7). In light of the fact that with constant memory, in
absence of additional capabilities, IT protocols are strictly less powerful than
TW (see [11]), our results show that this computational gap can be overcome by
using a leader.

Our main results are summarized in Fig. 1, where white blobs represent pos-
sibilities, and gray blobs impossibilities. As a consequence of these results, we
have a complete characterization of the feasibility of simulations with respect to
the presence of a leader. Due to lack of space, some proofs are omitted, they can
be found in [12].

Thm. 1

TW

Thm. 1 Thm. 7

Thm. 1Thm. 1Thm. 1

Thm. 1
Thm. 1

Thm. 1

Thm. 4

TW

Thm. 4 Thm. 4

Thm. 4Thm. 4Thm. 4

Thm. 4
Thm. 2

Thm. 2

Thm. 5

TW

Thm. 5 Thm. 5

Thm. 5Thm. 5Thm. 5

Thm. 5
Thm. 6

Obs. 1

Finite memory

Fig. 1. Map of results (cf. Fig. 2). White blobs denote the existence of simulators; gray
blobs indicate that simulations are not possible.

1.3 Related Work

Starting with the seminal paper [1], there have been extensive investigations
on population protocols (e.g., see [9]). In order to overcome the inherent com-
putability restrictions of the model, several extensions have been proposed. For
example, endowing each agent with non-constant memory [6], assuming the pres-
ence of a leader [4], allowing a certain amount of information to be stored on
the edges of the “communication graph” [7,8], etc.

The possibility of reliable computations in PP has been studied only with
respect to processors’ faults, and the basic model has necessarily been expanded.
In [10] it has been shown how to compute functions tolerating O(1) crash stops
and transient failures, assuming that the number of failures is bounded and
known. In [3] the majority problem under O(

√
n) Byzantine failures, assuming a

fair probabilistic scheduler, has been studied. In [13] unique IDs are assumed, and
it is shown how to compute functions tolerating a bounded number of Byzantine
faults, under the assumption that Byzantine agents cannot forge IDs.
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Finally, to the best of our knowledge, the one-way model, without omissions,
has been studied only in [2], where it is shown that IT and IO, when equipped
with constant memory, can compute a set of functions that is strictly included in
that of TW. The omission models that we consider have been introduced for the
first time in [11], where a characterisation of what can be simulated without a
leader is given. Our paper complements and enriches the results of [11], showing
what additional power is obtained assuming the presence of a leader.

2 Model and Terminology

In this section we briefly define the computation model, the notion of omission,
and the notion of simulator. Due to space constraints, we do not include all the
formal definitions, which can be found in [11].

2.1 Interacting Entities

We consider a system consisting of a set A = {a1, . . . , an} of interacting compu-
tational entities, called agents. Each interaction involves only two agents with
asymmetric roles: one agent is the starter and the other is the reactor. Interac-
tions occur at discrete times, and at every “time unit” exactly one interaction
occurs. The starter and the reactor of each interaction are chosen by an external
“adversarial scheduler” in a “globally fair” way (see [11] for details).

When two agents interact, they exchange information and perform a local
computation according to the same protocol P. A protocol is a pair P =
(QP , δP), where QP is a set of local states and δP : QP × QP → QP × QP
is the transition function defining the states of the two interacting agents at
the end of their local computation. Some elements of QP are labeled as “initial
states”; when the execution of the protocol begins, all agents have (any combi-
nation of) initial states. With a small abuse of notation, and when no ambiguity
arises, we will use the same literal (e.g., ai) to indicate both an agent and its
local state. A configuration of P is a multiset of local states of P.

We can model the presence of a leader in the system by stipulating that, in
every initial configuration, there is exactly one agent in a distinguished state (or
set of states).

Depending on the conditions imposed on the transition function, three main
models of interactions have been identified: the standard two-way model and the
one-way models, immediate transmission and immediate observation, presented
in [2].
Two-Way Interaction Model (TW). The state transition function con-
sists of two functions fs : QP × QP → QP and fr : QP × QP → QP , one
for the starter and the other for the receiver respectively, with δP(as, ar) =
(fs(as, ar), fr(as, ar)).
Immediate Transmission Model (IT). The state transition function consists
of two functions g : QP → QP and f : QP × QP → QP , with δP(as, ar) =
(g(as), f(as, ar)). Note that, in the IT interaction model, the starter does not
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read the state of the reactor but it explicitly detects the interaction, as it applies
function g to its own state.
Immediate Observation Model (IO). The state transition function has the
form δP(as, ar) = (as, f(as, ar)). Note that, in the IO model, there is no detection
of the interaction (or proximity) by the starter.

2.2 Omissions

An omission is a fault involving a single interaction. In an omissive interaction,
an agent does not receive any information about the state of the other. If omis-
sions can occur in the system, then transition functions become more general
relations.

Two-Way Omissive Models. In the most general omissive model, T3, the
transition relation has the form

δ(as, ar) = {(fs(as, ar), fr(as, ar)), (o(as), fr(as, ar)),

(fs(as, ar), h(ar)), (o(as), h(ar))}.

The first pair is the outcome of an interaction when no omission is present;
the other three pairs represent all possible outcomes when there is an omission:
respectively, an omission on the starter’s side, on the reactor’s side, and on both
sides. The functions o and h represent the detection capabilities of each agent:
if one of these is the identity, then omissions are undetectable on the respective
side. This gives rise to the weaker models T2 and T1 depicted in Fig. 2 (see [11]
for more details).

One-Way Omissive Models. These models are defined by the transition
relation

δ(as, ar) = {(g(as), f(as, ar)), (o(as), h(ar))}.

The first pair is the outcome of an interaction when no omission is present, and
the second pair when there is an omission. Note that the IO model corresponds
to the case in which g is the identity function and there are no omissions. Once
again, omissions are undetectable starter-side if o is the identity function or if
o = g. Moreover, if h = g, the reactor has detected the proximity of another
agent, but is unable to read its state or even determine who is the starter and
who is the reactor. Collectively, these variations give rise to models I1 to I4 in
Fig. 2. Other combinations of omissions and detections are possible, but they
are provably equivalent to some of the aforementioned ones (see [11] for more
details).

Omissions are introduced by an adversarial entity. We consider two types of
adversaries:

(1) the Unfair Omissive Adversary (UO), which arbitrarily inserts omissive
interactions in any execution, and

(2) the Eventually Non-Omissive Adversary (�NO), which can only insert
finitely many omissions in an execution.
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Fig. 2. Interaction models (up to equivalence) and their computational relationships.
An arrow between two blobs indicates that the class of solvable problems in the source
blob is included in that of the destination blob. The models on the left, T1,T2,T3,
are the two-way models with omissions. The models on the right, I1, I2, I3, I4, are the
one-way models with omissions.

2.3 Simulation of Two-Way Protocols

Let P be a two-way protocol, and let S(P) be any protocol (which could be one-
way, omissive, or both). Next we are going to informally define what it means
for S(P) to simulate P (for a formal definition, refer to [11]).

We want the set of local states of S(P) to be of the form QP ×QS , where QP
is the set of local states of P (the “simulated states”), and QS is some additional
memory space used in the simulation. Suppose now to start an execution of S(P)
on a system of n > 2 agents from a given initial configuration. Agents are allowed
to freely change the QS component of their local states; but when they change
their QP component, we want the change to reflect the transition function of
P. That is, if δP(as, ar) = (fs(as, ar), fr(as, ar)), then for every agent whose
simulated state changes from as to fs(as, ar), there must be some other agent
(at some point in time) whose simulated state changes from ar to fr(as, ar).
Moreover, there must be a perfect matching between such transitions, in such
a way that each starter of a simulated transition can be implicitly mapped
to an appropriate reactor. Also, such a perfect matching must be “temporally
consistent”, i.e., there must be an ordering of the simulated two-way interactions
that respects the order of the local state changes of each agent.

We additionally require that, if the execution of S(P) is globally fair (in
the sense defined in [11]), then also the resulting simulated execution of P is
globally fair.
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3 Simulation with a Leader in Omissive Models:
Impossibility

In this section we prove that the presence of a leader, alone, might not be suffi-
cient to overcome dynamic omissions. Indeed, we prove that there are two-way
protocols that cannot be simulated with omissive interactions even if a leader is
present.

3.1 Impossibility with Finite Memory

We investigate what happens when we restrict the memory of agents to be
bounded by some function of |A|. We show our impossibility results directly for
the T3 omissive model. The results clearly carry over to all the less powerful
omissive models.

Theorem 1. A system of agents, each of which has a finite amount of memory,
cannot simulate every two-way protocol in the T3 model (hence in all the omissive
models), even with the presence of a leader and under the �NO adversary.

3.2 Impossibility with Infinite Memory

For this case we can show that simulation is impossible in the omissive two-way
model without detection, and thus in IO.

Theorem 2. A system of agents, each of which has an infinite amount of mem-
ory, cannot simulate every two-way protocol in the T1 model (hence in IO), even
with the presence of a leader and under the �NO adversary.

Observation 1. Since in IO there are no omissions, the statement of Theorem2
for the IO model trivially extends to the scenario in which the number of omis-
sions in the sequence of interactions is known in advance by the agents.

4 Simulation in Omissive Models

In this section we are going to make use of a result that appears in [11] as
Theorem 4.5. This theorem assumes each agent to have a unique ID, which is a
non-negative integer, as part of its local state.

Theorem 3. Assuming IO, unique IDs, and O(log(max ID)) bits of memory
on each agent (where max ID is the maximum ID in the system), there exists a
simulator for every two-way protocol, even under the UO adversary. ��
What this theorem says is that, if the agents initially have unique IDs, they can
perform a simulation of any two-way protocol, even if the simulation runs in the
weakest model, IO, and against the strongest adversary, UO.

In this section we show that, in certain models, we can implement a naming
algorithm, i.e., an algorithm that assign unique IDs to all agents. Once an ID has
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been assigned to an agent, it cannot change. Therefore, the naming algorithm
and the simulator of Theorem3 can be combined into a single protocol and can
even run in parallel: if an agent has no ID yet, the simulator simply ignores
every interaction involving this agent. By global fairness, eventually all agents
will have unique IDs, and the simulation will finally involve the entire system,
producing a globally fair simulated execution.

The protocols will be presented using an algorithmic style: for each interac-
tion of the form (as, ar), the starter agent as executes function Upon Event Starter
sends() and the reactor agent ar executes Upon Event Reactor delivers (vars),
where vars is the variable var in the local state of agent as.

4.1 Naming Algorithm with Infinite Memory

If the leader has infinite memory, it can implement a simple naming algorithm
under certain models. Since Theorem 2 already states the impossibility of simula-
tion under models T1 and IO, we will assume model I1 or model I2. Constructing
a simulator for these models will imply the existence of a simulator for all other
models except T1 and IO (refer to Fig. 1).

Theorem 4. Assuming I1 or I2, the presence of a leader, and an infinite amount
of memory on each agent, there exists a simulator for every two-way protocol,
even under the UO adversary.

4.2 Naming Algorithms with Knowledge on Omissions

Now we assume that agents have only a finite amount of memory, but they know
in advance a finite upper bound L on the number of omission faults that the
adversary is going to insert in interactions that involve the leader. Note that
the adversary can still be UO even if only finitely many omissive interactions
involve the leader.

Naming Algorithm for I1 and I2. In this case the memory is bounded by
a function of L and the size of the system, n. It is worth mentioning that the
precise value of n is not known to the agents, and L is only an upper bound on
the number of omissions involving the leader, not necessarily the exact number.

Theorem 5. Assuming I1 or I2, the presence of a leader, knowledge of an upper
bound L on the number of omission failures in interactions that involve the
leader, and Θ(L log nL) bits of memory on each agent (where n is the number
of agents), there exists a simulator for every two-way protocol, even under the
UO adversary.

Proof. We implement the naming algorithm presented in Fig. 3. The leader has
an array of L+1next ID variables. This array is initialized to [1, 2, . . . , L+1] and,
when an ID is assigned, the corresponding entry of the array will be incremented
by L + 1, so that no two equal IDs are ever be generated.



Population Protocols with Faulty Interactions: The Impact of a Leader 463

All entries of next ID are initially unlocked : this information is stored in the
leader’s Boolean array locked. The active ID is defined as the unlocked entry
of next ID having minimum index, if there is any (line 10). This is the ID that
will tentatively be assigned next. Whenever the leader detects the proximity
of another agent (i.e., it executes function g on its own state, or function Upon
Event Starter sends in the algorithm of Fig. 3), it locks the active entry of next ID
(line 12). The purpose of locking an entry of next ID is that the leader cannot
allow its value to grow indefinitely, because now memory is limited. Instead, the
leader will make the entry temporarily inactive, and will keep it on hold until it
gathers more information in the following interactions.

On the other hand, if an agent a sees the leader (i.e., it executes function f
or function Upon Event Reactor delivers in Fig. 3), and a does not have an ID yet,
then it assigns itself the active ID from the leader’s next ID variable (line 30).
So, the next time the leader sees a, it will read its new ID and it will know that
the corresponding entry of next ID can be unlocked (line 23) and its value can
be incremented by L + 1 (line 24). It may happen that the leader is involved
in an omissive interaction, and therefore the entry of next ID that it locks will
never be unlocked again. However, this can happen at most L times, while the
array has L + 1 entries.

This is not sufficient yet, because the same agent a may see the leader multiple
times in a row and cause all entries of next ID to become locked. If a only stores
one ID, it will have no way to tell the leader that more than one entry of next ID
has to be unlocked. This is why a also has a variable called redundant, which is
a Boolean array that will store information on all the active entries of next ID
that a sees after receiving an ID. So, if the agent a already has an ID and it
sees the leader again, it sets to true the entry of reduntant corresponding to the
active ID of the leader (line 32).

Now, suppose that the leader sees that a has an entry of redundant set to
true. This implies that the corresponding entry of next ID is currently locked
and should be unlocked. However, this cannot be done right away: the leader
wants to give a an “acknowledgment”, so that a will set the entry of redundant
to false first. This is to prevent the scenario in which the entry of next ID gets
unlocked, becomes active, another agent b sees it, and takes it as its own ID. If
then the leader sees a again (still with redundant on true), it will unlock the
entry of next ID. Then perhaps yet another agent c will see the leader, getting
the same ID as b.

To prevent such an incorrect behavior, the leader has another variable array
called waiting, in which it stores the IDs of the agents that should reset their
redundant variables. So, when the leader sees that a has some entry of redundant
set to true, it stores the (unique) ID of a in the corresponding entry of waiting
(line 18). Then, when a sees the leader again and reads its own ID in the waiting
array, it knows that it has to set to false the corresponding entries of redundant
(line 34). Finally, when the leader sees a again and notices that the entry of
redundant has been set to false, it can reset the corresponding entry of waiting
(line 20) and unlock the entry of new ID (line 21).
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1: Variables
2: my �DI the leader has this variable initialized to 0, non-leaders to ⊥
3: next ID[] := [1, 2, . . . , L + 1] � leader variable
4: locked[] := [false, false, . . . , false] � leader variable
5: waiting[] := [⊥, ⊥, . . . , ⊥] � leader variable
6: redundant[] := [false, false, . . . , false] � non-leader variable
7:
8: Upon Event Starter sends()
9: if my ID = 0 then � I am the leader
10: j := min{j | locked[j] = false, L + 2}
11: if j < L + 2 then
12: locked[j] := true

13:
14: Upon Event Reactor delivers (my IDs, next IDs[], lockeds[], waitings[], redundants[])
15: if my ID = 0 then � I am the leader
16: for all j ∈ {1, 2, . . . , L + 1} do
17: if redundants[j] = true then
18: waiting[j] := my IDs

19: else if waiting[j] = my IDs then
20: waiting[j] := ⊥
21: locked[j] := false

22: if ∃j, next ID[j] = my IDs then
23: locked[j] := false
24: next ID[j] := next ID[j] + L + 1

25: else � I am not the leader
26: if my IDs = 0 then � my partner is the leader
27: j = min{j | lockeds[j] = false, L + 2}
28: if j < L + 2 then
29: if my ID = ⊥ then
30: my ID := next IDs[j]
31: else
32: redundant[j] := true

33: if my ID �= ⊥ ∧ ∃j, waitings[j] = my ID then
34: redundant[j] := false

Fig. 3. Naming algorithm for I1 and I2 with knowledge on omissions, used in Theorem 5

The fact that the algorithm does not give the same ID to two different agents
follows from the observation that at most one agent can keep an entry of new ID
locked at any given time, which in turn follows from the way the two variables
redundant and waiting function together. If no omission occurs and the leader
is observed by some agent a, then a will store information about the currently
active ID. If a takes this ID for itself, that entry of next ID will be incremented
before any other agent can get the same ID. If a has already an ID, the entry
of next ID will remain locked until a has reset its own redundant variable.
Moreover, the fact that the algorithm will eventually assign every agent an ID
immediately follows from the global fairness of the adversarial scheduler.

Since the IDs in the next ID array increase by L + 1 every time one is
assigned, and since there are n agents in total, the value of every ID is O(nL).
Hence, O(L log nL) bits of memory are required to store each agent’s arrays, and
O(log nL) more bits are required to run the simulator of Theorem3.
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Naming Algorithm for T1. Observe that the previous naming algorithm does
not work for model T1, and Theorem 2 does not hold when some kind of upper
bound on omissions is known.

Theorem 6. Assuming T1, the presence of a leader, knowledge of an upper
bound L on the number of omission failures in interactions that involve the
leader, and Θ(L log nL) bits of memory on each agent (where n is the number
of agents), there exists a simulator for every two-way protocol, even under the
UO adversary.

5 Simulation for IT

Notice that IT is the only finite-memory model for which the impossibility result
of Theorem 1 does not hold (see Fig. 1). It turns out that in this model we can
implement a simulator that sequentializes the simulated two-way interactions
via a token-passing technique.

Theorem 7. Assuming IT, the presence of a leader, and a constant amount of
memory on each agent, there exists a simulator for every two-way protocol, even
under the UO adversary.
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Abstract. This year we are celebrating the 70th birthday of Stathis!
We take this chance to recall some of his remarkable contributions to
Computer Science.

1 Introduction

Stathis Zachos was born in Athens in 1947. His father Kyriakoulis Zachos was
a distinguished professor of Mining Engineering and Geophysics in the National
Technical University of Athens and his mother Evangelie Spanidis-Zachos was a
physicist, PhD advisee of Hans Geiger. He is the brother of theoretical physicist
Cosmas Zachos. His first son Kyriakos tragically died in a car accident in 2001.
He is now married to Sofia Chatzilambrou and they have a son, Konstantinos,
and two daughters, Christina and Katerina.

Stathis studied in Eidgenössische Technische Hochschule Zürich (ETHZ),
from where he obtained a Diploma in Mathematics (1972) and a PhD in the area
of Mathematical Logic and Foundations of Computer Science (1978), advised by
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Erwin Engeler and Ernst Specker. He has held the posts of professor in Computer
Science at the University of California in Santa Barbara, the City University of
New York, and the National Technical University of Athens. He has also served
as an adjunct professor at ETHZ and as a visiting scholar at MIT.

Stathis Zachos has conducted pioneering research in randomized complex-
ity classes, probabilistic quantifiers, Arthur-Merlin games, and interactive proof
systems. His uniform description of structural complexity has influenced many
researchers, and has provided key insights in proving important theorems in
computational complexity. His work has been often cited in main textbooks and
papers. Among his most cited contributions are: (a) Proving that the Graph
Isomorphism (GI) problem is unlikely to be NP-complete (with Ravi Boppana
and Johan H̊astad [8]); notably, a remarkable recent result states that GI is
of quasi-polynomial complexity [1], and (b) Introducing and proving properties
of the class ⊕P (with Papadimitriou [29]), later employed in Toda’s celebrated
result that the Polynomial Time Hierarchy is contained in P#P. Stathis has
also contributed to several other fields such as graph coloring, randomized and
approximation algorithms, logics, and computational geometry, to name a few.
He has Erdős number 2.

Stathis has been a restless teacher in all departments where he has served.
Especially in the National Technical University of Athens (NTUA) he has set
a remarkable almost 30-year long teaching record. During his first ten years
at NTUA he had struggled almost alone to set up a descent computer science
curriculum in the Department of Electrical and Computer Engineering. He com-
pletely revised the content and teaching of introductory programming courses,
and of the ‘Algorithms and Complexity’ course, and introduced many under-
graduate and graduate courses in computer science, computability, complexity,
and cryptography. A little later he organized a similar curriculum for the Depart-
ment of Applied Mathematics and Physical Sciences, where he also taught for
many years. On top of those, he has been a founding member and teacher of
the renowned “Graduate Programme in Logic, Algorithms and Computation
(MPLA)” for about 20 years. Recently, he actively participated in the establish-
ment of the “Graduate Programme in Algorithms, Logic and Discrete Mathe-
matics (ALMA)” which was launched in 2016. During his presence at NTUA he
has taught well over ten thousand students, introducing them to the concepts of
programming, computer science and theoretical computer science.

Stathis has also been an inspiring mentor and advisor for hundreds of students
that have been involved in research projects, diploma theses and doctoral studies
under his supervision. Stathis has always been there for them, enlightening their
path to knowledge, encouraging their quests for further studies, and advising
them not only on academic but also on personal matters. Through the years he
has supervised more than 20 doctoral and more than 80 diploma theses. Notably,
many of his advisees pursue academic careers in renowned institutions all over
the world.

Stathis has always been actively promoting activities that strengthen the
interaction among the community, especially between students and senior or
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junior researchers. He co-organized international conferences such as STOC,
ICALP, CiE (Computability in Europe), and ASL (Association for Symbolic
Logic) European Summer Meeting. In addition, he has been a founding member
and regular organizer for various local conferences and workshops such as ACAC
(Athens Colloquium on Algorithms and Complexity), NYCAC (New York Col-
loquium on Algorithms and Complexity), PLS (Panhellenic Logic Symposium),
AtheCrypt (Athens Cryptography day) and AGaThA (Algorithmic Game The-
ory Athens).

In the rest of this article we present in more detail some of Stathis’s impressive
contributions – and our own memories from our collaboration with him.

2 Playing Games with Generalized Quantifiers
(by Martin Fürer)

I have been lucky to start my studies at ETH in the same year as Stathis Zachos.
We both have been fascinated by Ernst Specker, and therefore we took all courses
offered in mathematical logic and regularly participated in the logic seminar,
where Paul Bernays was an attentive participant. One of the first results studied
was the solution of Hilbert’s 10th problem. In the early years at ETH, we got
involved in the theory and practice of games. Politically, we have been shaped
by the protests against the war in Vietnam and the resistance to the military
dictatorship in Greece.

Very soon after the P versus NP question was formulated, we started as
graduate students to participate in a second weekly two hour seminar with Volker
Strassen and Ernst Specker. We have been impressed with all the exciting open
problems in this area, and we slowly switched from mathematics to theoretical
computer science.

When I decided to choose a postdoc position with Les Valiant instead of a
regular position at UC Santa Barbara, I “sent” Stathis there instead. Our com-
mon interests in complexity had much to do with randomized computations and
quantifier alternations. We embraced the Sipser-Gács result on the containment
of BPP in the polynomial hierarchy in its simplified version of Lautemann. At
least I thought so. But Stathis told me once that the version with moving combs
with irregular teeth might be partially my invention, as he could not find it in
the paper. I am not sure, because I never read these papers, but maybe Clemens
Lautemann has used this illustration in an oral presentation at Oberwolfach.

Certainly, our earlier interest in games provided us a good foundation to
investigate the power of interchanging quantifiers [35]. We showed how com-
plexity classes like BPP and RP can be characterized by pairs of generalized
quantifiers. Arthur-Merlin classes involved pairs of alternating sequences of such
quantifiers. We also studied more involved complexity classes obtained by also
using such classes as oracles, focusing on results produced by investigating the
effect of changing the quantifier order in a definition. Due to the interest of such
results in interactive proof systems, we also had a joint paper with Goldreich,
Mansour and Sipser [12].
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It is always a pleasure to see and interact with Stathis, be it mathematical
or related to any other subject. I almost share a birthday with Stathis. But
“almost” means that I will always be ahead, and he will never quite catch up. I
keep telling him that he is still so young, even at 70.

3 On the Power of Counting – and Friendship
(by Christos Papadimitriou)

The summer of 1982 I returned to MIT from my stormy first year at the National
Technical University of Athens. Meeting with Stathis Zachos was one of the
human and cultural delights of that year; we had agreed to meet again at MIT
in the summer to do research together (I believe he was on his way from ETH
to Santa Barbara). The result of that collaboration was a little paper that was
pivotal for my thinking, and presaged major advances in Complexity.

In 1982, the P vs NP problem was already a decade-old classic, the Karp-
Lipton Theorem in 1980 had brought to the forefront complexity hierarchies and
the eventuality of their collapse, while Valiant had established counting as a novel
computational modality, inviting comparison with the polynomial hierarchy. Our
paper with Stathis identified two low-hanging fruits in this research direction:
First, counting encompasses a modest layer of the polynomial hierarchy (namely,
polynomial computation with a logarithmic number of NP oracle calls). Second,
hierarchies of certain computational modalities - such as the parity of solutions
to NP problems - do collapse. Both proofs were among the first instances of a
methodology that would become a pillar of Complexity, namely encoding com-
putation in the number of branches of a nondeterministic machine. (We note at
the end of our paper that Les Valiant told us that he had independently observed
the second result.)

Stathis went on to write much more on the field of “structural complexity”,
while all my previous and subsequent studies of Complexity were of the kind that
is directly motivated by problems. I am grateful that, through this collabora-
tion with Stathis Zachos, I was brought closer to understanding the other side,
a fusion that eventually resulted in my Complexity book a dozen years later.
A bit before that, in 1991 Seinosuke Toda famously came up with towering gen-
eralizations of both of our remarks, concluding that the polynomial hierarchy
would collapse before it could encompass counting. A quarter century later, this
remains one of the most incisive and overarching results in all of Complexity.

Our paper [29] was presented at the 6th GI (a conference I believe no longer
exists), which, if memory serves, took place in Bremen where Stathis and I
met again that winter, just before my move to Stanford. Today the paper looks
quaint, in typescript and with the # sign handwritten, and yet I had no trouble
retrieving it in the Internet (where I learned that it has been cited a few hundred
times). Things seem to be changing at a remarkable pace – in fact, Stathis Zachos
is turning seventy! And yet, great intellectual quests, and good old friendships,
prevail.
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4 An Advisor that Counts (by Aris Pagourtzis)

I first met Stathis back in 1989–90 during a graduate seminar organized by Foto
Afrati at the National Technical University of Athens. Stathis, with his friendly
and passionate character quickly earned my attention and admiration. Around
summer of 1990 I was lucky enough to be offered a PhD position under his
supervision, which I accepted, not without any hesitation. At that time I was
not entirely sure whether it would be a good idea to pursue doctoral studies;
however, Stathis with his energy and enthusiasm quickly dissolved my doubts
and dragged me to this strange and fascinating world of academic research and
to the even more strange and fascinating topic of structural complexity. The
way Stathis was approaching the subject was unique and very influential to me:
he always had a very pictorial, intuitive approach, mostly playing with trees
neatly depicting both nondeterministic computations and randomized ones in
a uniform manner. Stathis was constantly trying to pursue his unifying, path
counting approach towards both nondeterminism and randomization; his view
led to great results and insights on classes BPP [34,36], ⊕P [29] and the Graph
Isomorphism problem [8] which inspired lots of further research by numerous
scientists, including myself and several other students of him.

In winter of 1995 Stathis invited me to New York where I had a chance to
closely work with him and his doctoral student Kiron Sharma. Our collabora-
tion was quite fruitful and led to various results on counting using computation
trees some of which appeared in Kiron’s doctoral thesis and were presented
in workshops and conferences. One of the most interesting outcomes was the
invariance of the probabilistic/counting class PP under threshold variations [27],
which simplified and strengthened earlier results of Beigel and Gill contained
in [7]. A couple of years later, Aggelos Kiayias joined the team and worked with
us towards a better understanding of the difficulty of counting. This collabora-
tion led to definitions of new, somewhat esoteric’ complexity classes capturing
aspects of this difficulty. We proved by structural arguments that all these classes
are interreducible with #P under Cook[1] reductions, that is, one oracle call is
enough in order to reduce a problem of any these classes to some problem of
any other in polynomial time. The most interesting among these classes so far
turned to be the class TotP having a simple and natural definition: it is the class
of functions that count the total number of computation paths of a nondetermin-
istic polynomial time Turing machine, regardless of being accepting or rejecting.
These results appeared in various fora as well as in my doctoral dissertation
(see [14] and references therein).

Along the way we realized (thanks to a comment of Phokion Kolaitis dur-
ing a early presentation of some of these results [15]) that the new classes, and
especially TotP, contain counting functions for which it is easy to check whether
the function value is nonzero. But this is a property shared by some of the
most interesting counting problems: those that admit an efficient approximation
scheme! Indeed, we were soon able to show that problems such as #Perfect
Matchings (aka 0–1 Permanent) and #DNF-Sat belong to this new class.
This sparkled a fresh interest in TotP and later on, Stathis and myself managed
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to show that in fact, TotP is the class of counting functions with easy decision
that possess a natural self-reducibility property [28]. This has been a major out-
come of our collaboration with Stathis, which continued to trigger new research
efforts of our group [3] comparing TotP with interval size function classes of
Hemaspaandra et al. [13]. Our most recent results, which Stathis significantly
helped to derive and formulate correctly, concern TotP-complete problems under
parsimonious reductions and appear in this proceedings ([2], see also Sect. 12).

Apart from counting, we collaborated with Stathis in several papers in the
field of path coloring algorithms (together with Christos Nomikos and Katerina
Potika – see Sects. 6 and 9 for more details). This collaboration inspired further
research within our group [4,5] leading, among others, to one more doctorate
advised by Stathis, namely that of Evangelos Bampas. We also had extensive
collaboration in teaching, student mentoring and organizing scientific and social
events. In all these activities he has been a ‘driving force’ always setting the bar
higher – and doing his best to make things happen!

Stathis has influenced my research, teaching, and my life in general, in so
many ways that it would be impossible to describe in few lines. I will only say
that I completely owe him my decision to pursue an academic career. This is
no surprise: he has set such an example of scientific quality, passion and dignity
that makes people around him believe that the best one can do in life is to follow
in his footsteps. Indeed, most of his doctoral students and many of his diploma
students have become researchers and/or teachers all around the globe. In my
opinion, this is his greatest achievement and contribution.

5 Logic, History, Politics and Basketball (by Costas
Koutras)

I met Stathis in Fall 1990. He had just joined the faculty at the Dept. of Electrical
Engineering of NTUA. I was a beginner in my PhD studies, trying to find my way
into research. I felt strongly inclined towards logic and its applications, holding
a strong fascination with the problems of logic-based Knowledge representation,
which was very trendy at the time. In our first meetings, I was a bit surprised
to find that Stathis kept asking on my interests and my motivation, much like
as if he was ‘interviewing’ me. Suddenly, one morning I was awaken by his
phone call. He called to say that he was planning a ‘Logic in Computer Science’
seminar, aiming to educate young researchers in logic and its intimate relation to
computing. This was it. In the months that followed, Stathis organized and held a
series of seminars on Mathematical Logic and Computability Theory, Automated
Theorem Proving, λ-calculus and combinatory logic. These seminars revealed
to me a new, beautiful world; we went through the fundamentals of (classical
and non-classical) logic and recursion theory. Stathis even took me by the hand
and introduced me to Modal Logic, a topic on which there was practically no
knowledge and/or research activity in Greece till that time.

Stathis taught me so many things, in so many areas, that I would need a lot
of space to describe. He kept mentoring me and gave me the way to the Gradu-
ate Programme on Logic, Algorithms and the Theory of Computation (MPLA),
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definitely a tremendous environment for people working in logic and theoretical
computer science and one of the happiest moments in the greek academic space.
I have to apologize for the late return in his investment, as it took me some
time before I started producing my own results. Some time later, he called me
and handed me a bunch of papers written by M. Fitting on a family of Heyting-
valued modal logics, encouraging me to take a look. Studying this family of logics
I was introduced to the machinery of lattice theory and universal algebra and
I gained useful insight to the metamathematics of Modal Logic. We wrote two
papers together, both in this area [16,17].

Yes, I totally agree with something Martin Fürer wrote (Sect. 2): ‘he is still
so young, even at 70 ’. That’s good news. We may find the time to do some
joint work on Complexity (to which he also introduced me) and I may somehow
convince him that it is my view on Greek history which is correct and not his.
There is absolutely no chance that we can agree on politics; he keeps making
me angry. I know that I can’t compete with him in many areas. It is only in
basketball that he will never beat me. But only in this.

6 A Colorful Time (by Christos Nomikos)

I met Stathis in 1990, when I attended his undergraduate course on “Models of
Computation, Formal Languages and Automata Theory”. Very soon I realized
that Stathis was an excellent teacher, not only because of his deep knowledge
in Theoretical Computer Science and Mathematical Logic, but also due to his
exceptional ability to make complicated notions intuitively clear for the average
student. The impact of this course on me was the main reason for my decision
to continue my studies at postgraduate level in NTUA.

My interest in algorithms for path coloring – a problem with applications to
bandwidth allocation in all-optical networks – started while Aris (Sect. 4) and
myself were PhD-students in NTUA, under the supervision of Stathis. We were
actually influenced by a series of talks given by Milena Mihail in 1994, while she
had been visiting NTUA invited by Stathis. We continued the research in this
area in collaboration with Stathis for several years after we had received our
PhD.

The optimal use of the available bandwidth is a crucial issue in optical net-
works. Optimization problems relevant to bandwidth allocation can be modeled
as path coloring problems in graphs. In the Path Coloring problem the goal is
to color a set of given paths using a minimum number of colors, so that paths
passing through the same edge have different colors. This corresponds to satis-
fying a given set pre-routed requests, using a minimum number of wavelengths.
Path Coloring is NP-hard, even when it is restricted to simple graph topologies,
including stars and rings. The main direction of our research was the devel-
opment of approximation algorithms for some variations of Path Coloring for
special classes of graphs.

Since the number of available wavelengths is actually limited by technology,
we considered variations of Path Coloring (PC) in which the number of wave-
lengths is a part of the input rather than a parameter that has to be optimized.
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In the Max-PC problem the goal is to satisfy a maximum number of pre-routed
requests, using the available wavelengths. In graph theoretic terms, the goal is to
color a maximum number of paths, using a given number of colors. We proposed
a 2

3 -factor approximation algorithm for Max-PC in rings, which was presented
in the Workshop on Algorithmic Aspects of Communication (AlAsCo 1997), and
was later published in Computer Networks [24]. We also studied a variation of
this problem, in which the routing is not given and the goal is to assign a com-
munication path and a wavelength to each request, so that a maximum number
of requests are satisfied using the available wavelengths. For ring graphs we
proposed algorithms for symmetric and one-way communication, with approx-
imation factors 2

3 and 7
11 , respectively. This work was presented in INFOCOM

2003 [23].
In the case that the number of available wavelengths is limited and we still

want to satisfy all the requests, we can use parallel fiber links between each pair
of nodes and allow multiple requests to be transmitted between a pair of nodes
in the same wavelength, by using different links. Based on the above observation
we introduced and studied the Path Multicoloring problem, in which, given
a set of requests and the number of available wavelengths per link, the goal is to
satisfy all the requests by activating a minimum total number of parallel links.
For this problem, we developed an exact polynomial time algorithm for chain
graphs, and 2-factor approximation algorithms for rings and stars. A preliminary
version of this paper was presented in AlAsCo 1997, and the full paper was
published in Information Processing Letters [22].

A very interesting problem that emerged during our research in the area of
optimization problems for optical networks is Blue-Red Matching, which is
a variation of Exact-Matching introduced by Papadimitiou and Yannakakis
in 1982. In our paper presented in MFCS 2007 [25], we proved that Blue-Red
Matching cannot be solved in polynomial time unless Exact-Matching is in
P, and we proposed a polynomial time randomized algorithm and an approxi-
mation algorithm with factor 3

4 for this problem.

7 On Art and Increased Visibility (by Euripides Markou)

I met Stathis Zachos during the spring of 1994. It was just a few months after I
had graduated with a bachelor in Physics and I was searching my way towards
Computer Science. Along this quest I had registered and attended a 3-month
postgraduate seminar on Computational Mathematics and Graph Algorithms
at the National Technical University of Athens. It was there when I first met
Stathis who was one of the instructors of the seminar. I was impressed and
further motivated by his teaching. It was just after that seminar that I decided
to take the exams for entering NTUA as a PhD student. I succeeded and early
in 1995 I am a PhD student and Stathis is my advisor.

Our relation is highly influential for me. Stathis is an unlimited new world of
knowledge for me. I am always looking forward to discussing, working, and just
hearing him. His teaching is not only very interesting and motivating but also
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joyful. Even when you are very familiar with the topic of his talk, you always
get a new view and build a new interest. You also learn about the history of
everything related and even more, you really enjoy it. It is not an exaggeration
to say that his talks resemble influential and joyful theatrical performances: they
have everything, you really enjoy and you leave the room full of new thoughts,
ideas and questions. And he also enjoys so much to teach! No matter how tired
he is or what is the time! I attended some courses he gave ending after midnight
and some times even starting around midnight!

My relation with Stathis during my PhD studies, changed me not only sci-
entifically but also changed and shaped my personality. Stathis opened for me a
window through which I could see a different view of the world and through this
procedure I rediscovered my country, my friends and even myself. I remember
him at his home telling us stories about important people of science, but also
about world and greek history while we were eating or while he was taking us
small trips with his boat.

Stathis projects the mathematical way of thinking, in seeking the truth in
aspects of life far beyond mathematics and he can communicate this in such a
joyful and deeply motivating way. I learned from him (and loved) to question,
argue and prove.

In the scientific part of our relation during my PhD studies, I remember
him thinking together with me and other researchers in front of the whiteboard,
proposing and testing new ideas that would give us the nice and elegant proofs
we were seeking. It was not rare that we worked this way all night until dawn
at his office at NTUA or sometimes even at his home.

In our joint work we mainly studied variations of the Art Gallery prob-
lem. Until then it was known that finding a minimum number of guards that
can cover a polygon is an NP-hard (even APX-hard) problem, while a poly-
nomial time approximation algorithm with a logarithmic ratio was known. We
studied a somewhat opposite version: how to place a fixed number of guards
on the boundary of a polygon so that to guard a maximum length (or value)
of the boundary. We proved that those problems are also APX-hard [11,19] and
we designed polynomial time algorithms that achieve a constant approximation
ratio [18].

We also studied problems on visibility graphs like for example how to select a
fixed number of cliques so that to maximize the total weight of covered vertices.
We proved that this problem does not admit a FPTAS, and we gave a polyno-
mial time algorithm achieving a constant approximation ratio [18]. Notice that
finding a maximum weighted clique was known to be in P, while partitioning the
graph into a minimum number of cliques was known to be APX-hard and logn-
approximable. It is a nice coincidence that the preliminary version of our main
result (a gap-preserving reduction which was a fairly new method at that time)
had been presented in the 5th CIAC 2003 in Rome [19]. The full version of the
paper had been published in Computational Geometry:Theory and Applications
in 2007 [11].



478 E. Bakali et al.

We published one journal paper and five conference papers. Especially two of
the conference papers and the journal paper cover most part of my PhD thesis.
However the number of our joint publications does not agree with the number
of papers in which I consider Stathis as my co-author, since he is mentally my
co-author in every paper I have done and every paper I will do in the future. I
can hear him helping me to find an elegant proof!

Stathis is turning seventy and he is full of energy as ever (or even more). He
is teaching, researching and advising more and more people on how to argue,
question and prove the truth!

8 Teaching Programming Through Problem Solving
(by Nikos Papaspyrou)

Quite often our lives are shaped by coincidences, smaller or larger. Meeting and
working with influential people is a prominent life-changing factor and it does
not come as a surprise that most of the colleagues who have written this article’s
sections describe how their relationship with Stathis has changed their lives, to
a smaller or larger extent.

So, all this said, it was definitely my bad luck that I entered the NTUA
as a freshman in 1988, one year before Stathis started teaching there. My first
formal introduction to programming occurred as part of a FORTRAN 77 course,
rather classic in engineering departments at that time (in a few stubborn ones
even today) and taught in a rather unimaginative fashion. Fortunately, I already
knew how to program, in fact I had learned a few programming languages on
my own in my high-school years, and this experience did not manage to put me
off the fun of programming. Neither was I lucky enough to have Stathis teach
me algorithms and complexity; the one course where I was lucky to have him
before I graduated was on formal languages and computability.

My academic relationship with Stathis really started around 1995, when I
came back from Cornell, after hastily finishing a MSc there, and started a PhD
in Athens. Stathis was a member of my PhD defense committee. He was also
the primary responsible for the opening of a faculty position in programming
languages at the NTUA (a field that was rather underrepresented back then),
the same position in which I was elected in 2001. Since then, Stathis and I have
collaborated in the teaching of several courses related to programming for more
than 15 years, together with Aris (Sect. 4) and, more recently, Dimitris (Sect. 11).

Although the ways Stathis and I teach are very different (mainly because I
cannot remember all the Swiss jokes that Stathis is fond of using), our teaching
approach towards “Introduction to Programming” all these years shares a main
characteristic, in which all four involved instructors fundamentally agree. We
put a huge emphasis on problem solving and efficient algorithm design, both in
the lectures and in the lab, instead of merely teaching the syntax and semantics
of a programming language. Stathis and I have written a paper on this topic (the
only paper in which we are co-authors), discussing the role of an “educational”
programming language and its desired characteristics for this purpose [30].
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So, coming back to coincidence, I am convinced that my life would have been
poorer without Stathis as part of it. On the occasion of his 70th birthday, I want
to thank him for the fantastic journey we’ve shared so far and wish him many
more healthy and productive years, full of energy like his previous ones.

9 Saving Colors and Memories (by Katerina Potika)

While being a PhD candidate at the National Technical University a group of
people has helped me to reach my first goal, which was to successfully finish
my PhD, and various important secondary goals, like gain confidence on doing
research, learn effective teaching methods and build successful relationships in a
small social group, like our Corelab.

The central person of this group of people was my advisor, Professor Stathis
Zachos. He showed me a new world of academic presence, where you have to work
hard (sometimes to the extreme), do research by taking small steps every day, be
a good teacher and at the same time have a genuine interest for the well being of
your students. Getting my PhD was a hard process and I didn’t anticipate the
numerous challenges while juggling multiple roles. My advisor Professor Zachos
was there for me and taught me how to work hard and to circumvent difficulties
in order to finish tasks. In his own words he is the “spiritual” father of his
students.

I have many fond and challenging memories from that period, but one that
stands above all was in Spring 2001. It was a stressful period for me, as I was
getting some preliminary results on my research, but still had not a clear view
of were I was heading. A small note on that period is that Professor Zachos
taught (and teaches) gladly a lot of courses and there was always an undeclared
competition between his, mostly, graduate students and his courses over who will
get most of his time. However, the Spring semester supposed to be the “lighter”
teaching loaded one, which meant more time to work with him on research.

During that time we had frequent meetings in preparation of a paper to be
submitted. Unfortunately, we had to overcome additionally difficulties, like were
to meet, since the campus was closed for a few weeks. He suggested we meet at
his house in order to also be close to his young son, Kyriakos. When I arrived
at his house, I realized that the house was full with students, undergraduate
and graduate, working with the Professor. He just moved his work office to his
living room. His home was always open to his students, we all remember fondly
Thursday night “taratsa” (roof top) parties at his primary home in Athens,
usually late May, and “Kinetta” parties in July at his vacation home. Coming
back to my story, during the meeting I needed to print a paper and Kyriakos
volunteered to help me find the printer. While the paper was printing, we chatted
a little bit about school and I had the opportunity to know him a little bit better
before he left, a few months later, sadly forever.

The preliminary results on Path Multicoloring for special tree graphs
we got during that time were accepted to the Networking Conference of
2004 [20]. Later, these results were enhanced and appeared in two journal pub-
lications [21,26].
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10 Combinatory Logic and Graph Coloring
(by Panagiotis Cheilaris)

I started collaborating with Stathis Zachos in 2001, still as an undergraduate
student. During the years that he was my advisor, I became aware of his breadth
and depth of knowledge in Computer Science, but also in many other fields. His
dedication to teaching and disseminating this knowledge is exemplary.

Our first collaboration in 2001 was on a problem that he had studied in his
thesis [33], concerning a subsystem of Haskell Curry’s combinatory logic, where
only the combinator S with reduction rule Sxyz → xz(yz) is allowed.1 In his
thesis, Stathis, among other things, had proposed a general method for proving
that some terms in this subsystem have infinite reductions. The termination
problem, i.e., whether a given term has an infinite reduction, was only solved
twenty years after, by Waldmann [32]. In fact, Waldmann proved that the above
problem can be solved in linear time on the size of the input S-term, but his
proof relied on checking some subcases with the help of a computer program.
Stathis, always striving for elegance, believed that the case analysis could be
simplified and in [9], together with Ramirez, we gave a proof without the use of
computers.

With Stathis, we also worked on colorings of the vertices of a graph that
have to satisfy some property for every simple path of the graph. In the survey
paper [10], together with Ernst Specker, we gave a landscape of such colorings.
Such a coloring is the following: Given a graph G = (V,E), an ordered coloring
is an assignment C : V → Z

+ such that for every simple path p in the graph,
the maximum color that occurs in the vertices of p occurs in exactly one vertex.
The problem of computing ordered colorings is a well-known and widely studied
problem with many applications in VLSI design, parallel Cholesky factorization
of matrices, and planning efficient assembly of products in manufacturing sys-
tems. In [6], together with Bar-Noy, Lampis, and Mitsou, we gave the best known
upper bound on the number of colors needed to color the m × m grid graph.

11 An Amazing Teacher (by Dimitris Fotakis)

I still have vivid memories from the spring of 2009, when I joined NTUA and
started collaborating with Stathis. Stathis was very supportive, open and enthu-
siastic, as always. He took over the role of my mentor at NTUA and was trying
to help me with my new teaching obligations and to guide me through my new
working environment. Among his many wise advices and funny quotes, I still
remember his warning: “Most of our students are more clever than us!”. I smiled
back in disbelief. It took me just a couple of months to realize how amazingly
right Stathis was (as always) and to share his great enthusiasm about introduc-
ing all our extremely talented students to the beautiful and exciting world of
Theoretical Computer Science.

1 In Smullyan’s book To mock a mockingbird [31], combinator S is called the starling.
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Since then, Stathis has been always around with his friendship, his wise word,
his unconditional support, his funny jokes and his juicy gossip about almost
everything and everybody. In these eight years, Stathis and I have been teaching
together “Algorithms and Complexity”, “Introduction to Computer Program-
ming” (Nikos is also actively involved in this one) and several graduate courses
(Aris was also part of most of them). Collaborating with Stathis, I learnt a lot
from his example, experience and deep knowledge, and became part of his legacy.
He deeply affected me with his great enthusiasm about teaching and exposed me
to a virtually uncountable ways to motivate our students. I still remember how
much proud I felt when Stathis first expressed his satisfaction about our Algo-
rithms course. And I am still trying to grasp the basic principles behind his
extremely efficient interviewing technique.

Stathis, thank you for everything and happy birthday!

12 Completeness, at Last! (by Eleni Bakali)

I first met Prof. Stathis Zachos when I was an undergraduate student at NTUA.
He was my professor on multiple courses on computer science and he was my
favorite among the others. What did I become fascinated with? Stathis Zachos is
able not only to impart knowledge, but to kindle enthusiasm; during the courses,
except for the particular material for each subject, we were given a general pic-
ture of his field, like a huge wonderful garden that we were invited to explore.
Additionally, in every theorem and proof he used to emphasize a couple of crucial
points without penetrating technical details that we could conclude on our own.
Prof. Zachos has been an inspiring teacher to me. I recollect his remarks outside
the strict course framework, e.g. “Gödel formulated a statement saying ‘I am
not provable’ ” or “PCP theorem was proven by some magic technique smear-
ing a small error all around”; These ideas made me search for hours trying to
fully understand what was going on and thus sparkled my interest in theoretical
computer science.

As a researcher and an advisor as well, he leaves me astonished every time
that we discuss about a scientific matter, not only by the breadth of his knowl-
edge but also by the clarity and the purity of his thought process. Nevertheless,
there is one thing that I didn’t realize from the very beginning. His way of think-
ing is unique. Instead of making a definition and trying to prove a theorem in
one go, he makes dozens of definitions and shows how they are related. This
way, the theorem reveals itself, almost “by definition”. For example, using his
characterizations of some probabilistic classes via computation trees [36], he was
able to prove new theorems and at the same time to simplify some older proofs
significantly.

As a part of my PhD, we (Zachos and our team) co-authored a paper titled
“Completeness Results for Counting Problems with Easy Decision” [2]. Zachos
along with some of his collaborators had previously defined the class TotP [14,28]
in some papers regarding subclasses of #P, where these classes were defined in
terms of computation trees of nondeterministic polynomial-time Turing machines
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(NPTMs). In particular, TotP is the class of functions counting the total num-
ber of computation paths of an NPTM. TotP seems particularly interesting,
since it contains every self-reducible problem in #P which has an easy decision
version. Thus, it contains the only problems that may admit a good approxima-
tion (unless NP=P or NP=RP). As my advisor, Prof. Zachos suggested as a
research topic to search for TotP-complete problems, a question that had been
open for a while. We discussed various properties of the class, and we managed to
encode them into properties which a TotP-complete problem should have. Inter-
estingly, our results provide new insights and understanding of the hardness of
Sat as well as the reasons of failure of some algorithms which are based only on
the hypercube structure. Moreover, our work suggests new research directions
for studying not only TotP but also #P. This shows once again how powerful
both structural complexity and Zachos’s way of thinking are in tackling prob-
lems, using adequate definitions which reveal facts you wouldn’t even imagine
otherwise.

Stathis Zachos besides being my professor, collaborator and mentor, he is
one of the people that I appreciate and trust the most. He stood by my side and
he helped me overcome difficult situations in both academic and non academic
life. For all these reasons, I cordially thank him.

13 Epilogue

One of Stathis’s greatest talents is to bring people together. He has spent endless
hours communicating, interrogating colleagues and students, gossiping, joking,
organizing social gatherings, and showing uncountable photos of friends and
colleagues to each other, each one fully commented in his unique style – piquant
details included. This way we got to know well people that we had never met
before, gaining a pleasant feeling of extended community. In a way, Stathis had
invented social networks well before the advent of Facebook and cellphones. In
this social network he has integrated research and teaching, well balanced with
social and family life. Indeed, his family and home have always been open to
us and our families, making the ‘network’ even stronger and academic life more
meaningful and attractive. We feel happy, honoured and proud to be part of
Stathis’s network and we only wish Stathis to continue his great job for many
years to come.

Acknowledgments. We would like to apologize to numerous friends and colleagues
of Stathis that would deserve to appear in this article if time and space permitted. We
are grateful to them for being part of this great community, influencing Stathis and all
of us in so many positive ways.

We are also thankful to all Stathis’s family members we have met—including those,
fondly remembered and greatly missed, who are not with us anymore—for their tol-
erance, support and friendship throughout so many, long-lasting research and social
meetings in their house in Lycabettus and, of course, in Kinetta.



Stathis Zachos at 70! 483

References

1. Babai, L.: Graph isomorphism in quasipolynomial time (extended abstract). In:
Wichs, D., Mansour, Y. (eds.) Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21
June 2016, pp. 684–697. ACM (2016)

2. Bakali, E., Chalki, A., Pagourtzis, A., Pantavos, P., Zachos, S.: Completeness
results for counting problems with easy decision. In: Fotakis, D., Pagourtzis, A.,
Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 55–66. Springer, Cham
(2017)

3. Bampas, E., Göbel, A.-N., Pagourtzis, A., Tentes, A.: On the connection between
interval size functions and path counting. Comput. Complex. (2016). doi:10.1007/
s00037-016-0137-8

4. Bampas, E., Pagourtzis, A., Pierrakos, G., Potika, K.: On a noncooperative model
for wavelength assignment in multifiber optical networks. IEEE/ACM Trans. Netw.
20(4), 1125–1137 (2012)

5. Bampas, E., Pagourtzis, A., Pierrakos, G., Syrgkanis, V.: Selfish resource allocation
in optical networks. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol.
7878, pp. 25–36. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38233-8 3

6. Bar-Noy, A., Cheilaris, P., Lampis, M., Mitsou, V., Zachos, S.: Ordered coloring of
grids and related graphs. Theoret. Comput. Sci. 444, 40–51 (2012)

7. Beigel, R., Gill, J.: Counting classes: thresholds, parity, mods, and fewness. Theor.
Comput. Sci. 103(1), 3–23 (1992)

8. Boppana, R.B., H̊astad, J., Zachos, S.: Does co-NP have short interactive proofs?
Inf. Process. Lett. 25(2), 127–132 (1987)

9. Cheilaris, P., Ramirez, J., Zachos, S.: Checking in linear time if an S-term normal-
izes. In: Proceedings of the 8th Panhellenic Logic Symposium (2011)

10. Cheilaris, P., Specker, E., Zachos, S.: Neochromatica. Commentationes Math. Univ.
Carol. 51(3), 469–480 (2010)

11. Fragoudakis, C., Markou, E., Zachos, S.: Maximizing the guarded boundary of
an Art Gallery is APX-complete. Comput. Geom.: Theory Appl. 38(3), 170–180
(2007)
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