
Chapter 8
How Arrestin Recognizes and Binds
Active GPCRs
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Abstract Arrestins are structurally flexible and functionally versatile proteins that
regulate the activity of hundreds of different G protein-coupled receptors (GPCRs).
A hallmark of arrestin function is that these proteins are only activated for binding
the active receptor upon interaction with receptor-attached phosphate groups.
Recent years have yielded crystal structures of pre-activated arrestins and arrestin in
complex with an active receptor, which provide insight into the arrestin activation
mechanism. At the same time, functional studies indicate that arrestin employs
different binding modes along the path to tight receptor binding, and the structure of
the arrestin-receptor complex is modulated by the activation and phosphorylation
state of the active receptor. In this chapter we discuss our current understanding of
the receptor-binding mechanism of arrestin, from the initial interaction with the
phosphorylated receptor to the structural transformation required for tight binding
to the active receptor.
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About 800 different G protein-coupled receptors (GPCRs) are expressed in the
human body and play a central role in multiple sensory and physiological systems.
These receptors bind a wide variety of ligands and share a common structure of
seven transmembrane (TM) helices. The receptor exists in a conformational equi-
librium comprised of multiple states of varying degrees of activity. In the basal
inactive state, the helical bundle is bound together by several hydrogen bond net-
works and electrostatic interactions. The binding of agonist favours an active
receptor conformation, in which the cytoplasmic face of the receptor is open for
interaction with cytosolic proteins. The binding partners of the receptor are namely
G protein, GPCR kinase (GRK), and arrestin.
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G proteins consist of three subunits, termed a, b and c, and different subunit
combinations give rise to about 20 distinct G proteins. Binding of the heterotrimeric
G protein to the active receptor induces nucleotide exchange within the G protein
and dissociation of the subunits, which then interact with other components of the
cell signalling machinery. In essence, the receptor transduces the signal of agonist
binding across the cell membrane, and the G protein amplifies this signal within the
cytoplasm.

Seven different GRKs exist, each of which phosphorylates a different subset of
GPCRs. The kinase activity of GRKs is stimulated by interaction with activated
GPCRs. GRKs phosphorylate several serine and threonine residues within the
cytoplasmic C-terminal tail of the receptor. Some receptors are also phosphorylated
on their cytoplasmic loops. Only three receptor-attached phosphates are required to
stimulate arrestin binding to the active GPCR (Vishnivetskiy et al. 2007), yet most
GPCRs contain 7 or more phosphorylation sites. The extra sites confer another level
of regulation, as different phosphorylation patterns (also called “barcodes”) control
the multiple functions of arrestins [reviewed in Reiter et al. (2012)]. Different
phosphorylation barcodes arise from different C-terminal primary sequence,
tissue-specific or ligand-selected GRK activity, or sequential rounds of receptor
activation.

The arrestin family is composed of only four members. Arrestin-1 and arrestin-4,
respectively called rod and cone arrestin, are expressed primarily in the retina and
interact with light-sensitive GPCRs called opsins. Arrestin-2 and arrestin-3,
respectively called b-arrestin 1 and b-arrestin 2, are expressed ubiquitously and
interact with hundreds of different GPCRs. This attribute means the b-arrestins must
be versatile and relatively promiscuous binding partners. A primary role of arrestin
binding is to block G protein coupling and thereby stop GPCR signalling. The
b-arrestins are additionally able to induce receptor internalization by recruiting
clathrin and other elements of the cellular internalization machinery, as well as
mediate their own signalling cascades by scaffolding signalling kinases. In recent
years evidence has emerged that the pattern of receptor phosphorylation affects both
the conformation of bound arrestin (Shenoy et al. 2009; Nobles et al. 2011) as well
as the stability of the arrestin-GPCR complex (Zindel et al. 2014; Oakley et al.
2001; Tohgo et al. 2003). These factors presumably control arrestin-mediated
receptor internalization and trafficking (Oakley et al. 2001; Zindel et al. 2014) and
arrestin-mediated MAP kinase activity (Tohgo et al. 2003; Ren et al. 2005; Nobles
et al. 2011) [reviewed in Tobin et al. (2008)].

Arrestins are composed of two cup-like domains composed of b-sheets, called
the N- and C-domain (Fig. 8.1). The tips of the domains are capped with flexible
loops, which compose the central crest (finger loop, middle loop and C-loop) and
the C-edge (344-loop and 197-loop). The interdomain interface is stabilized by
hydrophobic interactions and hydrogen-bond networks. These include the polar
core (Han et al. 2001), the YKS(N)D(A) motif (Kim et al. 2013), the middle loop
(a.k.a. 139-loop) (Vishnivetskiy et al. 2013), and the long Loop 17-18 (Kim et al.
2013; Han et al. 2001), which winds between the two domains and makes multiple
contacts with both the N- and C-domains. Loop 17-18 also includes the gate loop,
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which is a functional part of the polar core (Fig. 8.1). A third functionally critical
domain of arrestin is the auto-inhibitory C-terminal tail (C-tail). The distal C-tail
contains a large number of acidic residues and is highly dynamic, as it is not
visualized in any known structure of arrestin. In contrast, the proximal C-tail is
stably anchored to the body of the N-domain by the hydrophobic 3-element
interaction (Vishnivetskiy et al. 2000) and a salt bridge within the polar core.
Together, the interdomain interface and the C-tail restrict flexibility within arrestin,
namely of the central crest loops and between the N- and C-domains, and thereby
prevent interaction with the active receptor.

Fig. 8.1 Crystal structures of basal arrestin (PDB code 1CF1, molecule D) and pre-activated
arrestin p44 (PDB code 4J2Q, molecule B) (Kim et al. 2013; Hirsch et al. 1999). The N-domain is
coloured blue and the C-domain is coloured green. The C-tail of arrestin is red, and Loop 17-18 is
magenta. Note that only the proximal C-tail is resolved in the arrestin crystal structure, and the
unresolved dynamic distal portion is illustrated with a red dashed line. The loop linking the
C-domain to the C-tail is also not resolved in the arrestin crystal structure. Notable loops that are
discussed in the text are labelled with numbers, which are defined in the legend to the right.
Important intramolecular interactions that stabilize the basal state are illustrated by sidechains with
Van der Waal surfaces and labelled with capital letters (defined in legend). Note how these
networks are broken in the p44 structure, which results in a *21° rotation of the C-domain
compared to its orientation in the basal arrestin
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It has long been believed that arrestin activation entails a displacement of the
C-tail by the phosphorylated receptor C-terminus (Rpp), based on changes in
protease susceptibility (Palczewski et al. 1991a, c), distances measured between
spin-labels (Hanson et al. 2006; Vishnivetskiy et al. 2010), and changes in the
NMR spectrum of arrestin (Zhuang et al. 2010, 2013). This theory is consistent with
the phosphorylation-independent receptor binding behaviour of p44, a naturally
occurring splice variant of arrestin-1 that lacks the entire C-tail (Palczewski et al.
1994; Pulvermüller et al. 1997). Supposedly C-tail displacement by the Rpp breaks
the polar core and loosens the intramolecular interactions that hold arrestin in an
inactive state. Two crystal structures of pre-active arrestin, p44 (Kim et al. 2013)
and arrestin-2 bound to a peptide analogue of the Rpp (Shukla et al. 2013), indicate
the conformational changes that occur in arrestin upon full C-tail displacement
(Fig. 8.1). These changes include a twisting displacement of the gate loop that
breaks the polar core, release of the central crest loops from their restricted basal
conformations, and a 21° rotation of the two domains relative to one another.

In the recently published crystal structure of arrestin-1 in complex with an active
GPCR (Kang et al. 2015), it is clear how these structural changes facilitate arrestin
binding of the active receptor (discussed in more detail below). The complex
consists of a constitutively active mutant of human rhodopsin fused on its
N-terminus to T4 lysozyme and fused on its C-terminus to a constitutively active
mutant of mouse arrestin-1 via a 15 amino-acid linker. Although the receptor in this
structure lacks ligand (opsin), it is obviously in an active state (Ops*). Likewise, the
arrestin in this structure shows all the hallmarks of activation seen in the
pre-activated arrestin structures (Kim et al. 2013; Shukla et al. 2013), even though
the receptor in the complex is not phosphorylated. Despite the artificial nature of the
Ops*/arrestin-1 fusion complex structure, it provides a first glimpse of arrestin
bound tightly to an active receptor.

This chapter focuses on the molecular mechanisms by which arrestin couples to
an active, phosphorylated GPCR. We discuss the initial interaction of arrestin with
the phosphorylated receptor, which we call the pre-complex, and the conforma-
tional changes in arrestin involved in formation of the high-affinity complex. We
have gained insight into these functionally distinct complexes using the
long-studied GPCR rhodopsin and its binding partner arrestin-1, which are
expressed in the rod cells of the retina and mediate dim-light vision. Dark-state
inactive rhodopsin consists of the aporeceptor opsin and a covalently attached
inverse agonist, 11-cis-retinal. Light absorption converts the ligand to the agonist
all-trans-retinal, which results in the active receptor form Metarhodopsin II (Meta
II). Meta II is phosphorylated by GRK1 on its cytoplasmic C-terminal tail. As an
experimental model of the pre-complex, we study the interaction of arrestin-1 with
phosphorylated inactive forms of the receptor, specifically dark-state phosphory-
lated rhodopsin (Rho-P) and the phosphorylated aporeceptor opsin (Ops-P). Using
these receptor forms, we can experimentally probe arrestin-receptor interactions that
occur before full arrestin activation and formation of the high-affinity complex.
Transition to the high-affinity complex is induced by irradiation of the sample with
visible light, which converts Rho-P to Meta II-P. Methods we have used to study
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arrestin-receptor interactions include site-directed fluorescence spectroscopy,
Fourier transform infrared spectroscopy (FTIR), and alanine scan mutagenesis. The
functional insights we gain from these studies are interpreted within the context of
the crystal structures of different arrestins in basal (Hirsch et al. 1999; Granzin et al.
1998; Han et al. 2001; Granzin et al. 2012), pre-activated (Granzin et al. 2015; Kim
et al. 2013; Shukla et al. 2013), and fully activated states (Kang et al. 2015). This
approach has yielded valuable insights that allow us to propose a mechanistic model
of arrestin activation and receptor coupling.

The Pre-complex

The initial interaction of the phosphorylated receptor and arrestin recruits arrestin to
the active receptor and activates arrestin for binding the helical bundle of the
receptor. Currently very little is known regarding the structure and organization of
the pre-complex. Experimental evidence suggests the primary sites of interaction
are the phosphorylated receptor C-terminus (Gurevich and Benovic 1993, 1995;
Vishnivetskiy et al. 2000; Hanson and Gurevich 2006; Peterhans et al. 2016) and
the membrane (Lally et al. 2017). The pre-complex was first proposed by Alexander
Pulvermüller, Klaus Peter Hofmann and colleagues (IMPB Charité, Berlin) based
on kinetic binding experiments comparing arrestin-1 and p44 (Schröder et al. 2002).
This proposal was based on the conclusion that p44 can bypass the initial binding
step, which serves normally to displace the C-tail of arrestin. Subsequently two
independent studies have presented time-resolved fluorescence data supporting a
multi-step binding mechanism, in which arrestin is recruited to the receptor before
undergoing a significant conformational change (Kirchberg et al. 2011; Nuber et al.
2016). We interpret these two stages to represent, first formation of the
pre-complex, and second, transition to the high-affinity complex.

It has been long known that arrestins intrinsically bind poly-anions, including
heparin and inositol phosphate (Palczewski et al. 1991b), as well as
receptor-attached phosphate groups [but not simple anions like phosphate (Wilson
and Copeland 1997)]. The concave surfaces of all four arrestin subtypes are studded
with basic residues that could serve as binding sites for poly-anions.
Crystallographic analysis indicated that two molecules of IP6 bind arrestin-2, one
each within the concave surfaces of the N- and C-domains (Milano et al. 2006). IP6
binding facilitates homo- and hetero-dimerization of arrestin-2 and arrestin-3. IP6
also binds arrestin-1, although with much lower affinity [KD in the range of
0.2–160 lM (Palczewski et al. 1991b; Wilson and Copeland 1997; Zhuang et al.
2010)]. NMR analysis indicated that IP6 binds within the N-domain of arrestin-1
(Zhuang et al. 2010). This NMR analysis did not detect any binding of IP6 within
the C-domain, although site-directed fluorescence experiments suggest a second
low-affinity IP6 binding site, most likely in the C-domain (Sommer, unpublished
work).
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Mutagenesis has long been applied to arrestin to identify potential
receptor-interacting sites, and to differentiate which sites are sensitive to the
phosphorylation and activation states of the receptor [reviewed in (Gurevich et al.
2011)]. Alanine scan mutagenesis is an unbiased and comprehensive method that
has been recently applied to arrestin-1 by the group of Joerg Standfuss (PSI,
Switzerland) to identify sites of interaction and functionally important areas that
undergo structural changes during arrestin activation and receptor binding
(Ostermaier et al. 2014a; Peterhans et al. 2016). For the most part, the alanine-scan
studies confirmed the findings from previous mutagenesis studies (Ostermaier et al.
2014a, b). In collaboration with the Standfuss group, we found evidence that the
phosphorylated receptor C-terminus binds arrestin differently in the pre-complex
and the high-affinity complex (Fig. 8.2). For the interaction of arrestin-1 with
Ops-P, which mirrors the pre-complex, mutation of ten different basic residues
within the cup of the N-domain significantly decreased arrestin-1 binding to Ops-P.

Fig. 8.2 Different “Rpp-binding footprints” for the pre-complex and the high-affinity complex.
Alanine scan mutagenesis identified different sets of positively charged residues used in binding
the phosphorylated receptor C-terminus (Rpp) in binding inactive Ops-P (pre-complex, left) and
light-activated Meta II-P (high-affinity complex, right) (Peterhans et al. 2016). The implicated
residues are plotted in blue on the structures of basal arrestin (a-conformer, PDB code 1CF1) for
the pre-complex and p44 (PDB code 4J2Q). Note that for basal arrestin, the distal C-tail (rose)
does not block access to the implicated phosphate-binding residues, which is consistent with our
hypothesis that only the proximal C-tail is displaced in the pre-complex. The putative Rpp-binding
crevice that was identified in the crystal structure of activated arrestin-2 bound to a peptide
analogue of the Rpp (Shukla et al. 2013) is indicated by a dashed red line. Lateral views of arrestin
and p44 are shown in the top panels, and top-down views (showing receptor binding interface) are
presented in the bottom panels
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The large number of implicated phospho-sensing residues is congruent with the fact
that the affinity of arrestin-1 for Ops-P is directly proportional to the degree of
receptor phosphorylation (i.e. the more phosphates per receptor, the higher the
affinity) (Vishnivetskiy et al. 2007). This binding mode stands in contrast to that
used for Meta II-P, in which fewer residues along the lateral side of the N-domain
are implicated (Fig. 8.2). The Rpp binding mode utilized by Meta II-P is discussed
in more detail in the section below.

If Rpp binds only within the cup of the N-domain, then it is possible that only
the distal C-tail of arrestin is displaced in the pre-complex. This assumption is
supported by site-directed fluorescence experiments using a mutant designed to
monitor the relative position of the gate loop and, by extension, the state of the
polar core (Kim et al. 2013; Peterhans et al. 2016). These experiments suggest that
the polar core is not broken and thus the proximal C-tail is likely not displaced
when arrestin is bound to Ops-P in a pre-complex. Only upon activation of the
receptor and transition to the high-affinity complex is the polar core broken.
Furthermore, site-directed fluorescence experiments employing mutants that report
on other conformational changes associated with activation (e.g. release of central
crest loops and interdomain rotation) suggest that arrestin is bound to the receptor in
a conformational state resembling the basal state in the pre-complex (Lally and
Sommer, unpublished work). This supposition is consistent with differences seen in
the functional maps for pre-complex and high-affinity complex derived from
alanine-scan mutagenesis (Peterhans et al. 2016). Collectively the fluorescence and
mutagenesis data argue against the common assumption that Rpp binding in the
pre-complex displaces the entire C-tail and induces activating conformational
changes in arrestin (Shukla et al. 2013; Kang et al. 2015; Schröder et al. 2002).

The other site of interaction in the pre-complex is the anchoring of the C-edge of
arrestin in the membrane. This interaction has recently been characterized by our
group using site-directed fluorescence spectroscopy (Lally et al. 2017). Briefly, the
proximity of bimane fluorophores placed at specific sites on loops within the
C-edge to the membrane was probed using spin-labelled fatty acids, which were
incorporated into native rod outer segment membranes containing phosphorylated
rhodopsin. Spin-labels quench bimane fluorescence when in close proximity, and
fatty acids with spin label at different positions on the acyl chain allowed the
differentiation of deep and shallow membrane anchoring. Our results clearly show
that the 344-loop embeds deep within the hydrophobic layer of the membrane when
arrestin is bound to dark-state Rho-P in a pre-complex. Furthermore, membrane
anchoring is dependent on the presence of phosphorylated receptor, suggesting that
Rpp binding either activates the C-edge of arrestin for membrane anchoring or is
required to recruit arrestin to the membrane. The relative levels of quenching for
neighbouring sites suggest an extended 344-loop conformation (Lally et al. 2017),
similar as in the “a-conformer” of the basal arrestin-1 structure (Hirsch et al. 1999).

Membrane anchoring in the pre-complex involves the embedding of leucine
residues on the 344-loop within the hydrophobic interior of the membrane.
Intriguingly, rhodopsin flips negatively charged acidic phospholipids to the cyto-
plasmic side upon activation (Hessel et al. 2000, 2001), and acidic phospholipids
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have been shown by us and others to be necessary for arrestin-1 binding of
light-activated phosphorylated rhodopsin (Sommer et al. 2006; Bayburt et al. 2011).
Furthermore, we have failed to detect any pre-complex formation of arrestin-1 with
dark-state Rho-P in the absence of acidic phospholipids (Sommer, unpublished
work). These data indicate that acidic phospholipids are required for arrestin to
interact with the phosphorylated receptor. Notably, several basic residues line the
C-domain (e.g. K235, K236, K238, K267, K330, and K332 in bovine arrestin-1),
which we hypothesize help attract the C-edge of arrestin for membrane anchoring.

To summarize the experimental evidence, in the pre-complex arrestin is bound
by the Rpp within the cup of the N-domain and by the membrane at the C-edge
(Fig. 8.3). Given the relatively deep insertion of the membrane anchor, the
peripheral engagement of the Rpp, and the fact that the central crest loops do not
engage the receptor, arrestin is likely loosely associated with the receptor in the
pre-complex. A great degree of rotational freedom and a highly dynamic complex is
expected. Interestingly, a “hanging” interaction mode of arrestin-2 with a chimeric
phosphorylated GPCR was observed by negative-stain electron microscopy (Shukla
et al. 2014). The authors of this study hypothesized this complex represents teth-
ering of arrestin solely by the Rpp. Due to the artificial nature of the Fab-stabilized

Fig. 8.3 Model of the pre-complex and high-affinity complex. Binding of arrestin to rhodopsin is
illustrated. Basal arrestin (blue N-domain and green C-domain) has an intact polar core and does
not interact with dark-state rhodopsin (red). Upon receptor light-activation (Meta II, yellow) and
phosphorylation by GRK, arrestin interacts in a pre-complex that displaces the distal C-tail and
embeds the C-edge membrane deep in the membrane. However, no significant activating
conformational changes (e.g. interdomain rotation) take place. Upon transition to the high-affinity
complex, the Rpp moves from the cup of the N-domain to the putative Rpp-binding trench located
along the side of the N-domain. This movement displaces the entire C-tail and results in significant
conformational changes linked to interdomain rotation
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complexes and the absence of membrane (receptors were solubilized in a neutral
detergent), we postulate the visualized complexes represent the pre-complex
without the benefit of membrane anchoring. Hence future investigations of the
overall organization and structure of the pre-complex should include membrane or a
membrane mimic in order to engage the C-edge of arrestin.

Notably, pre-complex formation as the initial interaction of arrestin and the
receptor is fairly nonspecific and likely similar for all GPCRs. The interaction with
the Rpp and the membrane is primarily electrostatic and hydrophobic, respectively.
The nonspecific nature of these interactions allow arrestins to interact with a wide
variety of GPCRs, since active receptors are normally phosphorylated in their active
state, and all receptors reside in a membrane. This attribute makes sense for the
b-arrestins (arrestin-2 and arrestin-3), which couple to hundreds of different
GPCRs.

However, the functional relevance of the pre-complex is not limited to being an
obligate step before forming the high-affinity complex. Arrestin also forms com-
plexes with phosphorylated inactive receptors, which occur when the receptor
returns to an inactive state after ligand dissociation and before receptor dephos-
phorylation occurs (Lee et al. 2010; Sommer et al. 2014; Zhuang et al. 2013).
Inactive receptors in the vicinity of active receptors can also be phosphorylated by
activated GRKs, a phenomenon called high-gain phosphorylation (Shi et al. 2005;
Binder et al. 1990, 1996). The interaction of arrestin with inactive phosphorylated
receptors could play a significant physiological role. For example, in the visual
system binding of arrestin-1 to Ops-P could quench the residual G
protein-activating ability of opsin (Sommer et al. 2014; Zhuang et al. 2013). In
addition, our group discovered that arrestin-1 facilitates the uptake of all-trans-
retinal in Ops-P (Sommer et al. 2012), which could limit the build-up of potentially
toxic levels of retinal in rod cells in bright continuous light (Sommer et al. 2014).
The fact that most GPCRs have seven or more phosphorylation sites suggests the
interaction of arrestins with highly phosphorylated aporeceptors might be prevalent
within the larger GPCR family and could play a role in regulating ligand binding
affinity (Gurevich et al. 1997).

Transition to the High-Affinity Complex

Pre-complex formation serves to recruit arrestin to the receptor, where arrestin is
anchored at the N-domain by the Rpp and at the C-edge by the membrane
(Fig. 8.3). Although arrestin is not fully activated in the pre-complex, the dis-
placement of the distal C-tail increases flexibility and mobility of the central crest
loops. Importantly, pre-complex formation brings the receptor-binding elements of
arrestin close to the helical core of the receptor. Hence the two proteins can interact
with one another as they sample their individual conformational spaces. Transition
from the pre-complex to the high-affinity complex involves a substantial
intramolecular conversion in arrestin, which mutually stabilizes the active form of
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the receptor. Agonist binding favours an active conformation of the receptor, and
engagement by arrestin further stabilizes this active conformation. These conclu-
sions are supported by spectroscopic studies of arrestin-1 binding to light-activated
phosphorylated rhodopsin, which are briefly summarized below.

Over twenty five years ago, Klaus Peter Hofmann and co-workers developed an
absorbance-based assay called “extra Meta II” to observe the formation of the
high-affinity arrestin-1/Meta II-P complex (Schleicher et al. 1989). Light-activation
of rhodopsin results in an equilibrium of two species, the active state Meta II and its
inactive precursor Meta I. At low temperature and high pH (e.g. 2 °C and pH 8), the
Meta I photoproduct is heavily favoured. When the receptor is phosphorylated and
arrestin-1 interacts, Meta II is stabilized at the expense of Meta I. In other words,
arrestin-1 binding shifts the Meta I $ Meta II equilibrium in favour of Meta II.
Importantly, the extra Meta II assay can be used to quantitatively describe the
formation of the high-affinity arrestin-receptor complex. Arrestin-1 activation and
formation of the high-affinity complex entails a high activation energy
(140 kJ/mol). For p44, the energy required for Meta II-P binding is halved
(70 kJ/mol) (Pulvermüller et al. 1997), suggesting that about half the energy of
activation is involved in releasing the intramolecular restrictions of the C-tail. At
sufficiently high concentrations, Meta II-P binding by arrestin-1 and p44 occur at
the same rate, which suggests that both arrestin-1 and p44 undergo the same
intramolecular conversion, and that this step is rate-limiting for formation of the
high-affinity complex (Schröder et al. 2002). Our group has recently characterized
this interaction using FTIR spectroscopy (Beyriere et al. 2015). The observed
spectral signatures confirmed the stabilization of the active Meta II species by
arrestin-1 and additionally indicated a loss of beta-sheet, most likely arising from
changes in the secondary structure of arrestin-1. Importantly, Meta II stabilization
and beta-sheet loss in arrestin occurred at the same rate, indicating that both pro-
teins mutually stabilize one another in their active states during formation of the
high-affinity complex. Moreover, p44 and arrestin showed the same rates of Meta II
binding and spectral signatures of beta-sheet loss, indicating that they undergo the
same structural transition during high-affinity complex formation (Beyriere et al.
2015).

The comparison of the structure of basal arrestin to that in the Ops*/arrestin-1
fusion complex indicates the intramolecular conversions that arrestin undergoes
during tight receptor binding. Below we summarize the major conformational
changes, and how these changes facilitate coupling to the active phosphorylated
receptor:

Displacement of the proximal C-tail—In the pre-complex, the Rpp is bound
within the cup of the N-domain, and transition to the high-affinity complex is
accompanied by a movement of the Rpp to a positively charged binding trench on
the lateral side of the N-domain (Fig. 8.3). This trench is normally obscured by the
proximal C-tail, and the Rpp presumably displaces the C-tail. A peptide analogue of
the Rpp has been observed by X-ray protein crystallography to bind within this
trench (Shukla et al. 2013). This crystal structure shows that peptide-attached
phosphate groups interact with many of the residues identified as phospho-sensors
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for Meta II-P binding (e.g. K14, K15, R29, K110, K300) (Fig. 8.2) (Peterhans et al.
2016). Displacement of the C-tail and binding of the Rpp induces a forward
twisting movement of the gate loop, which breaks the polar core and brings a
phosphate-binding lysine residue on the gate loop (K300 in arrestin-1, K294 in
arrestin-2) into the Rpp-binding trench.

Interdomain rotation—The binding of the Rpp within the putative binding
trench is associated with a movement of the gate loop. This conformational change
is transmitted along the entire length of Loop 17-18, which winds between the N-
and C-domains and forms multiple contacts that stabilize the basal-state interdo-
main interface (Fig. 8.1). Loop 17-18 is pulled down and away from the central
crest region, thereby causing a lateral displacement of the middle loop away from
the body of arrestin (Kim et al. 2012; Kang et al. 2015) and a movement of the
C-loop (Y247-Y254 in arrestin-1) down and away from the central crest. These
movements break the YKS(N)D(A) network, which stabilizes basal arrestin by
linking the C-loop (Y247-Y254 in arrestin-1) within the C-domain to the middle
and finger loops within the N-domain. Along with the breaking of the polar core,
these conformational rearrangements dramatically increase flexibility between the
two domains of arrestin. Hence a 21° rotation of the C-domain is observed in the
crystal structures of pre-activated and receptor-bound arrestin (Kim et al. 2013;
Shukla et al. 2013; Kang et al. 2015). Interdomain rotation has two major effects on
the arrestin structure: a crevice opens within the central crest, and the C-edge adopts
a different orientation and conformation. These changes facilitate arrestin binding to
the receptor and the adjacent membrane.

Opening of receptor-binding crevice—The lateral displacement of the middle
loop and the downward movement of the C-loop opens a cleft that accommodates
intercellular loop 2 (CL2) of the receptor. In the Ops*/arrestin-1 fusion complex
structure, CL2 forms a short helix that makes hydrophobic and van der Waals
contacts with the middle loop and C-loops of arrestin. In addition to this interaction,
the downward displacement Loop 17-18 opens space for the TM5/6 bundle. In the
crystal structure of the complex, a few hydrogen bond contacts are present between
TM5/6 and arrestin. In essence, coupling to the helical bundle of the receptor is a
direct result of interdomain rotation that allows a deformation of the flexible loops
of arrestin. Furthermore, the sparseness of specific hydrogen bonds or salt bridges
within the arrestin-receptor interface hints at how the b-arrestins are able to bind so
many different GPCRs. Notably, the interdomain hydrogen bond networks of
arrestin-2 and arrestin-3 are much weaker than in arrestin-1 (Kim et al. 2013),
meaning these arrestins are already “half-way on” (Gurevich et al. 2011) and
explains their much lower dependence on receptor phosphorylation for activation
and receptor binding.

Engagement of the finger loop—In the pre-complex, the displacement of the
distal C-tail by the Rpp likely increases mobility of the finger loop (Hanson et al.
2008). The flexible finger loop is positioned close to the open cytoplasmic face of
the receptor, where it can explore the binding cavity. It is possible that binding of
the finger loop and stabilization of the active state of the receptor follows a similar
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stepwise and mutual reduction of conformational space as recently described for G
protein (Elgeti et al. 2013). In the Ops*/arrestin-1 fusion complex structure, the
finger loop is observed to adopt a helical conformation within the cytoplasmic
crevice of the active receptor (Kang et al. 2015). A similar binding mode was
observed in a crystal structure of Ops* bound to a peptide analogue of the finger
loop (Szczepek et al. 2014). In this structure, specific hydrogen bonding is observed
between the finger loop and critical functional motifs on the receptor (e.g. NPxxY
(x)5,6F and E(D)RY), which are highly conserved among GPCRs. Consistently, the
finger loop sequence is highly conserved among all four arrestins. Engagement of
the finger loop is crucial for stabilizing the active form of the receptor (Sommer
et al. 2012) and hence formation of the high affinity complex.

Membrane anchoring of the C-edge—Rotation of the C-domain results in a
different alignment of the C-edge that changes how this functional domain interacts
with the membrane as compared to the pre-complex. In the pre-complex, the
344-loop adopts an extended conformation and is deeply inserted into the
hydrophobic layer of the membrane. In the high-affinity complex, this loop adopts a
folded conformation as seen in the p44 structure and interacts more shallowly with
the membrane. In addition, the rotation of the C-domain allows the 197-loop to
engage the membrane in the high-affinity complex. These differences in C-edge
membrane engagement in the pre-complex and high-affinity complex were clearly
observed in site-directed fluorescence experiments (Lally et al. 2017) and are
consistent with differences in functional maps for Meta II-P binding and Ops-P
binding derived from alanine scan mutagenesis (Peterhans et al. 2016).

In summary, formation of the arrestin-receptor complex occurs by a multistep
mechanism (Fig. 8.3). Initial electrostatic attraction of arrestin to the Rpp and the
negatively charged membrane surface recruits arrestin to the membrane, where the
N-domain binds the Rpp and the C-edge anchors within the membrane. This
interaction brings the central crest of arrestin within close proximity of the receptor
helical bundle, so that the two proteins can interact and mutually affect one another.
Transition to the high-affinity complex involves multiple conformational rear-
rangements in arrestin, which allow arrestin to both specifically stabilize the active
form of the receptor as well as flexibly accommodate the cytoplasmic face of the
receptor. This flexibility is likely critical for making the b-arrestins versatile binding
partners for so many different GPCRs.
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