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Abstract G protein-coupled receptors (GPCR) signal primarily through G proteins
and arrestins. Arrestin not only intervenes with G protein-mediated signaling, but
also initiates a variety of G protein-independent functions. The functional diversity
of arrestins has been attributed to their multiple active conformations after inter-
action with ligand-activated receptors, which are regulated by both the
ligand-specific conformational states and the phosphorylation patterns of the
receptors. Here we reviewed the current knowledge of the structural features of
arrestins that underlie selective arrestin-mediated signaling. Recent breakthroughs
in the functional correlation of the conformational changes in arrestin to down-
stream effector molecules were also highlighted.
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Introduction

G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain
receptors (7TMRs), are the largest family of membrane proteins that communicate
extracellular stimuli to intracellular signals and play critical roles in mediating most
known physiological functions (Pierce et al. 2002). The classical paradigm of
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GPCR signaling is based on a ligand-induced conformational change of the receptor
(Farrens et al. 1996), which is recognized by heterotrimeric G proteins to regulate
levels of second messengers. The activated receptor is also phosphorylated by
GRKs, which results in subsequent recruitment of arrestins for endocytosis and/or
G protein-independent signaling (Walther and Ferguson 2013; Thomsen et al.
2016).

The arrestin family consists of four members. In mammals, arrestin-1 and
arrestin-4 are located almost exclusively in photoreceptor cells in the retina and
interact with very few visual GPCRs (Wilden et al. 1986; Craft et al. 1994),
whereas b-arrestin-1 and b-arrestin-2 (also called arrestin-2 and arrestin-3,
respectively) are ubiquitously expressed in most tissues and interact with low
specificity with the majority of non-visual GPCRs (Lohse et al. 1990; Attramadal
et al. 1992). By binding to GPCRs, these four arrestins desensitize G
protein-mediated signaling in many cases and also function as adapters to promote
receptor internalization by recruiting endocytic proteins, such as clathrin (Goodman
et al. 1996), adaptor protein 2 (AP2) (Laporte et al. 1999) and N-
ethylmaleimide-sensitive fusion protein (NSF) (McDonald et al. 1999), linking the
receptors to the clathrin-coated pit machinery (Shenoy and Lefkowitz 2003;
Lefkowitz and Shenoy 2005). In addition to their roles in GPCR desensitization,
internalization and trafficking, mounting evidence has revealed that b-arrestins also
act as signaling transducers that interact with a growing list of intracellular effectors
that include, but not limited to, signaling proteins such as c-Src, Raf-1, Akt,
ERK1/2, JNK3 and IjB (Luttrell et al. 1999; Gao et al. 2004; Xiao et al. 2010;
Reiter et al. 2012; Wang et al. 2014; Ning et al. 2015; Smith and Rajagopal 2016).
Through interaction with these signaling molecules, b-arrestins are capable of
initiating G-protein-independent signaling via MAPK, PI3K/AKT, and NF-jB
pathways, connecting the activated receptor to diverse physiological responses.
Although some studies indicate that G protein and arrestin signal synergistically
(Thomsen et al. 2016), b-arrestin-dependent and G-protein-dependent signaling
pathways could be pharmacologically separable. Biased ligands, which selectively
activate one of these two signaling pathways have great therapeutic potential and
have been extensively studied (Rajagopal et al. 2010; Reiter et al. 2012).

The remarkable functional diversity of arrestins raises the inevitable question of
how distinct arrestin functions are precisely regulated. Aiming at the detailed
mechanism, numerous biomedical and biophysical studies have been performed
over the past decade using multiple novel techniques and approaches, leading to
fruitful results. Recent structural studies of GPCR-arrestin complex provided con-
siderable insight into the activation mechanism of arrestin (Kang et al. 2015). In the
present chapter, we will review current knowledge of the structural features that
underlie selective arrestin signaling.
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Arrestin Undergoes Conformational Changes After
Interaction with Activated Receptors

Based on the diverse functional capacities of arrestins, especially b-arrestins, it has
been hypothesized that arrestins adopt multiple active conformations after activa-
tion that dictate their distinct functions (Gurevich and Gurevich 2006). In cells, the
conformational change of b-arrestin-2 was detected by BRET-based biosensors
after activation of the angiotensin II receptor type 1a (AT1aR), b2 adrenergic
receptor (b2AR), and parathyroid hormone 1 receptor (PTH1R) (Shukla et al.
2008). In detail, different conformations of b-arrestin-2 induced by full agonists or
b-arrestin-biased agonists in stimulated cells were observed with the BRET sensor.
Later, the conformational biosensor of arrestin was improved by the insertion of the
FlAsH (intramolecular fluorescein arsenical hairpin) in the specific loops of arrestin.
Significant conformational features of arrestins that correlated with their down-
stream functions were revealed by this new version of probes (Lee et al. 2016).
Further, using the FlAsH-decorated arrestins, a rapid activation/deactivation cycle
of b-arrestins was disclosed by FRET analysis, which reshapes our thinking of the
arrestin signaling (Nuber et al. 2016).

Phosphorylation of the GPCRs plays a key role in the recruitment and activation
of arrestins. Since the 1970s, the finding of phosphorylation of rhodopsin and b2AR
on their C-termini during desensitization has led to the identification of a
seven-member family of G protein-coupled receptor kinases (GRKs) (Weller et al.
1975; Benovic et al. 1986; Pitcher et al. 1998). Although subsequent studies
revealed that receptors could be phosphorylated by multiple intracellular kinases
other than GRKs, such as PKA (Tran et al. 2004) and PKC (Garcia et al. 1998), it
has been suggested that the phosphorylation mediated by GRKs initiates arrestin
recruitment and receptor internalization (Tobin et al. 2008; Walther and Ferguson
2013). Whereas GRK1 and 7 are confined to the retina and GRK4 is distributed
primarily in the reproductive system, GRKs 2, 3, 5, and 6 are ubiquitously
expressed and thus regulate the phosphorylation patterns of most GPCRs (Krupnick
and Benovic 1998; Pitcher et al. 1998). Studies of different GPCRs revealed that
siRNA-mediated knockdown of specific GRK or combinations of GRKs leads to
clearly distinguishable effects on receptor functions, suggesting that different sets of
GRKs might phosphorylate distinct sites on the receptors. Many of the regulatory
roles of GRKs on receptors are through arrestin-mediated functions, including
receptor desensitization, internalization and non-receptor-binding partners activa-
tion (Kim et al. 2005; Ren et al. 2005). Studies regarding specific GRK-regulated
GPCR functions through arrestin brought up the barcode concept of the
phosphorylation-regulated receptor function, of which the phosphorylation pattern
of the receptor resembles the barcode of the beer can, transducing specific infor-
mation to downstream effectors (Tobin et al. 2008; Nobles et al. 2011). Using the
prototypical GPCR b2AR as a model, mass spectrometry-based quantitative pro-
teomics and phosphorylation site-specific antibodies were exploited to map the
phosphorylation sites of GRK2 and GRK6 at C-terminus and the third intracellular
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loop of the b2AR expressed in HEK293 cells, whereas RNAi-induced GRK
silencing and BRET assay were employed to delineate conformation-specific
b-arrestin capabilities imparted by specific phosphorylation patterns induced by
GRK2 and GRK6. Results indicated that whereas both GRK2 and GRK6 contribute
to desensitization of the b2AR through b-arrestin-2, GRK2 phosphorylation sites
(T360, S364, S396, S401, S407, and S411) are primarily responsible for receptor
internalization, whereas GRK6 sites (S355 and S356) are required for
b-arrestin2-mediated ERK1/2 activation. Notably, phosphorylation of GRK2 sites
appears to inhibit phosphorylation of GRK6 sites as well as b2AR signaling to
ERK1/2. It was also demonstrated that isoproterenol, the full agonist of b2AR,
initiates phosphorylation on both GRK2 and GRK6 sites, whereas carvedilol, a
b-arrestin-biased ligand of b2AR (Wisler et al. 2007), induces phosphorylation only
at the GRK6 sites. Moreover, the BRET data suggested that distinct phosphory-
lation patterns on the b2AR induced by either GRK2 or GRK6 result in different
b-arrestin-2 conformations. Collectively, these results provide evidence that the
receptor phosphorylation patterns induced by different GRKs establish a ‘barcode’
that is related to its functional capabilities. This barcode hypothesis has been
strengthened by growing evidence from the studies of many other GPCRs, such as
M3 muscarinic receptor (Butcher et al. 2011), cannabinoid 1 receptor
(Delgado-Peraza et al. 2016), ghrelin receptor (Bouzo-Lorenzo et al. 2016), and
fatty acid receptor GPR120 (Prihandoko et al. 2016).

In vitro, binding of the fully phosphorylated vasopressin 2 receptor (V2R) C-tail
induces significant conformational changes of both b-arrestin-1 (Nobles et al. 2007)
and b-arrestin-2 (Xiao et al. 2004). Recently, a flute model of how phosphorylation
pattern of GPCRs was recognized by arrestin and thereafter transduced to down-
stream effectors through specific conformational changes were revealed by
19F-NMR and unnatural amino acid incorporation approaches (Yang et al. 2015).
Not only the phosphorylation states of the receptor, but the ligand-induced specific
receptor conformations also contribute to specific arrestin conformations and thus
activation. Studies comparing the binding of both visual and non-visual arrestins to
four functional forms (inactive unphosphorylated receptor, inactive phosphore-
ceptor, active unphosphorylated receptor, and active phosphoreceptor) of rho-
dopsin, b2AR and M2 muscarinic receptor suggested the existence of an ‘activation
sensor’ in arrestin, which is proposed to mediate the interaction of arrestin with the
ligand-induced activated conformation of the receptor (Gurevich et al. 1995;
Gurevich and Gurevich 2004). Correspondingly, electron paramagnetic resonance
(EPR) studies on rhodopsin-arrestin interactions revealed strong intermolecular
contacts between the finger loop, a highly flexible loop connecting b-strands V and
VI of arrestin, and the transmembrane core of light-activated phosphorylated rho-
dopsin, but not that of inactive phosphorylated rhodopsin (Hanson et al. 2006).
Moreover, the light-activated unphosphorylated rhodopsin has been further
demonstrated to independently induce a unique conformational change in arrestin,
which is different from that induced by phosphorylated rhodopsin (Zhuang et al.
2013). Similarly, A NAPol-reconstituted V2R was demonstrated to interact with
purified b-arrestin-2 after stimulation with full agonist AVP or b-arrestin-biased
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ligand SR121463, but not with the Gs-biased ligand MCF14 (Rahmeh et al. 2012).
Therefore, ligand-specific conformational states of GPCR might not only determine
the GRK-mediated phosphorylation pattern but also be directly correlated with the
conformation changes of arrestin (Fig. 16.1).

Taken together, these findings revealed how arrestin is activated and then directs
distinct functions downstream of the receptor. Ligand-dependent stabilization of
distinct receptor conformations leads to specific phosphorylation patterns at the
C-terminus and/or intracellular loops, which, together with ligand-specific confor-
mational states of the receptor, define distinct arrestin conformations that might
dictate selective signaling pathways (Fig. 16.1).

Structural Insight into Arrestin Conformational Change
by Crystallography

Crystal structures of all four arrestins at inactive or basal state have been determined
and they demonstrate high sequence and structural homology (Hirsch et al. 1999;
Han et al. 2001; Sutton et al. 2005; Zhan et al. 2011). The arrestins essentially
consist of N- and C-domains that are built almost entirely from antiparallel b sheets
and linked by a relatively flexible ‘hinge’ region (Fig. 16.2a). The inactive con-
formation of the arrestin has been suggested to be constrained by two distinct
subsets of intramolecular interactions: polar core that consists of five interacting
charged residues in the center of arrestin (D26, R169, D290, D297, and R393 in
b-arrestin-1) (Vishnivetskiy et al. 1999) and three-element interactions that com-
prises the b-strand I, a-helix I, and C-terminus of arrestin (Fig. 16.2b, d)
(Vishnivetskiy et al. 2000).

Multiple mutagenesis and biophysical studies suggested that visual arrestin
undergoes a conformational change upon binding to light-activated phosphorylated

Fig. 16.1 A model of arrestin recruitment and activation by phosphorylated GPCRs. GPCRs are
phosphorylated after activation, leading to the recruitment of arrestins. The phosphorylation states
of the receptor and ligand-induced receptor conformations collectively determine the active
conformations of the arrestins
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rhodopsin (Gurevich and Gurevich 2003, 2004). Subsequently, direct evidence of a
substantial conformational change of both b-arrestins upon activation was obtained
using limited tryptic proteolysis and matrix-assisted laser desorption/ionization-
time of flight mass spectrometry analysis in the presence of a phosphopeptide
derived from the C-terminus of V2R (Xiao et al. 2004; Nobles et al. 2007).
Collectively, results from these studies support a model in which both polar core
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and three-element interactions might be disrupted during the activation of the
arrestin (Gurevich and Gurevich 2006; Ostermaier et al. 2014).

Two X-ray crystal structures of activated arrestins, including pre-activated
arrestin-1 (Kim et al. 2013) and V2R phosphopeptide (V2Rpp)-bound b-arrestin-1
(Shukla et al. 2013), were determined in 2013. In the latter study, the crystal
structure of activated b-arrestin-1 revealed the displacement of b-arrestin-1
C-terminus by V2Rpp that binds to the N-domain as an antiparallel b-strand at a
similar location to the b-arrestin-1 C-terminus in inactive structure but with a
reversed direction (Fig. 16.2a, c). The replacement of the C-terminus of arrestin
with V2Rpp disrupts both 3-element interaction and the polar core that restrain the
arrestin in the inactive state (Fig. 16.2c, e). It was observed that two highly con-
served residues on the b-stand I, the K10 and K11, which interact with F388 and
F391 and are proposed to be a key component of three-element interaction in the
inactive structure (Gurevich and Gurevich 2006), make instead charge-charge
interactions with phosphates of V2Rpp, which therefore disrupt the 3-element
interaction (Fig. 16.2c). Displacement of C-terminus of b-arrestin-1 also removes
the R393 of the C-terminus, therefore disables the charge-charge interaction of the
R393 with the D26 and D297, and distorts the lariat loop to form the new inter-
action between the pT360 and K294 (Fig. 16.2e). These changes disrupt the polar
core. In the active structure of the V2Rpp/arrestin complex, the disruption of the
3-element interaction and the polar core in arrestin release the N-/C-domain asso-
ciations and enable 20° twisting of the domains relative to each other. The twisting
of these two domains of arrestin not only repositions three loops, including the
finger loop, the middle loop and the lariat loop, which may facilitate receptor core
interactions; but also exposes substantial regions that might enable downstream
effectors recruitment (Sommer et al. 2012; Vishnivetskiy et al. 2013; Zhuo et al.
2014).

A similar twisting between the N-/C-domains of the visual arrestin (arrestin-1 or
v-arrestin) was also observed in the recently solved crystal structure of
rhodopsin/v-arrestin-phosphorylation-independent-active-mutant fusion complex
obtained by serial femtosecond X-ray laser crystallography (Fig. 16.3) (Kang et al.
2015). Conformational changes of the finger loop, middle loop and the region
between the I157-K168 enable the interaction of the rhodopsin with the v-arrestin.
In detail, whereas the interaction between the rhodopsin C-terminus and v-arrestin
N-domain was not observed, this structure revealed three patches of

JFig. 16.2 Comparison of inactive b-arrestin-1 structure and active b-arrestin-1 structure. a Overall
comparison of the inactive b-arrestin-1 structure (PDB accession code 1G4M; gold) and the active
b-arrestin-1 structure (PDB accession code 4JQI; purple). The b-arrestin-1 C-terminus and the
V2Rpp are highlighted in red and blue, respectively. The three-element interaction in the inactive
b-arrestin-1 structure (b) and active b-arrestin-1 structure (c). The b-arrestin-1 C-terminal b-strand
lying along the three-element interaction in the inactive conformation is displaced by the
C-terminus of V2Rpp upon activation. The polar core in the inactive b-arrestin-1 structure (d) and
active b-arrestin-1 structure (e). Upon V2Rpp binding, C-terminal residue R393 of b-arrestin-1is
displaced, contributing to the disruption of the polar core
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rhodopsin-v-arrestin interfaces, which include the interaction of the finger loop of
v-arrestin with the intracellular loop-1 (ICL1), TM7 and H8 of the rhodopsin, the
accommodation of rhodopsin ICL2 by the middle and C-loops of v-arrestin, and the
engagement of b-strand following finger loop and the N-terminal b-strand 6 with
the TM5, TM6, and ICL3 of rhodopsin. Interestingly, the structure of the v-arrestin
bound to rhodopsin and b-arrestin-1 bound to V2Rpp are very similar other than the
receptor interaction regions, suggesting activated arrestins assume similar confor-
mations (Fig. 16.3). However, this result does not support the idea that distinct
arrestin functions result from different receptor activation and phosphorylation by
different GRKs. Therefore, the low-resolution crystal structures lack important
detailed information of structural changes in arrestin to explain how it mediates
differential signaling.

Conformational Changes in Arrestin and the Correlation
with Downstream Functions

Although mounting evidence has indicated that different arrestin conformations are
coupled to distinct functional outcomes, the precise correlation between them is not
well established. Since the identification of clathrin as the first non-receptor binding
partner of arrestins, a variety of trafficking and signaling proteins, such as c-Src,
MAPK, and ASK1, have been reported to interact with arrestin (Goodman et al.
1996; Lefkowitz and Shenoy 2005). The binding sites of clathrin and AP2 on
arrestin have been well characterized: both are localized in the C-terminus of

Fig. 16.3 Structural comparison of the active b-arrestin-1 and visual arrestin-1. The phospho-tail
(V2Rpp)-activated b-arrestin-1 strucutre (PDB accession code 4JQI; purple) and the activated
visual arrestin structure (PDB accession code 4ZWJ; green) in the complex with rhodopsin are
superimposed
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b-arrestins (Kim and Benovic 2002; Schmid et al. 2006; Kang et al. 2009). In
contrast, few binding sites of other non-receptor binding partners have been pre-
cisely mapped, although particular residues in b-arrestins are suggested to partici-
pate in the binding of MEK1 or Raf1 (Meng et al. 2009; Coffa et al. 2011a, b). It
has been demonstrated that most of these non-receptor binding partners except for
clathrin and AP2 interact with both N-/C-domains of arrestin (Song et al. 2007,
2009) and therefore, the relative rotation between these two domains and rear-
rangement of the arrestin conformation, which have been confirmed in the structural
studies, might explain the structural preference of certain partners that serve as
effector molecules leading to distinct functional outcomes (Gurevich and Gurevich
2003, 2013). However, despite the continuous improvement and strengthening of
barcode hypothesis, the detailed mechanism by which arrestin transmits signals
encoded in the receptor to downstream effector molecules still remains largely
unknown.

To better detect the conformational changes in arrestin and further explore how
arrestin recognizes specific phosphorylation patterns in the receptor and translates
them into distinct functional outcomes, we developed a series of structural sensors
in b-arrestin-1 by incorporating the unnatural amino acid 3, 5-difluorotyrosin (F2Y)
at specific locations and detected phospho-interaction patterns and residue-specific
structural information in b-arrestin-1 using 19F-NMR spectroscopy (Yang et al.
2015). In addition to V2Rpp, we also synthesized specific GRK2-, GRK6-, or
PKA-phosphorylated b2AR C-terminal fragments (GRK2pp, GRK6pp, and
PKApp, respectively) and examined their effects on the biochemical properties of
b-arrestin-1. We demonstrated that b-arrestin-1 reads phospho-messages in receptor
C-tail with its concave surface, which harbors at least ten potential
phosphate-binding sites (numbered 1–7 according to the binding mode of V2Rpp to
b-arrestin-1 in the V2Rpp/b-arrestin-1 complex (Shukla et al. 2014), with A1–A3
indicating potential additional phosphate-binding sites at the N-terminus). Although
all the GRK-phosphopeptides (GRKpps) but not PKApp interact with
phosphate-binding site 1 of b-arrestin-1, our results revealed distinct
phospho-interaction patterns between different GRKpps and b-arrestin-1 at the
other binding sites, which are coupled to selective functional outcomes (Fig. 16.4a).
Whereas GRK2pp interacts with b-arrestin-1 through binding sites 1–4–6–7 and
promotes clathrin recruitment and receptor endocytosis, GRK6pp interacts with
b-arrestin-1 in a different 1–5 pattern and elicits Src signaling (Fig. 16.4a).
Mutations of key residues in specific phosphate-binding sites selectively eliminate
corresponding b-arresin-1-mediated functions downstream of several GPCRs,
including b2AR, cholecystokinin type-A receptor (CCKAR), and somatostatin
receptor type 2 (SSTR2). These data suggested that specific phospho-patterns were
recognized by arrestins and then translated to different cellular signaling pathways
through distinct downstream effectors.

Using 7 19F-NMR probes incorporated into the specific arrestin sites other than
phospho-interaction regions, we were able to detect different conformational states
that were induced by binding of different GRKpps. Binding of the two distinct
GRK2pp phospho-peptides induced conformational change at the Y249 in the loop
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between b-strands XV and XVI, the L338 in the splice loop, and the N375 in the
C-terminal region of b-arrestin-1 (Fig. 16.4b). These structural states could be
specifically recognized by the subsequent binding of clathrin. In contrast, binding of
the GRK6pp to b-arrestin-1 caused a chemical shift at F277 in the end of the lariat
loop, whereas binding of the GRK2pps caused no significant conformational
change at this site (Fig. 16.4b). Deletion of the partial lariat loop encompassing

Fig. 16.4 Conformational changes of arrestin induced by different receptor phosphorylation
patterns and their correlation with distinct cellular functions. a The flute model for the
phospho-decision mechanism of the arrestin signaling. A phospho-barcode of 1–4–6–7 directs
clathrin recruitment and endocytic function of arrestin, whereas a phospho-barcode of 1–5 directs
Src recruitment and signaling. There are potentially more than 1000 phospho-patterns that a single
arrestin could recognize. b Conformationl changes of arrestin correlate to its distinct functions. The
conformational states of the Y249, L338 and N375 are recognized by clathrin and correlated to the
endocytic function of b-arrestin-1, whereas the conformational state of F277 is correlated to
arrestin-mediated Src signaling
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F277 abolished the GRK6pp-induced recruitment of Src to arrestin. Collectively,
these data have clarified the receptor phospho-coding mechanism, by which
changes in a GPCR phosphorylation pattern are translated to distinct conformations
of arrestin that could be further recognized by different downstream effector
molecules.

In addition to b-arrestin-1, the conformational change of b-arrestin-2 have also
been investigated downstream of several receptors in cellular systems. A very
recent study monitored the conformational changes of b-arrestin-2 using a panel of
intramolecular fluorescein arsenical hairpin (FlAsH) BRET reporters in cells (Lee
et al. 2016). Studies of six different types of GPCRs demonstrated the existence of
b-arresin-2 “conformational signature” that was indicated by the changes in BRET
efficacy from multiple vantage points. This b-arresin-2-FlAsH signature is con-
served between GPCRs with similar arrestin binding/signaling characteristics and
the changes in BRET efficacy at selected positions correlate with distinct arrestin
functions, for example, trafficking pattern of GPCR-arrestin complex and arrestin-
dependent ERK1/2 activation. Therefore, these data, together with the results of our
study, provide considerable insight into the correlation between specific arrestin
conformations and selective arrestin functions and pave the way to the future
studies of the detailed functional roles of the conformational changes of arrestin.

Although receptor binding and arrestin conformational change are necessary for
the engagement of arrestin with multiple downstream effectors, such as ERK1/2
(Luttrell et al. 2001; Coffa et al. 2011a, b), it has been reported that some binding
partners could interact with arrestin in both inactive and active conformations (Song
et al. 2009; Ahmed et al. 2011; Gurevich and Gurevich 2013), with some proteins,
such as MEK1, even binding to arrestins in both conformations equally well (Coffa
et al. 2011a, b; Gurevich and Gurevich 2014). This has added a new layer of
complexity in the arrestin-dependent conformational signaling. Moreover, the two
isoforms of b-arrestin, which share more than 70% sequence identity and high
structural similarity, have been demonstrated to be functionally non-redundant in
GPCR regulation by accumulating evidence (Srivastava et al. 2015). Whereas both
b-arrestins facilitate the signaling in c-Raf1-MEK1-ERK1/2 cascade, only
b-arrestin-2 promotes the signaling in ASK1-MKK4-JNK3 cascade (McDonald
et al. 2000). Receptor-specific reciprocal regulation of selective signaling pathways
by these two b-arrestins has also been reported. For example, siRNA knockdown of
b-arrestin-2 attenuates PTH1R-mediated ERK1/2 activation, whereas knockdown
of b-arrestin-1 yields opposite effect (Ahn et al. 2004). Therefore, the interaction
between arrestin and effector molecules and the arrestin-dependent signal trans-
duction might be much more complicated than expected. To further decipher the
molecular mechanism underlying arrestin conformational signaling, more detailed
information from the potential structures, using crystallography, electron micro-
scopy or NMR approaches, of GPCR with arrestin and effectors is required.
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