
7VisualizingNeural Networks

7.1 Introduction

Aneural network is amethod that transforms input data into a feature space through a
highly nonlinear function.When a neural network is trained to classify input patterns,
it learns a transformation function from input space to the feature space such that
patterns from different classes become linearly separable. Then, it trains a linear
classifier on this feature space in order to classify input patterns. The beauty of
neural networks is that they simultaneously learn a feature transformation function
as well as a linear classifier.

Another method is to design the feature transformation function by hand and train
a linear or nonlinear classifiers to differentiate patterns in this space. Feature trans-
formation functions such as histogram of oriented gradients and local binary pattern
histograms are two of commonly used feature transformation functions. Understand-
ing the underlying process of these functions is more trivial than a transformation
function represented by a neural network.

For example, in the case of histogram of oriented gradients, if there are many
strong vertical edges in an image we know that the bin related to vertical edges is
going to be significantly bigger than other bins in the histogram. If a linear classifier
is trained on top of these histograms and if themagnitude ofweight of linear classifier
related to the vertical bin is high, we can imply that vertical edges have a great impact
on the classification score.

As it turns out from the above example, figuring out that how a pattern is classified
using a linear classifier trained on top of histogram of oriented gradients is doable.
Also, if an interpretable nonlinear classifier such as decision trees or random forest
is trained on the histogram, it is still possible to explain how a pattern is classified
using these methods.

© Springer International Publishing AG 2017
H. Habibi Aghdam and E. Jahani Heravi, Guide to Convolutional
Neural Networks, DOI 10.1007/978-3-319-57550-6_7

247

248 7 Visualizing Neural Networks

The problem with deep neural networks is that it is hard or even impossible to
inspect weights of neural networks and understand how the feature transformation
function works. In other words, it is not trivial to know how a pattern with many
strong vertical edges will be transformed into the feature space. Also, in contrast to
histogram of oriented gradients where each axis in the feature spaces has an easy-
to-understand meaning for human, axes of feature spaces represented by a neural
network are not easily interpretable.

For these reasons, diagnosing neural networks and understanding the underlying
process of a neural network are not possible. Visualization is a way to make sense of
complex models such as neural networks. In Chap.5, we showed a few data-oriented
techniques for understanding the feature transformation and classification process of
neural networks. In this chapter, we will briefly review these techniques again and
introduce gradient-based visualization techniques.

7.2 Data-OrientedTechniques

In general, data-oriented visualization methods work by feeding images to a network
and collecting information from desired neurons.

7.2.1 Tracking Activation

In this method, N images are fed into the network and the activation (i.e., output
of neuron after applying the activation function) of a specific neuron on each of
these images is stored in an array. This way, we will obtain an array containing N
real numbers in which each real number shows the activation of a specific neuron.
Then, K � N images with the highest activations are selected (Girshick et al.
2014). This method shows that what information about objects in the receptive field
of the neuron increases the activation of the neuron. In Chap.5, we visualized the
classification network trained on the GTSRB dataset using this method.

7.2.2 CoveringMask

Assume that image x is correctly classified by a neural network with a probability
close to 1.0. In order to understand which parts of the image have a greater impact
on the score, we can run a multi-scale scanning window approach. In scale s and
at location (m, n) on x, x(m, n) and all pixels in its neighborhood are set to zero.
The size of neighborhood depends on s. This is equivalent zeroing the inputs to the
network. In other words, information in this particular part of the image is missing.
If the classification score highly depends on the information centered at (m, n), the
score must be dropped significantly by zeroing the pixels in this region. If the above
procedure is repeated for different scales and on all the locations in the image, we

http://dx.doi.org/10.1007/978-3-319-57550-6_5
http://dx.doi.org/10.1007/978-3-319-57550-6_5

7.2 Data-Oriented Techniques 249

will end up with a map for each scale where the value of map will be close to 1 if
zeroing its analogous region does not have any effect on the score. In contrast, the
value of map will be close to zero if zeroing its corresponding region has a great
impact on score. This method is previously used in Chap.5 on the classification
network trained on GTSRB dataset. One problem with this method is that it could
be very time consuming to apply the above method on many samples for each class
to figure out which regions are important in the final classification score.

7.2.3 Embedding

Embedding is another technique which provides important information about feature
space. Basically, given a set of feature vectors Z = {Φ(x1),Φ(x2), . . . , Φ(xN)},
where Φ : R

H×W×3 → R
d is the feature transformation function, the goal of

embedding is to find the mapping Ψ : R
d → R

d̂ to project the d-dimensional
feature vector into a d̂-dimensional space. Usually, d̂ is set to 2 or 3 since inspecting
vectors visually in this spaces can be easily done using scatter plots.

There are differentmethods for finding themappingΨ . However, there is a specific
mapping which is particularly used for mapping into two-dimensional space in the
field of neural network. This mapping is called t-distributed stochastic neighbor
embedding (t-SNE). It is a structure preserving mapping meaning that it tries to
preserve the structure of neighbors in the d̂-dimensional space as similar as possible
to the structure of neighbors in d-dimensional space. This is an important property
since it shows that how separable are patterns from different classes in the original
feature space.

Denoting the feature transformation function up to layer L in a network byΦL(x),
we collect the set ZL = {ΦL(x1), ΦL(x2), . . . , ΦL(xN)} by feeding many images
fromdifferent classes to the network and collectingΦL(xN) for each image. Then, the
t-SNE algorithm is applied onZL in order to find amapping into the two-dimensional
space. The mapped points can be plotted using scatter plots. This technique was used
for analyzing networks in Chaps. 5 and 6.

7.3 Gradient-BasedTechniques

Gradient-based methods explain neural networks in terms of their gradient with
respect to the input image x (Simonyan et al. 2013). Depending on how the gradients
are interpreted, a neural network can be studied from different perspectives.1

1Implementations of the methods in this chapter are available at github.com/pcnn/ .

http://dx.doi.org/10.1007/978-3-319-57550-6_5
http://dx.doi.org/10.1007/978-3-319-57550-6_5
http://dx.doi.org/10.1007/978-3-319-57550-6_6

250 7 Visualizing Neural Networks

7.3.1 ActivationMaximization

Denoting the classification score of x on class c with Sc(x), we can find an input x̂
by maximizing the following objective function:

Sc(x̂) − λ‖x̂‖22, (7.1)

where λ is the regularization parameter defined by user. In other words, we are
looking for an input image x̂ that maximizes the classification score on class c and it
is always within n-sphere defined by the second term in the above function. This loss
can be implemented using a Python layer in the Caffe library. Specifically, the layer
accepts a parameter indicating the class of interest. Then, it will return the score of
class of interest during forward pass. In addition, in the backward pass derivative of
all classes except the class of interest will be set to zero. Obviously, any change in the
inputs of layer other than class of interest does not change the output. Consequently,
derivative of the loss with respect to these inputs will be equal to zero. In contrast,
derivative of loss with respect to class of interest will be equal to 1 since it just
passes the value from class of interest to the output. One can think of this loss as a
multiplexer which directs inputs according to its address.

The derivative of the second term in the objective function with respect to classi-
fication scores is always zero. However, derivative of the second term with respect
to input xi is equal to 2λxi . In order to formulate the above objective function as a
minimization problem, we can simply multiply the function with −1. In that case,
derivative of the first term with respect to the class of interest will be equal to −1.
Putting all this together, the Python layer for the above loss function can be defined
as follows:

1class score_loss(caffe.Layer):
2def setup(self, bottom, top):
3params = eval(self.param_str)
4self.class_ind = params[’class_ind’]
5self.decay_lambda = params[’decay_lambda’] if params.has_key(’decay_lambda’) else 0
6

7def reshape(self, bottom, top):
8top[0].reshape(bottom[0].data.shape[0], 1)
9

10def forward(self, bottom, top):
11top[0].data[...] = 0
12top[0].data[:, 0] = bottom[0].data[:, self.class_ind]
13

14def backward(self, top, propagate_down, bottom):
15bottom[0].diff[...] = np.zeros(bottom[0].data.shape)
16bottom[0].diff[:, self.class_ind] = −1
17

18if len(bottom) == 2 and self.decay_lambda > 0:
19bottom[1].diff[...] = self.decay_lambda ∗ bottom[1].data[...]

After designing the loss layer, it has to be connected to the trained network. The
following Python script shows how to do this.

7.3 Gradient-Based Techniques 251

1def create_net(save_to, class_ind):
2L = caffe.layers
3P = caffe.params
4net = caffe.NetSpec()
5net.data = L.Input(shape=[{’dim’:[1,3,48,48]}])
6net.tran = L.Convolution(net.data,
7num_output=3,
8group=3,
9kernel_size=1,
10weight_filler={’type’:’constant’,
11’value’:1},
12bias_filler={’type’:’constant’,
13’value’:0},
14param=[{’decay_mult’:1},{’decay_mult’:0}],
15propagate_down=True)
16net.conv1, net.act1, net.pool1 = conv_act_pool(net.tran, 7, 100, act=’ReLU’)
17net.conv2, net.act2, net.pool2 = conv_act_pool(net.pool1, 4, 150, act=’ReLU’, group=2)
18net.conv3, net.act3, net.pool3 = conv_act_pool(net.pool2, 4, 250, act=’ReLU’, group=2)
19net.fc1, net.fc_act, net.drop1 = fc_act_drop(net.pool3, 300, act=’ReLU’)
20net.f3_classifier = fc(net.drop1, 43)
21net.loss = L.Python(net.f3_classifier, net.data, module=’py_loss’, layer=’score_loss’,
22param_str=‘‘{’class_ind’:%d, ’decay_lambda’:5}’’ %class_ind)
23with open(save_to, ’w’) as fs:
24s_proto = ’force_backward:true\n’ + str(net.to_proto())
25fs.write(s_proto)
26fs.flush()
27print s_proto

Recall fromChap.4 that the Python file has to be placed next to the network definition
file. We also set force_backward to true in order to force Caffe to always perform the
backward pass down to the data layer. Finally, the image x̂ can be found by running
the following momentum-based gradient descend algorithm.

1caffe.set_mode_gpu()
2root = ’/home/pc/’
3net_name = ’ircv1’
4save_to = root + ’cnn_{}.prototxt’.format(net_name)
5class_ind = 1
6create_net(save_to, class_ind)
7

8net = caffe.Net(save_to, caffe.TEST)
9net.copy_from(’/home/pc/cnn.caffemodel’)
10

11im_mean = read_mean_file(’/home/pc/gtsr_mean_48x48.binaryproto’)
12im_res = read_mean_file(’/home/pc/gtsr_mean_48x48.binaryproto’)
13im_res = im_res[np.newaxis,...]/255.
14

15alpha = 0.0001
16momentum = 0.9
17momentum_vec = 0
18

19for i in xrange(4000):
20net.blobs[’data’].data[...] = im_res[np.newaxis, ...]
21net.forward()
22net.backward()
23momentum_vec = momentum ∗ momentum_vec + alpha ∗ net.blobs[’data’].diff
24im_res = im_res − momentum_vec
25im_res = np.clip(im_res, −1, 1)
26

27

28fig1 = plt.figure(1, figsize=(6, 6), facecolor=’w’)
29plt.clf()
30res = np.transpose(im_res[0].copy()∗255+im_mean, [1, 2, 0])[:,:,[2,1,0]]
31res = np.divide(res − res.min(), res.max()−res.min())
32plt.imshow(res)

http://dx.doi.org/10.1007/978-3-319-57550-6_4

252 7 Visualizing Neural Networks

Lines 1–9 create a network with the Python layer connected to this network and
loads weights of the trained network into the memory. Line 11 loads the mean
image into memory. The variable in this line will be used for applying the backward
transformation on the result for illustration purposes. Lines 12 and 13 initialize the
optimization algorithm by setting it to the mean image.

Lines 15–17 configure the optimization algorithm. Lines 19–25 perform the
momentum-based gradient descend algorithm. Line 18 executes the forward pass
and the next line performs the backward pass and computes derivative of loss func-
tion with respect to the input data. Finally, the commands after the loop show the
obtained image. Figure7.1 illustrates the result of running the above script on each
of classes, separately.

It turns out that classification score of each class mainly depends on pictograph
inside of each sign. Furthermore, shape of each sign has impact on the classification
score as well. Finally, we observe that the network does a great job in eliminating
the background of traffic sign.

It is worth mentioning that the optimization is directly done on the classification
scores rather than output of softmax function. The reason is that maximizing the
output of softmaxmaynot necessarilymaximize the score of class of interest. Instead,
it may try to reduce the score of other classes.

Fig. 7.1 Visualizing classes of traffic signs by maximizing the classification score on each class.
The top-left image corresponds to class 0. The class labels increase from left to right and top to
bottom

7.3 Gradient-Based Techniques 253

7.3.2 Activation Saliency

Another way for visualizing neural networks is to asses how sensitive is a clas-
sification score with respect to every pixel on the input image. This is equivalent
to computing gradient of the classification score with respect to the input image.
Formally, given the image x ∈ R

H×W×3 belonging to class c, we can compute:

∇xmnk = δSc(x)
xmnk

, m = 0, . . . , H, n = 0, . . . ,W, k = 0, 1, 2. (7.2)

In this equation, �xmnkR
H×W×3 stores the gradient of classification score with

respect to every pixel in x. If x is a grayscale image the output will only have one
channel. Then, the output can be illustrated by mapping each gradient to a color. In
the case that x is a color image, maximum of �x is computed across channels.

∇x′
mn = max

k=0,1,2
�xmnk . (7.3)

Then, ∇x′
mn is illustrated by mapping each element in this matrix to a color. This

roughly shows saliency of each pixel in x. Figure7.2 visualizes the class saliency of
a random sample from each class.

In general, we see that the pictograph region in each image has a great effect on the
classification score. Besides, in a few cases, we also observe that background pixels
have impact on the classification score. However, this might not be generalized to
all images in the same class. In order to understand expected saliency of pixel, we
can compute �x′ for many samples from the same class and compute their average.
Figure7.3 shows expected class saliency obtained by computing the average of class
saliency of 100 samples coming from the same class.

Fig.7.2 Visualizing class saliency using a random sample from each class. The order of images is
similar Fig. 7.1

254 7 Visualizing Neural Networks

Fig.7.3 Visualizing expected class saliency using 100 samples fromeach class. The order of images
is similar to Fig. 7.1

The expected saliency reveals that the classification score mainly depends on
pictograph region. In other words, slight changes in this region may dramatically
change the classification score which in turn may alter the class of image.

7.4 Inverting Representation

Inverting a neural network (Mahendran and Vedaldi 2015) is a way to roughly know
what information is retained by a specific layer in a neural network. Denoting the
representation produced by Lth layer in a ConvNet for the input image xwithΦ(x)L ,
inverting a ConvNet can be done by minimizing

x̂ = argmin
x′∈RH×W×3

‖Φ(x′) − Φ(x)‖2 + λ‖x′‖p
p, (7.4)

where the first term computes the Euclidean distance between the representations of
the source image x and reconstructed image x′ and the second term regularizes the
cost by the p-norm of the reconstructed image.

If the regularizing term is omitted, it is possible to design a network using available
layers in Caffe which accepts the representation of an image and tries to find the
reconstructed image x̂. However, it is not possible to implement the above cost
function including the second term using available layers in Caffe. For this reason,
a Python layer has to be implemented for computing the loss and its gradient with
respect to its bottoms. This layer could be implemented as follows:

7.4 Inverting Representation 255

1class euc_loss(caffe.Layer):
2def setup(self, bottom, top):
3params = eval(self.param_str)
4self.decay_lambda = params[’decay_lambda’] if params.has_key(’decay_lambda’) else 0
5self.p = params[’p’] if params.has_key(’p’) else 2
6

7def reshape(self, bottom, top):
8top[0].reshape(bottom[0].data.shape[0], 1)
9

10def forward(self, bottom, top):
11

12if bottom[0].data.ndim == 4:
13top[0].data[:, 0] = np.sum(np.power(bottom[0].data−bottom[1].data,2), axis=(1,2,3))
14elif bottom[0].data.ndim == 2:
15top[0].data[:, 0] = np.sum(np.power(bottom[0].data − bottom[1].data, 2), axis=1)
16

17if len(bottom) == 3:
18top[0].data[:,0] += np.sum(np.power(bottom[2].data,2))
19

20def backward(self, top, propagate_down, bottom):
21bottom[0].diff[...] = bottom[0].data − bottom[1].data
22if len(bottom) == 3:
23bottom[2].diff[...] = self.decay_lambda ∗self.p∗ np.multiply(bottom[2].data[...], np.power(np.abs(bottom

[2].data[...]),self.p−2))

Then, the above loss layer is connected to the network trained on the GTSRB dataset.

1def create_net_ircv1_vis(save_to):
2L = caffe.layers
3P = caffe.params
4net = caffe.NetSpec()
5net.data = L.Input(shape=[{’dim’:[1,3,48,48]}])
6net.rep = L.Input(shape=[{’dim’: [1, 250, 6, 6]}]) #output shape of conv3
7

8net.tran = L.Convolution(net.data,
9num_output=3,
10group=3,
11kernel_size=1,
12weight_filler={’type’:’constant’,
13’value’:1},
14bias_filler={’type’:’constant’,
15’value’:0},
16param=[{’decay_mult’:1},{’decay_mult’:0}],
17propagate_down=True)
18net.conv1, net.act1, net.pool1 = conv_act_pool(net.tran, 7, 100, act=’ReLU’)
19net.conv2, net.act2, net.pool2 = conv_act_pool(net.pool1, 4, 150, act=’ReLU’, group=2)
20net.conv3, net.act3, net.pool3 = conv_act_pool(net.pool2, 4, 250, act=’ReLU’, group=2)
21net.fc1, net.fc_act, net.drop1 = fc_act_drop(net.pool3, 300, act=’ReLU’)
22net.f3_classifier = fc(net.drop1, 43)
23net.loss = L.Python(net.act3, net.rep, net.data, module=’py_loss’, layer=’euc_loss’,
24param_str="{’decay_lambda’:10,’p’:6}")

The network accepts two inputs. Thefirst input shows the reconstructed image and the
second input indicates the representation of the source image. In the above network,
our goal is to reconstruct the image using representation produced by the activation
of the third convolution layer. The output shape of the third convolution layer is
250×3×3. Hence, the shape of second input in the network is set to 1×250×6×6.
Moreover, as it is proposed in Mahendran and Vedaldi (2015), we set the value of p

256 7 Visualizing Neural Networks

in the above network to 6. Having the network created, we can execute the following
momentum-based gradient descend for finding x̂.

1im_mean = read_mean_file (’ / home / pc / gtsr_mean_48x48 . b inarypro to ’)
2im_mean = np . t ranspose (im_mean , [1 , 2 , 0])
3

4im = cv2 . imread (’ / home / pc /GTSRB/ Training_CNN/00016/ crop_00001_00029 .ppm’)
5im = cv2 . r e s i z e (im , (48 ,48))
6im_net = (im . astype (’ f l oa t32 ’)−im_mean) /255 .
7net . blobs [’ data ’] . data [. . .] = np . t ranspose (im_net , [2 , 0 , 1]) [np . newaxis , . . .]
8

9net . forward ()
10rep = net . blobs [’ act3 ’] . data . copy ()
11

12

13im_res = im∗0
14im_res = np . t ranspose (im_res , [2 ,0 ,1])
15

16alpha = 0.000001
17momentum = 0.9
18momentum_vec = 0
19

20for i in xrange (10000) :
21net . blobs [’ data ’] . data [. . .] = im_res [np . newaxis , . . .]
22net . blobs [’ rep ’] . data [. . .] = rep [. . .]
23

24net . forward ()
25net . backward ()
26

27momentum_vec = momentum ∗ momentum_vec − alpha ∗ net . blobs [’ data ’] . d i f f
28

29im_res = im_res + momentum_vec
30im_res = np . c l i p (im_res , −1, 1)
31

32p l t . f i gu r e (1)
33p l t . c l f ()
34re s = np . t ranspose (im_res [0] . copy () , [1 , 2 , 0])
35res = np . c l i p (res∗255 + im_mean , 0 , 255)
36res = np . d iv ide (res − r e s .min () , r e s .max()−r e s .min ())
37p l t . imshow(res [: , : , [2 , 1 , 0]])
38p l t . show ()

In the above code, the source image is first fed to the network and the output of
the third convolution layer is copied into memory. Then, the optimization is done in
10,000 iterations. At each iteration, the reconstructed image is entered to the network
and the backward pass is computed down to the input layer. This way, gradient of the
loss function is obtained with respect to the input. Finally, the reconstructed image
is updated using the momentum gradient descend rule. Figure7.4 shows the result of
inverting the classification network from different layers. We see that the first con-
volution layer keeps photo-realistic information. For this reason, the reconstructed
image is very similar to the source image. Starting from the second convolution
layer, photo-realistic information starts to vanish and they are replaced with parts of
image which is important to the layer. For example, the fully connected layer mainly
depends on the specific part of pictograph on the sign and it ignores background
information.

7.5 Summary 257

Fig. 7.4 Reconstructing a traffic sign using representation of different layers

7.5 Summary

Understanding behavior of neural networks is necessary in order to better analyze
and diagnose them. Quantitative metrics such as classification accuracy and F1 score
just give us numbers indicating how good is the classifier in our problem. They do not
tell us how a neural network achieves this result. Visualization is a set of techniques
that are commonly used for understanding structure of high-dimensional vectors.

In this chapter, we briefly reviewed data-driven techniques for visualization and
showed that how to apply them on neural networks. Then, we focused on techniques
that visualize neural networks by minimizing an objective function. Among them,
we explained three different methods.

In the first method, we defined a loss function and found an image that maximizes
the classification score of a particular class. In order to generate more interpretable
images, the objective function was regularized using L2 norm of the image. In the
second method, gradient of a particular neuron was computed with respect to the
input image and it is illustrated by computing its magnitude.

The third method formulated the visualizing problem as an image reconstruction
problem. To be more specific, we explained a method that tries to find an image
in which the representation of this image is very close to the representation of the
original image. This technique usually tells us what information is usually discarded
by a particular layer.

7.6 Exercises

7.1 Visualizing a ConvNet can be done by maximizing the softmax score of a spe-
cific class. However, this may not exactly generate an image that maximizes the
classification score. Explain the reason taking into account the softmax score.

7.2 Try embed a feature extracted by neural network using local linear embedding
method.

7.3 Use Isomap to embed features into two-dimensional space.

258 7 Visualizing Neural Networks

7.4 Assume an image of traffic signs belonging to class cwhich is correctly classified
by the ConvNet. Instead of maximizing Sc(x), try to minimize directly Sc(x) such
that x is no longer classified correctly by ConvNets but it is still easily recognizable
for human.

References

Girshick R, Donahue J, Darrell T, Berkeley UC,Malik J (2014) Rich feature hierarchies for accurate
object detection and semantic segmentation. doi:10.1109/CVPR.2014.81, arXiv:abs/1311.2524

Mahendran A, Vedaldi A (2015) Understanding deep image representations by inverting them.
In: Computer vision and pattern recognition. IEEE, Boston, pp 5188–5196. doi:10.1109/CVPR.
2015.7299155, arXiv:abs/1412.0035

SimonyanK,VedaldiA, ZissermanA (2013)Deep inside convolutional networks: visualising image
classification models and saliency maps, pp 1–8. arXiv:13126034

http://dx.doi.org/10.1109/CVPR.2014.81
http://arxiv.org/abs/abs/1311.2524
http://dx.doi.org/10.1109/CVPR.2015.7299155
http://dx.doi.org/10.1109/CVPR.2015.7299155
http://arxiv.org/abs/abs/1412.0035
http://arxiv.org/abs/13126034

	7 Visualizing Neural Networks
	7.1 Introduction
	7.2 Data-Oriented Techniques
	7.2.1 Tracking Activation
	7.2.2 Covering Mask
	7.2.3 Embedding

	7.3 Gradient-Based Techniques
	7.3.1 Activation Maximization
	7.3.2 Activation Saliency

	7.4 Inverting Representation
	7.5 Summary
	7.6 Exercises

