
4Caffe Library

4.1 Introduction

Implementing ConvNets from scratch is a tedious task. Especially, implementing the
backpropagation algorithm correctly requires to calculate the gradient of each layer
correctly. Even after implementing the backward pass, it has to be validated by com-
puting the gradient numerically and comparing it with the result of backpropagation.
This is called gradient check. Moreover, efficient implementation of each layer on
GPU is another hard work. For these reasons, it might be more practical to use a
library for this purpose.

As we discussed in the previous chapter, there are many libraries and frameworks
that can be used for training ConvNets. Among them, there is one library which is
suitable for development as well as applied research. This library is called Caffe.1

Figure4.1 illustrates the structure of Caffe.
The Caffe library is developed in C++ and it utilizes CUDA library for performing

computations on GPU.2 There is a library which is developed by NVIDIA and it is
called cuDNN . It has implemented common layers found in ConvNets as well as
their gradients. Using cuDNN, it is possible to design and train ConvNets which are
only executed onGPUs. Caffemakes use of cuDNN for implementing some of layers
on GPU. It has also implemented some other layers directly using CUDA. Finally,
besides providing interfaces for Python and MATLAB programming languages, it
also provides a command tool that can be used for training and testing ConvNets.

One beauty of Caffe is that designing and training a network can be done by
employing text files which are later parsed using Protocol Buffers library. But, you
are not limited to design and train using only text files. It is possible to also design and

1http://caffe.berkeleyvision.org.
2There are some branches of Caffe that use OpenCL for communicating with GPU.

© Springer International Publishing AG 2017
H. Habibi Aghdam and E. Jahani Heravi, Guide to Convolutional
Neural Networks, DOI 10.1007/978-3-319-57550-6_4

131

http://caffe.berkeleyvision.org

132 4 Caffe Library

Fig. 4.1 The Caffe library
uses different third-party
libraries and it provides
interfaces for C++, Python,
and MATLAB programming
languages

train ConvNets by writing a computer program in C++, Python or MATLAB. How-
ever, a detailed analysis of ConvNets has to be done by writing compute programs
or special softwares.

In this chapter, we will first explain how to use text files and the command tools
for designing and training ConvNets. Then, we will explain how to do it in Python.
Finally, methods for analyzing ConvNets using Python will be also discussed.

4.2 Installing Caffe

Installation of Caffe requires installing CUDA and some third-party libraries on your
system. The list of required libraries can be found in caffe.berkeleyvision.org. If you
are using Ubuntu, Synaptic Package Manager can be utilized for installing these
libraries. Next, CUDA drivers must be installed on the system. Try to download the
latest CUDA driver compatible with Caffe fromNIVIDIAwebsite. Installing CUDA
drivers can be as simple as just running the installation file. In worst case scenario,
it may take some time to figure out what are the error messages and to finally install
it successfully.

After that, cuDNN library must be downloaded and copied into the CUDA folder
which is by default located in /usr/local/cuda.. You must copy the cudnn*.h into the
include folder and libcudnn*.so* into lib/lib64 folder. Finally, you must follow the
instructions provided in the Caffe’s website for installing this library.

4.3 Designing UsingText Files

AConvNet and its training procedure can be defined using two text files. The first text
file defines architecture of the neural network including ConvNets and the second
file defines the optimization algorithm as well as its parameters. These text files are

4.3 Designing Using Text Files 133

usually stored with .prototxt extension. This extension shows that the text inside
these files follows the syntax defined by the Protocol Buffers (protobuf) protocol.3

A protobuf is composed of messages where each message can be interpreted as a
struct in a programming language such as C++. For example, the following protobuf
contains two messages namely Person and Group.

1message Person {
2required string name = 1;
3optional int32 age = 2;
4repeated string email = 3;
5}
6

7message Group {
8required string name = 1;
9repeated Person member = 3;
10}

Listing 4.1 A protobuf with two messages.

The field rule required shows that specifying this field in the text file is mandatory.
In contrast, the rule optional shows that specifying this field in the text file is optional.
As it turns out, the rule repeated states that this filed can be repeated zero or more
times in the text file. Finally, numbers after the equal signs are unique tag numbers
which are assigned to each field in a message. The number has to be unique inside
the message.

From programming perspective, these two messages depict two data structures
namely Person and Group. The Person struct is defined using three fields including
one required, one optional and one repeated (array) field. The Group struct also is
defined using one required filed and one repeated filed, where each element in this
field is an instance of Person.

You can write the above definition in a text editor and save it with .proto extension
(e.g. sample.proto). Then, you can open the terminal in Ubuntu and execute the
following command:

1p r o t o c − I =SRC_DIR −−p y t h o n _ o u t =DST_DIR SRC_DIR / s amp l e . p r o t o

If the command is executed successfully, you should find a file named sam-
ple_pb2.py in directoryDST_DIR. InstantiatingGroup can be done in a programming
language. To this end, you should import sample_pb2.py to python environment and
run the following code:

1g = sample_pb2.Group()
2g.name =’group 1’
3

4m = g.member.add()
5m.name = ’Ryan’
6m.age=20
7m.email.append(’mail1@sample.com’)
8m.email.append(’mail1@sample.com’)
9

10m = g.member.add()
11m.name = ’Harold’
12m.age=23

3Implementations of the methods in this chapter are available at github.com/pcnn/ .

134 4 Caffe Library

Using the above code, we create a group called “group 1” with two members. The
age of the first member is 20, his name is “Ryan” and he has two email addresses.
Moreover, the name of second member is “Harold”. He is 23 years old and he does
not have any email.

The appealing property of protobuf is that you can instantiate the Group structure
using a plain text file. The following plain text is exactly equivalent to the above
Python code:

1name: "group 1"
2member {
3name: "member1"
4age: 20
5email : "mail1@sample.com"
6email : "mail1@sample.com"
7}
8member {
9name: "member2"
10age: 23
11}

This method has some advantages over instantiating using programming. First, it
is independent of programming language. Second, its readability is higher. Third, it
can be easily edited. Fourth, it is more compact. However, there might be some cases
that instantiating is much faster when we write a computer program rather than a
plain text file.

There is a file called caffe.proto inside the source code of the Caffe library which
defines several protobuf messages.4 We will use this file for designing a neural
network. In fact, caffe.proto is the reference file that you must always refer to it
when you have a doubt in your text file. Also, it is constantly updated by developers
of the library. Hence, it is a good idea to always keep studying the changes in the
newer version so you will have a deeper knowledge about what can be implemented
using the Caffe library. There is a message in caffe.proto called “NetParameter” and
it is currently defined as follows5:

1message NetParameter {
2optional string name = 1;
3optional bool force_backward = 5 [default = false] ;
4optional NetState state = 6;
5optional bool debug_info = 7 [default = false] ;
6repeated LayerParameter layer = 100;
7}

We have excluded deprecated fields marked in the current version from the above
message. The architecture of a neural network is defined using this message. It
contains a few fields with basic data types (e.g., string, int32, bool). It has also one
field of type NetState and an array (repeated) of LayerParameters. Arguably, one
can learn Caffe just by throughly studying NetParameter. The reason is illustrated in
Fig. 4.2.

4All the explanations for the Caffe library in this chapter are valid for the commit number 5a201dd.
5This definition may change in next versions.

4.3 Designing Using Text Files 135

Fig. 4.2 The NetParameter is indirectly connected to many other messages in the Caffe library

It is clear from the figure that NetParameter is indirectly connected to different
kinds of layers through LayerParameter. It turns outs that NetParameter is a container
to hold layers. Also, there are several other kind of layers in the Caffe library that we
have not included in the figure. The message LayerParamter has many fields. Among
them, following are the fields that we may need for the purpose of this book:

1message LayerParameter {
2optional string name = 1;
3optional string type = 2;
4repeated string bottom = 3;
5repeated string top = 4;
6

7optional ImageDataParameter image_data_param = 115;
8optional TransformationParameter transform_param = 100;
9

10optional AccuracyParameter accuracy_param = 102;
11optional ConvolutionParameter convolution_param = 106;
12optional CropParameter crop_param = 144;
13optional DropoutParameter dropout_param = 108;
14optional ELUParameter elu_param = 140;
15optional InnerProductParameter inner_product_param = 117;
16optional LRNParameter lrn_param = 118;
17optional PoolingParameter pooling_param = 121;
18optional PReLUParameter prelu_param = 131;
19optional ReLUParameter relu_param = 123;
20optional ReshapeParameter reshape_param = 133;
21optional SigmoidParameter sigmoid_param = 124;
22optional SoftmaxParameter softmax_param = 125;
23optional TanHParameter tanh_param = 127;
24

25optional HingeLossParameter hinge_loss_param = 114;
26

27repeated ParamSpec param = 6;
28optional LossParameter loss_param = 101;
29

30optional Phase phase = 10;
31}

136 4 Caffe Library

Fig. 4.3 A computational
graph (neural network) with
three layers

Each layer has a name. Although entering a name for a layer is optional but it is
highly recommended to give each layer a unique name. This increases readability of
your model. It has also another function. Assume you want to have two convolution
layers with exactly the same parameters. In other words, these two convolution layers
share the same set of weights. This can be easily specified in Caffe by giving these
two layers an identical name.

The string filed “type” specifies the type of the layer. For example, by assigning
“Convolution” to this field, we tell Caffe that the current layer is a convolution layer.
Note that the type of layer is case-sensitive. This means that, assigning “convolu-
tion” (small letter c instead of capital letter C) to type will raise an error telling that
“convolution” is not a valid type for a layer.

There are two arrays of strings in LayerParameter called “top” and “bottom”. If
we assume that a layer (an instance of LayerParameter) is represented by a node
in computational graphs, the bottom variable shows the tag of incoming nodes to
the current node and the top variable shows the tag of outgoing edges. Figure4.3
illustrates a computational graph with three nodes.

This computational graph is composed of three layers namely data, conv1 and
crop1. For now, assume that the node data reads images along with their labels
from a disk and stores them in memory. Apparently, the node data does not get its
information from another node. For this reason, it does not have any bottom (the
length of bottom is zero). The node data passes this information to other nodes in
the graph. In Caffe, the information produced by a node is recognized by unique
tags. The variable top stores the name of these tags. A tag and name of a node could
be identical. As we can see in node data, it produces only one output. Hence, the
length of array top will be equal to 1. The first (and only) element in this array shows
the tag of the first output of the node. In the case of data, the tag has been also called
data. Now, any other node can have access to information produced by the node
data using its tag.

The second node is a convolution node named conv1. This node receives informa-
tion from node data. The convolution node in this example has only one incoming

4.3 Designing Using Text Files 137

node. Therefore, length of bottom array for conv1 will be 1. The first (and only)
element in this array refers to the tag, where the information from this tag will
come to conv1. In this example, the information comes from data. After convolv-
ing bottom[0] with filters in conv1 (the value of filter are stored in node itself), it
produces only one output. So, length of array top for conv1 will be equal to 1. The
tag of output for conv1 has been called c1. In this case, the name of node and top of
node are not identical.

Finally, the node crop1 receives two inputs. One from conv1 and one from data.
For this reason, the bottom array in this node has two elements. The first element is
connected to data and the second element is connected to c1. Then, crop1, crops the
first element of bottom (bottom[0]) to make its size identical to the second element of
bottom (bottom[1]). This node also generates a single output. The tag of this output
is cr p1.

In general, passing information between computational nodes is done using array
of bottoms (incoming) and array of tops (outgoing). Each node stores information
about its bottoms and tops as well as its parameters and hyperparameters. There are
many other fields in LayerParameter all ending with phrase “Parameter”. Based the
type of a node, we may need to instantiate some of these fields.

4.3.1 Providing Data

The first thing to put in a neural network is at least one layer that provides data for the
network. There are a fewways in Caffe to do this. The simplest approach is to provide
data using a layer with type=”ImageData”. This type of layer requires instantiating
the field image_data_param from LayerParameter. ImageDataParameter is also a
message with the following definition:

1message ImageDataParameter {
2optional string source = 1;
3

4optional uint32 batch_size = 4 [default = 1];
5optional bool shuffle = 8 [default = false] ;
6

7optional uint32 new_height = 9 [default = 0];
8optional uint32 new_width = 10 [default = 0];
9

10optional bool is_color = 11 [default = true] ;
11optional string root_folder = 12 [default = ""] ;
12}

Again, deprecated fields have been removed from this list. This message is composed
of fieldswith basic data types. An ImageData layer needs a text filewith the following
structure:

1ABSOLUTE_PATH_OF_IMAGE1 LABEL1
2ABSOLUTE_PATH_OF_IMAGE2 LABEL2
3. . .
4ABSOLUTE_PATH_OF_IMAGEN LABELN

Listing 4.2 Structure of train.txt

138 4 Caffe Library

An ImageData layer assumes that images are stored on the disk using a regular image
format such as jpg, bmp, ppm, png, etc. Images could be stored on different locations
and different disks on your system. In the above structure, there is one line for each
image in the training set. Each line is composed of two parts separated by a space
character (ASCII code 32). The left part shows the absolute path of the image and
the right part shows the class label of that image.

The current implementation of Caffe identifies class label from image using the
space character in the line. Consequently, if the path of the image contains space
characters, Caffe will not able to decode this line and it may raise an exception. For
this reason, avoid space characters in the name of folders and files when you are
creating a text file for an ImageData layer.

Moreover, class labels have to be integer numbers and they have to always start
from zero. That said, if there are 20 classes in your dataset, the class labels have to
be integer numbers between 0 and 19 (19 included). Otherwise, Caffe may raise an
exception during training. For example, the following sample shows a small part of
a text file that is prepared for an ImageData layer.

1/home/pc/Desktop/GTSRB/Training_CNN/00019/00000_00006.ppm 19
2/home/pc/Desktop/GTSRB/Training_CNN/00029/00003_00021.ppm 29
3/home/pc/Desktop/GTSRB/Training_CNN/00010/00054_00008.ppm 10
4/home/pc/Desktop/GTSRB/Training_CNN/00023/00010_00027.ppm 23
5/home/pc/Desktop/GTSRB/Training_CNN/00033/00022_00008.ppm 33
6/home/pc/Desktop/GTSRB/Training_CNN/00021/00000_00005.ppm 21
7/home/pc/Desktop/GTSRB/Training_CNN/00005/00020_00022.ppm 5
8/home/pc/Desktop/GTSRB/Training_CNN/00025/00026_00018.ppm 25
9...

Suppose that our dataset contains 3,000,000 images and they are all located in a
common folder. In the above sample, all files are stored at /home/pc/Desktop/GT-
SRB/Training_CNN. However, this common address is repeated in the text file 3
million times since we have provided absolute path of images. Taking into account
the fact that Caffe loads all the paths and their labels into memory once, this means
3,000,000 × 35 characters are repeated in the memory which is equal to about 100
MBmemory. If the common path is longer or the number of samples is higher, more
memory will be needed to store the information.

To use the memory more efficiently, ImageDataParameter has provided a filed
called root_folder. This field points to the path of the common folder in the text file.
In the above example, thiswill be equal to /home/pc/Desktop/GTSRB/Training_CNN.
In that case, we can remove the common path from the text file as follows:

1/00019/00000_00006.ppm 19
2/00029/00003_00021.ppm 29
3/00010/00054_00008.ppm 10
4/00023/00010_00027.ppm 23
5/00033/00022_00008.ppm 33
6/00021/00000_00005.ppm 21
7/00005/00020_00022.ppm 5
8/00025/00026_00018.ppm 25
9. . .

4.3 Designing Using Text Files 139

Caffe will always add the root_folder to the beginning of path in each line. This
way, redundant information are not stored in the memory.

The variable batch_size denotes the size of mini-batch to be forwarded and back-
propagated in the network. Common values for this parameter vary between 20 and
256. This also depends on the available memory on your GPU. The Boolean variable
shuffle shows whether or not Caffe must shuffle the list of files in each epoch or not.
Shuffling could be useful for having diverse mini-batches at each epoch. Considering
the fact that one epoch refers to processing whole dataset, the list of files is shuffled
when the last mini-batch of dataset is processed. In general, setting shuffle to true
could be a good practice. Especially, setting this value to true is essential when the
text file containing the training samples is ordered based on the class label. In this
case, shuffling is an essential step in order to have diverse mini-batches. Finally, as
it turns out from their name, if new_height and new_width have a value greater than
zero, the loaded image will be resized to the new size based on the value of these
parameters. Finally, the variable is_color tells Caffe to load images in color format
or grayscale format.

Now, we can define a network containing only an ImageData layer using the
protobuf grammar. This is illustrated below.

1name: "net1"
2layer{
3name: "data"
4type : "ImageData"
5top : "data"
6top : "label"
7image_data_param{
8source : " /home/pc/Desktop/ train . txt "
9batch_size:30
10root_folder : " /home/pc/Desktop/ "
11is_color : true
12shuffle : true
13new_width:32
14new_height:32
15}
16}

In Caffe, a tensor is amini − batch × Channel × Height × Width array. Note
that an ImageData layer produces two tops. In other words, the length of top array for
this layer is 2. The first element of the top array stores loaded images. Therefore, the
first top of the above layer will be a 30 × 3 × 32 × 32 tensor. The second element
of the top array stores labels of each image in the first top and it will be an array with
mini − batch integer elements. Here, it will be a 30-element array of integers.

4.3.2 Convolution Layers

Now, we want to add a convolution layer to the network and connect it to the Image-
Data layer. To this end, we must create a layer with type=”Convolution” and then
configure the layer by instantiating convolution_param. The type of this variable is
ConvolutionParameter which is defined as follows:

140 4 Caffe Library

1message ConvolutionParameter {
2optional uint32 num_output = 1;
3optional bool bias_term = 2 [default = true] ;
4

5repeated uint32 pad = 3;
6repeated uint32 kernel_size = 4;
7repeated uint32 stride = 6;
8

9optional FillerParameter weight_filler = 7;
10optional FillerParameter bias_fil ler = 8;
11}

The variable num_output determines the number of convolution filters. Recall
from the previous chapter that the activation of neuron basically is given by
}(wx + bias). The variable bias_term states that whether or not the bias term must
be considered in the neuron computation. The variable pad denotes the zero-padding
size and it is 0 by default. Zero padding is used to handle the borders during con-
volution. Zero-Padding a H × W image with pad=2 can be thought as creating a
zero matrix of size (H + 2pad) × (W + 2pad) and copying the image into this
matrix such that is placed exactly in the middle of the zero matrix. Then, if the size
of convolution filters is (2pad + 1) × (2pad + 1), the result of convolution with
zero-padded image will be H × W images which is exactly equal to the size of input
image. Padding is usually done for keeping the size of input and output of convolution
operations constant. But, it is commonly set to zero.

As it turns out, the variable kernel_size determines the spatial size (width and
height) of convolution filters. It should be noted that a convolution layer must have
the same number of bottoms and tops. It convolves each bottom separately with
the filter and passes it to the corresponding top. The third dimension of filters is
automatically computed by Caffe based on the number of channels coming from
the bottom node. Finally, the variable stride illustrates the stride of convolution
operation and it is set to 1 by default. Now, we can update the protobuf text and add
a convolution layer to the network.

1name: "net1"
2layer{
3name: "data"
4type : "ImageData"
5top : "data"
6top : "label"
7image_data_param{
8source : " /home/hamed/Desktop/ train . txt "
9batch_size:30
10root_folder : " /home/hamed/Desktop/ "
11is_color : true
12shuffle : true
13new_width:32
14new_height:32
15}
16}
17layer{
18name: "conv1"
19type : "Convolution"
20bottom:"data"
21top : "conv1"
22convolution_param{
23num_output: 6
24kernel_size:5
25}
26}

4.3 Designing Using Text Files 141

The convolution layer has six filters of size 5 × 5 and it is connected to a data
layer that produces mini-batches of images. Figure4.4 illustrates the diagram of the
neural network created by the above protobuf text.

4.3.3 Initializing Parameters

Any layer with trainable parameters including convolution layers has to be initialized
before training. Concretely, convolution filters (weights) and biases of convolution
layer have to be initialized. As we explained in the previous chapter, this can be
done by setting each weight/bias to a random number. However, generating ran-
dom number can be done using different distributions and different methods. The
weight_filler and bias_filler parameters in LayerParameter specify the type of ini-
tialization method. They are both instances of FillerParameter which are defined as
follows:

1message FillerParameter {
2optional string type = 1 [default = ’constant ’] ;
3optional float value = 2 [default = 0];
4optional float min = 3 [default = 0];
5optional float max = 4 [default = 1];
6optional float mean = 5 [default = 0];
7optional float std = 6 [default = 1];
8

9enum VarianceNorm {
10FAN_IN = 0;
11FAN_OUT = 1;
12AVERAGE = 2;
13}
14optional VarianceNorm variance_norm = 8 [default = FAN_IN];
15}

The string variable type defines the method that will be used for generating number.
Different values can be assigned to this variable. Among them, “constant”, “gaus-
sian”, “uniform”, “xavier” and “mrsa” are commonly used in classification networks.
Concretely, a constant filler sets the parameters to a constant value specified by the
floating point variable value.

Also, a “gaussian” filler assigns random numbers generated by a Gaussian distrib-
ution specified by mean and std variables. Likewise, “uniform” filler assigns random

Fig. 4.4 Architecture of the network designed by the protobuf text. Dark rectangles show nodes.
Octagon illustrates the name of the top element. The number of outgoing arrows in a node is equal
to the length of top array of the node. Similarly, the number of incoming arrows to a node shows
the length of bottom array of the node. The ellipses show the tops that are not connected to another
node

142 4 Caffe Library

number generated by the uniform distribution within a range determined by min and
max variables.

The “xavier” filler generates uniformly distributed random numbers within

[−
√

3
n ,

√
3
n], where depending on the value of variance_norm variable n could be the

number of inputs (FAN_IN), the number of output (FAN_OUT) or average of them.
The “msra” filler is like “xavier” filler. The difference is that it generates Gaussian

distributed random number with standard deviation equal to
√

2
n .

As we mentioned in the previous chapter, filters are usually initialized using
“xavier” or “mrsa” methods and biases are initialized using constant value zero.
Now, we can also define weight and bias initializer for the convolution layer. The
updated protobuf text will be:

1name: "net1"
2layer{
3name: "data"
4type : "ImageData"
5top : "data"
6top : "label"
7image_data_param{
8source : " /home/hamed/Desktop/ train . txt "
9batch_size:30
10root_folder : " /home/hamed/Desktop/ "
11is_color : true
12shuffle : true
13new_width:32
14new_height:32
15}
16}
17layer{
18name: "conv1"
19type : "Convolution"
20bottom:"data"
21top : "conv1"
22convolution_param{
23num_output: 6
24kernel_size:5
25weight_filler{
26type : "xavier"
27}
28bias_fil ler{
29type : "constant"
30value:0
31}
32}
33}

4.3.4 Activation Layer

Each output of convolution layer is given by wx + b. Next, these values must be
passed through a nonlinear activation function. In the Caffe library, ReLU, Leaky
ReLU, PReLU, ELU, sigmoid, and hyperbolic tangent activations are implemented.
Setting type=”ReLU” will create a Leaky ReLU activation. If we set the leak value
to zero, this is equivalent to the ReLU activation. The other activations are created by
setting type=”PReLU”, type=”ELU”, type=”Sigmoid” and type=”TanH”. Then,

4.3 Designing Using Text Files 143

depending on the type of activation function, we can also adjust their hyperparame-
ters. The messages for these activations are defined as follows:

1message ELUParameter {
2optional float alpha = 1 [default = 1];
3}
4message ReLUParameter {
5optional float negative_slope = 1 [default = 0];
6}
7message PReLUParameter {
8optional FillerParameter f i l l e r = 1;
9optional bool channel_shared = 2 [default = false] ;
10}

Clearly, the sigmoid and hyperbolic tangent activation do not have parameters to
set. However, as it is mentioned in (2.93) and (2.96) the family of the ReLU activation
in Caffe has hyperparameters that should be configured. In the case of Leaky ReLU
and ELU activations, we have to determine the value of α in (2.93) and (2.96). In
Caffe, α for Leaky ReLU is illustrated by negative_slope variable. In the case of
PReLU activation, we have to tell Caffe how to initialize the α parameter using the
filler variable. Also, the Boolean variable channel_shared determines whether Caffe
should share the same α for all activations (channel_shared=true) in the same layer
or it must find separate α for each channel in the layer. We can add this activation to
the protobuf as follows:

1name: "net1"
2layer{
3name: "data"
4type : "ImageData"
5top : "data"
6top : "label"
7image_data_param{
8source : " /home/hamed/Desktop/ train . txt "
9batch_size:30
10root_folder : " /home/hamed/Desktop/ "
11is_color : true
12shuffle : true
13new_width:32
14new_height:32
15}
16}
17layer{
18name: "conv1"
19type : "Convolution"
20bottom:"data"
21top : "conv1"
22convolution_param{
23num_output: 6
24kernel_size:5
25weight_filler{
26type : "xavier"
27}
28bias_fil ler{
29type : "constant"
30value:0
31}
32}
33}
34layer{
35type : "ReLU"
36bottom:"conv1"
37top : "relu_c1"
38}

http://dx.doi.org/10.1007/978-3-319-57550-6_2
http://dx.doi.org/10.1007/978-3-319-57550-6_2
http://dx.doi.org/10.1007/978-3-319-57550-6_2
http://dx.doi.org/10.1007/978-3-319-57550-6_2

144 4 Caffe Library

Fig. 4.5 Diagram of the network after adding a ReLU activation

After adding this layer to the network, the architecture will look like Fig. 4.5.

4.3.5 Pooling Layer

A pooling layer is created by setting type=”Pooling”. Similar to a convolution layer,
a pooling layer must have the same number of bottoms and tops. It applies pooling
on each bottom separately and passes it to the corresponding top. Parameters of the
pooling operation are also determined using an instance of PoolingParameter.

1message PoolingParameter {
2enum PoolMethod {
3MAX = 0;
4AVE = 1;
5STOCHASTIC = 2;
6}
7optional PoolMethod pool = 1 [default = MAX];
8optional uint32 pad = 4 [default = 0];
9

10optional uint32 kernel_size = 2;
11optional uint32 stride = 3 [default = 1];
12optional bool global_pooling = 12 [default = false];
13}

Similar to Convolutionparameter, the variables pad, kernel_size and stride determine
the amount of zero padding, size of pooling window, and stride of pooling, respec-
tively. The variable pool determines the type of pooling. Currently, Caffe supports
max pooling, average pooling, and stochastic pooling. However, we often choose
max pooling and it is the default option in Caffe. The variable global_pooling pools
over the entire spatial region of bottom array. It is equivalent to setting kernel_size
to the spatial size of the bottom blob. We add a max-pooling layer to our network.
The resulting protobuf will be:

1name: "net1"
2layer{
3name: "data"
4type : "ImageData"
5top : "data"
6top : "label"
7image_data_param{
8source : " /home/hamed/Desktop/ train . txt "
9batch_size:30
10root_folder : " /home/hamed/Desktop/ "
11is_color : true
12shuffle : true
13new_width:32
14new_height:32

4.3 Designing Using Text Files 145

15}
16}
17layer{
18name: "conv1"
19type : "Convolution"
20bottom:"data"
21top : "conv1"
22convolution_param{
23num_output: 6
24kernel_size:5
25weight_filler{
26type : "xavier"
27}
28bias_fil ler{
29type : "constant"
30value:0
31}
32}
33}
34layer{
35name: "relu_c1"
36type : "ReLU"
37bottom:"conv1"
38top : "relu_c1"
39relu_param{
40negative_slope:0.01
41}
42}
43layer{
44name: "pool1"
45type : "Pooling"
46bottom:"relu_c1"
47top : "pool1"
48pooling_param{
49kernel_size:2
50stride :2
51}
52}

The pooling will be done over 2 × 2 regions with stride 2. This will halve the
spatial size of the input. Figure4.6 shows the diagram of the network.

We added another convolution layerwith 16filters of size 5 × 5, aReLUactivation
and amax-poolingwith 2 × 2 region and stride 2 to the network. Figure4.7 illustrates
the diagram of the network.

4.3.6 Fully Connected Layer

Afully connected layer is defined by setting type=”InnerProduct” in the definition of
layer. The number of bottoms and topsmust be equal in this type of layer. It computes

Fig. 4.6 Architecture of network after adding a pooling layer

146 4 Caffe Library

Fig. 4.7 Architecture of network after adding a pooling layer

the top for each bottom separately using the same set of parameters. Hyperparameters
of a fully connected layer are specified using an instance of InnerProductParameter
which is defined as follows.

1message InnerProductParameter {
2optional uint32 num_output = 1;
3optional bool bias_term = 2 [default = true] ;
4optional FillerParameter weight_filler = 3;
5optional FillerParameter bias_fil ler = 4;
6}

The variable num_output determines the number of neurons in the layer. The
variable bias_term tells Caffe whether or not to consider the bias term in neuron
computations. Also, weight_filler and bias_filler are used to specify how to initialize
the parameters of the fully connected layer.

4.3.7 Dropout Layer

Adropout layer can be placed anywhere in a network. But, it ismore common to put it
immediately after an activation layer. However, it is mainly placed after activation of
fully connected layers. The reason is that fully connected layers increase nonlinearity
of a model and they apply final transformations on the extracted features by previous
layers. Our model may over fit because of the final transformations. For this reason,
we try to regularize the model using dropout layers in fully connected layers. A
dropout layer is defined by setting type=”Dropout”. Then, hyperparameter of a
dropout layer is determined using an instance of DropoutParameter which is defined
as follows:

1message DropoutParameter {
2optional float dropout_ratio = 1 [default = 0.5];
3}

As we can see, a dropout layer only has one hyperparameter which is the ratio of
dropout. Since this ratio shows the probability of dropout, it has to be set to a floating
point number between 0 and 1. The default value in Caffe is 0.5. We added two fully
connected layers to our network and placed a dropout layer after each of these layers.
The diagram of network after applying these changes is illustrated in Fig. 4.8.

4.3.8 Classification and Loss Layers

The last layer in a classification network is a fully connected layer, where the number
of neurons in this layer is equal to number of classes in the dataset. Training a

4.3 Designing Using Text Files 147

Fig. 4.8 Diagram of network after adding two fully connected layers and two dropout layers

neural network is done by minimizing a loss function. In this book, we explained
hinge loss and logistic loss functions for multiclass classification problems. These
two loss functions accept at least two bottoms. The first bottom is the output of the
classification layer and the second bottom is actual labels produced by the ImageData
layer. The loss layer computes the loss based on these two bottoms and returns a scaler
in its top.

The hinge loss function is created by setting type=”HingeLoss” and multiclass
logistic loss is created by setting type=”SoftmaxWithLoss”. Then, we mainly need
to enter the bottoms and top of the loss layer. We added a classification layer and a
multiclass logistic loss to the protobuf. The final protobuf will be:

1layer{
2name: "data"
3type : "ImageData"
4top : "data"
5top : "label"
6image_data_param{
7source : " /home/hamed/Desktop/GTSRB/Training_CNN/ train . txt "
8batch_size:30
9root_folder : " /home/hamed/Desktop/GTSRB/Training_CNN/"
10is_color : true
11shuffle : true
12new_width:32
13new_height:32
14}
15}
16layer{
17name: "conv1"
18type : "Convolution"
19bottom:"data"
20top : "conv1"
21convolution_param{
22num_output: 6
23kernel_size:5
24weight_filler{ type : "xavier" }
25bias_fil ler{ type : "constant" value:0 }
26}
27}
28layer{
29name: "relu_c1"
30type : "ReLU"
31bottom:"conv1"
32top : "relu_c1"
33relu_param{ negative_slope:0.01 }
34}
35layer{
36name: "pool1"
37type : "Pooling"

148 4 Caffe Library

38bottom:"relu_c1"
39top : "pool1"
40pooling_param{ kernel_size:2 stride :2 }
41}
42layer{
43name: "conv2"
44type : "Convolution"
45bottom:"pool1"
46top : "conv2"
47convolution_param{
48num_output: 16
49kernel_size:5
50weight_filler{ type : "xavier" }
51bias_fil ler{ type : "constant" value:0 }
52}
53}
54layer{
55name: "relu_c2"
56type : "ReLU"
57bottom:"conv2"
58top : "relu_c2"
59relu_param{ negative_slope:0.01 }
60}
61layer{
62name: "pool2"
63type : "Pooling"
64bottom:"relu_c2"
65top : "pool2"
66pooling_param{ kernel_size:2 stride :2 }
67}
68layer{
69name: "fc1"
70type : "InnerProduct"
71bottom:"pool2"
72top : "fc1"
73inner_product_param{
74num_output:120
75weight_filler{ type : "xavier" }
76bias_fil ler{ type : "constant" value:0 }
77}
78}
79layer{
80name: "relu_fc1"
81type : "ReLU"
82bottom:"fc1"
83top : "relu_fc1"
84relu_param{ negative_slope:0.01 }
85}
86layer{
87name: "drop1"
88type : "Dropout"
89bottom:"relu_fc1"
90top : "drop1"
91dropout_param{ dropout_ratio :0.4 }
92}
93layer{
94name: "fc2"
95type : "InnerProduct"
96bottom:"drop1"
97top : "fc2"
98inner_product_param{
99num_output:84
100weight_filler{ type : "xavier" }
101bias_fil ler{ type : "constant" value:0 }
102}
103}
104layer{

4.3 Designing Using Text Files 149

105name: "relu_fc2"
106type : "ReLU"
107bottom:"fc2"
108top : "relu_fc2"
109relu_param{ negative_slope:0.01 }
110}
111layer{
112name: "drop2"
113type : "Dropout"
114bottom:"relu_fc2"
115top : "drop2"
116dropout_param{ dropout_ratio :0.4 }
117}
118layer{
119name: "fc3_classification"
120type : "InnerProduct"
121bottom:"drop2"
122top : " classif ier "
123inner_product_param{
124num_output:43
125weight_filler{type : "xavier"}
126bias_fil ler{ type : "constant" value:0 }
127}
128}
129layer{
130name: "loss"
131type : "SoftmaxWithLoss"
132bottom:"classif ier "
133bottom:"label"
134top : "loss"
135}

Considering that there are 43 classes in the GTSRB dataset, the number of neurons
in the classification layer must be also equal to 43. The diagram of final network is
illustrated in Fig. 4.9.

The above protobuf text is stored in a text file on disk. In this example, we store
the above text file in “/home/pc/cnn.prototxt”. The above definition reads the training
samples and feeds them to the network. However, in practice, the network must be
evaluated using a validation set during training in order to assess how good the
network is.

To achieve this goal, the network can be evaluated every K iterations of the training
algorithm. As we will see shortly, this can be easily done by setting a parameter.
Assume, K iterations have been finished and Caffe wants to evaluate the network.
So far, we have only fetched data from a training set. Obviously, we have to tell
Caffe where to look for validation samples. To this end, we add another ImageData
layer right after the first ImageData layer and specify the location of the validation
samples instead of the training samples. In other words, the first layer in the above
network definition will be replaced by:

150 4 Caffe Library

Fig.4.9 Final architecture of the network. The architecture is similar to the architecture of LeNet-5
in nature. The differences are in activations functions, dropout layer, and connection in middle
layers

1layer{
2name: "data"
3type : "ImageData"
4top : "data"
5top : "label"
6image_data_param{
7source : " /home/hamed/Desktop/GTSRB/Training_CNN/ train . txt "
8batch_size:30
9root_folder : " /home/hamed/Desktop/GTSRB/Training_CNN/"
10is_color : true
11shuffle : true
12new_width:32
13new_height:32
14}
15}
16layer{
17name: "data"
18type : "ImageData"
19top : "data"
20top : "label"
21image_data_param{
22source : " /home/hamed/Desktop/GTSRB/Training_CNN/ validation . txt "
23batch_size:10
24root_folder : " /home/hamed/Desktop/GTSRB/Validation_CNN/"
25is_color : true
26shuffle : false
27new_width:32
28new_height:32
29}
30}

4.3 Designing Using Text Files 151

First, the tops of these two layers have to be identical. This is due to the fact the
first convolution layer is connected to a top called data. If we set top in the second
ImageData layer to another name, the convolution layer will not receive any data
during validation. Second, the variable source in the second layer points to the val-
idation set. Third, the batch sizes of these two layers can be different. Usually, if
memory on the GPU device is limited, we usually set the batch size of training set to
the appropriate value and then set the batch size of the validation set according to the
memory limitations. For instance, we have to set the batch size of validation samples
to 10. Fourth, shuffle must be set to false in order to prevent unequal validations sets.
In fact, the parameters that we will explain in the next section are adjusted such that
the validation set is only scanned once in every test.

However, a user may forget to adjust this parameter properly and some of samples
in validation set are fetched more than one time to the network. In that case, if shuffle
is set to true it is very likely that some samples in two validation steps are not
identical. This makes the validation result inaccurate. We alway want to test/validate
the different models or same models in different time on exactly identical datasets.

During testing, the data has to only come from the first ImageData layer. During
validation, the data has to only come from the second ImageData layer. One missing
piece in the above definition is that how should Caffe understandwhen to switch from
one ImageData layer to another. There is a variable in definition of LayerParameter
called include which is an instance of NetStateRule.

1message NetStateRule {
2optional Phase phase = 1;
3}

When this variable is specified, Caffe will include the layer based on the state of
training. This can be explained better in an example. Let us update the above two
ImageData layers as follows:

1layer{
2name: "data"
3type : "ImageData"
4top : "data"
5top : "label"
6include{
7phase:TRAIN
8}
9image_data_param{
10source : " /home/hamed/Desktop/GTSRB/Training_CNN/ train . txt "
11batch_size:30
12root_folder : " /home/hamed/Desktop/GTSRB/Training_CNN/"
13is_color : true
14shuffle : true
15new_width:32
16new_height:32
17}
18phase:
19}
20layer{
21name: "data"
22type : "ImageData"
23top : "data"
24top : "label"
25include{
26phase:TRAIN

152 4 Caffe Library

27}
28image_data_param{
29source : " /home/hamed/Desktop/GTSRB/Training_CNN/ validation . txt "
30batch_size:10
31root_folder : " /home/hamed/Desktop/GTSRB/Validation_CNN/"
32is_color : true
33shuffle : false
34new_width:32
35new_height:32
36}
37}

During training a network, Caffe alternatively changes its state between TRAIN and
TEST based on a parameter called test_interval (this parameters will be explain in
the next section). In the TRAIN phase, the second ImageData layer will be discarded
by Caffe. In contrast, the first layer will be discarded and the second layer will be
included in the TEST phase. If the variable include is not instantiated in a layer, the
layer will be included in both phases. We apply the above changes on the text file
and save it

Finally, we add a layer to our network in order to compute the accuracy of the
network on test samples. This is simply done by adding the following definition right
after the loss layer.

1layer{
2name: "acc1"
3type : "Accuracy"
4bottom:"classif ier "
5bottom:"label"
6top : "acc1"
7include{ phase:TEST }
8}

4.4 Training a Network

In order to train a neural network in Caffe, we have to design another text file and
instantiate a SolverParameter inside this file. All required rules for training a neural
network will be specified using SolverParameter.

1message SolverParameter {
2optional string net = 24;
3optional float base_lr = 5;
4

5repeated int32 test_i ter = 3;
6optional int32 test_interval = 4 [default = 0];
7optional int32 display = 6;
8

9optional int32 max_iter = 7;
10optional int32 iter_size = 36 [default = 1];
11

12optional string lr_policy = 8;
13optional float gamma = 9;
14optional float power = 10;
15optional int32 stepsize = 13;
16

17optional float momentum = 11;

4.4 Training a Network 153

18optional float weight_decay = 12;
19optional string regularization_type = 29 [default = "L2"] ;
20optional float clip_gradients = 35 [default = −1];
21

22optional int32 snapshot = 14 [default = 0];
23optional string snapshot_prefix = 15;
24

25enum SolverMode {
26CPU = 0;
27GPU = 1;
28}
29optional SolverMode solver_mode = 17 [default = GPU];
30optional int32 device_id = 18 [default = 0];
31

32optional string type = 40 [default = "SGD"] ;
33}

The string variable net points to the .prototxt file that includes the definition of
the network. In our example, this variable is set to net=”/home/pc/cnn.prototxt”.
The variable base_lr denotes the base learning rate. The effective learning rate at
each iteration is defined based on the value of lr_policy, gamma, power, and step-
size. Recall from Sect. 3.6.4 that the learning rate is usually decreased over time.
We explained different methods for decreasing the learning rate. In Caffe, setting
lr_policy=”exp” will decrease the learning rate using exponential rule. Likewise,
setting this parameter to ”step” and ”inv” will decrease the learning rate using step
method and the inverse method.

The parameter test_iter tells Caffe how many mini-batches it should use during
test phase. The total number of samples that is used in the test phase will be equal
to test_iter × batch size of test ImageData layer. The variable test_iter is usually
set such that the test phase covers all samples of validation set without using a
sample twice. Caffe will change its phase from TRAIN to TEST every test_interval
iterations (mini-batches). Then, it will run the TEST phase for test_iter mini-batches
and changes its phase to TRAIN again.

While Caffe is training the network, it produces human-readable output. The
variable display will show this information in the console and write them into a log
file for every display iterations. Also, the variable max_iter shows the maximum
number of iterations that must be performed by the optimization algorithm. The log
file is accessible in director /tmp in Ubuntu.

Sometimes, because images are large or memory on GPU device is limited, it is
not possible to set mini-batch size of training samples to an appropriate value. On the
other hand, if the size of mini-batch is very small, gradient descend is likely to have
a very zigzag trajectory and in some cases it may even jump over a (local) minimum.
This makes the optimization algorithm more sensitive to the learning rate. Caffe
alleviates this problem by first accumulating gradients of iter_size mini-batches and
updating parameters based on accumulated gradients. This makes it possible to train
large networks when memory on the GPU device is not sufficient.

As it turns out, the variable momentum determines the value of momentum in
the momentum gradient descend. It is usually set to 0.9. The variable weight_decay
shows the value of λ in the L1 and L2 regularizations. The type of regularization
is also defined using the string variable regularization_type. This variable can be

http://dx.doi.org/10.1007/978-3-319-57550-6_3

154 4 Caffe Library

only set to ”L1” or ”L2”. The variable clip_gradients defines the threshold in the
max-norm regularization method (Sect. 3.6.3.3).

Caffe stores weights and state of optimization algorithm inside a folder at snap-
shot_prefix for every snapshot iteration.Using thesefiles, you can load the parameters
of the network after training or resume training from a specific iteration.

The optimization algorithm can be executed on CPU of a GPU. This is specified
using the variable solver_mode. In the case that you havemore than one graphic cards,
the variable device_id tells Caffe which graphic must be used for computations.

Finally, the string variable type determines the type of optimization algorithm.
In the rest of this book, we will always use ”SGD” which refers to mini-batch
gradient descend. Other optimization algorithms such as Adam, AdaGrad, Nesterov,
RMSProp, and AdaDelta are also implemented in the Caffe library. For our example,
we write the following protobuf text in a file called solver.prototxt.

1net : ’ /tmp/cnn. prototxt ’
2type : "SGD"
3

4base_lr : 0.01
5

6test_i ter : 50;
7test_interval :500;
8display : 50
9

10max_iter : 30000
11

12lr_policy : "step"
13stepsize :3000
14gamma : 0.98
15

16momentum :0.9
17weight_decay :0.00001
18

19snapshot : 1000
20snapshot_prefix : ’cnn’

After creating the text files for the network architecture and for the optimization
algorithm, we can use command tools of the Caffe library to train and evaluate the
network. Specifically, running the following command in Terminal of Ubuntu will
train the network:

1. / caffe−master / bu i ld / t oo l s / ca f f e t r a i n −−so lve r " /PATH_TO_SOLVER/ so lve r . p r o t o t x t "

4.5 Designing in Python

Assume we have 100 GPUs in which we can train a big neural network on each of
them, separately.With these resources available, our aim is to generate 1000 different
architectures and train/validate each of them on one of these GPUs. Obviously, it
is not tractable for a human to create 1000 different architectures in text files. The
situation gets even more impractical if our aim is to generate 1000 significantly
different architectures.

http://dx.doi.org/10.1007/978-3-319-57550-6_3

4.5 Designing in Python 155

Themore efficient solution is to generate thesefiles using a computer program.The
program may use heuristics to create different architectures or it may generate them
randomly. Regardless, the program must generate text files including the definition
of network.

The Caffe library provides a Python interface that makes it possible to use
Caffe functions in a Python program. The Python interface is located at caffe-
master/python. If this path is not specified in the PYTHONPATH environment vari-
able, importing the Python module of Caffe will cause an error. To solve this prob-
lem, you can either set the environment variable or write the following code before
importing the module:

1import sys
2sys . path . insert (0 , " /home/pc/ caffe−master /python")
3import caffe

In the above script, we have considered that the Caffe library is located at “/home/pc/
caffe-master/ ”. If you open __init__.py from caffe-master/python/caffe/ youwill find
the name of functions, classes, objects, and attributes that you can use in your Python
script. Alternatively, you can run the following code to obtain the same information:

1import sys
2sys . path . insert (0 , " /home/pc/ caffe−master /python")
3import caffe
4

5print dir (caffe)

In order to design a network, we should work with two attributes called layers and
params and a class called NetSpec. The following Python script creates a ConvNet
identical to the network we created in the previous section.

1import sys
2sys . path . insert (0 , " /home/hamed/ caffe−master /python")
3import caffe
4

5L = caffe . layers
6P = caffe .params
7

8def conv_relu(bottom, ks , nout , stride=1, pad=0):
9c = L.Convolution(bottom, kernel_size=ks , num_output=nout ,
10stride=stride , pad=pad,
11weight_filler={’type ’ : ’xavier ’} ,
12bias_fil ler={’type ’ : ’constant ’ ,
13’value ’ :0})
14r = L.ReLU(c)
15return c , r
16

17def fc_relu_drop(bottom, nout) :
18fc = L. InnerProduct(bottom, num_output=nout ,
19weight_filler={’type ’ : ’xavier ’} ,
20bias_fil ler={’type ’ : ’constant ’ ,
21’value ’ :0})
22r = L.ReLU(fc)
23d = L.Dropout(r , dropout_ratio=0.4)
24return fc , r , d
25

26net = caffe . net_spec .NetSpec()
27

28net . data , net . label = L.ImageData(source=’ /home/hamed/Desktop/ train . txt ’ ,
29batch_size=30, is_color=True,

156 4 Caffe Library

30shuffle=True, new_width=32,
31new_height=32, ntop=2)
32

33net .conv1, net . relu1 = conv_relu(net . data , 5, 16)
34net .pool1 = L.Pooling(net . relu1 , kernel_size=2,
35stride=2, pool=P.Pooling .MAX)
36

37net .conv2, net . relu2 = conv_relu(net .pool1 , 5, 16)
38net .pool2 = L.Pooling(net . relu2 , kernel_size=2,
39stride=2, pool=P.Pooling .MAX)
40

41net . fc1 , net . fc_relu1 , net .drop1 = fc_relu_drop(net .pool2 , 120)
42net . fc2 , net . fc_relu2 , net .drop2 = fc_relu_drop(net .drop1 , 84)
43net . f3_classifier = L. InnerProduct(net .drop2 , num_output=43,
44weight_filler={’type ’ : ’xavier ’} ,
45bias_fil ler={’type ’ : ’constant ’ ,
46’value ’:0})
47net . loss = L.SoftmaxWithLoss(net . classifier , net . label)
48

49with open(’cnn. prototxt ’ , ’w’) as fs :
50fs . write (str (net . to_proto ()))
51fs . flush ()

In general, creating a layer can be done using the following template:

1ne t . top1 , n e t . top2 , , n e t . topN = L .LAYERTYPE(bottom1 , bottom2 , . . . , bottomM ,
kwarg1=value , kwarge=value , kwarg= d i c t (kwarg=value , . . .) , . . . , n top=N)

The number of tops in a layer is determined using the argument ntop. Using this
method, the function will generate ntop top(s) in the output. Hence, there have to be
N variables in the left side assignment operator. The name of tops in the text file will
be “top1”, “top2” and so on. That said, if the first top of the function is assigned to
net.label, it is analogous to putting top=”label” in the text file.

Also, note that the assignments have to be done on net.*. If you study the source
code of NetSpec, you will find that the __setattr__ of this class is designed in a
special way such that executing:

1n e t .DUMMY_NAME = v a l u e

will actually create an entry in a dictionary with key DUMMY_NAME.
The next point is that calling L.LAYERTYPE will actually create a layer in the text

file where type of the layer will be equal to type=”LAYERTYPE”. Therefore, if we
want to create a convolution layer, we have to call L.Convolution. Likewise, creating
pooling, loss and ReLU layers is done by calling L.Pooling, L.SoftmaxWithLoss,
and L.ReLU, respectively.

Any argument that is passed to L.LAYERTYPE function will be considered as the
bottom of the layer. Also, any keyword argument will be treated as the parameters
of the layer. In the case that there is a parameter in a layer such as weight_filler with
a data type other than basic types, the inner parameters of this parameter can be
defined using a dictionary in Python.

After that the architecture of network is defined, it can be simply converted to a
string by calling str(net.to_proto()). Then, this text can be written into a text file and
stored on disk.

4.6 Drawing Architecture of Network 157

4.6 Drawing Architecture of Network

The Python interface provides a function for generating a graph for a given network
definition text file. This can be done by calling the following function:

1import sys
2sys . path . insert (0 , " /home/hamed/ caffe−master /python")
3import caffe
4import caffe .draw
5from caffe . proto import caffe_pb2
6from google . protobuf import text_format
7

8def drawcaffe(def_file , save_to , direction =’TB’) :
9net = caffe_pb2 .NetParameter()
10text_format .Merge(open(def_file) . read() , net)
11

12caffe .draw. draw_net_to_file (net , save_to , direction)

This function uses theGraphViz Pythonmodule to generate the diagram.The parame-
ter direction shows the direction of the graph and it might be called by passing ’TB’
(top-bottom), ’BT’ (bottom-top), ’LR’ (left-right), ’RL’ (right-left). The diagrams
indicated in this chapter are created by calling this function.

4.7 Training Using Python

After creating the solver.prototxt file, we can use it for training the network bywriting
a Python script rather than command tools. The Python script for training a network
might look like:

1caffe .set_mode_gpu()
2solver = caffe . get_solver (’ /tmp/ solver . prototxt ’)
3solver . step(25)

Thefirst line in this code tellsCaffe to useGPU instead ofCPU. If this command is not
executed, Caffe will use CPU by default. The second line in this code loads the solver
definition. Because the path of network is alsomentioned inside the solver definition,
the network is also automatically loaded. Then, calling the step(25) function, runs the
optimization algorithm for 25 iterations and stops. Assume that test_interval=100
and we call solver.step(150). If the network is trained using command tools, Caffe
will switch from TRAIN to TEST when immediate after 100th iteration. This will
also happen when solver.step(150) is called. Hence, if you want that the test phase is
not automatically invoked by Caffe, the variable test_interval must be set to a large
number (larger than the variable max_iter).

158 4 Caffe Library

4.8 Evaluating Using Python

Any neural network must be evaluated in three stages. The first evaluation is done
during training using training set. The second evaluation is done during training
using validation set and the third evaluation is done using test set after that designing
and training the network is completely done.

Recall from Sect. 3.5.3 that a network is usually evaluated using a classification
metric. All the classification metrics that we explained in that section are based on
actual labels and predicted labels of samples. Actual labels of samples are already
available in the dataset. However, predicted labels are obtained using the network.
That means in order to evaluate a network using one of the classification metrics, it
is necessary to predict labels of samples. These samples may come from the training
set, the validation set or the test set.

In the case of neural network, we have to feed the samples to the network and
forward them through the network. The output layer shows the score of samples
for each class. For example, the output layer of the network in Sect. 4.5 is called
f3_classifier. We can access the value of the network computed for a sample using
the following command:

1solver = caffe . get_solver (’ /tmp/ solver . prototxt ’)
2net = solver . net
3print net . blobs[’ classif ier ’] . data

In the above script, the first line loads a solver along with the network. The filled
solver.net returns the network that is used for training. In Caffe, a tensor that retains
data is encapsulated in objects of type Blob. The field net.blobs is a dictionary
where keys of this dictionary are the tops of network that we have specified in the
network definition and value of each entry in this dictionary is an instance of Blob.
For example, the top of the classification layer in Sect. 4.5 is called “classifier”. The
command net.blobs[’classifier’] returns the blob associated with this layer.

The tensor of a blob is accessible through the field data. Hence, net.blobs[’KEY’].
data returns the numerical data in a 4D matrix (tensor). This matrix is in fact a
Numpy array. The shape of tensors in Caffe is N × C × H × W , where N denotes
the number of samples in mini-batch and C illustrates the number of channels. As it
turns out, H and W also denote the height and width, respectively.

The batch size of the layer “data” in Sect. 4.5 is equal to 30. Also, this layer loads
color images (3 channels) of size 32 × 32.Therefore, the commandnet.blobs[’data’].
data returns a 4D matrix of shape 40 × 3 × 32 × 32. Taking into account the
fact that layer “classifier” in this network contains 43 neurons, the command
net.blobs[’classifier’].data will return a matrix of size 40 × 43 × 1 × 1, where each
row in this matrix shows class specific score of the first samples in the mini-batch.
Each sample belongs to the class with the highest score.

Assume we want to classify a single image which is stored at /home/sample.ppm.
This means that, the size of mini-batch is equal to 1. To this end, we have to load
the image in RGB format and resize it to 32 × 32 pixels. Then, transpose the axis
such that the shape of image becomes 3 × 32 × 32. Finally, this matrix has to be

http://dx.doi.org/10.1007/978-3-319-57550-6_3

4.8 Evaluating Using Python 159

converted to a 1 × 3 × 32 × 32 matrix in order to make it compatible with tensors
in Caffe. This can be easily done using the following commands:

1import numpy as np
2im = caffe . io . load_image(’ /home/sample .ppm’ , color=True)
3im = caffe . io . resize (im, (32, 32))
4im = np. transpose(im, [2 ,0 ,1])
5im = im[np.newaxis , . . .]

Next, this image has to be fed into the network and the output layers must be
computed one by one. Technically, this is called forwarding the samples throughout
the network. Assuming that net is an instance of Caffe.Net, forwarding the above
sample can be easily done by calling:

1net . blobs[’data ’] . data [. . .] = im[. . .]
2net . forward()

It should be noted that [...] in the above code the image into the memory of field
data. Removing this from the above line will raise an error since it will mean that
we are assigning a new memory to the field data rather than updating its memory.
At this point, net.blobs[top].data returns the output of a top in network. In order to
classify the above image in our network, we only need to run the following line:

1label = np.argmax(net . blobs[’ classif ier ’] . data , axis=1)

This will return the index of the class with maximum score. The general procedure
for training a ConvNet is illustrated below.

1Givens :
2X_train : A da t a s e t conta in ing N images of s i ze WxHx3
3Y_train : A vector of length N conta in ing l abe l s of each samples in X_train
4

5X_valid : A da t a s e t conta in ing K images of s i ze WxHx3
6Y_valid : A vector of length K conta in ing l abe l s of each samples in X_valid
7

8FOR t=1 TO MAX
9TRAIN THE CONVNET FOR m ITERATIONS USING X_train and Y_train
10

11EVALUATE THE CONVNET USING X_valid and Y_valid
12END FOR

The training procedure involves constantly updating parameters using the training set
and evaluating the network using the validation set. More specifically, the network
is trained for m iterations using the training samples. Then, validations samples are
fetched into the network and a classification metric such as accuracy is computed for
the samples in the validation set. The above procedure is repeated M AX times and
the training is finished. One may wonder why the network must be evaluated during
training. As we will see in the next chapter, validation is a crucial step in training
a classification model such as neural networks. The following code shows how to
implement the above procedure in Python:

1solver = caffe . get_solver (’solver . prototxt ’)
2

3with open(’validation . txt ’ , ’ r ’) as file_id :
4valid_set = csv . reader (file_id , delimiter=’ ’)
5valid_set = [(row[0] , int (row[1])) for row in valid_set]
6

160 4 Caffe Library

7net_valid = solver . test_nets [0]
8data_val = np. zeros(net_valid . blobs[’data ’] . data . shape , dtype=’float32 ’)
9label_actual = np. zeros(net_valid . blobs[’ label ’] . data . shape , dtype=’ int8 ’)
10for i in xrange(500) :
11solver . step(1000)
12

13print ’Validating . . . ’
14acc_valid = []
15net_valid . share_with(solver . net)
16

17batch_size = net_valid . blobs[’data ’] . data . shape[0]
18cur_ind = 0
19

20for _ in xrange(800) :
21for j in xrange(batch_size) :
22rec = valid_set [cur_ind]
23im = cv2. imread(rec [0] , cv2.cv .CV_LOAD_IMAGE_COLOR) . astype(’float32 ’)
24im = im / 255.
25im = cv2. resize (im, (32, 32))
26im = np. transpose(im, [2 ,0 ,1])
27

28data_val [j , . . .] = im
29label_actual [j , . . .] = rec[1]
30cur_ind = cur_ind + 1 i f ((cur_ind+1) < len(valid_set)) else 0
31

32net_valid . blobs[’data ’] . data [. . .] = data_val
33net_valid . blobs[’ label ’] . data [. . .] = label_actual
34net_valid . forward()
35

36class_score = net_valid . blobs[’ classif ier ’] . data .copy()
37label_pred = np.argmax(class_score , axis=1)
38acc = sum(label_actual . ravel () == label_pred) / float (label_pred . size)
39acc_valid .append(acc)
40mean_acc = np. asarray(acc_valid) .mean()
41print ’Validation accuracy : {}’ .format(mean_acc)

First line loads the solver together with the train and test networks associated with
this solver. Line 3 to Line 5 read the validation dataset into a list. Line 8 and Line 9
create containers for validation samples and their labels. The training loop starts at
Line 10 and it will be repeated 500 times. The first statement in this loop (Line 11)
is to train the network using training samples for 1000 iterations.

After that, validating the network starts at Line 13. The idea is to load 800 mini-
batches of validation samples, where each mini-batch contains batch_size samples.
The loop from Line 21 to Line 30, loads color images and resize them using OpenCV
functions. It also rescales the pixel intensities to [0, 1]. Rescaling is necessary since
the training samples are also rescaled by setting scale:0.0039215 in the definition of
the ImageData layer.6

The loaded images are transposed and copied to data_val tensor. Label of each
sample is also copied into label_actual tensor. After filling themini-batch, it is copied
into the first layer of the network in Line 32 and Line 33. Then, it is forwarded
throughout the network at Line 34.

6It is possible to load and scale images using functions in caffe.io module. However, it should be
noted that the imread function from OpenCV loads color images in BGR order rather than RGB.
This is similar to the way the ImageData layer loads images using OpenCV. In the case of using
caffe.io.load_image function, we must swap R and B channel before feeding them to the network.

4.8 Evaluating Using Python 161

Line 36 and Line 37 finds the class of each samples and the accuracy of classifica-
tion is computed on themini-batch and it is stored in a list. Finally, themean accuracy
of 800 mini-batches is computed and stored in mean_acc. The above code can be
used as a basic template for training and validating neural network in Python using
Caffe library. It is also possible to keep history of training and validation accuracies
in the above code.

However, there are a few points to bear in mind. First, the same transformations
must be applied on the validation/test samples as we have used for training samples.
Second, the validation samples must be identical every time the network is evalu-
ated. Otherwise, it might not be trivial to assess the network properly. Third, as we
discussed earlier, F1-score can be computed over all validation samples rather than
accuracy.

4.9 Save and Restore Networks

During training, we might want to save and restore the parameters of the network. In
particular, we will need the value of trained parameters in order to load them into the
network and use the network in real-world applications. This can be done by writing
a customized function to read the value of net.params dictionary and save them in a
file. Later, we can load the same values to net.params dictionary.

Another way is to use the built-in functions in Caffe library. Specifically, the
net.save(string filename) and the net.copy_from(string filename) functions saves the
parameters into a binary file and loads them into the network, respectively.

In some cases, we may also want to save information related to the optimizer
such as current iteration, current learning rate, current momentum, etc., besides the
parameters of network. Later, this information can be loaded into the optimizer as
well as the network in order to resume the training from the last stopped point.
Caffe provides solver.snapshot() and solver.restore(string filename) functions for
these purposes.

Assume the field snapshot_prefix is set to "/tmp/cnn" in the solver definition file.
Calling solver.snapshot() will create two files as follows:

1/tmp/cnn_iter_X .caffemodel
2/tmp/cnn_iter_X . solverstate

where X is automatically replaced by Caffe with the current iteration of the opti-
mization algorithm. In order to restore the state of the optimization algorithm from a
disk, we only need to call solver.restore(filename) with a path to a valid .solverstate
file.

162 4 Caffe Library

4.10 Python Layer in Caffe

One limitation of the Caffe library is that we are obliged to only utilize the imple-
mented layers of this library. For example, the softplus activation function is not
implemented in the current version of the Caffe library. In some cases, we may want
to add a layer with a new function that is not implemented in the Caffe library. The
obvious solution is to implement this layer directly in C++ by inheriting our classes
from classes of the Caffe library. This could be a tedious task especially when the
goal is to quickly implement and test our idea.

A more likely scenario in which having a special layer could be advantageous
when we work with different datasets. For instance, there are thousands of samples
in the GTSRB dataset for the task of traffic sign classification. The bounding box
information of each image is provided using a text file. Apparently, these images
have to be cropped to exactly fit the bounding box before feeding to a classification
network.

This can be done in three ways. The first way is to process whole dataset and
crop each image based on their bounding box information and store them on the
disk. Then, the processed dataset can be used for training/validation/testing the net-
work. The second solution is to process images on the fly and fill each mini-batch
after processing the images. Then these mini-batches can be used for training/val-
idation/testing. However, it should be noted that using this method we will not be
longer able to call the solver.step(int) function with an argument greater than one or
set iter_size to a value greater than one. The reason is that, each mini-batch must be
filled manually using our code. The third method is to develop a new layer which
automatically reads images from the dataset, processes, and passes them to the output
(top) of the layer. Using this method, the solver.step(int) function can be called with
any arbitrary positive number.

The Caffe library provides a special type of layer called PythonLayer. Using this
layer, we are able to develop new layers in Python which can be accessed by Caffe.
A Python layer is configured using an instance of PythonParameter which is defined
as follows:

1message PythonParameter {
2optional string module = 1;
3optional string layer = 2;
4optional string param_str = 3 [default = ’ ’] ;
5}

Based on this definition, a Python layer might look like:

1layer {
2name: "data"
3type : "Python"
4top : "data"
5python_param {
6module: "python_layer"
7layer : "mypythonlayer"
8param_str : "{\ ’param1\ ’:1 , \ ’param2\ ’:2.5}"
9}
10}

4.10 Python Layer in Caffe 163

The variable type of a Python layer must be set to Python. Upon reaching to this
layer, Caffe will look for python_layer.py file next to the .prototxt file. Then, it will
look for a class calledmypythonlayer inside this file. Finally, it will pass “ṕaram1’:1,
ṕaram2’:2.5” into this class. Caffewill interact withmypythonlayer using fourmeth-
ods inside this class. Below is the template that must be followed in designing a new
layer in Python.

1class mypythonlayer(caffe .Layer) :
2def setup(self , bottom, top) :
3pass
4

5def reshape(self , bottom, top) :
6pass
7

8def forward(self , bottom, top) :
9pass
10

11def backward(self , top , propagate_down, bottom) :
12pass

First, the class must be inherited from Caffe.Layer. The setup method will be
called only once when Caffe creates train and test networks. The backward method
is only called during the backpropagation step. Computing the output of each layer
given an input is done by calling net.forward() method. Whenever this method is
called, the reshape and forward methods of the layer will be called automatically.
The reshape method is always called before forward method.

It is noteworthy to draw you attention to the prototype of the backward method.
In contrast to the other three methods, where the first argument is bottom and the
last argument is top, in the backward method the places of these two arguments are
switched. So, a great care must be taken into account in defining the prototype of
the method. Otherwise, you may end up with a layer, where the gradients are not
computed correctly. For instance, let us implement the PReLU activation using the
Python layer. In this implementation, we consider a distinct PReLU activation for
each feature map.

1class prelu (caffe .Layer) :
2def setup(self , bottom, top) :
3params = eval(self . param_str)
4shape = [1]∗len(bottom[0]. data . shape)
5shape[1] = bottom[0]. data . shape[1]
6self . axis = range(len(shape))
7del self . axis [1]
8self . axis = tuple (self . axis)
9

10self . blobs .add_blob(∗shape)
11self . blobs [0]. data [. . .] = params[’alpha ’]
12

13def reshape(self , bottom, top) :
14top [0]. reshape(∗bottom[0]. data . shape)
15

16def forward(self , bottom, top) :
17top [0]. data [. . .] = np.where(bottom[0]. data > 0,
18bottom[0].data ,
19self . blobs [0]. data∗bottom[0]. data)
20

21def backward(self , top , propagate_down, bottom) :
22self . blobs [0]. diff [. . .] = np.sum(np.where(bottom[0]. data > 0,
23np. zeros(bottom[0]. data . shape) ,

164 4 Caffe Library

24bottom[0]. data) ∗ top [0]. diff ,
25axis=self . axis , keepdims=True)
26bottom[0]. diff [. . .] = np.where(bottom[0]. data > 0,
27np.ones(bottom[0]. data . shape) ,
28self . blobs [0]. data) ∗ top [0]. diff

The setupmethod converts the param_str value specified in the network definition
into a dictionary. Then, the shape of parameter vector is determined. Specifically, if
the shape of bottom layer is N × C × H × W , the shape of parameter vector must
be 1 × C × 1 × 1. The dimensions of array with length 1 will be broadcasted during
operations by Numpy. Since there are C feature maps in the bottom layer, there must
also be C PReLU activations with different values of α.

In the case of fully connected layers, the bottom layer might be a two-dimensional
array instead of four-dimensional array. The shape variable in this method ensures
that the parameter vector will have a shape consistent with the bottom layer.

The variable axis indicates the axis to which the summation of gradient must be
performed. Again, this axis also must be consistent with the shape of bottom layer.

Line 10 creates a parameter array in which the shape of this array is determined
using the variable shape. Note the unpacking operator in this line. Line 11 initializes
α of all PReLU activations with a constant number. The setup method is called once
and it initializes all parameters of the layer.

The reshape method, determines the shape of top layer in Line 14. The channel-
wise PReLU activations are applied on the bottom layer and assigned to the top layer.
Note how we have utilized broadcasting of Numpy arrays in order to multiply para-
meters with the bottom layer. Finally, the backward method computes the gradient
with respect to parameters and gradient with respect to the bottom layer.

4.11 Summary

There are various powerful libraries such as Theano, Lasagne, Keras, mxnet, Torch,
andTensorFlow that can be used for designing and training neural networks including
convolutional neural networks. Among them, Caffe is a library that can be used
for both doing research and developing real-world applications. In this chapter, we
explained how to design and train neural networks using the Caffe library. Moreover,
the Python interface of Caffewas discussed using real examples. Then,wementioned
how to develop new layers in Python and use them in neural networks.

4.12 Exercises

4.1 Suppose the following text files:

1/sample1. jpg 0
2/sample2. jpg 0
3/sample3. jpg 0

4.12 Exercises 165

4/sample4. jpg 0
5/sample5. jpg 1
6/sample6. jpg 1
7/sample7. jpg 1
8/sample8. jpg 1

1/sample7. jpg 1
2/sample1. jpg 0
3/sample3. jpg 0
4/sample6. jpg 1
5/sample4. jpg 0
6/sample5. jpg 1
7/sample2. jpg 0
8/sample8. jpg 1

From optimization algorithm perspective, which one of the above files is appropriate
for passing to an ImageData layer? Also, which of these files hast to be shuffled
before starting the optimization? Why?

4.2 Shifted ReLU activation is given by Clevert et al. (2015):

f (x) =
{

x − 1 x > 0

−1 otherwise
(4.1)

This activation function is not basically implemented in Caffe. However, you can
implement it using current layers in this library. Use a ReLU layer together with
Bias layer to implement this activation function in Caffe. A bias layer basically adds
a constant to bottom blobs. You can find more information in caffe.proto about this
layer.

4.3 Why and when shuffle of an ImageData layer in TEST phase must be set to
false.

4.4 When setting shuffle to true or false in TEST phase does not matter?

4.5 What happens if we add include to the first convolution layer in the network we
mentioned in this chapter and set phase=TEST for this layer?

4.6 Add codes to the Python script in order to keep the history of training and
validation accuracies and plot them using Python.

4.7 How we can check the gradient of the implemented PReLU layer using numer-
ical methods?

4.8 Implement the softplus activation function using a Python layer.

166 4 Caffe Library

Reference

Clevert DA, Unterthiner T, Hochreiter S (2015) Fast and accurate deep network learning by expo-
nential linear units (ELUs) 1997:1–13. arXiv:1511.07289.pdf

http://arxiv.org/abs/1511.07289.pdf

	4 Caffe Library
	4.1 Introduction
	4.2 Installing Caffe
	4.3 Designing Using Text Files
	4.3.1 Providing Data
	4.3.2 Convolution Layers
	4.3.3 Initializing Parameters
	4.3.4 Activation Layer
	4.3.5 Pooling Layer
	4.3.6 Fully Connected Layer
	4.3.7 Dropout Layer
	4.3.8 Classification and Loss Layers

	4.4 Training a Network
	4.5 Designing in Python
	4.6 Drawing Architecture of Network
	4.7 Training Using Python
	4.8 Evaluating Using Python
	4.9 Save and Restore Networks
	4.10 Python Layer in Caffe
	4.11 Summary
	4.12 Exercises

