
1Traffic SignDetection andRecognition

1.1 Introduction

Assume you are driving at speed of 90km/h in a one-way road and you are about
to join a new road. Even though there was a “danger: two way road” sign in the
junction, you have not seen the sign and you keep driving in opposite lane of the new
road. This is a hazardous situation which may end up with a fatal accident because
the driver assumes he or she is still driving in a two-way road. This was only a simple
example in which failing to detect traffic sign may cause irreversible consequences.
This danger gets even more serious with inexperienced drivers and senior drivers,
specially, in unfamiliar roads.

According toNational Safety Council, medically consultedmotor-vehicle injuries
for the first 6 months of 2015 were estimated to be about 2,254,000.1 Also, World
Health Organization reported that2 there have been about 1,250,000 fatalities in 2015
due to car accidents.Moreover, another study shows that human error accounts solely
for 57% of all accidents and it is a contributing factor in over 90% of accidents. The
above example is one of the scenarios which may occur because of failing to identify
traffic signs.

Furthermore, self-driving cars are going be commonly used in near future. They
must also conform with the road rules in order not to endanger other users of road.
Likewise, smart-cars try to assist human drivers and make driving more safe and
comfortable. Advanced Driver Assistant System (ADAS) is a crucial component on
these cars. One of the main tasks of this module is to recognize traffic signs. This
helps a human driver to be aware of all traffic signs and have a more safe driving
experience.

1www.nsc.org/NewsDocuments/2015/6-month-fatality-increase.pdf.
2www.who.int/violence_injury_prevention/road_safety_status/2015/GSRRS2015_data/en/.
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1.2 Challenges

ATraffic signs recognitionmodule is composed of twomain steps includingdetection
and classification. This is shown in Fig. 1.1. The detection stage scans image of scene
in a multi-scale fashion and looks for location of traffic signs on the image. In this
stage, the system usually does not distinguish one traffic sign from another. Instead,
it decides whether or not a region includes a traffic sign regardless of its type. The
output of detection stage is a set of regions in the image containing traffic signs. As
it is shown in the figure, detection module might make mistakes and generate a few
false-positive traffic signs. In other words, there could be a few regions in the output
of detection module without any traffic sign. These outputs have been marked using
a red (dashed) rectangle in the figure.

Next, classificationmodule analyzes each region separately anddetermines type of
each traffic sign. For example, there is one “no turning to left” sign, one “roundabout”
sign, and one “give way” sign in the figure. There are also three “pedestrian crossing”

Fig. 1.1 Common pipeline
for recognizing traffic signs
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signs. Moreover, even though there is no traffic sign inside the false-positive regions,
the classification module labels them into one of traffic sign classes. In this example,
the false-positive regions have been classified as “speed limit 100” and “no entry”
signs.

Dealing with false-positive regions generated by detection module is one of major
challenges in developing a practical traffic sign recognition system. For instance, a
self-driving car may suddenly brake in the above hypothetical example because it has
detected a no entry sign. Consequently, one of the practical challenges in developing
a detectionmodule is to have zero false-positive region. Also, it has to detect all traffic
signs in the image. Technically, its true-positive rate must be 100%. Satisfying these
two criteria is not trivial in practical applications.

There are two major goals in designing traffic signs. First, they must be easily
distinguishable from rest of objects in scene and, second, their meaning must be
easily perceivable and independent from spoken language. To this end, traffic signs
are designed with a simple geometrical shape such as triangle, circle, rectangle, or
polygon. To be easily detectable from rest of objects, traffic signs are painted using
basic colors such as red, blue, yellow, black, and white. Finally, the meaning of
traffic signs is mainly carried out by pictographs in center of traffic signs. It should
be noted that some signs heavily depend on text-based information. However, we
can still think of the texts in traffic signs as pictographs.

Although classification of traffic signs is an easy task for a human, there are some
challenges in developing an algorithm for this purpose. Some of these challenges are
illustrated in Fig. 1.2. First, image of traffic signs might be captured from different
perspectives. This may nonlinearly deform the shape of traffic signs.

Second, weather condition can dramatically affect the appearance of traffic signs.
An example is illustrated in Fig. 1.2 where the “no stopping” sign is covered by snow.
Third, traffic signs are being impaired during time and some artifacts may appear on
signs which might have a negative impact on their classification. Fourth, traffic signs
might be partially occluded by another signs or objects. Fifth, the pictograph area
might be manipulated by human which in some cases might change the shape of the
pictograph. Another important challenge is illumination variation caused by weather
condition or daylight changes. The last andmore important issue shown in this figure
is pictograph differences of the same traffic sign from one country to another. More
specifically, we observe that the “danger: bicycle crossing” sign posses important
differences between two countries.

Referring to the Vienna Convention on Road Traffic Signs, we can find roughly
230 pictorial traffic signs. Here, text-based signs and variations on pictorial signs
are counted. For example, the speed limit sign can have 24 variations including 12
variation for indicating speed limits and12variations for endof speed limit. Likewise,
traffic signs such as recommended speed, minimum speed, minimum distance with
front car, etc. may have several variations. Hence, traffic sign recognition is a large
multi-class classification problem. This makes the problem even more challenging.

Note that some of the signs such as “crossroad” and “side road” signs differ only
by very fine details. This is shown in Fig. 1.3 where both signs differ only in small
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Fig. 1.2 Some of the challenges in classification of traffic signs. The signs have been collected in
Germany and Belgium

Fig. 1.3 Fine differences
between two traffic signs

part of pictograph. Looking at Fig. 1.1, we see signs which are only 30m away from
the camera occupy very small region in the image. Sometimes, these regions can
be as small as 20 × 20 pixels. For this reason, identifying fine details become very
difficult on these signs.

In sum, traffic sign classification is a specific case of object classification where
the objects are more rigid and two dimensional. Also, their discriminating parts are
well defined. However, there are many challenges in developing a practical system
for detection and classification of traffic signs.
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1.3 PreviousWork

1.3.1 Template Matching

Arguably, the most trivial way for recognizing objects is template matching. In this
method, a set of templates is stored on system. Given a new image, the template is
matched with every location on the image and a score is computed for each location.
The score might be computed using cross correlation, sum of squared differences,
normalized cross correlation, or normalized sum of squared differences. Piccioli
et al. (1996) stored a set of traffic signs as the templates. Then, the above approach
was used in order to classify the input image. Note that template-matching approach
can be used for both detection and classification.

In practice, there are many problems with this approach. First, it is sensitive to
perspective, illumination and deformation. Second, it is not able to deal with low
quality signs. Third, it might need a large dataset of templates to cover various kinds
of samples for each traffic sign. For this reason, selecting appropriate templates is a
tedious task.

On the one hand, template matching compares raw pixel intensities between the
template and the source image. On the other hand, pixel intensities greatly depend
on perspective, illumination, and deformation. As the result, a slight change in illu-
mination may affect the matching score, significantly. To tackle with this problem,
we usually apply some algorithms on the image in order to extract more useful infor-
mation from it. In other words, in the case of grayscale images, a feature extraction
algorithm accepts a W × H image and transforms the W × H dimensional vector
into a D-dimensional vector in which the D-dimensional vector carries more useful
information about the image and it is more tolerant to perspective changes, illumina-
tion, and deformation. Based on this idea, Gao et al. (2006) extracted shape features
from both template and source image and matched these feature vectors instead
of raw pixel intensity values. In this work, matching features were done using the
Euclidean distance function. This is equivalent to the sum of square differences
function. The main problem with this matching function was that every feature was
equally important. To cope with this problem, Ruta et al. (2010) learned a similarity
measure for matching the query sign with templates.

1.3.2 Hand-Crafted Features

The template matching procedure can be decomposed into two steps. In the first step,
a template and an image patch are represented using more informative vectors called
feature vectors. In the second step, feature vectors are compared in order to find class
of the image patch. This approach is illustrated in Fig. 1.4. Traditionally, the second
step is done using techniques of machine learning. We will explain the basics of
this step in Sect. 2.1. However, roughly speaking, extracting a feature vector from an
image can be done using hand-crafted or automatic methods.

http://dx.doi.org/10.1007/978-3-319-57550-6_2
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Fig. 1.4 Traditional
approach for classification of
objects

Hand-crafted methods are commonly designed by a human expert. They may
apply series of transformations and computations in order to build a feature vector.
For example, Paclík et al. (2000) generated a binary image depending on color of
traffic sign. Then, moment invariant features were extracted from the binary image
to form the feature vector. This method could be very sensitive to noise since a clean
image and its degraded version may have two different binary images. Consequently,
the moments of the binary images might vary significantly. Maldonado-Bascon et al.
(2007) transformed the image into the HSI color space and calculated histogram of
Hue and Saturation components. Although this feature vector can distinguish general
category of traffic signs (for example, mandatory vs. danger signs), they might act
poorly on modeling traffic signs of the same category. This is due to the fact that
traffic signs of the same category have the same color and shape. For instance, all
danger signs are triangle with a red margin. Therefore, the only difference would be
the pictograph of signs. Since all pictographs are black, they will fall into the same
bin on this histogram. As the result, theoretically, this bin will be the main source of
information for classifying signs of same category.

In another method, Maldonado Bascón et al. (2010) classified traffic signs using
only the pictograph of each sign. To this end, they first segment the pictograph from
the image of traffic sign. Although the region of pictograph is binary, accurate seg-
mentation of a pictograph is not a trivial task since automatic thresholding methods
such as Otsu might fail taking into account the illumination variation and unexpected
noise in real-world applications. For this reason, Maldonado Bascón et al. (2010)
trained SVM where the input is a 31 × 31 block of pixels in a grayscale version of
pictograph. In a more complicated approach, Baró et al. (2009) proposed an Error
CorrectingOutputCode framework for classification of 31 traffic signs and compared
their method with various approaches.

Zaklouta et al. (2011), Zaklouta and Stanciulescu (2012), and Zaklouta and
Stanciulescu (2014) utilized more sophisticated feature extraction algorithm called
Histogram of Oriented Gradient (HOG). Broadly speaking, the first step in extracting
HOG feature is to compute the gradients of the image in x and y directions. Then, the
image is divided into non-overlapping regions called cells. A histogram is computed
for each cell. Bins of the histogram show the orientation of the gradient vector. Value
of each bin is computed by accumulating the gradient magnitudes of the pixels in
each cell. Next, blocks are formed using neighbor cells. Blocks may have overlap
with each other. Histogram of a block is obtained by concatenating histograms of
the cells within the block. Finally, histogram of each block is normalized and final
feature vector is obtained by concatenating the histogram of all blocks.

This method is formulated using size of each cell, size of each block, number of
bins in histograms of cell, and type of normalization. These parameters are called
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hyperparameters. Depending on the value of these parameters we can obtain differ-
ent feature vectors with different lengths on the same image. HOG is known to be a
powerful hand-crafted feature extraction algorithm. However, objects might not be
linearly separable in the feature space. For this reason, Zaklouta and Stanciulescu
(2014) trained a Random Forest and a SVM for classifying traffic sings using HOG
features. Likewise, Greenhalgh andMirmehdi (2012),Moiseev et al. (2013),Mathias
et al. (2013), Huang et al. (2013), and Sun et al. (2014) extracted the HOG features.
The difference between these works mainly lies on their classification model (e.g.,
SVM, Cascade SVM, Extreme Learning Machine, Nearest Neighbor, and LDA).
However, in contrast to the other works, Huang et al. (2013) used a two-level clas-
sification model. In the first level, the image is classified into one of super-classes.
Each super-class contains several traffic signs with similar shape/color. Then, the
perspective of the input image is adjusted based on its super-class and another clas-
sification model is applied on the adjusted image. The main problem of this method
is sensitivity of the final classification to the adjustment procedure.

Mathias et al. (2013) proposed a more complicated procedure for extracting fea-
tures. Specifically, the first extracted HOG features with several configurations of
hyperparameters. In addition, they extracted more feature vectors using different
methods. Finally, they concatenated all these vectors and built the final feature vec-
tor. Notwithstanding, there are a few problems with this method. Their feature vector
is a 9000-dimensional vector constructed by applying five different methods. This
high-dimensional vector is later projected to a lower dimensional space using a
transformation matrix.

1.3.3 Feature Learning

A hand-crafted feature extraction method is developed by an expert and it applies
series of transformations and computations in order to extract the final vector. The
choice of these steps completely depends on the expert. One problem with the hand-
crafted features is their limited representation power. This causes that some classes
of objects overlap with other classes which adversely affect the classification perfor-
mance. Two common approaches for partially alleviating this problem are to develop
a new feature extraction algorithm and to combine various methods. The problems
with these approaches are that devising a new hand-crafted feature extractionmethod
is not trivial and combining different methods might not separate the overlapping
classes.

The basic idea behind feature learning is to learn features from data. To be more
specific, given a dataset of traffic signs, we want to learn a mappingM : Rd → R

n

which acceptsd = W × H -dimensional vectors and returns ann-dimensional vector.
Here, the input is a flattened image that is obtained by putting the rows of image
next to each other and creating a one-dimensional array. The mapping M can be
any arbitrary function that is linear or nonlinear. In the simplest scenario,M can be
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a linear function such as

M (x) = W+(xT − x̄), (1.1)

where W ∈ R
d×n is a weight matrix, x ∈ R

d is the flattened image, and x̄ ∈ R
d is

the flattened mean image. Moreover, W+ = (WTW )−1WT denotes the MoorePen-
rose pseudoinverse of W . Given the matrix W we can map every image into a
n-dimensional space using this linear transformation. Now, the question is how to
find the values of W?

In order to obtainW , wemust devise an objective and try to get as close as possible
to the objective by changing the values of W . For example, assume our objective is
to project x into a five-dimensional space where the projection is done arbitrarily.
It is clear that any W ∈ R

3×d will serve our purpose. Denoting M (x) with z, our
aim might be to project data on a n ≤ d space while maximizing the variance of z.
The W that is found using this objective function is called principal component
analysis. Bishop (2006) has explained that to find W that maximizes this objective
function, we must compute the covariance matrix of data and find eigenvectors and
eigenvalues of the covariance matrix. Then, the eigenvectors are sorted according
to their eigenvalues in descending order and the first n eigenvectors are picked to
form W .

Now, given any W × H image, we plug it in (1.1) to compute z. Then, the n-
dimensional vector z is used as the feature vector. This method is previously used
by Sirovich and Kirby (1987) for modeling human faces. Fleyeh and Davami (2011)
also projected the image into the principal component space and found class of the
image by computing the Euclidean distance of the projected image with the images
in the database.

If we multiply both sides with W and rearrange (1.1) we will obtain

xT = Wz + x̄ T . (1.2)

Assume that x̄ T = 0. Technically, we say our data is zero-centered. According to
this equation, we can reconstruct x using W and its mapping z. Each column in W
is a d-dimensional vector which can be seen as a template learnt from data. With
this intuition, the first row in W shows set of values of first pixel in our dictionary
of templates. Likewise, nth row in W is set of values of nth pixel in the templates.
Consequently, the vector z shows how to linearly combine these templates in order to
reconstruct the original image. As the value of n increases, the reconstruction error
decreases.

The value ofW depends directly on the data that we have used during the training
stage. In other words, using the training data, a system learns to extract features.
However, we do not take into account the class of objects in finding W . In general,
methods that do not consider the class of object are called unsupervised methods.

One limitationof principal component analysis is thatn ≤ d.Also, z is a real vector
which is likely to be non-sparse. We can simplify (1.2) by omitting the second term.
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Now, our objective is to find W and z by minimizing the constrained reconstruction
error:

E =
N∑

i=1

‖xTi − Wzi‖22 s.t. ‖z‖1 < µ, (1.3)

where µ is a user-defined value and N is the number of training images. W and
zi also have the same meaning as we mentioned above. The L1 constrained in the
above equation forces zi to be sparse. A vector is called sparse when most of its
elements are zero. Minimizing the above objective function requires an alternative
optimization of W and zi . This method is called sparse coding. Interested readers
can find more details in Mairal et al. (2014). It should be noted that there are other
formulations for objective function and the constraint.

There are two advantages with the sparse coding approach compared with princi-
pal component analysis. First, the number of columns in W (i.e., n) is not restricted
to be smaller than d. Second, zi is a sparse vector. Sparse coding has been also used
to encode images of traffic signs.

Hsu and Huang (2001) coded each traffic sign using the Matching Pursuit algo-
rithm. During testing, the input image is projected to different sets of filter bases to
find the best match. Lu et al. (2012) proposed a graph embedding approach for clas-
sifying traffic signs. They preserved the sparse representation in the original space
using L1,2 norm. Liu et al. (2014) constructed the dictionary by applying k-means
clustering on the training data. Then, each data is coded using a novel coding input
similar to Local LinearCoding approach (Wang et al. 2010).Moreover,Aghdamet al.
(2015) proposed a method based on visual attributes and Bayesian network. In this
method, each traffic sign is described in terms of visual attributes. In order to detect
visual attributes, the input image is divided into several regions and each region is
coded using elastic net sparse coding method. Finally, attributes are detected using a
random forest classifier. The detected attributes are further refined using a Bayesian
network. Figure1.5 illustrates a dictionary learnt by Aghdam et al. (2015) from 43
classes of traffic signs.

There are other unsupervised feature learning techniques. Among them, autoen-
coders, deep belief networks, and independent component analysis have been exten-
sively studied and used in the computer vision community. One of the major disad-
vantages of unsupervised feature learning methods is that they do not consider the
class of objects during the learning process.More accurate results have been obtained
using supervised feature learning methods. As we will discuss in Chap.3, convolu-
tional neural networks (ConvNet) have shown a great success in classification and
detection of objects.

http://dx.doi.org/10.1007/978-3-319-57550-6_3
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Fig. 1.5 Dictionary learnt by Aghdam et al. (2015) from 43 classes of traffic signs

1.3.4 ConvNets

3ConvNetswere first utilized by Sermanet andLecun (2011) andCiresan et al. (2012)
in the field of traffic sign classification during the German Traffic Sign Recognition
Benchmark (GTSRB) competition where the ensemble of ConvNets designed by
Ciresan et al. (2012) surpassed human performance and won the competition by
correctly classifying 99.46% of test images. Moreover, the ConvNet of Sermanet
and Lecun (2011) ended up in the second place with a considerable difference com-
pared with the third place which was awarded for a method based on the traditional
classification approach. The classification accuracies of the runner-up and the third
place were 98.97 and 97.88%, respectively.

Ciresan et al. (2012) constructs an ensemble of 25 ConvNets each consists of
1,543,443 parameters. Sermanet and Lecun (2011) creates a single network defined
by 1,437,791 parameters. Furthermore, while the winner ConvNet uses the hyper-
bolic activation function, the runner-up ConvNet utilizes the rectified sigmoid as the
activation function. It is a common practice in ConvNets to make a prediction by
calculating the average score of slightly transformed versions of the query image.

3We shall explain all technical details of this section in the rest of this book.
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However, it is not clearly mentioned in Sermanet and Lecun (2011) that how do they
make a prediction. In particular, it is not clear that the runner-up ConvNet classifies
solely the input image or it classifies different versions of the input and fuses the
scores to obtain the final result.

Regardless, both methods suffer from the high number of arithmetic operations.
To be more specific, they use highly computational activation functions. To alleviate
these problems, Jin et al. (2014) proposed a new architecture including 1,162,284
parameters and utilizing the rectified linear unit (ReLU) activations (Krizhevsky et al.
2012). In addition, there is aLocalResponseNormalization layer after each activation
layer. They built an ensemble of 20 ConvNets and classified 99.65% of test images
correctly. Although the number of parameters is reduced using this architecture
compared with the two networks, the ensemble is constructed using 20 ConvNets
which is not still computationally efficient in real-world applications. It is worth
mentioning that a ReLU layer and a Local Response Normalization layer together
needs approximately the same number of arithmetic operations as a single hyperbolic
layer. As the result, the run-time efficiency of the network proposed in Jin et al. (2014)
might be close to Ciresan et al. (2012).

Recently, Zeng et al. (2015) trained a ConvNet to extract features of the image and
replaced the classification layer of their ConvNet with an Extreme LearningMachine
(ELM) and achieved 99.40% accuracy on the GTSRB dataset. There are two issues
with their approach. First, the output of last convolution layer is a 200-dimensional
vector which is connected to 12,000 neurons in the ELM layer. This layer is solely
defined by 200 × 12,000 + 12,000 × 43 = 2,916,000 parameters which makes it
impractical. Besides, it is not clear why their ConvNet reduces the dimension of the
feature vector from 250 × 16 = 4000 in Layer 7 to 200 in Layer 8 and then map
their lower dimensional vector to 12,000 dimensions in the ELM layer (Zeng et al.
2015, Table 1). One reason might be to cope with calculation of the matrix inverse
during training of the ELM layer. Finally, since the input connections of the ELM
layer are determined randomly, it is probable that their ConvNet does not generalize
well on other datasets.

The common point about all the above ConvNets is that they are only suitable for
the classification module and they cannot be directly used in the task of detection.
This is due to the fact that applying these ConvNets on high-resolution images is not
computationally feasible. On the other hand, accuracy of the classification module
also depends on the detection module. In other words, any false-positive results
produced by the detection module will be entered into the classification module
and it will be classified as one of traffic signs. Ideally, the false-positive rate of the
detection module must be zero and its true-positive rate must be 1. Achieving this
goal usually requires more complex image representation and classification models.
However, as the complexity of these models increases, the detection module needs
more time to complete its task.

The ConvNets proposed for traffic sign classification can be explained from three
perspectives including scalability, stability, and run-time. From generalization point
of view, none of the fourConvNets have assessed the performance on other datasets. It
is crucial to study how the networks performwhen the signs slightly change from one
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country to another. More importantly, the transferring power of the network must be
estimated by fine-tuning the same architecture on a new dataset with various numbers
of classes. By this way, we are able to estimate the scalability of the networks. From
stability perspective, it is crucial to find out how tolerant is the network against noise
and occlusion. This might be done through generating a few noisy images and fetch
them to the network. However, this approach does not find the minimum noisy image
which is misclassified by the network. Finally, the run-time efficiency of the ConvNet
must be examined. This is due to the fact that the ConvNet has to consume as few
CPU cycles as possible to let other functions of ADAS perform in real time.

1.4 Summary

In this chapter, we formulated the problem of traffic sign recognition in two stages
namely detection and classification. The detection stage is responsible for locating
regions of image containing traffic signs and the classification stage is responsible
for finding class of traffic signs. Related work in the field of traffic sign detection and
classification is also reviewed.Wementioned several methods based on hand-crafted
features and then introduced the idea behind feature learning. Then, we explained
some of the works based on convolutional neural networks.
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