
Denoising Autoencoder as an Effective
Dimensionality Reduction and Clustering

of Text Data

Milad Leyli-Abadi(B), Lazhar Labiod, and Mohamed Nadif

LIPADE, Paris Descartes University, 75006 Paris, France
mleyliabadi@gmail.com, {lazhar.labiod,mohamed.nadif}@parisdescartes.fr

Abstract. Deep learning methods are widely used in vision and face
recognition, however there is a real lack of application of such methods
in the field of text data. In this context, the data is often represented
by a sparse high dimensional document-term matrix. Dealing with such
data matrices, we present, in this paper, a new denoising auto-encoder for
dimensionality reduction, where each document is not only affected by its
own information, but also affected by the information from its neighbors
according to the cosine similarity measure. It turns out that the pro-
posed auto-encoder can discover the low dimensional embeddings, and
as a result reveal the underlying effective manifold structure. The visual
representation of these embeddings suggests the suitability of perform-
ing the clustering on the set of documents relying on the Expectation-
Maximization algorithm for Gaussian mixture models. On real-world
datasets, the relevance of the presented auto-encoder in the visualisa-
tion and document clustering field is shown by a comparison with five
widely used unsupervised dimensionality reduction methods including
the classic auto-encoder.

Keywords: Auto-encoder · Deep learning · Cosine similarity · Neigh-
borhood · Document clustering · Unsupervised learning · Dimensionality
reduction

1 Introduction

Analyzing sparse high-dimensional point clouds is a classical challenge in visu-
alization. Principal component analysis (PCA), one of the traditional techniques,
is certainly the best known. More efficient in nonlinear cases, a number of
techniques have been proposed, including Isometric Feature Mapping (Isomap),
Locally Linear Embedding (LLE), and Stochastic Neighbor Embedding (SNE).
Nevertheless these nonlinear techniques tend to be extremely sensitive to noise,
sample size, choice of neighborhood and other parameters (for details see for
instance [1]). On the other hand, t-SNE [2] and its parametric version [3] is bet-
ter than existing techniques at creating a single map that reveals structure at
many different scales. Parametric t-SNE learns the parametric mapping in such
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 801–813, 2017.
DOI: 10.1007/978-3-319-57529-2 62

802 M. Leyli-Abadi et al.

a way that the local structure of the data is preserved as well as possible in
the latent space. Generally, it works better in the case of image datasets but
it is very dependent on the adjustments of the hyper parameters, e.g. learning
rate noted η. Laplacian Eigenmap (LE) [4] is another interesting method where
the laplacian graph is used and has relatively the same objective as t-SNE, i.e.
preserving the local structure of data.

The auto-encoders, a special method of deep learning architecture, have
received more attention recently for dimensionality reduction tasks; their abili-
ties to adapt to different domains are promising. They make it possible to embed
the high dimensional data in a latent space of lower dimensionality while pre-
serving the original structure of the data. In its traditional version, each data
point is used to reconstruct itself from the code layer. If we have the same num-
ber of neurons in the code layer as in the input layer, the method learns the
identity function. In order to avoid this trivial solution, there are many different
approaches. The two most used consist in (1) using fewer number of neurons
in the code layer so as to force the auto-encoder to compress the features in a
lower space, (2) introducing some noise to data, for instance with a Gaussian
noise applied to the whole data or randomly replacing with zeros a percentage of
data entries. It is proved that some denoising auto-encoders (DAEs) correspond
to a Gaussian RBM (Restricted Boltzmann Machine) in which minimizing the
denoising reconstruction error estimates the energy function [5,6]. They gen-
erally give better results in comparison to classic auto-encoders without any
denoising step. We make use of the former type of auto-encoders in the follow-
ing. In this paper, we concentrate on the case of sparse high dimensional data
and in particular on document-term matrices. The cells of such matrices contain
the frequency counts of the terms belonging to the corresponding documents.
We known that the auto-encoders aim to find the low dimensional embeddings in
data by preserving the structure of the data as well as possible. Herein, with the
proposed auto-encoder, we aim to capture the relations among documents while
preserving the original structure. Therefore, the proposed method focuses on
the dimensionality reduction and the main contributions of the paper, presented
schematically in Fig. 1, are as follows:

– we propose a suitable normalization of document-term matrices;
– we introduce a weighted criterion where the weights rely on cosine simi-

larity, and derive an appropriate autoencoder able to effectively reduce the
dimension;

– finally in order to cluster the set of documents, we perform the Expectation-
Maximization [7] algorithm for Gaussian mixture models on the reduced space
instead of the k-means algorithm which is commonly used, and assess the
number of clusters relying on the Bayes Information Criterion [8].

The rest of the paper is organised as follows. In Sect. 2, we first intro-
duce different types of preprocessing that are mandatory in order to get the
auto-encoders work and then the role of the denoising procedure is described.
Section 3, is devoted to the introduction of the mathematical formulation of the
proposed auto-encoder. The experimental results on different text datasets and

Denoising Autoencoders for Text Data 803

Fig. 1. Proposed method scheme (Color figure online)

clustering are presented in Sect. 4. Section 5 concludes the paper and presents
directions for future research.

2 Data Pre-processing

Let x1, . . . ,xm be a set of m objects where xi is a n-dimensional vector on R
n. In

practice, xi contains the variables corresponding to p measurements made on the
ith recording of some features on the phenomenon under study. Then data will be
denoted by an m by n data matrix x = (xij). Before applying of any clustering or
dimensionality reduction algorithm, a preprocessing step is necessary in order to
reduce the effect of the outliers and prepare the data for a better and more faith-
ful analysis. In the context of dimensionality reduction of document-term data,
different normalization methods are available which increase the performance of
such methods e.g. TF-IDF, mutual information or χ2 normalization. While this
type of normalizations is not widely employed for deep neural networks, the use
of TF-IDF normalization followed by centering, yields good results. On the other
hand it is shown in [9] that the other types of normalizations could contribute
to the deep architectures to work better and that consists in (1) centering (2)
applying KL-Expansion or PCA (3) using covariance equalization. The two steps
(2) and (3) can be combined by applying a PCA with whitening ; see for instance
[10]. As the networks learn the fastest from the most unexpected sample, it is
recommended to choose a sample at each iteration which is the most unfamiliar
to the system [9]. In order to rely on this hypothesis, after the normalization
step above, training data are shuffled to ensure that the successive examples
are not drawn from the same class. Finally we train the deep auto-encoder as a
pretraining step demonstrated in [11], by considering each layer separately as a
simple auto-encoder. The activations of a layer below become the input for the
next layer as in Fig. 2. In each layer we add some noise to the data by replacing
randomly 30% of the data by zeros, a procedure called corruption or denoising.
With this approach, we approximate the performance of RBMs with a lower cost
in terms of complexity.

804 M. Leyli-Abadi et al.

Fig. 2. Layer wise pretraining of a denoising autoencoder

3 Auto-encoder for Text Analysis

3.1 Classic Auto-encoders

Auto-encoders are traditionally composed of two parts, an encoder where the
high dimensional feature space of data is encoded and compressed to a lower
dimensional feature space by a function h as yi = h(W x̃i + b) where x̃ is a
corrupted input obtained by following the denoising procedure explained in the
last section, W is the weight matrix between the input and hidden layer as in
Fig. 2 where W ∈ R

d×p (d number of neurons in hidden layer, p number of input
features), b is the bias term where b ∈ R

d×1 and yi contains hidden layer values
in middle layers and code values in the last layer. The parameters W and b
are estimated using mini batch gradient descent algorithm in each iteration of
optimization and h is an activation function that can be a linear or non linear
such as sigmoid or hyperbolic tangent. In this paper we opt for the hyperbolic
tangent which generally provides better results. The second part of the auto-
encoder consists of a decoder which tries to reconstruct the original data from
the code layer yi by x′

i = g(W ′yi+b′). The layer of reconstructions has the same
dimensionality as the input layer. As the encoder part, the decoder layer has also
the same type of parameters (W ′ ∈ R

p×d and b′ ∈ R
p×1) that must be adjusted,

and an activation function g; like h it can be a linear or non linear function. In
classic auto-encoders, each example x′

i tries to reconstruct the original input xi

from the code or hidden layer yi. Therefore, the cost function takes the following
form

C(θ) = arg min
m∑

i=1

||g(W ′h(W x̃i + b) + b′) − xi||2 (1)

where C is a cost function with θ = (W, b,W ′, b′) the unknown parameters
to estimate by minimizing this function. The symbol ||.|| denotes an euclidean
distance between the reconstructed examples and original input.

3.2 The Proposed Unsupervised Auto-encoder

The classic auto-encoder, presented above and referred to as C-autoencoder in
the sequel, is not able to capture the original structure in the data, and to reveal

Denoising Autoencoders for Text Data 805

the latent structure in the case of complex data. In order to achieve this, one
can modify the cost function (1) in a way where each example x′

i, in addition
to reconstructing the correspondent original input xi, also reconstructs the data
points that are in the neighborhood of xi, using cosine similarity metric. More-
over, each reconstruction term has a weight; this leads to the construction of
a weighted graph with edges connecting nearby documents to each other. At
first glance the idea is relatively similar to that in [12], but the prior normaliza-
tion step following a novel auto-encoder configuration and regularization make
this approach more relevant to cluster sparse text data, where the sparsity is
regularized in order to avoid overfitting. This procedure is depicted in Fig. 1,
where the example x′

i designated by a red circle reconstructs its correspondent
in input layer i.e. xi and its k nearest neighbors in input layer i.e. {xj ,xk}, that
are marked by a blue ellipse. The weights between these reconstruction terms
are denoted by ω. So the cost function for the proposed auto-encoder becomes,

C(θ) = arg min
m∑

i=1

∑

�∈Ψi

ωi�||x′
i − x�||2. (2)

where Ψi denotes the set of the k nearest neighbors of the document xi and
ω (not to be confused with W) is the weight associated to document xi and
document x� belonging to Ψi. The set of parameters θ of the network in Eq. (1)
holds also for the new loss function. The weight draws on Laplacian Eigenmaps
where heat kernels are used to choose the weight decay function (parameter
t ∈ R) and the cosine between two documents is used as a similarity measure
between them. It takes the following form

ωi� = exp −(
cos(xi,x�)

t
) (3)

where t is a hyper parameter to adjust. The details on the choice of t is discussed
in [4]. Note that with t = 1, two very similar documents lead to ωi� ≈ 1/e,
and so similar documents in embeddings are less penalized; while two distinct
documents lead to ωi� ≈ 1 and so they are more penalized. Furthermore, we
have considered the sparsity regularization term in the cost function as follows,

Csparse(θ) = C(θ) + β

s∑

j=1

KL(ρ||ρ̂j) (4)

where β controls the importance of the regularization term and s is the num-
ber of neurons in hidden layer. KL(ρ||ρ̂j) is the Kullback-Leibler divergence
between ρ a sparsity parameter and ρ̂j its approximation by ρ̂j = 1

m

∑m
i=1 y

(j)
i

the average activation of hidden unit j; KL(ρ||ρ̂j) can be thought of as a mea-
sure of the information lost when ρ̂j is used to approximate ρ. The details of
this regularization are available in [13] and given by

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
. (5)

806 M. Leyli-Abadi et al.

Hereafter, we describe in Algorithm 1, referred as T-autoencoder, the main
steps of the method, optimizing (4); we assume that W ′ = W� as is often the
case in the literature.

Algorithm 1. Unsupervised auto-encoder for Text data (T-autoencoder)

Input training set {xi}m
1

Hypothesis: Tied weights i.e. W ′ = W�; fixed sparsity level ρ = 0.05
Parameters: θ=(W , b, b′)
Notation: Ψi reconstruction set for xi

. ω weights between xi and Ψi

1. Compute the cosine similarity between documents and determine reconstruc-
tion set Ψ by k-nearest neighbor algorithm for each example.

2. Compute the weights ω between each example xi and its reconstruction set
Ψi, as in (3).

3. Update θ minimizing the Cost function Csparse in (4).
4. Update reconstruction set Ψ and weights ω with respect to each hidden layer

{yi}m
1 separately.

5. Repeat 3 and 4 until convergence.

The time complexity of T-autoencoder is O(n2) for cosine similarity com-
putation, O(n log n) for finding k-nearest neighbors and O(batch size × k) to
calculate each weighted reconstruction term in (2) in addition to the time com-
plexity of neural networks; where k is the number of neighbors. As n → ∞ the
added time complexity approaches O(n2).

4 Experiments

In order to evaluate the performance of T-autoencoder, we performed experi-
ments on different document-term datasets. Our implementations are based on
python and R languages, and the theano library in order to use the performance
of GPU for accelerating computations.

4.1 Experimental Setup

The characteristics of datasets1 used in experimentation are presented in Table 1.
Each dataset presented has its own complexity e.g. excessive number of variables
(Curse of dimensionality), high number of clusters or the complexity pertaining
to the data structure. We compared the T-autoencoder with a linear method
(PCA), and three non-linear methods (Isomap, LE and t-SNE). We run the meth-
ods which require the hyper parameters as number of neighbors or learning rate

1 http://dataexpertise.org/research.

http://dataexpertise.org/research

Denoising Autoencoders for Text Data 807

to be adjusted e.g. Isomap, t-SNE and T-autoencoder, with diverse configura-
tions, and finally we picked the values corresponding to a minimum reconstruc-
tion error. As an example, for t-SNE we have opted for η = 100, as it provides
better results than other configurations. In addition to the state of the art meth-
ods, C-autoencoder is also considered in experiments, in order to point out the
improvement attained using T-autoencoder. We evaluated the performance of
these methods by means of three-dimensional plots of embeddings and also by
measuring different metrics such as Normalized Mutual Information (NMI) [14],
Adjusted Rand Index (ARI) [15] and Purity after applying the Expectation-
Maximization algorithm [7] for Gaussian Mixtures Models (GMM) instead of
k-means which is based on a restricted Gaussian mixture.

Table 1. Datasets used for experimentation, # denotes the cardinality.

Dataset #Documents #Terms Number of clusters

Classic3 3891 4303 3

CSTR 475 1000 4

20news 3970 8014 4

NG5 500 2000 5

Reviews 4069 18483 5

TR45 690 8261 10

TDT2 10 653 36771 10

For the auto-encoder part a n − n
2 − n

22 − . . . − d architecture is used, where
n represents the dimensionality of the data and d represents the dimensionality
of the latent space that should be attained in code layer. In this experimen-
tation we opt for three dimensional latent space, so d = 3. After extensive
numerical experiment trials, t = 0.5 in (3) appears appropriate, so we did not
get involved as much with tuning of such hyper parameters. The auto-encoders
were trained using the layer-wise pretraining procedure explained before, and
are fine-tuned by performing back-propagation such as minimizing the weighted
sum of squared errors between each example and its reconstruction set. We used
a decreasing learning rate, starting from a large value in higher layers and reduc-
ing it gradually in lower layers. Weight decay was set to 0.0001 for all the layers.
In our experiments, we opted for β = 0.01 and ρ = 0.05 for regularization term
in (4); where ρ controls the sparseness of representation, and has a fixed value
obtained via experimentation for all the datasets. Furthermore mini batch gra-
dient descent method was used to adjust weights and biases; the batch size was
fixed at 100.

4.2 Results

In this section, the results of the above mentioned methods are presented by
means of the visualization of the embeddings (Figs. 3, 4 and 5). Furthermore

808 M. Leyli-Abadi et al.

(a) PCA (b) t-SNE (η = 100) (c) Isomap

(d) LE (e) C-autoencoder (f) T-autoencoder

Fig. 3. Visualization of 500 documents from NG5 dataset by different unsupervised
dimensionality reduction methods

(a) PCA (b) t-SNE (η = 100) (c) Isomap

(d) LE (e) C-autoencoder (f) T-autoencoder

Fig. 4. Visualization of 475 documents from CSTR dataset by different unsupervised
dimensionality reduction methods

in order to have more precise comparisons, the embeddings are clustered in
homogeneous groups and are compared with true labels (Table 2).

Visualisation and Clustering. To illustrate the interest of T-autoencoder
in terms of visualization and clustering, because of the lack of space, we chose to
only present the visualizations of NG5, CSTR and TDT2 10 datasets obtained
by all the presented methods in Figs. 3, 4 and 5. In Table 2 comparisons are

Denoising Autoencoders for Text Data 809

(a) PCA (b) t-SNE (η = 100) (c) Isomap

(d) LE (e) C-autoencoder (f) T-autoencoder

Fig. 5. Visualization of 653 documents from TDT2 10 dataset by different unsuper-
vised dimensionality reduction methods

reported for all the datasets in Table 1 using NMI, ARI and purity metrics
after applying the EM algorithm [7]. For each experiment the best performance
is highlighted in bold type. Note that EM is conducted considering the General
Gaussian Mixture (GMM) Model noted VVV in the sequel [16]. In the first step we
consider that the number of clusters is known. The different Gaussian models are
based on the cluster proportions and three characteristics of clusters (volume,
shape, orientation) that can be equal (E) or variable (V) (for details see, [17]).
For instance EVV corresponds to the model where the clusters have the same
volume but the shapes and orientations are different. In Fig. 3 we observe that
the latent structure of NG5 dataset is relatively complex and all the presented
methods have difficulties in distinguishing the five existing clusters. For example
PCA and LE can distinguish only three clusters and two remaining clusters are
mixed together while Isomap can only recognize some documents from the four
clusters while fifth group and the rest of documents are mixed in the center.
Furthermore it gives the worst performance (see Table 2). Using t-SNE, we can
see that in almost all the visualizations, the data are more dispersed than with
other methods, but the examples of the same cluster remain close to each other;
t-SNE gives the second best result. C-autoencoder cannot identify the frontier
between clusters whereas the result from Fig. 3(f) and Table 2 reveals a good
performance of T-autoencoder compared to the others. Using this method, we
can observe a good separability between the five groups of documents and the
best results in terms of purity, NMI and ARI.

In Fig. 4 we observe that two clusters are mixed together using most of the
methods, proving a complex latent structure of them. Considering PCA and
C-autoencoder, this complexity can be clearly observed. On the other hand
t-SNE is not able to capture the existing relations with other clusters too while

810 M. Leyli-Abadi et al.

Table 2. Comparison of all the presented methods in terms of clustering using NMI,
ARI and Purity (EM: Expectation-Maximization with the VVV model, KM: K-means)

Datasets Metrics PCA t-SNE Isomap LE C-autoencoder T-autoencoder

EM KM EM KM EM

Classic3 NMI 0.89 0.75 0.90 0.91 0.71 0.86 0.89 0.96

ARI 0.93 0.76 0.94 0.94 0.70 0.91 0.93 0.93

Purity 0.97 0.90 0.98 0.98 0.88 0.97 0.97 0.98

CSTR NMI 0.70 0.70 0.63 0.76 0.62 0.69 0.72 0.77

ARI 0.69 0.76 0.56 0.81 0.50 0.64 0.70 0.82

Purity 0.75 0.88 0.63 0.90 0.67 0.74 0.85 0.91

20news NMI 0.27 0.52 0.65 0.62 0.22 0.57 0.61 0.71

ARI 0.06 0.53 0.69 0.53 0.16 0.52 0.54 0.74

Purity 0.41 0.77 0.86 0.76 0.43 0.66 0.81 0.89

NG5 NMI 0.50 0.49 0.25 0.56 0.31 0.41 0.54 0.60

ARI 0.38 0.51 0.07 0.49 0.20 0.33 0.38 0.51

Purity 0.56 0.76 0.38 0.66 0.53 0.55 0.72 0.79

Reviews NMI 0.31 0.31 0.50 0.59 0.31 0.46 0.45 0.54

ARI 0.13 0.24 0.43 0.54 0.16 0.44 0.28 0.48

Purity 0.44 0.49 0.61 0.65 0.47 0.66 0.60 0.66

TR45 NMI 0.49 0.63 0.54 0.56 0.46 0.56 0.64 0.66

ARI 0.36 0.51 0.48 0.43 0.30 0.37 0.52 0.57

Purity 0.48 0.59 0.61 0.46 0.49 0.58 0.65 0.67

TDT2 10 NMI 0.70 0.96 0.81 0.80 0.71 0.87 0.80 0.98

ARI 0.30 0.95 0.70 0.57 0.43 0.81 0.66 0.98

Purity 0.48 0.97 0.80 0.70 0.52 0.85 0.75 0.99

Isomap shows good performance on this dataset in terms of separability of clus-
ters and clustering. Although the documents are dispersed in different directions
there is not a clear separation between four existing groups of documents. The
best visualizations are obtained using LE and T-autoencoder, where we can
clearly see that each projected cluster has its own direction. In Table 2 we can
also observe their higher performances in terms of all the metrics used.

In Fig. 5, the number of clusters is higher than in the two previous examples.
We note that PCA, Isomap and LE are not able to recognize all the ten obtained
clusters while LE has shown a good performance and t-SNE provides a good
result in terms of clustering but not in terms of visualisation (Table 2). Finally,
the good performance of T-autoencoder in terms of visualisation and clustering
is easy to observe; T-autoencoder clearly outperforms C-autoencoder.

Denoising Autoencoders for Text Data 811

Assessing the Number of Clusters. Another reason why we used the GMM
for clustering instead of a simple k-means algorithm is that, this approach offers
the flexibility to fit the data, using an appropriate model. As we know, estimat-
ing the number of clusters for the input of a clustering algorithm is essential
and hard to achieve. So to estimate it, we have used the Bayesian Information
Criterion (BIC) [8] given by BICM,k = −2LM,k + υm,K log m, where M is the
model and k is the number of components. LM,k is the maximum likelihood
for M and k and υ is the number of free parameters in the model M with k
components. This criterion penalizes the number of parameters in model and
maximizes the likelihood of data simultaneously; it is efficient on a practical
ground. To choose the best model for mixture model with an appropriate num-
ber of clusters, we have considered the BIC criterion with different numbers of
components (clusters) K on the latent space obtained. Due to the lack of space,
we propose to illustrate the contribution of BIC on two data sets TDT2-10 and
NG5. In Fig. 6(a), BIC takes the maximum value when the number of compo-
nents is 10 with the VVV model (see Fig. 6(c)). In Fig. 7(a), we observe that the
highest value of BIC is attained for the model VVV with 6 clusters (marked by
red vertical dotted line) instead of 5 clusters (marked by green vertical dotted
line) with the EVV model; it is also an ellipsoidal model which considers the same
volume, but different shape and orientation for clusters. Notice that both sug-
gestions of BIC are interesting; Fig. 7 reinforces them. In Fig. 7(c), we simulated
the scheme of NG5 visualization depicted in Fig. 7(b), we have relatively five
clusters with different shapes and orientations. The orientations are shown by
arrows, and shapes by dotted ellipses.

Fig. 6. TDT2 10 dataset: Bic plot related to the latent space obtained by
T-autoencoder in (a), Latent space obtained by T-autoencoder with ground truth
clusters in (b), Estimated clusters scheme by mixture model using BIC criterion in (c).

In short, we observe that clustering on embeddings obtained via T-auto
encoder often outperforms all the presented methods including C-auto
encoder. This is due to the main difference in the architecture of the pro-
posed method in comparison with C-autoencoder. As mentioned earlier,
T-autoencoder is trained to reconstruct data from the corrupted input. This
procedure increases its ability to be less dependent on training data while

812 M. Leyli-Abadi et al.

Fig. 7. NG5 Dataset: Bic plot related to the latent space obtained by T-autoencoder

in (a), Latent space obtained via T-autoencoder with ground truth clusters in (b),
Estimated clusters scheme by mixture model using BIC criterion in (c). (Color figure
online)

promoting close documents; the GMM via EM confirms this performance by
providing a better clustering of documents. On the other hand, the autoen-
coders generally do not construct low-dimensional data representations in which
the natural clusters are widely separated. This could also be due to short-
coming of auto-encoders where latent relations in data cannot be discovered.
Unlike C-autoencoder, T-autoencoder learns these relations by reconstructing
an example from its k-nearest neighbors according to the more suitable cosine
similarity for document-term matrices.

5 Conclusion

In this paper a text specific version of denoising auto-encoders has been pro-
posed. We have seen that appropriate normalization applied on the set of docu-
ments combined with the use of a suitable weighted criterion where the weights
rely on the cosine similarity among documents is effective. The accuracy of auto-
encoders in determining the latent structure of data has been improved for the
task of dimensionality reduction and therefore for clustering by exploiting the
potential of GMM and BIC. Consequently, auto-encoders do not only aim at
maximizing the variance of the data, but also discovering the potential structure
in clusters.

The interest of our approach is to demonstrate the accuracy of the proposed
method in the buoyant field of visualization and document clustering [18,19]. The
efficiency in terms of time complexity is, however, another issue that could be
considered in future works. Although we have used the GPU performance using
the theano library, the efficiency should be improved by using more recent opti-
mization methods such as BFGSs which converge faster than gradient descent.

Denoising Autoencoders for Text Data 813

References

1. Gittins, R.: Canonical Analysis - A Review with Applications in Ecology. Springer,
Heidelberg (1985)

2. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res.
9(Nov), 2579–2605 (2008)

3. van der Maaten, L.: Learning a parametric embedding by preserving local struc-
ture. RBM, 500:500 (2009)

4. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. NIPS 14, 585–591 (2001)

5. Bengio, Y.: Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1),
1–127 (2009)

6. Vincent, P.: A connection between score matching and denoising autoencoders.
Neural Comput. 23(7), 1661–1674 (2011)

7. Dempster, A.P., Nan Laird, M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. J. Roy. Stat. Soc. Ser. B (methodological) 39, 1–38
(1977)

8. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464
(1978)

9. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In:
Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the
Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-35289-8 3

10. Jégou, H., Chum, O.: Negative evidences and co-occurences in image retrieval:
the benefit of PCA and whitening. In: Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 774–787. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33709-3 55

11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with
neural networks. Science 313(5786), 504–507 (2006)

12. Wang, W., Huang, Y., Wang, Y., Wang, L.: Generalized autoencoder: a neural net-
work framework for dimensionality reduction. In: IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 490–497 (2014)

13. Ng, A.: Sparse autoencoder. CS294A Lecture Notes, vol. 72, pp. 1–19 (2011)
14. Strehl, A., Ghosh, J.: Cluster ensembles–a knowledge reuse framework for combin-

ing multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2003)
15. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2, 193–218 (1985)
16. Banfield, J.D., Raftery, A.E.: Model-based gaussian and non-gaussian clustering.

Biometrics 49, 803–821 (1993)
17. Fraley, C., Raftery, A.E.: Mclust version 3: an R package for normal mixture mod-

eling and model-based clustering. Technical report (2006)
18. Priam, R., Nadif, M.: Data visualization via latent variables and mixture models:

a brief survey. Pattern Anal. Appl. 19(3), 807–819 (2016)
19. Allab, K., Labiod, L., Nadif, M.: A semi-NMF-PCA unified framework for data

clustering. IEEE Trans. Knowl. Data Eng. 29(1), 2–16 (2017)

http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://dx.doi.org/10.1007/978-3-642-35289-8_3
http://dx.doi.org/10.1007/978-3-642-33709-3_55

	Denoising Autoencoder as an Effective Dimensionality Reduction and Clustering of Text Data
	1 Introduction
	2 Data Pre-processing
	3 Auto-encoder for Text Analysis
	3.1 Classic Auto-encoders
	3.2 The Proposed Unsupervised Auto-encoder

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion
	References

