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PC Chairs’ Preface

It is our great pleasure to introduce the proceedings of the 21st Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2017).

We received a record-breaking number of 458 submissions from 36 countries all
over the world. This highest number of submissions is very encouraging because it
reflects the improving status of PAKDD. To rigorously review the submissions, we
conducted a double-blind review following the tradition of PAKDD and constructed
the largest ever committee consisting of 38 Senior Program Committee (SPC) members
and 196 Program Committee (PC) members. Each valid submission was reviewed by
three PC members and meta-reviewed by one SPC member who also led the discussion
with the PC members. We, the PC co-chairs, considered the recommendations from the
SPC members and looked into each submission as well as its reviews to make the final
decisions. Borderline papers were thoroughly discussed by us before final decisions
were made.

As a result, 129 out of 458 papers were accepted, yielding an acceptance rate of
28.2%. Among them, 45 papers were selected as long-presentation papers, and 84
papers were selected as regular-presentation papers. Mining social networks or graph
data was the most popular topic in the accepted papers. The review process was
supported by the Microsoft CMT system. During the three main conference days, these
129 papers were presented in 23 research sessions. A long-presentation paper was
given 25 minutes for presentation, and a regular-presentation paper was given 15
minutes for presentation. These two types of papers, however, are not distinguished in
the proceedings.

We would like to thank all SPC members, PC members, and external reviewers for
their hard work to provide us with thoughtful and comprehensive reviews and rec-
ommendations. Also, we would like to express our sincere thanks to Yang-Sae Moon
for compiling all accepted papers and for working with the Springer team to produce
the proceedings.

We hope that the readers of the proceedings find the content interesting and
rewarding.

April 2017 Longbing Cao
Jae-Gil Lee
Xuemin Lin



General Chairs’ Preface

Welcome to the proceedings of the 21st Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. PAKDD has successfully brought together researchers and
developers since 1997, with the purpose of identifying challenging problems facing the
development of advanced knowledge discovery. After 14 years since PAKDD 2003 in
Seoul, PAKDD was held again in Korea, during May 23–26, 2017, in Jeju Island.

We are very grateful to the many authors who submitted their work to the PAKDD
2017 technical program. The technical program was enhanced by three keynote
speeches, delivered by Sang Cha from Seoul National University, Rakesh Agrawal
from Data Insights Laboratories, and Dacheng Tao from the University of Sydney. In
addition to the main technical program, the offerings of this conference were further
enriched by three tutorials as well as four international workshops on leading-edge
topics.

We would like to acknowledge the key contributions by Program Committee
co-chairs, Longbing Cao, Jae-Gil Lee, and Xuemin Lin. We would like to extend our
gratitude to the workshop co-chairs, U. Kang, Ee-Peng Lim, and Jeffrey Xu Yu; the
tutorial co-chairs, Dongwon Lee, Yasushi Sakurai, and Hwanjo Yu; the contest
co-chairs, Nitesh Chawla, Younghoon Kim, and Young-Koo Lee; the publicity
co-chairs, Sang-Won Lee, Guoliang Li, Steven Whang, and Xiaofang Zhou; the reg-
istration co-chairs, Min-Soo Kim and Wookey Lee; the local Arrangements co-chairs,
Joonho Kwon, Jun-Ki Min, Chan Jung Park, and Young-Ho Park; the Web chair,
Ha-Joo Song; the finance co-chairs, Jaewoo Kang and Jaesoo Yoo; the treasury chair,
Chulyun Kim; and the proceedings chair, Yang-Sae Moon. We would like to express
our special thanks to our honorary chair, Kyu-Young Whang, for providing valuable
advice on all aspects of the conference’s organization.

We are grateful to our sponsors that include: platinum sponsors — Asian Office of
Aerospace Research & Development/Air Force Office of Scientific Research,
Mirhenge, Naver, NCSOFT, Seoul National University Big Data Institute and SK
Holdings C&C; gold sponsors — KISTI (Korea Institute of Science and Technology
Information); silver sponsors— Daumsoft, Douzone, HiBrainNet, Korea Data Agency,
and SK Telecom; and publication sponsors — Springer for their generous and valuable
support. We are also thankful to the PAKDD Steering Committee for its guidance and
Best Paper Award, Student Travel Award, and Early Career Research Award spon-
sorship. In addition, we would like to express our gratitude to the KIISE Database
Society of Korea for hosting this conference. Finally, we thank the student volunteers
and everyone who helped us in organizing PAKDD 2017.

April 2017 Jinho Kim
Kyuseok Shim
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Abstract. This paper proposes a simple retraining scheme to purpose-
fully adjust unsupervised word embeddings for specific supervised tasks,
such as sentence classification. Different from the current methods, which
fine-tune word embeddings in training set through the supervised learn-
ing procedure, our method treats the labels of task as implicit context
information to retrain word embeddings, so that every required word for
the intended task obtains task-specific representation. Moreover, because
our method is independent of the supervised learning process, it has less
risk of over-fitting. We have validated the rationality of our method on
various sentence classification tasks. The improvements of accuracy are
remarkable, when only scarce training set is available.

Keywords: Word embedding · Unsupervised learning · Task-specific

1 Introduction

Recent studies have confirmed that word embedding is beneficial to improve the
performance of standard NLP tasks, such as POS tagging and NER [5], sentiment
analysis [6,7,10], relation classification [17,22] and machine translation [23]. Par-
ticularly, along with the development of deep learning in NLP, word embedding
is naturally and admittedly treated as input initialization for neural network.
In general, word embeddings are produced from massive unlabeled corpus. Such
embeddings have a plausible nature that the mutually countered words, such as
“good” and “bad”, have similar vector representations. This nature, however,
often brings some supervised tasks negative effect, such as in sentiment analy-
sis. What’s more, same word that occurs in different tasks may convey different
sentiment polarities. For example, two sentences with the word “infectious” are
given below:

– Although it bangs a very cliched drum at times, this crowd-pleaser’s fresh
dialogue, energetic music, and good-natured spunk are often infectious. (MR
dataset)

– Which infectious disease kills the most people worldwide? (TREC dataset)

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 3–14, 2017.
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4 P. Qin et al.

For different tasks (dataset MR and TREC are described in Sect. 4.1), word
“infectious” reflects positive tendency for the first sentence, but negative for the
second one. Consequently, indiscriminate word embedding set for diverse tasks is
imperfect. To overcome this issue, for a given supervised task, word embeddings
are often trimmed with label information.

Prevailing solution is to modify pre-trained word embeddings through the
training process of corresponding supervised task. It back-propagates the error
of label prediction to word embedding layer [4,7,20]. Unfortunately, this solu-
tion is ineffective for the words out-of-training-set (OOTS)1 and out-of-
vocabulary (OOV). Moreover, for the words that can be trimmed, if training
dataset is on a small scale, over-fitting problem often exists.

In this paper, we present a novel strategy to obtain suitable task-specific word
embeddings for all task-required words, solely relying on task dataset. We utilize
pre-trained unsupervised word embeddings as initial word representations, and
retrain them for the specific task. Label information is treated as the implicit
context information to predict central word together with the explicit context
words. Meanwhile, prediction dataset is trained but without label information.
During this procedure, all words for task training or predicting, can gain rational
task-specific updates in the same vector space. Because the method is separated
from the process of learning pre-trained embeddings and training supervised
task, it effectively alleviates the over-fitting problem. We have validated the
proposed method on 4 sentence classification tasks. Compared with baselines,
our method yields competitive performance, even when the train corpus is on a
small scale.

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
review of related works, especially methods for specific domain or tasks. Section 3
introduces our word embedding retraining schemes, Task-specific CBOW and
Task-specific SG. Datasets and the setup of experimental evaluation are pre-
sented in Sect. 4. In Sect. 5, we give the detailed analysis of our proposed meth-
ods. Finally, the concluding remarks is given in Sect. 6.

2 Related Works

In terms of application field, related researches of word embedding can be
divided into three parts. Generic Word Embedding is learned from mas-
sive unlabeled corpus [3,13,15]. The most useful and practical models are con-
tinuous bag-of-words (CBOW) model, continuous skip-gram (SG) model and
Global Vector (Glove) model. Semi-generic Word Embedding aims at spe-
cific domain [2,19,21,24,25]. A probabilistic model [12] is built to capture both
semantic similarities (in unsupervised way) and word sentiment (supervised by
labeled dataset). Topic-enriched multi-prototype word embeddings (TMWE) [16]
incorporates topic information into capturing tweet context for learning twitter-
domain word embedding. Unlike the proposed method, researches above need
collect abundant labeled dataset as priori. Our work belongs to Task-specific
1

Words exist in vocabulary but merely present on prediction corpus.
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Word Embedding, which focus on fine-grained objective [1,8]. It concentrates
on learning word embeddings for intended task from small labeled datasets. The
simple solution is that, when training a convolutional neural network for sentence
classification [7], word embeddings are fine-tuned by system back-propagation
procedure on labeled datasets. Subsequently, based on this strategy, an improved
approach [1] is proposed to insert sub-space projection operation to word embed-
dings layer, which fits the task complexity and adapts additional words existed in
pre-trained vocabulary. Compared to our method, this obtaining process of task-
specific embeddings depends on task training process, while our method is an
independent procedure. The re-embedding method [8] exploits an independent
procedure to gain task-specific embeddings. They re-embed words supervised by
task labels, with regularization of a distortion matrix. Due to the requirement
of labels and source embeddings, words that do not occur in labeled corpus or
vocabulary are not tailored. The proposed work is different in that we retrain
word embeddings according to the principle of co-occurrence of context words.
Every required word, even OOTS and OOV words, can obtain feasible vector
representations in the same task-specific space.

3 Retraining Word Embeddings for Specific Task

The proposed approaches are inspired by Distributed Memory Model of Para-
graph Vectors (PV-DM) model [9] and implemented based on word2vec2 [13].
Motivated by original CBOW and SG, two word embedding retraining schemes
are correspondingly developed, Task-specific CBOW and Task-specific SG. What
makes CBOW and SG so popular is their high efficiency and effectivity. Corre-
lation intensity between words are directly measured by the inner product value
between word embeddings. Hierarchical Softmax and Negative Sampling are two
computational optimization algorithm. Let Ψ ∈ R|V |×K be the word embedding
matrix, where K is the dimension of embedding and |V | is the vocabulary mag-
nitude. Given a text sequence sj = {w1,w2, ...,wi, ...}, ψi is the corresponding
distributed representation of word wi.

Original CBOW. The core concept of CBOW is to build a log-linear classifier
to correctly classify central (middle) word with future and past words in fixed-
length window (context) as input. The objective function can be optimized by
maximizing the average log probability,

LCBOW = β
∑

sj∈S

∑

wi∈sj

logp(wi|Ci), (1)

where Ci stands for combination of context word distributed representations, β
represents the fixed coefficient of average operation.

2
http://radimrehurek.com/gensim/models/word2vec.html.

http://radimrehurek.com/gensim/models/word2vec.html
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Original SG. Compared with CBOW, SG seeks to maximize classification of
each context word based on central word in the same sentence,

LSG = β
∑

sj∈S

∑

wi∈sj

∑

-T≤n≤T ,n �=0

logp(wi+n|wi), (2)

where T denotes the one-side context length.

PV-DM Model. PV-DM model follows the idea of original CBOW. Paragraph
vectors are treated as another word and learned by participating the prediction
task of next word given contexts sampled from the paragraph. They works as
memory containers to remember information from history to future in specific
paragraph. However, it is noteworthy that the ultimate goal of PV-DM is to
generate paragraph embeddings, but the proposed methods devote to optimize
word embeddings.

3.1 Task-Specific CBOW and SG

With regard to different tasks, the required word semantic meanings mainly
depend on the label information of task. So, how to reasonably integrate label
information into word embedding is the crucial point for improving task perfor-
mance. With this goal, we propose two methods, namely Task-specific CBOW
(TS-CBOW) and Task-specific SG (TS-SG).

Fig. 1. The architecture of TS-CBOW and TS-SG.

Enlightened by PV-DM model, we leverage the mutual prediction between
word and label to inject task-specific information into word embedding. For a
specific task, every label is mapped to a unique vector with the same dimension
of word embedding, and randomly initialized. Word embedding matrix Ψ ∈
R|V |×K is initialized by pre-trained word embedding set. At this time, |V | is the
vocabulary magnitude of task-specific corpus. Embeddings of OOV words are
randomly initialized. Φ ∈ R|L|×K represents the label matrix. |L| denotes the
number of labels. Given a text segment sj = {w1,w2, ...,wi, ...}, �j is the label
of sj . Following this notation, ψi, φj are the respective vector representation of
word wi and label �j .
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Task-Specific CBOW. For training set Sl , along with fixed-length contexts
sampled from the sliding window over sentences, specific label vector is shared
across all contexts from the sentences assigned with the same label. Word embed-
ding matrix Ψ is unique for the entire task corpus. Label information is leveraged
as implicit context element, and we combine such information with context words
jointly predict the central word (Fig. 1). Therefore, label vectors act as memory
units to remember the characteristics of corresponding classes. Labels are merely
available for training set Sl ; therefore, there does not exist straightforward label
information for prediction dataset Sp. Due to the existence of OOTS words, if we
ignore this part, it will undoubtedly cause the inconsistency of word embedding
space. This inconsistency problem may be the serious barrier to task perfor-
mance. In order to resolve this dilemma, we adopt a simple strategy. Words that
occur in prediction dataset are trained simultaneously; however, original objec-
tive of CBOW is retained. Due to mutual prediction between words, despite
a lack of labels, OOTS words (that are not directly retrained with label) still
can be embedded in task-specific feature from the words with label information.
Therefore, the objective is changed into

LTS-CBOW = β
∑

sj∈Sl

∑

wi∈sj

logp(wi|Ci + �j)

+β
∑

sj∈Sp

∑

wi∈sj

logp(wi|Ci).
(3)

The combination way is the weighted vector addition operation, described as

r̂(Ci + �j) = ηw

T∑

n=-T ,n �=0

ψi+n + ηlφj , (4)

where T denotes the number of words in one-sided context, ηw and ηl respectively
represent the weighting factors (scalar) for word part and label, r̂(·) implies the
vector representation.

Embeddings of words, labels and weighting factors (ηw, ηl) are trimmed
simultaneously via back-propagation. The acknowledged success of word2vec and
PV-DM model demonstrates that, in spite of learning from unlabeled corpus,
CBOW model is capable of compelling central word to remember the information
of context word. Therefore, it is convinced that TS-CBOW can impel word
embedding to obtain the corresponding label information.

In essence, for most tasks, the majority of words have equal probability of
occurrence in different label corpus. Hence, for this part, the modification of
word embedding is not obvious; however, words that occur more frequently with
one kind of label can be embedded in increasingly crucial label information.
This part of words are so-called trigger words. For example, word “excellent”
for positive movie review, “conflict” for attack event, “practical” for positive
product review.
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Task-Specific SG. Adopting the similar concept, the integration of label infor-
mation and central word is employed to predict context words (Fig. 1):

LTS-SG = β
∑

sj∈Sl

∑

wi∈sj

∑

-T≤n≤T ,n �=0

logp(wi+n|wi + �j)

+β
∑

sj∈Sp

∑

wi∈sj

∑

-T≤n≤T ,n �=0

logp(wi+n|wi),
(5)

r̂(wi + �j) = ηwψi + ηlφj . (6)

Despite deriving from similar concept, there still exists some distinctions between
two proposed methods. Relative to TS-CBOW, TS-SG has opposite prediction
order. What’s more, different context words are exerted on different weights when
predicting in TS-SG. These distinctions lead to the difference in performance.
With respect to this comparison, detailed analyses are presented in Sect. 5.1.

Share Embeddings. We select Negative Sampling as optimization algorithm.
In this case, the original CBOW and SG models [13] need initialize two sets of
word embedding. One is the output version, the other represents the sampled
negative words. In order to generate desirable word embedding, large unlabeled
corpus is indispensable. By contrast, in proposed approaches, only scarce labeled
dataset is available. So, retraining negative word embeddings needs more time
and may bring uncertainties. Moreover, our retraining process is based on pre-
trained embeddings, which means the initial state already involves priori seman-
tic knowledge. Consequently, the pre-trained embeddings are shared with these
two sets.

4 Datasets and Experimental Setup

The effectiveness of proposed methods is reflected by the improvement of the
tasks with word embedding as input. We use a simple and practical convolutional
neural network3 [7] as classification system, and make verification on several
commonly used sentence classification tasks. Some details of experiments are
described below.

4.1 Datasets

We employ four typical benchmarks to verify our models.

– MR: Dataset that involves movie reviews assigned with positive/negative
label [14].

– SST-1: Stanford Sentiment Treebank. It is an extension of MR [18] with 5
fine-grained labels (very positive, positive, neutral, negative, very negative).

3
https://github.com/yoonkim/CNN sentence.

https://github.com/yoonkim/CNN_sentence
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Table 1. Summary statistics for the experimental datasets. �: Number of labels. NS :
Dataset size. |V |: Vocabulary size. |VOOTS |: Number of OOTS words. |VOOV |: Number
of OOV words. Obviously, the training dataset of these four tasks are in small scale.

Dataset � NS |V | |VOOTS | |VOOV |
MR 2 10662 18765 735 2317

SST-2 2 9613 16198 1360 1369

SST-1 5 11855 17833 1421 1571

TREC 6 5952 8772 265 1241

– SST-2: Same as SST-1 but with binary labels (remove neutral reviews).
Notably, because of emphasizing on scarce dataset, we use sentence-level
dataset with 11,855 items instead of phase-level dataset with 239,231 items
for both SST-1 and SST-2. So, the performance of baseline in this paper is
slightly less than Kim’s results [7].

– TREC: Question classification dataset with 6 types [11].

4.2 Pre-trained Embedding

In order to present a more comprehensive verification of the proposed methods,
we select two word embedding sets as pre-trained embedding sets, which are
trained by different methods and different corpus:

– GoogleNews-vectors-negative300.bin4 is learned by Mikolov’s word2vec from
part of Google News dataset (about 100 billion words). It contains 300-
dimensional vectors for 3 million words and phrases.

– glove.840B.300d.zip5 is generate by Pennington’s Glove method [15]. Training
corpus has 840 billion words, and vocabulary size is 2.2 million. Similarly, the
dimension size is 300.

Naturally, the dimension of label embeddings in our experiments is 300.

4.3 Training and Hyperparameter Setting

In common with original word2vec, there are four hyperparameters involved as
shown in Table 2. For task-specific word embedding, due to retraining based on
pre-trained embeddings, the original optimal word2vec hyperparameter setup is
relatively large. So we decrease the value of ξ and α for the two proposed models.

As for classification system, experimental results are obtained by early stop-
ping on dev sets. As for datasets without pre-defined dev set, we randomly
extract 10% of training data as the dev set.

4
https://code.google.com/archive/p/word2vec/.

5
http://nlp.stanford.edu/projects/glove/.

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/
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Table 2. Hyperparameter setup of TS-CBOW and TS-SG

Hyperparameter TS-CBOW TS-SG

Negative sample ξ 2 2

Iteration number γ 4 2

Learning rate α 10−3 10−3

Context window size T 5 5

5 Results and Discussion

The most intuitive evaluation of our models is the performance on NLP tasks.
Table 3 illustrates the accuracy obtained by different methods.

Row static means embeddings will not be fine-tuned via training classifica-
tion system, which straightforwardly reflects the intrinsic quality of word embed-
dings for specific tasks. The obtained task-specific word embeddings from our
methods are also applied in this case. With the comparison, both two proposed
methods achieve obvious improvements against pre-trained word embeddings. It
indicates that, for intended task, our task-specific word embeddings have more
excellent property than unsupervised version. Both binary and multiple classifi-
cation can obtain new state-of-the-art results.

Compared with static case, row non-static shows that fine-tuning pre-
trained embeddings via training procedure of task indeed yields improvements.
However, our methods still have distinct superiority. Such superiority demon-
strates that task-specific information is more effectively embedded in word
embeddings through our retraining schemes, in spite of training on scarce
dataset.

The same outstanding performance in various embedding set (Table 3) also
provides evidence that the proposed methods have good generalization ability.

An more intuitive evaluation of our proposed methods is presented in Table 4,
which illustrates the change of relevant words after retraining process for MR
task. From the first entry, our models are capable of generating task-specific
embeddings for words that occur in training dataset. According to Table 1, the
number of OOTS and OOV words is non-ignorable. For these two parts, essential
content is also evidently captured to reflect movie review sentiment tendency.

5.1 Comparison Between TS-CBOW and TS-SG

The distinctions described in Sect. 3.1 determine that there exist some property
distinctions between them. In terms of the achieved improvement of tasks, both
models have their merits. With different released versions of pre-trained embed-
ding set, winners are not always similar for the same sentence classification task.
In time efficiency, even though TS-CBOW needs twice the iteration number of
TS-SG, TS-SG has more than twice the computational complexity of TS-CBOW
in every context window under our parameter setting. It means that, under the
same scale of training corpus, TS-SG spends more time. In conclusion, both
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Table 3. Accuracy of our models against original method for two word embedding
sets. “-” means using pre-trained word embedding to initialize input. static: Word
embeddings are kept static and only the classification system parameters are learned.
non-static: Word embeddings are fine-tuned as parameters via back-propagation.

GoogleNews-vectors-negative300.bin

Word embed Model MR SST-2 SST-1 TREC

Static - 80.60 84.91 45.20 92.60

Non-static - 81.26 85.85 46.06 93.30

Static TS-SG 82.02 85.74 46.96 93.60

Static TS-CBOW 82.80 86.07 46.52 93.30

glove.840B.300d.zip

Word embed Model MR SST-2 SST-1 TREC

Static - 79.47 84.08 43.34 92.20

Non-static - 80.41 84.96 45.02 93.20

Static TS-SG 81.63 85.18 45.20 93.60

Static TS-CBOW 82.11 84.58 46.56 92.80

Table 4. A list of representative words from the 20 closest-ranked (cosine-distance)
words extracted from pre-trained (pre) and task-specific embedding (TS) set. TS
embedding set is learned from MR dataset.

IN TRAIN

Good pre: great, bad, terrific

TS: excellent, pretty, unbelievable

OUT OF TRAIN

Opulent pre: luxurious, opulence, palatial

TS: sumptuous, lavish, ostentatious

OUT OF VOCAB

Unsuspenseful TS: humourless

Inhospitability TS: individuals

proposed methods can bring performance improvement. But when dealing with
large-scale training corpus, if paying more attention to time efficiency, there is
no lack of reason to select TS-CBOW.

5.2 Impact of Parameter Tuning

Experimental results presented in Table 3 are obtained under the optimal set-
ting for selected corpus. Proved through the experiments with different hyper-
parameter setups, the performance of TS-CBOW and TS-SG, up to a certain
extent, is affected by hyper-parameter tuning.
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Fig. 2. Influence of hyper-parameter tuning for 4 targeted sentence classification tasks.
TSCW and TSSG respectively denote TS-CBOW and TS-SG methods. iter and neg
respectively represent the operation of adjusting γ and ξ. In order to save space, they
share the same horizontal coordinate.

– Figure 2 shows how the accuracy of sentence classification governed by num-
ber of iteration γ and negative samples ξ. We analysis the influences for all
four tasks. Overall, little value is enough to achieve remarkable performances.
For iteration γ, larger value can not achieve sensible improvement and con-
tributes to unnecessary waste of time. Through observing experiments on vari-
ous datasets, corpus with larger scale need a slightly lower number of iteration.
With regard to ξ, larger value is redundant for performance and even coun-
terproductive.

– In terms of learning rate α, larger numerical value causes undesirable semantic
deviation; however, less value may reduce the speed of convergence.

– For pre-trained embedding set, even generated from different corpus or differ-
ent methods, better performances are still achieved by the proposed methods.

5.3 Analysis of Label Embeddings

Label embeddings are trained in the same space with word embeddings, so the
relative position between them indicates the relative semantic relationship. In
the case of MR task, the nearest embedding of positive label is negative label,
and vice versa. It makes sense that they are parallel concepts in formula and most
contexts of these opposite labels are same. However, similarity does not mean
identity. Different trigger word sets of different sentiment polarities determine
different information involved in label embeddings, which is the key point to
generate desirable task-specific word embeddings.
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6 Conclusion

We present an effective method to adapt unsupervised word embedding to the
specific need of the intended supervised tasks. With input initialized by task-
specific word embedding, corresponding sentence classification tasks achieve sig-
nificant improvement. This method involves two advantages. On the one hand,
every required word yields rational task-specific distributed representation, even
for OOTS and OOV words. On the other hand, our method is independent of
task training procedure, which effectively alleviates over-fitting problem.
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no. B08004, the National Natural Science Foundation of China (61273217, 61300080),
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Abstract. Extracting Lives In relations between bacteria and their
locations involves two steps, namely bacteria/location entity recogni-
tion and Lives In relation classification. Previous work solved this task
by pipeline models, which may suffer error propagation and cannot uti-
lize the interactions between these steps. We follow the line of work using
joint models, which perform two subtasks simultaneously to obtain better
performances. A state-of-the-art neural joint model for relation extrac-
tion in the Automatic Content Extraction (ACE) task is adapted to
our task. Furthermore, we propose two strategies to improve this model.
First, a novel relation is suggested in the second step to detect the errors
in the first step, thus this relation can correct some errors in the first
step. Second, we replace the original greedy-search decoding with beam-
search, and train the model with early-update techniques. Experimental
results on a standard dataset for this task show that our adapted model
achieves better precisions than other systems. After adding the novel
relation, we gain a nearly 2% improvement of F1 for Lives In relation
extraction. When beam-search is used, the F1 is further improved by
6%. These demonstrate that our proposed strategies are effective for
this task. However, additional experiments show that the performance
improvement in another dataset of bacteria and location extraction is
not significant. Therefore, whether our methods are effective for other
relation extraction tasks needs to be further investigated.

Keywords: Bacteria · Biotope · Relation extraction · Joint model

1 Introduction

The information of bacteria and their surviving environments is useful in many
areas such as food safety and health sciences. Therefore, extracting bacteria and
their locations has received much research attention in the biomedical natural
language processing (BioNLP) community [2,6,14]. Taking a sentence “The vib-
rios are ubiquitous to oceans.” in the guideline of the Bacteria Biotope (BB)
task at BioNLP shared task (BioNLP-ST) 2016 [3] as an example, the task aims
to extract bacteria entity mentions (e.g., vibrios), location entity mentions (e.g.,
oceans), and Lives In relations (e.g., {vibrios, oceans}) from this sentence.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 15–26, 2017.
DOI: 10.1007/978-3-319-57529-2 2
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This is a typical relation extraction task that involves two steps. First, entity
mentions are recognized and second, each pair of entity mentions is examined,
deciding whether a Lives In relation exists. The first step can be treated as a
named entity recognition (NER) task [7], and the second step can be casted
as a relation classification task [19]. We focus on the line of work using neural
networks, which have achieved state-of-the-art performances for both tasks.

Recently, Miwa and Bansal [13] proposed a neural joint model for relation
extraction in the ACE task1, which can be adapted to our task. Compared with
pipeline models that handle NER and relation classification separately, joint
models can alleviate the problem of error propagation [9]. For example, if the
bacteria or location entity of a Lives In relation is not correctly recognized, this
relation will be definitely lost. Another advantage of joint models is that they
can utilize the interactions between two steps. Miwa and Bansal [13] implicitly
performed it by building the features of the second task based on the outputs
of the first task, and jointly training these features. To enhance the interactions
explicitly, we add a special relation called Invalid Entity, which means that some
entities related to such relation may be incorrectly recognized. If an entity is only
associated with Invalid Entity relations, it will be removed from final results of
entity recognition. Thus, even if there are some wrongly-recognized entities, we
can still correct them by the second step.

Moreover, Miwa and Bansal [13] exploited a greedy left-to-right manner to
predict entity recognition labels incrementally, which may suffer error propaga-
tion among these labels, i.e., the error in the prior prediction can induce new
errors in the subsequent predictions. In this paper, we use beam-search, which
has been successfully applied in other tasks [9,21], to alleviate this problem.

We adapt the model of Miwa and Bansal [13] as our baseline, and verify our
strategies gradually in the BB task at BioNLP-ST 2016 [3], which is a standard
competition for Lives In relation extraction between bacteria and location enti-
ties. Results show that our baseline can achieve state-of-the-art performances for
this task. By adding the Invalid Entity relation, we gain a nearly 2% improve-
ment of F1. When beam-search is used, the F1 is further improved by 6%.

2 Related Work

Extracting Lives In relations between bacteria and location entities belongs to
the line of work on relation extraction. Prior work usually used two-step pipeline
models to handle this task [2,4,14]. First, all possible bacteria/location enti-
ties are recognized using sequence labeling models. Then Lives In relations are
extracted between bacteria/location entity pairs using binary classification mod-
els. We do not exploit this framework because it can easily suffer the error prop-
agation problem. Moreover, the useful interaction information between two steps
is unable to be incorporated.

Our work falls into the line of work using joint models for relation extrac-
tion. Roth and Yih [16] proposed a joint inference framework based on integer
1 https://www.ldc.upenn.edu/collaborations/past-projects/ace.

https://www.ldc.upenn.edu/collaborations/past-projects/ace
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linear programming to extract entities and relations. Li and Ji [9] exploited a
single transition-based model to accomplish entity recognition and relation clas-
sification simultaneously. Kordjamshidi et al. [6] proposed a structured learn-
ing model to extract biomedical entities and their relationships. Very recently,
Miwa and Bansal [13] proposed a neural model based on long short-term memo-
ries (LSTMs) [5] to perform relation extraction jointly. This model captures both
word sequence and dependency structure information by stacking tree-structured
recurrent neural networks (RNNs) on sequential RNNs, which allows the model
to share parameters between two submodules of entity recognition and relation
classification. Such method utilizes the correlations between the relevant sub-
tasks for mutual benefit, and outperforms state-of-the-art feature-based model
[9,16]. We follow the work of Miwa and Bansal [13], with extensions of a novel
interaction mechanism and beam-search [9,21].

Our work is also related to neural network models of NER [7], relation clas-
sification [8,12,17–19] and relation extraction [10]. For NER, Lample et al. [7]
exploited RNNs to extract features, which are similar with our neural network
structures for NER. For relation classification, Zeng et al. [19] leveraged convo-
lutional neural networks (CNNs) to classify relations with lexical, sentence and
word position features. Li et al. [8] used the similar framework and features, but
focused on Lives In relation classification between bacteria and their locations.
In particular, our neural network structures of relation classification are similar
with [12,18], which exploited RNNs over the shortest dependency path between
two target entities to extract neural features. For relation extraction, prior work
focused on distant supervised methods using Freebase [10], whose methods and
tasks are essentially different from ours.

3 Baseline

We follow the work of Miwa and Bansal [13] to build our baseline for extracting
bacteria and their locations. Figure 1 shows an example of the analysis process
when a sentence “The vibrios are ubiquitous to oceans.” is given.

3.1 Bacteria/Location Entity Recognition

The model casts bacteria/location entity recognition as a sequence labeling prob-
lem. The output sequence labels are defined to recognize three entity types in our
task with a BILOU scheme [7], where B-Bacteria/B-Habitat/B-Geographical,
I-Bacteria/I-Habitat/I-Geographical and L-Bacteria/L-Habitat/L-Geographical
denote the beginning, following and last words of bacteria/habitat/geographical
entities. U-Bacteria/U-Habitat/U-Geographical denote the only words of corre-
sponding entities, and O denotes that the word does not belong to any type
of entities. Following the task definition [3], we consider that both habitat and
geographical entities are location entities.

Our model predicts the entity label of each word from left to right. Given an
input sentence w1/t1,w2/t2, . . . ,wn/tn, where w denotes a word and t denotes
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vibriosTheword are ubiquitous to oceans .

nsubj

NNSPOS DT VBP JJ TO NNS .

...

U-BacteriaO

Lives In

ubiquitous

vibrios to

oceans

softmax layer

hidden layer

LSTM unit

Fig. 1. “vibrios” and “oceans” are bacteria and location entities. “POS” denotes part-
of-speech tags. The dotted arrow line denotes a “nsubj” dependency type between
“vibrios” and its governor “ubiquitous”. “O” and “U-Bacteria” denote entity labels,
and “Lives In” denotes a relation label. The left part recognizes bacteria/location enti-
ties by tagging each word with an entity label from left to right incrementally. The right
part determines whether a Lives In relation exists between a pair of bacteria/location
entities by building a dependency tree and extracting features from it.

its POS tag. We represent each wi/ti by concatenating their embeddings, namely
xi = [e(wi); e(ti)]. A bi-directional LSTM-RNN is built based on x1, x2, . . . , xn,
and outputs h1, h2, . . . , hn. hi is selected as one source of features to predict the
entity label li of wi/ti. The label li−1 of last word is selected as another source.
Finally, we concatenate hi and e(li−1), and use a feed-forward neural network
with a hidden layer si and a softmax layer to compute the scores of all entity
labels. The label with the highest score is selected as li for wi/ti.

3.2 Lives In Relation Extraction

Once entity recognition is finished, we start binary relation classification to deter-
mine whether a Lives In relation exists between a pair of bacteria and location
entities. The key idea of the classification is to build a dependency tree whose
root is the lowest common ancestor of two target entities, and model the shortest
dependency path between the ancestor and target entities.

As shown in the right part of Fig. 1, given two target entities a (e.g., vib-
rios), b (e.g., oceans) and their lowest common ancestor c (e.g., ubiquitous) in
the dependency tree. The shortest dependency paths can be formally represented
by {a, a1, . . . , am, c, bn, . . . , b1, b} (e.g., {vibrios, ubiquitous, to, oceans}), where
a1, . . . , am or b1, . . . , bn denotes the words occurred on the path between a and c,
or b and c, respectively. The path can be divided into two parts, where ↑seqa =
{a, a1, . . . , am, c} (e.g., {vibrios, ubiquitous}) and ↑seqb = {b, b1, . . . , bn, c}
(e.g., {oceans, to, ubiquitous}) are bottom-up sequences, and ↓seqa =
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{c, am, . . . , a1, a} (e.g., {ubiquitous, vibrios}) and ↓seqb = {c, bn, . . . , b1, b} (e.g.,
{ubiquitous, to, oceans}) are top-down sequences.

Features are extracted from these sequences by LSTMs. The input of each
LSTM unit is a concatenation of three parts, xi = [hi; e(li); e(di)], where hi is the
output of the LSTM unit for entity recognition in Sect. 3.1. e(li) and e(di) are
the entity label and dependency type embeddings. The last outputs of LSTMs
computing along ↑seqa, ↑seqb, ↓seqa and ↓seqb are ↑ha, ↑hb, ↓ha and ↓hb. Finally,
↑ha, ↑hb, ↓ha and ↓hb are fed into a hidden layer sab, and a softmax layer is used
to compute the scores of all relation labels. The label with the highest score is
selected as the relation type of target entities.

3.3 Training

Both parts of the neural network in Fig. 1 employ the same training algorithm
based on stochastic gradient decent, so we describe their training in one section
for conciseness. The final training objective based on cross-entropy losses is

L( θ ) = −
∑

i

log py +
λ

2
‖ θ ‖22, (1)

where θ denotes all the model parameters, y denotes the gold label of a training
example, py denotes the probability predicted by our model, and λ denotes the
regularization parameter of L2 regularization term. We exploit back propagation
to compute the gradients of model parameters.

4 Our Method

4.1 Invalid Entity Relation

In our baseline, the two subtasks, entity recognition and Lives In relation extrac-
tion, have their own neural network structures, respectively. The two sub-
networks share several common inputs, thus the two subtasks are mutually
affected. In addition, the training losses of relation classification network can
be propagated back into the entity recognition network. All these interactions
are performed implicitly through the sharing of model parameters, because para-
meter weights of both sub-networks are influenced by losses of both subtasks.

However, we aim to make the upper relation classification task help the entity
recognition task explicitly. In the baseline model, the relation classification sub-
module handles two categories, namely Lives In relation and not Lives In rela-
tion. It is built upon the assumption that the given entity pair is a real bacte-
ria/location pair, which cannot be corrected when the entity recognition submod-
ule makes errors. In order to handle this case, we add a relation Invalid Entity
to the relation classification submodule. This relation indicates that at least one
of two target entities recognized in the first step is incorrect. If an entity is only
associated with Invalid Entity relations, it will be removed from final results
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Bacteria

Location

Gold Entities

Gold Relations

Example
Lives_In

or
Not Lives_In

Example
Invalid_Entity

1
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3
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Fig. 2. Training procedure of relation classification. 1: Given a pair of recognized bac-
teria and location entities, we match them with gold entities. 2: If both of them can be
matched, we search their gold relation type in gold relations by entities. 3: A training
example is built with the gold relation type, namely Lives In or not Lives In. 4: If
any of them cannot be matched with gold entities, this entity pair is impossible to
be associated with any gold relation. Therefore, a training example is built with the
Invalid Entity relation type.

Bacteria

Location

Relation
Classification1

2

3
4

5Entity Set A

Invalid_Entity

Others

Entity Set B
Entity Set C Final Entities

Fig. 3. Decoding procedure of relation classification. 1: Given a pair of recognized
bacteria and location entities, our model predicts their relation. 2: If the predicted
relation is Invalid Entity, we add two target entities into the entity set A. 3: If the
predicted relation is others (either Lives In or not Lives In), we add two target entities
into the entity set B. 4: The entity set C denotes the set difference (A-B) of set A and
B, so the entities in the set C are only associated with Invalid Entity relations. 5:
Entities in the set C will be removed from the final results of entity recognition, and
the relations related to the entities in the set B can be used as the final results of
relation classification.

of entity recognition. This relation can further help us to correct several errors
made by the entity recognition submodule.

After adding the Invalid Entity relation, the training procedure of entity
recognition does not change but that of relation classification changes as shown
in Fig. 2. Similarly, the decoding procedure of relation classification changes cor-
respondingly as shown in Fig. 3.

4.2 Beam-Search

During entity recognition, our baseline model exploited a greedy left-to-right
manner to assign an entity label to each word. The prediction of next step
requires the entity label of current step. Thus, when the current step is incorrect,
it could influence the result of the next step. This kind of error propagation is
less severe than that of pipeline models, because the parameters of joint models
are trained jointly and the errors could be considered implicitly to some extent.
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1: agenda ← { }
2: for word in sentence
3: beam ← { }
4: for candidate in agenda
5: for label in entity labels
6: score ← Compute(candidate, word, label)
7: beam ← NewCandidate(candidate, word, label, score)
8: agenda ← TopK(beam)
9: best ← Best(agenda)

10: entities ← CreateEntity(best)

Fig. 4. Beam-search decoding for entity recognition.

For each word (i.e., step) in a given sentence, we firstly fetch a history can-
didate prediction in agenda (line 4), and then give a score for each entity label
based on the candidate and the current word (line 6). After that, a new candi-
date prediction is generated and added to beam (line 7). After all the candidates
in agenda have been iterated, we rank the candidates in beam (line 8) by accu-
mulating the entity label score of each word in each candidate, formally by

score(candidate) =
∑

li∈L

score(li) =
∑

li∈L

w · f(li), (2)

where L = {l1, l2, . . . , ln} denotes the entity label sequence of the current can-
didate, w denotes the model parameters and f denotes the feature extraction
function. K-best candidates are stored back into agenda for next step (line 8).
After the last step, we use the best candidate prediction and create entities based
on it (lines 9–10). The advantage of beam-search is that we have multiple choices
at each step, in case that the optimal local prediction is incorrect. The candidate
predictions are ranked by global scores, thus error propagation can be alleviated.

We exploit the early-update strategy [9,21] during training, which has been
widely used with beam-search. The updating of model parameters is performed
at the time when gold-standard results cannot be recovered by the predicted
candidates in the beam. Thus only the losses of partial results are used for back
propagation. In Fig. 4, the early-update strategy is applied immediately after
fetching the k-best candidates in the beam at each step (line 8).

5 Experiments

5.1 Experimental Settings

We conduct experiments on a standard dataset from the BB task at BioNLP-ST
2016 [3], which includes an open competition named BB-event+ner. In this com-
petition, gold entities are not given, so participants need to perform both bacte-
ria/location entity recognition and Lives In relation extraction. The dataset con-
sists of 161 documents from PubMed, and we follow the official method to split
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Table 1. Hyper-parameter settings, where D denotes vector dimensions.

Type Hyper-parameter

Training α = 0.01, λ = 10−8

Embedding D(e(wi)) = 200

D(e(ti)), D(e(di)) or D(e(li)) = 25

Entity Network Structure D(hi) = 200, D(si) = 100

Relation Network Structure D(↑ha, ↑hb, ↓haor↓hb) = 100

D(sab) = 100

the dataset into training, development and test sets. In particular, we remove
the discontinuous and nested entities, in order to fit our models.

For the development set, we use precision (P), recall (R) and F1-score
(F1) to evaluate the performances of entity recognition and relation extraction.
A recognized entity is counted as true positive (TP) if its boundary and type
match those of a gold entity. An extracted relation is counted as TP if its rela-
tion type is correct, and the boundaries and types of its related entities match
those of the entities in a gold relation. For the test set, we use the official evalu-
ation service2, which shows only the overall performance (P, R, F1) of relation
extraction.

Hyper-parameters are tuned based on the development set. In Table 1, α and
λ denotes the learning rate and L2 regularization parameter. “Entity Network
Structure” and “Relation Network Structure” denote the structures of neural
networks for entity recognition and relation classification, respectively. “Embed-
ding” denotes the basic features we used. We use pre-trained biomedical word
embeddings [15] to initial our word embeddings and other kinds of embeddings
are randomly initialized in the range (−0.01, 0.01).

Given a document, we split it into sentences and then tokenize these sen-
tences. All the tokens are transformed into lowercase forms and numbers are
replaced by zeroes. Stanford CoreNLP toolkit [11] is used for POS tagging and
dependency parsing. Neural networks are implemented based on LibN3L [20].

5.2 Development Results

As shown in Table 2, our model improves F1 in bacteria/location entity recogni-
tion by 0.6% after adding the Invalid Entity relation. The performance improve-
ment is mainly due to the growth of precision. A likely reason may be that some
incorrectly-recognized entities are removed. This demonstrates that the relation
classification submodule can help the entity recognition submodule to correct
some errors through the Invalid Entity relation. In addition, the F1-score of
Lives In relation extraction also increases, from 16.3% to 20.3%. It demonstrates
that the Invalid Entity relation can help to boost relation extraction as well. The

2 http://bibliome.jouy.inra.fr/demo/BioNLP-ST-2016-Evaluation/index.html.

http://bibliome.jouy.inra.fr/demo/BioNLP-ST-2016-Evaluation/index.html
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Table 2. Developmental results (%) of the baseline and our proposed methods.

Method Entity recognition Relation extraction

P R F1 P R F1

Baseline 63.6 47.9 54.7 24.2 12.3 16.3

+Invalid Entity 68.8 46.2 55.3 25.0 17.2 20.3

+Beam (4) 69.7 51.8 59.4 27.8 20.9 23.9
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Fig. 5. F1 against the training epoch using different beam sizes for entity recognition.

possible reason is that this relation can divide the non-Lives In relations more
reasonably. Overall, the results demonstrate that Invalid Entity can boost the
performances of both entity recognition and relation extraction.

Figure 5 shows the development results of beam-search, namely the F1 scores
of entity recognition with respect to the training epoches. We experiment with
five beam settings, including beam 1, 2, 4, 6 and 8, where beam 1 denotes
the baseline greedy search. With beam-search (the beam size is larger than 1),
the performance of entity recognition outperforms the baseline method. Accord-
ing to Fig. 5, we set the final beam size by 4, which achieves the best per-
formance. In Table 2, we also show the concrete developmental results of both
bacteria/location entity recognition and Lives In relation extraction. The recall
values of relation extraction are greatly boosted by beam-search, which is sim-
ilar with our Invalid Entity strategy. Actually, we do not use beam-search in
the relation classification phase, thus the main benefit comes from entity recog-
nition, which brings better performances for the overall relation extraction as
well. Overall, beam-search can give a further increase of 3.6% in F1 for relation
extraction.

5.3 Final Results

Table 3 shows the final overall relation extraction results of our models. The
baseline model can obtain 20.7% of F1, and after adding the Invalid Entity
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Table 3. Final results (%) on the test set.

Method Relation extraction

P R F1

Our models

Baseline 46.9 13.2 20.7

+Invalid Entity 46.1 14.9 22.5

+Beam 46.1 20.7 28.5

Other work

LIMSI 19.3 19.1 19.2

UTS 33.1 13.3 19.0

Table 4. Developmental results (%) of the BB 2013 task.

Method Entity recognition Relation extraction

P R F1 P R F1

Baseline 79.3 74.0 76.6 36.3 6.5 11.0

+Invalid Entity 79.9 74.3 77.0 37.3 6.8 11.5

+Beam 81.7 76.2 78.9 28.5 8.1 12.7

relation, F1 is boosted by 1.8%. When beam-search is applied, we can have
a further improvement of 6%, which demonstrates our proposed strategies are
useful. In particular, we find our strategies can mainly contribute to the recall
values, which is consistent with the finding on the development set. Considering
the low proportion of Lives In relations, the recall is highly important.

Moreover, we show the performances of the top-two systems for this task,
namely LIMSI and UTS, which both leverage pipeline models. LIMSI [4] uses
conditional random field (CRF) and post-processing rules to identify men-
tions of bacteria and locations, and support vector machine (SVM) to classify
Lives In relations between two entity mentions. UTS [3] relies on two indepen-
dent SVMs to perform entity recognition and relation classification, respectively.
From Table 3, we can see that they suffer either lower precision or recall.

5.4 Additional Experiments

We also additionally evaluated our method on the subtask 3 of the bacteria
biotope (BB) task [1] in the BioNLP 2013 shared task. The BB 2013 task is
similar with the BB 2016 task [3], and we focused on the extraction of Localiza-
tion relations which represent the same meaning as Lives In relations. The BB
2013 task includes 78, 27 and 26 documents as training, development and test
sets. Since the official evaluation service is unavailable, we used the development
set for evaluation. The experimental settings of the BB 2013 task is identical to
those of the BB 2016 task, and the development results are shown in Table 4.
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If the Invalid Entity relation is added, the precision, recall and F1-score of
entity recognition increase slightly (0.6%, 0.3% and 0.4%), and those of relation
extraction also rise by 1.0%, 0.3% and 0.5% respectively. By utilizing beam-
search, the precision, recall and F1 of entity recognition further increase by 1.8%,
1.9% and 1.9%, and the performance of relation extraction is generally improved
except the precision, declining by 8.8%. Overall, the performance improvement
in the BB 2013 task is not as apparent as that in the BB 2016 task.

6 Conclusion

To extract bacteria and their habitats, we employed a state-of-the-art system
for joint entity and relation extraction. To enhance this system, two extensions
were made. First, we added the Invalid Entity relation to model the conditions
with incorrectly recognized bacteria/location entities. Then we applied beam-
search to replace the greedy decoding. Experimental results on a benchmark
dataset showed that both of our extensions could improve the performance sig-
nificantly. We demonstrate that implicit parameter sharing for joint models is
not enough and greedy decoding also influences the performance of joint mod-
els. However, additional experiments on another dataset showed that the per-
formance improvements were not obvious. Therefore, we need to evaluate our
method on more relation extraction tasks to further demonstrate its effectiveness.
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Abstract. The precision matrix is the inverse of the covariance matrix.
Estimating large sparse precision matrices is an interesting and a chal-
lenging problem in many fields of sciences, engineering, humanities
and machine learning problems in general. Recent applications often
encounter high dimensionality with a limited number of data points lead-
ing to a number of covariance parameters that greatly exceeds the num-
ber of observations, and hence the singularity of the covariance matrix.
Several methods have been proposed to deal with this challenging prob-
lem, but there is no guarantee that the obtained estimator is positive
definite. Furthermore, in many cases, one needs to capture some addi-
tional information on the setting of the problem. In this paper, we intro-
duce a criterion that ensures the positive definiteness of the precision
matrix and we propose the inner-outer alternating direction method of
multipliers as an efficient method for estimating it. We show that the
convergence of the algorithm is ensured with a sufficiently relaxed stop-
ping criterion in the inner iteration. We also show that the proposed
method converges, is robust, accurate and scalable as it lends itself to
an efficient implementation on parallel computers.

1 Introduction

Recent applications often encounter high dimensionality with a limited num-
ber of data points leading to a number of covariance parameters that greatly
exceeds the number of observations. Examples include marketing, e-commerce,
and warehouse data in business; microarray, and proteomics data in genomics
and heath sciences; and biomedical imaging, functional magnetic resonance
imaging, tomography, signal processing, high-resolution imaging, and functional
and longitudinal data. In biological sciences, one may want to classify diseases
and predict clinical outcomes using microarray gene expression or proteomics
data, in which hundreds of thousands of expression levels are potential covariates,
but there are typically only tens or hundreds of subjects. Hundreds of thousands
of single-nucleotide polymorphisms are potential predictors in genome-wide asso-
ciation studies. The dimensionality of the variables’ spaces grows rapidly when
interactions of such predictors are considered.

Large-scale data analysis is also a common feature of many problems in
machine learning, such as text and document classification and computer vision.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 27–38, 2017.
DOI: 10.1007/978-3-319-57529-2 3
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For a p × p covariance matrix Σ, there are p(p + 1)/2 parameters to estimate,
yet the sample size n is often small. In addition, the positive-definiteness of Σ
makes the problem even more complicated. When n > p, the sample covariance
matrix is positive-definite and unbiased, but as the dimension p increases, i.e.,
when p � n, which is the case in this study, the sample covariance matrix tends
to become unstable and can fail to be consistent, since it becomes singular.

Due to its importance, there has been an active line of work on efficient
optimization methods for solving the �1 regularized Gaussian maximum likeli-
hood estimator problem (MLE). Among these methods, we cite the projected
subgradients [7], the alternating linearization, the inexact interior point method,
the greedy coordinate descent method and G-LASSO which is a block coordi-
nate descent method. For typical high-dimensional statistical problems, opti-
mization methods typically suffer sub-linear rates of convergence. This would
be too expensive for the Gaussian MLE problem, since the number of matrix
entries scales quadratically with the number of nodes.

Sparse modeling has been widely used to deal with high dimensionality. The
main assumption is that the p dimensional parameter vector is sparse, with
many components being exactly zero or negligibly small. Such an assumption is
crucial in identifiability, especially for the relatively small sample size. Although
the notion of sparsity gives rise to biased estimation in general, it has proved to
be effective in many applications. In particular, variable selection can increase
the estimation accuracy by effectively identifying important predictors and can
improve the model interpretability.

To estimate the inverse of the covariance matrix, a thresholding approach is
proposed as the following,

M̂ = arg min
M

1
2
‖Σ̂M − I‖2F + λ‖M‖1, (1)

where M is the precision matrix, i.e., the inverse of Σ. This equation emphasizes
the fact that the solution may not be unique. Such nonuniqueness always occurs
since Σ = XT X where X ∈ R

n×p is the sample data matrix and rank (X) ≤
n � p, which is our case. However, there is no guarantee that the thresholding
estimator is always positive definite [5]. Although the positive definite property is
guaranteed in the asymptotic setting with high probability, the actual estimator
can be an indefinite matrix, especially in real data analysis.

To overcome these limitations, i.e. to achieve simultaneously sparsity, posi-
tive semi-definiteness, and add structure or constraints on the coefficient of the
precision matrix in a graphical model setting for example, a natural solution is
to add the positive semi-definite constraint and penalize the �1 norm of a matrix
D multiplied by the precision matrix estimate M, where D ∈ R

p×p, i.e.,

M̂ = arg min
M

1
2
‖Σ̂M − I‖2F + λ‖DM‖1. (2)

Before discussing our contribution in that sense, let us introduce G-LASSO,
which is a popular penalized approach for estimating the precision matrix.
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1.1 Tikhonov and G-LASSO

The log-likelihood of a sample xi in a Gaussian model with mean µ and precision
matrix M is given by

L(xi,µ, Σ̂) = log detM − (xi − µ)T M(xi − µ), (3)

and since this average log-likelihood depends only on the sample covariance
matrix Σ̂, we define

L(M, Σ̂) =
∑

i

L(xi,µ, Σ̂) = log detM − 〈Σ̂,M〉. (4)

A very well known technique for the estimation of precision matrices
is Tikhonov regularization. Given a sample covariance matrix Σ̂ 	 0, the
Tikhonov-regularized problem is defined as

max
M�0

L(M, Σ̂) − λ Trace(M), (5)

or equivalently;

max
M�0

log detM − 〈Σ̂,M〉 − λ Trace(M). (6)

This can be seen as imposing a matrix variate Gaussian prior on M1/2 with
both row and column covariance matrices equal to I to make the solution well
defined, assuming positiveness of M. The optimal solution of (6) is given by

M = (Σ̂ + λI)
−1

. (7)

Since the �1-norm is the tightest convex upper bound of the cardinality of a
matrix, several methods based on �1-regularized log-determinant program have
been proposed. This is called G-LASSO, or Graphical LASSO, after the algo-
rithm that efficiently computes the solution,

max
M�0

log detM − 〈Σ̂,M〉 − λ‖M‖1. (8)

Similar to Eq. (8), Bien and Tibshirani in [3] suggested to add to the like-
lihood a LASSO penalty on ‖D 
 Σ‖, where D is an arbitrary matrix with
non-negative elements and 
 denotes the element-wise multiplication, i.e., the
Hadamard product. So the regularization problem becomes

min
M�0

− log detM + 〈Σ̂,M〉 + λ‖D 
 M‖1, (9)

and one may tighten the constraint M � 0 to M � δI for some δ > 0, so that
the above equation becomes

min
M�δI

δ>0

− log detM + 〈Σ̂,M〉 + λ‖D 
 M‖1. (10)
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The asymptotic properties of the estimator has been studied in [13]. Cai and
Zhou in [5] proposed a constrained �1-minimization procedure for estimating
sparse precision matrices by solving the optimization problem

min ‖M‖1 subject to ‖Σ̂M − I‖∞ ≤ λ. (11)

Equation (11) is obtained from a decomposition of series of Dantzig selector
problems. In the above, the symmetry condition is not enforced on M and as a
result the solution is not symmetric in general. Cai and Zhou in [5] established
the rates of convergence of CLIME, which is the algorithm derived from the
above regularization problem, under both the entry-wise �1- and the Frobenius-
norm and proved that CLIME estimator is positive definite with high probability.
However, in practice there is no guarantee that CLIME is always positive definite,
especially when applied in real applications.

This warrants our study and our contributions.

1.2 Summary of the Paper and Contributions

In this paper, we propose a new way of estimating large sparse precision matri-
ces, which is significant in the area of learning, vision and mining. This requires
seeking a sparse solution and also ensuring positive definiteness. We, therefore,
present an optimization model that encourages both sparsity and positive def-
initeness, and propose an implementation based on the inner-outer alternating
direction method of multipliers (ADMM). The method is validated using numer-
ical experiments.

The emphasis of the paper is on introducing a new criterion that insures
the positive-definiteness of the precision matrix by adding a tuning parameter
δ > 0 in the constraints. This additional constraint will guard against positive
semi-definiteness. We add structure on the coefficient of the precision matrix and
we derive an efficient inner-outer ADMM form to obtain an optimal solution.
We perform the ADMM steps, a variant of the standard Augmented Lagrangian
method, that uses partial updates, but with three innovations that enable finess-
ing the caveats detailed above. Also, we show that the proposed algorithm con-
verges with a very relaxed stopping criterion in the inner iteration. It is scalable
and with better accuracy properties than existing methods.

2 The Proposed Method

Given a data matrix X ∈ R
n×p, a sample of n realizations from a p-dimensional

Gaussian distribution with zero mean and covariance matrix Σ = (XTX) ∈
R

p×p and p � n. The goal is to estimate the precision matrix M, i.e., the inverse
of the covariance matrix, Σ. Let Σ̂ be the empirical covariance matrix. The
Graphical LASSO problem minimizes the �1-regularized negative log-likelihood

f(M) = − log detM + 〈M, Σ̂〉 + λ‖M‖1, (12)
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subject to the constraint that M � 0. This is a semi-definite programming
problem in the variable M. When we take the derivative of f(M) with respect
to M and we set it to zero, we obtain the optimality condition

− M−1 + Σ̂ + λ Γ = 0, (13)

where Γ is a matrix of componentwise signs of M, i.e.,
{

γjk = sign(mjk) if mjk �= 0
γjk ∈ [−1, 1] if mjk = 0

(14)

Taking the norm, we get

‖M−1 − Σ̂‖∞ ≤ λ. (15)

Therefore, our interest is to construct a sparse precision matrix estimator
via convex optimization that performs well in high-dimensional settings and is
positive definite in finite samples, see e.g. [14]. Positive definiteness is desirable
when the covariance estimator is applied to methods for supervised learning.
Many of these methods either require a positive definite covariance estimator,
or use optimization that is convex only if the covariance estimator is nonneg-
ative definite, e.g., quadratic discriminant analysis and covariance regularized
regression, see e.g. [16].

We define our estimator as a solution to the following problem

M̂ = arg min
M�δI

δ�0

1
2
‖Σ̂M − I‖2F + λ‖D 
 M‖1, (16)

where Σ̂ is the empirical covariance matrix, D = (dij)1≤i,j≤p is an arbitrary
matrix with non-negative elements where D can take different forms: it can be
the matrix of all ones or it can be a matrix with zeros on the diagonal to avoid
shrinking diagonal elements of M. Furthermore, we can take D with elements
dij = 1i�=j |M̂init

ij |, where M̂init is an initial estimator of M. The later choice of
D corresponds to a precision matrix analogue of the Adaptive LASSO penalty.

To derive our inner-outer ADMM algorithm, as in [1], we will first introduce
a new variable Θ ∈ R

p×p and an equality constraint as follows

M̂ = arg min
Θ,M

{
1
2
‖Σ̂M − I‖2F + λ‖D 
 M‖1 | M = Θ, Θ ≥ δI

}
. (17)

The solution to (17) gives the solution to (16). To deal with the problem
(17), we have to minimize its augmented Lagrangian function, L�(Θ,M,Λ) for
some given penalty parameter �, i.e.,

L�(Θ,M,Λ) =
1

2
‖Σ̂M − I‖2

F + λ‖D � M‖1 − 〈Λ,Θ − M〉 +
1

2
�‖Θ − M‖2

F , (18)

where Λ ∈ R
p×p is the ensemble of Lagrange multipliers associated with the

constraint. Hence at iteration k, the ADMM algorithm consists of three steps,
namely the Θ-Step, the M-Step and the dual-update step.
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First step: In the first step of the ADMM algorithm, we fix M and Λ and
minimize the augmented Lagrangian function over Θ to get

Θk+1 = arg min
Θ�δI

L�(Θ,Mk,Λk) = ProjK(Mk +
1
�
Λk),

where ProjK(Ā) denotes the projection of the matrix Ā = Mk + 1
�Λ

k onto the
convex cone K = {Θ 	 δI}.

Lemma 1. Let ProjK(Ā) be the projection of the matrix Ā onto the convex
cone K = {Θ 	 δI}. If Ā has the eigen-decomposition Ā = V Diag(λ1, λ2,
· · · , λn) VT , then

ProjK(Ā) = V Diag(max(δ, λ1),max(δ, λ2), · · · ,max(δ, λn))UT . (19)

Proof. This result can be traced back to early statisticians, e.g. see [15], who
noticed that if a matrix A has an eigendecomposition

A = U Diag(μ1, μ2, · · · , μn) UT , (20)

where μ1 ≥ · · · ≥ μn are the eigenvalues of A and U is the corresponding
orthonormal matrix of eigenvectors; then the projection of A onto the closed
convex cone S+, formed by the set of positive semidefinite matrices, is

ProjS+(A) = U Diag(max(0, μ1),max(0, μ2), · · · ,max(0, μn)) UT . (21)

Therefore, the extension to ProjK(Ā) is straightforward. ��
Since then this projection has been widely used, e.g. see [9]. Notice that the

numerical cost of computing this projection is essentially that of computing the
spectral decomposition of the matrix to project, i.e., Ā.

Second step: In the second step, we fix Θ and Λ and minimize the augmented
Lagrangian over M, i.e.,

Mk+1 = arg min
M

L�(Θk+1,M,Λk), (22)

where this second step requires a special care since the concept of an inner
iteration is introduced at this level of the procedure.

Third step: The final step of the ADMM algorithm is to update the dual variable
Λ, i.e.,

Λk+1 = Λk − (Θk+1 − Mk+1). (23)

2.1 The Inner Iteration

It can be shown that

Mk+1 = arg min
M

1

2

{
‖Σ̂M‖2

F + �‖M‖2
F − 2〈M, Σ̂ + �Θk+1 − Λk〉

}
+ λ‖D � M‖1,
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for which we are not able to derive a closed form for M. To overcome this
problem, we propose to derive a new ADMM to update M (the inner iteration).
To do this, we reparametrize the D
M with Γ ∈ R

p×p and we add an equality
constraint D 
 M = Γ, then we minimize the following
{

Minimize 1
2

{
‖Σ̂M‖2F + �‖M‖2F − 2〈M, Σ̂ + �Θk+1 − Λk〉

}
+ λ‖Γ‖1, (24)

subject to D 
 M = Γ. (25)

The augmented Lagrangian K�(M,Γ,Δ) associated with this problem is

K�(M,Γ,Δ) =
1
2

{
‖Σ̂M‖2F + �‖M‖2F − 2〈M, Σ̂ + �Θk+1 − Λk〉

}

+ λ‖Γ‖1 − 〈Δ,Γ − D 
 M〉 +
1
2
�‖Γ − D 
 M‖2F (26)

where Δ ∈ R
p×p is the matrix containing the ensemble set of Lagrange multi-

pliers associated with the constraint. As before, the ADMM here, i.e., the inner
iteration, consists of the following three steps:

⎧
⎪⎪⎨

⎪⎪⎩

Mj+1
k = arg min

M
K�(M,Γj ,Δj) (27)

Γj+1 = arg min
Γ

K�(M
j+1
k ,Γ,Δj) (28)

Δj+1 = Δj − (Γj+1 − D 
 Mj+1
k ) (29)

The intermediate M-Step: It can be shown that Mj+1
k is the minimizer of

K�(M,Γj ,Δj), i.e.,

∂

∂M

[
K�(M

j+1
k ,Γj ,Δj)

]
= 0, (30)

which is equivalent to
(
Σ̂T Σ̂ + �I

)
Mj+1

k + �D 
 D 
 Mj+1
k +

(
Δj − �Γj

) 
 D

−
(
Σ̂ + �Θk+1 − Λk

)
= 0, (31)

and therefore, given by the previous expression, Mj+1
k has finally a closed form,

despite the additional but straightforward computational effort at this level.
This additional step, can be considered as a start-up for the original ADMM
algorithm. This is very important when dealing with complex problems and
large datasets. This step is solved via a fixed-point iteration, see [2].

The intermediate Γ-Step: To deal with this Γ-Step, we define an entry-wise soft-
thresholding rule for all the off-diagonal elements of a matrix A as

S(A, κ) = {s(ajl, κ)}1≤j,l≤p (32)
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with s(ajl, κ) = sign(ajl)max(|ajl| − κ, 0) 1{j �=l}, see e.g. [6,11,12,17]. Then the
Γ-Step has a closed form given by

Γj+1 = S(
1
�
Δj + D 
 Mj+1

k , λ). (33)

2.2 The Inner-Outer ADMM Algorithm

Assembling the different expressions, we get the following inner-outer alternating
directions method of multipliers algorithm. The advantage of this algorithm is
that there is no need to solve the inner iteration with a higher accuracy. It is
sufficient to stop the inner iteration with an accuracy of 10−3, whereas in the
outer iteration, we require a tighter accuracy of the order of 10−6. This saves a lot
computational time. Moreover, the motivation of using ADMM is the fact that
it lends itself to an efficient implementation on parallel computers. Therefore,
both the inner and outer iteration can easily be parallelized.

Algorithm 1. Inner-Outer ADMM
1: Input: Initialize the variables Θ0,M0,Λ0,Γ

0,Δ0

2: Output: A precision matrix M
3: Select a penalty scalar � and a tuning parameter λ
4: B ← (Σ̂T Σ̂ + �I)−1

5: for k ← 0, 1, 2, · · · until convergence do
6: Θk+1 ← ProjK(Mk + 1

�
Λk)

7: Ak ← (Σ̂ − Λk + �Θk+1)
8: for j ← 0, 1, 2, · · · until convergence do
9: A ← Ak − (Δj − �Γj) � D − �D � D � Mj

k

10: Mj+1
k ← B × A

11: Γj+1 ← S( 1
�
Δj + D � Mj+1

k , λ)

12: Δj+1 ← Δj − (Γj+1 − D � Mj+1
k )

13: Test of convergence of the inner iteration: ‖Δj+1 − Δj‖ ≤ εinner = 10−3

14: end for
15: Mk+1 ← lim

j→∞
Mj

k

16: Λk+1 ← Λk − (Θk+1 − Mk+1)
17: Test of convergence of the outer iteration: ‖Λk+1 − Λk‖ ≤ εouter = 10−6

18: end for
19: return M

3 Experiments

The ADMM algorithm is known to be scalable. Hence both the inner and outer
iterations can be easily parallelized, thus making the proposed algorithm effi-
cient for big data. To show the convergence and efficiency of our approach, it is
sufficient to use simulations on synthetic data and on a real example to compare
the performance of our estimator with Graphical LASSO.
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Fig. 1. Plot of the objective function
for λ = 0.01

Fig. 2. Eigenvalue distribution of the
estimated precision matrix.

3.1 Validation on Synthetic Data

In order to validate our approach, we used the same simulation structure as in [5].
We generated n = 1000 samples from a p = 600-dimensional normal distribution
with correlation structure of the form σ(xi, xj) = 0.6|i − j|. This model has a
banded structure, and the values of the entries decay exponentially as they move
away from the diagonal. We generated an independent sample of size 1000 from
the same distribution for validating the tuning parameter λ. Using the training
data, we compute a series of estimators with 50 different values of λ and use
the one with the smallest likelihood loss on the validation sample, where the
likelihood loss is defined by, see e.g. [8],

L(Σ̂,M) = − log det(M) + 〈Σ̂,M〉. (34)

We mention that all the experiments are conducted on a PC with 4 GB of RAM,
3 Ghz CPU using Matlab 2009a.

Results for λ = 0.01 are summarized in Fig. 1. The convergence is achieved in
25 steps and needs just 0.54 s. After a few steps of fluctuations (≈ 12 iterations),
the objective function stabilizes and converges to its optimal value where the
eigenvalues of the precision matrix estimated by our algorithm are real and
positive. This proves the positive definiteness of the obtained precision matrix
as shown in Fig. 2.

3.2 Validation on Real Data

For experimental validation, we used 4 cancer datasets publicly available at
the Gene Expression Omnibus, see e.g., http://www.ncbi.nlm.nih.gov/geo/. For
a fair comparison with the other method of estimating the inverse covariance
matrix, we follow the same analysis scheme used by [8]. The datasets are: Liver
cancer (GSE1898), Colon cancer (GSE29638), Breast cancer (GSE20194) and
Prostate cancer (GSE17951) with sample size n = 182; 50; 278 and 154 respec-
tively and number of genes p = 21794; 22011; 22283 and 54675. We preprocessed

http://www.ncbi.nlm.nih.gov/geo/
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the data so that each variable is zero mean and unit variance across the dataset.
We performed 100 repetitions on a 50% − 50% validation and testing samples.

Since regular sparseness promoting methods do not scale to large number of
variables, we used the same regime proposed by [8] and validated our method
in two regimes. In the first regime, for each of the 50 repetitions, we selected
n = 200 variables uniformly at random and used the G-LASSO. In the second
regime, we used all the variables in the dataset, and used our inner-outer ADMM
algorithm. Since the whole sample covariance matrix could not fit in memory, we
computed it in batches of rows as in [12]. In order to make a fair comparison, the
runtime includes the time needed to produce the optimal precision matrix from a
given input dataset. Average runtimes were summarized in Table 1. This includes
the time to solve each optimization problem and also the time to compute
the covariance matrix (if needed). Our method is considerably faster than the
G-LASSO method as shown in Table 1.

Table 1. Runtimes for gene expression datasets. Our method is considerably faster
than G-LASSO.

Dataset Graphical LASSO Our estimator

GSE1898 3.8 min 1.0 min

GSE29638 3.8 min 2.6 min

GSE20194 3.8 min 2.5 min

GSE17951 14.9 min 4.8 min

3.3 Validation on CGH Data

Alterations in the genome that lead to changes in DNA sequence copy number are
a characteristic of solid tumors and are found in association with developmental
abnormalities and/or mental retardation. Comparative genomic hybridization
(CGH) can be used to detect and map these changes therefore knowledge of
copy number aberrations can have immediate clinical use in diagnosis, and in
some cases provide useful prognostic information.

In a typical CGH measurement, total genomic DNA is isolated from test and
reference cell populations, differentially labeled, and hybridized to a represen-
tation of the genome that allows the binding of sequences at different genomic
locations to be distinguished. Array CGH has been implemented using a wide
variety of techniques such as BAC array, i.e., produced from bacterial artificial
chromosomes; cDNA microarray which is made from cDNAs and oligo array,
made from oligonucleotides (Affy, Agilent, Illumina) to name a few. The output
from array CGH experiment is a log2 ratio of the copy number in the test versus
the reference. The goal of this experiment is to identify genome regions with
DNA copy number alterations.

The glioma data from Bredel et al. [4] contain samples representing primary
GBMs, a particular malignant type of brain tumor. We investigate the perfor-
mance of Fused LASSO and ADMM LASSO methods on the array CGH profiles
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of the GBM samples examined in Lai et al. [10]. To generate a more challenging
situation where both local amplification and large region loss exist in the same
chromosome, we paste together the following 2 array regions: (1) chromosome
7 in GBM29 from 40 to 65 Mb and (2) chromosome 13 in GBM31. The perfor-
mance of the two methods on this pseudo chromosome is illustrated in Fig. 3. We
can see that the proposed method using ADMM LASSO successfully identified
both the local amplification and the big chunk of copy number loss.

Fig. 3. Estimated copy number; Left: from Fused LASSO regression shows copy number
alteration regions. Right: using ADMM LASSO algorithm

4 Conclusion and Future Work

The sparse precision matrix estimator has been shown to be useful in many
applications. Penalizing the matrix is a tool with good asymptotic properties for
estimating large sparse covariance and precision matrices. However, its positive
definiteness property and unconstrained structure can be easily violated in prac-
tice, which prevents its use in many important applications such as graphical
models, financial assets and comparative genomic hybridization.

In this paper, we have expressed the precision matrix estimation equation in a
convex optimization framework and considered a natural modification by impos-
ing the positive definiteness and problem-solving constraints. We have devel-
oped a fast alternating direction method of multipliers (ADMM) to solve the
constrained optimization problem and the resulting estimator retains the spar-
sity and positive definiteness properties simultaneously. We are at the phase of
demonstrating the general validity of the method and its advantages over correla-
tion networks based on competitive precision matrix estimators with computer-
simulated reaction systems, to be able to demonstrate strong signatures of intra-
cellular pathways and provide a valuable tool for the unbiased reconstruction of
metabolic reactions from large-scale metabolomics data sets.
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Abstract. Sensor based activity recognition (AR) has gained extensive
attention in recent years due to the ubiquitous presence of smart devices,
such as smartphones and smartwatches. One of the major challenges
posed by AR is to reliably recognize the current activity, when a given
window of time series data contains several activities. Most of the tra-
ditional AR methods assume the entire window corresponds to a single
activity, which may cause high error rate in activity recognition. To over-
come this challenge, we propose a Weighted Min-max Activity Recogni-
tion Model (WMARM), which reliably predicts the current activity by
finding an optimal partition of the time series matching the occurred
activities. WMARM can handle the time series containing an arbitrary
number of activities, without having any prior knowledge about the num-
ber of activities. We devise an efficient dynamic programming algorithm
that solves WMARM in O(n2) time complexity, where n is the length of
the window. Extensive experiments conducted on 5 real datasets demon-
strate about 10%–30% improvement on accuracy of WMARM compared
to the state-of-the-art methods.

1 Introduction

Sensor based activity recognition (AR) has become an important research topic
in recent years due to the ubiquitous presence of the smart devices, such as
smartphones and smartwatches. The main goal of AR is to identify the current
activity of a user, e.g., walking, running or being stationary, based on the sen-
sor readings, e.g., acceleration. There are many applications of AR in our daily
life [10], such as fitness tracking, safety monitoring, and context-aware behavior.
Most of the existing AR methods [2,8,12] use segmented time series to train clas-
sifiers for recognition, where each sample represents a single activity. In practice,
such AR systems utilize a window to capture the data stream of sensors in a
fixed time duration, and supply the captured time series data to a trained clas-
sifier to predict the current activity. However, a window of the data stream may
contain more than one activity causing transitions at arbitrary time positions,
see Fig. 1 for an example. Simply using a time series containing multiple activi-
ties for classification that expects input containing single activity can lead to a
poor recognition accuracy. A trivial approach is to use a small window, so that
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 39–50, 2017.
DOI: 10.1007/978-3-319-57529-2 4
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there is a high probability to capture the exact time series of the current activity
with a minimal chance of transition taking place. But the trade-off is that the
fewer data points will result in lower recognition performance. Therefore, accu-
rate recognition of the current activity in the presence of multiple activities is a
challenging task.

There are a few related studies, which aim to minimize the effects induced
by activity transitions [13], or recognize the transitions [7,14]. Rednic et al. [13]
reported that activity transitions can cause rapid fluctuations in classifier out-
put. They utilized filters to stabilize the prediction, but the approach is unable
to identify the current activity. Some AR systems [7,14] learn a classifier to
recognize the activity transitions in time series. As the transition can provide
information of the activities sequence, this approach can be utilized to infer the
current activity. However, it is unsuitable to handle time series containing sev-
eral transitions, such as stand-walk-run, since there will be a factorial number
of classes that should be trained. For example, if there are N different activities,
and the system demands to handle at most m transitions, then the total number
of required classes is

∑m+1
r=1 PN

r , where PN
r stands for the number of permu-

tations selecting r ordered objects from N objects. As a consequence, learning
transitions is not an efficient approach for current activity recognition.

To address this difficult problem, an idea is to divide the observed window of
time series into segments matching activities transitions. Thereby, the clean time
series of the current activity, which is represented by the last segment, can be
obtained for recognition. However, the existing time series segmentation meth-
ods [1,3,4,6,9,15,17] have at least one of the following drawbacks: (1) optimal
solution is not guaranteed; (2) requiring the input of an exact or a maximum
number of transitions; (3) only focusing on segmentation without considering
activity recognition performance. A detailed discussion is later provided in the
Related Work section. To address these drawbacks, we propose a Weighted Min-
max Activity Recognition Model (WMARM), which reliably predicts the current
activity by finding an optimal partition of the time series matching the occurred
activities. WMARM calculates a set of segments that the maximum value of
the recognition errors on those segments is minimized, and the current activity
is recognized based on the last segment. WMARM can handle time series con-
taining an arbitrary number of transitions without having any prior knowledge
about the number of transitions. WMARM can also be extended by imposing
weights on the segments to improve recognition accuracy. Since the search space
size of WMARM is O(2n), we provide an efficient algorithm using dynamic pro-
gramming to solve the model in O(n2) time complexity, where n is the length
of the window. Moreover, we propose a computationally efficient implementa-
tion of WMARM that the time series is divided into frames for coarse-grained
processing. We conduct extensive experiments on 5 real datasets. The results
demonstrate the superior performance of WMARM compared to the state-of-
the-art methods when handling time series that contains one or more activity
transitions. We also measure the execution time of WMARM algorithm on a
smartphone, and the results indicate that the model can be effectively used on
such resource constrained devices.
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τ
τ3τ2τ1τ0

a WalkingStandingSitting

Fig. 1. The time series shown in the curves are 3-axis acceleration signals. There are 3
activities captured in the time series with transition points τ0, τ1, τ2, τ3, where τ0 and
τ3 are two end points. Sitting and standing are the previous activities, walking is the
current activity that we expect to recognize.

2 Related Work

In this section, we provide a brief survey of the relevant contributions to activity
recognition, activity transition processing, and time series segmentation. Tradi-
tional sensor based AR systems [2,8,12] train classifiers with segmented samples
assuming that each of them contains only one activity. However, they usually
fail to recognize the current activity when the input time series contains two or
more activities. Rednic et al. [13] focused on reducing the fluctuations caused by
activity transitions. They used the Exponentially Weighted Voting filter to avoid
spurious prediction, but the method is unable to detect the current activity dur-
ing transitions. Some works focused on learning and recognizing the transitions
[7,14]. However, such approaches normally require training a factorial number of
classes regarding the number of transitions are considered. Therefore, they are
not efficient for current activity recognition.

Time series segmentation aims to divide a 1-dimension sequence into several
homogeneous segments, and existing methods can be summarized into following
categories: (1) Heuristic based methods [6] use top-down, bottom-up, sliding
window or hybrid ways for time series dividing. The results of heuristic methods
are not stable since the optimal solution cannot be guaranteed. (2) LASSO
based methods [9] solve the segmentation problem via a least-square regression
with a �1-penalty. The methods require the number of maximum transitions as
input. (3) Clustering based methods [17] divide the subsequences in a time series
into K-clusters by using K-mean approach. The methods require the number of
patterns as input. (4) Dynamic programming based methods [1,3,4,15] obtain
an optimal partition of the time series by revealing an optimal structure of the
problem. There are two kinds of dynamic programming approaches. One is for
handling K-segmentation problem [1,3,15], where the number of transitions is
required. The other one [4] can handle an arbitrary number of transitions, but
it does not take into account the recognition performance.

In this paper, we propose a current activity recognition model based on time
series segmentation via dynamic programming. The model reliably recognizes
the current activity while possessing efficient execution time.
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3 Methodology

In this section, we first introduce the preliminary concepts of the methodology.
We then propose a Min-max Activity Recognition Model (MARM), which recog-
nizes the current activity by optimally partitioning a given window of time series.
We further improve the model by considering weights on the segments, and pro-
pose a Weighted Min-max Activity Recognition Model (WMARM). Both of the
models can be solved using dynamic programing in O(n2) time complexity, where
n is the length of the window. Finally, we propose an efficient implementation
of WMARM for obtaining high performance on resource constraint devices.

3.1 Problem Statement

Let X = {x1, x2, ..., xn} be a time series observed by a window. We define
Xi:j = {xi, xi+1, ..., xj−1, xj} (1 ≤ i ≤ j ≤ n) as a subsequence of X containing
data points from xi to xj . Suppose there is a set of m transition points τ =
{τ1, τ2, ..., τm} in the time series X. We define τ0 = 0, τm+1 = n and 0 = τ0 <
τ1 < τ2 < ... < τm < τm+1 = n. Therefore, the transitions points divide the time
series X into m+1 segments {X1:τ1 ,Xτ1+1:τ2 , ...,Xτm+1:n}, where each segment
Xτi+1:τi+1 represents a single activity that is different from its neighbors. For the
reliable prediction of the current activity, we expect to locate those transition
points that the observed time series can be well-divided into clean segments. As
a consequence, the current activity can be exhibited by the last segment and
identified accurately.

3.2 Min-Max Activity Recognition Model (MARM)

Suppose we have a hypothesis P (y |Z), which outputs the probability of the
activity y represented by the time series Z. We define an error function of Z as:

E(Z) = 1 − max
y

P (y |Z). (1)

The function E(Z) returns the probability error of the predicted activity ŷ, where
ŷ holds the highest probability and is represented as:

ŷ = argmax
y

P (y |Z). (2)

Thus, given a time series segment Xτi+1:τi+1 , we can obtain the corresponding
error E(Xτi+1:τi+1) and the activity prediction ŷ = argmaxyP (y |Xτi+1:τi+1). We
propose a segmentation function F (τ ) of the transition points τ as follows:

F (τ ) = max
τi∈τ

⋃{τ0}
{E(Xτi+1:τi+1)}. (3)

The function F (τ ) returns the maximum error of the segments corresponding
to τ . Then, we propose MARM as:

τ ∗ = argmin
τ

{F (τ )}, (4)
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where we aim to find an optimal solution τ ∗ = {τ∗
1 , τ∗

2 , ..., τ∗
m} such that the

maximum error of those segments is minimized. After obtaining τ ∗, the current
activity is represented by the last segment Xτ∗

m+1:n
and is predicted as:

ŷ∗ = argmax
y

P (y |Xτ∗
m+1:n

). (5)

The intuitive explanation of solving MARM is to properly place the transition
points by forcing down the upper bound of the recognition errors. Since the space
size of valid τ is O(2n), exhaustive searching the solution is infeasible. However,
we can employ dynamic programming to solve the problem in O(n2) inspired
from the work of [4]. We claim that the problem of optimizing our model exhibits
optimal substructure, i.e., optimal solutions to a problem incorporate optimal
solutions to related subproblems. Let Xk be the simplified notation of the time
series X1:k, and X0 = ∅. Let τ ∗

k be an optimal solution on Xk, and τ ∗
0 = ∅. We

propose the dynamic programming functional equation (DPFE) to solve MARM
(Eq. 4) as follows:

FXl
(τ ∗

l ) = min
0≤k<l

{max {FXk
(τ ∗

k), E(Xk+1:l)}} (0 < l ≤ n), (6)

where τ ∗
1, τ

∗
2, ..., τ

∗
l−1 are the previous optimal solutions that have already been

obtained. Then, τ ∗
l is calculated as follows:

τ ∗
l = τ ∗

p

⋃
{p}, (7)

where p is the last transition point in τ ∗
l and is obtained by:

p = argmin
0≤k<l

{max {FXk
(τ ∗

k), E(Xk+1:l)}}. (8)

The DPFE in Eq. 6 indicates the optimal substructure that an optimal solution
τ ∗

l to the problem regarding Xl is derived from the optimal solutions τ ∗
1, ..., τ

∗
l−1

to the subproblems regarding X1, ...,Xl−1, which are the prefixes of the time
series X. We show the correctness of the DPFE in Theorem 1.

Theorem 1. τ ∗
l obtained by Eqs. 7 and 8 is an optimal solution to FXl

(τ ).

Proof. We assume τ ∗
l is not an optimal solution of FXl

(τ ), and claim that τ+
l

is an optimal solution. Suppose p is the last transition point of τ ∗
l , then

FXl
(τ ∗

l ) = max {FXp
(τ ∗

p), E(Xp+1:n)}, (9)

where τ ∗
p = τ ∗

l − {p}. Let q be the last transition point of τ+
l , then

FXl
(τ+

l ) = max {FXq
(τ+

q ), E(Xq+1:n)}, (10)

where τ+
q = τ+

l − {q}. Since τ+
l is an optimal solution and τ ∗

l is not, then
FXl

(τ+
l ) < FXl

(τ ∗
l ). But we have:

FXl
(τ+

l ) = max {FXq
(τ+

q ), E(Xq+1:l)}
≥ max {FXq

(τ ∗
q), E(Xq+1:l)}

≥ max {FXp
(τ ∗

p), E(Xp+1:l)} = FXl
(τ ∗

l ), (11)
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Algorithm 1. MARM Algorithm
Input: (1) The time series X of length n.
Output: (1) The set of transition points τ ∗; (2) The predicted current activity ŷ∗.
1: τ ∗

0 = ∅
2: ŷ∗ = Unkown
3: FX0(τ

∗
0) = 0

4: while l = 1, 2, ..., n do
5: p = argmin

0≤k<l
{max {FXk(τ ∗

k), E(Xk+1:l)}} � Using Eq. 8.

6: τ ∗
l = τ ∗

p

⋃ {p} � Using Eq. 7.
7: if l == n then
8: ŷ∗ = argmax

y
P (y | Xp+1:l) � Predicting the current activity.

9: end if
10: end while
11: τ ∗ = τ ∗

n

12: return τ ∗, ŷ∗

which is a contradiction. Therefore, τ ∗
l is an optimal solution of FXl

(τ ) on the
time series Xl.

Based on the proposed DPFE, we can use dynamic programming to obtain
an optimal solution τ ∗

n ≡ τ ∗ that minimizes FXn
(τ ) ≡ F (τ ). We present the

algorithm of solving MARM in Algorithm 1. We explain and analyze the algo-
rithm in terms of time complexity: In lines 4–10, we iteratively calculate τ ∗

l from
l = 1 to n, and each τ ∗

l is calculated in lines 5–6 with O(n) time complexity. In
summary, the final solution τ ∗ can be found in O(n2) time complexity. When
calculating τ ∗

n, the last segment Xp+1:n is exhibited, and the current activity is
predicted as ŷ∗, which is shown in line 8.

3.3 Weighted Min-Max Activity Recognition Model (WMARM)

MARM finds a set of optimal segments on the observed time series X, and
obtains the prediction of the current activity represented by the last segment.
Normally, we would like to have a more reliable prediction for the current activity.
Therefore, we place emphasis on reducing the error for the last segment. To
deliver a more accurate prediction, we propose a new segmentation function
FLA(τ ) which imposes weights on the last segment and previous segments. Let
p ≡ τm be the last transition point in τ , FLA(τ ) is defined as follows:

FLA(τ ) = max {(1 − μ) · FXp
(τ − {p}), μ · E(Xp+1:n)}, (12)

in which a weight parameter μ ∈ [0, 1] is multiplied to the error of the last
segment Xp+1:n, and 1−μ to the maximum error of the previous m−1 segments
obtained by FXp

(τ − {p}). We propose WMARM based on FLA(τ ) as follows:

τ ∗ = argmin
τ

{FLA(τ )}. (13)



Accurate Recognition of the Current Activity 45

By setting μ properly, the accuracy of prediction can be improved. If μ is set to
0.5, the model is equivalent to the original MARM without weight. WMARM
(Eq. 13) can be solved with Theorem 2.

Theorem 2. Given τ ∗
1, τ

∗
2, ..., τ

∗
n−1, which are the optimal solutions of FX1(τ ),

FX2(τ ), ..., FXn−1(τ ), respectively. An optimal solution τ ∗ of FLA(τ ) can be
calculated as:

τ ∗ = τ ∗
p

⋃
{p}, (14)

where p is the last transition point of τ ∗ and is obtained by:

p = argmin
0≤k<n

{max {(1 − μ) · FXk
(τ ∗

k), μ · E(Xk+1:n)}}. (15)

Proof. We assume τ ∗ is not an optimal solution, and claim that τ+ is an optimal
solution, then

FLA(τ ∗) = max {(1 − μ) · FXp
(τ ∗

p), μ · E(Xp+1:n)}, (16)

where τ ∗
p = τ ∗ − {p}. Let q be the last transition point of τ+

l , then

FLA(τ+) = max {(1 − μ) · FXq
(τ+

q ), μ · E(Xq+1:n)}, (17)

where τ+
q = τ+ − {q}. Since τ+ is an optimal solution and τ+ is not, then

FLA(τ+) < FLA(τ ∗). But we have:

FLA(τ+) = max {(1 − μ) · FXq
(τ+

q ), μ · E(Xq+1:n)}
≥ max {(1 − μ) · FXq

(τ ∗
q), μ · E(Xq+1:n)}

≥ max {(1 − μ) · FXp
(τ ∗

p), μ · E(Xp+1:n)}
= FLA(τ ∗), (18)

which is a contradiction. Therefore, τ ∗ is an optimal solution of FLA(τ ) on the
time series X.

To find the exact solution of WMARM, we present a dynamic program-
ming algorithm in Algorithm 2. Similar to Algorithm 1, Algorithm 2 computes
τ ∗
1, τ ∗

2, ..., τ ∗
n−1 in O(n2), as shown in lines 4–7. Calculating the last transition

point p needs to iteratively examine the optimal value of FXk
(τ ∗

k) from k = 0
to n − 1, as shown in line 8, which needs O(n) time complexity. Then, the final
solution τ ∗ is obtained by combining p into τ ∗

p, shown in line 9. In summary, the
total time complexity of Algorithm 2 is O(n2). Finally, the last segment Xp+1:n

is exhibited when calculating τ ∗, and the current activity is predicted as ŷ∗,
which is shown in line 10.
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Algorithm 2. WMARM Algorithm
Input: (1) The time series X of length n.
Output: (1) The set of transition points τ ∗; (2) The predicted current activity ŷ∗.
1: τ ∗

0 = ∅
2: ŷ∗ = Unkonwn
3: FX0(τ

∗
0) = 0

4: while l = 1, 2, ..., n − 1 do
5: p = argmin

0≤k<l
{max {FXk(τ ∗

k), E(Xk+1:l)}} � Using Eq. 8.

6: τ ∗
l = τ ∗

p

⋃ {p} � Using Eq. 7.
7: end while
8: p = argmin

0≤k<n
{max {(1 − μ) · FXk(τ ∗

k), μ · E(Xk+1:n)}} � Using Eq. 15.

9: τ ∗ = τ ∗
p

⋃ {p} � Using Eq. 14.
10: ŷ∗ = argmax

y
P (y | Xp+1:n) � Predicting the current activity.

11: return τ ∗, ŷ∗

3.4 Efficient Implementation of WMARM

WMARM partitions the time series on data point level, which results in O(n2)
time complexity. However, the input time series for activity recognition may
contain hundreds of data points, which produces a large amount of computation
regarding the quadratic complexity. In practice, we can divide the time series
into several frames of size h, and we treat the frame as the basic element in the
time series. Therefore, running WMARM on the frame level reduces the amount
of computation by a factor of h2. Moreover, the computations of obtaining the
hypothesis P (y |Z) in the training phase is also reduced as a result of coarse-
grained time series.

4 Empirical Evaluation

In this section, we evaluate the performance of WMARM in terms of accuracy
on a desktop platform. The experiment scripts are written in Python 2.7 on
64-bit Ubuntu 14.04 LTS operating system. We also evaluate the execution time
of the proposed WMARM algorithm on an iPhone 6 with iOS 9.0 system. The
source code is written in Objective-C and C++.

Datasets: The experiments are conducted on 5 datasets: (1) Human Activ-
ity Sensing Consortium (HASC) 2011 [5]; (2) Human Activity Recognition on
Smartphones Dataset (HARSD)1; (3) Actitracker dataset (ACTR) [8]; (4) Daily
Sport Activities dataset (DSA)1(see footnote 1); (5) Smartphone-Based Recog-
nition of Human Activities and Postural Transitions Data Set (HAPT)1(see
footnote 1). We use the acceleration data of those datasets [11].

Experimental Settings: We use 4-fold cross validation for evaluating, and
repeated 5 times (the datasets are randomly partitioned each time). We use
1 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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3/4 data to generate clean samples (contain only one activity) for training the
classifiers, and 1/4 data to generate several 5 s time series samples where each
sample is randomly formed by K + 1 segments of different activities with K
transitions (K = 0, 1, 2, 3). The length of each activity segment is randomly
selected with no less than 0.5 s. We extract the 1/3 lowest frequency Fourier
coefficients of given time series as features. We set h = n/10 for the efficient
implementation of WMARM. We train 10 classifiers on time series of sizes from
0.5 s to 5.0s (every 0.5 s), respectively, to form the hypothesis P (y |Z). Each
classifier is a random forest with 10 estimators.

Baselines: We use 5 baseline methods in comparison with WMARM: (1) Naive:
We simply use the entire time series for predicting without segmentation. (2)
GIR: We use Global Iterative Replacement (GIR) algorithm [3] to segment the
time series, where the last segment is used for predicting. (3) OPM: We use
Optimal Partitioning Method (OPM) [4] to segment the time series. (4) RNN:
We use Recurrent Neural Network (RNN) [16] with LSTM + Softmax layers to
predict the current activity. We extract features on every 0.5 s time series frames
to form the sequential input of RNN. (5) MSG: We manually obtain the true
segment of the current activity for predicting, and we denote this method as
‘ManualSegment’ (MSG).

4.1 Measuring the Accuracy of Current Activity Recognition

To evaluate the accuracy of WMARM for current activity recognition, we com-
pare WMARM with the baselines using datasets: HASC, HARSD, ACTR, and
DSA. In this experiment, we set the weight μ = 0.7 for WMARM since we
experimentally show later that this value of μ obtains the best accuracy among
the cross-validation. According to the results shown in Table 1, WMARM out-
performs Naive, GIR, OPM, and RNN in all cases, except for K = 0 on ACTR
dataset, since WMARM always find the optimal segments for recognizing the
current activity. Generally, it should be expected that no algorithm can obtain a
better accuracy than MSG. However, WMARM outperforms MSG when K = 0
on HASC, HARSD, and DSA datasets. This is because that WMARM finds the
best fitted segment for recognition instead of the true segment, thereby a part
of noise can be excluded. To statistically compare the performance of WMARM
with the baselines, we conduct the Wilcoxon signed-rank test on their results (80
pairs for each test). The returned p-values represent the lowest level of signifi-
cance of a hypothesis that results in rejection. This value allows one to determine
whether two methods have significantly different performance. We set the signif-
icance level α = 0.05 for the comparison. For K = 1, 2, 3, the returned p-values
ranging from 7.747e-15 to 1.199e-13, reject the null hypothesis for the compar-
isons: WMARM vs. all the baselines except for MSG, which indicate superior
performance of WMARM against those methods. For K = 0, only the p-value
2.477e-06 of WMARM vs. GIR, rejects of the null hypothesis, which indicates
the similar performances of the two methods.
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Table 1. Results of accuracy on datasets: HASC, HARSD, ACTR, and DSA. K is the
number of transitions in time series.

HASC HARSD

K Naive GIR OPM RNN WMARM MSG Naive GIR OPM RNN WMARM MSG

0 88.00% 85.00% 88.55% 17.05% 89.50% 88.00% 81.30% 81.00% 82.85% 20.95% 83.65% 81.30%

1 35.90% 59.35% 46.25% 37.35% 72.65% 83.45% 32.35% 53.60% 45.25% 46.90% 77.00% 80.60%

2 22.45% 41.65% 28.45% 40.70% 56.00% 73.30% 20.40% 34.10% 29.20% 53.75% 67.40% 79.05%

3 16.05% 28.20% 19.85% 43.50% 46.45% 69.25% 15.90% 23.85% 22.85% 58.95% 62.25% 77.80%

ACTR DSA

K Naive GIR OPM RNN WMARM MSG Naive GIR OPM RNN WMARM MSG

0 75.30% 73.25% 75.50% 18.65% 71.30% 75.30% 82.00% 76.00% 82.15% 7.00% 84.60% 82.00%

1 30.90% 51.60% 46.15% 43.55% 63.70% 72.85% 25.85% 63.75% 32.75% 19.25% 65.25% 77.30%

2 23.65% 37.55% 32.20% 50.15% 61.15% 70.45% 13.15% 47.80% 18.85% 22.30% 52.30% 73.90%

3 16.30% 25.65% 23.10% 50.00% 54.95% 67.90% 7.40% 31.85% 12.80% 28.50% 45.10% 70.05%
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Fig. 2. Accuracy of WMARM with respect to μ on datasets: HASC, HARSD, ACTR,
and DSA. For K = 0, the accuracy slightly improves on HASC, HARSD, and DSA,
and slightly drops on ACTR. For K = 1, 2, 3, the accuracy reaches maximum around
μ = 0.7(±0.1), and then slightly decreases by less than 1% or becomes stable.

4.2 Evaluating the Impact of μ on Accuracy

We conduct experiments to evaluate the performance of WMARM with different
settings of μ. According to the results shown in Fig. 2, when there is no transition
in the data, i.e., K = 0, the accuracy is slightly affected by the weight μ since the
optimal result should be only one segment. However, when there are transitions
in the data, i.e., K > 0, the accuracy of WMARM significantly improves with
respect to the increase of μ when μ < 0.7, since the model emphasis more on
the last segment, i.e., the current activity. The accuracy normally reaches the
maximum around μ = 0.7(±0.1), then slightly decreases by less than 1%, or
becomes stable in a few cases. Since over emphasizing the weight on the last
segment may impair the segmentation results on the previous segments, so that
the prediction accuracy on the last segment is affected by the previous segments.

4.3 Measuring the Accuracy on Actual Transitions

In the previous experiments, we use splicing testing samples in order to study
the performance of WMARM. In this experiment, we evaluate WMARM on
actual transitions resulting from user’s changing activities, for example chang-
ing naturally from running to walking. The samples are extracted from HAPT
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dataset [14] which provides several long time series containing a protocol of activ-
ities. We randomly select 70% of the data for training and the rest for testing,
and repeat the experiment 10 times. The training samples are extracted dur-
ing the activities, and the testing samples are extracted between transitions.
WMARM obtains 75.41% accuracy, which outperforms the baselines: Naive
(30.34%), GIR (49.44%), OPM (39.97%), and RNN (55.82%), except for MSG
(76.69%). To explore the statistical significance of the performances of the meth-
ods on handling actual transitions, we conduct the Wilcoxon signed-rank test on
their results (10 pairs). We set the significance level α = 0.05 for the compar-
ison. The p-values of WMARM vs. Naive/GIR/OPM/RNN (0.003346 for all),
reject the null hypothesis for the accuracy measurements, implying a significant
improvement of WMARM over those methods.

4.4 Evaluating the Execution Time on Smartphone

To evaluate the execution time of the WMARM algorithm, we develop an iOS
app on iPhone 6 using Objective-C, and implement the WMARM algorithm
as an internal function using C++. The app captures the 3-axis acceleration
data with 100 samples per second, which is supplied to WMARM algorithm
for processing. We observe a total execution time for 500 runs, and calculate
the average time. WMARM algorithm only costs averagely 0.0153 s for one exe-
cution, which is not expensive for running AR systems on smartphones. Naive
method costs averagely 0.0012 s for one execution, but its accuracy is much lower
than WMARM.

5 Conclusions

In this paper, we highlight a problem normally presented in activity recognition
(AR) that traditional methods usually fail to recognize the current activity in
the presence of multiple activities. To solve this problem, we devise a Weighted
Min-max Activity Recognition Model (WMARM), which predicts the current
activity by optimally partitioning the observed window of time series matching
the activities presented. WMARM considers weights on the partitioned segments
to obtain reliable recognition accuracy. WMARM can also effectively process
the time series containing an arbitrary number of transitions without any prior
knowledge about the number of transitions. Instead of exhaustively searching
the optimal solution of WMARM in exponential space, we propose an efficient
dynamic programming algorithm that computes the model in O(n2) time com-
plexity, where n is the length of the window. Moreover, we present an efficient
implementation of WMARM that the computation cost can be further reduced.
Extensive experiments on 5 real datasets have demonstrated the superior perfor-
mance of WMARM on handling time series with one or more activity transitions.
The results show about 10%-30% improvement on the accuracy of current activ-
ity recognition compared to state-of-the-art methods. The experiment on iPhone
6 shows the prominent computational efficiency of WMARM.
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Abstract. Q&A forums pool massive amounts of crowd expertise from
a broad spectrum of geographical, cultural, and disciplinary knowledge
toward specific, user-posed questions. Existing studies on these forums
focus on how to route questions to the best answerers based on con-
tent or predict whether a question will be answered, but few of them
investigated the inherent knowledge sharing relationship among users.
We study knowledge sharing among users of StackOverflow, a popular
Q&A forum, where the knowledge sharing process is related to the time
elapsed since a question was posted, the reputation of the questioner,
and the content of the posted text. Taking these factors into considera-
tion, the paper proposes time-based information sharing model (TISM),
where the likelihood a user will share or provide knowledge to another is
modeled as a continuous function of time, reputation, and post length.
With the resulting knowledge sharing network learned by TISM, we are
able to predict for a given question the number of responses over time,
who will answer the question and who will provide the accepted answer.
Our experiments show that predictions using TISM outperform NetRate,
query likelihood language, random forest, and linear regression models.

Keywords: StackOverflow · Knowledge sharing · Question answering

1 Introduction

Q&A forums are arguably one of the earliest online venues for the crowdsourc-
ing of information seeking tasks. Many existing studies on these sites have used
content analysis to improve the quality of answers by matching questions to the
best answer providers or predicting whether a question will be answered in a
classification approach. In this paper, we model the inherent knowledge shar-
ing relationships among users of the Q&A forum, and use the resulting knowl-
edge sharing network to predict for a given question the number of responses
c© Springer International Publishing AG 2017
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over time, the (online) identity of who will respond to the question, and which
response will contain the answer accepted by the original questioner.

The process of question answering (the process of peer-to-peer information
sharing in Q&A forums) is itself collective, complex, and dynamic. Each question
to be answered is different from all previous questions. So the knowledge gleaned
from the answers to one question cannot directly answer the next one. Once a
question is solved, the new response on the question thread will dramatically
decrease, i.e., a question thread’s life time is related to when the question is
solved. By taking into account the user account’s reputation, post body text, and
temporal factor, we proposed time-based information sharing model (TISM) and
tested on two topic areas, “mechanics” and “security,” found on StackOverflow,
a popular Q&A forum. The test results are compared to NetRate [4], regression
methods such as random forest, linear regression, and a text mining algorithm
query likelihood language (QLL).

The rest of the paper is organized as follows: Sect. 2 discusses the related
works on Q&A forum and information diffusion. Section 3 gives an introduc-
tion of the StackOverflow dataset and discusses its properties. Section 4 intro-
duces the TISM. Section 5 evaluates the performance of TISM in comparison
to NetRate, RandomForest, linear regression, and QLL. Section 6 concludes the
paper.

2 Related Work

Yang et al. [9] studied the problem of predicting whether a question will receive
an answer. Anderson et al. [1] focused on predicting whether a StackOverflow
thread will have long-lasting value, i.e., receive high or low pageviews in the
future, and whether a question will receive satisfied answer. Asaduzzaman et al.
[2] investigated how long it takes a question to be in answered. Hanrahan et al.
[6] modeled question difficulty as a function of the time it takes for a question to
receive an acceptable answer and users’ expertise. To route questions to appro-
priate answerers, Chang et al. [3] and Li et al. [7] compare several matching
algorithms; Zhou et al. [10] and Liu et al. [8] examine classification approaches
to route question predict the questioner’s satisfaction, respectively.

Among above studies, the classification is a common approach being utilized,
and some studies investigated how to select features to improve performance. The
classification is able to find the relation between the features and the result, but
ignores the inherent process of how knowledge being shared between users. We
study similar prediction problems as these works; the main difference is that we
try to model the inherent information sharing network, and use that to solve
these problems.

On the other hand, information sharing is similar to the information diffusion
process that information flows from the information container to the information
seeker. To model information diffusion, many studies focus on learning the links
between users. Goyal et al. [5] estimated link weight based as the ratio of similar
actions between two persons. Gomez et al. [4] proposed an algorithm where each
edge is associated with a continuous likelihood function.
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3 Q&A Forums

A Q&A forum is composed of a number of Q&A threads, where each begins
with one question and is followed by answers, comments, and votes; the rel-
evant actors are questioner, answerer, commenter and voter. Typical relation-
ships among the Q&A forum are: questioner-answerer, questioner-commenter,
answerer-commenter1. A post published by an actor is referred to as either a
question, an answer or a comment. The study makes the assumption:

Assumption 1. An answering or a commenting action in a Q&A thread indi-
cates knowledge being shared from the answerer to the questioner, the commenter
to the questioner, or the commenter to the answerer; an answer or a comment
is only published if it provides new knowledge or information to the Q&A thread.

This study utilizes the StackOverflow2, and on two particular topics:
“mechanics” and “security”. “Mechanics” comprises questions related to auto-
motive mechanism and maintenance. “Security” is about cyber security and
secure coding. The mechanics dataset thus represents a relatively more tradi-
tional body of knowledge, where we hypothesize that knowledge evolved rela-
tively slower than in computer security. Table 1 lists the relevant statistics.

Table 1. Datasets summary

Dataset #Posts #Comments #Votes #Users Start-date End-date

Mechanics 15463 19175 46975 8417 2010-08-08 2015-03-08

Security 62901 98841 377874 53728 2010-11-26 2015-08-16

We define a knowledge sharing network as the set of all actors who have
posted (questions or responses) on StackOverflow, where two actors share a tie
if one actor responds to post by the other. Similar to other social networks, this
knowledge sharing network also follows a power-law degree distribution.

4 TISM: Time-Based Information Sharing Model

Given the knowledge sharing network, it is still unknown what is the link weight
which requires to model the knowledge sharing process. In principle, model-
ing the knowledge sharing process is to learn the probability a sharing action
(answering or commenting) happens. During the knowledge sharing process, time
is an important factor that a later answer may take the advantage of existing
answers and is more likely to be accepted. Also the time difference from posting
is able to reflect the strength of knowledge sharing relationship. On the other
hand, actor’s reputation is based on the history of whether the actor’s posts

1 The study did not include voter since voter’s information is not published by Stack-
Overflow dataset.

2 https://archive.org/details/stackexchange.

https://archive.org/details/stackexchange
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received positive responses; and the post body text also affect whether it will
receive answers. By taking the reputation, post body text and the temporal fac-
tor into account, we propose “TISM (Time-based Information Sharing Model)”
to reveal the information sharing process between actors in the Q&A forum.

Given a size N network (N actors) and a thread set C, each thread includes
a question, multiple answers and comments, tagged with time-stamps. Thus,
C = {t1, t2, · · · , t|C|}, where tc = {tc1, t

c
2, · · · , tcN}. tci is the time-stamp of i

posts an answer or comment in the thread c. The link from node i to node
j means the likelihood node i shares knowledge to j when i issued a post (it
can either be an answer or a comment) after j. Firstly, i can only share knowl-
edge to j if i published a post after j; secondly, difference on expertise level
(represented by the reputation difference) could be a factor affects whether the
answering/commenting happened between nodes; thirdly, it is also affected by
the knowledge level obtained by the question, where the knowledge level of a
question is represented by the questioner reputation and body text. Since votes
happened after the answers or the comments, votes information is not included
in the model. Thus, the conditional likelihood function is:

fji(ti|tj , δr(j, i), kc
j) =

{
fji(tj,i, δr(j, i), kc

j) ti > tj

0 ti <= tj
(1)

where kc
j = rj ∗ vc

j

where tj,i is the time difference between j and i published their posts; δr(i, j) is
the reputation difference between j and i; rj is the absolute reputation of j; vc

j

is the number of unique words of j’s post in Q&A thread c. kc
j is the knowledge

level contained in post j of thread c, which is the product of rj and vc
j .

In general, f can be in the form of exponential function of the product of the
selected features, such that

fji(tj,i, δr(j, i), kc
j) = exp −(α(1)

ji ∗ tj,i + α
(2)
ji ∗ δr(j, i) + α

(3)
ji ∗ kc

j) (2)

Since reputation difference is relatively constant,

1 =
∫ +∞

−∞
fji(tj,i, δr(j, i), kc

j)

= e−α
(2)
ji δr(j,i)

∫ +∞

0

e−α
(1)
ji ∗tdt

∫ +∞

0

e−α
(3)
ji ∗kdk = e−α

(2)
ji δr(j,i) 1

α
(1)
ji

1

α
(3)
ji

(3)

so, e−α
(2)
ji δr(j,i) = α

(1)
ji α

(3)
ji , and fji depends only on variable t and k, and Eq. (2)

can be simplified as:

fji(tj,i, kc
j) =αjiβji exp −(αjitj,i + βjik

c
j) (4)

Accordingly, the likelihood that node i does not share knowledge to j by the
end of the thread is defined as a survival function:
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Sji(tc − tj) = 1 −
∫ tc−tj

0

fji(tj,i, kc
j)

= 1 −
∫ tc−tj

0

αjie
−αjitdt

∫ +∞

0

βjie
−βjikdk = e−αji(t

c−tj) (5)

tc is the end time (the time elapsed since the question to the last post in the
thread) of the Q&A thread c. Knowledge k is positive (product of reputation
and number of unique words of the post), so it is integral from 0 to ∞. This
survival function means, for any question or answer j published, i does not share
knowledge to j for any time from tj to the end time of this thread tc.

According to the Assumption 1, once a post is published, it provides some
knowledge to previous ones. It is also possible an actor published multiple com-
ments/answers in a Q&A thread. In many cases, the subsequent comments pub-
lished by the same actor are to explain her/his previous answer or comment,
such that the knowledge provided could be overlapping. So, for each actor, only
her/his first answer or comment is included. Therefore, the likelihood an actor i
provides knowledge to a Q&A thread is the likelihood either the actor published
an answer or a comment on existing answering/commenting links.

�+i (c) = foi(tco,i, k
c
o)

I(Eoi)
∏

j:j �=o,tcj<tci

fji(tcj,i, k
c
j)

I(Eji)

=
∏

j:tcj<tci

fji(tcj,i, k
c
j)

I(Ec
ji) (6)

where o is the questioner such that tco < tci for ∀i : i �= o; I(Ec
ji) represents

whether there is an answering or commenting action from i to j in thread c; tcj,i
is the time difference between j’s and i’s post. The likelihood a node i does not
share any knowledge (does not publish any answer or comment) to the Q&A
thread is:

�−
i (c) =

∏
j:tj≤tc

Sji(tc − tj) (7)

It is the product of the survival function that for each node j, if j published a
post but i did not share knowledge to j.

Therefore, the total likelihood for a thread is:

�(c) =
∏

i:tci≤tc

�+i (c)
∏

i:tci>tc

�−
i (c) (8)

and the likelihood of all threads is

L(C;A,B) =
∏
c∈C

�(c,A,B) (9)
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relevant log likelihood is

− LL(C;A,B)

= −
∑
c∈C

log �(c,A,B) = −
∑
c∈C

(
∑

i:tci≤tc

log �+i (c) +
∑

i:tci>tc

log �−
i (c))

= −
∑
c∈C

(
∑

i:tci≤tc

∑
j:tcj≤tci

(log αji + log βji − αjitj,i − βjik
c
j)

I(Ec
ji)

+
∑

i:tci>tc

∑
j:tcj≤tc

−αji(tc − tj)) (10)

The problem is transferred to

minimizeA,B −
∑
c∈C

log �(c,A,B) (11)

subject to αj,i ≥ 0, βj,i ≥ 0, i, j = 1, . . . , N, i �= j

where A := Aj |j = 1, . . . , n;Aj := αj,i|i = 1, . . . , n, i �= j

where B := Bj |j = 1, . . . , n;Bj := βj,i|i = 1, . . . , n, i �= j

The whole optimization is computation intensive, but it can be accelerated by
running optimization on each node in parallel, i.e., optimizing Aj , Bj on the set
C for each j independently. Each dataset is tested in two cases: including answers
only; including both answers and comments. The time stamp of the question is
set as 0 (the beginning of the thread), while the time stamp of the following
answers and comments are set as the time elapsed since the question is posted.
All time stamps are normalized by the maximum time stamp across all threads.
The reputation is normalized according to the maximum actor’s reputation in
the dataset; while the number of unique words is normalized according to the
maximum number of post’s body text’s unique words across all posts.

The optimal α and β from both datasets also follow the power law. This
means that in the network, the knowledge is shared faster on a small portion
of links; or in other words, there are a small number of users who are more
active than others to share their knowledge. This observation is the same as
the assumption proposed in [1] that users are organized as a reputation pyramid
where the high reputation users are on the top and answer questions quicker
than low reputation users who are on the bottom of the pyramid.

5 Prediction Based on the Knowledge Sharing Network

Given the knowledge sharing network learned by TISM, after actor j published
a question, if there is direct link from actor i to j, the probability i shares
knowledge to j by posting an answer or a comment by time T is:

P
(1)
ji =

∫ T

0

fjidt (12)
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where fji is the likelihood function for the link from i to j. fji is defined as Eq. 4.
If i is 2-hop away from j, by time T , the probability of i joining j’s thread

by posting a comment on an answer of j’s question is:

P
(2)
ji = 1 −

∏
l

(1 − P
(1)
jl P

(1)
li ) = 1 −

∏
l

(1 −
∫ T

0

fjl(t, kj)fli(T − t, kl)dt) (13)

where l is the bridge node that there is a link from l to j and a link from i to l.
For each node i 2-hop away from the questioner j, if the bridge node l is indeed
an answerer of j’s question, applying the actual l’s reputation and l’s answer,
otherwise, randomly sample a knowledge level for kl.

To evaluate the performance of TISM, we apply it to solve several predictive
analysis tasks: how many people will be involved in a Q&A thread; how many
people will be involved in a Q&A thread over time; who will answer the question;
and who will provide the accepted answer.

5.1 Task1: Thread Size Prediction

The first question is to know how many people will be involved in a Q&A thread.
There are mainly two type of approaches to solve the problem.

– Use regression methods to determine the relation between the properties of
the initial question/questioner and the thread size;

– Learn the link weight and then estimate the thread size.

Thread Size Estimation with Regression. When an actor raised a question,
the only known information are from the question and the questioner. We select
features: q reput, #questions, title total, title nostop, title unique, body total,
body nostop, body unique3. Linear Regression and Random Forest are utilized
to train the regression models.

Thread Size Prediction with Link Weight. The second method is to learn
the link weight and then estimate the thread size. We use TISM and NetRate
[4] to learn the link weight, where both methods recover the link weight as a
likelihood function.

Given j published a question, the thread size is the summation of the prob-
ability that each actor joins j’s thread. By including answers only, the thread
size is the summation of the probability of any actor i answers j’s question:

TSj =
∑
i�=j

P
(1)
ji (14)

3 q reput: questioner’s reputation; #questions: number of questions published by
the questioner; title total: #words of title; title nostop: #non-stopwords in the
title; title unique: #unique non-stopwords in the title; body total: #words of body
text; body nostop: #non-stopwords in the body text; body unique: #unique non-
stopwords in the body text.



58 B. Cui et al.

where TSj is the thread size of j’s question; P
(1)
ji is the probability i answers j’s

question, and there is direct link from i to j in the TISM or NetRate learned
network.

By including both answers and comments, the thread size is:

TSj =
∑
i�=j

(1 − (1 − P
(1)
ji )(1 − P

(2)
ji )) (15)

In this case, P
(1)
ji is the probability i answers or comments j’s question, i.e.,

i can directly reach j; and P
(2)
ji is the probability i comments on answers of

j’s question, i.e., i is 2-hop away from the j in the TISM or NetRate learned
network.

Result. The experiment runs 10-fold cross validation. All Q&A threads (includ-
ing questions both answered and not answered) are randomly split into 10 folds.
Each round selects 1 fold of threads as the testing data, and the remaining as
the training data. Each method trains the regression model or learns the link
weights from the training data, and tests on the testing data. The mean square
error (MSE) is the difference between the prediction and the ground truth on all
testing threads. Table 2 shows the mean MSE on all 10 rounds on “mechanics”
and “security”, respectively. RF and LM represent the case of using Random-
Forest and LienarRegression. “Ans” means only including answers in a thread
such that the thread size is the total number of answerers in the thread; while
“AnsComt” includes both answers and comments in a thread that the thread
size is the total number of actors (answerer and commenter) in the thread. Both
regression models, NetRate and TISM are trained separately for “Ans” and
“AnsComt”. In “AnsComt” case, NetRate and TISM will include more edges
which from commenting actions.

Table 2. MSE of estimation on Q&A thread size

Dataset RF LM NetRate TISM

Ans Mech 1.59 1.58 6.33 1.29

AnsComt Mech 4.37 4.39 21.30 3.86

Ans Secu 2.70 2.80 12.30 2.58

AnsComt Secu 13.00 13.27 44.55 12.90

As shown in Table 2, TISM outperforms other methods in all cases. Two
regression methods perform similarly. NetRate does not work well in this sit-
uation since it only takes the fact of whether an actor has posts in a thread
into account, but not leveraging the existence of explicit answering/commenting
actions. In addition, NetRate’s link fucntion only depends on the time which
ignores the variety of question/answer published. For example, for the same
questioner, answerer’s behavior could be different with different question pub-
lished.
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5.2 Task2: Thread Size Prediction over Time

The second prediction task is to estimate the thread size over time. Table 2
shows the MSE of thread size prediction until the end of all threads. Comparing
to the regression models, TISM has the advantage that the probability is a
time function, which can show how thread size changes over time. Given a time
T , the probability of a node will join the thread by time T can be derived
as discussed in Sect. 5. Different from the regression method in Sect. 5.1 which
is based on question and questioner features, to estimate the thread size over
time with regression method, the temporal factor are also included. Such that
the regression model is trained with features: q reput, #questions, title total,
title nostop, title unique, body total, body nostop, body unique, time, and the
response (thread size).

Also, different from the Sect. 5.1 where the threads are randomly split, in this
test, all Q&A threads are sorted in the ascending order of when the question
is raised. All three methods (RF,LM,TISM) use the first 90% threads to train
the model, and the remaining 10% threads for the testing. Only answers are
included in this experiment, i.e., the thread size is the #answerers. The MSE
at each time point is the difference between the estimated thread size and the
actual thread size.

Figure 1 shows the MSE of three methods over time. The x-axis is the nor-
malized time and “10” is the maximum time of all threads in the dataset.

Fig. 1. MSE of prediction over time

In both datasets, TISM outperforms RF and LM. TISM has a better esti-
mation from the beginning to the end of the threads. One interesting observa-
tion in “mechanics” is that there is a turn point at time “4”. This is because
most threads received their accepted answer before time “4” such that the actual
thread size increases until time “4” and keeps constant after that. Though regres-
sion method is also able to reflect the thread size change by including the time
feature, TISM’s exponential function models the thread size change smoother.
MSE at time “10” in Fig. 1 is also better than the overall MSE in Table 2. This
is due to that all threads are sorted in time order such that the trained TISM
network from training threads is able to provide more guidance in predicting
future testing threads.
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5.3 Task3: Who Will Provide Answers

The third task is to predict who will provide answers to a question. Since the
thread size is the number of actors joining the thread, it is necessary to know
how these methods work on the prediction of whether each actor will join a Q&A
thread. This question is the same as asking how to routing question to answerers.
QLL [7] is utilized as the baseline method. QLL calculates the probability an
actor will answer a question according to the similarity of the question against
all questions answered by the actor. For each questioner and its question, TISM
is applied to estimate the probability any other actor except the questioner will
join the thread. These actors are ranked based on the probability they will join
a thread from the highest to the lowest. The actual actor in each thread is then
identified with a rank among all actors. The higher the rank of the actual actor,
the better the prediction, i.e., which means the prediction is closer to the ground
truth. The final result is evaluated with Mean Reciprocal Rank (MRR)[7] which
is defined as the mean of the reverse of the rank.

Same as Sect. 5.2, we use first 90% threads as training data, and left 10% for
the testing. Table 3 shows the prediction result of TISM and QLL on “mechanics”
and “security”, respectively.

Table 3. Estimation on answerer

Dataset QLL TISM

Mechanics 0.013 0.232

Security 0.001 0.036

TISM performs much better than the text mining method QLL. In principle,
QLL and TISM are based on the same assumption that if an actor has the
specific knowledge on a field, she is more likely to answer the relevant questions.
Differently, QLL takes the approach of text mining that it assumes that the new
question may have some similarities with the previous questions; while TISM
focuses on mining the likelihood of an actor shares knowledge to another. The
result implies that in these two datasets, the description of the question or the
selection of words has more uncertainties; while the interests and knowledge
buildup of a person evolves gradually so that an actor’s question is more likely
to be answered by the same actor who answered his question before. Comparing
the performance for the two datasets, both QLL and TISM perform worse in
“security”. This is due to that the “security” dataset has more users, making
prediction more difficult. On the other hand, it also implies that the “security”
dataset is more volatile that both the words and the actors on the community
change relatively rapidly.

5.4 Task4: Who Will Provide the Accepted Answer

The fourth task is to predict who will provide the accepted answer. The question-
solving is a process of accumulating answers until received the final proper one.
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TISM can estimate the probability an actor joining a thread by a time T ; on
the other hand, it can also be used to derive when will an actor join the thread
with a probability P . From Eq. (12),

T = − 1
αqi

log(1 − Pqi

1 − e−βqikc
q
) (16)

where kc
q is the knowledge level of the question raised by q in thread c, and Pqi

is the probability i will provide an answer to questioner q.
As [1], whether an answer will be accepted is dependent on when the answer

is published, how many answers already exist and the average score of existing
answers. Since the answer score is unknown during prediction, we only use the
first two features to build the classifier, i.e., when an answer is published (t),
and #existing answers (e). Table 4 shows the algorithm to find the rank of the
probability each actor will provide the accepted answer, where A is the actor set;
Pr is the predefined probability used to derive the time t; g is the ground-truth
actor who provided the accepted answer to question q. The high rank of pg the
better performance. In this case, Pr is set as 0.5 which is to estimate when an
actor will provide an answer to the question over 50% chance.

Table 4. Alg: estimating who will provide accepted answer

Algorithm Who will provide an accepted answer

Init Train Classifier(T,E) for which answer
will be accepted based on when the answer is posted t
and number of existing answers e.

Func Rank(q, Pr, A)
for each actor ai ∈ A:

ti = Est(q, ai, P r) according to Eq.16
pi = 0

e = 0
for each ti in ascending order:

pi = Classifer(ti, e)
e = e + 1

return probability vector P of pi
Main

P = Rank(q, Pr,A)
find rank of pg in P

We test the two datasets using the algorithm shown in Table 4, which is built
upon TISM. QLL is applied as the baseline that the rank of a user is based on
the similarity between the new coming question and the questions the user ever
provided the accepted answers. The result is shown in Table 5.

Comparing to the results shown in Sect. 5.3, TISM achieves decent perfor-
mance in estimating who will provide an accepted answer, which is related to
the question of predicting who will provide an answer since it provides a set of
candidates, and the selected one is one of these answerers.
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Table 5. Estimation on answerer in MRR

Dataset QLL TISM

Mechanics 0.0013 0.165

Security 0.0003 0.035

6 Conclusion

In this paper, we model the information sharing behavior in a Q&A forum:
StackOverflow. By taking the knowledge level of the question and questioner, and
the temporal factors, we propose TISM where the knowledge sharing likelihood
or link weights are learned from the history data and described as a continuous
function of time and knowledge level. The experiment results show, by using the
knowledge sharing network learned from TISM, we outperform in both predicting
the thread size over time and the individual action including who will answer
the question and who will provide the accepted answer.
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Abstract. In this paper, we investigate the visual domain adaptation
problem under the setting of Hypothesis Transfer Learning (HTL) where
we can only access the source model instead of the data. However, previ-
ous studies of HTL are limited to either leveraging the knowledge from
certain type of source classifier or low transfer efficiency on a small train-
ing set. In this paper, we aim at two important issues: effectiveness of
the transfer on small target training set and compatibility of the trans-
fer model for real-world HTL problems. To solve these two issues, we
proposed our method, Effective Multiclass Transfer Learning (EMTLe).
We demonstrate that EMTLe, which uses the prediction of the source
models as the transferable knowledge can exploit the knowledge of dif-
ferent types of source classifiers. We use the transfer parameter to weigh
the importance the prediction of each source model as the auxiliary bias.
Then we use the bi-level optimization to estimate the transfer parame-
ter and demonstrate that we can effectively obtain the optimal transfer
parameter with our novel objective function. Empirical results show that
EMTLe can effectively exploit the knowledge and outperform other HTL
baselines when the size of the target training set is small.

1 Introduction

Domain adaptation for image recognition tries to exploit the knowledge from
a source domain with plentiful data to help learn a classifier for the target
domain with a different distribution and little labeled training data. In domain
adaptation, the source and target domains share the same label but their data
are drawn from different distributions.

In domain adaptation, the knowledge of the source domain can be transferred
by 3 different approaches: instance transfer, model transfer and feature repre-
sentation transfer [13]. In this paper, we focus on the model transfer approach.
Some recent works show that exploiting the knowledge from the source model
can boost the performance of the target model effectively [11,16]. Moreover, in
some real applications, we can only obtain the source models and it is difficult
to access their training data for different reasons such as the data credential.
Recently, a framework called Hypothesis Transfer Learning (HTL) [10] has been
proposed to handle this situation. HTL assumes only source models trained on
the source domain can be utilized and there is no access to source data, nor any
knowledge about the relatedness of the source and target distributions.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 64–75, 2017.
DOI: 10.1007/978-3-319-57529-2 6



Effective Multiclass Transfer for Hypothesis Transfer Learning 65

Previous research [2,3] shows that without carefully measuring the distribu-
tion similarity between the source and target data, the source knowledge could
not be exploited effectively or even hurt the learning process (called negative
transfer) [13]. However, as we are not able to access the source data in an HTL
setting, how to effectively and safely exploit the knowledge from the source model
could be an important issue in HTL, especially when target data is relatively
small (Effectiveness issue). Moreover, the source models from different domains
can be trained with different kinds of classifiers. For example most models trained
from ImageNet are deep convolutional neural networks while some models of the
VOC recognition task could be SVMs or ensemble models. Therefore, a practi-
cal HTL algorithm should be compatible with different types of source classifiers
(Compatibility issue). Previous work is limited to either leveraging the knowl-
edge from certain type of source classifiers [7,16] or low transfer efficiency in a
small training set [8]. To the best of our knowledge, none of the previous work
in HTL is able to solve these two issues at the same time.

In this paper, we propose our method, called Effective Multiclass Transfer
Learning (EMTLe), that can solve these two issues simultaneously. In this paper,
we introduce our strategy that uses the class prediction of the source model as the
transferable knowledge to help the classification. Specifically, we use the weighted
class probabilities produced by the source models to adjust the prediction from
the target model. Here we call the weight of each source model transfer parameter
which essentially controls the amount of knowledge transferred from the specific
model. Moreover, compared to the previous work such as MKTL [8], EMTLe has
fewer hyperparameters to estimate. Therefore, it is easier for EMTLe to learn a
good target model especially on a small training set.

To estimate the transfer parameter, we introduce bi-level optimization [14],
which has been widely used for many different hyperparameter optimization
problems recently. Specifically, on the low-level optimization problem, we use a
least-square SVMs to train a model on the target data and on the high level, we
introduce our novel multi-class hinge loss with �2 penalty that can better esti-
mate the transfer parameter when training set is small. Moreover, we show that
our bi-level optimization transfer parameter estimation problem is a strongly
convex optimization problem and demonstrate that our method EMTLe can
find the O(log(t)/t) optimal solution with t iterations.

We perform comprehensive experiments on 4 real-world datasets from two
benchmark datasets (3 from Office and 1 from Caltech256). We show that
EMTLe can effectively transfer the knowledge with different types of source
models and outperforms the baseline methods under the HTL setting.

2 Related Work

As we focus on the model transfer approach under the HTL setting, in this
section, we review some important methods using this approach. A model trans-
fer approach assumes that the parameters of the model for the source task can be
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transferred to the target task. Two types of learning methods are generally used
for model knowledge transfer, generative probabilistic method and max margin
method.

Generative probabilistic method can predict the target domain by combin-
ing the source distribution to generate a posterior distribution. Li et al. [7] used
Bayesian transfer learning approach to learn the common prior for object recog-
nition. Davis et al. [6] used an approach based on a form of second-order Markov
logic to compensate for the domain shift. Wang et al. [17] proposed a method
to change the marginal and conditional distributions smoothly to transfer the
knowledge between tasks.

Alternatively, max margin methods try to use the hyperplane parameter to
transfer the knowledge between source and target domains. Yang et al. [19] pro-
posed Adaptive SVMs transferring parameters by incorporating the auxiliary
classifier trained from the source domain. In addition to Yang’s work, Ayatar
et al. [1] proposed PMT-SVM that can determine the transfer regularizer auto-
matically according to the target data. Tommasi et al. [16] proposed Multi-KT
that can utilize the parameters from multiple source models for the target classes.
Kuzborskij et al. [11] proposed a similar method to learn new categories by lever-
aging the known source models. Luo et al. [8] proposed MKTL and used feature
augmentation method to leverage the source model.

Our work corresponds to the context above. In this paper, we propose EMTLe
based on the model transfer approach. Specifically, we focus on how to exploit
the knowledge from the predictions of the source models.

3 Using the Source Knowlege as the Auxiliary Bias

Some previous work such as MKTL [8] suggests that using the prediction from
the source model as the source knowledge can greatly release the constraint of the
type of the source model. However, with complex feature augmentation method,
there are many hyperparameters to be estimated which makes it inefficient with
small training set. In this paper, we adopt the idea of using the source model
prediction as the transferable knowledge and propose our transfer strategy.

Fig. 1. Illustration of feature augmentation in MKTL. f ′
i is the output of the i-th source

model and βin is the hyperparameter (need to be estimated) to weigh the augmented
feature. φn(x) is augmented feature for the n-th binary model.

Suppose we have to recognize a image from one of the N visual classes and
there are N experts each of who can only provide the probability of this image
for one certain class (binary source model). After we make our decision for one
example (prediction from target model), the experts provide their own decisions
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as well (probabilities from the source models). Their decisions can provide extra
information regarding this example as the auxiliary bias and adjust our final
prediction. As each of the experts is a specialist in one class, we should weigh
their decisions as well due to the bias of their predictions (see Fig. 2).

Unlike previous work [1,16,18] which has to use the specific parameter of
the source model as the source knowledge, our strategy is more compatible with
different types of classifiers. Compared to MKTL [8], we only have to estimate N
hyperparameters for the N -class problem while there are N×N hyperparameters
in MKTL (see Fig. 1). Therefore, it is easier to estimate the transfer parameters
with our strategy and EMTLe can perform better especially when the size of
the training set is small. In addition, there are two advantages of our strategy:
(1) It is an effective and easy way to align the knowledge from different types of
source classifiers. (2) The auxiliary bias term is naturally normalized in the same
dimension as the class probabilities are always in the interval [0, 1]. As EMTLe
can select more types of source classifiers, this makes it more practical in a real
HTL scenario.

Fig. 2. Demonstration of using the source class probability as the auxiliary bias to
adjust the output of the target model.

Here, the weight of each source model reflects the relatedness between the
source model and our target domain. The more related they are, the better
decision the source model can make and the larger weight we should apply to it.
Specifically, in this paper, we call the weight transfer parameter. Therefore, for
any target data D = {x, y} and the given source models f ′ = {f ′

1, ..., f
′
N}, our

goal is to find the target model f :

f = arg min
f∈F

� (f + βf ′|D,β) (1)

where β = [β1, ..., βN ] is the transfer parameter and �(·, ·) is the loss function to
learn the target model. It is obvious that assigning the proper transfer parame-
ter to the source model can significantly improve the performance of our final
prediction. From Eq. (1) we can see that, once we have determined the value
of the transfer parameter β, we are able to find the target model f and solve
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the learning problem. However, the transfer parameter in Eq. (1) is a hyperpa-
rameter and we cannot solve it directly. Therefore, we introduce our bi-level
optimization method for transfer parameter estimation in the next section.

4 Bi-level Optimization for Transfer Parameter
Estimation

As we discussed before, the transfer parameter in Eq. (1) is a hyperparameter
that cannot be solved directly. Here we use bi-level optimization (BO) [14], a
popular method that is used in hyperparameter optimization to estimate the
transfer parameter. In BO, the low-level optimization problem is to learn the
target model and the high-level problem is another cross-validation (CV) hyper-
parameter optimization problem corresponding to the model learned at the low-
level. Suppose we use K-fold CV on the high-level problem. For the i-th fold
CV, the target set D is split into training set Dtr

i and validation set Dval
i . The

transfer parameter can be optimized with the following BO function:

High level β = arg min
β

K∑

i

L(f i(β)|Dval
i )

Low level f i(β) = arg min
f∈F

�
(
f + βf ′|Dtr

i , β
) (2)

Here, �(·, ·) and L(·, ·) are our low-level and high-level objective functions
respectively. We can use any convex loss functions in Eq. (2) for optimization
(e.g. SVM objective function). In this paper, we use the leave-one-out cross-
validation (LOOCV) in the high-level problem. Previous research [10] suggests
that LOOCV can increase the robustness of the estimated hyperparameter espe-
cially on the small dataset. In previous studies [12,14], BO is a non-convex prob-
lem and can only obtain the approximate solution. However, we will show that
problem (2) is strongly convex and we are able to obtain its optimal solution.

4.1 Low-Level Optimization Problem

To better illustrate our learning scenario, we define our learning process as fol-
lows. Suppose we have N visual categories and can obtain N source binary
classifiers f ′ = {f ′

1, ..., f
′
N} from the source domain. We want to train a target

function f consisting of N binary classifiers f = {f1, ..., fN} using the target
training set D and the source models f ′. Specifically, in our BO problem Eq. (2),
for the low-level optimization, we consider the scenario where we have to train
N binary linear target models fi = wix + bi so that for any {xi, yi}l

i=1 ∈ D,
the adjusted result satisfies f(x) + f ′(x)β = y. Let D\i = D\{xi, yi}. Then, we
use mean square loss in the low-level objective function to optimize each target
model fn with any given transfer parameter β:
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Low-level: f\i(β) : min
w,b

N∑

n

1
2
||wn||2 +

C

2

∑

j

e2jn

s.t. fn(x) = wnx + bn; xj ∈ D\i

ejn = Yjn − fn(xj) − βnf ′
n(xj)

(3)

Here, Y is an encoded matrix of y using the one-hot strategy where Yin = 1 if
yi = n and 0 otherwise.

The reason why we use the objective function (3) is that it can provide an
unbiased closed form Leave-one-out error estimation for each binary model fn

[4]. As a result, the high-level problem becomes a convex problem and we are
able to estimate our transfer parameter easier.

Let K(X,X) be the kernel matrix and C be the penalty parameter in Eq. (3).
We have:

ψ =
[
K(X,X) +

1
C

I
]

(4)

Let ψ−1 be the inverse of matrix ψ and ψ−1
ii is the ith diagonal element of ψ−1.

Ŷin, the LOO estimation of binary model f
\i
n for sample xi, can be written as [4]:

Ŷin = Yin − αin

ψ−1
ii

for n = 1, ..., N (5)

where the matrix α = {αin|i = 1, ...l;n = 1, ..., N} can be calculated as:

α = ψ−1Y − ψ−1f ′(X)diag(β) (6)

4.2 High-Level Optimization Problem

For the high level optimization problem, we use multi-class hinge loss [5] with
�2 penalty in our objective function.

High-level: β : min
λ

2

N∑

n

‖βn‖2 +
∑

i

ξi

s.t. 1 − εnyi
+ Ŷin − Ŷiyi

≤ ξi

(7)

Here, εnyi
= 1 if n = yi otherwise 0. λ is used to balance the �2 penalty and our

multi-class hinge loss. Compared to the previous work [11,16] which uses the
multi-class hinge loss without the �2 penalty, there are two main advantages for
our high-level objective function:

1. When the training set is small, our LOOCV estimation could have a large
variance. It is important to add the �2 penalty to reduce the variance and
improve the generalization ability of the estimated transfer parameter.

2. It is clear that Ŷ is a linear function w.r.t. β. With the �2 penalty, the high-
level optimization problem (7) becomes a strongly convex optimization prob-
lem w.r.t. the transfer parameter β. Therefore, we can obtain an O(log(t)/t)
optimal solution with t iterations using Algorithm 1 (see proof of Theorem1
in Appendix).
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Algorithm 1. EMTLe
Input: λ, ψ, Y, f ′, T ,
Output: β =

{
β1, ..., βn

}

1: β0 = 1 ,α′ = ψ−1Y, α′′ = ψ−1f ′

2: for t = 1 to T do
3: Ŷ ← Y − (ψ−1 ◦ I

)−1
(α′ − α′′diag(β))

4: for i = 1 to l do
5: Δβ = λβ
6: lir = max(1 − εyir + Ŷir − Ŷiyi)
7: if lir > 0 then

8: Δyi
β ← Δyi

β − α′′
iyi

ψ−1
ii

, Δr
β ← Δr

β +
α′′

ir

ψ−1
ii

9: end if
10: end for
11: βt ← β(t−1) − Δβ

λ×t

12: end for

5 Experiments

In this section, we show empirical results of our algorithm for different transfer-
ring situations on two image benchmark datasets: Office and Caltech.

5.1 Dataset and Baseline Methods

Office contains 31 classes from 3 subsets (Amazon, Dslr and Webcam) and
Caltech contains 256 classes. We select 13 shared classes from two datasets1.
The input features of all examples are extracted using AlexNet [9]. We compare
our algorithm EMTLe with two kinds of baselines. The first one is the meth-
ods without leveraging any source knowledge (no transfer baselines), including
two methods. No transfer: SVMs trained only on target data. Any transfer
algorithm that performs worse than it suffers from negative transfer. Batch:
We combine the source and target data, assuming that we have full access to
all data, to train the SVMs. The result of the Batch method is expected to
outperform other methods under the HTL setting as it can access the source
data. The second kind of baseline consists of two previous transfer methods in
HTL, MKTL [8] and Multi-KT [16]. Similar to EMTLe, both of them use
the LOOCV method to estimate the relatedness of the source model and target
domain, but they use their own convex objective function without the �2 penalty
terms. We use linear kernel for all methods in all our experiments.

5.2 Transfer from Single Source Domain

In this subsection, following the experiment protocol in [8,16] for fair compar-
ison, we perform 12 groups of experiments under the setting of HTL. For each
1 13 classes include: backpack, bike, helmet, bottle, calculator, headphone, keyboard,

laptop, monitor, mouse, mug, phone and projector.
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Table 1. Statistics of the datasets and subsets

Dataset Subsets # classes # examples # features

Office Amazon (A) 13 1173 4096

Dslr (D) 13 224 4096

Webcam (W) 13 369 4096

Caltech256 Caltech (C) 13 1582 4096

experiment, one of the 4 (sub)datasets is selected as the source, while another
dataset is used as the target. We evaluate the performance of EMTLe when all
source models are of the same type. As Multi-KT can only leverage knowledge
when the source model is SVM, All source models are trained with linear SVMs.
The size of each target dataset is varied from 1 to 5 to see how EMTLe and other
baselines behave under the extremely small dataset. We use a heuristic way to
set the value of λ in Eq. (7):

λ = 2eerrn−errs (8)

where errn and errs denote the performance of “No transfer” and the source
model on the training set. We perform each experiment 10 times and report the
average result in Fig. 3.

Observation and Discussion: EMTLe can significantly outperform other
baselines especially with a small training set. As we have discussed above, when
the training set is small, with the transfer parameter estimated by our �2 penalty
in our high-level objective functions, EMTLe has a strong generalization ability
and performs better on the test data. As the training size increases, the vari-
ance of training data decreases and the affect of the �2 penalty term become less
significant. Therefore, EMTLe and the other two HTL baselines show similar
performance. It is interesting to see that MKTL even falls into negative transfer
even with 5 training examples per class in some experiments. We found that,
MKTL is more sensitive to the variance of the training data. Its performance is
not as stable as Multi-KT and EMTLe over the 10 experiments. Because MKTL
needs to learn more hyperparameters than Multi-KT and EMTLe, even though
the training size increases, it may not be able to obtain a good model. In some
experiments, we can see that EMTLe can even outperform the Batch method
which can access more information and is expected to outperform the other
methods under the setting of HTL.

5.3 Transfer from Multiple Source Domains

As we mentioned, EMTLe can exploit knowledge from different types of source
classifiers which could greatly extend our choice of the source domain under the
HTL setting. In this subsection we show that EMTLe can successfully transfer
the knowledge from two different types of source classifiers. Meanwhile, MKTL
and “No Transfer” are used as our baseline.
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(a) C→A (b) D→A (c) W→A (d) A→C

(e) D→C (f) W→C (g) A→D (h) C→D

(i) W→D (j) A→W (k) C→W (l) D→W

Fig. 3. Recognition accuracy for HTL domain adaptation from a single source. 5 dif-
ferent sizes of target training sets are used in each group of experiments. A, D, W and
C denote the 4 subsets in Table 1 respectively.

In this experiment, we assume that there is no single source domain that can
cover all 13 classes in our target domain and we have to select source models
from different source domains. Specifically, the 13 classes are selected from two
different domains separately (6 from DSLR and 7 from Webcam) according to
Table 2. Similar to our previous experiment configurations, we only use Caltech
and Amazon as the target domains. We show the experiment results in Fig. 4.

Table 2. The selected classes of the two source domains and the classifier type of the
source model.

Class Classifier

DSRL monitor, bike, helmet, calcu, headphone, projector Logistic

Webcam keyboard, mouse, phone, backpack, mug, bottle, laptop SVMs

Observation and Discussion: In our multi-source scenario, it is more difficult
to leverage the knowledge from the source models as the models are trained from
different domains separately. From the results we can see that, EMTLe can still
exploit the knowledge from the source models despite the types of the source
classifiers while MKTL can hardly leverage the source knowledge. EMTLe uses a
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(a) D+W → A (b) D+W → C

Fig. 4. Recognition accuracy for multi-model & multi-source experiment on two target
datasets.

simple way to leverage the source models and BO can help us better estimate the
transfer parameter. However, MKTL uses a sophisticated feature augmentation
and has more hyperparameters to estimate. Without sufficient training data,
it is difficult for MKTL to measure the importance of each source model and
exploit the knowledge from the models.

6 Conclusion

In this paper, we propose a method, EMTLe that can effectively transfer the
knowledge under the HTL setting. We focus on the effectiveness and compati-
bility issues for HTL problems. We propose our auxiliary bias strategy to let our
model exploit the knowledge from different types of source classifiers. The trans-
fer parameter of EMTLe is estimated by bi-level optimization method using our
novel high-level objective function which allows our model to better exploit the
knowledge from source models. Experiment results demonstrate that EMTLe
can effectively transfer the knowledge even though the size of training data is
extremely small.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
to improve this paper. This work is supported by Natural Sciences and Engineering
Research Council of Canada (NSERC).

Appendix

Theorem 1. Let L(β) be a λ-strongly convex function and β∗ be its optimal
solution. Let β1, ..., βT+1 be a sequence such that β1 ∈ B and for t > 1, we have
βt+1 = βt−ηtΔt, where Δt is the sub-gradient of L(βt) and ηt = 1/(λt). Assume
we have ||Δt|| ≤ G for all t. Then we have:

L(βT+1) ≤ L(β∗) +
G2(1 + ln(T ))

2λT
(9)
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Proof. As L(β) is strongly convex and Δt is in its sub-gradient set at βt, accord-
ing to the definition of λ-strong convexity [15], the following inequality holds:

〈βt − β∗,Δt〉 ≥ L(βt) − L(β∗) +
λ

2
||βt − β∗||2 (10)

For the term 〈βt − β∗,Δy〉, it can be written as:

〈βt − β∗, Δt〉 =
〈

βt − 1

2
ηtΔt +

1

2
ηtΔt − β∗, Δt

〉
=

1

2
〈βt+1 + βt − 2β∗, Δt〉 + 1

2
ηtΔ

2
t

(11)
Then we have:

||βt − β∗||2 − ||βt+1 − β∗||2 = 〈βt+1 + βt − 2β∗, ηtΔt〉 (12)

Using the assumption ||Δt|| ≤ G, we can rearrange (10) and plug (11) and (12)
into it, we have:

Diff t = L(βt) − L(β∗) ≤ λ(t − 1)
2

||βt − β∗||2 − λt

2
||βt+1 − β∗||2 +

1
2
ηtG

2

(13)
Due to the convexity, for each pair of L(βt) and L(βt+1) for t = 1, ..., T , we
have the following sequence L(β∗) ≤ L(βT ) ≤ L(βT−1) ≤ ... ≤ L(β1). For the
sequence Difft for t = 1, ..., T , we have:

T∑

t=1

Difft =
T∑

t=1

L(βt) − TL(β∗) ≥ T [L(βT ) − L(β∗)] (14)

Next, we show that

T∑

t=1

Difft =
T∑

t=1

{
λ(t − 1)

2
||βt − β∗||2 − λt

2
||βt+1 − β∗||2 +

1
2
ηtG

2

}

= −λT

2
||βT+1 − β∗||2 +

G2

2λ

T∑

t=1

1
t

≤ G2

2λ

T∑

t=1

1
t

≤ G2

2λ
(1 + ln(T ))

(15)

Combining (14) and rearranging the result, we have:

L(βT+1) ≤ L(β∗) +
G2(1 + ln(T ))

2λT
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Abstract. While numerous clustering algorithms can be found in the
literature, existing algorithms are usually afflicted by two major prob-
lems. First, the majority of clustering algorithms requires user-specified
parameters as input, and their clustering results rely heavily on these
parameters. Second, many algorithms generate clusters of only spherical
shapes. In this paper we try to solve these two problems based on dom-
inant set and cluster expansion. We firstly use a modified dominant sets
clustering algorithm to generate initial clusters which are parameter inde-
pendent and usually smaller than the real clusters. Then we expand the
initial clusters based on two density based clustering algorithms to gen-
erate clusters of arbitrary shapes. In experiments on various datasets our
algorithm outperforms the original dominant sets algorithm and several
other algorithms. It is also shown to be effective in image segmentation
experiments.

1 Introduction

As an important unsupervised learning approach, data clustering has wide appli-
cation in various fields and has received much attention for decades. A lot of
clustering algorithms have been proposed from different perspectives in the
literature. In addition to the well-known k-means algorithm, the normalized
cuts algorithm (NCuts) [19] and DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) [8] have also obtained successful applications. The
affinity propagation (AP) algorithm [3] passes affinity message among the data
and identify the cluster centers and members iteratively. By defining dominant
set as a graph-theoretic concept of a cluster, the dominant sets algorithm (DSets)
extracts the clusters sequentially and determines the number of clusters by itself.
In recent developments, [25] presented a method to build the robust similarity
matrix in spectral clustering, which is shown to generate very good results on
some datasets. A density peak based clustering algorithm (DP) presented in [18]
is shown to generate excellent clustering results on various datasets, on condition
that the cluster centers are identified correctly.

Although a vast amount of clustering algorithms have been proposed from
a wide variety of perspectives in the literature, there are stillsome common

c© Springer International Publishing AG 2017
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problems afflicting existing algorithms. Perhaps one of the most frequently
encountered problem is the parameter dependence. Many algorithms require
one or more parameters as input, and their clustering results depend heavily
on the parameters. For example, the k-means, NCuts and spectral clustering
algorithms need to be fed the number of clusters. DBSCAN is able to determine
the number of clusters automatically, but it involves two density related para-
meters Eps and MinPts instead. Similarly, AP requires the preference values
of each data as input, and the DSets algorithm relies on appropriate similar-
ity matrices to generate satisfying results. Moreover, the DP algorithm uses
correctly identified cluster centers to accomplish the clustering process, where
multiple parameters and even human intervention may be involved. In general,
the appropriate parameters must be carefully tuned based on a priori knowl-
edge of the dataset, human experience, or some specialized algorithms, e.g., the
algorithms to determine the number of clusters [16]. In this case, the inappropri-
ately selected parameters may degrade the clustering performance significantly.
While in some cases it may be reasonable to adjust the clustering results with
different parameters, we also note that on many datasets the optimal cluster
results are unique, e.g., the datasets with unique ground truth clustering results
in the UCI machine learning repository. Therefore we believe that it is quite nec-
essary to reduce the dependence on user-specified parameters. Another problem
is that many algorithms generate only spherical clusters. The algorithms with
this problem include k-means, NCuts, spectral clustering and dominant sets, etc.
Although DBSCAN and DP are able to detect clusters of arbitrary shapes, their
results are dependent on appropriate parameters.

In order to solve the above two problems, we make an in-depth study of exist-
ing algorithms and find that the DSets, DBSCAN and DP algorithms have some
complementary properties. The DSets algorithm uses only the pairwise similarity
matrix of data as input and extracts the clusters sequentially, where the number
of clusters is obtained naturally in the clustering process. If the pairwise similar-
ity matrix is independent of any parameters, then the DSets clustering results
are parameter independent. Unfortunately, the DSets algorithm can only gener-
ate spherical clusters, and this limits its performance on datasets with clusters
of arbitrary shapes. In contrast, the DBSCAN the DP algorithms are able to
generate clusters of arbitrary shapes, but they involve user-specified parameters
to guarantee the clustering quality. In addition, DBSCAN also extracts clusters
sequentially, and both DBSCAN and DP generate clusters in a cluster-expansion
manner. These properties make it possible to combine these algorithms to make
use of their merits while avoiding the drawbacks.

Based on the discussion above, in this paper we present a new clustering
algorithm based on the DSets, DBSCAN and DP algorithms. Following DSets
and DBSCAN, our algorithm extracts the clusters one by one and determines
the number of clusters automatically. In detecting each cluster, we use a modified
DSets algorithm to generate the initial small clusters, which are then expanded
with the ideas from DBSCAN and DP. Specifically, we use histogram equalization
to transform the pairwise similarity matrix before DSets clustering, and make the
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initial clusters invariant to parameters. In the cluster expansion with DBSCAN
and DP, the required parameters are determined adaptively based on the initial
clusters. In this way the parameter dependence problem is relieved. Since both
DBSCAN and DP are able to generate clusters of arbitrary shapes, the cluster
expansion step based on these two algorithms enables our algorithm to possess
such an ability. In experiments our algorithm is shown to outperform the original
DSets, DBSCAN, DP and some other algorithms in comparison.

The remaining of this paper is organized as follows. In Sect. 2 we introduce the
DSets, DBSCAN and DP algorithms briefly, based on which the new clustering
algorithm is presented in details in Sect. 3. We use extensive experiments and
comparisons to validate the proposed algorithm in Sect. 4, and summarize the
conclusions in Sect. 5.

2 Related Works

2.1 Dominant Set

The DSets algorithm is based on the definition of dominant set as a graph-
theoretic concept of a cluster. By regarding a dominant set as a cluster, the DSets
algorithm extracts the clusters one by one and determines the number of clusters
automatically, similar to the sequential clustering manner of DBSCAN. Different
from the k-means-like algorithms where the cluster members are influenced by
the number of clusters, the data in a dominant set are totally determined by
the pairwise similarity matrix. Specifically, a non-parametric internal coherency
criterion based on the internal similarity in a dominant set is used to screen the
data to be included into the dominant set. The extraction of a dominant set can
be regarded as a process of maximizing the dominant set size while preserving
the internal coherency. Since the data in a dominant set are highly similar to
each other and are less similar to the outside data, a dominant set satisfies the
basic property required of a cluster and can therefore be regarded as a cluster.
A dominant set can be extracted with game dynamics, e.g., the replicator dynam-
ics [17] or the infection and immunization dynamics [4].

The DSets clustering results are determined only by the pairwise similar-
ity matrix. Therefore if the data to be clustered are represented in the form of
the pairwise similarity matrix, we can regard the DSets algorithm as parameter
independent. By extracting the clusters sequentially, the number of clusters are
determined automatically. Since a dominant set preserves internal coherency,
only the data with high pairwise similarity will be grouped into a cluster. This
means that the outliers have a small chance to be grouped into any cluster.
The dominant set concept can also be used to obtain overlapping clusters [5,20].
Due to these nice properties, the DSets algorithm has received successful appli-
cation in various tasks [11–13,15,21,22]. However, as a dominant set requires
each member to be very similar to all the other members, the DSets algorithm
can only detect spherical clusters. Evidently this limits its performance on some
datasets with clusters of non-spherical shapes.
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2.2 DBSCAN

DBSCAN is one of the most popular density based clustering algorithm. It uses
a neighborhood radius Eps and the minimum number MinPts of points in the
neighborhood to denote the density threshold, and include data with sufficient
density into clusters. The DBSCAN algorithm uses a density constraint to deter-
mine if a set of data belong to the same cluster. In this case, one data only needs
to be similar to the nearest neighbors. As a result, DBSCAN is able to detect
clusters of arbitrary shapes. The outliers are distributed far from other data and
the local density is quite small. Therefore they won’t be admitted into any clus-
ter and are regarded as noise. One problem with DBSCAN is that the density
threshold defined by the fixed Eps and MinPts may not be able to deal with the
large density difference of different clusters. Some other density based clustering
algorithms following DBSCAN include [1,2].

2.3 DP

The DP algorithm [18] is proposed to identify cluster centers based on the density
peaks, and then determine the cluster members based on the density relationship
among the data. We firstly calculate the local density ρi of each data i, based
on which we obtain δi which is the distance between i and its nearest neighbor
with higher local density, i.e.,

δi = min
j∈S,ρj>ρi

dij . (1)

where S is the set of data to be clustered. We assume that the cluster centers
correspond to density peaks with both high ρ’s and high δ’s, whereas the non-
center data are with either small ρ’s or small δ’s. Obviously this assumption
holds in many practical cases. Under this assumption, we build a decision graph
with ρ and δ denoting the two axes, where we will find that the cluster centers
are far from both axes and isolated from the non-center data. This observation is
then used to identify the cluster centers. After that, the labels of the non-center
data are assigned to be the same as their nearest neighbors with higher density,
and the clustering process is accomplished.

The DP algorithm is very simple and able to generate clusters of arbitrary
shapes. On condition that the cluster centers are identified correctly, this algo-
rithm can be very effective. However, it is not easy to discriminate between the
“high” and “low” of ρ’s and δ’s, and [18] failed to provide a satisfying solution
to the cluster center identification problem. In addition, the density kernels and
involved parameters also influence the clustering results evidently. In summary,
the DP algorithm has been shown to be a promising clustering approach, but
there are still some important problems to be solved.

3 Our Approach

From Sect. 2 we see that the DSets algorithm uses only the pairwise similarity
matrix as input and does not involve any parameter, but it can only generate
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Fig. 1. The DSets clustering results on ten datasets with different σ’s.

spherical clusters. In contrast, the DBSCAN and DP algorithms are able to gen-
erate clusters of arbitrary shapes, on condition that appropriate parameters are
determined beforehand. This observation motivates us to combine these algo-
rithms to merge their merits and avoid their drawbacks. Specifically, we use the
non-parametric DSets algorithm to generate initial clusters, and then expand ini-
tial clusters based on DBSCAN and DP to generate clusters of arbitrary shapes,
where the parameters required in expansion are determined based on the initial
clusters. In this way the whole clustering process are parameter independent and
clusters of arbitrary shapes can be obtained.

The DSets algorithm uses only the pairwise similarity matrix as input. There-
fore if the data to be clustered are represented in the form of the pairwise sim-
ilarity matrix, the DSets algorithm can be said to be parameter independent.
However, in many tasks the data are represented as feature vectors in a feature
space, and we need to build the pairwise similarity matrix from the data vec-
tors. With two data x and y, their similarity is usually calculated in the form
of s(x, y) = exp(−d(x, y)/σ) where d(x, y) is the Euclidean distance and σ is
the decay parameter. In this case the parameter σ is involved in DSets cluster-
ing process and it is found to influence the DSets clustering results. For exam-
ple, we apply the DSets algorithm to ten datasets, including Aggregation [10],
Compound [24], Pathbased [6], Spiral [6], R15 [23], Jain [14], Flame [9] and three
UCI datasets Thyroid, Wdbc and Breast. Since the data in some datasets are
not 2D, we use F-measure and Jaccard index to evaluate the clustering results.
The variance of the clustering results with respect to σ’s is reported in Fig. 1,
where it is quite evident that σ has a significant influence on DSets clustering
results. For the ease of expression, in Fig. 1 the horizontal axes denote only the
coefficients of σ’s, and the real values of σ’s are the product of the horizontal
axes and d, which denotes the average of the pairwise distances.

While Fig. 1 shows the influence of σ’s on DSets clustering results, it also
shows that the best-performing σ’s vary widely for different datasets. Since we
still have no algorithm to determine the best-performing σ for a given dataset, in
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this paper we resort to a different approach to solve the parameter dependence
problem. Noticing that σ’s influence the similarity matrices which then impacts
on the clustering results, we choose to remove the influence of σ’s on the pairwise
similarity matrices. In this paper, this purpose is achieved by the histogram
equalization transformation of the similarity matrices.

3.1 Histogram Equalization Transformation

Histogram equalization is originally used in image enhancement to increase the
overall intensity contrast in an image. Given the pixels in an image, we quantize
the intensity range into N bins and build the histogram H = {hk}, k = 1, · · · , N ,
where hk denotes the number of pixels in the k-th bin. After histogram equaliza-
tion transformation, the pixels are assigned new values based on the proportion
of pixels in the bins with smaller intensity values. Specifically, the pixels in the
k-th bin will be assigned a new intensity value as

gk = L
k∑

j=1

hj

n
, (2)

where L is the maximum intensity value and n is the number of all pixels. After
the transformation, the pixel intensity values are distributed in the whole range
more evenly and the intensity histogram becomes more flat, and this is the reason
why the transformation is called histogram equalization. In our application, the
similarity values in the pairwise similarity matrix are the data to be transformed
and L equals to 1. If the number of bins is sufficiently large so that each bin
contains only data of the same value, we see that the new similarity values are
totally determined by the ordering of the original similarity values.

From s(x, y) = exp(−d(x, y)/σ) we see that σ’s influences only the absolute
magnitude of each similarity value. Since the distance d(x, y) are not influenced
by σ’s, we know that the relative magnitude of the similarity values, or the sort-
ing of the similarity values, is invariant to σ’s. Therefore if we apply histogram
equalization to transform the similarity matrix, we find that the new similarity
matrix is not influenced by σ’s, only if the number of histogram bins is large
enough. Since the influence of σ’s on the similarity matrices is eliminated, it is
natural that σ’s no longer impact on the DSets clustering results. In practice,
one bin usually contains more than one similarity value and different σ’s will
still cause slight variances in clustering results. Our experiments show that the
variations can be ignored if the number N of bins is large enough. In imple-
mentation we use N = 100 and σ = d. Corresponding to Fig. 1, we report the
results obtained after histogram equalization in Fig. 2. Evidently the influence of
σ’s has been eliminated effectively. For ease of expression, we use DSets-histeq
to denote the DSets algorithm where the similarity matrix is transformed by
histogram equalization.

While Fig. 1 indicate that the influence of σ’s has been eliminated by his-
togram equalization transformation, we also notice that the DSets-histeq clus-
tering results are usually not satisfactory. Our explanation for this observation
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Fig. 2. The DSets clustering results on ten datasets with different σ’s, where the sim-
ilarity matrices are transformed by histogram equalization.
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Fig. 3. Comparison of the average cluster sizes from DSets-histeq and the ground truth.

is that the histogram equalization increases the similarity value contrast and
causes over-small clusters. As a result, the obtained clusters are usually smaller
than the real ones, as shown in Fig. 3, where we use D1 to D10 to denote the
Aggregation, Compound, Pathbased, Spiral, R15, Jain, Flame, Thyroid, Wdbc
and Breast, respectively. While this effect is discouraging, it also provides us
with an opportunity to improve clustering results by expanding clusters and
obtaining clusters of arbitrary shapes.

3.2 Cluster Expansion by DBSCAN

The clusters from DSets-histeq are usually smaller than the real ones, and these
clusters are of only spherical shapes. Since both factors imply unsatisfactory
clustering results, we regard these clusters as initial ones and expand them to
improve clustering results. On the other hand, the DBSCAN algorithm extracts
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clusters in a cluster expansion manner, and it is able to generate clusters of
arbitrary shapes. These properties make DBSCAN a perfect choice for the cluster
expansion step of our algorithm. However, we also notice that the DBSCAN
algorithm requires two parameters Eps and MinPts as input. In the following
we introduce how to determine the parameters based on the initial clusters.

The DBSCAN algorithm uses Eps and MinPts to measure the local density,
and any data with at least MinPts data in the Eps-neighborhood are regarded
as satisfying the density requirement. If we fix MinPts as recommended in [8],
then the problem is to find the maximum distance to the MinPts-th nearest
neighbor which corresponds to the smallest density. Since we already have the
initial cluster as a subset of the final cluster, we can determine Eps with the
data in the initial cluster. Specifically, with each data in the initial cluster C,
we calculate the distance to its MinPts-th nearest neighbor and set Eps as the
minimum of these distances, i.e.,

Eps = max
i∈C

d(i, iMinPts) (3)

with d(i, iMinPts) denoting the distance between i and its MinPts-th nearest
neighbor in the initial cluster. The MinPts is fixed to be 3 in this paper, which
is close to the value 4 recommended in [8] and shown to be the best-performing
one in experiments.

3.3 Cluster Expansion by DP

In the cluster expansion based on DBSCAN, we use the initial cluster to deter-
mine the density threshold and the parameters required by DBSCAN. In this
way we guarantee that after cluster expansion, the local density is preserved.
Noticing that by definition the dominant set imposes a very high density con-
straint on the data included. As a result, the high density constraint may restrict
the cluster sizes and cause small clusters. Since the cluster expansion based on
DBSCAN fails to relax the density constraint, we need some other methods to
solve the problem. In this paper we use another cluster expansion step based on
the DP algorithm.

In the DP algorithm, after the cluster centers are identified, the non-center
data are assigned the same labels as their nearest neighbors with higher den-
sity. This method of labeling non-center data is very important as it builds a
connection between the labels of high-density data and of low-density ones. If
the label of data i1 is not known, we only need to check the label of i2, which
is the nearest one in the neighbors with higher density of i1. Here the density
is calculated based on the nearest neighbors. Similarly, if the label of i2 is not
available, we continue to check of the label of i3. In this way we will finally
reach one cluster center (density peak) and obtain the label. Motivated by this
method, following the DBSCAN-based expansion, we continue to expand the
cluster as follows. We firstly sort the outside data according to their distance
to the cluster. Starting from the nearest outside data j1, we check its nearest
neighbor j2 with higher density. If j2 is in the cluster, then j1 is included into
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Table 1. Clustering results of different clustering algorithms, with F-measure.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Average

k-means 0.83 0.68 0.70 0.35 0.82 0.79 0.84 0.83 0.84 0.96 0.77

NCuts 0.99 0.70 0.96 0.58 0.99 0.63 0.99 0.64 0.84 0.64 0.80

SPRG 0.73 0.64 0.56 0.37 0.93 0.86 0.60 0.97 0.91 0.97 0.75

DBSCAN 0.90 0.92 0.72 0.89 0.73 0.85 0.96 0.68 0.69 0.87 0.82

AP 0.82 0.77 0.66 0.38 0.29 0.64 0.74 0.50 0.79 0.96 0.65

DP-cutoff 0.99 0.82 0.69 0.64 0.99 0.90 1.00 0.55 0.61 0.67 0.78

DP-Gaussian 0.99 0.69 0.68 1.00 0.99 0.87 0.79 0.51 0.77 0.66 0.80

Ours 0.85 0.83 0.94 0.81 0.81 0.96 0.99 0.81 0.82 0.92 0.87

the cluster. Otherwise, we continue to check the nearest neighbor j3 with higher
density. In this searching process, if the distance between jk and jk+1 is above
a threshold thδ, the searching is terminated and the data j1 is not included into
the cluster. The threshold thδ reflects the discrimination between the δ distance
of center and non-center data, and is obtained by a histogram of all the δ’s.

4 Experiments

4.1 Data Clustering

We use the aforementioned ten datasets in experiments and compare our
algorithm with seven other algorithms, including k-mean, NCuts, SPRG [25],
DBSCAN, AP, DP-cutoff (DP with the cutoff kernel) and DP-Gaussian (DP
with the Gaussian kernel). For k-means, NCuts and SPRG, the required number
of clusters is set as the ground truth, and we report the average results of ten
runs. With DBSCAN, the parameter MinPts are selected from 2, 3, · · · , 10
and Eps is calculated with the method proposed in [7]. With AP, we use the
code from [18] to calculate the range of preference value and select the best-
performing sample in the range. With DP-cutoff and DP-Gaussian we select
the cluster centers based on γ = ρδ and the ground truth number of clusters.
In summary, all the five algorithms used in comparison benefit from carefully
selected parameters. The comparison results with F-measure and Jaccard index
are reported in Tables 1 and 2, respectively, where we use D1 to D10 to denote
the 10 datasets in the order of Aggregation, Compound, Pathbased, Spiral, R15,
Jain, Flame, Thyroid, Wdbc and Breast.

From the comparison we see that while some algorithms generate very good
results on some datasets, their results on others are not satisfactory. In contrast,
our algorithm shows great generality and generates quite good results on all
datasets, and outperforms all the other algorithms in average results.

4.2 Image Segmentation

We then apply our algorithm to image segmentation tasks. The images are taken
from the BSD500 dataset and we use the R, G and B channels to build the
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Table 2. Clustering results of different clustering algorithms, with Jaccard index.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Average

k-means 0.64 0.46 0.50 0.20 0.65 0.53 0.59 0.64 0.65 0.87 0.57

NCuts 0.98 0.46 0.85 0.30 0.99 0.42 0.97 0.40 0.65 0.39 0.64

SPRG 0.49 0.42 0.34 0.20 0.83 0.63 0.41 0.90 0.74 0.89 0.59

DBSCAN 0.81 0.87 0.53 0.63 0.40 0.91 0.90 0.57 0.53 0.78 0.69

AP 0.73 0.69 0.47 0.21 0.14 0.39 0.47 0.29 0.50 0.86 0.47

DP-cutoff 0.98 0.71 0.49 0.39 0.96 0.71 1.00 0.29 0.42 0.48 0.64

DP-Gaussian 0.99 0.47 0.49 1.00 0.99 0.65 0.52 0.29 0.58 0.40 0.64

Ours 0.75 0.73 0.80 0.54 0.60 0.95 0.97 0.74 0.61 0.79 0.75

Fig. 4. Image segmentations results with our algorithm.

feature vector and calculate the similarity matrix. The segmentation results of
some example images are shown in Fig. 4. Although the number of segments is
not specified, we observe that our algorithm generates reasonable segmentation
results.

4.3 Discussion

In this paper we try to eliminate the parameter dependence problem and present
a parameter independent clustering algorithm. In fact, the first step of the algo-
rithm, i.e., DSets-histeq, is really parameter independent, where the only para-
meter N can be fixed reasonably. However, in order to obtain clusters of arbitrary
shapes, we use DBSCAN and DP in two cluster expansion steps, where new para-
meters are introduced. While it is true that the data in initial clusters can be
used in determining the new parameters, there still exists parameters which can-
not be determined automatically in the current algorithm. In DBSCAN based
expansion we have to fixed MinPts to be 3, and in DP based expansion the den-
sity calculation also involves an user-specified parameter, which is the number
of nearest neighbors. Although these parameters are not determined automati-
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cally, they have explicit meaning and can be estimated reasonably, in contrast
to the σ in the DSets algorithm. In other words, our algorithm does relieve the
parameter dependence problem evidently. On the other hand, we are working
on better density calculation methods and cluster expansion methods, in order
to reduce the parameter dependence further.

Another problem worth mentioning is the relative large computation load
of the algorithm. Compared with the original DBSCAN algorithm, the DSets
algorithm is a little computationally expensive. In addition, the histogram equal-
ization, density calculation and point-by-point expansion adds to the computa-
tion load of the algorithm. Therefore it is necessary to explore more efficient
approaches to improve the current algorithm.

5 Conclusions

In this paper we propose to combine the DSets algorithm with DBSCAN and
DP algorithm to solve the problems afflicting existing clustering algorithms. We
firstly use histogram equalization to transform the pairwise similarity matrix
before DSets clustering, thereby solving the parameter dependence problem of
the DSets algorithm. Then we use the DBSCAN and DP algorithms to expand
the initial clusters from the DSets algorithm and obtain clusters of arbitrary
shapes. In the cluster expansion process, the parameters required by DBSCAN
and DP are determined based on the initial clusters. By making use of the merits
and avoid the drawbacks of DSets, DBSCAN and DP algorithms, our algorithm
has less dependence on parameters and is able to generate clusters of arbitrary.
Data clustering and image segmentation experiments and comparison with other
algorithms validate the effectiveness of our algorithm.
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Abstract. Friend recommendation (FR) becomes a valuable service in
location-based social networks. Its essential purpose is to meet social
demand and demand on obtaining information. The most of current
existing friend recommendation methods mainly focus on the preference
similarity and common friends between users for improving the recom-
mendation quality. The similar users are likely to have similar preferences
of point-of-interests (POIs), the kinds of information they provided are
limited and redundant, can not cover all of the target user’s preferences
of POIs. This paper aims to improve amount of information on users’
preferences through FR. We give a definition of friend recommendation
considering preference coverage problem (FRPCP), and it is also one
NP -hard problem. This paper proposes the greedy algorithm to solve the
problem. Compared to the existing typical recommendation approaches,
the large-scale LBSN datasets validate recommendation quality and sig-
nificant increase in the degree to preferences coverage.

Keywords: LBSN · Friend recommendation · Power-law distribution ·
Preference coverage

1 Introduction

As the mobile internet is gradually into people’s life, study and job. Recently,
location-based social networks (LBSNs) have been widely applied, such as
Foursquare, Gowalla, weibo, QQ, etc. Compared with the traditional social
networks (SNs), the significant advantage of LBSNs is that LBSNs can link
with the behaviour habits in the physical world and social networks. Mean-
while, people have more and more demands on location-based services. Wherein
friend recommendation (FR) has become the main service application in LBSNs.
The essential goal is to meet users’ social demand and demand on obtaining
information.

c© Springer International Publishing AG 2017
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Currently, the most existing work focused on the social demand and improv-
ing recommendation quality. Excessive pursuit of recommendation quality, how-
ever, can lead to ignoring the user’s information demand. At the same time, the
information types are single and too redundant.

So this paper considers sacrificing a small amount of recommendation qual-
ity, in order to meet user demand on obtaining information covering user’s
preferences, and to avoid the excessive type single and redundant information.
The essential difference between researches on the recommendation problem in
LBSNs and in the traditional social networks is that recommendations algo-
rithms in LBSNs take full advantage of the user’s physical behaviour information.
Because people’s behaviour in the virtual social network can not truly reflect
their real character preferences and behavioural habit in the physical space.
Meanwhile, LBSNs also provide users with a social platform. So the friend rec-
ommendation problem in LBSNs becomes one of current problems to be solved.

Friends recommendation algorithm on traditional social networks from the
recommended object can be divided into two categories: (1) friends offline; (2)
strangers. Friends recommendation algorithm in traditional social networks from
the type of mined information can be divided into two categories: (1) topology
information (e.g. common friends) [1]; (2) non-topology information (e.g. per-
sonal profiles, etc.). At present, friend recommendation algorithms mainly use
collaborative filtering [2,3], the random walk [4], genetic algorithm [4], weighted
Voronoi Diagrams algorithms [5]. Social Survey by Marketing Letter said: The
access to obtain information for people is more likely to get it from their own
friends. Thus friend recommendation can help people to obtain information.
At the same time, users in a social network have social demand (to broaden
the circle of friends) and obtaining information demand [6]. The existing friend
recommendation algorithms mainly focused on broadening your social circle.
Meanwhile users influence and offer information each others in LBSNs. The con-
ventional friend recommendation methods mainly consider the similar between
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Fig. 1. The distribution of users’ POI preferences in LBSNs, and the top1, top2, · · ·
in the x-axis represent the top-N favorite POI categories each user (e.g.
user1, user2, user3, user4, user6)
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User6
[0.70 {food, arts, travel, drink shop}]

User4
[0.67 {food, gym, drink shop}]

Target  User 

User1
[0.77 {food, shopping, gym}]

User2
[0.82 {food, shopping, gym}]

User3
[0.80 {food, shopping, gym}]

User5
[0.76 {shopping, gym, bookstore}]

Preference
Top1: food  Top2:  shopping
Top3: gym  Top4: bookstore
Top5: arts   Top6: travel
Top7: drink shop 

Recommendation
Recommendation

Recommendation

Fig. 2. The traditional friend recommendation. There are six users and the target
users, and each user is denoted by one tuple in which the number scores its similarity
to target user and the term describes these POI categories of information that these
users can provide the target user with.

users’ preferences, check-in behaviours. But the more similar the user are as
the target users’ preference on POI category, the less users provide the target
users with the information on POI categories in long tailing. Therefore, the tra-
ditional recommendation algorithms are not able to address the issues raised
above. Our goal is to improve the amount of information on the POI categories
the user like better (not best). Generally, the distribution of person’s preference
obeys one long-tailing distribution [10]. Through the experiment we validate
the user’s preferences to obey power-law distribution, as shown in Fig. 1. In
another words, users have little knowledge on POI category preference in the
long tailing. We give one example of friend recommendation in Fig. 2. Based
on the preference similarity only, the system recommends the potential friend
set {user1, user2, user3} for target user uT . However, the POI preference cate-
gory of this recommendation result is rather monotonic, and they only covered
a part {top1, top2, top3} of target user’s preference. The black dotted box parts
are not covered. In contrast, the use list {user2, user5, user6}, would be a bet-
ter recommendation list compared with the above list, and it achieves better
similarity scores and simultaneously provides the variety {top1, top2, · · · , top7}
of information for target user. Thus, the recommendation for the target user
based on preference similarity hardly provides much information on these POI
categories in the long tailing. As the recommendation results are increasing more
and more, the information from these results becomes homogeneous and all users
already known. So, these recommendations are bad for diversities of information
acquisition.

So this paper considers the above users’ demands during friend recommen-
dation simultaneously, and is in order to overcome the limitation of the POI
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categories in long tailing. The most simple and direct method is to recommend
the target user with the experts [15] of POI categories in long tailing. Due to the
lack of preference similarity analysis, the possibility that experts and the target
user become friends is lower. Ma et al. [8] proposed friend recommendation algo-
rithm based on topology information on social network (SN), it aims to improve
the user’s influence about topology structure on SN. This method can help users
to obtain and spread more information. However, it utilized the network struc-
ture as the basis for recommendation and is lack of semantic information. People
in real life have different amount of information and social influence under dif-
ferent semantic topics. LBSNs record the user’s check-ins behaviours (check-in
information: latitude and longitude; location name and category; check-in time,
comments, photos, etc.), and these check-in information can truly reflect the
user online and offline behaviour and personality description, preference char-
acteristics. So the semantic information on the POI categories users liked may
be described by the users’ preferences behaviour on LBSNs. The recommended
users may indirectly offer more information on the certain POI categories the
target user like better or best. Wan et al. [9] provided a recommendation method
to recommend friends based on the informational utility in traditional social net-
work. But this method does not consider the distribution feature of the users’
preferences, and is lack of the check-in behaviour analysis in physical world.
The information distribution of every user’s preferences on POI categories obey
power-law distributions, and it is with a long trailing, as shown in the Fig. 1.

Most friend recommendation methods recommend the target user with the
users owning the high similarity on POI preferences. Their main goal is to
improve the recommendation quality, but the effectiveness of recommendation
quality in the recall ratio and precision ratio is not significant, the increase ampli-
tude is only about one percent. Thus, under users’ tolerate recommendation
quality, enriching user information demand has greater application value com-
pared with simply improving the recommendation quality. We consider simul-
taneously the recommendation quality and users’ information demand. Because
these recommended users’ POI preference distributions all obey the power-law
distribution with a long tailing, they and the target user relatively infrequently
check in the some POI categories in the long tailing. We see this situation as
users have less information on these POI categories in the long tailing. This paper
is in order to overcome the trailing through the friend recommendation. These
recommended potential friends are the similar as the target user’ preferences on
POI categories, and they can provide more information on POI categories in
long tail for the target user. The key is that these information can fully coverage
the target users’ POI category preference.

Our contribution could be summarized as follows:
– The Problem: We provide a novel friend recommendation problem consider-

ing preference coverage in LBSNs. This problem is one optimization problem.
Meanwhile, and it is also NP -hard.

– Design a preference coverage measure: We utilize the Shannon entropy
to evaluate the degree to the preferences coverage through FR.

– Performance: This paper provides a greedy algorithm (called FRPC) to the
optimization problem.
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– Discovery: we have conducted comprehensive experiments on two massive
real datasets (Foursquare, Gowalla), and the experimental results shows that
our algorithm on recommendation quality is relatively the consistency as the
two typical recommendation methods. In terms of the degree to preference
coverage, this method has significant advantages.

The remainder of this paper is organized as follows: Sect. 2 gives a formal
definition of the friend recommendation considering preference coverage, the
descriptions of related definitions and symbols. Then we presents how to solve the
above problem. The experimental results are shown in Sect. 3. Section 4 concludes
this paper.

2 Friend Recommendation

In this section, a few core definitions are firstly described in detail and then the
FRPC algorithm is presented.

2.1 Notations and Definitions

We firstly introduce relevant definitions and notations used throughout this
paper. The notations used in this paper are summarized in Table 1.

Table 1. Symbol description

Symbol Description

G(U, E) Social networks G, nodes set U , edges set E

< G, C > LBSNs, where C represents users’ check-in recorders

C C = {(u, l, t)}, user u checks in location l at the time t

L Locations set in LBSNs L = {l1, l2, · · · }
l l = (lon, lat, a), l is a location, a is POI category

M, N Number of users, POI categories

Nu Number of POI categories checked in by user u

A The POI categories set, ai ∈ A

P (u, ai) Probability that user u likes POI categories ai

sim(ui, uj |ai) Similarity about POI category between ui, uj

uT The target user in recommendation system

Ure The recommended users set for target user uT

Definition 1 (LBSNs). An LBSNs < G,C > consist of a social network
G =< U,E >, where U is the set of users, E = {(ui, uj)| one social connection
from ui to uj, ui, uj ∈ U, ui �= uj} and the set of check-in records C = {(u, l, t)}.
(u, l, t) represents a check-in record where a user u checks in location l at time
t, and l ∈ L. A location l presents: l = (lon, lat, a), wherein lon is longitude, lat
is latitude, a is one POI category.
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In this section, we describe the users’ preference on POI category in LBSNs.

Definition 2 (User Preference). Given a user u, her/his intrinsic check-in
behaviors’ preferences in LBSNs are which POI categories users always check in,
the frequency degree denotes as P (u, a).

This paper examine how the distribution fit the power-law curve by
Kolmogorov-Smirnov test [12]. This method estimates the three parameters as
the following:

(1) xmin: we convert the POI categories to the corresponding numerical value
based on the order of frequency of POI categories checked-in. The best fitted
cutoff value, thus the values more than xmin can fit a power-law distribution;

(2) α̂, β̂: the parameters decides the slop of the best fitted distribution, thus the
values more than xmin obey the power-law distribution P (u, x) = α̂x−β̂ ;

(3) p-value: the statistical significance of the goodness of the power-law fitting
[13], if the p-value is more than 0.05, the fitted distribution is a significant
good fitting.

2.2 The Similarity Between Users

In this section, we describe how to compute the preferences similarity between
users.

Let AT = {a(1), a(2), · · · , a(k)} be a set of the target user’s favorite POI
categories. sim(uT , ul), ul ∈ U is the traditional similarity metric (as Eq. 1)
between users uT and ul. P (u, ai) is the degree of the user u’s preference on POI
category a. E(uT ) and E(ul) respectively represent the mathematical expecta-
tion of user uT and ul check-in behaviours, ul ∈ U . In the following equation, AT

means the set of POI category that user uT and ul, ul ∈ U common preferences.

sim(uT , ul) =

∑
aj∈AT

(P (uT , aj) − E(uT ))(P (ul, aj) − E(uj))
√∑

aj∈AT
(P (uT , aj) − E(uT ))2

√∑
aj∈AT

(P (ul, aj) − E(uj))2
(1)

Note that the similarity function in Eq. 1 is one of the similarity measure methods
between users. Our proposed method can be applicable if we use other related
measure approaches to compute the similarity between users.

2.3 Preference Coverage

Persons always prefer to obtain information from their friends, however, most
friend recommendation methods focus on expanding the social circle and ignore
the users’ demand on obtaining information from friends. This paper mainly
provides one novel recommendation method for obtaining more information.
Our goal is that the informations gained from the recommended users. Since
they cover the target user uT ’s preferences on POI categories, so these users
can improve amount of information on uT ’s potential POI categories in the long
tailing. Preference coverage considers how to select a list of users Ure owning the
similar POI preference categories as uT .
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This paper computes the preference coverage of a list of users in the follows
as:

I(U) =
∑

ai∈AT

wai
uT

covai(U) (2)

wherein wai
uT

(> 0), ai ∈ AT , is the degree of the uT ’s demand on obtaining infor-
mation of category ai, generally denoted as wai

uT
= − log(P (uT , ai)). Based on

the point-information entropy theory, the demand degree to obtaining informa-
tion about each POI category user liked is represented by the point-information
entropy under each POI category. covai(U) is used for calculating the degree to
which POI category ai is covered by the information the least one user ul ∈ U
provided. So, this section computes covai(U) as the following equation:

covai(U) = 1 −
∏

ul∈U

[1 − covai(ul)] (3)

where covai(ul) is the degree to which POI category ai is covered by the informa-
tion the user ul provided. The amount of information on a certain POI category
user owned is depended on the degree of user’s preferences on POI categories,
and its specific calculation formula is as described above. Thus we compute the
covai(ul), in Eq. 4.

covai(ul) = P (ul, ai) (4)

2.4 FRPC Algorithm

In this section, we firstly give one definition of friend recommendation consider-
ing preference coverage (FRPC). Then this paper call this problem as FRPCP,
and describes this problem with a formula and regards it as an optimization
problem. Lastly, we provide a greedy algorithm to solve this problem.

Definition 3 (FRPCP). Given a LBSN < G,C >, the target user uT , the
candidate recommended users with the similar preferences on POI categories
Au = {a1, a2, · · · } as uT , denoted as UCre, and the target user uT ’s preference
list denoted AT = {a(1), a(2), · · · , a(k)}, #AT = k.

Ure = arg max
Uj�UCre,#Uj=k

σ(Uj)

s.t. UCre = argui∈U{‖Aui
∩ AT )‖ = k},#Ure = k.

Wherein σ(Uj) = γ × I(Uj) + (1 − γ)sim(Uj , uT ), and the parameter γ is
determined by the user’s requires on either meeting the preference similarity or
meeting information demand. γ is set to the small value when the user wants to
find some users with the high preferences similar as the uT . However, the value of
γ is depended on the user’s personal demand. And the candidate recommended
users with the similar preferences on POI categories Au = {a1, a2, · · · } as uT ,
as the following:



98 F. Yu et al.

UCre = argui∈U{‖Aui
∩ AT )‖ = k} (5)

The value k is determined by the number of the target user’ preference about
POI categories. As is shown in Fig. 2, we find the distribution of POI categories
checked-in by uT obey the power-law distribution. The value k is calculated by
Eq. 7:

k = arg min
k∈R

{
k∑

i=1

P (uT , a(i)) ≥ ε} (6)

where the value of ε is set in advance, and it is generally set to 0.78. By means
of the statistical analysis, we know that, if the value of ε is more than 0.78,
the number of users with the similar POI preferences as the target user uT

is relatively less and fail to help the friend recommendation for meeting well
demand on obtaining information. This paper gives a suggestion of k value. The
output of this algorithm is the user set Ure. The goal is to generate potential
friend list with certain better accuracy and help uT to obtain more information
compared with the state-of-the-art recommendation methods.

We observe that our friend recommendation is one complex combinatorial
optimization problem, and it owns two objectives. Due to the monotone submod-
ularity of the objective function, we give one greedy algorithm (called FRPC-A)
to solve this issue. Firstly, this paper gives the proof of sim(U, uT ) and I(U)’s
monotone submodularity respectively.

Lemma 1. The similarity function sim(U, uT ) is monotone and submodular.

Proof. Let U1 ⊆ U2 ⊆ U and uj ∈ U . For ∀uj /∈ U1, we can compute

sim(U1 ∪ uj , uT ) − sim(U1, uT ) = [sim(U1, uT ) − sim(uj , uT )] − sim(U1, uT ) = sim(uj , uT )

As the similarity function is nonnegative. sim(·, uT ) is monotone. In the same
way, there is that sim(U1∪uj , uT )−sim(U1, uT ) ≥ [sim(U2, uT )−sim(uj , uT )]−
sim(U2, uT ). Thus, the similarity function is submodular. �

Lemma 2. The preference coverage function I(U) is monotone and submodular.

Proof. Let U1 ⊆ U2 ⊆ U and uj ∈ U . For ∀uj /∈ U1, we can compute

covai(U1 ∪ uj) − covai(U1) =
∏

ul∈U1

[1 − covai(ul)] −
∏

ul∈U1∪uj

[1 − covai(ul)] = covai(uj)
∏

ul∈U1

[1 − covai(ul)]

Since the function covai(·) ∈ [0, 1], we get covai(U1∪uj) ≥ covai(U1). So, covai(·)
is monotone. Next, we prove the submodular property.

[covai(U1 ∪ uj) − covai(U1)] − [covai(U2 ∪ uj) − covai(U2)]

= covai(uj)
∏

ul∈U1

[1 − covai(ul)](1 −
∏

ul∈U2−U1

[1 − covai(ul)])
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Then we get [covai(U1 ∪ uj) − covai(U1)] ≥ [covai(U2 ∪ uj) − covai(U2)], thus
covai(·) is submodular. Since I(·) is a linear combination consisted of covai(·),
its weight coefficient is wai

uT
> 0 decided by the target user uT . The linear

combination with nonnegative weights is monotone and submodular. Thus I(·)
is monotone and submodular. �

Algorithm 1. FRPC-A algorithm
Input: LBSN < G, C >, the target user uT , UCre, k, γ
Output: A list of users, Ure, with #Ure = k
1: Initialize Ure ⇐ φ
2: Compute σ(ui) for each ui ∈ UCre;
3: Rank UCre in decreasing order of sim(ui, uT );
4: for j = 1 to k do
5: uj ← arg maxuj [σ(Ure ∪ uj) − σ(Ure)];
6: Ure ← Ure ∪ uj

7: return Ure

Based on the two lemmas, we can prove the monotone submodularity of σ(U)
in Lemma 3.

Lemma 3. The objective function σ(U) is monotone and submodular.

Proof. Since the function σ(U) if a linear combination of sim(U, ut) and I(U),
and the two function are monotone and submodular. Meanwhile the weight coef-
ficient γ ∈ [0, 1], so 1 − γ ≥ 0. Based on the analysis of the above, the function
σ(U) is also monotone and submodular. �

Based on the above three lemmas, we get the following Theorem 1.

Theorem 1. The friend recommendation considering preference coverage prob-
lem (FRPCP) in Eq. 5 is NP-hard.

This paper give one greedy algorithm (called the friend recommendation algo-
rithm considering preferences coverage, FRPC-A), and it is described by the
Algorithm 1 in detail.

In Algorithm 1, the FRPC-A algorithm starts with one empty set (line 1),
then puts the user with largest marginal score increase into the user set Ure until
#Ure = k (line 5–6). Finally, our algorithm gets a near-optimal solution of the
FRPC with a (1 − 1

e ) approximation [19] on the optimal score.

3 Experimental Evaluation

In this section, we firstly describe the setting of experiments including the real
LBSN datasets (Foursquares, Gowalla datasets), comparative methods. Then
this paper’s experimental results reflect the recommendation quality of our
approach.
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3.1 Experimental Settings

Data Sets. LBSNs (such as Foursquare, Gowalla) are new social sites and social
platforms where users can publish and participate in social events, and upload
photos and share check-in locations which users may be interested in. This paper
utilizes the real Foursquare and Gowalla datasets. The datasets respectively
consist of 4,163 users, 36,907 users; 124,436 locations, 221,142 locations; 636
POI categories, 596 POI categories; 483,813 check-in times, 1048,575 check-in
times; the time span: 12/07/2009–7/21/2013, 1/18/2010–8/11/2011; the friend-
ship pairs contain indirect social connections among these users: 32,512 pairs,
231,148 pairs.

The Methods for Comparison. FRPC algorithm is compared with two
typical friend recommendation methods: (a) Common Friend Recommendation
(CFR) [17]; (b) Preference Similarity Recommendation (PSR) [18]. Wherein
CFR recommends the target user with the users owning the same common
friends as the target user, the basic idea of PSR is only based on the prefer-
ence similarity between users.

3.2 Performance of Methods

Performance Metrics. The friend recommendation approaches are in order
to recommend the target user with the list of users based on the σ value. This
paper utilizes the Shannon entropy [14] as a measure method to the degree of
the preference coverage through the friend recommendation.

div@k = −
∑

ai∈AT

m(Ure,ai)
k ln(m(Ure,ai)

k )
ln k

, uj ∈ Ure (7)

where m(Ure, ai) = I(P (uj , ai) > P (uT , ai),∃uj ∈ Ure) represents the number of
the recommended users who mainly provide the information on the POI category
ai for the target user.

Effectiveness of Methods. In this section, we verify the effectiveness of our
friend recommendation method considering preference coverage, and compare
with the typical friend recommendation approaches in location-based social net-
works (LBSNs). We utilize the recall ratio: Recall@k and the precision ratio:
Pre@k [15,16] to evaluate the friend recommendation quality, and it is impor-
tant to find out how many users actually are the real friends of the target user
through the recommendation approaches.

Pre@k =
#{Ure ∩ UuT@friend}

k
(8)

Recall@k =
#{Ure ∩ UuT@friend}

#UuT@friend
(9)

where UuT@friend are the friends of the target user uT in LBSNs. The two
metrics for the entire friend recommendation system are computed by averaging
the above two metrics value for all the users respectively.
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Fig. 3. The distribution of POI category preferences for 7 target users

Experimental Results. In this section, we utilize the div@k, Pre@k and
Recall@k to compare the performance and effectiveness between FRPC-A algo-
rithm and the several existing friend recommendation approaches in LBSNs. We
randomly select the number N = 200 of users in LBSNs as the target users
Utarget. As shown in Fig. 3, seven users are regarded as the target users in
the friend recommend system, and their distribution of POI category prefer-
ences obey the power-law distribution. This paper utilizes the fitted distrib-
ution functions (the power-law distribution), and estimate parameters in the
functions as the following Table 2. Next, we compare the recommendation qual-
ity and the degree of preferences coverage of our algorithm FRPC-A and the
two typical friend recommendation methods PSR and CFR with the settings of
γ = 0.15, 0.35, 0.45, 0.5, 0.9, 1 respectively in Foursquare and Gowalla. In Fig. 4,
our method has the significant advantage in the degree of preference coverage
compared with PSR and CFR. Since the CFR is based on topology information
in social networks, it have no information on POI categories. Next, we impor-
tantly compare the methods (FRPC, PSR) about POI category preference in
Pre@k and Recall@k. As shown in Figs. 5 and 6, although there was so little dif-
ference between FRPC-A algorithm and PSR algorithm in the precision ratio and
recall ratio, the PSR and CFR hardly provide the more information to coverage
the target’s preferences. Users’ demand on obtaining information is the essential
purpose of meeting new friends [6]. Currently, most researches focus on modeling
users’ preferences in LBSN, but they ignore the angle of users obtaining infor-
mation through the friend recommendation and the degree to the information
from the recommended users covering the target users’ preferences. Thus, this
paper provides a novel recommendation method to solve the preference coverage
problem.
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Fig. 4. Comparison of the degree to preference coverage of three methods

Table 2. The distribution of users’ preferences P (u, x) = αx−β

User-ID Coefficients (with 95% confidence bounds)

800 α = 18(16.69, 19.31), β = 0.855(0.7986, 0.9113)

743 α = 24.77(23.6, 25.95), β = 1.04(0.9888, 1.092)

1832 α = 29.04(27.27, 30.81), β = 1.083(1.011, 1.154)

87 α = 27.84(25.59, 30.08), β = 1.077(0.9828, 1.17)

511 α = 28.42(26.36, 30.49), β = 1.054(0.9723, 1.135)

803 α = 26.68(25.42, 27.94), β = 1.078(1.023, 1.133)

1144 α = 24.68(22.76, 26.61), β = 0.9992(0.92, 1.078)

Fig. 5. Comparison of Pre@k of three methods
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Fig. 6. Comparison of Recall@k of three methods

4 Conclusion

This paper pays attention to the friend recommendation considering preference
coverage in location-based social networks. Firstly, we discuss the similarity
between users’ preference on POI categories, and describe the model of the pref-
erence coverage in detail. Based on the above models, this paper provide a novel
friend recommendation problem as one optimization problem. Then we give a
greedy algorithm FRPC-A to solve the recommendation issue. Our method
recommends the target user with the users who can provide more information
on uT ’s POI category preferences, and avoid the situation that users own less
information about POI categories in long tailing. Compared with the existing
typical friend recommendation methods in LBSNs, the large scale of LBSNs
dataset verifies the degree to the preference coverage through the friend recom-
mendation and the effectiveness of our method. Especially, our approach shows
the significant advantage in the degree of the preference coverage. As for future
work, we plan to utilize multi-source information (such as the comment informa-
tion, check-in time, and model the periodic of check-in behaviors for improving
the effectiveness of the recommendation.
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Abstract. Positive attitudes and happiness have major impacts on
human health and in particular recovery from illness. While contributing
factors leading human beings to positive emotional states are studied in
psychology, the effects of these factors vary and change from one per-
son to another. We propose a behaviour recommendation system that
recommends the most effective behaviours leading users with a negative
mental state (i.e. unhappiness) to a positive emotional state (i.e., happi-
ness). By leveraging the contrast pattern mining framework, we extract
the common contrasting behaviours between happy and unhappy users.
These contrast patterns are aligned with user behaviours and habits. We
find the personalized behaviour recommendation for those with negative
emotional states by placing the problem into the nearest neighborhood
collaborative filtering framework. A real dataset of people with heart
disease or diabetes is used in our recommendation system. The experi-
ments conducted show that the proposed method can be effective in the
health-care domain.

1 Introduction

The pursuit of happiness can be characterized as a psychological factor and a
life goal for human beings. The emerging field of sentiment analysis and opinion
mining provides a means of computational analysis of emotion, affect, subjective
experience and perception. These factors have a direct effect on human behav-
iours and attitudes. However, how the factors affect people psychologically is not
apparent.

Personalized health-care can improve the patients’ health experience and
prognosis; early intervention can significantly reduce the health-care cost caused
by related and predictable emergent conditions. Our goal is to provide recom-
mendations of the most effective behaviours leading to positive psychological
attitudes for high-risk patients with chronic diseases, in order to reduce health-
care cost by reducing, e.g., the incidence of acute treatment related to misman-
agement of disease conditions.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 106–118, 2017.
DOI: 10.1007/978-3-319-57529-2 9
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The targeted behaviour recommender system faces several challenges. First,
traditional recommender techniques work based on the notion of implicit/explicit
rating for a set of items. These ratings are not available for a behaviour recom-
mendation system, but rather each user is characterized as a set of attribute-
values. Second, latent factor models can capture underlying reasons behind the
user behaviour/preference even though it could be quite difficult for them to rec-
ommend behaviours that cannot be characterized by the latent factors. Third,
recommendation systems are usually evaluated based on the standard measures
such as precision@N and Mean Square Error (MSE). However, due to different
problem settings and lack of the ratings we need an intuitive evaluation protocol
for this type of recommendation systems.

Due to these challenges for personalized health-care, we need a novel method-
ology to provide effective recommendation, and to give a personalized evalua-
tion system for improving health. Thus, our focus is on analyzing the high-risk
patients with chronic disease related lifestyle and social conditions, as well as
identifying the difference that exists between positive and negative attitudes.
We use contrast pattern mining on a rich dataset that includes a population
of patients with heart disease or diabetes, to identify group behavioural fac-
tors that reflect an individual’s emotional state of unhappiness or happiness.
With the contrast patterns, we generate recommendations based on the existing
differences among the population. This information of contrast patterns describ-
ing the difference is used to build a behavioural recommendation system that
provides recommendations for individuals with attitudes to make certain behav-
iour changes. In order to find the most relevant recommendations, the k-nearest
neighbours (k-NN) algorithm is applied to identify the most effective behaviours
for the user from the contrast patterns found.

The major goal of our proposed recommendation system is to discover and
recommend the behaviours to improve the quality of life of users. As such, the
problem of behaviour recommendation can be defined so as to provide users with
recommendations based on the differences extracted between groups of people,
in order to improve their lifestyle and life satisfaction.

The contributions of this paper are as follows:

– We define and formulate the problem of behaviour recommendation and design
an effective solution for it.

– We apply contrast pattern mining to identify the transitional patterns as effec-
tive recommendations (i.e., behaviours), to suggest users to become members
of a class of interest (i.e., happy people).

– A simple intuitive protocol based on standard evaluation methods is designed
to assess the effectiveness of these types of recommenders.

– We conduct the experimental evaluation and show the effectiveness of pro-
posed model in a health-care domain.

2 Related Work

Recommendation systems have been widely utilized in different domains to meet
user interests and boost user satisfaction. For example, recently Abel proposed
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a recommendation system to help people find a job [1], or Backstrom and
Leskovec [3] suggested a recommender system to find friends from social net-
works (i.e., Facebook). However, to date, most of recommendation systems have
been applied in e-commerce and news domains [3,11,15]. Approaches for recom-
mendation systems are usually divided in three broad categories: collaborative
filtering [15], content-based [12] and hybrid [4] approaches. In collaborative fil-
tering, we recommend items in which people with similar tastes and preferences
are interested. Furthermore, the collaborative filtering techniques can be cate-
gorized into two general classes of neighborhood and model-based methods. In
neighborhood-based (i.e., memory-based/heuristic-based) methods, user ratings
for items stored in the system are directly used to generate the list of recom-
mendations or predict the ratings for new items. Two major approaches in this
framework are user-based collaborative filtering [15] whereas interest of a user
for an item is estimated based on the rating for this item by other users (i.e.,
neighbors), and item-based approaches [11] which predict the rating of a user
for an item based on the rating of the user for similar items. In contrast to
neighborhood-based methods, model-based approaches exploit the users ratings
to learn a predictive model. Bayesian Clustering [4], Latent Semantic Analy-
sis [8], Latent Dirichlet Allocation [17], and Maximum Entropy are instances of
this category. On the other hand, content-based recommender systems [9] rec-
ommend the items that are similar to the ones that she/he was interested in
the past, and hybrid approaches refer to the class of algorithms that combine
collaborative and content-based schemes to achieve better performance.

Another related area is contrast pattern mining. Contrast patterns are those
that are significantly different among different classes, times, locations or/and
other dimensions of interest. They have been utilized in different tasks and appli-
cations such as building the accurate and robust classifiers [14], detecting mal-
ware [16], or diagnosing disease [10]. The contrast patterns reflecting different
frequencies in two datasets sometimes are refereed as diverging patterns [2], or
emerging patterns [13]. For example, An et al. [2] consider a pattern as the diverg-
ing if its respective supports in two datasets and its diverging ratio (defined based
on the distance between the four-dimensional vectors representing pattens) is
more than certain thresholds. Ramamohanarao and Bailey [13] suggested differ-
ent types of emerging patterns such as jumping emerging patterns (which exist
in one dataset and are absent in another one), constrained emerging patterns
(whose supports are more and less than specific thresholds in the first and second
dataset accordingly). They argued while jumping emerging patterns can repre-
sent the sharp contrast between two datasets, they are susceptible to noise, so
in many cases constrained emerging patterns would be the better choices. Webb
et al. [18] proposed that contrast pattern mining can be seen as a special case of
the general rule learning task where contrast patterns and groups for which they
are characteristic are the antecedents and consequents of the rules respectively.
This formulation allows any standard rule discovery algorithm to be adapted for
the contrast pattern mining problem.



Contrast Pattern Based Collaborative Behavior Recommendation 109

All aforementioned recommendation methods work based on the notion of
implicit/explicit ratings of users for items. However, for the behavior recom-
mendation problem such ratings are not available. Moreover, to best of our
knowledge, there is no work on using contrast pattern mining for recommenda-
tion purpose. In contrast, in our problem setting, users are characterized based
on set of attribute-values and belong to one of two disjoint classes (i.e., happy
and sad people). The goal is to recommend a set of most effective transitional
patterns (i.e., behaviors) which make a user likely to become a member of the
class of interest (i.e., happy people).

3 Methodology

In this section, the dataset used in our system is first described. Then we present
the overall framework of our recommendation system. The detailed steps for
generating recommendations will be discussed in different subsections.

3.1 Dataset Description

The dataset comes from 2011/2012 Canadian Community Health Care Sur-
vey Data, which includes 16836 patients with diabetes and heart disease. The
attributes (and their respective values) of patients in the dataset are captured
with more than 100 survey questions. These questions are classified into seven
categories, namely, geo-demographics, lifestyles, adherence, health-care experi-
ence, mental health, social connections and supports, and quality of life.

In the original dataset, the data is first discretized and transformed into
transaction dataset with itemsets, where each item is an attribute-value pair.
Furthermore, based on the characteristics of the attributes, we categorize the
attributes into three different types:

– static attributes: cannot be changed, e.g. gender, age, or suffering from heart
disease.

– mutable attributes: can be changed, e.g. alcohol use, volunteering activities,
characteristic and habitual behaviors that signify mood or attitude.

– swing attributes: can or cannot be changed depending on willingness, ability
to undertake cognitive behavioral change or other factors.

Not all of the attributes in this dataset have significant affect on the “hap-
piness” of people. The attributes are filtered to remove the insignificant ones.
Only 30 of the attributes are left in the dataset. Weka [7] is used here for this
purpose, with the built-in “AttributeSelection” filter.

Table 1 shows some examples of attributes and values in this dataset.

3.2 Overall Framework

Figure 1 shows the overall framework of our recommendation system. Gen-
erally, our system includes the following steps for the process of generating
recommendations:
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Table 1. Attributes and values examples

Category Attribute Value

Life style Daily consumption (fruits/vegetables) 5-10 Times/day

Life style Smoke Daily

Mental health Satisfaction with life in General Satisfied

Mental health Perceived life stress Not at all

Quality of life Pain No pain

Geo-demographics Health Region City of Toronto

Healthcare experience No. of consultations with medical doctor Not at all

a. Generate contrast patterns;
b. For each individual in dataset, find all the matching contrast patterns;
c. Find k-nearest neighbors for the current user;
d. Provide recommendation to the current user from its neighbors’ matching

contrast patterns;

Fig. 1. Recommendation system flow chart

We have two main stages in our recommendation. The off-line stage includes
contrast pattern mining and the process of matching users to contrast patterns.
In order to distinguish the underlying differences between happy and unhappy,
we use contrast pattern mining on the dataset to identify groups of behavior
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factors that may change people’s feeling from unhappy to happy or vice versa.
The contrast patterns extracted from the dataset can be applied to all the users
in the dataset and need to be personalized for each individual user. We refer to
these patterns as global contrast patterns in this paper. With such information,
we utilize neighborhood-based collaborative filtering framework to customize
recommendations for each user to adopt contrasting groups of behaviors. Last,
in our on-line recommendation system, upon completion of a questionnaire by
a user, user similarity assessment is performed using the k-nearest neighbors
algorithm to identify people that are similar to the user. Subsequently, global
contrast patterns (i.e., the contrast patterns found over the whole dataset) that
match the identified similar people are used to generate personalized behavior
recommendations that will have positive impacts on the user.

Pseudo-code of our behavior recommendation system is provided in Fig. 2.

Input: S+, S− (Off-line Phase) � S+, S−: Set of happy and unhappy people
u (On-line Phase) � u: a user asking for recommendation

Output: R�R : Set of behavior recommendations

1: function
Off-line Phase:

2: CP ← Generate Contrast Pattern(S+, S−)
3: UCP ← Map User to Contrast Pattern(U, CP )

On-line Phase:
4: R ← ∅
5: UNN ← Find Nearest Neighbours(u)
6: for all v ∈ UNN do
7: Xcp ← Retrieve(UCP , v) � Contrast patterns to which user u maps
8: R ← R ∪ Xcp

9: end for
10: Resolve Conflicting Attributes � as described in section 3.6
11: Remove Static Attributes
12: return R
13: end function

Fig. 2. Pseudo-code of our behavior recommendation system.

3.3 Contrast Patterns Generation

Before we describe the process of generating contrast patterns, some definitions
will be given first.

Let I∗ = {I1, I2, ..., Im} be a set of items. An itemset X is a set of items
{Ie1 , Ie2 , ..., IeZ}, where Z is the length of X, denoted by |X|. A dataset D is a
list of transactions {T1, T2, ..., Tn}, where each transaction Td ∈ D is an itemset.

Definition 1 (Support of itemset X in dataset D). The support of itemset
X in D is defined as the fraction of itemsets in D, which contain itemset X.
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Definition 2 (Contrast ratio of itemset X in datasets D1 and D2). The
contrast ratio of itemset X in D1 and D2 is defined as support of X in D2

support of X in D1
.

Please note that the order of the datasets in the Definition 2 affects the
contrast ratio. Inverting the order will also invert the ratio value.

In our recommendation system, we use the definition of contrast pattern as
well as the mining algorithm for contrast pattern mining from Fan and Ramamo-
hanarao [5].

Definition 3 (Contrast pattern in datasets D1and D2). An itemset X is
a contrast pattern in datasets D1 and D2, if and only if

1. Contrast Ratio of X ≥ threshold1 (denoted as θ in Sect. 4),
2. Contrast Ratio of X ≥ Contrast Ratio of Y ∀ Y ⊆ X,
3. Support of X in D1 ≥ threshold2 & Support of X in D2 ≥ threshold2,
4. χ2 ≥ threshold3.

In Definition 3, condition 1 filters out patterns with low ratios, which corre-
sponds to non-effective patterns. In condition 2, we ensure that every item in the
contrast pattern contributes to higher contrast ratios. If a pattern is already a
contrast pattern and adding a new item into the pattern decreases the contrast
ratio, the new itemset should not be a contrast pattern even if the new contrast
ratio is still above the threshold. In addition, we also want to find contrast pat-
terns representing relative broader popularity, instead of just a small group of
people. That’s why we have condition 3 to remove patterns with low supports.
The last condition evaluates the correlation of internal items using chi-square
value measure, which ensures that the items in the contrast patterns are actually
strongly correlated. The contrast pattern mining algorithm [5] employs a tree
structure and identifies contrast patterns efficiently both in terms of memory
and time.

Contrast patterns found among the different classes in the population are
the originating sources for our recommendation system. As these patterns show
the most significant behavioral difference leading to class changes. Specifically,
if one itemset is a contrast pattern, it means the occurrences of this itemset for
the ‘happy’ class and ‘unhappy’ class are markedly different. In other words,
if someone conforms with this contrast pattern, this person will be much more
likely to belong to one class than the other. For example, if percentages of people
who ‘smoke’ and ‘consume little fruit in their diet’ appears in the positive class
and negative class are 1% and 12% respectively, we can conclude that, people
who ‘smoke’ and ‘consume little fruit’ are 12 times more possible to express a
negative attitude. This “smoke and consume little fruit” is a contrast pattern
and its contrast ratio is 12. Given these contrast patterns, each contrast pattern
is converted into a set of recommendations. For example, given the the con-
trast pattern of “smoke and consume little fruit”, one individual with negative
‘unhappy’ class label is given advice to avoid “smoke and consume little fruit”
as an alternate lifestyle choice. In general, numerous recommendations are gen-
erated based on the contrast patterns found among the population. Specifically,
over 4,000 contrast itemsets are generated from our dataset, most of which have
more than two items in each pattern.
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3.4 Matching “Happy” Users to Contrast Patterns

Given the contrast patterns for the positive and negative class, we need to map
users to the contrast patterns. As such, each user in the training dataset is
compared to all contrast patterns. The matching process is fairly simple. A user
is matched to a contrast pattern if she/he has all attribute-values of the contrast
pattern. For example, an individual maps to the contrast pattern of ‘smoke and
consume little fruit’ if he/she ‘smokes’ and ‘consumes little fruit’.

3.5 Finding the Most Similar “Happy” Users with kNN

The global contrast patterns show the significant differences between two popu-
lation of users even though they are not personalized for individual users and,
consequently cannot be used directly for the recommendation purpose. As such,
we adopt the neighborhood-based collaborative filtering approach to find the
set of personalized recommendation candidates. In particular, with a new user’s
inputs, k ‘happy’ users who are most similar to her/him are identified. We use
Pearson’s correlation coefficient to calculate the similarities between two indi-
viduals as it can handle missing values and grade-inflation well [6] (there are a
lot of missing values in the dataset we use since users usually do not answer all
questions).

3.6 Behavioral Recommendations Generation

Given the k nearest neighbors of a new user, the set of contrast patterns to which
each neighbor user maps is obtained using the results from Sect. 3.4. Next, the
union of all contrast patterns of the k neighbors is considered as the initial set of
personalized recommendation candidates. It is possible that we have some con-
flicting attribute-values (e.g., job type attributes is set to both part time and full
time), in that case, we keep the the attribute-value with the higher contrast ratio
rate. In case that the ratio rates are the same, the conflicting attribute-values
are chosen randomly. Furthermore, we remove the static attributes (as they are
not appropriate for behavior recommendation) and the existing attributes (those
that the user already has) from the set of recommendation candidates and gen-
erate the final set of recommendations. The rationale is that while there are
some behaviors which are prevalent among happy users, certain behaviors are
common among specific group of happy users. As such, The more similar user
U1 is to happy user U2, the more likely that user U2 behaviors can be applied
to user U1 to achieve happiness. For example, if user U1 is similar to user U2

and U3, and user U2 and U3 are mapped to set of contrast patterns S2 and S3

respectively, the initial set of recommendation candidates is S1 ∪ S2.
It is worth to mention that if an attribute is a swing attribute, we provide

an extra question in our recommendation system asking whether the user is
able/willing to make changes on this attribute. The attribute is then categorized
into static or mutable according to users’ answers.
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4 Experimental Results and Analysis

In this section, our recommendation system will be evaluated. The evaluation
focuses mainly on the effectiveness of our off-line training approach. The imple-
mentation details of the on-line recommendation system are also mentioned at
the end of this section.

4.1 Evaluation Design and Protocol

Recommendation systems traditionally are evaluated based on the classification
performance measurement (e.g., Precision @ 10), rank-based performance mea-
surement, or rate-based performance measurement (e.g., MSE), depending on
the targeted task (e.g., predicting the top recommendation item or rates). How-
ever, for the behavior recommendation task such ranks and the ground truth are
not available. In fact, we do not know whether the recommendations of partic-
ular behaviors will make users happy or not in the real life. As such, one major
challenge in the proposed behavior recommendation system is how to evaluate it.

In order to address the evaluation problem, and measure the effectiveness
of our recommendation system, we develop a classification system to calculate
the possibility of being ‘happy’ for a user before and after applying the rec-
ommendations. If the possibility of being happy increases after applying the
recommendations, it means the recommendations are effective. We compare dif-
ferent classification techniques and choose an ensemble method as user class
(i.e., happy or unhappy) predictor. The classification algorithm is ensemble of
AdaBoost, Random Forest, J48, Bayesian Network, and Logistic Regression.
The final results are based on the voting method (the same weight for all the
algorithms are used). For this part we use the standard implementation of these
algorithms Weka [7] with their respective default parameters. Using 10-fold cross
validation, the overall accuracy of the ensemble method reaches 71.8%.

4.2 Performance Evaluation

To effectively evaluate our recommendation system, we designed two other
approaches as baseline, called RANDKN and TOPCP, for comparison purposes.
The RANDKN approach does not use k-NN to find the most similar users to
the new user. Instead, it tries to find the same number of contrast patterns as
in k-NN randomly. For example, for a new user, in our recommendation sys-
tem, if 20 contrast patterns are generated and applied to the user, the system
also choose 20 contrast patterns in RANDKN, but randomly. TOPCP uses the
same strategy as RANDKN, but instead of choosing contrast patterns randomly,
TOPCP ranks the contrast patterns by their ratios and chooses the same number
of contrast patterns as in our recommendation system with highest ratios.

In the evaluation, we first use leave-one-out to generate recommendations
for each user in the dataset. Then the recommendations are applied to the user.
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Table 2. Effectiveness of recommendation systems (A: percentage of people having
probability of happy improved; B: percentage of unhappy instances having probability
of happy improved).

Algorithm A B

Our method 66.03% 95.82%

RANDKN 60.82% 91.94%

TOPCP 58.95% 89.69%

Thereafter, a new dataset containing all the itemsets after applying the recom-
mendations is generated. The ensemble method described previously is used to
evaluate the classification of each user as type ‘1’ (happy) or type ‘2’ (unhappy)
on the new dataset. The possibility of being classified as type ‘1’ (happy) for
each date sample is computed. The results are shown in Table 2.

As shown in Table 2, we can see that 95.82% of the unhappy users may
become happier after applying the recommended changes using our method.
Comparing the RANDKN (random selected k neighbors) and TOPCP (selected
20 highest-ratio neighbors), our method performs better than both of them.
The fact that TOPCP performs worse than RANDKN is because the contrast
patterns with the highest ratios can have significant amount of overlaps, which
decreases the number of item choices in the recommendations. This further jus-
tifies that our approach of using k-NN to identify most similar neighbors in order
to further obtain related contrast pattern items.

In the experiments, we choose k = 7 and θ = 4.0. Note that we do not set
the value of θ too low, since lower θ values lead to less effective patterns. θ can
also not be set too high; otherwise, not enough patterns are given as recommen-
dation to users. Thus, θ = 4.0 is chosen so that the patterns are enough for
recommendations and effective in the same time. The k value for k-NN method
is also carefully selected. If a higher k is chosen, the user is recommended with
more patterns. Too many patterns are not practical for users to take on all the
recommendations. But too few also does not provide enough information for the
user to obtain possible recommendations to change to be happier. We run exper-
iments on using different k values, and compared the number of distinct contrast
patterns, the number of item changes, percentage of people having probability
of happy improved and percentage of unhappy instances having probability of
happy improved. The results are in Fig. 3.

4.3 Implementation

The initial version of implemented system uses Django as web framework and
MySQL as data storage layer. However, it may take up to several minutes to
generate recommendations for a single user on a server with a Intel(R) Xeon(R)
CPU E5-2620 v3 CPU and 64 GB of RAM. The reason is that the system needs to
scan the complete dataset for every user to find the k nearest neighbors. Also, the
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(a) Effectiveness
A: percentage of people having proba-
bility of happy improved;
B: percentage of unhappy instances
having probability of happy improved;
C: percentage of unhappy instances
having probability of happy over 50%

(b) Recommendation size
E: average # of distinct contrast pat-
terns;
F: average # of item changes

Fig. 3. Performance of recommendation system with different k values

program design only uses a single thread, which means that only a small fraction
of the computation power of the CPU is used. To solve the performance issue
mentioned above, we refactor the implementation to use all cores of the CPU
on the server. Furthermore, we design to enable our recommendation system
to be able to scale across different machines in order to allow large numbers
of users to use this website in the same time. In the refactored website, we
use Play framework and Akka to distribute the computation across a cluster of
servers. Redis has been used for the data storage to allow us to retrieve all the
data from memory instead of disk to reduce the processing time. After applying
all changes, the system takes approximately 1–5 s for each user to obtain its
recommendations online.

5 Conclusions

The impact of positive attitudes is an acknowledged factor in people’s health.
However, the contributing factors to happiness depends on characteristics which
are unique and subjective. In this paper, we proposed a personalized behaviour
recommendation that recommends the most effective behaviours for changing
users emotional state from negative (i.e., unhappy) to positive (i.e., happy). We
showed that contrast pattern mining served effectively as the transitional pat-
terns from the negative to positive class. The contrast pattern mining framework
is adopted and combined with the collaborative filtering to produce the person-
alized behaviour recommendation. The experiments on an actual dataset showed
that our proposed method performed well and was effective in the health-care
domain.
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Abstract. With the rapid growth of location-based social networks
(LBSNs), point-of-interest (POI) recommendation has become indispens-
able. Several approaches have been proposed to support personalized POI
recommendation in LBSNs. However, most of the existing matrix factor-
ization based methods treat users’ check-in frequencies as ratings in tra-
ditional recommender systems and model users’ check-in behaviors using
the Gaussian distribution, which is unsuitable for modeling the heavily
skewed frequency data. In addition, little methods systematically con-
sider the effects of location significance and user authority on users’ final
check-in decision processes. In this paper, we integrate probabilistic fac-
tor model and location significance to model users’ check-in behaviors,
and propose a location significance and user authority enhanced proba-
bilistic factor model. Specifically, a hybrid model of HITS and PageRank
is adapted to compute user authority and location significance. Moreover,
user authorities are used to weight users’ implicit feedback. Experimen-
tal results on two real world data sets show that our proposed approach
outperforms the state-of-the-art POI recommendation algorithms.

Keywords: Point-of-interest recommendation · Probabilistic factor
model · Location significance · User authority

1 Introduction

Recently, location-based social networks (LBSNs) have become very popular and
attract lots of attention from industry and academia. Typical location-based
social networks include Foursquare, Gowalla, Facebook Place, and GeoLife, etc.
In LBSNs, users can build connections with their friends, upload photos, and
share their locations via check-ins at points of interest (e.g., restaurants, tourists
spots, and stores, etc.). Besides providing users with social interaction platforms,
it is more desirable for LBSNs to make use of the check-in history of users and
other side information to mine users’ preferences and recommend interesting
places which users would prefer. The task of recommending interesting places
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 119–130, 2017.
DOI: 10.1007/978-3-319-57529-2 10
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is referred as point-of-interest (POI) recommendation. POI recommender sys-
tems [1] have played an important role in LBSNs since they not only meet
users’ personalized demands, but also help LBSNs providers to increase rev-
enues by providing users with intelligent location services, such as location-aware
advertisements.

Intuitively, by treating POIs as “items” (e.g., movie, music, book and so
on) in traditional recommender systems, a direct idea of generating POI rec-
ommendations is to employ classic collaborative filtering (CF) methods, which
are widely used for building recommender systems. Based on this intuition, sev-
eral POI recommendation algorithms are proposed by extending traditional CF
methods [2–5]. However, the task of POI recommendation is not completely
equivalent to traditional recommendation tasks. Several unique characteristics
distinguish POI recommendation from traditional item recommendation tasks.
For example, the preferences of users in LBSNs are reflected by the frequencies
of check-in at locations and users’ check-in frequencies are heavily skewed; users
always prefer to visit nearby locations rather than distant ones because users’
check-in activities require physical interactions between users and POIs [3,6];
social influence has limited effects on users’ check-in behaviors [3,7], etc.

Several POI recommendation algorithms have been proposed by extending
traditional recommendation approaches with some of the above unique charac-
teristics [2,3,8–10]. For instance, Ye et al. [2] proposed a variant of user-based
CF [11] for POI recommendation, which exploits social influence, geographical
influence as well as user preferences. Cheng et al. [3] fused geographical influence,
social influence and matrix factorization for POI recommendation. Differing from
[2,3], which model geographical influence from a user’s perspective, Liu et al. [8]
proposed IRenMF, which exploits geographical influence from a location’s per-
spective. Lian et al. [9] integrated the spatial clustering property into weighted
matrix factorization [12] to make POI recommendations. Li et al. [10] proposed
a two-step framework for POI recommendation problem, which considers three
types of friends, i.e., social friends, location friends, and neighboring friends.

However, most of existing methods simplify users’ check-in frequencies at a
location, i.e., regardless how many times a user checks-in a location, they use
binary values to indicate whether a user has visited a POI [2,4,8–10]. In other
words, the user-POI check-in frequency matrix is substituted with a 0/1 rating
matrix. Intuitively, a user’s check-in frequency reflects the degree of the user’s
preferences for POIs. The larger the number of check-ins, the more preferred.
Hence, the simplified scheme can not accurately capture users’ preferences for
POIs. Moreover, most of existing matrix factorization based POI recommenda-
tion algorithms [3,8–10,13] treat users’ check-in frequencies as ratings in tradi-
tional recommender systems and utilize the Gaussian distribution to model users’
check-in behaviors. In fact, though Gaussian distribution might be suitable for
modeling users’ rating behaviors, it is not a good choice for modeling the check-
in frequency data, which are heavily skewed. We randomly select users from
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(a) The rating distribution of a random-
ly selected user in MovieLens100K

(b) The check-in frequency distribu-
tion of a randomly selected user in
Foursquare

Fig. 1. The rating and check-in frequency distribution in MovieLens100K and
Foursquare

MovieLens100K1 and Foursquare2, then plot their rating and check-in frequency
distributions in Fig. 1. As shown in Fig. 1, the Gaussian distribution fits ratings
well in MovieLens100K, but fails to model the check-in frequency. Moreover, few
studies consider the effects of location significance on the final check-in decision
process, which is usually complex and can be affected by many factors. Obviously,
besides user individual preferences, the significance of a location also affects
whether a user will visit the location. The check-in frequency for a location should
vary with the significance of the location. Further, as reported in [14], users are
more likely to adopt recommendations for other users with high authorities, the
reviews and feedback derived from high authority users are more convincing.
However, a few works take into account user authority for POI recommendation.

In this paper, we propose a location significance and user authority enhanced
probabilistic factor model to overcome the above problems. Specifically, a hybrid
model of HITS [15] and PageRank [16] is adapted to compute user authority and
location significance by exploiting the mutual reinforcement between users’ travel
experience and locations’ significance as well as the mutual influence between
locations. Then we integrate probabilistic factor model and location significance
to model users’ check-in behaviors and deal with the skewed check-in frequency
data. Furthermore, user authorities are used to weight users’ feedback in the
objective function. Experimental results on two real world data sets show that
our proposed approach can model users’ check-in behaviors better, and outper-
forms the state-of-the-art POI recommendation algorithms.

2 Preliminary Knowledge

2.1 Problem Definition

In a typical LBSNs, the POI recommender system consists a set of M users U =
{u1, u2, . . . , uM}, and a set of N locations L = {ll, l2, . . . , lN}. Each location is
1 http://grouplens.org/datasets/movielens/.
2 http://www.ntu.edu.sg/home/gaocong/datacode.htm.

http://grouplens.org/datasets/movielens/
http://www.ntu.edu.sg/home/gaocong/datacode.htm
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geocoded by <longitude, latitude>. Users’ check-in records are converted to user-
POI check-in frequency matrix R. Each entry rij of R represents the frequency
of check-in for location j by user i. The frequency of check-in reflects users’
preferences on various locations. Typically, a user only visited a small portion
of locations existed in LBSNs, hence the matrix R is extremely sparse. In this
paper, we use “POI” and “item” interchangeably.

The goal of POI recommender system is to learn users’ hidden preferences
based on users’ check-in history and provide users with new locations that users
may be interested in.

2.2 Poisson Factor Model

Poisson factor model (PFM) [17] is a generative probabilistic model, which
assumes that each observed element rij follows the Poisson distribution with
expectation fij : rij ∼ Poisson(fij). The expected value matrix F ∈ R

M×N

is factorized into user latent feature matrix U ∈ R
K×M and item latent fea-

ture matrix V ∈ R
K×N : F ∼ UT V . Besides assuming the Poisson distribution

generates observed elements, PFM places Gamma priors over uik and vjk,

p(uik|αk, βk) =
uαk−1

ik exp(−uik/βk)
βαk

k Γ (αk)
, p(vjk|αk, βk) =

vαk−1
jk exp(−vjk/βk)

βαk

k Γ (αk)
,

(1)
where Γ (.) is the Gamma function. αk and βk are the shape and rate parameters
of Gamma distribution, respectively.

The objective function of PFM is formulated as:

�′ = min
U,V

M∑

i=1

K∑

k=1

(uik/βk − (αk − 1) ln(uik/βk))

+
N∑

j=1

K∑

k=1

(vjk/βk − (αk − 1) ln(vjk/βk)) +
M∑

i=1

N∑

j=1

(fij − rij ln fij) + const.

(2)
PFM applies the stochastic gradient descent algorithm (SGD) technique to

learn user latent feature matrix U and item latent feature matrix V .

3 Our Proposed Method

3.1 Location Significance and User Authority Enhanced PFM

To model users’ overall check-in behaviors, we assume that the following two
factors affect the final check-in decision processes of user i: (1) the individual
preferences of user i over location j; (2) the significance of location j. The indi-
vidual preferences are usually captured by the inner product of user latent fea-
ture vector and item latent feature vector, which are inferred from latent factor
models. Typical latent factor models include probabilistic matrix factorization
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model [18] and Poisson factor model [17]. Probabilistic matrix factorization is
a classical Gaussian matrix factorization model. The classical Gaussian matrix
factorization assumes that users’ check-ins frequency data follows the Gaussian
distribution, which does not fit the heavily skewed frequency data well. Alterna-
tively, the Poisson distribution is suitable for fitting the skewed frequency data,
as shown in Fig. 1(b), and guarantees that the number of check-ins is positive.
In order to more accurately fit user check-in frequency data, we choose Poisson
factor model to model users’ check-in behaviors.

Given user latent feature vector Ui and item latent feature vector Vj , which
are both learned by factorizing the expected value matrix F , the individual
preference of user i for location j is defined as UT

i Vj . Besides user individual
preferences, the significance of a location also affects whether a user will visit
this location. Intuitively, users tend to visit some popular locations and ignore
those locations with less attractiveness. The more significant the location, the
larger the number of check-ins at this location. Let p(j) be the significance of
location j, the probability of visiting location j by user i will monotonically
increase as p(j) increases.

By using a linear combination model to integrate user individual preferences
with location significance, the expected value of check-in frequency fij at location
j by user i is computed as follows:

fij = UT
i Vj × p(j). (3)

With the expected value fij , the user-POI check-in frequency rij is modeled
as:

rij ∼ Poisson(rij |UT
i Vj .p(j)). (4)

Since we assume each observed element of R is independent, the conditional
distribution of the user-POI check-in frequency matrix R given expected value
matrix F can be defined as follows:

p(R|F ) =
M∏

i=1

N∏

j=1

[Poisson(rij |UT
i Vj .p(j))]Iij (5)

where Iij is the indicator function that is equal to 1 if user i has visited location
j and equal to 0 otherwise.

The log-posterior distribution p(U, V |R,α, β) is defined as:

log(p(U, V |R, α, β)) ∝ log(p(R|F )p(U |α, β)p(V |α, β))

=
M∑

i=1

K∑

k=1

((αk − 1) ln(uik/βk) − uik/βk) +
N∑

j=1

K∑

k=1

((αk − 1) ln(vjk/βk) − vjk/βk)

+
M∑

i=1

N∑

j=1

Iij

(
rij ln(p(j).UT

i Vj) − p(j).UT
i Vj

)

(6)
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So far, we have describe how to extend basic Poisson factor model with loca-
tion significance. In our proposed method, we also assume that user authority
plays an important role in POI recommendation. As reported in [14], users are
more likely to adopt recommendations for other users with high authorities, the
reviews and feedback derived from high authority users are more convincing.
Hence, users with different authority should have different weights in the third
term of Eq. 6. Specifically, a high user authority will require the error between
rij ln(p(j).UT

i Vj) and UT
i Vj .p(j) as far as possible small, while a low user author-

ity will relax this requirement. Hence, we further extend our proposed model by
using user’s authority to weight the corresponding response rij . The third term
of Eq. 6 is changed to:

M∑

i=1

N∑

j=1

Iija(i)

(
rij ln(p(j)

K∑

k=1

uikvjk) − p(j)
K∑

k=1

uikvjk

)
. (7)

where a(i) is the authority value of user i.
Unifying user authority and location significance, the objective function of

our propose POI recommendation algorithm is formulated as:

L = min
U,V

M∑

i=1

K∑

k=1

(uik/βk − (αk − 1) ln(uik/βk))+
N∑

j=1

K∑

k=1

(vjk/βk − (αk − 1) ln(vjk/βk))

+
M∑

i=1

N∑

j=1

Iija(i)
(
p(j)UT

i Vj − rij ln(p(j)UT
i Vj)

)
.

(8)

We apply the SGD method to seek a local minimum of the objective function
L. The derivatives of L with respect to uik and vjk are computed as:

∂L
∂uik

=
1
βk

− αk − 1
uik

+ a(i)
N∑

j=1

Iij(1 − rij

p(j)UT
i Vj

)vjkp(j)

∂L
∂vjk

=
1
βk

− αk − 1
vjk

+ p(j)
M∑

i=1

Iij(1 − rij

p(j)UT
i Vj

)uika(i).

(9)

3.2 Computing Location Significance and User Authority

Location significance and user authority are two key components of our proposed
approach since they to some extend determine the number of visits at a loca-
tion and the confidence level of a user’s implicit feedback, i.e., a user’s check-in
frequency. This section describes how to compute location significance and user
authority based on users’ check-ins in LBSN.

Inspired by locations rank method [19], which extracts significant semantic
locations from GPS data, we adapt the hybrid model of HITS and PageRank to
compute more reasonable user authority and location significance by exploiting
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both the links between users and locations and the links between POIs. The
hybrid model can be viewed as a random walk on a two-layered graph, which
consists of the user-POI graph GUL and the POI-POI graph GLL. The hybrid
model builds a Markov chain by using GUL and GLL as well as three transition
probabilities, i.e., p(uk|li), p(li|uk) and p(li|lj , uk). The p(uk|li) is the transition
probability from a location node li to a user node uk, p(li|uk) is the transition
probability from a user node uk to a location node li, and p(li|lj , uk) is the
transition probability to location node li for user uk given uk at location lj .
These transition probabilities are computed as follows:

p(uk|li) = ε
Num(uk, li)

Num(li)
+ (1 − ε)

1

M
p(li|uk) =

N∑

j=1

p(lj |uk)p(li|lj , uk)

p(li|lj , uk) = α
Num(li, lj , uk)

Num(lj , uk)
+ (1 − α)

1

N
(10)

where Num(li) indicates the total number of check-ins at li, Num(uk, li) rep-
resents the number of check-ins of user uk at li and Num(li, lj , uk) counts the
times of user uk co-visiting li and lj . ε and α are the “teleport probabilities”.

Given transition probability matrix TUL ∈ R
M×N with elements p(uk|li) and

probability matrix TLU ∈ R
N×M with elements p(li|uk), the hybrid model can

be describes as follows:

wk+1
loc = TLU .wk

user, wk+1
user = TUL.wk+1

loc (11)

where wk+1
loc = [p(l1)k+1 p(l2)k+1 . . . p(lN )k+1]T and wk+1

user = [p(u1)k+1

p(u2)k+1 . . . p(uM )k+1]T . In this paper, p(ui) is equal to a(i), which denotes
the authority value of user i. p(lj) is equal to p(j), which denotes the location
significance of location j.

The power iteration algorithm is applied to compute the user authority vector
wuser and location significance vector wloc in the hybrid model.

4 Experiments and Evaluation

4.1 Datasets and Evaluation Metrics

We choose two publicly available datasets3: Foursquare and Gowalla to evaluate
the performance of our proposed method. General statistics of Foursquare and
Gowalla are summarized in Table 1.

Since POI recommendation algorithms provide each target user with top-N
highest ranked POIs, we employ two widely used rank metrics to evaluate the
performance of different POI recommendation algorithms, i.e., Precision@N and
Recall@N , where N is the length of ranked recommendation list of POIs.

3 http://www.ntu.edu.sg/home/gaocong/datacode.htm.

http://www.ntu.edu.sg/home/gaocong/datacode.htm
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4.2 Baseline Methods

We compare our proposed method with the following state-of-the-art POI rec-
ommendation approaches:

– UserKNN: This method is the user-based collaborative filtering [11]. In
UserKNN, the similarity between users is computed by cosine similarity.

– ItemKNN: This method is the item-based collaborative filtering [20]. In
ItemKNN, the similarity between items is computed by cosine similarity.

– PMF: PMF [18] can be viewed as a probabilistic extension of the SVD model.
PMF has been exploited for POI recommendation in [3].

– WRMF: This method is the weighted matrix factorization [12]. WRMF has
been evaluated for POI recommendation in [9].

– BPR-MF: BPR-MF adopts a Bayesian Personalized Ranking criterion [21] for
item ranking.

– Geo-MF: Geo-MF [9] incorporates the spatial clustering property into
weighted matrix factorization to make POI recommendations.

– PFM: This method is proposed by Ma et al. [17]. PFM focuses on Web site
recommendation and models frequency data using the Poisson distribution.

The main parameter settings of all comparison methods are listed in Table 2.
Note that we set parameters of each method according to respective references or
based on our experiments. Under these parameter settings, each method achieves
its best performance. The number of dimensions K of latent feature vectors is
set to 10 in all our experiments. The “teleport probability” ε and α are set to
0.85, following the PageRank and HITS algorithms.

We conduct a five-fold cross validation by randomly extracting different train-
ing and test sets at each time, which accounts for 80% of visited POIs and 20%
of visited POIs for each user, respectively. Finally, we report the average results.

4.3 Comparison with Baselines

Fig. 2 reports the results of POI recommendation quality for all compared
algorithms. From Fig. 2, we can observe that: except for PMF, UserKNN and
ItemKNN perform worse than other factorization based models. PMF achieves
the worst performance among all compared methods. This observation is consis-
tent with the results reported in [22]. The reason is that PMF assumes that a

Table 1. Statistics of Foursquare and Gowalla

Statistics Foursquare Gowalla

Num. of check-ins 194,108 456,967

Num. of users, N 2,321 10,162

Num. of POIs, M 5,596 24,237

Sparsity 99.18% 99.88%

Avg. POIs peruUser 45.57 30.27
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Table 2. Parameter settings of comparison methods

Methods Parameter settings

UserKNN The size of similar neighborhood: 30

ItemKNN The size of similar neighborhood: 30

PMF λU = λV = 0.001

WRMF λ = 0.001, α = 1

BPR-MF λΘ = 0.001

PFM αk = 20, βk = 0.2, k = 1, . . . , K

GeoMF γ = 0.01, α = 10

Our method αk = 20, βk = 0.2, k = 1, . . . , K

user’s implicit feedback follows the Gaussian distribution, which is not suitable
for modeling the check-in frequency. In addition, BPRMF performs worse than
WRMF and GeoMF. This is because the underlying assumption of BPRMF is
the Gaussian distribution over a user’s check-in frequency, although BPRMF,
WRMF and GeoMF all consider POI recommendation problem as One-Class
Collaborative Filtering (OCCF) problem. Moreover, we can see that PFM is
generally superior to PMF, BPRMF and WRMF in terms of precision and recall
on both data sets, which indicates that the Poisson distribution is more suitable
for modeling uses’ check-in frequency than the Gaussian distribution.

Furthermore, our proposed method consistently outperforms other methods,
which either utilize the Gaussian distribution to model users’ check-in behaviors
or ignore the effects of location significance and user authority on users’ check-in
decision processes. Our proposed method improves the Precision@5 of GeoMF
by 14% and 3% on Foursquare and Gowalla, respectively. In terms of Recall@5,
the improvements of our proposed method are 13.5% and 5% on Foursquare
and Gowalla data sets, respectively. This observation confirms our assumption
utilizing the Poisson distribution to model users’ check-in behaviors as well as
taking into account the effects of location significance and user authority on
users’ check-in decision processes can improve the POI recommendation quality.

4.4 Impact of Location Significance and User Authority

We conduct another group of experiments to investigate the contribution of loca-
tion significance and user authority to our proposed method by eliminating the
corresponding components. We evaluate the following three reduced methods:

– \Sig: This reduced method eliminates the impact of location significance by
setting p(j) = 1 in Eq. 8.

– \Auth: This reduced method eliminates the impact of user authority by set
a(i) = 1 in Eq. 8.

– \Sig-Auth: This reduced method eliminates the impacts of both location signif-
icance and user authority by set p(j) = 1, a(i) = 1 in Eq. 8, which is equivalent
to PFM.
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(a) Precision on Foursquare (b) Recall on Foursquare

(c) Precision on Gowalla (d) Recall on Gowalla

Fig. 2. Performance comparison on POI recommendation (K = 10)

(a) Precision on Foursquare (b) Recall on Foursquare

Fig. 3. Performance comparison with three reduced methods

Since the experimental results on both data sets show similar trends, we only
plot the experimental results on Foursquare in Fig. 3. From Fig. 3, we can see
that two reduced methods, i.e., \Auth and \Sig, perform better than PFM, indi-
cating that both location significance and user authority are beneficial for PFM.
Moreover, the reduced method \Auth outperforms \Sig, which suggests that
location significance contributes more than user authority on the performance
improvement of our proposed method.

4.5 Impact of Parameters αk and βk

In this section, we perform a group of experiments to investigate the impacts of
αk and βk on the performance of our proposed method by changing the values
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(a) Impact of Parameter αk (b) Impact of Parameter βk

Fig. 4. Impact of parameters αk and βk

of αk from 0 to 40 given βk = 0.2 or varying the values of βk from 0 to 0.5 given
αk = 20. We only plot the impacts of αk and βk on Precisson@5 for Foursquare in
Fig. 4 since Recall@5 shows similar trends. We can see that parameters αk and βk

significantly affect the POI recommendation quality. As the αk/βk increases, the
values of Precision@5 first move upwards, the recommendation quality improves.
After αk/βk reaches a certain threshold, Precision@5 begin to drop down as
αk/βk increases.

5 Conclusion

In this paper, we propose a location significance and user authority enhanced
probabilistic factor model for supporting POI recommendation in LBSNs. We
first adapt a hybrid model of HITS and PageRank to compute user authority
and location significance, which considers the mutual reinforcement between
users’ travel experience and locations’ significance as well as the mutual influence
between locations. Then we integrate probabilistic factor model with location
significance to model users’ check-in behaviors. Finally, we use user authorities
to weight the confidence levels of users’ feedback. Experimental results on two
data sets show that our proposed approach outperforms other state-of-the-art
POI recommendation algorithms.
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Abstract. Recently, recommender system has attracted a lot of atten-
tions, which helps users to find items of interest through utilizing the
user-item interaction information and/or content information associ-
ated with users and items. The interaction information (i.e., feedback)
between users and items are widely exploited to build recommendation
models. The feedback data in recommender systems usually comes in
the form of both explicit feedback (e.g., rating) and implicit feedback
(e.g., browsing histories, click logs). Although existing works have begun
to utilize either explicit or implicit feedback for better recommenda-
tion, they did not make best use of these feedback information together.
In this paper, we first study the personalized ranking recommendation
problem by integrating multiple feedbacks, i.e., one type of explicit feed-
back and multiple types of implicit feedbacks. Then we propose a uni-
fied and flexible personalized ranking framework MFPR to integrate
multiple feedbacks. Moreover, as there are no readily available training
data, an explicit feedback based training data generation algorithm is
designed to generate item pairs with more accurate partial order consis-
tent with the multiple feedbacks for the proposed ranking model. Exten-
sive experiments on two real-world datasets validate the effectiveness of
the MFPR model, and the integration of multiple feedbacks making up
better complementary information significantly improves recommenda-
tion performance.

Keywords: Recommender system · Multiple feedbacks · Explicit feed-
back · Implicit feedback · Bayesian Personalized Ranking

1 Introduction

In recent years, recommender systems have attracted much attention from mul-
tiple disciplines. The interaction information (i.e., feedback) between users and
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 131–143, 2017.
DOI: 10.1007/978-3-319-57529-2 11
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items are widely exploited to build recommendation models. The feedback data
in recommender systems usually comes in the form of explicit or implicit feed-
back [4]. Explicit feedback is the interaction information that directly expresses
user preferences to items, such as the rating information of users to items. While
implicit feedback indirectly reflects user opinions and can imply user probable
preferences [9], such as the “collect” and “share” of users to items. Figure 1 shows
a toy example of multiple feedbacks in Douban Book. The rating (1–5 scales) is
the explicit feedback and there are two types of implicit feedbacks. Thereinto,
the “wish” means the user wishes to read the book but has not begun yet; the
“reading” means the user is currently in reading process. It is obvious that the
explicit feedback (i.e., rating) is critical for recommendation, while the implicit
feedbacks also provide important supplementary information.

Fig. 1. A toy example of multiple feedback between users and books in Douban Book

Many methods exploit the feedbacks to build recommender systems. Figure 2
shows how those methods utilize these information. Traditional collaborative fil-
tering usually utilizes explicit feedback information (i.e., ratings) [5,7,14] (see
Fig. 2(a)). Since implicit feedback information is widely and cheaply available,
researchers began to exploit the implicit feedback. Some works considered to use
one single type of implicit feedback [6,10,13] (see Fig. 2(b)), and Costa Fortes
et al. [2] combined several types of implicit feedbacks using a simple ensemble
approach not long ago (see Fig. 2(c)). In addition, SVD++ [7] was designed to
combine rating information with a single type of implicit feedback for more accu-
rate rating prediction, as shown in Fig. 2(d). Unfortunately, all these works have

Fig. 2. The schemas of utilizing feedback information
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not utilized comprehensive feedback information in recommender systems. In
this paper, we propose to solve the personalized ranking problem by integrating
multiple feedbacks, as shown in Fig. 2(e). For convenience, multiple feedbacks
mean one type of explicit feedback and multiple types of implicit feedbacks in
the following sections. In many review web sites, such as Yelp and Dianping,
users are required to give a rating score (i.e., explicit feedback) to a business,
and they can also have other interactions with businesses, such as “checking in”
and “viewing”. Obviously, our problem setting is a general framework to utilize
feedback information, and existing problems are special cases of our problem set-
ting. In addition, from recommendation perspective, the predicted ranking over
an item is much more meaningful than the predicted rating. Thus in this work,
we focus on developing a personalized ranking model that integrates multiple
feedbacks. Although many methods have been proposed to utilize the feedbacks,
these models are usually designed for special problem settings, and they cannot
be directly applied in multiple-feedback setting.

However, integration of multiple feedbacks faces two challenges. (1) Design a
unified ranking model integrating multiple feedbacks. In order to make the best
use of these feedback information, we need to design an effective mechanism
to handle relations between explicit and implicit feedbacks as well as relations
among implicit feedbacks. (2) Generate training samples. As a ranking method,
we need to generate preference pairs or lists for training. However, there are
multiple types of feedbacks. What kind of feedbacks could we utilize for better
preference pair or sequence?

The major contributions of our paper are summarized as follows: (1) We first
try to solve the personalized ranking recommendation problem by integrating
multiple feedbacks. The problem widely exists in real recommender system, and
it is a general problem setting to encompass existing works. (2) We propose a
Bayesian Personalized Ranking (BPR) based model MFPR to integrate multi-
ple feedbacks. Moreover, as there are no readily available training data for this
problem, an effective algorithm is designed to generate the training data that is
more consistent with multiple feedbacks for the MFPR model. (3) We crawl com-
prehensive Douban Book and Dianping datasets1 including ratings and multiple
types of implicit feedbacks.

2 Preliminary

2.1 Explicit and Implicit Feedback and Problem Formulation

Formally, when the data is in the form of explicit feedback with single implicit
feedback, each user u is associated with two types of item sets: implicit item set
N(u) and explicit feedback set E(u). Explicit feedback is intentionally provided
by users to directly express user preferences (e.g., likes or dislikes) to items. For
an item i ∈ E(u), the rating given by user u to item i is denoted as Rui. Implicit
feedback reflects user opinions indirectly and can imply user probable preferences

1 The datasets are available at https://github.com/7thsword/MFPR-Datasets.

https://github.com/7thsword/MFPR-Datasets
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[9]. For an item i ∈ N(u), the implicit feedback does not necessarily mean that
user u likes the item i.

When data consists of explicit feedback with multiple types of implicit feed-
backs, each user is associated with single explicit feedback and τ types of implicit
feedbacks (τ ≥ 2). For user u, the explicit item set is still denoted as E(u) which
contains items user u has rated (i.e., rating) on, and the implicit item sets are
denoted as N1(u), N2(u), · · · , Nτ (u) where N t(u) contains items user u has
expressed the t-type implicit feedback on(t = 1, · · · , τ).

Let U and I denote the set of users and items respectively. We define a
ranking recommendation problem on multiple feedback data Rd = {U , I, Ef , If}.
Ef , defined as Ef = {E(u)|u ∈ U}, denotes the explicit feedback data consisting
of all users’ explicit item sets. If , defined as If = {N t(u)|u ∈ U , t = 1, · · · , τ},
denotes the implicit feedback data consisting of all users’ implicit item sets.
Hence, as shown in Fig. 2(e), our task is to design a model for better personalized
ranking recommendation through making full use of the explicit feedback data
Ef and the implicit feedback data If .

2.2 Base Learner Integrating Explicit and Implicit Feedback

The explicit feedback (i.e. rating) is very important for recommendation but rare,
and the implicit feedback is popular in real systems. Some researchers began to
consider the integration of explicit and implicit feedback for more accurate rating
prediction. Assume that there are m users and n items (i.e., |U| = m, |I| = n).
Given a rating matrix R = (Rui)m×n, where Rui denotes the score user u has
rated on item i. The predicted rating R̂ui user u may give to item i in SVD++
[7] can be modeled as:

R̂ui = (pu + |N(u)|− 1
2

∑

k∈N(u)

γk)qTi , (1)

where pu ∈ R
d is the explicit latent vector of user u, qi ∈ R

d is the explicit
latent vector of item i and d � min(m,n). γk ∈ R

d is the implicit latent vector
of item k and N(u) is the implicit item set as mentioned above. Here a user
u is modeled as pu + |N(u)|− 1

2
∑

k∈N(u) γk, and the complemented sum term

|N(u)|− 1
2

∑
k∈N(u) γk represents the perspective of implicit feedback. SVD++

treats the explicit and implicit feedback differently. It makes best use of explicit
feedback and adds implicit feedback as supplements.

Unfortunately, these existing models cannot be directly applied to our prob-
lem setting. Although SVD++ also considers explicit and implicit feedbacks, it
just integrates one type of implicit feedback. In addition, SVD++ is originally
designed for the rating prediction problem. Since predicting exact ratings is not
necessary for recommendation, we propose to use ranking framework.

3 Personalized Ranking with Multiple Feedbacks

The explicit and implicit feedbacks have different characteristics, we need to
treat them differently. Through adapting the Bayesian Personalized Ranking
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framework [13], we first design a Personalized Ranking model which integrates
explicit and one S ingle implicit Feedbacks (called SFPR). Then we extend the
SFPR model to integrate more implicit feedbacks and propose a unified Multiple
Feedbacks based Personalized Ranking model (called MFPR).

3.1 The SFPR Model

Firstly, we design a ranking model to combine explicit feedback and one type of
implicit feedback. Assume that a training set Tr consists of triples of the form
(u, i, j) with i � j denoting that user u prefers item i to item j. Note that the
generation of training set Tr is an important issue and it will be discussed in
Sect. 4. The Bayesian formulation of finding the correct personalized ranking is
to maximize the following posterior probability:

p(θ|Tr) ∝ p(Tr|θ)p(θ), (2)

where θ is the parameter of a certain base learner and p(θ) is the prior probability
of base leaner parameter. We use p(i � j;u|θ) to denote the probability that
user u prefers item i over item j under the model expressed by θ. With the
assumption that each triple (u, i, j) ∈ Tr is independent, the likelihood function
can be expanded as follows:

p(Tr|θ) =
∏

(u,i,j)∈Tr

p(i � j;u|θ). (3)

Since the SVD++ can effectively differentiates explicit and implicit feedback
and fully utilize the explicit feedback, we utilize the SVD++ as our base learner.
Then the individual probability p(i � j;u|θ) can be modeled as:

p(i � j;u|θ) = σ(R̂ui − R̂uj), (4)

where σ is the logistic sigmoid function σ(x) = 1
1+e−x .

For convenience, we simplify R̂ui − R̂uj in Eq. 4 as x̂uij . Note that x̂uij is
a real-valued function of θ which captures ranking relation between item i and
item j with the given user u. Assume that p(θ) is a Gaussian distribution with
zero mean and variance-covariance matrix

∑
θ = λθI. Now we can estimate

parameter θ of the base learner through maximizing the posterior probability in
Eq. 2 as follows:

max
θ

L = ln p(θ|Tr)

= ln p(Tr|θ)p(θ)

=
∑

(u,i,j)∈Tr

ln p(i � j;u|θ) − λθ‖θ‖2

=
∑

(u,i,j)∈Tr

ln σ(x̂uij) − λθ‖θ‖2, (5)

where λθ‖θ‖2 is a L2 regularization term which can be derived from the Gaussian
distribution p(θ) mentioned above.
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3.2 Learning SFPR Model

The objective function Eq. 5 is differentiable, gradient ascent based algorithms
can be employed as optimizer. The gradient of Eq. 5 with respect to the para-
meter θ is:

∂L
∂θ

=
∑

(u,i,j)∈Tr

∂

∂θ
lnσ(x̂uij) − λθ

∂

∂θ
‖θ‖2

∝
∑

(u,i,j)∈Tr

1
1 + ex̂uij

∂

∂θ
x̂uij − λθθ. (6)

We adopt stochastic gradient ascent (SGA) to optimize the model SFPR. Then
with a training sample (u, i, j), the model parameter θ can be updated as:

θ ← θ + η(
1

1 + ex̂uij

∂

∂θ
x̂uij − λθθ), (7)

where η is the given learning rate and generally tuned via cross validation. The
gradient of x̂uij with respect to each model parameter has to be known before
gradient ascent process. x̂uij = R̂ui − R̂uj is defined above and we can get the
derivatives:

∂x̂uij

∂θ
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

qi − qj if θ = pu,

pu + |N(u)|− 1
2

∑
k∈N(u) γk if θ = qi,

−(pu + |N(u)|− 1
2

∑
k∈N(u) γk) if θ = qj ,

|N(u)|− 1
2 (qi − qj) if θ = γk.

The predicted R̂ui in SFPR model cannot be regarded as the usual predicted
rating (i.e. 1 to 5 scales). Here, we call R̂ui the predicted ranking score, which
implies that degree of user u prefers item i. The larger the ranking score is, the
higher preference it implies.

3.3 The MFPR Model

The proposed SFPR is designed to integrate single explicit feedback and single
implicit feedback. Here we extend the SFPR model to integrate more implicit
feedbacks. When considering multiple feedbacks, as mentioned in Sect. 2.1, each
user u is associated with an explicit item set E(u) and τ types of implicit item
sets N1(u), N2(u), · · · , Nτ (u). For integrating multiple implicit feedbacks, our
extended preference predictor can be designed as

R̂ui = (pu +
1
τ

τ∑

t=1

|N t(u)|− 1
2

∑

k∈Nt(u)

γt
k)qTi , (8)

where γt
k ∈ R

d represents the implicit latent vector of item k under the t-th
implicit feedback. The model in Eq. 8 can be seen as a more general version of
the SFPR model. Now we have the x̂uij = R̂ui − R̂uj as:
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x̂uij = (pu +
1
τ

τ∑

t=1

|N t(u)|− 1
2

∑

k∈Nt(u)

γt
k)(qi − qj)T. (9)

Similarly, we apply SGA to solve the optimization problem.

4 Training Set Generation Algorithm

The MFPR model is fed with training data in the form of (u, i, j) with i � j
denoting that user u prefers item i over item j. Since the preference partial pairs
significantly affect performances [1], it is an important issue that how we can
effectively generate (u, i, j) from multiple feedbacks. For those traditional per-
sonalized ranking models utilizing only one or more types of implicit feedbacks,
such as BPR-MF in [13] and the approach in [2], their training set generation
algorithms just take implicit feedbacks into account. Specifically, they draw par-
tially ordered item pairs from the cartesian product of user’s interacted items
(items belong to user’s implicit item set) and user’s non-interacted items (items
do not belong to user’s implicit item set). However, in terms of multiple feed-
backs, such training set generation algorithm is inapplicable for MFPR. Besides
implicit feedbacks, there are quality rating information in our problem setting,
which can better reflect user preference. Hence, we need to design a new training
data generation algorithm.

Burgess and Shaked et al. [1] have proved that if the ranking probabilities of
every adjacent document pair in a permutation of all documents to be ranked
are known, then the ranking probabilities of any document pair can be derived.
Inspired by this conclusion, we design the training set generation algorithm which
utilizes the most significant preference information in the multiple feedbacks:
rating information. For each user u, we randomly split his or her explicit item
set E(u) into two subsets Etr(u) and Ete(u) with the given split ratio, where
Etr(u) is designed for constructing training set Tr and Ete(u) is for test set Te.
When constructing Tr, we first get a random permutation of Etr(u). Then, for
every adjacent item pair (i, j) in the permutation: (1) if Rui > Ruj , put the
triple (u, i, j) into Tr; (2) if Rui < Ruj , put the triple (u, j, i) into Tr; (3) if
Rui = Ruj , skip and continue to check next adjacent pair. Through the process
for every user, we can get the training set Tr eventually. And the similar process
is done for the test set Te.

Figure 3 gives a toy example for user u. We have explicit item set Etr(u) =
{6, 8, 9, 11, 17} and the corresponding ratings are Ru,6 = 4, Ru,8 = 3, Ru,9 = 2,
Ru,11 = 5 and Ru,17 = 4. Assume that a random permutation of Etr is Ptr =
{11, 8, 17, 6, 9}, then we in turn check every adjacent item pairs (11, 8), (8, 17),
(17, 6), (6, 9) of the permutation. Finally, the triples (u, 11, 8), (u, 17, 8) and
(u, 6, 9) are selected and put into the training set Tr.

We name this algorithm as IPPE which means that I tem Pairs with partial
order are obtained from checking adjacent items in a Permutation of Explicit
item set. The IPPE method considers every adjacent item pair, rather than any
item pair. This strategy significantly reduces the size of training samples without
much sacrifice in recommendation performance.
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Fig. 3. The toy example of generating training data for user u

5 Experiment

5.1 Datasets

In this paper, we focus on exploiting multiple feedbacks. As far as we know,
it is difficult to obtain such public datasets. Hence, we crawled two real-world
datasets for the experiments.

The Douban Book dataset2 contains 190,590 ratings (1–5 scales) involving
12,850 users and 22,040 books. The ratings to books are considered as explicit
feedback. There are 6 types of implicit feedbacks: “wish”, “reading”, “read”,
“tag”, “comment” and “rated”. All these implicit feedbacks are recorded using
a binary matrix (“1” for done and “0” for not). Note that the “rated” implicit
feedback comes from rating information through degrading the rating matrix
into a binary matrix (“1” means “rated” and “0” for “not rated”).

The Dianping dataset3 contains 188,813 ratings (1–5 scales) involving 10,549
users and 17,707 restaurants. There are four types of ratings in Dianping, includ-
ing overall rating (1–5 scales) and ratings (1–5 scales) on taste, environment and
service. We use the overall ratings as explicit feedback and degrade overall, taste,
environment and service ratings into “1” if rating ≥3 otherwise “0”. Then four
types of implicit feedbacks are obtained: “good taste”, “good environment”,
“good service” and “good overall”. The details can be seen in Table 1.

5.2 Comparison Methods and Evaluation Metrics

We compare the performance of the proposed SFPR and MFPR with five rep-
resentative methods:

• Most Popular (MP). This baseline ranks items according to their popularity
and is non-personalized.

• SVD [7]. This method is a typical matrix factorization based model. It is a
rating prediction model and the input data needs only the rating information.
We rank items using the predicted ratings in our experiments.

• BPR-MF [13]. This pairwise ranking method was introduced by Rendle et al.
and is a state-of-the-art personalized ranking model using only one type of
implicit feedback.

2 http://book.douban.com.
3 http://www.dianping.com.

http://book.douban.com
http://www.dianping.com
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Table 1. Statistics of datasets

Dataset Type Feedbacks (A−B) No. of A No. of B No. of (A−B)

Douban book Explicit User-rating 12850 22040 190590

Implicit User-wish 11107 16406 162565

User-reading 9776 12787 71662

User-read 12029 20014 174726

User-tag 8487 19942 162070

User-comment 8776 18888 151758

User-rated 12850 22040 190590

Dianping Explicit User-rating 10549 17707 188813

Implicit User-good taste 10473 14043 122060

User-good env. 10293 12135 90350

User-good service 10354 13271 105846

User-good overall 10425 14283 125173

• Ensemble of BPRMF (EN-BPRMF) [2]. This method is an ensemble app-
roach to unify different types of implicit feedbacks based on BPR-MF. In
experiments, we ensemble all types of implicit feedbacks using this approach.

• SVD++ [7]. This method is also a matrix factorization based rating prediction
model and the first to integrate rating information with one type of implicit
feedback. We rank items using the predicted ratings.

• Factorization Machine (FM) [11]. This method is a general predictor which
works with any real valued feature vector and combines the advantages of
support vector machines with factorization models. We integrate rating infor-
mation and all types of implicit feedbacks into the feature vector. It is a rating
prediction model and we rank items using the predicted rating.

Since BPR-MF, SVD++ and SFPR need one type of implicit feedback, we
choose the “read” feedback in Douban Book and the “good overall” feedback in
Dianping for them. The reason is that the best performance is achieved in these
conditions. In addition, some baselines are obtained from open resources. FM is
from libFM [12], while MP and BPR-MF are from MyMediaLite [3].

We use two evaluation metrics, which are widely used to evaluate ranking
performance. Zero-One Error [8] is the average ratio of correctly ordered item
pairs of triples (u, i, j) in test set Te:

ε0/1 =
1

|Te|
∑

(u,i,j)∈Te

[x̂uij(Rui − Ruj) > 0], (10)

where x̂uij is the difference between predicted ranking score R̂ui and R̂uj as
defined above. And [c] denotes a condition indicator that return 1 iff c is true
otherwise 0.

NDCG@k [8] is designed to take into count the order of items in the recom-
mendation list. To define NDCGu@k for a user u, DCGu@k =

∑k
i=1

2Rui −1
log2(i+1)
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should be given formally first, thereinto i ranges over positions in the recom-
mended list of user u, and we use the observed rating Rui to weigh the degree
user u prefers item i. NDCGu@k is the ratio of DCGu@k to ideal DCG for
that user:

NDCGu@k =
DCGu@k

IDCGu@k
, (11)

where IDCGu@k is the maximum possible DCG when the recommended items
are just in descending order by user u preference. NDCG@k is the mean value
of NDCGu@k over all users, reflecting model performance of recommended list
at the top k ranking.

5.3 Effectiveness

This section will validate the effectiveness of the proposed SFPR and MFPR
compared to those baselines. For Douban Book and Dianping datasets, we gen-
erate training set Tr and test set Te using different split ratios 30%, 50%, 70%,
respectively. The random split was carried out 5 times independently in all exper-
iments and we report the mean values of ε0/1 and NDCG.

Parameters of all methods are tuned to the optimal values through cross val-
idation on the datasets. For fair comparison, we set the same number of latent
dimension d = 10 for all matrix factorization based methods. We select ε0/1,
NDCG@5 and NDCG@10 as evaluation metrics. We also record the improve-
ment ratio on these evaluation metrics of all methods compared to the SVD.
Moreover, we also conduct the t-test experiments with 95% confidence, which
shows that the ε0/1 and the NDCG improvements is statistically stable and
non-contingent.

The experimental results are shown in Table 2, the main findings from the
experimental comparisons are summarized as follows: (1) MFPR achieves the
best performance in all conditions, which validates the significant benefits of
integrating both explicit feedback and multiple implicit feedbacks. The experi-
ments also confirm that better performance will be achieved through integrating
more feedback information. For example, SFPR outperforms BPR-MF due to
integration of ratings, SVD++ outperforms SVD because of implicit feedback,
and the superiority of MFPR to SFPR comes from more implicit feedbacks.
Note that MFPR and FM both utilize all feedback information, while MFPR
always has better performance. The reason lies in that MFPR designs an effec-
tive mechanism treating explicit and implicit feedbacks differently, while FM
handles all feedbacks equally. In all, exploiting and integrating multiple feed-
backs is really helpful to improve the performance in the personalized ranking
recommendation task. (2) When considering different training data ratios, we
can find that the improvements of those models integrating explicit feedback
with implicit feedbacks (i.e., SVD++, FM, SFPR and MFPR) are more signifi-
cant for less training data. This indicates that integrating implicit feedbacks into
models can effectively alleviate data sparsity of rating information. Specifically,
FM outperforms SVD++ and MFPR outperforms SFPR because of integrating



Personalized Ranking Recommendation via Integrating Multiple Feedbacks 141

Table 2. Performance comparisons on Douban Book and Dianping (d=10, the baseline
of improvement ratio is SVD)

Datasets Training Metric MP SVD BPR-MF EN-BPRMF SVD++ FM SFPR MFPR

Douban book 30% ε0/1
Improve

0.5210 0.5251 0.5314 0.5372 0.6089 0.6145 0.6270 0.6307

−0.66% 1.20% 2.30% 15.96% 17.03% 19.41% 20.11%

NDCG@5
Improve

0.7831 0.7879 0.7845 0.7861 0.8291 0.8288 0.8371 0.8399

−0.78% −0.43% −0.23% 5.23% 5.19% 6.24% 6.60%

NDCG@10
Improve

0.8301 0.8332 0.8318 0.8323 0.8656 0.8691 0.8706 0.8726

−0.37% −0.17% −0.11% 3.89% 4.31% 4.49% 4.73%

50% ε0/1
Improve

0.5225 0.5909 0.5299 0.5374 0.6396 0.6399 0.6605 0.6636

−11.58% −10.32% −9.05% 8.24% 8.29% 11.78% 12.30%

NDCG@5
Improve

0.7969 0.8347 0.7989 0.7994 0.8516 0.8500 0.8564 0.8611

−4.53% −4.29% −4.23% 2.02% 1.83% 2.60% 3.16%

NDCG@10
Improve

0.8478 0.8747 0.8493 0.8494 0.8887 0.8864 0.8927 0.8959

−3.08% −2.90% −2.89% 1.60% 1.34% 2.06% 2.42%

70% ε0/1
Improve

0.5239 0.6242 0.5312 0.5397 0.6558 0.6582 0.6676 0.6756

−16.07% −14.90% −13.54% 5.06% 5.45% 6.95% 8.23%

NDCG@5
Improve

0.8338 0.8791 0.8403 0.8409 0.8874 0.8875 0.8895 0.8932

−5.15% −4.41% −4.35% 0.94% 0.96% 1.18% 1.60%

NDCG@10
Improve

0.8814 0.9110 0.8821 0.8824 0.9172 0.9164 0.9196 0.9220

−3.25% −3.17% −3.14% 0.68% 0.59% 0.94% 1.21%

Dianping 30% ε0/1
Improve

0.5967 0.5922 0.5999 0.6072 0.6118 0.6220 0.6248 0.6253

0.59% 1.30% 2.53% 3.31% 5.03% 5.50% 5.59%

NDCG@5
Improve

0.8214 0.8178 0.8225 0.8261 0.8293 0.8365 0.8377 0.8387

0.44% 0.57% 1.01% 1.41% 2.29% 2.43% 2.56%

NDCG@10
Improve

0.8619 0.8594 0.8630 0.8658 0.8692 0.8689 0.8721 0.8752

0.29% 0.42% 0.74% 1.14% 1.11% 1.48% 1.84%

50% ε0/1
Improve

0.5965 0.6191 0.6009 0.6062 0.6304 0.6307 0.6345 0.6367

−3.65% −2.94% −2.08% 1.83% 1.87% 2.49% 2.84%

NDCG@5
Improve

0.8628 0.8727 0.8643 0.8674 0.8774 0.8778 0.8801 0.8815

−1.13% −0.96% −0.61% 0.54% 0.58% 0.85% 1.01%

NDCG@10
Improve

0.8924 0.8999 0.8940 0.8961 0.9044 0.9040 0.9056 0.9076

−0.83% −0.66% −0.42% 0.50% 0.46% 0.63% 0.86%

70% ε0/1
Improve

0.5987 0.6348 0.6006 0.6103 0.6411 0.6437 0.6468 0.6498

−5.69% −5.39% −3.86% 0.99% 1.40% 1.89% 2.36%

NDCG@5
Improve

0.8858 0.8982 0.8875 0.8891 0.9012 0.8996 0.9015 0.9029

−1.38% −1.19% −1.01% 0.33% 0.16% 0.37% 0.50%

NDCG@10
Improve

0.9099 0.9196 0.9110 0.9126 0.9217 0.9209 0.9219 0.9234

−1.05% −0.94% −0.76% 0.23% 0.14% 0.25% 0.41%

more implicit feedbacks. More combined implicit feedbacks mean more supple-
mentary information for ratings. Thus, it is desirable to achieve much better
recommendation performance through integrating comprehensive multiple feed-
backs, particularly when rating information is insufficient. (3) From the results,
we can also note that pairwise methods are more suitable for personalized rank-
ing recommendation. Specifically, SVD, SVD++ and FM are rating prediction
models, also known as pointwise methods, while SFPR and MFPR are pairwise
ranking models. It is obvious that SFPR and MFPR outperform those three
pointwise models. Specially, SFPR uses the same base learner as SVD++. Note
that the other two pairwise ranking models (i.e. BPR-MF and EN-BPRMF)
fail to defeat those pointwise models. We think the reason lies in that BPR-MF
and EN-BPRMF utilize only implicit feedback, so they fail to generate accurate
partial order item pairs as training set. In contrast, the proposed SFPR and
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MFPR generate item pairs with more accurate ranking order as training set
from explicit feedback.

5.4 Impact of Different Training Set Generation Algorithms

In this section, we verify the effectiveness of the designed training set generation
algorithm IPPE. In order to validate the superiority of the IPPE, we compare it
with the following two baseline methods. Following the idea of BPR-MF in [13],
for user u, we make cartesian product of Etr(u) with user’s unknown items to
construct training set. We name this approach as IPUC which means I tem Pairs
of partial order are obtained from Unknown item related Cartesian product. We
also consider a variation of the IPPE method. From Etr(u) of each user u, we
randomly sample two items each time and generate the item pair with partial
order according to their observed ratings. In order to produce the similar training
data size as the IPPE, the random process for each user u was conducted |Etr(u)|
times. We name this approach as IPRE which means I tem Pairs of partial order
are obtained from checking Random pairs in Explicit item set. And we retain
the same generation strategy for test set as the IPPE for these two approaches.

We apply these three different training set generation algorithms in SFPR
and MFPR. As shown in Fig. 4, SFPR based on the methods IPUC, IPRE and
IPPE are named as SFPRUC , SFPRRE , SFPRPE respecitvely. It is similar for
MFPR. We conduct experiments on both Douban Book and Dianping datasets,
where the “read” feedback and the “good overall” feedback are still chosen for
the SFPR. We can observe that models with IPPE have much better perfor-
mance than those with IPUC. Specifically, SFPRUC and MFPRUC have very
bad performance, which degrades as BPR-MF in Table 2. Since the method IPPE
makes full use of the rating information and thus the corresponding training set
Tr consists of item pairs with more accurate partial order. On the contrary, the
approach IPUC just discards the item orders implied by rating information and
deals with the rating as ordinary implicit feedback. Moreover, we observe that
SFPRPE and MFPRPE outperform SFPRRE and MFPRRE slightly but sta-
bly. This shows that sampling adjacent items pairs from random permutations

Zero−One Error NDCG@5
0.51

0.61

0.71

0.81

(a) Douban Book

Zero−One Error NDCG@5
0.51

0.61

0.71

0.81

SFPRUC
SFPRRE
SFPRPE
MFPRUC
MFPRRE
MFPRPE

(b) Dianping

Fig. 4. Performance under different training set generation algorithms on Douban Book
and Dianping
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outperforms that sampling item pairs randomly. In summary, for such multiple-
feedback data, the proposed IPPE method is more effective to generate training
set for the personalized ranking models.

6 Conclusion

In this paper, we study the personalized ranking recommendation by integrat-
ing multiple feedbacks, and propose a unified multiple feedbacks personalized
ranking framework MFPR. Extensive experiments on two real-world datasets
conform the superiority of MFPR. Moreover, we also have designed a delicate
algorithm IPPE to generate training data with more accurate partial order for
the proposed ranking model. The empirical evaluation results suggest that IPPE
through checking adjacent items in a permutation is superior to IPUC and IPRE.
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Abstract. Traditionally, recommender systems strive to maximize the
user acceptance of the recommendations, while more recently, diversity
and serendipity have also been addressed. In two-sided platforms, the
users can have two personas, consumers who would like relevant and
diverse recommendations, and creators who would like to receive expo-
sure for their creations. If the new creators do not get adequate expo-
sure, they tend to leave the platform, and consequently, less content is
generated, resulting in lower consumer satisfaction. We propose a re-
ranking strategy that can be applied to the scored recommendation lists
to improve exposure distribution across the creators (thereby improving
the fairness), without unduly affecting the relevance of recommendations
provided to the consumers. We also propose a different notion of diversity,
which we call representative diversity, as opposed to dissimilarity based
diversity, that captures level of interest of the consumer in different cat-
egories. We show that our method results in recommendations that have
much higher level of fairness and representative diversity compared to the
state-of-art recommendation strategies, without compromising the rele-
vance score too much. Interestingly, higher diversity and fairness leads
to increased user acceptance rate of the recommendations.

1 Introduction

The typical objective of the recommender systems is to maximize the user accep-
tance of the recommendations, treating the acceptance of recommendation as a
proxy to maximizing the utility from the consumers’ point-of-view. Hence, the
focus in all recommender systems has been to improve the prediction accuracy.

In a two-sided creative content discovery platform, e.g., Behance [1], the users
can have two personas; consumers that consume the items, and creators who
produce/supply the items. Such a platform needs to satisfy both the personas
in order to be successful. Consumers satisfaction with the recommendations is
based on, and can be measured by the traditional metrics (relevance of the
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 144–155, 2017.
DOI: 10.1007/978-3-319-57529-2 12
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recommendations, the level of diversity and chance of serendipitous discovery).
On the other hand, the creators look for opportunities to reach out to a wide set
of audience in order to be noticed and appreciated for their creations. If the cre-
ators (especially the new ones) do not get adequate exposure, they tend to leave
the platform (or become inactive), and consequently, less content is generated
on the platform, resulting in lower consumer satisfaction. Hence, for the two-
sided platforms, while the relevance of the recommendations to the consumers
remain a high priority, providing adequate exposures to the creators also plays
an important role in creating a thriving community. The current state-of-art
collaborative filtering techniques have been shown to favour popular items [5],
thereby increasing the chances of new creators not receiving adequate exposure.

Diversity in the recommendations is recognized as an important considera-
tion. The current notion of diversity is based on (dis)similarity of items, and
hence, a uniform strategy is adopted for all consumers to introduce diversity in
the recommendation results. Such strategies do not recognize the fact that dif-
ferent consumers have different level of interest in different categories of items.
We propose a new notion of diversity, which we call ‘representative diversity’
that captures level of interest of the consumer in different categories.

In this paper, we focus on Behance [1], a creative content discovery platform.
We propose a re-ranking strategy that can be applied to the scored recommen-
dation lists to improve exposure distribution across the creators, without unduly
affecting the relevance of recommendations provided to the consumers, and pro-
vides representatively diverse results. We define ‘Creative Capital’ as a notion of
value of the creators, based on their contributions to the platform, measured in
terms of number of projects created, number of views and appreciations received
on their projects along with the recency of such events. ‘Desired Exposure’ is the
ideal amount of exposure to be given to the creator based on the creative capital,
and is defined as a sublinear function of contribution of the creators to address
the fairness requirement. Fairness is defined as inverse of Jensen-Shannon Diver-
gence (JS-Divergence) between the desired distribution and the actual obtained
distribution of the exposures for the creators. Similarly, representative diversity
is defined as inverse of JS-Divergence between the desired distribution and the
actual obtained distribution of the exposures for the categories. We show that our
method results in recommendation lists that have much higher level of fairness
and representative diversity compliance compared to the state-of-art recommen-
dation strategies, while the relevance score is not compromised too much. In
fact, our experimental results on real data show that improvement in fairness
and diversity tends to increase the user acceptance rate of the recommendations
(which is the most relevant metric), even though the cumulative relevance score
as assigned by the recommender systems is marginally lower.

2 Related Work

Over the years, many different recommendation techniques have been developed,
mainly categorized into three types:
1. Content-Based Filtering: In these type of recommender systems, items

(projects in case of Behance) with similar features to the ones already liked
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by the consumer are recommended [9]. For creative images of Behance,
Fang et al. [6] have proposed a feature learning paradigm to learn image
similarities. Content-based filtering techniques are fair for all creators, i.e.,
projects of established popular creators as well as less popular (or upcoming
creators) have equal chance of being recommended. But these techniques are
limited to recommend items similar to those already liked by the consumer,
hence less diverse and serendipitous recommendations.

2. Collaborative Filtering: These recommender systems predict relevant
items to be recommended to a consumer using the history of items liked
by other consumers. There is vast literature in Collaborative filtering (CF),
including Item-based CF [10], user-based (nearest neighbors) CF [13], Matrix
Factorization [7,8], and other techniques. CF techniques solves the problem
of diverse and serendipitous recommendations to some extent. Though CF
techniques perform better than content-based filtering, they tend to favor
popular projects [5]. Since recommendations provide exposure to projects,
this in-turn increases the likelihood of those projects being appreciated. This
creates a clear rich-getting-richer scenario.

3. Hybrid Recommender Systems: To improve performance of recom-
mender systems, content-based and collaborative filtering techniques are
sometimes combined in the form of Hybrid Recommender Systems [3]. These
methods deal with the cold start problem better than collaborative filtering
by recommending new items through content filtering. A major limitation of
these systems is the requirement of rich content and meta-data of the items.
Moreover, these systems tend to be computationally more complex than either
of the two approaches and hence, less scalable.

Diversity [2,4,12] has also been considered in some research, but they focus
on diversifying the recommendations and do not consider consumer’s diversity
preferences. To the best of our knowledge, fairness for the creators on a two-sided
platform is not studied as yet. Our method of ensuring fairness resembles the
idea of the lottery scheduling method in CPU time allocation [11].

3 Definitions

As we will work in the context of ‘Behance’ as the application domain, we will
start by discussing it briefly. Behance [1] is a creative content discovery platform.
Users of Behance can have two personas; creators, who create ‘projects’ and
publish them on Behance, and consumers, who view projects created by the
creators. The projects can have one or more of the 137 creative fields associated
with them, which can be thought of as categories on Behance. Every click of a
consumer on a project to open it is counted towards number of views on the
project. The consumers can also appreciate projects, which is another metric
associated with the project. Consumers can also follow their favorite creators.
We will now define the various notions we will use in the rest of paper.

Positional Value: Since the recommendations are ranked lists, and items at the
lower ranking are less likely to receive attention of the consumers, we associate
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a positional value with each rank in the recommendation list. We take the posi-
tional value for rank 1 as 1 unit, and determine the positional value in relative
terms by observing the relative click-through rates. Due to lack of space, we will
not present detailed results, but we observed a near exponential decrease in the
click-through rate for the items in various positions. Accordingly, we take the
positional value of rank k based on the best fit to the data as:

pv(k) = e− k−1
45 (1)

Creative Capital: Now we define ‘Creative Capital’ for the Behance creators,
which is a measure of their contribution to the platform factoring in the recency
of contributions. One can imagine that the creators who create more projects
contribute more to the platform. However, higher quality projects should carry
more weight. The quality of the projects can be estimated by popularity of the
projects, which can be captured in term of the number of views and appreci-
ations. Further, since our focus here is on recommendations, projects that are
recent, or have received views and/or appreciation recently should carry more
weight than projects that are old, and have not received much user attention
recently. Accordingly, we define ‘Creative Capital’ Cu(t) as follows:

Cu(t) = γ × Cu(t − 1) + ωp × Δnp(t) + ωa × Δna(t) + ωv × Δnv(t) (2)

A creator u earns creative capital by creating projects or receiving views and
appreciations for projects created by her. The creative capital at the previous
time step Cu(t − 1) is decayed with by a factor γ and carried over. Here, ωp, ωa

and ωv are the weights of each project creation, appreciation and view respec-
tively. Also, Δnp(t) is the number of projects created by this creator between
(t− 1) and t. Similarly, Δna(t) and Δnv(t) are the number of appreciations and
views received on his projects from (t − 1) to t, respectively.

Desired Exposure Distribution: We had noted that due to favoring popular
items, collaborative filtering techniques tend to create rich-gets-richer scenario.
To avoid this situation (which is key to ensure fairness), we allocate the exposures
to the creators based on a sub-linear function of their creative capital. Please
note that we want the creators who contribute more to receive more exposures
to maintain incentive compatibility (i.e., there should always be incentive to
produce more of high quality work, assuming that having more exposure is the
incentive), and hence, the exposures should be a monotonic function of the cre-
ative capital. Hence, we define the deserved exposure for a creator u as:

Eu = θ × Cu
α, 0 < α < 1 (3)

where θ is a normalization factor such that
∑

Eu = 1 for all users u.

Fairness: Let the amount of exposures provided to the creations of a creator u
be denoted by Au, and the desired exposure distribution for the creator be Eu.
Then, we can think of fractional exposure provided to creators (by normalizing
across all creators) and exposure distributions as probability distributions over
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the creators. We define a fairness of a recommender system as inverse of JS-
Divergence between these two distributions. Low value of JS-Divergence means
that the actual exposure distribution is close to the desired exposure distribution,
and hence the system is fair (so the fairness score is high), and a high JS-
Divergence implies that the actual exposure distribution is significantly different
than the desired exposure distribution, and hence the system is not fair.

F =
1

JSD(E||A)
(4)

where, JSD(E||A) is Jensen-Shannon divergence between two probability dis-
tributions E and A.

Representative Diversity: Different consumers on a platform have different
appetite for different categories of items. We allocate the exposure to be given to
the items from a category g for a consumer based on their (normalized) interest
in that category. One challenge in such a strategy is that the user may not
have explored the items of the platform enough for us to learn her preferences
completely. Hence, we keep the exposure allocation for the category as a weighted
average of the consumer’s preference for the category and global preference of
the category. The weight is based on the number of observations available for the
consumer. As we gather more and more data about the consumer’s preference,
the global preference’s weight keeps decreasing.

Eg(u) = β × (λupu
g + (1 − λu)Gg) (5)

where Eg(u) is the exposure fraction allocated to category g for consumer u,
0 ≤ λu ≤ 1 is the degree of certainty about estimate of consumer u’s preferences,
pu

g is the estimated preference of consumer u for category g, and Gg is the
global preference for category g. Also, β is a normalizing factor to ensure that∑

g Eg(u) = 1. Clearly, λu is a function of amount of data available about
consumer u’s preferences.

We define the diversity compliance of the recommender system for a consumer
as inverse of JS-Divergence of the desired exposure distribution for the categories
Ec and the actual exposure distribution Ac for that consumer.

DC(u) =
1

JSD(Ec(u)||Ac(u))
(6)

The global diversity compliance is defined as

GDC =
∑

u

{W (u) × DC(u)}/
∑

u

W (u) (7)

where W (u) is the importance of consumer u, which we take as the sum of
positional value of all exposures provided to the user u.

A Note About Simplification: In Behance, a project can be created by collab-
oration amongst multiple creators. Also, the project can have multiple categories
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associated with it. In the above description, we have given all formula consider-
ing only the case where each project is created by one creator and is associated
with one category. This is done for ease of reading. While implementing our
system, we have assigned partial credit to the creators and categories for such
projects. Our experimental results are given for partial credit assignments.

3.1 The Final Objective Function

Recall that our aim is to provide “relevant and representatively diverse recom-
mendations to the consumers, that provide fair exposure to the creators”. Hence,
we define our overall objective function as a combination of the user relevance,
fairness to creators and representative diversity across categories. Suppose the
relevance of an item i for a consumer u is given by rui, which may be based on the
underlying recommendation algorithm (e.g., Collaborative Filtering). We define
the overall relevance Ru for the user u as Ru =

∑
k pv(k) × rui, where pv(k) is

the positional value of rank k, and rui is the relevance of the item i, which is
recommended in position k in the recommendation list. The final relevance score
for the recommender system across all users Rall is given as

Rall =
∑

u

W (u) × Ru (8)

where W (u) is the importance of consumer u as in Eq. (7), which we again take
as the sum of positional value of all exposures provided to the user u.

Finally, we are ready to define our overall objective function:

O = (w1 + Rall)wr × (w2 + F )wf × (w3 + GDC)wd (9)

This form of objective function ensures that none of the factors can be ignored
completely. The various weights (w1, wr, w2, wf , w3, wd) control the importance
of the different factors. We would like to give higher importance to relevance and
fairness compared to the diversity, and hence we select w1 = 0, wr = 1, w2 = 0,
wf = 1, and w3 = 1, wd = 1. This results in simplified objective function

O = Rall × F × (1 + GDC) (10)

Given that, we would not know a-priori which consumers are likely to visit
the platform on a given day, we would like to make the recommendations in such
a way, that the solution has a high value of objective function on an ongoing
basis, and not only at the end of one round of execution. In the next section, we
give a heuristic approach for ongoing optimization of this objective function, as
due to JS-Divergence in the objective function for our problem formulation, it
is not possible to devise an efficient exact or approximation algorithm.

4 Algorithm for Generating Recommendations

We will first outline an optimization approach for a general resource allocation
problem and then illustrate how to translate it to the present context of re-
ranking recommendations.
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Consider a set of resource requesters, along with a prespecified share of
resource eligibility for each requester. The resource become available in chunks
in an online fashion. When a resource chunk becomes available, it needs to be
allocated to one requester (without dividing it). The goal is to allocate resource
chunks in such a fashion, that at every time, the resource distribution over all
requesters is as close to the prespecified resource eligibility share as possible.

We propose the following greedy algorithm to solve the given problem. For
every resource chunk r(t), calculate the value of allocating the resource to each
requester u as

Vu = Eu × (
∑

v Av(t − 1) + r(t))
(Au(t − 1) + r(t))

(11)

where Eu is the pre-specified share of resource eligibility for requester u, Au(t−1)
is the already allocated resource units to requester u until time (t−1). Now, there
are two strategies possible. First is a deterministic strategy, where we allocate
r(t) to the requester such that the value is the highest. Second is a probabilistic
strategy, where we allocate the resource to the requesters with probability equal
to the normalized value.

One can see both the fairness and representative diversity as resource allo-
cation problem described above. Our overall objective function is a combination
of three components. Hence, we use this method to generate two of the factors
which we use for the re-ranking strategy, while the third component is based on
the relevance as assigned by the underlying recommendation algorithm.

First, we generate a rating or relevance scores ru,i using state-of-art collab-
orative filtering techniques for all project-consumer pairs. We also compute the
global popularity ratings gi for all projects as the average of all observed rating
for the project. We then follow the following steps for recommending projects to
each consumer u, for whom, we need to generate ku recommendations:

1. Create a candidate pool of projects to recommend by taking all the projects
for which the rating is positive (i.e., ru,i > 0).

2. If the pool is smaller than the number of projects to be recommended, add
all the other projects (ones with ru,i = 0) to the pool.

3. Then calculate goodness of all the projects in pool as follows:

Gu,i = ru,i × VF (c(i)) × VD(g(i)) (12)

where, VF (c(i)) is value of allocating the exposure to the creator of project i
(refer Eq. 11), VD(g(i)) is the value of allocating the exposure to the category
that project i belongs to, and ru,i is the relevance rating of project i to the
user u as mentioned earlier.

4. Now select project with maximum goodness (we will call this as deterministic
approach) or select a project probabilistically from the list with probability
of selection equal to its normalized goodness (we will call this as probabilistic
approach).

5. Remove the selected project from the list and continue recommending from
remaining projects until all recommendations are done.

While computing the relevance, the rating of projects with rui = 0 is taken as
1/5 of the lowest value of rui from the top-k projects.
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5 Experimental Results

First, we will validate our motivation by analyzing the churn rate of the creators
to show that creators who do not get adequate views in the beginning tend to
churn with higher probability. We will show that the Creative Capital is a good
metric to capture the contribution of the creators for the platform. Both these
analysis are on the full Behance dataset. We will then describe our data set
for recommendation re-ranking. We study the performance of various state-of-
art collaborative filtering techniques to choose the baseline relevance assignment
approach. We will compare the performance of the proposed approaches and
baseline approaches on the three axis, fairness, relevance, and diversity. Finally,
we will also evaluate the various approaches for the precision and recall based
performance. Given the space limitation, we will not present detailed results and
plot in all cases, and only quote the results in the running text.

5.1 Churn Rate Analysis

To illustrate the need to address the fairness, we have done an analysis of the
churn rate of creators on Behance. A creator is said to have churned if he stops
publishing any new projects. We calculated the number of creators who got only
a small number of views/appreciations in their initial 12 months, and computed
the churn rate as the fraction of creators who stopped publishing projects after
this initial period. We found that the churn rate for creators who get up to
5 views during the initial 12 months is approximately 2.5 times than the cre-
ators who got at least 100 views in the first 12 months. However, the churn
rate does not change significantly for the creators that received at least 100
views. If we assume that the relation between views received and churn rate
remains the same, then the re-ranking strategy proposed in this paper that mar-
ginally reduces number of exposures for highly popular creators and distributes
those among less popular creators for fairer exposure, results in 12% reduction
in churn rate. This experiment clearly highlights the importance of giving fair
opportunities to creators for their projects to be viewed to reduce churn-rate.

5.2 Creative Capital Analysis

As explained in Sect. 3 Eq. (2), we computed the ‘Creative Capital’ as a function
of number of projects created and number of views and appreciations received,
along with recency of such signal. We used the following parameter values:
γ = 0.98, ωp = 50, ωa = 5 and ωv = 1. These weights are inversely propor-
tional to the relative frequency of occurrence of respective events in order to
give equal importance to each of these. The intent of this metric was to capture
the perceived contribution of the creators to the platform. Typically, people tend
to follow the creators based on their contribution. As we did not use the follower
information for defining this metric, we can use it for cross validating the metric.
If the metric is indeed a good indicator of creator’s contribution, the increase
in number of followers should coincide with the increase in creative capital.
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Accordingly, we calculated the Pearson Correlation Coefficient between increase
in creative capital, Cu(t) − Cu(t − 1) and corresponding Δnf (t) (increase in the
number of followers of u from t − 1 to t). The average correlation was observed
to be 0.7457 which establishes the validity of Creative Capital as a measure of
worthiness of a creator.

5.3 Data Set

Behance has an active user base of multiple million users, with about one quar-
ter of the users being creators. The number of projects created by these creators
is also in millions. To evaluate the recommendation performance, we work with
a sample of data that has 638 creators, having 2,000 projects, and 1,400 con-
sumers. The total number of project views and appreciations were 28,000 and
9,800, respectively. We split the data such that approximately 80% views and
appreciations go into train and 20% in test sets.

5.4 Baseline

As collaborative filtering techniques have been shown to outperform other recom-
mendation approaches, we take collaborative filtering techniques as the baseline
for comparison. Since there are many collaborative filtering techniques proposed
in literature, we first conducted experiments to determine which of these tech-
niques perform the best for our dataset. We implemented nearest neighbour,
item-item and matrix factorization based collaborative techniques, and checked
for accuracy of the recommendations provided. We found that item-item jaccard
nearest neighbor based CF algorithm performed the best with approximately
5% better accuracy in top-k recommendations for a broad range of k. Hence, we
take item-item CF as our main baseline and call it ‘Traditional’ baseline. We also
take randomized strategy as baseline called ‘Baseline Random’, as randomness
would likely result in high degree of fairness and diversity. To ensure that the
recommendations are not completely irrelevant, we also created hybrid baselines
called ‘Baseline Hybrid’, where first 50% of the recommendations are the ones
with the highest predicted ratings and the rest are chosen randomly.

5.5 Fairness, Diversity and Relevance

We now evaluate the performance of our two approaches (probabilistic and deter-
ministic), and the results are compared against traditional CF approach and
other baselines.

First, we look into fairness. There are two aspects of fairness; first, the strat-
egy should allocate the exposures to the creators in a manner consistent with
the objective of giving fair exposure to all creators. Second, the recommendation
algorithm should follow the exposure allocation while performing the recommen-
dations. The left hand side of the plot in Fig. 1 shows the number of people (on
y-axis) who will be given a certain amount of exposure (on x-axis). Here, we have
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Fig. 1. Fairness results: Left - view allocation; Right - actual exposure distribution

taken α = 0.75 for determining the deserved/allocated exposures (ref. Eq. (3)).
As one can see, the number of people who receive large number of exposures
is reduced, and the number of people who get moderate exposures is increased.
This shows that our method allocates the exposure in a fairer manner compared
to the current state-of-art collaborative filtering techniques. The right hand side
plot in the same Fig. 1 shows the deserved exposure allocation, the exposure pro-
vided by our method, and the exposure provided by the collaborative filtering
technique. One can clearly see that our method adheres much more closely to the
allocated exposures as compared to the collaborative filtering. The correlation
between the deserved and actual exposure provided by our deterministic method
is 0.8682, whereas the correlation for the item-item CF with deserved exposure
is 0.6573. This clearly shows that our method has good intent (left plot) and
good execution (right plot) for fairness to creators. Table 1 reports the fairness
numbers achieved by various methods, which clearly shows that our proposed
approaches achieve nearly twice as good fairness compared to traditional and
randomized baselines.

Figure 2 compares the diversity in the categories of the projects recommended
and the relevance for the consumers. The figure on the left shows that our models
(especially probabilistic without beyond k) perform better than the traditional
approach. The randomized baseline approaches are expected to perform well
because picking random projects would lead to increase in diversity. The figure on
the right shows that while our models perform very well on fairness and diversity
fronts, as expected it lags behind in terms of relevance, as the improvement
in fairness has been achieved at the cost of drop in relevance. However, we
find that the average loss in relevance was about 9% only, whereas the average
improvement in fairness was 97.1%, over and above the considerable increase in

Table 1. Fairness value achieved by various methods

Method Baseline random Baseline hybrid Baseline IICF Deterministic Probabilistic

Fairness 4.11 3.85 2.97 6.56 6.03
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Fig. 3. Precision and recall results for different methods

diversity. We also see that the random (and hybrid) baseline performs poorly
on the relevance front even though it performed fairly well in terms of fairness.
This means that randomized approach are not viable alternatives.

Finally, Fig. 3 compares the precision and recall of the results for all the
approaches. where precision and recall at cutoff k are defined as:

P (k) = |a ∩ pk|/k R(k) = |a ∩ pk|/|a|
where a is the set of projects that the consumer has appreciated and pk is the
set of top k projects recommended to the consumer. As we can see our models
have higher precision and recall than the baseline models, including even the
best performing CF technique. The deterministic approaches perform the best
in general. The high precision and recall for the traditional method is expected.

6 Conclusions

In this paper, we addressed an important issue of fairness to the creators while
providing relevant and diverse recommendations to the consumers on a two-sided
platform. We showed that by sacrificing a small amount of relevance, one can
achieve a much higher degree of fairness and diversity in the recommendations.
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Further, we also showed that in terms of the precision and recall, which are
the most relevant metrics, our proposed approach outperforms the state-of-art
collaborative filtering techniques. There are some interesting research directions
as a follow up of this work, including more robust definition of Creative Capital
and approximation guarantee algorithms.
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Abstract. Recommending an appropriate route to reduce taxi drivers’ mileage
spent without a fare is a long-standing challenge. The current solution has been to
get the best route which has optimal performance, and the performance usually
combined the conditional probability for getting a passenger and the cruising
distance. However, the main reference has some limitation. To eliminate the
limitation, a novel model is proposed to evaluate the candidate route perfor-
mance. And based on this new model, a recommendation system is tested. Firstly,
by mining the knowledge of the historical taxi trajectory, we extract the temporal
probabilistic recommending points. Then based on it, the evaluation model is
presented to estimate the performance of each candidate route. Finally, a route
recommendation algorithm is used to get the optimal route for taxi drivers. And as
the result, the experiment is performed on real-world taxi trajectories data set, and
shows the effectiveness of the proposed model for evaluating the performance.

Keywords: Evaluation model �Mobile recommendation systems � Taxi drivers

1 Introduction

Nowadays, taxi service plays an important role in public transportation service in large
cities. However, there are often a huge number of taxis cruising around the city with no
passengers. The vacant taxis not only waste energy but also result in a traffic jam. So, a
recommendation system to improve the performance of taxis is needed. And the
advances of various technologies provide the possibility.

Indeed, most of the existent mobile recommendation systems are using the inte-
gration of the conditional probability and the cruising distance or others such as income
to measure the performance of the route and then recommend the best one to the taxi
[1–4]. However, we find that the living performance evaluation method is wrong in
some cases. Using the existing methods will result in sending the taxi to a lower
performance route. Hence, a new performance evaluation method is proposed in this
paper. In addition, since taxi trajectories are big spatial-temporal data and how to
extract the useful information like the mobility pattern of the passengers with con-
sideration of the time factor is also challenging.
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To that end, in this paper, we propose a recommendation system based on historical
trajectory taxi data. The key idea is that it utilizes a new route model to evaluate a
candidate route and then provide an algorithm to find a potential passenger with the
minimum cruising miles. Specifically, the contributions of this paper are as follows:

1. A novel model for evaluating the candidate route is proposed. The model computes
the potential cruising distance along the route for picking up per passenger. The
main difference of the new model from the traditional one is considering the pas-
senger number of the route. A recommendation system for taxi drivers to minimize
their cruising driving distance for taking per passenger is presented.

2. To verify the effectiveness of the model, we conduct extensive experiments on a
real-world data set. And the result shows that the new model is more effective.

The remainder of this paper is organized as follows. Section 2 shows some related
works. In Sect. 3, we formulate the problem of route recommendations for taxi drivers
and introduce some preliminaries in the paper. Section 4 presents the generation of the
temporal probabilistic recommending pick-up points. In Sect. 5, the recommending
model is discussed in details. Section 6 shows some experimental results and the paper
is concluded in Sect. 7.

2 Related Works

In the literature, a mass of research has been devoted to the recommendation system
[5–9]. Based on the massive data of the taxis’ trajectory, the route recommending
system’s main target is to provide the more efficient driving route for taxi drivers by
finding the behavior pattern of the experienced taxi drivers, the potential flowing
direction of the crowds, etc. Li et al. [10] pay attention to the prediction of the
movement of human beings. They present an adaptive hot extraction algorithm to
cluster the pick-up/drop-off events of the passengers. Awasthi et al. [11] propose a
rule-based method to evaluate the fastest path in the city. In order to get the fastest
route, they build a statistical model using the traffic log. Gonzalez et al. [12] develop an
adaptive fastest path algorithm by considering the speed patterns mined from historical
GPS trajectory data. Ge et al. [1] develop a mobile recommendation system to rec-
ommend a taxi driver with the shortest potential travel distance route for finding a
passenger. Then some concern the carpool service [13, 14] to save energy and seek the
balance of demand between the taxi drivers and passengers. In the T-Share system,
users submit request of taking a taxi with the location of getting on and off, the number
of passengers and the expected time to the destination through the phone. System
maintains all states of the taxi in real-time in the back, and after receiving a request,
search out the best cab which satisfies the conditions of the new user and the passengers
already in the cab. In addition, other works care about the optimization of calculation.
Statistics show that the time complexity of existing recommendation methods are
usually exponentially [15]. Trestian et al. [16] use the orthogonal kd-tree. Yang et al.
[4] propose a new kds-tree structure which is a binary tree and extended from kd-tree
and ball-tree. In this article, we focus on the recommendation of the shortest potential
cruising distance for taxi drivers. Different from the earlier studies, we propose a novel
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model to evaluate the performance of each candidate route and then based on it, get the
optimal route for taxi drivers.

3 Problem Definition

Definition 1. Picking-up rate: picking-up rate is the probability of finding a passenger
at one pick-up point.

Definition 2. Given a set of N potential pick-up points C = {C1, C2, …, CN}, a route
R is a sequence of connected pick-up points, i.e., R = (C1 ! C2 ! … ! CK)
(1 � K � N), The length of route R denotes as j~Rj = K, the number of pick-up
points. Rset is the set of R, which is generated from C. Independence probability set
PR = (P1, P2, …, PK) denotes the set of picking-up rate of pick-up point and distance
subset DR represents the set of distance between each pair of pick-up points en route R.

Note that C0 always denotes the current position of a taxi PoTaxi in this paper.

Definition 3. The taxi mobile routing recommendation problem is to recommend a
profitable route to a taxi driver so that the potential cruising distance to a possible
passenger is minimized.

As the calculating the potential cruising driving distance depends on the current
position of the taxi, time period, route R, and the corresponding picking-up rate set PR
and the distance set DR, the potential cruising distance function can be denoted as:

F PoTaxi,T;R;PR;DRð Þ

Note that, in this paper, we limit the length of route R to be K. This is because the
calculating constraints and considering the practical applications.

So, the taxi mobile routing recommendation problem can be formulized as:

min
R2Rset

F PoTaxi;T;R;PR;DRð Þ

Almost all the current existing researches of evaluating the performance of the route
are using the integration of the conditional probability for getting a passenger and the
cruising distance. However, this is wrong. Because it only takes the potential driving
distance into account without considering the probability of picking up passengers. In
other words, they do not consider the number of the passengers along the route. The
potential cruising distance of finding a passenger will be the correct evaluation stan-
dard. So, in this paper, we put forth a novel model, the potential cruising distance
function, which is not only considering the driving distance also the probability of
picking up passengers, to evaluate the route from a taxi to a potential passenger, which
will be discussed in detail later.

First of all, let’s focus on a demonstration of recommending. Figure 1 shows an
illustration example of two candidate paths.
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In this graph, node PoTaxi (C0) represents the current position of an empty taxi at
time period t, node Ci (i = 1, 2, 3, 4) denote the recommending pick-up point with the
estimated picking-up rate Pi (i = 1, 2, 3, 4) respectively. Di (i = 1, 2, 3, 4) indicate the
distance between node Ci−1 and node Ci. In addition, there are two candidate driving
routes R1 = {PoTaxi, C1, C2} and R2 = {PoTaxi, C3, C4}. Note that the nodes in the
path are sequential and assumed to be different from each other. This is because we do
not allow taxi drivers to drive back and forth.

Nowadays, almost all the methods of calculating the potential cruising distance
from the taxi to a potential passenger are integrating the conditional probability
with the cruising distance. For example, in Fig. 1, the potential cruising distance of
route R1 could be P1D1 þ 1� P1ð ÞP2 D1 þD2ð Þ, for route R2, it will be
P3D3 þ 1� P3ð ÞP4 D3 þD4ð Þ. In some cases, it makes sense, just like the probability is
almost similar but the distance is very different. In other cases, however, this is not
really applicable. As Fig. 2 shows, under this circumstance, the method is wrong.

According to the previous method, the calculated potential cruising distance
respectively is 120 m and 76 m, so the better route will be R2 = {PoTaxi, C3, C4}.
However, it is inconsistent with the facts, and clearly that we should choose route R1

rather than R2 in any cases unless you do not want to make a profit. The potential
cruising distance from the taxi to a potential passenger cannot be simply integrating the
conditional probability with the cruising distance. Furthermore, we should also take the
probability of picking up passengers into account.

C1 C2

C3 C4

D2

D4

P1 P2

P3 P4

PoTaxi

Fig. 1. An example of two candidate path

C1 C2

C3 C4

D2=100m

D4=100m

P1=0.5 P2=0.7

P3=0.4 P4=0.3

PoTaxi

Fig. 2. A concrete example of routes
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4 Temporal Probabilistic Recommending Point Generation

In this section, we show how to generate the temporal probabilistic recommending
points. There are two main steps: clustering based upon the pick-up points of the
experienced drivers, and calculate the probability of each recommended point.

4.1 Clustering Based on the Pick-up Points of the Experienced Drivers

To generate the recommended points, firstly, the experienced drivers are extracted from
a large number of taxi track data. Then we can get their pick-up and drop-off points at
different time period. Secondly, calculating the pair wise driving distance of these
pick-up points of different time period using the Google Maps Distance Matrix API.
Finally, clustering based on the calculated driving distance.

The driving time and the driving occupancy rates are the main factors to extract the
experienced drivers, while the state of the driver is important to calculate the driving
time and the driving occupancy rates. We consider drivers with plenty of driving time
and high driving occupancy rates to be experienced. In general, there is three status of
the driver’s driving state: occupied, cruising and out-of-service state. Driver’s driving
time is the time when the state is not out-of-service, and the occupancy rate is the ratio
of driving time of occupied to total driving time. Assume that there are two continuous
GPS points of a driver, the state of the two points are occupied, but the time interval is
greater than an hour, can we expect this time interval as occupied driving time?
Figure 3(a) shows the distributions of the time interval of two continuous GPS points
of more than 500 drivers in San Francisco over a period of about 30 days. Figure 3(b)
and (c) show the distributions of the time interval of two continuous GPS points when
the state changes from occupied to cruising and occupied to occupied of these drivers.
From the figures, it’s clear that some intervals are greater than one hour. Based on this
observation, we conduct lots of experiments to get the best threshold for calculating the
driving time and the driving time with passengers. Then, we extract the experienced
drivers with their pick-up points at different time period. Figure 4 shows the distri-
bution of pick-up points of experienced drivers.

(a)                                        (b)                                          (c) 

Fig. 3. Distributions of time interval of two continuous GPS points: (a) all status; (b) occupied
to cruising; (c) occupied to occupied
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As Fig. 4 shows, different time periods have various numbers of pick-up events. In
other words, there is different pick-up probability. And we can find that the trend is in
accordance with our common sense, where the picking-up events happen less in the
midnight (02:00–04:00) and higher during the night (18:00–22:00). After obtaining the
historical pick-up points at different time periods, we use driving distance to cluster
these points into N clusters for different time periods. Using driving distance rather than
simply the spherical distance or Euclidean distance can make more accurate recom-
mended results. Furthermore, we use the Cluto [17] for clustering by using vcluster
clustering programs with parameters “−clmethod = direct”. Eventually, the center of
each cluster is the recommending points we needed.

4.2 Calculation of Probability of Recommended Points

To generate the probability of each recommended point, we measure the number of
taxis, which pick up passengers when passing by the cluster while unoccupied. After
getting the clusters, we should obtain the temporal-spatial coverage of each cluster. For
each point in each cluster, we get the distance to the center of the cluster, then obtain
the average distance for each cluster. The temporal-spatial coverage defines as a circle
with radius of the average distance.

Definition 4. The probability of finding a passenger for each cluster c at time period t
can be estimated as:

P c; tð Þ ¼ jstates cruising ! occupiedð Þj
jstates cruisingð Þj

where |status(cruising)| denotes the number of cruising taxis which passed by cluster c
at time period t, and |status(cruising!occupied)| is the number of these cruising taxis
which passed by cluster c at time period t and changed their state from cruising to
occupied.

Since the probability of picking-up is very sensitive to time, for time period t, we
divide it into several small ones. Then we calculate |status(cruising!occupied)| and
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Fig. 4. Distribution of pick-up points of experienced drivers. The size of the timeslot is one
hour, where 1 stands for 00:00–00:59, 2 stands for 01:00–02:59, etc.
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|status(cruising)| for each cluster respectively, and finally get the probability of finding a
passenger for each cluster c at time period t.

5 Optimal Route Recommendation

In this section, we introduce the technical details for searching a route with the shortest
potential cruising distance, which is we consider the optimal route. Firstly, we will
show the model for measuring the potential cruising distance of each candidate route.
Next, a recommending algorithm to get the optimal route will be presented.

5.1 The Potential Cruising Distance

Assume that there is an empty taxi, now we recommend it to the next place C1. The
distance between the taxi and C1 is D1. The probability of picking-up at C1 is P1. So,
the potential cruising distance is D1/P1. The potential cruising distance from a taxi to a
potential passenger is calculated based on the probability of the recommended points.

Definition 5. If the current position of a taxi is PoTaxi, and follow the route
R = {PoTaxi (C0), C1, C2,…, Cn} at time period t. It may pick up passengers at C1 with
the probability P(C1), or at C2 with the probability 1� P C1ð Þð ÞP C2ð Þ. For each pick-up
point Ci, the picking-up rate is following as:

P CijR; tð Þ ¼ P Ci; tð Þ; i ¼ 1
PðCi; tÞ

Qi�1
j¼1 1� P Cj; t

� �� �
: i[ 1

�

In addition, we use D(Cj, Cj+1) to represent the driving distance between pick-up
point Cj and pick-up point Cj+1. Thus,

Definition 6. The potential cruising distance function F can be defined as:

F ¼
Pn�1

i¼1 P CijR; tð ÞPi�1
j¼0 D Cj;Cjþ 1

� �� �
þP CnjR; tð Þ=p Cn; tð ÞPn�1

j¼0 D Cj;Cjþ 1
� �

Pn
i¼1 P CijR; tð Þ

By observing the form of the potential cruising distance function, we can simplify
this formula and re-write as:

F ¼
Pn

i¼1
P CijR;tð ÞD Ci�1;Cið Þ

P Ci;tð Þ
Pn

i¼1 P CijR; tð Þ

To clearly explain our potential cruising distance function, we illustrate it via an
example. Figure 5 shows an example of a recommended cruising route PoTaxi !
C1 ! C2 with the corresponding probability {P1, P2}, driving distance {D1, D2}
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respectively. The potential driving distance could be P1D1 þ 1� P1ð Þ D1 þD2ð Þð Þ
while it may have passengers of P1 þ 1� P1ð ÞP2ð Þ. Therefore, the potential cruising
distance to a potential passenger will be:

P1D1 þ 1� P1ð Þ D1 þD2ð Þ
P1 þ 1� P1ð ÞP2

5.2 Optimal Route Recommendation

In this subsection, we introduce the method for recommending the route with the
shortest potential cruising distance to target taxi. Once the capacities of all the road are
obtained based on the evaluation model proposed above, we can recommend a tra-
jectory to a taxi given its current location and time.

Figure 6 shows the pseudo-code of the recommending algorithm. Given the current
location (PoTaxi) and time (T) of the taxi; first of all, we can obtain the set of the
recommended cluster nodes of current time (Cset), the set of the probability of the
cluster nodes of the current time (Pset) which is corresponding to the Cset, and the
driving distance matrix of the cluster nodes (Dset). Then, based on the above mentioned
and the length of the route (k), all the candidate route can be gotten by the function
GetCandidateRouteSet (). Next, for all candidate routes, the potential cruising distance

C2C1 D2

PoTaxi P1 P2

Fig. 5. An example of a recommended cruising route

Algorithm GetRecommendingRoute (PoTaxi, T, k, Cset, Pset, Dset) {
ShortestCruisingDistance = + ;
CandidateRouteSet = GetCandidateRouteSet (k);
for each route in CandidateRouteSet {

PotentialCruisingDistance = GetPotentialCruisingDistance (PoTaxi,
T, Cset, Pset, Dset);

if ShortestCruisingDistance > PotentialCruisingDistance
ShortestCruisingDistance = PotentialCruisingDistance;

end if
The route with the minimum ShortestCruisingDistance is the optimal

recommending route;
end for

}

Fig. 6. The recommending algorithm
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should be calculated by the evaluation model we proposed, which is encapsulated in
the function GetPotentialCruisingDistance (). Finally, the route with the minimum
potential cruising distance will be the optimal recommending route.

6 Experiments

In this section, to demonstrate the effectiveness of the proposed evaluation model and
evaluate the performance of the proposed recommendation system, we have done
extensive experiments on real-world data sets.

6.1 Experiment Data

In this paper, we train our system using the real-world data sets collected in the San
Francisco Bay Area in 30 days, which provided by the Exploratorium-the museum of
science, art and human perception through the cabspotting project. The mobility traces
are the records of more than 500 taxis’ driving states in consecutive time. Each record
can be expressed as a tuple: (unique taxi ID, latitude, longitude, status, time stamp).

In the experiments, we obtain the experienced drivers by exploring the important
properties of the drivers: driving time and driving occupancy rate. Figure 7 shows the
distributions of the driving time and the driving occupancy rate. From Fig. 4 we can
see that the picking-up events occur most frequently during the time period 18:00–
19:00, and during 14:00–15:00, the gradient has a sharp change. So, we will focus on
this two time period in the experiment. In total, 1203 pick-up points of experience
drivers and 561573 points of all taxis are obtained during 18:00–19:00, and 822
pick-up points of experience drivers and 509362 points of all taxis are obtained during
14:00–15:00. All potential pick-up points are clustered into 10 clusters. Table 1 shows
the information of the 10 temporal probabilistic pick-up points during 18:00–19:00.
And Table 2 shows the information of the 10 temporal probabilistic pick-up points
during 14:00–15:00. Note that the latitude and longitude represent the corresponding
centroid of the cluster, the P(Ci) represents the picking-up rate in the cluster Ci.

                          (a)                                                                (b) 

Fig. 7. Distribution of: (a) Driving time; (b) Driving occupancy rate
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6.2 Effectiveness

In this section, we compare the proposed model in the paper with the PTD function [1].
Here, we show the optimal driving routes recommended by the PTD function and our
new model. Figure 8 shows the potential recommending points (the red points) within
the time period 18:00–19:00 (a) and 14:00–15:00 (b) and the assumed position of the
empty taxi to be recommended (the green point). Tables 3 and 4 shows the results of
the recommendation during the time period 18:00–19:00 and 14:00–15:00 respectively.

Table 1. Description of the 10 clusters during 18:00–19:00

No. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Latitude 37.78647 .80349 .79091 .79240 .76676 .79456 .77573 .77438 .75038 .43327
Longitude −122.40942 .41193 .40027 .42260 .42574 .43721 .39663 .45873 .43327 .38711

P(Ci) 0.8795 0.7039 0.8888 0.8713 0.7856 0.7383 0.5831 0.6935 0.8377 0.4419

Table 2. Description of the 10 clusters during 14:00–15:00

No. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Latitude 37.61475 .70423 .75358 .79087 .78653 .76744 .80369 .79360 .77130 .77758
Longitude −122.38618 .41852 .43296 .40164 .41253 .44328 .41476 .43607 .42185 .39720

P(Ci) 0.4955 0.2967 0.8182 0.7764 0.7974 0.6861 0.6739 0.6852 0.5736 0.5866

Fig. 8. Route recommendation. The red points denote the potential recommending points, and
the green point denotes the target taxi (Color figure online)
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In the experiment, during the time period 18:00–19:00, the driving distance
between C3 and C4 is 2355 m, and the driving distance between C3 and C7 is 2643 m.
As it can be seen from Table 3, when k = 3, the optimal route is PoTaxi ! C1 !
C3! C7 generated by the PTD method while PoTaxi ! C1 ! C3 ! C4 is gener-
ated by our proposed method during the time period 18:00–19:00. Obviously, our
method works much better than the PTD. Because of the picking-up rate of C4 is
higher than C7 and the distance between C3 and C4 is smaller than the distance
between C3 and C7. And the potential driving distance of our method is about 1336 m
while the potential driving distance of PTD is about 1350 m.

7 Conclusion and Future Work

In this paper, a novel model for evaluating the candidate route is proposed. Based on it,
we design a recommendation system for taxi drivers to minimize their cruising driving
distance before taking passengers regarding the time and location of the taxi. To be
specific, we first put forward the temporal probabilistic recommending pick-up points
by exploring the historical trajectory data of taxi drivers. Then we introduce the novel
evaluation model, and based on it, we provide an algorithm to get the optimal route of
different time and location for taxi drivers. As a result, we can use the model to rank
each candidate route and get the optimal route for recommending.

Since the model is more complicated and loses some good properties like mono-
tonic, future research will focus on the improvement of the efficiency of the recom-
mendation algorithm. Moreover, choosing routes is like game, if all the taxis are
recommended to the same route at the same time, the system is inefficient and fewer
taxis will be a winner. So more efforts will be studying the taxi game strategy.
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Abstract. Personalized travel route recommendation refers to the planning of
an optimal travel route between two geographical locations based on the road
networks and users’ travel preferences. In this paper, we extract users’ travel
behaviours from their historical GPS trajectories and propose a personalized
maximum probability route recommendation method called MaP2R. MaP2R
utilizes the concepts of appearance behaviour and transition behaviour to
describe users’ travel behaviours and applies matrix factorization and Laplace
smoothing method to estimate users’ travel behaviour probabilities. When
making recommendation, a route with the maximum probability of a user’s
travel behaviours is generated based on Markov property and searched through a
generated behaviour graph. The experimental results on a real GPS trajectory
dataset show that the proposed MaP2R achieves better results for travel route
recommendations compared with the existing methods.

Keywords: GPS trajectories � Personalized travel route recommendation �
Collaborative filtering

1 Introduction

Travelling is a critical component in daily life, and route recommendation is the most
popular service for travelling. Current route recommendation services generally con-
sider a certain metric such as the distance or traveling time, and provide the shortest or
quickest path between locations to users; however, the recommended path would not
often be chosen in real travel [2, 3, 5].

Personalized travel route recommendation is an active and important research topic.
It refers to the planning of an optimal travel route between two geographical locations
based on the road networks and users’ travel preferences. However, users’ specific travel
preferences are influenced by many factors, such as distance, traffic volume, travelling
time, weather, and many other hidden factors. Thus, it is difficult to determine a com-
prehensive user travel preference metric to develop personalized travel route recom-
mendation. With advances in Global Positioning System (GPS) technology and the
popularity of the mobile devices, massive amounts of human movement data in GPS
trajectories have been collected, which could assist understanding users’ preferences.
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There are, however, a few challenges when using GPS trajectories for personalized
travel route recommendation. GPS readings are recorded over time. How to extract and
describe users’ travel behaviours from GPS trajectories is an issue that must be
addressed first. Moreover, as a user generally travels on only a few routine routes daily,
each user’s GPS trajectories cover limited road segments of the road network. Hence, a
user’s travel behaviour probability estimation on the road segments that he/she has
never travelled is significant for route recommendation, especially for the cases when
users intend to travel to unfamiliar locations. More importantly, despite we can estimate
users’ travel behaviour probabilities, how to search the optimal route out of the multiple
routes can be taken between two locations is also critical.

In this paper, we propose a personalized Maximum Probability Route Recom-
mendation method, called MaP2R, to extract travel behaviours from historical trajec-
tories and provide users the personalized maximum probability route by considering
the Markov property of users’ adjacent travel behaviours. Markov property plays an
important role in movement models [1, 2, 5], and ignorance of the dependency rela-
tionship between travel behaviours may hamper the model and produce detours in the
route planning.

Specifically, the contributions of the paper are summarized as follows:
First, we propose the concepts of appearance behaviour and transition behaviour

based on the users’ historical GPS trajectories and the road network, and then extract
the frequencies of the two behaviours to present users’ travel behaviours. MaP2R treats
each trip of the GPS trajectories as a statement of preference and learns users’ pref-
erences through travel behaviours implicitly.

Second, we address the sparseness of user trajectory coverage on the road network
by applying matrix factorization to estimate the frequencies of users’ missing travel
behaviours, and utilizing Laplace smoothing method to estimate the probability of
users’ missing travel behaviours.

Third, to search the maximum probability route between two locations, Markov
property of adjacent appearance behaviours is considered, and route search is imple-
mented in a proposed behaviour graph.

Last, experimental studies are conducted based on a real trajectory dataset. The
experimental results show that the proposed MaP2R method outperforms the shortest
distance route method and the frequent route method.

This paper is organized as follows: Sect. 2 introduces the related works on route
recommendation and applications using GPS trajectories. Sections 3 and 4 provide
preliminary and a detailed discussion on the proposed MaP2R method for personalized
route recommendation. Section 5 presents experimental results based on the GPS
trajectory dataset in Beijing, China. Section 6 gives the conclusion and discusses future
work.

2 Related Works

Different studies have been conducted utilizing GPS trajectories to guide human
mobility. Studies have investigated location and travel recommendations based on
human movement GPS trajectories. Zheng et al. [8] proposed a user-centred CF method
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to make mobile recommendations for locations and activities based on historical tra-
jectories. Zheng and Xie [9] inferred the interest level of a location and a user’s travel
experience to give both generic and personalized recommendations for interesting
locations and travel sequences by mining multiple users’ GPS traces. Chen et al. [1]
proposed a method to discover popular routes from trajectories. They distinguished
intersections by clustering based on direction and density as nodes in a transfer net-
work. Then, a popularity value was assigned to each node versus destination, and the
route with the largest popularity was taken as the most popular route.

Very few research works, however, have examined personalized travel route rec-
ommendation using GPS traces in the past. TRIP proposed in [5] calculates an inef-
ficient ratio of routes for each driver based on GPS traces and takes the ratio as a metric
in an A* algorithm for a personalized route recommendation. It is a very simple and
effective method but it does not work well when the users have little or no trajectories.
In addition, it does not consider the similarity of travel behaviours among users. Dai
et al. [2] construct a preference vector to describe users’ preference and find the
reference trajectories from users having similar preference for recommendation. The
proposed personalized route recommendation (PRR) can make analysis of user’s
specific preferences (such as travel time, fuel consumption or other costs) and provide
the personalized route recommendation. But the personal preferences information
required by the algorithm can hardly be acquired from users.

3 Preliminary

Definition 1 Road network. The road network is a graph, G ¼ ðV ;EÞ, where V is a
set of vertices representing the terminal points of road segments, and E is a set of edges
representing the road segments. Vertex v 2 V is a terminal point of road segment. An
edge e 2 E is a road segment with a starting vertex e:start and an end vertex e:end;
where e:start 2 V and e:end 2 V .

Definition 2 GPS-reading. A GPS-reading p is a 3-tuple denoted as: p ¼ t; lat; lngð Þ;
where t is the timestamp of the GPS-reading, and lat and lng are the latitude and
longitude of the location of the GPS-reading at time t.

Definition 3 GPS trajectory. A GPS trajectory is a sequence of GPS-readings trj ¼
p1; p2; p3; . . .; pmð Þ where pi:t � pi�1:t[ 0; 1\i �m.

Definition 4 Route. Given road network G ¼ ðV ;EÞ, a route from vertex vi to vertex
vj is a sequence of connected road segments R ¼ vi; e1; e2; e3; . . .; en; vj

� �
which starts

at vertex vi, and ends at vertex vj where vi;vj 2 V ; ei 2 E and ei is the i-th road segment
in R, ei 6¼ ej if i 6¼ j, and e1:start ¼ vi; en:end ¼ vj.

In this paper, we propose and extract two types of travel behaviours from users’
GPS trajectories, called appearance behaviour and transition behaviour, defined as
follows.
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Definition 5 Appearance behaviour. Given a road network G ¼ ðV ;EÞ and the set of
time intervals T ¼ ft1; t2; . . .; trg of a day, the appearance behaviour b of a user is a
tuple denoted as: b ¼ e; tð Þ;where e 2 G:E and t 2 T .

The concept of appearance behaviours describes the location and time of a user’s
movements. Given user u and his/her appearance behaviour b; frq u; bð Þ is the frequency
that user u has the behaviour b.

An appearance behaviour could be followed by another appearance behaviour on
the given road network for a time interval. To describe the sequential relationship
between the appearance behaviours, we propose a concept called transition behaviour.

Definition 6 Transition behaviour. A transition behaviour tb ¼ bi ! bj
� �

is an
ordered tuple to describe the appearance behaviour bi ¼ ðei; tiÞ is followed by the
appearance behaviour bj ¼ ðej; tjÞ if ei:end ¼ ej:start and ti ¼ tj. It can also be denoted
as tbi!j in short.

Given a set of appearance behaviours B, a set of transition behaviours TB can be
generated by considering all possible transition behaviours between adjacent appear-
ance behaviours in B. In the other words, for 8tbk 2 TB; tbk ¼ ðbi ! bjÞ where bi 2 B
and bj 2 B. frqðu; tbkÞ is the frequency of the transition behaviour tbk by user u. In the
following discussion, we will use the travel behaviour to refer to the above two types of
behaviours for conciseness.

4 Personalized Maximum Probability Route
Recommendation

In this section, we propose a personalized maximum probability route recommendation
(MaP2R) algorithm and discuss it in detail. As mentioned, MaP2R assumes that the
route a user actually takes is preferred by the user over any other route he/she could
have taken between the same endpoints. Therefore, MaP2R extracted and estimated the
probabilities of travel behaviours on the road network from the users’ historical GPS
trips and deals with the personalized route recommendation problem by searching route
with the maximum travel behaviour probability. Specifically, given the origin o and the
destination d;P Rju; tð Þ is the probability that the route R is preferred given the user u at
the time t in the road network, can be represented as follows:

P Rju; tð Þ ¼ P e1; e2; e3; . . .; enju; tð Þ ¼ Pðe1; e2; e3; . . .; en; tjuÞ=PðtjuÞ ð1Þ

Where e1:start ¼ o and en:end ¼ d. Since the probability PðtjuÞ is constant when
u and t are given, to find the personalized maximum probability route is equal to
maximize P e1; e2; e3; . . .; en; tjuð Þ.

P e1; e2; e3; . . .; en; tjuð Þ ¼ P b1; b2; b3; . . .; bnjuð Þ;where bi ¼ ðei; tÞ ð2Þ
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According to the rule of conditional probability,

P b1; b2; b3; . . .; bnjuð Þ ¼ Pðb1juÞP b2jb1; uð Þ. . .P bnjb1; . . .; bn�1; uð Þ ð3Þ

As Markov property is often used to describe the behaviours in movement models
[1, 2, 5], this study assumes the probability of user’s current appearance behaviour bi
depends on the last appearance behaviour bi�1. Therefore, Eq. (3) becomes:

P b1; b2; b3; . . .; bnjuð Þ ¼ P b1juð Þ. . .P bijbi�1; uð Þ. . .P bnjbn�1; uð Þ ð4Þ

where Pðb1juÞ is the appearance behaviour probability starting from the origin o by u,
and P bijbi�1; uð Þ is the transition probability from the appearance behaviour bi�1 to the
next travel behaviour bi and is represented as P tbi�1!ijuð Þ for conciseness in the below.
Therefore, we can define the personalized travel route recommendation problem as
follows:

Definition 7 Personalized maximum probability route recommendation problem.
Given time interval t, origin vertex o and destination vertex d, the personalized
maximum probability route recommendation problem is to find the maximum proba-
bility route R ¼ ðe1; e2; e3; . . .; enÞ in the road network G ¼ ðV ;EÞ, e1:start ¼ o and
en:end ¼ d so that

R ¼ Argmaxe1;...;en2G:EðP b1juð ÞP tb1!2juð Þ. . .P tbn�1!njuð ÞÞ ð5Þ

MaP2R includes four steps: data preparation, frequency calculation for travel
behaviours, probability estimation for travel behaviour and maximum probability travel
behaviour route search. In data preparation, trajectories are firstly split into
sub-trajectories that are trips with origin and destination points by using the method in
[7]. The second task of the data preparation step is to match the GPS trips to the road
network by applying the map matching method in [6]. After matching trips to the road
network, users’ travel behaviours are extracted from the routes and their frequencies are
counted. In the following, we will focus on the next three steps of MaP2R.

4.1 Matrix Factorization for Estimation of Missing Travel Frequency

As mentioned, users generally travel on very limited routes daily, covering only a small
number of road segments in a city. To estimate the frequency of missing travel
behaviours of each user, matrix factorization [4] is used in this study. The first step is
the generation of user-appearance behaviour matrix and the user-transition behaviour
matrix.

Definition 8 User-Appearance Behaviour Matrix. Given a set of appearance
behaviours B ¼ fb1; b2; . . .; blg and a set of m users U ¼ fu1; u2; . . .; umg, the pairs of
ðu; bÞ are used to construct a user-appearance behaviour matrix UBm�l. The element in
the user-appearance behaviour matrix UBm�l is the frequency of the pair ðui; bjÞ, i.e.
frqðui; bjÞ, denoted as UBi;j, i.e. UBi;j ¼ frqðui; bjÞ.
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To estimate the frequency of missing appearance behaviour of each user, users
and their appearance behaviours are characterized by two vectors of latent factors.
To be more specific, each user ui is associated with a vector of latent factors,
pui ¼ ðf 1ui ; f 2ui ; . . .; f kuiÞ, and each appearance behaviour bj is associated with vector

qbj ¼ ðf 1bj ; f 2bj ; . . .; f kbjÞ, where k is the length of the vectors. The predicted frequency cUBi;j

of appearance behaviour bj by user ui is approximated by the dot product of pui and qbj :

cUBi;j ¼ qTbjpui ð6Þ

The vectors of latent factors are learned by minimizing the regularized squared
error of the set of known appearance behaviour frequencies:

L ¼
X

ðui;bjÞ2S ðUBi;j � qTbjpuiÞ2 þ kð qbj
�� ��2 þ puik k2Þ ð7Þ

where S is the set of the ðui; bjÞ pairs for which appearance behaviour bj by user ui is
known, UBi;j is the frequency of appearance behaviour bj by user ui, and the constant k
controls the extent of regularization. After learning the vectors of latent factors pui and
qbj with alternating least squares method, the frequencies of user’s appearance beha-
viours can be predicted in Eq. (6). Similarly, the matrix factorization for estimation of
users’ transition behaviour frequencies can be implemented after constructing a
user-transition behaviour matrix.

4.2 Estimation for Travel Behaviour Probability

The initial appearance behaviour probability describes the probability P bjuð Þ of the first
appearance behaviour that a user would take given a starting vertex o in the road
network. Given the set So of the appearance behaviours starting from o, the probability
P bjuð Þ of the appearance behaviour b starting from o by user u can be calculated as the
frequency of the appearance behaviour b over the total frequency of the possible initial
appearance behaviours bi 2 So.

There may, however, exist very few road segments starting from o where users
have never travelled, according to their historical GPS trajectories. In this case, the
Laplace smoothing method is used to estimate the probability of the missing initial
appearance behaviours in Eq. (8), in order to avoid assigning a zero probability to any
initial appearance behaviour, so that it is possible for users to travel to any road
segment in the road network.

P bjuð Þ ¼
bfrq u;bð Þþ aP

bi2So
bfrqðu;biÞþ a�d

; cfrq u; bð Þ[ 0

aP
bi2So

bfrqðu;biÞþ a�d
; otherwise

8>><
>>: ; bi ¼ ðei; tÞ and ei:start ¼ o ð8Þ

where P bjuð Þ is the probability of u’s initial appearance behaviour b on road segment e

at time t. For any appearance behaviour bi ¼ ðei; tÞ in the set So, ei:start ¼ o. cfrqðu; biÞ

MaP2R: A Personalized Maximum Probability Route 173



is the estimated appearance behaviour frequency using matrix factorization and a is the
smoothing parameter.

Given the current appearance behaviour bi and the set S
0
of the next appearance

travel behaviours, the transition behaviour probability P tbi!jju
� �

measures the likeli-
ness of transferring from the current appearance behaviour bi to the next adjacent
appearance behaviour bj by the user u.

If all transition behaviours in S
0
have never been conducted by any user, a uniform

value b will be assigned to the probability of each transition behaviour in S
0
based on

priori knowledge.

P tbi!jju
� � ¼ b ð9Þ

Otherwise, the transition probability from appearance behaviour bi to bj is esti-
mated as the frequency of the transition behaviour tbi!j over the total frequency of the
possible transition behaviours tbi!k and bk 2 S

0
.

Similarly, to avoid assigning a zero probability to any transition behaviour, Laplace
smoothing method is utilized as follows:

P tbi!jju
� � ¼

bfrq u;tbi!jð Þþ aPd

k¼1
bfrqðu;tbi!kÞþ a�d

; cfrq u; tbi!j
� �

[ 0

aPd

k¼1
bfrqðu;tbi!kÞþ a�d

; otherwise

8><
>: ð10Þ

where d is the number of all appearance behaviours in S
0
, a is the smoothing parameter

based on a priori knowledge. Equations (9) and (10) can assign a non-zero probability
to any transition behaviours that never happened in users’ GPS trajectories.

4.3 Maximum Probability Route Search

Appearance behaviours and transition behaviours are utilized to describe the maximum
probability route in Eq. (4). In the following, a behaviour graph is defined and can be
generated from the road network and probabilities of travel behaviours, which will be
used for searching the maximum travel behaviour probability route.

Definition 9 Behaviour Graph. Given time t, user u, road network G, a start vertex
vstart and an end vertex vend , a behaviour graph is denoted by G

0 ¼ ðV 0
;E

0 Þ where the
set of vertices V

0
includes three parts, a set of vertices V� where each element presents

an appearance behaviour of the user, the start vertex fvstartg, and the end vertex fvendg,
i.e. V

0 ¼ V� [ fvstartg [ fvendg; the set of edges E
0
is also constituted of three parts

E
0 ¼ E� [Estart [Eend , where E� is a set of edges in which each element presents a

transition behaviour from one appearance behaviour vertex to another, Estart includes
all edges starting from vstart to its possible adjacent appearance behaviour vertices and
Eend includes edges connecting from appearance behaviour vertices to vend . There is a
weight # on each edge in a behaviour graph associated with travel behaviour
probabilities.
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Figure 1 gives an example of a behaviour graph from a road network. The beha-
viour graph describes all possible appearance behaviours and transition behaviours
from a start vertex vstart to an end vertex vend for the given time and user.

As defined, the personalized route recommendation problem requires the maxi-
mization of Pðb1juÞP tb1!2juð ÞP tb2!3juð Þ. . .P tbn�1!njuð Þ in Eq. (4). In order to find
the maximum travel behaviour probability route, the multiplication of probabilities is
transformed to the summarization format required by the typical route planning algo-
rithms, let L ¼ 1

Pðb1juÞP tb1!2juð ÞP tb2!3juð Þ...P tbn�1!njuð Þ; thus, the problem in this paper is

equivalent to find the minimization of L:
Taking the logarithm for both sides:

ln L ¼ lnð 1
Pðb1juÞ

Yn�1

i¼1

1
P tbi!iþ 1juð ÞÞ ¼ ln

1
Pðb1juÞ þ

Xn�1

i¼1
ln

1
Pðtbi!iþ 1juÞ ð11Þ

Let # vstart; bkð Þ ¼ ln 1
Pðbk juÞ ; # bi; bj

� � ¼ ln 1
Pðtbi!jjuÞ and # bk; vendð Þ ¼ 0, the person-

alized maximum probability route recommendation problem is to find a minimum
weight path in the generated behaviour graph, which can be solved with Dijkstra’s
algorithm.

5 Experiments

In this section, MaP2R is evaluated on a real world GPS trajectory dataset, Geolife [8].
The dataset contains 17,621 trajectory files of 182 users. Out of them, 22 drivers’ GPS
trajectories are extracted and divided into 728 trips. The study area is in the central
district of Beijing, China, ranging from 39.69° N to 40.11° N and from 116.09° E to
116.62° E. Totally 43,381 road segments and 38,485 nodes are in the road network of
the area. The travel behaviours are generated using one hour interval.

For each of the following experiments, the dataset is separated into training datasets
and testing datasets. The training dataset contains 80% randomly chosen trips of each
user; and, the testing dataset includes all the remaining trips. All algorithms are
implemented in C#. The experiments are conducted on a 2.5 GHz Core i7 PC with
16 GB of RAM.

Fig. 1. An example showing the relationship between the road work and the behaviour graph

MaP2R: A Personalized Maximum Probability Route 175



Both precision and recall are used to evaluate the performance of the recommended
travel routes. Since the lengths of road segments are different, the precision and recall
are defined in terms of the number of road segments and the distance, respectively, as
shown below.

Precision# of road segement ¼ # of correct recommended road segments
# of road segments on recommended route

Precisiondistance ¼ distance of correct recommended road segments
distance of the recommended route

Recall# of road segment ¼ # of correct recommended road segments
# of road segments on true route

Recalldistance ¼ distance of correct recommended road segments
distance of true route

The true route is the route that the user actually travelled based on trajectories. The
two precision values of the recommended travel route measure the percentage of the
correct road segments in the recommended route. The recalls of the recommended
travel route measure the percentage of the correctly recommended road segments in the
true route. The higher the precision and recall values of the experiment, the better the
performance of the travel route recommendation.

5.1 Sensitivity Analysis on Number of Latent Factors for Matrix
Factorization

In MaP2R, matrix factorization (MF) is used to estimate the frequencies of travel
behaviours on the road segment. The number of latent factors is one parameter of the
matrix factorization. In this experiment, the effect of number of latent factors on the
performance of the MaP2R is tested. Figure 2 shows that root mean squared error
(RMSE) and running time with respect to the number of latent factors in matrix
factorization ranging from 5 to 15. It could be observed that with the increase of the
number of the latent factors, the RMSE values of both the user-appearance behaviour
matrix and the user-transition behaviour matrix slightly change, but then keep at a

Fig. 2. The effect of number of latent factors in MF vs. (a) RMSE and (b) training time
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steady level while the training time for MaP2R increases with the number of latent
factors. Hence, we choose the number of latent factors as 5 in the following
experiments.

5.2 Overall Performance vs. Route Distance

In this experiment, we evaluate the performances of MaP2R and compare with the
shortest distance route method (SDR) and the frequent route method (FR) in terms of
the trip lengths. SDR recommends the route with the shortest distance. FR first esti-
mates the appearance behaviour probabilities of all road segments and then recom-
mends a route with the highest consecutive appearance probabilities from the origin to
the destination. The route of FR usually contains frequently traveled road segments.

We first separate trips in the testing dataset into four different groups based on the
trip length. Each distance range group contains 35 trips. The distance ranges for the
four groups are: Group 1: (2.05–14.58 km), Group 2: (14.58–19.21 km), Group 3:
(19.21–28.74 km) and Group 4: (28.74–56.72 km). The number of latent factors is set
as 5, the regularization parameter k as 0.1, and the smoothing parameter a and b as
0.01, respectively. Figure 3 illustrates the precision and recall values of MaP2R, SDR
and FR on four groups.

The results show that MaP2R outperforms the other two methods in both precision
and recall in all four groups. When the trip is short, i.e. for trips in Group 1, the
performances of the three methods do not have much discrepancy. SDR method is

Fig. 3. Performance comparison among SDR, FR and MaP2R for four groups of trips with
different lengths (a) precision of number of road segment; (b) recall of number of road segments;
(c) precision of length of road segments; (d) recall of length of road segments.
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slightly better than FR method because when the distance between the origin and the
destination is small, users prefer to the shortest distance path rather than passing
through the high frequency road segments to reach the destination, which is reasonable
in reality. With the increase of the distance of trips, MaP2R and FR outperform SDR
because MaP2R and FR both consider users’ preference from historical trajectories
while SDR does not consider the factor. Moreover, MaP2R outperforms FR by
3*18% in precision and 13*21% in recall for the Groups 2*4. The reason is that
MaP2R considers user’s preference for each travel behaviour and the dependencies
between the travel behaviours, which could better reflect users’ travel preference, but
FR only considers high frequency of road segments separately. Therefore, these results
demonstrate that the route from MaP2R method has larger correspondence with users’
preference compared to SDR method and FR method.

5.3 Case Study for Performance

In this experiment, we compare the route recommendations from the proposed MaP2R
with the two most popular online route recommendation applications, i.e., Google Map
and Baidu Map.

Figure 4 shows a case of Geolife dataset that a user intends to travel from the origin
location Sigma mall on the Zhichun road to the destination a research institution around
10am. The recommended route provided by MaP2R is to take 5th ring road to get to the
destination while Google Map and Baidu Map recommends user travel on the 4th ring

Fig. 4. Comparison among MaP2R, Google map and Baidu map
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road and the 3rd ring road, respectively. The route recommended by MaP2R is same as
the user’s real travel route but the routes recommended by Google Map and Baidu Map
have a large discrepancy with the real route. The reason is that Google Map and Baidu
Map would recommend all users the same route in the figure from Sigma mall to the
research institution based on certain criterion, but MaP2R would learn users’ prefer-
ence from historical trajectories and recommend the route high corresponding with
users’ preferences. In fact, the target user is found indeed prefer to travel on 5th ring
road by scrutinizing this users’ historical GPS trajectories manually.

6 Conclusions and Future Works

In this paper, we propose a personalized maximum probability route recommendation
method (MaP2R) based on historical GPS trajectories. In this method, distance, trav-
eling time, road safety and any other factors in route planning are all considered as
hidden factors. Two concepts, appearance behaviour and transition behaviour, are
proposed to describe users’ travel behaviours. Moreover, m Matrix factorization and
Laplace smoothing method is used to estimate the frequencies and probabilities of
users’ travel behaviours. Finally, the route with the maximum travel behaviour prob-
ability is recommended to the user. The experiment results show that MaP2R out-
performs the shortest distance path method and the frequent path method. In future, we
will continue to explore the spatiotemporal correlations between travel behaviours and
integrate with the current estimation model. More experiments will be conducted to
compare MaP2R with other personalized route recommendation methods. The cold
start problem also will be addressed to improve MaP2R.
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Abstract. Several network embedding models have been developed for
unsigned networks. However, these models based on skip-gram cannot
be applied to signed networks because they can only deal with one type
of link. In this paper, we present our signed network embedding model
called SNE. Our SNE adopts the log-bilinear model, uses node repre-
sentations of all nodes along a given path, and further incorporates two
signed-type vectors to capture the positive or negative relationship of
each edge along the path. We conduct two experiments, node classifi-
cation and link prediction, on both directed and undirected signed net-
works and compare with four baselines including a matrix factorization
method and three state-of-the-art unsigned network embedding mod-
els. The experimental results demonstrate the effectiveness of our signed
network embedding.

1 Introduction

Representation learning [1], which aims to learn the features automatically based
on various deep learning models [15], has been extensively studied in recent
years. Traditionally, supervised learning tasks require hand-designed features as
inputs. Deep learning models have shown great success in automatically learning
the semantic representations for different types of data, like image, text and
speech [6,8,12]. In this paper, we focus on representation learning of networks, in
particular, signed networks. Several representation learning methods of unsigned
networks have been developed recently [9,26,30,31]. They represent each node
as a low-dimensional vector which captures the structure information of the
network.

Signed networks are ubiquitous in real-world social systems, which have both
positive and negative relationships. For example, Epinions1 allows users to mark
their trust or distrust to other users on product reviews and Slashdot2 allows
users to specify other users as friends or foes. Most unsigned network embedding
models [9,26,30] are based on skip-gram [20], a classic approach for training
word embeddings. The objective functions used in unsigned network embedding
approaches do not incorporate the sign information of edges. Thus, they cannot
1 http://www.epinions.com/.
2 https://slashdot.org/.
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simply migrate to signed networks because the negative links change the theories
or assumptions on which unsigned network embedding models rely [28].

In this paper, we develop a signed network embedding model called SNE. To
the best of our knowledge, this is the first research on signed network embedding.
Our SNE model adopts the log-bilinear model [21,22], uses node representations
of all nodes along a given path, and further incorporates two signed-type vec-
tors to capture the positive or negative relationship of each edge along the path.
Our SNE significantly outperforms existing unsigned network embedding mod-
els which assume all edges are from the same type of relationship and only
use the representations of nodes in the target’s neighborhood. We conduct two
experiments to evaluate our model, node classification and link prediction, on
both an undirected signed network and a directed signed network built from
real-world data. We compare with four baselines including a matrix factoriza-
tion method and three state-of-the-art network embedding models designed for
unsigned networks. The experimental results demonstrate the effectiveness of
our signed network embedding.

2 Preliminary

In this section, we first introduce the skip-gram model, one of commonly used
neural language models to train word embeddings [2]. We then give a brief
overview of several state-of-the-art unsigned network embedding models based
on the skip-gram model.

Skip-Gram Model. The skip-gram is to model the co-occurrence probability
p(wj |wi; θ) that word wj co-occurs with word wi in a context window. The co-
occurrence probability is calculated based on softmax function:

p(wj |wi; θ) =
exp(vT

wj
vwi

)
∑

j′∈V exp(vT
wj′vwi

)
, (1)

where V is the set of all words and vwj
and vwi

∈ R
d are word embeddings for wj

and wi, respectively. The parameters θ, i.e., vwi
, vwj

, are trained by maximizing
the log likelihood of predicting context words in a corpus:

J =
|V|∑

i

∑

j∈context(i)

log p(wj |wi), (2)

where context(i) is the set of context words of wi.

Network Embedding. Network embedding aims to map the network G =
(V,E) into a low dimensional space where each vertex is represented as a low
dimensional real vector. The network embedding treats the graph’s vertex set
V as the vocabulary V and treats each vertex vi as a word wi in the skip-gram
approach. The corpus used for training is composed by the edge set E, e.g., in
[30], or a set of truncated random walks from the graph, e.g., in [9,26].
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To train the node vectors, the objective of previous network embedding mod-
els is to predict the neighbor nodes N(vi) of a given source node vi. However,
predicting a number of neighbor nodes requires modeling the joint probability of
nodes, which is hard to compute. The conditional independence assumption, i.e.,
the likelihood of observing a neighbor node is independent of observing other
neighbor nodes given the source node, is often assumed [9]. Thus, the objective
function is defined as:

J =
∑

vi∈V

log p(N(vi)|vi) =
∑

vi∈V

∑

v′
i∈N(vi)

log p(v′
i|vi), (3)

where p(v′
i|vi) is softmax function similar to Eq. 1 except that the word vectors

are replaced with node vectors.

3 SNE: Signed Network Embedding

We present our network embedding model for signed networks. For each node’s
embedding, we introduce the use of both source embedding and target embed-
ding to capture the two potential roles of each node.

3.1 Problem Definition

Formally, a signed network is defined as G = (V,E+, E−), where V is the set
of vertices and E+ (E−) is the set of positive (negative) edges. Each edge e ∈
E+ ∪E− is represented as euv = (u, v, εuv), where u, v ∈ V and εuv indicates the
sign value of edge e, i.e., εuv = 1 if e ∈ E+ and εuv = −1 if e ∈ E−. In the scenario
of signed directed graphs, euv is a directed edge where node node u denotes the
source and v denotes the target. Our goal is to learn node embedding for each
vertex in a signed network while capturing as much topological information as
possible. For each vertex vi, its node representation is defined as v̄vi

= [vvi
: v′

vi
]

where vvi
∈ R

d denotes its source embedding and v′
vi

∈ R
d denotes its target

embedding.

3.2 Log-Bilinear Model for Signed Network Embedding

We develop our signed network embedding by adapting the log-bilinear model
such that the trained node embedding can capture node’s path and sign informa-
tion. Recall that existing unsigned network embedding models are based on the
skip-gram which only captures node’s neighbour information and cannot deal
with the edge sign.

Log-Bilinear Model. Given a sequence of context words g = w1, . . . , wl, the
log-bilinear model firstly computes the predicted representation for the target
word by linearly combining the feature vectors of words in the context with the
position weight vectors:

v̂g =
l∑

j=1

cj � vwi
, (4)



186 S. Yuan et al.

where � indicates the element-wise multiplication and cj denotes the position
weight vector of the context word wi. A score function is defined to measure the
similarity between the predicted target word vector and its actual target word
vector:

s(wi, g) = v̂T
g vwi

+ bwi
, (5)

where bwi
is the bias term. The log-bilinear model then trains word embeddings

v and position weight vectors c by optimizing the objective function similar to
the skip-gram.

SNE Algorithm. In our signed network embedding, we adopt the log-bilinear
model to predict the target node based on its paths. The objective of the log-
bilinear model is to predict a target node given its predecessors along a path.
Thus, the signed network embedding is defined as a maximum likelihood opti-
mization problem. One key idea of our signed network embedding is to use
signed-type vector c+ ∈ R

d (c− ∈ R
d) to represent the positive (negative)

edges. Formally, for a target node v and a path h = [u1, u2, . . . , ul, v], the model
computes the predicted target embedding of node v by linearly combining source
embeddings (vui

) of all source nodes along the path h with the corresponding
signed-type vectors (ci):

v̂h =
l∑

i=1

ci � vui
, (6)

where ci ≡ c+ if εuiui+1 = 1, or ci ≡ c− if εuiui+1 = −1 and � denotes element-
wise multiplication. The score function is to evaluate the similarity between the
predicted representation v̂h and the actual representation v′

v of target node v:

s(v, h) = v̂T
hv

′
v + bv, (7)

where bv is a bias term.
To train the node representations, we define the conditional likelihood of

target node v generated by a path of nodes h and their edge types q based on
softmax function:

p(v|h, q; θ) =
exp(s(v, h))

∑
v′∈V exp(s(v′, h))

, (8)

where V is the set of vertices, and θ = [vui
,v′

v, c, bv]. The objective function is
to maximize the log likelihood of Eq. 8:

J =
∑

v∈V

log p(v|h, q; ; θ). (9)

Algorithm 1 shows the pseudo-code of our signed network embedding. We
first randomly initialize node embeddings (Line 1) and then use random walk
to generate the corpus (Line 2). Lines 4–11 show how we specify ci based on
the sign of edge euiui+1 . We calculate the predicted representation of the target
node by combining source embeddings of nodes along the path with the edge
type vectors (Line 12). We calculate the score function to measure the similarity
between the predicted representation and the actual representation of the target
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Algorithm 1. The SNE algorithm
Input : Signed graph G = (V, E+, E−), embedding dimension d, length of

path l, length of random walks L, walks per nodes t
Output: Representation of each node v̄i = [vi : v′

i]

1 Initialization: Randomly initialize the source and target node embeddings vi

and v′
iof each node V

2 Generate the corpus based on uniform random walk
3 for each path [u1, u2, . . . , ul, v] in the corpus do
4 for j = 1 to l do
5 if εuiui+1 == 1 then
6 ci ≡ c+
7 end
8 else
9 ci ≡ c−

10 end

11 end
12 compute v̂h by Eq. 6
13 compute s(v, h) by Eq. 7
14 compute p(v|h, q; θ) by Eq. 8
15 update θ with Adagrad

16 end

node (Line 13) and compute the conditional likelihood of target node given
the path (Line 14). Finally, we apply the Adagrad method [7] to optimize the
objective function (Line 15). The procedures in Lines 4–15 repeat over each path
in the corpus.

For a large network, the softmax function is expensive to compute because
of the normalization term in Eq. 8. We adopt the sampled softmax approach
[11] to reduce the computing complexity. During training, the source and target
embeddings of each node are updated simultaneously. Once the model is well-
trained, we get node embeddings of a signed network. We also adopt the approach
in [26] to generate paths efficiently. Given each starting node u, we uniformly
sample the next node from the neighbors of the last node in the path until it
reaches the maximum length L. We then use a sliding window with size l + 1 to
slide over the sequence of nodes generated by random walk. The first l nodes in
each sliding window are treated as the sequence of path and the last node as the
target node. For each node u, we repeat this process t times.

4 Experiments

To compare the performance of different network embedding approaches, we
focus on the quality of their output, i.e., node embeddings. We use the generated
node embeddings as input of two data mining tasks, node classification and
link prediction. For node classification, we assume each node in the network is
associated with a known class label and use node embeddings to build classifiers.
In link prediction, we use node embeddings to predict whether there is a positive,
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negative, or no edge between two nodes. In our signed network embedding, we
use the whole node representation v̄vi

= [vvi
: v′

vi
] that contains both source

embedding vvi
and target embedding v′

vi
. This approach is denoted as SNEst.

We also use only the source node vector vvi
as the node representation. This

approach is denoted as SNEs. Comparing the performance of SNEst and SNEs

on both directed and undirected networks expects to help better understand the
performance and applicability of our signed network embedding.

Baseline Algorithms. We compare our SNE with the following baseline
algorithms.

– SignedLaplacian [14]. It calculates eigenvectors of the k smallest eigenvalues
of the signed Laplacian matrix and treats each row vector as node embedding.

– DeepWalk [26]. It uses uniform random walk (i.e., depth-first strategy) to
sample the inputs and trains the network embedding based on skip-gram.

– LINE [30]. It uses the breadth-first strategy to sample the inputs based on node
neighbors and preserves both the first order and second order proximities in
node embeddings.

– Node2vec [9]. It is based on skip-gram and adopts the biased random walk strat-
egy to generate inputs. With the biased random walk, it can explore diverse
neighborhoods by balancing the depth-first sampling and breath-first sampling.

Datasets. We conduct our evaluation on two signed networks. (1) The first
signed network, WikiEditor, is extracted from the UMD Wikipedia dataset [13].
The dataset is composed by 17015 vandals and 17015 benign users who edited
the Wikipedia pages from Jan 2013 to July 2014. Different from benign users,
vandals edit articles in a deliberate attempt to damage Wikipedia. One edit
may be reverted by bots or editors. Hence, each edit can belong to either revert
or no-revert category. The WikiEditor is built based on the co-edit relations.
In particular, a positive (negative) edge between users i and j is added if the
majority of their co-edits are from the same category (different categories). We
remove from our signed network those users who do not have any co-edit relations
with others. Note that in WikiEditor, each user is clearly labeled as either benign
or vandal. Hence, we can run node classification task on WikiEditor in addition
to link prediction. (2) The second signed network is based on the Slashdot Zoo
dataset3. The Slashdot network is signed and directed. Unfortunately, it does not
contain node label information. Thus we only conduct link prediction. Table 1
shows the statistics of these two signed networks.

Table 1. Statistics of WikiEditor and Slashdot

WidiEditor Slashdot

Type Undirected Directed

# of users (+, −) 21535 (7852, 13683) 82144 (N/A, N/A)

# of links (+, −) 348255 (269251, 79004) 549202 (425072, 124130)

3 https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/
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Parameter Settings. In our SNE methods, the number of randomly sampled
nodes used in the sampled softmax approach is 512. The dimension of node
vectors d is set to 100 for all embedding models except SignedLaplacian. Signed-
Laplacian is a matrix factorization approach. We only run SignedLaplacian on
WikiEditor. This is because Slashdot is a directed graph and its Laplacian matrix
is non-symmetric. As a result, the spectral decomposition involves complex val-
ues. For WikiEditor, SignedLaplacian uses 40 leading vectors because there is
a large eigengap between the 40th and 41st eigenvalues. For other parameters
used in DeepWalk, LINE and Node2vec, we use their default values based on
their published source codes.

4.1 Node Classification

We conduct node classification using the WikiEditor signed network. This task is
to predict whether a user is benign or vandal in the WikiEditor signed network.
In our SNE training, the path length l is 3, the maximum length of random walk
path L is 40, and the number of random walks starting at each node t is 20.
We also run all baselines to get their node embeddings of WikiEditor. We then
use the node embeddings generated by each method to train a logistic regression
classifier with 10-fold cross validation.

Classification Accuracy. Table 2 shows the comparison results of each method
on node classification task. Our SNEst achieves the best accuracy and outper-
forms all baselines significantly in terms of accuracy. This indicates that our
SNE can capture the different relations among nodes by using the signed-type
vectors c. All the other embedding methods based on skip-gram have a low accu-
racy, indicating they are not feasible for signed network embedding because they
do not distinguish the positive edges from negative edges. Another interesting
observation is that the accuracy of SNEs is only slightly worse than SNEst. This
is because WikiEditor is undirected. Thus using only source embeddings in the
SNE training is feasible for undirected networks.

Visualization. To further compare the node representations trained by each
approach, we randomly choose representations of 7000 users from WikiEditor
and map them to a 2-D space based on t-SNE approach [19]. Figure 1 shows
the projections of node representations from DeepWalk, Node2vec, and SNEst.
We observe that SNEst achieves the best and DeepWalk is the worst. Node2vec
performs slightly better than DeepWalk but the two types of users still mix
together in many regions of the projection space.

Table 2. Accuracy for node classification on WikiEditor

SignedLaplacian DeepWalk Line Node2vec SNEs SNEst

Accuracy 63.52% 73.78% 72.36% 73.85% 79.63% 82.07%



190 S. Yuan et al.

(a) DeepWalk (b) Node2vec (c) SNEst

Fig. 1. Visualization of 7000 users in WikiEditor. Color of a node indicates the type
of the user. Blue: “Vandals”, red: “Benign Users”. (Color figure online)

4.2 Link Prediction

In this section, we conduct link prediction on both WikiEditor and Slashdot
signed graphs. We follow the same procedure as [9] to make link prediction as
a classification task. We first use node representations to compose edge repre-
sentations and then use them to build a classifier for predicting whether there is
a positive, negative or no edge between two nodes. Given a pair of nodes (u, v)
connected by an edge, we use an element-wise operator to combine the node vec-
tors vu and vv to compose the edge vector euv. We use the same operators as [9]
and show them in Table 3. We train and test the one-vs-rest logistic regression
model with 10-fold cross validation by using the edge vectors as inputs.

Table 3. Element-wise operators for combining node vectors to edge vectors

Operator Definition

Average euv = 1
2
(vu + vv)

Hadamard euv = vu ∗ vv

L1 Weight euv = |vu-vv|
L2 Weight euv = |vu-vv|2

For Slashdot, we set the path length l = 1 in our SNE training, which cor-
responds to the use of the edge list of the Slashdot graph. This is because there
are few paths with length larger than 1 in Slashdot. For WikiEditor, we use the
same node representations adopted in the previous node classification task. We
also compose balanced datasets for link prediction as suggested in [9]. We keep
all the negative edges, randomly sample the same number of positive edges, and
then randomly generate an equal number of fake edges connecting two nodes.
At last, we have 79004 edges for each edge type (positive, negative, and fake) in
WikiEditor and we have 124130 edges for each type in Slashdot.
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Table 4. Comparing the accuracy for link prediction

Dataset Approach Hadamard Average L1 Weight L2 Weight

WikiEditor
(undirected)

SignedLaplacian 0.3308 0.5779 0.5465 0.3792

DeepWalk 0.7744 0.6821 0.4515 0.4553

Line 0.7296 0.6750 0.5205 0.4986

Node2vec 0.7112 0.6491 0.6787 0.6809

SNEs 0.9391 0.6852 0.8699 0.8775

SNEst 0.9399 0.6043 0.8495 0.8871

Slashdot
(directed)

DeepWalk 0.6907 0.6986 0.5877 0.5827

Line 0.5823 0.6822 0.6158 0.6087

Node2vec 0.6560 0.6475 0.4595 0.4544

SNEs 0.4789 0.5474 0.6078 0.6080

SNEst 0.9328 0.5810 0.8358 0.8627

Experimental Results. Table 4 shows the link prediction accuracy for each
approach with four different operators. We observe that our SNE with Hadamard
operator achieves the highest accuracy on both WikiEditor and Slashdot. SNE
also achieves good accuracy with the L1 Weight and L2 Weight. For the Average
operator, we argue that it is not suitable for composing edge vectors from node
vectors in signed networks although it is suitable in unsigned networks. This
is because a negative edge pushes away the two connected nodes in the vector
space whereas a positive edge pulls them together [14]. When examining the
performance of all baselines, their accuracy values are significantly lower than
our SNE, demonstrating their infeasibility for signed networks.

We also observe that there is no big difference between SNEst and SNEs on
WikiEditor whereas SNEst outperforms SNEs significantly on Slashdot. This is
because WikiEditor is an undirected network and Slashdot is directed. This sug-
gests it is imperative to combine both source embedding and target embedding
as node representation in signed directed graphs.

4.3 Parameter Sensitivity

Vector Dimension. We evaluate how the dimension size of node vectors affects
the accuracy of two tasks on both WikiEditor and Slashdot. For link prediction,
we use SNEst with Hadamard operation as it can achieve the best performance
as shown in the last section. Figure 2a shows how the accuracy of link prediction
varies with different dimension values of node vectors used in SNEst for both
datasets. We can observe that the accuracy increases correspondingly for both
datasets when the dimension of node vectors increases. Meanwhile, once the
accuracy reaches the top, increasing the dimensions further does not have much
impact on accuracy any more.
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Sample Size. Fig. 2b shows how the accuracy of link prediction varies with
the sample size used in SNEst for both datasets. For WikiEditor, we tune the
sample size by changing the number of random walks starting at each node
(t). In our experiment, we set t = 5, 10, 15, 20, 25 respectively and calculate
the corresponding sample sizes. For Slashdot, we directly use the number of
sampled edges in our training as the path length is one. For both datasets, the
overall trend is similar. The accuracy increases with more samples. However, the
accuracy becomes stable when the sample size reaches some value. Adding more
samples further does not improve the accuracy significantly.

(a) Dimension (b) Sample Size

Fig. 2. The sensitivity of SNE on the WikiEditor and Slashdot

Path Length. We use WikiEditor to evaluate how the path length l affects
the accuracy of both node classification and link prediction. From Fig. 3a, we
observe that slightly increasing the path length in our SNE can improve the
accuracy of node classification. This indicates that the use of long paths in our
SNE training can generally capture more network structure information, which is
useful for node classification. However, the performance of the SNEs and SNEst

decreases when the path length becomes too large. One potential reason is that

(a) Node classification (b) Link prediction

Fig. 3. The sensitivity of SNE on the WikiEditor by changing the path length (l)
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SNE uses only two signed-type vectors for all nodes along paths and nodes in
the beginning of a long path may not convey much information about the target
node. In Fig. 3b, we also observe that the accuracy of link prediction decreases
when the path length increases. For link prediction, the performance depends
more on local information of nodes. Hence the inclusion of one source node in
the path can make our SNE learn the sufficient local information.

5 Related Work

Signed Network Analysis. Mining signed network attracts increasing atten-
tion [5,14,16,27,28]. The balance theory [10] and the status theory [16] have
been proposed and many algorithms have been developed for tasks such as com-
munity detection, link prediction, and spectral graph analysis of signed networks
[5,14,18,28,34,35,38]. Spectral graph analysis is mainly based on matrix decom-
position which is often expensive and hard to scale to large networks. It is diffi-
cult to capture the non-linear structure information as well as local neighborhood
information because it simply projects a global matrix to a low dimension space
formed by leading eigenvectors.

Network Embedding. Several network embedding methods including Deep-
Walk [26], LINE [30], Node2vec [9], Deep Graph Kernels [36] and DDRW [17]
have been proposed. These models are based on the neural language model. Sev-
eral network embedding models are based on other neural network model. For
example, DNR [33] uses the deep auto-encoder, DNGR [3] is based on a stacked
denoising auto-encoder, and the work [23] adopts the convolutional neural net-
work to learn the network feature representations. Meanwhile, some works learn
the network embedding by considering the node attribute information. In [32,39]
the authors consider the node label information and present semi-supervised
models to learn the network embedding. The heterogeneous network embedding
models are studied in [4,25,29,37]. HOPE [24] focuses on preserving the asym-
metric transitivity of a directed network by approximating high-order proximity
of a network. Unlike all the works described above, in this paper, we explore the
signed network embedding.

6 Conclusion

In this paper, we have presented SNE for signed network embedding. Our SNE
adopts the log-bilinear model to combine the edge sign information and node
representations of all nodes along a given path. Thus, the learned node embed-
dings capture the information of positive and negative links in signed networks.
Experimental results on node classification and link prediction showed the effec-
tiveness of SNE. Our SNE expects to keep the same scalability as DeepWalk
or Node2vec because SNE adopts vectors to represent the sign information and
uses linear operation to combine node representation and signed vectors. In our
future work, we plan to examine how other structural information (e.g., triangles
or motifs) can be preserved in signed network embedding.
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Abstract. High utility itemset mining is the problem of finding sets of
items whose utilities are higher than or equal to a specific threshold.
We propose a novel technique called mHUIMiner, which utilises a tree
structure to guide the itemset expansion process to avoid considering
itemsets that are nonexistent in the database. Unlike current techniques,
it does not have a complex pruning strategy that requires expensive
computation overhead. Extensive experiments have been done to com-
pare mHUIMiner to other state-of-the-art algorithms. The experimental
results show that our technique outperforms the state-of-the-art algo-
rithms in terms of running time for sparse datasets.

Keywords: High-utility itemset mining · Transaction utility

1 Introduction

The problem of frequent itemset mining (FIM) [1,4] is to find a set of itemsets
that appear frequently in a transaction database. Classic FIM assumes that
an item can only appear once in a transaction and every distinct item in the
database has the same weight or importance. It is obvious that this assumption
is not always true in real world scenarios. For example, consider a transaction
database of a supermarket. Multiple identical items can appear in the same
transaction. The profit and price of each item can also be different. The item
with a higher profit or price should be assigned a higher weight. FIM algorithms
generate a set of frequent itemsets, but these itemsets may contribute low profit
or revenue to a company. To address these issues, the problem of high-utility
itemset mining (HUIM) was proposed [9]. In HUIM, an item can appear more
than once in a transaction, and each item has a utility value (weight). The goal
of HUIM is to find a set of itemsets whose utility values are higher than a specific
threshold. The techniques found in FIM algorithms cannot usually be directly
used in HUIM problems. This is due to the fact that the downward closure
property does not hold in a HUIM problem.

HUIM algorithms such as Two-Phase [7], UPGrowth [8] and IHUP [2] all
involve two phases in the mining process. These algorithms usually generate a
large number of candidates and the process of computing the exact utility value

c© Springer International Publishing AG 2017
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for each of the candidates can be very expensive. HUI-Miner [5] is a one-phase
algorithm that generates high-utility itemsets without a candidate-generation
process. HUI-Miner proposed a structure called a utility-list. This process of cre-
ating the utility-list can be expensive, and HUI-Miner does not have a mechanism
to prune out the unnecessary constructions of utility-lists. FHM [3] introduced
a pruning strategy to avoid the unnecessary utility-list constructions. However,
this approach is not efficient for databases that are sparse. Another algorithm
called EFIM [10] introduced an array-based utility counting technique to com-
pute the overestimation of utility for pruning purposes. It also uses database
projection and transaction merging to reduce the cost of the database scan.
EFIM has been shown to be more efficient than previous algorithms both in
terms of running time and memory consumption. However, experiments show
that the performance advantage of EFIM shrinks on sparse datasets. An example
of a sparse dataset is the transaction database of a supermarket. A supermarket
usually has a vast variety of products available. However, each transaction con-
tains only a tiny portion of the products available. Considering market basket
analysis is a very important application of HUIM, a new algorithm that achieves
better performance on sparse datasets is necessary.

We propose a novel high-utility itemset mining algorithm, mHUIMiner (mod-
ified HUI-Miner), that provides the best running time on sparse datasets, while
maintaining a comparable performance to other state-of-the-art algorithms on
dense datasets. Unlike what the name suggests this goes beyond minor modifi-
cations to the existing HUI-Miner. This technique avoids unnecessary utility-list
constructions in HUI-Miner by incorporating a tree structure. It also does not
have a complex pruning strategy that requires expensive computational over-
head, which usually does not achieve economies of scale in sparse datasets. We
also present performance comparisons of the proposed mHUIMiner against other
state-of-the-art high-utility itemset mining algorithms. Based on experiments
on a set of real-world transaction datasets, it shows that mHUIMiner is the
fastest on sparse datasets. We also conducted experiments on a set of synthetic
datasets with various densities. The results show that as the density decreases,
mHUIMiner still performs efficiently.

The rest of the paper is organised as follows. We provide the problem defini-
tion and related works in Sect. 2. We describe the proposed algorithm in Sect. 3.
In Sect. 4, we present the experimental results and evaluation of our proposed
algorithm. Finally, we conclude our work in Sect. 5.

2 Preliminaries and Related Work

Let I = {i1, i2, i3, . . . , in} be a set of single items. A transaction database DB
usually consists of a transaction table and a utility table. The transaction table
contains a set of transactions {T1, T2, T3, . . . , Tk}, where Tid is the unique trans-
action identifier for each transaction. Each transaction is a subset of I and a
count value is associated with each item in the transaction. The utility table
stores all the utility values for each item i in I.
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Table 1. Transaction table (top) and utility table (bottom)

Tid Transactions

T1 c 2 b 1 e 1

T2 a 3 e 2 g 1 b 4

T3 a 1 b 2 c 3 d 4 e 5

T4 f 3 g 1

T5 b 1 a 1 d 1

Item a b c d e f g

Profit 5 1 3 4 2 1 2

The internal utility of item i in transaction T of database DB is the count
value of i. It represents the quantity of item i in transaction T . We denote
internal utility of item i in transaction T as iu(i, T ). In Table 1, the internal
utility of item c in transaction T1 is 2. It means that item c appears twice in the
transaction T1. The external utility of item i in database DB is the utility value
(e.g. unit profit) of i in the utility table. It indicates the importance or weight of
an item. The external utility is assumed to be non-negative in the scope of our
research. We denote external utility of item i as eu(i). For example, in Table 1,
the external utility of item c is 3 according to the utility table. The utility of
item i in transaction T is defined as u(i, T ) = iu(i, T ) × eu(i). It measures the
total utility of item i in a single transaction T . For example, the utility of item
c in transaction T1 is u(c, T1) = iu(c, T1) × eu(c) = 2 × 3 = 6. An itemset
X is a subset of a transaction T . The utility of itemset X in transaction T is
defined as u(X,T ) =

∑
i∈X∧X⊆T u(i, T ). It is the sum of the total utility in

the transaction T of every item that is in the itemset X, where X is a subset
of transaction T . For example, the utility of itemset {cb} in transaction T1 is
u(cb, T1) = u(c, T1) + u(b, T1) = 2 × 3 + 1 × 1 = 7. And the utility of itemset
{cbe} in transaction T1 is u(cbe, T1) = u(c, T1)+u(b, T1)+u(e, T1) = 2× 3+1×
1 + 1 × 2 = 9. The utility of itemset X in transaction database DB is defined as
u(X,DB) =

∑
T∈DB u(X,T ). This measures the total utility of an itemset X

over the transaction database DB.
The goal of high utility itemset mining is to find all the high utility item-

sets in a transaction database. Let minutil be a user-specified minimum utility
threshold. We say an itemset X is a high utility itemset if u(X,DB) is greater
than or equal to minutil. The transaction utility, denoted as tu(T ), is the sum
of the utilities of all the items in transaction T , where tu(T ) =

∑
i∈T u(i, T ).

Table 2 is the transaction utility table. The transaction weighted utility of an
itemset X is defined as TWU(X) =

∑
T∈DB∧X⊆T tu(T ). Intuitively, TWU(X)

is the sum of the transaction utilities for all the transactions that contain item-
set X. For example, the transaction weighted utility of item b, TWU(b) =
tu(T1)+ tu(T2)+ tu(T3)+ tu(T5) = 9+25+42+10 = 86. Table 3 is the transac-
tion weighted utility table for the transaction database. The transaction weighted
utility (TWU) of an itemset is an overestimation of the exact utility of this item-
set, TWU(X) ≥ u(X). TWU is anti-monotonic, i.e. TWU(X) ≥ TWU(Y ) if
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Table 2. Transaction utility

Tid T1 T2 T3 T4 T5

TU 9 25 42 5 10

Table 3. Transaction-weighted utility

Item b a e d c g f

TWU 86 77 76 52 51 30 5

X ⊂ Y . It means that if the TWU of itemset X is smaller than the user entered
threshold, there is no need to consider all the supersets of X, because the TWUs
of the supersets of X are guaranteed to be smaller as well.

Two phase algorithms such as IHUP [2], Two-Phase [7] and UPGrowth [8]
use transaction weighted utility (TWU) [6] as a measure to prune the search
space. Recently, more efficient one-phase algorithms, such as HUI-Miner [5] and
FHM [3], have been introduced. These algorithms utilise a utility-list structure to
maintain utility related information for each itemset, and they mine high-utility
itemsets in a single phase without candidate generation. Let the utility-tuple of
itemset X in transaction T be denoted as (tid, iutil, rutil). tid is the transac-
tion identifier of transaction T . iutil is the utility of itemset X in transaction
T , namely u(X,T ). rutil is the remaining utility of itemset X in transaction
T . Suppose items in transaction T are sorted based on a certain order, rutil of
X is the sum of utilities for all the items in T after X. The Utility-list of an
itemset X in database DB is a set of tuples such that there is a utility-tuple for
each transaction that contains X. The tuples in a utility-list are ordered based
on transaction identifiers. sum(iutils) is the sum of iutils of all utility-tuples
in a utility-list. It is equivalent to the total utility of itemset X in the trans-
action database. More formally, sum(iutils) = u(X,DB) =

∑
T∈DB u(X,T ).

sum(iutils) + sum(rutils) is the sum of iutils and rutils of all utility-tuples
in a utility-list. Similar to TWU, sum(iutils) + sum(rutils) is an overesti-
mation of an itemset’s utility in the transaction database. However, it can
be easily proven that sum(iutils) + sum(rutils) ≤ TWU. This means that
sum(iutils) + sum(rutils) can prune out more of the search space than TWU.

HUI-Miner is more efficient than those two-phase algorithms, but it is not
without drawbacks. Suppose the utility-lists of two itemsets have m and n utility-
tuples respectively. Then, the total number of comparisons needed in the new
utility-list construction procedure is at most (m + n). This procedure can be
expensive if the utility-lists are very large. The HUI-Miner algorithm does not
have a good mechanism to prune the constructions of utility-lists. This can cause
the algorithm to run a lot of unnecessary operations to try creating utility-lists
for itemsets that are not even in the database. This problem becomes more
serious for sparse transaction databases. In this context, a sparse transaction
database is a database that has a large number of distinct items while the average
number of items in a transaction is relatively small.

3 mHUIMiner

In this section, we present our mHUIMiner (modified HUI-Miner) algorithm
which solves the problem in the HUI-Miner algorithm. This algorithm is a mod-
ified HUI-Miner that integrates the IHUP-tree structure into the original HUI-
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Miner algorithm. A nice property of the IHUP-tree structure is that a path in
the tree corresponds to a transaction in the database. It means that the tree
contains all the information about the composition of all the transactions in the
database. This information tells us which itemsets or patterns actually exist in
the database. Hence, if we mine itemsets along the paths of the tree incremen-
tally, we can avoid expanding the current itemset into one that does not exist
in the database. Next, we will describe the details of mHUIMiner algorithm
and demonstrate how the algorithm works using simple examples based on the
transaction database in Table 1.

Algorithm 1. mHUIMiner
Input: DB: a transaction database, minutil: a user-specified threshold
Output: a set of high-utility itemsets

1 scan DB to calculate the TWU for each single item;
2 scan DB again to create a global IHUPTWU − Tree T along with its header

table T.headerTable and a global hashmap to store utility-list UL for every
single item;

3 for item i from the bottom of T.headerTable do
4 get utility-list ULi from the global hashmap for item i;
5 if sum(ULi.iutils)+sum(ULi.rutils) ≥ minutil then
6 create local prefix tree Ti and its header table for item i;
7 call Mining(i, Ti, ULi, minutil);

8 end

9 end

The main procedure (Algorithm 1) of mHUIMiner algorithm takes as input a
transaction database and a user-specified threshold minutil. The algorithm scans
the database for the first time to calculate the TWU value for each distinct item
in the database. We create a global tree to maintain transaction information and
initial utility-lists for all the distinct items. During the tree building process, the
header table of the tree is also created. The header table contains TWU values
for all the items that are in the global tree and it is sorted in descending order of
TWU values. During the second scan of the original database, any item whose
TWU is smaller than the threshold minutil is discarded. This means that the
tree and single-item utility-list will only contain items whose TWU values are
equal to or larger than the threshold. Unlike most of the other algorithms using
similar tree structures, the tree in our algorithm does not store any utility related
information. The purpose of the tree is solely to guide the itemset mining and
expansion process. All utility related information we need for high-utility itemset
mining is captured in the utility-lists. We have tried to store utility-tuples inside
the nodes of the tree. However, this means that we have to construct utility-
lists for single-item itemsets on-the-fly during the mining process. Because we
construct a new itemset by adding an item to the current itemset, the utility-list
of the same item would be constructed every time when it is needed. When we
tested this approach it was very inefficient, so we have chosen to use two data
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Table 4. Example of revised transactions

Tid Item Util. Item Util. Item Util. Item Util. Item Util.

T1 c (6) e (2) b (1)

T2 e (4) a (15) b (4)

T3 c (9) d (16) e (10) a (5) b (2)

T5 d (4) a (5) b (1)

Table 5. Global header table

Item TWU

b 86

a 77

e 76

d 52

c 51

structures to store different types of information. Starting from the bottom of
the header table, we test if the sum of all the iutils and rutils of the item’s
utility-list is smaller than minutil. We ignore an item if this sum is smaller than
the threshold. For the remaining items, local prefix trees and local header tables
for these items are created, and the Mining procedure of the algorithm is called.
Note that the local header table is similar to the global header table, except that
the local header table only contains items that are in the local prefix tree.

Suppose that the user specified minutil is 40. Table 3 contains all the TWU
values computed during the first database scan. Because the TWU values of
items g and f are smaller than 40, they can be discarded from the transactions.
Table 4 shows all the revised transactions. Revised transactions only contain
items whose TWU values are greater than 40. And all revised transactions are
ascendingly sorted based on TWU values. Figure 1 shows the global tree built
using the revised transactions and Table 5 is the header table of the global tree.
We start from the bottom of the header table. The last item in the header table
is c. The utility-list of c is shown in Fig. 4. According to the utility-list, the sum
of iutils and rutils of c is 51. Since the minutil is smaller than 51, we will create
the local prefix tree and its local header table for c. The prefix tree of c can be
seen in Fig. 2. Then the mining procedure is called. However, if minutil were
larger than 51, we would ignore item c and move on to the next item, d, in this
case.

The Mining procedure (Algorithm 2) takes as input a prefix tree, a current
itemset, the utility-list of the current itemset and the threshold. It checks if the
sum of all iutils of the utility-list is larger than or equal to the threshold. If the
sum of iutils of the current itemset is larger than the threshold, this itemset
is a high-utility itemset. Then it decides whether to expand current itemset by
comparing the sum of all iutils and rutils against the threshold. If it is larger
than or equal to minutil, we expand the current itemset by adding one new
item from the header table. The prefix tree and the local header table of this
new itemset are created. Then the Construct procedure (Algorithm 3) is called
to create the utility-list for this new itemset. Finally, we call the Mining process
recursively.

Suppose the current itemset is {c}. According to the utility-list of {c}, the
sum of iutils is 15. {c} is not a high-utility itemset because minutil is 40. {c}
would be a high-utility itemset if the sum of iutils were larger than or equal to
minutil. Recall that the sum of all the iutils and rutils of c is 51. Since minutil
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Fig. 5. Utility-list of cd

is less than 51, we create the new itemsets by adding single items from its local
prefix tree (Fig. 2) to {c}. In this case, the new itemsets would be {cd}, {ce},
{ca} and {cb}. Utility-lists and prefix trees of these new itemsets are generated.
For example, the local prefix tree of {cd} is shown in Fig. 3 and the utility-list
of {cd} is shown in Fig. 5.

The Mining process is called again to test if {cd}, {ce}, {ca} and {cb} are
high-utility itemsets and whether we should expand them further. We repeat
this process recursively. The algorithm will terminate when we cannot generate
a non-empty prefix tree. As we can see, an itemset expands by adding one single
item from its local prefix tree. This is crucial in making sure that we do not
spend time on itemsets that do not exist in the database.

The Construct procedure (Algorithm 3) takes as input the utility-list for the
current itemset and the utility-list for a single item. First, an empty utility-list
for the new itemset is created. Common transactions are identified by compar-
ing transaction identifiers. For every common transaction, a new utility-tuple
is created and appended to the utility-list. Our mHUIMiner incorporates a tree
structure to guide the itemset expansion process, this ensures that it never needs
to consider an itemset that does not exist in the transaction database. The source
code is published on GitHub: github.com/superRookie007/mHUIMiner.

https://github.com/superRookie007/mHUIMiner
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Algorithm 2. Mining
Input: p: current itemset, Tp: current itemset’s prefix tree, ULp: utility list of

the current itemset, minutil: user-specified threshold
Output: high-utility itemsets

1 if sum(ULp.iutils) ≥ minutil then
2 output p as a high-utility itemset;
3 end
4 if sum(ULp.iutils)+sum(ULp.rutils) ≥ minutil then
5 for item x from the bottom of Tp.headerTable do
6 create prefix-tree Tpx and local header table for new itemset px;
7 get utility-list ULx from global hashmap for item x;
8 ULpx = Construct(ULp, ULx);
9 call Mining(px, Tpx, ULpx, minutil);

10 end

11 end

Algorithm 3. Construct
Input: ULp: the utility-list for itemset P , ULx: the utility-list for item x
Output: ULpx, the utility-list for new itemset px

1 ULpx = NULL;
2 for element Ep in ULp do
3 for element Ex in ULx do
4 if Ex.tid==Ep.tid then
5 Epx = < Ep.tid, Ep.iutil + Ex.iutil, Ex.rutil >;
6 end
7 append Epx to ULpx;

8 end

9 end
10 return ULpx;

4 Evaluations

Extensive experiments have been done to evaluate the performance of the pro-
posed mHUIMiner algorithm against other state-of-the-art algorithms. The com-
peting algorithms include IHUP [2], FHM [3], HUIMiner [5] and EFIM [10]. All
algorithms were implemented in Java. Experiments were performed on a machine
with 2.2 GHz Intel Core i5 CPU and 8 GB of RAM running Windows 10. Note
that all these bench algorithms and mHUIMiner are deterministic and all these
algorithms generate the same high-utility itemsets and rules on the same dataset
with the same threshold setting. Thus we will not be investigating rule quality
as it does not differ between these datasets.

At first, we compare the proposed mHUIMiner against competing algorithms
over standard real life datasets. The datasets and their characteristics are shown
in Table 6. These datasets are obtained from the SPMF website. Suppose a
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transaction database has N distinct items and M different items per transaction
on average, the database density is defined as M /N.

Table 6. Characteristics of standard datasets

Dataset # transactions # distinct items Avg. # of items per trans Density

Accidents 340183 468 33.8079 7.2239%

BMS 59602 497 2.5106 0.5052%

Chainstore 1112949 46086 7.2266 0.0157%

Chess 3196 75 37.0000 49.3333%

Foodmart 4141 1559 4.4238 0.2838%

Kosarak 990002 41270 8.1000 0.0196%

Mushroom 8124 119 23 19.3277%

Retail 88162 16470 10.3057 0.0626%

Fig. 6. Running time. Vertical-axis: execution time (sec.), horizontal-axis: minimum
utility (%)

We ran all the algorithms on each of the datasets while gradually decreasing
the minutil threshold, until an out-of-memory error was raised or a timeout hap-
pened. We terminated experiments whose running times were over 20 min. The
experimental results can be found in Fig. 6 (running times) and Fig. 7 (memory
consumption). It can be seen that in general, the performance of mHUIMiner
is similar to that of HUIMiner and FHM. It is not surprising considering all
of these algorithms use the same utility-list method in their mining process.
Within the group of these three algorithms, mHUIMiner is faster than the oth-
ers on chess, foodmart, mushroom and retail. And for accidents and chainstore,
as the minutil threshold gets smaller, mHUIMiner starts to run faster than
FHM and HUIMiner. The IHUP algorithm only managed to finish the experi-
ments on chainstore and foodmart datasets without overtime or memory error.
The EFIM algorithm performed very well in terms of running time for dense
datasets such as accidents, chess and mushroom. But it was outperformed by
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mHUIMiner over sparser datasets such as chainstore, foodmart and retail. EFIM
is much more memory efficient than the other algorithms over datasets chess,
mushroom and retail. This is because while other algorithms rely on complex
tree or utility-list structures to maintain information, EFIM generates projected
databases that are often very small in size due to transaction merging.

Fig. 7. Memory consumption. Vertical-axis: memory (MB), horizontal-axis: minimum
utility (%)
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Fig. 8. Synthetic datasets with varying density

It seems that the mHUIMiner algorithm does provide a slight advantage over
FHM and HUIMiner in terms of running time on most of these real datasets.
And while EFIM is very fast on dense datasets, it tends to be outperformed by
mHUIMiner over sparser datasets. We generated additional synthetic datasets
with different density to test this hypothesis. All these synthetic datasets were
generated using the dataset generator in SPMF. All these datasets have the same
100000 transactions and 10.5 average items per transaction. But the density
varies from 5% to 0.005%. We also kept minutil threshold constant at 0.004%
for all the tests. We terminated experiments whose running times were over
30 min. The results are depicted in Fig. 8. It can be seen that mHUIMiner is the
slowest when density is high, but as the density decreases mHUIMiner becomes
substantially more efficient in terms of running time. When density is at 0.005%,
both FHM and HUIMiner ran out of time and mHUIMiner is over 70 times faster
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Fig. 9. Synthetic dataset with density of 0.005%
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Fig. 10. Synthetic datasets with varying number of transactions

than EFIM. However, EFIM consumes less memory than the other algorithms
over these datasets.

We performed additional experiments to test mHUIMiner against EFIM over
a sparse synthetic dataset with varying minutil threshold. This sparse dataset
has density of 0.005%. It has 100000 transactions and 10.5 average items per
transaction. Again, we set the time limit as 30 min. The results are depicted in
Fig. 9. It can be seen that mHUIMiner is much faster than EFIM on this sparse
dataset, however the memory consumption of mHUIMiner is higher. Moreover,
when minutil was set to 0.0035%, EFIM did not manage to finish in time.

To confirm that mHUIMiner’s running time and memory consumption do not
grow exponentially according to the number of transactions in the dataset, we
performed tests on datasets with different number of transactions. All of these
datasets have the same number of distinct items (20000) and the same average
number of items per transaction (10.5). We also used the same minutil threshold
of 0.005% for all the tests. The number of transactions varies from 100000 to
500000. The results are depicted in Fig. 10. It is obvious that even though both
running time and memory consumption of mHUIMiner increase as the input size
increases, they do not grow exponentially.
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5 Conclusions and Future Work

We proposed a novel mHUIMiner algorithm for high-utility itemset mining,
which outperforms all of the compared state-of-the-art algorithms in terms
of running time for sparse datasets. Currently our mHUIMiner algorithm is
designed to work on static databases, but it can be adapted to mine high-utility
itemsets over incremental databases. Ideally, the incremental algorithm should
be able to reuse previous data structures and mining results to avoid repet-
itive computation after a database is updated. Finally, the current algorithm
assumes that utility values are non-negative. Obviously, this is not always true
in real world applications.
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1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: ACM SIGMOD Record, vol. 22, pp. 207–216. ACM
(1993)

2. Ahmed, C.F., Tanbeer, S.K., Jeong, B.S., Lee, Y.K.: Efficient tree structures for
high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data
Eng. 21(12), 1708–1721 (2009)

3. Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, V.S.: FHM: faster high-utility
itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T.,
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Abstract. Pattern-based tree classifiers are capable of producing high
quality results, however, they are prone to the problem of the default
class overuse. In this paper, we propose a measure designed to address
this issue, called partial tree-edit distance (PTED), which allows for
assessing the degree of containment of one tree in another. Furthermore,
we propose an algorithm which calculates the measure and perform an
experiment involving pattern-based classification to illustrate its useful-
ness. The results show that incorporating PTED into the classification
scheme allowed us to significantly improve the accuracy on the tested
datasets.

Keywords: Tree-subtree similarity · Tree classification · Tree-edit dis-
tance

1 Introduction

Rooted, ordered, labeled tree is a popular data structure which finds various
applications in many different domains. One of the most important issues con-
cerning this structure is similarity computation. This problem has several prac-
tical applications such as XML document similarity [1], comparison of RNA sec-
ondary structures [2], natural language processing [3], or data integration [4,5].
In this paper, we focus on the problem of tree similarity in the context of pattern-
based tree classification.

The process of pattern-based tree classification is as follows. First, a training
dataset of trees is mined for patterns (frequent subtrees), separately for each
class. Next, based on the discovered patterns, a classifier is constructed as a set
of rules: pattern → class, where pattern denotes a frequent subtree mined from
the training dataset with a given class. Once a classifier is created, each new
unclassified tree is tested against every rule for pattern containment (e.g., with
subtree matching) and assigned to the class from which it contains the highest
percentage of patterns.

Pattern-based tree classification is a straightforward method capable of pro-
ducing high quality results [6]. However, there are two problematic cases for this
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 208–219, 2017.
DOI: 10.1007/978-3-319-57529-2 17



Partial Tree-Edit Distance 209

approach: (1) if a classified tree contains the same percentage of patterns from
two or more classes, (2) if a classified tree does not contain any pattern. The first
case can be resolved by creating a ranking of patterns and weighing them accord-
ing to their importance. In the second case, however, a common approach is to
use a so called default class, which assigns all unmatched trees to a single class,
e.g., a majority class in the training dataset. Clearly, such a situation should be
avoided as there is a high chance of deteriorating the classification quality. For
traditional, transactional data, other solutions than the default class exist [7],
most of which are based on partial similarity of a rule with a classified object. In
the tree processing domain, however, to the best of our knowledge, an accurate
tree-subtree similarity measure is not available.

In this paper, we analyze the above described problem of tree-subtree simi-
larity defined as follows. Given two trees P (a pattern tree) and D (a document
tree), find how much does P need to be modified to become a subtree of D. In
order to answer this question, we propose a new distance measure, called partial
tree-edit distance (PTED), along with an algorithm to calculate it. We will show
that incorporating PTED into the classification scheme significantly improves
upon the existing methods of dealing with the default class problem.

The remainder of this paper is organized as follows. Section 2 gives the back-
ground of related work for the proposed measure. Section 3 introduces necessary
notation and definitions. In Sect. 4 we describe and define the partial tree-edit
distance measure. Section 5 presents an efficient algorithm which calculates the
proposed measure. In Sect. 6 we empirically evaluate the algorithm in terms
of time complexity and illustrate the usefulness of the proposed measure with
an experiment involving pattern-based tree classification. Finally, in Sect. 7 we
conclude the article and draw lines of further research.

2 Related Work

One of the first attempts at solving the tree-subtree similarity problem was
proposed by Zhang and Shasha [8]. The authors present a generalization of tree-
edit distance, which can be stated as follows. Given trees T1 and T2, what is
the minimum distance between T1 and T2 when zero or more subtrees can be
removed from T2 at no cost. This problem is similar to the question stated in
this paper, however, it works closely only when the root node of T1 is mapped
to the root node of T2. Furthermore, it allows for all edit operations to appear
in both trees while we allow only for the pattern tree to be modified. Given our
motivation, we need our measure to identify subtrees anywhere in the hierarchy
of a tree and only by modifying a pattern tree in the least invasive way.

Another problem, similar to the one stated in this paper, was explored by
Augsten et al. [5]. The problem concerned finding the best k matches of a small
query tree in a large document tree. This approach, however, is also unsuited for
our problem because it focuses on subtrees spanning to the bottom (leaf nodes)
of a document tree while we need our measure to identify subtrees of any shape
and depth.



210 M. Piernik and T. Morzy

Cohen and Or [9] recently proposed a framework for solving the subtree
similarity-search problem, along with an indexing structure to enhance the effi-
ciency of the searching [10]. Their solution is generic and allows for a wide variety
of similarity measures to be used. However, the aim and scope of the framework
is different to the problem addressed in this paper. The authors focus on finding
several similar subtrees using some subtree similarity measure while we focus on
the sole problem of how to measure the subtree similarity. Therefore, the scope
of our work is different to that of Cohen and Or, nevertheless, complementary.

Much effort has also been put into tree pattern matching, which is a more gen-
eral problem than the one stated in this paper [1]. An interesting approach to tree
pattern matching, called tree pattern relaxation, was proposed by Amer-Yahia
et al. [11]. The authors propose four relaxations of pattern constraints which
allow for approximate pattern matching. This approach, however, requires specif-
ically constructed weighted patterns, what makes it unsuited for our problem
since our patterns are simple trees.

Another pattern matching related problem is approximate tree matching with
variable length don’t cares [12]. In 1993 Zhang et al. adopted the idea of VLDC’s
from string matching to tree matching. However, this approach, similarly to tree
pattern relaxation, requires patterns of a specific structure. This requirement
makes this method unusable in our case, since we are focusing on simple subtrees.

All of these solutions tackle similar issues to the one stated in this article.
However, their detailed characteristics showcase that they are unsuited for our
particular problem.

3 Preliminaries

A tree T is a connected graph with |T | nodes and |T |−1 edges. We call a tree T
rooted if all edges in T are directed away from one designated node, called a root
node. We denote a tree T rooted at a node x by Tx and a root node of a tree T
by rT . If two nodes x and y are connected with an edge and x is closer to the
root node than y, then x is a parent of y and y is a child of x. Nodes without any
children are called leaf nodes. Children of the same node x are called siblings
and the number of all children of x is denoted by |x|. We also designate a special
node λ, called empty node.

A rooted tree T is ordered if there exists a total order among all nodes in T .
In our approach, we order the nodes according to the pre-order traversal. The
fact that a node x appears in a tree before a node y is expressed by x < y.

A tree T is labeled if every node in this tree x ∈ T has a label assigned to it,
symbolized by l(x). For convenience, hereinafter, a rooted, ordered, labeled tree
will be referred to as tree.

An ordered set of trees is called a forest. A forest F containing trees rooted
at all children nodes of a node x is denoted by Fx. The rightmost tree of a forest
F is denoted by F̄ . A forest F without a tree T is symbolized by F − T and the
number of nodes in all trees in forest F is symbolized by |F |.

A tree S whose nodes and edges form subsets of nodes and edges of another
tree T is called a subtree of T . We denote that S is a subtree of T by S ⊆ T .
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Let us now define the edit operations which can be performed on tree nodes.
In general, there are three basic edit operations: insertion, deletion, and relabel-
ing. By inserting a node x into a tree T at a node y, x becomes a child of the
parent of y, taking y’s place in the sibling order, while y becomes a child of x.
When deleting a node x from a tree T , all children of x become the children of
the parent of x. Consequently, when x is a root node, the result is a forest Fx.

4 Partial Tree-Edit Distance

4.1 Conceptual Description

To illustrate how partial tree-edit distance works, first let us consider an example
presented in Fig. 1. In this example, by T i we will denote the i-th node (according
to the pre-order traversal) in tree T . As the question stated in this paper implies,
the task is to determine how many operations need to be performed on P for it
to become a subtree of D. Looking at the example, clearly, P is not a subtree
of D. However, as illustrated with the grey areas, there is a part of P which
can be directly mapped into D. Namely, nodes P 2, P 4, and P 5 can be mapped
into D1,D5, and D11, respectively, as they have the same labels. As a result of
this mapping, we also have to map P 3 into D4. This time, however, we need to
use the relabeling operation as the labels are different. Finally, as nodes P 1, P 6,
and P 7 have no corresponding nodes in D, they have to be removed using the
deletion operation. Therefore, the total number of edit operations required to
transform P into a subtree of D is 4 (1 relabeling, 3 deletions).

Fig. 1. Example of fitting a pattern tree P into a document tree D. The nodes in
P covered by the grey area are relabeled to the corresponding nodes covered by the
grey area in D, while the nodes in P uncovered by the grey area are deleted. Numbers
represent the order of pre-order traversal.

So far, we have only used relabeling and deletion. Furthermore, we only
deleted the root node (P 1) and the leaf nodes (P 6, P 7). Let us now discuss the
possible consequences of using other edit operations, namely, deletion of inner
nodes and insertion of inner and non-inner nodes. Inserting a non-inner node
into P does not make sense, since it could only increase the number of opera-
tions needed to fit P into D. That is why, in partial tree-edit distance insertion
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of non-inner nodes is forbidden. Deleting or inserting an inner node results in
a children nodes’ transfer, so the internal structure of a tree is altered. In our
case however, given the pattern-based classification motivation, allowing for such
operations to appear would alter the inner structure of the patterns. Since pat-
terns are frequent subtrees, by deleting non-inner nodes we are guaranteed to
obtain structures which are at least as frequent as the base structure thanks to
the anti-monotonicity property of the support measure (any subtree of a frequent
subtree will have equal or higher support). However, allowing for an inner node
to be inserted or deleted from a pattern results in a subtree of which frequency
we know absolutely nothing about, therefore, it cannot be called a pattern any-
more. It may even happen that such a pattern does not appear in the dataset
at all. Therefore, insertion and deletion of inner nodes into a pattern may lead
to wrong class assignments and deteriorate the overall classification quality.

It is worth noting that other applications may benefit from allowing these
additional edit operations to appear and exploring such operations constitutes
an interesting topic for a future research. However, given our main motivation,
they are out of the scope of this paper.

Given the above, partial tree-edit distance is defined around two edit oper-
ations: deletion of non-inner nodes and relabeling. Both of these operations
have an associated cost, which can be universally expressed with the following
formula:

c(x, y) =

⎧
⎪⎨

⎪⎩

0 x = λ

wd y = λ

wr otherwise

(1)

where x and y are nodes, λ is an empty node, and wd and wr are user-defined
weights associated with deletion and relabeling. Let s be a sequence of these
two operations. Partial tree-edit sequence s between two trees P and D is a
sequence which transforms P into any subtree of D. The cost c(s) of partial
tree-edit sequence s is the total cost of all operations in s. Partial tree-edit
distance (PTED) Δ(P,D) between a pattern tree P and a document tree D is
the minimal cost of all possible partial tree-edit sequences between P and D.

As we can see, the measure works as a combination of subtree matching and
tree-edit distance, producing a distance equal 0 when a pattern appears in a
tree, and a value between 0 and the size of a pattern, otherwise.

4.2 Formal Definition

Definition 1. A partial mapping m between a pattern tree P and a document
tree D is a subset of P × (D ∪ {λ}), such that: (1) each node from P appears in
m exactly once, (2) each node from D appears in m at most once, (3) for any
(x, x′), (y, y′) ∈ m where x′ �= λ and y′ �= λ: x is a parent of y ⇔ x′ is a parent
of y′, (4) for any (x, x′), (y, y′) ∈ m where x is a sibling of y and x′ is a sibling
of y′: x < x′ ⇔ y < y′.
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Each element in the mapping (x, x′) ∈ m represents an edit operation and
has an associated cost c(x, x′), as defined in Eq. 1. An element where x′ = λ
represents a deletion while an element where x′ �= λ represents a relabeling. The
cost c(m) of a partial mapping m is a sum of costs of all elements in m.

Definition 2. Partial tree-edit distance Δ(P,D) between a pattern tree P and
a document tree D is the minimal cost of all possible partial mappings between
P and D.

Now, we will introduce a recursive formula which calculates partial tree-
edit distance. The formula works in two stages. The purpose of the first stage,
performed by a main function Δ and defined in Eq. 2, is to place P at each
possible position in D.

Δ (P,D) = min
x∈P,y∈D

{
δ({Tx}, {Ty}) +

∑

{z∈P :z/∈Tx}
c(z, λ)

}
(2)

Next, for each placement of P in D, the second stage takes place. The goal
of the second stage, performed by an auxiliary function δ defined in Eq. 3, is to
check how well does P fit in D, at a given placement. The function accepts two
forests G and H as parameters and recursively considers 3 cases: ignoring the
rightmost tree of H, deleting the rightmost tree of G, and fitting the rightmost
tree of G into the rightmost tree of H.

δ (G,H) = min

⎧
⎪⎨

⎪⎩

δ
(
G,H − H̄

)

δ
(
G − Ḡ,H

)
+ δ

({Ḡ}, ∅)

δ
(
G − Ḡ,H − H̄

)
+ δ (FrḠ , FrH̄ ) + c(rḠ, rH̄)

(3)

Equation 4 defines the boundary conditions of the auxiliary function δ. The
first two cases reflect the fact that the cost of fitting an empty pattern into any
tree equals 0, while the third case signifies that the cost of fitting any non-empty
pattern into an empty tree equals the cost of removing the whole pattern.

δ (∅, ∅) = 0
δ (∅,H) = 0

δ (G, ∅) = δ
(
G − Ḡ, ∅)

+ δ (FrḠ , ∅) + c(rḠ, λ)

(4)

5 Algorithm

In this section we propose an algorithm which calculates partial tree-edit dis-
tance. Similarly to the formal definition, the algorithm consists of two main
components: (1) the main loop Δ which places P at every possible position in
D and (2) the auxiliary function δ which checks the quality of each placement.
The algorithm for the main loop is a trivial implementation of Eq. 2, so we will
skip the pseudocode for this step. The auxiliary function is implemented with a
dynamic programming algorithm, given in Algorithm1.
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Algorithm 1. Partial tree edit distance algorithm: δ(Tv, Tw)
Require: trees Tv and Tw,
Ensure: a cost of a partial mapping m between Tv and Tw with restriction (v, w) ∈ m
1: tab ← [|v| + 1, |w| + 1]
2: for j = 0..|w| do
3: tab[0, j] ← 0;
4: end for
5: for i = 1..|v| do
6: tab[i, 0] ← tab[i − 1, 0] + (|Tvi

|) · wd;

7: end for
8: for i = 1..|v| do
9: for j = 1..|w| do
10: tab[i, j] ← min{

tab[i − 1, j] + (|Tvi
|) · wd,

tab[i, j − 1],
tab[i − 1, j − 1] + δ(Tvi

, Twj
)

};
11: end for
12: end for
13: return tab[|v|, |w|] + (l(v) = l(w) ? 0 : wr);

The algorithm accepts two trees Tv and Tw as parameters and outputs the
minimal cost of a partial mapping between Tv and Tw, given that v is mapped
into w. Variable tab stores the intermediate results of mapping the children nodes
of v into the children nodes of w, so it is an R|v|+1×|w|+1 matrix (Line 1). In
Lines 2–4 the top row in the matrix is initialized to 0. This reflects the fact that
the subtrees in the right tree can be removed without any cost (ignored). In
practice, it fulfills the second boundary condition from Eq. 4. In Lines 5–7, the
left column is initialized with the cumulative cost of deleting consecutive subtrees
of v (tab[i, 0] = cost of removing Tv1 ..Tvi

). These values fulfill the third boundary
condition from Eq. 4. Lines 8–12 contain the main loop of the auxiliary function.
It scans through all children nodes of v and w and for each pair vi, wj stores a
temporary result tab[i, j] which holds the minimal cost of mapping v1 . . . vi into
w1 . . . wj . This cost is computed in Line 10 as the minimum of 3 expressions,
reflecting the 3 options in Eq. 3:

– tab[i − 1, j] + (|vi| + 1) · wd accounts for removing the rightmost subtree from
the left tree;

– tab[i, j − 1] accounts for ignoring the rightmost subtree from the right tree;
– tab[i − 1, j − 1] + δ(Tvi

, Twj
) accounts for mapping the rightmost subtree of

the left tree into the rightmost subtree of the right tree.

In the end, tab[|v|, |w|] holds the minimal cost of mapping the children of v into
the children of w (with descendants). Finally, in Line 13, by adding the cost
of mapping v into w we obtain the total cost of the minimal partial mapping
between Tv and Tw with v mapped into w. This concludes the algorithm.

Let us now analyze the complexity of the presented algorithm. It is easy
to notice that the auxiliary function algorithm is an adoption of the algorithm
for the Levenstein distance between two sequences [13], which has a quadratic
complexity. Here however, the auxiliary function is called within the main loop
which is also quadratic in time, so the overall complexity is O(n4). However, the
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auxiliary function runs only as deep as the height of the smaller tree, so since
pattern trees are usually much smaller than document trees, the algorithm will
usually be more efficient than the complexity suggests.

6 Experimental Evaluation

6.1 Datasets and Experimental Setup

During the experiments, we used both real and synthetic datasets containing
XML documents represent as rooted, ordered, labeled trees. For the time com-
plexity evaluation, we generated a dataset of 20 documents ranging between
100 and 2000 in the number of elements. To generate this dataset, we used the
software developed by Zaki [14].

To test the applicability of PTED in pattern-based classification, we used
the datasets created by Zaki and Aggarwal [6]. The synthetic datasets DS1-4,
were generated by the aforementioned authors and are composed of a training
and a testing set each, containing between 60000 and 100000 documents. The
real datasets CS1-3, each consisting of around 8000 documents, contain web logs
categorized into two classes (for a detailed description see [6]). Since they were
not divided into training and testing sets, we used each for both purposes and
cross-validated them with one another. By CSXY we will denote the CSX set
used for training and CSY for testing. This gives us a total of 10 tests: 4 on
synthetic and 6 on real data. The minimal frequency of a subtree required to
consider it a pattern was 0.1% for DS datasets and 1% for CS datasets.

All classifiers were evaluated using a weighted accuracy measure [6], defined
as follows:

Accuracy =
∑

c∈C

(

wc · |Dtest
c |

|Dc|
)

(5)

where C is the set of all classes, Dtest
c is the set of documents correctly assigned to

class c, Dc is the set of documents which should be assigned to class c, and wc is
a weight associated with each of the classes. Similarly as Zaki and Aggarwal [6],
we analyzed three weighting models:

– proportional : wc = |Dc|/|D| — classes weighted proportionally to their distri-
bution in the training dataset,

– equal : wc = 1/|C| — all classes weighted equally,
– inverse: wc = 1/Dc∑

c′∈C 1/|Dc′ | — classes weighted inversely to their distribution
in the training dataset.

Additionally, we used the Friedman test [15] to determine whether the com-
pared approaches performed significantly differently and a post-hoc Nemenyi
test [15] to check if the proposed solution significantly improved the quality of
classification.
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6.2 Time Complexity Evaluation

To assess the time complexity of the proposed algorithm we used the generated
dataset containing 20 documents of increasing sizes. For each pair of documents,
we calculated partial tree-edit distance 100 times and measured the average
computing time. The results of this test are presented in Fig. 2.

Fig. 2. Time complexity of the algorithm calculating partial tree-edit distance.

Figure 2(a) illustrates how much time it takes to calculate PTED for trees of
various sizes. First, let us observe how the algorithm behaves when both pattern
and document trees are expanded. As we can see, with increasing sizes of both
trees, processing time presents a polynomial growth. This is reflected in the spine
on the 3D chart (the diagonal line w.r.t. X and Y axes) which is extracted and
visualized in Fig. 2(b) to facilitate the observation. When increasing the size of
only one of the trees, the increase in processing time is much slower. Considering
the purpose of our measure, this is a very important observation. Since we are
assessing the degree of containment of one tree in another, the left (pattern) tree
should be usually much smaller than the right (document) tree. This is certainly
true in the practical example involving pattern-based classification presented in
Sect. 6.3, as the largest patterns discovered in all experiments contained only 11
nodes. Additionally, it is worth noticing that the chart is symmetrical w.r.t. the
X/Y diagonal. This means that the algorithm behaves the same regardless of
which tree is bigger.

6.3 Practical Application

To empirically evaluate the usefulness of PTED, we performed an experiment
involving pattern-based tree classification. Our goal of is to illustrate the impor-
tance of the default class problem and show how partial tree-edit distance can
be used to address it. We compare four ways of dealing with this problem. In the
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first three approaches, we use different methods for determining the default class,
as proposed by Zaki and Aggarwal in the state-of-the-art XRules classifier [6].
All three approaches determine the dafault class based on the class distribution
in the documents from the training dataset which are not covered by any rule
(do not contain any of the discovered frequent subtrees). Moreover, each method
maximizes the accuracy measure from Eq. 5 w.r.t. one of the three weights: pro-
portional, equal, and inverse. Analogously to the accuracy measure, given that
Dc represents the training documents with class c and D̄c represents a portion
of these documents uncovered by any of the rules, the method for determining
the default class is defined as follows:

Class(D) = arg max
c∈C

(

wc · |D̄c|
|Dc|

)

(6)

where wc is one of the three previously defined weights: proportional, equal, or
inverse.

In the last approach, we use partial tree-edit distance to assign each ambigu-
ous document D to one of the classes according to the following formula:

Class(D) = arg max
c∈C

(
∑

P∈Pc

(

1 − Δ(P,D)
|P |

))

(7)

where C is a set of classes and Pc is a set of patterns with class c. Intuitively, this
formula measures the similarity of D with all patterns in each class and assigns
it to the class with the highest cumulative similarity.

Table 1 presents the results of this experiment. The first column represents
the datasets used in each test (the values in square brackets [DC%] will be
explained later) while the following columns present the accuracies achieved by
each of the described approaches. The results of the proportional and equal
methods are presented in a single column as they produced the same outcome
on every dataset. Each method was evaluated with three variants of the accuracy
measure and the differences in the results were tested for statistical significance.
In order to determine whether by using PTED we were able to significantly
improve the quality of classification, for every dataset we ranked each algorithm’s
performance from 1 to 3, where 1 is the highest and 3 is the lowest score. In
cases when one or more of the algorithms were tied, average ranks were assigned
(e.g., if two algorithms were tied at the 2nd place, each was granted a rank of
2.5). Once created, the ranking (presented in the “Avg. rank” row) was used to
perform the Friedman test [15]. The null-hypothesis for this test is that there is
no difference in the performance between the tested methods. Moreover, in case
of rejecting this null-hypothesis we used the Nemenyi post-hoc test [15] to verify
whether the performance of the best approach is statistically different from the
remaining approaches.

The results clearly illustrate that by using partial tree-edit distance we were
able to improve the classification quality in almost every test, regardless of the
applied accuracy measure. This outcome is partially confirmed by the Friedman
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Table 1. Comparison of methods for handling unclassified examples in a pattern-based
classifier. Bold indicates the best result.

Approach Prop./Eq. Inv. PTED Prop./Eq. Inv. PTED Prop./Eq. Inv. PTED

Dataset [DC%] Proportional accuracy [%] Equal accuracy [%] Inverse accuracy [%]

DS1 [56] 53.37 47.74 47.74 52.35 50.47 52.35 56.95 47.57 56.95

DS2 [70] 62.38 34.23 34.23 48.74 52.47 48.74 63.25 42.56 63.25

DS3 [74] 54.03 54.03 59.93 54.03 54.03 59.93 54.03 54.03 59.93

DS4 [63] 54.02 54.02 54.02 53.43 53.43 53.43 52.85 52.85 52.85

CS12 [47] 72.32 72.32 72.44 64.04 64.04 64.43 55.76 55.76 56.43

CS21 [49] 72.78 72.78 72.78 62.62 62.62 62.64 52.47 52.47 52.50

CS13 [48] 72.26 72.26 72.69 63.33 63.33 64.33 54.40 54.40 55.96

CS31 [50] 72.63 72.63 73.61 62.68 62.68 67.27 52.73 52.73 60.93

CS23 [47] 73.61 73.61 73.64 63.60 63.60 63.66 53.59 53.59 53.67

CS32 [50] 73.17 73.17 73.71 62.79 62.79 67.07 52.42 52.42 60.44

Avg. rank 2.10 2.40 1.50 2.35 2.35 1.30 2.25 2.55 1.20

statistical test. The critical value of the Friedman statistic for the analyzed
setting at α = 0.05 is 3.560 and the F scores for the proportional, equal, and
inverse accuracy tests are 2.392, 5.229, and 9.090, respectively. Therefore, the
analyzed approaches perform significantly differently according to the two latter
measures, but not according to the first one. The additional post-hoc Nemenyi
test reveals that the critical distance (difference in average ranks) required to
deem an approach significantly superior to others equals 1.048 at α = 0.05, so
PTED is indeed significantly better than any of the three default class strategies
according to equal and inverse accuracy.

In order to emphasize the gravity of the default class problem, we addi-
tionally measured how many times the default class had to be used in the
analyzed datasets. The numbers in the square brackets in the first column of
Table 1 ([DC%]) present the percentage of documents from the test set which
were uncovered by any pattern from the classifier. In every test, this problem
concerned around half or more documents (e.g., for test DS3 which contains
100000 test documents there were 73906 documents without any matching pat-
tern). By using partial tree-edit distance we are able to treat each of these cases
individually instead of assigning them arbitrarily to the same class.

7 Conclusions

In this paper, we introduced a new measure for assessing the tree-subtree simi-
larity, called partial tree-edit distance (PTED), which describes to what extent
one tree is included in another. We also proposed an algorithm which calculates
the proposed measure in polynomial time. Furthermore, we performed an exper-
iment involving pattern-based tree classification using partial tree-edit distance
to illustrate the usefulness of the measure. The results show that by using PTED
we were able to significantly improve the classification quality over the classical
pattern-based approach.
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The measure proposed in this paper opens several possibilities of future
research. It could be used to improve the quality of approximate subtree match-
ing, XML querying, ranking, clustering, or classification. Encouraged by the
results achieved in our experiments, we plan on developing a new pattern-based
XML classification algorithm designed around partial tree-edit distance.
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Abstract. Web services like social networks, video streaming sites, etc.
draw numerous viewers daily. This popularity makes them attractive
targets for spammers to distribute hyperlinks to malicious content. In
this work we propose a new approach for detecting spam URLs on the
Web. Our key idea is to leverage the properties of URL redirections
widely deployed by spammers. We combine the redirect chains into a
redirection graph that reveals the underlying infrastructure in which the
spammers operate, and design our method to build on key characteristics
closely associated with the modus operandi of the spammers. Different
from previous work, our approach exhibits three key characteristics; (1)
domain-independence, which enables it to generalize across different Web
services, (2) adversarial robustness, which incurs difficulty, risk, or cost
on spammers to evade as it is tightly coupled with their operational
behavior, and (3) semi-supervised detection, which uses only a few labeled
examples to produce competitive results thanks to its effective usage of
the redundancy in spammers’ operations. Evaluation on large Twitter
datasets shows that we achieve above 0.96 recall and 0.70 precision with
false positive rate below 0.07 with only 1% of labeled data.

1 Introduction

Web services are ubiquitous: social networks (e.g. Facebook, Twitter), review
sites (e.g., Yelp, Amazon), video streaming sites (e.g. YouTube, Hulu), blogs,
forums, etc. draw billions of viewers daily. The widespread adoption of these ser-
vices makes them attractive for spammers to distribute harmful content (scam,
phishing, malware, etc.) through links they post on these sites to such content.
As a result, detecting and filtering malicious content effectively becomes crucial
for the quality and trustiness of the Web.

IP blacklisting—a popular solution for social network operators and URL
shortening services—has been found to provide false positive rates ranging
between 0.5 to 26.9%, and false negative rates between 40.2 to 98.1% [16,17],
which is quite inaccurate. Blacklisting is also quite slow to keep up with the
speed and scale that Web services are being consumed today. Alternative solu-
tions focus on identifying suspicious accounts operated by spammers that behave
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 220–232, 2017.
DOI: 10.1007/978-3-319-57529-2 18
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in automated or fraudulent ways [2,8,18]. These, however, have limited ability to
detect spam disributed through compromised accounts. In fact, 97% of accounts
participating in spam campaigns on Facebook [4] and 86% on Twitter [5] have
been found to involve compromised accounts. Moreover, they incur detection
delays as they require a history of mis-activity committed by an account. Thus,
it is essential to build solutions that can make fine-grained, i.e., URL-level deci-
sions, which could enable services to filter individual posts rather than shutting
down user accounts. It is also desirable to have solutions that are generalizable
to different kinds of Web services, i.e. that spot spam URLs regardless of the
context, platform, or domain in which they appear.

We propose a general and robust solution for detecting malicious URLs.
Our key realization is the widespread usage of redirect chains by spammers to
distribute spam on the Web [6,21]. Our main contributions are as follows.

– We develop a new graph-based approach for spotting malicious URLs that
appear on the Web. Our method leverages the underlying redirection network
used by the spammers. In particular, we build a graph, called the Redirect
Chain Graph (RCG), based on the redirect paths of the URLs and use its
structural properties to design and extract indicative features of spam.

– Our features fall under three main groups (resource sharing, heterogeneity,
and flexibility) and capture the very nature of spammers’ operational behav-
iors. These are hard to alter by the spammers without incurring monetary or
management cost. As such, our features have higher adversarially robustness.

– Our approach relies solely on the redirection infrastructure and does not use
any domain-specific information, which makes it context/content-agnostic. As
such, it can detect spam URLs in various domains, including URLs shared on
any online site, URLs returned as online search results, and so on.

– In a fully supervised setting, our approach performs extremely well. When
compared to context-aware supervised detection that uses user account and
post content features, our context-free features perform equally well, despite
ignoring all domain-specific information.

– Finally, we propose a semi-supervised method, designed for more realistic sce-
narios where labeled data is scarce. By carefully exploiting the redundancy
present in spammers’ infrastructures, our proposed method requires only a
few labeled examples to achieve desirably high performance to be applicable
in the real-world.

In contrast, numerous existing methods, such as [9,11,12,19,20], either (i)
utilize easy-to-evade information (low robustness), (ii) rely on context-dependent
information (low generality), and/or (iii) require large collections of labeled data
for training (low applicability in practice).

2 Redirection Infrastructure

Many studies have shown the pervasive use of redirects by spammers [1,6,9,
11,21]. In this section, we introduce the interconnected architecture of redirect
chains, which provides the main motivation for our graph-based approach.
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Fig. 1. 3 example redirect chains and their RCG. Chains may contain the same URL(s)
(e.g., A4 & B2, B3 & C5, B4 & C6), yielding the interconnected network RCG.

Definition 1 (Redirect Chain). A redirect chain C consists of an ordered
set of URLs, C = {U1, U2, . . . , Ul}, starting with an initial URL U1, followed
by URLs automatically and conditionally redirected in a sequence, and landing
on a final URL Ul. l = |C| denotes the length of the chain.

Initial URL (often shortened by e.g. bit.ly) is the one displayed to users on
a site, whereas landing page is where the user ends up after clicking the initial
URL (cf. Fig. 1).

As data preprocessing, we group the domain names of the URLs that appear
on the same IP. For example, if http://123.com/hi.html, http://xyz.com/hi.
html, and http://xyz.com/hello.html are all co-located at the same-IP address,
then we replace the first two URLs with http://[123.com,xyz.com]/hi.html
and the third with http://[123.com,xyz.com]/hello.html. This grouping
helps us unify malicious URLs that use several domain names so as to bypass
blacklisting. Moreover, a (grouped) URL may be located at multiple different
IPs, a list of which we also store. As such, each URL is associated with a list of
domain names as well as a list of IPs.

Our key motivation for a graph-based solution is due to the following obser-
vation: (malicious) redirect chains deployed by spam campaigns contain several
URLs in common, i.e. shared across chains, creating a network structure as shown
in Fig. 1. In other words, the (malicious) redirection infrastructure of spammers
is highly inter-connected.

Provided that the redirect chains are likely to share several URLs, it is bene-
ficial to study them collectively, rather than individually. As such, we merge the
redirect chains of URLs1 to create the Redirect Chain Graph (RCG).

1 Note that what is posted on a Web service are the initial URLs. We run a crawler
to go through the redirects to extract the chains.

http://123.com/hi.html
http://xyz.com/hi.html
http://xyz.com/hi.html
http://xyz.com/hello.html
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Definition 2 (Redirect Chain Graph (RCG)). Given a set of redirect
chains C = {C1, . . . , Cm}, we decompose each chain Ci = {Ui,1, . . . , Ui,li} into
a set of directed edges between consecutive URLs, Ei = {e(Ui,j , Ui,j+1)

∣
∣j ∈

{1, . . . , li − 1}}. The RCG = (V,E) then consists of all the edges across chains,
where E =

⊎
Ei and V =

⋃
Ci for 1 ≤ i ≤ m.

Note that the RCG nodes are the unique set of URLs across all chains,
whereas the edges are allowed to reappear (hence the multiset addition

⊎
). As

such, RCG is a directed and weighted graph, where edge weights depict the
number of chains that a redirection step appears in. Notice for example the edge
weight 2 in Fig. 1.

Finally we introduce the entry-point URLs. Those are the nodes with large
in-weight in the RCG, considered as “directors”—they are central pages that
aggregate user traffic and direct them to one of several malicious pages (sort of
routers). As such, entry-points are critical in functionality but hard to identify
without aggregate graph analysis—the entry point does not serve the actual
spam, as such it is more difficult to spot and shut down. We characterize each
chain by its entry-point URL, as defined below.

Definition 3 (Entry-Point URL). Given a redirect chain C = {U1, U2, . . . ,
Ul}, let wj denote URL j’s in-weight in the RCG. The entry-point of C is the
URL Uk with the largest in-weight, where wk = max{w1, . . . , wl}.

3 Feature Design Using Redirects

There exists a vast body of work that use information derived from the user
account that a URL originated from, the URL itself or its page content [8,9,13,
20]. We choose not to use such information for the reasons we discuss below.

Rationale to Exclude Account and URL and Page-Content Informa-
tion: First reason is to ensure a general solution. Such features are derived
from meta data on the specific site the URL appears in (e.g., number of follow-
ers). Relying on contextual information would make it hard to cross Web ser-
vice boundaries due to potentially disparate contextual information across sites.
Second, context-aware solutions require personally identifiable information from
user accounts, which may not be desirable due to privacy concerns.

As for content, spammers can use feedback from classifiers to fine-tune their
URLs and page content in an attempt to evade detection by the classifiers, e.g.,
by spoofing sufficient benign features with high weights as studied in adversarial
classification [3,10]. For example, they can avoid using spam terms, adjust URL
length and character distribution, and modify links and plugins to imitate non-
spam pages and URLs, while remaining sufficiently effective in eliciting response
from the target users.

Our features (Table 1) fall into three main categories, characterizing spammer
operations that reflect (1) shared resources, (2) heterogeneity, and (3) flexibility.

(1) Shared resources-driven features. Spammers would ideally deliver
each copy of malicious content through a dedicated independent channel, such
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Table 1. Features introduced (3 categories). RC: redirect chain, CC: connected com-
ponent of RCG a RC resides in. Tree: BFS-tree of CC, rooted at entry-URL. TLD:
top-level domain. Node degrees & edge weights are based on RCG.

Feature name Description

Shared resources-driven (17 features)

EntryURLiw In-weight (freq.) of entry-point URL

EntryURLid In-degree of entry-point URL

AvgURLiw Mean in-weight of URLs in RC

AvgURLid Mean in-degree of URLs in RC

ChainWeight Total weight of edges in RC

CCsize Number of nodes in CC

CCdensity Edge density of CC

MaxRCLen Max. length of RCs in CC

MinRCLen Min. length of RCs in CC

TreeHeight Height of Tree (root: entry-URL)

MaxLevelWidth Max. node count at Tree levels

ImbalanceH Horizontal imbalance of Tree

ImbalanceV Vertical imbalance of Tree

MaxLdURLDom Max. domain count of CC landing URLs

AvgLdURLDom Mean domain count of CC landing URLs

MaxURLDom Max domain name count per URL in RC

AvgURLDom Mean domain name count per URL in RC

Heterogeneity-driven (12 features)

GeoDist Total geo-distance (km’s) of hops in RC

MaxGeoDist Max. geo-distance (km’s) across hops in RC

XContinentHops Number of cross-continent hops in RC

CntContinent Number of unique continents in RC

XCountryHops Number of cross-country hops in RC

CntCountry Number of unique countries in RC

XIPHops Number of cross-IP hops in RC

CntIP Number of unique IPs in RC

XDomainHops Number of cross-domain hops in RC

CntDomain Number of unique domains in RC

XTLD Number of cross-TLD hops in RC

CntTLD Number of unique TLDs in RC

Flexibility-driven (10 features)

ChainLen Length (#URLs) of RC

EntryURLDist Distance from initial to entry URL in RC

CntInitURL Number of initial URLs in RCG

CntInitURLDom Total domain name count in initial URLs

CntLdURL Number of final landing URLs in RCG

MaxIPperURL Max. IP count each URL in RC appears in

AvgIPperURL Mean IP count each URL in RC appears in

MaxIPperLdURL Max. IP count landing URLs in CC appear in

AvgIPperLdURL Mean IP count landing URLs in CC appear in

RatioCheapTLD Fraction of non-.com/.mil/etc. URLs in RC
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that if a server fails or is shut down, it has minimal effect. Avoiding to reuse
components in their infrastructure (domain names, servers, etc.), however, would
increase their costs and limit profits. As such, spammers often reuse their under-
lying hosting infrastructure for significant periods [1,13].

The first type of sharing occurs due to the same URLs being reused across
different redirect chains. As discussed in Sect. 2, nodes with large in-weight in the
RCG (e.g., the entry points) are those URLs that are reused to route traffic for
many redirect paths. As such, for each given URL2, we identify the connected
component of the RCG it resides in and extract features based on structural
graph properties, e.g., in-weight of its entry point URL, average in-degree and
in-weight of nodes in its chain, density of its RCG component, etc. We also
treat the RCG component as a tree, rooted or “hung” at the entry point URL.
This tree is obtained by a breadth-first search traversal of the RCG component
starting at the entry-URL. Intuitively, a small number of unique entry points
in a large RCG is suspicious; implying a few URLs shared among many chains.
Tree-based features such as level width and horizontal imbalance capture this,
as few entry points cause large fan-out.

A second type of sharing occurs due to the same servers hosting many differ-
ent domain names. To evade and stay ahead of domain blacklisting, spammers
run through many domain names. To reduce operating costs, they host them on
the same server (IP address), all serving the same malicious content. We leverage
this domain co-location property based on domain counts both in landing URLs
of the RCG component as well as in all the URLs in the redirect chain of a URL.

(2) Heterogeneity-driven features: The operational infrastructure of
spammers consists of a variety of heterogeneous agents, including various com-
promised servers and bot machines from various geo-locations, besides their own
hosting servers. This kind of heterogeneity arises naturally and is crucial for their
operations. First, it would require high maintenance to ensure all compromised
machines are of a single type or all reside in close geo-locations. Moreover it
would be risky if everything resided on one machine or all machines were at the
same geo-location, as the infrastructure would have a few failure points. Based
on this insight, we design features that quantify infrastructure heterogeneity.

These features mainly leverage geo-spatial and domain name heterogeneity.
For example, given the sequence of URLs in a redirect chain, we quantify the
total distance in km’s traversed. Similarly, we count the number of transfers
between different continents, countries, and IPs. We also count the cross-domain
hops—contrary to a hodgepodge of IPs and domain names in spam redirect
chains, benign sites have the opposite incentive to keep visitors within their own
domain. Compromised IPs or sites would also come from various kinds of top-
level domains (TLDs), such as .edu, .org, .com, etc., therefore we also keep a
count of transfers between different TLDs.

2 Note that the given URLs are the observed ones posted on the Web, also referred to
as the initial URLs in this work.
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(3) Flexibility-driven features: Finally, we derive features from opera-
tional properties that allow spammers flexibility, through which their mainte-
nance overhead or expenses are reduced.

To have the advantage of luring as many users as possible, spammers use
multiple different initial URLs (even though they redirect to the same malicious
content) to make their posts look different. We capture this by keeping count
of the initial URLs in the RCG component of a given URL, as well as the total
number of domain names that they host.

Using multiple landing URLs (serving the same content), on the other hand,
provides redundancy; if a landing page goes down, others can still distribute
malicious content. Another way that spammers achieve redundancy is by having
copies of the same URLs across multiple different IPs, which we capture through
features associated with the number of IP addresses that URLs appear in.

Using long redirect chains helps with dynamicity and selectivity, which is
hard to evade for spammers, if they want to be flexible in how they replace
machines and how they choose who to spam. Specifically, a series of redirects
provides them with the flexibility to modify intermediate steps (plug-in & plug-
out), as well as the flexibility to hide malicious, “bullet-proof” landing URLs
behind layers of redirection. The location of entry point URLs also plays a key
role—since these pages have to conditionally redirect visitors to different landing
URLs, suspicious entry point URLs are often located early in the chains.

Another case of flexibility is related to top-level domain (TLD) names. Spam-
mers tend not to invest on trustworthy but costly TLDs such as .com and .net,
or try to compromise often bullet-proof TLDs such as .mil and .gov—especially
given that most URLs are only for redirection purposes and not for delivering
content. As a result, they resort to acquiring or attacking cheap TLDs.

4 Spam Detection

After crawling the redirect chains, constructing the RCG, and extracting for each
URL in the dataset the 39 features as listed in Table 1, our next step is spam
detection. In this work, we study both supervised and semi-supervised detection,
with a note that the latter presents a more realistic scenario.

Supervised Detection. When a large body of labeled URLs is available, one
can build classifiers. In this work, we analyze the performance of our feature
categories and characterize the most discriminative ones. In addition, we extract
context-based features from user accounts and keywords appearing alongside the
URLs to build context-aware classifiers, which we compare to our models.

Note that acquiring labels for each URL is quite time consuming, as annota-
tors need to set up virtual sandboxes and analyze the URL, landing page content,
behaviors a click triggers in their system, etc. Moreover, since spam is rare as
compared to normal URL traffic, a reasonably large number of URLs needs to
be labeled to ensure representative amount of spam labels in the training data.

Semi-supervised Detection. Due to the challenges with supervised detection,
we design an approach that utilizes only a small set of labeled examples. Our
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method achieves comparable performance to fully supervised methods. As such,
it is both applicable under the most realistic scenarios where labeled data is
scarce as well as desirably effective in detecting spam.

In particular, we leverage the user–URL graph to formulate the problem as a
network-based classification task, which we solve using label propagation based
inference. More formally, we consider the bipartite graph G = (N,E) in which n
user nodes U = {u1, . . . , un} are connected to m URL nodes V = {v1, . . . , vm},
N = U ∪ V , through ‘post’ relations in E. To define a classification task on
this network, we utilize pairwise Markov Random Fields (MRFs) [7]. An MRF
model consists of an undirected graph where each node i is associated with a
random variable Yi that can be in one of a finite number of states (i.e., class
labels). In our case, the domain of labels for URLs is LV = {spam, benign} and
it is LU = {spammer, non-spammer} for users. In pairwise MRFs, the label of
a node is assumed to be dependent only on its neighbors and independent of
other nodes in the graph. As such, the joint probability of labels is written as a
product of individual and pairwise factors, respectively parameterized over the
nodes and the edges;

P (y) =
1
Z

∏

Yi∈N

φi(yi)
∏

(Yi,Yj)∈E

ψij(yi, yj) (1)

where y denotes an assignment of labels to all nodes, and yi refers to node i’s
assigned label. Individual factors φ : L → R

+ are called prior potentials, and
represent class probabilities for each node initialized based on prior knowledge.
Pairwise factors ψ : LU × LV → R

+ are called compatibility potentials, and
capture the likelihood of a node labeled yi to be connected to a node with yj .

As we consider a semi-supervised setting, only a small set of the URL labels
is available. For the known spam URLs we set the priors as φi(spam) = 1 − ε
and φi(benign) = ε, and vice versa for the known benign URLs. To set the priors
for the unknown URLs, we learn a classifier using the available labeled data and
employ it to assign class probabilities, i.e. priors, to the unknown URLs in the
graph. For the users we set unbiased priors, i.e., φi(spammer) = 0.5 and φi(non-
spammer) = 0.5, as we do not want to rely on any context-specific information
(e.g., profile data such as ratio of followers to followees) to estimate such priors.

On the other hand, we instantiate the compatibility potentials so as to enforce
homophily among connected nodes. Homophily captures the insight that URLs
posted by spammers are spam and those shared by regular users are benign,
with high probability, where ψij ’s are set as follows.

ψij URLs

Users spam benign

spammer 1 − ε ε

non-spammer ε 1 − ε
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We note that ε’s in φi’s for URLs with known labels account for the uncer-
tainty in the labels associated with annotator agreement. ε’s in ψij ’s capture the
slight probability that non-spammers unknowingly can post spam URLs (e.g.,
retweet) and that spammers can post benign URLs for camouflage.

Provided the model parameters, the classification task is to infer the best
assignment y to the nodes such that the joint probability in Eq. (1) is maximized.
This is a combinatorially hard problem that is intractable for large graphs. There-
fore, we use an approximate inference algorithm called Loopy Belief Propagation
(LBP) [22]. LBP is an iterative algorithm where connected nodes exchange mes-
sages. A message mij captures the belief of i about j, specifically the probability
distribution over the labels of j. Intuitively, it is what i ‘believes’ j’s label proba-
bilities are, given the current label distribution and the priors of i. The key idea
is that after certain number of iterations of message passes between the nodes,
the ‘conversations’ likely come to a consensus, which determines the marginal
class probabilities of all the unknown variables. Although convergence is not
theoretically guaranteed, LBP converges quickly in practice [15].

5 Experiments

5.1 Data Description

In this work we detect spam links posted on Twitter. Using the Twitter Stream-
ing API, we collected 15,828,532 Twitter posts by 1,080,466 unique users during
a period from May 2–September 10, 2014. This interval captures major world
events such as the World Cup and the ongoing search for the Malaysia Airlines
Flight 370. Those serve as attractive means to spread spam, where e.g., users are
lured to click a malicious link that supposedly points to a video that shows the
four goals that Germany scored against Brazil in six minutes during the semi-
finals, but instead triggers a drive-by-download exploit. We identified 3,871,911
(initial) URLs from 3,764,395 (≈24%) of the posts that contained links, i.e., a
small fraction of posts contained multiple URLs.

We built a crawler and extracted the redirection chains for all the URLs.
The chain lengths vary from 1 to 46, with more than 99% being less than 6. We
combined the redirect chains into RCG, a unified (weighted, directed) graph,
which contains 4,874,256 nodes and 3,839,633 edges.

To construct a labeled URL set, we used a crawler to first identify a set of
suspended Twitter users. In particular, if a user profile page input to our crawler
automatically redirected to http://www.twitter.com/suspended, we label the
account as a malicious one. This provided us with 88,147 suspended users. After
removing these, we sampled another 1,000 users for human labeling. Five anno-
tators were provided with the links to the profile pages of these users. Each
annotator labeled each user by manually analyzing their tweets, number of fol-
lowers/followees, temporal behavior, etc. At the end, a user is labeled by majority
voting, which provided us with 216 spam users and 784 non-spammers.

We labeled URLs using the labeled users, where URLs inherit the majority
label of the users who posted them (labeling URLs through users posting them is

http://www.twitter.com/suspended
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extremely pure: 99.06% have majority fraction 100%, i.e., all spammer or none).
As a result, we obtained 459,822 labeled URLs, out of which 191,726 are spam.

For supervised detection, we built a balanced dataset (50% spam) by con-
sidering the 191,726 chains from the unique spam URLs, and randomly sampled
the same number of URLs from those labeled as benign for a total of 383,452
chains. For semi-supervised detection, where we leverage the user–URL bipartite
graph, we constructed a graph with 784 users from each class and all the URLs
shared by those users for a total of 315,120 ground-truth URLs, with 16% con-
sisting of spam. We experimented with 1% or 5% of this labeled set as input to
our semi-supervised approach. Note that our method not only leverages a much
smaller labeled set, but also works in an imbalanced setting as in practice.

5.2 Detection Results

We use two metrics to compare the detection methods; (1) average precision,
which is the area under the precision–recall (PR) plot, denoted as AP, and (2)
area under the ROC curve (false-positive vs. true-positive rate), denoted as AUC.

Supervised Detection. Our experiments with linear SVM, Logistic Regres-
sion, and Decision Tree (DT) show that non-linear DT significantly outperforms
both. This suggests that the decision boundary of our task is complex. We use
the DT model in the remaining supervised detection experiments.

Feature Contribution Analysis. To investigate the importance of individual fea-
tures, we quantify their discriminative power. In particular, we use the sum of
information gains weighted by the number of samples split by each feature at
the internal tree nodes [14] based on the DT model trained on the entire dataset.

Figure 2 shows the ranking of features by the aforementioned importance
score. We note that (i) the GeoDist feature is considerably the most informative
one, and that the scores drop quickly. This suggests that in practice only a small
subset of all the features could be enough to build accurate models. We also
notice that (ii) the majority (5/10, 11/20) of the informative ones are from the
shared-resources-driven features (green bars), which are mainly derived based
on the RCG structure. Moreover, (iii) the top features come from a mix of all
three feature categories, suggesting that they carry non-redundant information.

In Fig. 3 we demonstrate the performances achieved by individual feature
categories. In agreement with observation (ii) above, (S)hared-resources-driven
features perform slightly better than other categories. In addition, potentially
due to (iii) that different feature groups carry non-redundant signals, using all
the features holistically (from all S+H+F categories) yields the best result.

Context-Free vs. Context-Aware Detection. Next we ask: how do context-driven
features perform? To investigate this question, we build models (a) based solely
on context-based features and (b) integrating them with our original set.

The context-based features are mainly derived from the account that posted
the URL and the post content, including the account’s age, number of hashtags,
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Fig. 3. Supervised detection. Context-free features achieve competitive performance.

number of mentioned other users, the follower–followee ratio, total number of
posts, fraction of posts containing a URL, and the keywords used in the posts
(including hashtags and @mentions).

In Fig. 3, we observe that the context-based model (labeled Account) is
slightly better than our model with All features in terms of AP and slightly
worse with respect to AUC. We conclude that our features are equally discrimi-
native, even when no domain-specific or potentially missing, hidden, or private
information is used.

Semi-supervised Detection. Under this setting, we randomly sample 1% or
5% of the URLs and reveal their labels (results are averaged over 10 runs). We
then under-sample the majority class to obtain a balanced dataset, on which we
train a classifier to assign class priors to the unlabeled URLs.

Semi-supervised results are given in Fig. 4. First, we investigate the perfor-
mance of semi-supervised classifiers alone (without the LBP on the user–URL
graph), namely linear SVM, polynomial SVM, and the decision tree (DT) clas-
sifiers. As before, both non-linear classifiers outperform linear SVM, where DT
is superior to polynomial SVM.
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Fig. 4. Semi-supervised detection. LBP (with DT) achieves competitive performance.
Red circles depicts values at classification threshold 0.5. (color figure online)

Next, we employ our semi-supervised method. In particular, we leverage the
user–URL graph in which we initialize the class priors of (1% or 5%) labeled
URLs as (1−ε, ε) for spam URLs, and vice versa for the benign. The class priors
of unlabeled URLs are set to the class probabilities from DT, and of the users as
(0.5, 0.5), i.e. unbiased. As we see in Fig. 4, incorporating relational information
through LBP significantly improves the detection performance. Perhaps more
importantly, the performance is desirably high; at a small false positive rate of
0.0667, recall and precision are above 0.95 and 0.70, respectively.

6 Conclusion

We considered the problem of detecting spam URLs that appear on the Web
in various contexts. Our main goal has been to build an effective solution that
is at the same time (i) context-free, (ii) adversarially robust, and (iii) semi-
supervised; such that it is generalizable across Web service boundaries, costly to
evade by spammers, and applicable in the face of label scarcity, respectively.

To achieve these goals, we utilize the URL redirect chains and the underlying
network that they form to design three categories of domain-agnostic features.
Our features are closely tied to the operational characteristics of the spammers,
particularly related to their (1) reusing and sharing of resources, (2) heteroge-
neous hosting infrastructure, and (3) flexibility. Intuitively, evading detection by
changing their behavior would incur considerable monetary or management cost
upon the spammers. Evaluations on a large Twitter collection with millions of
URL posts show that our context-free features yield quite similar performance
against context-aware features. Moreover, our semi-supervised detection algo-
rithm produces competitive results, at above 0.96 recall and 0.70 precision with
false positive rate below 0.07, even with very limited supervision.

We publicly share our Twitter URL data collection (including ground truth
labels, redirect chains, and the RCG) as well as our redirect chain crawler at
http://bit.ly/2jvdiFI.

http://bit.ly/2jvdiFI
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Abstract. Given a large collection of time-evolving online user activ-
ities, such as Google Search queries for multiple keywords of various
categories (celebrities, events, diseases, etc.), which consist of d key-
words/activities, for l countries/locations of duration n, how can we find
patterns and rules? How do we go about capturing non-linear evolutions
of local activities and forecasting future patterns? We also aim to achieve
good monitoring of the data sequences statistically, and detection of the
patterns immediately. In this paper, we present Δ-SPOT, a unifying ana-
lytical non-linear model for analysing large scale web search data, which
is sense-making, automatic, scalable and free of parameters. Δ-SPOT
can also forecast long-range future dynamics of the keywords/queries.
Besides, we also provide an efficient and effective fitting algorithm, which
leads to novel discoveries and sense-making features, and contribute to
the need of monitoring multiple co-evolving data sequences.

1 Introduction

Online news, blogs, SNS and many other web search services have been speedily
developing and playing a very important part in information searching. Our goal
is to detect patterns, rules and outliers in a huge set of web search data, consisting
of tuples of the form: (query, location, time). Intuitively, given a large collection
of online activities, which consists of d keywords in l locations of duration n with
complex dynamics, we want to find global and local patterns, detect external
shocks (important events in reality), and forecast future activities. Especially,
we want to capture all these features automatically and effectively. Besides, we
also introduce an incremental online algorithm, Δ-STREAM, which enhances
the robustness of Δ-SPOT for data streams monitoring.

Contributions. In this paper, we propose Δ-SPOT, a unifying analytical non-
linear model for large-scale online user activities. Briefly, our proposed model,
Δ-SPOT, has the following desirable properties:
1. Sense-making: Our method can detect external shocks which are related

to real-time events, such as the annual sporting events, or the release of new
products.

2. Automatic: Thanks to our modeling framework, Δ-SPOT is fully automatic,
requiring no manual tuning, where the goal is to minimize the modeling cost.

3. Scalable: Our method scales linearly to the input size.
4. Parameter-free: Δ-SPOT requires no parameters or specialized tuning.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 233–246, 2017.
DOI: 10.1007/978-3-319-57529-2 19
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Table 1. Capabilities of approaches. Only our approach meets all specifications.

SI/++ AR/++ FUNNEL Δ-SPOT/Δ-STREAM

Non-linear
√ √ √

Outliers detection
√ √

Online activities
√

Cyclic events/shocks
√

Local analysis
√ √

Parameter-free
√ √

Forecasting
√ √ √

Online processing
√

2 Related Work

We provide a survey of the related literature, which falls into following categories:

Pattern Discovery in Time Series. Traditional approaches typically use lin-
ear methods, such as auto-regression (AR), linear dynamical systems (LDS),
TBATS [8] and their variants [3,5,6,17]. TriMine [12] is a scalable method for
forecasting complex time-stamped events, while, [9] developed AutoPlait, which
is a fully-automatic mining algorithm for co-evolving sequences.

Social Activity Analysis. The work described in [13] studied the rise and
fall patterns in the information diffusion process through online social media.
FUNNEL [14] is a non-linear model for spatially co-evolving epidemic tensors,
while, EcoWeb [10] is the first attempt to bridge the theoretical modeling of a
biological ecosystem and user activities on the Web. [11] developed CompCube,
which operates on large collections of co-evolving activities and summarizes them
succinctly with respect to multiple aspects (i.e., keyword, location, time). Gruhl
et al. [2] explored online “chatter” (e.g., blogging) activity, and measured the
actual sales ranks on Amazon.com, while the work of Ginsberg et al. [1] examined
a large number of search engine queries tracking influenza epidemics.

Contrast to the Competitors. Table 1 illustrates the relative advantages of
our method. Only our Δ-SPOT matches all requirements, while other meth-
ods, such as the SI model (and SIR, SIRS, SKIPS [16], etc.), the traditional
AR, ARIMA and related forecasting methods including AWSOM [15], PLiF [7],
TriMine [12], and FUNNEL [14], fail to acquire this.

3 Proposed Model

3.1 Intuition Behind Our Method

We have a collection of sequences with d unique keywords, l locations/countries
with duration n. We can treat this set of d × l sequences as a 3rd-order tensor,
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Table 2. Symbols and definitions

Symbol Definition

d Number of keywords/queries

l Number of locations/countries

n Duration of sequences

X 3rd-order tensor (X ∈ N
d×l×n)

xij Local-level sequence of keyword i in location j i.e., xij = {xij(t)}n
t=1

x̄i Global-level sequence of keyword i i.e., x̄i =
∑l

j=1 xij

Sij(t) Count of (S)usceptibles i in location j at time t

Iij(t) Count of (I)nfectives i in location j at time t

Vij(t) Count of (V)igilants i in location j at time t

BG Base global matrix (d × 4) i.e., d × {N, β, δ, γ}
BL Base local matrix (d × l) i.e., BL = {b(L)

ij}d,l
i,j=1

RG Growth effect global matrix (d × 2) i.e., d × {tη, η0}
RL Growth effect local matrix (d × l) i.e., RL = {r(L)

ij}d,l
i,j=1

S External shock tensor i.e., S = {s1, s2, . . . , sk}
C Cyclic external shock candidate set i.e., C = {c1, c2, . . . , ck}
F Complete set of parameters i.e., F = {BG,BL,RG,RL, S}

i.e., X ∈ N
d×l×n, where the element xij(t) of X shows the total number of entries

of the i-th keyword in the j-th country at time-tick t. We refer to each sequence
of the i-th keyword in the j-th location: xij = {xij(t)}n

t=1, as a “local/country”-
level web search sequence. Similarly, we can turn these local sequences into
“global/world”-level web search sequences: x̄i = {x̄i(t)}n

t=1, where x̄i(t) shows
the total count of the i-th keyword at time-tick t, i.e., x̄i(t) =

∑l
j=1 xij(t).

3.2 Δ-SPOT - with a Single Sequence

The model we propose has nodes (=users) of three classes (Table 2):

(a) Susceptible. Nodes who can get influenced by the external event or their
neighboring nodes who have searched for it. In other words, citizens of this
class are ready to search for the keywords.

(b) Infective. Nodes who have already got “infected” by the event’s influence
and searched for the keywords, also capable of influencing other available
nodes (share the story about the event), namely, transmitting the interest
in the topic to the citizens in the Susceptible class.

(c) Vigilant. Nodes in this class do not get condition to search for the infor-
mation (no network connection, no free time to care about the topic), or do
not pay attention to the news, so they are immune to the influence of the
trend.
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(a) Classes of population:
Susceptibles, Infectives, and
Vigilants.

(b) Full parameter set (i.e., F = {BG,BL,RG,RL, S})

(c) External shock tensor (i.e., S = {s1, s2, . . . , sk})

Fig. 1. (a) Δ-SPOT diagram, (b) Δ-SPOT structure: important properties extracted
from tensor X , also (c) external shock tensor S consists of a set of k components.

Figure 1(a) shows a diagram of the relationship between online users of three
above classes in the social network, under the influence of external shock effect
ε(t) and growth effect η(t). Here, β represents the rate of effective contacts
between citizens in Infective and Susceptible classes, δ is the rate at which
infected citizens lost interest in the topic and stop searching for it, and γ is
the immunization loss probability for a change in status: being ready to search
for the topic. Consequently, to handle all properties of online user activities, we
introduce our model, namely, Δ-SPOT:

Model 1 (Δ-SPOT-single). Δ-SPOT can be described as these equations:

S(t + 1) = S(t) − βS(t)ε(t)I(t)(1 + η(t)) + γV (t)
I(t + 1) = I(t) + βS(t)ε(t)I(t)(1 + η(t)) − δI(t)
V (t + 1) = V (t) + δI(t) − γV (t) (1)

The growth effect η(t), starting at time tη, is defined as: η(t) =
{

0 (t < tη)
η0 (t ≥ tη)

We also introduce the temporal susceptible rate ε(t):

ε(t) = 1 +
k∑

i=1

f(t; si), wheref(t; s)=
{

ε0 (ts + tp�t/tp� < t < ts + tp�t/tp� + tw)
0 (else)

and k is the number of shocks. If k = 0, then ε(t) = 1.

Here, tp is the periodicity of the event (if tp = ∞, the event is non-cyclic),
ts is the starting point of the event, tw is the duration of the event, ε0 is the
strength of the external shock.

3.3 Δ-SPOT - with Multi-evolving Sequences

Next, we want to extract the main trends and external patterns of co-evolving
sequences X ∈ N

d×l×n, and make a good representation of X . Figure 1(b)–(c)
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shows our modeling framework. Given a tensor X , it extracts important patterns
with respect to the following aspects, base properties of global and local trends
BG, BL, population growth effect RG, RL, and external shock events S.

(P1) Base Trends and Global Influence. We assume that the parameters
are the same for all l countries. For example, the potential infection rate of each
keyword (e.g., “Harry Potter”) is the same for US and JP.

(P2) Area Specificity. What is the difference of users reaction for keyword
“Ebola” between the U.S. (US) and Nepal (NP)? Our answer is: their behavior
is similar, except for the “local sensitivity” of the sequence. Specifically, we
share the parameters of the global-level matrices for all l countries. with one
exception, Nij , which describes the total popularity size of keyword i in the
j-th country. Specifically, we set the invariant, Nij = Sij(t)+ Iij(t)+Vij(t) This
parameter corresponds to the fraction of individuals who are likely to be infected
by the trend. For example, US has more users than NP, because they have more
capacities for network connection.

(P3) Population Growth Effect. The growth effect appears due to the launch
of new products and services that raise the interest of users, which should have
the same starting time all over the world. Many sequences consists of the popu-
lation growth effect, and Δ-SPOT should not detect and filter them as normal
external shocks.

(P4) External Shocks. To describe each external shock, we create a new para-
meter set, namely external shock tensor S, which consists of a set of k external
shocks, as described in Fig. 1(c). i.e., S = {s1, s2, . . . , sk} A single external shock
s can be described as three components: s = {s(D), s(N), s(L)}. Here, the (d × 1)
size component s(D) represents the external view for d keywords/queries; the
(3×1) size component s(N) describes the periodicity (tp), the starting time (ts),
and the duration (tw) of the external event; finally, the (�n/tp� × l) size com-
ponent s(L) expresses the strength ε0 of the external shock in l countries, where
�n/tp� is the number of shocks belonging to one specified event.

4 Algorithm

4.1 Model Quality and Data Compression

We propose an intuitive coding scheme, which is based on the minimum descrip-
tion length (MDL) principle. Here, it follows the assumption that the more we
can compress data, the more we can detect its hidden patterns.

Model Description Cost. The description complexity of model parameter set
consists of two terms. Firstly, the number of keywords d, locations l, and time-
ticks n require log∗(d) + log∗(l) + log∗(n) bits.1 Secondly, the model parameter
set of the global base (BG), global growth effect (RG), and local base, growth

1 Here, log∗ is the universal code length for integers.
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Algorithm 1. Δ-SPOT(X )
1: Input: Tensor X (d × l × n)
2: Output: Full parameters, i.e., F = {BG,BL,RG,RL, S}
3: {FG} =GlobalFit (X ); /* Parameter fitting for global-level sequences */
4: {FL} =LocalFit (X , FG); /* Parameter fitting for local-level sequences */

5: return F = {FG , FL};

effect (BL,RL), matrices require d×4, d×2, d× l parameters, respectively, i.e.,
CostM (BG)+CostM (RG)+CostM (BL)+CostM (RL) = cF ·d(4+2+ l), where
cF is the floating point cost2. Similarly, the model description cost of the external
shock tensor S = {s1, s2, . . . , sk} consists of: the number of external shocks k
(log∗(k) bits required), the shock-keyword vector s(D) (log(d) bits required), the
shock-time vector s(N) = {tp, ts, tw} (3 · log(n) required), and the shock-location
matrix s(L) (|s(L)| · (log(d) + log(l) + log(n) + cF ) required). Note that, for each
shock s, it requires CostM (s) = CostM (s(D)) + CostM (s(N)) + CostM (s(L)).
Consequently, the model cost of the external shock tensor S = {s1, · · · , sk} is
CostM (S) = log∗(k) +

∑k
i=1 CostM (si).

Data Coding Cost. Given the full parameter set F , we can encode the data
X CostC(X|F) =

∑d,l,n
i,j,t=1 log2 p−1

Gauss(μ,σ2)(xij(t) − Iij(t)), where, xij(t) is the
elements in X , and Iij(t) is the estimated count of infections (i.e., Model 1).3

Data Compression Equation. Consequently, the total code length for X with
respect to a given parameter set F can be described in the following equation,
which we want to minimize as our next goal:

CostT (X ;F) = log∗(d) + log∗(l) + log∗(n) + CostM (BG) + CostM (BL)
+CostM (RG) + CostM (RL) + CostM (S) + CostC(X|F) (2)

4.2 Multi-layer Optimization

The idea is that we split parameter set F into two subsets, i.e., FG and FL,
each of which corresponds to a global/local-level parameter set, and try to fit
the parameter sets separately. Algorithm 1 shows an overview of Δ-SPOT to
find the full parameter set given a tensor X .

Global-Level Parameter Fitting. Given a tensor X , our sub-goal is to find
the optimal global parameter set: FG , to minimize the cost function (i.e., Eq. 2).
As shown in Algorithm 2, we provide a detailed algorithm of the global-level
fitting. Given a tensor X , it creates a set of d global sequences: {x̄i}d

i=1. The goal
is to fit the global-level parameter set, as well as find the appropriate number
of external-shocks. We apply the Levenberg-Marquardt (LM) [4] algorithm to

2 We used 4 × 8 bits in our setting.
3 Here, μ and σ2 are the mean and variance of the distance between the original and

estimated values.
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Algorithm 2. GlobalFit(X )
1: Input: Tensor X
2: Output: Set of global-level parameters FG i.e., FG = {BG,RG, S}
3: for i = 1 : d do
4: Create x̄i from X ; /* Global sequence x̄i of i-th keyword */
5: si = ∅; /* Initialize external shocks for keyword i */
6: while improving the cost do
7: b(G)

i = arg min
b(G)′

i

CostC(x̄i|b(G)′
i, r

(G)
i, si); /* Base */

8: r(G)
i = arg min

r(G)′
i

CostC(x̄i|b(G)
i, r(G)′

i, si); /* Growth */

9: si = ∅; /* Initialize values */
10: /* Find external shocks for keyword i */
11: while improving the cost do
12: s = arg min

s′
CostC(x̄i|b(G)

i, r(G)
i, {si ∪ s′}); si = si ∪ s;

13: end while
14: end while
15: BG = BG ∪ b(G)

i; RG = RG ∪ r(G)
i; S = S ∪ si; /* Update parameter

set of i-th keyword */
16: end for

17: return FG = {BG,RG, S};

Algorithm 3. LocalFit(X ,BG,RG,S)
1: Input: (a) Tensor X , (b) global-level parameter set FG
2: Output: Set of local-level parameters, i.e., FL
3: while improving the cost do
4: /* For each local sequence xij of i-th keyword in j-th country */
5: for i = 1 : n do
6: for j = 1 : l do
7: b(L)

ij = arg min
b(L)′

ij

CostC(xij |BG,RG, b(L)′
ij , S);

8: r(L)
ij = arg min

r(L)′
ij

CostC(xij |BG,RG, r(L)′
ij , S);

9: end for
10: end for
11: for each external shock s in S do
12: Update s to minimize the cost /* Local participation rate */
13: end for
14: end while

15: return FL = {BL,RL, S};

minimize the cost function. Note that the extra tensor S consists of k entries
{s1, s2, . . . , sk}, Algorithm 2 can find only the global-level entry, which consists
of (keyword, time). We will introduce the local-level parameter fitting algorithm
in Algorithm 3, to describe how the local-level entries can be computed. Also, the
cost function (2) includes the cost of local-level parameters such as BL, RL but
these terms are independent of the global model fitting. Hence, we can simply
consider them to be constant.
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Local-Level Parameter Fitting. Given a set of d × l local-level sequences,
{xij}d,l

i,j=1 ∈ X , and a set of global-level parameters, FG , our next goal is to fit the
individual parameters of each keyword in each country, that is, FL = {BL,S}.
We propose an iterative optimization algorithm (see Algorithm3). Our algorithm
searches for the optimal solution with respect to (a) the base local matrix BL and
(b) the local-level external shocks S, so that the total coding cost is minimized.

5 Online Processing

In this section, we describe our online algorithm, namely, Δ-STREAM, which is
an effective method of monitoring data sequences. Algorithm 4 shows an overview
of Δ-STREAM. Given a new tensor X ′, our first task is to find the appropriate
parameter set in both global level (F ′

G), and local level (F ′
L). The initial values

of all parameters are the same to the parameters of F = {BG,BL,RG,RL,S}
Then we use them to update the original sequence’s global parameter set FG
and local parameter set FL. We introduce a new parameter, the cyclic external
shock candidate set C to further reduce the processing time. The candidate set
C includes multiple cyclic shocks with different period, time-shift and duration.
A single external shock candidate c consists of three components which are
similar to a normal external shock: c = {c(D), c(N), c(L)}.

Here, the idea is to keep track of the most suitable judgment for the new
shock. We compare the shock-time vector s(N) = {tp, ts, tw} of all external shocks

Algorithm 4. Δ-STREAM(X ′, C)
1: Input: A subsequence X ′ (d × l × n′) of duration nX ′ , and a set of candidates C
2: Output: An optimal parameter set for X ′ i.e., F ′ = {B′

G,B′
L,RG

′,RL
′, S ′};

and an update of parameter set, i.e., F = {BG,BL,RG,RL, S}
3: S ′ = ∅; /* Initialize external shocks for new sequence */
4: {B′

G,RG
′} =GlobalFit (X ′); /* Parameter fitting for global-level sequences */

5: for each ci in C do
6: Generate the next shock consisting of c(D), c(N) and calculate c(L)

7: S ′ = S ′ ∪ {c(D), c(N), c(L)};
8: end for
9: {S} = {S} ∪ {S ′}; /* Merge the external shocks tensor */

10: for every shock in S do
11: if there exists a new cyclic event s′ then
12: /* Add the new candidate to C */
13: C = C ∪ {s′};
14: end if
15: end for
16: F ′

L =LocalFit (X ′, F ′
G); /* Parameter fitting for local-level sequences */

17: {FG} = {FG} ∪ {F ′
G}; /* Update the global parameter set */

18: {FL} = {FL} ∪ {F ′
L}; /* Update the local parameter set */

19: return F = {FG , FL}; F ′ = {F ′
G , F ′

L};
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to detect the cyclic ones. A cyclic event is defined to consist of multiple exter-
nal shocks with the same periodicity tp and duration tw. If a new captured
shock forms with the old ones a potential cyclic event (with specified period and
duration), a new candidate is added to C. For example, if we have detected the
shocks that form a periodical events, with the same duration (i.e., for keyword
“Grammy”, we have found the annual shocks (tp = 52) in February, of one-week
duration (tw = 1)), we form a cyclic shock candidate and insert it into the cyclic
external shock candidate set C. When dealing with a new sequence, the next
shock of the cyclic event is automatically generated, and fit with its strength
(height). If there are no suitable shocks in the new sequence, the strength will
be zero. If the new shock satisfies the condition of cyclic pattern, it will be added
to the corresponding cyclic event. Or else, if it, with another old shock, form a
promising cyclic event, a new candidate will be added to C.

6 Experiments

In this section we show the effectiveness of Δ-SPOT with real dataset, by demon-
strating three following properties: Sense-making, Accuracy, and Scalability.

Dataset Description. We performed experiments on three real datasets:

1. GoogleTrends: This dataset consists of the volume of searches for queries (i.e.,
keywords) in various topics on Google4 from January 2004 to January 2015
(in weekly basis), collected in 232 countries.

2. Twitter: We used more than 7 million Twitter5 posts covering an 8-month
period from June 2011 to January 2012.

3. MemeTracker: This dataset covers three months of blog activity from August
1 to October 31 20086, It contains more than 70,000 short quoted phrases
(“memes”), each of which consists of the number of mentions over time.

6.1 Sense-Making

In this experiment, we demonstrate how effective Δ-SPOT can be in terms
of data fitting, external events detection and other important properties. Our
objective is to fit the popularity size of the Infective class. We demonstrate the
global fitting results of several sequences collected from three above datasets:
Fig. 2(a)–(b) show the results of model fitting on two trending keywords of
GoogleTrends dataset; Fig. 2(c) shows the results of a popular hashtag “#apple”;
and Fig. 2(d) shows the results of a “meme”.7 In all above figures, we show the
original sequences (i.e., black dots) and estimated sequences: I(t) (i.e., red line)
in linear-linear scales. Also, we made several important observations:

4 http://www.google.com/insights/search/.
5 http://twitter.com/.
6 http://memetracker.org/.
7 Meme#3: “yes we can yes we can”.

http://www.google.com/insights/search/
http://twitter.com/
http://memetracker.org/
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(a) “Amazon” (b) “Harry Potter” (c) “#apple” (d) Meme#3
(P1),(P2),(P3),(P4) (P1),(P2),(P4) (P1),(P2),(P4) (P1),(P2),(P4)

Fig. 2. Global fitting results for 4 sequences in (a)–(b) GoogleTrends, (c) Twitter, and
(d) MemeTracker dataset, of different topics. (Color figure online)

(a) Original/fitted sequences for “Ebola” (b) World-wide reaction

Fig. 3. Local fitting power of Δ-SPOT for the keyword “Ebola” which refers to the
Ebola Virus bursting in 2014 (shown in green circles). (a) It can capture the local
similar behaviors in Australia (AU), Russia (RU), the U.K. (GB), the U.S. (US) and
Japan (JP). It can also capture local outliers in Laos (LA), Nepal (NP) and DR Congo
(CG), in comparison to the global trend. And we have a clearer observation in (b) the
world map of user reaction to the disease burst in 2014. (Color figure online)

(P1) Base Trends and Global Influence. As shown in Fig. 2, our proposed
model successfully captures long-range non-linear dynamics of user activities, as
well as fit the data sequences in high accuracy.

(P2) Area Specificity. Figure 3(a) shows the local fitting results for key-
word “Ebola” of GoogleTrends dataset; in which, we detected some countries
(AU,RU,GB,US,JP) that behave similar to the global trend (i.e., the world reac-
tion to the burst of Ebola Virus in 2014, shown in green circles). Besides, we
can also detect several outliers from the countries which have less capacities of
network connection (LA,NP,CG).

(P3) Population Growth Effect. In Fig. 2(a), we detected the growth effect
in keyword “Amazon”, which starts from time-tick 343. In fact, this relates to
the development of online service since 2011, which leads to the quick rise in the
number of users who search for the Amazon services, including online shopping,
media downloads and other cloud infrastructure services.

(P4) External Shock Events. Δ-SPOT can capture important external
events relating to the keywords, including the cyclic events. Furthermore,
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Fig. 4. Online processing results for 3 queries: for each new coming subsequence,
Δ-STREAM captures all important features, including the stream dynamics and pat-
terns, as well as updates the external events.

Δ-SPOT can capture the cyclic external events of different periodicity and dura-
tion. For better visualization, we mark the cyclic external shocks by the same
color circles. Δ-SPOT guarantees not to miss any important external events
that happen during the sequences.

Moreover, we execute the online process experiments to evaluate the fitting
capacity of Δ-STREAM. Figure 4(a) shows the result of keyword “Amazon”,
where we set the window size of one-year-length (i.e., wd = 52 time-ticks).
Δ-STREAM can capture the correct increasing pattern of the web search data
stream, as well as detect the annual external events relating to the keyword.
Whereas, in Fig. 4(b)–(c), we set the window size of one-week-length (i.e., wd =
168 time-ticks). Δ-STREAM capture the basic trend of the web search data
stream, also detect some external shocks during the scan.

6.2 Accuracy

We used the fitting result for keyword “Amazon” of GoogleTrends dataset, and
compared Δ-SPOT with the standard SIRS model, SKIPS [16], and multi time-
evolving sequences mining model, FUNNEL [14]. Figure 5(a) shows the root-
mean-square error (RMSE) between the original and estimated counts of the
global sequences {x̄i(t)}d,n

i,t . Similarly, Fig. 5(b) shows the results of the local
counts {xij(t)}d,l,n

i,j,t , (i.e., each keyword in each country, at each time-tick).
A lower value indicates a better fitting accuracy. As shown in the figures, the
SIRS model and SKIPS failed to capture the complicated patterns of data
sequences, FUNNEL cannot detect cyclic external events, while our method
achieved those properties with high fitting accuracy. We also evaluated the accu-
racy of Δ-STREAM in terms of global/local fitting. Δ-STREAM still provides
better fitting accuracy compared to other methods.

6.3 Scalability

We made the evaluation of the scalability of Δ-SPOT, and verified the complex-
ity of our method, which we discussed in Sect. 4. As shown in Fig. 6, Δ-SPOT is
linear with respect to (a) keywords d, (b) countries l, and (c) duration n. More
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importantly, our proposed online streaming method, Δ-STREAM achieves a
dramatic reduction in computational time, thanks to our coding scheme Espe-
cially, with respect to the duration of time, it requires constant; i.e., it does not
depend on n.
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Fig. 5. Fitting accuracy
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Fig. 6. Scalability of Δ-SPOT
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Fig. 7. Forecasting result: we train the model parameters using first 400 time-ticks of
the sequences and do forecasting the remaining part. (Color figure online)

7 Δ-SPOT at Work

In this section, we discuss the most important and challenging task of Δ-SPOT,
namely, forecasting the future dynamics of co-evolving activities. The goal here is
to predict the future dynamics of the online activities, including the basic pattern
and the external events of the sequences. As described in Sect. 4, Δ-SPOT can
detect the exact periodicity of the cyclic events. Given the external shock tensor
S, Δ-SPOT automatically generates the next shocks of the cyclic events in terms
of the time and duration, respectively. Here, we use the regression function to
estimate the strength of those shocks, given the strength of the previous shocks.
Figure 7 shows results of our forecasting in relation to keyword “Grammy”. We
train the model parameters by using the 400 time-ticks of the sequence (solid
black lines in the figures), and then do forecasting on the following years (solid
red lines). The result shows that Δ-SPOT can predict the time-tick, the duration
and the relative strength of incoming external events, which refer to the annual
Grammy Awards, held every February. We also make a comparison between
Δ-SPOT and other competing methods, including the Auto Regressive (AR)
model, and TBATS model. For AR, We applied several regression coefficients:
r = 8, 26, 50. In Fig. 7 (a,b,c), we show the original sequences, the forecast results
of Δ-SPOT and AR with TBATS, respectively. It is clearly shown that our
method can predict the next three external shocks, which refer to the next
three Grammy Awards. On the other side, AR and TBATS fails to capture the
accurate future dynamics, also cannot detect the future external events.
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8 Conclusion

In this paper, we presented Δ-SPOT, an intuitive model for mining large scale
time-evolving online activities, and its extension Δ-STREAM for data stream
monitoring. Through the extensive experiments on real datasets, Δ-SPOT
demonstrates all the following desirable properties:

1. It is effective: it can detect important hidden events that match the reality.
The online algorithm Δ-STREAM can dramatically speed up the processing
time as well as achieves high accuracy.

2. It is automatic: it requires no training set and no domain expertise.
3. It is scalable: Δ-SPOT is linear to the data size (i.e., O(dln)).
4. It is practical: Δ-SPOT can undertake long-range forecasting and outper-

forms existing methods.
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Scientific Research Number JP15H02705, JP16K12430, JP26280112, PRESTO JST,
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Abstract. Exploiting prior knowledge in the Bayesian learning process
is one way to improve the quality of Bayesian model. To the best of our
knowledge, however, there is no formal research about the influence of
prior in streaming environment. In this paper, we address the problem
of using prior knowledge in streaming Bayesian learning, and develop
a framework for keeping priors in streaming learning (KPS) that main-
tains knowledge from the prior through each minibatch of streaming
data. We demonstrate the performance of our framework in two scenar-
ios: streaming learning for latent Dirichlet allocation and streaming text
classification in comparison with methods that do not keep prior.

Keywords: Streaming learning · Prior knowledge · Bayesian model

1 Introduction

Incorporating prior knowledge into Bayesian models is one of the essential prob-
lems that has attracted a lot of interests from researchers. Many works have
showed that the priors, such as language or semantic knowledge, are valuable
to make an improvement in the quality of Bayesian models [4,7,12]. This prior
information guides the model to meet user’s specific need. For instance, the
Zipf’s law in the natural language domain states that the frequency of any word
is approximately proportional to the inverse of its rank in the frequency table
[10,11]. According to [12], the authors have succeeded in capturing the Zipf’s law
with topic model that outperforms latent Dirichlet allocation model (LDA) [2] in
terms of perplexity. In text classification, [7] used an asymmetrical prior which
gave high weighted value for seed words of each class to gain better performance.
In sentiment analysis, Aspect and Sentiment Unification Model (ASUM) [4] also
exploited a word list that consists of a set of positive and negative words (e.g.
good and bad) to determine the sentiment of each document.

In streaming data, the prior knowledge is not adequately noticed, although
there are several probabilistic models and effective inference methods [3,8,14].
In batch learning, the influence of prior knowledge gradually reduce when the
amount of data becomes bigger. On the other hand, the streaming data is
often processed in minibatches, which are small collections of data, therefore, we
believe that keeping the appropriate prior’s impact through every minibatch will

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 247–258, 2017.
DOI: 10.1007/978-3-319-57529-2 20
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rapidly improve the quality of the learning model. Moreover, it is not straight-
forward to know how many data that a method needs to overcome lack of the
prior knowledge.

Existing methods have difficulties in incorporating prior knowledge in stream-
ing data. In inference algorithms [3,14], the prior is only appeared in the ini-
tialization stage, hence, its impact will be lost quickly after a few minibatches,
and not effectively prove it’s value. In particular, a result illustrated this view
can be found in [6], in which the authors used seed words of sentiment aspect to
form a prior, and then maintained it in streaming ASUM learning as a heuris-
tics. However, it had no formal explanation for applying to general probabilistic
model.

In this paper, we propose a general framework for keeping prior knowledge in
streaming Bayesian learning to investigate the influence of prior knowledge. This
framework emphasizes the role of the prior in the streaming learning by using
it through every minibatch; therefore the prior’s effect can be maintained in the
entire learning process, not just the initial stage. We conduct the experiments
in two scenarios: streaming learning for LDA and streaming text classification.
Comparing with the framework that does not keep prior, KPS gives a better
quality in predictive capacity and coherence of topics within the first scenario
and in accuracy for the other.

In the rest of paper, Sect. 2 reviews an existed streaming learning framework
with some discussions then explicitly describes our KPS framework. Sections 3
and 4 are two case studies. Finally, Sect. 5 concludes our work.

2 Streaming Learning with Prior Knowledge

In this section, at first, we review the streaming variational Bayes (SVB) frame-
work by Broderick et al. [3] for learning a Bayesian model from a data stream
with discussion about some properties of SVB. We then present our novel frame-
work for encoding prior knowledge into SVB named Keeping Priors in streaming
Bayesian learning.

2.1 Streaming Variational Bayes

Streaming data is considered as a sequence of minibatches data {Ci}. The
problem of learning the Bayesian model’s parameters {Φi}, which continually
generates the data stream, often leads to optimize the posterior probability of
these parameters given observed data and previous information. According to
[3], the authors have introduced a general framework for streaming computation
of Bayesian posterior (Fig. 1).

Given prior η, presuming that b − 1 minibatches have been processed, the
posterior after b minibatches can be calculated by:

p(Φb|Φb−1, Cb) ∝ p(Cb|Φb)p(Φb|Φb−1) (1)
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Fig. 1. Graphical representation for streaming learning in SVB

The posterior in Eq. 1 is often intractable to precisely compute. Suppose
that, given p(Φ) and data minibatch C, we have an approximate algorithm A
that returns a distribution in form of exponential family: q(Φ) = A(C, p(Φ)) =
exp{ξ · T (Φ)}), where ξ is the natural parameter and T (Φ) is the sufficient
statistics. The posterior now can be continuously updated by:

p(Φb|Φb−1, Cb) ≈ qb(Φ) = A(Cb|qb−1(Φ)) (2)

With the approximate posterior after b−1 minibatches: q(Φb−1) = exp{ξb−1 ·
T (Φ)}), we have:

p(Cb|Φb) ∝ p(Φb|Cb)
p(Φb)

≈ exp{ξ̃b · T (Φ)} (3)

and:
p(Φb|Φb−1) ≈ q(Φb−1) = exp{ξb−1 · T (Φ)}) (4)

Equation 3 can be viewed as the information from minibatch Cb and Eq. 4 is
the probability of the transition to the next state. Together, the final form of
streaming update is:

q(Φb) = exp{(ξ̃b + ξb−1) · T (Φ)} (5)

or:
ξb = ξ̃b + ξb−1 (6)

The initialization value is q0(φ) = p(Φ) = p(η) or ξ0 = η. The Eqs. 5 and 6
restore the form of the SVB update presented in [3].

While SVB has an appealing feature that it provides a streaming update
method without revisiting the old data, the approach only uses little informa-
tion from the prior. In general, data can not be exactly described by any mathe-
matical model, which mean most models are mis-specified. Within these models,
combining the prior knowledge about data will guide model to be learned more
accurately. Even in unstable environment, the prior knowledge also keeps some
valuable meaning, therefore, maintaining the impact of the prior knowledge needs
to be adequately considered. However, SVB does not fully cover the ability to
use the information from the prior. To reveal this shortcoming, we can write
Eq. 6 by:
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ξb = ξ̃1 · · · + ξ̃b + η (7)

There are two limitations within the streaming update in Eq. 7. Firstly, in
the streaming environment with continually incoming data, while the prior is
only used in the initialization step, its information will be overwhelmed by the
information learned from data:

∑b
i=1(ξ̃i) � η with b � 1. In other words,

SVB will rapidly lose the information from the prior. Secondly, regarding to the
beginning stage of the learning process, where b is small, the information from
little data is not enough for the model. To quickly improve the quality of the
model, emphasizing the impact of prior is a core problem, but SVB again does
not address this problem.

The KPS framework attacks to these weaknesses of SVB by maintaining the
impact from the prior information in the streaming learning process.

2.2 Proposal Framework

The main idea of our framework is that we simply let the prior directly impact
to the model within each minibatch (Fig. 2). So that, each minibatch will use
one more information from the prior. By this way, the meaning of the prior will
be emphasized through the learning process.

Φ1

C1

... Φb−1

Cb−1

Φb

Cb

...

η

Fig. 2. Graphical representation for keeping prior in streaming Bayesian learning
(KPS)

The posterior can be rewritten as:

p(Φb|Cb, Φb−1, η)

By simple Bayes transformation:

p(Φb|Cb, Φb−1, η) ∝ p(Cb|Φb, Φb−1, η)p(Φb|Φb−1, η)
= p(Cb|Φb)p(Φb|Φb−1, η)
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The element p(Φb|Φb−1, η) differs from Eq. 4 in that the changing of model
is not only from the previous information after b − 1 minibatches, but also from
the prior information η. We hypothesize that:

p(Φb|Φb−1, η) ≈ q(Φb|Φb−1)q(Φb|η) (8)

with q(Φb|η) is the impact of prior information into the current minibatch:
q(Φb|η) = exp{fb(η) · T (Φ)}, where fb(η) is a function that describes how the
prior impacts on each minibatch. In this paper, we propose a simple form:

fb(η) = ρb.η (9)

where:
ρb = (1 + b)−κ (10)

To constantly maintain the impact of the prior in streaming learning, we
propose to set κ = 0 that leads to f(η)b = η, this setting is named strongly
keeping prior in streaming (S-KPS). Otherwise, with κ > 0, the information
from the prior will be decreased through minibatches, so-called dimly keeping
prior in streaming (D-KPS).

Finally, the posterior can be updated continually as the following:

qb = exp{(ξ̃b + ξb−1 + fb(η)) · T (Φ))} (11)

or:
ξb = ξ̃b + ξb−1 + fb(η) (12)

The only difference between Eqs. 6 and 12 is the fb(η) element that describes
the impact of the prior. We can interpret the updating equation in Eq. 12 to
mean that the parameter of the next minibatch contains 3 parts: the first one is
the information from current minibatch, the second one is the information from
previous step ξb−1, and the last one is the impact of the prior.

For the next two sections, we evaluate the performance of KPS framework
against SVB which does not keep prior in two case studies: streaming learning for
LDA and streaming text classification, respectively. Each case study is organized
as follows: at the beginning, the model is briefly summarized. Then we adopt
SVB and KPS framework to get streaming learning algorithms for the model.
In the next step, we describe how to extract prior knowledge. The final part is
experiments with settings and results.

3 Case Study 1: Streaming Learning for LDA

LDA (Fig. 3) is a generative model for modeling text data [2]. It assumes that a
corpus is composed from K topics β = (β1, β2, . . . , βK), each of which is drawn
from a Dirichlet distribution: β ∼ Dirichlet(η). A document d is a mixture θ of
those topics and is presumed to arises from the following generative process:
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1. Draw topic mixture θ|α ∼ Dirichlet(α)
2. For the ith word of d:

– Draw topic index zi|θ ∼ Multinomial(θ)
– Draw word wi|zi, β ∼ Multinomial(βzi

)

β is the distribution of words over vocabulary within each topic and the prior
parameter η contains information about this distribution. The prior η is usually
set as a symmetric value because we have no prior knowledge about which words
are outstandings others in each topic. However, in linguistic data, we can have
more information about the words such as Zipf’s law, so the prior can bring
more information with form of an asymmetric vector distribution over words.
This case study exploits this idea to improve the quality of LDA model.

wzθα

η β

N

M

K

Fig. 3. Graphical representation for LDA model

Algorithm 1. SVB for LDA
Input: Prior η, hyper-parameter α,

sequence of minibatches C1, C2, ...
Output: λ

Initialize : λ0 ← η
for each minibatch C in C1, C2, ...
do

for each document d in C do
Φd ← V BInference(d, λ)

end for
λ̃b ←∑dinC Φdvkndv

λb ← λb−1 + λ̃b

end for

Algorithm 2. KPS for LDA
Input: Prior η, hyper-parameter α,

sequence of minibatches C1, C2, ...
Output: λ

Initialize : λ0 ← η
for each minibatch C in C1, C2, ...
do

for each document d in C do
Φd ← V BInference(d, λ)

end for
λ̃b ←∑dinC Φdvkndv

λb ← λb−1 + λ̃b + fb(η)
end for

Streaming Learning Algorithm: With corpus data C = {Ci}, the poste-
rior is:

p(z, θ, β|C,α, η)
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Using variational Bayes as the approximate algorithm with (Φ, γ, λ) are vari-
ational variable of (z, θ, β), respectively, we apply SVB and KPS framework to
get two streaming learning algorithms for LDA as in Algorithm 1 and Algo-
rithm 2. The V BInference here is a variational Bayes procedure that receives
the global model parameter λ to infer the topic distribution Φ of document d
[2]. The Algorithm 1 is the same as SSU algorithm in [3]. The only different
between the two algorithms is the impacted element of the prior fb(η).

Prior in Use: Relating to the distribution of word in natural language, Zipf’s
law give us an interesting property that the frequencies of words in a specific
language followed a power-law distribution given by: p(w) ∝ r−l

w , in which p(w)
is the proportion of word w in the language. rw is the rank of the word in the
descending sorted frequencies, which means the most frequency word has ranking
r = 1. The parameter l depends on the specific language. We use Zipf’s law as
the prior knowledge in KPS algorithm as follows:

ηw ∝ p(w). (13)

Evaluation Metric: We use log predictive probability [3] to evaluate the pre-
dictive capacity and NPMI [9] to check the coherence of learned topics.

Table 1. Dataset for streaming LDA

Dataset Vocab
size

Training
size

Testing
size

Grolier 15,726 23,044 1000

Pubmed 141,044 100,000 10,000

Nytimes 102,660 200,000 10,000

Table 2. Dataset for text classification

Dataset Num of
class

Vocab
size

Training
size

Testing
size

News20 20 62,061 16,000 3,900

Cade12 12 193,997 27,322 4000

Data and Settings: We use 3 datasets: Grolier, Nytimes and Pubmed with
information in Table 1. We simulate the streaming data by dividing the dataset
into sequential minibatches with batchsize respectively: 500, 5000 and 10000
for Grolier, Pubmed and Nytimes. The number of topics is set equally with
K = 100, and the hyperparameter α = 0.01. The prior η is taken from Eq. 13
with a heuristic parameter l = 1.07 [5] and the ranking of word’s frequencies
is downloaded from top 100,000 most frequently-used English words text1, only
the words appeared in vocabulary of dataset are used. We deploy 2 versions of
KPS are: S-KPS which sets κ = 0 and D-KPS with κ = 0.7.

Result: The results are shown in Fig. 4a and b. These results demonstrate that
2 versions of KPS outperform the SVB method in both predictive capacity and
coherence. Within log predictive probability metric, all results have the same
pattern: there only a slightly different between D-KPS and S-KPS. And from
the beginning minibatch data, the result of KPS is better than SVB, it is because

1 https://gist.github.com/h3xx/1976236.

https://gist.github.com/h3xx/1976236
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Fig. 4. Performance of three methods for streaming learning LDA, higher is better.

KPS uses more information from prior knowledge, so it can quickly improve the
quality of model even the amount of data is small. At the later minibatch, the
result of D-KPS tends to higher than S-KPS, we can explain as: when data
is bigger, the model can learn information itself from data that contains prior
information, so the keeping prior may lead to overfiting, slowly decrease the
impact of prior will help to avoid this problem.

4 Case Study 2: Streaming Text Classification

In [1] the authors introduced Mview-LDA for classification, and within this
case study, we use a version of Mview-LDA represented in [13]. The idea of
Mview-LDA is that: each document belongs to one of J classes with proba-
bility contributed by a multinominal distribution χ ∼ Multinomial(π). Each
class contains K local topics {β

(l)
jk }K

k=1 with the distribution over topics θ(l)
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defined by a Dirichlet distribution Dirichlet(α(l)
j ). Besides, they assume that

there exists of R global topics {β
(g)
r }R

r=1 that shared by all classes with distribu-
tion: Dirichlet(α(g)). The binary variable δ decides a word is belonged to global
or shared topics (Fig. 5).

w

zl

δ

zg

θl

ω

θg

χ

γ

π

α(g)

α(l) βK

βR

η

N

D

J

Fig. 5. Graphical representation for Mview-LDA

The generative process of a document d in Mview-LDA as follows:

1. Draw a class: χ ∼ Multinomial(π)
2. Draw local topic proportion: θ

(l)
χ ∼ Dirichlet(α(l)

χ )
3. Draw global topic proportion: θ(g) ∼ Dirichlet(α(g),
4. Draw Bernoulli parameter ω ∼ Beta(γ)
5. For each word w of document d:

– Draw a binary indicator δ ∼ Bernoulli(ω)
– If δ = 1, word w belongs to local topic:

• Draw a local topic z
(l)
η ∼ Multinominal(θ(l)η )

• Draw word w ∼ Mutinomial(β
z
(l)
χ

)
– If δ = 0, word w belongs to global topic:

• Draw a global topic: z(g) ∼ Multinomial(θ(g))
• Draw word w ∼ Multinomial(βz(g))

Let each local topic contributed by a Dirichlet prior parameter η
(l)
j . Note

that local topics within each class contain features words of its class, so if we set
the weighted value of these words larger than the others and use it as a prior,
we will provide more information into the model to specify class, therefore it can
increase the quality of learning process.
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Algorithm 3. SVB for Mview-LDA
Input: Prior η, sequence of minibatch

C1, C2, ...
Output: λ

Initialize : λ0 ← η
for each minibatch C in C1, C2, ...
do

for each document d in C do
(Φd, τ) ← V BInference(d)

end for
˜

λ
(l)
b ←∑
d∈C

∑Nd
i=1 ζdjτdiΦd,i,j,kwd,i,j

λb ← λb−1 + λ̃b

end for

Algorithm 4. KPS for Mview-LDA
Input: Prior η, sequence of minibatch

C1, C2, ...
Output: λ

Initialize : λ0 ← η
for each minibatch C in C1, C2, ...
do

for each document d in C do
(Φd, τ) ← V BInference(d)

end for
˜

λ
(l)
b ←∑
d∈C

∑Nd
i=1 ζdjτdiΦd,i,j,kwd,i,j

λb ← λb−1 + λ̃b + fb(η))
end for

Learning Algorithm: Given corpus C = {Ci}, the posterior is:

p(χ, ω, θ, δ, z, βl, βg|C, ηl, ηg, αl, αg, π) (14)

The learning algorithm in [1] is Gibbs sampling and designed to batch learn-
ing. In this case study, we use variational Bayes inference and modify to stream-
ing classification learning. Let λ(l), τ, Φ be the approximate variantional variables
of β(l), δ, z respectively. Because we aim to keep the information from prior η(l) of
the local topics, we only apply KPS to β(l). Simplify η(l) to η, adopting SVB and
KPS leads to 2 versions for streaming updating λ(l) in Algorithm 3, and Algo-
rithm 4. The indicator ζdj = 1 when document d belongs to class j and ζdj = 0
for others, the V BInference procedure here receives model parameters to infer
the topics φ and its contribution τ to local or global topics for each document d.

Prior in Use: With the idea from feaLDA [7], we extract the feature words of
each class and use them as the prior knowledge for its class. At first, we calculate
TF.IDF for words in each class then select top T words with highest values as
seed words. The seed words of class j then used to initialize prior Dirichlet
distribution η

(l)
j by assigning a value 0 < s < 1. The other values are set to a

small value 0 < ε < s.

Evaluation Metric: The classification accuracy is used in this evaluation.

Data and Settings: We use 2 labeled datasets: Cade 12 and News202 with
information in Table 2.

With News20 dataset, we set minibatch size equal to 1000, the number of
topics in each local group K = 10 and the number of global group: R = 8. For
Cade 12 dataset, minibatch size is 2000, K = 15 and R = 4. The Dirichlet distri-
bution prior η(l) for each group is taken with s = 0.5 and ε = 0.01, the number
of top words for each group: T = 5000. The other Dirichlet prior parameters are

2 http://ana.cachopo.org/datasets-for-single-label-text-categorization.

http://ana.cachopo.org/datasets-for-single-label-text-categorization
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set equal to 0.01. For S-KPS, the parameter κ = 0 and D-KPS has κ = 0.7. We
also give the SVM results with bag of word representation as another baseline
to evaluate the quality of classification model.
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Fig. 6. Accuracy of three streaming classification algorithms with SVM baseline

Results: The results are presented in Fig. 6. Again, the result of D-KPS and
S-KPS are better than that of the SVB without keeping prior. When more mini-
batches are observed, the accuracy of streaming classification is increased. How-
ever, at the latter minibatches, while KPS gives higher accuracy, SVB method
shows a lower accuracy against SVM baseline, it suggests that providing prior
knowledge into streaming learning can markedly improve the performance of the
learned model.

5 Conclusion

In this paper, we have introduced the keeping priors in streaming learning frame-
work which has tried to make the best use of prior knowledge in the entire
streaming learning process, in a view that incoming data is processed in infinite
number of collections. If the prior information is good and impactful enough,
this method can shine its wise value and entail its effect. We have illustrated
this idea in two scenarios: streaming LDA and streaming text classification. In
both cases, KPS has showed better results than the old method without keeping
prior.
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Efficient Training of Adaptive Regularization
of Weight Vectors for Semi-structured Text
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Abstract. We propose an efficient training method of Confidence
Weighted Learning (CWL) algorithms for semi-structured text and its
application to Adaptive Regularization of Weight Vectors (AROW),
which is a CWL algorithm. CWL algorithms are online learning algo-
rithms that combines large margin training and confidence weighting of
features. CWL algorithms learn confidence weights of features, therefore,
it is difficult to apply kernel methods that implicitly expand features. If we
expand features in advance, it leads to increased memory usage. To solve
the problem, we propose a training method that dynamically extracted
features from semi-structured text. In addition, we propose a pruning
method for improved training speed. The pruning skips training samples
classified correctly more than or equal to certain times. We compared
our method using word-strings as semi-structured texts with AROW that
expands all the features in advance. Experimental results of text classifi-
cation tasks on an Amazon data set show that our training method con-
tributes to improved memory usage and two to three times faster training
speed while maintaining accuracy for learning longer n-grams.

1 Introduction

Online learning algorithms represent a family of fast and simple machine learn-
ing techniques. These include Perceptron [14] and Passive-Aggressive (PA) algo-
rithms [4]. Recent years have seen the second-order online learning algorithms,
which learn confidences of features to improve online learning performance. For
example, a family of Confidence Weighted Learning (CWL) algorithms such
as Confidence-Weighted (CW) [5], soft-CW [7] and Adaptive Regularization of
Weights (AROW) [6] have been proposed and these algorithms have shown bet-
ter accuracy on a wide range of applications.

One of the characteristics of these algorithms are learning of confidence
weights of features. Less confident features are updated more aggressively than
more confident ones. Therefore, in order to learn confidence weights of features
such as word n-grams on document classification tasks, we have to give such
features in advance by expanding them from a given input, compared with Per-
ceptron or PA with kernel methods like string kernels [12,13] does not. As a
result, CWL algorithms require more memory usage by using of longer word
n-grams.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 261–272, 2017.
DOI: 10.1007/978-3-319-57529-2 21
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To solve the problem, we propose a training method that dynamically
extracts features from semi-structured text. Our method dynamically extracts
features from a given current training sample when these are necessary, there-
fore, we can save memory usage. In addition, we propose a pruning method for
improved training speed. The pruning skips training samples classified correctly
more than or equal to certain times.

We evaluate the proposed methods using word-strings as semi-structured
texts with AROW. The experimental results of text classification tasks on an
Amazon data set show that our training method contributes to improved mem-
ory usage and two to three times faster training speed than those of AROW
that expands all the features in advance while maintaining accuracy for learning
longer n-grams.

2 AROW

This section describes a confidence weighted learning method called AROW and
the difficulty of application of kernel methods.

2.1 An Overview of AROW

We describe the problem treated by our paper as follows. The goal is to induce
a mapping:

f(x) = x · μ, (1)

where an input x and a weight vector μ is d dimensional vector. The μ is induced
from D = {(x1, y1), ..., (xm, ym)} and a given learning algorithm, where yi ∈
{1,−1} and xi ∈ Rd.

Input parameters r
Training samples: D = {(x1, y1), ..., (xm, ym)}
Initialize μ0 = 0, Σ0 = I
For t = 1, ..., T
- Receive a training example from D as xt

- Compute margin mt and confidence vt
mt = μt−1 · xt

vt = xT
t Σt−1xt

- Receive true label yt

- If mtyt < 1, update parameters:
μt = μt−1 + αtΣt−1ytxt Σt = Σt−1 − βtΣt−1xtx

T
t Σt−1

βt = 1
vt+r

αt = max(0, 1 - yt xT
t μt−1)βt

- Else:
μt = μt−1 Σt = Σt−1

Fig. 1. AROW with squared hinge
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Figure 1 shows a pseudo code of AROW. The μt is a d dimensional weight
vector and Σt is a d × d matrix that maintains confidences of features at t-th
round. When updating a model, μt and Σt are updated. In our implementation,
a diagonalized version, in which Σt is diagonalized, was used.

2.2 Difficulty of Application of Kernel Method to AROW

In order to handle semi-structured data with kernel methods [4], a following
function is induced from given training data D:

f(x) =
m∑

i=1

αiK(xi,x), (2)

where αi is an importance of i-th training sample.
Kernel methods implicitly expand features in a given kernel function K.

By doing so, semi-structured data and structured data can be handled as in d
dimensional vectors. However, we see from Eq. (2) that use of kernel methods
in CWL algorithms is difficult because CWL algorithms learn confidences of
features.

3 Proposed Method

We describe our AROW training method with dynamic feature expansion and
a pruning method for improving training speed with efficient implementation.

3.1 Training with a Dynamic Feature Expansion and a Pruning

Our method expands n-gram features dynamically. In order to improve training
speed, we focus on that only features extracted from current training sample
are necessary for updating a model. Therefore, we propose expanding features
from current training sample dynamically. In addition, in order to obtain further
improved training speed, we propose a pruning of correctly classified training
samples more than certain times.

Figure 2 shows a pseudo algorithm. Let X be a word-sequence in this paper.
The φ(X, L) converts X into d dimensional vectors by expanding features dynam-
ically up to maximum size L.

For example, “I eat corn soup” are given as an input X with L = 2 for n-
gram feature extraction, “I”,“eat”,“corn”,“soup”,“I-eat”,“eat-corn” and“corn-
soup” are expanded. When updating models, a weight vector μt and confidence
of features Σt are updated as in the original AROW.

In our implementation, memory space is allocated when new features are
added to a model. In contrast, the naive implementation of the original AROW
requires memory space of all the features from the beginning of training.

Our method also incorporates a pruning method of training samples. In our
preliminary experiments, about correctly classified training samples in a training,
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Input parameters r
Training samples: D = {(X1, y1), ..., (Xm, ym)}
Initialize μ0 = 0, Σ0 = I
L: Maximum n-gram size
ok[Xt]: the number of times Xt is correctly classified.
p : a threshold for pruning
For t = 1, ..., T
- Receive a training example from D as Xt

- If p ≤ ok[Xt] continue ; # skip this sample
- Compute margin mt and confidence vt

mt = μt−1 · φ(Xt, L)
vt = φ(Xt, L)TΣt−1φ(Xt, L)

- Receive true label yt

- If mtyt < 1, update parameters:
μt = μt−1 + αtΣt−1ytφ(Xt, L) Σt = Σt−1 − βtΣt−1 φ(Xt, L)φ(Xt, L)TΣt−1

βt = 1
vt+r

αt = max(0, 1 - yt φ(Xt, L)Tμt−1)βt

- Else :
ok[Xt]++ μt = μt−1 Σt = Σt−1

Fig. 2. AROW based on dynamic feature expansion with a pruning of training samples

only 5.8% on average were used for updating models after their correct classi-
fication. Therefore, we introduce a pruning method that skips training samples
classified correctly more than or equal to p times. The ok[Xt] maintains the
number of times that Xt was correctly classified in a training in terms of the
hinge loss used in AROW training. If p ≤ ok[Xt], we skip the training with Xt.

3.2 Efficient Implementation

Our algorithm dynamically expands features. Therefore, a naive implementation
requires to expand all features from a current sample at each training phase.
However, in order to calculate μt · φ(Xt, L), only features of current training
sample included in a current model μt are necessary. In order to avoid time-
consuming feature expansion, we propose to use only features included in a
model.

For efficient calculation of μt · φ(Xt, L), we maintain a model as a trie. By
using a trie-based model, when partial features are included in μt, we continue
to expand features for generating new n-gram features. We use double-array [1],
which is an implementation method of trie.

Figure 3 shows a matching with a given input “corn soup” and a model
represented by a trie includes “coral”, “coring”, “corn” and “corn soup”. The
blank indicates an existence of the following words and the “#” indicates the
end of an entry in the trie.

Our method does not enumerate all combinations for classification. First, we
check whether “corn” are matched in the trie from the root. Here, “corn” and
“#” after “corn” were found, therefore, “corn” was used as a feature. Then,
we found “blank” after “corn” and match “soup#” with the trie from the next
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Fig. 3. Matching with a trie-based model.

of “blank”, therefore, we use “corn soup” as a feature. By using this method,
without expanding all features in advance, we can expand only features included
in a current model.

In addition, we cache φ(Xt, L) after Xt was used for updating models. This
is because all features extracted from Xt are included in a model after a model
update with Xt. By caching φ(Xt, L), we can avoid time-consuming feature
generation.

4 Experiments

4.1 Experimental Setting

We use three most frequent categories of an Amazon data [2] described in Table 1.
The goal is to classify a product review as either positive or negative. We used the
file, all.review, for each domain in the data set for this evaluation. By following
the paper [2], review texts that have ratings more than three are used as positive
reviews, and review texts that have ratings less than three are used as negative
reviews. We used the text data represented by word sequences. Each training
data is 80% of samples in all.review of each category, and the test and the
development data are 10%. Parameters are decided in terms of F-measure on
negative reviews of the development data, and we evaluate F-measure obtained
with the decided parameters. The number of positive reviews in the data set is
much larger than negative reviews. Therefore, we evaluated the F-measure of
the negative reviews.
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Table 1. Training and test data size.

BOOK DVD MUSIC

train dev. test train dev. test train dev. test

780,154 97,520 97,520 99,550 12,444 12,444 139,344 17,418 17,418

We use 10 × m times as T with r = 1 for each training, where m indicates
the number of training samples. 1 The features are word uni-grams, bi-grams and
tri-grams are included in a document or not. We compare our method AROWd,
AROWp and AROWdp with the original AROW with n-gram features expanded
in advance. The d indicates the dynamic feature expansion and the p indicates
the pruning parameter. We use p = ∞, 1, 2, 3, where p = ∞ indicates no pruning.

– AROW: This is the original AROW algorithm. All n-gram features are
expanded in advance.

– AROWd: This is the AROW algorithm with only the dynamic expansion
described in Fig. 2. The n-gram features are dynamically expanded. This is
the same as the following AROWdp = ∞.

– AROWp: This is the AROW algorithm with only the pruning method of
Fig. 2. This algorithm does not use the dynamic expansion method. Therefore,
all n-gram features are expanded in advance. AROWp = ∞ is the same as the
AROW.

– AROWdp: This is the AROW algorithm described in Fig. 2. The n-gram fea-
tures are dynamically expanded and the pruning method is used.

4.2 Accuracy

Table 2 shows that the accuracy of each pruning parameter. Even if we apply
the pruning method, accuracy was maintained. The accuracy was measured on
each test data with the number of the iteration over given training samples
in training that showed the best accuracy on the corresponding development
data. We see that even if we use the pruning method, our method maintained
accuracy. AROWp = 1 indicates slightly lower accuracy, however, AROWp = 2,3

showed competitive or better accuracy in most cases. AROWp = 2 showed three
times better, five times the same and one time worse accuracy compared with
those of AROWp = ∞. AROWp = 3 showed two times better, six times the same
and one time worse accuracy compared with those of AROWp = ∞.

We guess that one of the reasons of the improved accuracy is alleviation
of overfitting. Use of the pruning skips correctly classified samples more than

1 In our implementation, we randomly shuffled the training samples at the beginning
and then use each of them in the shuffled order. After processing all the shuffled
training samples, we shuffled the training samples again and use each of them in the
shuffled order. Therefore, each training sample was used 10 times.
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Table 2. Accuracy on test data obtained with different p. The each item indicates the
following: F-measure (Recall, Precision, # of iteration for attaining the best accuracy).
The bold font indicates the best and the underlined one indicates the worst F-measure
for each L. Each + or − indicates better or worse accuracy than the baseline (p = ∞),
respectively.

BOOK

L \ p ∞ 1 2 3

1 90.11 (88.69,91.57, 10) 89.60− (88.76,90.47, 9) 90.05− (88.77,91.37, 10) 90.08− (88.73,91.47, 10)

2 94.12 (92.77,95.50, 2) 94.09− (92.82,95.39, 2) 94.12 (92.77,95.50, 2) 94.12 (92.77,95.50, 2)

3 94.14 (92.62,95.71, 2) 94.13− (92.73,95.58, 2) 94.14 (92.62,95.71, 2) 94.14 (92.62,95.71, 2)

DVD

L \ p ∞ 1 2 3

1 85.15 (82.72,87.73, 5) 84.79− (82.61,87.09, 3) 85.18+ (83.06,87.41, 4) 85.15 (82.72,87.73, 5)

2 88.13 (84.61,91.97, 6) 88.29+ (84.78,92.09, 2) 88.30+ (84.72,92.20, 2) 88.16+ (84.61,92.02, 6)

3 88.38 (84.04,93.20, 2) 88.33− (84.04,93.08, 2) 88.38 (84.04,93.20, 2) 88.38 (84.04,93.20, 2)

MUSIC

L \ p ∞ 1 2 3

1 80.42 (76.95,84.22, 6) 79.66− (76.60,82.97, 4) 80.42 (76.81,84.39, 7) 80.48+ (77.09,84.18, 6)

2 83.99 (78.54,90.27, 2) 83.72− (78.54,89.63, 2) 83.99 (78.54,90.27, 2) 83.99 (78.54,90.27, 2)

3 83.25 (76.26,91.65, 7) 83.28+ (76.81,90.95, 5) 83.26+ (76.32,91.58, 7) 83.25 (76.26,91.65, 7)

certain times. Therefore, less confident training samples in terms of the hinge
loss are also skipped, which may be used as update in further training iteration.
As a result, we guess that we can obtain better accuracy by avoiding the updates
for fitting to such training samples.

4.3 Memory Usage

Table 3 lists the maximum memory usage of each AROW training. The results of
AROW and AROWp are the column “A” ones because these algorithms allocate
required memory from the beginning of each training. In terms of memory usage,
our method showed generally lower memory usage than AROW.

There are no big difference of memory consumption between AROWdp

obtained with L = 2 and AROW with L = 1. Some of the reasons would be
the following two. The first reason is following nature of the double array trie.
The double array trie might generate different trie for the same keys if we insert
the keys in different order. As a result, longer size of memory is allocated to

Table 3. Maximum memory usage (GB). Each A indicates original AROW and p
indicates the pruning parameter used in AROWdp. L indicates the maximum length of
n-gram. Each bold font indicates the best memory usage for each L on each data set.

BOOK DVD MUSIC

L \ p A ∞ 1 2 3 A ∞ 1 2 3 A ∞ 1 2 3

1 15.75 15.46 14.56 15.41 15.46 2.10 2.16 2.16 2.16 2.16 3.50 3.50 3.50 3.50 3.50

2 19.23 15.98 16.03 15.95 15.97 3.11 2.45 2.44 2.49 2.53 3.89 3.50 3.50 3.50 3.50

3 28.23 19.49 16.44 18.63 18.42 5.45 3.22 3.18 3.52 3.22 5.73 3.91 3.90 4.18 3.91
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a trie even if the same keys are inserted. Therefore, even if we use small num-
ber of features, the original AROW might use lower memory usage than those
of AROWdp. The other is our implementation. Our implementation allocates
memory by a fixed size if a trie requires new memory space. Therefore, if the
allocated memory is enough, even if the number of keys is different, the memory
size of the trie might be the same.

4.4 Training Speed

Table 4 shows training time with each parameter and data set. AROWdp, which
uses the dynamic feature expansion and the pruning, shows larger improvement
of training speed compared with AROWp without the dynamic expansion for
training longer n-grams. For example, we see that we obtain approximately two
to three faster training speed with AROWdp for training with L = 3. In addtion,
AROWdp = 2,3 maintain competitive accuracy as shown in Table 2. These results
indicate that our method contribute to improved training speed while maintain-
ing accuracy.

Table 4. Training time (hours) for 10 times iteration. The bold font ones indicate
faster training time than those of AROW with the same L.

BOOK

AROWdp AROWp

L \ p ∞ 1 2 3 ∞ 1 2 3

1 0.49 0.08 0.13 0.14 0.09 0.08 0.08 0.06

2 1.36 0.26 0.43 0.50 0.49 0.38 0.43 0.40

3 2.24 0.68 0.92 1.15 2.02 1.75 1.83 1.92

DVD

AROWdp AROWp

L \ p ∞ 1 2 3 ∞ 1 2 3

1 0.06 0.01 0.02 0.02 0.01 0.01 0.01 0.01

2 0.22 0.04 0.04 0.08 0.05 0.04 0.05 0.04

3 0.29 0.11 0.15 0.18 0.31 0.30 0.30 0.30

MUSIC

AROWdp AROWp

L \ p ∞ 1 2 3 ∞ 1 2 3

1 0.08 0.01 0.02 0.03 0.01 0.01 0.01 0.01

2 0.27 0.03 0.08 0.07 0.10 0.10 0.10 0.07

3 0.48 0.12 0.15 0.17 0.44 0.39 0.36 0.35
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Fig. 4. Transition of accuracy. The x-axis indicates training time and the y-axis indi-
cates accuracy. The left figure is for training and the right one is for development
data.

Figure 4 shows accuracy of each training time on BOOK. The processing
time includes feature generation and training time. The wide lines indicate tran-
sition of accuracy with AROWd and AROWdp. The others are those of AROW
and AROWp. As for the results with L = 1, AROW and AROWp, which use
expanded features in advance, showed faster training speed. However, training
of AROWd with bi-grams and tri-grams was faster than AROW and AROWp in
early stage because AROW and AROWp expand features in advance in contrast
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AROWd does not. However, AROWd took longer training time than AROW
and AROWp because AROWd needs to expand features at each matching.

We see from Fig. 4 that AROWdp = 1, AROWdp = 2 and AROWdp = 3

showed competitive or faster training speed for L = {2, 3}. By combining the
pruning method with the dynamic feature expansion, which is AROWdp, we
realize much faster training speed than those of the others while maintaining
accuracy. Compared with AROW, AROWdp = 1 with L = 3 shows almost three
times faster training speed for 10 times iteration on training data. The results
shows that our method improves accuracy faster than AROW that expands all
the features in advance. AROW and AROWp showed only slight improvement
because their training was very fast after all training data were vectorized. How-
ever, the time for vectorizing training data was long for L = {2, 3}.

Table 5. Classification time on each test data (seconds). The data size of each test
data is shown in Table 1.

Data BOOK DVD MUSIC

L 2 3 2 3 2 3

AROWd 295.47 633.17 65.90 148.24 58.25 133.74

AROW 297.70 677.06 66.05 151.16 57.93 136.46

In order to examine the effectiveness of the dynamic feature expansion, we
also evaluated classification speed of AROW and AROWd with L = {2, 3}.
Table 5 shows the classification time on each test data. We see that our dynamic
feature expansion method also contributes to improved classification speed, how-
ever the contribution is not large. The maximum improvement on BOOK with
L = 3 is only 7%. The main difference between training and classification is fol-
lowing; features are appended to a model or not. These results indicate that the
improvement of training speed is due to the avoidance of unnecessary appendix
of features to models.

5 Related Work

In order to improve training speed of kernel methods, a combination of partially
expansion of features and the calculation of the reminders in a kernel method
was proposed [18]. For improving classification speed of kernel-based methods, a
conversion of a kernel to a linear classifier, which selects features from training
samples consisting of kernel-based models [9], was proposed. In order to train
models from semi-structured data, a feature selection method [15] was also pro-
posed. In stead of expanding features from semi-structured or structured data
in advance other than kernel methods, boosting-based approaches, which select
features in batch training, have been proposed [8,10]. In addition, to improve the
training speed of the boosting approaches, pruning methods while maintaining
the convergence property have also been proposed [17].
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Compared with these methods, we expand features dynamically in online
learning while maintaining fast training speed. In addition, we can save memory
and improve training speed by avoiding generation of unnecessary features.

6 Extension of Our Method

Our method can be applied to tree, graph data, learning combination of features
and sequence labeling such as CRF by defining φ(X, L) of Fig. 2.

– Tree: For example, by using the emulation method of [19], we can expand
sub-trees up to a given size and update model. In addition, as described in
[19], each tree can be represented by a string, we can use a trie structure for
efficient matching.

– Graph: For example, by using the enumeration method of [16], we can obtain
sub-graph features represented by DFS code. When updating a model, enu-
merating sub-graph up to a given maximum size and update models.

– Sequence Labeling: When training sequence labeling algorithms such as CRF
[11] with stochastic gradient decent and structured perceptron [3], we can
apply our dynamic feature expansion method.

7 Conclusion

We have proposed a training method with dynamic feature expansion and a
pruning. The experimental results on an Amazon data showed that our proposed
method improved training speed, memory usage and classification speed when
using n-gram features while maintaining competitive accuracy, faster training
speed and lower memory usage.
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Abstract. Location recommendation makes suggestions of nearby loca-
tions based on user’s locational preferences and spatial movement pat-
terns. In this paper, we propose two novel location recommendation
methods called Behavior Factorization (BF) and Latent Behavior Analy-
sis (LBA). Both methods utilize behavioral and spatio-temporal patterns
in user movements to make location recommendation. Experiments on a
real-world dataset shows that the proposed methods outperform exist-
ing location recommendation methods in terms of both precision and
recall. Comparing LBA and BF, it is observed that LBA achieves better
results since it utilizes the number of times each pattern has happened
in the dataset.

Keywords: Location-based social networks · Recommendation sys-
tems · Spatio-temporal data analysis

1 Introduction

Location recommendation makes suggestions of nearby locations based on
user’s locational preferences and spatial movement patterns. It has been an
active research area recently. Current location recommendation methods mainly
focus on the geographical reachability of locations [1–3] and utilize additional
information—such as time [2,3], social relationships [1,2] and location category
[3]—to further improve the recommendation. However, these methods do not
effectively utilize the similar patterns in users’ movements in the recommenda-
tion process.

Additionally, location recommendation methods are also subject to the spar-
sity and cold-start problems [4]. The sparsity of data is common in the rec-
ommendation systems, it happens since users are bound to their local vicinity
and cannot visit locations that are beyond their reachability. Cold start problem
happens when a new user or a new location is added to the system. In such
situations, due to lack of information, the recommendation system cannot give
proper recommendations to the new user or recommend a newly added location
to the users.

In this paper, we intend to enhance the current location recommendation
methods by better integrating temporal information and utilizing history of
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 273–285, 2017.
DOI: 10.1007/978-3-319-57529-2 22
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similarly behaving users. Temporal features play an important role in location
recommendation [5] and people are more likely to conduct the same activity
around the similar time of the day [3,6]. We also assume that the category of
a location reflects the activities happening in those locations [3]. Thus we can
combine temporal and location category information to introduce the concept
of behavior. By finding and utilizing the similar behaviors among users enables
us to predict unseen behaviors.

In this study, we propose two behavior-based location recommendation meth-
ods called Behavior Factorization (BF) and Latent Behavior Analysis (LBA)
that predict the category of location the user is likely to visit based on his/her
past behavior and the behaviors of similar users, and then recommend matching
nearby locations to the user. The problem of sparseness is resolved by aggregat-
ing check-ins to a higher level (i.e. the category of locations). It also treats all
locations of the same category as similar locations, and finds common behaviors
among users to solve the cold start users problem. Specifically, our contributions
in this study are summarized as follows:

– Formally defining the term behavior in the context of location recommen-
dation and constructing a user-behavior graph based on the user behaviors.
The proposed concept of behavior and user-behavior graph enables the pro-
posed location recommendation methods to effectively reduce the sparseness
of the check-in dataset, while preserving the essential information about user
preferences that help find similar users and behaviors.

– Proposing two novel location recommendation methods—namely Behavior
Factorization (BF) and Latent Behavior Analysis (LBA)—that utilize the
user-behavior graph. Not only these methods provide more effective location
recommendations, but also they effectively address the problem of cold-start
locations and cold-start users. BF and LBA methods address the cold-start
location problem by finding the category matching the preference of the user,
and recommending the closest location of that category to the user. They
also address the problem of the cold-start users by finding behavior patterns
and other users that show similar behaviors. The common behaviors of the
similar behaving users are recommended to the user. Compared to BF, LBA
utilizes the number of times a user has shown a behavior so it achieves better
recommendations.

– Conducting experiments on a real-world LBSN check-in dataset. To evaluate
the performance of the BF and LBA methods, we use a real world check-in
dataset collected from Gowalla1. We discover that both BF and LBA methods
outperform two existing location recommenders. It is also observed that LBA
achieves better performance compared to BF.

The rest of this paper is organized as follows: in Sect. 2, a literature review
on location recommendation methods is reported. In Sect. 3, the step-by-step
instructions to build BF and LBA recommendation systems are discussed. The
experimental configuration and results are discussed in Sect. 4. Finally, the study
is concluded in Sect. 5.
1 A location-based social networking website that in operation until 2012.
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2 Related Works

Location recommendation aims to predict locations that users would like to
visit. Information such as the local time, location history and preferences of the
users can be used. Location recommendation has bee approached from different
perspectives, we will discuss three common approaches in the following.

The first approach is to treat locations as items and then apply the existing
item recommendation methods to location recommendation, such as [7–9]. How-
ever, these methods do not consider the reachability of locations when making
recommendations.

The second approach is to model the physical interaction between users and
locations. As stated by the Tobler’s First Law of Geography —“Everything
is related to everything else, but near things are more related than distant
things”—the physical interactions between users and location is a differenti-
ating factor of location recommendation from traditional item recommendation
systems [10]. Geographical constraints determine the reachability of a location.
Recommending a location that is spatially unreachable to a user is a failed rec-
ommendation. [1,11,12] include spatial features in their recommendation model
and improve over the first group of location recommendation methods by adding
the spatial features. However, they do not take into account the temporal factors
in the location recomemndation process.

More recent studies utilize temporal information in addition to spatial infor-
mation. Utilizing temporal information in location recommendation can result
in better representation of user behavior since temporal features play an impor-
tant role in location recommendation [5]. [2,3,13] utilize temporal features in
their recommendation models. With further investigation, it can be argued that
these models under-utilize the temporal information as they do not consider the
shared behaviors of users.

3 Behavior-Based Location Recommendation

Location based social networks collect users’ locational information in the form
of a check-in. A check-in shows the location of the user at a certain time.

Definition 1. A check-in is a tuple consisting of a user u, a location l and a
time stamp t, it is formally represented as c = (u, l, t), which shows that a user u
has visited a location l at time t. Location can in turn be interpreted into latitude
and longitude.

Check-in history of the users is the main source of information for location rec-
ommendation. However, to recommend suitable locations to a user at a given
time, a recommendation method needs to answer two questions. (1) What activ-
ity does the user prefer to do at the moment? The recommendation should be
based on the activity the user wants. (2) Where is the user’s location? User’s
location information helps identify locations in the user’s vicinity.
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As mentioned, knowing the user activity is a key to location recommendation.
In this study, we propose to use the check-in history of similarly behaving users
to predict the behavior of the target user. To bring this intuition into location
recommendation, we formalize a concept called behavior and it is defined in
Definition 2.

Definition 2. A behavior is a tuple containing a category and a time interval,
denoted as b = (cat, ti), where b is a behavior, cat is a location category and ti
is a time interval.

The definition enables us to find similar and dissimilar user as well as common
behaviors among users. If two users visit locations of the same category at similar
times, they are considered as users with similar behaviors.

In this section, two novel behavior-based location recommendation methods
are proposed that utilizes similar behaviors to make location recommendations
to the target user. They predict the likelihood of showing behaviors by the given
user. Then they use the predicted behaviors to filter and rank nearby locations
and make an effective recommendation. The following subsection will discuss
them in detail.

3.1 Behavior Factorization

Behavior Factorization (BF) consists of two main components, (1) a BF model
builder and (2) a location recommender. The BF model builder component is
responsible for processing check-ins, and making spatial and behavioral mod-
els. The spatial model is used to model the reachability of locations to the user
and the behavioral model predicts the activity of the users. The location recom-
mender component, on the other hand, uses the behavioral and spatial models
along with the user information including the current location, time, and home
location to make personalized location recommendations.

BF Model Builder. BF makes location recommendations using the shared
behaviors of the users. As shown in Algorithm1, three steps are taken to build
a BF model: First, behaviors are extracted from the check-in history of the
users and a user-behavior graph is built. A user-behavior graph is a bipartite
graph that represents the relationships between users and behaviors in a more
concise way compared to the check-ins. Second, a behavior model is built by
feeding the user-behavior graph into a collaborative filtering method, i.e. matrix
factorization. Matrix factorization uses the user-behavior graph to make predic-
tions about user behaviors based on his/her past behaviors and similar users’
behavior. Finally, a spatial component is built using the check-in data to model
the spatial reachability of locations for different users. In the following, we will
illustrate each step in detail.

As the first step of the BF model builder, a behavior graph is built using the
check-in data. The behavior graph contains the user-behavior information that
are presented implicitly in the check-in data.
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Algorithm 1. BFModelBuilder(checkins)
1: behaviorGraph ← buildBehaviorGraph(checkins);
2: behaviorModel ← buildBehaviorFactorizationModel(behaviorGraph);
3: spatialModel ← findSpatialProbabilityDistribution(checkins);

Definition 3. A behavior graph is an undirected bipartite graph, denoted
as G = (B,U,E), where B is the set of behavior nodes and U is the set of
user nodes. E is the set of edges that connect users and his/her corresponding
behaviors.

In BF, the behavior graph is an unweighted graph. To build the graph, check-
ins are processed one by one and the corresponding users are created. Using the
time of the check-in and the type of the location checked-in, the behavior node
and the edge connecting the user and behavior are created.

The second step of the BF model builder is to build the behavior model.
The behavioral model is built based on the behavior graph generated in the
first step. It is a probabilistic model that quantifies the probability of an edge
existing between a user and a behavior in the user-behavior graph. This model is
responsible for collaborative features of BF. Behavior model uses the information
such as similar behaviors and similar behaving users to predict the behavior of
the target user.

In BF, Matrix Factorization (MF) approach is used to build the behavior
model [14]. In this study, each user and behavior is modeled as a vector of latent
features. User u is represented by fu = (f1

u , f2
u , . . . , fk

u ) and behavior b is modeled
as qb = (q1b , q

2
b , . . . , q

k
b ) where k is the number of latent features. The probability

of user u showing behavior b is estimated as the dot product of corresponding
latent feature vectors shown in Eq. (1).

p̂b(u, b) = fu · qb (1)

where p̂b(u, b) represents the estimated probability of user u showing behavior b.
The objective is to find feature vectors that minimize the regularized estima-

tion error—Eq. (2)—on the observed check-ins.

argminp,q

∑

ewu,b �=nil

(ewu,b − fu · qb)2 + λ(||qb||2F + ||fu||2F ) (2)

where ewu,b represents the weight of the edge connecting user u to behavior b
on the behavior graph and λ is a regularization term.

Using Stochastic Gradient Descent to find f and q that satisfy the Eq. (2),
we get the following update functions.

fu = fu + γ(eu,bfu + λqb) (3)

qb = qb + γ(eu,bqb + λfu) (4)

where eu,b = ewu,b − fu · qb and γ is a parameter used to adjust the magnitude of
parameter modification. To learn the latent user and behavior features, we need
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Algorithm 2. buildBehaviorFactorizationModel(behaviorGraph)
1: For each user u, initialize fu as a vector of size K with values of 1
2: For each behavior b, initialize qb as a vector of size K with values of 1

K

3: repeat
4: for all edges of behaviorGraph do
5: eu,b ← ewu,b − fu · qb
6: fu ← fu + γ(eu,bfu + λqb) � Eq. (3)
7: qb ← qb + γ(eu,bqb + λfu) � Eq. (4)
8: end for
9: until f and q converge.

10: return BFModel(f ,q)

Fig. 1. Spatial probability distribution for Gowalla dataset

to iterate on the user-behavior graph until the latent feature vectors converge.
Algorithm 2 shows the training procedure of BF. Having the latent feature vec-
tors f and q, we can estimate the probability of showing any behavior by any
user using Eq. (1).

The third step of building the BF model is to model the reachability of
recommend locations to the user. The reachability of locations to the user is
quantified using a spatial component. To find the spatial probability distribution,
the distances of check-ins to the user’s home location are calculated and plotted.
The user’s home location can be derived using the method proposed by Cho et
al. [2]. As an example, Fig. 1 shows the probability distribution of the distances
of checked in locations to each user’s home for the Gowalla dataset that was
used for the experiments in this paper.

Figure 1 shows that the probability of check-in decreases with increasing the
distance of location to user’s home and it follows a power law distribution. It
also observed that, (1) for distances greater than 50 km, the frequency of check-
in varies randomly, this means that for distances greater than 50 Km there is
no relationship between the distance and check-in probability. (2) Based on the
slope of the linear relationship in for distances less than 50 km, we can further
divide this part into two smaller parts, less than 16 km and greater than 16 km.
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For this specific example, the probability distribution is shown in Eq. (5) and it
can be used as the spatial component for the BF location recommender for this
dataset.

ps(u, l|homeu) =
{0.0886e−0.166·dist(l,homeu) dist(l, homeu) ≤ 16km

0.3122e−0.204·dist(l,homeu) 16km < dist(l, homeu) ≤ 50km
0 50km < dist(l, h)

(5)
Please note that the spatial component can be different from one dataset to
another dataset. Using the similar approach, a spatial probability distribution
function can be found for any check-in dataset.

Location Recommender. The location recommender uses the behavior model
and the spatial models built by the BF model builder. As mentioned, the query
of a location recommender contains a user and a time, and the output is a list of
locations suitable for the user for the given time. The behavior-based check-in
probability is calculated based on the input. This probability value is used to
rank locations for recommendation.

Definition 4. The behavior-based probability of user u checking in to location l
at the given time t is:

p(u, l|t) = p̂(u, b) ∗ ps(u, l|homeu) (6)

where p(u, l|t) is the probability of the user u checking into location l at time
t. p̂(u, b) is the behavior probability of the user u showing behavior b, which is
made using the category of location l and time interval of t. The value of behavior
probability is calculated using Eq. (1). ps(u, l|homeu) is the spatial probability
of user u checking in to location l given the home location of the user and is
estimated using Eq. (5).

To make a recommendation to the user, it is needed to calculate the value
of p(u, l|t) for the candidate locations and current time. Locations with higher
estimated probabilities are then recommended to the user.

3.2 Latent Behavior Analysis (LBA)

Behavior factorization helps find the hidden interactions between users and
behaviors and enables us to predict the behavior of the user for the given time.
However, it uses the binary—i.e. existing or not existing—user-behavior inter-
actions.

The Latent Behavior Analysis (LBA) method for location recommendation
is based on this intuition. In LBA, the spatial model and behavior graph are
built in the same was as in BF, but the behavior recommender model (line 2,
Algorithm 1) is built in a different way. In the following we will discuss how the
behavior recommender model is built in LBA.

In LBA, a set of latent intermediate nodes—denoted by zi—are introduced
to the behavior graph. Collaborative feature of LBA roots in these intermediate
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Algorithm 3. buildLatentBehaviorAnalysisModel(behaviorGraph)
1: while p(zi), p(u|zi) and p(b|zi) have not converged do
2: for all edges of behaviorGraph do � Expectation Step
3: for i = 1 to K do
4: p(zi|u, b) ← p(zi)p(u|zi)p(b|zi)∑K

j=1 p(zj)p(u|zj)p(b|zj) � Eq. (8)

5: end for
6: end for
7: for all edges of behaviorGraph do � Maximization Step
8: for i = 1 to K do
9: p(u|zi) ←∑b∈Behaviors n(u, b)p(zi|u, b) � Eq. (9)

10: p(b|zi) ←∑u∈Users n(u, b)p(zi|u, b) � Eq. (10)
11: p(zi) ←∑b∈Behaviors

∑
u∈Users n(u, b)p(zi|u, b) � Eq. (11)

12: end for
13: end for
14: end while
15: return LBAModel(f ,q)

nodes. Adding the intermediate nodes, the user-behavior graph becomes a tri-
partite graph where users and behaviors are connected to intermediate nodes and
there is not a direct connection between the users and behaviors. The probability
of user showing a behavior can then be estimated using Eq. (7) [15].

p̂b(u, b) =
K∑

i=1

p(zi)p(u|zi)p(b|zi) (7)

where u and b are a user and a behavior, respectively. zi is the i-th intermediate
node and K is the number of latent intermediate nodes. To utilize Eq. (7), we
first need to learn the values of p(zi), p(u|zi) and p(b|zi).

To learn these values, the Expectation Maximization approach [15] is used.
In the expectation step, we find the value of p(zi|u, b) using Eq. (8).

p(zi|u, b) =
p(zi)p(u|zi)p(b|zi)∑K

j=1 p(zj)p(u|zj)p(b|zj)
(8)

Using p(zi|u, b) in the maximization step, we can update equations the prob-
ability values of p(zi), p(u|zi) and p(b|zi) using the update functions in Eqs. (9),
(10) and (11) [15].

p(u|z) =
∑

b∈Behaviors

n(u, b)p(z|u, b) (9)

p(b|z) =
∑

u∈Users

n(u, b)p(z|u, b) (10)

p(z) =
∑

b∈Behaviors

∑

u∈Users

n(u, b)p(z|u, b) (11)
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where n(u, b) is the number of times user u has shown behavior b. We use expec-
tation and maximization steps until the values of p(zi), p(u|zi) and p(b|zi) con-
verge. Algorithm 3 shows the pseudocode of building the LBA model. Using the
learnt probability values and Eq. (7), we can estimate the probability of showing
any behavior by any user.

4 Experiments

In this section, the proposed methods are evaluated on a real-world location-
based social network dataset. All recommendation methods are implemented in
Java and the experiments were conducted on a 2.3 GHz Core i5 Mac computer
with 8 GBs of RAM.

The dataset chosen for this study is collected from Gowalla. The details of
data crawler can be found in [7]. This dataset contains 5,462 users, 5,999 loca-
tions and 104,851 check-ins. In the experiments, whole dataset is first separated
into a training dataset and a testing dataset. The testing dataset contains one
randomly chosen check-in of each user, the training dataset, on the other hand,
contains all the remaining check-ins. To remove the effect of random selection,
five different testing and training dataset pairs are generated. All experiments
are performed on all five pairs of datasets and the average value is reported. In
all cases, the response time for recommendation with LBA, BF, PMM and USG
is less than 0.5 s. Since, this run time is within the acceptable range for all the
methods, we focus on the recommendation quality for the rest of this section.

4.1 Performance Measures

Precision and recall are chosen as performance measures. Precision measures the
quality of recommendation. It measures the ratio of the given recommendations
that are correct. Recall, on the other hand, measures the performance of the
location recommendation methods in retrieving the correct recommendations
by measuring the ratio of the correct answers that are covered in the set of
recommendations. Precision and Recall are calculated using Definition 5.

Definition 5. Given a set of recommended locations, the precision and recall of
the recommendation is respectively defined as:

Precision =
|RecommendedLocations ∩ CorrectLocations|

|RecommendedLocations| (12)

Recall =
|RecommendedLocations ∩ CorrectLocations|

|CorrectLocations| (13)

4.2 Comparison of the Location Recommenders

In this experiment, we compare the precision and recall of two proposed location
recommendation methods together with two of the most well-known location
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Fig. 2. (a) Precision values of locations recommenders recommending 15 locations. (b)
Recall values of locations recommenders recommending 15 locations.

recommendation methods, namely Periodic Mobility Model (PMM) proposed in
[2] and User-based CF, Social influence, Geographical influence (USG) model
proposed in [1].

Figure 2 depict the precision and recall values for each method for the case
of recommending 15 locations. As shown in Fig. 2, the proposed methods, BF
and LBA, outperform the two baseline models, i.e. USG and PMM, in terms of
precision and recall. Specifically, compared to USG, LBA improves the precision
and recall by 41% and 37%, respectively. This proves that integrating temporal
influence and utilizing similarly behaving users results in better location recom-
mendations. It is also observed that the LBA outperforms BF by 4% and 5% in
terms of precision and recall.

4.3 Performance of the Recommenders on Cold-Start Users

One of the objectives of this study is to provide better recommendations for the
cold-start users. In this section, the performance of different location recommen-
dation methods for the cold-start users is compared. To do so, a special testing
dataset is generated from Gowalla dataset. The dataset only contains 587 users
who have less than five check-ins in the training dataset. The precision of the
recommendation is only measured for those users. The precision and recall of
location recommendation methods recommending 15 locations is given in Fig. 3.

Fig. 3. (a) Precision of location recommenders on cold-start users recommending 15
locations. (b) Recall of location recommenders on cold-start users recommending 15
locations.
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Fig. 4. (a) Precision of BF and LBA location recommendation vs. number of latent
factors (b) Average run-time of BF and LBA per user vs. number of latent factors.

It is also observed that BF and LBA models are much better performing
compared to two existing models when considering the cold-start users, scoring
up to five times the precision. This is because BF and LBA utilize information
from similar users that more active. This enables us to predict unseen behaviors
of the cold-start users from the similarities they have with active users.

The figure also shows that when cold-start users are considered, the precision
of each model is less than the precision of the model when it makes recommen-
dations for all users. The reason is that the recommendation methods do not
have enough information about the cold-start users to draw correct conclusions
about their preferences.

4.4 Sensitivity of BF and LBA to the Number of Latent Factors

BF and LBA are based on latent factors, and the number of latent factors is
passed to those models as a parameter. In this experiment, the effect of number
of latent factors on the performance of the two methods is tested. The precision
of the two models using 60, 80, 100, 120, 140 and 200 latent factors is shown in
Fig. 4(a). As shown in the figure, the precision increases with the increase of the
number of latent factors, but the improvement is not significant after 100 number
of factors. With the increase of number of latent factors, the training time of the
model increases almost exponentially. As shown in Fig. 4(b), for latent factors
more than 100, the average run-time per user for both BF and LBA is greater
than half a second. Based on Fig. 4(a) and (b), we can argue that the increased
performance of increasing the number of factors beyond 100 is not enough to
justify the higher running time of training the model, thus we chose 100 as the
number of factors for training BF and LBA.

5 Conclusions and Future Works

In this paper, after a review of existing location recommendation methods, two
new location recommendation methods are proposed, namely BF and LBA.
These two methods utilize the concept of behavior proposed to build a behavior
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graph that reduces the sparsity of the check-in data and conserves the essential
behavioral information of the users. Experiments are conducted on a real-world
check-in dataset, Gowalla. The experimental results show that the proposed
methods outperform the two existing location recommendation methods of PMM
and USG. Further investigations shows that LBA is performing slightly better
than BF because it utilizes the number of check-ins in its learning method. For
the cold-start users, LBA results in precision values that are up to 5 times higher
than the base-line models. This shows that, by finding those common temporal
user behaviors we can model their spatial behaviors. The proposed models are
not dataset specific and can be applied to any check-in dataset.

Continuing the research, testing the models on different check-in datasets
especially those with higher number of check-ins will help in testing the supe-
riority of the proposed models. Additionally, further investigation of temporal
features of user check-ins might result in improved models that will lead to gener-
ation of better location recommendations. Developing more complicated spatial
models that enables the finding of user-based and temporal spatial behaviors is
also a promising path to continue this research.
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ing Research Council of Canada Discovery Grant to Xin Wang and National Natural
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Abstract. Pattern set mining is an important part of a number of data
mining tasks such as classification, clustering, database tiling, or pattern
summarization. Efficiently mining pattern sets is a highly challenging
task and most approaches use heuristic strategies. In this paper, we for-
mulate the pattern set mining problem as an optimization task, ensuring
that the produced solution is the best one from the entire search space.
We propose a method based on integer linear programming (ILP) that
is exhaustive, declarative and optimal. ILP solvers can exploit different
constraint types to restrict the search space, and can use any pattern set
measure (or combination thereof) as an objective function, allowing the
user to focus on the optimal result. We illustrate and show the efficiency
of our method by applying it to the tiling problem.

1 Introduction

Pattern mining is one of the fundamental tasks in the process of knowledge
discovery, and a range of techniques have been developed for producing exten-
sive collections of patterns. However, resulting pattern collections are generally
too large, difficult to exploit, and unstructured – without interpretable rela-
tions between patterns. This explains the interest of the community to pat-
tern sets [18]. Instead of evaluating and selecting patterns individually, pattern
sets (i.e., sets of patterns) assemble local patterns to provide knowledge from a
high-level viewpoint, using quality measures that evaluate, and constraints that
constrain, the entire set. Examples of problems related to pattern sets include
concept-learning, database tiling, data compression, or clustering, to cite a few.
However, as the number of possible pattern sets is exponential in the size of the
set of local patterns, which is itself huge, the computational efficiency of pat-
tern set mining is a very challenging task. For specific quality measures, such as
joint entropy, relatively tight upper bounds can be derived to prune candidate
sets [13]. Unfortunately, such pruning strategies are limited to very few cases. In
practice, most approaches use a step-wise strategy in which first all local pat-
terns are computed, then heuristically post-processed according to an objective
function to be optimized. Therefore only a single pattern set is returned; exam-
ples are [2,4,14,20]. Obviously this process does not ensure the optimality of
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 286–299, 2017.
DOI: 10.1007/978-3-319-57529-2 23
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the returned pattern set according to the objective function. To the best of our
knowledge, only the algorithm proposed in [18] proceeds by exhaustive search
while pruning parts of the search space by using pattern set constraints. How-
ever, these pruning effects can be weak, and the number of patterns being very
large, this method only works for small pattern collections.

In this paper, we formulate the pattern set mining problem as an optimiza-
tion task, ensuring that the produced solution is the best from the entire search
space. In a sense, we return to the spirit of the original idea of pattern set
mining [18] based on a complete method. However, we produce only the best
solution, avoiding being drowned by patterns. What’s more, we use constraint
programming (CP) techniques since CP solvers can exploit a wider range of
constraints than data mining approaches that are typically locked into a rather
rigid search strategy. Modeling constraints independently from the search strat-
egy also allows them to accomodate a variety of constraints, and therefore adapt
the resulting pattern sets to the need of the user.

The key contribution of this paper is a method based on integer linear pro-
gramming (ILP) that is (1) exhaustive, avoiding the loss of interesting solutions,
(2) declarative, allowing us to make the most of provided constraints instead
of being tied to a particular search strategy, (3) optimal, always returning the
best solution according to an optimization criterion that satisfies the given con-
straints. Any measure that can be used as a constraint in an ILP model can
also be chosen as an objective function to be optimized. This allows the user
to prioritize particular aspects of the solution. Measures to be optimized can be
combined, as long as they can be expressed as a linear term. This is once again
an advantage over traditional mining, where a change would typically require
the explicit redefinition of the search strategy. Our approach allows us to pro-
vide the first practically useful algorithm for addressing this problem setting. As
an illustration, we experimentally address the tiling problem but our approach
is broad enough to cover and leverage many pattern mining problems such as
clustering [1,5], classification [14], or pattern summarization [21].

The rest of the paper is structured as follows. Section 2 recalls preliminaries.
Section 3 describes our approach. Section 4 introduces several complex queries,
and Sect. 6 shows the results of solving queries for the k-tiling problem on dif-
ferent data sets. We discuss related work in Sect. 5.

2 Preliminaries

2.1 Local Patterns

Let I be a set of n distinct items, an itemset (or pattern) is a non-null subset of
I. The language of itemsets L corresponds to 2I \ ∅. A transactional dataset D
is a multi-set of m itemsets of L, with each ti, 1 ≤ i ≤ m called a transaction.
We assume the database D is represented as a binary matrix of size n × m with
Dti = 1 ↔ (t, i) ∈ D.

Let D a database, φ ∈ L be a pattern, and match : L × L �→ {true, false}
a matching operator. The cover of φ w.r.t D, denoted by cov(φ,D), is the set of
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transactions in D that φ matches: cov(φ,D) = {t ∈ D | match(φ, t) = true}. The
support of φ is the size of its cover: sup(φ,D) = |cov(φ,D)|. The tile of a pattern
φ contains all tuples that are covered by the pattern: tile(φ,D) = {(t, i) | t ∈
cover(φ,D), i ∈ φ}. These tuples form a tile or rectangle of 1’s in the database D.
The area of tile(φ,D) is equal to its cardinality: area(φ,D) = |tile(φ,D)| = |φ| .
sup(φ,D).

A pattern φ is said to be more general than a pattern ψ (φ � ψ) (resp., ψ
is more specific than φ) iff ∀t ∈ L : match(ψ, t) ⇒ match(φ, t), i.e. if ψ matches
any transaction t then φ matches it as well. A pattern φ is strictly more general
than a pattern ψ (φ ≺ ψ), if φ � ψ and ¬(ψ � φ).

The local pattern mining problem consists of finding a theory Th(L,D, q) =
{φ ∈ L | q(φ,D) is true}, where q(φ,D) a selection predicate that states the con-
straints under which the pattern φ is a solution w.r.t. the database D. A common
example is the minimum support constraint sup(φ,D) ≥ θ, which is satisfied by
all patterns φ whose support in the database D exceeds a given minimal thresh-
old θ. Combined with L, this gives rise to the frequent itemset mining problem.
An exact condensed representation of the frequent itemsets consists of the closed
patterns [17]. A closed pattern is one whose specializations have a smaller cover
than the pattern itself: closed(φ) ⇔ ∀ψ, φ � ψ : cov(ψ) ⊂ cov(φ).

2.2 Pattern Set Mining

Pattern sets are simply sets of patterns. The task of pattern set mining entails dis-
covering a set of patterns that satisfies a set of constraints involving not only indi-
vidual patterns, as in the local patternmining setting, but thewhole set of patterns.
Hereafter, we will denote by L the set of all the possible pattern sets that can be
enumerated given a language L, i.e., L = 2L. The individual/local patterns occur-
ring in a pattern set will be denoted using lower case characters such as φ, . . . , ψ
and for patterns sets, we will employ upper case characters such as Φ, . . . , Ψ .

More formally, the problem of pattern set mining can be formulated as the
problem of computing the theory Th(L,D, p) = {Φ ∈ L | p(Φ,D) is true}, where
p(Φ,D) a selection predicate that states the constraints under which the pattern
set Φ is a solution w.r.t. the database D. In addition, as the number of pattern
sets can become very large, we will study how to find the best pattern set with
respect to an optimisation criterion f(Φ), i.e. argmaxΦ∈Th(L,D,p)f(Φ). In classical
pattern set mining, this is achieved by dynamically increasing the threshold of the
constraint involving f . When using the ILP framework (see Sect. 3), this can be
achieved by using f as an objective function to guide the search.

2.3 Categories of Constraints

This section discusses several categories of constraints that can be specified at
the level of the pattern set as a whole.
Coverage Constraints deal with defining and measuring how well a pattern
set covers the data. Let Φ ∈ L be a pattern set and D a database,
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– Pattern set cover. The cover of Φ, denoted as cov(Φ,D), is the set of transac-
tions in D that Φ covers: cov(Φ,D) =

⋃
φ∈Φ cov(φ,D). With this definition,

Φ is interpreted as the disjunction of the individual patterns φ it contains.
– Support of pattern set. The support of Φ, denoted as sup(Φ,D), is calculated

in the same way as for individual patterns: sup(Φ,D) = |cov(Φ,D)|.
– Size of pattern set. The size of Φ, denoted as size(Φ), is the number of patterns

that Φ contains: size(Φ) = |Φ|.
– Area of pattern set. The area of a pattern set was studied in the context of

large tile mining [6]. The area of Φ, denoted as area(Φ,D), is defined as the
area of all the tiles of the individual patterns φ it contains: area(Φ,D) =
|⋃φ∈Φ tile(φ,D)|.

– Generality of pattern set. A pattern set Φ is more general than a pattern set
Ψ , denoted as Φ � Ψ , iff for all pattern ψ ∈ Ψ , there exists a pattern φ ∈ Φ
s.t. φ � ψ.

Discriminative Constraints. Given a database D organized into possibly over-
lapping subsets D1, . . . ,Dn ⊆ D, the discriminative constraints can be used to
measure and optimize how well a pattern set discriminates between examples
of subsets Di. Discriminative measures are typically defined by comparing the
number of examples covered by the pattern set for a subset Di, to the total
number of examples covered in D.

– Representativeness of a pattern set. Representativeness indicates how char-
acteristic the examples covered by the pattern set are for a subset Di.
rep(Φ,Di,D) = sup(Φ,Di)/sup(Φ,D).

– Accuracy of a pattern set. Let a dataset D partitioned into subsets D1, . . . ,Dn,
where each subset Di contains transactions from class i. The accuracy of
a pattern φ is defined as acc(φ) = maxDi∈D sup(φ,Di)

sup(φ,D) . The accuracy of an
entire pattern set is harder to quantify. We can however approximate it as
acc(Φ) =

∑
φ∈Φ acc(φ)×sup(φ,D)
∑

φ∈Φ sup(φ,D)

Redundancy Constraints can be used to constrain or minimize the redun-
dancy between different patterns. One way to measure this redundancy is to
count the number of transactions covered by multiple patterns in the pattern
set Φ:

red(Φ,D) = |{t ∈ D | ∃(φ, ψ) ∈ Φ, t ∈ ovlp(φ, ψ,D)}|, where ovlp(φ, ψ,D) =
cov(φ,D) ∩ cov(ψ,D) denotes the overlap between the two patterns φ, ψ [18].

3 Mining Pattern Sets Using ILP

Throughout the remainder of this paper we employ the Integer Linear Program-
ming (ILP) framework for representing and solving pattern set mining prob-
lems. ILP [15] is one of the most widely used methods for handling optimization
problems, due to its rigorousness, flexibility and extensive modeling capability.
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This framework has been shown (1) to allow for the use of a wide range of con-
straints, (2) to offer a higher level of problem formalization and modeling, and
(3) to work for conceptual clustering [16]. Moreover, modern ILP solvers are very
efficient with improved search heuristics.

3.1 Resolution Approach

Finding a good pattern set is often a hard task; many pattern set mining tasks
and their optimization versions, such as the k-tiling [6] or the concept learning
[11], are NP-hard. Hence, there are no straightforward algorithms for solving
such tasks in general, giving rise to a wide ranges of approaches (Two-step vs
one-step) and search strategies (Exact vs heuristic). In this paper, we adopt a
two-step approach:

(i) A local mining step mines the set of local patterns Th(L,D, q) that satisfy
a set of constraints.

(ii) An ILP mining step post-processes these patterns with the ILP exact solv-
ing technique to obtain the best pattern set in Th(L,D, p) under the given
constraints.

Our motivation for adopting a two-step approach is two-fold: First, there
exist efficient miners [22] to find local patterns. Second, in the second step, the
formulated ILP model (see Sect. 3.2) is very close to the well known partitioning
(and covering) problems which are extensively studied within the integer pro-
gramming community [10]. Modern ILP solvers, such as Cplex [8], are efficient
on such problems. Our ILP model is detailed in the next section.

3.2 ILP Models

This section presents the ILP model of a pattern set, and the ILP formulations
for constraints presented in Sect. 2.3.

Modeling a Pattern Set. Let P be the set of � patterns. Hence, the pattern set
mining problem can be modeled as an ILP using � boolean variables xp(p ∈ P),
where (xp = 1) iff the pattern p belongs to the unknown pattern set Φ that we
are looking for.

Coverage Constraints. Let D be a database with m transactions. We intro-
duce m boolean variables yt, (t ∈ D) such that (yt = 1) iff there exists at least one
pattern φ ∈ Φ such that pattern φ matches t. So, we have sup(Φ,D) =

∑
t∈D yt.

With some given threshold θ, the coverage constraint (Cθ,≶
cov ) is defined on such

boolean variables. Table 1 shows the formulation of the coverage constraints.
Constraints Cx,y establish the relationship between variables x and y, and state
that each transaction t must belong to at most |P| patterns. Note that (yt = 0)
iff there exists no pattern φ ∈ Φ such that the pattern φ matches t.

Let (at,p) be an m × � binary matrix where (at,p = 1) iff match(p, t) = true,
i.e., the pattern p matches the transaction t. For the area constraint, we need to
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compute the number of ones in the binary matrix that are covered by the set of
patterns. We can model this by introducing a temporary variable qt,i for every
tuple (t, i), such that (qt,i = 1) iff there exists at least one tile (pattern) φ ∈ Φ
such that t ∈ cover(φ,D) and i ∈ φ. Let cqp

t,i be a binary matrix associated
to each pattern p where (cqp

t,i = 1) iff p covers both transaction t and item i.
Constraints (Cx,q) establish the relationship between variables q and x.

Let Φ0 a given pattern set. We model the generality constraint (CΦ0
gen) as

follows: (Φ � Φ0) iff for any pattern φ ∈ Φ0, there exists (at least) one pattern
p ∈ Φ s.t. p � φ, i.e. xp = 1. For the specialisation constraint (CΦ0

spe), (Φ0 � Φ) iff
for any pattern p ∈ Φ, there exists (at least) one pattern φ ∈ Φ0 s.t. φ � p. ”For
any pattern p ∈ Φ” is modeled by stating that the number of patterns p ∈ Φ
verifying the property must be greater or equal to size(Φ) =

∑
p∈P xp.

Handling Aggregates. Table 1 shows how constraints involving aggregates (e.g.
sum, avg, min, max) can be modeled using ILP. For example, the constraint

Table 1. ILP formulations of constraints discussed in Sect. 2.3.

Constraint name Notation ILP formulation

(C
θ,≶
size) size(Φ) ≶ θ

∑

p∈P
xp ≶ θ

(Cθ,≶
cov )

(Cx,y)
sup(Φ, D) ≶ θ

∑

t∈D
yt ≶ θ

yt ≤
∑

p∈P
at,p · xp ≤ |P| · yt, ∀t ∈ D

(Cθ,≶
area)

(Cx,q)
area(Φ, D) ≶ θ

∑

i∈I,t∈D
qt,i ≶ θ

qt,i ≤
∑

p∈P
cqp

t,ixp ≤ |P| . qt,i, ∀t ∈ D, ∀i ∈ I

(CΦ0
gen) Φ � Φ0

∑

{p: ∀p∈P | p�φ}
xp ≥ 1, ∀φ ∈ Φ0

(CΦ0
spe) Φ0 � Φ

∑

{p: ∀p∈P | ∃φ∈Φ0, φ�p}
xp ≥

∑

p∈P
xp

(C
θ,≶
redd)

(Cx,u)
red(Φ, D) ≶ θ

∑

t∈D
ut ≶ θ

2ut ≤
∑

p∈P
at,pxp ≤ yt + |P| . ut, ∀t ∈ D

(Cθ,≶,Di
rep )

(Cx,y′)
rep(Φ, Di, D) ≶ θ

∑

t∈Di

y′
t ≶ θ ×

∑

t∈D
yt

y′
t ≤
∑

p∈P
at,p · xp ≤ |P| · y′

t, ∀t ∈ Di

(C
θ,≶
avg ) avg(sup(Φ, D)) ≶ θ

∑

p∈P
fp · xp − θ

∑

p∈P
xp ≶ 0

(C
θ,≶
sum) sum(sup(Φ, D)) ≶ θ

∑

p∈P
fp · xp ≶ 0
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(Cθ,≶
sum) expresses that the sum of the supports over all patterns in Φ should be

≶ than θ. It can be modeled using a linear constraint, where fp is the support
value of a local pattern p. Similarly, we can constraint the average taken over all
patterns in Φ (Cθ,≶

avg ).

Redundancy Constraints. To deal with redundancy, we need to know trans-
actions that are multiply covered. Thus, we introduce boolean variables (ut), (t ∈
D) s.t. (ut = 1) iff transaction t is matched by at least 2 patterns. The total
number of such transactions is

∑
t∈D ut. Table 1 gives the modelisation of the

redundancy constraint (Cθ,≶
redd), while constraints (Cx,u) establish the relation-

ship between intermediate variables (u and y) and decision variables x.
Our definition of redundancy is similar to that proposed in [19] yet differ-

ent from the (pairwise) redundancy proposed in [18]. The latter was adopted
mainly due to its effectiveness for pruning in a level-wise mining algorithm. The
differences between the two formalizations of redundancy are briefly sketched
here.

Fig. 1. Three patterns overlapping

Consider the three cases of overlapping patterns shown in Fig. 1. The num-
bers in overlapping areas denote the number of transactions in the overlap. All
three cases would be considered the same by a constraint measuring the maximal
pairwise overlap between patterns, such as used in [18]. The global redundancy
measure we employ evaluates to 6 for case (a), 9 for case (b), and 11 for case (c),
capturing the actual situation much better. Notably, summing pairwise redun-
dancies, another option proposed in that paper, will lead to a result of 15 for
(c), overstating the redundancy. For this reason, we claim that our modelisation
is more appropriate than the one chosen in [18].

Representativeness Constraints. Let Di ⊆ D be a partial data set. We
introduce |Di| extra boolean variables y′

t, (t ∈ Di) such that (y′
t = 1) iff there

exists at least one pattern φ ∈ Φ such that pattern φ matches t. The modelisation
of the representativeness constraint (Cθ,≶,Di

rep ) is shown in Table 1. Constraints
(Cx,y′) establish the relationship between variables (y′

t) and (xp).
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4 Queries and How to Model Them

This section provides three examples of complex queries and shows how to model
them as a combination of constraints presented in Sect. 2.3.

As a first query (Q1), we show the quintessential pattern set mining task:
given the result of a local pattern mining operation, we aim to find a (relatively)
small subset of patterns that is representative of the entire result. To this end,
we want to select patterns that have very little overlap and together cover as
much of the data as possible. There are two ways of modeling this query as an
ILP problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Maximize
∑

t∈D yt

(C
θ,≤
redd)

(Cx,y,u)
xp ∈ {0, 1}, ∀p ∈ P
yt ∈ {0, 1}, ut ∈ {0, 1}, ∀t ∈ D

(1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Minimize
∑

t∈D ut

(Cθ,≥
cov )

(Cx,y,u)
xp ∈ {0, 1}, ∀p ∈ P
yt ∈ {0, 1}, ut ∈ {0, 1}, ∀t ∈ D

(2)

(1) maximize support (z =
∑

t∈D yt) subject tomaximumredundancyconstraints;
(2) minimize redundancy (z =

∑
t∈D ut) subject tominimumsupport constraints.

Constraints (Cx,y) and (Cx,u) governing the new variables u and y can be
merged and will be denoted as the following linear constraints (Cx,y,u): yt +ut ≤∑

p∈P at,pxp ≤ yt + |P| . ut, yt ≥ ut,∀t ∈ D
Our second query (Q2) is a refinement of the first one, by imposing a gen-

erality constraint. For instance, we aim to summarize a set of subgraphs mined
from molecular data, so that a non-data miner, e.g. a chemist, has only a small
set of fragments to evaluate. In that case, the practitioner might already have an
idea what fragments she would like to see, and wants to see the rest fleshed out.
This can be achieved by requiring that a pattern set include a particular pattern
(or syntactically related patterns), i.e. that is more general than another one. In
the ILP case as well, this just requires a generality constraint to be added.

Our last query (Q3) concerns the k-tiling. The task consists of finding k
tiles maximizing the area (z =

∑
t∈D,i∈I qt,i). Equation (3) depicts our first ILP

model M1. The number of tiles k can also be defined as a variable whose value
will be determined by the ILP solver. This can be done by specifying a lower
bound kmin and/or an upper bound kmax on the value of k. Note that tiles can
be overlapping, but every tuple (t, i) covered is only counted once. This encoding
requires (n×m+2) constraints and ((n×m)+ �+1) variables. This constitutes
a major limitation when it comes to handling very large databases. Thus, we
propose a second ILP model M2 that approximates the k-tiling by summing the
areas vp (p ∈ P) of the individual tiles it contains. In this case, each tuple (t, i)
covered may be counted more than once.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
∑

t∈D,i∈I qt,i

(Cx,q)
k =

∑
p∈P xp

kmin ≤ k ≤ kmax

k ∈ N,
xp ∈ {0, 1},

p ∈ P
qi,t ∈ {0, 1},

i ∈ I ∧ t ∈ D

(3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Maximize
∑

p∈P vp . xp

(1) yt ≤∑p∈P at,p . xp ≤ δo . yt, ∀t ∈ D
(2)

∑
t∈D yt ≥ θt

(3) zi ≤∑p∈P wi,p . xp ≤ γo . zi, ∀i ∈ I
(4)

∑
i∈I zi ≥ θi

k =
∑

p∈P xp

kmin ≤ k ≤ kmax

k ∈ N,
xc ∈ {0, 1}, c ∈ P
yt ∈ {0, 1}, t ∈ D
zi ∈ {0, 1}, i ∈ I

(4)

Equation (4) depicts our second ILP model M2. It consists of finding a set of
tiles covering both the set of transactions and the set of items, with small overlaps
on transactions and on items. In this way, we allow to control the redundancy
on tuples (t, i) that are multiply counted in the tiling. Constraint (2) states that
at least θt transactions must be covered, while Constraint (1) states that each
transaction t cannot occur in more than δo closed patterns. Let wi,p be an n × �
binary matrix where (wi,p = 1) iff the item i belongs to the tile or pattern p.
Constraint (4) states that at least θi items must be covered, while Constraint (3)
states that each item i cannot occur in more than γo tiles. In the experimental
section, due to the space limitation, we focus on questions related to the k-tiling
problem.

5 Related Work

Pattern set mining is an important part of a number of data mining tasks such
as classification [14], clustering [1,5], pattern summarization [21], or database
tiling [6]. Due to the highly combinatorial nature of the problem, most methods
proceed in two phases. First, an exhaustive algorithm generates the whole collec-
tion of local patterns satisfying given constraints and the second phase produces
pattern sets by selecting smaller subsets of relevant patterns from the whole
collection of local patterns, often by using heuristics to manage computational
complexity. Unlike these works, our method does not use heuristics to provide
a pattern set but relies on a solid formalization in the ILP paradigm, while the
search is guided by the optimization of an objective function.

There are very few attempts on searching pattern sets according to complete
approaches. The original idea of pattern set mining was proposed in [18]. The
authors formally introduce a variety of constraints at the level of the pattern
sets. Unfortunately, the pruning techniques are weak and the algorithm remains
limited to small collections of patterns. Specific settings have been proposed
by [13] (fixing the size of pattern sets and relying on the anti-monotonicity of
a particular quality function) or [3] (using a dedicated global constraint on the
attributes). The approach in [6] is heuristic but does not use post-processing,
instead iteratively mining tiles, taking already found ones into account.

The constraint programming framework was investigated to accomplish the
pattern set mining task by modeling pattern sets with constraints [7,12]. How-
ever, these methods require to fix the number of local patterns included in a



Integer Linear Programming for Pattern Set Mining 295

pattern set, a strong limitation in practice, and tend to have scaling problems.
Recent contributions also employ more specialized systems such as satisfiabil-
ity solvers [9] and integer linear programming techniques [1,16]. These meth-
ods address particular problem settings whereas we propose a declarative and
exhaustive method based on ILP returning the best solution according to an
optimization criterion, and which is able to handle a wide variety of constraints
and therefore various different pattern set mining tasks.

6 Experiments

For a better understanding of the suitability of the ILP approach, we focus our
experiments on one prototypical task for pattern set mining: the k-tiling problem
(NP-Hard). The experimental evaluation is designed to address the following
questions:

1. How do the running times of our approach (ILP) compare to the only exist-
ing CP approach, proposed by Guns et al. (KPatternSet), for the k-tiling
problem?

2. Given the space requirements of the ILP model M1, how do the obtained k-
tilings compare qualitatively with those resulting from the (approximating)
ILP model M2?

3. In light of the exact nature of our approach, how do the resulting k-tilings
compare qualitatively with those resulting from (k-LTM) [6].1

4. How do the k-tilings with overlapping tiles compare qualitatively with those
having non-overlapping tiles?

Experimental Protocol. Experiments were carried out on the same datasets
which were used in [7] and available from the UCI repository. Table 2 shows
the characteristics of these datasets. All experiments were conducted on AMD
Opteron 6174 with 2.60 GHz of CPU and 256 GB of RAM.2 We used closed
patterns to represent tiles since they cover a larger area than their non-closed
counterparts. We used LCM to extract the set of all closed patterns and CPLEX
v.12.4 to solve the different ILP models. For all methods, a time limit of 24 h
has been used. As M2 requires setting the parameters for the coverage and non-
overlap relations, we propose the following three settings :

– M2a with settings allowing similar amounts of coverage and overlap as k-LTM;
– M2b with settings allowing the coverage of all transactions (θi = m) with the

maximum overlap (δ0 = |P|) and the coverage of at least one item (θi = 1)
without any overlap for items (γ0 = 1);

– M2c with settings allowing the coverage of all transactions (θi = m) without
any overlap (δ0 = 1) and the coverage of at least one item (θi = 1) with the
maximum overlap for items (γ0 = |P|).
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Table 2. Comparing the different approaches. (TO: TimeOut; - : no solution ; (1):
ILP-M1; (2): ILP-M2a; (3): ILP-M2b; (4): KPatternSet; (5): k-LTM).

To assess the quality of a k-tiling Φ, we define the recall of Φ, measured by
the fraction of all ones in the binary matrix D belonging to area(Φ,D), which
should be as large as possible: recall(Φ, D) =

∑
(t,i)∈area(Φ,D) Dti
∑

t

∑
i Dti

.

(a) Comparing ILP-M1 with KPatternSet. Table 2 compares the performance
compares of ILP-M1 and KPatternSet(in terms of CPU-times) for various
values of k on different datasets. We also report the corresponding value of
recall. The CPU-times of ILP-M1 include those for the preprocessing step.
ILP-M1 clearly outperforms KPatternSet on all datasets: KPatternSetgoes
over the timeout for k ≥ 4. For the value of k for which an optimal k-
tiling can be found, ILP-M1 is up to several orders of magnitude faster than
KPatternSet.

(b) Comparing M1 with M2a and M2b. ILP-M1 finds the optimal solution on
most of the datasets, but ILP-M2a remains relatively close in terms of recall,
particularly for (k ≤ 5). In addition, ILP-M2a is much faster, particularly on
Lymph and Vote (speed-up of up to 660). The main limitation of M1 remains
its space requirement. For the three most difficult datasets – Mushroom,
Hepatitis and Anneal – ILP-M1 fails to find a solution. Comparing ILP-M2a
with ILP-M2b, the latter shows clearly higher recall for Hepatitis, Primary

1 We use the implementation available at https://people.mmci.uni-saarland.de/
∼jilles/prj/tiling/.

2 The k-LTM implementation is Windows-only, and run times therefore only roughly
indicate its behavior.

https://people.mmci.uni-saarland.de/~jilles/prj/tiling/
https://people.mmci.uni-saarland.de/~jilles/prj/tiling/
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Table 3. Qualitative comparison. ((3): ILP-M2b; (3’): ILP-M2c; (5): k-LTM).

Tumor and Vote. This is because ILP-M2b allows overlapping tiles with high
redundancy (see Table 3). In addition ILP-M2b is faster than ILP-M2a on 51
instances (out of 64) with a speed-up between 1 and 4 for 27, and between
7 to 25 for 9 instances. Note that on Mushroom dataset, no k-tiling exists
with M2b. These results show that ILP-M2a and ILP-M2b achieve good recall
compared to ILP-M1 with less space requirement, hence the interestingness of
using ILP-M2b as a faster alternative for approximating the optimal k-tiling.

(c) Comparing ILP with k-LTM. k-LTM differs from our approach in three
points: (1) using a heuristic is faster but may lead to suboptimal solutions,
(2) mining iteratively, k-LTM can take information about already found tiles
into account, and (3) a k-LTM k + 1-tiling will always be a superset of a
k-tiling – ILP can find different solutions. As Table 2 shows, ILP-M1 always
achieves better recall than k-LTM, yet requires more time to find the optimum,
(k-LTM running times are shown in the last column). For the most difficult
dataset Anneal, neither method find a solution. Comparing ILP-M2b with
k-LTM, k-LTM has a slight advantage (three data sets). While complete search
beats iterative mining, it does help gaining an advantage over heuristic post-
processing.

(d) Comparing M2c with M2b and k-LTM. In our last experiment, we mine k
tiles without any overlap (i.e. M2c) and compare them to those resulting from
M2b and k-LTM. Table 3 shows four distinct cases of recall and redundancy for
the three approaches. Col. 4 reports the redundancy of the k-tiling measured
by red(Φ,D)/sup(Φ,D). Col. 5 (resp 6) denotes the percentage of redundant
(resp. covered) items. Generally, ILP-M2b and k-LTM achieve higher recall
than ILP-M2c. This is not surprising as the tilings found by ILP-M2b consist of
large, transaction-overlapping tiles, contrary to those of ILP-M2c (see Col. 4).
ILP-M2c makes up for this by covering more items than the other approaches,
and mining item-overlapping tiles. This tuning of output characteristics is a
strength of the declarative approach.
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7 Conclusion

Pattern set mining has become an indispensable data mining task to control the
overly large result sets of local pattern mining operations. In this work, we have
for the first time presented a practically useful approach that retains the rich-
ness of the constraint language of the original pattern set mining approach [18].
Our method is declarative, based on the techniques developed in ILP, allowing
to choose particular (combinations of) pattern set measures as objective func-
tions to be optimized. This permits the user to prioritize particular aspects of a
pattern set, while constraining others. Existing ILP solver guarantee to return
the best pattern set, according to the given optimization criterion, that satisfies
a user-defined set of constraints. Experiments have illustrated and shown the
efficiency of our approach through the example of the tiling problem but our
approach is broad enough to cover and leverage many pattern mining problems
such as clustering, classification, or pattern summarization. The flexibility of
our approach is clearly a major step towards developing the interactive data
mining systems that are requested in data science. Having defined this frame-
work, further work will consist of properly specifying the models corresponding
to different data mining tasks. It will be necessary to formulate new constraints
and models, and fine-tune them to achieve best results. We also plan to exploit
column generation techniques to enhance the scalability of our solving step.
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Abstract. With the large deployment of smart devices, the collections
and analysis of user data significantly benefit both industry and peo-
ple’s daily life. However, it has showed a serious risk to people’s pri-
vacy in the process of the above applications. Recently, combining mul-
tiparty computation and differential privacy was a popular strategy to
guarantee both computational security and output privacy in distrib-
uted data aggregation. To decrease the communication cost in traditional
multiparty computation paradigm, the existing work introduces several
trusted servers to undertake the main computing tasks. But we will lose
the guarantee on both security and privacy when the trusted servers
are vulnerable to adversaries. To address the privacy disclosure problem
caused by the vulnerable servers, we provide a two-layer randomisation
privacy preserved data aggregation framework with semi-honest servers
(we only take their computation ability but do not trust them). Differing
from the existing approach introduces differential privacy noises globally,
our framework randomly adds random noises but maintains the same dif-
ferential privacy guarantee. Theoretical and experimental analysis show
that to achieve same security and privacy insurance, our framework pro-
vides better data utility than the existing approach.

Keywords: Differential privacy · Secured Multiparty Computation ·
Data aggregation

1 Introduction

The application and development of Internet of Thing (IoT), such as Radio
Frequency Identification (RFID) and wireless sensor networks, have a greatly
positive impact on the way we live in the recent decades [6]. For example, the
modern recommender systems provide us the accurate recommendations by col-
lecting and analysing our profiles, shopping histories, visited locations, and other
users who have similar preference with us.

In many real-life applications of IoT, the source data are distributed in
different entities. To learn some important insights (such as statistics, pat-
terns/relationships, global/local optimised solutions) from the distributed data,
we hope to create a joint computation over the distributed source data from
c© Springer International Publishing AG 2017
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each entity. Such joint computation brings two main privacy challenges: compu-
tational security, output privacy [12]. Specifically, the computational security is
to guarantee that every computational entity only learns the knowledge which
can be learned from the computation outputs [8]; while, the output privacy
is to decrease the probability of inferring user’s privacy from the computation
outputs.

To ensure computational security, the techniques to achieve Secure Multi-
party Computation (SMC or MPC) [12] paradigm are the most famous ones.
Generally, SMC allows multiple parties jointly compute a function over each
party’s private data without a trusted third party, while each party is oblivi-
ous to other parties’ private inputs. After thirty years development, there are
a number of famous techniques to ensure the requirements of SMC, such as
Secret sharing, Oblivious Transfer (OT), Zero-knowledge proof, and Homomor-
phic encryption [2]. However, SMC is vulnerable to inference on explicit output.
Because the final output of SMC has no difference with the corresponding non
privacy preserving computation, adversaries can still infer people’s privacy based
on the explicit output and their auxiliary information.

To achieve the output privacy, some popular techniques (data perturbation)
in the research field include data randomisation [3] and data anonymisation [16],
which perturb the original data to satisfy a required privacy preservation assur-
ance. Among all the techniques of data randomisation and anonymisation, Dif-
ferential privacy [3] is the most powerful one because of its strongest assumption
on adversary’s background knowledge and its ingenious settings of the privacy
budget ε for the trade-off between data utility and privacy. However, differential
privacy cannot provide any computational security assurance in a distributed
environment.

Since both SMC and differential privacy cannot address the above two pri-
vacy challenges independently, a straitforward way will be combining SMC and
differential privacy. Currently, a lot of researchers have applied the combination
of SMC and differential privacy scheme into privacy preserving data aggrega-
tion [1,4–6,12,13,15]. Particularly, in [5,12], the schemes worked on a full con-
nected network, which will result in a very high communication cost. While, in
[1,5,6,12,13,15], the schemes assumed the computation entities are semi-honest,
which will disclose a specific user(entity)’s privacy when there is a collusion of the
other n − 1 entities (malicious adversaries). [4] addressed the problems of mali-
cious adversaries and high communication cost by introducing several trusted
computation servers which undertake the main computation task. However, once
the trusted servers are vulnerable to adversaries, user’s privacy will be in a clear
risk of privacy leaking.

Contributions. In this paper, basically, we enhance the classic techniques of
SMC paradigm with differential privacy, which provides the privacy preserving
data analysis on private data from distributed data curators against malicious
adversary with semi-honest (rather than honest in the existing work) servers in
lower communication complexity. The main contributions are listed below:
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– We provide a new privacy preserving data aggregation scheme which keeps
the advantages of the existing work (secure, privacy preservation, and low
communication cost) but addresses the privacy disclosure problem caused by
the trusted computation server, and improves the data utility under the same
privacy and security guarantee.

– We provide a theoretical evaluation to analyse the performance of privacy, and
utility on our privacy preserving data aggregation.

– We provide an experimental evaluation to analyse the performance of data
utility across various experimental settings.

Organisation. The rest of this paper is organised as follows: In Sect. 2, we dis-
cuss the existing hybrid privacy preserving methods (combination of SMC and
differential privacy) on data aggregation for both advantages and disadvantages.
Next, in Sect. 3, we will give a brief introduction on the preliminaries of this
paper. Then we propose our novel privacy preserving data aggregation scheme
which addresses the privacy disclosure problem in existing work in Sect. 4. After-
wards, in Sect. 5, we provide the experimental evaluation on the existing work
and our framework. Finally, in Sect. 6, we conclude this paper.

2 Literature Review

In this section, we briefly summarise both the advantages and disadvantages
of the current work on privacy preserving data aggregation by combining SMC
and differential privacy. Basically, the SMC paradigm is mainly applied in the
joint computation when sharing private data with other data curators, which
guarantees the security of computation. While, differential privacy is usually
used for preserve the privacy leaking from the computation output.

Rastogi et al. [13] proposed the first schemes to ensure a private data aggre-
gation, with the combination of SMC and differential privacy, named PASTE.
Particularly, PASTE follows a simple idea: locally, each party adds differential
privacy noise, then encrypts the privacy preserved data; the trusted aggrega-
tor sums up all parties’ encrypted data then transfers it back to each party;
the parties decrypt the message and add differential noise again, then send the
updated value to aggregator; finally, the aggregator calculates the mean of the
values from the parties as the final output. This method guaranteed the com-
putational security and output privacy together against semi-honest adversary.
Unfortunately, a collusion of n − 1 parties will easily infer the victim’s privacy.

Ács et al. [1] proposed an addition-based encryption scheme. By apply-
ing Diffie-Hellman key exchange protocol, two entities will jointly generate the
encryption keys together. The tricky in this scheme is that the summation of
the keys in each pair is 0, which guarantees the low noise added into the orig-
inal data. Every entity keeps r encryption keys which are paired with the keys
in other r entities. As a result for summation function, all encryption keys are
summed up, they cancel out and no decryption is necessary [7]. This method
successfully decreased the total noise added into the overall summation; how-
ever, since the noise added to each party’s private input is not enough, if n − 1
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parties work together (minus their sum from the overall output), they can figure
out the victim’s private information with high probability.

Shi et al. [15] proposed a scheme which requests a set of computation entities
to send encrypted and noise added private data to a semi-honest data aggregator
periodically. The data aggregator in this scheme can only learn the answer to
a query but nothing else because of the security guarantee by homomorphic
encryption in each period. This method is similar to the method in [13] but
without the last two steps (so more efficient than [13]). However, [15] achieved
a (

∑
i εi, δ)-Differential Privacy with a global sensitivity, which means a poor

privacy guarantee because of the large value of the overall privacy budget and
the use of global sensitivity.

Goryczka et al. [6] provided an enhanced scheme to [15], where a fault tol-
erance algorithm was added. In [6], if all neighbours of a party i faulted, then
sending the recovery key to the aggregator would reveal the contributed value
xi. Therefore, the party subtracts xi from the recovery key, which will remove
it from the aggregated result as well. That is, in an extreme case, this method
will not guarantee any utility of the final aggregation output.

Eigner et al. [4] proposed a method which works with trusted computation
servers, called PrivaDA, which inspired our work. Different from [15], to enhance
the data utility while preventing any inference from the final output, PrivaDA
introduced more servers which generated the noise for each participants. Between
the computation servers and the participants, Shamir secret sharing scheme wass
applied. However, since the participants send encrypted original data to the
computation servers, once these trusted servers are hacked, we will lose all the
privacy guarantee.

Elahi et al. [5] applied secret sharing scheme to guarantee the privacy of each
party’s original data among several servers. Then the privacy preserved data will
be aggregated at a trusted server by simple summation. This method works in a
full graph network, then there will be a O(n2) communication complexity which
is worse than all of the above schemes.

Pettai et al. [12] provided a new method where random sampling was intro-
duced. This method firstly applied secret sharing scheme to share partial inputs
with all involved parties. Then each party returns its local output with a fixed
threshold to avoid leaking the real output. Finally, all parties aggregate the
output for the final result. This method is stronger in privacy preserving; how-
ever, the network model is a full connected network, that is, the communication
complexity will be O(n2) when sharing any messages in this network.

3 Preliminaries

The notion of privacy is important to a privacy preserving algorithm, as it offers
the standard to evaluate whether a(n) algorithm/scheme/framework is privacy
preserved. In this section, we will introduce two notions of privacy mentioned in
Sect. 1 briefly: Secure Multiparty Computation and Differential Privacy.
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Secure Multiparty Computation. Secure Multiparty Computation (SMC
or MPC) is also known as Secure Function Evaluation (SFE), which is firstly
and formally introduced by Andrew Yao [2]. Originally, SMC concerns the ques-
tion: Can multiple parties jointly compute a function over their own private
data while ensuring no party learns others’ private data after the computation?
More generally, SMC requires that a secure computation only allows to learn
knowledge from the computation output. There are several classic techniques to
achieve SMC: secret sharing, homomorphic encryption, oblivious transfer, and
zero-knowledge proof [2]. In this paper, we mainly use secret sharing as the SMC
technique to ensure the computational security.

Shamir [14] firstly invented a secret sharing scheme, that is, a secret curator
splits his/her secret value x into n parts: x1, x2, . . . , xn, then shares xi with partici-
pants i. The secret can be recovered only when k out of n xis are collected together,
where k is a sufficiently large number to n. Therefore, the secret sharing guaran-
tees that if the n computation entities do not cooperate to cheat the system, the
secret value x will be secure in the computation process.

Differential Privacy. Differential privacy is one of the most popular notion of
privacy in current research field of data randomisation [8,9], which was firstly
introduced and defined by Dwork et al. [3]. Informally, differential privacy is a
scheme that minimises the sensitivity of output for a given statistical operation
on two neighbouring (differentiated in one record to protect) datasets. Specifi-
cally, differential privacy guarantees the presence or absence of any record in a
database will be concealed to the adversary.

In differential privacy, the basic setting is a pair of neighbouring dataset X
and X ′, where X ′ contains the information of all the entries except one record
in a database X. A formal definition of Differential Privacy is shown as follow:

Definition 1 (ε-Differential Privacy [3]). A randomised mechanism T is ε-
differential privacy if for all neighbouring datasets X and X ′, and for all outcome
sets S ⊆ Range(T ), T satisfies:

Pr[T (X) ∈ S] ≤ exp(ε) · Pr[T (X ′) ∈ S]

where ε is the privacy budget.

The privacy budget ε is set by the database curator. Theoretically, a smaller
ε denotes a higher privacy guarantee because the privacy budget ε reflects the
magnitude of difference between two neighbouring datasets.

There are two main applications of the randomised mechanism T : the Laplace
mechanism [3] and the Exponential mechanism [11]. The Laplace mechanism
adds random noise with Laplace distribution in the result/process of numeric
computation, while the exponential mechanism introduces a score function
q(X,x) which reflects how appealing the pair (X,x) is, where X denotes a
dataset, x is the respond. In this paper, we mainly use the Laplace mechanism
to achieve differential privacy.
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4 Privacy Preserving Data Aggregation with Semi-honest
Servers

In this section, we will introduce our privacy preserving data aggregation frame-
work and show the theoretical evaluations on the performance of security, pri-
vacy, and utility of our framework.

4.1 Adversary Model

Generally, we categorise the adversary into two models (semi-honest adversary
and malicious adversary) according to the willingness to follow a privacy pre-
serving protocol.

Semi-honest Adversary. A semi-honest adversary is also known as a honest-
but-curious (HBC) or passive adversary. That is, a semi-honest adversary always
follows the protocol faithfully, but tries to infer extra information (especially the
private information) from both the process and output of a protocol.

Malicious Adversary. A malicious adversary is also known as a active adver-
sary who aims to cheat the protocol arbitrarily to disclose the targeted victim’s
privacy. The malicious adversary can work alone or together to enhance their
abilities.

4.2 Our Framework

This work is inspired by [4]. Because the network model in [4] is not a full connect
graph, that is, the low communication cost will be sufficiently low: O(n), where
n is the number of users. What is more, the computation security is guaranteed
by the application of secret sharing between the users and servers from the
architecture in [4]. Based on the above two advantages of [4], our framework is
also formed by two layers, the basic settings are showed in Fig. 1.

Specifically, in Fig. 1, there are n data curators with private data as the
inputs to a linear data aggregation function. We assume that there are at most
n−1 malicious parties who work together for obtaining a victim’s private value.
There are c semi-honest servers who assist the joint computation. Differing from
[4], we assume the computation servers are semi-honest rather honest. It is quite
straightforward to take this assumption because user’s privacy/secret will be
easily disclosed by a cooperation of k out of c servers, where k is the security
bound in secret sharing scheme (in Sect. 3). So we cannot send the original data
to any servers directly. Instead, we have to upload the differentially private data
to these servers to ensure the privacy of user data. However, a new problem
will be popped out if we only add noise at the user layer. As we care about the
quality of data, we have to decrease the extent that we perturb the original data,
then a cooperation of adversaries can also discover the victim’s privacy from
the final output with high probability. Thus, we also need to add differentially
private noise at the server layer. But since we add noises at both user and server
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Fig. 1. System settings

layer, the overall data utility will be harmed a lot because of the extra noises.
Therefore, in this paper, we introduce two probabilities at the two layers for
adding the noise. That it, the data utility will be controlled by tuning the two
probabilities. Algorithm1 shows how our framework works.

Algorithm 1. Privacy Preserving Data Aggregation.
Input:

Original user data set: U = {u1, u2, . . . , un};
Data aggregation request function (linear function): f(U);
Number of users: n; Number of servers: c;
Differential privacy budget: εiu, for each user i; εjs, for each server j;
Noise adding probability: Priu, for each user i; Prjs, for each server j.

Output:
Privacy preserved data aggregation result: R.

1: User i splits ui into c parts: ui =
∑c

j=1 ωj
i ui, where

∑c
j=1 ωj

i = 1;

2: User i generates a differential privacy noise Nui with εiu and local sensitivity
Δsum(ωj

i ui), splits Nui =
∑c

j=1 ωj
i Nui;

uj
i

′
= uj

i + ωj
i Nui with probability Priu, uj

i

′
= uj

i with probability 1 − Priu;

3: User i sends uj
i

′
to Server j;

4: Server j receives a set sj = {uj
1

′
, uj

2

′
, . . . , uj

n
′} from each User i;

5: Server j generates a differential privacy noise Nsj with εjs and local sensitivity
Δf(sj), then calculates f(sj)

′ = f(sj) + Nsj with probability Prjs, f(sj)
′ = f(sj)

with probability 1 − Prjs;
6: All Server j construct a Secured Multiparty Computation for R = f(f(sj)

′);
7: return R;

From Line 1 to Line 3, the computation entities at the user layer apply
differential privacy and secret sharing scheme to guarantee both the security
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and privacy of their private data. A noise adding probability, Pri
u, is used for

a User i to decide whether a noise will be added. From Line 4 to Line 6, the
semi-honest servers apply differential privacy and the basic SMC paradigm, so
that none of the data at each server will be released to other servers. Similar
to what happened at the user layer, each Server j will also take a noise adding
probability, Prj

s, to add a differentially private noise randomly.

4.3 Theoretical Evaluation

Privacy and Security Guarantee

Lemma 1. The proposed privacy preserving data aggregation framework is ε-
differentially private.

Proof. Because our framework works with two layers, we start from user layer:
Since each User i adds differential privacy noise with probability Pri

u, we will
have an expectation for the noise adding:

ui
′ = ui + Pri

u × Lap((maxi{ωj
i ui}), εi

u) + (1 − Pri
u) × 0,

then we will have:

Pr(ui = xi)

Pr(ui
′ = xi)

=
noise(xi − ui)

noise(xi − ui
′)

=
Priu × Lap((maxi{ωj

i ui}), εiu, (xi − ui))

Priu × Lap((maxi{ωj
i ui}), εiu, (xi − ui

′))
< exp(εiu)

(as at the user layer, the computational function is actually summation, for each
User i, the local sensitivity is the maximum value among ωj

i ui), that is,

Pr(ui = xi) < Pr(ui
′ = xi) × exp(εi

u).

Since, at user layer, we have a parallel composition, according to Theorem 4 in
[10], we will have a (maxi{εi

u})-differential privacy at this layer. Similarly, we
will have a (maxj{εj

s})-differential privacy at the server layer as the function f
in this paper is linear function, it is easy to maintain the same property with
the user layer.

Overall, because our framework works with two layers sequentially, based
on Theorem 3 in [10], our framework will guarantee a (maxi{εi

u} + maxj{εj
s})-

differential privacy. ��

Actually, Lemma 1 provides us an interesting property that the noise adding
probabilities at both user and server layer do not impact the privacy performance
of our framework. Therefore, we can safely tune the two probabilities to achieve
better data utility but keeping the same privacy guarantee as the existing privacy
preserving data aggregation schemes.

Lemma 2. The proposed privacy preserving data aggregation framework is
secure.

The proof of Lemma 2 is the same with [4], please refer to Sect. 5 in [4].



308 Z. Lu and H. Shen

Utility Ensurence. In this section, we will use the variance of Laplace distri-
bution (noise generation distribution for Differential Privacy in this paper) to
measure the performance of computation utility between our framework with
PrivaDA (Laplacian mechanism) in [4]. It would be straightforward that the
worst case for noise addition can be denoted by the variance of Laplace distrib-
ution. Then we will have the following relationship to achieve better data utility
than PrivaDA while guaranteeing the same differential privacy.

n∑

i=1

(Pri
u

Δf

εi
u

) +
c∑

j=1

(Prj
s

Δf

εj
s

) ≤
c∑

j=1

Δf

εj
s + maxi{εi

u}
,

that is,

n

c
min

i
{Pri

u}(1 +
maxj{εj

s}
maxi{εi

u} ) + min
j

{Prj
s}(1 +

maxi{εi
u}

maxj{εj
s}

) ≤ 1,

let ratio = maxi{εiu}
maxi{εiu}+maxj{εjs} ∈ (0, 1), we will have:

n

c
× mini{Pri

u}
ratio

+
minj{Prj

s}
1 − ratio

≤ 1. (1)

In Sect. 5, we will use Eq. 1 to find the value of privacy budget ratio to achieve
better data utility in the experiments.

5 Experimental Evaluation

5.1 Evaluation Metric

In this paper, we use Mean Absolute Error (MAE) and Mean Relative Error
(MRE), to measure the data utility in the experiments:

MAE =
1
N

N∑

i=1

|Ri − R|, MRE =
1
N

N∑

i=1

|Ri − R|
R

(2)

where N is the overall number of experiments, Ri is the output of the ith exper-
iment on a privacy preserving data aggregation scheme, R is the ground truth,
which is the output of the original data aggregation function. Specifically, in our
experiments, we set N = 10000. Clearly, a lower MAE (MRE) means a better
performance on data utility.

5.2 Experimental Results

Experimental Settings. According to our analysis in Sect. 2, in our experi-
ments, we compare the performance of data utility from the following schemes:
PrivaDA [4], PASTE [13], our original idea (Orig, add differentially private noise
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at both user and server layer), and the proposed idea in this paper (ThisWork).
To simplify the experiments, we assign same privacy budget (in all of the four
above schemes) and noise addition probability for all participants in same layer
(in ThisWork). Then, to achieve the same differential privacy guarantee, in Orig
and ThisWork, we set the privacy budget as εu + εs = ε, where ε is the privacy
budget for PrivaDA and PASTE. Especially, we have εu = ratio×ε. The number
of users n = 104, the number of servers c = 5.

In the experiments, the values of ratio we used are very approximate to
the theoretically optimal one by Eq. 1, but not exactly matched because of the
randomised mechanism involved in the experiments. Furthermore, we do not use
the real-world dataset because our objective is to evaluation the performance of
the above schemes with the numeric properties of the input data. Therefore,
we generate the input data (positive value) by a standard normal distribution
(mean = 500, variance = 1).

Fig. 2. Data utility impacted by Probability at User Layer (ε = 10, Prs = 10−2)

Fig. 3. Data utility impacted by Probability at Server Layer (ε = 10, Pru = 10−4)

Experimental Results Analysis. Figures 2 and 3 show how the noise adding
probability at user and server layer impacts the data utility. As we can see, the
noise adding probabilities have positive impact on data utility. It is clear that
by tuning these two probabilities, we can control the overall output quality to
achieve better data utility than the existing schemes. While, Fig. 4 illustrates
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Fig. 4. Data utility impacted by ε (ratio = 0.75, Pru = 10−4, Prs = 10−2)

Fig. 5. Data utility impacted by Privacy budget ratio (ε = 10, Pru = 10−4, Prs = 10−2)

how the privacy budget ε in differential privacy impacts the data utility. As an
important property of differential privacy, a larger ε denotes to less noise added
into the original request output, then provides better data utility, which is clearly
showed in our experiment. Figure 5 demonstrates how the privacy budget ration
between user and server layer impacts the data utility of Orig and ThisWork. We
can find that by tuning the privacy budget ratio, the schemes, which introduced
privacy budget into both user and server layer, can achieve their own optimal
performance on data utility.

6 Conclusion

The applications of Internet of Thing (IoT) make it possible for the large scale
data collection and analysis, that is data aggregation. However, how to keep
people’s privacy while ensuring acceptable data utility is a big challenge in our
era. In this paper, to overcome the privacy disclosure problem in the existing
work caused by the vulnerable trusted computation server, we provide a novel
privacy preserving data aggregation scheme works on semi-honest computation
servers. Both theoretical and experimental evaluation show that to achieve the
same computational security and output privacy as the previous works, our
scheme provides better output data utility.
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3. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
doi:10.1007/11787006 1

4. Eigner, F., Kate, A., Maffei, M., Pampaloni, F., Pryvalov, I.: Differentially private
data aggregation with optimal utility. In: Proceedings of the 30th Annual Computer
Security Applications Conference, pp. 316–325. ACM (2014)

5. Elahi, T., Danezis, G., Goldberg, I.: PrivEx: private collection of traffic statis-
tics for anonymous communication networks. In: Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1068–1079.
ACM (2014)

6. Goryczka, S., Xiong, L.: A comprehensive comparison of multiparty secure addi-
tions with differential privacy. Trans. Dependable Secure Comput. (2015). Prelim-
inary version – Goryczka, S., Xiong, L., Sunderam, V.: Secure multiparty aggre-
gation with differential privacy: a comparative study. In: Proceedings of the Joint
EDBT/ICDT 2013 Workshops, EDBT 2013, Genoa, Italy, pp. 155–163. ACM,
New York (2013). doi:10.1145/2457317.2457343

7. Goryczka, S., Xiong, L., Fung, B.C.: Privacy for collaborative data publishing.
IEEE Trans. Knowl. Data Eng. 26(10), 2520–2533 (2014)

8. Gupta, A., Ligett, K., McSherry, F., Roth, A., Talwar, K.: Differentially private
combinatorial optimization. In: Proceedings of the 21st Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2010, pp. 1106–1125 (2010)

9. Lu, Z., Shen, H.: A security-assured accuracy-maximised privacy preserving collab-
orative filtering recommendation algorithm. In: Proceedings of the 19th Interna-
tional Database Engineering & Applications Symposium, pp. 72–80. ACM (2015)

10. McSherry, F.: Privacy integrated queries. In: Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of Data (SIGMOD). ACM (2009)

11. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science, pp. 94–103. IEEE
(2007)

12. Pettai, M., Laud, P.: Combining differential privacy and secure multiparty compu-
tation. In: Proceedings of the 31st Annual Computer Security Applications Con-
ference, pp. 421–430. ACM (2015)

13. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series
with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, pp. 735–746. ACM (2010)

http://dx.doi.org/10.1007/978-3-642-24178-9_9
http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1145/2457317.2457343


312 Z. Lu and H. Shen

14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
15. Shi, E., Chan, H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation

of time-series data. In: Annual Network & Distributed System Security Symposium
(NDSS). Internet Society (2011)

16. Sweeney, L.: k -anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(05), 557–570 (2002)



Efficient Pedestrian Detection in the Low
Resolution via Sparse Representation

with Sparse Support Regression

Wenhua Fang1(B), Jun Chen1,2,3,4,5, and Ruimin Hu1,2,3,4,5

1 National Engineering Research Center for Multimedia Software,
School of Computer, Wuhan University, Wuhan 430072, China

fangwh@whu.edu.cn
2 State Key Laboratory of Software Engineering, Wuhan University, Wuhan, China

3 Hubei Provincial Key Laboratory of Multimedia and Network Communication
Engineering, Wuhan University, Wuhan, China

4 Research Institute of Wuhan University in Shenzhen, Shenzhen, China
5 Collaborative Innovation Center of Geospatial Technology, Wuhan, China

Abstract. We propose a novel pedestrian detection approach in the
extreme Low-Resolution (LR) images via sparse representation. Pedes-
trian detection in the extreme LR images is very important for some
specific applications such as abnormal event detection and video foren-
sics from surveillance videos. Although the pedestrian detection in High-
Resolution (HR) images has achieved remarkable progress, it is still a
challenging task in the LR images, because the discriminative informa-
tion in the HR images usually disappear in the LR ones. It makes the
precision of the detectors in the LR images decrease by a large mar-
gin. Most of the traditional methods enlarge the LR image by the linear
interpolation methods. However, it can not preserve the high frequency
information very well, which is very important for the detectors. For
solving this problem, we reconstruct the LR image in the high resolution
by sparse representation. In our model, the LR and HR dictionaries are
established respectively in the training stage, and the representative coef-
ficients mapping relations are determined. Moreover, for improving the
speed of feature extraction, the feature reconstruction in the LR images
is converted to the sparse linear combination between the coefficients
and the response of the atoms in HR dictionary by the LR-HR map-
ping, no matter how complex the feature extraction is. Experiments on
the four challenging datasets: Caltech, INRIA, ETH and TUD-Brussels,
demonstrate that our proposed method outperforms the state-of-the-art
approaches and is much efficient with more than 10 times speedup.

1 Introduction

Pedestrian detection is one of the most challenging problems in computer vision.
It is difficult due to the significant amount of variation between images belong-
ing to the same object category. Other factors, such as changes in viewpoint and
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 313–323, 2017.
DOI: 10.1007/978-3-319-57529-2 25
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Fig. 1. Red and green bounding boxes represent missing objects and detecting objects
respectively. (Color figure online)

scale, illumination, partial occlusions and multiple instances further complicate
the problem of object detection. It is very difficult to find the positions of all
concerned objects in a low resolution image. More specifically, the goal is to find
the bounding box for each object. One common approach is to use a sliding
window to scan the image exhaustively in scale-space, and classify each win-
dow individually [1,3,14,17,19]. According to Dalal [4], detection performance
in INRIA dataset is 90% when the sliding window is (64 × 128) and resolution
of image is 640×480 and the size of object is similar to (64×128). However, the
performance dropped significantly to 40% when the sliding window is (16 × 32).
Because the proper size of the pedestrian in the image is unknown previously, it
is prone to missing when the resolution of the object is low. Objects in LR are
always missed in the traditional detection method [4] as shown in Fig. 1. More-
over, pedestrian detection in the LR image is also important as well as in the HR
image, such as in criminal investigation and public security field. Additionally,
object detection is much more difficult in LR image than in HR one because
traditional discriminative features in high resolution cannot be extracted in low
resolution. The performance of the pedestrian detectors, including the state-
of-the-art method [9,15], in LR will decrease by a large margin. Traditional
multi-scale pedestrian detection methods in LR images are resizing the detec-
tion windows or/and images [7]. And magnifying the image from LR image by
linear interpolation will lose the high frequency details such as edges, which
are discriminative feature for classification. For retaining the critical detailed
information during the magnification, the sparse representation in Super Reso-
lution, is used to reconstruct the image and then the object detection methods
are performed in the image. In this paper, we improve the perceptual image
quality from LR to HR, among which the resolution enhancement technology
is called super-resolution. We can get high-resolution and high quality image
with more details economically, not by imposing higher requirements on hard-
ware devices and sensors. We use a manifold regularized regression framework for
super-resolution as shown in Fig. 2. The sparse representation is relaxed for LR to
HR sparse support domain regression, which is flexible in using the information
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Fig. 2. Flowchart of the proposed method. Note that the red patches denote the sparse
support domain of the input LR-HR patches on the LR-HR dictionaries, and we use
Ψ to denote the operation of feature extraction. (Color figure online)

of local training samples. Note that image patches have regular structures where
accurate estimation of pixel values via regression is possible. Accordingly, the
proposed method has more power and flexibility to describe different image pat-
terns. In addition, the proposed method simultaneously considers the manifold
regularization, thus capturing the intrinsic geometrical structure of the dictio-
nary. We use a mapping function from low resolution (LR) patches to high-
resolution (HR) patches will be learned by a local regression algorithm called
sparse support regression, which can be constructed from the support bases of
the LR-HR dictionary. Then, we can also use the two important components
(feature and classifier) in the pedestrian detection from HR we can get from the
above. First, features capture the most discriminative information of pedestri-
ans. Second, a classifier decides whether a candidate window shall be detected
as enclosing a pedestrian and SVM (Support vector machine) is often used. The
connection between features and classifier components is usually achieved using
manual parameter configuration. The HOG feature is individually designed with
its parameters manually tuned given the linear SVM classifier [4]. There are two
main contributions of this paper: (1) a object detection framework in extreme
low resolution is proposed by detecting objects in reconstructed high resolution
image; (2) a mapping function from low resolution patches to high resolution
patches will be learned by a local regression algorithm called sparse support
regression, which can be constructed from the support based of the LR-HR
dictionary. Our low resolution detector produced better performance for pedes-
trian detection than state-of-the-art methods. Experiments on four challenging
datasets: Caltech, INRIA, ETH and TUD-Brussels, demonstrate that our pro-
posed method outperforms the state-of-the-art approaches and is much efficient
(more than 10 times acceleration).

2 Sparse Representation for Object Detection

Sparse representation is usually used to reconstruct the image in super resolution
and is rarely used for object detection. Ren et al. [15] firstly adopted sparse rep-
resentation to extract the histogram of sparse codes feature for object detection,
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which outperformed the famous method [9]. But they did not consider the object
detection in LR. In our work, the object detection framework is presented on
the reconstructed image via sparse representation in this section. The framework
is divided into two phrases. Firstly, the HR image is reconstructed from LR by
specific dictionary learning. Secondly, the optimized object detection method is
performed in the HR dictionary.

2.1 Sparse Representation Model

Given a set of image patches Y = [y1, · · · , yn], finding a dictionary D = [d1, · · · ,
dm] and an associated sparse code matrix X = [x1, · · · , xn] by minimizing the
reconstruction error

min
D,X

||Y − DX||2F s.t.∀i, ||xi||0 ≤ K (1)

where xi are the columns of X, the zero-norm || · ||0 counts the non-zero entries
in the sparse code xi, and K is a predefined sparsity level.

2.2 LR-HR Pairwise Dictionary

Given a set of LR and HR training image patch pairs, {(x1, y1), · · · , (xN , yN )} ⊂
Rd ×RD, d and D are the dimensions of one LR and one HR patch respectively.
Define X = [x1, · · · , xN ] and Y = [y1, · · · , yN ], each column of which is a patch
sample. Thus the matrixes X and Y can be viewed as the LR and HR patch
dictionaries respectively.

Considering that the manifold assumption (two manifolds spanned by the
feature spaces of the LR and HR patches are locally similar) may not be tenable,
we learn a much more stable LR-HR mapping in the support domain for super-
resolution. Thus it can be transformed to a regression problem.

Our another important goal is to encode the geometry of the HR patch
manifold, which is much more credible and discriminated compared with that
of the LR one [11], and preserve the geometry for the reconstructed HR patch
space. This will ensure that the local geometric structure of the reconstructed
HR patch manifold is consistent with that of the original HR one. Based on the
above discussions, our MSSR (Manifold regularized Sparse Support Regression)
algorithm for image super-resolution should be equipped with two properties: (1)
The shared support of each LR patch and HR patch has an explicit regression
relationship; (2) The local geometrical information on the original HR patch
dictionary is preserved. In the following part, we will describe how we formulate
MSSR with these two desired properties.

2.3 Sparse Support Regression

Instead of assuming that each pair of HR and LR patches has the same sparse
representation, in our proposed MSSR method, this strong regularization of
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sparse representation is relaxed for sparse support regression, and the sparse
coefficient vectors of one LR and HR patch pair share the same support, i.e., the
same indices of nonzero elements.

Given a set of LR and HR training patches (dictionary pairs), {(x1, y1), · · · ,
(xN , yN )} ⊂ Rd × RD for an unseen LR patch xt, we try to learn a mapping
function f(x, P ) = Px, from the LR patch to the HR one to minimize the
following regularized cost function for the regression,

ε(P ) =
∑

i∈S

(Pxi − yi)2 + α ‖P‖2H (2)

where α is a regularization parameter, P is a D × d matrix to be learned, ‖P‖2H
is the induced norm of f in the reproducing kernel Hilbert space (RKHS) space
H, and S is the support of the coding coefficients θ∗ of the unseen patch xt on
LR training patches X :

θ∗ = arg min
θ

‖xt − Xθ‖2 + λ1 ‖θ‖1 (3)

Thus, S = support(θ∗). In Eq. (2), ‖θ‖1 denotes the l1 norm of θ and the para-
meter λ1 balances the coding error of xt and the sparsity of θ The solution of
Eq. (2) can be achieved by convex optimization methods referring to [13]. The
support of one vector is referring to the indices of nonzero elements in the vector.
Defining Xs and Ys as Xs = {xi|i ∈ S} and Ys = {yi|i ∈ S} respectively and
using Fibonacci norm to represent the smoothness of H, we can rewrite Eq. (1)
as the following matrix form:

ε(P ) = ‖PXS − YS‖2F + α ‖P‖2F (4)

2.4 Mining the Geometry on HR Patch Dictionary

This section targets on the second property, which is to preserve the local geo-
metrical information on the HR patch dictionary. Note that the neighborhood
relation, which guides the formulation of sparseness, is defined on the manifold
rather than the Euclidean space.

Researchers have proposed various methods to measure the similarity
between data points [12,16], e.g., pair-wise distance based similarity and recon-
struction coefficient based similarity. Since the former is suitable for discriminant
analysis problems, such as recognition and clustering. Alternatively, reconstruc-
tion coefficient based similarity is datum-adaptive, and thus more suitable for
image super-resolution. LLE is one of the representative works for reconstruc-
tion coefficient similarity estimation. It calculates the coefficient for each data
through k -NN searching, thus k sparsity. The performance of LLE graph will
decrease rapidly when the datas are non-uniformly sampled from underlying
manifold, and this situation is very common in practice.

Recently, some researchers have demonstrated that the sparse structure of
one manifold can be explored by the li graph [16], resulting in many benefits for
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machine learning and image processing problem. Let yi be the i -th HR patch,
which is under consideration now. We want to identify its neighbors on the
smooth manifold rather than the entire Euclidean space. On the smooth patch
manifold space, the patch can be well sparsely approximated by a linear com-
bination of a few nearby patches. Thus, it has a sparse representation over the
support domain Ys. For any HR patch yi, it can be sparsely approximate by the
data matrix Ys except yi:

W ∗
i = arg min

Wi

‖yi − YSWi‖2 + λ2 ‖Wi‖1 (5)

where Wi denotes the i -th column of the matrix W whose diagonal elements are
zeros, and λ2 is the parameter balancing the coding error of yi and the sparsity
of Wi.

2.5 Feature Extraction via Sparse Representation

Feature Extraction can be regarded as the linear combination of the repre-
sentative coefficients and the response of the items of the learned dictionary.
Denoting the feature pyramid of an image I as Φ, and I = [P1, · · · , PN ], and
Dj in D = [D1, · · · ,DK ] is the atom of D (Dictionary), we have Ψ ∗ Pi ≈
Ψ ∗ (

∑
j αijDj) =

∑
j αij(Ψ ∗ Dj), where ∗ denotes the convolution operator.

Concretely, we can recover individual part filter responses via sparse matrix
multiplication (or lookups) with the activation vector replacing the heavy con-
volution operation as shown in Eq. 6.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ ∗ P1

Ψ ∗ P2

...

...

...

...
Ψ ∗ PN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

α2

...

...

...

...
αN

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

Ψ ∗ D1

Ψ ∗ D2

...
Ψ ∗ DK

⎤

⎥⎥⎥⎦ = AM (6)

For efficient pedestrian detection, the extraction of some features should be
made appropriate adjustments. Take HOG feature for example. It is composed
of concatenated blocks. Each block includes 2× 2 cells, and each cell is the 8× 8
pixels of the image. So the block is 16×16 pixels. The concatenation of histograms
of the blocks has two strategies: overlap and non-overlap. In the overlap manner,
the sliding step width is usually the width of the cell. In the non-overlap manner,
the sliding step width is the width of the block. So the dimension of the feature
of the non-overlap is smaller than that of the overlap. But the performance of
the feature will be lost by nearly 1% [4]. So the standard HOG feature chooses
the overlap manner for better performance. For high acceleration, in this paper,
we choose the non-overlap manner.
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3 Experiments

For evaluating our method, we conduct the experiments on four challenging
pedestrian datasets: Caltech [6], INRIA [4], ETH [8] and TUD-Brussels [21].
And we resize the images to 1/4 of the original. The state-of-the-art and classic
pedestrian detectors are chosen to test our framework: HOG [4], ChnFtrs [18],
ACF [5], HOGLBP [20], LatSvmV2 [10] and VeryFast [2]. In the experiments,
the training and testing data setting is as same as in [5]. We first discuss the
relation of the performance versus the sparsity degree, the size of the dictionary,
the size of atom. And then we evaluate our method.

3.1 Dictionary Learning vs Performance

Because our method is based on sparse coding, how to select the parameters
of dictionary learning directly affects the performance of feature reconstruction.
For choosing the best parameters, we conduct some experiments on INRIA Per-
son Dataset and the type of synthesized feature is HOG. INRIA Person Dataset
consists of 1208 positive training images (and their reflections) of standing peo-
ple, cropped and normalized to 64 × 128, as well as 1218 negative images and
741 test images. This dataset is an ideal setting, as it is what HOG was designed
and optimized for, and training is straightforward.

Sparsity Level and Dictionary Size. Figure 4 shows the average precision on
INRIA when we change the sparsity level along with the dictionary size using
5× 5 patches. We observe that when the dictionary size is small, a patch cannot
be well represented with a single codeword. However, when the dictionary size
grows and includes more structures in its codes, the K = 1 curve catches up,
and performs very well. Therefore we use K = 1 in all the following experiments.

Patch Size and Dictionary Size. Next we investigate whether our synthesized
features can capture richer structures using larger patches. Figure 3 shows the

Fig. 3. The patch size vs detection performance on Caltech pedestrian dataset.
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average precision as we change both the patch size and the dictionary size. While
3 × 3 codes barely show an edge, 7 × 7 codes work much better. However, 9 × 9
patches, may be too large for our setting and do not perform well.

Regularizer. With K = 1, one can also use different regularizers to learn a dic-
tionary. Figure 5 compares the detection accuracy with Lasso penalty vs Elastic
net penalty on 7×7 patches. The Elastic net penalty is better because it include
more constraints to learn discriminative representation.

In the following experiments, we set the size of the dictionary, the sparsity
degree to be 600, 1 respectively. We set the size of the atom of the dictionary to
be 7 × 7 for better performance.

Fig. 4. The sparsity vs detection performance on Caltech pedestrian dataset.

Fig. 5. The regularizer vs detection performance on Caltech pedestrian dataset.
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Table 1. Missing rates of pedestrian detectors (Sparse Coding vs Bicubic Linear Inter-
polation) on four challenging datasets. “SC” denotes sparse coding, and “BLC” stands
for bicubic linear interpolation.

Detectors INRIA [4] Caltech [6] TUD-Brussels [21] ETH [8]

SC BLI SC BLI SC BLI SC BLI

HOG [4] 0.36 0.49 0.58 0.60 0.78 79 54 65

ChnFtrs [18] 0.22 0.28 0.46 0.57 0.50 0.61 0.47 0.58

ACF [5] 0.17 0.18 0.33 0.45 40 0.51 0.40 0.52

HOGLBP [20] 0.29 0.40 0.58 0.68 0.72 0.81 0.45 0.56

LatSvmV2 [10] 0.10 0.23 0.53 0.64 0.60 0.71 0.41 0.52

VeryFast [2] 0.11 0.17 0.43 0.54 0.51 0.62 0.45 0.56

3.2 Performance Comparison

We just pay attention to whether the performance is lost and the degree of
performance loss. As shown in Table 1, we can see the performance comparison
of the detectors between the sparse coding reconstruction and the bicubic lin-
ear interpolation reconstruction. We resize the width and height of the images
by half. As can be seen from the table, the performance degradation is very
large, about ten percent. We think the reason is that our method is based on
reconstruction error minimum and sparsity constraints, and can preserve the
discriminative information for pedestrian detection.

3.3 Speed Comparison

The speed of the detector is more important than performance in the real-world
applications. In this section, we will show the speed comparison of the above
origin detectors and the corresponding synthesized detectors. Because the speed
of the detector depends on the resolution.

We just do the statistics and analysis on the INRIA dataset because the
results on the other datasets are the same as that on this dataset. The resolution
of the image is 640×480 in INRIA testing set. As shown in Table 2, acceleration

Table 2. Speed comparison of pedestrian detectors (origin vs Our feature extraction)
on INRIA person dataset. The unit of speed is the frame of per second.

Detectors INRIA [4]

Origin Synthesizer

HOG [4] 0.23 96.5

ChnFtrs [18] 16.4 121.2

ACF [5] 31.9 125.4

HOGLBP [20] 0.06 120.4

LatSvmV2 [10] 0.6 108.5

VeryFast [2] 50 110.2
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of the synthesized detector is very obvious. Take the detector HOGLBP [20] for
example. The speedup ratio is up to 2000. The speed of original veryfast detec-
tor [2] is 50 fps because it is accelerated by GPU. But the speed of our synthesized
detector is 110 fps. From the table, experiment results confirm our conjecture
that the runtime of our synthesized detector depends on the decomposition of
the image based on the dictionary.

4 Conclusions

In this work we proposed a novel pedestrian detection approach in extremely low
resolution image using sparse representation and divided the object detection
into online and off-line stages. In the off-line stages, the patch based feature
extraction on dictionary atoms was conducted. And in the online stage, the
final visual feature is combined linearly by above patch based feature. Our work
is first clearly demonstrate the advantages of sparse LR-HR dictionaries for
pedestrian detection. Our studies show that large structures in large patches,
when are captured in a large dictionary, generally improve pedestrian detection,
calling for future work on designing and learning even richer representation. We
design a novel sparse regression algorithm for pedestrian detection which can
enhance the learning performance. It is experimentally shown that our methods
can produce more faithful details and higher objective quality for all state-of-
the-art pedestrian detection approaches.
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Abstract. Embedding based dense contextual representations of data
have proven to be efficient in various NLP tasks as they alleviate the
burden of heavy feature engineering. However, generalized representa-
tion learning approaches do not capture the task specific subtleties. In
addition, often the computational model for each task is developed in
isolation, overlooking the interrelation among certain NLP tasks. Given
that representation learning typically requires a good amount of labeled
annotated data which is scarce, it is essential to explore learning embed-
ding under supervision of multiple related tasks jointly and at the same
time, incorporating the task specific attributes too. Inspired by the basic
premise of multi-task learning, which supposes that correlation between
related tasks can be used to improve classification, we propose a novel
technique for building jointly learnt task specific embeddings for emotion
and sentiment prediction tasks. Here, a sentiment prediction task acts as
an auxiliary input to enhance the primary emotion prediction task. Our
experimental results demonstrate that embeddings learnt under super-
vised signals of two related tasks, outperform embeddings learnt in a
uni-tasked setup for the downstream task of emotion prediction.

Keywords: Multi-tasking · Emotion prediction · Representation learn-
ing · Joint learning

1 Introduction

In order to develop efficient machine-learning models for complex NLP tasks,
it is desirable to explore approaches that can discover features automatically
from the data and make the learning algorithm less dependent on fragile hand-
crafted feature-engineering. In recent times, dense, low-dimensional vector space
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representations of the text have been explored in various NLP learning tasks
[3] including that of emotion classification. However, typically word embeddings
have been built using contextual information, which has the disadvantage that
two contexts could be very closely related but could convey extremely different
emotions leading to poor performance by an emotion classifier using general-
ized word embeddings as input. This problem has been addressed by means of
learning task sensitive embeddings. For instance, sentiment specific word embed-
dings have been learnt and have been shown to benefit performance in sentiment
classification task [20].

While task specific word embeddings have been shown to be of benefit in
downstream tasks [12,20], not many of the prior works have proposed using
auxiliary related tasks to improve the learnt word embeddings’ quality. Most of
the prior works on task specific embeddings have been in the context of a single
task learning. Given that learning embeddings require labeled annotated data
for the main task, which is hard to come by, it makes sense to explore building
embeddings which can be learnt under supervision of multiple related tasks in
parallel. Given the basic premise of multi-task learning [4], which supposes that
correlation between related tasks can be utilized to improve classification by
learning tasks in parallel, vector representations can be jointly learnt using mul-
tiple related task objectives to improve classification performance. We build on
this premise and propose a novel technique for building jointly learnt embeddings
sensitive to both emotion and sentiment, which are related tasks.

Emotion annotated data with explicit emotional cues are scarce; instead
intrinsic emotion cues can be present through the underlying sentiment of the
text. Hence, emotion classification can benefit by using input text embeddings
which are built using the signals carried not just by emotions, but also by the
underlying sentiments of the text. Our work proposes the novel idea of learning
text embedding representations jointly using the emotion and sentiment signals,
and use these jointly learnt embeddings for improving the downstream task of
fine grained emotion prediction. Furthermore, while this specific embodiment of
our invention is on jointly learnt embeddings sensitive to emotion and sentiment,
our invention proposes the broader idea of utilizing related joint tasks training
for representation learning which can be applied to other domains.

There has been prior work on joint learning of related tasks [5,6], where
the supervised signals from both the main and the auxiliary tasks have been
used in model parameter learning. However, there has not been much prior
work on joint learning of representations or embeddings on two related tasks,
which results in improved text embedding representations, to be used as input
for multiple downstream tasks. Our paper addresses this issue in the setting
of emotion prediction, and shows that jointly learnt embeddings outperform
individual task embeddings in this prediction task. The rest of the paper is
organized as follows: In Sect. 2, we provide a brief summary of related work. In
Sect. 3, we describe our approach for joint learning of embeddings supervised
under emotion and sentiment signals. In Sect. 4, we report our experimental
results and conclude in Sect. 5.
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2 Related Work

There has been extensive work on emotion and sentiment classification of text
over the last decade, both being studied as independent tasks on their own. Given
the extensive prior research in the area of emotion and sentiment analysis, we
provide only a brief outline of some of the relevant work in this space, without
being exhaustive.

Approaches to emotion detection in text can be broadly classified into key-
word based approaches [9,13], linguistic rule based approaches [2,15,16] and
machine learning based approaches [17,19]. ML techniques can be broadly clas-
sified into supervised learning based approaches [17,23], and unsupervised learn-
ing based approaches [1,7,19]. In supervised learning based approaches, various
hand-crafted features for identification of emotion content of text are extracted
and used as input to a classifier. Similarly, sentiment analysis has been a much
crowded area of research in NLP community with different sentiment classifica-
tion schemes being proposed such as unsupervised learning methods [22], super-
vised approaches [17], semi-supervised learning methods [11], just to cite a few.
Both sentiment and emotion classification approaches have typically depended
on extensive hand-crafted features for their performance gains. While such hand-
crafted features have provided good performance in emotion classification of
text, it comes at the cost of extensive human effort and is typically not scalable
due to lack of portability across domains and datasets. As we discussed in the
introduction, alternative input representations [3,14,18] such as word embedding
representations have gained popularity in ML based emotion and sentiment clas-
sification systems. In addition to general word embeddings, task specific word
embeddings have been proposed and used in sentiment analysis [20]. A natural
extension of this is to learn emotion specific word embeddings and use them as
input for emotion prediction.

Most of the prior work on emotion and sentiment classification have typ-
ically studied each of these two tasks in isolation. There have been very few
works studying the joint learning of emotion and sentiment. Gao [6] studied
joint learning of sentiment and emotion using an extra data set that is anno-
tated with both sentiment and emotion labels. They trained two separate clas-
sifiers for sentiment and emotion and during the testing phase, each sample is
classified by both classifiers and the probabilities belonging to each sentiment or
emotion label is obtained. The jointly labeled data set is used to estimate the
transformation probability between the two kinds of labels and the transforma-
tion probability is leveraged to transfer the classification labels to benefit the
two tasks from each other. Wang et al. [5] propose a joint sentiment emotion
classification framework using Integer Linear Programming. They map differ-
ent emotions to the sentiment categories of positive, negative, and neutral, and
apply integer linear programming to maximize the similarity of the two classi-
fiers’ output labels to the posterior probabilities of the output labels subject to
certain constraints.

Our current work is inspired by these earlier works on joint learning of
sentiment and emotion. While there has been prior work on using sentiment
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specific word embeddings as input for sentiment classification task, we are not
aware of any prior work which learns word embeddings jointly sensitive to
both sentiment and emotion and uses the learnt embeddings as input in the
downstream sentiment and emotion prediction task. In this paper, we propose
a novel representation of jointly learnt emotion-sentiment specific word embed-
dings, and show that the jointly learnt embeddings lead to performance improve-
ments in the emotion prediction task as opposed to using the individually learnt
emotion or sentiment specific word embedding (and also over pre-trained gen-
eral word embeddings). Given the close relation between sentiment and emo-
tion classification tasks, using a jointly learnt word embedding as input to the
model serves as an appropriate input representation for improving the prediction
performance.

3 Approach

The three major steps of our approach are (a) Preprocessing of tweets (b)
Embedding learning and (c) Tweet emotion prediction using the learnt embed-
dings, which are described in details in the following subsections.

3.1 Preprocessing of Tweets

In this step, we perform preprocessing of the raw tweet data. It includes con-
verting tweets to lower case, stopword removal, @ mention removal, and removal
of hyperlinks from tweets. Additionally, we also join negative modifiers with the
modified words such as dont go, not available, shouldnot show, etc. The step of
joining negative modifiers with the modified words is taken in order to retain
the context in which the word has been used. The quality of the learnt embed-
dings might suffer if the context of a word is not captured, especially in case of
negative modifiers. The ideal way to identify a modifier-modified relation is to
use a dependency parser. However, in our data, we found that almost all of the
negative modifiers are adjacent to the modified words. Hence, we join all nega-
tive modifiers with their adjacent words in order to save the overhead associated
with running a dependency parser.

3.2 Embedding Learning

In this step, we generate unigram embeddings as explained subsequently.
Emotion+sentiment specific word embeddings (ES-SWE): This is the multi-

tasking or joint learning setup where we simultaneously train a neural network
on both emotion and sentiment classes of the tweets present in the training
dataset. The resulting embeddings are called Emotion and Sentiment Specific
Word Embeddings (ES-SWE). We show the setup for this multi-tasking frame-
work in Fig. 1. In this step, our two-task neural network model uses each 5-gram
of a tweet to map its words into fixed dimensional vector representations. These
vectors or embeddings can be subsequently used to perform emotion prediction.
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Fig. 1. Architecture of the multi-tasking neural network used for embedding learning

Given each 5-gram of a tweet, this neural network model predicts two vectors:
one for emotion and another for sentiment. We used 5-grams as inputs for the
embedding learning network following the methodology of previous works like
[21], and also to ensure that the inputs are of fixed length, so as to generate
accurate unigram embeddings. We have used a 3-layer neural network. The input
layer of this network is of shape 5x|V | (where |V | is the size of the vocabulary,
and each unigram is represented as a 1-hot encoding over |V |. For our training
sets, |V | is approximately 9000). The first hidden layer is the embedding-learning
layer of size 300 units1. Each unigram is fully connected to the 300 units and
after the completion of network training, the 300 updated connection-weights
represent the 300-dimensional embedding for the unigram. The next layer is a
fully connected output layer. We have seven and four output classes for emotion
and sentiment categorization, respectively. We use the Adam update algorithm
[8] to train the network, with a learning rate of 0.001. To prevent over-fitting,
we also use L2-regularization in this network with the parameter value of 0.5.
We consider a linear combination of the cross-entropy losses2 for the prediction
tasks. The cross-entropy losses for emotion and sentiment prediction tasks for
the softmax layer are shown in Eq. 1 below:

lossemo(t) = −
6∑

k=0

fg
k (t).log(fp

k (t))

losssen(t) = −
3∑

k=0

fg
k (t).log(fp

k (t))

(1)

where t is the 5-gram, fg
k (t) is the gold k -dimensional multinomial class dis-

tribution of the 5-gram. The number of dimensions is 4 for sentiment and 7
for emotion, corresponding to our 4 sentiment classes and 7 emotion categories
respectively3. The sentiment or emotion label of a 5-gram is the same as that

1 Lasagne package has been used for the implementation [10].
2 For a brief introduction to cross-entropy loss, please refer to http://eprints.eemcs.

utwente.nl/7716/01/fulltext.pdf.
3 sentiment classes are [positive, negative, neutral, none] and the emotion classes are

[happiness, sadness, anger, love, hope, amusement, excitement ].

http://eprints.eemcs.utwente.nl/7716/01/fulltext.pdf
http://eprints.eemcs.utwente.nl/7716/01/fulltext.pdf
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of the containing tweet. fp
k (t) is the predicted class distribution. The combined

loss of the embedding learning classifier is provided in Eq. 2 below:

lossesswe(t) = λ.lossemo(t) + (1 − λ).losssen(t) (2)

For our experiments, λ is set at 0.7 empirically. The intuitive explanation for
the relatively more weight given to the emotion prediction loss is that emotion
categorization being a 7-class problem is more fine-grained and complex than
the 4-class sentiment prediction problem.

We also generate the Emotion specific word embeddings (E-SWE) in a
uni-task environment for comparative evaluation. To obtain the E-SWE embed-
dings, we train a neural network similar to the one described above, the only
difference being that the model predicts only emotions, and hence, considers
only the cross-entropy emotion loss.

3.3 Emotion Prediction of Tweets

In this step, the word-embeddings obtained from the previous step are used as
inputs to appropriate prediction algorithms for obtaining the emotion-sentiment
label of the data. We have empirically compared the performance of 12 differ-
ent combinations of prediction algorithms and input representations to estab-
lish the credibility of our approach (refer to Fig. 2). Section 4 provides detailed
result descriptions for the different setups. For SVM, GMM, and K-Means based
prediction, the tweet level representation is obtained from the learnt unigram
embeddings by taking the mean of the word-wise embedding of the constituent
words of the tweet. For the CNN based experiments, we use a multi-tasking con-
volutional neural network to handle inputs (tweets) of varying lengths. The input
to this network is the term vector matrix of a tweet, which is of shape nx300.
Here, n is the maximum tweet length4. We use zero padding of input whenever
the length of the tweet is smaller than n. We then apply a 2D-convolutional
layer with filters of dimensions cx300 where c is the width of the filter, and 300
is the height. Max-pooling is then applied on the top of the convolutional layer
output to extract crucial local features that form a vector of fixed length. Non-
linear rectified linear unit (ReLU) is then applied to this output, which is then
fed to a fully connected hidden layer of 200 units. Finally, the terminal output
layers of this network are of size seven units and four units, for emotion and

Fig. 2. Different experimental settings

4 We omitted a few tweets that were either too long or too short, depending on the
range to which majority (90%) of the tweet-lengths belonged.
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sentiment prediction, respectively, with softmax activation. We use the Adam
update algorithm with a learning rate of 0.001 for this network too. We feed
the tweet matrix (constituted by the unigram embeddings), and the emotion
(and sentiment) labels to this CNN to train it. The CNN classifier architecture5

for emotion prediction is shown in Fig. 3. For the Gaussian Mixture Model and
K-Means, we performed the clustering separately for sentiment and emotion,
using the open source scikit-learn Python library. For the GMM, we specified
four Gaussian components for sentiment, and seven components for emotion.
The model was iterated for 2000 iterations, with the covariance type as diag.
We used exactly the same number of clusters to perform the clustering using
the K-Means algorithm. The models were made to fit on the training data, and
tested on the test data. For clustering based prediction, it is essential to see the
goodness of the clusters formed in a clustering algorithm after the data fit, as
the test accuracy will fully depend on how good or homogeneous the clusters are.
Hence, we measured the cluster purity6 of the clusters (components) formed by
GMM and K-Means on the fit data. These cluster purity values are provided in
Table 2. As can be seen, the purity values for the clusters are quite high in almost
all of the cases (above 90%) for the 90:10 data split. We obtained similar purity
values even for the 70:30 data split, which we do not show exclusively owing to
space constraint. Hence, we assumed that the majority emotion (or sentiment)
belonging to a cluster as the cluster label, i.e., if a cluster had majority of the
points (tweet vectors) in it annotated as emotion e (or sentiment s), we assumed
that the cluster belonged to emotion e (or sentiment s).

Fig. 3. CNN architecture for tweet classification

• Considering out of vocabulary (OOV) words: One of the major advan-
tages of our CNN and clustering based models is that these models have a
provision of handling OOV words, i.e., words which are present in the train-
ing dataset but not in the test7 dataset. However, in case an OOV word is

5 We show only the emotion prediction output layer in the figure as emotion prediction
is our main task.

6 Cluster purity was measured using the standard measure of calculating the fraction
of majority labels of the data points among the total number of data points in the
cluster.

7 Embeddings can only be learnt from annotated training data but not from the test
data.
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Algorithm 1. Replacing OOV words
Input: OOV word, Set of ES-SWE obtained from training data
Output: Nearest neighbor of OOV word with an ES-SWE

1: procedure Replace OOV(word, set of embeddings)
2: if word is present in Google News corpus then
3: nbr list ← FIND TOP TEN NEAREST NEIGHBORS(word)
4: for neighbor in nbr list do
5: if neighbor in set of embeddings then
6: return neighbor
7: end if
8: end for
9: end if

10: end procedure

encountered in the test set, the system would not be able to find its embedding
in the set of learnt embeddings. In such situations, we replaced that word’s
embedding with the embedding of the nearest neighbor of the word, which
is present in the set of learnt embeddings. The nearest neighbor query was
performed using a KD-Tree structure, using the Google News vectors. Algo-
rithm1 describes the process of OOV word handling. Inputs to this algorithm
are the set of learnt ES-SWE embeddings from the training set and the OOV
word. The output is the nearest neighboring word of the OOV word, which
has an ES-SWE representation learnt from the training set.

An important point to note here is that joining negative modifiers does not
change the number of non-standard (negative modifier joined) OOV words much
in the test set, in our case. However, we plan to address this issue of handling
non-standard OOV unigrams in our future work, where we can obtain the word
embeddings from a customized large corpus containing such non-standard words,
and use them to handle such negative-modifier-joined OOV words (instead of
using the Google News vectors).

4 Experimental Evaluation

In this section we discuss our dataset, experimental setup and results obtained
by applying our technique on our data set.

4.1 Data

For our experiments, we use the LREC emotweet dataset [24]. In this dataset, a
total of 17015 tweets are annotated for both emotion and sentiment. Out of the
29 classes of emotions present in the data, we selected the seven emotion classes:
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happiness, sadness, anger, love, hope, amusement, and excitement8. We did not
work with all 29 classes of emotions as it would have made the prediction task
too complicated as many emotion classes were extremely close. An important
point to be noted is that for our experiments, we exclude 1317 tweets that
are annotated with multiple emotion classes9. The four sentiment classes are:
positive, negative, neutral, and none (none indicating that for a certain tweet,
the sentiment alignment could not be understood). This brings our used dataset
size to around 4.3K (4366 tweets).

4.2 Experimental Results

We present our experimental results in Tables 1 and 2 for the different configu-
rations (for 90:10 training-test split), and summarize our results next.

Jointly learnt task specific embeddings outperform general domain word
embeddings for the main task of emotion prediction: As we can see from Tables 1
and 2, ES-SWE performs much better than general word vector embeddings
(pre-trained Google News vectors) on all of the models for the task of emo-
tion prediction. For sentiment prediction too, the clustering models perform the
best for ES-SWE vectors. For sentiment prediction, the performance of ES-SWE
slightly deteriorates for the SVM and CNN classifiers, compared to Google News
vectors. The deterioration in sentiment prediction for the CNN can be attributed
to the fact that since emotion prediction was our primary goal in this work, we
gave less weightage to the sentiment loss (while training the CNN, a high value of
λ was chosen). There is an increase of 4% in the emotion classification accuracy

Table 1. Emotion and sentiment detection test accuracies in percentage for different
SVM and CNN based classifiers for 90:10 training-test split (CV refers to the cross-
validation accuracies)

Emotion Sentiment

Learning algorithm (feature) CV accuracy Test accuracy CV accuracy Test accuracy

SVM (Google News) 61.78 53.58 81.52 82.00

SVM (ES-SWE) 98.98 54.81 99.43 80.77

SVM (E-SWE) 99.14 49.08 99.04 78.94

CNN (Google News) 89.10 50.00 94.87 81.84

CNN (ES-SWE) 99.15 54.00 99.37 79.79

CNN (E-SWE) 98.00 48.54 99.27 79.59

8 The emotion classes were selected based on two criteria: to maintain the class bal-
ance, and to ensure that each sentiment class has more than one emotion classes asso-
ciated with it. The latter criteria ensures that the emotion class cannot be implied
just from the sentiment class. This serves as a motivation of joint learning.

9 We removed multi-emotion tweets in order to ensure unambiguity in the embedding
learning phase. Considering multi-emotion tweets can be taken up as a future work
to see if it enhances or deteriorates the quality of the learnt embeddings.
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Table 2. Emotion and sentiment detection test accuracies in percentage for GMM and
K-Means for 90:10 training-test split

Emotion Sentiment

Learning algorithm (feature) Cluster purity Test accuracy Cluster purity Test accuracy

GMM (Google News) 0.3456 18.81 0.6809 71.17

GMM (ES-SWE) 0.9906 56.44 0.9917 81.60

GMM (E-SWE) 0.9905 49.69 0.9192 75.87

KMeans (Google News) 0.3685 20.25 0.6917 71.17

KMeans (ES-SWE) 0.9904 57.46 0.9937 80.37

KMeans (E-SWE) 0.9937 50.10 0.9208 74.44

with ES-SWE using CNN, and an increase of 1.23% using SVM, compared to
the general embeddings. Also, we find that for GMM and K-Means, pre-trained
Google News vectors perform poorly (around 19% for GMM, and 20% for K-
Means). An early indicator of this poor performance can be seen in the cluster
purity values reported in Table 2. Since Google News vectors are not obtained by
specific training on sentiment or emotion prediction tasks, the clusters formed by
GMM or K-Means are not homogeneous w.r.t emotion or sentiment classes of the
tweet vectors (purity values lie in the 34-37% range) using Google News vectors.
Task specific ES-SWE or E-SWE capture the emotion or sentiment alignment
much better, on the other hand. Hence, clusters obtained using the tweet vec-
tors formed from ES-SWE or E-SWE are much more homogeneous, resulting in
better emotion prediction.

Jointly learnt embeddings (multi-tasking) outperform embeddings learnt in
a uni-tasked setup in the main task of emotion prediction: We show the bar
chart of the emotion prediction test accuracies in Fig. 4, wherein the green col-
ored bars indicate the test accuracy with multi-task trained embeddings, show-
ing their superiority over uni-task trained embeddings as input to the classi-
fier. The highest test accuracy using jointly learnt embeddings is shown by K-
Means (57.46%), followed by the GMM (56.44%). These observations support
our second hypothesis. Also, from Tables 1, 2, and Fig. 4, we obtain an inter-
esting observation: embeddings learnt jointly (ES-SWE) perform the best in a

Fig. 4. Emotion classification test accuracy with different embeddings
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semi-supervised clustering approach (using GMM or K-Means) in our setup. In
fact, both of the models show a drop of around 7%, when uni-task embedding
(E-SWE) are used for the clustering. We also ran the models on a 70:30 split of
data. Owing to space constraint, we report here the test accuracies only for the
clustering models for the 70:30 split10. For GMM, the test accuracies for emotion
and sentiment prediction were 53.17% and 79.86%, respectively. For K-Means,
they were 52.02% and 78.19%. ntuitively, we expect uni-tasked embeddings like
E-SWE to perform the best in emotion prediction, since these embeddings are
exclusively formed using the task at hand. The reason behind this performance
gain of our multi-tasked embeddings is primarily that they capture both emotion
and sentiment alignment of the tweets, and these tasks are interrelated. E-SWE
word embeddings are based only on the emotion alignment of the tweet. Thus,
these embeddings are a bit too biased towards the emotion class to which a tweet
belongs, and it ignores the role of sentiment completely. Due to this reason, while
predicting the emotion for an unseen (new) tweet, it heavily depends just on the
emotional alignment of its constituent words, which at times misleads the classi-
fier. On the other hand, considering both the emotion and sentiment alignment
of the words aids us in getting an improved learning for the embeddings, and
during emotion prediction, the role of both of these alignments of the constituent
words come into play.

To the best of our knowledge, this is the first work on task specific fine tuned
representation learning in a emotion-sentiment multi-task setting. One of the
related work existing in literature is of Gao et al. [6]. As stated in Sect. 2, they
have developed a weighted transition probability based approach for enhanc-
ing emotion and sentiment prediction in Chinese texts. According to them, their
proposed model can learn from a combination of single-annotated sentiment and
emotion data, along with a joint annotated one. However, a direct comparison
with them is not appropriate due to the following reasons: firstly, for extracting
sentiment-emotion conditional probabilities, they have relied on very less shared
data, which may not be exhaustive enough to represent the emotion-sentiment
relatedness of the entire data, and secondly, their approach requires much more
annotated data than ours. In a practical setting, unless domain adaptation mea-
sures are considered, a model needs sufficient in-domain annotated data, which
in-turn increases annotation dependency. The work in [6] mentions no such trans-
fer learning measures in their technique to account for distributional difference
in a more probable setting where the single annotated sentiment and emotion
data are drawn from different text collections.

5 Conclusion

In this paper, we proposed and evaluated a novel technique for multi-task learn-
ing of input word embeddings using the supervised signals of emotion and
sentiment tasks, and used these jointly learnt embeddings for improving the
10 The clustering models again showed the best results for the 70:30 split, among all of

the other models.
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performance of emotion prediction. The main contribution of this paper is that
we showed that our jointly learnt embeddings outperform both general pre-
trained embeddings and uni-tasked embeddings for the main task of emotion
prediction. While our current work was in the context of emotion prediction, our
technique for jointly learnt embeddings from multiple related tasks has broad
applicability. Hence, we plan to experiment next with a setting where embed-
dings are jointly learnt sensitive to emotion-topic, and utilized for prediction of
emotion or topic downstream. Our jointly learnt embeddings can also be used
to incorporate more classification tasks parallely in future, apart from emotion
and sentiment prediction. While our current work uses unigram word embed-
dings, it is straight forward to extend this to n-gram embeddings, and we plan
to experiment with this also as part of future work.

References

1. Agrawal, A., An, A.: Unsupervised emotion detection from text using semantic
and syntactic relations. In: 2012 IEEE/WIC/ACM International Conferences on
Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, pp. 346–353.
IEEE (2012)

2. Chaumartin, F.R.: UPAR7: a knowledge-based system for headline sentiment tag-
ging. In: Proceedings of the 4th International Workshop on Semantic Evaluations,
SemEval 2007, pp. 422–425 (2007)

3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

4. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the
tenth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 109–117 (2004)

5. Feng, S., Wang, D., Yu, G., Gao, W., Wong, K.F.: Extracting common emotions
from blogs based on fine-grained sentiment clustering. Knowl. Inf. Syst. 27(2),
281–302 (2011)

6. Gao, W., Li, S., Lee, S.Y.M., Zhou, G., Huang, C.R.: Joint learning on sentiment
and emotion classification. In: Proceedings of the 22nd ACM International Con-
ference on Conference on Information & Knowledge Management, pp. 1505–1508
(2013)

7. Kim, S.M., Valitutti, A., Calvo, R.A.: Evaluation of unsupervised emotion models
to textual affect recognition. In: Proceedings of the NAACL HLT 2010 Workshop
on Computational Approaches to Analysis and Generation of Emotion in Text,
CAAGET 2010, pp. 62–70 (2010)

8. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

9. Krcadinac, U., Pasquier, P., Jovanovic, J., Devedzic, V.: Synesketch: an open source
library for sentence-based emotion recognition. IEEE Trans. Affect. Comput. 4(3),
312–325 (2013)

10. Lasagne Contributors: Embedding Layer (2014–2015). http://lasagne.readthedocs.
io/en/latest/modules/layers/embedding.html. Accessed 11 Nov 2016

11. Li, S., Huang, C.R., Zhou, G., Lee, S.Y.M.: Employing personal/impersonal views
in supervised and semi-supervised sentiment classification. In: Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, ACL 2010,
pp. 414–423 (2010)

http://arxiv.org/abs/1412.6980
http://lasagne.readthedocs.io/en/latest/modules/layers/embedding.html
http://lasagne.readthedocs.io/en/latest/modules/layers/embedding.html


336 A. Sen et al.

12. Liu, Y., Liu, Z., Chua, T.S., Sun, M.: Topical word embeddings. In: Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp.
2418–2424 (2015)

13. Ma, C., Prendinger, H., Ishizuka, M.: Emotion estimation and reasoning based
on affective textual interaction. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII
2005. LNCS, vol. 3784, pp. 622–628. Springer, Heidelberg (2005). doi:10.1007/
11573548 80

14. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

15. Mostafa Al Masum, S., Prendinger, H., Ishizuka, M.: Emotion sensitive news agent:
an approach towards user centric emotion sensing from the news. In: Proceedings
of the IEEE/WIC/ACM International Conference on Web Intelligence, WI 2007,
pp. 614–620 (2007)

16. Neviarouskaya, A., Prendinger, H., Ishizuka, M.: Recognition of affect, judgment,
and appreciation in text. In: Proceedings of the 23rd International Conference on
Computational Linguistics, COLING 2010, pp. 806–814 (2010)

17. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 Conference on Empir-
ical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for
Computational Linguistics (2002)

18. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, Doha, Qatar, 25–29 October 2014, pp. 1532–
1543 (2014)

19. Strapparava, C., Mihalcea, R.: Learning to identify emotions in text. In: Proceed-
ings of the 2008 ACM Symposium on Applied Computing, pp. 1556–1560. ACM
(2008)

20. Tang, D., Wei, F., Qin, B., Liu, T., Zhou, M.: Coooolll: a deep learning system for
twitter sentiment classification. In: Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), pp. 208–212, August 2014

21. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific
word embedding for twitter sentiment classification. In: ACL, vol. 1, pp. 1555–1565
(2014)

22. Turney, P.D.: Thumbs up or thumbs down?: semantic orientation applied to unsu-
pervised classification of reviews. In: Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics, pp. 417–424. Association for Compu-
tational Linguistics (2002)

23. Wu, Y., Kita, K., Matsumoto, K., Kang, X.: A joint prediction model for multiple
emotions analysis in sentences. In: Gelbukh, A. (ed.) CICLing 2013. LNCS, vol.
7817, pp. 149–160. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37256-8 13

24. Yan, J.L.S., Turtle, H.R., Liddy, E.D.: EmoTweet-28: a fine-grained emotion corpus
for sentiment analysis, pp. 1149–1156 (2016)

http://dx.doi.org/10.1007/11573548_80
http://dx.doi.org/10.1007/11573548_80
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.1007/978-3-642-37256-8_13


Fine-Grained Emotion Detection in Contact
Center Chat Utterances

Shreshtha Mundra1(B), Anirban Sen2, Manjira Sinha1,
Sandya Mannarswamy1, Sandipan Dandapat3, and Shourya Roy4

1 Conduent Labs, Bangalore, India
{Shreshtha.Mundra,Manjira.Sinha,Sandya.Mannarswamy}@conduent.com

2 CSE, IIT Delhi, New Delhi, India
anirban@cse.iitd.ac.in

3 Microsoft IDC, Bangalore, India
sadandap@microsoft.com

4 Big Data Labs, American Express, New York City, USA
shourya.roy@gmail.com

Abstract. Contact center chats are textual conversations involving cus-
tomers and agents on queries, issues, grievances etc. about products and
services. Contact centers conduct periodic analysis of these chats to mea-
sure customer satisfaction, of which the chat emotion forms one crucial
component. Typically, these measures are performed at chat level. How-
ever, retrospective chat-level analysis is not sufficiently actionable for
agents as it does not capture the variation in the emotion distribution
across the chat. Towards that, we propose two novel weakly supervised
approaches for detecting fine-grained emotions in contact center chat
utterances in real time. In our first approach, we identify novel con-
textual and meta features and treat the task of emotion prediction as
a sequence labeling problem. In second approach, we propose a neural
net based method for emotion prediction in call center chats that does
not require extensive feature engineering. We establish the effectiveness
of the proposed methods by empirically evaluating them on a real-life
contact center chat dataset. We achieve average accuracy of the order
72.6% with our first approach and 74.38% with our second approach
respectively.

Keywords: Emotion detection · Contact center chat utterances

1 Introduction

Contact center is a general term for help desks, information lines and customer
service centers. They provide support over multiple channels such as online chat,
email-based and voice call to solve product and services-related issues, queries,
and requests. To ensure good customer service, contact centers conduct vari-
ous quality monitoring over these conversations. Emotion detection is one such
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quality feature, which is used to measure customer satisfaction. However, such
retrospective analysis are often performed at the whole chat level and therefore,
leave out many details. Table 1 presents an example online chat conversation
from a telecommunication contact center with emotion tagged corresponding to
each of the agent and customer turns. It can be observed that leaving out fine
changes in emotion pattern and only performing one-dimensional analysis will
not provide sufficient actionable insights. One point is to be noted here that
emotion prediction is quite different from sentiment prediction and they do not
always correspond one to one [14]. While emotion detection has been studied for
text and spoken conversations, but rarely for chat conversations over only text
channel.

In this paper, we propose two novel methods for fine-grain emotion prediction
from call center chat utterances1. Towards this, we noted that, unlike sentiment,
emotion categories (tagset) are not standard and depend on applications. Pop-
ular emotion classes (Ekman and Keltner [5] and Plutchik’s [18] model) are not
suitable for call center chats and propose a new tag-set customized for call center
conversations (as annotated in Table 1).

Table 1. An example conversation from our dataset

09:50:14 AGENT: Hi there, thanks for contacting Mobile Product
Support. My name is AGENT, how can I assist
you today?

courteous

09:51:28 CUST How you doing AGENT I need help manually
actavating this SERVICE and have been trying
to contact sombody from customer service for 2
hrs think you can help me?

unhappy

09:52:05 AGENT Certainly, what’s going on? assurance

. . . . . . . . . . . .

09:58:01 AGENT Then the phone is communicating with the
carrier. They may need to manually activate the
number on their side

no emotion

09:59:27 CUST yea i no thats why i contacted you guys because
they are putting me constantly on hold. Looks
like you guys are suggesting me to go back to
them!

unhappy

In our first approach, We model emotion detection in conversation utterances
as sequence labeling problem to exploit sequential nature of conversations using
conditional random fields (CRF) [9]. While CRF is a known and well studied
technique, application of CRF models with standard bag-of-words (BoW) does

1 Utterances here referred to textual communications corresponding to each turn from
either of the parties.
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not lead to satisfactory performance (reported as baseline result in our case
Sect. 4). We identified a number of content and meta (non-content) features
relevant for emotion detection task which we describe in detail in Sect. 3.1.

Our second technique proposes a neural network based approach to predict
the emotion category of each turn in the chat, using the novel idea of feeding the
emotion vectors which represent the emotional content of each turn as input to
the neural network. This approach bypass the need for extensive feature engi-
neering. Earlier work on emotion vectors [1] have used the noisy emotion vectors
directly for emotion prediction task. We learn the vectors for each word from
a large un-annotated corpus to incorporate more context specific characteristics
and reduce noise, and then feed the emotion vectors to a neural network which
performs the emotion classification of each conversational turn.

Lexicon-based approaches have shown advantages of using tagset specific lex-
icons in emotion categorization task [8], however, developing such lexicons, which
are customized to the concerned domain require extensive human expertise. To
mitigate this problem and make the process efficient, for both of our approaches,
we develop a minimally supervised technique to build emotion lexicon for new
domains in contact centers, refer to Sect. 3.

The rest of the paper is organized as follows: In Sect. 2, we provide a brief
summary of relevant related work. In Sect. 3, we describe our two approaches for
emotion detection in call centre chats. In Sect. 4, we empirically show how our
techniques perform on the call centre chat data set and share our observations.
We then conclude in Sect. 5 with a short summary of our proposed future work.

2 Related Work

Emotion detection is part of the broader area of Affective Computing, whose
focus is to recognize and express emotions [17]. Affect Detection systems can
be employed on different modalities and channels such as voice, text, video etc.
Given the context of our paper, we confine our summary to relevant work on
detecting emotion in text. There exists considerable research on emotion detec-
tion in text. Due to space constraints, we provide here only a very brief summary
and refer the interested reader to the detailed survey found in [2].

Approaches to emotion detection in text can be broadly classified into key-
word based approaches [8,10], linguistic rule based approaches [3,13,15] and
machine learning based approaches [16,19]. These categories can be further dif-
ferentiated in terms of their employing an emotion lexicon or not. While keyword
based approaches are simplistic and yield reasonable results, they have certain
disadvantages. They do not generalize across multiple domains; Keyword asso-
ciation with emotion is subjective and is error-prone. Since they operate at
simple word level, they cannot capture emotions which are expressed through
syntactic/semantic relations and context. Linguistic rule based approaches use
complex rules for associating syntax, semantic and contextual relations with
affective words [3,13,15]. However they suffer from the fact that designing and
modifying such emotion recognition rules is a complex task and the rules may
not generalize across domains.
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To overcome the disadvantages of keyword and rule based approaches,
machine learning based techniques for emotion detection in text have been pro-
posed. ML techniques can be broadly classified into supervised learning based
approaches [16,20], and unsupervised learning based approaches [1,6,19]. Our
work is focused on proposing and evaluating two interesting design points on this
spectrum of approaches for emotion detection. Our first approach is a supervised
sequence labeling approach for emotion detection with a rich set of content and
meta (non-content) features, employing a emotion lexicon which can be built
with minimal supervision. Our second approach is a neural network based app-
roach, wherein emotion vectors representing the emotional content in the utter-
ances are fed as input to neural net. Unlike the complex and rich set of features
used in our first approach, our second technique does not require heavy feature
engineering and the emotion vectors fed as input to neural net are built using
a simple technique outlined in an earlier research work [1]. We find that our
second technique while being lightweight in feature engineering can still provide
reasonably good results compared to a feature-heavy approach.

3 Our Approach

Given a sequence of utterances from call center conversations, our challenge is
to find the corresponding sequence of emotions from our emotion tag set. We
propose two novel approaches to addressing this problem, building upon earlier
relevant work in this space. While these are independent approaches, exploring
two totally different design choice points among the wide spectrum of techniques
available for emotion detection in text, they follow the general architecture shown
in Fig. 1, which is typical of the machine learning based approaches for emotion
detection. Our first approach which we term as Emotion Detection using
Minimal Supervised Emotion Lexicon Generation (ED-MSEL) is char-
acterized by novel contextual and meta-features and has the unique advantage
of being supported by an emotion lexicon generated with minimal supervision.
Our second approach which we term as Emotion Detection using Neural

Fig. 1. General architecture
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Network Driven by Emotion Vectors (ED-NNEV) builds on the idea of
emotion vectors first proposed in [1], and uses these emotion vectors as input
to a neural network architecture for emotion detection. In Sect. 3.1, we first
describe our ED-MSEL technique and subsequently in Sect. 3.2, we describe
our ED-NNEV approach.

Tagset: As mentioned before, we noted that generic emotion tagset [5,18] con-
taining classes Happiness, Anger, Fear, Surprise, Disgust and Sadness are not
suitable for our problem context of call centre conversations. Emotions like fear,
surprise or disgust are not very common in customer chats. Already existing state
of the art emotional taggers do not perform well on such kind of text due to the
fact that the expressed emotion does not map well to the existing tagset. For
example, the customer utterance: “You suggest that I delete my email account,
but how does that help?” will be predicted as showing the emotion class anger by
a state of the art emotion tagger2. However, clearly this is not the best possible
mapping since the customer is not angry at the agent, but only disagreeing with
the suggestion made by him. Hence it would be appropriate to tag the text with
disapproval as the customer is expressing disapproval to the expressed sugges-
tion. Exploring the call centre chat data, and after considerable deliberation with
various call center personnel, we have come up with a novel contact center spe-
cific 8-class emotion tagset viz. Happiness (Ha), Assurance (As), Approval (Ag),
Courteousness (Co), Apology(Ap), Unhappiness (Uh), Disapproval (Di) and No-
Emotion (Ne). While some of our tags such as Apology/Assurance/Approval are
related in spirit to dialogue acts in conversations, we found that the emotional
overtones carried by these tags mapped more accurately to our call centre data
set conversation as we saw in example above, rather than the standard emo-
tions such as fear/anger/surprise which do not arise typically in professional call
centre conversations.

3.1 Emotion Detection with Minimal Supervised Emotion Lexicon
Generation (ED-MSEL)

Figure 2 shows the block diagram for our first approach. We modeled emotion
prediction as a sequential labeling problem using Conditional Random Field
(CRF) [9].3

Features: Table 2 represents the different content and meta features used in our
CRF-based models. While both sets of features have been designed to capture
conversational aspect of the problem, particularly meta-features exploit sequence
and interrelationship between utterances.

Emotion Lexicon: Inspired from the previous work [8], we develop a tech-
nique for building word-emotion lexicon using a small amount of domain-specific
labeled conversation (D) and a larger amount of unlabeled chats (R) from the
2 https://tone-analyzer-demo.mybluemix.net/.
3 We have used open source implementation CRF++ http://taku910.github.io/crfpp.

https://tone-analyzer-demo.mybluemix.net/
http://taku910.github.io/crfpp
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Fig. 2. Block diagram of ED-MSEL approach

Table 2. Features used for emotion categorization

Content-based features

BOW Bag of content words whose term frequency ≥ 5

Polar word Number of positive and negative words in a utterance (using
Synesketch [8] lexicon)

Emoticon Number of positive and negative emoticons

Subsentential Number of items separated by punctuation

Lex Presence of lexical items: but, too or any negations

Prev tag Emotion category of the previous utterance

Meta features

A/C label Boolean indicating Agent(A) or Customer(C) utterance

Delay Time difference between two consecutive utterances

Position Utterance sequence number in a conversation

Length Number of words in a utterance

Segment type Utterance segments indicating general statement, query, problem
statement, response to a query

same domain. First, we find word-emotion association from D to identify the
set of words which have strength of association (SOA) above a threshold
with certain emotion categories [12]. The threshold is determined empirically.
We use point-wise mutual information (PMI) to estimate the SOA between a
word-emotion (w, e) pair based on the Eq. 1. Typically, affect bearing words in
a sentence are few and are mainly either of Noun, Adjective, Verb, and Adverb
(NAVA) [1]. This is the SOA Model referred to in the block diagram.

SOA(w, e) = PMI(w, e) − PMI(w,¬e) (1)

We add the (w, e) pair into our initial lexicon (IL) if its SOA is above a threshold.
Once we have the initial lexicon IL constructed using the above step, we then
use the unannotated corpus data R to augment the Initial Lexicon with new
words using vector representation of words. To perform the augmentation, we



Fine-Grained Emotion Detection in Contact Center Chat Utterances 343

build the word embeddings of the words present in the unannotated corpus data
R using the word2vec method proposed in [11]. Using similarity measures of
currently existing words in the Initial Lexicon to the word embeddings in R, we
augment the Initial Lexicon as follows: If a novel word wj ∈ (R-D) has high cosine
similarity with a word wi ∈ IL above an empirically determined threshold, we
assign same emotional strength of wi to wj and add it to the augmented lexicon
(AL).

During the augmentation step performed above, we essentially measure the
contextual domain similarity of words. However sometimes domain similarity
measure can result in a non-emotion carrying word getting mapped to a emo-
tion category due to it’s high co-occurrence with the emotion carrying word in
the corpus. A trivial example is the word pair “really sorry” which due to its
high co-occurrence statistics in the specific corpus, results in the word “really”
getting mapped to the “apology” category due to its co-occurrence with the word
“sorry” which carries the apologetic emotion. While such spurious co-occurrences
are infrequent, they need to be filtered out. We perform this filtering by check-
ing whether such a word pair also has some degree of similarity in the general
domain and not just in the domain specific corpus. For obtaining the general
domain word similarity, we used the pre-trained word vector from Google4. For
the word pairs which were augmented in the augmentation step, we check their
similarity score in the general domain word embedding and using an experimen-
tally arrived similarity threshold, we filter out the words whose similarity in the
general domain word embedding fall below the specified threshold. This enables
us to remove the spurious word-emotion pairs from AL.

We use the emotion lexicon constructed as mentioned above to create a lex-
icon driven vector for each conversational turn in the chat. For each turn, we
count the number of words in that turn belonging to each of the eight emotion
categories and construct a eight dimensional vector for that turn. These Emo-
tion Lexicon based emotion vectors together with the Content-based features
and meta features are together used as a feature vector for each turn. This fea-
ture vector is fed to the CRF classifier for classifying the emotion category of
each turn. We report the experimental results of our first approach in Sect. 4.

Next we describe our second approach for emotion detection which is based
on neural networks.

3.2 Emotion Detection Using Neural Network Driven by Emotion
Vectors (ED-NNEV)

We propose a neural network based approach to predict the emotion category
of each turn in the conversation, using the novel idea of feeding the emotion
vectors which represent the emotional content of each turn as input to the neural
network. The idea of emotion vectors was first proposed in the paper [1], where
they proposed an unsupervised emotion detection scheme using the emotion

4 https://code.google.com/p/word2vec/.

https://code.google.com/p/word2vec/
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vectors. While our approach leverages their basic idea of emotion vectors, instead
of using the emotion vectors directly as the predictor of emotion class of a turn,
we use the emotion vectors as input to a neural network architecture, which
is trained using a small amount of annotated data and is used to predict the
emotion class of each turn. Also, while the earlier work [1] required that emotion
representative initial seed words need to be provided manually for each emotion
category, we automatically build the emotion lexicon automatically using the in-
domain annotated chat data (note that our dataset consists of a small amount
of annotated data (D) and a large corpus of unannotated data (R)).

Our approach consists of the following major steps. First it uses in-domain
annotated chat data to build the emotion lexicon. It then extracts the affect
bearing words in the corpus, and creates the word level emotion vectors for
these affect bearing words by computing their semantic relatedness to the emo-
tion representative words in the emotion lexicon. It then computes the emotion
vector corresponding to each turn by aggregating the word-wise emotion vectors
obtained, which is then fed to the neural network as input. The neural network
which has been trained using the small annotated data set, is then used to pre-
dict the emotion category associated with each turn. The overall block diagram
is shown in Figure 3. We describe these steps briefly next.

Emotion Lexicon: Following are the steps to build the emotion lexicon, similar
to that in approach 1:

(1) We first build word vectors using the standard word2vec method for all the
words in our whole corpus (both annotated and unannoated) and this file is
our w2v file.

(2) We first collect all NAVA words in the annotated corpus. For each NAVA
word, we count the number of times it has occurred in a turn with a partic-
ular emotion category, and take the maximum of this count. For example,
if the word glad has occurred in turns annotated in the happiness (HA)
category the maximum number of times, we take HA as the representative
emotion for glad. These NAVA words are then updated in their correspond-
ing emotion bags, and act as the seed words for the next step.

(3) After updating the emotion lexicon with the seed words (from the anno-
tated chat data), we now calculate the inner product similarity of each of
these seed words with the words of the word vector file (w2v file created
in step1), trained using the complete (annotated + un-annotated) dataset.
We empirically set a similarity threshold in order to select only the relevant
and sufficiently similar words. These words are also inserted into their corre-
sponding emotion classes in the lexicon. In case the same word is similar to
more than one emotion class (meaning the same word is similar to more than
one seed words belonging to different emotion classes), we use the simplistic
approach of keeping it only in the emotion class where it was first assigned
based on similarity. This step completes the process of building the emotion
lexicon.

Word Level and Turn Level Emotion Vectors: Similar to the approach
followed in [1], we calculate the word level emotion vectors using PMI of each
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Fig. 3. Block diagram of ED-NNEV approach

NAVA word with all of the emotion representative words. To obtain the emotion
score of each NAVA word (w.r.t. a particular emotion class), we take the geomet-
ric mean of the PMIs of that NAVA word with all representative words in that
emotion class. Since our approach for generating emotion vectors is similar to
that followed in [1], we do not describe it here in detail, due to space constraints.
Finally, for a turn, we concatenate these word-level emotion vectors (in our case,
these vectors will be 8-dimensional owing to the eight emotion classes) to form
the turn level emotion vector matrix.

Classification Using a Convolution Neural Network: We use a convolu-
tion neural network consisting of one 2D convolution operation and one pooling
operation. The size of the convolution filter is 5× 8 and the width of the max-
pool layer is 6. The size of the input layer of the network is 70 units (calculated
from the maximum length of a turn in our data), and the size of the output
layer is 8 units. The size of the fully connected hidden layer is 250 units. We use
zero-padding in case an input turn has a length smaller than 70 words. We use
the Adam update algorithm [7] with a cross-entropy loss function to train the
neural network with an initial learning rate of 0.001. The Softmax activation
function is used in the output layer for the prediction. The input to the network
is the 70 × 8 emotion vector matrix corresponding to each turn of the annotated
chat dataset. The outputs are the 8 emotion classes. These classes are Happi-
ness (Ha), Unhappiness (Uh), Approval (Ag), Disapproval (Di), Assurance (As),
Apology (Ap), Courteousness (Co) and No-emotion (Ne).

4 Experiments and Results

We selected a real-world dataset of contact center chats about mobile phones
and manually annotated about 300 chats, i.e. total 2537 (150 Ha, 241 Uh, 177
Ag, 37 Di, 113 As, 95 Ap, l621 Co, 1117 Ne) utterance segments from agents and
customers combined according to the emotion tagset defined in Sect. 3. About
a fifth of the annotation exercise were repeated by 3 annotators independently
to measure inter-annotator agreement (IAA) which came out to be 0.78 using
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Table 3. Example of lexicon augmentation

Initial lexicon Words added after augmentation

Claim Re-deliver, Re-ship

Validity Expiration, Deadline

Reference Tracking

Redeem Re-book, Re-use

Paid Charged, Billed

Yes Yeah, Yep

Wow Cool

Cohen’s kappa [4]. Additionally, we used another 7000 chats (5,17,352 utter-
ances) to build the augmented emotion lexicon.

Table 3 shows examples of words which have been added to the lexicon after
augmentation. Normal thesaurus search for these words does not return the
augmented words as synonyms. Thus we are able to capture the task specific
context.

Table 4 shows relative performances of CRF based emotion classification sys-
tem under different settings as described in the previous sections. Accuracy
numbers refer to the ratio of correctly labeled segments to total number of seg-
ments. Baseline performance refers to CRF with Bag-of-Word (BoW) features.
Using Content and Meta features improve performance significantly over baseline
demonstrating usefulness of the features identified. Use of AL gives improvement
of another 2.9% over the content+meta feature-based model. Talking specifi-
cally of the Customer’s turn, use of AL over content+meta feature-based model
gives improvement of 5.6% (from 56.8 to 62.4%) in accuracy. This is because
AL essentially reduce the data sparsity problem by extracting relevant word-
emotion pairs from large unlabeled data. The best overall accuracy achieved for
emotion detection is 72.6% against the human agreement of 78% (IAA) which is
reasonable considering this was a 8-class classification task. For our call center
domain chat data set, we find that the size of Initial Lexicon was 268 words and
the size of the final Augmented Lexicon was 762 words. Too demonstrate advan-
tage of using CRF over other supervised techniques, we have also evaluated the
performance of a Support Vector Machine (SVM) with same set of features. We
have found that SVM’s accuracy was about 8% less than CRF which we believe
is primarily owing to inability to consider sequence information (emotion of an
utterance indeed depends on emotion of prior utterance(s)). Intrigued reader
might have made an interesting observation that usage of sophisticated features
and AL improve accuracy on customer segments significantly by 22% but only
by 5% for agent segments. We opine that this is because agents’ utterances are
homogeneous in nature and lack variation with respect to number of emotion
categories (in fact, majority of agents’ utterances are Ne and Co statements).
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The ED-NNEV approach shows an improvement in the cross validation accu-
racy (74.38%). We believe that this is primarily because of the property of the
neural network classifier to inherently learn features for the classification task.
The novelty of this approach is the fact that it does not require explicit feature
engineering to perform the classification (unlike ED-MSEL), and the classifier
performs the classification task commendably, given only the emotion vector rep-
resentations. We have extensively experimented with different parameter combi-
nations and found that the network performs best for dropout = 0.2 and hidden
layer size 250.

• Dataset 2
We have mentioned in earlier section that our main assumption behind devel-

oping two models ED-MSEL and ED-NNEV, is that if presented with a smaller
dataset, explicit feature engineering based approach that is ED-MSEL will be
more appropriate. To test this hypothesis, we have considered a second dataset
of call center chat utterances collected from an e-commerce domain. This dataset
contains 559 annotated data instances across our 8 emotion classes (32 Ha, 95
Uh, 26 Ag, 2 Di, 24 As, 45 Ap, 126 Co, 206 Ne). We have applied both our
models on this dataset and obtained accuracy of 55% for ED-MSEL and 51%
for ED-NNEV respectively.

By this experiment, we emphasize on the fact that both of our approaches
are equally important, depending on the scenario under consideration. While for
small datasets, we can leverage the advantage of explicit feature engineering, for
larger ones, we can perform satisfactorily using a neural network based classifier.

Table 5 shows a detail class-specific view of the proposed system along with
distribution of utterance segments belonging to each class. Identification of two
large classes, viz. Ne and Co, is contributing significantly to the overall per-
formance. Smaller and more specific classes need additional attention on the
basis of other confusing classes (as shown in the last column). It is intuitive that
negative emotion classes (Ap, Uh, Di) are often confused with other negative
emotion classes whereas positive emotion (Ha, As, Ag, Co) are confused with
other positive emotion classes. This hints that a two-level classification approach
might be worth exploring to segregate positive instances from negative followed
by finer grained classification.

Table 4. Leave one out cross validation emotion categorization accuracy

Features Accuracy (%)

Baseline (BOW) 59.9

Content 63.9

Content+Meta 69.7

ED-MSEL (with CRF) 72.6

ED-NNEV 74.38

ED-MSEL (with SVM) 64.4
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Table 5. Accuracy for different emotion types on the two approaches.

Emotion(#) ED-MSEL ED-NNEV

Precision Recall Top confusions Precision Recall Top confusions

Assurance(As) 71.67 69.35 Ne(9), Co(6) 97.34 88.50 Ne(14)

Approval(Ag) 50.00 47.73 Ha(14), Ne(14) 85.39 82.16 Ne(24), Ha(7)

Courteous(Co) 79.90 81.60 Ne(30), Ha(25) 93.75 100 -

Happiness(Ha) 39.25 41.58 Co(23), Ag(13) 78.84 53.24 Ne(21), Ag(15)

Apology(Ap) 77.78 46.67 Co(6), Ne(3) 100 100 –

Disapproval(Di) 61.11 47.83 Ne(8), Ag(2) 92.30 44.44 Ne(14),Uh(1)

Unhappiness(Uh) 60.40 49.59 Ne(51), Ha(6) 24/28 46.15 Ne(25)

No-emotion(Ne) 78.12 82.84 Co(34), Ha(30) 85.60 97 Ag(10), Ha(3)

5 Conclusion and Future Work

In this paper, we have proposed and evaluated two novel approaches for emo-
tion detection in short task-oriented chats using a new tagset specific for contact
center conversation. With the emergence of automatic conversational agents in
enterprises and consumer devices we believe that this work is well timed as such
agents are expected to be emotionally correct in their responses. Towards that
the first step is to identify speakers’ emotion which has been the motivation
for our work. Future work include improving the technique by introducing a
two-level classification (sentiment plus emotion classification) as well as valida-
tion of accuracy numbers on other similar datasets. We also intend to perform
our experiments on larger datasets (when available), and eventually develop
a unified emotion classification model which leverages the benefits of both of
the approaches. Finally, we want to gradually develop our notion of turn-level
emotion classification into a holistic approach for chat-level customer satisfac-
tion analysis. This would require us to develop suitable aggregation mechanisms
(from turn-level to chat-level), which we will be working on in future.
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Abstract. Aspect term extraction is one of the fundamental subtasks
in aspect-based sentiment analysis. Previous work has shown that sen-
tences’ dependency information is critical and has been widely used for
opinion mining. With recent success of deep learning in natural language
processing (NLP), recurrent neural network (RNN) has been proposed
for aspect term extraction and shows the superiority over feature-rich
CRFs based models. However, because RNN is a sequential model, it can
not effectively capture tree-based dependency information of sentences
thus limiting its practicability. In order to effectively exploit sentences’
dependency information and leverage the effectiveness of deep learning,
we propose a novel dependency-tree based convolutional stacked neural
network (DTBCSNN) for aspect term extraction, in which tree-based
convolution is introduced over sentences’ dependency parse trees to cap-
ture syntactic features. Our model is an end-to-end deep learning based
model and it does not need any human-crafted features. Furthermore, our
model is flexible to incorporate extra linguistic features to further boost
the model performance. To substantiate, results from experiments on
SemEval2014 Task4 datasets (reviews on restaurant and laptop domain)
show that our model achieves outstanding performance and outperforms
the RNN and CRF baselines.

Keywords: Aspect term extraction · Dependency information ·
Tree-based convolution · Deep learning

1 Introduction

Aspect-based sentiment analysis (or opinion mining) aims to identify the opin-
ions in a given document. To achieve this goal, six subtasks should be considered
and aspect term extraction is one of the important subtasks [1]. Aspect terms
are attributes (or properties) of the entity that opinion expresses on. For exam-
ple, given the product review “I love the way the entire suite of software works
together”, the aspect term is “suite of software”.

The task of aspect term extraction is usually regarded as a sequence label-
ing problem, in which each word in sentence is labeled by conventionally used
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BIO tagging scheme. In this paper, we also regard aspect term extraction as a
sequence labeling problem. Conditional random fields (CRFs) and its variants
like semi-CRFs have been successfully applied to this problem. However, these
CRFs based models are feature-rich models which need much human-crafted
feature engineering effort to work well.

In recent years, deep learning has become the popular and effective method
to deal with the tasks in computer vision (CV) and natural language processing
(NLP). [2] first applied deep learning to NLP tasks including part-of-speech
tagging, chunking, etc. Meanwhile, deep recurrent neural network (RNN1) based
models have been proposed for aspect term extraction [3]. Unlike the CRFs
based models, these RNN based models do not need any manually features. The
experimental results on SemEval2014 Task4 datasets show the superiority of
RNN based models over traditional CRFs based models.

Previous work has shown that leveraging syntactic features is helpful for
opinion mining. Dependency parse tree is one of the important syntactic features
and has been widely applied to aspect-based sentiment analysis [4–8]. [4] applied
dependency path features to opinion target extraction. Recently, [8] employed an
unsupervised method to incorporate dependency context features into embed-
dings for aspect term extraction. These works manifest that leveraging depen-
dency information of sentences may be helpful and necessary for aspect term
extraction.

Although these RNN based models mentioned above can solve the shortcom-
ings that CRFs based models have, they can not make full use of dependency
information of sentences that is critical for opinion mining. Because RNN belongs
to sequential models, it codes words one by one along the sentence and can only
capture the linear context features, thus ignoring tree-based syntactic features
over a long path. This drawback may limit its practicability for aspect term
extraction.

So, in order to exploit sentences’ dependency information and leverage the
effectiveness of deep learning for aspect term extraction, we propose a novel
dependency-tree based convolutional stacked neural network (DTBCSNN) to
extract aspect terms without any human-crafted feature engineering effort.
DTBCSNN consists of three main parts: a dependency-tree based convolu-
tional layer (DTBCL), a stacked neural network (SNN2) and an inference layer.
DTBCL is applied to effectively capture the sentences’ dependency information
and its core notion is tree-based convolution. Tree-based convolution has
been explored in a lot of works [9–11]. It can effectively exploit sentences’ syn-
tactic features over the parse trees, capturing the relations between words in a
long distance. So we adopt tree-based convolution to exploit dependency infor-
mation of sentences. Specifically, DTBCL first does convolution operation over
the fixed-depth subtrees of a parsed dependency tree. Then the output hidden
features from DTBCL are propagated to the SNN to learn tag score distributions

1 In this paper, RNN refers to recurrent neural network.
2 In order to simplify the description of our model, we define the several hidden neural

networks being stacked together as SNN.
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for tags. The inference layer is to find tag path with highest scores based on the
learned tag score distributions. Though our model is an end-to-end model, it is
flexible and can incorporate extra linguistic features to further boost the model
performance. We conduct experiments on SemEval2014 Task4 datasets and the
experimental results show the superiority of our model over the RNN and CRF
baselines.

To sum up, our contributions in this paper can be encapsulated as follows:

• Novel tree-based convolution combined with a neural network is introduced
to effectively leverage sentences’ dependency information critical but not fully
exploited by previous deep learning based models for aspect term extraction.

• Our model is an end-to-end deep learning based model that does not need any
manually features. Furthermore, our model is flexible enough to incorporate
linguistic features to boost model performance.

• We conduct extensive experiments to evaluate the model sensitivities to archi-
tectures, adding linguistic features and word embeddings.

2 Related Work

Among previous work on aspect terms or opinion targets extraction, there are
typical methods worth to mention. [12] applied part-of-speech tagging parser to
label words and phrases to extract hot (frequent) features for mining customer
reviews. Then [1] used association mining method to extract product features.
Following up, [13] proposed to use human-defined opinion word seeds and rules
from dependency parsing to extract opinion targets iteratively. This kind of
problem could also be regarded as a sequence labeling problem and then a clas-
sifier is applied. Hidden Markov Models (HMMs) [14] and conditional random
fields (CRFs) [4,15] are usually the chosen ideal models and the wining systems
[16,17] in SemEval2014 Task4 datasets are CRFs based models. Topic model
techniques can also be applied to this kind of problem using Latent Dirichlet
Allocation (LDA) [18,19].

The topic of sentiment analysis has been explored by deep learning in recent
years and has witnessed state-of-the-art performance in this domain [21,22].
There are also some work on aspect term or opinion expression extraction using
deep learning models. [20] originally combined the deep recurrent neural net-
works (RNN) and pre-trained word embeddings for opinion expression extrac-
tion. Afterwards, motivated by this work, [3] proposed a similar recurrent neural
network model and push it further, a set of different types of RNN models were
explored. These proposed RNN models outperform traditional feature-rich CRF
model. However, recurrent neural network can not effectively capture tree-based
syntactic information. As a result, RNN model may not so well fit the aspect
term extraction problem.

Tree-based convolution has been studied by [9], which aims to capture sen-
tences’ syntactic features to solve certain problems where syntactic information
is needed. Tree-based convolution achieved extraordinary performance on sen-
timent analysis and question classification [9], which manifests the effectiveness
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of this kind of approach. Furthermore, tree-based convolution is successfully
applied to programming language processing [10].

Though inspired by [9], our model is totally different from theirs as follows:
(1) We deal with different problems. Ours is aspect term extraction but theirs are
sentiment polarity analysis and question classification. (2) We use different model
architectures. To fit the problem, we connect the output features of DTBCL over
a fixed-size window instead of applying a pooling layer. And we also combine
DTBCL with SNN. Similar to [2], we use an inference layer instead of softmax
layer [3] for the task of choosing labels, so we apply a stacked neural network
after DTBCL to learn tag score distributions for inference layer. We will detail
our model in the following sessions.

3 Dependency-Tree Based Convolutional Stacked Neural
Networks

Overall, our model can be divided into three major components: (1) dependency-
tree based convolutional layer; (2) stacked neural network; (3) inference layer.
Figure 1 right shows the overall architecture of DTBCSNN. Following, we will
give out detail discussions about our model.

Dependency tree
Feature 
composition

Convolution 
over a subtree

Fully 
connected

Dependency-tree based Convolutional Layer Stacked Neural Network Inference Layer

great

food is

The

Fig. 1. Left: Example of a dependency parse tree for sentence “The food is great”.
Right: Illustration of the overall architecture of the Dependency-tree based Convolu-
tional Stacked Neural Network (DTBCSNN). The main components of DTBCSNN are
dependency-tree based convolutional layer, stacked neural network and inference layer.

3.1 Dependency-Tree Based Convolutional Layer for Incorporating
Dependency Information

Dependency-tree based convolutional layer (DTBCL) is the core component of
our model, which aims to capture sentences’ dependency information.

To apply dependency-tree based convolution, a sentence should firstly be
converted into a dependency parse tree. Each of its nodes represents the original
word of the sentence and is initialized by pre-trained word embeddings. Non-leaf
nodes can be seen as parent nodes governing a set of child nodes, which have
the relationship with their corresponding child nodes called parent-child rela-
tion (PCR). In this paper, we regard the different relationships between parent
nodes and child nodes like nsubj, nmod, conj, etc. as one shared relation PCR.
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Every word in the sentence can be seen as a parent node connecting with its child
nodes. Figure 1 left shows an example of dependency parse tree of sentence “The
food is great”. We can see from the parse tree that word “great” has child nodes
“food” and “is” and, word “food” has word “The” as its child node. Then we use
a two-layer fixed-depth feature detector to slide over the sentences’ dependency
parse trees to capture features which are each corresponding to the words in the
sentence.

Suppose that we are given a subtree: a parent node p with its child nodes
c1,c2,. . . ,cn, the output feature y of the subtree can be calculated by the function:

y = G(Wp · p +
n∑

i=1

Wc · ci + b) (1)

where Wp, Wc ε RNf×Nembed , Wp is the weight matrix for parent nodes and Wc

is the weight matrix for child nodes based on the relation PCR; b is the bias;
p, ci ε RNembed , b ε RNf . (Nf is the dimension of output feature y; Nembed is the
word embedding dimension; n represents the number of child nodes of parent
p.) G(·) is an activation function and we use the ReLU function in this paper.

We take the parse tree from Fig. 1 left for example. The features for each
word can be calculated by function (1) as follows:

yThe = G(Wp ·WThe + b) yfood = G(Wp ·Wfood + Wc ·WThe + b)

yis = G(Wp ·Wis + b) ygreat = G(Wp ·Wgreat + Wc ·Wfood + Wc ·Wis + b)

where Wword (word ∈ {The, food, is, great}) represents pre-trained word
embedding. After applying function (1) to every subtree, we can get output
features {f} ε RNf one-one corresponding to the words in the given sentence.
Considering that the word tagging is influenced by its neighboring words, we
further aggregate the features over a fixed-size window to get the compositional
features {f1}. Specifically,

f1,i =

⎛

⎜⎝
f�i−Nwin/2�

...
f�i+Nwin/2�

⎞

⎟⎠ (2)

where f1,i ε {f1}; {f1} ε RNf1 , Nf1 = Nwin · Nf . (Nwin is the size of window.)
The features with indexes exceeding the boundary of the sentence are padded
with zero vectors.

3.2 Stacked Neural Networks for Tag Score Distributions Learning

After getting the features that leverage the sentences’ dependency information,
we propagate these features to the stacked neural network (SNN). SNN is applied
to learn tag score distributions for inference layer.

A SNN with L layers can be seen as a composition function Hθ(·) with
parameters θ:

Hθ(·) = HL
θ (HL−1

θ (. . .H1
θ . . .)) (3)
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where H l
θ is defined for layer l (1 ≤ l ≤ L). In this paper, we apply two hidden

layers as our stacked neural networks. The architecture of two hidden layers has
been applied in [2] for tag score distributions learning. Motivated by this, we
adopt two hidden layers for this paper.

For each hidden feature f1,i ε {f1}, we apply SNN to learn the tag score
distributions. Concretely, the score distribution fs,i for f1,i can be calculated by
function (4):

fs,i = W (2) · f2,i + b(2) = W (2) · g(W (1) · f1,i + b(1)) + b(2) (4)

where (W (1) ε RNf2×Nf1 , b(1) ε RNf2 ) and (W (2) ε RNfs×Nf2 ,b(2) ε RNfs ) are
the parameter matrixs and bias for the first hidden layer and second hidden
layer respectively. (Nf1 and Nf2 are the output vector dimensions of the first
hidden layer and second hidden layer respectively; Nfs

is the size of tag score
distribution vector and also is the number of tags.) g(·) is an activation function
and we use Sigmoid function in this paper. After applying SNN to each hidden
feature f1,i ε {f1}, we get the tag score distributions {fs} ε RNfs .

3.3 Inference Layer

After SNN, we can get score distributions over tags for every word in a sentence.
The inference layer is used to find a specific tag path with a highest score repre-
senting the most possible BIO labels for the sentence. More explanation about
the physical meanings of inference layer can be found in [2].

Suppose we are given the tag score distributions {fs} ε RNfs for the sentence
with size n and learned transition matrix A ε RNfs×(Nfs+1), we can get the tag
path [t1 : tn]∗ by function (5):

[t1 : tn]∗ = argmax[t1:tn]

n∑

i=1

Ati−1,ti + fs,ti (5)

where ti is the tag for the word in the ith position of the sentence; Ati−1,ti

represents the transition possibility from tag ti−1 to tag ti; fs,ti is the score for
tag ti in ith position. We use the Viterbi algorithm to solve function (5).

3.4 Training Method

As discussed above, we get the parameters of our model: Θ = {Wp, Wc, b, W (1),
b(1), W (2), b(2), A}. The object function is:

∑

∀dεS,d→t

log p(t|d, θ) (6)

where S is training set; t is the golden tag path for d ε S; log p(t|d, θ) =
log exp{s(d, t, θ)} /

∑
∀t′ exp{s(d, t

′
, θ)} = s(d, t, θ) − log

∑
∀t′ exp{s(d, t

′
, θ)},

which is a sentence-level likelihood (s(d, t
′
, θ) is the score for tag path t

′
)
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(Because of space limitation, we can not discuss sentence-level likelihood in detail
but more explanation about it can be found in [2]). We use a variation of stochas-
tic gradient descent called AdaGrad and backpropagation algorithm to update
parameters Θ.

4 Boosting the Model by Adding Linguistic Features

Though our model DTBCSNN is an end-to-end deep learning based model with-
out any human-crafted features, it can easily incorporate linguistic features to
further boost model performance. Our model does not need to change the dimen-
sions of word embeddings or stacked neural network settings, only requiring to
append the linguistic feature vectors to the output feature vectors of the first
hidden layer and learn extra parameters for linguistic features. The number of
linguistic features that may be useful for aspect term extraction such as POS
tags, sentiment lexicon is large. In this paper, we choose POS tags and chunk
information [3] as the linguistic features.

5 Experiments

5.1 Experimental Settings

Pre-processing. We use the common BIO coding method to label our dataset,
in which “B” represents “beginning of aspect term”, “I” represents “inside of
aspect term” and “O” is for “outside of aspect term”. The predicted segmenta-
tion with “B” at the beginning followed by “O” is regarded as an aspect term.

Datasets. In this paper, we adopt the datasets from SemEval2014 Task43

(reviews on restaurant and laptop domain) whose specific description is shown
in Table 1. For each domain, we only use the training set to train our model and
then apply the test set to evaluate the trained model. In all of the experiments,
we train and test our model in a unified manner.

Table 1. Statistics of SemEval2014 datasets. #S means “sentence” and #T means
“aspect term”.

Restaurant Laptop Total

Training Test Training Test

#S 3,041 800 3,045 800 7,686

#T 3,693 1,134 2,358 654 7,839

Evaluation Metrics. Exact evaluation metric is applied in our paper. This
means that only the predicted aspect term whose boundary matches the golden
3 http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools.

http://alt.qcri.org/semeval2014/task4/index.php?id=data-and-tools
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boundary can be seen a right one. We use F1 scores to evaluate the model
performance.

Model Settings. We firstly use pre-trained word embeddings to initialize the
word vectors. Considering that the performance of model can benefit from the
word embeddings trained by the same domain corpora, we train word embed-
dings with gensim4 on Yelp Challenge dataset5 for restaurant domain and on
Amazon dataset6 for laptop domain. We select all restaurant reviews from Yelp
datasets and only the electronic reviews from Amazon datasets. We tuned word
embedding dimension in {100, 150, 200, 250, 300, 350, 400} and determined the
size of 300 for the two domains. The window size is 3 tuned from {1, 3, 5}. For
laptop domain, Nf is 300 tuned from {200, 250, 300, 350, 400} and Nf2 is 250
tuned from {200, 250, 300, 350}; for restaurant domain, Nf is 250 and Nf2 is 200
tuned the same way as laptop domain. During the process, Stanford Parser [23]
is used to get dependency parse trees for sentences.

We combine mini-batch AdaGrad and early stopping to train our model. The
mini-batch size is 25 tuned from {10, 15, 20, 25, 30}. In order to use the method
of early stopping, 10% data from the training set are randomly selected as val-
idation set and the rest of them as training set. When each epoch training is
finished, we use validation set to evaluate the model, to keep whichever para-
meters that entail the best performance on the validation set. By the way the
early stopping steps are set to 10 tuned from {5, 10, 15, 20}, meaning that if the
performance fails to exceed the best result over 10 times, the training will be
stopped. After going through the steps mentioned above, it is time to use test
set to evaluate the trained model on the best parameters.

Adding Linguistic Features. We use POS tags and chunk information as the
extra linguistic features. POS tags contains four types including noun, adjective,
verb and adverb, while chunk contains five classes: NP, VP, PP, ADJP and
ADVP. These are all coded as binary features.

5.2 Baseline Methods

We compare our model with the following baselines:

• CRF. A linear-chain CRF with commonly used linguistic features including
current word, context information, POS tag, positions, stylistics and prefixes
and suffixes between one to four characters [3].

• Elman-RNN. An Elman type recurrent neural network on the top of word
embeddings proposed by [3]. Elman-RNN contains a lookup-table layer, a
hidden layer and an output layer.

• Elman-RNN+F. The above Elman-RNN adding the same linguistic
features as ours.

4 https://pypi.python.org/pypi/gensim.
5 http://www.yelp.com/datasetchallenge.
6 http://jmcauley.ucsd.edu/data/amazon/links.html.

https://pypi.python.org/pypi/gensim
http://www.yelp.com/datasetchallenge
http://jmcauley.ucsd.edu/data/amazon/links.html
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• LSTM-RNN. An LSTM network which is the another type of recurrent
neural network proposed by [3]. It shares a same architecture with Elman-
RNN.

• LSTM-RNN+F. The above LSTM network adding the same linguistic fea-
tures as ours.

• HIS RD. The top system [17] on the laptop domain for SemEval2014 Task4.
It is a CRF based model leveraging lexical features, syntactic information, etc.

• DLIREC. The winning system [16] on the restaurant domain for
SemEval2014 Task4. It is another CRF based model and it considers vari-
ous lexical, syntactic, semantic features of the sentences.

We mainly compare our model with the RNN based models proposed by
[3]. In their paper, they have proposed numerous types of RNN based mod-
els including Jordan-RNN, Elman-RNN, LSTM, Bi-Elman-RNN, Bi-LSTM, etc.
Their experimental results show that Elman-RNN and LSTM achieve higher
performance over other models, so we adopt Elman-RNN and LSTM as the
baselines ignoring the other inferior models.

5.3 Final Results and Analysis

Table 2 shows the results of the mentioned baselines and our model. We use
the same linguistic features which are used in [3]. In [3], they used different
dimensional word embeddings for a specific model to evaluate performance, so
we report the best result for a specific model from their paper. The followings
are the analysis and conclusions:

• Comparing to the traditional linear CRF model, the deep learning based
models (DTBCSNN and RNNs) apparently achieve much better performance
especially in the laptop domain. This demonstrates the effectiveness of deep
learning and its superiority over linear CRF.

Table 2. Model comparison results in terms of F1 scores (%).

Models Restaurant Laptop

CRF 77.28 68.66

Elman-RNN 80.37 74.43

Elman-RNN+F 81.66 74.25

LSTM-RNN 79.79 73.52

LSTM-RNN+F 81.37 75.00

HIS RD 79.62 74.55

DLIREC 84.01 73.78

DTBCSNN 82.26 74.70

DTBCSNN+F 83.97 75.66
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• Our model is more outstanding than RNN based models. Quantitatively, from
results on the Table 2, DTBCSNN can achieve a result of 82.26% in restaurant
domain and outperforms all of the RNNs based models even including those
adding extra linguistic features. In laptop domain, DTBCSNN can achieve
74.70% which is better than HIS RD and almost every RNNs based models
except LSTM-RNN+F. These results indicate the limits of the RNNs based
models and the effectiveness of our model by leveraging syntactic features for
aspect term extraction.

• Adding linguistic features is ascertained to boost our model, as DTBCSNN+F
achieves 83.97% exceeding DTBCSNN by 1.71% in the restaurant domain and
exceeds 0.96% than DTBCSNN in the laptop domain. Comparing with the
wining systems HIS RD and DLIREC, DTBCSNN+F can achieve a perfor-
mance close to DLIREC which is slightly lower by 0.04% in the restaurant
domain but DTBCSNN and DTBCSNN+F all outperform HIS RD in the
laptop domain.

5.4 Development Experiments for Model Analysis

In this part, we do extensive experiments to evaluate the model architecture,
with added linguistic features and word embeddings.

Effect of DTBCL. DTBCL refers to the first part of our model that is
dependency-tree based convolutional layer. We do experiment excluding DTBCL
to see how much influence it can engender to the model. We use DTBCSNN as
the baseline. After dropping DTBCL, the rest of the model is a stacked neural
network (SNN). The result is in the Table 3, from which, we can see that the
performance is damaged after dropping DTBCL on both dataset domain. The
score on restaurant domain is reduced by 1.84% and 4.11% on laptop domain,
which demonstrates the importance and effectiveness of tree-based convolution
to capture syntactic features for aspect term extraction in our model.

Table 3. Effect of DTBCL in terms of F1 scores (%).

Models Restaurant Laptop

SNN 80.42 70.59

DTBCSNN 82.26 74.70

Effect of Adding Linguistic Features. We divide the two linguistic features
mentioned above into isolated ones and add each feature to DTBCSNN to see
the performances. The results are in Table 4, from which we can find out that
the performance of DTBCSNN is improved after adding one certain linguistic
feature on both domains and adding all the linguistic features is better than
adding only one single feature. Based on the results, we can safely conclude that
(1) our model can easily incorporate linguistic features to improve the model
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Table 4. Effect of adding linguistic features in terms of F1 scores (%).

Models Restaurant Laptop

DTBCSNN 82.26 74.70

DTBCSNN+POS 82.60 75.43

DTBCSNN+chunk 82.53 75.08

DTBCSNN+F 83.97 75.66

performance; (2) we can explore more linguistic features and then combine them
to further boost our model.

Effect of Word Embedding Dimensions. In an attempt to evaluate the
model sensitivity to the dimension of word embeddings, we vary the dimension
from 50 to 400 with interval as 50. Restaurant domain uses word embeddings
trained on Yelp dataset and laptop domain applies word embeddings trained
on Amazon dataset. After conducting the experiment on DTBCSNN model,
results are shown in Fig. 2, which tells us that the highest score is achieved at
around dimension 300 and that after dimension 150, the performance does not
vary so much. The results verify that DTBCSNN is not so sensitive to the word
embedding dimensions on the condition that the dimension is in the appropriate
range e.g. from 150 to 400.

dimension
50 100 150 200 250 300 350 400

f1
-s

co
re

s

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

Restaurant
Laptop

Fig. 2. Effect of word embedding dimensions.

Effect of Word Embedding Types. In order to see the effect of word embed-
ding types to the model, we use word embeddings trained on Yelp datasets
(YWE), word embeddings trained on Amazon datasets (AWE) and Google word
embeddings7 (GWE) to do the experiment with DTBCSNN. Specifically, we test
the model with YWE and GWE on restaurant domain and with AWE and GWE
on laptop domain. The results are shown in Table 5. From the results, we can see
that the performance of the model declines when using GWE as the word embed-
dings. On restaurant domain, the performance reduces by 0.86% compared to
YWE and on laptop domain it drops by 2.07% compared to AWE, which tells
us that using word embeddings trained by the same domain corpora is necessary
for the problem.
7 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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Table 5. Effect of word embedding types in terms of F1 scores (%).

Type Restaurant Type Laptop

Yelp 82.26 Amazon 74.70

Google 81.40 Google 72.63

6 Conclusion

In this paper, we propose a novel dependency-tree based convolutional stacked
neural network, aiming to leverage dependency information of sentences and the
effectiveness of deep learning for aspect term extraction. We apply tree-based
convolution to capture dependency information for this problem. Our model does
not need any manually features and is flexible to incorporate extra linguistic
features to further boost model performance. The results of experiments on
datasets show the superiority of our model to baselines.

Acknowledgements. This work was supported by National Natural Science Founda-
tion of China (No. 61602490) and the National High-tech Research and Development
Program (863 Program) (No. 2014AA015105). Thanks for the anonymous reviewers
for their valuable comments.

References

1. Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions
on the web. In: WWW, pp. 342–351 (2005)

2. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

3. Liu, P., Joty, S.R., Meng, H.M.: Fine-grained opinion mining with recurrent neural
networks and word embeddings. In: EMNLP, pp. 1433–1443 (2015)

4. Jakob, N., Gurevych, I.: Extracting opinion targets in a single and cross-domain
setting with conditional random fields. In: EMNLP, pp. 1035–1045 (2010)

5. Johansson, R., Moschitti, A.: Syntactic and semantic structure for opinion expres-
sion detection. In: CoNLL, pp. 67–76 (2010)

6. Johansson, R., Moschitti, A.: Extracting opinion expressions and their polarities-
exploration of pipelines and joint models. In: ACL, pp. 101–106 (2011)

7. Li, F., Han, C., Huang, M., Zhu, X., Xia, Y., Zhang, S., Yu, H.: Structure-aware
review mining and summarization. In: COLING, pp. 653–661 (2010)

8. Yin, Y., Wei, F., Dong, L., Xu, K., Zhang, M., Zhou, M.: Unsupervised word and
dependency path embeddings for aspect term extraction. In: IJCAI, pp. 2979–2985
(2016)

9. Mou, L., Peng, H., Li, G., Xu, Y., Zhang, L., Jin, Z.: Discriminative neural sentence
modeling by treebased convolution. In: EMNLP, pp. 2315–2325 (2015)

10. Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z.: Convolutional neural networks over
tree structures for programming language processing. In: AAAI, pp. 1287–1293
(2016)



362 H. Ye et al.

11. Ma, M., Huang, L., Zhou, B., Xiang, B.: Dependency-based convolutional neural
networks for sentence embedding. In: ACL, pp. 174–179 (2015)

12. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: KDD, pp. 168–177
(2004)

13. Qiu, G., Liu, B., Bu, J., Chen, C.: Opinion word expansion and target extraction
through double propagation. Comput. Linguist. 37(1), 9–27 (2011)

14. Jin, W., Ho, H.H.: A novel lexicalized hmm-based learning framework for web
opinion mining. In: ICML, pp. 465–472. ACM (2009)

15. Yang, B., Cardie, C.: Extracting opinion expressions with semi-Markov conditional
random fields. In: EMNLP, pp. 1335–1345 (2012)

16. Toh, Z., Wang, W.: DLIREC: aspect term extraction and term polarity classifica-
tion system. In: SemEval, pp. 235–240 (2014)

17. Chernyshevich, M.: IHS R&D Belarus: cross-domain extraction of product features
using CRF. In: SemEval, pp. 309–313 (2014)

18. Titov, I., McDonald, R.T.: Modeling online reviews with multi-grain topic models.
In: WWW, pp. 111–120 (2008)

19. Moghaddam, S., Ester, M.: On the design of LDA models for aspect-based opinion
mining. In: CIKM, pp. 803–812 (2012)

20. Irsoy, O., Cardie, C.: Opinion mining with deep recurrent neural networks. In:
EMNLP, pp. 720–728 (2014)

21. Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts,
C.: Recursive deep models for semantic compositionality over a sentiment treebank.
In: EMNLP, pp. 1631–1642 (2013)

22. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

23. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: ACL, pp. 423–430
(2003)



Topic Modeling over Short Texts
by Incorporating Word Embeddings

Jipeng Qiang1,2,3(B), Ping Chen3, Tong Wang3, and Xindong Wu2,4

1 Yangzhou University, Yangzhou 225009, China
qjp2100@163.com

2 Hefei University of Technology, Hefei 230009, China
3 University of Massachusetts Boston, Boston, MA 02155, USA

4 University of Louisiana at Lafayette, Lafayette, LA 70504, USA

Abstract. Inferring topics from the overwhelming amount of short texts
becomes a critical but challenging task for many content analysis tasks.
Existing methods such as probabilistic latent semantic analysis (PLSA)
and latent Dirichlet allocation (LDA) cannot solve this problem very
well since only very limited word co-occurrence information is available
in short texts. This paper studies how to incorporate the external word
correlation knowledge into short texts to improve the coherence of topic
modeling. Based on recent results in word embeddings that learn seman-
tically representations for words from a large corpus, we introduce a
novel method, Embedding-based Topic Model (ETM), to learn latent
topics from short texts. ETM not only solves the problem of very lim-
ited word co-occurrence information by aggregating short texts into long
pseudo-texts, but also utilizes a Markov Random Field regularized model
that gives correlated words a better chance to be put into the same topic.
The experiments on real-world datasets validate the effectiveness of our
model comparing with the state-of-the-art models.

Keywords: Topic modeling · Short text · Word embeddings

1 Introduction

Topic modeling has been proven to be useful for automatic topic discovery from
a huge volume of texts. Topic model views texts as a mixture of probabilistic
topics, where a topic is represented by a probability distribution over words.
Many topic models such as Latent Dirichlet Allocation (LDA) have demonstrated
great success on long texts (news article and academic paper) [2,5]. In recent
years, knowledge-based topic models have been proposed, which ask human users
to provide some prior domain knowledge to guide the model to produce better
topics instead of purely relying on how often words co-occur in different contexts.
For example, two recently proposed models, i.e., a quadratic regularized topic
model based on semi-collapsed Gibbs sampler [10] and a Markov Random Field
regularized Latent Dirichlet Allocation model based on Variational Inference
[18], share the idea of incorporating the correlation between words.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 363–374, 2017.
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With the rapid development of the World Wide Web, short text has been an
important information source not only in traditional web site, e.g., web page title
and image caption, but in emerging social media, e.g., tweet, status message, and
question in Q&A websites. Compared with long texts, topic discovery from short
texts has the following three challenges: only very limited word co-occurrence
information is available, the frequency of words plays a less discriminative role,
and the limited contexts make it more difficult to identify the senses of ambiguous
words [15]. Therefore, long text topic models cannot work very well on short texts
[4,20]. Finally, how to extract topics from short texts remains a challenging
research problem [16]. Three major heuristic strategies have been adopted to
deal with how to discover the latent topics from short texts. One follows the
simple assumption that each text is sampled from only one latent topic which is
totally unsuited to long texts, but it can be suitable for short texts compared to
the complex assumption that each text is modeled over a set of topics [19,21].
Therefore, many models for short texts were proposed based on this simple
assumption [4,20]. Zhao et al. [21] proposed a Twitter-LDA model by assuming
that one tweet is generated from one topic. But, the problem of very limited word
co-occurrence information in short texts has not been solved yet. The second
strategy takes advantage of various heuristic ties among short texts to aggregate
them into long pseudo-texts before topic inference that can help improve word
co-occurrence information [8,17]. For example, some models aggregated all the
tweets of a user as a pseudo-text [17]. As these tweets with the same hashtag may
come from a topic, Mehrotra et al. [8] aggregated all tweets into a pseudo-text
based on hashtags. However, these schemes are heuristic and highly dependent
on the data, which is not fit for short texts such as news titles, advertisements or
image captions. The last scheme directly aggregates short texts into long pseudo-
texts through clustering methods [15], in which the clustering method will face
this same problem of very limited word co-occurrence information.

Fig. 1. An illustration of the relationship among short texts.

Figure 1 shows an example to explain the shortcomings of existing short text
topic models. There are three short texts, and non-stop words are marked in
bold. The shortest distances between two words from different short texts are
labeled using the arrows, in which the distance is computed by word embeddings
[13]. We can see s1 and s2 probably include two topics. ‘Obama’ and ‘President’
are likely to come from the same topic, and ‘NBA’ and ‘Bulls’ are from another
topic. The simple assumption that each text is sampled from only one latent
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topic is unsuited to these texts. And if we directly aggregate the three short
texts into two long pseudo-texts, it is very hard to decide how to aggregate
these texts since they do not share the same words. But, it is very clear that s1

is more similar to s2 than s3.
To overcome these inherent weaknesses and keep the advantages of three

strategies, we propose a novel method, Embedding-based Topic Model (ETM),
to discover latent topics from short texts. Our method leverages recent results
by word embeddings that obtain vector representations for words [9]. ETM has
the following three steps. ETM firstly builds distributed word embeddings from
a large corpus, and then aggregates short texts into long pseudo-texts by incor-
porating the semantic knowledge from word embeddings, thus alleviates the
problem of very limited word co-occurrence information in short texts. Finally,
ETM discovers latent topics from pseudo-texts based on the complex assump-
tion that each text of a collection is modeled over a set of topics. ETM adopts
a Markov Random Field regularized model based on collapsed Gibbs sampling
which utilizes word embeddings to improve the coherence of topic modeling.
Within a long pseudo-text, if two words are labeled as similar according to word
embedding, a binary potential function is defined to encourage them to share
the same latent topic. Experiments demonstrate that ETM can discover more
prominent and coherent topics than the baselines.

2 Algorithm

Our model includes three steps. First, we build distributed word embeddings for
the vocabulary of the collection. Different from Word2Vec [9] that only utilizes
local context windows, Pennington et al. later introduced a new global log-
bilinear regression model, Glob2Vec [13], which combines global word-word co-
occurrence counts and local context windows. Therefore, we adopt Glob2Vec
to learn word vector representation. Second, we aggregate short texts into long
pseudo-texts by incorporating the semantic knowledge from word embeddings.
A new metric, Word Mover’s Distance (WMD) [7], to compute the distance
between two short texts. Third, we adopt a Markov Random Field regularized
model based on collapsed Gibbs Sampling to improve the coherence of topic
modeling. The framework of ETM is shown in Fig. 2.

2.1 Aggregate Short Texts into Long Pseudo-texts

After obtaining word embeddings of each word, we use the typical cosine distance
measure for the distance between words, i.e., for word vector vx and word vector
vy, we define the distance d(vx, vy) = 1 − vx

‖vx‖2
× vy

‖vy‖2
. Consider a collection

of short texts, S = {s1, s2, . . ., si, . . . , sn}, for a vocabulary of V words, where
si represents the i th text. We assume each text is represented as a normalized
bag-of-words (nBOW) vector, ri ∈ R

V is the vector of si, a V -dimension vector,
ri,j = ci,j∑V

v=1 ci,v
where ci,j denotes the occurrence times of the jth word of the

vocabulary in text si. We can see that a nBOW vector is very sparse as only a
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Fig. 2. Embedding-based topic model for short texts

few words appear in each text. For example, given three short texts in Fig. 1, if
we adopt these metrics (e.g., Euclidean distance, Cosine Similarity) to measure
distance between two texts, it is hard to find their difference. Therefore, we
introduce WMD to compute the distance between texts. WMD computes the
minimum cumulative cost that words from one text need to travel to match
exactly the words of the other text as the distance of texts, in which the distance
bewteen words is computed by word embeddings.

Let ri and rj be the nBOW representation of si and sj . Each word of ri can
be allowed to travel to the word of rj . Let T ∈ R

m×m be a flow matrix, where
Tu,v represents how much of the weight of word u of ri travels to word v of rj .
To transform all weights of ri into rj , we guarantee that the entire outgoing flow
from vertex u equals to ri,u, namely

∑
v Tu,v = ri,u. Correspondingly, the amount

of incoming flow to vertex v must equal to rj,v, namely,
∑

u Tu,v = rj,v. At last,
we can define the distance of two texts as the minimum cumulative cost required
to flow from all words of one text to the other text, namely,

∑
u,v Tu,vd(u, v).

The best average time complexity of solving the WMD problem is O(m3logm),
where m is the number of unique words in the text. To speed up the optimization
problem, we relax the WMD optimization problem and remove one of the two
constraints. Consequently, the optimization becomes,

min
T≥0

m∑

u,v

Tu,vd(u, v) s.t.
m∑

v

Tu,v = ri,u∀u ∈ {1, 2, ...,m} (1)

The optimal solution is the probability of each word in one text is moved to
the most similar word in the other text. The time complexity of WMD can be
reduced to O(mlogm). Once the distance between texts have been computed, we
aggregate short texts into long pseudo-texts based on K-Means algorithm [1].

2.2 Topic Inference by Incorporating Word Embeddings

Model Description: We adopt the MRF model to learn the latent topics which
can incorporate word distances into topic modeling for encouraging words labeled
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similarly to share the same topic assignment [18]. Here, we continue to use word
embeddings to compute the distance between words. We can see from Fig. 3,
MRF model extends the standard LDA model [2] by imposing a Markov Random
Field on the latent topic layer.

Suppose the corpus contains K topics and long pseudo-texts with L texts over
V unique words in the vocabulary. Following the standard LDA, Φ is represented
by a K × V matrix where the kth row φk represents the distribution of words
in topic k, Θ is represented by a L×K where the lth row θl represents the topic
distribution for the lth long pseudo-texts, α and β are hyperparameters, zli

denotes the topic identities assigned to the ith word in the lth long pseudo-text.

Fig. 3. Markov random field regularized model

The key idea is that if the distance between two words in one pseudo-text
is smaller than a threshold, they are more likely to belong to the same topic.
For example, in Fig. 1, ‘President’ and ‘Obama’ (‘Bulls’ and ‘NBA’) are likely
to belong to the same topic. Based on this idea, MRF model defines a Markov
Random Field over the latent topic. Given a long pseudo-text l consisting of nl

words {wli}nl
i=1. If the distance between any word pair (wli,wlj) in l is smaller

than a threshold, MRF model creates an undirected edge between their topic
assignments (zli,zlj). Finally, MRF creates an undirected graph Gl for the lth
pseudo-text, where nodes are latent topic assignments {zli}nl

i=1 and edges connect
the topic assignments of correlated words. For example, in Fig. 3, Gl is consisted
of five nodes (zl1,zl2,zl3,zl4,zl5) and five edges {(zl1,zl2,), (zl1,zl3,), (zl2,zl4,),
(zl2,zl5,), (zl3,zl5)}.

The same to LDA, MRF model uses the unary potential for zli as p(zli | θl).
The difference is MRF model defines binary potential over each edge (zli, zlj) of
Gl as exp{I(zli = zlj)}, which produces a large value if the two topic assignments
are the same and generates a small value if the two topic assignments are differ-
ent, where I(·) is the indicator function. Hence, similar words in one pseudo-text
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have a high probability to be put into the same topic. The joint probability of
all topic assignments zl = {zli}nl

i=1 in MRF model can be calculated as

p(zl | θl, λ) =
nl∏

i=1

p(zli | θl)exp{λ

∑
(li,lj)∈Pl

I(zli = zlj)

| Pl | } (2)

where Pl represents all edges of Gl and | Pl | is the number of all edges. Here, λ is
a user-specified parameter that controls the tradeoff between unary potential and
binary potential. If λ = 0, MRF model is reduced to LDA. Different from LDA
that topic label zli is determined by topic distribution θl, zli in MRF depends
on both θl and the topic assignments of similar words in the lth pseudo-text.

Formally, the generative process of MRF model is described as follows.

(1) Draw Θ ∼ Dirichlet(α)
(2) For each topic k ∈ [1,K]

(a) draw φk ∼ Dirichlet(β)
(3) For each pseudo-text l in long pseudo-texts

(a) draw topic assignments zl for all words in pseudo-text l using Eq. (2)
(b) draw wli ∼ Multinomial(φzli

) for each word in lth pseudo-text

There have been a number of inference methods that have been used to estimate
the parameters of topic models, from basic expectation maximization [6], to
approximate inference methods like Variational Inference [2] and Gibbs sampling
[5]. Variational Inference tends to approximate some of the parameters, such as
Φ and Θ, not explicitly estimate them, may face the problem of local optimum.
Therefore, we will use collapsed Gibbs sampling to estimate parameters under
Dirichlet priors in this paper, not variational inference [18].

These parameters that need to be estimated include the topic assignments
of z, the multinomial distribution parameters Φ and Θ. Using the technique of
collapsed Gibbs sampling, we only need to sample the topic assignments of z by
integrating out φ and θ according to the following condition distribution:

p(zli = k | zl,−li,wl,−li) = (nk
l,−li + α)

nwli

k,−li + β

nk,−li + V β
exp(λ

∑
j∈Nli

(zlj = k)
| Nli | ) (3)

where zli denotes the topic assignment for word wli in the lth pseudo-text,
zl,−li denotes the topic assignments for all words except wli in the lth pseudo-
text, nk

l,−li is the number of times assigned to topic k excluding wli in the lth
pseudo-text, nwli

k,−li is the number of times word wli assigned to topic k excluding
wli, nk,−li is the number of occurrences of all words V that belongs to topic k
excluding wli, Nli denotes the words that are labeled to be similar to wi in the
lth pseudo-text, and | Nli | is the number of words in Nli.

Parameter Estimation: There are three types of variables (z, Φ and Θ) to be
estimated for our model ETM. For the lth pseudo-text, the joint distribution of
all known and hidden variables is given by the hyperparameters:

p(zl, θl,wl, Φ | α, β, λ) = p(Φ|β) ·
nl∏

li=1

p(wli | φzli
) · p(zl | θl, λ) · p(θl | α) (4)
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We can obtain the likelihood of the lth pseudo-text wl of the joint event of
all words by integrating out φ and θ and summing over zli.

p(wl | α, β, λ) =
∫ ∫

p(θl | α) · p(Φ|β) ·
nl∏

li=1

p(wli | φzli
, Φ, λ) (5)

Finally, the likelihood of all pseudo-texts W = {wl}L
l=1 is determined by the

product of the likelihood of the independent pseudo-texts:

p(W | α, β, λ) =
L∏

l=1

p(wl | α, β, λ) (6)

We try to formally derive the conditional distribution p(zli = k | zl,−li,wl,−li)
used in our ETM algorithm as follows.

p(zli = k | zl,−li,wl,−li) =
p(w, z | α, β, λ)

p(w, zl,−li | α, β, λ)
∝ p(w, z | α, β, λ)

p(wl,−li, zl,−li | α, β, λ)
(7)

From the graphical model of ETM, we can see

p(w, z | α, β, λ) = p(w | z, β)p(z | α, λ) (8)

The same to LDA, the target distribution p(w | z, β) is obtained by integrat-
ing over φ,

p(w | z, β) =
K∏

zli=1

Δ(nzli
+ β)

Δ(β)
,nzli

= {n(w)
zli

}V
w=1 (9)

where n
(w)
zli is the number of word w occurring in topic zli. Here, we adopt

the Δ function in Heinrich (2009), and we can have Δ(β) =
∏V

w=1 Γ(β)

Γ(V β) and

Δ(nzli
+ β) =

∏
w∈w Γ(nw

k +β)

Γ(nk+V β) , where Γ denotes the gamma function.
According to Eq. (3), we can get

p(zl | θl, λ) = exp{λ

∑
(li,lj)∈Pl

∑K
k=1(zlizlj)

| Pl | }
K∏

k=1

θ
nk
l

k (10)

Similarly, p(zl | α, λ) can be obtained by integrating out Θ as

p(z | α, λ) =
∫

p(z | Θ, λ)p(Θ | α)

=
L∏

l=1

exp{λ

∑
(li,lj)∈Pl

∑K
k=1(zlizlj)

| Pl | }Δ(nl + α)
Δ(α)

(11)

where p(Θ | α) is a Dirichlet distribution, and nl = {n
(k)
l }K

k=1.
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Finally, we put the joint distribution p(w, z | α, β, λ) into Eq. (11), the con-
ditional distribution in Eq. (3) can be derived

p(zli = k | zl,−li,wl,−li) ∝ p(w, z | α, β, λ)
p(wl,−li, zl,−li | α, β, λ)

∝ Δ(nl + α)
Δ(nl,−li + α)

Δ(nzli
+ β)

Δ(nzl,−li
+ β)

exp(λ

∑
j∈Nli

(zlj = k)
| Nli | )

∝ (nk
l,−li + α)

nwli

k,−li + β

nk,−li + V β
exp(λ

∑
j∈Nli

(zlj = k)
| Nli | )

(12)

3 Experiments

Datasets and Setup: We study the empirical performance of ETM on two
short text datasets, Tweet2011 and GoogleNews1. Similar to existing papers
[20], we utilize Google news as a dataset to evaluate the performance of topic
models. We took a snapshot of the Google news on April 27, 2015, and crawled
the titles of 6,974 news articles belonging to 134 categories. For each dataset,
we conduct the same preprocessing with this paper [14]. We compare our model
ETM with the following baselines. Three short text topic models: Unigrams [12],
DMM [20], and BTM [4]. Two Long text topic models: LDA [5] and MRF-LDA
[18]. For the baselines, we chooses the parameters according to their original
papers. For LDA, Unigrams and BTM, both hyperparameters α and β are set
to 50/K and 0.01. For DMM and ETM, both hyperparameters α and β are set
to 0.1. For MRF-LDA, α = 0.5 and λ = 1. For ETM, λ is set to 1. For our
model and MRF-LDA, words pairs with distance lower than 0.4 are labeled as
correlated.

A lot of metrics have been proposed for measuring the coherence of topics
in texts [11]. Most conventional metrics try to estimate the likelihood of held-
out testing data based on parameters inferred from training data. However, this
likelihood is not necessarily a good indicator of the quality of extracted topics
[3]. Similar to [18], we also evaluate our model in a qualitative and quantitative
manner. And we validate topic models on short text clustering and short text
classification. Due to the space limit, we omit some experiments. First, we discuss
some exemplar topics learned by the six methods on the two datasets. Each topic
is visualized by the top ten words. Then, we evaluate our model based on the
coherence measure (CM) to assess how coherent the learned topics are. For each
topic, we choose the top 10 candidate words and ask human annotators to judge
whether they are relevant to the corresponding topic. To do this, annotators
need to judge whether a topic is interpretable or not. If not, the 10 words of the
topic are labeled as irrelevant; otherwise these words are identified by annotators
as relevant words for this topic. Coherence measure (CM) is defined as the ratio
between the number of relevant words and the total number of candidate words.

1 http://news.google.com.

http://news.google.com
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Qualitative Evaluation: On Tweet2011 dataset, there is no category informa-
tion for each tweet. Manual labeling might be difficult due to the incomplete
and informal content of tweets. Fortunately, some tweets are labeled by their
authors with hashtags in the form of ‘#keyword’ or ‘@keyword’. We manually
choose 10 frequent hashtags as labels and collect documents with their hashtags.
These hashtags are ‘NBA’, ‘NASA’, ‘Art’, ‘Apple’, ‘Barackobama’, ‘Worldprayr’,
‘Starbucks’, ‘Job’, ‘Travel’, ‘Oscars’, respectively. On GoogleNews dataset, the
four topics are events on April 27, 2015, which are “Nepal earthquake”, “Iran
nuclear”, “Indonesia Bali”, and “Yemen airstrikes”.

Table 1 shows some topics learned by the six models. Each topic is visualized
by the top ten words. Words that are noisy and lack of representativeness are
highlighted in bold. From Tabel 1, our model ETM can learn more coherent
topics with fewer noisy and meaningless words than all baseline models. Long
text topic modelings (LDA and MRF-LDA) that model each text as a mixture of
topics does not fit for short texts, as short text suffers from the sparsity of word
co-occurrence patterns. MRF-LDA incorporating word correlation knowledge
cannot improve the coherence of topic modeling since binary potential of MRF
cannot work when short text only consists of a few words. In addition, MRF-
LDA based on variational inference may face the problem of local optimum.
Consequently, the top 10 words of yemeb of LDA and Apple of MRF-LDA are
not relevant to the corresponding topic.

The existing short text topic models suffer from two problems. On one hand,
the frequency of words in short text plays a less discriminative role than long
text, making it hard to infer which words are more correlated in each text.
On the other hand, these models bring in little additional word co-occurrence
information and cannot alleviate the sparsity problem. As a consequence, the
topics extracted from these three short text topic models are not satisfying.
For example, Unigrams cannot identify topic “iran”, BTM cannot identify topic
“yemen”, and the learned topics of DMM consists of meaning-less words such as
going, today, etc.

Our method ETM incorporates the word correlation knowledge provided by
words embedding over the latent topic to cluster short texts to generate long
pseudo-text. In this condition, the frequency of words in pseudo-text plays an
important role to discover the topics based on this assumption each text is
modeled as a mixture of topics. After aggregating short texts into long pseudo-
texts, more similar words are in one text than the original text. Therefore, the
Markove Random Field regularized model can paly an important in learning
latent topics from pseudo-texts, which uses the word correlation knowledge over
the latent topic to encourage correlated words to share the same topic label.
Hence, although similar words may not have high co-occurrence in the corpus,
they remain have a high probability to be put into the same topic. Consequently,
from Table 1 we can see that the topics learned by our model are far better
than those learned by the baselines. The learned topics have high coherence and
contain fewer noisy and irrelevant words. Our model also can recognize the topic
words that only have a few occurrences in the collection. For instance, the word
flight from topic “NASA”, writer from topic “Art”, and tablet of topic “Apple”
can only be recognized by ETM.
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Table 1. Topics learned from Tweet2011 and GoogleNews dataset

Data Class Method Top 10 words

Tweet2011 NBA LDA Game lebron kobe player lakers team coach going james points

MRF-LDA Game lebron kobe player museum lakers play tonight james better

Unigrams Game lebron kobe player lakers team going james play allen

DMM Game lebron kobe player lakers team james points going lead

BTM Game kobe lebron lakers team player scored points going james

ETM Game lebron kobe player lakers team points james play allen

NASA LDA Space shuttle launch nasa atlantis live video weather watch check

MRF-LDA Space shuttle great launch good nasa store watch today atlantis

Unigrams Space shuttle launch nasa atlantis check live watch weather crew

DMM Space shuttle launch nasa atlantis live check video weather today

BTM Space shuttle launch nasa atlantis live crew weather watch image

ETM Space shuttle launch nasa flight weather atlantis crew image ares

Art LDA Artist museum great check photo blog artists gallery painting modern

MRF-LDA Time Artist video twitter blog year record coming work artists

Unigrams Artist museum good artists painting photo blog check gallery

exhibition

DMM Artist museum check photo painting artists exhibition modern gallery

blog

BTM Artist great museum check miami painting artists gallery blog free

ETM Artist museum writer painting gallery artists exhibition modern photo

arts

Apple LDA Apple iphone store time steve jobs snow best good google

MRF-LDA Apple iphone check team live love follow star coach going

Unigrams Apple iphone store time good ipod jobs video snow steve

DMM Apple iphone store time steve snow jobs google great good

BTM Apple iphone good steve video store time jobs ipod going

ETM Apple iphone store video ipod twitter tablet steve blog google

GoogleNews Nepal LDA Nepal death israel quake rescue aid israeli israelis relief help

MRF-LDA Nepal death israel quake rescue aid everest israeli israelis relif

Unigrams Nepal quakes toll death quake everest tops aid rises israelis

DMM Nepal israelis quake toll israel rescue death aid everest israeli

BTM Nepal aids quake rescue israel toll death aid everest israeli

ETM Nepal israelis quake toll israel rescue death aid everest israeli

Iran LDA Iran nuclear meet kerry zarif talks good israel foreign deal

MRF-LDA Iran meet kerry nuclear zarif deal victim talks powers arms

Unigrams Nepal quakes israel rescue quake aid israeli relief help good

DMM Iran nuclear meet kerry zarif israel weapon npt deal foreign

BTM Yeman Iran nuclear meet saudi kerry arms talks zarif good

ETM Iran nuclear meet kerry zarif israel weapon npt talks powers

Bali LDA Bali Indonesia execution excecutions chan marries andrew duo death

deal

MRF-LDA Bali Indonesia death toll execution executions chan andrew marries

nuclear

Unigrams Bali Indonesia execution executions chan marries andrew death duo drug

DMM Bali Indonesia execution executions chan marries andrew death duo drug

BTM Bali chan executions andrew marries sukumaran final duo myuran

ahead

ETM Bali Indonesia execution executions chan marries andrew death duo drug

Yemen LDA Yemen Nepal toll death saudi quake quakes Iran strikes tops

MRF-LDA Yemen Saudi talks drug iran strikes yemeni war saudis babies

Unigrams Yemen Iran nuclear meet kerry saudi zarif talks arms israel

DMM Yemen Saudi Iran strikes yemeni saudis talks strike tops houthis

BTM Nepal Bali chan drug aids arms chaims death duo pair

ETM Yemen Saudi strikes yemeni saudis strikes war talks houthis arms
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Table 2. CM (%) on Tweet2011 and GooleNews (Ai represents the ith annotator)

Method Tweet2011 GoogleNews

A1 A2 A3 A4 Mean A1 A2 A3 A4 Mean

LDA 54 42 45 67 52 ± 11.2 95 95 79 95 91 ± 8

MRF-LDA 44 46 46 57 48.2 ± 5.9 91 85 80 74 82.5 ± 7.2

Unigrams 66 45 56 59 56.5 ± 8.7 88 73 79 94 83.5 ± 9.3

DMM 70 49 50 60 57.2 ± 9.8 94 93 90 93 92.5 ± 1.7

BTM 62 45 50 77 58.5 ± 14.2 80 85 75 78 79.5 ± 4.2

ETM 72 62 73 83 72.5 ± 8.5 96 96 94 96 95.5 ± 1.0

Quantitative Evaluation: Table 2 shows the coherence measure of topics
inferred on Tweet2011 and GoogleNews datasets, respectively. We can see
our model ETM significantly outperforms the baseline models. On Tweet2011
dataset, ETM achieves an average coherence measure of 72.5%, which is larger
than long text topic models (LDA and MRF-LDA) with a large margin. Com-
pared to short text topic models, ETM still has a big improvement. In Google-
News dataset, our model is also much better than the baselines.

4 Conclusion

We propose a novel model, Embedding-based Topic Modeling (ETM), to dis-
cover the topics from short texts. ETM first aggregates short texts into long
pseudo-texts by incorporating the semantic knowledge from word embeddings,
then infers topics from long pseudo-texts using Markov Random Field regular-
ized model, which encourages words labeled as similar to share the same topic
assignment. Therefore, by incorporating the semantic knowledge ETM can alle-
viate the problem of very limited word co-occurrence information in short texts.
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Research and Development Program of China (2016YFB1000900), and the National
Natural Science Foundation of China (No. 61503116).
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Abstract. The rise of polypharmacy requires from health providers
an awareness of a patient’s drug profile before prescribing. Existing
methods to extract information on drug interactions do not integrate
with the patient’s medical history. This paper describes state-of-the-art
approaches in extracting the term frequencies of drug properties and
combining this knowledge with consideration of the patient’s drug aller-
gies and current medications to decide if a drug is suitable for prescrip-
tion. Experimental evaluation of our models association of the similarity
ratio between two drugs (based on each drug’s term frequencies) with the
similarity between them yields a superior accuracy of 79%. Similarity to
a drug the patient is allergic to or is currently taking are important con-
siderations as to the suitability of a drug for prescription. Hence, such
an approach, when integrated within the clinical workflow, will reduce
prescription errors thereby increasing the health outcome of the patient.

Keywords: Adverse relationship · Drug allergy · Drug properties ·
Knowledge-base · Personalised prescription · Similarity ratio · Term fre-
quency

1 Introduction

With the increase in volume and complexity of data encountered by dentists, the
use of decision support systems to aid decision-making is becoming more neces-
sity than luxury. In order for decision support systems to be readily accepted by
dentists, they should have, among other features, the ability to provide assistance
on drug prescription based on individual patient profile [6,7].

Predicting drug-drug interactions (DDI) at point-of-care to reduce prescrip-
tion error is important as an adverse event can lead to serious health conse-
quences for the patient and result in expensive legal suits for the practitioner. A
common cause for hospital admission worldwide is adverse drug reactions, with
incidence being as high as 24% [11]. Naturally, many such admissions could have
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been avoided if more care was taken in drug prescription, such as by considering
the patient’s drug allergies.

A recent work by [2] derives similarity within a drug-pair by comparing tex-
tual description in DrugBank with those in MeSH. Although the experiment
reported favourable results with metformin, a drug for treating diabetes, the
focus was on drug repositioning to treat other conditions. So far, many methods
have been developed to extract information on DDI [3,4], but these methods
do not integrate with the patient’s medical history within the clinical workflow.
Having identified this gap in existing research, this paper describes state-of-the-
art approaches in determining if a drug-pair is similar as well as using such
information to support the dentist’s prescription decision. In this study, we pro-
pose a three-tier conceptual framework, consisting of the knowledge layer, the
data layer and the user layer. Data mining is performed within the data layer,
with knowledge extracted from the knowledge layer and presented to the user
layer for decision-making. The way that a drug-pair’s similarity is associated
with its properties forms the unique approach of this model.

As with many decision support systems that are developed based on knowl-
edge discovered from data mining [13], this paper describes a model which com-
putes the similarity within a drug-pair for predicting its suitability before the
dentist prescribes it to the patient. By utilising neighborhood similarities and
textual data from currently available open source datasets to predict the rela-
tionship of a drug-pair, knowledge obtained from data mining is used for pre-
scription support of health care professionals. Based on a novel data-driven text
mining technique, clusters of drugs which have adverse interactions, together
with their properties, are collected by identifying their field markers from the
web content. This information allows a similarity ratio to be computed which
indicates if a drug-pair can be safely prescribed to the patient. Our work per-
forms well compared to other methods of prediction, with a F-measure of 69%
with drug properties gathered from textual data obtained through bio-medical
sources. This model is easily utilised in predicting a drug’s suitability for pre-
scription, by considering the patient’s drug allergies to avoid allergic reactions,
and the drugs the patient is currently taking to avoid adverse DDI.

This study will help provide strategies in research agenda and priorities such
as methodologies for knowledge reasoning and inference in the context of a dental
clinic. Research outcomes of this project, especially in this climate of increasing
polypharmacy, will help reduce the risk of prescribing drugs that may cause the
patient to suffer an adverse reaction and thus improve the quality of treatment in
clinics. This system which delivers information on interacting drug-pairs based
on the patient’s drug profile will also benefit those who are involved in clinical
education relating to drug dispensing, such as in medicine, nursing and phar-
macy. The practical use of data mining techniques in supporting the dentists
prescription of drugs has great potential to extend to the wider medical domain,
since there is also a need for doctors to ensure the safe prescription of drugs to
patients. By considering the patient’s individual conditions in decision-making
support, our work will make significant contributions to the transformation of
the current health care industry to one that is evidence-based and personalised.
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The rest of paper is organised as follows: Sect. 2 discusses the related work in
data mining and how our model differs in the way the drug-drug relationship is
detected and deployed for use. Section 3 introduces the framework of our model
and Sect. 4 outlines the parameters used for evaluating our work. This is followed
by Sect. 5 which discusses and compares the results with other approaches, and
Sect. 6 presents the conclusions obtained.

2 Related Work

Many systems have been developed using data mining techniques to explore
DDI. In fact, such techniques are evolving quickly to improve the accuracy of
the experiments, though in most situations results may not be sufficient to derive
DDI [15]. A recent work by [1] attempts to determine DDI by identifying neu-
tral candidates, negation cues and scopes from bio-medical articles. Features
extracted from these articles include linguistic definition of negation, the posi-
tion of the drugs discussed in the sentence and the linguistic-based confidence
level of an interaction. By using datasets from DrugBank, it is reported that
the results achieved an F-measure of 68.4%. Text mining techniques were also
recently used to predict protein interactions from bio-medical literature [10].

Another common way of examining DDI is to extract relevant information
from text. For example, Tari et al. [14] has developed a method that combines
text mining and automated reasoning to predict enzyme-specific DDI. [16] also
uses text mining techniques to create features based on relevant information such
as genes and disease names extracted from drug databases to augment limited
domain knowledge. These features are then used to build a logistic regression
model to predict DDI.

Another study to extract information on DDI from bio-medical text was
proposed by Bui et al. [3]. DDI pairs are mapped according to their syntactic
structure followed by the generation of feature vectors for these DDI pairs. These
feature vectors are then used for the generation of a predictive model which
classify the drug-pair as interacting or not interacting [3].

Though these studies use data mining methods to extract relevant infor-
mation for the prediction of DDI, unfortunately, these works are only confined
to two tiers, the knowledge layer and data mining layer, as compared to the
three-tier framework in this paper.

The crucial need to use the knowledge obtained from data mining moti-
vates us to develop the three-tier conceptual framework proposed in this paper.
Although our system is similar to that proposed by [4] in terms of using informa-
tion from the patient, the unique approach adopted in this paper goes one step
further in using such information to support the decision-making process for the
dentist at point-of-care within the clinical workflow. In this model, an additional
user layer is introduced. This layer provides an important interface between the
user and the knowledge mined from bio-medical data sources. Moreover, state-
of-the-art approaches adopted in the data layer allow the efficient extraction
of features. These features relate the similarity of a drug-pair in terms of the
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shared difference in their term frequencies. Experimental results show that this
approach performs favourably compared to other existing models.

3 Proposed Method

The aim of this study is to propose a unique approach in supporting the dentist
in drug prescription, with consideration of the drugs that the patient is currently
taking and the drugs that the patient is allergic to. In order to advise the dentist
if the drug to be prescribed is suitable, a three-tier conceptual model is used:
the knowledge layer, data mining layer and user layer (Fig. 1). Essentially, each
layer is defined by the task that they are responsible for. At each layer, data
is transformed and processed which culminates as advice to the dentist as to
whether the drug is safe for prescription, and to suggest alternative drugs.

Fig. 1. Three-tier framework

3.1 Knowledge Layer

Many decision support systems depend on information retrieved from the web
for further processing and inference-making to arrive at a decision [5]. In this
layer, a taxonomy of drugs will be generated using information gathered from
the web with expert domain knowledge. The publicly available website http://
www.drugs.com contains independent and accurate information on more than
24,000 prescription drugs pertaining to interactions, dosages and other important

http://www.drugs.com
http://www.drugs.com
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information for both patients and professionals. It is maintained in collabora-
tion with the US Food and Drug Administration (FDA), which acknowledges
that such partnerships “are part of FDAs effort to ensure the public has easy
access to reliable, useful information that can help people protect and improve
their health”1. Each drug is being described from a different perspective to suit
both patients (under the heading “Overview”) and health professionals (under
the heading “Professionals”) while information on side-effects are found under
the heading “Side Effects”. In this study, term frequencies from each of these
descriptions are extracted so that the similarity ratio can be computed. Essen-
tially, this layer consists of the term frequencies of each drug within the drug
taxonomy T for the respective drug properties described under the headings
“Overview”, “Professional” and “Side Effects”.

Fig. 2. Subset of drug taxonomy

Definition 1 (Drugs). Let D = {d1, d2 be the domain set of unique drugs. An
element d ∈ D is formalised as a 3-tuple 〈label, properties, adverse(d)〉, where

– label is the identity of the drug d;
– properties are the attribute set of d;
– adverse(d) is a function returning a set of drugs that are adverse to d in terms

of treatment effect. �

Definition 2 (Drug Taxonomy). Let T be the conceptual taxonomy of all
drugs. T consists of the domain of drugs linked by their semantic relations, and
is defined as a 3-tuple T := 〈D,R,HR

D
〉, where

– D is the domain set of drugs D = {d1, d2, . . . , d|D|};
– R is a set of semantic relations with a single element R = {r−}, where

r−(di, dj) defines the adverse relationship between di and dj;
– HR

D
is the taxonomical structure constructed by all d ∈ D linked by r ∈ R. �

1 http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm212844.
htm.

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm212844.htm
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm212844.htm
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The ability to store interactive drug pairs within a network of nodes and edges
allows the knowledge layer to be represented by a directed acyclic graph (DAG).
Each drug is represented as a vertex on the graph. The edges that connect
a pair of vertices show the interactions between the drug pair. The cluster of
drugs that has adverse interactions with a given drug can be known from the
drug taxonomy. Since this project aims to find the similarity between a drug pair
based on the term frequencies of each drug, the DAG allows such information to
be obtained efficiently by having an algorithm to traverse through the network
for the existence of the drug pair. Moreover, features of the drugs stored within
each node of the DAG contributes to the Data Layer for mining the properties
in terms of their term frequencies (see next section).

Figure 2 shows a subset of the major DDI in the drug taxonomy. Note that
nodes in the taxonomy are connected to one another through arrows which
indicates that an adverse interaction exists within the drug-pair. Each node on
the drug taxonomy consists of a drug with its associated properties. Such a chain
of DDI will form the backbone of the drug DAG. As shown in Fig. 2, capreomycin
adversely interacts with adefvoir and tenofovir, which in turn interacts with
ibuprofen and caffeine respectively. However, ibuprofen and caffeine are also in
an adverse relationship, which shows that a given drug may interact adversely
with more than one drug.

3.2 Mining Drug Properties

With the URL links to clusters of interactive drugs readily available, the content
of drugs.com website is scanned for information on the cluster of drugs that are
interactive with each entry in the drug taxonomy.

Each web page contains field markers to delimit the relevant content on
interactive drugs, and these markers are used to extract the cluster of drugs
that adversely interact with each drug in the dataset. Information on the clus-
ter of adversely interactive drugs is crucial as it provides the ground truth in
deciding whether a drug-pair has an adverse relationship. Such information are
contained in the drug taxonomy T within the knowledge layer of the concep-
tual framework. Besides mining the information related to clusters of DDI for
each drug in the drug taxonomy, the underlying properties for each drug is also
obtained to provide information on the similarity of a drug-pair. These properties
are term frequencies tfv, tfp and tfs mined respectively from the “Overview”,
“Professional” and “Side Effects” tab of each drug in the drug taxonomy. These
knowledge will then be used to compute the cosine similarity of the drug pair -
refer to Fig. 3 for the flow of the experimental design.

In this paper, we are only interested in the content in terms of the proper-
ties of each drug within the drug taxonomy T . This will enable us to compute
the similarity based on their term frequencies. Such properties of the drugs are
obtained from the content provided under “Professional”, “Side Effects” and
“Overview”. To determine the similarity within a drug pair, information on the
term frequencies of each drug is collected. Given the numerous techniques and
algorithms available in data mining [8,12], the approach adopted in this layer
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is focused on speed and accuracy with easy interfacing between the knowledge
layer and the user layer. Thus, at this data mining layer, the properties associ-
ated with the drugs residing on the drug taxonomy backbone are mined, namely
the term frequencies tfv, tfp and tfs respectively for “Overview”, “Professional”
and “Side Effects”. Before term frequencies and document frequencies are com-
puted from the properties of the drug, data is pre-processed, including stop word
removal and stemming. The idea behind our novel approach is to use the simi-
larity ratio of the feature vectors of term frequencies to decide if the drug-pair is
similar, and subsequently using this knowledge to advise the dentist if it is suit-
able for prescription, taking into consideration the patient’s individual medical
status.
Algorithm 1. Computing Drug Similarity
input : D: the set of drugs in Drugbank
output: similarity ratio s of drug pairs

1 foreach di ∈ D do
2 compute feature vector

−→
fi for di

3
−→
fi =(tv1, n1), (tv2, n2)..(tvk, nk) where n is tf ∗ idf of tv, k = number of
unique terms in di

4 end
5 foreach {d1, d2} ⊂ D do
6 compute similarity ratio s(d1, d2) as Eq. 1
7 end

To arrive at a decision as to whether a drug is suitable for prescription, a sim-
ilarity ratio is required as a measure of how similar two drugs are with regards
to their term frequencies. These term frequencies are obtained after perform-
ing data mining on the properties of each drug, associated with “Professional”,
“Overview” and “Side Effects”. Feature vectors are then constructed based on
tf*idf, and determining the difference between the feature vectors of a drug-pair
enables the similarity ratio to be calculated. If p and q are the feature vectors,
then the cosine similarity based on properties from, say, “Overview” is given by:

sv(p, q) =

k∑

i=1

pi.qi

√
a · b

where a =
k∑

i=1

pi
2, b =

k∑

i=1

qi
2 (1)

As seen in Algorithm 1, this cosine similarity s is computed after gathering
the features within the properties of each drug, from which average values are
computed. With these values as a guide, a threshold value θ is set to maximise
the F-measure for each of the drug properties. Section 5 explains the approach
used in deciding the threshold value.

For a given drug-pair, the similarity ratio taken from each of the three proper-
ties can also be combined and used to check if the drug to be prescribed is similar
to the drugs that the patient is allergic to. In our work, the individual ratio of
each property is weighted according to the maximum F-measure as indicated in
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Table 3. For example, if F v
max, F p

max and F s
max is the maximum F-measure for

drug property “Overview”, “Professional” and “Side Effect” respectively, then
the weight w1 against the similarity ratio for “Overview” is given by:

w1 =
F v
max

(F v
max + F p

max + F s
max)

(2)

w2 and w3 can also be calculated in a similar manner. Thus, the overall similarity
ratio s(p, q) for drug-pair with feature vector p and q is given by:

s(p, q) = w1 ∗ sv(p, q) + w2 ∗ sp(p, q) + w3 ∗ ss(p, q) (3)

where sv is the similarity ratio for the drug property from “Overview”, sp is that
from “Professional”, and ss is that from “Side Effects”.

If the similarity ratio exceeds the average threshold value θ, the model will
return a false, indicating that the drug to be prescribed is similar to the drug
that patient is allergic to.

3.3 User Layer

The importance of a user-friendly user layer in transforming patient profiles and
data in a knowledge base into usable and useful knowledge for the dentist cannot
be over-emphasised. A good interface is also crucial in the technology diffusion
process to enable high user acceptance and absorption rates. In fact, a poorly
designed user interface can reduce the performance and benefits to clinicians [9],
forming a barrier against system adoption.

Table 1. Features of conceptual framework

User layer Data layer Knowledge layer

• Efficient mapping of
user requirements

• Efficient choice of
programming approach

• Bio medical data
sources, drug taxonomy

• User friendly
interface

• Implementation of
data mining

• Drug properties

• Algorithm design

In this system, the data layer essentially performs the mining and ranking of
drug pairs while the user layer consists of the drug profile of the patients and
the drug which the dentist is going to prescribe. The user layer also presents the
results after computation of similarity ratio is completed at the data layer, acting
as a supporting tool to the dentist in deciding whether the drug in question is
safe for prescription. If the drug to be prescribed is found to adversely interact
with drugs that the patient is currently taking or is similar to the drugs that
the patient is allergic to, then it is in this layer that an alternative drug for
prescription is presented to the dentist.
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As highlighted in Table 1 for the three layers in the framework, user require-
ments in the user layer need to be efficiently mapped onto the data layer to
enable useful and relevant information to be extracted for further computing of
the similarity ratio.

4 Experimental Evaluation

We choose an experimental approach to assess the accuracy and efficiency of the
proposed method. It tested the hypothesis that similar drug-pairs have a higher
similarity ratio compared to those dissimilar pairs.

Precision, recall and F-measure were used to evaluate the performance of
our model. Precision indicates how accurately the model predicted drug-pairs as
similar, while recall indicates how accurately similar drug-pairs were predicted.
Accuracy was also used to measure the percentage of correct predictions com-
bining both the similar and dissimilar predictions.

Table 2. Baseline models

Tari [14] Yan [16] Proposed model

Aim Discover drug
interaction

Predict drug
interaction

Personalised drug
prediction

Source Drug bank and
MeSH

Drug bank and
MeSH

Drug bank

Method Combine text
mining and
reasoning approach
based on biological
entities

Compose feature
vectors based on
names of disease
and genes

Create feature
vectors from textual
drug description

Accuracy 77.7% 69% 79%

Our work was evaluated against other works to highlight how adoption of this
novel approach results in superior performance. The work of [14] predicted DDI
by parsing bio-medical text for syntactic and semantic information on biological
entities like induction and inhibition of enzymes by drugs. These relations were
then mapped with the general knowledge about drug metabolism and interac-
tions to derive the DDI.

Just like our work, DrugBank was also used by [16]. However, one of the
methods in their preparation of data was to represent each drug by a vector of
drug targets. The values in each vector are either 1 or 0, depending on whether
the drug target is associated with the given drug. In our work, we chose to
construct feature vectors of tf*idf from textual information related to the prop-
erties of each drug. Table 2 shows a summary of the experiment methods of the
baseline models.
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5 Results and Discussions

With the unique three-tier conceptual framework where knowledge is extracted
from the knowledge base and delivered to the data layer, the ensuing results
demonstrate the efficiency and robustness of our model. Not only is the algorithm
able to compute the similarity of the drug-pair based on the hypothesis that a
drug-pair is similar if the cosine similarity ratio between their frequency terms
is high but such information can also be adopted as a decision support tool for
the health professional in drug prescription.

By computing the similarity ratio between drug-pairs, their average values
are obtained as a guide to set the threshold θ in order to maximise the F-
measure. As shown in Table 3, a range of values for θ are applied for each of the
drug properties “Overview”, “Professional” and “Side Effects”. For example, θ
of 0.45 is used as a threshold to compute the recall, precision and F-measure
for features gathered from the drug property “Professional” as the maximum
value of F score occurs at this value. Figure 4 shows the recall, precision and F
scores achieved with drug properties gathered from “Overview”, “Professional”
and “Side Effects”. As indicated in Fig. 4, the recall rate of 96% is achieved from
drug properties obtained from “Side Effects”, showing that our model performed
much better than other methods of prediction. In contrast, the work by [14]
achieved 48.5% with predictions based on the inhibition properties of drugs in

Fig. 3. Experimental design

Table 3. F-measure at different θ

Fig. 4. Performance comparison against
different drug properties
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the knowledge base. In terms of accuracy, the percentage of correct predictions
combining both the similar and dissimilar predictions, our system comes out at
79% compared to 69% where drug predictions were based on the relationship
between drug targets [16].

Table 4. Sample result of recommender

Drug currently taking Drug allergy Drug prescribed Drug recommended

Warfarin Penicillin Clindamycin Clindamycin

Amoxicillin Troleandomycin

Acetaminophen Acetaminophen

Ibuprofen Dextropropoxyphene

To illustrate the conceptual framework of this study, the same model can
be used to decide if the drug is suitable for prescription. Based on the overall
similarity (as explained in Sect. 3.2) from the three properties of the drug-pair,
the system can detect if the drug is similar to the drugs that the patient is allergic
to. This approach highlights the usefulness of our framework where knowledge
generated from the data layer can be applied to the user layer and becomes useful
to the user, or with regards to this case, as a decision support tool for the health
professional. This novel strategy supports the aim of the study in allowing us to
support the dentist to make the right prescription by ensuring the drug is not in
adverse relationship with the drugs the patient is taking, and is also dissimilar
to the drugs the patient is allergic to.

Consider for example a patient with a cardiac condition taking warfarin
and with an allergy to penicillin. In a scenario where this patient requires an
antibiotic, the dentist may consider the commonly prescribed drug amoxicillin.
Use of our model will note the similarity of amoxicillin to the drug of allergy,
penicillin, and will thus recommend an alternative drug. Not only should this
drug be dissimilar to penicillin, it should also not be in adverse relationship
with warfarin. As shown in Table 4, one such drug is troleandomycin. On the
other hand, if the dentist is initially considering the prescription of clindamycin,
our model will evaluate this drug as safe (not similar to penicillin and not in
adverse relationship with warfarin) and thus nothing new will be suggested.
This is the same scenario when an analgesic is required in the same patient
for the prescription of acetaminophen. Conversely, inputting ibuprofen into our
model will lead to a suggestion of dextropropoxyphene instead, as the former
is in adverse relationship with warfarin and thus not safe to be prescribed. On
receiving the suggestion of the alternative drug, it is then for the dentist to decide
whether this is an appropriate drug to prescribe after further consideration of
the duration and dosage of the patients current drugs.
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6 Conclusions

This paper has presented a novel approach in advising the suitability of a drug
for prescription by predicting the similarity of a drug-pair and in practical terms,
integrating this prediction with the patient’s personal medical status by consid-
ering the patient’s drug allergies to avoid allergic reactions, and the drugs the
patient is currently taking to avoid adverse DDI. The included experimental
proof also demonstrates that the three-tier approach adopted in our research
design performs well and thus can readily be implemented within the clinical
workflow of a dental clinic. In future work, we will investigate the drug taxon-
omy for more complex semantic relations existing between drugs, for example,
neutral and advantageous, and have the clinic decision support system to be
supported by a more comprehensive, valuable knowledge base.
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Abstract. Nowadays, more and more users like to leave online reviews. These
reviews, which are based on their experiences on a set of service or products,
often express different opinions and sentiments. Correlated topic model (CTM),
an effective text mining model, can reduce the dimension without losing
important information. However, traditional analyses based on CTM still have
some problems. In this paper, we propose the Product-User-Review tripartite
sEntiment model (PURE), which is based on content-based clustering to opti-
mize CTM, to select topic number, extract feature, estimate the reviews’ utility.
Moreover, our model analyzes the reviews from the user’s preferences, review
content and product properties in three dimensions. Based on the five indexes,
such as informative attributes and sentiment attributes, the feature vector of the
review data is constructed. We found that after adding user’s preference feature
in sentiment analysis and utility estimation, PURE achieves high accuracy and
classification speed in the review-mixing Chinese and English processing, and
the quality of selection is improved significantly by 21%. To the best of our
knowledge, this is the first work to incorporate users’ preference feature in
optimized CTM to do the study of sentiment analysis, review selection and
recommendation.

Keywords: Correlated topic model � Text mining � Content-based clustering �
User preference � Sentiment analysis � Reviews’ utility estimation

1 Introduction

With the rapid development of e-commerce sites, users would like to write reviews after
they experienced some online services. The detail information in these reviews, on one
hand, could show their using feelings and shopping experience, on the other hand, some
reviews are valuable for customers to make informed purchase decisions, and for busi-
nesses to form an effective feedback to improve the quality of their services and products.
Different users may choose to focus on different aspects of products. Even if users talk
about the same aspects, their shopping cognition and, subsequently, experience of the
product or service can differ dramatically. According to a survey, which is mentioned in
[1], that half of users find reviews are useful when booking hotel or shopping online, and
88% of respondents agree that they always consult reviews before making a purchase.
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To predict the effect of online reviews, a number of studies have been conducted in
this field. For example, [2, 3] use topic model to analyze implicit information in reviews,
especially in model [4], it split the document into paragraphs and mine the implicit
features from the sentence. [5–7] take sentiment analysis into consideration, and model
in [5] constructs an unsupervised hierarchical Bayesian model which can classify sen-
timent in documents. [8–12]’s main idea is to mine and recommend the basic review of
online datasets, and [14] proposed a novel unsupervised feature selection method which
performed structure learning and feature selection simultaneously.

In this work, we provide an optimized correlated topic model. It is mainly based on
content-based clustering, and focuses on the sentiment analysis and utility estimation,
not only in the given product level and review level, but in the user level. It is objective
to study the user preference feature and time trend about each facet from the reviews. In
addition, our model provides a feature extraction method. It firstly offers the reasonable
value of topic number, and generates the topic in each review’s facet according to this
number. Then it finds the representation in these facets, deduces the opinion orientation
tuple of each facet, and then estimates the review utility score and recommend the most
helpful reviews to users. We also use machine learning method to make the detection
more accurate,

We summarize our contributions as follows:

(1) PURE focuses on the review’s influence estimation in tripartite level, and con-
siders the impact of time and content correlation in reviews.

(2) We mainly use correlated topic model while generating the model, and optimize it
into content-based analysis. To improve the judgment of their sentiment orien-
tation, we use “feature-sentiment” polynomial to target the review.

(3) Active learning strategies are being used to optimize the performance and reduce
the error in review-mixing of English and Chinese processing.

The rest of the paper is organized as follows. We describe related work in Sect. 2,
and define some descriptions and terminologies in Sect. 3. The detailed PURE model is
proposed in Sect. 4. The experiments and analysis are shown in Sect. 5. Finally, we
draw the conclusion in Sect. 6.

2 Related Work

Our work on review feature extraction and sentiment analysis has connections to text
mining in information retrieval and text analysis in artificial intelligence. Great bulk of
work has been focused on these fields at various levels.

Previous work typically focuses on extracting data features, and then formulating
review’s utility prediction as a regression [13] or classification problem, such as Sun and
Zhou [7] based on TF-IDF word frequency recommendation, this model cannot mine the
underlying feature of the document. To improve the performance of the model, Blei et al.
[17] proposed the supervised topic model framework, in which a document is modeled
as a latent set of topics, where each topic is modeled by a distribution over a set of
words. There aremany other topic models such as [3] based on topic model in text mining
fields, and Lin et al. [4] consumed a probabilistic modeling framework and considered
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customer review as a correlation of “topic-phrase-sentence-paragraph-document”. While
considering sentiment analysis in review mining field, JST [3] overcomes these short-
comings as it is based on topic model with a better statistical foundation by adding a
sentiment layer. Further, models proposed by [6, 7, 10, 15] achieved fine results in review
rating and recommendation, and make the review summarization more accurate.

3 Problem Formulation

In this section, we define some core terminologies and descriptions of the problems.

At Product Level
property: A proper pi is used to describe product. P = {p1, p2, …, pn}, if a specified
product itself has n properties. Noted that a product may have at least one property.

At User Level
user preference: U is a specific weighted by the user’s facet-specific preference, like the
user’s expertise, gender, writing style, andshopping level. Assuming that a user with
high rating start will be more likely to write fine-grained review.

At Review Level
facet: A facet f is a description of a property or component of an review entity. In our
study, facet f often known as an implicit topic. Let a review R has a set of facets
fi, fi 2 F with respect to which the review is to be evaluated.
facet-opinion pairs: Every facet expressed in the review is associated to one opinion,
the pair fo = {fo1, fo2,…, fon} = <f, o> indicates it. The words of a facet are always
nouns, and the words of an opinion are often adjective.
sentiment: The sentiment score s is formulated in our study, which is defined to
represent the sentiment words’ distribution value. It is a threshold value to distinguish
whether the review’s sentiment s is positive, negative, or other.
time-related: We divided the year into four group according to the seasons and tem-
peratures. T1 = <Nov., Dec., Jan., Feb.> , T2 = <Mar., Apr., May.> , T3 = <Jun., Jul.,
Aug.> , T4 = <Sep., Oct.>. For example, in terms of hotel accommodation, the season
will have a certain impact on the users’ reviews on the hotel conditions.

Figure 1 presents an example to illustrate the above key terms, and to show rela-
tions between them.

Fig. 1. An example of the key terms used in this problem and their relations.

390 Y. Xue et al.



4 Model and Inference

4.1 Proposed Model

We propose a graphical model, namely the product-user-review tripartite sentiment
model(PURE), to address the problems defined above. The overview of PURE is
shown in Fig. 2 and the description of each notation is in Table 1. From the overall
perspective, PURE uses a parameter n as the background distribution to encode the
domain white-noise in our experiment. This global distribution is drawn from a
symmetric Dirichlet priors with concentration kB = 0.2.

The generative process of the graphical model is as follows:

1. For each facet topics k 2[1, …, K] and sentiments l2 [1, …, L]
draw content’s word correlated topic distribution /k,l * Dir(b).

2. For all review time i 2 [1, …, I]
draw time-related distribution Tr * Dir(t).

3. For all user information m2[1, …, M]
draw user preference distribution Ur * Dir(c).

4. For all reviews rm, m 2 [1, …, M]
(1) draw facet sentiment distribution us * Dir(l).
(2) draw facet opinion distribution Vd * Dir(η).
(3) for all segments s 2[1, …, S]

(1) draw facet distribution hmsin review rm, hms * Dir(a).
(2) for each word n 2 [1, …, N] in segememt s

(1) draw words’ topic and sentiment distribution (z,m)s * Multi(hms).
(2) draw words distribution xn * Multi((z,m)s,n),/(z,m) s).
(3) draw opinion words Osm distribution in s, Osm * Multi(Psm, Vd).

(4) draw influence factor Im � NðZm;r2Þ, where we define

α μ π

θp φs νd Im  

Osm  Psm

(z,m)n
γUr

βΦps

1,...,S
1,...,N

1,...,M

M

K*L

t    Tr
I

L

σ2 η

ωn

Fig. 2. Graphical model representation of PURE
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Zm ¼ 1
C

XSm
s¼1

ðððCT
1 vrsÞ � CT

2 TrsÞ � CT
3Urs: ð1Þ

In above Eq. 1, Zm represents the combined empirical frequencies of the implicit
facets and sentiments of the review rm. Moreover, C is a normalization constant, C1, C2

and C3 are weight vector for sentiment orientation, time-related distribution and user
preference, which can be obtained experimentally from data.

4.2 Inference and Prediction

In this section, we describe the inference and procedure for PURE. We introduce three
main modules in our model, and describe how to apply this model in review utility
estimation and review recommendation. The goal of PURE is to evaluate the posterior
distribution P (T, U, U, m, h, u, (z,m),P |x, o, h), as shown below.

P ðT;U;U; m; h;u; z;mð Þ; P;x; O; IÞ ¼ P T ;U;U; m; h;u; z;mð Þ;P;x;O; Ið ÞP
f

P
s P T ;U;U; m; h;u; z;mð Þ;P;x;O; Ið Þ :

ð2Þ

Table 1. Notations of PURE

Symbols Representation Symbols Representation

M The number of reviews N Number of words in facet above a
topic

S The number of segments in reviews K Number of facets
L The number of sentiment I Number of group of time-related

partition
a Parameter for topic correlation

distribution
b Dirichlet parameter for word’s

number distribution
l Dirichlet parameter for sentiment

words’ distribution
Up,s Words distribution above correlated

topic sentiment
p Dirichlet parameter for opinion

word distribution
Osm The opinion orientation of

sentiment si in review rm
r2 Influence effect response parameter Psm The sentiment of segment s in rm
η Influence effect response parameter us Sentiment distribution in reviewrm
hp Facet distribution in review rm md Opinion distribution in reviewrm
Ur User preference distribution Tr Time-related distribution
t Parameter for time distribution xn Words in a segment
c Parameter for user preference

distribution
(z,m)n Words topic and sentiment in each

facet
Im Influence parameter of review rm
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The exact inference of this distribution is intractable, due to the difficulty in the
denominator of Eq. 2. According to Griffiths and Seyvers [16], a collapsed Gibbs
sampling algorithm can be used to get the approximate inference of PURE. Then, Eq. 3
shows the joint probability of all latent variables and observable variables.

P ¼ PðT1:I;U1:M;Uð1;1Þ:ðk;lÞ; m1:M; h1:M;u1:M; ðz,mÞ1:M;x1:M;O1:S; I1:MÞ
¼

YI

1
PðTpjtÞ �

YM

1
PðUpjcÞ �

Yk;l

1;1
Pð/ði;jÞjbÞ �

YM

d¼1
PðmdjgÞPðhd jaÞPðudjlÞ

� ð
YS

s¼1
PðPs;mjuMÞPðOs;mjvMÞ

YN

n¼1
Pðxs;njuðp;mÞs;nÞPððz;mÞs;njms; hdÞÞ:

ð3Þ

PURE also draws the review facet distribution hps to represent the topic correlation
distribution, and it can solve the Ups and us as follow:

buðiÞ
s ¼ n ið Þ

s þ lsPL
s¼1 n

ið Þ
s þ ls

; bhðmÞp;s ¼ nðmÞp;s þ asPK
s¼1 n

ðmÞ
p;s þ as

; bUðzÞ
p;s ¼

n zð Þ
p;s þ biPN

i¼1 n
zð Þ
p;s þ bi

: ð4Þ

The parameter bhðmÞp;s represents the probability estimation when the correlated topic

is p and the sentiment score is s in the correlated topic distribution of review rm. buðmÞ
s

represents the probability estimation of the distribution of review rm’s sentiment score

s, and b/ðmÞ
p;s represents the probability estimation of words z distribution allocated above

topic p and sentiment s. Additionally, we follow Blei and McAuliffe [19] to approx-
imately evaluate the normal linear model parameters η and r2. Let X be the S � K
matrix whose rows are the vectors x�T

m . Then η and r2 is approximate in Eq. 5, where h
indicates the influence factor response vector.

bg � XTX
� ��1

XTh; br2 � 1
S

hTh� hTXg
� �

: ð5Þ

We propose three closely related modules as described below:

Preprocessing Module
PURE firstly splits a long review into some segments by one or more sentences, and
assumed that each segment has a single facet associated with it. Then, it models each
segment and opinion words and detects the implicit facets and sentiments simultane-
ously. Let the review R consists of n segments si (i = 1…n), that is R = {s1, s2, …, sn}
where each segment has a facet and opinion. Then we can get joint probability of our
model in Eq. 6.
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P zi;msi jzN�i;mR�si ;xnð Þ ¼ P z;m;xð Þ
P zN�i;mR�si ;xnð Þ

¼ P xjz;mð ÞP z;mð Þ
P xnjzN�i;mR�sið ÞP xið ÞP zN�i;mR�sið Þ

/ B nk;l þ b
� �

B nk;l;N�i þ b
� � B ns þ lð Þ

B ns;R�si þ l
� � B nm;l þ a

� �
B nm;l;N�i þ a
� � :

ð6Þ

In Eq. 6, B(a) is Beta function. We use N-i to represents the topic distribution
number except i, and R-si means the remaining sentiment distribution except si.

Feature Extraction and Sentiment Analysis Module
Feature extraction by CTM in the general situation is to use the features as the input
after removing the low-frequency words directly. It will have a huge computational
cost, and the effect is not very friendly. So, our model not only considers low-frequency
words, but takes sentiment property which is shown above as facet features, and uses
list to record them. For positive sentiment, it can calculate each value in list <PosSco,
AvgPos, FluPos> according to the Eq. 7. (For negative sentiment representation is
similar with it, and to avoid repetition, it is not described in this part.)

PosSco ¼ Pn
i�1 Posi

AvgPos ¼ PosSco
n

FluPos ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i�1
Posi�AvgPos

n

r
8>><
>>: ð7Þ

Through the calculation and processing, the final weight vector will get and the
regression method is used to get the overall sentiment orientation score.

Review Utility Prediction Module
When the parameters in PURE are fitted, we can calculate the review impact and
recommend the fine-grained reviews to users. Our idea for the overall review influence
factor prediction is to infer these tripartite level—product level, user level, and review
level—evaluated facets, and then approximately form the regression function on the
posterior mean xm0 . It is shown in Eq. 4. We have to note that the posterior mean xm0 is
obtained by applying Gibbs sampling technique, and Eq. 8 is used to estimate the
overall review utility scores of testing reviews.

bIm0 ¼ agTbxm0 þ bh mð Þ
k

bImP
m
bIm : ð8Þ

Note that parameter hk is described in the previous section in Eq. 4, and a and b is
weight vector parameter according to their degree. The model can select the most
influential one for each facet in terms of the estimated score based on correlated facet.
To get the optimal results, a and b will be discussed in the next section.
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5 Experiment and Evaluation

We evaluate PURE in following three parts: reviews’ facets detection, sentiment
recognition, and the useful review recommendation. We compare PURE against three
well-established typical benchmark models: a supervised topic model called supervised
latent Dirichlet allocation (sLDA) [17], unsupervised topic model called unsupervised
text sentiment model (UTST) [7], and classic linear regression model (LR).

Data Sets
The online website review data from two product categories is used to test the per-
formance of PURE. The datasets1 are including 11,190 mobile phone reviews of ZOL
and 10,530 book reviews of Douban, including the profiles of many users, and the
contents of reviews. Note that almost reviews are in Chinese, and the rest of reviews are
mixed in English and Chinese.

Preprocessing
We store data with excel, and firstly use jieba to do words’ segmentation. And then, the
related function is used to filter stop-words. After that, do frequency statistics of words
in JAVA programming to statistic the number of different words, and different times of
each word which appears in each review. Next, these datasets are divided into two
parts, 75% data for training, and the rest for testing. After preprocessing the reviews’
datasets, the statistics of these data are listed in Table 2.

Noted that, the reason why the amount of data vanished a lot after preprocessing is
that there are plenty of reviews are insignificant and useless. For example, some
reviews only contain punctuation marks, or the words’ length is less than two, although
these reviews may contain the implicit sentiment, they are not qualified to the next
process and analysis.

Topic Detection of Reviews
To get the topic number of our model, in this section, our study uses content-based CTM
to cluster the training data, it can reduce the dimensionality and get the topic in each
review. PURE can identify correlated facets and opinion words semantically, as a result,
some adjective words which are close to the topic words can also be analyzed and
separated by the same facet at the same time. According to the topic “system” in
Table 3, the topic terms are discovered by our model. The column 1 are property words.

Table 2. Statistics of data sets

Category Mobile phones Books

#review 10,070 8,500
#words 768,936 617,100
#average words 79 73
#reviewer 9,835 8,436

1 http://data.bupt.edu.cn/xueyue/data/datasets/.
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The opinion words, such as “amazing” and “consumption” are shown in column 2. The
score in column 3 is the word-related-facet’ value. The purpose of column 3 is to express
the degree of correlation between the topic and review’s facet more clearly. The situ-
ation in book reviews is shown in the right of Table 3, it is similar to the former.

Secondly, Pearson Correlation Co-efficient (PCC) is used to find correlation of the
predicted facets. We evaluate PURE and other models via PCC versus the number of
facets (N). We define that sentiment orientation count as two, which are positive and
negative, for avoiding the ambiguity. Figure 3 plots the correlation curves against the
facets’ number of PURE versus the sLDA, UTST and LR models on mobile phones
reviews and books reviews.

On the left of Fig. 3, we can see that LR has only one correlation value as it cannot
mine the hidden topical structure of data. What’s more, PURE performs better than
other models. The average correlation of PURE over all the observations is 43.08%,

Table 3. Topic and their related value on book reviews and mobile phone reviews.

“system” topic @ mobile phone “plot” topic @ books
Property Opinion

words
Related
value

Property Opinion
words

Related
value

Dual core
system

Not crash 0.976 Climax Charming 0.851

Speed High 0.821 Storyline Surprised 0.706
Picture Good 0.738 Twists Original 0.713
Power Less charge 0.891 Puberty Unfolding 0.479
Speaker Consumption 0.901 Phenomenon Bored 0.717
Wi-fi Well 0.694 Beginning Attractive 0.886
Voice Better 0.832 Storyline Unexpected 0.823
Sound Amazing 0.723 Ending Unfinished 0.769
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Fig. 3. Correlation versus number of facets on reviews of phones (right)/books(left).
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which is better than 36.82% of sLDA, 31.42% of UTST and 21.03% of LR. The right
curves of Fig. 3 plots the results on the books reviews. PURE again results in better
performance compared to sLDA, UTST and LR. The average correlation score of
PURE across all the five observations is 31.32%, better than sLDA, UTST and LR
which are 25.78%, 21.61%, and 8.2%.

It can be concluded that the proposed PURE outperforms the state-of-the-art
supervised topic model sLDA, and unsupervised model UTSU, as well as one classic
linear regression model for the overall review sentiment classification. PURE benefits
from the sentiment analysis module while sLDA could not mine the underlying sen-
timent in its structure. As to UTST, unsupervised topic model, the sentiment detection
and analysis are not as accurate as our model.

In addition, PURE is also used to process the 3,298 mobile phones reviews data and
8,436 books reviews data to find the most favorite facet in each area. Figure 4 plots the
facets specific preferences of top5 user in the corpus. Overall, the main facets pref-
erences what we mining form large number of books reviews datasets have been found
to be in the order plot > author > type > ending. At the same time, in mobile phones
datasets, the order is performance > brand > appearance > price.

Performance of Sentiment Classification
To classify the sentiment orientation, we select different feature dimensions, calculate
the orientation score based on the Eq. 7, and detect the classification performance of
these models. The precision rate, recall rate and F1 in Eq. 9 can evaluate PURE and
other models.

Precision ¼
P

r2R R rð Þ \ T rð Þj jP
r2R R rð Þj j ;Recall ¼

P
r2R R rð Þ \ T rð Þj jP

r2R T rð Þj j ;

F1 ¼ 2� Precision� Recall
PrecisionþRecall

: ð9Þ
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Fig. 4. Facet specific preference of different users on books (right)/phones (left).
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Note that R(r) is the training set of data, and T(r) represents testing set of data. The
experimental results are shown in Fig. 5. As the recall rate and precision rate are
mutual influence, that is to say, the accuracy rate is high, the recall rate is low at the
same time. Therefore, we propose precision rate as the final criterion to measure the
performance. The 50% test data is used to do this experiment.

The curves of classification accuracy by using the precision rate of different feature
dimensions are in the Fig. 4, we can conclude that the average classification precision
rate of PURE in mobile phones datasets is 87.87% which is better than 84.26%,
80.47% and 83.98% of sLDA, UTST and LR model. On the datasets of books reviews,
PURE also achieves the high precision rate.

It proves that the effectiveness of PURE, which is based on the correlated topic of
each word, is improved by extracting comprehensive feature at tripartite level among
each facet sentiment analysis and classification. While the performance of unsupervised
UTST is slightly worse than that of supervised sentiment classification sLDA.

The Useful Reviews Recommendation
The final goal of our model is to recommend the most influential review for user. In
order to make the review’s utility score higher, the review must satisfy two conditions:
the facet itself has to be relevant to the product properties, and organized specific; the
sentiment that included in the review is clear, not ambiguous. The remaining 50% test
data is used to evaluate our model, and for each facet, the influence score is estimated
using Eq. 8. And we test PURE facet-based review impact estimation by using pre-
cision at top N (P @top - N) recommended reviews for each data set. The result is
shown in Table 4.

From the facet “plot” on books reviews, all models achieved 100% precision, while
at top-10 selected reviews, PURE achieved 98% precision, either supervised learning
sLDA or unsupervised learning UTST have lower rate than our model. We omit the
model LR preference as it cannot mine the hidden topical structure of data.
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Fig. 5. Precision rate of different feature dimensions on reviews of phones(left)/books (right).
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6 Conclusion

Our goal of this paper is to select the best reviews to the users by taking into account of
tripartite levels, which are product property level, fine-grained review level and user
preference level. Our key breakthrough is that the user’s preference feature and
time-related feature in the given facets do influence the review sentiment analysis and
their order, which greatly help PURE achieve better performance. Moreover, we
optimize the correlated topic model by using content-based clustering, the dimen-
sionality of the datasets is reduced significantly. PURE is able to evaluate the review
utility and recommend the most valuable review to customers at the same time.

As every bean has its black, our paper only applies PURE in review analysis.
Further research may be able to promote the accuracy of our model in other areas.
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Abstract. In many clustering applications, real world data are often
collected from multiple sources or with features from multiple chan-
nels. Thus, multi-view clustering has attracted much attention during
the past few years. It is noteworthy that in many situations, in addi-
tion to the data samples, there are some side information describing the
relation between instances, such as must-links and cannot-links. Though
side information has been well exploited in single-view clustering, they
have rarely been studied in multi-view scenario. Considering that matrix
completion has sound theoretical properties and demonstrates an excel-
lent performance in single-view clustering, in this paper, we propose the
first matrix completion based approach for multi-view clustering with
side information. Instead of concatenating multiple views into a single
one, we enforce the consistency of clustering results on different views as
constraints for alternative optimization, and the global optimal solution
is obtained since the objective function is jointly convex. The proposed
Multi-View Matrix Completion (MVMC) approach exhibits impressive
performance in experiments.

Keywords: Multi-view · Clustering · Matrix completion

1 Introduction

Data clustering is one of the most important tasks in machine learning and data
mining. Aiming at grouping data instances into different clusters based on the
similarity, clustering has plenty of real applications, such as data summariza-
tion [9], text mining [24], bioinformatics [8], etc.

In many applications, data are collected from multiple sources or with feature
from different channels. For example, the content and hyperlink information can
be thought of two views for webpage dataset [3]. Another example is that the
representations in various languages can be regarded as different views for multi-
lingual information retrieval [12]. Since feature information from different views
are complementary to each other, multi-view clustering dedicates to leverage
information from multiple views to improve the performance of clustering.

c© Springer International Publishing AG 2017
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It’s noteworthy that while plenty of unsupervised clustering algorithms have
been widely used, clustering with limited side (supervised) information has grad-
ually obtained more attentions. In general, side information can be divided into
two groups, instance-level and label-level. Usually, label-level one is difficult to
gather. In contrast, it is often more convenient to collect instance-level infor-
mation among which the pairwise constraint is one of the most common repre-
sentations. Pairwise constraints are consisted of two parts: must-link(M) and
cannot-link(C). A must-link (cannot-link) specifies that the pair of instances
should (not) be assigned into the same cluster. Pairwise relationship occurs in
a variety of applications and domains. For example, when clustering various
movies, we may only know two of them should (not) be assigned into the same
style which can be viewed as a must-link (cannot-link). Another example is our
knowledge that two proteins always co-occur in the Database of Interacting Pro-
teins (DIP) dataset, which can be regarded as a must-link when performing gene
clustering [13]. Generally speaking, it is convenient to gather pairwise constraints
along with collecting the unlabelled data. Thus, in this paper, we only consider
pairwise constraints prototype side information.

Similarly, clustering with side information is also useful for data collected
from multiple sources. Existing multi-view clustering approaches cannot directly
handle side information properly. Admittedly, by concatenating all the features
from multiple views into a single one, one can handle it with a semi-supervised
clustering algorithm. However, a simple concatenation has several drawbacks.
First, the dimension of concatenation feature matrices is usually high which
may trigger the curse of dimensionality and result in a high computational cost.
Secondly, the approach of concatenation, in fact, treats different views equally
which is not appropriate since the difference between views is ignored. Thus, it’s
still difficult to efficiently utilize side information in multi-view clustering, due
to the trade-off between diversity of feature in multiple views and consistency
of side information constraints.

To address this issue, in this paper, we propose a novel clustering approach
to utilize side information called Multi-View Matrix Completion (MVMC).
Firstly, MVMC constructs a pairwise similarity matrix Sv for the v-th view
independently and cast clustering task into a matrix completion problem based
on given pairwise constraints and feature information from multiple views. Then,
the final pairwise similarity matrix S is learned by controlling S and Sv in dif-
ferent views to approach each other. The global optimal solution is obtained
by projective alternative optimization since the objective function is jointly con-
vex. Experimental results on benchmark datasets demonstrate that the proposed
MVMC can efficiently utilize side information and outperform other state-of-the-
art approaches. Our major contribution is the development of the first approach
to tackle constrained multi-view clustering based on matrix completion.

In the following, we start with a brief review of some related work. Then,
we propose our MVMC approach and examine the empirical performance of
proposed method on several benchmark datasets. Finally, we conclude the paper.
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2 Related Work

Multi-view learning has attracted much attention since many real world data
are collected from multiple sources or intrinsically have multi-faceted feature
representations. In general, various multi-view learning algorithms in different
areas can be classified into three groups: (1) co-training, (2) multiple kernel
learning, and (3) subspace learning [33]. Multi-view co-training constructs two
learners each from one view, and then lets them to provide pseudo-labels for the
other learner [3]. And some studies [28,29] show that the diversity of multiple
views is the essence of co-training. Multiple kernel learning (MKL) is suitable
for multi-view learning because kernels in MKL naturally correspond to different
views to improve learning performance [1,15]. Subspace learning algorithms aim
at obtaining a common subspace shared by multiple views and then learning
models in that shared subspace [17,19].

Multi-view clustering aims at leveraging information from multiple views
to improve clustering performance, various multi-view clustering algorithms have
been proposed. Roughly, they can be categorized into spectral approaches, sub-
space approaches and late-fusion approaches. Spectral approaches extend spec-
tral clustering [27] into multi-view data by constructing a measure of similarity
between instances [18,23]. The subspace approaches assume that multiple views
are generated from a common low-dimensional subspace where the representa-
tions of similar instances are close [6,30]. The late-fusion approaches learn a
clustering solution from each single view, and then fuse all these intermediate
outputs based on consensus [4,35]. The proposed approach in this paper belongs
to the first stream.

Clustering with side information in single view scenario has been well
developed. Inspired by the work proposed in [32], plenty of algorithms are pro-
posed based on distance metric learning. For example, ITML proposed in [7]
learns a metric matrix with side information based on information theory. MCCC
proposed in [37] converts clustering to a matrix completion problem.

Matrix Completion (MC) problem was originally proposed for collabo-
rative [10]. Assuming that the matrix to be recovered is low-rank, MC finds a
matrix X that minimizes the difference with the given observation. However,
it is still challenging because rank minimization problem is NP-hard. A major
breakthrough in [5] states that minimizing rank(X), under broad conditions, can
be achieved using the minimizer obtained with its convex envelope, the nuclear
norm, ‖X‖∗. In addition, [34] proposed an approach to speed up the process of
MC by utilizing side information.

Due to a solid mathematical foundation of MC, it was recently exploited into
clustering. For example, a graph-based clustering proposed by [11] identifies clus-
ters from partially observed unweighted graphs via MC. In [36], a crowdsourced
clustering is proposed to use the crowd information to recover a similarity met-
ric, which can then be applied on large, growing collections. Besides, a related
clustering approach proposed in [37] convert clustering into a MC problem based
on side information, which performs well in single view scenario.
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All these previous studies on clustering cannot efficiently handle the scene
where some side information is provided for multiple views. To the best of our
knowledge, this is the first study on multi-view clustering by matrix completion
with side information.

3 Our Proposed MVMC Approach

In this section, the matrix completion multi-view clustering assisted with side
information model is introduced. Let D = {O1, O2, · · · , On} be n instances, and
the feature of each instance is collected from m views (channels). Feature in the
v-th view is denoted as Xv = (xv

1;x
v
2; · · · ;xv

n), where xv
i ∈ R

1×dv is the feature
of Oi in the v-th view, and dv is dimension of the v-th view. Let M (C) denote
the set of must-link (cannot-link) constraints, (i, j) ∈ M ((i, j) ∈ C) implies Oi

and Oj should (not) be assigned into the same cluster. We define Ω = M ∪ C to
represent all the pairwise constraints. Meanwhile, let r be the number of clusters.

3.1 Similarity Matrix Construction

For each view, let uv
i ∈ {0, 1}n be the membership vector of the i-th cluster

in the v-th view, where uv
i,j = 1 if Oj is assigned to the i-th cluster and zero,

otherwise. Then the pairwise similarity matrix Sv ∈ {0,+1}n×n is defined as

Sv =
∑r

i=1
uv

i (uv
i )T (1)

Evidently, [Sv]i,j = 1 if Oi and Oj are assigned to the same cluster from the
perspective of feature information provided in the v-th view, and zero, otherwise.
Furthermore, it is easy to verify that rank(Sv) ≤ r, which implicates a low-rank
property of similarity matrix.

3.2 Single-View Clustering by Matrix Completion

For a specific view (the subscribe v is omitted in this part for simplicity), finding
the best data partition is equivalent to recovering the binary matrix S. Appar-
ently, pairwise constraints are tightly associated with the similarity matrix. More
specifically, [Sv]i,j = 1 if (i, j) ∈ M and [Sv]i,j = 0 if (i, j) ∈ C for v = 1, · · · ,m.
Thus, clustering problem with pairwise constraints can be cast into a matrix com-
pletion problem, i.e., filling out the missing entries in binary similarity matrix
S based on M and C (i.e., the partial observations, called Sob) and the feature
information from multiple views.

Formally, for a specific view, the binary similarity matrix S can be recovered
from the following matrix completion problem,

min
S

‖S‖∗

s.t. RΩ(S) = RΩ(Sob)
(2)
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where ‖ · ‖∗ is nuclear norm, and RΩ(·) : Rn×n �→ R
n×n is a linear operator

which preserve the entry of S in Ω and 0 outside.
However, feature information is not utilized. To efficiently exploit feature

information, let Z = [z1, · · · , zk] be the first k left singular vectors of X cor-
responding to the k largest singular values, where k ≥ r. And we make an
assumption to reveal the relationship between X and S:

Assumption: the cluster membership vectors {ui}r
i=1 lie in the subspace of the

first k left singular vectors of feature matrix {zi}k
i=1.

A similar assumption is used by the spectral clustering algorithm [22], matrix
completion [34] and some others. When assumption holds, i.e., Span(u1, · · · ,
ur) ⊆ Span(z1, · · · , zk), we know that ∀i = 1, · · · , r,ui = Zθi, where θi ∈ R

k.
Then the similarity matrix S can be derived as

S =
∑r

i=1
uiuT

i =
∑r

i=1
Zθi(Zθi)T = ZMZT,

where M =
∑r

i=1 θiθ
T
i ∈ R

k×k. Obviously, M is a symmetric positive semidefi-
nite matrix, i.e., M ∈ Sk

+, where Sk
+ = {X ∈ R

k×k|X = XT and X � 0}.
It’s proved in [34] that ‖AXB‖∗ = ‖X‖∗ holds when A and B are orthonor-

mal matrices, i.e., aiTaj = δi,j and bi
Tbj = δi,j for any i and j, where δi,j is

the Kronecker delta function that outputs 1 if i = j and 0, otherwise. Hence,
‖S‖∗ = ‖ZMZT‖∗ = ‖M‖∗.

Besides, since pairwise constraints usually express a belief rather than cer-
tainty in many cases, soft constraints are introduced. Incorporating with feature
information, Eq. 2 can be reformulated as follows:

min
M

‖M‖∗ + C‖RΩ(ZMZT) − RΩ(Sob)‖2F (3)

where C > 0 is the regularization parameter introduced to trade off between
low-rank property and the consistency of recovery and given side information.

In [37], the fast stochastic subgradient descent method is adopted to solve
this optimization problem. And when S has been recovered, spectral clustering
algorithm is applied to find the best data partition. This single-view clustering
approach is referred as Matrix Completion Constrained Clustering (MCCC).

3.3 From Single-View to Multi-View

When managing to solve the multi-view clustering problem, a simple idea to
come up with is to convert multi-view features to a single one. There are two
types: the first one is concatenating all the features of multiple views, and then
performing semi-supervised single-view algorithms directly on the concatenation;
the second one is clustering on each view independently, and selecting the best
one w.r.t. the preferred performance measurement index.

Besides, for MCCC, another approach based on the late-fusion arises natu-
rally which performs clustering with pairwise constraints in each view indepen-
dently, and then concatenates results above all views to obtain final clustering
results. Concretely speaking, the pairwise similarity matrix Sv in each view can
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be recovered with side information and feature information independently. Then,
S1, · · · , Sm are fused into a final similarity matrix S as S = 1

m

∑m
v=1 Sv. We refer

to this approach as MCCC fusion.
As the information from multiple views is usually complementary to each

other, all above fail to combine feature information from multiple views efficiently
nevertheless. To address this problem, we directly restrict pairwise similarity
matrix Sv and learn the final S. Because the final clustering result should be
consistent over all multiple views, the consistency of multiple similarity matrices
Sv is enforced. To utilize multi-view feature information, we incorporate them
via the assumption claimed previously. Then Sv is expanded as ZvMvZT

v , where
Mv ∈ R

k×k and Zv = [zv
1, · · · , zv

k], the first k left singular vectors of feature in
the v-th view Xv. In fact, k is able to vary over different views. However, it does
not make difference to the essence of the problem. Thus, we set k in various
views the same in the following.

It’s noteworthy to mention that the original nuclear norm term ‖Sv‖∗ or
‖Mv‖∗ is non-smooth, which implies that it is inevitable to adopt sub-gradient
or proximal approach. Fortunately, since Mv is constrained as a positive semi-
definite matrix, then ‖Mv‖∗ =

∑k
i=1 |σi| =

∑k
i=1 eigi = tr(Mv), where σi and

eigi are the i-th singular value and eigenvalue of M , respectively. Thus, the
optimization problem can be formulated as follows:

min
S,{Mv}m

v=1

m∑

v=1

(
tr(Mv) + C1‖RΩ(ZvMvZT

v − Sob)‖2F + C2‖ZvMvZT
v − S‖2F

)

s.t. 0 ≤ Si,j ≤ 1, ∀i, j ∈ {1, · · · , N},

Mv ∈ Sk
+, v = 1, · · · ,m. (4)

where C1, C2 > 0 are two regularization parameters. The optimization object
function is consisted of three terms, the first two terms are generated from single-
view matrix completion, and the last term measures the difference among Sv

from multiple views. If we split the Frobenius norm into the square sum of
entries, in fact, it is the entry-variance of multiple similarity matrix.

After converting the non-smooth term ‖Mv‖∗ to a smooth term tr(Mv),
projected gradient descend is adopted which is pretty easy to implement.

3.4 Optimization

In Eq. 4, the constraint regions are convex sets and the objective function is
jointly convex w.r.t S and {Mv}m

v=1. Thus, we developed an iterative algorithm
to find the global optimal solution. Firstly, {Mv}m

v=1 and S are initialized by the
given observation Sob. Then the following two steps are repeated until conver-
gence: minimizing {Mv}m

v=1 over S; and then minimizing S over {Mv}m
v=1.

(1) Initialization {Mv}m
v=1 and S:

Since the observation Sob is given, then {Mv}m
v=1 and S can be initialized

as follows:
Mv = ZT

v SobZv, S = Sob. (5)
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Because each pairwise constraint corresponds to a pair entries in Sob and
the value of each entry in Sob is 0/1, this initialization meets the constraint
condition in Eq. 4.

(2) Minimizing object over S with fixed {Mv}m
v=1:

Ŝ = arg min
0≤Si,j≤1

C2

∑m

v=1
‖S − ZvMvZT

v ‖2F

Obviously, this sub-problem has a closed-form solution,

Ŝ = Proj1

(
1
m

m∑

v=1

ZvMvZ
T
v

)
(6)

where Proj1(·) is defined as

[Proj1(X)]i,j =

⎧
⎨

⎩

0 if Xi,j < 0;

1 if Xi,j > 1;

Xi,j otherwise.

(7)

(3) Minimizing object over Mv(v = 1, · · · ,m) with fixed S:
Obviously, when fixing S, each Mv can be solved independently. The objec-
tive function of sub-problem is

L(Mv) = tr(Mv) + C1‖RΩ(ZvMvZT
v − Sob)‖2F + C2‖ZvMvZT

v − S‖2F (8)

And the optimal solution of sub-problem is

M̂v = arg min
Mv∈Sk

+

L(Mv) (9)

L(Mv) is differential and its gradient ∇L(Mv) is

∇L(Mv) = I + 2C1Z
T
v (RΩ(ZvMvZT

v − Sob))Zv + 2C2Z
T
v (ZvMvZT

v − S)Zv

Besides, it’s easy to verify that ∇L(Mv) is Lipschitz continuous with con-
stant L = 2(C1‖Zv‖4F + C2). The projective gradient descend method is
adopted, the update sequence is defined as:

M (�+1)
v = Proj2

(
M (�)

v − η∇L(M (�)
v )

)
. (10)

where η is chosen as 1/L for a linear convergence referring to [21]. Proj2 is
a operator projecting Mv back to semi-definite positive cone Sk

+ defined as:

Proj2(X) = U max(σ, 0)UT (11)

where U and σ correspond to the eigenvectors and eigenvalues of X.

When obtaining final pairwise similarity matrix S, we apply spectral clustering
algorithms [27] on S to find the best data partition. The proposed clustering
approach above is referred as MVMC (Multi-View Matrix Completion), which
is summarized in Algorithm 1.

Convergence Analysis: Because objective function in Eq. 4 is jointly convex
with a convex constraints region, Algorithm1 converges to a global optima.
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Algorithm 1. MVMC (Multi-View Matrix Completion)
Input:

1) Multi-view feature: X = {Xv}m
v=1, where Xv = (x1;x2; · · · ;xn)v ∈ R

N×dv ;
2) The set of pairwise constraints: Ω = M ∪ C;
3) Regularization parameters: C1 and C2;
4) The number of clusters: r.

Output:
Pairwise similarity matrix S and clustering results.

1: Initialize S and {Mv}m
v=1 by Eq. 5;

2: repeat
3: Fixing {Mv}m

v=1 to optimize the objective, update S by Eq. 6 ;
4: Fixing S to optimize the objective, update {Mv}m

v=1 by Eq. 10;
5: until objective function in Eq. 4 converges.
6: Performing spectral clustering on S to obtain final clustering results.

4 Experiment

In this section, we compare the performance of proposed approach MVMC with
several baseline methods over different real world datasets. The baseline meth-
ods are representations from two paradigms: multi-view clustering and semi-
supervised clustering. The muti-view clustering algorithms are (a) Co-Reg,
the co-regularized spectral clustering [14], (b) MKKM, the multi-view kernel
k-means algorithm [26], (c) RMSC, robust multi-view spectral clustering based
on Markov chain. [31]; The semi-supervised clustering algorithms are (d) ITML,
the information theoretic metric learning algorithm [7], (e) MCCC, matrix
completion based constraint clustering [37]. Since there are two ways, i.e., con-
catenation and best view selection, for semi-supervised algorithms to handle
multiple views, ITML and MCCC are separated as ITML best, ITML concat
and MCCC best, MCCC concat. Besides, as we mentioned before, MCCC fusion
is also added into comparison.

4.1 General Experiment Settings

Datasets: The WebKB dataset [3] has been widely used in multi-view learn-
ing, which contains webpages collected from four universities: Cornell, Texas,
Washington and Wisconsin. The webpages are distributed over five clusters and
described by two views: the content and citation view. BBCSport consists of 2
views from news articles [14]. The Reuters dataset [2] is built from the Reuters
Multilingual test collection, multi-view information is created from different lan-
guages, i.e., English, French, German, Italian and Spanish [2]. Statistics of these
datasets are summarized in Table 1.

Parameter Settings: There are two regularization parameters C1 and C2,
cross-validation is applied because of the existence of side information [36,37]. To
choose an appropriate k, a trade-off need to be balanced between computational
efficiency and violation of assumption. It’s noteworthy to mention that k in
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Table 1. Statistics of six datasets, the first four datasets are subsets of WebKB and
dv denotes the dimension of the v-th view of datasets.

Data set # size # view # cluster dimension of each view dv(v = 1, · · · , m)

Cornell 195 2 5 1703, 195

Texas 187 2 5 1703, 187

Washington 230 2 5 1703, 230

Wisconsin 265 2 5 1703, 265

BBCSport 737 2 5 3183, 3208

Reuters 1600 5 6 2000 for each

each view, in fact, can be different. However, in our experiments, k is chosen as
min(100, dv) for convenience, where dv is the dimension of the v-th view.

Side Information: In our experiments, we follow the typical routine of experi-
ments with side information [38,39], where each pairwise constraint is generated
by randomly selecting a pair of samples. A must-link constraint is formed if they
belong to the same cluster, and cannot-link, otherwise. RATIO is used to mea-
sure quantity of side information, i.e. |Ω| = RATIO · n2. We vary RATIO from
[0.01, 0.02, · · · , 0.1].

Evaluation: In all the experiments, to evaluate the effectiveness of the pro-
posed approach, we use six different and widely-used criteria to measure cluster-
ing performances: F-score, precision, recall, the normalized mutual information
(NMI) [25], adjusted rand index(Adj-RI) [20] and average entropy. Note that all
the other criteria except for average entropy lie in interval [0, 1], and a higher
value indicates a better performance. Meanwhile, a lower average entropy means
a more competitive performance.

4.2 Results

Due to the space limitation, we only present Fig. 1 and Table 2 in experiments
part to demonstrate MVMC approach. Figure 1 summarizes the results w.r.t
NMI and Adj-RI on WebKB dataset. 10 test runs were conducted and the aver-
age performance as well as standard deviation are presented.

From Fig. 1 we can see that, for all four datasets, firstly, the performance
of proposed approach MVMC is gradually better as RATIO increases, which
means MVMC can handle side information efficiently. Secondly, comparing with
the multi-view clustering, when the side information is extremely scarce, the
behavior of MVMC is relatively poor. However, MVMC is able to demonstrate
a much better performance with plenty of side information. The reason is that
matrix completion cannot give a satisfying recovery with an exceedingly small
amount of side information, and when a relatively large amount is given, MVMC
can take advantage of side information while multi-view clustering approaches
cannot. Thirdly, comparing with the semi-supervised clustering, MVMC almost
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Fig. 1. Comparisons of clustering performance with other approaches on WebKB
dataset (with 4 subsets) w.r.t. NMI and Adjust Rand-Index (the higher, the better).
RATIO is used to measure amount of side information which varies from 0.01 to 0.1.
On each dataset, 10 test runs were conducted and the average performance as well as
standard deviation are presented.

Table 2. Comparisons of clustering performance on BBC (abbrv. for BBCSport),
REU (abbrv. for Reuters) w.r.t six criteria (except that a lower entropy indicates a
better performance, the others lie in [0,1] and the higher, the better). The number of
pairwise constraints is chosen as 5,000. On each dataset, 10 test runs were conducted
and the average performance as well as standard deviation are presented. Besides, •
(◦) indicates that MVMC is significantly better (worse) than the compared method
(paired t-tests at 95% significance level).

Dataset Method Fscore↑ Precision↑ Recall↑ NMI↑ Adj-RI↑ Avg Entropy↓
CoReg .385± .002• .285± .003• .606± .011• .173± .005• .090± .005• 1.881± 0.010•
MKKM .745± .013• .774± .020• .719± .023• .661± .016• .669± .016• 0.724± 0.046•
RMSC .452± .017• .472± .017• .434± .021• .297± .020• .290± .020• 1.527± 0.043•
ITML concat .681± .072• .633± .097• .742± .048• .624± .056• .568± .104• 0.882± 0.153•

BBC ITML best .560± .065• .452± .072• .740± .041• .518± .054• .373± .100• 1.198± 0.127•
MCCC concat .823± .070• .783± .085• .869± .052• .805± .053• .772± .088• 0.476± 0.135•
MCCC best .768± .057• .721± .066• .823± .047• .750± .047• .702± .072• 0.609± 0.112•
MCCC fusion .861± .088• .822± .109• .906± .063• .867± .053• .822± .112• 0.336± 0.142•
MVMC .990 ± .003 .989 ± .003 .991 ± .003 .982 ± .005 .987 ± .004 0.040 ± 0.011

CoReg .346± .001• .316± .004• .384± .006• .274± .002• .200± .003• 1.902± 0.008•
MKKM .345± .002• .319± .015• .377± .020• .274± .006• .201± .009• 1.897± 0.028•
RMSC .369± .008 .342± .018• .402± .020• .303± .017• .231± .014• 1.825± 0.054•
ITML concat .360± .010• .294± .017• .466± .022• .294± .021• .197± .018• 1.895± 0.064•

REU ITML best .362± .015• .298± .015• .464± .033 .305± .020• .201± .020• 1.866± 0.051•
MCCC concat .351± .033• .359± .034• .343± .033• .246± .038• .218± .041• 1.918± 0.097•
MCCC best .334± .029• .338± .029• .331± .030• .231± .033• .200± .035• 1.976± 0.083•
MCCC fusion .459± .051• .489± .028• .437± .071• .377± .071• .193± .036• 1.496± 0.081•
MVMC .528 ± .030 .559 ± .024 .499 ± .037 .472 ± .027 .427 ± .038 1.294 ± 0.061
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outperforms all the time especially along with the growth of RATIO. This phe-
nomenon implicates that simple concatenation or late-fusion does not leverage
information from multiple views. By exploiting different views via minimizing
variance of similarity matrix, MVMC is validated to be effective.

Table 2 summarizes the results w.r.t all the six criteria on BBCSport and
Reuters. The number of pairwise constraints |Ω| is both chosen as 5,000. We
can see that, MVMC demonstrates a surprisingly better performance than all
the other approaches on almost all criteria. It’s noteworthy to mention that the
randomly sampled pairwise constraints, in fact, only accounts for about 0.9%
and 0.2% for BBCSport and Reuters, respectively. It is encouraging that, with
such a limited side information, MVMC can still yield a satisfying performance.

5 Conclusions

In this paper, we present MVMC, which is possibly the first attempt to efficiently
handle multi-view clustering with side information based on matrix completion.
By constructing similarity matrix for each view, we cast clustering into a matrix
completion problem. Instead of concatenating multi-views into a single view, we
enforce the consistency of clustering results on different views as constraints for
alternative optimization, and the global optimal solution is obtained. The pro-
posed MVMC approach exhibits impressive performance in experiments. Study-
ing partial multi-view clustering [16] where each view suffers from some missing
features assisted by side information will be an interesting future issue.

Acknowledgement. This research was supported by the National Science Foundation
of China (61673201, 61333014).
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Abstract. Many web items contain different types of information
resources such as user profile, comments, users preference and so on.
All these aspects can be seen as different views of real-world datasets
and often admit same underlying clustering of the data. However, each
view of dataset forming a huge sparse matrix results in the non-robust
characteristic during matrix decomposition process, and further influ-
ences the accuracy of clustering results. In this paper, we attempt to
use rating value given by the users as latent semantic information to
handle those features that are unobserved in each data point so as to
resolve the sparseness problem in all views matrices. To combine mul-
tiple views in our constructed corpus Doucom, we present WScoNMF
(Weighted similarity co-regularized Non-negative Matrix Factorization),
which provides an efficient weighted matrix factorization framework to
further explore the sparseness problem in semantic space of data. The
overall objective function is to minimize the loss function of weighted
NMF under the l2,1-norm and the co-regularized constraint under the
F -norm. Experimental results on all datasets demonstrate the effective-
ness of the proposed method.

Keywords: Multi-view clustering · WScoNMF · Co-clustering

1 Introduction

There are many types of media websites, like sport, music, movie, social network,
etc. A main characteristic to all of these websites is containing a large number of
resources such as comments, user profile, rating by users, which can be treated
as different views of each web item in corresponding websites. However, a main
problem is how to organize those large multi-view web resources accurately and
automatically.

In previous years, NMF has been successfully used in unsupervised learning,
such as text and document mining [20]. But a few clustering algorithms have
been proposed to apply NMF on multi-view data before work [6] showed the
connection between NMF and clustering methods. After that, the NMF methods
have been widely used as one of the most important clustering methods because
they can handle large numbers of unlabeled datasets, and have been applied
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 416–428, 2017.
DOI: 10.1007/978-3-319-57529-2 33
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to a lot of multi-view applications. [11,12] are among the first works proposed
to solve the multi-view clustering problem via spectral projection. [1] enforces a
shared coefficient matrix among different views. Recently, the use of nonnegative
matrix factorization (NMF) with different regularization constraints for multi-
views clustering has attracted many interests. [14] aims to find a unified low-
dimensional space to fuse the multi-view representations in order to well explore
the common latent structure shared by multi-views.

Other multi-view co-clustering algorithms [2,3,8,9,21] seek groupings that
are consistent across different views which gives some pair-wise co-regularization
constraints on the jointly factorizing matrices. However, such methods suffer
from two challenges: (1) they do not care about the consistency on each item pair
similarity. For instance, if item i is similar to item j, then the similarity of i and
j should stay consistent after mapped to a new vector space in each single view.
(2) they ignore the sparsity of the real-world datasets, indicating existence of an
amount of unobserved features in latent semantic representation. For example,
every item vector has a high-dimensional latent space in view matrix, but large
numbers of features are unobserved for each item. i.e., document i has no word w
means the value of i-th row and w-th column in item-word co-occurrence matrix
equals to 0. Our intuition is since observed features in an item are too few to tell
us what the item is about, unobserved features can tell us what the item is not
about. We assume that the semantic spaces of both the observed and unobserved
features make up the complete semantics profile of an item.

In this paper, we propose WScoNMF (Weighted similarity co-regularized
Non-negative Matrix Factorization) to handle the sparseness of the views by
integrating the joint weighted nonnegative matrix factorization and maintain
the robustness by introducing the l2,1-norm. However, most recently proposed
multi-view co-clustering methods [16,19] presented algorithm to deal with the
sparseness using the Frobenius norm based objectives, here we proposed a novel
weighted NMF framework using l2,1-norm that has been proved well performance
in feature selection and also robust to residual in items [15]. We use similar pair-
wise co-regularization constraint to solve the first challenge, and propose a new
framework with restriction on weights to handle the second challenge so as to
achieve a better effectiveness. The contributions of this paper can be summarized
as following:

1. We first construct a large organized dataset with four views and corresponding
user ratings, namely Doucom.

2. The proposed WScoNMF method uses similar pair-wise co-regularization con-
straint for multiple views and attempts to integrate user subjective preference
(rating value) with associated view matrix, which we expect to enhance latent
semantic information and weaken the sparseness of original view matrix.

3. An iterative optimization framework is used in WScoNMF, which is proved
to converge and solve the proposed non-convex objective function.

4. Applying WScoNMF to four real-world datasets, and demonstrating the effec-
tiveness of these results for multi-view clustering.
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The rest of this paper is organized as follows. In the next section, prob-
lem formulation and some backgrounds are given. The details of the proposed
WScoNMF framework are presented in Sect. 3. Extensive experimental results
and analysis are shown in Sect. 4, and followed by the conclusion in Sect. 5.

2 Preliminaries

In this section, we first give the notations. Then the background knowledge on
multi-view nonnegative matrix factorization will be introduced.

2.1 Notations

Before we describe the formulation of the problem, we summarize some notations
used in this paper in Table 1. Assume we are given a set of data points, let
X = [x1, x2, · · · , xm]T ∈ R

m×d
+ be the original data points matrix of non-negative

elements. Each row vector xT
i (1 ≤ i ≤ m) denotes a data point and each column

represents one feature. The factorization is formulated as X ≈ UV T , where
U ∈ R

m×K
+ represents the class indicators, indicating the final clustering result.

V ∈ R
d×K
+ is termed the basis matrix. K denotes the desired reduced dimension.

Further, let {X(1),X(2), · · · ,X(nv)} denote the data of nv views, and each view
X(l) is factorized as X(l) ≈ U (l)(V (l))T . Here for different views, they have the
same number of data points but allow for different number of features, which
means U (l) are with the same dimension m-by-K for all views, while V (l) are of
dimension K-by-d(l) for per view. The fundamental multi-view based on NMF
function tries to minimize the joint problem over U (l), V (l):

nv∑

l=1

‖X(l) − U (l)(V (l))T ‖2F , s.t. U (l), V (l) ≥ 0 (1)

Table 1. Summary of the notations

Notations Description

m Total number of data points

nv Total number of views

X(l) Data matrix for the l-th view

d(l) Dimension of features in the l-th view

U (l) Class indicator matrix for the l-th view

V (l) The basis matrix for the l-th view

λls Weight parameter for similar pair-wise co-regularization constraint

2.2 Multi-view NMF Model

Multi-view NMF [14] aims to search for a factorization that gives compati-
ble clustering solutions across multiple views. The key idea is to formulate
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joint matrix factorization process and construct a softly regularized constraint
between coefficient matrices of different views and common consensus matrix. To
incorporate the regularized constraint with consensus matrix U∗ for individual
views, the final form of Multi-view NMF algorithm can be formulated as bellow:

nv∑

l=1

‖X(l) − U (l)(V (l))T ‖2F +
nv∑

l=1

λl‖U (l) − U∗‖2F (2)

s.t. ∀1 ≤ k ≤ K, ‖V
(l)
·,k ‖ = 1 and U (l), V (l), U∗ ≥ 0

where λl is the only parameter tuning the relative weight among different views.

3 The WScoNMF Framework

In this section, we first present our similar pair-wise constraint, where we expect
that the class indicator matrices learned from different views indicate the same
class label for one item. Furthermore, we present our weighted strategy to model
our sparse views of data points.

3.1 Inter-View Constraint on Similar Pair-Wise

Let X(l) = {X
(l)
1 ,X

(l)
2 , · · · ,X

(l)
m }T denotes the set of m items1 in view l. We

should note that X
(l)
i and X

(s)
i (1 ≤ i ≤ m) represent the same item, which

means the true class labels for X
(l)
i and X

(s)
i (l �= s) should be the same. The

simple pair-wise co-regularization can capture the difference between two indi-
cator matrices of two views and force the representations from different views to
be similar, which can be formulated as

nv∑

l=1

‖X(l)−U (l)(V (l))T ‖2F +
nv∑

l=1

nv∑

s=1

λls‖U (l)−U (s)‖2F , s.t. U (l), V (l) ≥ 0 (3)

where λls is the regularization parameter controlling the importance of constraint
among different indicator class matrices. But this constraint ignores the similar-
ity of each data point in intra-view. So we propose similar pair-wise co-regularize
constraint for further refinement, and the objective function (ScoNMF) is as
follows,

nv∑

l=1

‖X(l)−U (l)(V (l))T ‖2F +
nv∑

l=1

nv∑

s=1

λls‖M (l)−M (s)‖2F , s.t. U (l), V (l) ≥ 0 (4)

where M (l) = U (l)(U (l))T denotes a similarity matrix between each two items in
view l.

1 In this paper, we use ‘data point’ and ‘item’ exchangeable.
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3.2 Weighted ScoNMF Algorithm

ScoNMF framework presented above considers the residual by using the Frobe-
nius norm, but this co-regularization approach ignores the sparsity of data in the
semantic space, especially in our new dataset. To address the sparseness issue
for our clustering task, we introduce a novel weighting strategy for the weight
matrix and further present a completely NMF formulation with manifold regu-
larization. The main idea is to use the l2,1-norm to replace the Frobenius norm
in NMF objective and solve:

min
U,V

nv∑

l=1

‖X(l) − U (l)(V (l))T ‖2,1, s.t. U (l), V (l) ≥ 0 (5)

and Eq. 5 can be reformulated as following:

min
U,V

nv∑

l=1

m∑

i=1

‖X
(l)
i − U

(l)
i (V (l))T ‖2 (6)

We let μ(l) = [μ(l)
1 , · · · , μ

(l)
m ]T ∈ R

m×d
+ be the weight matrix for view l and

μ(l) defines a weight for each cell in X(l), where μ
(l)
i = [μ(l)

i,· ]
T ∈ R

d×1
+ is the

vector of data point i. And we define w
(l)
i = 1

d

∑
j μ

(l)
i,j here. Also, we enforce

the orthogonal constraint to U (l) to guarantee the uniqueness of the solution
which was introduced in [14]. Finally, our ScoNMF (Eq. 4) can be rewritten to
WScoNMF as,

min
U,V

nv∑

l=1

m∑

i=1

w
(l)
i ‖X

(l)
i − U

(l)
i (V (l))T ‖2 +

nv∑

l=1

nv∑

s=1

λls‖M (l) − M (s)‖2F

s.t. U (l), V (l) ≥ 0, U (l)TU (l) = I

(7)

Weighting Scheme. Now we give the definition of μ
(l)
i,j . If each item in dataset

has the corresponding rating feature, we use f to represent their relevant weight,
otherwise we use τi. Our weighting scheme is defined as:

μ
(l)
i,j =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x
(l)
i,j �= 0 and ′X(l) is a 0/1 matrix′

f or τi if x
(l)
i,j �= 0

ε if x
(l)
i,j = 0

(8)

where f = e
− 1

r
(l)
i and r

(l)
i means a rating score (0 < ri < 10) for a data point

X
(l)
i . τi = maxj{cos(U (l)

i , U
(l)
j )} denotes a maximum value about the similarity

of two data points and ε is a very small weight for penalty. The intuition of a small
ε when x

(l)
i,j = 0 is to diminish the influence where dimension dj is unobserved

in the data point X
(l)
i . Our strategy can be applied to different types of web

resources in many web applications, particularly those comment-based corpus.
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3.3 Optimization Algorithm

For the sake of convenience in representing, we let R =
∑nv

l=1

∑nv

s=1 λls‖M (l) −
M (s)‖2F in Eq. 7. Now the objective function Eq. 7 is equivalent to the following:

J(U, V ) = min
U,V

nv∑

l=1

m∑

i=1

w
(l)
i ‖X

(l)
i − U

(l)
i (V (l))T ‖22 + R

s.t. U (l), V (l) ≥ 0, U (l)TU (l) = I

(9)

So Eq. 9 can be rewritten as:

J(U, V ) = min
U,V

nv∑

l=1

Tr((X(l))T DX(l) − 2(U(l))T DX(l)V (l) + V (l)(U(l))T DU(l)(V (l))T )+

∑

l,s

λlsTr(U(l)(U(l))T U(l)(U(l))T − 2U(l)(U(l))T U(s)(U(s))T + U(s)(U(s))T U(s)(U(s))T )

+
∑

l

Tr(γ(l)((U(l))T U(l) − I))

where D is a diagonal matrix with the i-th diagonal element Di,i = w
(l)
i and γ(l)

is the Lagrange symmetric matrix for the condition of constraint. Similar to the
known solution for NMF, we can adopt alternation optimization to minimize the
objective function when D is fixed.

Fixing U (l), Computing V (l). The third part in J(U, V ) is a constant, so the
derivatives of J(U, V ) with respect to V (l) is:

∂J(U, V ))
∂V (l)

= (−2(X(l))TDU (l) + 2V (l)(U (l))TDU (l)) (10)

The Karush-Kuhn-Tucker (KKT) complementarity condition gives2

∂J(U, V )
∂V (l)

	 V (l) = 0

so the update solution of V (l) is:

V (l) ← V (l) 	 (X(l))TDU (l)

V (l)(U (l))TDU (l)
(11)

Fixing V (l), Computing U (l). Now, we analyze the stationary point U (l) in
J(U) = ΣlΣiw

(l)
i ‖X

(l)
i − U

(l)
i (V (l))T ‖22 + R + ΣlTr(γ(l)((U (l))TU (l) − I)) using

the auxiliary function approach.

Lemma 1 [13]. A(U,U
′
) is an auxiliary function of J(U) if the conditions

A(U,U
′
) ≥ J(U) and A(U,U) = J(U). If A is an auxiliary function for J

then J is non-increasing under the update U (t+1) = arg min A(U,U
′
).

2 � in matrix denote element-wise multiplication.
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Lemma 2 [5]. For any matrices A ∈ R
n×n
+ , B ∈ R

r×r
+ , S ∈ R

n×r
+ , S

′ ∈ R
n×r
+ ,

with A and B symmetric, the following inequality holds:

Tr(STASB) ≤
n∑

i=1

r∑

p=1

(AS
′
ipB)S2

ip

S
′
ip

(12)

Lemma 3 [18]. For any matrices A ∈ R
n×n
+ , B ∈ R

r×r
+ , S ∈ R

n×r
+ , S

′ ∈ R
n×r
+ ,

with A and B symmetric, the following inequality holds:

Tr(SASTSBST ) ≤
n∑

i=1

r∑

p=1

(
S

′
AS

′T
S

′
B + S

′
BS

′T
S

′
A

2
)
S4
ip

S
′3
ip

(13)

For brevity, we let X,U, V represent X(l), U (l), V (l) and an appropriate auxiliary
is defined as

A(U, U
′
) = −2

∑

ip

(DXV )ipU
′
ip(1 + log

Uip

U
′
ip

) +
∑

ip

(DU
′
V TV + U

′
γ)ip

U4
ip + U

′4
ip

2U
′3
ip

+
∑

ls

λls[
∑

ip

(U
′
U

′T
U

′
)ip

U4
ip

U
′3
ip

− 2
∑

ipq

(U (s)(U (s))T )pqU
′
ipU

′
iq(1 + log

UipUiq

U
′
ipU

′
iq

)]

where we ignore the irrelevant items Tr(XTDX) and Tr(γ). Here we use the
inequality z ≥ 1 + logz for all z > 0, and obtain Uip

U
′
ip

≥ 1 + log
Uip

U
′
ip

. Because

of Lemma 2 and the inequality 2ab ≤ a2 + b2, we also obtain the second term
of J(U), which is bounded by Tr(UTDUV TV + UTUγ) ≤ ∑

ip(DU
′
V TV +

U
′
γ)ip

U2
ip

U
′
ip

≤ ∑
ip(DU

′
V TV + U

′
γ)ip

U4
ip+U

′4
ip

2U
′3
ip

.

To find stationary point of A(U,U
′
), we should take the derivative of A(U,U

′
)

with respect to U and fix U
′
according to Lemma 1:

∂A(U,U
′
)

∂Uip
= −2(DXV )ip

U
′
ip

Uip
+ 2(DU

′
V TV + U

′
γ)ip

U3
ip

U
′3
ip

+
∑

s

λls[4(U
′
U

′T
U

′
)ip

U3
ip

U
′3
ip

− 4(U (s)(U (s))TU
′
)ip

U
′
ip

Uip
]

(14)

Following the same derivations as in previous work from others [4,17], we
should check the Hessian matrix of A(U,U

′
), the Hessian matrix containing the

second derivatives

∂2A(U,U
′
)

∂Uip∂Ujq
= {2(DXV )ip

U
′
ip

U2
ip

+ 6(DU
′
V TV + U

′
γ)ip

U2
ip

U
′3
ip

+

∑

s

λls[12(U
′
U

′T
U

′
)ip

U2
ip

U
′3
ip

+ 4(U (s)(U (s))TU
′
)ip

U
′
ip

U2
ip

]}δijδpq

(15)
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Algorithm 1. WScoNMF algorithm
Input: Multi-view datasets X(l); Weighting matrices μ(l); Number of clusters

K; Parameters λls;
Output: Class indicator matrices U (l); Basis matrices V (l);
Initialize U (l) and V (l) using the traditional k-means;1

Compute μ(l) by Eq. 8 ;2

repeat3

for l to nv do4

Update V (l) by Eq. 11;5

Update U (l) by Eq. 16;6

end7

return U (l) and V (l)8

until Eq. 9 is converged ;9

Above Hessian matrix is a positive semidefinite diagonal matrix, thus A(U,U
′
)

is a convex function of U . We can obtain the global minimum of A(U,U
′
) by

setting the value of Eq. 14 equals 0, and our update rule for the stationary point
is (we use U here for brevity),

U ← U 	
[

DXV + 2
∑

s λls(U (s)(U (s))TU)
DUV TV + Uγ + 2

∑
s λls(UUTU)

] 1
4

(16)

The whole procedure is summarized in Algorithm1. It should be noted that
we choose to use a traditional and efficient clustering method (k-means) as our
initialization function in all views. In our WScoNMF framework, we use the
constraint UTU = I to guarantee the uniqueness of our solution and the other
advantage is to significantly reduce the computation cost for the optimization
algorithm [10]. Actually, our orthogonal to U is a normalization process in which
use the l2 norm.

4 Experiments

In this section, we apply the proposed WScoNMF multi-view clustering algo-
rithm to compare its performance with other multi-view clustering techniques.
Extensive experiments are made on five real-world datasets.

4.1 Datasets and Settings

Table 2 summarizes the characteristics of those data sets used in experiments.
We collect Doucom3 consisting of four views which we call ‘summary’ (Sum),
‘short-comment’ (Short), ‘long-review’ (Long) and ‘user’ (User) respectively.

3 https://developers.douban.com/wiki.

https://developers.douban.com/wiki
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Similar to the Doucom, Last.fm4, Yelp5 and 3-Sources6 have three views
respectively.

Table 2. Description of the multi-view datasets

Dataset # items size # view #cluster

Doucom 31297 4 39

Last.fm 9694 3 21

Yelp 2624 3 7

3-Sources 169 3 6

To evaluate the performance of the proposed method, we compare our
method with the following algorithms.

1. CoRe. [12] proposed the objective functions to co-regularize the eigenvectors
of all views’ Laplacian matrices.

2. MulitNMF. [14] developed a solution on consensus-based regularization for
NMF to group the multi-view data.

3. PcoNMF. This is a recent pair-wise co-regularization method [9] for clus-
tering the whole mapped data.

4. CMVNMF. [21] proposed a novel small number of constraints on must-link
sets and cannot-link sets based on the NMF framework.

In this work, λls determines the weight of the similarity constraint in
co-regularization, and we set λls = 1 for each pair of view in all experiments. We
also set our reduced dimension K = 100, empirical ε = 0.001 and we calculate
each weighting matrix μ for different views based on our weighting scheme before
optimization. We run K-means 100 times and select the best clustering result to
initialize all the NMF methods, and we iterate algorithm 20 rounds to achieve
final average results. For all the used text datasets, we apply the TF-IDF trans-
formation on all the item-word frequency matrices. It should be noted that our
item-user matrix is a zero-one matrix and it have no rating feature. To evaluate
the clustering performance, we use clustering accuracy (ACC) and normalized
mutual information (NMI) [7] as our metrics.

4.2 Clustering Results

In Table 3, we present results of all methods measured by ACC and NMI for each
dataset. Overall, it can be seen that our method WScoNMF is very competitive,
always better than the other four methods. From the experimental comparisons,

4 http://www.last.fm/api.
5 http://www.yelp.com/dataset challenge.
6 http://mlg.ucd.ie/datasets.

http://www.last.fm/api
http://www.yelp.com/dataset_challenge
http://mlg.ucd.ie/datasets
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Table 3. Mulit-view clustering performance on five real-world datasets (%) (Both
mean value and standard deviation are reported, best results are formated in bold,
while second best result are underlined)

ACC(%) NMI(%)

Metric Doucom Last.fm Yelp 3-Sources Doucom Last.fm Yelp 3-Sources

CoRe 42.8

(±2.9)

51.7

(±2.3)

60.8

(±2.7)

47.9

(±0.3)

37.1

(±3.4)

48.6

(±3.1)

57.8

(±3.2)

41.6

(±0.2)

MultiNMF 40.1
(±4.7)

45.5
(±2.3)

30.2
(±2.6)

68.4
(±0.1)

37.6
(±4.2)

39.4
(±2.3)

34.7
(±1.9)

60.2
(±0.1)

PcoNMF 46.3
(±3.6)

51.8
(±2.5)

67.6
(±4.6)

73.3
(±1.8)

44.8
(±3.7)

47.6
(±2.1)

64.7
(±3.2)

72.8
(±3.6)

CMVNMF 54.4
(±7.1)

60.4
(±3.8)

71.2
(±3.8)

74.9
(±5.7)

53.7
(±6.1)

64.0
(±1.8)

74.4
(±2.7)

75.3
(±5.5)

ScoNMF 49.2
(±5.6)

54.6
(±1.8)

68.2
(±2.4)

73.6
(±2.1)

49.6
(±4.8)

53.3
(±2.4)

67.1
(±3.8)

73.4
(±1.6)

WScoNMF 58.8
(±4.3)

67.2
(±2.7)

75.3
(±4.1)

78.8
(±3.3)

57.2
(±4.6)

66.5
(±3.2)

76.3
(±2.7)

77.4
(±2.8)

we observe that: (1) The weighted NMF framework usually outperforms the
standard NMF. This may indicate that, those standard NMF algorithms are
usually used for non-sparseness learning and ignore the sparsity of data struc-
ture, especially in our large dataset Doucom. (2) WScoNMF outperforms the
second best algorithm in terms of ACC/NMI as 4.4%/3.5% on Doucom dataset,
6.8%/2.5% on Last.fm, 4.1%/1.9% on Yelp and 3.9%/2.1% on 3-Sources. (3)
Among the co-clustering method with different co-regularization constraint, the
similar pair-wise constraint (ScoNMF) performs slightly better than the simple
pair-wise constraint (PcoNMF), which validates that the algorithm based on
our proposed co-regularization constraint framework might be a better way of
capturing the difference in intrinsic connection between every two data points.

Table 4 demonstrates the clustering accuracy results for each single-view and
Table 5 also shows the accuracy results of single-view when we use the different
weighted strategy in our created corpus Doucom. In Table 4, we should note that
the best accuracy results for each single-view of Doucom is long-reviews unlike
the User in Last.fm. There are two possible explanations for above situation,
first one is that the user view in Doucom is extremely sparse than in Last.fm;
second reason is that the long-reviews in Doucom are too informative which helps
make it less noisy than any other three views. Another important thing is that
overall single-view clustering results are worse than their correspond multi-view
clustering results, which means that incorporating views of data can improve
clustering performance. Table 5 gives a direct comparison between two weighting
schemes. “WSco-r” represents our algorithm combined with rating feature as the
weighting scheme (Eq. 8) and “WSco-s” denotes that algorithm with similarity
weighting method. Generally speaking, a data point has a high rate in one view
means that the view is more valuable to this data point. Furthermore, we try
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to use utmost cosine similarity between latent semantic vectors Ui and Uj when
datasets don’t have rating characteristic. It should be understood that WSco-s
is not fixed and changes with the iteration, which could lead to a little deviation
in similarity between latent semantic vectors. Our experimental results indicate
that WSco-r has a little better effectiveness than WSco-s and we should note that
our results on user view are the same, because item-user is a zero-one matrix.

Parameter Study. In our WScoNMF framework, there is only one regulariza-
tion parameter for each pair of views: λls. Relative λls determines the weight
of the consistency on pair’s similarity in co-regularization. Figure 1 shows the
performance of WScoNMF when varing λls for all views. As we can see, for two
large datasets, WScoNMF performs best when λls located in 1 or 2. We also
studied the parameter on other small datasets like Y elp and 3-Sources, and all
results indicate that performance is the best when λls located around 1. This
suggests that the parameter λls can be set to 1.

Table 4. Single-view clustering results in terms
of accuracy

Data Doucom Last.fm
View Sum Short Long User Des Com User

PcoNMF 31.3 38.7 46.4 41.1 33.2 42.4 51.9

CMVNMF 40.8 44.2 52.6 48.3 48.5 53.7 60.1

ScoNMF 33.4 39.8 47.8 40.5 35.4 46.8 52.7

WScoNMF 48.7 50.8 57.3 52.4 41.6 54.8 62.9

Table 5. Effect of two weight-
ing schemes on the clustering
accuracy of each single view

Data Doucom

View Sum Short Long User

WSco-r 48.7 50.8 57.3 52.4

WSco-s 42.4 46.8 53.8 52.4
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Fig. 1. Evalutaion on λls for all views

5 Conclusion

In this paper, we have proposed a novel weighted multi-view clustering frame-
work to cluster the multi-view data, which addressed the sparseness in real-world
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datasets. Also we have developed an iterative optimization algorithm. Extensive
experiments have demonstrated that the proposed method is effective. In the
future, we will study how to model any other features together generated by
comment user such as list of user preference and investigate how to improve the
algorithm efficiency when dealing with the huge real-world datasets.
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Foundation of China (No. 61472241) and the National High Technology Research and
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Abstract. Determining the number of clusters in a data set is a critical issue in
cluster analysis. The Visual Assessment of (cluster) Tendency (VAT) algorithm
is an effective tool for investigating cluster tendency, which produces an intu-
itive image of matrix as the representation of complex data sets. However, VAT
can be computationally expensive for large data sets due to its O N2ð Þ time
complexity. In this paper, we propose an efficient parallel scheme to accelerate
the original VAT using NVIDIA GPU and CUDA architecture. We show that,
on a range of data sets, the GPU-based VAT features good scalability and can
achieve significant speedups compared to the original algorithm.

Keywords: Cluster analysis � Cluster tendency � VAT � GPU

1 Introduction

Cluster analysis is an important task in pattern recognition and data mining. In general,
it consists of three steps: (1) assessing the cluster tendency (e.g., how many groups to
seek); (2) partitioning the data into groups; (3) validating the clusters discovered [1].
For data that can be directly projected onto a 2D or 3D Euclidean space (e.g., with a
scatter plot), direct observation can provide good insight on the appropriate number of
clusters. However, for high-dimensional data, or when only the pairwise relationship
between objects is available, advanced techniques are necessary.

Visual Assessment of (cluster) Tendency (VAT) [2] is one of the popular methods
widely used to assess the cluster tendency. Given the dissimilarity matrix D of a set of n
objects, VAT represents D as an n� n image I D�ð Þ where the objects are reordered to
reveal the hidden cluster structure as dark blocks along the diagonal of the image.

VAT works well on relatively small data sets (e.g., 500 or fewer objects). However,
for data sets of moderate sizes (e.g., 20,000 data points), the computing time of VAT,
with time complexity O N2ð Þ, may become intolerable. In view of the high computing
time of VAT, several extensions such as reVAT [3], bigVAT [4] and sVAT [5] have
been proposed. reVAT performs quasi-ordering of the objects based on a threshold
parameter and replaces the intensity image with a series of one-dimensional profile
graphs. However, the profile graphs are not as interpretable as the images produced by
VAT. To address this problem, bigVAT uses the profile graphs to select a sample of

© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 429–440, 2017.
DOI: 10.1007/978-3-319-57529-2_34



objects and displays the quasi-ordered dissimilarity data of the sampled objects as a
VAT-like intensity image. However, the resulting image may not be as descriptive as
the VAT-ordered image. sVAT selects a sample of (approximately) size n from the full
set of objects O ¼ fo1; o2; . . .; oNg, and performs VAT on the sample. The sample is
chosen so that it contains similar cluster structure as the original data set. However, if
the original data set contains many clusters, the value of n needs to increase accord-
ingly, creating a computational issue again.

GPU (Graphics Processing Unit) is an inexpensive, energy efficient and highly
efficient SIMT (Single Instruction, Multiple Thread) parallel computing device, which
can be found in many mainstream desktop computers and workstations. In this paper,
we propose to improve the computational efficiency of VAT using CUDA-enabled
GPUs by exploiting their massively parallel computing capability and the potential of
parallelism of VAT.

This paper is organized as follows. Section 2 gives a brief review of VAT and its
variations as well as GPU computing. Section 3 presents the details of the proposed
parallel VAT algorithm based on GPU. The main experimental studies are reported in
Sect. 4, focusing on the comparison between CPU-based VAT and GPU-based VAT.
This paper is concluded in Sect. 5 with some discussions on future work.

2 Related Work

2.1 A Brief Review of VAT

Let O ¼ fo1; o2; . . .; ong denote n objects in the data set and D denote a matrix of
pairwise dissimilarities between objects each element of which dij ¼ dðoi; ojÞ is the
dissimilarity between objects oi and oj, with 0� dij � 1; dij ¼ dji; dii ¼ 0, for
1� i; j� n. Let K be the permutation of f1; 2; . . .; ng such that KðiÞ is the index of the
ith element in the list. The reordered list is represented as: foK 1ð Þ; oK 2ð Þ; . . .; oK nð Þg. Let
P be the permutation matrix with pij ¼ 1 if j ¼ KðiÞ and 0 otherwise. The matrix D� for
the reordered list is a similarity transform of D by P: D� ¼ PTDP.

The key idea is to find P so that D� is as close to a block diagonal form as possible.
VAT reorders the row and columns of D using a modified version of Prim’s minimal
spanning tree (MST) algorithm [6], and displays D� as a gray-scale image. The main
difference is that VAT does not form a MST. Instead, it identifies the order in which
vertices are added and the initial vertex is selected based on the maximum edge weight
in the underlying complete graph [7]. The general procedure of the VAT algorithm is
shown in Table 1.

An example of VAT is shown in Fig. 1. Figure 1(a) is the scatter plot of 2,000 data
points in 2D. The 5 visually apparent clusters are reflected by the 5 distinct dark blocks
along the main diagonal in Fig. 1(c), which is the VAT image of the data. Compared to
the image of D in the original order as shown in Fig. 1(b), it is evident that reordering is
necessary to reveal the underlying cluster structure of the data.
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2.2 GPU High Performance Computing

In recent years, GPUs have evolved into highly parallel, multi-threaded, many-core
processors and are widely used for general purpose computing [13]. Compared with
CPU based distributed systems such as Hadoop, GPU based parallel computing sys-
tems are more lightweight, portable and energy-efficient. GPUs are well suited to
problems that can be represented as data-parallel tasks where the same instruction is
executed on massive data elements in parallel. It is also highly desirable that the
arithmetic intensity is high, which is the ratio between the number of arithmetic
operations and the number of memory operations.

CUDA (Compute Unified Device Architecture) is a general-purpose parallel
computing platform and programming model that leverages the parallel computing
engine in NVIDIA GPUs to solve challenging computational problems in a more
efficient way than CPUs. It was introduced by NVIDIA in November 2006, which
significantly reduces the difficulty faced by programmers for developing flexible par-
allel programs based on NVIDIA GPUs.

Threads and kernels are the core concepts in CUDA. Threads are lightweight
processes executed on independent processors in GPU, and they are easy to be created

Table 1. Algorithm I: The VAT algorithm

Fig. 1. An example of VAT: (a) the scatter plot of the 2D dataset; (b) the original dissimilarity
image IðDÞ and (c) the reordered VAT image IðD�Þ
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and synchronized. Kernels are functions executed on the GPU in parallel by massive
threads organized into blocks and grids [14].

There are different types of memory in GPUs, which can significantly affect the
performance of GPU programs. Each thread has its private local memory called register,
which is the fastest type ofmemory. Each thread block features sharedmemory accessible
by all threads within the same block, which can be as fast as registers if accessed properly.
All threads have access to the same global memory, which is the largest and slowest
storage and the only memory visible to CPU. Constant memory and texture memory are
two read-only memory spaces accessible by all threads [15]. The global, constant, and
texture memory spaces are persistent across kernel launches by the same application.

In data science, examples of successful GPU applications include matrix multi-
plication [16], databases [17–19], data stream mining [20], FIMI mining [21], subse-
quence search [22] and GPU-based primitives for database applications [19, 23].

3 GPU-Accelerated VAT

In this section, we present the design and implementation details of the proposed
parallel VAT based on GPU. The VAT algorithm shown in Table 1 consists of three
steps: (1) finding the maximum dissimilarity value and the objects involved; (2) gen-
erating the new order; (3) reordering the matrix. Our implementation follows the
general workflow of the original algorithm. To make the algorithm more suitable for
parallel implementation, we also make some changes (Table 2).

3.1 Finding the Maximum Value

The reduction algorithm is a good choice for finding the maximum value of a matrix in
GPU. Reduction refers to a class of parallel operations that pass over O Nð Þ input data

Table 2. Algorithm II: VAT based on GPU
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and generate O 1ð Þ result, computed by a binary associative operator ⊕. Examples of
such operations include minimum, maximum, sum, sum of squares, AND, OR, and the
dot product of two vectors [24]. Unless the operator ⊕ is extremely expensive to
evaluate, reduction tends to be bandwidth-bound. Figure 2 shows an example of par-
allel reduction that computes the maximum of an 8-element array. There are four
threads in use, which are marked in different colors.

Although Thrust, a popular library in CUDA, can find the maximum value effi-
ciently, we employ a special reduction method as the index of the object with the
maximum value is required. Furthermore, the input matrix itself is symmetric, which
means that only half of the matrix needs to be processed. In this paper, we apply the
Two-Pass Reduction algorithm [24] to find the maximum value and the maximum
value’s index in the matrix. The Two-Pass Reduction operates in two stages, as shown
in Fig. 3. A kernel performs NumBlocks reductions in parallel, where Numblocks is the

Fig. 2. An example of parallel reduction: finding the maximum value of a vector

Fig. 3. An example of the Two-Pass Reduction algorithm
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number of blocks used to invoke the kernel. Then, the results are stored into an
intermediate array. The final result is generated by invoking the same kernel to perform
a second pass on the intermediate array using a single block. Note that, this method
imposes no requirement on the compute capability of GPUs, making it applicable to a
wide range of GPU facilitates.

3.2 Generating New Order

Generating the new order of objects takes most of the time in VAT and its degree of
parallelism has a significant impact on the overall speedup. It can be divided into two
steps: computing the elements in L and finding the minimum value and the corre-
sponding index in L.

Although it features a process of finding the minimum value and the corresponding
index, we use the Reduction with Atomics algorithm with only a single kernel, instead
of the Two-Pass Reduction algorithm. Note that, invoking a kernel, even a kernel that
does nothing, involves a certain amount of overhead. In particular, in this step, the time
spent in invoking a kernel is large compared to the time spent in the execution of the
kernel. Furthermore, each kernel needs to be launched N � 1 times, where N is the
width of the input matrix. Consequently, reducing the number of kernels in the algo-
rithm is likely to be beneficial in terms of efficiency.

Similar to the Two-Pass Reduction algorithm, the Reduction with Atomics algo-
rithm stores the result in an intermediate array. The difference is that the Reduction
with Atomics algorithm uses a flag value for recording the number of exited blocks. As
each block exits, it performs the atomicAdd function, a type of atomic operation in
CUDA, to check whether it is the block that needs to perform the final reduction.
Although the atomic operation does cost some extra time, the Reduction with Atomics
algorithm is more efficient than Two-Pass Reduction when the size of data to be
processed is small. Figure 4 shows the running times of the Reduction with Atomics
algorithm and the Two-Pass Reduction algorithm.
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Fig. 4. Running times of the Reduction with Atomics algorithm and the Two-Pass Reduction
algorithm on datasets of different sizes
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3.3 Creating the Reordered Matrix

D needs to be transformed into D
0
where d

0
pq 2 ½0; 255�, to reflect the image density

range [0, 255] in openCV [26]. Directly applying N � N threads may seem to be a
straightforward way to create the reordered matrix. However, the memory in GPU is
limited and in order to process more data, we need to transform the double type D to
unsigned char type D

0
before applying N � N threads to execute d�ij ¼ d

0
I ið ÞI jð Þ:

Since in GPU blocks are executed in an unordered manner [17], a memory space
may be filled with new data before the original data has been read when multiple blocks
are in use. To solve this issue, we perform the transformation of the first n elements
using the same block where

n ¼ N2 � size of unsignedcharð Þ
size of doubleð Þ ð1Þ

so that the rest elements can be safely processed in parallel with multiple blocks, as
shown in Fig. 5.

4 Experimental Results

We conducted the experiments on a workstation with two Intel Xeon E5-2640 v2
(2.00 GHz, 8 Cores) CPUs, 128 GB RAM and NVIDIA GeForce GTX TITAN X
GPU. Powered by NVIDIA Maxwell architecture, the GeForce GTX TITAN X GPU
features 3,072 CUDA cores and 12 GB GDDR5 memory. The programming envi-
ronment was gcc-4.7 with CUDA 7.5 running on Ubuntu 15.04 (64 bit).

4.1 Test Datasets

We used a random dataset generator from scikit-learn [25]. Four different types of
datasets (circles, moons, blobs and random) were generated (Fig. 6) and 10 instances
(2D) were created for each type of dataset with 1,000 to 45,000 objects. We also used a
dataset from UCI Machine Learning Repository [27] from which we sampled subsets

Fig. 5. Transformation of double type to unsigned char type
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with different sizes. Since the input of VAT is a dissimilarity matrix, once this matrix is
given, the efficiency of VAT is fully determined, regardless of the dimension of the
original dataset.

4.2 Results and Analysis

For each dataset, we compared the efficiency of the CPU-based VAT and our parallel
VAT base on GPU. For the same data size, our algorithm achieved almost the same
speedup rate on different datasets. So, we averaged the results and present the running
time and speedup rate in Fig. 7. It is clear that, the running time of the original VAT
increased rapidly due to its O(N2) time complexity. Meanwhile, the speedup rate
increased steadily as the matrix size increased and reached around 37 for datasets with
40,000 objects.

Figures 8, 9 and 10 show the individual running time and speedup rate for each of
the three major operations in VAT: finding the maximum value, generating the new
order and creating the reordered matrix. Figure 11 shows the average time of data
transmission between CPU and GPU. Figure 12 shows the average running time and
speedup rate on real datasets of different sizes, showing an overall trend similar to
Fig. 7. Note that, on datasets with 45,000 objects, we transformed the double type D to

Fig. 6. Four different types of datasets used in the experiments. From left to right: circles,
moons, blobs and random
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an unsigned char type D
0
to reduce the space requirement before applying N � N

threads to execute d�ij ¼ d
0
I ið ÞI jð Þ: Due to the extra time cost, the overall speedup rates

(e.g., Fig. 7) and the speedup rate for creating the reordered matrix (Fig. 10) both
dropped slightly.
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Fig. 8. Average running time and speedup rate of finding the maximum value on datasets of
different sizes
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Fig. 9. Average running time and speedup rate of generating the new order on datasets of
different sizes

0

5000

10000

15000

20000

25000

Ru
nn

in
g 

Ti
m

e(
m

s)

Matrix Size

CPU GPU

0

50

100

150

200

250

Sp
ee

du
p 

Ra
te

Matrix Size

Fig. 10. Average running time and speedup rate of creating the reordered matrix on datasets of
different sizes

Parallel Visual Assessment of Cluster Tendency on GPU 437



5 Conclusion

Visualizing the cluster tendency of datasets is important in both academic research and
industrial applications. However, the applicability of VAT, one of the most popular
visualization techniques in this domain, has been severely limited by its high time
complexity. In this paper, we investigated the potential of parallelism of various
components in VAT and proposed a GPU-based parallel VAT. Experiments on a
variety of test datasets showed that the parallel VAT can achieve significant speedup
rates and demonstrated good scalability in handling large datasets.

In recent years, a number of variations of VAT have been proposed to enhance its
capability. For example, iVAT [8] and efiVAT [9] improve the ability of VAT to
highlight cluster structure in IðD�Þ when D contains highly complex clusters. Havens
et al. [10] performed data clustering in ordered dissimilarity images, and coVAT [11]
extends VAT to rectangular dissimilarity data. CCE [12], DBE [15] and aVAT [8] use
different schemes to automatically estimate the number of clusters in VAT images.
Most of these VAT-like methods are built on the basic idea of the original VAT and our
proposed parallel VAT algorithm can be potentially extended to these algorithms.

Acknowledgment. This work was partially supported by the NVIDIA GPU Education Center
awarded to Tsinghua University.
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Abstract. Clustering has been extensively studied to deal with different
kinds of data. Usually, datasets are represented as a n-dimensional vector
of attributes described by numerical or nominal categorical values. Sym-
bolic data is another concept where the objects are more complex such as
intervals, multi-categorical or modal. However, new applications might
give rise to even more complex data describing for example customer
desires, constraints, and preferences. Such data can be expressed more
compactly using logic-based representations. In this paper, we introduce
a new clustering framework, where complex objects are described by
propositional formulas. First, we extend the two well-known k-means
and hierarchical agglomerative clustering techniques. Second, we intro-
duce a new divisive algorithm for clustering objects represented explicitly
by sets of models. Finally, we propose a propositional satisfiability based
encoding of the problem of clustering propositional formulas without the
need for an explicit representation of their models. Preliminary experi-
mental results validating our proposed framework are provided.

1 Introduction

Clustering is a technique used to recover hidden structure in a dataset obtained
by grouping data into clusters of similar objects. It is derived by several
important applications ranging from scientific data exploration, to information
retrieval, and computational biology (e.g. [1]). Such diversity in terms of appli-
cation domains induces a variety of data types and clustering techniques (see.
[2] for a survey). Indeed, data can be transactional, sequential, trees, graphs,
texts, or even of a symbolic nature [6,7,10]. This last kind of data is particularly
suitable for modeling complex and heterogeneous objects usually described by
a set of multivalued variables of different types (e.g. intervals, multi-categorical
or modal) (e.g. [3,4,8]). We can also mention conceptual clustering proposed
more than thirty years ago by Michalski [14] and defined as a machine learning
task. It accepts a set of object descriptions (events, facts, observations, ...) and
produces a classification scheme over them. Conceptual clustering not only par-
titions the data, but generates clusters that can be summarized by a conceptual
description. As a summary, conceptual and symbolic clustering are two para-
digms proposed to deal with kinds of data other than those usually described by
numerical values.
c© Springer International Publishing AG 2017
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In today’s data-driven digital era, data might be even more complex and het-
erogenous. Such complex data might represent customers desires or preferences
collected in different possible ways using surveys and quizzes. As an example,
one can cite configuration systems usually designed to provide customized prod-
ucts satisfying the different requirements of the customer, usually modeled by
constraints or logic-formulas (e.g. [11]). These customers requirements-data or
the data-models provided by the configuration systems are some kind of complex
data that we are interested in. These data can be represented by logic-formulas
(requirements) or by models (the products satisfying the requirements). Data
can also represent more complex entities such as transaction databases. Indeed,
suppose that we collected several transaction databases from stores chain selling
the same products, one can be interested in determining similar stores (clusters)
or stores with the same behavior. This could help the manager of the stores
chain to better define its trade policy. In the two previous examples, data can
be better represented as a set of propositional formulas or as sets of models.

In this paper, we introduce a new clustering framework, where complex
objects are described by propositional formulas. We first extend the two well
known k-means and hierarchical agglomerative clustering techniques. Then, we
introduce a new divisive algorithm for clustering objects represented explicitly by
sets of models. Finally, we propose a propositional satisfiability based encoding
of clustering propositional formulas without the need for an explicit representa-
tion of their models. Preliminary experimental results validating our proposed
framework are provided before concluding.

1.1 Propositional Satisfiability

Let P be a countably infinite set of propositional variables. The set of proposi-
tional formulas, denoted FP , is defined inductively starting from P, the constant
⊥ denoting absurdity, the constant � denoting true, We use the greek letters φ,
ψ to represent formulas. A Boolean interpretation I of a formula φ is defined as
a function from P(φ) to {0, 1} (0 for false and 1 for true). A model of a formula
φ is a Boolean interpretation I that satisfies φ (written I � φ), i.e. I(φ) = 1. We
denote the set of models of φ by M(φ). A formula φ is satisfiable (or consistent)
if there exists a model of φ; otherwise it is called unsatisfiable (or inconsistent).

Let φ and ψ be two propositional formulas, we say that ψ is a logical conse-
quence of φ, written φ � ψ, iff M(φ) ⊆ M(ψ). The two formulas φ and ψ are
called equivalent iff φ � ψ and ψ � φ, i.e. M(φ) = M(ψ).

A CNF formula is a conjunction (∧) of clauses, where a clause is a disjunc-
tion (∨) of literals. A literal is a propositional variable (p), called positive literal,
or (¬p), called negative literal. The SAT problem consists in deciding whether a
given CNF formula admits a model or not. Another problem related to SAT is
the SAT model enumeration problem. Enumeration requires generating all mod-
els of a problem instance without duplicates. Models enumeration is related to
#SAT, the problem of computing the number of models for a given propositional
formula. Model counting is the canonical #P-complete problem. On the practi-
cal side, for model counting, SampleCount a sampling based approach proposed
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by Gomes et al. in [9], provides very good lower bounds with high confidence.
Similarly, an efficient model enumeration algorithm has been proposed in [5,12].

2 Motivating Example

To motivate our proposed framework, let us consider a simple example of a
car dealer selling different cars bands with several possible options. For each car
brand, several colors and types of fuels are available. The car dealer collected the
preferences of four customers through a survey questionnaire. The first customer
does not want red cars. The second wants a car with a diesel fuel, while the third
wants a red car with gasoline fuel. Finally, the fourth customer prefers brand
Peugeot cars. In addition to these customer desires, we also consider mutual
exclusion constraints (mutex), allowing to express that each car must have only
one color, one type of fuel and one car brand.

To express the different customer desires in propositional logic, we consider
the following propositional variables: r (resp. b) represents red (resp. black)
colors, p (resp. c) represents the Peugeot (resp. Citroen) car brand and d (resp.
g) represents cars with diesel (resp. gasoline) fuel.

The mutex constraints are expressed by the following formula: μ = [(r∧¬b)∨
(b ∧ ¬r)] ∧ [(g ∧ ¬d) ∨ (d ∧ ¬g)] ∧ [(p ∧ ¬c) ∨ (c ∧ ¬p)].

In Fig. 1 (left hand side), for each customer ci, we associate a propositional
formula φci expressing its desires. We also provide the set of models satisfying
both the desires of the customer and the mutex constraints (M(φci ∧ μ)). The
presentation of the models follows the variables ordering: r ≺ b ≺ d ≺ g ≺ c ≺ p.
In Fig. 1 (right hand side), we give a graphical representation of the preferences
of the four customers. This illustrative example highlights the expressiveness of
logic-based data representation while allowing the possibility to define both user
and background constraints.

Customers c1 c2 c3 c4
φci ¬r d g ∧ r p

M(φci ∧ μ) 010101 011001 010101
010110 011010 011001
011001 101001 100101 100101
011010 101010 100110 101001

100110

100101

010101
011001

101001

101010011010010110

Φc3

Φc1

Φc4

Φc2

Fig. 1. Logical and graphical representation of customers preferences

3 Adapting Standard Clustering Algorithms

In this section, we present our extension of the well-known k-means and agglom-
erative hierarchical clustering algorithms to handle objects expressed as propo-
sitional formulas. Let us first fix some necessary notations and definitions.
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We use P(k, Φ) to denote the problem of clustering the set of propositional
formulas Φ = {φ1, . . . , φn} into a set of k clusters with k � n. Let C be a family
of sets over Φ. C is a solution of P(k, Φ) if and only if |C| = k,

⋃
Ci∈C Ci = Φ with

Ci ∩ Cj = ∅ for 1 � i < j � k, and M(
∧

φ∈Ci
φ) 
= ∅ for every Ci ∈ C. We say

that a clustering problem P(k, Φ) is consistent if it admits a solution.

3.1 k-Means Algorithm for Propositional Formulas Clustering

Given a set of n data points in d-dimensional space R
d and a positive integer k,

the k-means algorithm determines a set of k points in R
d, called centers, so as

to minimize an objective function such as the mean squared distance from each
data point to its nearest center. To extend the k-means algorithm to clustering
of objects described by propositional formulas, we need to define,

1. a distance between two formulas;
2. a centroid representing a given cluster;
3. an objective function to optimize.

Let us recall that a propositional formula φ can be equivalently expressed by
its set of models M(φ). With this representation in mind, one can consider that
two formula φ1 and φ2 are similar if their set of common models M(φ1)∩M(φ2)
is higher with respect to the remaining (distinctive) models M(φ1) \ M(φ2) ∪
M(φ2) \ M(φ1). This kind of similarity is related to the well-known contrast
model of similarity proposed in a seminal paper by Tversky [15].

Definition 1 (Tversky [15]). Let a and b be two objects described by two sets
of features A and B respectively. Similarity between a and b, denoted s(a, b), is
defined as:

s (a, b) =
f (A∩ B)

f (A∩ B) + αf (A − B) + βf (B − A)
α, β � 0

The positive coefficients α and β reflects the weights given to the distinctive
features of the two objects a and b. We usually assume that f is a matching
function satisfying the additivity property f(A ∪ B) = f(A) + f(B), whenever
A and B are disjoint. The ratio model defines a normalized value of similarity
such that 0 � s(a, b) � 1.

Contrast similarity model is particularly suitable in our context. To extend
Definition 1, we consider the relationship between set operations and logical con-
nectives. Indeed, the set union (resp. intersection) corresponds to disjunction
(resp. conjunction). The difference between sets can be expressed using both
conjunction and negation connectives, while the symmetric difference between
sets can be expressed using the xor (⊕) logical connective. Indeed, we have
M(φ1) \M(φ2)∪M(φ2) \M(φ1) = M((φ1 ∧¬φ2)∨ (φ2 ∧¬φ1)) = M(φ1 ⊕φ2).

Using these relationships, we derive the following extension of the ratio
model [16].
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Definition 2. Let a and b be two objects described by two propositional formulas
φ1 and φ2 respectively. Similarity between a and b is defined as:

s (a, b) =
f (φ1 ∧ φ2)

f (φ1∧φ2) + αf (φ1 ∧ ¬φ2) + βf (φ2 ∧ ¬φ1)
α, β � 0

In our context, as no distinction is made between the measure of φ1 ∧ ¬φ2

and φ2 ∧ ¬φ1, we derive the following similarity measure.

Definition 3. Let a and b be two objects described by two propositional formulas
φ1 and φ2 respectively. Similarity between a and b is defined as:

s (a, b) =
f (φ1 ∧ φ2)

f (φ1∧φ2) + γf (φ1 ⊕ φ2)
, γ�0

From Definition 2 (resp. Definition 3), instantiating α = β = 1 (resp. γ = 1),
we derive a logic-based variant of the well known Jaccard similarity coefficient
(resp. distance) [13]:

Definition 4. Let a and b be two objects described by two propositional formulas
φ1 and φ2 respectively. Similarity and distance between a and b or between φ1

and φ2 are defined respectively as:

sJ(a, b) = sJ(φ1, φ2) =
f(φ1 ∧ φ2)
f(φ1 ∨ φ2)

and dJ (a, b) = 1 − sJ(a, b) = dJ (φ1, φ2)

As mentioned previously, considering the model based representation of
propositional formulas, we define the function f as:

f :
∣
∣
∣
∣
FP −→ N

φ �−→ |M(φ)|
Clearly, the function f satisfies the additive property. Indeed, we have
M(φ1 ∨ φ2) = M(φ1) ∪ M(φ2). Computing f involves solving a #P-Complete
model counting problem as discussed in Sect. 1.1.

Let us now define the representative of a cluster of propositional formulas.

Definition 5. Let Ci be a cluster involving ni formulas {φ1i , φ2i , . . . , φni
}. We

define the cluster representative (also called centroid) OCi
of the cluster Ci as:

OCi
= φ1i ∧ φ2i ∧ . . . ∧ φni

It is important to note that in our proposed extension, the goal is to group
formulas into consistent clusters. Consequently, the formula representing a given
cluster must be consistent.

We use the classical k-means objective function introduced in Definition 6.

Definition 6. Let P(k, Φ) be the problem of clustering a set of propositional
formulas Φ = {φ1, . . . , φn} to k(� n) clusters C = {C1, . . . , Ck}. The objective
function is defined using Absolute-Error Criterion (AEC):

C∗ = arg min
C

k∑

i=1

∑

φ∈Ci

dJ (φ,OCi
) (1)



446 A. Boudane et al.

Our clustering algorithm of a set of propositional formulas can now be derived
from the classical k-means algorithm using the new components (distance, cen-
troid and objective function) defined above.

3.2 Hierarchical Agglomerative Algorithm for Propositional
Formulas Clustering

Hierarchical algorithms can behave better than the k-means. The base idea of
hierarchical agglomerative algorithms is to build a dendrogram such that at each
level the two closest clusters are merged. By applying a hierarchical algorithm,
we will ensure that if there are two objects that are closest to each other, they
will necessarily be in the same cluster. In this adaptation, the similarity between
two clusters is identical to the similarity between their representatives. Similarly
to Definition 5, the conjunction of all formulas in a cluster represents its cen-
troid. To merge clusters, we combine the two clusters with the smallest centroid
distance. Using this adaptation, we can applay a standard hierarchical agglomer-
ative algorithm on data represented as boolean formulas as illustrated in Fig. 2.
Note that this algorithm needs at least O(n2) calls to a # SAT oracle.

1
Inconsistency

2/3

4/5

c2 c4 c3c1

dJ

d p g ∧ r¬r

¬r ∧ d

¬r ∧ d ∧ p

Fig. 2. Agglomerative clustering on the car dealer example

4 Divisive Algorithm for Model Based Representation

As mentioned previously, when we consider the problem of clustering a set of
formulas Φ = {φ1, φ1, . . . , φn} without common model, i.e., Φ � ⊥, agglomerative
algorithm and k-means can fail to find a clustering with the desired number of
clusters. In the sequel, we propose a top-down hierarchical (or divisive) algorithm
for clustering a set of propositional formulas. Our proposed adaptation makes
use of the well-known minimum hitting sets problem, that we recall.

Definition 7. H is a hitting set of a set of sets Ω if ∀S ∈ Ω, H ∩ S 
= ∅.
A hitting set H is irreducible if there is no other hitting set H ′ s.t H ′ ⊂ H. H
is called minimum hitting set if there is no hitting set H ′ such that |H ′| < |H|.
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Example 1. Let Φ = {φ1, φ2, φ3} be a set of propositional formulas such that
M(φ1) = {m1,m2,m3}, M(φ2) = {m1,m4} and M(φ3) = {m3,m5}. The set
H = {m1,m3} is a minimum and irreducible hitting set of the models of Φ.

In our adaptation, we choose the worst cluster to divide according to the
following quality measure.

Definition 8. Let Ci = {φ1i , . . . , φni
} be a cluster of ni propositional formulas.

We define the quality of Ci as:

Q(Ci) =
|M(φ1i ∧ · · · ∧ φni

)|
|M(φ1i ∨ · · · ∨ φni

)|
The quality of a cluster is obtained by extending the similarity measure between
two formulas to a set of formulas. Indeed, a cluster is qualified to be of poor
quality, when its formulas admits a great number of models while sharing a
small number of models. Consequently, the worst cluster is obtained as follows:

C∗
i = argmin

Ci∈C
Q(Ci)

Definition 9. Let Φ be a set of propositional formulas and I a Boolean inter-
pretation. We define the subset of formulas of Φ sharing the model I as
S(I, Φ) = {φ ∈ Φ|I � φ}.

To build consistent clusters, Algorithm 1 starts by computing a minimum
hitting set H of the set of sets of models of the formulas in Φ (line 1). The main
idea behind our algorithm is to use the models of the computed minimum hitting
set to divide a cluster into several consistent clusters. Each cluster is obtained
by selecting for each model m of the minimum hitting set, the set of formulas
admitting m as a model. In this way, the formulas in the obtained clusters share
at least one model. If the size of the minimum hitting set H is greater than k,
then no clustering is possible, and the algorithm returns an empty set (line 3),
otherwise a consistent clustering can be obtained. In this last case, the algorithm
starts by a clustering C where all the formulas in Φ are grouped into a single
cluster (line 6). We start an iterative top-down divisive process (lines 7–20), until
generating k clusters. At each iteration, we choose a cluster to divide (line 8)
which is one of those with the worst quality (see Definition 8). Then, we build Ω
the set of sets of models of the formulas involved in the selected cluster, while
removing the set of common models M (lines 9–10). A minimum hitting set
H of Ω is then computed (line 11). It is important to note that by removing
the common models M from the models of each formula of the selected cluster,
we avoid the trivial minimum hitting sets of size 1. Now, we use the hitting
set H to divide the chosen cluster C∗

i into |H| clusters (line 12). Indeed, for
each model m in H, we associate a cluster Ψm made of formulas of C∗

i sharing
the model m. In this way, we maintain the consistency property on each new
cluster Ψm. Now, we substitute in C the cluster of poor quality C∗

i with the new
set of clusters (line 18). However, this is only done when the size of the new
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Algorithm 1. Model-Based Divisive Algorithm for Clustering Boolean
Formulas

Input: A set of formulas Φ = {φ1, . . . , φn} and an integer k � 1
Output: A set of clusters C = {C1, . . . , Ck}
H ← minHittingSet({M(φ1), . . . , M(φn)});1
if (|H| > k) then2

return ∅ ;3

end4
else5

C ← {Φ};6
while (|C| ! = k) do7

C∗
i = {φi1 . . . φini

} ← argmin
Ci∈C,|Ci|>1

Q(Ci), � ni = |C∗
i |;

8

M = M(φi1 ) ∩ · · · ∩ M(φini
);9

Ω = {M(φi1 ) \ M, . . . , M(φini
) \ M};10

H ← minHittingSet(Ω);11
∀m ∈ H, Ψm ← S(m, C∗

i );12
if (|C| + |H| − 1 > k) then13

Ψ ← merge({Ψm1 , . . . , Ψm|C|+|H|−1−k
});14

C ← (C \ C∗
i ) ∪ {Ψ} ∪ {Ψm|C|+|H|−k

, . . . , Ψm|H| }15

end16
else17

C ← (C \ C∗
i ) ∪ {Ψm1 , . . . , Ψm|H| }18

end19

end20

end21
C ← eliminateOverlap(C);22

return C23

clustering does not exceed k (line 13); otherwise to obtain exactly k clusters, we
merge (function merge) the first |C| + |H| − (k + 1) of these new clusters (line
14) before applying substitution (line 15). Note that in the divisive step (line
12), a formula can belong to several new clusters. The reason comes from the
fact that a given formula can share several models of the minimum hitting set.
Consequently, a last step is then performed to produce non overlapping clusters
(line 20 - function eliminateOverlap). To do this, for each formula occurring in
several clusters, we keep it in the cluster with the best quality, while removing
it in the remaining clusters. Obviously, depending on applications, overlapping
clusters might be more suitable. In this case, one only need to skip the call to
the overlap elimination function.

Algorithm 1, involves O(n) calls to model enumeration problem (line 1), O(k)
calls to # SAT oracle (line 8) and O(k) calls to minimum hitting set problem
(line 1 and 11).

Let us now gives some interesting properties of our propositional formulas
based divisive algorithm. The first one states the correctness of our algorithm.

Proposition 1. If P(k, Φ) is consistent, then Algorithm 1 produces a clustering.

The proof trivially follows from the previous detailed explanation on how the
algorithm operates.

The second property allows us to establish that two equivalent formulas might
be located in the same cluster when overlaps between clusters are allowed.
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Proposition 2. Let P(k, Φ) be a clustering problem with overlaps, C a clustering
of P(k, Φ) and φ1, φ2 ∈ Φ. If φ1 ≡ φ2 then ∀Ci ∈ C, φ1 ∈ Ci iff φ2 ∈ Ci.

The last property generalizes the previous property to the case of two for-
mulas where one is a logical consequence of the other.

Proposition 3. Let P(k, Φ) be a clustering problem with overlaps, C a clustering
of P(k, Φ) and φ1, φ2 ∈ Φ. If φ1 � φ2 then ∀Ci ∈ C, if φ1 ∈ Ci then φ2 ∈ Ci.

5 SAT Encoding for a Bounded Consistent Clustering

As discussed in the previous section, when the propositional formulas are not rep-
resented by their models, our proposed model based divisive algorithm requires
O(n) calls to model enumeration oracle, to compute the set of models of each
formula. Such set of models might be of exponential size in the worst case. In
addition to these limitations, one also need to compute a minimum hitting set
of a set of sets of models (O(k) calls). In this section, we present an alterna-
tive approach that significantly reduces the overall complexity of our Algorithm.
To this end, we introduce a SAT-based encoding that allows to find a bounded
consistent clustering of a given set of propositional formulas.

Let Φ = {φ1, . . . , φn} be a set of propositional formulas and k a positive
integer. To define our encoding, we associate to each propositional variable p
appearing in Φ a set of k fresh propositional variables, denoted p1, . . . , pk. Then,
for every formula φi ∈ Φ and j ∈ {1, . . . , k}, we use φj

i to denote the formula
obtained from φi by replacing each propositional variable p with the fresh vari-
able pj . The formula φj

i is used to model the fact that φi is in the jth cluster.
The following formula expresses that each formula in Φ has to be true in at

least one consistent cluster:
n∧

i=1

(
k∨

j=1

φj
i ) (2)

One can easily see that (2) is satisfiable if and only if Φ can be partitioned
in k consistent clusters. It is worth noting that in a model of (2) a formula can
belong to more than one cluster. To obtain a bounded consistent clustering from
a model m, we only have to consider for each formula φi ∈ Φ a single positive
integer j in the set {1 � j � k | m(φj

i ) = 1}. This problem can be avoided
by reformulation. To this end, we associate to each formula φi in Φ a set of k
fresh propositional variables, denoted q1φi

, . . . , qk
φi

. The variable qj
φi

is used to
represent the fact that φi is in the jth cluster by using the following formula:

n∧

i=1

(
k∧

j=1

qj
φi

⇔ φj
i ) (3)

Then, to express that each formula in Φ belongs to exactly one consistent cluster,
we use the following formula:

n∧

i=1

(
k∑

j=1

qj
φi

= 1) (4)
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Our second SAT encoding of the bounded consistent clustering problem
P(k, Φ) is defined by the formula PSAT (k, Φ) = (3)∧ (4). From a model m of
PSAT (k, Φ), a clustering can be easily extracted. Indeed, if m(qj

φi
) = true then

φi ∈ Cj otherwise φi 
∈ Cj .

Definition 10. Let Φ = {φ1, . . . , φn}. C is called a minimum consistent clus-
tering of Φ if there is no consistent clustering C′ of Φ such that |C′| < |C].

As we can observe, clustering propositional formulas can be done using
Algorithm 1 by replacing the computation of the minimum hitting set with
the computation of the minimum consistent clustering (Definition 10) using
PSAT (k, Φ). Similarly to Algorithm1, Properties 1, 2 and 3 holds.

6 Experimentation

In this section, we carried out an experimental evaluation of the performance of
our divisive and agglomerative algorithms for the clustering of a set of propo-
sitional formulas. Our goal is to assess the feasibility and effectiveness of our
proposed framework.

We performed our experiments on a machine with Intel Core2 Quad CPU
of 2.66 GHz and 8G of RAM. Our first aim is to compare the performance of
our divisive and agglomerative algorithms. To this end, We consider two datasets
splice, and german-credit1. We consider each data set as a set of transactions,
where each transaction is a formula (a set of models). Consequently, an item is
assimilated to a model.

Figure 3 shows the performances of agglomerative (Algorithm 1) and divisive
(Algorithm 1) methods on the problem of clustering transaction databases. First,
our divisive algorithm outperforms the agglomerative algorithm on splice and
german-credit. Nevertheless, as illustrated in Sect. 3.2, the agglomerative algo-
rithm is unable to find a clustering all the time. This is the case on splice
data, where such approach can not provide clustering answer when the number
of desired clusters is less than 84.

To further investigate the expressiveness and the ability of our approach
to scale, we enlarge our experiments of the previous problem by studying the
clustering of a set of formulas resulting from a random-generated poll with 100
to 1000 participants where each participant is invited to report its preferences.
The questions of the poll are organized in four levels. At the first level, the
participant is invited to select its 3 preferred options among 5. According to the
preferences of the participant, she/he is invited to select other preferences from
the second level and so on until the last level (level 4). For illustration, assume
that in the first level we consider a set S of courses (e.g. Artificial Intelligence,
Data Mining, Databases, Networks and Web Programming). A student selects
three courses from S (level 1). Then, for each selected course, she/he chooses
chapters (level 2), and so on. The preferences of each participant are encoded

1 https://dtai.cs.kuleuven.be/CP4IM/.

https://dtai.cs.kuleuven.be/CP4IM/
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Fig. 3. Model approach: Agglomerative vs Divisive

as a propositional formula (the resulting formulas have between 567 and 1813
models). Agglomerative approach is not considered since it can not guaranty to
find a clustering solution if it exists.
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The time needed to obtain a clustering, Fig. 4, does not exceed 100 s for
all values of k. This shows that our approach scale well. Finally, we study the
evolution of the time needed to find a clustering when the number of clusters is
fixed to 20 and the number of participants is varied from 100 to 1000 (Fig. 4).
Here again the time needed is reasonable, i.e., less than 100 s.

7 Conclusion et Perspectives

In this work we introduced the concept of consistent clustering propositional for-
mulas. We show how well-known k-means, agglomerative and divisive algorithms
can be adapted to this new framework. We then, propose two new solutions. The
first one called model based, assume that the set of models of each formula are
given. We then show how the hitting set notion is used to efficiently give a
consistent clustering. In the second part, we propose an encoding into SAT of



452 A. Boudane et al.

the divisive algorithm that make a linear number of calls to a #SAT oracle to
count the set of models during the clustering steps. As a future work, we plan
to explore other similarity measure, to define intuitive distance between propo-
sitional formulas. Improving our divisive algorithm by exploiting efficiently the
overlaps deserves further investigation.
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Abstract. Matrix factorization is a popular collaborative filtering tech-
nique, assuming that the matrix of ratings can be written as the inner
product of two low-rank matrices, comprising latent features assigned to
each user/item. Recently, several researchers have developed Bayesian
treatments of matrix factorization, that infer posterior distributions over
the postulated user and item latent features. As it has been shown, by
allowing for taking uncertainty into account, such Bayesian inference
approaches can better model sparse data, which are prevalent in real-
world applications. In this paper, we consider replacing the inner product
in the likelihood function of Bayesian matrix factorization with an arbi-
trary function that we learn from the data at the same time as we learn
the latent feature posteriors; specifically, we parameterize the likelihood
function using dense layer (DL) deep networks. In addition, to allow for
addressing the cold-start problem, we also devise a model extension that
takes into account item content, treated as side information. We pro-
vide extensive experimental evaluations on several real-world datasets;
we show that our method completely outperforms state-of-the-art alter-
natives, without compromising computational efficiency.

1 Introduction

Latent variable models have been extensively used in collaborative filtering appli-
cations aimed at modeling user preferences. Their main rationale consists in the
assumption that user preferences are determined by a small number of unob-
served (latent) variables (factors) that characterize both users and items. Under
this modeling framework, the rating function is typically considered to be a lin-
ear combination (inner product) of the latent factor vectors of each user and
item pair. Such approaches are typically referred to as probabilistic matrix fac-
torization (PMF) models [16].

The assumption of existing PMF-type models that the likelihood function
mean is the inner product of the user and item latent variables classifies them
into the family of linear latent variable (LLV) models. Unfortunately, LLV models
cannot be considered realistic in most real-world data modeling scenarios. Tra-
ditionally, a solution towards the amelioration of these issues has been obtained
by postulating mixtures of local LLV models. Recently though, a much more
potent solution has been obtained in the context of deep learning techniques [7].
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Specifically, in the last couple of years, immense research interest has concen-
trated on the development of nonlinear latent variable models, where the inferred
likelihood functions are parameterized via deep neural networks. This novel class
of latent variable models is commonly referred to as deep generative models
(DGMs) [4,5,13,14].

Inspired from these advances, in this work we propose a novel matrix fac-
torization model, where the mean and the variance of the employed likelihood
function are parameterized by means of dense layer (DL) networks. This way,
our proposed model yields a nonlinear PMF scheme, which is expected to allow
for a notable predictive performance improvement over existing linear models, in
analogy to the existing work in DGMs. A difficulty with such a model formula-
tion is that it naturally gives rise to a non-conjugate construction that prohibits
application of conventional variational techniques to perform inference (e.g., [3]).
We resolve this issue by resorting to a Monte-Carlo (MC) approximation of vari-
ational inference; to reduce the unacceptably high variance of MC estimators,
we employ stochastic gradient variational Bayes (SGVB) [4].

In addition, to allow for addressing the cold-start problem, which is the prob-
lem of complete inadequacy of prior ratings to base recommendation generation
upon, in this work we also consider a variant that allows for the utilization of
side information. Indeed, many researchers have taken a similar path in the con-
text of PMF-type algorithms. For instance, [12] fused side information into the
PMF model by means of a simple linear regression term defined over the side
information pertaining to the modeled users and items. More recently, [19] used
a deep belief network (DBN) [15] extracting latent variable representations of
music content to inform the postulated rating function of PMF. In the case of our
proposed model, introduction of content-driven side information is effected by
parameterizing the likelihood function via DL networks that are presented with
both the latent feature vectors of each user and item, as well as content-related
latent variables the posteriors over which are also parameterized via separate DL
networks. We dub our approach deep Bayesian matrix factorization (DBMF).

The remainder of this paper is organized as follows: In Sect. 2 we provide
a brief overview of the theoretical foundation of our work, i.e. Bayesian PMF
(BPMF) models and the SGVB inference algorithm. In Sect. 3, we present the
proposed DBMF model, as well as its content-driven extension. In Sect. 4, we
perform the experimental evaluation of our approach, under a variety of sce-
narios that include ratings-only based inference, as well as inference that takes
item content into account. Finally, in the concluding section of this paper, we
summarize our contribution and discuss our results.

2 Theoretical Foundation

2.1 BPMF

Let us consider we are given a set of rankings R = {rij}i,j assigned by a set of
users with indices i ∈ {1, . . . , N} to a set of items with indices j ∈ {1, . . . , M}.
PMF considers that the modeled users can be represented by means of the set of
latent feature vectors U = {ui}N

i=1, while the modeled items can be represented
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by means of the set of latent feature vectors V = {vj}M
j=1. The observed ratings

are considered to be conditionally independent given the latent feature vectors
U and V , yielding [16]

p(R|U, V ;σ2) =
N∏

i=1

M∏

j=1

[N (rij |uT
i vj , σ

2)
]Iij (1)

where σ2 is the variance of the model, and Iij is an indicator variable equal to
1 if the ith user has rated the jth item, 0 otherwise.

To perform Bayesian inference for the PMF model (1), appropriate priors
have to be imposed over the latent variable sets U and V . To this end, the
BPMF method postulates [17]

p(ui|μU ,ΛU ) = N (ui|μU ,Λ−1
U ) (2)

p(vi|μV ,ΛV ) = N (vi|μV ,Λ−1
V ) (3)

where N (·|μ,Λ−1) is a multivariate Gaussian with mean μ and covariance
matrix Λ−1. In addition, to allow for a more comprehensive Bayesian inference
treatment of the model, the prior hyperparameter sets {μU ,ΛU} and {μV ,ΛV }
are also imposed Normal-Wishart hyper-priors. Inference for BPMF is performed
by means of Gibbs sampling, as described in [17].

2.2 SGVB

Let us consider a dataset X = {xn}N
n=1 consisting of N i.i.d. samples of some

observed random variable x. We assume that the observed random variable is
generated by some random process, involving an unobserved continuous random
variable y. In this context, we introduce a conditional independence assumption
for the observed variables x given the corresponding latent variables y; we adopt
the conditional likelihood function p(x|y;θ). To perform Bayesian inference for
the postulated model, we impose some prior distribution p(y;ϕ). Under this
formulation, the log-marginal likelihood of the model w.r.t. the dataset X yields

log p(X) ≥ L(θ,ϕ,φ|X) =
N∑

i=1

{
− KL

[
q(yi; φ)||p(yi; ϕ)

]
+ Eq(yi;φ)[log p(xi|yi; θ)]

}

(4)
where KL

[
q||p]

is the KL divergence between the distribution q(·) and the dis-
tribution p(·), q(y;φ) is the sought approximate (variational) posterior over the
latent variable y, while Eq(y;φ)[·] is the (posterior) expectation of a function
w.r.t. the random variable y, the distribution of which is taken to be the poste-
rior q(y;φ).

In case the form of the likelihood p(x|y;θ), prior p(y;ϕ), and posterior distri-
bution, q(y;φ), do not result in a conjugate overall model formulation, the ana-
lytical expression of Eq(yi;φ)[log p(xi|yi;θ)] and its gradient become intractable.
One could argue that this problem might be resolved by approximating this
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expectation using MC samples from the posterior q(y;φ). However, it is well-
known that such an approximation would result in estimators with unacceptably
high variance. SGVB is a recently proposed technique that resolves these issues
by means of a smart reparameterization of the MC samples of y ∼ q(y;φ),
obtained via an appropriate differentiable transformation gφ(ε) of an (auxiliary)
random noise variable ε:

y = gφ(ε) with ε ∼ p(ε) (5)

By adopting this reparameterization, SGVB allows for rewriting the varia-
tional lower bound (4) in the form

L(θ,ϕ,φ|X) =
N∑

i=1

{
− KL

[
q(yi;φ)||p(yi;ϕ)

]
+

1
L

L∑

l=1

log p(xi|y(l)
i ;θ)

}
(6)

where L is the number of drawn samples. Hence, the key difference between
SGVB and a naive MC estimator is that the drawn samples of y, used to
approximate the intractable posterior expectation Eq(yi;φ)[log p(xi|yi;θ)], are
now taken as functions of the parameters φ of the posterior q(yi;φ) that we
seek to optimize. As shown in [4], this formulation of the inference algorithm
allows for yielding low variance estimators, under some mild conditions.

The derivatives ∇θ,ϕ,φL(θ,ϕ,φ|X) can be used in conjunction with any sto-
chastic optimization method to train the model. For instance, [4] suggest utiliza-
tion of Adagrad, which constitutes a stochastic gradient descent algorithm with
adaptive step-size [2]. As discussed in [4], Adagrad yields an efficient parameter
optimization scheme for DGM-type models, with fast and proven convergence
to a local optimum.

In the following, we will assume that the (conditional) likelihood function
p(x|y;θ) is a diagonal Gaussian distribution, the mean and (diagonal) covari-
ance matrix of which are modeled as the outputs of DL networks with input
y and parameters set θ. We also adopt the same assumptions for the sought
variational posteriors; we consider an approximate Gaussian form, with mean
μi = μ(xi;φ) and diagonal covariance matrix Σi = Σ(xi;φ). This way, the
reparameterization trick (5) reduces to:

y
(l)
i = gφ(ε(l)i ,xi) = μi + Σ

1/2
i ε

(l)
i (7)

where ε
(l)
i is white random noise with unitary variance, i.e. ε

(l)
i ∼ N (0, I).

3 Proposed Approach

3.1 The DBMF Model

Contrary to existing PMF-type approaches, DBMF postulates a conditional like-
lihood function for the ratings set R of the following form:

p(R|U, V ;σ2) =
N∏

i=1

M∏

j=1

[N (
rij |μθ(ui,vj), σ2

θ(ui,vj)
)]Iij (8)
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where Iij is an indicator variable equal to 1 if the ith user has rated the jth item,
0 otherwise. In Eq. (8), both the mean μθ(ui,vj) and the variance σ2

θ(ui,vj) are
taken as outputs of a DL network with parameters set θ, and inputs (ui,vj). The
network comprises one hidden layer, and is described by the following equations:

μθ(ui,vj) = wT
μ hij + bμ (9)

σ2
θ(ui,vj) = exp(wT

σ2hij + bσ2) (10)

hij � h(ui,vj) = γ([W 1ui;W 2vj ] + b) (11)

Here, γ(·) is a ReLU nonlinearity [9], [ξ1; ξ2] is the concatenation of two
vectors ξ1 and ξ2, b ∈ R

2K , W 1 ∈ R
K×D, and W 2 ∈ R

K×D (hence, θ = {b,W 1,
W 2,wμ,wσ2 , bμ, bσ2}).

To perform Bayesian inference for our model, we have to impose appropriate
prior distributions over the user latent variables ui and the item latent variables
vj . Here, for simplicity, we consider Gaussian priors of the form:

p(ui|μU ,λU ) = N (
ui|μU ,diag(λ−1

U )
)

(12)

p(vj |μV ,λV ) = N (
vj |μV ,diag(λ−1

V )
)

(13)

where diag(ξ) denotes a square diagonal matrix with the elements of vector
ξ on the main diagonal; the set ϕ = {μU ,λU ,μV ,λV } of prior distribution
(hyper-)parameters will be optimized as part of the model inference procedure.
For convenience, we postulate corresponding posteriors of the same form, that
read:

q(ui|μ̃i, λ̃i) = N
(
ui|μ̃i,diag(λ̃

−1

i )
)

(14)

q(vj |μ̂j , λ̂j) = N
(
vj |μ̂j ,diag(λ̂

−1

j )
)

(15)

where the set φ = {μ̃i, λ̃i, μ̂j , λ̂j}i,j of posterior distribution (hyper-)parameters
will be also optimized as part of the model inference procedure.

This concludes the formulation of our model. The variational lower bound
expression of our model yields

L(θ,ϕ,φ|R) = −
N∑

i=1

KL
[
q(ui|μ̃i, λ̃i)||p(ui|μU ,λU )

]

−
M∑

j=1

KL
[
q(vj |μ̂i, λ̂i)||p(vj |μV ,λV )

]

+
L∑

l=1

N∑

i=1

M∑

j=1

Iij

L
log N

(
rij |μθ(u(l)

i ,v
(l)
j ), σ2

θ(u(l)
i ,v

(l)
j )

)

(16)

where
u
(l)
i = μ̃i + diag(λ̃

−1/2

i )ε(l)i (17)
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v
(l)
j = μ̂j + diag(λ̂

−1/2

j )ε(l)j (18)

and
ε
(l)
i , ε

(l)
j ∼ N (0, I) (19)

Optimization of the approximate variational lower bound (16) is performed
via off-the-shelf stochastic optimization methods. Specifically, motivated by the
discussions of Sect. 2.2, in this work we employ Adagrad.

3.2 Content-Driven DBMF

To allow for addressing the cold-start problem, we now consider a content-driven
DBMF variant, capable of extracting useful high-level information from raw
item content to inform recommendation generation. Let us consider that, for
each available item j ∈ {1, . . . , M}, our model is also presented with an addi-
tional, C-dimensional, raw content variable xj ∈ R

C . To effectively integrate this
information into the formulation of our model, we postulate the (conditional)
likelihood function:

p(R|U, V, Z;σ2) =
N,M∏

i,j=1

N (
rij |μθ(ui,vj ,zj), σ2

θ(ui,vj ,zj)
)Iij (20)

where the latent variable zj ∈ R
D is considered to encode a high-level, abstract

representation of the raw content xj of the item j, and will be inferred as part
of the model inference procedure described next. In the conditional likelihood
function (20), the mean μθ(ui,vj ,zj) and the variance σ2

θ(ui,vj ,zj) are taken
as outputs of a DL network with parameters set θ, one hidden layer, and input
(ui,vj ,zj):

μθ(ui,vj ,zj) = wT
μ hij + bμ (21)

σ2
θ(ui,vj ,zj) = exp(wT

σ2hij + bσ2) (22)

hij � γ([W 1ui;W 2vj ;W 3zj ] + b) (23)

whence θ = {b,W 1,W 2,W 3,wμ,wσ2 , bμ, bσ2}.
Then, to perform Bayesian inference we have to define an appropriate prior

distribution over the zj ; we consider

p(zj |μV ,λV ) = N (
zj |μZ ,diag(λ−1

Z )
)

(24)

The resulting set ϕ = {μU ,λU ,μV ,λV ,μZ ,λZ} of prior distribution
(hyper-)parameters will be optimized as part of the model inference procedure.
Turning to the sought posteriors over the zj , we now assume:

q(zj |μ̄(xj), λ̄(xj)) = N
(
zj |μ̄(xj),diag(λ̄−1(xj))

)
(25)

Here, the μ̄(xj) and λ̄(xj) are parameterized via DL networks with one
hidden layer, input xj , and described by the equations:

μ̄(xj) = W μ̄γ(W ′
μ̄xj + b′

μ̄) + bμ̄ (26)
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λ̄(xj) = exp(W λ̄γ(W ′̄
λxj + b′̄

λ) + bλ̄) (27)

This assumption alleviates the need of extracting per-item parameters for
the latent variable posteriors; instead, we compute a set of global variational
parameters, valid for inference at both training and test time. Thus, we amor-
tize the cost of inference by generalizing between the posterior estimates for
the latent variables, zj , of all items through the parameters of the DL net-
works in Eqs. (26) and (27). Eventually, we yield φ = {W μ̄,W ′

μ̄,W λ̄,W ′̄
λ, bμ̄,

b′
μ̄, bλ̄, b′̄

λ, {μ̃i, λ̃i, μ̂j , λ̂j}N,M
i,j=1}; this set will be also optimized as part of the

model inference procedure.
This concludes the formulation of the proposed content-driven variant of our

DBMF model; its variational lower bound yields:

L(θ,ϕ,φ|R) = −
N∑

i=1

KL
[
q(ui|μ̃i, λ̃i)||p(ui|μU ,λU )

]

−
M∑

j=1

KL
[
q(vj |μ̂i, λ̂i)||p(vj |μV ,λV )

]

−
M∑

j=1

KL
[
q(zj |μ̄(xj), λ̄(xj))||p(vj |μZ ,λZ)

]

+
L,N,M∑

l,i,j=1

Iij

L
log N

(
rij |μθ(u(l)

i ,v
(l)
j ,z

(l)
j ), σ2

θ(u(l)
i ,v

(l)
j ,z

(l)
j )

)

(28)

where
z
(l)
j = μ̄(xj) + diag(λ̄(xj)−1/2)ε(l)j (29)

Optimization of the approximate variational lower bound (28) is again per-
formed via an off-the-shelf stochastic optimization method, namely Adagrad.

Table 1. Obtained optimal DBMF model configurations in each experimental scenario.

Scenario Latent space dimensionality Hidden layer size

MovieLens 100K 50 100

MovieLens 1M 50 200

Content-based music recommendation 150 400

4 Experiments

Here, we evaluate the efficacy of our DBMF model and its content-driven vari-
ant considering a number of benchmark datasets. In all cases, we compare the
performance of our approach to related PMF-type approaches with state-of-
the-art performance. Our employed performance metric is the root mean square
error (RMSE) of the generated predictions. Prediction generation for a user/item
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pair using our model is performed by drawing 100 MC posterior samples, and
computing the corresponding average of the likelihood mean, μθ(·). A similar
MC sampling procedure is used by all PMF-type models.

Our source codes have been developed in Python, and made use of the Theano
library1 [1]. We run our experiments on an Intel Xeon 2.5 GHz Quad-Core server
with 32 GB RAM and an NVIDIA Tesla K40 GPU accelerator. We use Adagrad
to perform optimization of the variational lower bound. Following the suggestions
in [4], we select the minibatch size in such a way that at least 1, 000 mini-batches
are available on each iteration. Similarly, following the suggestions of [2], the
configuration of Adagrad, namely its global stepsize parameters, are chosen from
the set {0.01, 0.02, 0.1}, based on the model performance on the training set in
the first few iterations.

In all cases, the performance results reported below correspond to optimal
configuration of the evaluated models. In the case of the DBMF model, this
translates into selection of the latent factor vector dimensionality, as well as
of the hidden layer size of the DL networks that parameterize the model pos-
teriors and likelihood functions, such that we maximize the obtained empirical
performance.

Table 2. MovieLens 100K: obtained RMSEs (mean and standard deviation) over the
conducted 5 repetitions, for optimal model configuration.

Training data 99% of the whole 80% of the whole 50% of the whole

PMF 0.9164± 0.0261 0.9190± 0.0052 0.9506± 0.0024

Biased PMF 0.8923± 0.0150 0.9087± 0.0030 0.9337± 0.0020

SCMF 0.8891± 0.0146 0.9068± 0.0036 0.9331± 0.0021

BPMF 0.8807± 0.0139 0.8955± 0.0034 0.9203± 0.0021

DBMF 0.8720± 0.0134 0.8888± 0.0031 0.9142± 0.0020

Table 3. MovieLens 1M: obtained RMSEs (mean and standard deviation) over the
conducted 5 repetitions, for optimal model configuration.

Training data 99% of the whole 80% of the whole 50% of the whole

PMF 0.8388± 0.0059 0.8512± 0.0017 0.8745± 0.0011

Biased PMF 0.8367± 0.0067 0.8493± 0.0020 0.8722± 0.0012

SCMF 0.8323± 0.0065 0.8465± 0.0018 0.8678± 0.0007

BPMF 0.8248± 0.0062 0.8339± 0.0015 0.8567± 0.0005

DBMF 0.8136± 0.0060 0.8209± 0.0012 0.8414± 0.0005

4.1 DBMF Evaluation

Here, we perform the experimental evaluation of the core DBMF model. We use
two datasets commonly considered in the related literature, namely MovieLens
1 http://deeplearning.net/software/theano/.

http://deeplearning.net/software/theano/
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100K and MovieLens 1M. MovieLens 100K2 contains 100,000 ratings of 1,682
movies provided by 943 users of the GroupLens website. MovieLens 1M3 contains
1 million ratings of 6,040 users and 3,706 movies of the GroupLens website. In
both cases, the ratings take in a set of 10 discrete values (1.0–5.0).

To obtain some comparative results, apart from our method we also evaluate
in the same tasks some popular competitors, including PMF [16], Biased PMF
[6], BPMF [17], and the recently proposed SCMF approach [18]. As is common
in the literature, we evaluate our model and the considered competitors under
scenarios where 99%, 80%, or 50% of the available ratings are used for training,
and the rest for testing. The dataset is split in such a way that ensures the
existence of ratings pertaining to all users and items in both the training set and
the test set. To alleviate the effect of random selection of training and test data
on the reported performance statistics, we run our experiments five times, with
different data splits into a training and a test set each time.

We evaluate our model with the number of drawn samples set to L = 20; the
used minibatches comprise 1,000 ratings each. These selections were obtained
after trying multiple alternatives, with the goal of yielding the highest perfor-
mance improvement with the least computational burden. The obtained results
are provided in Tables 2 and 3; the DBMF model configuration that yields these
outcomes is reported in Table 1. We observe that our approach yields a clear
improvement over the competition. Application of the Student’s-t test confirms
the statistical significance of these performance differences.

4.2 Content-Driven DBMF Evaluation

To assess the efficacy and the performance of the proposed content-driven DBMF
variant, we here consider the problem of content-based music recommendation.
To this end, we use a publicly available dataset, namely the Echo Nest Taste
Profile Subset [8], which is, to our knowledge, the largest publicly available music
recommendation dataset. The original dataset comprises 1,019,318 users, 384,546
songs, and 48,373,586 listening histories. Using the Taste Profile Subset, we can
determine the songs that a user has listened to. Thus, we assign a rating of 1
to each such user/item pair, and use them as the positive examples to train our
model with. To generate an equal number of negative examples for each user,
we employ the well-established User-Oriented Sampling method [10].

To obtain content-related side information, we follow the experimental setup
of the recent related work presented in [19]. Specifically, we have been able to
crawl preview audio clips with length of about half a minute from 7digital4,
for 282,508 of the songs included in the used dataset. The so-obtained clips
were first converted to WAV files with mono channel, 8 kHz sampling rate, and
16 bit depth. We then randomly sampled a 5-second continuous segment from
each audio clip; directly using the half-minute clips becomes computationally

2 http://grouplens.org/datasets/movielens/100k/.
3 http://grouplens.org/datasets/movielens/1m/.
4 http://7digital.com.

http://grouplens.org/datasets/movielens/100k/
http://grouplens.org/datasets/movielens/1m/
http://7digital.com
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Table 4. Content-driven DBMF evaluation: statistics of the used datasets.

# of users # of songs # of ratings

Total 100,000 282,508 28,258,926

Training set 100,000 262,508 18,382,954

Warm-start validation set 100,000 262,454 3,939,204

Warm-start test set 100,000 262,457 3,939,206

Cold-start validation set 99,963 10,000 1,025,654

Cold-start test set 99,933 10,000 971,908

inefficient, while segments shorter than 5 s may lose too much information. We
next converted each 5-second segment into a 166× 120 spectrogram (30 ms win-
dow, no overlap); this was further processed via principal component analysis
(PCA), to transform the spectrograms into vectors. From these PCA-obtained
dimensions, we retained only those that explain the (top) 95% of the variance of
the data. These dimensions are finally normalized to have zero mean and unit
variance, and are fed into our model as the raw content vectors x.

We randomly split the so-obtained dataset into 5 disjoint sets: the training
set, warm-start validation/test sets, and cold-start validation/test sets. All songs
in the warm-start sets are also included in the training set. To simulate the
new-song problem, songs in the cold-start validation/test sets do not exist in
the training set. All users in both the cold-start and warm-start sets are also
included in the training set. The overall statistics of the created datasets are
provided in Table 4. To obtain some comparative results, apart from our method
we also evaluate the side information-augmented BPMF approach presented in
[12], hereafter referred to as BPMFSI, the state-of-the-art, DBN-driven, HLDBN
approach of [19], and the recently proposed HBMFSI method [11]. We evaluate
our model with the number of drawn samples set to just L = 1 sample; the used
minibatches comprise 10, 000 ratings each. We repeat our experiment five times,
to account for the random selection of training and test data.

The obtained results are illustrated in Table 5; the DBMF model configu-
ration that yields these outcomes is reported in Table 1. We observe that our
approach performs better than the competition in all cases. Application of
the Student’s-t test confirms the statistical significance of these performance

Table 5. Content-based music recommendation: obtained RMSEs (mean and standard
deviation) over the conducted 5 repetitions, for optimal model configuration.

Method Warm-start valid. Warm-start test Cold-start valid. Cold-start test

BPMFSI 0.31 (0.008) 0.31 (0.008) 0.50 (0.011) 0.50 (0.011)

HLDBN 0.32 (0.009) 0.33 (0.009) 0.48 (0.011) 0.48 (0.011)

HBMFSI 0.32 (0.009) 0.32 (0.009) 0.48 (0.010) 0.49 (0.010)

DBMF 0.26 (0.006) 0.26 (0.006) - -

Content-driven DBMF 0.26 (0.006) 0.26 (0.006) 0.39 (0.008) 0.39 (0.008)
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differences. Interestingly enough, we also observe that the core formulation of
our DBMF model performs comparably to the proposed content-driven DBMF
variant in the case of the warm-start datasets. In our view, this is a strong indi-
cation that the capability of extracting high-level representations of item content
is beneficial for the recommendation algorithm, especially in cold-start scenarios.

4.3 Computational Complexity

Let us now provide both some theoretical insights, as well as related empirical
evidence, regarding the computational complexity of our method. We begin with
prediction generation: DBMF computes predictions by merely feedforwarding
some posterior samples through the DL network that parameterizes its likelihood
mean, μθ(·). This is similar to PMF-type alternatives, which also use posterior
samples in the context of matrix multiplication computations. Hence, predic-
tion generation using DBMF entails computations with complexity similar to
state-of-the-art competitors. Our obtained empirical evidence has corroborated
these theoretical intuitions; we have not observed statistically significant predic-
tion time differences between our approach and the best performing PMF-type
alternative, in any considered experimental scenario.

Turning to model training, DBMF entails more trainable parameters com-
pared to PMF-type approaches, being a deep learning model. This is actually
the only potential source of computational overhead for the training algorithm of
our method compared to PMF-type alternatives. However, the devised stochastic
gradient variational inference algorithm allows for DBMF training computations
to be parallelized in a large-scale fashion. This way, one can compensate for the
extra computational complexity (stemming from the training of a higher num-
ber of parameters), eventually ending up with similar computational times for
model training. Indeed, the empirical evidence stemming from our experiments
shows that, by proper utilization of a GPU accelerator, our model takes at most
1.34 times as long as the best performing PMF-type alternative to train. Since
training is an offline procedure, this is a rather reasonable overhead given the
obtained predictive performance improvement.

5 Conclusions

In this paper, we considered the problem of formulating matrix factorization
models under a nonlinear perspective. Specifically, inspired from the literature of
DGMs, we considered the case where the conventional inner product between the
latent factor vectors is replaced with a nonlinear function, learned via DL deep
networks. To allow for obtaining an efficient inference algorithm for our model,
we resorted to variational Bayes. Specifically, to render variational Bayesian
inference possible under the non-conjugate formulation of our model, we resorted
to SGVB. This approach essentially consists in approximating the intractable
posterior expectations of the variational lower bound of our model via MC sam-
ples, and reducing the resulting estimator variance by application of a reparame-
terization trick. To evaluate the efficacy of our approach, we performed extensive
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experimental evaluations using several benchmark datasets. As we observed, our
approach yields a significant improvement over the competition in all the consid-
ered cases. As we also showed, both experimentally as well as through theoretical
analysis, our approach manages to yield this improvement without any compro-
mise of computational efficiency compared to the alternatives.
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Abstract. Co-location pattern discovery is an important branch in spatial data
mining. A spatial co-location pattern represents the subset of spatial features
which are frequently located together in a geographic space. However, maybe
some features in a co-location get benefit from the others, maybe they just
accidentally share the similar environment, or maybe they competitively live in
the same environment. In fact, many interesting knowledge have not been
discovered. One of them is competitive pairs. Competitive relationship widely
exists in nature and society and worthy to research. In this paper, competitive
pairs hidden in co-locations are discovered from dynamic spatial databases. At
first, competitive participation index which is the measure to show the com-
petitive strength is calculated. After that, the concept of competitive pair is
defined. For improving the course of mining competitive pairs, a series of
pruning strategies are given. The methods make it possible to discover both
competitive pairs and prevalent co-location patterns efficiently. The extensive
experiments evaluate the proposed methods with “real + synthetic” data sets
and the results show that competitive pairs are interesting and different from
prevalent co-locations.

Keywords: Spatial data mining � Spatial co-location pattern � Competitive
pair � Dynamic spatial database � Competitive co-location instance

1 Introduction

Advanced spatial database systems such as GPS have accumulated a growing number
of large spatial databases. The spatial databases are considered to be full of valuable
information bonanza. Spatial data mining can find previously unknown, interesting and
potentially valuable patterns from spatial databases.

Spatial co-location pattern mining is one of the most important research directions
in spatial data mining. A spatial co-location pattern represents the subset of spatial
features which are frequently located together in a geographic space [1]. Yet there
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are many interesting knowledge, such as causal rules [2], symbiotic patterns, and
competitive pairs, hidden in co-locations in spatial databases. They are even
more powerful than co-locations. For example, many restaurants and ice cream shops
both appear in the same community, university towns, or downtown streets. {Res-
taurants, ice cream shops} is a prevalent co-location, but ({restaurants}, {ice cream
shops}) is not a competitive pair. Another example, invasive species and native species
frequently live together, and the increase (decrease) of invasive/native species will
induce the decrease (increase) of native/invasive species, so {invasive species, native
species} is a prevalent co-location and ({invasive species}, {native species}) is a
competitive pair.

In spatial database, features usually locate with their competitors together, which
is exactly the reason competition is caused. Therefore, the competition is hard to
recognize. Hoverer, competitive relationship widely exists in nature and society. E.g.,
the restaurants in one street, the similar services or products from different enterprises,
invasive and native species, any adjacent two in biological chain, are competitive.

Most existing methods mined the competitors from the web data [3, 4, 14–17], and
the representative method emphasized that “comparative entities often occur together
more frequently” [3] and “the entity and its competitor usually have more co-occurrence
than non-competitors” [4]. They used linguistic patterns to obtain competitive nature
and co-occurrence between entity and its competitors to show competitive strength. This
paper uses co-occurrence to measure competitive strength as well, and considers
mutually exclusive change of competitors as competitive nature.

Scope: This paper focuses on mining competitive pairs hidden in co-locations giving a
database with two time points. The following issues are outside the scope: (i) selecting
two time points of database for getting more accurate result, (ii) determining thresholds
for prevalent co-location and competitive pair mining, and (iii) indexing and query
processing issues related to generate competitive co-location instances.

This paper mines competitive pairs hidden in co-locations from dynamic spatial
databases. In comparison with previous works, three main contributions are made.

Firstly, competitive nature and competitive strength are expressed on dynamic
spatial databases, competitive participation index which measures the competitive
strength is calculated, and the formal definition of competitive pair is given.

Secondly, the algorithm with three pruning strategies for mining competitive pairs is
proposed, analysis on the power of pruning strategies is conducted.

Finally, the experiments show that the proposed algorithms can efficiently discover
competitive pairs and compare them with traditional prevalent co-locations.

The rest of paper is organized as follows. Related works are introduced in Sect. 2. In
Sect. 3, we give some concepts and pruning lemmas of mining competitive pairs.
Section 4 describes our algorithm. Section 5 is experimental evaluation. In Sect. 6 we
conclude the paper and suggest future works.
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2 Related Works

Co-location mining is a rising and promising field in spatial data mining. Huang
and Shekhar et al. [1] firstly proposed a general framework for co-location mining
and defined the minimum participation index to measure the prevalence of a
co-location. It is a like Apriori [5] method. After that, many researchers did lots of
works on improving the efficiency [6–8], fitting for different data types [9, 10] and for
special cases [11–13]. Partial join [6] and joinless [7] avoid the expensive join oper-
ation [1]. A compact format, prefix-tree, is used in [8] to store star neighborhoods and
help to prune candidates. Spatial co-locations for fuzzy and uncertain objects are
studied in [9] and [10] respectively. The maximum participation index is proposed [11]
for the co-locations with rare features, and it is improved by the weighted participation
index proposed in [12]. A framework for mining regional co-locations is proposed
in [13].

The above approaches mainly focused on discovery of the prevalent co-locations
not competitive pairs. Most existing methods mining the competitors are focused on
web data. Li and Bao et al. [3] mined competitors for a given entity from the web, and
further mined the competitive fields and mined competitive evidence [4]. Both of
research ranked the competitors by considering the co-occurrence between the entity
and its competitor. Sun et al. [14] studied the comparative web search problem, in
which the user inputs a set of entities and the system tries to find relevant and com-
parative information from the web. Yang et al. [15] used two data sources: text doc-
uments and social networks to mine competitive relationships by learning across
heterogeneous networks for avoiding biased aspects in a single network. A formal
definition of competitiveness between products sold on B2C Web sites was proposed
until 2012 [16]. The competitiveness between two items in this paper is based on
whether (competitive nature) they compete for the attention and business of the same
group of users, and to what extent (competitive strength). However, it is still focused on
web data. Ruan et al. [17] proposed a novel unsupervised approach to identify com-
petitors from prospectuses. It considered the linguistic patterns [3, 4] cannot capture
competitors that are expressed in different ways and used heuristic rules to identify
competitors, and the competitive strength is still measured by the co-occurrence.

We have seen that the competitor mining from web has been extensively studied.
However, the research on competitive pair mining from spatial dataset has not yet been
investigated. With the explosive growth of spatial data and widespread use of spatial
database, the competitive relationships from spatial data are more and more interesting.
This paper mines the competitive pairs in dynamic spatial databases.

3 Concepts and Lemmas

3.1 Prevalent Co-location

Let F ¼ f1; . . .; fmf g be a set of spatial features, and S ¼ o1; . . .; onf g be a set of their
objects with geographic location. When the Euclidean metric is used for the neighbor
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relationship R, two objects oi and oj are neighbors of each other if the Euclidean
distance between them is not greater than a neighbor distance threshold d. A
co-location c is a set of features, c�F. The size of c is the number of features in c. The
co-location instance I of c is defined as a set of objects, I� S, if (1) I contains
instances of all the features in c and no proper subset of I does so, and (2) the objects in
I form a clique relation under R. The table instance of c, T(c), is the collection of all
co-location instances of c.

The prevalence strength of a co-location c ¼ f1; . . .; fkf g is often measured by the
participation index [2] ðPIðcÞÞ;PIðcÞ ¼ minfi2c PRðc; fiÞf g, where 1� i� k. PRðc; fiÞ
is the participation ratio of feature fi in c, PRðc; fiÞ ¼ pfiðTðcÞÞ

�� ��= TðffigÞj j, where p is
the relational projection operation with duplication elimination. If PIðcÞ is greater than
a given minimum prevalence threshold min_prev, we say c is a prevalent co-location.
min_prev is 0.5 in all the examples of this paper.

Example 1. In Fig. 1, The feature set F ¼ A; B; Cf g, A, B and C have 5, 8 and 6
objects. A.1 is the first object of A. Two objects are connected with a line if they
are neighbors. For co-location c ¼ B; Cf g; T cð Þ ¼ B:1; C:4f g; B:3; C:6f g;f
B:4; C:5f g; : B:5; C:6f g; B:6; C:3f g; B:7; C:4f gg: PR(c, B) = 6/8 since there are 6

different objects of B in T(c). Similarly, PR c; Cð Þ ¼ 4=6:PI cð Þ ¼ minf6=8;
4=6g ¼ 2=3[min prev, so c is prevalent.

3.2 Competitive Pair

In this subsection, we will give some definitions to introduce the formal definition of
competitive pair.

Definition 1 (Subset pair). For a k-size co-location ck; ck ¼ X [ Y ;X \ Y ¼ ;, then
we call (X, Y) is a subset pair of ck.

Example 2. For a co-location c ¼ A; B; Cf g in Fig. 1, ({A}, {B, C}), ({A, C}, B)
and ({A, B}, {C}) are its subset pairs.

Definition 2 (Competitive co-location instance). For a k-size co-location ck , its
competitive co-location instance, CCIðckÞ meets (1) CCIðckÞ is a co-location instance
of ck , and (2) CCIðckÞ is made of increased objects and decreased objects.

Example 3. Figure 2 is an updated dataset with data’s increase and decrease compared
to the original dataset in Fig. 1. The increased and decreased objects are marked by “*”
and “+”. For co-location c ¼ A; B; Cf g, the CCIs are A:5�;B:9þ ;C:7þf g;f
A:6þ ;B:6�;C:3�f g; A:8þ ;B:3�;C:6�f g; A:10þ ;B:2�;C:8þf gg. However, A:10þ ;f

B:2�;C:8þ g will not support the competition of {A} and {B, C}. Therefore, for a
subset pair (X, Y), we should use competitive pair co-location instances to support their
competition.
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Definition 3 (Competitive pair co-location instance). For a subset pair (X, Y ) of k-
size co-location ck, the competitive pair co-location instance CPCIðck; ðX; YÞÞ meets
(1) CPCIðck; ðX; YÞÞ is a co-location instance of ck, and (2) the objects of X are
increased (decreased), and the objects of Y are decreased (increased).

For a co-location c, its CCIs can be got from its competitive star instances, CSI(c)s,
by checking the cliqueness and deleting the ones made of all increased/decreased
objects. The CSI(c)s are obtained by collecting the competitive star neighbors (CSN).
CSN( f i:j) is a set of changed objects which have neighbor relationships under R with
center object fi:j, and their features should be larger than fi:j’s feature. The computing
course of CPCIs of co-locations in Fig. 2 is shown in Fig. 3.
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Example 4. In Fig. 3(b), the CSI {A.9, C.8} is not a CCI of co-location {A, C}, since
both A.9 and C.8 are increased objects. The CSI {A.7, B.2, C.2} is not a CCI of
co-location {A, B, C} since they cannot form a clique.

Definition 4 (Competitive pair participation ratio). For a subset pair (X, Y) of k-size
co-location ck (fj 2 ck)(1� j� k), the competitive pair participation ratio of fi in
CPCIðck; ðX; YÞÞs is CPPR ck; ðX; YÞ; fið Þ ¼ pfiðCPCIðck; ðX; YÞÞÞ

�� ��= TchðffigÞj j.
Where, TchðffigÞj j is the total number of changed objects of feature fi.

Definition 5 (Competitive pair participation index). For a subset pair (X, Y ) of k-
size co-location ck, the competitive pair participation index in CPCIðck; ðX; YÞÞs is
CPPI ck; ðX; YÞð Þ ¼ minki¼1 CPPR ck; ðX; YÞ; fið Þf g.

The competitive pair participation index describes the competitive strength of a
subset pair, which is calculated from CPCIs, and CPCIs describe the features are
competitive and located together with their competitors.

Example 5. For the pair ({A}, {B, C}) of co-location c ¼ A; B; Cf g, Fig. 2(b)
shows its CPCIðc; ðfAg; fB;CgÞÞ. CPPR c; ð Af g; fB;CgÞ;Að Þ ¼ 3=8. CPPR c; ð Af g;ð
fB;CgÞ;BÞ ¼ 3=8, CPPR c; ð Af g; fB;CgÞ;Cð Þ ¼ 3=6, so CPPI c; ð Af g; fB;CgÞð Þ
¼ 3=8.

Definition 6 (Competitive pair). Given a minimum prevalence threshold (min_prev),
a minimum competition threshold (min_comp), a subset pair (X, Y ) of k-size
co-location ck, is a competitive pair if it meets the following conditions.

(1) PIðXÞ�min prev and PIðYÞ�min prev in original database,
(2) CPPI ck; ðX; YÞð Þ�min comp:

The condition (1) in Definition 6 makes competitive pair more powerful and reli-
able. If Xj j ¼ 1 and Yj j ¼ 1, condition (1) is true forever. Condition (1) is a weaker
condition compared to prevalent co-locations, and gets a wide range of candidates and
more calculation. min_comp is set to 0.3 in all the examples.

Definition 7 (Non-competitive pattern). For a k-size co-location ck, if all the subset
pairs are not competitive pairs, ck is called non-competitive pattern.

Example 6. For a subset pair ({A}, {B, C}) in Fig. 2, PIðfAgÞ�min prev and
PIðfB;CgÞ�min prev from Example 1, and CPPI c; ð Af g; fB;CgÞð Þ�min comp
from Example 5. So ({A}, {B, C}) is a competitive pair.

3.3 Pruning Lemmas

Lemma 1. The participation ratio and participation index are antimonotone (mono-
tonically non-increasing) as the size of the colocation increases.

Lemma 1 is proposed and proved in literature [1], which ensures that the partici-
pation index can be used to effectively prune the search space of co-location mining.

472 J. Lu et al.



Lemma 2. A k-size co-location has 2k�1
2 subset pairs.

Proof. If k is an odd number, the number of the pairs is C1
k þC2

k þ � � � þC
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2
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C1
k þC2

k þ � � � þC
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2
k þC
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2
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2
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C
kþ 1
2

k þ � � � þCk�1
k , so C1

k þC2
k þ � � � þC

k�1
2
k ¼ 2k�1

2 . If k is an even number, the

number of the pairs is C1
k þC2

k þ � � � þC
k
2�1
k þ 1

2C
k
2
k. Due to C1
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A k-size co-location contains 2k�1
2 subset pairs. It is time consuming to judge all the

subset pairs, the lemmas below help to prune them.

Lemma 3. If a k-size co-location ck is not prevalent, the pairs whose one part contains
ck are not a competitive pairs.

Proof. It is obvious according to Definition 6 and Lemma 1.

Example 7. In Fig. 1, co-location c ¼ A; Bf g is not prevalent, since T cð Þ ¼
A:2;B:2f g; A:3;B:5f g; A:4;B:5f gf g, and PI cð Þ ¼ min 3=5; 2=8f g ¼ 1=4. So the pair

({A, B}, {C}) in Fig. 2 is not competitive and can be pruned.

Lemma 4. The competitive pair participation ratio and competitive pair participation
index are anti-monotone as the size of the colocation increases.

Proof. Suppose (X, Y) is a subset pair of ck , and (X,Y [ fpg) and (X [ fpg, Y ) are
two subset pairs of ckþ 1. For fi 2 ck and fi 2 ckþ 1, suppose a spatial object e of fi is
included in CPCIðckþ 1; ðX; Y [fpgÞÞs or CPCIðckþ 1; ðX [ pf g; YÞÞs, then e must be
included in CPPI ck; ðX; YÞð Þs. The opposite is not true. Therefore, the competitive pair
participation ratio is monotonically non-increasing.

CPPI ckþ 1; X; Y [ pf gð Þð Þ ¼minkþ 1
i¼1 CPPR ckþ 1; X; Y [ pf gð Þ; fið Þf g

� minki¼1 CPPI ck [ pf g; X; Y [ pf gð Þ; fið Þf g
� minki¼1 CPPR ck; fX; Ygð Þ; fið Þf g ¼ CPPI ck; ðX; YÞð Þ

CPPI ckþ 1; ðX [fpg; YÞð Þ is similar. Therefore, CPPI is anti-monotone.

Lemma 5. For a subset pair ðX; YÞ of k-size co-location ck, if ðX; YÞ is not compet-
itive, then for P;Q;X � P, Y � Q, (P; Y ), (X;Q) and (P;Q) are not competitive pairs.

Proof. If ðX; YÞ does not meet condition (1) in Definition 6, then (P; Y ), (X;Q) and
(P;Q) do not meet condition (1) according to Lemma 1. If ðX; YÞ does not meet
condition (2) in Definition 6, then (P;Y ), (X;Q) and (P;Q) do not meet condition
(2) either according to Lemma 4.
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Example 8. In Fig. 2, ({B}, {C}) is not a competitive pair since it does not meet
condition (2), so the pairs ({A, B}, {C}) and ({B}, {A, C}) must be not competitive.

Lemma 5 can efficiently prune many non-competitive pairs. However, Lifting up to
co-location level to prune non-competitive pattern is much more helpful.

Lemma 6. For a k-size co-location ck ¼ ff1; . . .; fkg, ① if only one (k−1)-size subset
of ck is a non-competitive pattern, then just one pair cannot be pruned in all the pairs of
co-location ck ② if at least two (k−1)-size subsets of ck are non-competitive patterns,
co-location ck is a non-competitive pattern.

Proof. ① Suppose ck�1 ¼ ff1; . . .; fk�1g is a non-competitive pattern, only the pair
(ff1; . . .; fk�1g,ffkg) in ck cannot be pruned. ② Suppose any two subsets ck�1 ¼
f1; � � � ; fi�1; fiþ 1; � � � ; fkf g and c0k�1 ¼ f1; � � � ; fj�1; fjþ 1; � � � ; fk

� �
j 6¼ ið Þ of ck are

non-competitive patterns. Only the pair ( f1; � � � ; fi�1; fiþ 1; � � � ; fkf g, fif g) of ck cannot
be pruned from ck�1 according to ①. However, it can be pruned by the
non-competitive pair ( f1; � � � ; fi�1; fiþ 1; � � � ; fj�1; fjþ 1; � � � ; fk

� �
; fif g) of c0

k�1. So ck is
non-competitive.

Example 9. In Fig. 2, co-location c ¼ fB;Cg is a non-competitive pattern since
CPPI c; ð Bf g; Cf gÞð Þ ¼ minf2=8; 2=6g ¼ 1=4\min comp. For co-location {A, B,
C}, only one subset {B, C} is non-competitive pattern, so only one pair, ({A}, {B, C}),
of {A, B, C} cannot be pruned. It is truly a competitive pair from Example 6.

3.4 Pruning Power of the Pruning Lemmas

Suppose feature set F ¼ ff1; . . .; fmg, Fj j ¼ m. There are Ck
m k-size co-locations and

ð2k � 1Þ=2 pairs for each co-location. Let ck ¼ ff1; . . .; fkg be a co-location candidate
① If ck is not prevalent, it can prune m−k pairs of (k + 1)-size co-locations according
to Lemma 3. Suppose there are nk k-size prevalent and Ck

m � nk not prevalent
co-locations. ðCk

m � nkÞ � m� kð Þ pairs can be pruned totally. ② If a subset pair (X,Y)
of ck is not competitive, it can prune 2ðm� kÞ pairs of (k + 1)-size co-locations

according to Lemma 5. Suppose there are
PCk

m
i¼1 n

i
ncom non-competitive pairs in all k-size

co-locations, nincom is the number of non-competitive pairs in the i-th co-location. There

are totally
PCk

m
i¼1 2 � ðm� kÞ � nincom non-competitive pairs can be pruned. ③ Lemma 6

is in fact based on Lemmas 3 and 5, and cannot prune any pairs. The pairs or
co-locations seem to be pruned by Lemma 6 have been pruned by Lemmas 3 or 5 in the
last loop. Lemma 6 can help to terminate the algorithm in advance.

The non-competitive pairs pruned by Lemmas 3 and 5 will overlapped partly, the
accurate number of overlapped pairs is hard to compute. E.g., the pair ({A, B}, {C}) is
repeatedly pruned by ({A}, {B}) in Example 7 and ({B}, {C}) in Example 8.
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4 Mining Competitive Pairs

In this section, we will discuss the algorithm of mining competitive pairs.

Step (3)–Step (24) mines competitive pairs for k-size co-locations. Step (6)–Step
(24) recognizes competitive pairs for a k-size co-location ck . Step (7)–Step (11) prunes
the candidate co-locations according to Lemma 6. Step (12)–Step (23) examines
whether a subset pair (X, Y ) is competitive. If it meets condition (1) in Definition 6
(Step (13)), computing CPPIðck; ðX; YÞÞ (Step (14)–Step (16)), and judging whether it
meets condition (2) in Definition 6 (Step (17)). If the pair does, putting it into the result
(Step 18), and computing ck’s prevalence (Step 19). Or else, if (X, Y ) does not meet
condition (2), pruning some pairs according to Lemma 5 (Step (21)). If (X, Y ) does not
meet condition (1), pruning some pairs according to Lemma 3 (Step (23)).
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5 Experimental Evaluation

Existing methods are mainly focused on mining competitors from web data, not
competitive pairs from spatial data. It is hard to compare their efficiency, so we design a
set of experiments to test the performance of pruning strategies. We get rid of Lemmas
3, 5 and 6 from AMCP to form basic algorithm (BA), get rid of Lemmas 5 and 6 to
form BA with Lemma 3, and just get rid of Lemma 6 to form BA with Lemmas 3
and 5. The performance of 4 algorithms is compared on synthetic databases. Fur-
thermore, competitive pairs and prevalent co-locations are compared on real databases.

5.1 Datasets

We use series of synthetic datasets and two real datasets in our experiments. All the
algorithms are implemented using C# under Windows 8 and run on a normal PC with
AMD A10 2.5 GHz CPU and 4 GB of memory.

We use two real datasets and series of synthetic datasets in our experiments. Real-1
contains 26 features and only 335 objects in a 10000 m 	 30000 m area, which is
from the rare plant data of the “Three Parallel Rivers of Yunnan Protected Areas”.
Real-2 is from the plant data of “Gong Shan”, which owns 13349 objects and 14
features in a 1000 m 	 1000 m area. Each object is depicted as <object-id, spatial
feature, location>. Each plant type is a spatial feature, and each plant instance is an
object.

5.2 On Synthetic Databases

This subsection examines the efficiency of proposed algorithms on series of synthetic
datasets with several workloads, i.e., different thresholds d, min_prev, and min_comp,
the size of original database Sorij j, number of spatial features Fj j, and increased size of
changed objects Schg

�� ��. The results are shown in Figs. 4, 5, 6 and 7.
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5.2.1 The Performance of Four Algorithms on Varying Thresholds
Performance of four algorithms is shown in Fig. 4. We can observe (1) the four
algorithms get worse with the increase of d and with the decrease of min_comp. The
bigger d and smaller min_comp is, the more competitive pairs are. (2) the performance
of the four algorithms does not change obviously with the decrease of min_prev.
Because min_prev is not the direct threshold for a pair, it just confines its left and right
part is prevalent. (3) AMCP and BA with Lemmas 3 and 5 are better than BA and BA
with Lemma 3, which means Lemma 5 is the most efficient in three lemmas.

5.2.2 The Scalability of Four Algorithms on Varying Objects
and Features
This subsection tests the scalability of the four algorithms with increase of the number
of objects and features. From the results, shown in Fig. 5, we can get, (1) when
Fj j ¼ 15, the four algorithms gets the best. When Fj j ¼ 10, the four algorithms get
worse in that the number of objects belong to each feature get more when the feature
set is small. When Fj j ¼ 20, the four algorithms get worse as well in that the more the
features, the more candidate co-locations. (2) AMCP and BA with Lemmas 3 and 5
outperform BA and BA with Lemma 3. (3) The four algorithms get worse with the
increase of object set, especially BA and BA with Lemma 3. BA and BA with Lemma
3 nearly cannot execute when the object set is 70000.

5.2.3 The Performance of 4 Algorithms on the Increased of Changed
Objects
The performance of the proposed algorithms depends on the number of changed
objects. We change the changed objects and the performance is shown in Fig. 6. We
can see the algorithms get worse obviously with the increase of changed objects, and
AMCP and BA with Lemmas 3 and 5 are better than BA and BA with Lemma 3.
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5.3 On Real Datasets

This section will statistically compare competitive pairs and prevalent co-locations
mined by AMCP on real datasets.

Table 1 shows the average competitive index (ACI) and average participation index
(API) of the competitive pairs and prevalent co-locations. The API of competitive pairs
is the API of co-locations that the competitive pairs belonged to. The ACI of prevalent
co-locations is the ACI of their subset pairs. The ACI of competitive pairs is bigger than
ACI of prevalent co-locations, and the API of prevalent co-locations is bigger than API
of competitive pairs. They are two different sets. Figure 7 compares the number of
different size of the two sets and their intersection on Real-1. If a competitive pair and
prevalent co-location contain the same features, putting the competitive pair into the
intersection_pair set and the prevalent co-location into the intersection_pattern set.
There are 590 competitive pairs and 841 prevalent co-locations totally, their inter-
section_pair size is 421 and intersection_pattern size is 354. From Fig. 7 we can see

0

2000

4000

6000

8000

10000

20% 40% 60% 80%
R

un
in

g 
tim

e 
(s

)

BA
BA with Lemma 3
BA with Lemma 3 and 5
AMCP

=1000, =10,d=165,min_comp=0.4,min_prev=0.8 

Fig. 6. Effect of changed objects

Table 1. the average CI and PI of two sets

Competitive
pairs

Prevalent
co-locations

Parameters

ACI API ACI API

Real-1 0.58 0.70 0.31 0.84 min_prev = 0.6, min_comp = 0.4, d = 23000
Real-2 0.61 0.75 0.37 0.79 min_prev = 0.7, min_comp = 0.4, d = 50
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that 71.4% (421/590) of competitive pairs are prevalent co-locations and 42.1%
(354/841) of prevalent co-locations can form competitive pairs. So these competitive
pairs are interesting. Importantly, they are accepted by domain experts.

6 Conclusion and Future Works

In this work, we gave the definition of competitive pair on spatial databases and
presented some efficient pruning lemmas to improve the course. This work fills the
gap of research of competition on the spatial database. Series of experiments on
“synthetic + real” databases were conducted to verify our algorithms. The experiments
showed the pruning lemmas are efficient and the discovered results are interesting.

Selecting databases with two times to get the convergence results is a future work.
Mining other interesting patterns on dynamic spatial databases is another future work.
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Abstract. This work aims to maximise the utility of published data for
the partition-based anonymisation of transactional data. We make an
observation that, by optimising the clustering i.e. horizontal partition-
ing, the utility of published data can significantly be improved without
affecting the privacy guarantees. We present a new clustering method
with a specially designed distance function that considers the effect of
sensitive terms in the privacy goal as part of the clustering process. In
this way, when the clustering minimises the total intra-cluster distances
of the partition, the utility loss is also minimised. We present two algo-
rithms DocClust and DetK for clustering transactions and determining
the best number of clusters respectively.

1 Introduction

Transactional data is often used in data mining applications for its richness
in embedded knowledge. Such data may contain sensitive terms and their direct
publication may lead to privacy disclosures. Table 1a depicts an example of online
shopping logs containing sensitive terms (italicised). The sensitive terms of indi-
viduals’ transactions in the dataset can be learnt by an adversary even when
the names are removed, by linking known individuals to non-sensitive terms and
then the non-sensitive terms to their sensitive terms [1,6]. For example, if Bob
knows that Alice bought a drone, then Bob can identify Alice’s record to be r10,
and further learn that Alice also bought lice soap, a sensitive term.

Several anonymisation methods have been proposed to deal with such privacy
disclosures, including partition-based methods, which have the advantage of not
adding, changing or deleting the words in the original transactions to preserve
utility. Predominant amongst these methods is PPD (Privacy Preservation by
Disassociation) [9], which publishes a set of transactions in two steps, horizontal
(HorPart) and vertical (VertPart) partitioning. In HorPart, transactions are
grouped into clusters by recursively using the most frequent terms until the
cluster size is smaller than a user specified value. VerPart breaks the transactions
of a cluster into multiple chunks (record chunks and a term chunk) so that m
or less terms in a chunk identifies no less than K transactions. The produced
publication is said to be Km-anonymous. If sensitive terms are specified, these

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 481–494, 2017.
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Table 1. Original dataset and its publications

(a) Dataset
ID Transactions
r1 hat, bag, viagra
r2 hat, bag, playboy
r3 hat, bag, viagra
r4 bag, playboy
r5 hat, mug
r6 bag, mug
r7 pants, mug playboy
r8 pants, shirt, playboy
r9 pants, shirt, playboy
r10 drone, shirt, lice soap

(b) 22-anony. 2-diverse pub.
IDRec. Chunk Term Chunk

Cluster 1
r1 hat, bag

viagra, playboyr2 hat, bag
r3 hat, bag

Cluster 2
r4 bag playboy, mug
r6 bag

Cluster 3
r7 pants, shirt

playboy, mugr8 pants, shirt
r9 pants

Cluster 4
r5 lice soap, shirt,

drone, mug, hatr10

(c) Alt. 22-anony. 2-diverse pub.
IDRec. Chunk Term Chunk

Cluster 1
r1 hat, bag

viagra, playboy
r2 hat, bag

Cluster 2
r3 bag playboy, viagra,

hatr4 bag
Cluster 3

r5 mug playboy, hat,
pantsr7 mug

Cluster 4
r6 playboy, pants,

bag, mug, shirtr8
Cluster 5

r9 shirt lice soap, pants,
drone, playboyr10 shirt

are placed in the term chunk (with set semantics) along with the rare non-
sensitive terms to achieve l-diversity. Applying PPD with K = m = 2 to the
data in Table 1a produces a publication in Table 1b. Any two or less terms in a
cluster identifies no less than two records. Also, any sensitive term in the term
chunk links to a record with a probability of no more than 1/2.

Utility preservation is about maintaining the information contained in the
original data in the published data. In partition-based methods like PPD it is
often measured by comparing the preserved term associations in the published
data to those in the original data [9] as illustrated in Example 1.

Example 1. In Table 1a the term association (hat, viagra) appears in two records,
giving it a support of 2. In Table 2b the support must be calculated probabilis-
tically. The chance for any of the hat records to be linked to the sensitive term
viagra in Cluster 1 is 1/3. Thus the support of (hat, viagra) in cluster 1 is
3 * 1/3 = 1. Thus, the support to the term association in Table 1a is 2 but it is
1 in Table 1b and the loss is 50%. The utility loss due to the publication is the
total loss of all term associations and this loss for Table 1b stands at 43% overall.

We realise that, for the same vertical partitioning but with different cluster-
ing, the same level of privacy can be achieved with better utility (Example 2).

Example 2. Table 1c presents an alternative publication of Table 1b. Both tables
are 22-anonymous and 2-diverse, however following the same calculation, the
published data in Table 1c has an overall utility loss of 13%, which is much lower
than that of Table 1b.

From this example, we observe that clustering should be optimised to improve
utility. This paper develops a framework for improved clustering for minimising
utility loss without sacrificing the privacy guarantee. Our framework takes into
consideration the privacy goal as part of the clustering process, in addition to
the similarity of transactions within clusters. Specifically our contributions are:

1. We present two algorithms, DocClust, which employs a specially designed
distance function that aims to put similar transactions with different sensitive
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terms into a cluster; and DetK, which finds the optimal number of clusters k
by using an effective pruning method.

2. We empirically demonstrate the effectiveness of our method on three real
world benchmark datasets.

2 Preliminaries and the Problem

Let D = {D1, · · · ,Dn} be a set of transactions called the corpus where each
transaction Di ∈ D is a set of terms. A subset C ⊂ D is called a cluster.
A partition C of the corpus is a set of clusters C = {C1, · · · ,Ck} such that
⋃k

i=1 Ci = D and Ci ∩Cj = ∅ (i �= j). Also D∪ = D1 ∪ · · · ∪ Dn is the set of all
terms in D. S and S̄ = D∪ \ S is the set of all sensitive and non-sensitive terms
in D∪ respectively. If a transaction contains a term t, it is called a t-transaction
else it is a non-t-transaction.

2.1 Privacy Model

We adopt the same privacy model, Km-anonymity, used in PPD [9]. Specifically,
a cluster C (|C| ≥ K) is said to be Km-anonymous, if an attacker whose back-
ground knowledge of up to m terms can be linked to at least K transactions of
a cluster C. Further, a Km-anonymous cluster C satisfies l-diversity [8] if the
probability of linking a sensitive term to a transaction D ∈ C is at most 1/l.

Let A be an anonymisation transformation that takes as input C, a partition
of D and produces an anonymised counterpart A(C) consisting of anonymised
clusters CA ∈ A(C). Also let I be the inverse transformation that takes as input
the anonymised partition A(C) and outputs all possible D′, reconstruction(s) of
D, i.e. I(A(C)) = {D′|A(C)}. We aim to enforce the following guarantee:

Definition 1 (Privacy Guarantee). For an anonymised partition A(C) and
a set R ⊆ S̄ of up to m non-sensitive terms, (1) Applying I(A(C)) always
produces at least one dataset D′ for which there are at least K records that
contain all terms in R; (2) the probability of linking any sensitive term s ∈ S to
a transaction in any cluster of A(C) is no more than 1/l.

To satisfy the privacy guarantee, we adapt the VerPart method by consid-
ering only the non-sensitive terms of a cluster C in the vertical partitioning
stage to enforce Km-anonymity and introduce an operation called sanitisation
to enforce diversity in the sensitive terms as follows.

As a first step, each cluster C is divided into two parts, a multiset of termsets
called the non-sensitive segment CS̄ = {|D \ S|D ∈ C|} containing the non-
sensitive part of the cluster; and a multiset of terms called the sensitive chunk
SC =

⊎
D∈C(D ∩ S) containing all the sensitive terms of the cluster.

Given the non-sensitive segment CS̄ , VerPart produces multisets of term sets
called record chunks RC1, · · · , RCu and a set of terms called the term chunk TC
such that each record chunk is Km-anonymous. The main points of the operation
of the VerPart algorithm [9] on a cluster CS̄ are as follows:

1. Move all terms with a support less than K in CS̄ into TC; S̄remain = S̄ \TC.
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2. Create a record chunk RCi with a projection on the most frequent term
tf ∈ S̄remain in CS̄ ; S̄remain = S̄remain \ tf .

3. For every term t ∈ S̄remain project t unto RCi. If RCi remains Km-
anonymous then S̄remain = S̄remain \ t; else remove projection.

4. Repeat step 2 and 3 until S̄remain = ∅.

Example 3. Table 2a is a cluster of transactions and Table 2b contains its non-s
segment CS̄ and sensitive chunk SC. Given K = m = 2, Table 2c is the results
of VerPart. In Table 2c the terms toy and spray are placed in the term chunk
TC since their support is less than 2. RC1 and RC2 are constructed by keeping
the terms pen and lamp in RC1 and moving the term book to RC2 since the
record chunk is not 22-anonymous otherwise.

Table 2. Anonymisation via VerPart

(a) Cluster C
IDTransactions
r1 lamp, book p.boy, viagra
r2 pen, book p.boy, viagra
r3 lamp, toy p.boy, lice soap
r4 pen, spray p.boy, lice soap

(b) CS̄ and SC
CS SC
lamp, book p.boy, viagra,

p.boy, lice soap,
p.boy, viagra,
p.boy, lice soap

pen, book
lamp, toy
pen, spray

(c) Results of VerPart
RC1 RC2 TC SC
{lamp}

toy,
spray

p.boy, viagra,
p.boy, lice soap,
p.boy, viagra,
p.boy, lice soap

{pen} {book}
{lamp}{book}
{pen}

After VerPart the cluster is guaranteed to be Km-anonymous and thus the
first part of the privacy guarantee is assured. To satisfy the second part of the
guarantee, all the sensitive terms can be moved to the term chunk [9], however,
when l > K, the guarantee will not be satisfied. Also when |C| > l, it may not be
necessary to move all sensitive terms to TC. We therefore propose sanitisation,
which firstly tests if it is possible for the cluster containing sensitive terms to
satisfy l-diversity, if not(i.e. |C| < l) then the cluster is merged with others. If
|C| ≥ l, hs(C) copies of s in SC are moved into TC; hs(C) = 
N(s, SC) −
(|C|/l)�. In the formular, N(s, SC) is the number of s in SC and (|C|/l) is
the number of s terms expected in SC to satisfy l-diversity for a given l. The
difference between the two is the excess number of s terms that must be moved.

Definition 2 (Sanitisation). Given a cluster C and its sensitive chunk SC
(SC �= ∅) sanitisation denoted by λ proceeds as follows: If |C| < l, λ merges
cluster with the next closest cluster; else if hs(C) > 0, move hs(C) copies of s
from SC into the term chunk TC; Otherwise, do nothing.

Table 3. Sanitisation

RC1 RC2 TC SC
{lamp}

toy,
spray,
p.boy

viagra, lice
soap,
viagra, lice
soap, p.boy

{pen} {book}
{lamp}{book}
{pen}

Closest cluster refers to the distance
(defined later) between the cluster centres.
Sanitisation is required to be applied to every
cluster and for every sensitive term s until each
cluster is l-diverse.
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Example 4. Given l = 2, Table 3 is the sanitisation of Table 2c. In the table,
hp.boy(C) = 2, hlice soap(C) = 0, hviagra(C) = 0. Consequently 2 copies of the
sensitive term p.boy (playboy) must be moved, however we move 3 copies to cater
for the remainder in the term chunk TC. The probability of linking any record
to a sensitive term is now no more than 1/2.

2.2 Utility

In the partition-based anonymisation techniques, utility is lost via the breaking
of term associations. This is because the terms of a record are put into separate
vertical partitions to reduce the chances of linking the information. A utility
metric must therefore capture the amount of broken term associations.

We propose to use the well known KL-divergence metric for measuring the
difference between two probability distributions to capture this loss.

Definition 3 (Term-Association). Given the corpus D, the terms ti and tj
(ti �= tj) form an association τ = (ti, tj), if there exists a transaction D ∈ D
such that ti and tj are in D. The support of τ , N(τ,D), is the number of all
transactions containing τ in D. T denotes all associations in D.

In our definition above, we consider only term pairs because we believe they are
representative of the more complex term associations that may also be lost by
anonymisation. This is analogous to the a priori rule on frequent itemsets, i.e.
if a complex term association is lost, then its term pairs are also lost.

Definition 4 (Utility Loss). Given a corpus D and its anonymisation A(C),
the utility loss UL, is the KL divergence for all associations τ ∈ T between D
and A(C):

UL(D,A(C)) =
∑

∀τ∈T
P (τ) · log

P (τ)
P ′(τ)

(1)

P (τ) is the probability of τ in D, and P ′(τ) �= 0 is the probability of τ in A(C).

For τ = (ti, tj) ∈ T , the probability P (τ) in the original corpus D is calculated
from the support N(τ,D) and P ′(τ) is calculated probabilistically as follows:

P (τ) =
N(τ,D)

|D| ; P ′(τ) =
1

|D|
∑

CA∈A(C)

(

N(ti,CA) × N(tj ,CA)
|CA|

)

The calculation of P ′(τ) in the anonymised corpus A(C) is the probability of
linking ti to tj in a reconstruction D′ of A(C). In this formula, N(ti,CA) is the
number of ti terms in the anonymised cluster CA, and N(tj ,CA)/|CA| is the
probability that any term will be associated with the term tj in CA. The product
returns the number of the term association (ti, tj) that can be recovered from
CA. The sum of the number of recovered term associations over all the clusters
will be the total (ti, tj) recovered from A(C); and the division by |D| gives us
the probability of (ti, tj) in the whole anonymised corpus A(C). We see that
P ′(τ) �= 0 since our anonymisation does not suppress all copies of a term.
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Definition 5 (Problem Definition). Given a corpus D of transactions, a
sensitive term set S, and an anonymisation transformation A that satisfies Km

anonymity and l-diversity for user specified privacy parameters of K,m and l, the
problem is to find a partition C = {C1 · · ·Ck} of D such that A(C) minimises
utility loss UL (Definition 4).

3 Framework of the Solution

Our clustering framework, Utility Aware Clustering (UAC) contains three key
components: a distance function for calculating the distance between transac-
tions that relates to the utility; a clustering algorithm, DocClust for partitioning
transactions towards a minimal total distance for a given number k of clusters;
and a search algorithm, DetK for finding the best number of clusters k.

3.1 Distance Function

The first component of UAC, the distance function has two parts: (1) homo-
geneity distance, to reflect the number of transactions for each term t ∈ D∪ to
be modified in C to make the transactions in C identical; (2) sensitivity dis-
tance, to reflect the number of non-s-transactions for each sensitive term s ∈ S
to be added to C to make the probability of s in C close to the l-diversity goal
(Definition 1).

Definition 6 (Homogeneity distance). Given a cluster C ⊆ D, and a trans-
action D ∈ D \C, the homogeneity distance (Hdis) of adding D to C is the
number of transactions in C ∪ {D} to be modified to have the same terms:

Hdis(D,C) =
∑

t∈C∪

[(|C| + 1) − (N(t,C) + x)] (2)

C∪ is the set of terms in C∪{D} and N(t,C) is the number of t-transactions in
C; Also, x = 1 if t ∈ D else x = 0. The difference is the number of transactions
that do not contain the term t.

Definition 7 (Sensitivity distance). Given a cluster C ⊆ D, the sensitive
term set S, and a transaction D ∈ D \ C the sensitivity distance (Sdis) of
adding D to C is defined to be the sum of the number of non-s transactions
required to make C l-diverse for every s ∈ S:

Sdis(D,C) =
∑

s∈S

[(2x − 1)
(
M − |C| + 1

N(s,C) + x

)
] (3)

x = 1 if s ∈ D else x = 0; M = l − 1 for the privacy parameter l in l-diversity.

In the formula, (|C| + 1)/(N(s,C) + x) is the number of non-s-transactions
available for each s-transaction in C. M is the number of non-s-transactions
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required for each s-transaction to make C l-diverse. (2x − 1) ensures that Sdis
is positive if s ∈ D, else it is negative, thus if a cluster C requires more non-s
transactions and the transaction D to be added is non-s, the distance is smaller,
otherwise it is larger. When N(s,C) + x = 0, Sdis is set to M to avoid a division
by 0 and ensure that clusters without any s terms are not encouraged.

The sum, Hdis(D,C) + w.Sdis(D,C) is the distance between D and C,
where the balancing factor w makes Hdis and Sdis contribute equally. Further
details on w is given in Sect. 4. The total distance for the partition C that we
seek to minimise in our clustering is therefore defined as follows.

Definition 8 (Total distance of a partition). Given a corpus D and a
partition C = {C1, · · · ,Ck} of D, the total distance of C, denoted by ζ(C), is
the sum of distances for all clusters:

ζ(C) =
k∑

j=1

dist(Cj) =
k∑

j=1

( ∑

Di∈Cj

Hdis(Di,Cj \ Di) + w ·
∑

Di∈Cj

Sdis(Di,Cj \ Di)
)

(4)

The total distance ζ relates to the utility loss by the following observation. Let
n.RC(CA) be the number of record chunks in the anonymised cluster CA and
n.TC(CA) the number of terms in its term chunk and |CA| its cluster size.

Observation 1. Given a corpus D, if a partition C of D minimises the total
distance ζ(C) then; (1)

∑
CA∈A(C) n.RC(CA)×n.TC(CA)×|CA| is minimised;

and (2) utility loss is also minimised.

Observation 1 is justified as follows: In Definition 4 utility loss is minimised
when P ′(τ) approaches−−−−−−→P (τ). Three cases of the term association τ(ti, tj) arise

(1)ti, tj ∈ S̄ (2)ti, tj ∈ S (3)ti ∈ S̄ ∧ tj ∈ S. In these cases, P ′(τ)
approaches−−−−−−−→P (τ)

when n.RC(CA), n.TC(CA) and |CA| are minimum which occurs when Hdis
and Sdis are equally minimised. A smaller n.TC() means less terms are moved
to the term chunk and the associations between the terms in TC and the terms
in other chunks are preserved. A smaller n.RC() indicates less record chunks
and thus less broken associations between non-sensitive terms. A smaller |CA|
means less false associations will be constructed when P ′(τ) is calculated.
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Fig. 1. Total distance and utility loss vs movements



488 M. Bewong et al.

We use experiments to demonstrate the relationship between our distance
function and the utility loss as shown in Fig. 1. This was done by calculating
the total distance ζ and total utility loss UL after each transaction movement
in DocClust clustering (described shortly). We used a random sample of 1000
transactions from three different dataset (described in Sect. 4), with K = m =
l = 2 and number of clusters k = 50. Figure 1 confirms our expectation that
ζ and UL both decrease with each transaction move and eventually get to a
minimum.

3.2 Clustering

Function 1. initCluters (D, k)

1: Create k clusters: C = {C1, ...,Ck}
2: order the transactions in D by the number of

terms in descending order.
3: select top k transactions from the sorted list

as initial seeds for the clusters.
4: for each non-allocated D ∈ D: do
5: find cluster Cj = argmin

C∈C

dist(D,C); put

D in Cj ; calculate the centroid ctr(Cj)

6: end for; return C

Clustering, the second key compo-
nent of our solution, UAC, aims to
minimise the total distance (Defin-
ition 8). We note that existing well
known algorithms like k-means do
not apply to our scenario because of
the special properties of our distance
function. We use an example to illus-
trate this.

Example 5. For a transaction D1 = {a, s1}, and an empty cluster C{}, if C is
initially assigned D1 as the cluster seed, conventional similarity based distance
metrics, will always give a distance of 0 between D1 and the seeded C since they
are identical. By k-means D1 will always be assigned to C in every round of
iterations. In contrast, our metric, which considers the sensitive terms of D1 and
the seeded C, will assign a large distance value. When used with k-means, D1

is alternately added and removed from C in each iteration since D1 and C will
alternately have the same sensitive value s. This creates unstable assignments.

We develop a two-stage clustering algorithm, DocClust (Algorithm 1). The
first stage, the initialisation stage (Function 1) uses transactions with the most
number of terms as initial cluster seeds. We expect these to be in separate
clusters in the final partition. The remaining transactions are then assigned to
the clusters based on their closest distance to the centres.

In the second stage, the update stage (Lines 2-end of Algorithm 1), the clus-
ter with the largest total distance denoted C1; and the transaction D ∈ C1,
furthest to the centre of C1 is moved to another cluster C2 if the movement
maximally reduces the total distance of the partition. This operation continues
until no transactions can be moved. In the algorithm, the notation C.finish is
a status variable of C indicating whether the cluster’s farthest transaction can
be moved. If it cannot be moved, C.finish is set to true indicating that the
cluster will not be checked until other transactions are moved to this cluster or
the algorithm finishes.
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Algorithm 1. DocClust

Input: A corpus D; number of clusters k.
Output: The partition of D, C = {C1, ...,Ck},
with the least cost.

1: C = initClusters(D, k)
2: order clusters in C in descending order of by the

total distance.
3: for every cluster C ∈ C, C.finish = false.
4: while some clusters are not finished: do
5: let C1 be the 1st cluster of C.
6: find the farthest D ∈ C1: D =

argmax
D∈C1

dist(D,C1 − D)

7: find cluster C2 to move D into s.t. ζ(C)
is maximally reduced: C2 = argmin

C∈C

{f(C) :

f(C) > 0} where f(C) = dist(C1) + dist(C) −
[dist(C1 − D) + dist(C + D)]

8: if C2 is null: C1.finish = true; continue.
9: move D to C2; reorder C by the total dis-

tance.
10: if C2.finish = true: C2.finish = false
11: end while

The algorithm converges. Each
transaction D moved from C1 to
C2 satisfies f(C) > 0, hence every
move reduces the total distance (ζ).
The lower bound of ζ is 0 hence
the move will stop when ζ reaches
its lower bound or f(C) > 0 is not
true and the algorithm terminates.
We remark that for Km-anonymity,
each cluster is compelled to have at
least K transactions.

3.3 Search for the Best k

In the third component of UAC,
finding the optimal k number of
clusters, we propose a heuristic algorithm called DetK. DetK uses the total
distance ζ of an already computed partition to prune some intervals of k. As
more partitions are computed (with different k’s), we prune more intervals and
finally get to the best k that minimises ζ. We begin with some properties of our
distance function.

Let κ(D, k) ⇒ (H,S, ζ,C) be the clustering of D for k number of clusters
resulting in: the total homogeneity distance H, the total sensitivity distance S,
the total distance ζ = H + S, and the partition C in order.

Observation 2. The total homogeneity and sensitivity distances are monotonic
w.r.t. k. i.e. if κ(D, k) ⇒ (Hk,Sk, ζk,Ck) and κ(D, k + 1) ⇒ (Hk+1,Sk+1,
ζk+1,Ck+1) for any k ∈ [1, |D| − 1] then: (1) Hk ≥ Hk+1 (2) Sk ≤ Sk+1.

We justify the observation as follows. As k increases the average number
of transactions per cluster decreases. Smaller cluster sizes reduce the number
of uncommon terms between transactions of a cluster making the total homo-
geneity distance Hk ≥ Hk+1. Conversely, smaller cluster sizes cause an increase
in the probability of the sensitive terms in the clusters making the number of
transactions needed by each cluster for l-diversity larger, causing Sk ≤ Sk+1.

These observations, also verified by experiments, are shown in Fig. 2. In the
figure, each plot shows the total homogeneity distance H, the total sensitivity
distance S and the total distance ζ of clustering with different k’s for three real
world datasets. All three plots confirm the monotonicity of H and S with k.

In DetK (Algorithm 2) our approach is to: (1) find some km, (2) partition D
at km to get the total distance ζm, (3) calculate the lower total distance bound
lbd for the intervals [kl, km] and [km, kr], and (4) prune the intervals whose lbd is
greater than ζm. For the remaining intervals, the division and search processes
continue until the optimal k, ko where ζ(C) gets a minimum, is found among
all possible k’s. This is illustrated by Fig. 3. In Fig. 3, the maximal H point is
(kl = 1, hl) and the minimal H point (kr = |D|, hr). Similarly, the minimal
S point is (kl = 1, sl) and the maximal S point (kr = |D|, sr). Then, km is
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calculated geometrically from the cross point of the straight lines (kl, hl), (kr, hr)
and (kl, sl), (kr, sr). The intuition is that, the minimal total distance point is
often close to the cross point of H and S as depicted by Fig. 2. After the initial
split of [kl, kr], the resulting intervals are subsequently split at their mid-points.

Algorithm 2. DetK

Input: D, stop thresholds θd, θk
Output: km (the optimal k), partition Cm of D
for km

1: let kl = 1, kr = |D| ;
2: cluster: κ(D, kl) ⇒ (hl, sl, ζl,Cl); κ(D, kr) ⇒

(hr, sr, ζr,Cr);
3: calculate km;
4: cluster: κ(D, km) ⇒ (hm, sm, ζm,Cm);
5: let lbdl = sl + hm; lbdr = sm + hr ; ζp = ζm

(pruner)
6: if stop(kl, km, ζl, ζm) = false∧ lbdl < ζp: insert

(kl, km,Cl,Cm, hl, sl, hm, sm, lbdl) to Iv
7: if stop(km, kr, ζm, ζr) = false ∧ lbdr < ζp: in-

sert (km, kr,Cm,Cr, hm, sm, hr, sr, lbdr) to Iv
8: while Iv.length > 0 do
9: let e = Iv[0] and remove Iv[0] from Iv
10: let (km, ζm,Cm) = bisearch(D, e);
11: if ζm < ζp: ζp = ζm
12: for each x ∈ Iv: if x.lbd ≥ ζp:

Iv.remove(x)// prun.
13: end while; return (km,Cm)

The lower bound total distance
for an interval is developed as
follows:

Lemma 1. Given an interval [kl, kr]
of k and the clusterings at kl

and kr respectively: κ(D, kl) ⇒
(Hl,Sl, ζl,Cl) and κ(D, kr) ⇒ (Hr,
Sr, ζr,Cr), the minimal total dis-
tance of the partitions for k ∈ [kl, kr]
is bounded by: lbd(kl, kr) = sl + hr.

Lemma 2. Given the total distance
ζ at k and an interval [kl, kr], the
optimal k is not in [kl, kr] if ζ <
lbd(kl, kr).

Lemma 1 is correct since H and
S are monotonic to k and Lemma 2
is important to pruning the intervals of k to be searched.

For DetK (Algorithm 2) we define a data structure called the interval
sequence, which is a sequence of elements Iv. An element Iv[i] =
(kl, kr,Cl,Cr,Hl,Sl,Hr,Sr, lbd)i includes the interval [kl, kr] of k, the partitions
Cl and Cr from clustering at kl and kr respectively, the total H distances Hl

and Hr, and the total S distances Sl and Sr for the respective Cl and Cr, and
the lower total distance bound lbd of the interval. Elements in the sequence are
ordered by the lbd.

In Algorithm 2, the input has two thresholds to terminate the search of the
interval, if the interval is not very wide (θk, percentage of |D|) and the rel-
ative difference of the total distances is small (θd, ∈ [0, 0.1]). The split point
km of the input interval [1, |D|] and its clustering are determined (Lines 3–4).
The pruner ζp and lower bounds of the intervals are calculated in Line 5. The
interval sequence Iv is constructed in Lines 6–7 with stop condition (Function 3)
checked, followed by pruning. The while loop takes the first element, which has
the smallest lower bound among all un-searched intervals, in Iv to start the
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search (bisearch Function 2). After the search returns, the pruner ζp is updated
as necessary based on the newly found minimal total distance. The new pruner
is used to remove all intervals whose lower bound is more than the pruner (line
12). During bisearch, the new intervals that are not searched immediately are
put into the interval sequence Iv for later pruning or searching. The search of
an interval stops if there are no more k values to be searched (i.e., kr − kl ≤ 1)
or the total distance difference at the two ends of the interval is very small while
the interval itself is narrow (stop condition in Function 3).

Function 2. biSearch (D, e)

(kl, kr,Cl,Cr, hl, sl, hr, sr, lbd) = e, ζl = hl + sl, ζr =
hr + sr

1: let km = (kl + kr)/2
2: cluster: κ(D, km) ⇒ (hm, sm, ζm,Cm)
3: if stop(kl, km, ζl, ζm) ∧ stop(km, kr, ζm, ζr): return

arg({(kl, ζl,Cl), (km, ζm,Cm), (kr, ζr,Cr)},
min(ζl, ζm, ζr))//returns (kx, ζx,Cx) with smallest ζx

4: else if stop(kl, km, ζl, ζm) :
insert (km, kr,Cm,Cr, hm, sm, hr, sr, sm + hr) in Iv
return arg({(kl, ζl,Cl), (km, ζm,Cm)}, min(ζl, ζm))

5: else if stop(km, kr, ζm, ζr) :
insert (kl, km,Cl,Cm, hl, sl, hm, sm, sl + hm) in Iv
return arg({(km, ζm,Cm), (kr, ζr,Cr)}, min(ζm, ζr))

// now both intervals are open.
6: if ζl < ζr:

insert (km, kr,Cm,Cr, hm, sm, hr, sr, sm + hr) in Iv
let kr = km; ζr = ζm; goto Line 1

7: else:
insert (kl, km,Cl,Cm, hl, sl, hm, sm, sl + hm) in Iv
let kl = km; ζl = ζm; goto Line 1

Function 3. stop (k1, k2, ζ1, ζ2)

1: δk = k2 − k1; δζ = abs(ζ2 − ζ1)/(ζ2 + ζ1)
2: if δk ≤ 1 ∨ (δζ ≤ θd ∧ δk/|D| ≤ θk): return true
3: else return false

DetK terminates when
the intervals in Iv are all
pruned or searched. The best
k which is km and its clus-
tering C are returned as the
results. In the worst case
DetK searches all k values in
[1, |D|].

4 Empirical Study

We aim to demonstrate: (1)
how the balancing factor w
affects utility loss and the
total distance and thus how
to calculate an ideal w for
Definition 8; (2) utility loss in
actual queries; (3) and the
scalability of the algorithm.

Three real transactional
datasets, BMS-Webview-1 (BMS1), BMS-Webview-2 (BMS2) and BMS-POS
(BMSP) [11] (Table 4) were used. We randomly selected 10% of the terms for
each dataset as sensitive terms for the experiments.

Table 4. Datasets

BMS1 BMS2 BMSP
No. of trans. 59,602 77,512 515,597
No. of terms 497 3,340 1,657

(1) Ideal balancing factor w: We
consider the effect of w in Definition 8
on the optimal kod based on the total
distance ζ in comparison the opti-
mal kou based on the minimal utility
loss UL. We randomly sampled 1000
transactions of BMSP. With representative privacy parameters K = m = l = 2
we clustered the dataset using multiple k values in [1, |D|/K]. For each partition,
ζ and UL were calculated. This experiment was repeated 3 times for 3 different
w value. Figure 4 shows 3 plots for the 3 different w values. In each plot, the
x-axis is k and the y-axis is the normalised total distance and utility loss. The
dotted line represents the total distance and the dashed line the total utility
loss. In (a) when w is a small value (w = 0.5), the contribution of the sensitivity
distance to ζ is little, the optimal number of clusters that give the minimum UL
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Fig. 4. Effect of balancing factor w on optimal ko

kou is found to be at 220 which is to the left hand side of the optimal number
of clusters that give a minimum total distance kod which is 250 clusters. When
w makes the sensitivity contribute twice as much as the homogeneity distance
in plot (c) the positions of the two optimal k’s are swapped. In plot (b) where
w makes the homogeneity and sensitivity distances contribute equally to the
total distance, the positions of the two optimal k’s align well. This is the ideal
w and it is decided in two rounds of initialisations for any given k. First, w is
set to 1 and the transactions initially assigned to the seeded clusters. An actual
w is then calculated by the total homogeneity H and sensitivity S distances
(w = H/S). Second, the actual w is used to re-do the cluster initialisation, after
which w = H/S is updated and finally used in the update stage as the ideal w.
The results in Fig. 4 were also replicated in BMS1 and BMS2.

(2) Utility loss in queries: We compare the utility loss of UAC to Hor-
Part [9] using 10, 000 transactions sampled from each dataset. The resulting
partitions that were produced were then anonymised with VerPart and sani-
tisation (Sect. 2). In the experiments, three groups of term associations with
relatively low (1–10), medium (10–20), and high (40–60) supports in the dataset
were randomly selected as queries. For each anonymised data, 20 reconstructed
datasets were generated by randomly linking entries in the record, sensitive and
term chunks of a cluster. The same associations were searched in the recon-
structed datasets to find their supports and the results averaged. The utility
loss of an association (a, b) is computed by calculating the relative error [9] of
the supports.
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Fig. 6. Scalability and effectiveness of algorithm

Figure 5 shows that our method UAC has significant utility gains over Hor-
Part on all three datasets with a typical improvement of over 50%.
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(3) Scalability and Effectiveness: This experiment shows the scalability of
our algorithm DetK which calls the clustering algorithm DocClust. There are
two plots. Figure 6(i) indicates our method scales well for all three datasets.
BMS2 which has much more terms (Table 4) required more time to compute
than BMS1 and BMSP. Figure 6(ii), indicates the number of k values searched
before DetK finds the optimal k. There are three groups of bars and each group
is for a dataset. Within each group, different corpus sizes are used. The plot
proves that the pruning technique in DetK is very effective. In the worst case
(the black bars), the algorithm searched only 10 k values, less than 3% of all
possible k values, before the optimal was found. We remark that the time cost
is mostly from the clustering algorithm DocClust which is expected.

5 Related Work

Existing clustering methods for privacy preservation can be grouped as similarity
based which consider only the similarity of transactions during the clustering or
constraint based where the clustering is subject to privacy constraints. In similar-
ity based methods, [10] uses Hamming distance while [2] considers the position of
terms in a taxonomy to calculate the distance. [5] enforces K-anonymity by con-
sidering a semantic-similarity between transactions. Also [4] uses a sequential
clustering while [12] uses density based clustering. In constraint based meth-
ods, [3] proposes NN -search to group transactions on their similarity restricting
each cluster to p−1 other transactions for every s-transaction. [6,7] also require
explicit utility constraints to be specified by the user.

These works differ from ours, particularly the privacy goal is not incorpo-
rated into the clustering objective function (total distance) to be minimised.
In addition, our method UAC lends well to other stronger privacy models like
t-closeness by suitably modifying M (Formular 3) to reflect the needed number
of non-s transactions for each s in the corpus D i.e. M = |D|/N(s,D).

6 Conclusion

In this work, we presented a novel clustering framework DocClust based on a
special distance function that considers both the similarity and disclosure risk
of transactions. Hence, when the total distance of a clustering is minimised,
anonymisation can be achieved with minimal utility loss. We also presented a
search algorithm DetK with an effective pruning to solve the best k problem.
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Abstract. The holy-grail of large complex storage systems in enter-
prises today is for these systems to be self-governing. We propose a self-
tuning scheme for large storage filers, on which very little work has been
done in the past. Our system uses the performance counters generated by
a filer to assess its health in real-time and modify the workload and/or
tune the system parameters for optimizing the operational metrics. We
use a Pruned Random Forest based solution to predict overload in real-
time — the model is run on every snapshot of counter values. Large
number of trees in a random forest model has an immediate adverse
effect on the time to take a decision. A large random forest is therefore
not viable in a real-time scenario. Our solution uses a pruned random
forest that performs as well as the original forest. A saliency analysis is
carried out to identify components of the system that require tuning in
case an overload situation is predicted. This allows us to initiate some
‘action’ on the bottleneck components. The ‘action’ we have explored
in our experiments is ‘throttling’ the bottleneck component to prevent
overload situations.

Keywords: Random forest · Pruning · Feature ordering · Storage ·
Filer · Self-tuning · Storage load

1 Introduction

Large-scale cluster-based storage systems [9,23,25] form an important part of
any distributed infrastructure. This is true, because the data stored in these
systems is often critical and these account for a large chunk of the overall
infrastructure acquisition and maintenance cost. These systems typically take
care of almost all the data storage needs of an enterprise and are expected
to deliver consistent I/O performance across varied workload demands by a
wide spectrum of data intensive applications. Traditionally these systems have
been tuned based on workload characteristics that are assumed to be known in
advance and predictable. Unfortunately, such assumptions do not hold in large
organizations. We therefore focus on using the live system counters that are
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 495–507, 2017.
DOI: 10.1007/978-3-319-57529-2 39
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generated routinely in most storage systems and use them effectively to peri-
odically evaluate and suggest reconfiguration. Counters in general can provide
information on the performance of the system at various levels. These counters
are critical for an accurate analysis of system behavior and tuning the system if
required.

Research on self-organizing storage in the past [8] has largely focused on
scaling storage systems dynamically in response to workloads. However, online
optimization or self-tuning of storage systems based on system counter data
has received little attention. A reasonably generic way to make a complex sys-
tem self-sustaining in terms of performance and making it relatively immune to
changing workload patterns is to enable dynamic reconfiguration/tuning based
on the performance counters collected from within the system. Large scale fil-
ers are an assembly of a number of filer components/storage objects (physical,
logical, protocol, software components). Some key components are buffer, cache,
NVRAM, cpu, volume, aggregate, disk etc. Complex storage system architec-
tures can include tens to hundreds of such interconnected components working
together to provide high-levels of performance expected from such systems. Each
component typically generates tens to hundreds of performance counters, each
measuring different aspect of performance of the component. The total num-
ber of performance counters/features, across all components could be more than
100,000. When collected at intervals of 5–10 s, this counter data forms a rich
source of information for system diagnostics and tuning.

Our contributions in this paper is to develop a self-tuning storage system.
Towards this, we assume that the granularity at which the system takes actions
during self-tuning is at a component-level. We also assume that components can
be throttled, isolated, etc. towards improving the overall performance charac-
teristics of the system as a whole. The primary objective in our experiments
was to minimize the duration of overload without impacting the live workloads.
Another key contribution is the use of component saliency analysis, enabling self-
tuning system to identify the bottleneck components that lead to performance
degradation.

The rest of this paper is organized as follows. The next section briefly presents
the past literature followed by Sect. 3, which gives an overview of our system and
introduces the key ideas in our self-tuning solution. Section 4 describes in detail
the system we have implemented. We conclude in Sect. 6 with some possible
extensions of our work and a discussion of some of broader challenges in building
a self-tuning system of the kind we have envisaged in this paper.

2 Related Work

Use of learning algorithms for performance modeling [7,13] and failure predic-
tions at a disk-level [11,16] has been researched for more than two decades. With
the evolution of I/O intensive scientific applications and the prevalence of data
redundancy and replication schemes, focus has gradually moved towards large
scale storage systems. Research related to large scale storage systems [4,19] has
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gained importance in the recent years due the complexity of such systems increas-
ing exponentially in the recent past and the associated difficulty in maintenance
and management of such systems.

Self-* Storage systems was proposed in [8], where Self-* stands for self-
configuring, self-organizing, self-tuning, self-healing and self-managing. Though,
this is an ideal scenario, the work was carried out from a storage administrators’
point of view. Architectural advancements in the past decade have ensured that
cluster-based storage systems can provide a self-organizing system [23] to some
extent but aspects such as self-tuning and self-healing continue to be rapidly
evolving areas of research. Our current work is aimed at addressing the possi-
bility of self-tuning using learning algorithms. Analysis of storage load in the
past was restricted to latency analysis. More recently, there has been progress
in measurement of the end-to-end load of the storage system at the client level
[4]. The load is measured as a function of standard benchmark operation that
makes it unique and user/administrator friendly for load analysis.

3 System Overview

Datasets used in our experiments are performance counters collected from stor-
age system by periodically polling for and extracting counters related to all
the active components. Every counter set (a snapshot of all the counter val-
ues collected together) is labeled with one of the three broad categories, viz.,
ZEROLOAD (Z), NORMAL (N), OVERLOAD (O). The labels are typically
derived through thresholds implied by formal service-level-agreements (SLAs) on
these systems. SLAs for storage systems include the total up-time of the system,
time taken for read/write operations, number of retries and so on. Thresholds are
defined to help maintain the agreed levels of latencies/up-time and a potential
breach of the same is proactively avoided through actions taken by the proposed
self-tuning system. The data collection in our experiments is similar to that col-
lected by [4] but for real world application I/O patterns. The number of counters
is typically too large for use in a model that will operate in real-time. We use a
couple of simple strategies to bring the number of counters that will be consid-
ered for the final model down to a few hundreds. We use the terms counter and
feature (of the current system state) interchangeably in the rest of this paper.
A fraction (30%) of the dataset collected is held-out as a test set that we use for
the final model selection based on a weighted class loss function.

Any model that predicts the state of the system based on performance
counter data in real time (the predictions are useful only if they are action-
able in real-time) needs to be fast, interpretable and accurate, in that order of
priority. It needs to be fast because decisions using the model have to be taken
in real time for them to be useful. Interpretability is important for being able
to accommodate manual/automated interventions as required. Accuracy in this
case may not be as important as the other two since we believe that some inter-
vention is better than no intervention at all. The system performance cannot be
significantly worse even if the model is not terribly accurate.
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We propose a Pruned Random Forest (PRF) based solution augmented with
a way to accommodate weighted classes. Our solution is built around a random
forest classifier that will classify a performance counter vector into one of three
classes — Z, N, O. Note that we assume the performance counter vector is a
complete representation of the ‘current’ state of the system as a whole. The
random forest constructed from the subset of counters is pruned based on a
weighted Matthews Correlation Coefficienct (MCC) [20] ranking of the trees in
the random forest. Optimal pruning is hard in general and pruning is probably
not even worth it in most applications. However, several recent papers [5,6,15,21,
22,24] have shown the effectiveness of pruning using heuristics. It can drastically
cut down the number of trees in the random forest without compromising on the
accuracy/generalizability of the model. In many cases, the size of the random
forest is down to nearly one tenth of its original size while improving the accuracy
in most cases by explicitly preserving or enhancing the strength and diversity of
the ensemble [5]. The most recent attempt in this area [5] makes pruning very
attractive because it effectively eliminates the need to specify any limits on the
size of the pruned ensemble. It makes pruning almost independent of the original
(pre-pruning) size of the ensemble.

Pruning is important to ensure the first two criteria we laid out earlier —
speed and interpretability. Unfortunately, random forests with hundreds of trees
and several hundreds of features on which each random tree in the forest has
been built can be very expensive in their decision making. Each decision requires
the new input to be pushed through all the trees in forest before bagging them
together. Hence, it is not quite suited for high throughput online scenarios like
that of online tuning of large scale filers where prediction and real-time analysis
are necessary for tuning the storage system. Cutting the size of the random forest
by a factor of 10 directly cuts down on the decision making time by a factor
of 10. Our algorithm generates several candidate pruned forests by varying a
couple of hyperparameters. The candidate forests are evaluated based on a loss
function that is sensitive to the fact that we are more concerned about mis-
classifications related to an Overload situation — either a normal load being
classified as Overload or a genuine Overload situation not being recognized. We
then annotate each node in every decision tree of the pruned random forest with
exactly one system component label. A node is annotated with the component
from which the feature (counter value) being tested at the node has originated.
The final pruned, annotated random forest is the predictive model deployed in
the system for self-tuning. The schematic in Fig. 1 illustrates the entire proposed
system architecture.

While in deployment, the self-tuning system monitors a stream of sets of
counter values. These counters are the same as those used during training and
are collected at frequent (5–10 s) intervals. The predictive model is run on each
snapshot of counter values in real-time. If the model predicts that it is potentially
an overload situation, it carries out a component saliency analysis to determine,
which component(s) is(are) the ‘bottleneck(s)’ leading to the predicted overload
situation. The internal annotated structure of the pruned random forest is used
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Fig. 1. System architecture

to arrive at a ‘diagnosis’ regarding the most likely components that need some
action in case the system suffers from an overload situation. Experimental results
reported in this paper are based on an implementation of self-tuning through
throttling of I/O on specific components. Our experimental results adequately
demonstrate the usefulness of our proposed scheme as a way to implement self-
tuning on live storage systems. Short term reconfigurations such as throttling
for short periods enables minimal impact on live workloads and reduce Overload
scenarios.

4 Implementation Details

4.1 Feature Selection from Counter Data

Importance of good feature selection, both as a dimensionality reduction tool
and as a way to improving accuracy (by removing features that are redundant
and potentially misleading), in the design of machine learning algorithms is well
known [1,18]. In our context, it was crucial to bring the dimensionality down
significantly for filer dataset with more than 100,000 features. Even after the
routine pre-processing task of removing columns with zero variance the time
taken to generate a random forest model for our dataset was in the order of
days on a standard high memory machine. We use two custom feature selection
steps in our scheme. Suppose there are d features and the 0th ‘feature’ is the
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class label. Let’s denote the correlation between the ith and the jth feature in
the given dataset D as ρD(i, j) and set of all features to be retained as F , where
F is initialized to the set of all non-zero variance columns.

1. Class Correlation Test: Remove features that do not correlate well with
the target variable (class label).

F ← {i | i ∈ F ∧ |ρD(i, 0)| > τc} (1)

The number of features considered during training decreases as we increase
the value of τc.

2. Inter-Correlation Test: If two features exhibit a strong correlation among
themselves, remove one of them. Let

ρD(i) =

∑
j∈F ρD(i, j)

d

denote the average correlation between feature i and the other features in the
dataset. We update the feature set to

F ← {i | (i, j ∈ F) ∧ (|ρD(i, j)| ≥ τf ) ∧ (ρD(i) ≤ ρD(j))} (2)

The idea is to retain the feature that correlates less with the other features,
from a pair that has a high correlation [3,10,12]. This test enhances diversity
among the features considered for the random forest construction. The num-
ber of features considered during training increases as we increase the value
of τf .

4.2 Random Forest Pruning

We follow the MCC based pruning proposed in [5]. MCC, as a choice of per-
formance measure is known to be an unbiased estimate of accuracy of a model
[20]. One of the internal estimates known to act as a cross-validation step during
forest construction is the Out Of Bag (OOB) error measure [2]. It helps in avoid-
ing the need to maintain an exclusive hold-out set for testing or ever carry out
explicit cross validation. MCC for each tree is defined on the OOB set for that
tree. For a multiclass scenario like ours, the MCC is computed as the weighted
sum of the class-MCCs computed for each class. Class-MCC is computed by
taking the class against the rest, and computing the class-MCC as if it were a
binary classification problem. Denoting the full random forest produced on the
selected subset of features be T , let class-MCC calculated in this manner for the
kth tree Tk ∈ T and class c be denoted m

(k)
c . Also, let the fraction of the OOB

set for Tk that belongs to class c be denoted w
(k)
c . The weighted MCC m(k) for

Tk is then defined as
m(k) =

∑

c∈C

m(k)
c × w(k)

c

It was shown empirically in [5] that removing trees whose weighted MCC is
below the 80th percentile often works well. For our purposes we use a derived
limit on the number of trees in the model to retain as many trees in the order
of their weighted MCC values.
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4.3 Hyperparameter Tuning for Weighted Classes

Our algorithm introduces two hyperparameters τc, τf in Eqs. 1 and 2. The effect
of τc on the overall training time is the most pronounced. Notice that the inter-
correlation test requires a pair-wise test on all features. Having a very low value
of τc can therefore make the inter-correlation test unviable. Similarly, having a
large value of τf can significantly increase the number of features on which the
random forest needs to be built. We set a lower bound τ∗

c on τc ≥ τ∗
c and an

upper bound τ∗
f on τf ≤ τ∗

f primarily from training time considerations. We
set an upper limit ε∗ on the OOB error that any of the models can commit.
Another important performance criterion is the maximum time available to take
a decision when the model is deployed. This time is directly dependent on the
number of conditions that need to be checked on any test input for classifying
it using a random forest. A rough estimate of this is clearly the product of the
average depth of a tree dT in the forest and the number of the trees nT in the
forest. We therefore require that dT ×nT ≤ Δ for some constant Δ derived from
the maximum time available for an online decision. We calculate the average
depth of the random forest T consisting of trees {T1, . . . , TnT } as

di =

∑li
j=1 dij

li
, dT =

∑nT
i=1 di
nT

where di is the average depth of the tree Ti with li leaves, the depth of leaf j
being dij . The pseudocode for the complete hyperparameter tuning scheme is
shown in Algorithm 1. It generates a series of candidate models for evaluation.

Algorithm 1. Hyperparameter Tuning
Fix values for τ∗

c , τ∗
f , ε∗ and Δ.

for τc = τ∗
c . . . 1 step 0.1 do

for τf = τ∗
f . . . 0 step −0.1 do

# Remove features with low class-correlation
F ← {i | i ∈ F ∧ ρD(i, 0) < τc}
# Remove features with high inter-correlation
F ← {i | (i, j ∈ F) ∧ (|ρD(i, j)| ≥ τf ) ∧ (ρD(i) ≤ ρD(j))}
# Continue only if feature set is different from previous iteration
# Build random forest
T ←randomForest(D, F); εT ← OOB Error of T ; dT ← Average Depth of T
if εT > ε∗ then

break � εT is expected to increase for any smaller τf
else

T ← {Ti | r(Ti) ≤ Δ/dT } � r(Ti) = weighted MCC rank of Ti ∈ T
Output T as a candidate model

end if
end for
if τf = τ∗

f then
break � (τc, τ

∗
f ) pair failed. So εT is expected to increase for any larger τc

# No more candidate forests get generated
end if

end for
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Table 1. Confusion and loss matrices

Confusion Matrix Loss Matrix

Z N O

Z czz czn czo
N cnz cnn cno

O coz con coo

Z N O

Z 0 1 λ

N 1 0 λ

O λ λ 0

The models generated by Algorithm 1 are evaluated on a separate (hold-out)
test set using a weighted class loss function.

4.4 Weighted Class Loss Function Evaluation

We are concerned primarily about accurate predictions of Overload situations.
It is important to control both false-positives and false-negatives in this case —
false positives cause unnecessary ‘tuning’ actions that can degrade the system
performance, false negatives make the self tuning system ineffective. This does
not distort the overall performance of the random forests because the MCC
based pruning carried out prior to the test evaluation ensures overfitting for
the Overload class is avoided. Each candidate model is evaluated against the
hold-out test set. The confusion matrix is computed for the model on the test
set. Table 1 shows a representative confusion matrix and the loss matrix, where
λ > 1 is a fixed constant. The loss matrix ensures that any mis-classification
involving O is penalized much more than those not involving O. We can use an
appropriately large value of λ to ensure that models performing better over O
are preferred. The final model picked is the one that minimizes

czn + cnz + λ(coz + con + czo + cno)

4.5 Component Saliency Analysis

The final model used for prediction is annotated by associating each node of the
final random forest with the component to which the feature being tested at the
node belongs. The idea is that an overload situation arising due to a component
would invariably be indicated by counters belonging to that component. So one
would expect that in case it is an overload situation, a number of counters from
the component ‘culprit’ would have figured in the paths in a number of trees that
the current test counter vector ‘passed through’ during the decision making. The
key components responsible would often be represented in these decision paths.
Notice that the number of components is of the same order as the number of
trees in the forest — both are around 100. We therefore zero in on the salient
component that could be ‘responsible’ for the overload situation as follows. Let
the final model be the forest {T1, . . . , Tn}. Given a test counter vector c, let vi
be a binary variable representing the verdict of Ti(c). Ti on c =⇒ vi is 1 if and
only if Ti concludes that c indicates an Overload situation. Let Pi(c) denote
the path taken by c in Ti and Si, a vector of length equal to the number of
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components in the system, for each 1 ≤ i ≤ n. The pseudocode for the models’
response for every new counter vector is shown in Algorithm 2.

Algorithm 2. Deployment Scenario — Component Saliency Analysis
New counter vector c, model {T1, . . . , Tn}.
for i = 1, . . . , n do

vi = Ti(c)
if vi = 1 then

for x ∈ Pi(c) do
Sij+ = 1 if x ∈ Component j

end for
end if
if
∑n

i=1 vi > n
2
then � Bagging

S∗ =
∑

vi=1 Si

# return the (index of) most salient component for tuning action
return arg maxj S∗

j � S∗
j is the jth component of S∗

end if
end for

5 Experiment Setup

We conducted our experiments on a NetApp Cluster storage system with work-
loads similar to those observed in the real world. These workloads were generated
using the ‘Standard Performance Evaluation Corporations’ (SPEC) Solution File
Server (SFS) tool, designed by a consortium of storage vendors to evaluate the
performance of different storage systems for real-world workload patterns. The
key characteristics of the four different datasets used in our experiments are
shown in Table 2. During offline testing, each dataset was split with 70% used
as training data and the rest used for testing. Random Forest pruning and the
annotations required for our algorithm was implemented by patching the ran-
domForest package in R [14]. The size of the random forests generated for each

Table 2. Training workload/dataset summary

Dataset Size Instances Clients Workload description

TXN 3.1 Gb 7, 715 43 Online Txn Data (financial, telecom,. . . )

SVD 2.4 Gb 5, 767 20 Streaming Video Data

BLD 3.0 Gb 7, 489 39 Software Build — meta-data operations, file
reads, source compilation and binary data
generation

MIX 2.4 Gb 6, 003 102 Mixture (of TXN, SVD and BLD) Workload
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Table 3. Summary of implementation results for filer data. (%Overload∗ – Percentage
improvement in overload classification after pruning)

|F| min(tc, tf ) max(tc, tf ) PRF CRF dT candidates kPRF %Overload∗

TXN 177 (0.01, 0.65) (0.21, 0.9) 25.42 25.52 15 7 88 0

SVD 101 (0.1, 0.70) (0.5, 0.9) 3.29 3.35 9 9 153 0.65

BLD 221 (0.01, 0.7) (0.23, 0.9) 16.55 16.93 12 5 107 0

MIX 12 (0.1, 0.75) (0.5, 0.9) 2.27 2.47 8 6 185 0.9

(τc, τf ) combination was 500, before they were pruned to the required size. Based
on the filer configuration, Δ = 2, 000 ms was set to identify the size of the can-
didate pruned forest.

Discussion: The implementation results are summarized in Table 3. The
table summarizes the hyperparameter ranges that were searched {min(tc, tf ),
max(tc, tf )}, the number of features that were retained (|F|), number of forests
produced as candidates (kPRF ) and the accuracy of the pruned (PRF ) and
unpruned (CRF ) models. Improvements observed for Overload class due to
pruning is also presented as %Overload∗. dT and candidates column in Table 3
indicate the average depth of trees and the number of alternated forests available
for consideration. Hyperparameter tuning is illustrated in plots of the accuracy
of the model against τf threshold for every fixed value of τc. The plots are shown
in Fig. 2. Highlighted rectangular regions in the plot indicates the choices of τf
and τc satisfying εT ≤ ε∗. The best candidate within the rectangular region is
identified using the Loss matrix with λ = 8.

5.1 Online Self-tuning

Many possible configuration changes are available for administrators to opti-
mize/tune/balance load on NetApp filer. Choosing the most appropriate con-
figuration change depends on identifying the bottleneck components. Throttling
the load on storage objects such as volumes is one such option [17]. Throttling
helps in deterring load generated by users using a volume. This will lower the
load affecting throughput of storage for a small set of users but a gain can be
observed by rest of the users serviced by other volumes. Component saliency
analysis helps in identifying if any single volume is accommodating huge I/O
forming the bottleneck. Self-tuning of storage system was implemented on a live
filer and tested on workloads for a period of 4 h. Throttling was initiated when
Overload is predicted for 5 consecutive counter snapshots. It was enabled for
a short interval (5 min). Also, throttling was carried out by restricting the I/O
bandwidth of the volume to the average I/O load observed on the volume in the
past 15 min. Figure 3 shows the Gantt chart of the various Overload durations
encountered during the online testing phase. The figure clearly shows a signifi-
cant reduction (40%) in the occurrence of Overload scenarios at the cost of loss
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Fig. 3. Effect of self-tuning on load of a filer

of throughput of 1.33%. Self-tuning, when implemented using unpruned random
forest will lead to 3 to 5 times increase in computation cost along with loss in
prediction accuracy.

6 Conclusions and Future Work

Storage system counter data is very useful in identifying its health and the same
has been demonstrated for different industry workload patterns. With appropri-
ate modifications (like pruning) to standard machine learning algorithms such
as random forests, it is possible to predict the impending health of the system
in real-time and initiate corrective actions as a response to prevent unfavourable
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events such as Overload. For a limited scenario, we have demonstrated the effec-
tiveness of such a self-tuning scheme. We believe this can be extended to numer-
ous other scenarios. The success of such self-tuning primarily depends on the
quality of the predictions by machine learning model followed by bottleneck
component identification. Experiments with (i) adaptation of other learning
algorithms to real-time scenarios, (ii) more sophisticated real-time bottleneck
diagnosis algorithms and (iii) corrective actions using the large array of tuning
options provided by the system vendor, other than simple throttling, are possible
extensions to the ideas explored in this paper.
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Abstract. With the increasing demand of dynamic graph data analysis,
mining communities in time-evolving data has been a research hotspot.
However, traditional community detection methods have efficiency issue
in the huge dynamic network data and rarely consider about overlapping
communities. In this paper, we first propose a centrality-based local-first
approach for overlapping community discovery in static network, called
CBLF. Different with the traditional top-down approach, CBLF detects
communities from central nodes and theirs neighbors which conforms to
reality better. Then we present a novel evolutionary community detection
approach called CBLFD based on this effective approach and sequence
smoothing mechanism. Experimental results on real-world and synthetic
datasets demonstrate that these algorithms achieve higher accuracy and
efficiency compared with the state-of-art algorithms.

Keywords: Dynamic networks · Overlapping communities · Commu-
nity detection · Evolutionary clustering

1 Introduction

Recently community detection has attracted extensive attention due to their
ubiquity and generality of modeling. Furthermore, dynamic networks gains more
and more attention due to the topology structures of the networks will change
constantly over time in real world, such as Internet traffic data network, paper
co-authorship network and dynamic social network. Therefore detecting commu-
nities on dynamic networks are of significant meanings for revealing important
information hidden in networks. There are many studies about community detec-
tion. However, these methods detect communities on a global view, while it is
difficult to obtain the total structure on a large scales. Besides, these methods
rarely consider about detecting overlapping communities on dynamic networks
and have poor performance in highly overlapping community.
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In this paper, we first propose a novel approach for analyzing overlapping
communities in static networks called CBLF and then put forward its dynamic
version—CBLFD. Our main contributions in this paper are as follows: (1) We
design a novel metric called ego centrality to find out the central nodes, which
are more likely to have multiple community membership and guide the evolu-
tion process of their neighbors. So we can use ego centrality to naturally detect
overlapping communities in dynamic network. (2) To the best of our knowledge,
our work is the first one that providing a novel local-first perspective from the
ego network in dynamic network. (3) We design a new concept called commu-
nity relevancy to locate the most relevancy community in previous timestep and
reinforce the community results in current timestep. This concept also provides
convenience to analyze the evolutionary clustering results on dynamic networks.
(4) Accuracy improvement over other state-of-art methods for detecting highly
overlapping communities in dynamic network.

The rest of this paper is organized as follows: we introduce the related work
about community detection and evolutionary clustering in Sect. 2. Next, we intro-
duce our algorithm in Sect. 3. The experimental results and analysis are provided
in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Related Work

Since the importance of revealing functionality in social network, community
detection has been one of the research hot spots in recent years. Besides classical
static unoverlapping communities, numerous techniques have been developed for
overlapping communities. In 2005, Palla [11] first put forward the significant
meaning of overlapping community and propose a clique percolation algorithm
(CPM) to detect overlapping partition by searching adjacent cliques. Ahn et al.
proposed Link clustering [1] for hierarchical clustering. Many research addressed
this problem by a wide spread algorithm—label propagation process [12] such
as SLPA [17] and COPRA [5]. However, these methods above suffer from poor
performance with highly overlapping density, and usually detect communities in
a global perspective.

Dynamic networks have also attracted increasing interest for the great poten-
tial in capturing natural and social phenomena over time. And evolutionary clus-
tering is an important method for dynamic community detection in the field of
dynamic network research. Chi et al. extend the concept of similarity and propose
an evolutionary spectral clustering method [3]. Tang et al. design an evolutionary
clustering framework based on spectral clustering for detecting communities on
multi-features networks, which can handle the evolution of edges between nodes
[15]. Kim et al. propose an evolutionary clustering method based on grain and
density [6].

The major differences between our method and the state-of-the-art
approaches are that: (1) We emphasize local first which detect communities
from the view of central nodes rather than the perspective of the whole network.
(2) We can find the overlapping community in dynamic network at the same
time.
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3 Proposed Method

3.1 Preliminaries

The main problems that this paper need to solve are: (1) Detecting the over-
lapping communities in dynamic networks. (2) Tracing the evolving process of
communities between adjacent timestamps and finding out their corresponding
relationship.

In order to define community in an appropriate grain and describe the
evolution process of communities, herein we introduce some basic concepts
first. Given a dynamic network G = <G1, G2, . . . , Gk>, which is consti-
tuted of a sequence of networks at k timestamps. And Gt(Vt, Et) is a snap-
shot of the dynamic network at time t, in which Vt represents the node set
and Et is the set of edges. We can detect the community structure CRt of
the network in the snapshot Gt by clustering algorithm. The ego network of
node v ∈ Vt is a subgraph G′

t(V
′
t , E

′
t), denoted by EN(v), in which V ′

t =
{x| {v, x} ∈ Et, x ∈ Vt}

⋃ {v}, E′
t = {{u, x} |u, x ∈ V ′

t , {u, x} ∈ Et} . When we
delete vertex v and all the edges attached to v from its ego network EN(v), we
got the neighborhood network N(v) = {V ′′

t , E′′
t }. V ′′

t = {x| {v, x} ∈ Et, x ∈ Vt},
E′′

t = {{u, x} |u, x ∈ V ′′
t , {u, x} ∈ Et} . Then the neighborhood communities

NC(v) of node v ∈ Vt is the partitions of its neighborhood network N(v). So the
ego communities of node v is the set of its neighborhood communities including
the ego node itself.

Similar ego communities can be overlap, and merged into a bigger global
communities. So we need to describe the similarity of two communities. For two
communities C1 and C2, the similarity ComSim(C1, C2) is defined as follow

ComSim(C1, C2) =
|C1 ∩ C2|

min(|C1|, |C2|) (1)

3.2 Ego Centrality

The global community could be obtained by merging similar ego communities
with Eq. 1. However taking every node’s ego communities into consideration is
time consuming and may lead to redundant results. So we need a more effective
approach. In 2014, Rodriguez found that cluster centers are characterized a
higher density than their neighbors, and by a relatively large distance from
points with higher densities [14]. Inspired by his idea, we propose a new metric
called ego centrality to find community centers in network. We first introduce
local density ρ(v) for node v to pick up the most influent nodes.

ρ(v) =

∑
u∈Neighbors(v) w(u, v)

N − 1
(2)

where N is the number of nodes in Gt, Neighbors(v) = {u|{u, v} ∈ Et}. When
in unweighted network, it can consider as for ∀u ∈ Neighbors(v), w(u, v) = 1.
So the local density degenerates to the normalized degree of node v. Then use
local similarity δ(v)to choose the representative central nodes:
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δ(v) =

{
max(sim(u, v)) ∃u ∈ Neighbors(v), ρ(u) > ρ(v)

min(sim(u, v)) ∀u ∈ Neighbors(v), ρ(u) < ρ(v)
(3)

where sim(u, v) is the similarity between u and v. Here we use Jaccard similarity:

sim(u, v) =
|Γ (u) ∩ Γ (v)|
|Γ (u) ∪ Γ (v)| (4)

where Γ (u) = {x|x ∈ Neighbors(u)} ∪ {u}. Based on this two metric, the ego
centrality γ(v) is defined as the ratio between ρ(v) and δ(v).

γ(v) =
ρ(v)

δ(v)
(5)

3.3 The Detection Algorithm for Static Network

Now we can present our solution to the static overlapping community detection
problem. Our method is based on this idea: the cluster centers have a large scope
of influence on more nodes, and they may take part in more communities. So we
filter these centers and make their neighbors vote for which communities the cen-
ter have joined by label propagation algorithm [12]. Our Centrality Based Local
First algorithm (CBLF) contains three main phases: calculating the ego central-
ity and sorting nodes; using improved label propagation algorithm to find local
communities and merging these local communities to get global communities.

In the first phase, all the nodes’ ego centrality are calculated. Firstly, the
local density of every node and the Jaccard similarity between its neighbors are
calculated. If node v is the most influent one which has the highest local density,
we make its local similarity lowest to away from other centers; otherwise we make
the maximum similarity among its neighbors as its local similarity. Then the ego
centrality of every node is obtained by Eq. 5. Finally the nodes are sorted in a
descending order according to this measure.

Based on this order, every unvisited central node is treated as an ego, then we
extract the neighborhood networks of it. Next the label propagation algorithm
is employed on its neighborhood network to find neighborhood communities. We
only detect ego communities from every unvisited central nodes, which can pre-
vent duplicate detection and reduce time complexity at the same time. Herein,
we use the label propagation algorithm (LPA) [12] to detect local ego commu-
nities because of its simplicity and efficiency.

Finally in the third phase, this ego is added to the set of neighborhood
communities to obtain its ego communities. Then the similarity between these
ego communities and the already existing community sets are compared, and
the similar local communities are merged to get a global community. We used
Eq. 1 to compute the similarity.

3.4 The Detection Algorithm for Dynamic Network

From the discussion above, we can solve the overlapping community detection
problem in static network by a local-first approach. It is not enough, because
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the real networks are dynamic over time. So in this section, we propose a novel
dynamic algorithm based on CBLF algorithm.

In order to guarantee that the communities don’t change dramatically over
time, we also need to know the relationship of the two communities at previous
timestamp in the sequence smoothing framework. So We first introduce a new
concept called community relevancy to depict the relation of two ego communi-
ties between time t − 1 and time t, then we put this relevancy into a sequence
smoothing framework which trade off the history quality with snapshot quality.

The community Relevancy of two communities Cm,t and Cn,t, denoted by
rel(Cm,t, Cn,t), is defined as follows:

rel(Cm,t, Cn,t) =

max
Cp,t−1∈CRt−1

|Cp,t−1 ∩ (Cm,t ∪ Cn,t)|
|Cm,t ∪ Cn,t| (6)

where Cm,t is a community m at time t. The community relevancy helps us locate
the most relevant community Cp,t−1 with Cm,t ∪ Cn,t in previous timestamp.

Evolutionary clustering under the temporal smoothness framework usually
uses a cost function traded of the history quality with snapshot quality. Here we
use a parameter α to trade off the similarity between two communities in current
snapshot twith the relevancy between them in previous snapshot t−1.And η is also
a user-defined parameter for controlling the occurrence of community merging:

cq = α · sim(Cm,t, Cn,t) + (1 − α) · rel(Cm,t, Cn,t) ≥ η (7)

From Eq. 7 we can know that when α is large, the community detection result
will have a strong bias towards the community similarity and reflect the real
topology structure of the network at the present timestamp to a great degree.
While α is small, the result will put more weight on the community relevancy,
namely the community result at present will be similar with the result at pre-
vious timestamp to a large extent. Specially, the equation only contains the
community relevancy when α = 0. When α = 1, community similarity is the

(a) α = 0.8 (b) α = 0.2

Fig. 1. The effect of parameter α for evolutionary clustering (Color figure online)
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only item, causing the evolutionary clustering degraded into static network clus-
tering because it just considers the topology structure of the present network.
Figure 1 demonstrates the effect caused by different values of α. We can see from
Fig. 1(a) that when α = 0.8, clustering result reflects the real structure of the
current network and a new community {3, 4, 7, 8, 13} is found in green color.
When α is small, like Fig. 1(b), the size of new local community becomes smaller
or even vanishes when α = 0. So various value of parameter α controls the level
of preference to current similarity and previous relevancy. So we can firstly detect
ego communities of the unvisited ego center, and then merge these communities
by Eq. 7. Finally, the global communities can be obtained. The pseudo-code of
the CBLFD are specified in Algorithms 1 and 2.

Algorithm 1. CBLFD
Input: Network Gt = (Vt, Et), CRt = ∅, CRt−1, Smoothing parameter α ∈ [0, 1],

Merging parameter η ∈ [0, 1]
Output: Global community set CRt

1: CaculateCentralitySort(V )
2: for all v ∈ V do
3: visited.put(v, False)
4: end for
5: for all v ∈ Vt do
6: if visited.get(v) == False then
7: N(v) = EN(v) − v /*Delete the ego and all the edges attached to it*/
8: NC(v) = LabelPropagation(N(v))
9: for all C ∈ NC(v) do

10: C ← C ∪ {v} /* Add the ego to local communities for overlapping commu-
nities*/

11: CRt ← EvolutionMerge(CRt, CRt−1, C, α, η) /*Use Sequence Smoothing
to merge local communities into global communities*/

12: end for
13: for all u ∈ EN(v) do
14: visited.set(u, True) /*Set the visited flag*/
15: end for
16: end if
17: end for
18: return CRt

From Algorithm 1 we can know that each node in the network is just com-
puted once. Taking each node as a center, its neighborhood network can be
obtained through scanning, and label propagation algorithm is used to detect
the local communities (Line 8). Then we put the central node into every com-
munity detected to form the ego communities (line 10). Next, we merge these
ego communities into global communities according to Algorithm 2 (Line 11). In
Algorithm 2, similarity between two communities in current snapshot (Line 7)
and the relevancy in previous timestamp (Line 8) are calculated. Then a tradeoff
between this two measures guides the merging phase. Eventually the final global
communities CRt are detected.
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Algorithm 2. EvolutionMerge
Input: CRt, CRt−1, C, α, η ∈ [0, 1]
Output: CRt after merging
1: MergeFlag = False
2: for every C′ ∈ CRt do
3: /*If two communities are the same, no need to merge*/
4: if sim(C′, C) == 1 then
5: return CRt

6: end if
7: sim(C′, C) = |C′∩C|

min(|C′|,|C|)

8: rel(C′, C) =
max

Ct−1∈CRt−1
|Ct−1∩(C′∪C)|

|C′∪C|
9: if α · sim(C, C′) + (1 − α) · rel(C, C′) ≥ η then

10: U = C′⋃C
11: CRt = CRt − C′

12: CRt = CRt

⋃
U

13: MergeFlag = True
14: end if
15: end for
16: /*Merge unsuccessfully*/
17: if MergeFlag == False then
18: CRt = CRt

⋃
C

19: end if
20: return CRt

For example, in Fig. 1, we compute the clustering result at time t on the
condition that α = 0.8. If we know that the ego community {1, 2, 5} of node
1 has been in global communities, and the next node to handle is node 4. We
can detect its ego community as {3, 4, 6, 13}. Now we compute the value of cq
according to Eq. 7: cq = 0.8 × 1/4 + 0.2 × 6/7 ≈ 0.371. So two ego communities
can be merged into a new community {1, 2, 3, 4, 5, 6, 13} as long as the para-
meter η < 0.371. Otherwise, the two communities exist in global communities
simultaneously. When α = 0.2, cq = 0.2 × 1/4 + 0.8 × 6/7 ≈ 0.736. So only the
parameter η > 0.736, the two communities will not be merged.

The merits of algorithm proposed in this paper are as follows: (1) Handling
center nodes to avoid redundancy and unnecessary calculation. (2) Using the
strategy of local first to avoid the constraint that the whole network structure
should be clear before clustering and shows a kind of democracy that each node
can vote for their center’s community by label propagation algorithm. (3) Find-
ing out ego communities for center nodes, so some nodes belonging to multiple
communities can be divided into many local communities, resulting in overlap-
ping communities by merging.
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4 Experimental Results and Analysis

4.1 Datasets and Evaluation Metrics

Synthetic Datasets. For static network, we used the Lancichinetti-Fortunato-
Radicchi (LFR) [8] benchmark. We set the number of nodes is 1000, the mixing
parameter is μ = 0.1 and the number of memberships of the overlapping nodes
Om is from 2 to 7. For dynamic networks, we adopt the tool in [4] to generate
5 groups of dynamic networks that contain 1000 nodes and 10 timestamps. The
5 groups of networks corresponding 5 evolution events: birth and death, expend
and contract, merge and split, hide, switch.

Real-World Datasets. For static algorithms, we evaluate the performances on
real-world network: karate, high school, books, dolphins, lesmis and netsci which
are all available from Network Data Repository1. For dynamic networks, we used
the dynamic annotated networks: DBLP2 and Enron3. DBLP contains 2,723
nodes, 91,470 edges and 9 timesteps, and we used the number of publications as
its qualitative attribute which mentioned in detail in evaluation metrics. Enron
contains 2,356 nodes, 250,179 edges and 12 timestamps, and we used the TF-IDF
of email key words as its qualitative attribute.

Evaluation Metrics. For synthetic networks whose communities are already
know, we adopt expanded Normalized Mutual Information (NMI) for overlapping
community [7]. For real world without ground truth, we use the overlap modu-
larity Qov [10]. NMI and modularity are too strictly depend on graph structure
and there is no consensus on the definition of what a community should look
like in academic so far. It’s unclear whether a particular mathematical defini-
tion is correct. So we used the atomic attributes attached with nodes which are
regarded as quality attributes of nodes. Quality attributes don’t belong to the
network structure but they define the nodes in a better way. Here, we introduce
the concept of community quality according to the quality attributes of nodes
as:

CQ(Pt) =

∑
(v1,v2)∈Pt

|QA(v1) ∩ QA(v2)|
∑

(v1,v2)∈Et
|QA(v1) ∩ QA(v2)| (8)

where Pt is a partition of Gt and QA(v) denotes the quality attributes of node
v. The greater the value of CQ, the bigger the possibility that similar nodes are
in the same community. This equation aims at categorical attributes. When it
comes to numeric attributes, we used the cosine similarity.

4.2 Experiments Settings

For static network, the compared algorithms are SLPA [17] and COPRA [5],
which have better performance than the other state-of-the-art algorithms [16];

1 https://networkdata.ics.uci.edu.
2 http://www.informatik.uni-trier.de/∼ley/db.
3 https://www.cs.cmu.edu/∼./enron/.

https://networkdata.ics.uci.edu
http://www.informatik.uni-trier.de/~ley/db
https://www.cs.cmu.edu/~./enron/
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and Link, a representative hierarchical link clustering algorithm [1] and CPM
[11]. For dynamic network, we select AFOCS [9] and iLCD [2]. AFOCS is a
two-phase framework for detecting overlapping communities and also tracing
the evolution of overlapping communities in dynamic mobile networks. iLCD
is an efficient evolutionary clustering method via adding edges and merging
similar edges for dynamic overlapping community detection. Our experiment is
conducted on a Intel Core2 Quad CPU 64 bits @ 2.66 GHz, equipped with 4 GB
of RAM.

4.3 Experimental Results on Static Network

In this section, we evaluate the performance of the static algorithm CBLF. We
use the overlapping NMI, overlapping modularity and community quality to
measure the algorithms on both synthetic networks and real world networks.
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Fig. 2. The overlapping NMI values for LFR networks with different Om and μ values

Firstly, we compare these algorithms in terms of NMI values on twelve syn-
thetic networks with different Om and μ values. Results are shown in Fig. 2(a)
and (b) respectively. Figure 2(a) depicts the NMI values for three algorithms with
/mu = 0.1 and Om changes from 2 to 7. We can observe that CBLF achieves
best performance among SLPA and COPRA when n = 1000 in Fig. 2(a). When
n = 5000, CBLF achieves a comparable result with COPRA in Fig. 2(a), (b). In
Fig. 2(b), when Om = 5 and μ changes from 0 to 0.8, we can observe that CBLF
achieves a comparable result in both n = 1000 and n = 5000.

Then, we evaluate the Qov scores of these algorithms in six real networks.
From Fig. 3(a), we can observe that CBLF achieves comparable and relative
stability performance compared with other algorithms. SLPA and COPRA have
fluctuating Qov scores while CBLF is much more stable over different datasets.
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Table 1. The community quality scores for annotated datasets and each static
algorithms

Dataset CBLF SLPA COPRA Link

Congress 5.49 3.26 3.34 5.47

IMDB 15.63 9.85 2.43 1.69

To avoid the biased evolution metric as mentioned in Sect. 4.1, we also eval-
uate the community quality of different algorithms on two static annotated net-
works, as showed in Table 1. In this case, CBLF outperforms the other static
overlapping algorithms.
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Fig. 3. Comparation of Qov values for static networks and dynamic networks on real-
world datasets

4.4 Experimental Results on Dynamic Network

Next, we analysis the performance of CBLFD. In order to compare the accuracy
of dynamic community detection algorithms, firstly, we apply CBLFD on 50
dynamic LFR networks. Figure 4 demonstrates the comparison of several algo-
rithms on their overlapping NMI scores with different timestamps.

From Fig. 4, we can observe that our algorithm CBLFD can deal with overlap-
ping communities in dynamic networks, comparable to AFOCS and better than
iLCD as showed in Fig. 4. iLCD achieves a tolerable NMI scores for the birth and
death stage, but fails for other stages. This phenomenon had already been men-
tioned in the paper [2] that it’s not yet able to deal with the natural evolution of
communities, such as merging and splitting. Then we compare the overlapping
modularity scores for CBLFD, AFOCS and iLCD on two real-world networks,
as showed in Fig. 3(b). From Fig. 3(b), we find that in both Enron and DBLP
networks, CBLFD gains obvious advantage over AFOCS and iLCD in terms of
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Fig. 4. Comparation of overlapping NMI values for CBLFD, AFCOS and iLCD on
LFR with different timestamps

overlapping modularity scores. This also indicates that CBLFD is appropriate
for dynamic real-world networks. Moreover, we can also find that the iLCD algo-
rithm got low Qov values for both two real networks which had already discuss
in the paper [2]. At last, we compare the performances of these three algorithms
in terms of the community quality on Enron and DBLP datasets respectively.
For Enron dataset, as an email often contains many stop-words and unimpor-
tant words, we first filter the stop-words and words occur more than 19000 times
or less than 10 times, then compute the frequency-inverse document frequency
(TF-IDF) [13] values for every remaining words. TF-IDF is a numerical statistic
aims at reflecting how important a word to a document which is widely used in
information retrieval and text mining. Then we use the TF-IDF values of the set
of email words as the email sender’s qualitative attributes. Finally, we use Eq. 8
to compute the partition’s community quality. The results are shown in Table 2.
From Table 2, we can see that CBLFD achieves a large margin over other algo-
rithms on community quality. Because CBLFD detects communities in a local

Table 2. Community quality of three algorithms when using DBLP and Enron dataset

Dataset Timestamp 1 2 3 4 5 6 7 8 9 10 11 12

DBLP CBLFD 0.5 10.3 41.5 11.2 12.4 13.5 15.7 16.7 16.8 - - -

AFOCS 0.8 1.5 0.8 0.8 0.9 1.7 1.2 7.0 11.6 - - -

iLCD 0.5 0.7 0.7 0.9 0.7 0.9 1.0 9.3 1.2 - - -

Enron CBLFD 7.9 6.4 7.4 8.2 9.2 8.3 7.6 8.2 8.8 10.0 9.2 7.1

AFOCS 3.6 3.0 5.1 4.4 8.9 3.4 3.3 3.3 3.3 8.1 7.6 2.0

iLCD 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.1
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level and similar nodes are easier to be merged into one community, so the final
partition results are overlapping with good community quality meanwhile.

In conclusion, our algorithm shows its superiority in real networks, proving
it is more suitable to detect overlapping communities in dynamic networks and
more suitable for real world datasets.

5 Conclusions

In this paper, we propose a novel evolutionary community detection algorithm.
Different from the other traditional algorithms, this approach observes the net-
work structure from a local-first approach via the central nodes and can find
overlapping communities in dynamic network. The experimental results on syn-
thetic and real-world networks indicate that our algorithm performs well with
other state-of-art algorithms.
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Abstract. In this paper we investigate the performance of machine
learning based recommender system with real-time log streaming on a
large real-estate site, in the views of system robustness, business produc-
tivity and algorithm performance. Our proposed recommender system,
providing personalized contents as opposed to item/query based rec-
ommendation, consists of a real-time log processor, auto-scaling recom-
mender API and machine learning modules. System is carefully designed
to let data scientists focus on improving core algorithms and features
(instead of taking care of distributing systems) and achieves weekly
release cycle in production environment. On Suumo, the largest real-
estate portal site in Japan, the system returns more than 99.9% of the
API calls successfully in real-time and shows finally a 250% improvement
of conversion rate compared to the existing recommendation. With its
flexible nature, we would also expect the system to be applied in various
kinds of real-time recommendation in the near future.

Keywords: Recommender system · Real-time log processing · Real-
estate

1 Introduction

It has become rather common to search the Internet for information to decide
whether to purchase a product. In real-estate domain, web portal sites providing
property description and reviews has come to play a rather significant role in
a customer’s purchasing process, too. Yet despite all the efforts on creating
convenient search features, it could be pain-taking and confusing to collect all the
necessary information as the site becomes enormous. Consequently, it is of great
value for the site to automatically learn the user’s preferences and recommend
relevant products accordingly.

Suumo.jp (Suumo, see Fig. 1 for the interface) is the largest real-estate adver-
tising site in Japan for buyers, sellers and renters. With approximately 10 million
property listings, it delivers more than 270 million page views to 14 million
unique visitors per month.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 521–538, 2017.
DOI: 10.1007/978-3-319-57529-2 41
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Fig. 1. Suumo interface on the smart-
phone site. The left figure is the top
page and the right figure is an example
of a detail page of property.

Fig. 2. Typical page transition on
Suumo and our recommendation tar-
get.

A user usually queries multiple times and reads on many pages before they
could find the best fit for themselves. It is such a hard process that a lot of
users become frustrated and leave, and even some of those who do request on a
purchase to agents are not sure whether they have found the most satisfactory
home. Suumo tries to improve our users’ experience by building a recommender
system with data generated in the searching process. Such data, generally web
access logs combined with property listing information, contains rich information
about the user’s preferences on residence and lifestyle, which could be used to
improve matching precision.

Currently, more than 10% of conversions (CVs) at Suumo are directly
resulted by said recommender system, making it an important part of the rev-
enue structure; a typical page transition of users is shown in Fig. 2. Yet the
existing system is mainly simple association analysis (Listing 1.2 is often viewed
after Listing 1.1 etc.) or contents-based recommendation with similarity metrics
(property listing A and B are in the same location and have similar price and
size, so it is natural to recommend B to users viewing A). Sophisticated models
were hard to deploy due to both system limitations as well as algorithm designing
problems.

A huge reason of this comes from the lack of available transaction data. For
example, a user of real-estate sites is less likely to repeat the purchase in the
coming years due to the longevity of real-estate related-decision. Consequently,
there are less CV data samples compared to those for e-commerce sites, and a
large percentage of users exit the site before even reaching the detailed listing
page. Such situation poses a lot of challenges for recommender systems.

In this paper, we address these challenges by building an recommendation
API backed up with real-time log processing platform. The particular model
adopted here is the gradient boosting method. We try to predict the property on
which the user most likely requests information to agents (CV), and display said
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property in the recommendation widget. To evaluate the solution’s performance,
we also set up A/B tests which compare existing contents based recommender
to our recommendation API. All above is developed as a site feature on Suumo.

Key contributions include:

– Insights on Building Recommender System on Real-Estate Domain
Despite being a mainstream feature for e-commerce sites and contents stream-
ing services, real-estate sites appears to have some trouble introducing machine
learning based real-time recommender system. This could be caused by the
lack of online purchase data, thus difficulty in learning the user preference.
We provide insights on building machine learning based recommender system
for such sites by generating recommendation based on the whole user history
instead a single query. And these insights would also be applicable to other
domains like car-sale or recruiting, which tend to share the same problem.

– Collaboration of Engineers and Data Scientists for Short Release
Cycles
To improve the system leveraging user feedback, short release cycles are cru-
cial. But building distributing algorithms for millions of users could be hard
itself, and often slows down scientists’ model designing. We adopt the architec-
ture often used in micro services these days, using middle-wares to distribute
API requests to single-thread programs containing core model description, on
which scientists put great efforts improving.

The paper is organized as follows. In Sect. 2 we list related works. In Sect. 3
we present the overview of our approach, along with the system architecture
explanation. The experiment description are provided in details in Sect. 4, and
the results on both online and offline tests are demonstrated. We conclude our
investigation and talk about the future work in Sect. 5.

2 Related Work

In this section we list the previous work done in real-time recommendation
efforts, rapid release cycles, and the deployment of recommender systems in
real-estate web sites.

2.1 Real-Time Recommendation

Modern web sites, such as e-commerce, news, video sharing, and music streaming
service, come with recommender systems almost by default these days, to provide
better usability in contents searching. User purchase logs (or the equivalent of
it) are commonly collected to improve recommendation precision, as described
in [1]. Since these logs provides rich information about user preferences, it is
quite common to apply machine learning approaches (computation-expensive)
to enhance recommendation quality, yet the nature of said sites expects low-
latency for the recommender systems. Hopfgartner et al. [2] provides a tutorial
for real-time recommender systems.



524 S. Li et al.

Freno et al. [3] discusses this problem for web scale, real-time ranking model.
It is common practice to train a new model on fresh log at regular intervals,
e.g. daily or weekly. Such requirements of training time of the model is criti-
cal in the industry scenario, meaning that the models to use are limited. Also,
the real-time or quasi real-time response requirement (less than 2 s from business
requirement in our case) poses limited access to databases on response time. This
restricts information available at prediction. In this study, an one-pass ranking
model is proposed which achieves enough prediction quality with frequent model
updates. To tackle training time requirements for novel machine learning algo-
rithms, Wang et al. [4] proposes online learning of a Boosting Tree. And Bottou
et al. [5] provides stochastic optimization tools for ranking purpose.

2.2 Rapid Iteration

Carrying out new idea in quick iteration is considered important, especially for
the real-world recommender systems where the site itself along with its users
could be ever-changing.

Yet traditional approach of collaborating between data engineers and scien-
tists doesn’t work well for rapid iteration. O’Sullivan [6] approaches this problem
by blending teams.

Schleier-Smith [7] applies Agile development process to data analysis too,
and build an architecture which can deploy new idea within two weeks. Using
existing frameworks is also a common practice, such as [8]. Our approach is
similar to [6] in the sense we encourage deep collaboration between engineers
and scientists, but we solve the scale problem independent of model used. Short
release cycles mentioned in [7] is also achieved in our experiment.

2.3 Real-Estate Recommendation

Yuan et al. [9] develops an online homebuyer’s search system based on case-base
reasoning and ontology structure. Ho et al. [10] proposes fuzzy goal programming
model with S-shaped utility function and use it to provide more powerful search
system and conduct laboratory level testing. To our best knowledge, literature
on real-estate sites with state-of-art machine learning recommender systems is
scarce.

Correspondingly, deployment of state-of-art recommender systems is rarely
seen on real-estate sites, and we consider the following reasons relevant. First,
users don’t repeat purchase frequently, leaving fewer data points for Customer
Relation Management (RMF analysis for example), and algorithms based on
it don’t work properly. Secondly, data management on property itself appears
less developed. In this work we put the goal of learning as information request,
producing more data points for learning. In concern to data management issues,
new data storage system is designed to integrate data for future learning.
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3 Proposed Approach

3.1 Use Case: Recommendation Widget

On a typical smart-phone Suumo detail page, the property’s images, description
(price, size, distance from the nearest station etc.), and agent information are
displayed. When a user finishes reading all of this, the recommendation widget
(see Fig. 3) comes in with commonly 5–10 listings. This process is supposed to
take 10–20 s on average, which leaves the recommender a few seconds to generate
its contents.

We use following CONVERSION RATE (CVR) to measure recommendation
performance. CV is an info request to the agent on a property listing (typically
to show interest on purchasing) in Suumo’s case.

CVR =
info requests on recommendation

recommendation clicks
(1)

For EC sites, this CV information (i.e. purchase logs) is utilized for modeling,
yet as mentioned in previous section, real-estate sites have less data points and
we have to use more explicit data, e.g. click-through logs, instead. Note that
while less sparse than CV logs, click-through logs obviously provide less insights
on predicting CV.

3.2 Early Attempts

In this section we introduce existing recommendation systems on Suumo.

Contents-Based Recommendation. This earlier recommendation, depicted
in Fig. 3, is a hybrid model of collaborative filtering and contents-based filtering.
On a daily batch, we first do association rule mining on weeks of web logs. The
output contains a recommendation candidate lists (typically about 100 property

Fig. 3. Suumo interface for recommending relevant property.
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listings or less) for each property listing based on confidence, support and lift.
The recommender is a simple implementation of content-based filtering where
we calculate all the numerical attributes’ difference between property listings
(Euclidean distance for geo-location) and simply sort the candidates by the
average similarity. No specific weighting scheme is applied on attributes. We
also could track which attribute is appealing and use it as the recommenda-
tion description (reason to recommend) shown in Fig. 3 (lower price, nearer to
the station etc.). In the past A/B tests, we have found that recommendation
description leads to more than 25% improvement on the click through rate.

But this model tends to circle around user’s first queried location and has
barely a chance to provide new insights to the user. It is also hard to tell how
different this recommendation is from the user’s List page. And for obvious
reasons the recommendation is not personalized.

Incremental Collaborative Filtering. According to the methods described
in [11], the similarity of users, items, and that of user-item pairs, could be
described by “pheromones structures”. By estimating what the authors call
evaporation rate, we could build “pheromones structure” for each user with their
viewed items, and generate recommendations to users with similar “pheromones
structure”.

We implemented this algorithm in comparison with contents-based recom-
mendation described previously on another page of Suumo, where Incremental
Collaborative Filtering produces 20% better of CVR. On the other hand, it
requires certain amount of page views for proper estimation on each candidate
item, thus new items have less chance to be recommended.

Frequency and Recency on Viewed Item. Another try on user log usage
at Suumo is the calculation of user’s Frequency and Recency on Viewed Item
(FRVI). It is intuitive that the more page views a user has, and the more recently
he has visited the site, it is more likely he would continue to view the items.

When we define the probability function a monotonically increasing one,
we could infer the user’s probability to come back, from the number of times
that the user views a item and the last time he visited. For some segments
such monotonicity does not apply, especially when there are too few samples
to get valid result. To solve this, we introduced convex quadratic program-
ming to smooth the results, and could finally use the probability to produce
recommendations.

This model in [12] has a 50% increase in CVR, compared to displaying
recently viewed items. Though providing personalized contents, it is limited to
what the user has already seen, and lacks serendipity.

3.3 Proposed Recommender System

Background. It is (unfortunately) common for companies to have complex
existing systems and code bases, sometimes completely outsourced, making it
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rather hard for a scientist to build recommendation models as site features, let
alone scripts leveraging real-time logs. Suumo is in the same situation, and the
scientists dealt with it mostly by creating static files and let developing teams
take them in the existing systems on a regular basis. Deploying models described
in the Subsect. 3.2 took more efforts than one would expect, resulting in less
updating on built models and slow iterations for improving them. Needless to
say this situation remarkably limited big data usage at Suumo.

To better make use of all the data we have, it is necessary to build a rec-
ommender system that is not tightly coupled with the existing ones. Since we
have to generate contents dynamically, it should also be fast. With millions of
users the system is expected to scale. And last but not least, to get rapid release
cycles the system should be easy to use for scientists. To summarize, this loosely
coupled recommender system should be fast, scaling and accessible to scientists.

Overview. The proposed system consists of a streaming processor, a large
scale data warehouse for log storage, in-memory data storage for request time
calculations, a machine learning module, and finally a recommendation API, as
depicted in Fig. 4. With this design, we could hide all algorithmic parts from
other components of Suumo site. And since there is no need to modify other
components of the site, updates on the algorithms becomes more flexible and
reliable.

Latency. When the recommendation API is called, the system asks Key Value
Store (KVS) for not only user history, but also property information. At the
beginning we simply used the property ID as key, and the necessary information
as its value. Yet as information necessary to models increases, the processing
time gets longer and footprint gets larger. When the system under development
started to take more than ten seconds to process input and score them, we
re-designed custom shared in memory data structure in consideration of the
model design. Since recommendation algorithms typically have a spares matrix
for input, custom columnar oriented data structure was created to keep property
information.

This drastically reduced the response time, as described in Experiment
section. Also, smaller footprint of input data allows us to put more data before-
hand that model might require, making frequent modifications easier to achieve.

In this way, we can provide highly personalized recommendations while
achieving quasi real-time response time as well as very short development
iteration cycles.

Scaling. The recommendation cluster leverages user log and property informa-
tion. Log, streaming down from the processor, is soon put in the in-memory
KVS. (Fine-grained master log data is processed on a daily batch, consistency
fixed later.) As described earlier, the property information DB, updated multiple
times a day, is also maintained in said KVS. By keeping all the input data in
memory, there is no need to access RDB to handle API calls.
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This enables the computing clusters to add nodes on demand, scaling-out
in rush hours and shrinking in size for quiet hours. For this experiment we
launched 9 instances with 81 processes for rush hours, and scale-out for other
larger recommendation task in the future comes quite easy.

We choose Redis for in-memory KVS because of its speed. Master node, its
read replica and a back-up node are provided. Recommender clusters only access
to read replica, while master writable Redis node is only updated by streaming
services and batch jobs, which are responsible for user log update. The data size
for each node in our experiment is about 12 [GB].

In this way, KVS update does not affect front web experience and recommend
response time while fresh log data is available for most of the time. Access and
update to the data in KVS run parallel and asynchronously, make whole system
robust to delay and achieve high throughput.

Accessible Environment for Scientists. We train models with large scale
data warehouse using Hadoop technologies such as MapReduce and Spark,
to take advantage of large cluster computational power. At first, we used
MapReduce and Hive and later replaced part of system with Spark to construct
higher abstraction and enhance speed of development iteration.

We have also introduced Jupyterhub as our developing environment, so sci-
entists could manipulate months of user log data as they would on their local
machine, using the familiar Notebook interface.

The main language used in our system by both scientists and engineers is
Python, for its popularity in both fields.

There are many advantages of Python language like good libraries, active
communities, simple language specifications that is easy to learn for scientists,
general purpose nature that is powerful enough to construct complex software
systems etc. But for our recommender system, Python’s global interpreter lock
poses some challenges for utilizing multi-core processors under our low latency
high throughput response requirement.

Instead of banning the use of the language, to solve this problem and distrib-
ute the computation task, we introduce messaging oriented middle-ware (Rab-
bitMQ in our case) to send the requests to multiple nodes with Python calcu-
lation processes. In this way, from front web side, the API has stable response
time for large amount of inputs, whereas a scientist does not have to put much
efforts on dealing with massive parallelism with strict real-time restriction, and
could focus the improvement of the models.

Rapid Iteration. As one can infer from the (lack of) literature on real-estate
recommendation engines, simply applying known algorithms doesn’t guarantee
performance. Delicate engineering on models is required often, and short itera-
tion cycle is inevitable.

Fortunately, as the result of the efforts of making collaboration easier, we
are now able to achieve such iteration cycles. Moreover, since our scientist team
use Jupyter Notebook for their daily analysis, engineering team could integrate
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their infrastructure work to the same notebook file. Both members understand
contents of this notebook. Not only the scientists but also the engineers re-
produce scientists’ result and understand what problem now WE are facing.

This style of deep collaboration enables engineering team to automate and
optimizing analysis work, and reduce huge communication cost.

3.4 Model Design

In this paper we try to apply machine learning approach to the recommender
system on Suumo (namely, the real-estate industry in Japan) with the aim to
achieve the improvement of the CVR by means of personalizing the recommen-
dation.

Using the system architecture described in the Subsect. 3.3, we can use the
following three types of variables for model input.

– User’s latest information, ul.
ul is real-time search query information. When a user searches property under
various search conditions, such as price range and room layout structure, this
information is embedded in the URL. ul is stored in SEARCH INFO DB in
Fig. 4.

– User’s recent log, ur.
ur is recent log information of property that is browsed by a user on the
detail pages. This information contains price, area, distance from the nearest
station, and so on. VIEW HISTORY DB in Fig. 4 stores ur for each user; ur

is available in recent 3 months or up to 100 records for each user.
– Property spec, ps.

ps is spec information of property. ps includes information of property itself
like price and area; the latest and individual information is given to each
property. All information of candidate property for recommendation is stored
in PROPERTY INFO DB in Fig. 4.

We would like to construct a model whose input is a set of {ul, ur, ps} and
output is the score that reflects the likelihood of CV.

{ul, ur, ps} F−→ R (2)

where F expresses the model which assigns a score to the record composed of ul,
ur and ps; a higher score means higher chance of a CV. In the training phase,
we perform model training using the stored data. The training is done in batch
mode and described as

arg min
F

[
D∑
i=1

loss(yi, F ({ul,i, ur,i, ps,i}))

]
(3)

where D is the training data size, loss is some loss function and y is the CV flag
(0 or 1). In our case the data size D is O(106) ∼ O(107) and the typical loss
function is the logarithmic loss function. With respect to the recommendation,
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variables ul and ur are given for each user when he/she reaches a detail page
and the model scores all candidate property that exists in the same prefecture as
that of the latest property browsed on the page. The recommendation provides
a list of top N (typically N = 5) property.

Quite a few classification (or learning to rank) models are available for our
purpose, for example recently-developed the gradient boosting model [13] and
the Factorization Machines [14]. In order to include various user preferences, a
boosting method is a powerful technique since each weak learner captures the
local characteristic in the data. In addition, from the view point of the prediction
stability and the system maintainability, a model that needs less pre-processing
of variables is preferred; typically a tree-based model is suitable for this purpose.
As a first attempt, therefore, we adopt a gradient boosting decision tree (GBDT)
model which has high predictability and is robust to outliers and defects.

Gradient Boosting Method. Boosting is a well-developed method based on
an ensemble of weak learners. Here we focus on the gradient boosting algorithm
in which a weak learner is added in the functional gradient descent manner. The
gradient boosting is a flexible non-parametric statistical learning method and
shows a good performance in many applications [15]. In the predictive learning
problem, one has a system consisting of an output variable y and a set of input
variables x = {x1, x2, · · · , xp}. The goal is to estimate a function that mini-
mizes the expected value of some objective function l(y, F (x)) over the joint
distribution of all (y,x)

F̂ = arg min
F

Ey,x [l(y, F (x))] . (4)

In this paper we set the objective function as the binary log loss function,
l(y, F (x)) = −(1/N)

∑D
j yj log(pj), where pi = escorei/

∑
k escorek . We also add

L1 and L2 regularization terms to encourage generalization. The algorithm is
summarized as below:

Listing 1.1. Gradient boosting

1 Initialize model with a constant:
2 F0 = arg min

Δ

∑
i l(yi, Δ))

3 For m = 1 to M:
4 Compute the steepest descent direction:
5 −gm(xi) = − [∂l(yi, F (xi))/∂F (xi)]F (x)=Fm−1(x)

.

6 Find parameters by fitting a weak learner to pseudo residuals:

7 θm = arg min
θ,β

∑N
i=1 [−gm(xi) − βf(xi; θ)]

2 .

8 Find the weight via the line search:

9 βm = arg min
β

∑N
i=1 l(yi, Fm−1(xi) + βf(xi; θm)).

10 Update the model:
11 Fm+1 = Fm + βmf(;θm)).
12 Output FM = F (x; {βm, θm}M

m=1).

We use the XGBoost package [16] for building the prediction model.



532 S. Li et al.

Feature Engineering. As we explained, we have three types of model inputs,
ul, ur and ps. We relate them to three mathematical variables, numerical, cat-
egorical and URL variables, in order to treat machine learning models. Adding
the target variable to these, we handle the following four mathematical variables.

– Numerical variables.
Numerical variables like price are included in ur and ps. Although the range
of values for each variable is quite different, we use raw values from the view
point of the maintainability and the simplicity at the real-time processing.
A tree-based model can predict stable even in such a situation.

– Categorical variables.
Categorical variables like room layout structure are included in ur and ps.
Within categorical variables, the variables whose cardinality is too large (like
user id) are excluded since they are useless for the prediction. All the other
are converted into dummy variables in binary form; this is required by the
implementation of XGBoost.

– URL variables.
URL variables correspond to ul. They are user’s search conditions which are
selected from various options, such as the price range and the room layout
structure. These variables are parsed so that we can extract user’s queries.
We thereafter treat each query parameter as categorical variables.

– Target variables.
Target variable is the CV flag which takes the binary value, {0, 1}. As we
mentioned, the CV = 1 flag is assigned to the page-view where the request for
property information is clicked.

We treat the data as dictionary-like object which is composed of a combi-
nation of key and value (key:value). One important thing is that the keys of
the variables have to be matched between the training phase and deploy phase.
Hence we create the dictionary that maps each variable at the recommendation
to the correct key number of the training data, e.g. price → 4231. Following
this mapping dictionary, we translate the real time data ([variable, value]) into
the properly format (key:value), e.g. [price, 50000000] → 4231:50000000. The
mapping process requires time which can be a bottle neck for the real-time
recommendation. However, we optimize the processing, including the code and
the previously mentioned columnar data structure, which enables the real-time
recommendation. See Table 1 for examples of the data. The total number of
variables is a few times 104.

Making CV =0 Data. Machine learning algorithms for the supervised binary
classification construct models which distinguish the difference between CV = 1
and CV = 0 data. In the early stage of the project, we naively prepare the data
where CV = 1 is an actual request event for property information and CV = 0
is NOT. This is natural and no problem in many cases. However, this naive
assignment does not work well in the real-estate industry because many users
repeatedly watch similar property until CV, which makes it difficult to find the
difference between CV = 1 and CV = 0 data.

After many trial and error steps, we find that it is valid to make CV = 0 data
in the way user’s information is identical to CV = 1 data but spec information
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Table 1. Examples of the data

CV Explanatory variables

0 5:0 563:1 4231:43000000 10007:15 · · ·
1 5:1 563:0 4231:45000000 13210:1 · · ·
0 5:1 23:1 4231:0 13210:0 · · ·
· · · · · · · · · · · · · · · · · ·

is that of random property; if we have {ul, ur, ps : CV = 1} data, we make
corresponding CV = 0 data as {ul, ur, p

′
s : CV = 0} where p′

s is spec information
of property which is randomly chosen from the same prefecture property as ps. In
the sense of the classification, CV = 0 data is unlikely to be a CV; our randomly
sampling method for making CV = 0 effectively achieves the unlikeliness of CV.
The ratio of CV = 0 to CV = 1 is good to be 1:1–10:1 in our case, namely we
sample 1–10 p′

s for each ps.
This idea may be generalized to the case where each user tends to show many

similar behaviors until some sort of action.

Model Cascading. As we stated, we use numerical and categorical features;
their treatments, however, are not equivalent. Categorical variables are tend to be
sparse because of creating dummy variables using binarization, which leads the
boosting trees to favor numerical variables as branches. Because the branching
algorithm focuses on splitting numerical variables, the frequency of appearance of
categorical variables which are equally important for users is relatively reduced.

In order to adequately include the effect of categorical variables, we prepare
two functions; fc is the function whose argument is only categorical and fn only
uses numerical variables as input. Hence we decompose the score function as

F ({ul, ur, ps}) = Φ (fc({ul, ur, ps}cat) + fn({ur, ps}num)) (5)

where Φ is some linear sum function to compute the total score. Our concrete
steps of the recommendation using the cascading model is expressed in the fol-
lowing listing:

Listing 1.2. Recommendation using cascading model

1 Given ul and ur for a user on a detail page.
2 Get {ps,i} where i is the index of candidate property.
3 for each candidate i :
4 Compute scores fc({ul, ur, ps,i}cat) = sc,i.
5 Sort si in descending order.
6 Pick up˜top 1000 property, denoting ps,i′ .
7 for each candidate i′ :
8 Compute scores fn({ur, ps,i′}num) = sn,i′ .
9 Compute total scores as sc,i′ × (max {sn,i′}/ max {sc,i′}) + sn,i′

10 Sort candidate property ps,i′ by the total score, descending.
11 Return top N (typically N = 5) candidates.
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On line 6 we pick up top 1000 property since we would like to put empha-
sis on user’s search conditions and area information that are encoded into the
categorical variables, (because of business requirements). Because the scores of
categorical model fluctuate largely among each set of candidate property, this is
due to the sparseness of the categorical variables, they are re-scaled on line 9.

4 Experiment

4.1 Model Offline Test

Our goal in property recommendation is to recommend property in a way that
maximizes the CVR defined in Eq. (1). Although the key performance indicator
is the CVR, this is only evaluated on the A/B test and it is difficult to check the
model performance contributing to the CVR on the offline test. Here we assume
that the model showing a good performance for the offline data set is also useful
for the recommendation. We divide the offline data set into the training data
and the test data; the model is trained on the training data and evaluated on
the test data using the ranking metrics.

In this paper we use the nDCG and AUROC on the offline test. For our
purpose, these metrics can be used to evaluate the relevance of the page-view
which results in CV, which means that we are able to evaluate the relevant
combination of user information (ul and ur) and property information (ps) for
the CV.

Offline Performance. We evaluate the offline performance of the model with
O(107) data. Although this result is obtained in the early stage of the project,
it is not so changed through the project. According to the offline test, we find
the required data size of the model and the desirable data refreshing frequency.

Figure 5 shows the dependency between the data size and the performance of
the model. In this experiment, we train the model while increasing the data size
by 1 million and produce predictions for 7 million test data records. Although
the values itself are not so high due to the large number of the test data, we can
see both AUROC and nDCG improve with data size. This result suggests the
enough data size of the training is over about 15 million.

The effect of data freshness is also investigated. We first order the data in
ascending order according to the date and time, then build the models using
sliding date windows. The windows sizes are either one week or two weeks; the
data size of a day is about 1 million. Predicting for the fixed data (we here used
the last 4 million records of the data) using each model, we find that the model
should be replaced with the new one within a week. The result is shown in Fig. 6.

We evaluate other machine learning models, especially the Support Vector
Machine and the Random Forest. However it is difficult to build effective models
which are compared to the random classification, even after varying the parame-
ters. The GBDT is the prominent model for our purposes: the high predictability,
stability and scalability.
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Fig. 5. Data size dependency of the
model performances. The horizontal
axis is the data size of the training and
the test data is independent 7 million
records.

Fig. 6. Data freshness dependency of
model predict. The horizontal axis is
the freshness of the model; the left is
old and the right is new. The plot of the
two weeks model is disconnected due to
the limitation of the total data size.

Model Parameter Tuning. The model hyperparameters are inferred using
a sequential model-based optimization to minimize an objective function of the
validation set. We use the hyperopt package [17], applying tree-structured Parzen
estimator approach to the uniformly distributed XGBoost parameters, such as
the learning rate, the regularization coefficients and so on.

One of examples of optimized model parameters is shown in Table 2. The
parameters are for our final deployed model; we have two sets of parameters
since using the cascading model.

Table 2. Examples of optimized model parameters

Parameter description Category Number

Learning rate used in update 0.3 0.575

Required minimum loss reduction 1.6 1.275

Maximum depth of a tree 9 7

Minimum sum of instance weight 8 8

Sample rate of training records 0.8 0.85

Sample rate of columns 1.0 0.95

L1 regularization 0.775 0.675

L2 regularization 0.625 0.725

4.2 Results

Deploy History. In our project we have had more than 10 deployments within
three month, about once a week on average. The term “deployment” includes
both new models and new systems.
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Owing to the loosely coupled system we developed, flexible modeling and
reliable service deployment can be achieved.

In our process of trial and error, various type of models such as ranking
models and area specific ones are tried, and the key ideas of making CV = 0
data and the cascading model finally came up.

A/B Test. For the online A/B test, we compare the contents-based model
(CBM) described in the Sect. 3.1 and the proposed real-time models (we simply
call them GBDT).

In the early stage of the project, we did not achieve better result than the
existing model, CBM.

However, as repeatedly emphasized in this paper, our rapid iteration cycle
enables us to improve models, and so we can eventually construct the outper-
forming model adopting the cascading method and randomly sampled CV = 0
data.

We test the model for last 5 days of the project. The result is shown in
Table 3, the value is the average CVR (in % unit) within the period. We here
also put the results of the previous A/B tests where we compared the model
of our early attempts in the Subsect. 3.2: random property in the same area
(RPSA) recommendation and page-view ranking (PVR) recommendation. Our
final proposed model managed to provide high quality recommendations to users,
achieving 250% improvement when compared to CBM. Note that CVR in real-
estate sites varies with seasons even for the same algorithm, which is reflected
in the table.

Table 3. CVR [%] in the A/B test. B:A ratio means (CVR of the new model) ÷ (CVR
of the previous one)

Model Prev. 1 Prev. 2 This time B:A Ratio

RPSA 0.105 - - -

PVR 0.121 0.146 - 115

CBM - 0.265 0.310 181

GBDT - - 0.776 250

Personalized Site Experience. Following tables shows two recommendation
users’, picked up randomly, relocating processes using the recommender system.

We would expect the recommender system to help find the next neighborhood
after learning the user’s preferences, yet as shown in Table 4, user tends to stay
similar area in CBM’ case. The GBDT system depicted in Table 5, on the other
hand, helps user to relocate after a while. When we a take a look at the average
number of Cities that a user views, there is a slight increase for GBDT group of
users.
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Table 4. CBM

Time Pref City Price Via Rec.

06:20 Tokyo Shibuya 36990000 0

22:12 Tokyo Shinjyuku 29800000 0

15:04 Tokyo Suginami 25800000 0

15:20 Tokyo Suginami 25800000 0

15:23 Tokyo Suginami 26800000 1

15:23 Tokyo Suginami 28800000 1

Recommendation circles around the same

place despite that the user would like to

change location.

Table 5. GBDT

Time Pref City Price Via Rec.

20:42 Tokyo Nakano 46800000 0

20:43 Tokyo Mitaka 41800000 0

20:44 Tokyo Meguro 57900000 0

20:44 Tokyo Minato 53000000 0

20:46 Tokyo Shinjyuku 49800000 1

20:47 Tokyo Adachi 46800000 1

After a few clicks, the recommender learns

the user’s preference.

Response Time. During the A/B test, the system responses to 84% of the
requests under 1 s, and 99.9% under 2.5 s. And process is distributed almost
evenly across the computation clusters. As mentioned in 3.1, it usually takes
more than 10 s before user scrolls down to the recommendation parts. Should
the user read the page and get down to our recommendation widget, it should
be perfectly ready to view.

5 Conclusion and Future Work

The proposed recommender system meets the response time requirement and
shows a 250% performance improvement. Instead of providing query-based
results, we generate unique recommendation contents to each user according to
their click/viewing events. This result indicates that even the most subtle actions
could reflect on a user’s preferences and has a positive effect on predicting their
needs.

The recommender system as a framework also provides better business pro-
ductivity since it frees data scientists from dealing with distributing system, and
allows them to focus on building better core algorithms. This is achieved by
deliberate system design and deep collaboration with engineers.

For future work, we have found that in comparison to existing recommen-
dations, ours appear to work effectively during the first session, but this effect
decrease after the second session. It could be caused by some kind of over learn-
ing of user preference, leading the recommender to favor what the user have
already seen after a few sessions. The future models should consider to lower
the importance of viewed items in a algorithmic way. Extending this system to
other pages and contents, such as real-estate news, is now under development.

Acknowledgments. We are grateful to Yoichi Maejima for useful discussions about
the model specification. Special thanks to Iwao Watanabe and Nobuaki Oshiro for
building the fast API, Kentaro Hashimoto and all the guys in the infrastructure team
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Abstract. Impulse purchases are quite frequent in fashion e-commerce;
browse patterns indicate fluid context changes across diverse product
types probably due to the lack of a well-defined need at the consumer’s
end. Data from our fashion e-commerce portal indicate that the final
product a person ends-up purchasing is often very different from the
initial product he/she started the session with. We refer to this charac-
teristic as a ‘context change’. This feature of fashion e-commerce makes
understanding and predicting user behaviour quite challenging. Our work
attempts to model this characteristic so as to both detect and preempt
context changes. Our approach employs a deep Gated Recurrent Unit
(GRU) over clickstream data. We show that this model captures context
changes better than other non-sequential baseline models.

1 Introduction

Understanding user behaviour is critical for any e-commerce platform in order to
personalise products and induce the user to convert. This becomes easier if the
user has a well-defined need and exhibits cohesive intent. Unlike other domains,
purchases are often impulsive in fashion e-commerce. While some users do visit
a fashion portal out of their need to purchase specific products, a huge number
of folks are there just to explore and transact once they come across a product
of their liking. This results in “fluid” browsing patterns that cut across different
products categories. In other words, there are many context changes that happen
in a typical user session. This makes modeling the user’s behaviour, and hence
personalisation complex [16,26].

Consider real user sessions illustrated in Figs. 1 and 2. In the session shown in
Fig. 1, the user browsed a Shirt, and on the very next click switched to Shorts.
Again on the third click, we see a switch back to a Shirt (of a different style
altogether) and then again a switch back to a few Shorts in the next clicks. After
consistently viewing a few Shorts, the user switches to a T-shirt on his final click.
Such changing contexts makes modeling the user behaviour quite difficult and
simple heuristics will fall short. For example, if we predicted that the user would
browse Shorts in the final click using majority voting, it would have failed. It is
important to note that before browsing Shorts, the user also looked at a couple
of Shirts and later changed context to Shorts. This is indicative of the fact that
the user wasn’t really looking for Shorts from the moment he started browsing
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 539–550, 2017.
DOI: 10.1007/978-3-319-57529-2 42
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Fig. 1. Men categories session

Fig. 2. Women categories session

but rather changed context during the session. Similarly, in Fig. 2, the user is
seen switching between different article types from women categories.

On Myntra, a leading fashion e-commerce platform in India, daily about
1.3 million sessions have clicks on at least one product1. Only 35% of these
sessions have a unique product category (considering sessions with more than
one click). We also note that in 41% of the cases the final product a person ends
up purchasing is from a different product category than what the user started
the session with. This further establishes that context changes are common.

(a) ‘Men-Shirts@458’

(b) ‘Women-Kurtas@471’

Fig. 3. Samples from product groups, coded as <category@group number>

Our work attempts to model such impulsive user behaviour so as to both
detect and preempt change in context. Our approach employs a deep Gated
Recurrent Unit (GRU) over the user sessions data (clickstream). Our dataset
presents another challenging scenario of catalogue being highly dynamic due to
the ephemeral nature of fashion products. In such a scenario, training any model
1 Here sessions are all the products clicked by a user within a 30min window.
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directly at the product level is difficult due to data sparsity. In addition the
diversity of a catalogue implies that context changes could happen at a more
granular level even within a product category - people could change context
from a graphic T-Shirt to a Polo. For both these reasons we need to work with
a higher and stable abstraction of products. To tackle this problem, we leverage
our earlier work [21] using word embeddings to create abstractions of products
called product groups which represent homogeneous product clusters serving
similar fashion contexts, as illustrated by Fig. 3. Each product in a session is
replaced by its corresponding product group and the context change is modelled
across products groups - both inter and intra category. Hereafter, we will use
the terms product groups, product clusters and contexts interchangeably. We
use anonymised user sessions data from our fashion portal for our experiments.
We evaluate our trained model against two baseline algorithms - majority voting
and “Product Group Graph” model. We show in Sect. 4 that GRU outperforms
both these baseline methods.

2 Related Work

There is substantial research on understanding behaviour of online users by
analysing their clickstream data. There are several studies that visualise click-
stream data in an attempt to make the complex sequential data more intuitive
to understand [2,14,26–28,30]. Others use cluster based approaches [23] to dif-
ferentiate and understand different browsing patterns. There have also been
qualitative studies to observe behavioural differences of buyer and non-buyer
sessions [22]. While visualising and clustering approaches are directed towards
descriptive analysis, there is also substantial amount of literature for predictive
analysis. Studies have attempted to determine the intent of users on e-commerce
websites in both offline [11,12,16,19,20,24] and real time settings [6]. There has
been work [8,19] to distinguish user sessions according to the purpose of the
visit as “buyer” or “window shopper”. While much of this literature focusses on
predicting if a user has intent to purchase, there seems to be relatively less focus
on generating recommendations for users with multiple context changes within
a session.

Modeling user behaviour and generating recommendations is common, espe-
cially in studies relevant to search engines. There has been work on recommend-
ing web pages in general [1,7,29] and also in specific cases like personalised news
recommendation [15]. Several modeling approaches have been evaluated in past
[10] for such web-personalisation. In this work, we propose modeling the user
browsing behaviour with a GRU [3,18] for predicting the next user click. Our
approach is similar to the recent work in [9] in the sense that we propose RNNs
for predicting the next click. However, as mentioned earlier, our dataset presents
a different challenge due to the dynamic catalogue leading to sparsity of styles.
In the next section, we describe how we overcome this challenge by using product
groups.
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3 Modeling User Behaviour

As discussed earlier, we wish to model user behaviour that is often prone to
context changing. Predicting user behaviour is especially useful for use cases like
personalisation, where we try to identify products that will be of most interest to
the user next. Therefore, the goal is to predict the user’s next click, while making
sure that the recent context of the browsing sequence is taken into account.
Specifically, we want to predict the user’s last clicked product group, given rest
of the product groups he has seen in the session so far. We use three different
models for this purpose that we will compare against each other in Sect. 4. In
this section, we describe these models.

3.1 Majority Voting

In majority voting, we simply predict the next click based on the frequency
of product groups in the session. As an example, consider the same session
that we show in Fig. 1 - ‘Men-Shirts@458’, ‘Men-Shorts@20’, ‘Men-Shirts@380’,
‘Men-Shorts@20’, ‘Men-Shorts@20’, ‘Men-Shorts@20’, ‘Men-Shorts@20’, ‘Men-
Shorts@20’, ‘Men-Shorts@20’, ‘Men-Tshirts@788’. The predictions for next
click for this session would be in the following order - Men-Shorts@20, Men-
Shirts@458, Men-Shirts@380, Men-Tshirts@788. If we need more recommenda-
tions, we randomly pick from the top 50 product groups for that gender.

3.2 Product Group Graph (PG Graph)

We now describe our second baseline approach, that uses a product group graph
for prediction. As earlier mentioned, we leverage our earlier work [21] to cre-
ate a smaller number of time invariant product groups from the originally large
number of products (there were 408,155 products in the catalogue for Men and
625,171 products for Women at the time of this work). Unlike a typical approach
of using product as a document, we consider each session as a document; the
words in the documents correspond to the attributes for all styles observed in
that session. We then train a Word2Vec [17] model on this dataset to learn a
vector representation of attributes. We aggregate these vector representations to
arrive at vector representations of products, sessions (contexts) and users. These
vectors are used for creating the final clusters, which we refer to as product
groups. These product group embeddings are the centroid of products’ embed-
dings. This results in 2813 homogenous and time invariant product groups for
Men and 4763 product groups for Women.

From the training set, we build a directional graph where nodes are the
product groups and edges capture the transition probabilities between product
groups (normalised frequency counts) in all the sessions. We now use a bag
of words approach to generate recommendations based on this graph. Specifi-
cally, for every click in a session, we get the transition probabilities to all the
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product groups from the graph. We then aggregate the transition probabili-
ties incoming towards every product group and then normalise them. Contin-
uing with the same example of Fig. 1, the predictions from this approach are
in the following order - ‘Men-Shorts@20’, ‘Men-Shirts@458’, ‘Men-Shirts@380’,
‘Men-Shorts@19’, ‘Men-Shirts@469’. Notice that ‘Men-Shorts@19’ and ‘Men-
Shirts@469’ are now included in the recommendations even though the user did
not browse them, as they have high transition frequencies from the browsed
product groups as per the graph.

3.3 GRU

A major drawback of the above two models is that they do not handle sequential
data. Taking into account the sequential information is critical to our data as it
provides the context to the session. This sequential context becomes even more
critical for sessions with longer duration, as we shall show in Sect. 4. GRUs are
variants of RNNs, that are designed to model sequential data and have been
shown to do this effectively [3,18].

Let xt be the input in the sequence at time t. Let st be the hidden state at
step t. This state acts as the “memory” of the network as it communicates the
information the network has thus far to the next step. st is calculated based on
st−1 and input at time t using Eq. 1. ot is the output at step t, and is calculated
using Eq. 2. The network can be visualised as shown in Fig. 4 [13]. Note that the
parameters U , V and W remain same throughout all the steps.

st = f(U ∗ xt + W ∗ st−1) (1)

ot = softmax(V ∗ st) (2)

Instead of using Eq. 1 that is used by RNNs, GRUs calculate the hidden state
st, using Eqs. 3, 4, 5 and 6 that can be visualised by logical gates as shown in
Fig. 5 [4].

z = σ(xt ∗ Uz + st−1 ∗ W z) (3)

r = σ(xt ∗ Ur + st−1 ∗ W r) (4)

h = tanh(xt ∗ Uh + (st−1 ∗ r) ∗ Wh) (5)

st = (1 − z) ∗ h + z ∗ st−1 (6)

Fig. 4. Unfolding of RNN.
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Fig. 5. GRU gating

We used a 2 layer deep GRU network for all our experiments. While training
our model, we cross validated on various number of hidden units (50,100,200,500)
and found 100 to be the best. We used rmsprop [5] for optimisation. Rmsprop
used a learning rate of 0.001 and a decay rate of 0.9. We also tried SGD but
found rmsprop to work better. In order to get a visual intuition of this deep learnt
model, we generate sample sessions from the GRU in terms of the product groups
and later randomly sample a product corresponding to each product group in the
session. Figure 6 shows artificially generated samples as “imagined” by the GRU.
As can be seen in Fig. 6, the men session starts with our popular value brands
‘Roadster’ and ‘Mast & Harbour’. There is a context change to Levis in middle,
which is a premium brand and then again the session switches back to the value
brands. This is typical user behaviour on our platform where users make an
aspirational click on a high value item, but later often purchase a lower value
product. Another interesting trend which the model seems to capture well can
be observed in the women session shown in Fig. 6. Here, the session changes con-
text from western categories (Tshirts, Tops) to Indian ethnic categories (Kurta,
Churidar Kurta). The intuition here is that if a user keeps browsing western
categories, they are likely to eventually move towards Indian ethnic categories.
Note that the artificial session for women actually had ten more products at the
beginning, all belonging to western categories that we have truncated for the
sake of brevity.

We show quantitative results in Sect. 4. Here, we show specific qualitative
results for the sessions corresponding to Fig. 1 that were discussed earlier. As
can be seen in Fig. 7, both GRU and PG Graph place shorts on number one
ranking since the user has been clicking a lot of shorts. However, note that GRU
seems to have detected the constant change in context of user and hence predicts
different article types where as PG Graph suggests more or less similar products
to what the user has been browsing. Note that the last product clicked by the
user was a stripped T-shirt, which GRU predicted at number four in the list.

4 Experiments

We leverage the clickstream data store from our e-commerce platform for all
our experiments in this paper. Specifically, for every session browsed on our
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(a) Men Categories Session

(b) Women Categories Session

Fig. 6. Artificially generated sessions.

e-Commerce portal, we have the sequence of products clicked in the session
by the user. If we compute the Jaccard Similarity between the sets of browsed
products’ categories and bought products’ categories across these sessions, about
24% sessions have Jaccard similarity less than equal to 0.3 as shown in Fig. 8.
The lower values of Jaccard similarity mean that difference between browsed
categories and eventually bought categories is significant. This further establishes
that context changing in our data is common, as described in Sect. 1.

We train separate models for Men and Women and hence firstly we filter out
sessions that have both genders present. We then split the rest of the sessions
into ‘Men’ and ‘Women’ sessions. This results in 7,010,289 Men sessions and
9,543,282 Women sessions that are spread across 45 categories for Men and 50

(a) Predictions From GRU

(b) Predictions From PG Graph

Fig. 7. Predictions corresponding to session in Fig. 1
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Fig. 8. Men categories session

categories for Women. As mentioned earlier, the product catalogue is dynamic
and the products (or styles) available at any given point in time varies a lot.
To tackle this problem, we replace each product by it’s corresponding product
group.

We use the following notations hereafter. Let Q be the set of all ses-
sions/queries with a sequence of product groups <P1, P2, .....Pn> (Pn being
the true value to be predicted). All models described above output a sequence
(sorted in descending order by the probabilities) R of length k <R1, R2...Rk>; k
being the number of recommendations per query/session. To evaluate the models
described in Sect. 3, we use the following metrics:

Mean Reciprocal Rank (MRR): The reciprocal rank of a query response
is the multiplicative inverse of the rank of the first correct answer. The mean
reciprocal rank is the average of the reciprocal ranks [25] of results for a sample
of queries Q as shown in Eq. 7, where ranki refers to rank of Pn in R.

MRR =
1

|Q|
|Q|∑

n=1

1
ranki

(7)

It is worth mentioning that in this particular evaluation metric, we just con-
sider one true value (Pn) and hence MRR and Mean Average Precision (MAP)
are equivalent.

Normalised Discounted Cumulative Gain (NDCG): For the formulation
of NDCG, we assume the true values to be a sequence of k values: Pn and k − 1
product groups most similar to Pn. Also, the relevance score in the formula is
the cosine similarity between Pn and other product group Pj . We use the true
sequence for formulation of IDCG (rel1 = 1 since sim(Pn, Pn) = 1). For the DCG
formulation, we assume the similarity to be 0 if predicted product group does not
belong to the article type of Pn (because embeddings were learnt separately for
each article type); else relevance equals cosine similarity. It is worth mentioning
that this formulation is likely to give quite low absolute values of NDCG since
our sessions are quite noisy consisting of multiple article types; but the true
ideal ranking just considers the similar product groups from the same article
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type (Pn ’s article type) and hence high IDCG values. Equations 8 and 9 show
the standard NDCG metric.

DCGp = reli +
p∑

i=2

reli
log2i

(8)

NDCGp =
DCGp

IDCGp
(9)

Recall (R): We define recall@K as fraction of sessions wherein the true value
Pn is retrieved in K recommendations.

Tables 1 and 2 show MRR and NDCG for different values of K (number of
recommendations) for men and women respectively. The tuples in bracket show
GRU improvement over PG-PG graph and Majority vote respectively. As can
be clearly seen, GRU performs significantly better than Majority voting and
PG-PG graph, specifically when K increases.

We also experimented by predicting just the category of last click (by ignoring
the predicted product group). This showed a similar improvement in MRR. For
instance, we report MRR for different values of K for Men and Women in Table 3
below. The subscript tuples show GRU improvement over PG-PG graph and
Majority vote respectively.

We are especially interested in understanding how GRU performs for sessions
with a high number of context changes. To evaluate this, we consider 20,853 men
and 22,576 women sessions with more than two categories, and ones that differ
in categories of the first and last click in the session. This was done to capture
sessions where user started with a particular category, but ended on a totally
different category (not just product group). As seen in Table 4, GRU gives a
better recall than the other two baselines for these sessions.

Table 1. MRR and NDCG as a function of K for Men

GRU PG graph Majority voting

MRR NDCG MRR NDCG MRR NDCG

K = 3 0.32(+15.16%,+10.5%) 0.20(+26%,+1.9%) 0.28 0.16 0.29 0.20

K = 5 0.34(+12.17%,+8.7%) 0.18(+17.3%,+1.2%) 0.30 0.16 0.31 0.18

K = 10 0.35(+10.34%,+10.51%) 0.19(+13.87%,+44.49%) 0.31 0.17 0.31 0.13

Table 2. MRR and NDCG as a function of K for Women

GRU PG graph Majority voting

MRR NDCG MRR NDCG MRR NDCG

K = 3 0.31(+17.94%,+9.5%) 0.28(+0.99%,+304%) 0.26 0.28 0.28 0.07

K = 5 0.32(+15%,+7.6%) 0.28(+0.3%,+123%) 0.28 0.28 0.30 0.12

K = 10 0.34(+12.72%,+9.5%) 0.26(+13.64%,+144%) 0.30 0.23 0.31 0.11
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Table 3. MRR for predicting on the category level for different values of K

GRU PG graph Majority voting

Men Women Men Women Men Women

K = 3 0.65(+20.44%,+9.9%) 0.62(+13.06%,+3.8%) 0.54 0.55 0.59 0.6

K = 5 0.66(+19.11%,+8.7%) 0.63(+12.45%,+3.17%) 0.55 0.56 0.6 0.61

K = 10 0.67(+19.17%,+9.6%) 0.64(+12.07%,+3.5%) 0.56 0.57 0.61 0.62

Table 4. Recall for different values of K

GRU PG graph Majority voting

Men Women Men Women Men Women

K = 3 0.32(+20.03%,+12.24%) 0.29(+29.79%,+11.5%) 0.26 0.22 0.28 0.26

K = 5 0.37(+9.22%,+3.01%) 0.34(+16.8%,+0.8%) 0.34 0.29 0.36 0.34

K = 10 0.44(+0.6%,+11.07%) 0.42(+5.12%,+8.33%) 0.44 0.4 0.4 0.39

(a) Men (b) Women

Fig. 9. MRR v/s session length

In Figs. 9a and b, we show how MRR varies as the session length increases
(keeping K constant at 20). Clearly, GRUs handle the context change quite well
in the sessions, and perform significantly better for longer sessions.

5 Conclusion

In this work, we attempted to model the behaviour of users in fashion e-
commerce, that consists of multiple context changes while browsing. We built
three models - majority vote, product group graph and GRU for predicting the
next click of users. Through multiple metrics, we showed that GRUs outperform
the other models. We also showed that as the session grows bigger in length,
GRUs perform better. This suggests that with more available context, the per-
formance of GRU improves.
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Abstract. Many real world applications involve classification of multi-
label data streams. However, most existing classification models mostly
focused on classifying single-label data streams. Learning in multi-label
data stream scenarios is more challenging, as the classification systems
should be able to consider several properties, such as large data vol-
umes, label correlations and concept drifts. In this paper, we propose
an efficient and effective ensemble model for multi-label stream classifi-
cation based on ML-KNN (Multi-Label KNN) [31] and propose a bal-
ance AdjustWeight function to combine the predictions which can effi-
ciently process high-speed multi-label stream data with concept drifts.
The empirical results indicate that our approach achieves a high accuracy
and low storage cost, and outperforms the existing methods ML-KNN
and SMART [14].

Keywords: Multi-label · Data stream · Classification

1 Introduction

Due to the recent advances in computer networks and data storage, many data
are produced and accumulated at an ever increasing rate in the form of stream.
Such as online shopping information, logistics information, online news, stock
market data, emails, credit card transactions, etc. These data are real-time,
continuous and orderly arrival, and need to be analyzed promptly and effec-
tively. For example, in online mail systems, incoming emails need to be classified
into different categories, like spams, business emails, personal emails, important
emails, etc. This classification task, each stream example is associated with a sin-
gle class label l from a set of labels L (|L| > 1), is called single-label data stream
classification, and has been extensively studied [3,4,11,20,33] in the literature.
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In many emerging applications, each stream record may carry multiple class
labels. A good example is news reports in the online news systems, most news
reports carry multiple news topics (e.g. entertainment, financial and politics),
then this is called Multi-Label data Stream Classification (MLSC) [21]. For-
mally, the multi-label stream classification problem is to training a model to
attach a label subset Y ⊆ L to each instance in a high-speed data stream.
Although, multi-label classification has been studied in traditional database min-
ing scenarios, multi-label data stream classification is a relatively new concept
and has not been fully addressed yet.

An intuitive approach to solving the multi-label classification problem is to
transform it into one or more single-label classification problems. In this fashion,
traditional single-label classifiers can be employed to make single-label classifi-
cations. Finally, the multi-label predictions can be produced by combining these
multi-label predictions. On the other hand, an alternative category is to adopt
the existing single-label classifiers directly to multi-label classification [18,23].

The multi-label data stream environment has different challenges from the
traditional batch learning setting. As the instances in a multi-label data stream
contain multi-labels (multi-concepts), dealing with the concept drift is the most
important challenge to a classifier. Another challenge with regard to MLSC is
that, it is possible that an arriving example will belong to a set of labels, some
of which, will not have been previously observed because of the dynamic nature
of the set of labels [21]. Besides, the learner must be able to handle the stream
using limited memory in real time, because stream data flood in continuously
at a high speed, which makes it impossible to be stored in the memory and
processed offline [14].

To address the above issues, in this paper we propose an efficient and
effective ML-KNN-based ensemble model for multi-label stream classification
with a balance AdjustWeight function, called Streaming Weighted ML-KNN-
based Ensemble Classifier (SWMEC). More specifically, we first propose an ML-
KNN based algorithm to build the basic classifier Ci. The ensemble classifiers
C =< C1, C2, · · · , CL > will be build at the beginning of the stream with ran-
domly selected L test data chunks. This only needs to compute and save a small
amount of information of the cluster center points. Thus the building process is
highly efficient while consuming constant memory space. In addiction, each clas-
sifier Ci has its own weight wi, and C =< (C1, w1) , (C2, w2) , · · · , (CL, wL) >.
As data flow in, the weights will be adjusted and the classifier C will be updated
according to the weights. Thus the proposed SWMEC approach can work adap-
tively to evolving data and deal with concept drifts, and can efficiently classify
the incoming data in real-time.

The main contributions of this paper are as follows. (1) an adaption of the
existing multi-label methods to evolving data streams. (2) an effective weighting
adjustment strategy for ensemble classifiers. (3) experimental results validating
the performance of our method and benchmarks in predictive performance and
space complexity.

The remainder of this paper is organized as follows. In Sect. 2, we discuss
relevant work in multi-label classification and stream classification. Section 3
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presents the n preliminaries about the problem. Section 4, describes the pro-
posed framework in details, and the experimental results are presented in Sect. 5.
Finally, Sect. 6 concludes the paper.

2 Related Work

Our work is related to multi-label classification and stream classification tech-
niques. We will briefly review the existing work on both of them.

Multi-label classification is the problem to deal with such instances that may
belong to multiple different classes simultaneously and focuses on offline settings
[16,19]. Multi-label classification methods can be grouped into two categories,
namely, problem transformation and algorithm adaptation [21]. Problem trans-
formation methods transform the multi-label problem into multiple single-label
problems. Problem transformation methods transform the multi-label problem
into multiple single-label problems including Label Power-set (LP), Binary Rel-
evance (BR) and Ranking by Pairwise Comparison (RPC [12]). Algorithm adap-
tation methods extend the traditional learning techniques to multi-label context,
such as decision trees [5], neural networks [30], maximal margin methods [10],
maximum entropy methods [25], and ensemble methods [25], etc. One well-known
such approach is ML-KNN [31], which is derived from the popular lazy learn-
ing algorithm kNN. It’s the most relevant approach to our model and will be
introduced in the next section.

Many studies have also been done on single-label stream classification. There
are two sets of solutions: single-model based and ensemble based. Single-model
based approaches [1,2,6,9,26,27,32,33] use new data to incrementally update
their model so that the model can scale to a large data volume. Ensemble based
approaches [13,22,28], on the other hand, partition the data stream into equal
sized chunks, and train multiple base models on different chunks of data. Then
all the models are combined for prediction. The ensemble based approaches are
easier to scale and parallelize, tend to achieve better accuracy and can also avoid
over fitting than single classifier methods.

Recently, there are also some studies focusing on multi-label stream classifi-
cation [14,15,17,18,21,29]. Kong et al. [14] builds an ensemble of classifiers on
successive data chunks. It proposes a random-tree based algorithm to improve
it’s efficiency. Work also has been done on adopting the ensemble based strategy
in handling multi-label streams [15,29].

We follow a similar strategy to design our classification model with ML-KNN-
based ensemble methods. Our model builds streaming classifiers by extending
MLkNN, which is just designed for multi-label static data classification.

3 Preliminaries

We first introduce the notations that will be used throughout this paper, and
then briefly describe the techniques ML-KNN [31] to make this paper self-
contained.
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Consider a multi-label stream S with a label set L = {1, 2, · · · , q},
S ⊆ R

d. Stream S consists of infinite data chunks, {D1, · · · Dn, · · · }, where
labeled chunk Di is denoted by DL and unlabeled chunk denoted by DU .
Each instance x ∈ S has a label subset Y = {y1, y2, · · · , yq} ∈ {−1, 1}q,
where Y [j] =

{
1 if yj ∈ Y

−1 if yj /∈ Y
, (xi, Yi) is an instance in the multi-label data

stream. The task of multi-label stream classification based on ensemble solu-
tion is to train a classification model on the historical examples F (·), F (·) =
g (f1 (·) , f2 (·) , · · · , fL (·)), where fi(·) is the sub-classifier, g (·) is the combina-
tion function that combines the outputs of all f (·), L is the number of classifiers.
Then it uses F (·) to predict a label set Yi to the incoming data xi.

Table 1. Summary of major mathematical notations

Notations Mathematical meanings

S Multi-label data stream with d-dimensional space R
d

D data chunk with size N

DL Labeled data chunk

DU Unlabeled data chunk

x d-dimensional feature vector (x1, x2, · · · xd)
�(x ∈ S)

L label space with q possible class labels {1, 2, · · · , q}
Y label subset associated with x (Y ⊆ L)

3.1 ML-KNN [31]

We briefly describe our model’s basic approach ML-KNN, which is derived
from the traditional k-Nearest Neighbor (kNN) algorithm and classify
the traditional static multi-label data in a lazy learning way. There
are three main steps in this approach. For convenience, several nota-
tions are summarized in Table 1. In addition, given a training set T =
{(x1, Y1) , (x2, Y2) , · · · , (xn, Yn)} (

xi ∈ R
d, Yi ∈ L)

, t is the test instance, s is the
smoothing parameter with a default value 1.
Step 1: Computing the prior probabilities P

(
H l

b

)
according to Eqs. 1 and 2.

Where l ∈ Y is the l-th label, and b ∈ {0,1}, H l
1 represents the event the

instance has label l. Conversely, H l
0 means the instance does not have label l.

P
(
H l

1

)
=

(
s +

n∑
i=1

Lt (l)

)
/ (s × 2 + n) (1)

P
(
H l

0

)
= 1 − P

(
H l

1

)
(2)

Step 2: Computing the posterior probabilities P
(
El

j | H l
b

)
according to Eqs. 3

and 4. Where El
j (j ∈ {0, 1, · · · , k}) denotes the event that, among the k nearest
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neighbors of t, there are exactly j instances which have label l. c[j] counts the
number of training instances with label l whose k nearest neighbors contain
exactly j instances with label l. Correspondingly, c

′
[j] counts the number of

training instances without label l whose k nearest neighbors contain exactly j
instances with label l.

P
(
El

m | H l
1

)
= (s + c [j]) /

(
s × (k + 1) +

k∑
p=0

c [p]

)
(3)

P
(
El

m | H l
0

)
=

(
s + c

′
[j]

)
/

(
s × (k + 1) +

k∑
p=0

c
′
[p]

)
(4)

Step 3: Computing the output yt (label subset) and rt of t, where rt is a real-
valued vector calculated to rank labels in L, according to Eqs. 5 and 6.

→
yi (l) = arg max

b∈{0,1}
P

(
H l

b

)
P

(
El

Ct(t)
| H l

b

)
(5)

→
ri (l) = P

(
H l

1 | El
Ct(l)

)
=

(
P

(
H l

1

)
P

(
El
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The detailed architecture of ML-KNN was given in [31].

4 Weighted Ensemble Classification

In this section we first give the main idea of our weighted ensemble classification
approach, then we introduce the process of the ensemble classifiers’ training and
updating and the adjustment of their weights, finally we give the description of
our algorithm.

4.1 Basic Idea

The data stream S is divided into a fixed number of chunks and each classification
model in the ensemble is trained from a different chunk. Each classifier in the
ensemble has it’s own weight. The new arriving unlabeled data chunk is classified
by the ensemble while the corresponding weight will be changed. According to
the weights, the latest classified data chunk will be decided if to be trained to
generate a new model and replace one of the existing models in the ensemble. In
this way the ensemble can be maintained at a fixed size and kept up-to-date. The
problems of data stream’s infinite length and concept-drift can correspondingly
be well addressed.

4.2 Classifier Training and Updating

The ML-KNN based multi-label ensemble classifier is built at the beginning
of the data stream and timely updated over the data stream as follow: when
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a training data chunk in the data stream is arriving at time t, we build
h clusters with the labeled data points by the application of XMeans tech-
nique. After the building of these clusters, we save each cluster’s centroid
O = {o1, o2, · · · , oh}, oi ∈ R

d, i ∈ {1, 2, · · · , h}, and compute each centroid’s
label subset in the same way as ML-KNN. After that, all centroids and their
label subset C =< (o1, y1, r1) , (o2, y2, r2) , · · · , (oh, yh, rh) >, yj ∈ Y , yi,rj are
respectively the label subset and the a real-valued vector calculated by ML-KNN,
will be saved as a summary. At the same time, the current summary’s arriving
time t will also be recorded. Each summary’s weight w then can be calculated
according to o,

→
r and t, and set to be 1 at beginning. After the process of L

chunks, the ensemble classifier C =< (C1, w1) , (C2, w2) , · · · , (CL, wL) > (each
model Ci is a collection of h summaries and the number of h is unfixed, wi is the
weight of model Ci) will be built. When an unlabeled data chunk DU is arriving,
for each instance xi ∈ DU , we find the mi = ((oj , yj) , wi) ∈ Ci, j ∈ [1, 2, · · · h]
whose centroid oj is nearest from xi. The corresponding weight wi will then
be determined by the distance between oj and xi,

→
ri and ti. Then the xi will

be labeled according to the summaries {m1,m2, · · · ,mL}. Each unlabeled data
chunk will be classified as above. After a chunk DU has been handled by the
ensemble C, If the lowest wlowest ∈ w falls below a threshold value ε, the corre-
sponding model Cj will be replaced by the new model that trained by DU . This
ensures that the ensemble will be updated with the passing of data chunk and
the number of models in the ensemble remains constant.

4.3 Ensemble Weighting

In this paper, inspired by [8], we propose a combination function g (·) including
three components (

→
αi, βi and γi) to combine classifiers in the ensemble. They

are: (1) label confidence, which is a vector measuring the confidence in the sub-
classifier outputting each label; (2) time difference; (3) distance difference, both
(2) and (3) describe how confident a sub-classifier is when making a classification
decision.

We estimate
→
αi from the ensemble model C by Eq. 7:

→
αi =

→
ri∑L
i=1

→
ri

(7)

where βi, γi describe how confident a sub-classifier is when making a classification
decision. βi is estimated by the time difference between arriving new data chunk
DU and the sub-classifier Ci. �ti = tDU

− tCi
, where tDU

,tCi
are the arriving

times of data chunk DU and Di respectively. The longer the chunks are apart,
the lower the β is.

βi =
e−�ti∑L
i=1 e−�ti

; 0 < βi < 1,

L∑
i=1

βi = 1 (8)
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γi is estimated by the distance difference between xi which is the instance
from the arriving new data chunk DU and it’s nearest center oj in sub-
classifier Ci.

γi =
e−di∑L
i=1 e−di

; 0 < γi < 1;
L∑

i=1

γi = 1 (9)

where di = distance (xi, oj), the closer the distance between xi and oj the more
confident the sub-classifier.

Finally, we combine
→
αi, βi and γi to decide the weight wi =

→
αi × βi × γi.

Consequently:

g (·) =
L∑

i=1

(
fi (xi) × →

αi × βi × γi

)
(10)

The output Y = {y1, y2, · · · , yq} ∈ {−1, 1}q,
Y [j] =

{
1 if g (·) [j] =

∑L
i (fi (·) [j] × αi × βi × γi) > 0

−1 if g (·) [j] =
∑L

i (fi (·) [j] × αi × βi × γi) < 0
.

4.4 The Classification Algorithm

The pseudo code of our method for classifying multi-label data streams using
the ML-KNN-based ensemble method is given in Algorithm 1.

Algorithm 1. KNN-based ensemble classification for multi-label data streams
Input: Data Stream S =< D1, D2, · · · , Dn, · · · >;

Initial ensemble classifiers:
C =< (C1, w1) , (C2, w2) , · · · , (CL, wL) >;
Empty buf ;
Latest chunk of unlabeled instances DU ;
Latest r labeled data chunks Dr;

Output: Classification Result.
(1) while true do
(2) for all xi ∈ DU do
(3) Classification(C, xi) = DL → buf
(4) end for
(5) Evaluation&Adjust(C, DU )
(6) if the lowest wlowest ∈ (w1, w2, · · · , wL) < threshold ε then
(7) buf replaces the corresponding data chunk in Dr

(8) Update(C, Dr)
(9) end if

(10) new chunk of unlabeled data → DU

(11) end while
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5 Experiments

In this section, we show the results of several experiments performed to evaluate
the effectiveness of our proposed SWMEC for classification in real-world multi-
label data streams TMC2007 [24] (see Table 2 in detail). All the experiments are
conducted on a PC with Intel(R) Core(TM) i3-3220 3.30 GHz CPU and 4 GB
RAM. We have implemented SWMEC in python2.7. Most importantly, in order
to get more precise classification results, we firstly preprocess the data set. We
remove the infrequent words that occur in less than 11% of the documents as
[14] did.

Table 2. Summary of dataset TMC2007

Data set Properties

N d q Avg|Y | IDens Domain

TMC2007 28,596 204 22 2.158 0.098 Text

A. Classification quality comparison with ML-KNN
We compare the performance of our approach SWMEC against ML-KNN [31]
as the base-line of our model. In order to apply this one of the state-of-the-
art methods in offline context to the stream classification, we train a ML-KNN
classifier on the latest chunk of data, and use it to classify the next chunk of data,
which is similar to sliding window approaches. Since the data chunk size is the
most important factors in the classification and training process, here we change
the chunk sizes (sliding window sizes) to test the performance of basic ML-
KNN. The Parameters are set as follows: SWMEC: L (the size of the ensemble
classifier model) = 4, k (the number of nearest neighbors in ML-KNN) = 4,
ε (the threshold about weight’s adjustment) = 0.001. ML-KNN (w = 100): w
(the size of the window) = 100. ML-KNN (w = 200): w (the size of the window)
= 200. ML-KNN (w = 400): w (the size of the window) = 400.

Multi-label classification problems has many different metrics for evaluation.
Such as Hamming-loss, F-measure, Log-Loss, Ranking-Loss [17]. Here we adopt
two metrics to evaluate multi-label classification performance in a data stream.
First, Micro F1: considers both micro average of Precision and Recall with equal
importance, evaluates a classifier’s label set prediction performance. The higher
the value, the better the performance.

MicroF1 (fi,DL) =
2 × ∑|DL|

i=1 |fi (x) ∩ Yi|∑|DL|
i=1 |fi (x) | +

∑|DL|
i=1 |Yi|

where |D| is the number of instances in a multi-label data stream D, which
contains (xi, Yi), where Yi ⊆ L(i = 1, · · ·, |D|), f(xi) ⊆ L denotes a multi-
label classifier’s predicted label set for xi and f(xi, k) denotes the classifier’s
probability outputs for xi on the k-th label (lk).

Second, Ranking Loss [7]: compute the average number of label pairs that are
incorrectly ordered given Yi weighted by the size of the label set and the number
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of labels not in the label set. Evaluates the performance of classifier’s probability
outputs or real-value outputs f(xi, k). The best performance is achieved with a
ranking loss of zero.

RankLoss(f,D) =
1

|D|
|D|∑
i=1

1
|Yi||Ȳi| loss (f, xi, Yi)

loss(f, xi, Yi) =
∑
k∈Yi

∑
k′∈Ȳi

I
(
f (xi, k) ≤ f

(
xi, k

′))

where the Ȳi denotes the complementary set of Yi in L.

(a) Micro F1↑ (b) Ranking Loss↓

Fig. 1. SWMEC against ML-KNN on TMC2007 dataset.

Figure 1(a) shows the Micro F1 for the four algorithm throughout the stream
in TMC2007 data-set. We report the average performance on every |D|/10
instances. For example, at X axis = 5, the Y values show the average Micro
F1 of four classification models from the |D| ∗ 4/10th instance of the stream to
the |D| ∗ 5/10th instance. At this point, the Micro F1 of SWMEC is 0.3729, the
Y values in ML-KNN (w = 100), ML-KNN (w = 200) and ML-KNN (w = 400)
are all below SWMEC.

We also calculate the Ranking loss of four classification models. Figure 1(b)
show the Ranking loss of the four algorithms throughout the stream in TMC2007
data-set. For example, at X axis = 6, the ranking loss of SWMEC is 0.1571, the
Y values in ML-KNN (w = 100), ML-KNN (w = 200) and ML-KNN (w = 400)
are all higher than SWEMC.
B. Classification quality comparison with SMART [14]
We also compare the performance of our approach SWMEC against SMART
[14], which also adopt the strategy of ensemble and gives us a great inspiration
in this paper. As Fig. 2(a) and (b) shows, Our method SWMEC is slightly better
than SMART in Micro F1 and Ranking Loss. Especially noteworthy is that
SMART has a much bigger space overhead than SWMEC, because SMART
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needs to maintain several tree structures while SWMEC only needs to store
small amount of central points. In the future, we would like to combine both of
these two methods’ advantages to address the multi-label classification problem
in data streams.

(a) Micro F1↑ (b) Ranking Loss↓

Fig. 2. SWMEC against SMART on TMC2007 dataset.

6 Conclusion

This paper presents an efficient algorithm for multi-label data stream classifica-
tion based on ML-KNN. As the properties of data stream and multiple labels
assigned to each instances. It becomes more challenging than the traditional
static multi-label data classification problems and single-label data stream clas-
sification problems. To address these challenges, we propose an ensemble multil-
abel data stream classification approach, manly Streaming Weighting ML-KNN
based Ensemble Classifier (SWMEC), to efficiently update the model with the
multi-label data stream flows. Then our model can effectively and efficiently pre-
dict multiple labels for future data points. The experimental results on the real
world validate that our multi-label data stream classification approach is very
effective and efficient for multi-label stream classification.
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Abstract. When considering additional features of users or items in
a recommendation system, previous work focuses mainly on manually
incorporating these features into original models. In this paper, man-
ifold regularization is introduced to the well-known one-class collabo-
rative filtering problem. To fully benefit from large unlabeled data, we
design a data-driven framework, which learns a representation function
by not only transferring raw features of users or items into latent ones
but also directly linking the relation between the latent features and
user behaviors. The framework is expected to bring cluster hypothesis
from machine learning to recommendation, that is, more similar trans-
ferred features can bring more similar user behaviors. The experiments
have been conducted on two real datasets. The results demonstrate that
the learned representation through our framework can boost prediction
performance significantly.

Keywords: Feature representation learning · Manifold regularization ·
One-class collaborative filtering

1 Introduction

One-class collaborative filtering (OCCF) [10] is an important research topic in
the field of recommender systems. Unlike traditional collaborative filtering (CF),
which pays attention to numerical or star ratings such as 1–5 scales rated by users
for movies as an explicit feedback, OCCF handles data only containing implicit
binary feedback such as users’ purchasing (buy or not-buy) or web surfing (click
or not-click) behaviors. It is especially useful for applications with only positive
training data and fits the practical issue much better because not all of the users
are willing to provide ratings after purchasing or browsing.

Recently, matrix factorization approaches [7] have shown their effectiveness
in discovering relevant latent features for OCCF (and CF, of course). To boost
the prediction performance, previous work [4,9] attempts to directly incorpo-
rate additional features of users or items into latent factor models and regards
these features as an input of the hybrid models. Despite their success in better
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 565–577, 2017.
DOI: 10.1007/978-3-319-57529-2 44
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performance, such methods only improve optimization by additional features of
training instances that have feedback. The additional features of the instances
without feedback, i.e., unlabeled data, are not considered in the optimization
process. For this issue, another line of work is manifold regularization, which
this work focuses mainly on.

Manifold regularization (MR) [1] is originally designed for semi-supervised
learning on classification problems. By assuming instances closer in a feature
space are more likely to have the same label, it builds a regularization term
from features of both labeled and unlabeled data to let the target function fit
data distribution better. MR alleviates the problem of sparse labeled data by
incorporating unlabeled data to constrain the learned function. In recommenda-
tion, it states the idea that more similar features might bring more similar user
behaviors. For example, two movies with the common tag “love” would attract
similar users who like this topic. Various features like user profile [2] and social
relation [8] can be adopted in MR.

However, bringing MR into OCCF introduces two problems. The first one is
feature mismatching when raw features of users or items are used to build reg-
ularization. For example, “love” and “romance” show similar topics, but movies
tagged with “love” and movies tagged with “romance” cannot get closer via MR
due to the independent dimensions of the two tags. The second problem is that
features are not equally important to user behaviors. For example, tags of well-
known actors are generally more influential than tags of unknown actors. Conven-
tionally, features in MR are always determined according to domain knowledge
or heuristic. The hybrid models cannot be fully benefited from additional fea-
tures in the large unlabeled data. In fact, possible solutions are existing methods
for representation learning, such as Principal Components Analysis (PCA) [6]
and MF [7]. However, they intend to find semantics of features, but the goal
of feature transformation should be coupling the features of users or items and
implicit feedbacks.

To solve the problems, we propose a data-driven framework for learning an
appropriate representation function that transforms raw features to new ones
based on users’ feedback. Through the representation, mismatching can be solved
and importance of features can be extracted according to the feedback. To link
the representation to user behaviors, we model the preference by the similar-
ity between transformed features and optimize the representation according to
the observed feedback directly. We apply our framework to a state-of-the-art
approach on the OCCF problem by using linear transformation as our repre-
sentation function. The experiments have been conducted on two real datasets,
MovieLens and Github. The results demonstrate that the transformed features
(either user features or item features) achieve a significant improvement in the
OCCF problem. We also show that the framework is able to reflect quality of
selected feature in its own performance as a content-based model.

In the rest of the paper, we review related works to OCCF in Sect. 2, provide
prerequisites in Sect. 3, present our framework in Sect. 4, discuss experimental
results in Sect. 5 and finally conclude the paper in Sect. 6.
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2 Related Work

2.1 One-Class Collaborative Flitering (OCCF)

In OCCF, training data only contain binary records to show users’ implicit feed-
back instead of real-value rating. Many works have been proposed to improve MF
in OCCF. Pan et al. [10] and Hu et al. [5] propose weight regularization matrix
factorization (WRMF). It treats missing feedback as negative samples and gives
lower weights to reduce the impact. Rendle et al. [11] propose Bayesian Person-
alized Ranking (BPR) to handle implicit feedback by optimizing pairwise errors
between items with and without feedback. Shi et al. [12] propose collaborative
less-is-more filtering (CLiMF) to specifically focus on top-k recommendation by
directly optimizing reciprocal ranks. Here we select MF with BPR (BPRMF)
(one of the state-of-the-art methods) as a base when applying our method.

2.2 Incorporating Feature into Recommendation

Model-based collaborative filtering methods focus on users’ feedback and find
latent preference. However, additional features like user profiles or item contents
are not considered generally. Many content-based models show that such features
are effective in recommendation. Zhang et al. [14] propose a feature-centric model
to show the importance of item features like tags. Gu et al. [3] match users’ and
jobs’ content for job recommendation.

There are several works extending CF models by incorporating additional
features. In some works, model parameters are directly related to features. He
and McAuley [4] append projected visual features of product images to latent
item factors in e-commerce, and compute latent image preference for users. van
den Oord et al. [9] train a deep neural network for transforming existing fea-
tures to pre-trained latent factors. Wang and Wang [13] directly use the sum-
mation of CF-based and content-based models as an objective function in music
recommendation.

Different from these methods, some works exploit additional features in
manifold regularization. Du et al. [2] build regularization with user profiles.
Ma et al. [8] consider social regularization of users in social recommendation.
Zheng et al. [15] design a new dual similarity regularization for similar users and
items. Different from ours, all these works simply make use of raw features.

3 Problem Definition and Prerequisites

3.1 Problem and Notations

We first give formal definition and notation of the OCCF problem. Suppose we
have n users ∈ U , m items ∈ I and observed implicit feedback (u, i), which means
user u gives positive feedback to item i, in training data D. We also define U+

i

as a set of users giving positive feedback to item i and I+u as a set of items given
positive feedback by user u according to D. The goal we attempt to achieve is to
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recommend a ranking list of item i ∈ I\I+u for each user u sorted by predicted
preference score, and make the items with higher ranks are more possible to get
positive feedback from users.

Besides, each item has corresponding features. We define vi ∈ R
d1 as a feature

vector of item i, where d1 is the number of feature dimensions. For simplicity,
we only discuss item features here. The proposed framework can actually be well
applied to user features. Our experiments in Sect. 5 will examine both features
carefully.

3.2 Bayesian Personalized Ranking

BPR [11] is an optimization criterion for personalized ranking. Its goal is to
maximize the probability for latent preference of all users by optimizing model’s
parameters.

Here the probability that user u prefers item i to item j is defined as a sigmoid
function of pairwise error in an chosen model. For maximizing the likelihood, the
criterion of the optimization problem for personalized ranking can be written as
follows:

argmin
θ

BPR-OPT = argmin
θ

∑

(u,i)∈D,(u,j) �∈D

− ln(σ(ruij)) +
γθ

2
||θ||2 (1)

where σ is a logistic function, ruij is the pairwise error for the model, and γθ is
the parameters of regularization, which can be optimized by stochastic gradient
descent methods based on bootstrap sampling.

BPR can be applied for any models for ranking by giving an appropriate form
of pairwise error to derive ∂ruij

∂θ according to the model. It is very appropriate
for OCCF because implicit feedback for items can be regarded as a specific pref-
erence. A sample (u, i, j) can be created from preferred item i and unpreferred
item j. In fact, MF with BPR (BPRMF) is one of the state-of-the-art methods
in OCCF. In the paper, we choose BPRMF as our base model for MR. Besides,
we also apply BPR to find a proper feature representation function because the
training data are from implicit feedback.

3.3 Manifold Regularization

MR is a technique for classification problems in semi-supervised learning, where
unlabeled data are exploited to help training with small amount of labeled data.
In MR, it uses data-driven regularization to take advantage of geometry of dis-
tribution to constrain the learned function.

The objective of MR is to incorporate unlabeled data to consider the dis-
tribution of whole dataset as the constraint of optimization. It assumes that
instances closer in feature space are more likely to share the same label because
the learned function is smooth. Thus, the decision function is affected by the
distribution of labeled and unlabeled data.
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To make use of the assumption, a graph in which nodes are labeled and
unlabeled data is built and the weight of an edge represents the closeness of data
instances. The regularization term of this idea for the minimization problem is
written as follows:

l+u∑

i,j=1

Wij(f(xi) − f(xj))2 (2)

where l is the number of labeled data, u is the number of unlabeled data, xi

means the ith instance, Wij is the weight of edge between xi and xj , and f(·)
is the learned function. For closer points, their difference in output of function
becomes smaller because the corresponding factor is larger. In other words, closer
points tend to have similar prediction result.

For the recommendation problem, the factor is about behavior of users and
items. Although the idea of MR is generalized for any learning problem, we
need to restate the objective to fit the specific problem. We, therefore, make an
assumption as follows:

Assumption 1. If users/items are similar in feature space, they might have
similar behavior in a recommender system.

Under this assumption, we can easily apply the concept of MR for those models
that focus on user and item behaviors such as the latent factor model.

In the latent factor model, users’ and items’ latent behaviors are usually
modeled as P ∈ R

n×k and Q ∈ R
m×k. Referring the form shown in Eq. 3 and

Assumption 1, we build a weighted graph for the items and design the regular-
ization term as below:

m∑

i,j=1

Wij ||qi − qj ||2 (3)

where Wij is the weight of an edge between item i and item j, and || · ||2 is
the Euclidean norm. We use the norm of the difference between latent factors
to represent the difference of item behaviors, and make items having similar
features tend to have closer latent factors. Note that it’s also feasible to build a
regularization term for users by using P here.

4 Manifold Regularized with Data-Driven Feature
Representation

4.1 Manifold Regularized OCCF Model

First, we introduce the manifold regularized model BPRMF, which is performed
as a base model we plan to improve.

Like all MF models, BPRMF predicts preference matrix R in Rn×m by two
matrices, where P ∈ Rn×k represents users’ latent factors while Q ∈ Rm×k

represents items’ latent factors, as follows:

R = P · QT (4)
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where k is the dimension of latent factors. Regarding the pairs of preferred item
i and unpreferred item j for user u, we use ruij = rui −ruj to model the pairwise
error. Thus, by referring Eq. 1, the objective function BPR-OPT can be written
below:

argmin
P,Q

∑

(u,i)∈D,
(u,j) �∈D

− ln(σ(ruij)) +
γθ

2
(||P ||2 + ||Q||2) (5)

where ruij = puqT
i − puqT

j and γθ is the regularization parameters for P and Q.
To exploit MR to incorporate item features, we add a regularization term

stated in Sect. 3.3 to Eq. 5, and the optimization criterion is defined as:

argmin
P,Q

BPR-OPT +
γm

2

m∑

i,j=1

Wij ||qi − qj ||2 (6)

where γm is the regularization parameter and Wij comes from the similarity
between feature vectors. There are many choices for the measurement of simi-
larity. In this work, We just use dot product as our metric.

In implementation, we use stochastic gradient descent to optimize Eq. 6.
In each iteration, we sample a tuple (u, i, j), and update its corresponding
parameters.

4.2 Framework for Learning Data-Driven Feature Representation

Next, we describe the proposed framework for learning feature representation
from feedback.

Our goal is to predict the user preference based on item similarity. The pre-
diction of item i for user u comes from how similar the item i is with the item
set user u has given feedback to. Formally, prediction rui can be defined as:

rui =
1

|I+u |
∑

j∈I+
u

sim(vi, vj) (7)

where sim(·) can be an arbitrary measurement for similarity. This is a naive
method and no space is left for learning. Nevertheless, our intention is to find
a better feature representation that tightly couples the original features to user
preference. We, therefore, define our target function as f , and modify Eq. 7 by
considering f as follows:

rui =
1

|I+u |
∑

j∈I+
u

sim(f(vi), f(vj)) (8)

Currently, the equation represents a content-based model for predicting prefer-
ence, and the target is to find appropriate f . Because f is not limited to a certain
type, we can choose a transformation, which can contain feature combination
such as linear combination.
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To optimize f , we need to learn from the implicit feedback data, which means
that it is not suitable to use an evaluation metric for real values like RMSE in
OCCF. So we apply BPR, which is effective for implicit feedback, on our objec-
tive. This model can still take ruij = rui − ruj as the pairwise error. Combining
Eq. 8 into Eq. 1, we finally define the optimization problem as follows:

argmin
f

∑

(u,i)∈D,
(u,j) �∈D

− ln(σ(ruij)) +
γθ

2
(||θf ||2),

ruij =
1

|I+u |
∑

k∈I+
u

(sim(f(vi), f(vk)) − sim(f(vj), f(vk)))

(9)

where θf denotes the parameters of function f . The objective function can
be optimized by the stochastic gradient descent method if we can derive
∂sim(f(vi),f(vj))

∂θf
by choosing proper forms for sim(·, ·) and f . Through optimiz-

ing it, we can find appropriate f without any human effort and link the features
to implicit feedback.

For the case of user features, we can just exchange the position of users and
items for the same process. However, because U+

i and U+
j have different size, we

only use the most similar k users for user u from U+
i and U+

j in the objective
function. In training process, we also randomly sample k users from the set when
calculating gradient in each iteration. In our experiment, we set k as 10.

By combining our framework and manifold regularized model, the whole
procedure can be regard as a two-staged algorithm. In the first stage, we find
appropriate representation for original features, and get the similarity among
items or users in the transformed feature space at the same time. In the second
stage, we exploit the similarity we obtain previously, and perform the manifold
regularized model based on it to solve the OCCF problem.

4.3 Example of Proposed Framework

In this paper, we implement our framework with some intuitive methods, dot
product and linear combination, to validate its effectiveness. The definitions are
mathematically given for vector a, b ∈ R

1×d1 as follows:

f(a) = aK, sim(a, b) = abT

where K ∈ R
d1×d2 and d2 is the dimension we project to. By combining the

above equations into Eq. 9, we can write our objective function as follows:

argmin
f

∑

(u,i)∈D,
(u,j) �∈D

− ln(σ(ruij)) +
γθ

2
||K||2,

ruij =
1

|I+u |
∑

k∈I+
u

((viK)(vkK)T − (vjK)(vkK)T )
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Here stochastic gradient descent is used to update K. Here is the way to update
the parameters:

K ← K − α((1 − σ(xuij))
∑

k∈I+
u

(vT
i vk − vT

j vk) · K + γθK)

We run our experiment according to the above equation. Actually, it is
possible to apply other more sophisticated methods as an alternative in our
framework.

5 Experiments

5.1 Dataset and Setting

We run our experiments on the Movielens dataset collected from the Hetrec2011
workshop and the Github dataset. The first dataset is about movie recommen-
dation. Besides the interaction between users and items, it also provides the
information about movies such as genre, tag, actor and so on. We select tags as
the raw features to incorporate. In the dataset, each movie is assigned some tags
and corresponding weights, which contribute to our feature vectors. The second
dataset is about repository recommendation of source coding. The data are col-
lected from the Github archive in which there many kinds of actions between
users and repositories. We regard some kinds of actions as positive feedback such
as push and pull requests. Users’ programming language preference of users are
treated as the raw features. More specifically, a vector with binary values is
adopted to indicate whether a user is able to write a certain language accord-
ing to the training data. Different from the item features in previous dataset,
languages belong to user features and only contain 0/1 values rather than real
values.

To eliminate the effect of different length of vectors, we normalize all vectors
to unit vectors. We perform data preprocessing to avoid biased result affected
by other factors. First, we throw out inactive users and unpopular items (#
feedback <10). Second, items with no features are ignored. Besides, we filter out
the tags appearing in less than 10 items for the first dataset because the number
of items is not much larger than the number of feature dimensions, and it is
possible to overfit some scarce tags. For the second dataset, we only extract the
subsample with 10,000 users and 10,000 items to save the time of evaluation.
The final statistical information about the datasets is shown in Table 1.

We first take 20% of whole datasets as our testing sets, and then split the
remaining into two parts with the same size for training sets and validation sets.
For model parameters, we set the number of latent factor as 30 for all compared
methods, and set the number of dimensions of a projected feature as 50 for PCA
and our framework. For regularization, we set appropriate values according to
our trials of experiments.
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Table 1. The statistical information about two datasets

Hetrec’11 Github

# users 2,103 10,000

# items 5,094 10,000

# feedback 646,728 616,633

# feature 956 129

Density 0.06037 0.00616

5.2 Baselines

We compare the proposed framework with some baselines, including the state-of-
the-art MF method and its manifold regularized version. Besides, our framework
can be regarded as a content-based method and we also give the result to show
that the framework does learn better features representation for recommenda-
tion. The baselines include:

– Most Popular (MP): We recommend items according to popularity. For-
mally, we let rui equal to |U+

i | and predict the ranking according to it.
– KNN: We use how similar an item/user is with the items/users which

users/items have had interaction with to make recommendation. In this base-
line, we take dot product between normalized feature vectors, i.e., cosine sim-
ilarity, as our measurement.

– WRMF: WRMF [10] applies implicit feedback with weighted regularization,
and optimizes the square-loss. Following the user-oriented setting in [10], for
a user, we set the weight for positive feedback as 1, and choose a value for
negative feedback to let the sum equal the sum of positive feedback.

– BPRMF: BPRMF is regarded as the state-of-the-art method for OCCF, and
the detail has been described in Sect. 4.1

– MR: This baseline is BPRMF with MR. We use raw features (denoted as
MR(Raw)) and transformed features with PCA (denoted as MR(PCA)). PCA
is one of famous representation learning and dimension reduction methods. Its
goal is to find the semantics of raw features instead of the relation between
raw features and user behaviors.

– MR-R: This is our proposed method, the manifold regularized model with
learned representation depending on feedback data. We follow the example
described in Sect. 4.3. We also use KNN-R to represent our representation
learning framework as a content-based method.

By comparing these baselines, we validate the benefit of our framework with
simple selected functions on the performance of item recommendation. To eval-
uate the quality of item recommendation, we report several ranking metrics,
including AUC, NDCG@k, Precision@k and MRR.
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Table 2. Performance of baselines. All improvements for NDCG, Prec, and MRR of
our method are significantly different with the best baseline at least 95% level in a
paired t-test

Hetrec’11 Github

AUC NDCG@10 Prec@10 MRR AUC NDCG@10 Prec@10 MRR

MP 0.8673 0.3698 0.3397 0.5904 0.7867 0.0530 0.0406 0.1502

KNN 0.7959 0.1983 0.1788 0.4185 0.8391 0.0586 0.0475 0.1605

WRMF 0.8797 0.4003 0.3685 0.6220 0.8708 0.0543 0.0476 0.1425

BPRMF 0.9035 0.4085 0.3843 0.6246 0.8741 0.0850 0.0694 0.2095

MR(Raw) 0.9068 0.4268 0.4005 0.6373 0.8822 0.0916 0.0746 0.2238

MR(PCA) 0.9058 0.4296 0.4055 0.6331 0.8763 0.0856 0.0699 0.2124

Proposed method

KNN-R 0.8624 0.3776 0.3445 0.6347 0.8557 0.0656 0.0531 0.1743

MR-R 0.9070 0.4408 0.4121 0.6553 0.8884 0.1037 0.0825 0.2516

5.3 Experiment Results

Comparison with Baselines. Table 2 shows the results. From the table, some
observations and corresponding explanations are given below:

– BPRMF outperforms simple baselines, MP and itemKNN, and WRMF. MR
with all kind of applied features further enhance the performance of item
recommendation. Although the improvement for AUC is limited, it can be
inferred that MR benefits the quality of top ranking by observing the improve-
ments of NDCG, Precision and MRR.

– Representation from the proposed method reaches the best performance
among all of manifold regularized models. It shows that the data-driven rep-
resentation depending on feedback exactly performs better than raw features
and transformed features with PCA. Although PCA also slightly improves the
quality for hetrec’11, its benefit is not as explicit as our method’s. For Github,
its performance even becomes worse.

– Comparing KNN and KNN-R, it is obvious that the framework can help the
similarity-based method by transforming features to the space which is more
related to user feedback.

Partial observation of the learned representation is shown in Table 3. For the
chosen 6 tags, we show the tags which have similar transformation with them. In
other words, they tend to be projected to the same latent dimensions. Overall,
the experimental results reasonably explain the advantages of different models.
Our transferred feature representation is most effective for MR in OCCF.

Judgment of Feature Quality. We also run our framework with randomly
generated features (KNN-ran) on the two datasets to assure that our framework
is capable of showing feature’s quality in ranking performance as a content-
based model. For the random features of item i, we use the same number of
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Table 3. Partial observation of feature transformation

Musical Romance Cartoon

Music Competition Animation

Dance Girlie movie Sad

Wedding France Disney

Romance Chick Flick Redemption

Meryl Streep Leonardo Dicaprio Ben Stiller

Scifi Action Thriller

Virtual reality Sweeping Emotional

Cyberpunk Mel Gibson Assassination

Space Samuel L Jackson Disaster

Heroic mission Thriller Unrealistic

Alien Rousing Survival

Table 4. Performance of the framework with different features. All improvements are
significant differences with the baseline at 99% level in a paired t-test.

AUC NDCG@10 Prec@10 MRR

Hetrec’11

KNN-ran 0.8177 0.3305 0.2965 0.5653

KNN-R 0.8624 0.3776 0.3445 0.6347

Github

KNN-ran 0.7799 0.0435 0.0342 0.1277

KNN-R 0.8557 0.0656 0.0531 0.1743

dimensions of original features, and randomly choose some dimensions to give a
value generated from the uniform distribution ranged from 0 to 1 in hetrec’11 or
assign 1 in Github. We also normalize all the feature vectors to unit ones. The
results are shown in Table 4. It can be observed that the performance with the
random features is weaker than one with the meaningful features. Its quality is
even worse than MP, stating that we can use the performance of the content-
based model to judge the quality of selected feature.

6 Conclusions

In this paper, we propose a data-driven framework of learning feature trans-
formation function from user feedback for manifold regularized OCCF model.
Through the optimization from feedback, we can find the representation linked
with behavior of users or items, fitting the motivation of manifold regulariza-
tion. In the experiment, we show that our framework with simple selected forms
of functions enhances the quality of item recommendation. Compared with raw
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features or transformed features based on semantics, our method can help OCCF
model to perform better. Besides, we also show that the framework is able to
reflect quality of selected feature in its own performance as a content-based
model.

In the future, some directions are still valuable to dig into. We can use other
complex forms of representation, such as multi-layer neural network encoder,
to validate our idea and further boost the performance. Besides, the current
framework is limited by stochastic gradient descent method because it is based
on BPR framework. The possible direction is to seek other optimization criterion
for our preference score and break the constraint of gradient descent.
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Abstract. Tuning hyperparameters of machine learning models is
important for their performance. Bayesian optimization has recently
emerged as a de-facto method for this task. The hyperparameter tun-
ing is usually performed by looking at model performance on a valida-
tion set. Bayesian optimization is used to find the hyperparameter set
corresponding to the best model performance. However, in many cases,
where training or validation set has limited set of datapoints, the func-
tion representing the model performance on the validation set contains
several spurious sharp peaks. The Bayesian optimization, in such cases,
has a tendency to converge to sharp peaks instead of other more stable
peaks. When a model trained using these hyperparameters is deployed in
real world, its performance suffers dramatically. We address this problem
through a novel stable Bayesian optimization framework. We construct
a new acquisition function that helps Bayesian optimization to avoid
the convergence to the sharp peaks. We conduct a theoretical analysis
and guarantee that Bayesian optimization using the proposed acquisi-
tion function prefers stable peaks over unstable ones. Experiments with
synthetic function optimization and hyperparameter tuning for Support
Vector Machines show the effectiveness of our proposed framework.

1 Introduction

Bayesian optimization is a technique to sequentially optimize expensive black-
box functions in a sample efficient manner. Recently, it has emerged as a
de-facto method to tune complex machine learning algorithms [1]. In tuning, the
goal is to train a classifier at the right complexity so that it neither overfits, nor
underfits. Performance on a validation set is used as an indicator of the fitting,
and it is expected to peak at the hyperparameters corresponding to the right
complexity and exhibit lower values at other hyperparameters. Thus to tune a
machine learning algorithm, Bayesian optimization is employed in the pursuit
of the peak validation set performance. However, in some situations, especially
when training or validation dataset is small, spurious peaks appear along the
performance surface (eg. Fig. 1). These peaks tend to be distributed randomly
over low performance region. They are characteristically different from the peak
corresponding to the right complexity in two ways (a) they tend to be narrow
and (b) they vanish when tested on a large test data, whereas the right peak
remains stable. Due to the latter difference, a Bayesian optimization method that
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 578–591, 2017.
DOI: 10.1007/978-3-319-57529-2 45
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(a) (b)

Fig. 1. Performance versus hyperparameters for a Support Vector Machine training as
color coded images: (a) on a small validation set, and (b) on a large test set. Spurious
peaks of region 1 seen for the validation set vanish for the test set while the stable peak
of region 2 still remains. (Color figure online)

does not explicitly avoid these spurious peaks can converge to one of them and
may result in a badly tuned system with inexplicably low performance during
real world deployment. To the best of our knowledge, we are the first to identify
and analyze this issue of spurious peaks and its serious downside.

Existence of multiple peaks with different widths along an optimization sur-
face is prevalent in many real world systems. For some of them, the end result of
optimization can get dramatically affected depending on whether the optimiza-
tion has converged to a wide peak or a narrow peak. For example, in alloy design
[2], one of the main goals is to find the mixing proportion of a set of elements
with the highest physical property (eg. strength, ductility, etc.). However, alloy
making is an imprecise process. Due to the impurities in the raw material, the
elements can never be mixed at the desired proportion. Therefore, if the desired
proportion is at a narrow peak then the performance of the alloy would not be
stable when made repeatedly as even a small difference in impurities could result
in dramatic loss in performance. Hence, being able to avoid narrow peaks in favor
of more stable peaks is a critical factor of success for several different applica-
tions of Bayesian optimization. Unfortunately, till now the various downsides of
reaching a narrow peak in the optimization of physical systems and processes
have never been identified and attended to.

Bayesian optimization, in its simplest form, consists of a Gaussian process
(GP) [3] to maintain a distribution on the objective function based on the obser-
vations so far, and a mechanism to select the next query point based on an opti-
mistic exploration strategy. This strategy is more commonly known as acquisition
function and can be of different types, such as Expected Improvement (EI) [4], or
GP-UCB [5], etc. Based on the predictive distribution of the Gaussian process,
EI computes the expected improvement over the current best observation and
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we choose the location that offers the highest as our next query point. GP-UCB
finds the location of the highest peak of a function by judiciously combining both
the mean and the variance of the GP prediction. Apart from hyperparameters
tuning, Bayesian optimization has also been used for optimal sensor placement
[6], for gait design [7] and optimal path planning [8], etc. While this simple strat-
egy is powerful for many applications, there had been recent attempts to make
it widely applicable by making it feasible in high dimension [9], multi-objective
optimization [10], batch optimization [11], etc. Convergence analyses of Bayesian
optimization for EI [12], and GP-UCB [5] provide guarantee of convergence to
the optimum of the objective function. However, none of the methods differenti-
ate based on the stability of peaks and can, in principle, converge to any if there
are multiple peaks with the same height but with different stability. Thus to find
optimum where function value is more stable and avoid regions where function
values exhibits undesired fluctuations is an open problem.

To address the issues with spurious peaks, we propose a new acquisition
function for Bayesian optimization that actively seeks stable peaks of the objec-
tive function. Based on our definition of stability, we show that it is possible to
measure the stability of a peak by subjecting the underlying Gaussian process
model with input perturbation. When faced with input perturbation, the pre-
dictive distribution of the Gaussian process changes. At any peak the mean of
the distribution goes lower, and the variance goes higher. But more importantly,
for two peaks of same height, the narrower peak will have lesser mean and more
variance than the other peak. Further we show that the variance can effectively
be decomposed as a sum of two parts: (a) epistemic variance due to the lim-
ited number of samples, and (b) aleatoric variance arising from the interaction
between the curvature of the function with the noise. The narrower a peak is,
the higher the aleatoric variance will be around that peak. Therefore, aleatoric
variance can be used as a measure of the instability of a peak. An acquisition
function is proposed in line with the GP-UCB that while exploiting the usual
combination of mean and variance also penalize for instability. Theoretically,
we prove that under mild assumptions, when two peaks are of same height, the
proposed acquisition function would always favor the more stable peak. We com-
pare our method with a standard Bayesian optimization implementation on both
synthetic function optimization and real-world hyperparameter tuning. On syn-
thetic function optimization, we create a function that has both stable region
and spurious region. Experiments with synthetic function show that our pro-
posed method converges to stable regions more often than the baseline. For real
world application, we demonstrate tuning the hyperparameters of Support Vec-
tor Machine on two real datasets. Experimental results clearly demonstrate that
our proposed method converges to a stable peak whereas the standard Bayesian
optimization converges to an unstable peak, and hence the SVMs tuned by our
method perform better on test sets.
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2 Background

Bayesian optimization [13] is a well-known method to find the maximum value
of a unknown blackbox function f . This optimization problem can be formally
defined as

x∗ = argmaxx∈X f(x)

where X is domain of x. It is assumed that although f is a blackbox function
without a closed-form expression, it can be evaluated at any point x in the
domain. The idea behind Bayesian optimization is to use all the information
available from observations x and f(x) for reasoning rather than rely on only
local gradient.

Bayesian optimization consists of two main components. The first is a meta
model that can be evaluated at any points with uncertainty. There are plenty
of choices for this function such as Gaussian process, Bayesian neural networks,
random forest, etc. The second component of a Bayesian optimization algorithm
is the acquisition function that suggests where to evaluate the function next.
This function demonstrates the trade-off between exploitation and exploration
(high predicted value versus highly uncertain regions). In this work, we use
Gaussian process [3] as the meta model and Upper Confidence Bound (UCB) as
the acquisition function. GP-UCB [5] using Gaussian process and UCB has nice
theoretical properties and is guaranteed to converge.

2.1 Gaussian Process

Gaussian process is a stochastic process such that every finite collection of its ran-
dom variables is a multivariate Gaussian distribution. Intuitively, one can think
of Gaussian process as a multivariate Gaussian distribution over infinite dimen-
sional vectors. A function f(x) drawn from a Gaussian process with mean m(x)
and covariance function k(x,x′) is denoted as follow f(x) ∼ GP(m(x), k(x,x′)).
Assume that we have a dataset Dt = {(xi, yi)}, i = 1, 2, . . . , t where yi = f(xi)
and f(x) is drawn from a Gaussian process GP(m(x), k(x,x′)). We can make
the Gaussian process depends only on the covariance function k(x,x′) by assum-
ing mean function m(x) to be zero. The covariance function k(x,x′) should be
a valid kernel function in order to make the covariance matrix K valid, where
Ki,j = k(xi,xj). To make a prediction using Gaussian process, we consider the
joint distribution of old observations and the new observation (xt+1, yt+1) as:

[
y1:t

yt+1

]
∼ N

(
0,

[
K k
kT k(xt+1,xt+1)

])

where k = [k(x1,xt+1), k(x2,xt+1), . . . , k(xt,xt+1)]T . The predictive distribu-
tion of the function value at xt+1 can be written as:

p(yt+1|y1:t,x1:t+1) = N (μt(xt+1), σ2
t (xt+1))

where μt(xt+1) = kTK−1y1:t and σ2
t (xt+1) = k(xt+1,xt+1) − kTK−1k.
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2.2 Upper Confidence Bound

Since the target function is unknown and expensive to evaluate, Bayesian opti-
mization uses an acquisition function that can be optimized efficiently to deter-
mine the next sample to be evaluated. By doing so, instead of optimizing the
target function, we find the maximum value of following function:

x∗
t+1 = arg max α (x; It)

where It denotes the Gaussian process estimated using t observations. This
optimization problem can be solved using standard optimization techniques such
as local optimizers, sequential quadratic programming or DIRECT [14].

Normally, the acquisition function is defined such that it has high value at
uncertain regions or high prediction or both. The trade-off between exploring
highly uncertain region or exploiting promising area is also represented in acqui-
sition function. Given the posterior Gaussian process, the Upper Confidence
Bound acquisition function is defined as follow [5]:

GP-UCB(xt+1) = μt(x) + κtσt(x)

where κt is a positive parameter that balances exploitation and exploration.
Maximizing GP-UCB acquisition function suggests the point where to next eval-
uate the function f . Srinivas et al. [5] proved that if κt = 2 log

(
t22π2/3δ

)
+

2d log
(
t2dbr

√
log (4da/δ)

)
, GP-UCB achieves an upper bound on the cumula-

tive regret
∑T

t=1 (f (x∗) − f (xt)) that has the order O (√
TγTκT

) ∀T ≥ 1, with
probability greater or equal 1 − δ, where γT is the maximum information gain
after T round, search space is a subset of [0, r]d with some r > 0 and a, b > 0
are constants.

3 The Proposed Framework

We present a new acquisition function for Bayesian optimization designed to
maximize a blackbox function with behavior that the maxima from stable regions
are preferred over the maxima from relatively unstable regions. We first discuss
the notion of stability, then describe how a Gaussian process model gets mod-
ified in presence of any perturbation in the input variables. Next, we use the
predictive distribution of the modified Gaussian process to formulate the novel
acquisition function. We theoretically analyze the proposed acquisition function
and prove that it is guaranteed to take higher values in more stable regions
and thus Bayesian optimization using this acquisition function will have higher
tendency to converge in more stable regions. Finally, we present an algorithm
summarizing the proposed stable Bayesian optimization.
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3.1 Stability of Gaussian Process Prediction

Given a set of observed data Dt = {xi, yi}ti=1 where xi ∈ R

D and yi = f(xi)+ ε,
we use a Gaussian process to model the function f . Using Dt, for a new input
x, the predictive distribution of the corresponding output y = f(x) is given as

P (y|Dt,x) = N (
μt (x) , σ2

t (x)
)
,

where the predictive mean μt (x) = kTK−1y and the predictive variance
σ2
t (x) = k(x,x) − kTK−1k with a notation y = y1:t. We define β = K−1y

to be used later.
The above predictive mean and variance are instrumental to Bayesian opti-

mization as they provide a way to estimate the function value at any point in the
function support along with the model’s uncertainty. The model uncertainty, also
called “epistemic uncertainty”, is used in the Bayesian optimization to express
our belief in the estimation and guides efficient exploration of the function while
keeping a balance on exploitation. This phenomenon is an instance of a general
concept in reinforcement learning known as exploitation-exploration trade-off.

Since our goal is to develop a stable Bayesian optimization framework that
prefers solutions insensitive to small perturbations in input data, we start from
asking the question how does the predictive mean and variance of the function
value change if the input is slightly perturbed. A large shift in the mean and/or
a large increase in the variance indicates a fast varying function and can be used
to detect the unstable regions. In an early work, Girard and Murray-Smith [15]
analyze that if a test input is corrupted by a Gaussian noise, εx ∼ N (0,Σx)
such that u = x + εx, the predictive distribution is given as

p(y|Dt,x,Σx) =
∫

p(y|Dt,u)p(u|x,Σx)du.

This distribution, in general, is non-Gaussian. However, in [15], it is shown that
Gaussian approximation is a fairly close approximation under the constraint
of tractability. Let us use μt(x) and σ2

t (x) to denote the mean and variance
of the Gaussian predictive distribution p(y|Dt,x) in the perturbation-free case.
Also use mt(x,Σx) and vt(x,Σx) to denote the mean and variance of predictive
distribution p(y|Dt,x,Σx) and use a Gaussian approximation as below:

p(y|Dt,x,Σx) ≈ N (mt(x,Σx), vt(x,Σx)).

The predictive mean and variance can also become intractable in general for an
arbitrary covariance function. Fortunately it is possible to express them in closed
form for popular covariance functions such as linear and square-exponential.
We demonstrate our framework using squared exponential covariance function.
Nonetheless, our framework remains amenable to any valid covariance function
and appropriate approximations arising due to an arbitrary covariance function
can be easily incorporated. For the squared exponential covariance function, the
predictive mean and variance are given as
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mt(x,Σx) =
t∑

i=1

βik(x,xi)k1(x,xi) (1)

vt(x,Σx) = σ2
t (x) + σ2

t,a(x, Σx) (2)

where σ2
t (x) is the variance as in the unperturbed case and the extra variance

due to perturbation is given as

σ2
t,a(x, Σx) =

t∑
i,j=1

K−1
ij k(x,xi)k(x,xj)(1 − k2(x, x̄ij))+

t∑
i,j=1

βiβjk(x,xi)k(x,xj)(k2(x, x̄ij) − k1(x,xi)k1(x,xj)). (3)

In the above expressions, we have used the definitions:

k1(x,xi) =
∣∣I + W−1Σx

∣∣−1/2
exp

[
1
2
(x − xi)TS(W, Σx)(x − xi)

]
, and

k2(x, x̄ij) =

∣∣∣∣∣I +
(

W
2

)−1

Σx

∣∣∣∣∣
−1/2

exp
[
1
2
(x − x̄ij)T (S(

W
2

, Σx)(x − x̄ij)
]

,

where x̄ij = xi+xj

2 and S(W, Σx) = W−1(W−1 + Σ−1
x )−1W−1.

In the following, we utilize the above analysis to define a novel acquisition
function to propose a stable Bayesian optimization framework.

3.2 Stable Bayesian Optimization

Having a closed form expression for the predictive mean and variance as in (1)
and (2) provides us the required tractability to formulate an acquisition function
for “stable” Bayesian optimization. In the expression for predictive variance in
(2), we note that the variance vt(x,Σx) has two components: (1) the epistemic
variance (uncertainty) term σ2

t (x), arising due to our lack of understanding about
the function value, mainly due to finite set of observations and (2) the aleatoric
variance term σ2

t,a(x, Σx) (further detailed in (3)), arising due to the inherent
variation in the function around x. We associate the notion of the stability to this
aleatoric variance which takes higher values in regions where the function has
faster variations. In the remainder of this section, we use this property to define a
new acquisition function that yields a stable Bayesian optimization which results
in a solution where the function value is robust to small perturbations.

Denoting the epistemic and aleatoric variances at time t by σ2
t (x) and

σ2
t,a(x, Σx) respectively, our stable Bayesian optimization uses the following

acquisition function

at(x, Σx) = mt(x, Σx) + κtσt(x, Σx) − λσt,a(x, Σx) (4)
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Algorithm 1. The proposed stable Bayesian optimization.
1:Input:
2: Initial observation set Dt0 = {x1:t0 , y1:t0}.
3: Bounds for the search space X .
4:Output: {xt, yt}T

t=1

5: for t = t0+1, . . . , T
6: Find optimizer of acquisition function (4): xt+1 = arg maxx∈X at (x, Σx).
7: Evaluate the target function as yt+1 = f(xt+1) + ε.
8: Augment the observation set: Dt = Dt ∪ {xt+1, yt+1} and update the GP It.
9: end for

where κt is a t-dependent weight that sets a balance between exploitation and
exploration, and λ > 0 is a fixed weight that sets our penalty on the instabil-
ity. In the above formulation, our intuition is to penalize the points where the
function is varying fast with even small change in x. We note that the above
acquisition function extends the popular GP-UCB function [5] for which the
convergence of Bayesian optimization is theoretically guaranteed. The addition
of the aleatoric variance term in the acquisition function can be interpreted as
a constrained optimization problem of blackbox function f(x) under the con-
straint that aleatoric variance is smaller than a specified value. Stable Bayesian
optimization maximizes the acquisition function at(x, Σx) to suggest the next
function evaluation at each iteration. A step-by-step procedure is provided in
Algorithm 1.

Theoretical Analysis

In this section, we analyze the proposed acquisition function to provide a theoret-
ical guarantee that the acquisition function at(x, Σx) indeed prefers less sharper
peaks of the function f(x).

Definition 1 (Identical data topology): Any two points x, x′ are said to have
identical data topology if there exist a pair of observations xi and xi′ such that
||x − xi|| = ||x′ − xi′ ||.

A consequence of identical data topology is that for points x, x′, any distance
based kernels induce Gram matrices that are equal up to a permutation. With
increasing set of observations, it is not difficult to achieve identical data topology
approximately.

Theorem 1: If x, x′ are the two highest peaks in the support of function f such
that |f(x) − f(x′)| < η0 for small η0, and f locally varies faster around x′ com-
pared to x in a small h0-neighborhood, i.e. | f(x+h)−f(x)

f(x′+h)−f(x′) | < 1, ∀h ∈ (−h0, h0),
the acquisition function in (4) satisfies the relation: at(x, Σx) ≥ at(x′, Σx) under
certain mild assumptions.

Proof: To have no favor to any peak, let us assume that there are sufficiently
many observations around both x, x′ so that the two points have identical data
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topology. Due to this mild assumption, we have a pair of observations xi and
xi′ such that ||x − xi|| = ||x′ − xi′ ||. Next consider the difference between the
acquisition function values at x, x′ as

Δat = [mt(x, Σx) − mt(x′, Σx)] + [κt (σt(x, Σx) − σt(x′, Σx))]−
[λ (σt,a(x, Σx) − σt,a(x′, Σx))]

Our aim is to show that Δat ≥ 0, i.e. at(x, Σx) ≥ at(x′, Σx). We note that due
to the identical data topology assumption around both peaks, we have equal
epistemic uncertainties, i.e. σt(x, Σx) = σt(x′, Σx).

Next to show that mt(x, Σx) ≥ mt(x′, Σx) consider the expression of (1).
Once again using the identical data topology assumption, there exists a pair
of observations xi and xi′ such that ||x − xi|| = ||x′ − xi′ ||. This implies
that the covariance values k(x,xi) = k(x′,xi′) and k1(x,xi) = k1(x′,xi′). By
definition, β = K−1y. Since the peak at x′ is sharper than the peak at x,
meaning yi′ ≤ yi and therefore βi′ ≤ βi. Hence,

∑t
i=1 βik(x,xi)k1(x,xi) ≥∑t

i′=1 βi′k(x′,xi′)k1(x′,xi′).
Finally, we show that σt,a(x, Σx) ≤ σt,a(x′, Σx). For this, consider the

aleatoric variance term in (3). As above, we have the following relations:
k(x,xi) = k(x′,xi′), k1(x,xi) = k1(x′,xi′), βi′ ≤ βi and additionally,
k2(x, x̄ij) = k2(x′, x̄i′j′). Using these relations, it is straightforward to show
that σt,a(x, Σx) ≤ σt,a(x′, Σx).

Combining the three separate inequalities, we can prove that Δat ≥ 0, i.e.
at(x, Σx) ≥ at(x′, Σx). �

Remarks: The above theorem covers an important case that when the peaks in
both stable and unstable regions are approximately equal in height, a Bayesian
optimization algorithm using the acquisition function in (4) will prefer the peak
from the stable region. In the case, when a peak of unstable region is higher
than the peak of stable region, the two terms (mt(x, Σx) − mt(x′, Σx)) and
(σt,a(x, Σx) − σt,a(x′, Σx)) would be acting against each other and their net
difference will decide whether the algorithm suggest the point from the stable
region or unstable region. Since the parameter λ is user specified, there exists a
sufficiently large value of λ that always guarantees the suggestion of stable peak.
In the case, when a peak of unstable region is lower than the peak of stable
region, both algorithms will select the stable peak.

4 Experiments

In this section, we experiment on a set of synthetic and real datasets to demon-
strate the efficacy of our stable Bayesian optimization algorithm (BO-STABLE).
Experiments with synthetic dataset show the behavior of our proposed method
with a known and complex function with multiple sharp peaks and one stable
peak. We also conduct experiments with several hyperparameter tuning prob-
lems to show the utility of our method for real world applications.
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(a) (b)

Fig. 2. (a) The synthetic function with one stable peak and multiple spurious peaks
(b) The acquisition function and aleatoric variance after 30 iterations.

(a) (b)

Fig. 3. Performance of BO-STABLE and BO-UCB with respect to number of iterations
on Synthetic function. (a) Shows that BO-STABLE converges to 4.25 (stable peak) and
BO-UCB converges to 4.7 (spurious peak). (b) Shows that BO-STABLE reaches stable
peak more often than BO-UCB.

4.1 Baseline Method and Evaluation Measures

We compare the stable Bayesian optimization with standard Bayesian optimiza-
tion using UCB acquisition function (BO-UCB). On synthetic data, we compare
BO-STABLE with the baseline in two aspects: ‘the maximum value found’ and
‘the number of times an algorithm visits around the stable peak’ with respect to
number of iterations. On real data, we show the performance of stable Bayesian
optimization and standard Bayesian optimization on both validation and test
sets.

4.2 Experiments with Synthetic Function

Data Generation: The synthetic function f(x) is generated using a squared
exponential kernel with two different parameters. To create a stable peak at
the left side of the objective function, we use squared exponential kernel with
length scale 0.2. The right side is generated using a squared exponential kernel
with length scale 0.01 to simulate spurious peaks. The stable regions of f(x)
are 0 ≤ x ≤ 0.7 and 1.1 ≤ x ≤ 2, and the rest is the unstable region (See
Fig. 2a). Figure 2b illustrates the value of acquisition function and aleatoric vari-
ance after 30 iterations. In the unstable region, the acquisition function used
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(a) (b)

Fig. 4. Sampling behavior of both BO-STABLE and BO-UCB for hyperparameter tun-
ing of SVM for Letter classification (a) on validation dataset and (b) on test dataset.
The background portrays the performance function with respect to the hyperparame-
ters. Spurious peaks (region 1) is evident for the validation dataset but vanished for
the test set while stable region (region 2) still remains.

for BO-STABLE has smaller value than that in the stable region due to high
aleatoric variance capturing instability.

Experimental Results: We randomly initialize 2 observations for Bayesian
optimization. Figure 3a shows the result of ‘maximum value found’ averaged
over 30 different initializations. After 25 iterations, the proposed BO-STABLE
converges to averaged maximum value at around 4.25 while BO-UCB converges
to 4.7. This is because BO-STABLE often converges to stable region unlike
BO-UCB which converges to unstable region. The number of peaks visited in
the stable region by BO-STABLE and BO-UCB are compared in Fig. 3b. In 10
iterations, the percentage of peaks visited in the stable region by BO-STABLE
and BO-UCB are 83% and 70%, respectively. In 20 iterations, more than 96% of
peaks visited by the proposed BO-STABLE are stable whereas this number for
BO-UCB is only at 70%, illustrating better stability behavior of BO-STABLE.

4.3 Experiments with Hyperparameter Tuning Problems

Dataset: We use Letter and Glass classification dataset from UCI repository
(http://archive.ics.uci.edu/ml). Letter dataset contains 20,000 datapoints about
the image characteristic of 26 capital letters in the English alphabet. Since spu-
rious peaks occur mostly when (a) the training set is inadequate and (b) the
validation set is small, we sample only 200 datapoints from the Letter dataset.
Glass dataset consists of 214 datapoints represented using 10-features related to
glass properties. Both datasets are divided into training set, validation set and
test set.

http://archive.ics.uci.edu/ml
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(a) (b)

Fig. 5. Performance of BO-STABLE and BO-UCB using SVM with respect to number
of iterations on Letter dataset. The performance of BO-UCB, due to convergence to
spurious peaks on the validation set (a), degrades for the test set (b).

(a) (b)

Fig. 6. Performance of BO-STABLE and BO-UCB using SVM with respect to number
of iterations on Glass dataset. The performance of BO-UCB, due to convergence to
spurious peaks on the validation set (a), degrades for the test set (b)

Experimental Results with Support Vector Machine (SVM): SVM is a
popular machine learning algorithm for classification problem. Two main hyper-
parameters in SVM using RBF kernel are C and γ that represent the misclassifi-
cation trade-off and the RBF kernel parameter respectively. We apply both BO-
STABLE and BO-UCB for tuning C and γ. Figure 4 shows the converged peaks
by our proposed BO-STABLE and BO-UCB over 30 different initializations. As
seen from the figure, the number of times BO-UCB converges to spurious peaks
is considerably higher than that of BO-STABLE. This behavior leads to the
accuracy performance shown in Fig. 5. Figure 5a shows the performance of two
methods on validation set. We note that this is a multi-class classification task,
hence a random classifier would have a mean accuracy of only 1/26 = 0.0385.
After 20 iterations, BO-STABLE’s best accuracy on the validation set is 0.35
whereas BO-UCB’s best is 0.36. However, as we move to the test set and compare
the performance of the two methods using the hyperparameters optimized using
the validation set, we find that BO-STABLE performance is higher compared to
BO-UCB (see Fig. 5b). After 20 iterations, BO-STABLE performance remains
high at 0.46 whereas BO-UCB reaches only up to 0.44. We observed the similar
behavior of BO-STABLE and BO-UCB for Glass dataset (Fig. 6). On the vali-
dation set, although BO-UCB converges to a higher accuracy (accuracy = 0.69)
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than that of BO-STABLE (accuracy = 0.67), BO-STABLE’s accuracy score stays
above 0.61 compared to BO-UCB’s accuracy of 0.59 for the test set.

Our experiments with SVM hyperparameter tuning demonstrate that spuri-
ous peaks are indeed abound in case of small training and validation sets. The
proposed BO-STABLE was able to successfully reduce the convergence to such
peaks.

5 Conclusion

We proposed a stable Bayesian optimization framework to find stable solutions
for hyperparameter tuning. We constructed a novel acquisition function com-
bining the epistemic and aleatoric variances of the Gaussian process based esti-
mates. The aleatoric variance becomes high in unstable region around spurious
narrow peaks and thus offers a way to guide the function optimization towards
stable regions. We theoretically showed that our proposed acquisition function
favors stable regions over unstable ones. Through experiments with both syn-
thetic function optimization and hyperparameter tuning for SVM classifier, we
demonstrated the utility of our proposed framework.
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of Excellence in Big Data and Machine Learning.
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Abstract. Mobile notifications attract users’ attention with minimum
interruption. It is intriguing to study how to utilize such notifications
for personal content recommendation. Recommendation for mobile noti-
fication services is nontrivial due to the following challenges: (1) A user
may be bothered when receiving many irrelevant or uninterested notifi-
cations; (2) Notifications are newly produced without feedbacks before
pushed out; (3) Notifications are time-sensitive, and are significantly
affected by the time when users receive them. To address these chal-
lenges, we propose an exponential time-aware recommendation model.
Firstly, based on traces covering 155,141 users receiving 1,464 notifica-
tion messages provided by NextMedia (http://www.nextmedia.com/),
we build an exponential-decaying model to reflect the timeliness of noti-
fications. Secondly, we design a temporal preference model to capture
users’ willingness to open notifications over time. Finally, we use LDA
to get users’ content preferences and incorporate the two models to pro-
vide time-varying mobile notification services. Our experimental results
show that our model achieves 15% improvement in precision against the
vanilla LDA method.

Keywords: Exponential distribution · Time · Notification · Recom-
mendation

1 Introduction

The rapid development of mobile networks and smart devices has enabled ubiq-
uitous instant message delivery from content providers to users anytime and
anywhere. A new type of message service—mobile notification—has emerged in
recent years, which allows the content provider to broadcast to its users different
messages. These messages will pop up on their devices’ screens, so that they may
be attracted to subscribe to more detailed information.

In conventional recommendation for mobile notification services, messages
are usually delivered to users in a broadcasting manner, i.e., all users receive
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 592–603, 2017.
DOI: 10.1007/978-3-319-57529-2 46
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the same messages at the same time. However, such generic broadcast notifica-
tions are not appealing to users: only 3% of notifications are opened by users;
even when users are divided into groups and each group receives different broad-
casting messages, the open rate (fraction of users who actually open a notifi-
cation message) can only be slightly improved to 7%, according to Localytics1.
The notification messages then fail to satisfy users with their personal interests.
Notification messages are eventually viewed by individuals, who have their own
preferences, and such generic messages can not attract all users equally.

To this end, personal preferences should be taken into consideration in mobile
notification services. However, conventional recommendation approaches end up
with poor notification performance due to the following reasons: Firstly, broad-
cast notifications fail to push notifications to only users who are interested in
messages. As a result, notification messages are likely to be discarded by users.
This will result in high customer churn rate. Secondly, rating-based recommen-
dations [10], such as Collaborative Filtering [11], are based on users’ historical
ratings of contents, but notifications do not provide any explicit feedbacks such
as ratings. Besides, feedbacks are unavailable before notifications are pushed
out. Therefore, these methods can not work well. Thirdly, content-based recom-
mendations, including Latent Dirichlet Allocation (LDA) [4] fail to take users’
temporal preferences into consideration, which is important for mobile recom-
mendation [14]. Lastly, notifications are time-sensitive, and it has a very low
chance to be opened after a period of time. So, for each newly produced notifi-
cations, we should immediately decide whether to push it or not.

To address these challenges, we propose an exponential time-aware recom-
mendation model for mobile notification services. Our contributions can be sum-
marized as follows:

– First of all, we design an exponential-decaying model, which reflects the time-
liness of notifications to be pushed to users.

– Then, we build a temporal preference model to capture each user’s willingness
to open notifications varying over time.

– Next, we incorporate the aforementioned two models into LDA to compute
each user’s willingness to open each notification and only push notifications
to users with willingness to open.

– Finally, we carry out comprehensive experiments on a real-world dataset to
verify the effectiveness of our design. Our experimental results show that:
(1) Our model has a significant improvement on the notification open rate,
improving the precision by 15% against the baseline vanilla LDA method.
(2) Our model also outperforms other conventional strategies.

The remainder of the paper is organized as follows. We view related works
in Sect. 2. Then, we present our model for mobile notification services in Sect. 3.
In Sect. 4, we conduct several experiments to evaluate the performance of our
model. Finally, we conclude the paper in Sect. 5.

1 http://info.localytics.com/blog/52-percent-of-users-enable-push-messaging.

http://info.localytics.com/blog/52-percent-of-users-enable-push-messaging
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2 Related Work

Mobile notification services are potential to improve the revenue if such notifica-
tion messages can successfully attract users’ attentions on their smart devices.
Using recommendation techniques in notification message delivery is a promising
way to improve the notification open rate.

As described in [18], content-based approaches have been widely used with
the emergence of topic modeling techniques such as LDA. Generally, documents
exhibit multiple topics. LDA extracts each document’s distribution over topics
and recommend similar documents by computing the similarity between docu-
ments over topic distributions. Lu et al. [9] unified Collaborative Filtering and
Content-based Filtering by incorporating PLSA [6] model into Matrix Factor-
ization [7] model. The Topics over Time (TOT) model was proposed by Fani [5]
to discover topics and model users’ temporal preferences towards these topics.

For mobile users, context can affect the recommendation performance [2], and
context-aware recommendation can improve the recommendation accuracy [1].
Zheng et al. [15] pulled users’ data together and applied Collaborative Filtering
to find like-minded users and like-patterned activities at different locations. The
study [16] mixed context similarity into Matrix Factorization to predict ratings
of unrated items. Wang [12] proposed a joint social and content recommendation
for User-Generated Videos in Online Social Network.

Temporal information is widely used among all the elements in context. It
was demonstrated by Yuan et al. [13] that incorporating temporal information
into Point-of-interest (POI) recommendations in Location-Based Social Net-
works could improve the performance. Zhong et al. [17] exploited LDA and time
series prediction to recommend services for mashup creation. Liang et al. [8]
made use of temporal information of microblogs to build users’ time-drifting
topic interests.

To the best of our knowledge, our study is the first to introduce temporal
information into content recommendation for mobile notification services.
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3 Exponential Time-Aware Recommendation

3.1 Design Motivations

We use a real-world notification dataset (details illustrated in Sect. 4.1) to pro-
vide the motivations in our model as follows (DM is short for Design Motivation):

DM1. Notifications are time-sensitive. More than 99% of users open notifica-
tions in 24 hours after notifications are pushed out. We split the elapsed
time after notifications are opened by users into hourly-based slots and draw
Fig. 1a. The t-th slot denotes the period of hour [t, t + 1), similarly here-
inafter. As shown in Fig. 1a, the open ratio obeys an exponential distribution.
A simple 2-term exponential function can fit it well on history records. We
randomly pick 3 representative notifications (Notification A–C) pushed at
time 6:59, 11:43 and 21:52 respectively. They all obey an exponential distrib-
ution on the whole, as shown in Fig. 1b. Figure 3a shows views are about an
hour behind the push time of notifications. It also demonstrates notification’s
timeliness.

DM2. Users are time-aware, and their open rates to notifications vary over time.
We define notification ratio as the ratio of the views through notifications
to the total views in each hourly-based slot of a day, to reflect the impact
of notifications over time. As illustrated in Fig. 2a, we collect full records
and records of just Wednesday or Monday for comparison. It shows that
notification ratio obviously varies over time. The results indicate that we can
infer users’ temporal preferences by referring their previous records.

DM3. Users share similar temporal preferences. We choose users who have
opened more than 20 records and split view time into hourly-based slots
of a day to build each user’s temporal preference distribution of open ratio
versus time slot. We further compute the Hellinger distance [3] between the
distribution of each user and the overall distribution and plot the CDF in
Fig. 2b. We observe that about 85% of the distances are smaller than 0.5,
indicating that many users share similar temporal preferences.

DM4. It will result in higher customer churn rate to push too many notifications
to users without considering users’ preferences. Figure 3b keeps track of each
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day’s average notification open rate about half a year from Jan. 1, 2016. Before
May 5, 2016 (shown as a dashed), the app pushed notifications to all users, and
the open rate versus day was in decline. Since then, the app randomly chooses
30% of users for each notification to send. The simple strategy increases users’
willingness to open notifications due to less disturbance to them, and achieves
a good improvement.

3.2 Exponential Time-Aware (ETA) Model

Based on above motivations, we propose the Exponential Time-Aware (ETA)
model to solve these problems in mobile notification services.

For DM1, we formulate the distribution of a user’s open ratio versus time
slot into a 2-term exponential function

d(u, t) = a1e
−β1t + a2e

−β2t, t ∈ N (1)

where u stands for a user, and t is the elapsed hourly-based time before user u
opens a notification. ai, βi, i ∈ {1, 2} are parameters. When t ≥ 24, the value of
the function is very small. So we truncate the range of t into [0, 24) and discretize
the function into a 24-dimension probability distribution d̂u.

For DM2, we extract the hourly-based time from each notification n user u
opened and transform the hourly-based time into a 24-dimension one-hot vector
ωun = (0, . . . , 1, . . . , 0). Since user u’s temporal preference may change over time,
we assign the latest notifications with more importance. We list notifications in
descending order by user u’s opening time, and build his temporal preference
distribution

ωu = norm(
R∑

n=1

ωune−β3n) (2)

where norm(·) is a normalized function for probability distribution, R is the
amount of notifications user u opened, β3 is a decay factor. We use records of
all users to build the overall distribution ω̄ the same way. The value of each
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dimension in ωu or ω̄ is the open ratio of corresponding hourly-based time slot
of a day.

The Hellinger distance can be used to compute the distance between two
distributions and its value is normalized, so the dissimilarity can be calculated
as follows:

h(d, f) =
1√
2

√√√√
D∑

i=1

(
√

di −
√

fi)2 (3)

where D is the dimension of the 2 discrete distributions d and f . di is the i-th
dimension value of d. The value of h(·, ·) ∈ [0, 1] shows the dissimilarity between
the 2 distributions. 0 indicates that they are identically distributed, while 1
shows totally different.

For DM3, we select out users that share similar temporal preferences. We
regard user u as a similar user if h(ωu, ω̄) ≤ τ (where τ ∈ [0, 1] is a threshold
parameter), otherwise we consider him an outlier user. It is not easy to model
outlier users in a simple generic method since they have different temporal pref-
erences. So, for similar users, we consider their temporal information and content
preferences, while for outlier users, we just consider their content preferences.

Combining d̂u and ωu, we compute the possibility Tu,n for each similar user
u (i.e. h(ωu, ω̄) ≤ τ) opens each notification n by

Tu,n =
tp+23∑

t=tp

d̂u,t−tp ∗ ωu,t%24 (4)

where tp denotes the push time of notification n. ωu,t is the open ratio on the
t-th hourly-based time of a day. We accumulate the open possibilities in the next
24 hours after the notification n is pushed out.

We use Eq. 4 to compute Tu,n for each similar user. If Tu,n ≥ η, we send
notification n to user u. η ∈ [0, 1] decreases the total amount of notifications
sent to users. On one hand, it reduces disturbance to uninterested users; on the
other hand, it improves open rate by sending notifications to only users who
have willingness to open notifications.

3.3 Incorporating ETA into Content-Based Recommendation

LDA is a latent factor model, we use it to get each notification n’s topic distribu-
tion θn = (θn,0, θn,1, · · · , θn,K−1). K is the number of topics. We list notifications
in descending order by user u’s opening time, and assign the latest ones with
more importance and build his topic preference distribution

φu = norm(
R∑

n=1

θne−β4n) (5)

where R is the amount of notifications user u opened, β4 is a decay factor.
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For a notification to be recommended, we compute the similarity Cu,n

between φu and θn as follows:

Cu,n = 1 − h(φu, θn) (6)

where h(·, ·) is the Hellinger distance.
Tu,n considers temporal information, while Cu,n captures users’ content pref-

erences. For a notification, not only content but also temporal information affects
users’ open rates. So, we combine ETA and LDA model to compute users’ will-
ingness to open notifications, denoted by Ru,n

Ru,n = (1 − α) ∗ Tu,n + α ∗ Cu,n (7)

where α ∈ [0, 1] is a tuning parameter to decide the proportion of Cu,n. For
outlier users, α equals 1. If Ru,n > δ (where δ ∈ [0, 1] is a threshold parameter),
we actually push notification n to user u.

4 Experiments

In this section, we evaluate the proposed model on a real-world dataset. We
first describe the dataset we used in the following experiments, then introduce
comparison methods we adopt and evaluation metrics. Finally, we compare the
results of our proposed model with the comparison methods and analyze impacts
of parameters and other factors.

4.1 Experimental Setup

Dataset. Since no open source datasets are available for evaluating the rec-
ommendation performance for mobile notification services, we use a notification
dataset from a media company, NextMedia. One of its mobile applications, Apple
Daily App, provides news video services. Each news video, well-edited, lasts no
more than 3 min. The app sometimes pushes notifications of the latest news
videos to users and tracks users’ viewing records in log files.

We extract about 51 days’ notification log files which are collected on Android
devices from March 14, 2016 to May 4, 2016. Each log file trails the summary
of the pushed news videos, including push time, view time, location, and device
information when a user opens a notification to view a news video. Each log file
contains about 60 fields, and we extract some main fields shown in Table 1.

Data Preprocessing. We remove records of users who opened less than 20
notifications. After preprocessing, the dataset contains 15,041,313 access records
of 155,141 users on 1,464 notifications. In order to use LDA to predict the topic
distribution of each notification, we use the online segmentation tool BosonNLP2

to segment article titles into a bag of words, and remove stop words. Since some
2 http://bosonnlp.com.

http://bosonnlp.com
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Table 1. Main fields in log files

Field Description

push time The time when a notification is pushed out

view time The time when a user opens a notification

article id The ID of the news video

article title The title of the news video

category The category of the news video

udid Device ID, can be used as users’ ID

words occur very few times in the dataset, we filter out these low-frequency
words.

The preprocessed dataset contains 1,464 notifications. Due to retaining users’
time-varying preferences, we divide the dataset into train set and test set by
splitting notifications with a ratio of 4:1 in order of time.

Comparison Methods. Recommendation on mobile notification services is
quite different from conventional recommendation problems. Many classic algo-
rithms such as Collaborative Filtering, can not work well, since notifications are
newly produced without feedbacks. So we adopt two simple but widely used
methods in notification recommendations.

Besides, we use LDA as an instance of content-based recommendations. In
order to study the impact of temporal information, we use ETA model alone as a
contrast method. Our validation method is short for ETA-LDA. The parameters
of all adopted methods are fine-tuned according to performances on train set
by 5-fold cross validation. We compare the performances of these methods in
test set.

RND: It is a recommendation model which recommends items to users at ran-
dom. Since the preprocessed dataset just remains records of users that opened
more than 20 notifications (if users do not open any notifications, no traces of
them will be kept.), we directly use the notification open rate from the app’s
statistics with the mechanism that randomly chooses 30% of users for each noti-
fication to send.

POP: POP method recommends popular items to users. We can not tell if
a notification will be popular before it is pushed out. Instead, we recommend
notifications to active users who have opened more than 50 notifications.

LDA: It can calculate topic distributions of newly produced notifications.
Gensim3 provides a good Python implementation of LDA, so we use it as our
LDA implementation.

ETA: It recommends notifications just considering temporal information.
ETA-LDA: ETA depicts users’ willingness to open a notification in a cer-

tain time, while LDA captures users’ content preferences to the notification.
3 http://radimrehurek.com/gensim/.

http://radimrehurek.com/gensim/
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ETA-LDA makes a trade-off between the two parts to improve the recommen-
dation performance.

Evaluation Metrics. To evaluate the recommendation methods, we use met-
rics: P , and R to compare the performance of recommendation methods. P
measures the ratio of the notifications pushed by recommendation methods that
are really opened by users. Higher P will not only attain better user experience
but also decrease customer churn rate. R measures the ratio of the notifica-
tions pushed by recommendation methods that are opened by users to the total
opened notifications. Higher R means more users’ involvements and may increase
popularity. However, higher P will result in lower R. We use P as our key metric.

4.2 Recommendation Effectiveness

In this part, we first compare experimental results of the comparison methods
and ETA-LDA on metrics of P and R. We then analyze impact of parameters
and other factors.

Performance Analysis. Since RND uses open rate from the app’s statistics of
notifications, we do not compute R on it. Each algorithm has parameters fine-
tuned. For POP, we recommend all items to each active user, and it achieves
58.8% on R. For latent factor models (LDA and ETA-LDA), we use the same
hyper-parameters. The number of topics is tuned to be 12, and other hyper-
parameters are set to default values. Besides, we set decay factors β3 and β4

to 1 equally. It is insufficient to train the parameters in function d(·, ·), due to
many users just opened few notifications. Instead, we use the full records to
train the parameters. As shown in Fig. 2b, it will filter out about 15% of users
by setting parameter τ to be 0.5. For these outlier users, we use their content
preferences to decide whether to push notifications or not. Then, we fix τ to be
0.5 to ensure temporal preferences of most (about 85% of) users will be taken
into consideration in ETA and ETA-LDA methods. Besides, we tune η to be
0.054 in ETA. In ETA-LDA, we tune α, δ to be 0.94 and 0.21, respectively.

Table 2 lists the performance of the comparison methods and ETA-LDA on
the test set. ETA just with temporal information achieves a good performance.
Our proposed ETA-LDA method clearly outperforms the baseline methods.
Without sufficient content information of news videos, LDA is not sufficiently
trained. However, incorporating ETA into LDA achieves 15% improvement in P
and significant improvement in R against the vanilla LDA method. Given more
content information, ETA-LDA will improve much more.

Parameter Analysis. α determines the proportion of content preferences, τ
decides the ratio of users who are similar or outlier users, and δ has the final
say on whether to push notifications. We set α, δ and τ to be 0.94, 0.21 and
0.50, respectively. The three parameters impact the performance of ETA-LDA.
By varying each parameter, we have the following result:
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Table 2. Comparison results on test set.

Method P (%) R (%)

RND 2.2 -

POP 6.7 58.8

LDA 8.1 5.7

ETA 8.4 54.3

ETA-LDA 9.3 27.1

We analyze how α influences the performance of ETA-LDA. Figure 4a plots
the performance of ETA-LDA with α varying from 0.80 to 0.99. We observe that
P achieves the maximum (9.3%) by tuning α to be 0.94; R always decreases as
α increases. These results demonstrate it is wise to set α to be 0.94.

We study how δ influences the performance of ETA-LDA. Figure 4b shows
the performance of ETA-LDA by varying δ from 0.11 to 0.30. We see that P
achieves the maximum (9.3%) when δ is 0.21; R simultaneously increases with δ.
These observations figure out the optimized set up of δ (i.e., δ is set to be 0.21).

We further investigate the impact of τ in our model. As illustrated in Fig. 4c,
the performance of ETA-LDA by varying τ in [0.35, 0.55] is not convergent. We
can not get optimal recommendation performance through these metrics, due to
the lack of appropriate metrics to balance P and R. Hence, we set τ to be 0.5,
considering temporal information of 85% of users.
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Fig. 4. Impact of implementation parameters

Other Factor Analysis. First, we study how ETA-LDA performs on different
categories. We extract notifications from some different categories. Figure 5a
shows that ETA-LDA has relatively stable performance on different categories.
Then we investigate how the push time of notifications performs in our model.
We split test set into sub sets by the hour of push time. As Fig. 3a illustrates,
the hours in prime time achieve better performance. We vary the minimum
number of each user’s records from 20 to 50. Figure 5c shows that denser datasets
significantly improve P , but R is not sensitive.
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5 Conclusion

In this paper, we study recommendation on mobile notification services. We
first present the challenges in notification recommendation and give our design
motivations. Based on these motivations, we propose an exponential time-aware
recommendation model to tackle with these problems. We build an exponential-
decaying model to reflect the timeliness of notifications, and design a temporal
preference model to capture users’ willingness to open notifications over time.
Based on the two models, we incorporate LDA to provide time-varying mobile
notification services. Our model integrates temporal information and users’ con-
tent preferences. Our trace-driven experimental results have shown that our
model is effective and outperforms several alternative methods.
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Abstract. A temporal database is a collection of transactions, ordered
by their timestamps. Discovering periodic patterns in temporal data-
bases has numerous applications. However, to the best of our knowledge,
no work has considered mining periodic patterns in temporal databases
where items have dissimilar support and periodicity, despite that this
type of data is very common in real-life. Discovering periodic patterns in
such non-uniform temporal databases is challenging. It requires defining
(i) an appropriate measure to assess the periodic interestingness of pat-
terns, and (ii) a method to efficiently find all periodic patterns. While a
pattern-growth approach can be employed for the second sub-task, the
first sub-task has to the best of our knowledge not been addressed. More-
over, how these two tasks are combined has significant implications. In
this paper, we address this challenge. We introduce a model to assess the
periodic interestingness of patterns in databases having a non-uniform
item distribution, which considers that periodic patterns may have dif-
ferent period and minimum number of cyclic repetitions. Moreover, the
paper introduces a pattern-growth algorithm to efficiently discover all
periodic patterns. Experimental results demonstrate that the proposed
algorithm is efficient and the proposed model may be utilized to find prior
knowledge about event keywords and their associations in Twitter data.

Keywords: Data mining · Periodic pattern · Non-uniform temporal
database

1 Introduction

Temporal databases are commonly used in many domains. A temporal data-
base is a collection of transactions, ordered by their timestamps. A temporal
database is said to be non-uniform if it contains items with dissimilar support
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Table 1. Some tweets produced during GEJE

Timestamp Tweets

1301575750 #Discrimination n demagoguery 4 foreigners, mainly #Asian s by
#Japanese in #Sendai. #earthquake #jishin http://htn.to/rhGtmd

1301575750 shhhhh dont tell @jimcramer El-Erian says recent Japanese
earthquake is NOT like Kobe, won’t have same V shaped recovery -
Reuters #newsmkr

1301583131 Some people will never be able to go home.
They lost their homes in the tsunami. #VOAAsiachat1

1301583579 Social media had a critical role in Japan during/after the
quake/tsunami.
Somewhat else can better assess overall than me. #VOAAsiachat1

and periodicity. Non-uniform temporal data is naturally produced in many real-
world situations. For instance, disasters such as earthquakes and tsunami happen
at irregular time intervals. Twitter data related to these disasters is thus non-
uniform. For example, Table 1 shows a part of a temporal database generated
from the tweets produced during the Great East Japan Earthquake (GEJE),
which occurred on the 11th March 2011.

Discovering patterns in temporal databases is challenging because they not
only allow time gaps between consecutive transactions, but also to have multi-
ple transactions with the same timestamp. An important type of patterns that
can be extracted from temporal databases is (Partial) periodic patterns. A peri-
odic pattern is something persistent and predictable that appears in a database.
Finding periodic patterns is thus useful to understand the data. For example, it
was revealed in our present study on Twitter data related to the GEJE that over
80% of the event keywords found by a supervised event detection algorithm [1]
can also be discovered as periodic patterns. The proposed study thus may be
used as an unsupervised learning technique to generate some prior knowledge
about event keywords and their associations in Twitter data.

The task of finding periodic patterns has two important sub-tasks: (i) deter-
mining the periodic interestingness of patterns, and (ii) finding all periodic pat-
terns in a given database. While a variation of pattern-growth algorithms could
be employed for the second sub-task, the first sub-task is non-trivial because of
the following reasons:

1. Current periodic pattern models [2–4] do not take into account the informa-
tion about the temporal occurrences of items in a dataset.

2. Since a temporal database allows transactions to share a common timestamp,
the periodic interestingness of a pattern has to be determined by taking into
account not only its support, but also its inter-arrival times in a database.
Unfortunately, current measures assess the interestingness of a pattern by
only taking its support into account. We need to investigate new measure(s)
to assess the interestingness of patterns by taking into account both their
support and periodicity in a database.

http://htn.to/rhGtmd
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Moreover, how to combine the two aforementioned tasks has significant
implications.

This paper addresses this challenge. It presents a model to discover periodic
patterns in non-uniform temporal databases. The proposed model lets the user
specify a different maximum inter-arrival time (MIAT ) for each item. Thus,
different patterns may satisfy different period depending on their items’ MIAT
values. A new measure, Relative Periodic-Support (RPS), is proposed to deter-
mine the periodic interestingness of a pattern in a database. Unlike existing
support-based measures, the proposed measure assess the interestingness of a
pattern by taking into account its number of cyclic repetitions in the database.
An inter-arrival time of a pattern is considered periodic (or cyclic) if it is no
more than period. This measure satisfies the null-invariant property [5]. Thus,
the usage of item specific MIAT values and RPS allows the proposed model to
capture the non-uniform distribution of items in a database. We also propose a
pattern-growth algorithm that discovers the complete set of periodic patterns.
Experimental results demonstrate that the proposed algorithm is efficient. We
also demonstrate the usefulness of the proposed model by finding various event
keywords and their associations in disaster related Twitter data.

The rest of paper is organized as follows. Section 2 describes the related work.
Section 3 describes the proposed periodic pattern model. Section 4 introduces
our algorithm to find all periodic patterns in a database. Section 5 reports on
experimental results. Finally, Sect. 6 concludes the paper with future research
directions.

2 Related Work

Frequent pattern mining is an important data mining task. Several support
related measures have been discussed to determine the interestingness of a pat-
tern in a transactional database. Each measure has a selection bias that justifies
the significance of a knowledge pattern. As a result, there exists no univer-
sally acceptable best measure to judge the interestingness of a pattern in any
given database. Researchers have proposed criteria to select an interestingness
measure based on user and/or application requirements [5]. Recently, measures
that satisfy the null-invariant property have became popular for finding frequent
patterns. The reason is that this property guarantees finding genuine correlation
patterns that are not influenced by object co-absence in a database. Unfortu-
nately, current measures cannot be used to determine the periodic interestingness
of a pattern in temporal databases. This is because these measures only take the
support into account and completely ignore the temporal occurrence behavior
of patterns in databases. We introduce a new null-invariant measure that assess
the interestingness of a pattern by taking into account both the support and
temporal occurrence information of patterns.

Periodic patterns are an important class of regularities that exist in a time
series data. Since it was first introduced in [2], the problem of finding these
patterns has received a great deal of attention [4]. A major limitation of these
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studies is that they consider time series as a symbolic sequence and ignore the
temporal occurrence information about events in a series.

Similar to our problem, the mining of full periodic-frequent patterns in a
transactional database has been studied in [6–8]. This problem of finding full
periodic-frequent patterns greatly simplifies the design of the model because
there is no need of any measure to determine the partial periodic interestingness
of a pattern. More important, these studies also consider transactional database
as a symbolic sequence of transactions (or itemsets) and ignore the temporal
occurrence information of the transactions in a database. To the best of our
knowledge, this is the first study that considers the problem of finding (partial)
periodic patterns by taking into account the temporal occurrence information of
the transactions in a database.

3 Proposed Model

Let I = {i1, i2, · · · , in} be the set of ‘n’ items appearing in a database. A set of
items X ⊆ I is called an itemset (or a pattern). A pattern containing k items is
called a k-pattern. The length of this pattern is k. A transaction is a triplet tr =
(tid, ts, Y ), where tid represents the transactional identifier, ts ∈ R represents
the transaction time (or timestamp) and Y is an itemset. A temporal database
TDB is an ordered set of transactions, i.e. TDB = {tr1, tr2, · · · , trm}, where
m = |TDB| represents the database size (the number of transactions). Let tsmin

and tsmax denote the minimum and maximum timestamps in TDB, respectively.
For a transaction tr = (tid, ts, Y ), such that X ⊆ Y , it is said that X occurs
in tr and such a timestamp is denoted as tsX . Let TSX = (tsXa , tsXb , · · · , tsXc ),
a ≤ b ≤ c, be the ordered list of timestamps of transactions in which X
appears in TDB. The number of transactions containing X in TDB (i.e., the
size of TSX) is defined as the support of X and denoted as sup(X). That is,
sup(X) = |TSX |.
Example 1. Table 2 shows a temporal database with I = {abcdefg}. The set of
items ‘a’ and ‘b,’ i.e., ‘ab’ is a pattern. This pattern contains 2 items. There-
fore, it is a 2-pattern. The length of this pattern is 2. In the first transaction,
tr1 = (100, 1, ab), ‘100’ represents the tid of the transaction, ‘1’ represents the
timestamp of this transaction and ‘ab’ represents the items occurring in this
transaction. Other transactions in this database follow the same representation.
The size of the database is m = 12. The minimum and maximum timestamps in
this database are 1 and 14, respectively. Therefore, tsmin = 1 and tsmax = 14.
The pattern ‘ab’ appears in the transactions whose timestamps are 1, 3, 6, 8,
10, 11 and 12. Therefore, TSab = {1, 3, 6, 8, 10, 11, 12}. The support of ‘ab,’ i.e.,
sup(ab) = |TSab| = 7.

Definition 1 (Period of a pattern X). Let MIAT (ij) be the user-defined
maximum inter-arrival time (MIAT ) specified for an item ij ∈ I. The period
of a pattern X, denoted as PER(X), represents the largest MIAT value of all
items in X. That is, PER(X) = max(MIAT (ij)|∀ij ∈ X). The items’ MIAT
values can also be expressed in percentage of (tsmax − tsmin).
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Table 2. Running example: temporal database

tid ts items tid ts items tid ts items tid ts items

100 1 ab 103 4 cd 106 8 abcd 109 11 abf

101 3 acdg 104 6 abcd 107 9 ce 110 12 abcd

102 3 abef 105 7 efg 108 10 abef 111 14 acdeg

Example 2. Let the MIAT values for the items a, b, c, d, e, f and g be 2, 2, 2,
2, 3, 4 and 4, respectively. The period of the pattern ‘ab,’ i.e., PER(ab) =
max(2, 2) = 2.

The usage of items’ MIAT values enable us to achieve the goal of having lower
periods for patterns that only involve frequent items, and having higher periods
for patterns that involve rare items. The items’ MIAT values may be derived
using the period determining functions, such as Fast Fourier Transformations
(FFTs) and auto-correlation.

Definition 2 (Periodic occurrence of a pattern X). Let tsXj , tsXk ∈ TSX ,
1 ≤ j < k ≤ m, denote any two consecutive timestamps in TSX . The time
difference between tsXk and tsXj is referred as an inter-arrival time of X, and
denoted as iatX . That is, iatX = tsXk −tsXj . Let IATX = {iatX1 , iatX2 , · · · , iatXk },
k = sup(X) − 1, be the list of all inter-arrival times of X in TDB. An inter-
arrival time of X is said to be periodic (or cyclic) if it is no more than PER(X).
That is, a iatXi ∈ IATX is said to be periodic if iatXi ≤ PER(X).

Example 3. The pattern ‘ab’ has initially appeared at the timestamps of 1 and
3. The difference between these two timestamps gives an inter-arrival time of
‘ab.’ That is, iatab1 = 2 (= 3 − 1). Similarly, other inter-arrival times of ‘ab’ are
iatab2 = 3 (= 6−3), iatab3 = 2 (= 8−6), iatab4 = 2 (= 10−8), iatab5 = 1 (= 11−10)
and iatab6 = 1 (= 12 − 11). Therefore, IAT ab = {2, 3, 2, 2, 1, 1}. If PER(ab) = 2,
then iatab1 , iatab3 , iatab4 , iatab5 and iatab6 are considered as the periodic occurrences
of ‘ab’. The iatab2 is considered as an aperiodic occurrence of ‘ab’ because iatab2 �≤
PER(ab).

Definition 3 (Relative periodic-support of a pattern X). Let ÎATX be
the set of all inter-arrival times in IATX that have iatX ≤ PER(X). That is,
ÎATX ⊆ IATX such that if ∃iatXk ∈ IATX : iatXk ≤ PER(X), then iatXk ∈
ÎATX . The relative periodic-support of X, denoted as RPS(X) = | ̂IATX |

|IAT ij | , where
ij is an item that has the lowest support and maximum MIAT value among all
items in X. This measure satisfies the null-invariant property [5].

Example 4. Continuing with the previous example, ÎAT ab = {2, 2, 2, 1, 1}, the
item ‘b’ in the pattern ‘ab’ has the lowest support and maximum MIAT value.

Therefore, the relative periodic-support of ‘ab,’ i.e., RPS(ab) = | ̂IATab|
|IAT b| = 5

6 =0.83.
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For brevity, we call ÎATX as periodic-frequency . The periodic-frequency deter-
mines the number of cyclic repetitions of a pattern in the data. The proposed
measure enables us to achieve the goal of specifying a higher number of cyclic
repetitions for patterns that only involve frequent items, and a lower num-
ber of cyclic repetitions for patterns that involve rare items. For a pattern X,
RPS(X) ∈ [0, 1]. If all inter-arrival times of X are more than PER(X), then
RPS(X) = 0. In other words, X is an irregular pattern. If all inter-arrival times
of X are within PER(X), then RPS(X) = 1. In other words, X is a full periodic
pattern.

In the proposed model, we have considered an inter-arrival time of X as
interesting if iatX ≤ PER(X). However, our model is flexible and allows other
ways to consider an inter-arrival time of a pattern as interesting. For instance, we
can consider an inter-arrival time of a pattern as interesting if iatX ≤ PER(X)±
Ω, where Ω > 1 is a constant that denotes time tolerance. We stick to the above
definition for brevity.

Definition 4 (Periodic pattern X). The pattern X is a periodic pattern if
RPS(X) ≥ minRPS, where minRPS is the user-specified minimum relative
periodic-support.

Example 5. Continuing with the previous example, if the user-specified min
RPS = 0.6, then ‘ab’ is a periodic pattern because RPS(ab) ≥ minRPS.

Definition 5 (Problem definition). Given a temporal database (TDB), set
of items (I), user-defined minimum interval times of the items (MIAT ) and
minimum relative periodic-support (minRPS), the problem of finding periodic
patterns involve discovering all patterns in TDB that have relative periodic-
support no less than minRPS.

The periodic patterns generated by the proposed model satisfy the convert-
ible anti-monotonic property [9].

Property 1. Let Z = {i1, i2, · · · , ik}, 1 ≤ k ≤ |I|, be a pattern with MIAT (i1) ≥
MIAT (i2) ≥ MIAT (ik). If Y ⊂ Z and i1 ∈ Y , then RPS(Y ) ≥ RPS(Z) as
| ̂IATY |
|IAT i1 | ≥ | ̂IATZ |

|IAT i1 | .

4 Periodic Pattern-Growth Algorithm

In this section, we describe the proposed PP-growth algorithm that discovers
the complete set of periodic patterns. Our algorithm involves the following two
steps: (i) compress the database into a periodic pattern tree (PP-tree) and (ii)
recursively mine the PP-tree to find all periodic patterns. Before we discuss these
two steps, we describe the PP-tree structure.
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Structure of PP-Tree Structure. A PP-tree has two components: a PP-
list and a prefix-tree. The PP-list consists of each distinct item (i) with mini-
mum interval time (MIAT ), support (S), periodic-frequency (PF ) and a pointer
pointing to the first node in the prefix-tree carrying the item. The prefix-tree in
a PP-tree resembles that of the prefix-tree in a FP-tree [10]. However, to capture
both support and inter-arrival times of the patterns, the nodes in the PP-tree
explicitly maintain the occurrence information for each transaction by keeping
an occurrence timestamp list, called a ts-list. To achieve memory efficiency,
only the last node of every transaction maintains the ts-list. We now explain the
construction and mining of PP-tree.

Construction of PP-tree. The procedure for constructing a PP-tree is shown
in Algorithm 1. We illustrate the working of this algorithm using the database

Algorithm 1. Construction of PP-Tree(TDB: Time series database, I: Set of
items, MIAT : minimum interval time, minRPS: minimum relative periodic-
support)
1: Insert all items in TDB into the PP-list with their MIAT values. Set the support

and periodic-frequency values of all these items to 0. The timestamps of the last
occurring transactions of all items in the PP-list are explicitly recorded for each
item in a temporary array, called tsl.

2: Let t = {tscur, X} denote the current transaction with tscur and X representing
the timestamp and pattern, respectively.

3: for each transaction t ∈ TDB do
4: for each item i ∈ X do
5: S(i) + +;
6: if ((tsl(i) �= 0)&&(tscur − tsl(i)) ≤ MIAT (i)) then
7: PF (i) + +;
8: tsl(i) = tscur;
9: All items in PP-list are sorted in ascending order of their MIAT values. The items

having a common MIAT value are sorted in descending order of their support.
10: Measure the RPS value for the bottom most item in the PP-list. If the RPS

value of this item is less than minRPS, then prune this item from the PP-list
and repeat the same step for the next bottom most item in the PP-list. Stop this
pruning process once the RPS value of the bottom most item in PP-list is no less
than minRPS. Let CI denote this sorted list of items.

11: Create a root node in the prefix-tree, T , and label it as “null.”
12: for each transaction t ∈ TDB do
13: Sort the items in X according to the order of CI. Let the sorted candidate

item list in t be [p|P ], where p is the first item and P is the remaining list.
Call insert tree([p|P ], tscur, T ), which is performed as follows. If T has a child
N such that N.item-name �= p.item-name, then create a new node N , Let its
parent link be linked to T . Let its node-link be linked to nodes with the same
item-name via the node-link structure. Remove p from P . If P is nonempty, call
insert tree(P, tscur, N) recursively; else add tscur to the leaf node.
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Algorithm 2. PP-growth(Tree, α)
1: for each ai in the header of Tree do
2: if PF (ai)

S(ai)−1
≥ minRPS then

3: Generate pattern β = ai ∪ α. Traverse Tree using the node-links of β, and
construct an array, TSβ, which represents the timestamps at which β has
appeared in TDB. Construct β’s conditional pattern base and β’s conditional
PP-tree Treeβ by calling calculateRPS(β, TSβ, MIAT (ai)). The calculateRPS
function calculates the periodic-frequency of β from TSβ, and returns RPS
value by dividing the periodic-frequency with S(ai) − 1.

4: if Treeβ �= ∅ then
5: call PP-growth(Treeβ, β);
6: Remove ai from the Tree and push the ai’s ts-list to its parent nodes.
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Fig. 1. Construction of PP-List. (a) Before scanning the database. (b) After scanning
the first transaction. (c) After scanning the entire database. (d) Updated PP-list. (e)
Final PP-list with sorted list of items

shown in Table 2. (Please note that we ignore the tid information of
transactions for brevity).

For the construction of PP-list, we insert all items into the PP-list with
their MIAT values. The support and periodic-frequency of all these items are
simultaneously set to 0. Figure 1(a) shows the PP-list generated before scanning
the database (line 1 in Algorithm 1). The scan on the first transaction, “1:ab,”
updates the support and tsl values of a and b to 1 and 1, respectively. Figure 1(b)
shows the PP-list generated after scanning the first transaction. This process is
repeated for other transactions in the database and PP-list is updated accord-
ingly. Figure 1(c) shows the PP-list generated after scanning the entire database
(lines 2 to 8 in Algorithm 1). The items in PP-list are sorted in ascending order of
their MIAT values. Items having a common MIAT value are sorted in descend-
ing order of their support (to achieve memory efficiency). Figure 1(d) shows the
sorted PP-list (line 9 in Algorithm1). We calculate RPS for the item ‘g,’ which
is the bottom-most item in the PP-list. As RPS(g) �≥ minRPS, the item ‘g’
is pruned from the PP-list. Next, we calculate the RPS value for the item f ,
which is the current bottom-most item in the PP-list. As RPS(f) ≥ minRPS,
we consider f as a periodic 1-pattern and stop the process of pruning other
aperiodic 1-patterns from the PP-list. Figure 1(e) shows the final PP-list after
pruning some of the aperiodic 1-patterns whose supersets can never produce any
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Fig. 2. Construction of PP-Tree. (a) After scanning the first transaction. (b) After
scanning the second transaction. (c) After scanning the entire database

periodic pattern (line 10 in Algorithm1). Let CI denote the sorted list of items
in PP-list. That is, CI = {a, b, c, d, e, f}. Next, we create a root node in the
prefix-tree of PP-tree, and label it as “null” (line 11 in Algorithm1).

In the next step, we update the PP-tree by performing another scan on the
database. The items in the first transaction, “1 : ab,” are sorted in CI order
and a first branch is constructed with two nodes 〈a〉 and 〈b : 1〉, where ‘a’ is
linked as a child of the root and ‘b’ is linked as the child node of ‘a’. As ‘b’
represents the leaf node of the first transaction, this node carries the timestamp
of 1. Figure 2(a) shows the PP-tree updated after scanning the first transaction.
This process is repeated for the remaining transactions in the database and the
PP-tree is updated accordingly. Figure 2(b) shows the PP-tree generated after
scanning the second transaction. Figure 2(c). shows the PP-tree generated after
scanning the entire database (lines 12 and 13 in Algorithm1).

Recursive Mining of PP-Tree. The PP-tree is mined as follows. Start from
length-1 pattern (as an initial suffix pattern). If the RPS value of this pat-
tern satisfies the minRPS, then consider this pattern as a periodic item (or
1-pattern), construct its conditional pattern base (a sub-database, which con-
sists of the set of prefix paths in the PP-tree with the suffix pattern), then con-
struct its conditional PP-tree, and recursively mine that tree. Pattern-growth is
achieved by concatening the suffix pattern with the periodic patterns generated
from a conditional PP-tree. Next, the initial suffix pattern is pruned from the
original PP-tree by moving its ts-lists to the corresponding parent nodes.

Algorithm 2 describes the procedure for finding periodic patterns in a PP-
tree. We do not discuss this algorithm in detail as it is straightforward to under-
stand. Mining the PP-tree is summarized in Table 3. It can be observed that
conditional pattern bases have not been constructed for the item ‘e,’ because it
is an aperiodic 1-pattern with RPS(e) �≥ minRPS. The above bottom-up min-
ing technique is efficient, because it shrinks the search space dramatically as the
mining process progresses. Some of the improvements discussed for FP-growth
[10] can be straight forward extended to PP-growth. We are unable to discuss
these improvements due to the page limitation.
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Table 3. Mining the PP-tree by creating conditional (sub-)pattern bases

item support MIAT Conditional
pattern base

Conditional
PP-tree

Periodic
patterns

f 4 4 {abe : 3, 10},
{ab : 11}, {e : 7}

〈e : 3, 7, 10〉 {ef : 0.66}

e 5 3 – – –

d 6 2 {abc : 6, 8, 12},
{ac : 3, 14}, {c : 4}

〈c : 3, 4, 6, 8, 12, 14〉 {cd : 0.8}

c 7 2 {ab : 6, 8, 12},
{a : 3, 14}

– –

b 7 2 {a : 1, 3, 6, 8, 10, 11, 12} 〈a : 1, 3, 6, 8, 10, 11, 12〉 {ab : 0.83}

5 Experimental Results

Since there exists no algorithm to find periodic patterns in temporal databases,
we only evaluate the proposed algorithm and show that our algorithm is memory
and runtime efficient. We also show that PP-tree consumes less memory than
the FP-tree for many databases. Finally, we discuss the usefulness of the pro-
posed model by demonstrating that over 80% of the event keywords found by a
supervised event detection system [1] in Twitter data can also be discovered as
periodic patterns. (Similar to FP-growth [9,10], PP-growth also scales linearly
with the increase of database size. Unfortunately, we are unable to present these
results due to page limitation.)

The algorithms PP-growth and FP-growth are written in GNU C++ and
run on a 2.66 GHz machine having 16 GB of memory. Ubuntu 14.04 is the oper-
ating system of our machine. The event detection system is written in python
and java, and available for download at https://github.com/aritter/twitter nlp.
The experiments have been conducted using both synthetic (T10I4D100K)
and real-world (FAA-accidents and Twitter) databases. The synthetic data-
base, T10I4D100K, is generated by using the IBM data generator [11]. This
data generator is widely used for evaluating association rule mining algorithms.
The T10I4D100K database contains 870 items with 100,000 transactions. The
FAA-accidents database is constructed from the accidents data recorded by the
Federal Aviation Authority (FAA) from 1-January-1970 to 31-December-2014.
Only categorical attributes have been taken into account while constructing
the database. This database contains 9,290 items and 98,864 transactions. The
Twitter database constitutes of 2,680,896 tweets collected from 10-march-2011
to 31-march-2011. These tweets are related to GEJE. We have created temporal
database by considering top 4000 frequent english words.

Figure 3(a)–(c) present scatter plots about the inter-arrival times of items
in the T10I4D100K, FAA-accidents and Twitter databases, respectively. The
X-axis represents the items ranked in descending order of their support and

https://github.com/aritter/twitter_nlp
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Fig. 3. The median of inter-arrival times of items in a database

Y -axis represents the median of inter-arrival times of an item in a database. The
thick line in these figures denote the trend line. The equations of these trend lines
and R2 values are shown in Table 4. It can be observed from the trend lines that
rare items not only have low support, but also have high inter-arrival times as
compared against the frequent items. This experiment clearly demonstrates the
importance of enabling every pattern to satisfy a different period and minimum
number of cyclic repetitions to be a periodic pattern.

The performance of PP-growth has to be evaluated by varying the items’
MIAT values. Unfortunately, popular period identification functions (e.g. FFTs
and auto-correlation) do not help us vary items’ MIAT values. In this context,
we employ the following methodology to specify the items’ MIAT values. For
each database, we use the equation of trend line as a reference, and specify the
items’ MIAT values by multiplying the equation of the trend line with a constant
β. That is, MIAT (ij) = β ×f(x), where β ≥ 1 is a user-specified constant and
f(x) is the equation of trend line in which x denotes the rank of an item in
support descending order.

Table 4. Trend line equations for various databases

Database Equation of trend line (f(x)) R2

T10I4D100K y = 7.06E−05x2 + 0.12x + 14.70 0.9892

FAA-Accidents y = −9.67E−05x2 + 0.04x + 1 0.9122

Twitter y = 3.32E−06x2 + 0.11x + 21.39 0.0777

Figure 4(a)–(c) shows the number of periodic patterns generated for different
minRPS and β values in T10I4D100K, FAA-accidents and Twitter databases,
respectively. The following two observations can be drawn from these figures: (i)
Increase in β value may increase the number of periodic patterns. The reason
is that higher β values tend to increase MIAT values of items. (ii) Increase
in minRPS may decrease the number of periodic patterns. The reason is that
increasing minRPS increases the minimum number of cyclic repetitions neces-
sary for a pattern to be a periodic pattern.



Discovering Periodic Patterns in Non-uniform Temporal Databases 615

(b) FAA-accidents (c) Twitter

N
um

be
r 

of
 P

at
te

rn
s

minRPS

 0

 1000

 2000

 3000

 4000

 0.2  0.3  0.4  0.5  0.6
 0

 4000

 8000

 12000

 16000

N
um

be
r 

of
 P

at
te

rn
s

(a) T10I4D100K

minRPS

 0.2  0.3  0.4  0.5  0.6

minRPS

 0.2  0.3  0.4  0.5  0.6

N
um

be
r 

of
 P

at
te

rn
s

 120000

 160000

 80000

 60000

 200000

 240000

β = 1
β = 3
β = 5

β = 1
β = 3
β = 5

β = 1
β = 3
β = 5

Fig. 4. The periodic patterns generated at different minRPS and β values

Figure 5(a)–(c) show the runtime requirements of PP-growth at different
minRPS and β values in T10I4D100K, FAA-accidents and Twitter databases,
respectively. It can be observed that varying the β and minRPS values has
similar influence on runtime than on the generation of periodic patterns.

Table 5 lists the maximum memory usage of PP-tree and FP-tree on
T10I4100K, FAA-accidents and Twitter databases, respectively. Both trees are
constructed with every item in the database. It can be observed from the results
that PP-tree consumes less memory than FP-tree if number of nodes in a
tree exceed the database size, otherwise, PP-tree consumes more memory than
FP-tree.

5.1 A Case Study: Evaluation of Periodic Patterns Discovered
from Twitter Data

While investigating the usefulness of periodic patterns discovered from Twitter
data, we have observed that many generated periodic 1-patterns (and their asso-
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Table 5. Memory comparison of FP-tree and PP-tree

Data set FP-tree (in MB) PP-tree (in MB) No. of nodes

T10I4D100K 10.906 8.561 714,739

FAA-accidents 5.898 4.801 316,935

Twitter 7.172 15.606 470,040
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Table 6. Some of the interesting periodic patterns and tweets containing the patterns

ciations) were interesting as they were referring to the event GEJE. This moti-
vated us to study the following: (i) Do event keywords in Twitter exhibit periodic
behavior? and (ii) If event keywords exhibit periodic behavior, then what would
be their percentage? The significance of this study is that if we find many event
keywords exhibiting periodic behavior, then one can use the proposed model as
an unsupervised learning technique to derive some prior knowledge about event
keywords and their associations in Twitter data.

Ritter et al. [1] discussed a supervised learning model to discover event key-
words from tweets. We use this model for our experiment. This model annotates
tweets using natural language processing techniques, generates a model from
the training set of tweets and uses the model to extract event keywords from
the test set of tweets. As the authors have already trained their model to iden-
tify event keywords in tweets, we have simply provided our Twitter data as the
test set and extracted event keywords. A total of 325 event keywords have been
extracted from the Twitter data. (We found that only 106 event keywords have
appeared in top 500 frequent words. This clearly demonstrates that frequency
has less influence in determining a word as an event keyword.) When we com-
pared these event keywords against the periodic 1-patterns generated at β = 3
and minRPS = 0.6, we found that 267 event keywords have been generated as
periodic 1-patterns. In other words, 82.15% (=267×100

325 ) of keywords have exhib-
ited periodic behavior in Twitter data. This clearly demonstrates that periodic
pattern mining can be used to find prior knowledge about event keywords and
their associations in Twitter data. Table 6 lists some of the generated periodic
patterns and their associated tweets.

6 Conclusions and Future Work

We have proposed a model to find periodic patterns in temporal databases. It
enables every pattern to satisfy different period and minimum number of cyclic
repetitions depending on its items. A null-invariant measure, relative periodic-
support, was discussed to determine the periodic interestingness of a pattern in
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a database. A pattern-growth algorithm has also been presented to find periodic
patterns. Experimental results show that the proposed model can find useful
information and that the algorithm is efficient.

Our study has been confined to mining periodic patterns in a static temporal
database. The method developed here can be extended to incremental mining of
temporal databases.
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Abstract. Recommender System has become one of the most impor-
tant techniques for businesses today. Improving its performance requires
a thorough understanding of latent similarities among users and items.
This issue is addressable given recent abundance of datasets across
domains. However, the question of how to utilize this cross-domain rich
information to improve recommendation performance is still an open
problem. In this paper, we propose a cross-domain recommender as the
first algorithm utilizing both explicit and implicit similarities between
datasets across sources for performance improvement. Validated on real-
world datasets, our proposed idea outperforms the current cross-domain
recommendation methods by more than 2 times. Yet, the more inter-
esting observation is that both explicit and implicit similarities between
datasets help to better suggest unknown information from cross-domain
sources.

Keywords: Cross-domain learning · Recommendation system · Matrix
Factorization

1 Introduction

Recommender systems have been received increasing attention and popularity
from many products and services providers. Two approaches have been widely
used for building recommender systems: content based [10] and collaborative
filtering (CF) based [7]. A content based approach focuses on users’ profile or
items’ information for making prediction whereas a CF method bases on latent
similarities among users and items for recommending items for particular users.
This paper focuses on improving CF based approaches.

As CF based methods rely on latent similarities among users and items for
making recommendation, they require to have sufficient ratings to achieve a
reliable result. There are two scenarios that may occur. Firstly, newly estab-
lished services may take time to acquire enough ratings. Secondly, even they
have enough ratings for making reliable recommendations, how can recommen-
dation performance be improved using external data sources? Solving these two
problems is our main focus.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 618–630, 2017.
DOI: 10.1007/978-3-319-57529-2 48
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Fig. 1. Our Cross-Domain Recommender model. X(1) matches X(2) in their item mode.
Our proposed cross-domain factorization decomposes X(1) into U(1), [V(0)|V(1)] and
X(2) into U(2), [V(0)|V(2)] where V(0) is a common part in coupled mode of both X(1)

and X(2) while V(1) and V(2) are domain specific parts. Note that we also propose to
utilize the columns of non-coupled U(1) and U(2) such that clusters of similar users
(denoted by the same color patterns in their columns) in them are as close as possible.

The above issues are addressable given recent innovations on Internet and
social media that have made many datasets publicly available [2,5,9,11]. It is
therefore easy to find a correlated dataset from another domain. For example,
New South Wales (NSW) state’s crime statistics report can find NSW’s demog-
raphy closely related. These correlations across domains possess explicit similar-
ities, e.g., NSW crime report and NSW demography contain information of the
same local areas, which are conventionally used to coupled analyze them [1,12].
Nevertheless, datasets across domains also have implicit similarities, for example
demography and crime behavior may have similar hidden patterns. Both similar-
ities, if utilized properly, can provide rich insights to improve recommendation
performance on the above mentioned two scenarios.

Formally, suppose we have rating matrices X(1) and X(2) from two different
domains with only a few entries observed. Suppose X(1) and X(2) are explicitly
coupled in one dimension, i.e., one mode of X(1) and one mode of X(2) are cou-
pled. This is a reasonable assumption as many datasets across domains possess
this characteristic. For instance, X(1) contains population profiles of a country’s
cities and X(2) includes those cities’ crime reports; X(1) and X(2) are coupled
in their first mode (city mode). By joint analyzing cross-domain X(1) and X(2),
we want to learn ratings from observed X(1) and X(2) to predict their missing
entries with high accuracy. In other words, our question is how to utilize the
ratings in a domain to help predicting unknowns in another one and vice versa.
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Table 1. Collaborative factors used by different algorithms for cross-domain recom-
mendation. Our proposed method is the only one that utilizes both similarities.

Algorithm Explicit similarities Implicit similarities

CMF [12] �
CBT [8] �
CLFM [4] �
Our proposed CDRec � �

Existing algorithms were trying to solve the above problem by using explicit
similarities to collaborate between datasets. Collective Matrix Factorization
(CMF) [12] and its extensions [1] suggested both datasets would have the same
factor in their coupled mode. In this case, the low rank common factor captures
the explicit similarities between datasets across domains. Gao et al. [4] and Li et
al. [8] assumed cross-domain datasets would share explicit latent rating patterns.
The ratings’ similarities were then used to collaborate between them. Neverthe-
less, just only explicit is not enough to really improve the accuracy.

We propose a Cross-Domain Recommender (CDRec) as the first method
that analyzes both explicit and implicit similarities (Table 1). One of our key
hypothesis, extended from CMF where both datasets have the same factor in
their coupled mode, is that two datasets across domains also possess their own
specific patterns. Our idea is to find a way to combine these unique patterns
into the common factor. One plausible solution is to allow the coupled factors
to have both common and domain-specific parts. Figure 1 illustrates an example
of common V(0) and unique V(1), V(2) in coupled factors.

In addition, our another key hypothesis for implicit similarities, extended
from the concept of factorization as a clustering method [3], is that non-coupled
factors share common clusters. For example, in Fig. 1, even though users in X(1)

and X(2) are different, their behaviors may be grouped by latent similarities.
Because of that, we want to align common clusters in U(1) and U(2) to be
closer. One reasonable solution is to regularize the centroids of common clusters
in U(1) and U(2). This solution matches the fundamental concept of CF in which
similar users rate similarly.

In short, our main contributions are:

(1) Preserving common and specific parts in the coupled factor (Sub-
sect. 4.1): We extend existing common coupled factor by introducing specific
parts (e.g., factor V in Fig. 1.) These common and specific parts better cap-
ture the true explicit characteristics of datasets across domains.

(2) Aligning non-coupled factors’ similarities (Subsect. 4.2): We present
a method to utilize implicit similarities. CDRec is the first factorization
method utilizing both explicit and implicit similarities for cross domain rec-
ommender systems’ performance improvement (Fig. 1).

(3) Proposing an algorithm that solves optimization problem (Sub-
sect. 4.3): We optimize the process of utilizing both similarities following
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Alternating Least Squared (ALS) (Algorithm1). Our empirical results on
real-world datasets suggest our proposed algorithm the best choice for cross-
domain recommendation (Sect. 5).

2 Notations

We denote matrices by boldface capitals, e.g., X; I is the identity matrix. Bold-
face lowercases are for vectors, i.e., u is a column vector and uT is a row vector.
A boldface capital and lowercase with indices in its subscript are used for an
entry of a matrix and a vector, respectively. Transpose of X is denoted by XT.

3 Related Work

Joint analyzing cross-domain datasets has attracted huge research effort to
extract more meaningful insights. Many methods were proposed for making accu-
rate recommendations. Some popular algorithms are being discussed below.

Collective Matrix Factorization (CMF). To deal with two datasets coupled
in one of their modes, Singh et al. [12] and later Acar et al. [1] assumed two
datasets had a common low rank subspace in their coupled dimension. Suppose
X1 and X2 are joint in their first mode, the authors modeled this CMF with a
coupled loss function: L = ‖X1 − UVT

1 ‖2 + ‖X2 − UVT
2 ‖2 where common U

represents explicit similarities between two datasets.

CodeBook Transer (CBT). Targeting on improving recommendation on one
domain by utilizing latent rating patterns from another domain, Li et al. [8]
suggested one as a source domain Xsrc and the other one as a target domain
Xtgt. Then the Xsrc was decomposed into tri-factor: Xsrc ≈ UsrcSsrcVT

src. Rating
patterns (Ssrc) were used as the CodeBook to be transfered from Xsrc to Xtgt.
Thus, Xtgt became Xtgt ≈ UtgtSsrcVT

tgt. This explicit knowledge transfered from
the source improved the accuracy of recommendation in the target domain.

Cluster-Level Latent Factor Model (CLFM). The assumption that two
datasets from different domains have the same rating patterns is unrealistic
in practice. They may share some common patterns while possess their own
characteristics. This motivated Gao et al. [4] to propose CLFM for cross-domain
recommendation. In specific, the authors partitioned the rating patterns across
domains into common and domain-specific parts:

X1 ≈ U1[S0|S1]VT
1

X2 ≈ U2[S0|S2]VT
2

where S0 ∈ RR1∗C is the common patterns and S1, S2 ∈ RR1∗(R2−C) are domain-
specific parts; C is the number of common columns.

This model allows CLFM to learn the only shared latent space S0, having two
advantages. Firstly, as S0 captures the similar rating patterns across domains, it
helps to overcome the sparsity of each datasets. Secondly, domain-specific S1 and
S2 contain domains’ discriminant characteristics. As a result, diversity of ratings
in each domain is still preserved, improving recommendation performance.
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4 Our Proposed Cross-Domain Recommender (CDRec)

We propose a model that utilizes both explicit and implicit similarities between
datasets across domains. Without loss of generality, assume X(1) and X(2) are
coupled in their second mode, i.e. X(1) is a rating matrix from I users for J
items and X(2) is another rating matrix from K users for the same J items.
We follow the CMF model [12] to extract low rank user factors and item ones:
X(1) ≈ U(1)VT and X(2) ≈ U(2)VT. Nevertheless, we make two key extensions:

4.1 Preserving Common and Domain-Specific Parts in V

As X(1) and X(2) come from different domains, it is implausible to suggest
them to have the same V. They are highly correlated in a sense that they
have something in common, yet also possess their own domain-specific parts.
We, therefore, propose to include both common and domain-specific parts in V
factors in the coupled loss function:

min L =
∥
∥
∥
∥
X(1) − U(1)

[

V(0)|V(1)
]T

∥
∥
∥
∥

2

+
∥
∥
∥
∥
X(2) − U(2)

[

V(0)|V(2)
]T

∥
∥
∥
∥

2

where V(0) ∈ RJ∗C is the common part and V(1), V(2) ∈ RJ∗(R−C) are domain-
specific parts; C is the number of common columns.

Figure 1 illustrates an example of common V(0) and unique V(1), V(2) in
coupled factors. Common V(0) and domain-specific V(1) and V(2) better capture
the characteristics of datasets across domains.

4.2 Utilizing Implicit Similarities in U(1) and U(2)

Besides explicit similarities in coupled mode as in Subsect. 4.1, cross-domain
datasets also correlate in non-coupled mode. Following the concept of factoriza-
tion as a clustering method [3], user groups in X(1) and X(2) are captured in U(1)

and U(2). Although users in X(1) and those in X(2) are different, their behaviors
or preferences can be grouped together. This idea is the fundamental concept
of CF where users rated similarly in observed items will also rate similarly for
unobserved items. As a result, we suggest common clusters among columns of
U(1) and U(2) to be closer. One reasonable solution is to regularize the centroids
of clusters across U(1) and U(2).

minL =

∥
∥
∥
∥
X(1) −U(1)

[
V(0)|V(1)

]T
∥
∥
∥
∥

2

+

∥
∥
∥
∥
X(2) −U(2)

[
V(0)|V(2)

]T
∥
∥
∥
∥

2

+

∥
∥
∥
∥
u
(1)
c

T − u
(2)
c

T
∥
∥
∥
∥

2

where u(1)
c

T
and u(2)

c

T
denotes row vectors of columns’ centroids in U(1) and

U(2), respectively.
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Moreover, we also employ weighted λ-regularization [13] to our model below
to prevent overfitting.

min L =
∥
∥
∥
∥
X(1) − U(1)

[

V(0)|V(1)
]T

∥
∥
∥
∥

2

+
∥
∥
∥
∥
X(2) − U(2)

[

V(0)|V(2)
]T

∥
∥
∥
∥

2

+
∥
∥
∥
∥
u(1)

c

T − u(2)
c

T
∥
∥
∥
∥

2

+ λθ

(1)

where θ is the L2 regularization term such that

θ = ‖U(1)‖2 + ‖U(2)‖2 + ‖V(0)‖2 + ‖V(1)‖2 + ‖V(2)‖2

4.3 Optimization

Even though (1) is a non-convex function with respect to all parameters, it
is convex with respect to any of them when the others are fixed. Thus, we
apply Alternating Least Square (ALS) algorithm [6] to alternately optimize the
function with respect to one factor while fixing the others as in Algorithm1.
Moreover, to achieve efficiency, we perform our model optimization on each row
of U and V factors instead of full matrix computation. So we can rewrite (1) as

min L =
I,J
∑

i,j

(

X(1)
i,j − u(1)

i

T

[

v(0)
j

v(1)
j

] )2

+
K,J
∑

k,j

(

X(2)
k,j − u(2)

k

T

[

v(0)
j

v(2)
j

] )2

+
∥
∥u(1)

c

T − u(2)
c

T∥
∥
2 + λθ

(2)

Solving U(1) and U(2)

Let v(01)
j =

[

v(0)
j

v(1)
j

]

and v(02)
j =

[

v(0)
j

v(2)
j

]

, then (2) becomes

L =
I,J
∑

i,j

(

X(1)
i,j − u(1)

i

T
v(01)
j

)2

+
K,J
∑

k,j

(

X(2)
k,j − u(2)

k

T
v(02)
j

)2

+
∥
∥u(1)

c − u(2)
c

∥
∥
2 + λθ

Optimal u(1)
i

T
can be achieved by setting the derivative of L with respect to

u(1)
i

T
to zero.

δL
δu(1)

i

T
= −2

J∑

j

(

X(1)
i,j − u(1)

i

T
v(01)
j

)

v(01)
j

T
+ 2λu(1)

i

T
+ 2

(

u(1)
i

T − bT
)

= −2x(1)
i,∗

T
V(01) + 2u(1)

i

T
V(01)TV(01) + 2λu(1)

i

T
+ 2u(1)

i

T − 2bT

where bT = u(1)
c

T
+ u(2)

c

T − u(1)
i

T
and x(1)

i,∗
T

is a row vector of all observed

x(1)
i,j , ∀j ∈ J.
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Let δL
δu(1)

i
T = 0, we can achieve the update rule for u(1)

i

T
:

u(1)
i

T
=

(

V(01)TV(01) + (λ + 1)I
)−1(

x(1)
i,∗

T
V(01) + bT

)

(3)

Similarly, optimal u(2)
k

T
can be derived by:

u(2)
k

T
=

(

V(02)TV(02) + (λ + 1)I
)−1(

x(2)
k,∗

T
V(02) + bT

)

(4)

where bT = u(1)
c

T
+ u(2)

c

T − u(2)
k

T
and x(2)

k,∗
T

is a row vector of all observed

x(2)
k,j , ∀j ∈ J. I is the identity matrix.

Solving common V(0)

Let u(1)
i

T
=

[

u(10)
i |u(11)

i

]T and u(2)
k

T
=

[

u(20)
k |u(22)

k

]T where u(10)
i

T
, u(20)

k

T ∈
R1∗C and u(11)

i

T
, u(22)

k

T ∈ R1∗R−C, then (1) can be rewritten as:

L =

I,J
∑

i,j

(

X
(1)
i,j − u

(10)
i

T
v
(0)
j − u

(11)
i

T
v
(1)
j

)2

+

K,J
∑

k,j

(

X
(2)
k,j − u

(02)
k

T
v
(0)
j − u

(22)
k

T
v
(2)
j

)2

+
∥
∥u

(1)
c − u

(2)
c

∥
∥2 + λθ

Analogy to solving U(1) and U(2), optimal v(0)
j can be achieved by setting

the derivative of L with respect to v(0)
j to zero.

δL
δv

(0)
j

= −2
I∑

i

(
Y

(1)
i,j − u

(10)
i

T
v
(0)
j

)
u
(10)
i − 2

K∑

k

(
Y

(2)
k,j − u

(20)
k

T
v
(0)
j

)
u
(20)
k + 2λv

(0)
j

= −2U(1)Ty
(1)
∗,j + 2U(1)TU(1)v

(0)
j − 2U(2)Ty

(2)
∗,j + 2U(2)TU(2)v

(0)
j + 2λv

(0)
j

The update rule for v(0)
j can be derived as:

v(0)
j =

(

U(1)TU(1) + U(2)TU(2) + λI
)−1(

U(1)Ty(1)
∗,j + U(2)Ty(2)

∗,j

)

(5)

Solving domain-specific V(1) and V(2)

δL
δv(0)

j

= −2U(1)Ty(1)
∗,j + 2U(1)TU(1)v(1)

j + 2λv(1)
j = 0

Then the update rule for v(1)
j can be derived as:

v(1)
j =

(

U(1)TU(1) + λI
)−1

U(1)Ty(1)
∗,j (6)



Discovering Both Explicit and Implicit Similarities 625

Algorithm 1. CDRec
Input : X(1), X(2), E
Output: U(1),V(0),V(1),U(2),V(2)

1 Randomly initialize all factors
2 Initialize L by a small number

3 repeat
4 PreL = L
5 Solve U(1) while fixing all other factor by minimizing (3)

6 Solve U(2) while fixing all other factor by minimizing (4)

7 Solve common V(0) while fixing all other factor by minimizing (5)

8 Solve domain-specific V(1) while fixing all other factor by minimizing (6)

9 Solve domain-specific V(2) while fixing all other factor by minimizing (7)

10 Compute L following (1)

11 until (PreL−L
PreL < E)

In a similar way, the update rule for v(2)
j can be achieved by:

v(2)
j =

(

U(2)TU(2) + λI
)−1

U(2)Ty(2)
∗,j (7)

5 Performance Evaluation

To evaluate our proposed idea, we compare CDRec1 with existing algorithms on
how well they utilize observed ratings to recommend unknown information. This
section summaries our experiments’ settings and their results.

5.1 Data for the Experiments

Two publicly available datasets: census data from Australian Bureau of Statistics
(ABS) on different states2 and crime statistics from Bureau of Crime Statistics
and Research (BOCSAR)3 are used for our evaluation. Table 2 summarizes these
datasets’ distribution.

Australian Bureau of Statistics (ABS) publishes a comprehensive data about
people and families for all Australia geographic areas. This ABS dataset has
population and family profile within 154 New South Wales (NSW) state’ areas,
so-called “local government areas” (LGA), and within 81 Victoria (VIC) state’
LGAs. We form these into a matrix X(1) of (LGA, population and family profile)

1 CDRec’s source code is available at https://github.com/quanie/CDRec.
2 ABS: http://www.abs.gov.au/websitedbs/censushome.nsf/home/datapacks.
3 BOCSAR: http://www.bocsar.nsw.gov.au/Pages/bocsar crime stats/

bocsar crime stats.aspx.

https://github.com/quanie/CDRec
http://www.abs.gov.au/websitedbs/censushome.nsf/home/datapacks
http://www.bocsar.nsw.gov.au/Pages/bocsar_crime_stats/bocsar_crime_stats.aspx
http://www.bocsar.nsw.gov.au/Pages/bocsar_crime_stats/bocsar_crime_stats.aspx
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Table 2. Dimension and number of known entries for training, validation and testing
of census data on New South Wales (NSW)(X(1)) and Victoria (VIC) (X(2)) states as
well as crime data of NSW (X(3)).

Characteristics X(1) X(2) X(3)

Dimension 154× 7,889 81× 7,889 154× 62

Training 91,069 47,900 661

Validation 4,793 2,521 34

Testing 23,965 12,605 173

of 154 by 7889 for NSW and a matrix X(2) of 81 by 7889 for VIC. We randomly
select 10% of the data in our experiment and use about its 80% for training and
20% for testing.

BOCSAR’s crime data reports criminal incidents. There are 62 specific
offences within 154 LGAs of New South Wales. The counting unit is the rate of
criminal incidents per 100 population. We randomly select 10% of the data and
include them in a matrix X(3) of (LGA, offences) of 154 by 62. Among this 10%,
we use 80% for training and the rest for testing.

5.2 Baselines and Metric for Evaluation

We compare our proposed CDRec with existing cross-domain factorization algo-
rithms: CMF [12], CBT [8] and CLFM [4] that leverage explicit similarities. Our
goal is to assess how well these algorithms suggest unknown information based
on the observed cross-domain ratings. For this purpose, we compare them with
a popular Root Mean Squared Error (RMSE) metric.

5.3 Experimental Setting

Two scenarios are thoroughly tested with the following settings:

Case #1. States’ demographic similarities in latent sense can help to
collaboratively suggest unknown information in these states

We use X(1) and X(2) which are from different LGAs in NSW and VIC states.
Nevertheless, their demography may share some common characteristics. We
would like to assess how well both explicit similarities in demography dimension
and implicit ones in LGA dimension can help to collaboratively suggest unknown
information in both NSW and VIC.

Case #2. LGAs’ demographic similarities in latent sense can help to
collaboratively suggest unknown crime information

In this case, we cross factorize NSW’s demography X(1) matrix and NSW’s crime
X(3) matrix. Both X(1) and X(3) explicitly have the same LGAs. Nevertheless,
their hidden similarities in demography and crime rate can also help to improve
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Table 3. Tested RMSE on ABS NSW and ABS VIC data with different algorithms.
Best results for each rank are in bold.

Dataset Rank CMF CBT CLFM CDRec

ABS NSW 5 0.0226± 0.0026 0.0839± 0.0002 0.0838± 0.0002 0.0132± 0.0002

7 0.0222± 0.0009 0.0836± 0.0004 0.0842± 0.0006 0.0131± 0.0003

9 0.0241± 0.0011 0.0841± 0.0002 0.0848± 0.0009 0.0143± 0.0004

11 0.0265± 0.0026 0.0846± 0.0007 0.0841± 0.0007 0.0143± 0.0003

13 0.0237± 0.0024 0.0851± 0.0002 0.0850± 0.0005 0.0151± 0.0004

15 0.0229± 0.0029 0.0853± 0.0005 0.0847± 0.0005 0.0150± 0.0000

ABS VIC 5 0.0364± 0.0031 0.0844± 0.0003 0.0845± 0.0004 0.0266± 0.0030

7 0.0428± 0.0020 0.0845± 0.0004 0.0849± 0.0004 0.0239± 0.0025

9 0.0476± 0.0040 0.0852± 0.0003 0.0848± 0.0003 0.0221± 0.0019

11 0.0501± 0.0029 0.0858± 0.0005 0.0851± 0.0007 0.0242± 0.0015

13 0.0489± 0.0032 0.0860± 0.0003 0.0852± 0.0003 0.0227± 0.0015

15 0.0514± 0.0041 0.0862± 0.0002 0.0854± 0.0006 0.0215± 0.0005

recommendation performance. We want to assess how these explicit as well as
implicit similarities can help to collaboratively suggest unknown crime rate.

Other than that, all algorithms stop when changes are less than 10−5 which
indicates convergence. In all algorithms, rank of the decomposition is set from
5 to 19. Each algorithm was run 5 times and we report their results’ mean and
standard deviation in the next subsection.

5.4 Empirical Results

Table 3 shows RMSE performance of all models on ABS data for New South
Wales and Victoria states. Both CBT and CLFM that assume two states’ demog-
raphy similarities in latent sense clearly perform the worst. The results demon-
strate that explicit similarities in latent sense does not help both CBT and
CLFM to improve performance. CMF applies another approach to take advan-
tages of explicit correlations between NSW state’s population and family profile
and those of VIC state. As a result, CMF’s assumption on the same population
and family profile factor between NSW and VIC helps improve CMF’s perfor-
mance over CBT’s and CLFM’s almost 4 times in NSW data and 2 times in
VIC data. Nevertheless, the prediction accuracy can be improved even more as
illustrated with our proposed idea of explicit and implicit similarities discov-
ery. Utilizing them help our proposed CDRec to achieve about 2 times higher
accuracy compared with CMF.

The advantages of both explicit and implicit similarities are further con-
firmed in Table 4. In this case, they are applied to other cross domains: ABS
NSW demography and NSW Crime. These datasets have explicit similarities in
their LGA latent factors. At the same time, implicit similarities in demography
profile and crime behaviors are also utilized to collaborate between datasets.
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Table 4. Tested RMSE on ABS NSW demography and BOCSAR NSW crime data
with different algorithms. Best results for each rank are in bold.

Dataset Rank CMF CBT CLFM CDRec

Demography 5 0.0209± 0.0016 0.0840± 0.0001 0.0840± 0.0001 0.0174± 0.0015

7 0.0223± 0.0024 0.0840± 0.0002 0.0855± 0.0006 0.0143± 0.0004

9 0.0199± 0.0027 0.0838± 0.0002 0.0850± 0.0008 0.0143± 0.0003

11 0.0212± 0.0049 0.0839± 0.0001 0.0843± 0.0004 0.0146± 0.0003

13 0.0194± 0.0022 0.0837± 0.0001 0.0837± 0.0003 0.0149± 0.0003

15 0.0173± 0.0014 0.0835± 0.0001 0.0834± 0.0002 0.0149± 0.0002

Crime 5 0.2796± 0.0204 0.3411± 0.0035 0.3422± 0.0071 0.2697± 0.0073

7 0.2907± 0.0265 0.3432± 0.0021 0.3912± 0.0188 0.2716± 0.0029

9 0.2813± 0.0261 0.3562± 0.0134 0.3722± 0.0249 0.2648± 0.0058

11 0.2689± 0.0143 0.3539± 0.0061 0.3712± 0.0199 0.2618± 0.0012

13 0.2700± 0.0150 0.3481± 0.0070 0.3500± 0.0135 0.2623± 0.0024

15 0.2647± 0.0031 0.3485± 0.0038 0.3580± 0.0099 0.2625± 0.0015

Our proposed CDRec leveraging both of the similarities outperforms existing
algorithms by achieving the lowest RMSEs.

We also show how CDRec works with different number of common column
C parameter in Figs. 2 and 3. When there is no explicit similarities (C = 0),
the accuracy of VIC (Fig. 2b) produced by our proposed method is almost the
same as CMF’s performance whereas that of Crime (Fig. 3a) is much worse
than CMF’s one. Nevertheless, as C is larger, both explicit and implicit similar-
ities help to further improve recommendation performance of them. Specifically,
CDRec achieves the best result with C = 6 in Fig. 2b and C = 9 in Fig. 3a. More-
over, it is interesting to observe in both figures that RMSE of NSW demography
reduces a bit to significantly improve that of VIC and NSW crime. This con-
firms both explicit and implicit similarities between cross-domain datasets can
be collaborative used to improve both of their recommendation performance.

(a) (b)

Fig. 2. Tested RMSEs under different number of common column C in CDRec. (a)
Results on ABS NSW dataset; (b) Results on ABS VIC dataset.
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(a) (b)

Fig. 3. Tested RMSEs under different C in CDRec. (a) Results on ABS NSW demog-
raphy; (b) Results on BOCSAR NSW Crime. At C = 9, RMSE of NSW demography
reduces a little to further improve the accuracy of predicting crime information.

6 Conclusion

We have discovered both explicit and implicit similarities between datasets across
domains. In this paper we propose a method to preserving common and specific
parts in coupled factor as well as aligning non-coupled factors’ similarities. More-
over, an algorithm that solves the optimization problem of this method is also
introduced. The advantages of our ideas, validated with real-world datasets, sug-
gest combining both explicit and implicit similarities is the best way to improve
cross-domain recommendation.
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Abstract. A great number of applications require to analyze a single
attributed graph that changes over time. This task is particularly com-
plex because both graph structure and attributes associated with each
node can change. In the present work, we focus on the discovery of recur-
rent patterns in such a graph. These patterns are sequences of subgraphs
which represent recurring evolutions of nodes w.r.t. their attributes. Var-
ious constraints have been defined and an original algorithm has been
developed. Experiments performed on synthetic and real-world datasets
have demonstrated the interest of our approach and its scalability.

Keywords: Dynamic attributed graph · Patterns · Recurrent evolutions

1 Introduction

Graphs are more and more playing a prominent role in modeling complex struc-
tures. A large number of graph mining algorithms have been developed [1,8].
They have been used in various application domains such as remote sensing,
social networks, epidemiology and bioinformatics [4,15,17]. Recently, mining evo-
lutions of graphs over time has received much attention [2,3,5,6,9,12,14,16]. For
example, [2] mined frequent coevolving relational motifs in a dynamic labeled
network, i.e. set of vertices whose relations evolve in a similar way. [3] adopted an
incremental tensor analysis approach to discover transient and periodic commu-
nities in a large network (unlabeled graph). [5] introduced novel absolute-time
subgraph patterns and extracted rules in time-evolving graphs (where labels
did not change w.r.t. times). [6] mined subgraphs in dynamic labeled graphs
by performing edge insertions and deletions over time. [12] proposed a method
to mine frequent and relevant subgraph patterns from a set of labeled graph
sequences. [14] developed an algorithm to discover correlated sequential sub-
graphs from a sequence of labeled graphs. [16] designed a method to uncover
evolving patterns that are pseudo-cliques which appear slightly modified in con-
secutive timestamps. Most of these works focus on labeled graphs, i.e. graphs
with a single attribute per node. Few methods have been proposed to mine a
dynamic attributed graph, i.e. a single graph where edges, vertices and sev-
eral attributes can change over time. Mining such graphs is a complex task
because every vertex is associated to a set of attributes (instead of a single label).
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 631–643, 2017.
DOI: 10.1007/978-3-319-57529-2 49
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[9] extracted cohesive co-evolutions in a dynamic attributed graph. These pat-
terns represented a set of vertices with same values for a subset of attributes and
a similar neighborhood over a set of timestamps (vertices and attributes were
fixed). The authors extended their work in [10] to integrate constraints on the
graph topology and on the attribute values.

In this paper we introduce a more general pattern domain, called recurrent
patterns, which describes frequent evolutions in a dynamic attributed graph
(Sect. 2). It enables to capture vertices having similar values for periods of time
(such as in [9,10]), but also to capture evolutions of values and vertices over
time. These patterns represent connected subgraph sequences satisfying topolog-
ical, frequency and non-redundancy constraints in the input data. We develop a
novel algorithm, called RPminer, based on graph intersections and a progressive
extension of patterns over time (Sect. 3). Experiments performed on artificial and
real-world data demonstrate the scalability of the algorithm and the interest of
extracted patterns (Sect. 4).

2 Notations and Definitions

2.1 Dynamic Attributed Graph

The input database is a single dynamic attributed graph G = 〈Gt1 , Gt2 ,
. . . , Gtmax

〉 which represents the evolution of a graph over a set of time T =
{t1, . . . , tmax}. The set of vertices of G is denoted V. Each vertex is labelled by a
set of attributes A (numerical or categorical). Each attribute a ∈ A is associated
with a domain value Da. For each time t ∈ T , Gt = (Vt, Et, λt) is an attributed
undirected graph where Vt ⊆ V is the set of vertices at time t, Et ⊆ Vt × Vt

is the set of edges at time t and λt : Vt → 2AD is a function that associates
each vertex of Vt with a set of values AD =

⋃
a∈A(a × Da). In the following,

we consider Da = {+,−, 0} in order to simplify examples (G then represents a
graph of trends). Figure 1 presents an example of dynamic attributed graph. As
shown in this example, such a graph is not necessarily connected at a given time.

G = (V,E, λ) is an attributed subgraph of a graph G′ = (V ′, E′, λ′), denoted
G � G′, iff (1) V ⊆ V ′, (2) E ⊆ E′, and (3) ∀v ∈ V : λ(v) ⊆ λ′(v). G is a
connected attributed graph of G′, denoted G �conn G′, iff G � G′ and for all
u, v ∈ V , there exists a path between u and v in G.

2.2 A New Pattern Domain and Its Constraints

Recurrent Evolutions of Vertices. Let (V, λ) be a subset of attributed ver-
tices of G with V ⊆ V and λ : V → 2AD. (V, λ) can be considered as an
attributed graph without edges. The definition of attributed subgraph presented
in the previous section can be easily extended to a set of attributed vertices.
We then have (V ′, λ′) � (V, λ), iff V ′ ⊆ V and ∀v′ ∈ V ′ : λ′(v′) ⊆ λ(v′). To
facilitate the reading of examples, (V, λ) can also be denoted (v1 : λ(v1) | v2 :
λ(v2) | . . .),∀v1, v2 · · · ∈ V . As shown in Fig. 1, (1 : a1 + a2− | 2 : a1 + a2− | 3 :
a1 − a2− | 4 : a1 − a2+ | 5 : a1 − a2−) is a set of attributed vertices at time t1.
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Fig. 1. An example of dynamic attributed graph G

An evolution of a subset of vertices of G starting at time t ∈ T is a
sequence S = 〈(V ′

1 , λ′
1) . . . (V ′

k, λ′
k)〉, such as ∀i ∈ {1, 2, . . . , k}, ∃E′

i ⊆ Et+i−1,
(V ′

i , E′
i, λ

′
i) � Gt+i−1. For example, in Fig. 1, 〈(1 : a1 + a2− | 2 : a1 + a2− | 3 :

a1 −a2− | 4 : a1 −a2+ | 5 : a1 −a2−) (1 : a1 +a2+ | 2 : a1 +a2− | 5 : a1 −a2+)〉
is an evolution starting at time t1.

Let TP = {ti1 , . . . , tim} be a set of times associated with the evolution SP =
〈(V ′

1 , λ
′
1) . . . (V ′

k, λ′
k)〉. A recurrent evolution of a subset of vertices of G starting

at times TP , according to the sequence SP , is denoted P = (SP , TP ). In this
case, the size of P is k. In Fig. 1,

(
〈(1 : a1+ | 2 : a1 + a2− | 5 : a1−)(1 : a1+ | 2 :

a2−)〉, {t1, t2}
)

is an example of recurrent pattern starting at times t1 and t2.
A relation of specialization/generalization can be defined on this pat-

tern domain. Let P1 =
(
〈(V ′

1 , λ
′
1) . . . (V ′

k, λ′
k)〉, TP1

)
and P2 =

(
〈(V ′′

1 , λ′′
1) . . .

(V ′′
l , λ′′

l )〉, TP2

)
be two patterns representing two recurrent evolutions of G. P1

is a recurrent evolution more general (resp. more specific) than P2, denoted
P1 
 P2 (resp. P1 � P2), if there exists j ∈ {0, . . . , l − k}, such as
∀i ∈ {1, . . . , k}, (V ′

i , λ′
i) � (V ′′

i+j , λ
′′
i+j). In Fig. 1, (〈1 : a1+ | 2 : a1 + a2− |

5 : a1−)(1 : a1+ | 2 : a2−)〉, {t1, t2}) is a recurrent pattern more specific than(
〈(1 : a1+ | 2 : a1 + a2−)(1 : a1+)〉, {t1, t2}

)
.

Interesting Measures and Constraints. We defined several measures and
constraints which allow users to filter interesting patterns.
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Connectivity. Vertices in a graph often represent individuals/objects, and edges
represent relationships between these individuals/objects. Integration of a con-
nectivity constraint between vertices during pattern extraction enables to focus
on potentially correlated evolutions. P =

(
〈(V ′

1 , λ′
1) . . . (V ′

k, λ′
k)〉, TP

)
is an evo-

lution of connected vertices in G if ∀t ∈ TP , ∀i ∈ {1, 2, . . . , k}, ∃E′
i ⊆ Et+i−1,

(V ′
i , E′

i, λ
′
i) �conn Gt+i−1. In Fig. 1,

(
〈(1 : a1+ | 2 : a1 + a2− | 5 : a1−)(1 : a1+ |

2 : a2−)〉, {t1, t2}
)

is an evolution of connected vertices.

Non-redundancy. A huge number of patterns can be extracted. However, some
of these patterns may contain redundant information. For example, if two pat-
terns P1 = (SP1, TP1) and P2 = (SP2, TP2) are such that P1 
 P2 and
TP1 = TP2, then it is not necessary to keep P1. Indeed, the sequence of attributed
vertices of P1 is present in P2 and the two patterns occur exactly at the same
times. This non-redundancy constraint is close to the notion of closure that has
been applied to a large number of pattern domains. More formally, let Sol be a set
of non-redundant pattern solutions. Let P1 = (SP1, TP1) and P2 = (SP2, TP2)
be two recurrent patterns. If P1 ∈ Sol then �P2 ∈ Sol such as P1 ≺ P2 and
TP1 = TP2. In Fig. 1,

(
〈(1 : a1+ | 2 : a1 + a2−)(1 : a1+ | 2 : a2−)〉, {t1, t2}

)
is a

redundant evolution with respect to
(
〈(1 : a1+ | 2 : a1 + a2− | 5 : a1−)(1 : a1+ |

2 : a2−)〉, {t1, t2}
)
.

Frequency. Minimum frequency is one of the most widely used constraints. It
aims to filter patterns which occur more than a minimum number of times. It
is commonly applied when a database is a collection of transactions. However,
defining a frequency constraint is generally more challenging in a single graph
context [7,11], mainly because of the presence of embedded overlappings. Nev-
ertheless, frequency is easy to calculate in our case because of the nature of
the extracted patterns. Indeed, the frequency of a pattern is simply the num-
ber of times at which the evolution begins. It represents the number of recur-
rences of the evolution. Let P = (SP , TP ) be a pattern. The frequency of P is
sup(P ) = |TP |. Consequently, P is a frequent evolution iff sup(P ) ≥ minsup,
where minsup is a user-defined threshold. For example, in Fig. 1, the frequency
of

(
〈(6 : a2− | 11 : a1− | 12 : a1−)(11 : a1 − a2+ | 12 : a1 − a2−)〉, {t1, t2, t3}

)
is

3 since it begins at t1, t2 and t3.

Volume. Volume is another measure commonly applied in the context of graph
mining. It is defined as the number of vertices of a graph. It can represent, for
instance, the size of a community in a social network - assuming that vertices are
individuals and edges are friendship relations. Let vol(P ) = min∀i∈{1...k}(|V ′

i |)
be the volume of the pattern P =

(
〈(V ′

1 , λ
′
1) . . . (V ′

k, λ′
k)〉, TP

)
. P is a sufficiently

voluminous pattern iff vol(P ) ≥ minvol, where minvol is a user-defined thresh-
old. For example, the pattern

(
〈(1 : a1+ | 2 : a1 + a2− | 5 : a1−)(1 : a1+ | 2 :

a2−)〉, {t1, t2}
)

has a volume of 2.

Temporal Continuity. By default, an evolution may include totally differ-
ent vertices at each step. In other words, if P =

(
〈(V ′

1 , λ
′
1) . . . (V ′

k, λ′
k)〉, TP

)
,

then it is possible to have
⋂

∀i∈1...k V ′
i = ∅. Interpreting such evolutions can
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be difficult for end users because there is actually no direct relation between
individuals/objects (represented by vertices). We propose a new constraint to
target patterns which describe evolutions around a common core of individu-
als. Such a constraint allows to follow evolutions of a number of vertices over
time while taking into account neighboring vertices (directly or indirectly). Let
P =

(
〈(V ′

1 , λ′
1) . . . (V ′

k, λ′
k)〉, TP

)
be a pattern. Let com(P ) = |

⋂
∀i∈1...k V ′

i | be the
number of vertices occurring at all times in TP . P is a continuous pattern over
time iff com(P ) ≥ mincom, where mincom is a user-defined threshold. For exam-
ple, the pattern

(
〈(1 : a1+ | 2 : a1 + a2− | 5 : a1−)(1 : a1+ | 2 : a2−)〉, {t1, t2}

)

has two common vertices at t1 and t2, i.e. comp(P ) = 2.

Problem Setting. Given a dynamic attributed graph G, the problem is to
enumerate the complete set of recurrent evolutions in G, denoted Sol, such that
∀P ∈ Sol: (1) vertices of P are connected at each time; (2) P is not redundant
in Sol; (3) P is frequent (i.e. sup(P ) ≥ minsup); (4) P is sufficiently voluminous
(i.e. vol(P ) ≥ minvol); and (5) P is centered around a core of vertices sufficiently
large (i.e. com(P ) ≥ mincom), where minsup, minvol and mincom are user-
defined thresholds.

3 Mining Recurrent Patterns Under Constraints

In this section, we present our enumeration strategy to extract recurrent patterns
satisfying the constraints defined in the previous section. Unlike a number of pat-
tern mining algorithms, our approach is not based on a generate-test strategy
(where candidate patterns are generated, tested and then combined). It performs
neither a breadth-first nor a depth-first search. It is not based on a projection
strategy either (such as PrefixSpan). Instead, our method is an incremental app-
roach based on successive intersections and extensions of connected components
occurring over time. We thus get a set of solutions of different sizes at each iter-
ation (at each time). The main advantage of this approach it to avoid generating
a large number of patterns which do not satisfy the constraints. In the following
subsection, we introduce the notion of intersection between attributed graphs
and explain its interest w.r.t. our pattern mining problem.

3.1 Intersection of Attributed Graphs

Intersection and Frequency. Let us consider two times i, j ∈ T . The intersec-
tion of two attributed graphs Gi = (Vi, Ei, λi) and Gj = (Vj , Ej , λj), denoted by
Gi � Gj , is an attributed graph G = (V,E, λ) such as V = Vi ∩ Vj , E = Ei ∩ Ej ,
∀v ∈ V , λ(v) = λi(v) ∩ λj(v). The result is a subgraph composed of vertices,
edges and attribute values common to the two initial graphs. We can notice
that every subgraph of G occurs at least two times in G. In Fig. 2, the subgraph
c � G1 � G3 occurs at least 2 times (at t1 and t3).

This definition can be generalized to the intersection of k graphs, with k ∈
{2, 3, . . . |T |}. Let T k ⊆ T be a subset of times in G such that |T k| = k. The
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Fig. 2. Example of graph intersection

intersection of graphs in G at the k times of T k, denoted by �
i∈Tk

Gi, is a graph

G = (V,E, λ), with V = ∩
i∈Tk

Vi, E = ∩
i∈Tk

Ei, ∀v ∈ V , λ(v) = ∩
i∈Tk

λi(v).

The minimum frequency in G of all subgraphs of �
i∈Tk

Gi is k. Consequently, all

patterns constructed from the intersection of minsup graphs of G will satisfy the
minimum frequency constraint.

Intersection and Non-redundancy. Intersections also have other properties.
Let us study in particular connected components (i.e. maximal connected sub-
graphs) resulting from intersection of several graphs. We denote Ci�j the set of
connected components obtained after intersection of graphs in G at times i and
j, i.e. Gi � Gj . More formally, Ci�j = {(V,E, λ) | (V,E, λ) �conn Gi � Gj and
�(V ′, E′, λ′), (V,E, λ) � (V ′, E′, λ′) s.t. (V ′, E′, λ′) �conn Gi � Gj}.

Let us consider two connected components c and c′ obtained after intersection
of graphs in G at times {i, j} and {k, l} respectively, i.e. c ∈ Ci�j and c′ ∈
Ck�l,∀i, j, k, l ∈ T . Let Tc = {t ∈ T | c � Gt} (resp. Tc′) be the subset of times
in T when the connected component c (resp. c′) occurs. It is not possible to have
c � c′ and Tc = Tc′ . Indeed it would imply that c′ occurs at times {k, l} but also
at {i, j}. So, we would have c′ � Gi �Gj , which is impossible as c is a connected
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component of Gi � Gj (thus it is maximal). In Fig. 2, the connected component
c1 = (6 : a2− | 11 : a1− | 12 : a1−) is in G1, G2 and G3. Consequently, it appears
in G1 � G2 and G1 � G3. In addition, there is no superset of vertices occurring
at the same times. On the other hand, the subset c2 = (11 : a1− | 12 : a1−)
can be obtained by performing G1 � G4, but it is not redundant to c1 because
it occurs at four times (t1, t2, t3 and t4). To conclude, if c = (V,E, λ), then the
pattern

(
〈(V, λ)〉, Tc

)
satisfies the connectivity constraint (since it is a connected

component), but also the non-redundancy constraint (w.r.t. size-1 patterns). In
other words, this pattern will be either a solution or a fragment of solution.

This property can be generalized to any set T, T ′ ⊆ T . We note C�T (resp.
C�T ′), the set of connected components obtained after intersection of graphs
at the times T (resp. T ′), i.e. �

i∈T
Gi. If c ∈ C�T , then �c′ ∈ C�T′ such as

c � c′ and Tc = Tc′ . Size-1 patterns associated with those connected components
satisfy both connectivity and non-redundancy constraints. The inverse of this
proposition is also true. All size-1 solutions and all size-1 pattern fragments can
be derived from connected components obtained after intersecting graphs in G.
These intersections provide the ’building blocks’ to construct solutions.

The interest of these intersections is to avoid performing a large number of
inclusion tests during pattern enumeration (to verify the frequency and non-
redundancy constraints). The number of intersections is 2|T |. Thus, it depends
only on the number of times in G, whereas the number of inclusion tests depends
on the number of patterns generated, which is much more important.

3.2 Generation of Size-1 Patterns

As shown in the previous section, size-1 patterns resulting from graph intersec-
tions directly satisfy frequency, connectivity and non-redundancy constraints. To
extract final solutions, it is sufficient to verify volume and temporal continuity
constraints. These constraints are simple and not costly to calculate as they are
based on the studied pattern structure. The set of size-1 solutions and size-1
fragments of solutions can be defined as follows: {

(
〈(V, λ)〉, T

)
| T ⊆ T , |T | ≥

minsup, |V | ≥ minvol, and ∃c = (V,E, λ) such as c ∈ C�T

}
.

Preprocessing of graphs before intersections can reduce connectivity tests.
Intersections are then not performed on initial graphs but on their connected
components. In the end, firstly connected components are identified in graphs
Gi, and secondly pattern extraction is performed on the intersection of these
connected components.

3.3 Pattern Extension

Next, size-1 patterns extracted in the intersections can be combined, according
to the times when they occur, to built the solutions. This extension can be done
by processing times incrementally. Figure 3 illustrates this incremental genera-
tion starting from times t1 and t2. It displays the parallel extensions of a pattern
which occurs at t1 and t2. As the frequency constraint is directly related to the
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number of “intersected” times, we can conclude that the minimum frequency in
this example is 2. Let Ci and Cj be the sets of connected components of Gi and
Gj . Let c, c′ and c∗ be connected components extracted in these intersections. Let
us consider that there exists a solution P =

(
〈(V ′

1 , λ
′
1) . . . (V ′

n, λ′
n)〉, {t1, t2, t3}

)
.

Intersection between C1 and C2 results in a graph composed of several con-
nected components, s.t. c = (V ′

1 , E
′
1, λ

′
1), occurring at times t1 and t2. Pattern

P =
(
〈(V ′

1 , λ′
1)〉, {t1, t2}

)
can be generated based on this intersection. The first

occurrence of this pattern is at time t1, and the second one at time t2. Candi-
date extensions for these occurrences can only be at t2 and t3 respectively (since
gaps are not allowed). Now let us consider times {t2, t3}. Let us suppose that
c′ = (V ′

2 , E
′
2, λ

′
2) is a connected component of C2 � C3. If c and c′ share a suf-

ficient number of vertices (temporal continuity constraint), then we can extend
the pattern P to obtain

(
〈(V ′

1 , λ′
1)(V

′
2 , λ

′
2)〉, {t1, t2}

)
. This process continues until

no more extension can be performed. At each iteration, connected components
can be used to extend patterns from the previous iteration, but they can also be
“starting points” for new patterns. Thus, these successive extensions generate
all solutions starting at time t1, then all solutions starting at time t2, etc.

Fig. 3. Intersections and extensions in parallel of patterns from {t1, t2}

With this approach, the pattern P will be generated and extended four times
(from {t1, t2}, from {t1, t3}, from {t2, t3}, and from {t1, t2, t3}). For each genera-
tion, the pattern starting times are updated. Notice that even if the processing of
{t2, t3} and {t1, t2, t3} do not provide any new information w.r.t. P , it can lead
to the generation of other patterns. All those combinations of intersections are
thus necessary. That highlights the importance of our preprocessing to guarantee
the scalability of this approach.

3.4 Algorithm RPMiner

Our method is detailed in Algorithm1. Line 1 corresponds to the extraction of
connected components for each graph. Lines 3–7 construct size-1 patterns start-
ing at time t1, and whose frequency is higher than the minimum threshold. For
this purpose, the algorithm firstly calculates all time combinations containing
t1 (T k

1 , line 4), then generates size-1 patterns by performing intersections of
connected components occurring at these times (line 5, method ExtractInter-
sect). After that, the other times are processed incrementally. For each time ti,
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RPMiner constructs all time combinations containing ti (T k
i , line 11), and

extracts size-1 patterns Pi from intersections of connected components (line 12).
Next, it tries to extend each pattern P generated in the previous iteration with
these size-1 patterns (lines 13–14). If pattern P ′ resulting from the extension of
P with Pi satisfies the temporal continuity constraint, it is added to the set of
patterns generated at time ti (lines 15–16). Otherwise, P is added to the set of
solutions, and Pi is saved for future extensions. In the end (line 26), all solutions
generated at each time are put together and associated times are updated.

Algorithm 1. RPMiner : mining recurrent evolutions
Require: G : a dynamic attributed graph , minsup, minvol, mincom
Ensure: Sol: set of evolutions satisfying the constraints
1: C = {Ci set of connected components of Gi | ∀c ∈ Ci, c = (V, E, λ), |V | ≥ minvol}
2: Candi = ∅, ∀i ∈ {1, 2, . . . , |T |}
3: for k = minsup to |T | do

4: for each Tk
1 ⊆ T such as ‖Tk

1 ‖ = k and t1 ∈ Tk
1 do

5: Cand1 = Cand1 ∪ {P1 ∈ ExtractIntersect(C, Tk
1 ) | vol(P ) ≥ minvol}

6: end for
7: end for
8: Soli = ∅, ∀i ∈ {1, 2, . . . , |T |}
9: for i = 2 to? |T | do
10: for k = minsup to |T | do

11: for each Tk
i ⊆ T such as ‖Tk

i ‖ = k and ti ∈ Tk
i do

12: for each Pi ∈ ExtractIntersect(C, Tk
i ) such as vol(P ) ≥ minvol do

13: for each P = (S, TP ) such as P ∈ Candi−1 and TP = Tk
i do

14: P ′ = ExtendWith(P, Pi)
15: if com(P ′) ≥ mincom then
16: Candi = Candi ∪ {P ′}
17: else
18: Soli−1 = Soli−1 ∪ {P}
19: Candi = Candi ∪ {Pi}
20: end if
21: end for
22: end for
23: end for
24: end for
25: end for
26: Sol = MergeUpdate(

⋃
∀i∈T Soli)

4 Experimental Results

The algorithm was implemented in C++. Experiments were performed on a PC
(CPU: Intel(R) Core(T:) 3.5 GHz) with 8 GB of main memory. We used two
real-world datasets and twenty eight synthetic datasets for our tests.

Synthetic Datasets. Graph sequences were randomly generated by varying differ-
ent parameters such as number of vertices per timestamp, number of attributes,
number of edges and sequence size.

DBLP Dataset. This dataset used in [9] represents DBLP authors (with more
than 10 publications) and their co-publications between 1990 and 2010. It is
composed of 2,723 vertices per timestamp (authors), 10,737 edges in average
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(co-publications), 43 attributes (a set of selected conferences/journals) and 9
timestamps ([1990–1994][1992–1996]...[2006–2010]).

Domestic US Flight Dataset. This dataset used in [13] represents airport traffic
in the US during the Katrina hurricane period (from 01/08/2005 to 25/09/2005).
It is composed of 280 vertices per timestamp (airports), 1206 edges in average
(flight connections), 8 attributes (e.g. number of departures/arrivals, number of
canceled flights), and 8 timestamps (data are aggregated by weeks).

Quantitative Results. Figure 4(i) presents execution times and number of solu-
tions for twelve synthetic datasets with a growing number of vertices and edges
(number of attributes is set to 50 and number of timestamps to 8). As shown by
these results, our approach remains relatively scalable for large graphs (20,000
vertices and 320,000 edges at each timestamp) and low thresholds. Figure 4(ii)
shows the impact of the number of timestamps on our algorithm. This impact
is important but performances of our incremental approach remains compara-
ble with the ones proposed in [9,10], while our approach extracts more general
and more complex patterns. Note that larger graphs were already mined in the
literature but they were only labelled. Adding several attributes per vertex and
studying their joint evolution is far more complex. Figure 4(iii) reports exper-
iment results with different number of attributes. The execution time remains
almost the same when the number of attributes increase. Figure 4(iv) and (v)
shows performances for the DBLP dataset w.r.t. different frequency and vol-
ume thresholds. RPMiner is still efficient on this real-world dataset even for
low thresholds. The impact of the volume threshold is less important than the
impact of the support threshold, because volumes of connected components are
large (numerous co-publications). Execution times for US Flight data are not
reported here due to space limitation but they are very low (120 sec. in the
worst case).

Qualitative Interpretation. We have also curried out a qualitative analy-
sis of patterns extracted in the two real-world datasets (minvol = 2,
minsup = 2 and mincom = 1). An example of pattern extracted in the
DBLP dataset is

(
〈(MasahikoTsukamoto : TKDE− | ShojiroNishio :

TKDE−)(ShojiroNishio : DASFAA+)(MasahikoTsukamoto : SAC− |
ShojiroNishio : DASFAA+)〉, {[96−00], [98−02]}

)
. It highlights a sequence

of publications of Shojiro Nishio in the TKDE journal and the DASFAA confer-
ence. This is a sequence of size 3 which represents an evolution during a period
over a 8 year period (i.e. 3 timestamps). This sequence is repeated twice from
1996 to 2004 (i.e. timesptamps [96–00], [98–02] and [00–04]), and from 1998
to 2006 (i.e. timesptamps [98–02], [00–04] and [02–06]). It shows that publica-
tions of this author in TKDE decreased, while they increased later in DASFAA.
This pattern also shows that during the same periods one of its co-authors,
Masahiko Tsukamoto, also had a decreasing number of publications in TKDE
and SAC conferences. Another example of pattern is

(
〈(NingZhong : TKDE+,

PAKDD−, PKDD− | SetsuoOhsuga : PAKDD−, PKDD−)(NingZhong :
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Fig. 4. Impacts of parameters on execution times and number of solutions

DMKD+, ICDM−, PAKDD−, JIntellInfSys−)(NingZhong : IEEEInt
Sys+, PAKDD−,KDD+)〉, {[98−02], [00, 04]}

)
. It shows an evolution of Ning

Zhong and Setsuo Ohsuga’s publications, occurring at two times (from 1998 to
2006 and from 2000 to 2008).

For the US Flight dataset, extracted patterns highlight the impact of hur-
ricanes on the US airport traffic. For example, the pattern (〈(Bangor : Delay
Departure+ | Boston : DelayArrival+ | NewportNews : DelayDeparture+)
(Augusta : Cancelled− | Bangor : Cancelled− | Boston : Cancelled −
Diverted−)〉, {01/08, 08/08, 29/08, 05/09}) shows the impact of hurricanes on
delays, cancellation and diverted flights. First, delays increased at destination
and arrival airports. Then, cancellations and diverted flights decreased the fol-
lowing week when the hurricane became weaker. This pattern occurred at the
beginning of August and then again at the end of the month, because there
was three hurricanes during this period (Irene hurricane from 04/08 to 18/08,
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Katrina hurricane from 23/08 to 31/08, and Ophelia hurricane from 06/09 to
17/09). For clarity of presentation, we only present a small number of airports
impacted by this pattern. In reality, this pattern contains more than twenty
airports all over the United States.

5 Conclusion

In this work we studied the problem of mining patterns in a dynamic attributed
graph. We proposed a novel pattern domain and several constraints to extract
recurrent evolutions in such data. An algorithm with an original strategy has
been developed and tested. We have conducted experimentations on both syn-
thetic and real-world datasets to demonstrate the algorithm scalability and the
interest of these patterns. Perspectives are numerous. A first one is to apply
RPMiner to monitoring of aquaculture pounds, while integrating additional
domain-specific constraints. A second perspective is to use another exploration
strategy in order to improve RPMiner performance. A third possibility is to
develop a post-processing approach to group similar patterns.
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Abstract. The quest for frequent itemsets in a transactional database
is explored in this paper, for the purpose of extracting hidden patterns
from the database. Two major limitations of the Apriori algorithm are
tackled, (i) the scan of the entire database at each pass to calculate
the support of all generated itemsets, and (ii) its high sensitivity to
variations of the minimum support threshold defined by the user. To
deal with these limitations, a novel approach is proposed in this paper.
The proposed approach, called Single Scan Frequent Itemsets Mining
(SS-FIM), requires a single scan of the transactional database to extract
the frequent itemsets. It has a unique feature to allow the generation of
a fixed number of candidate itemsets, independently from the minimum
support threshold, which intuitively allows to reduce the cost in terms
of runtime for large databases. SS-FIM is compared with Apriori using
several standard databases. The results confirm the scalability of SS-
FIM and clearly show its superiority compared to Apriori for medium
and large databases.

Keywords: Frequent itemsets mining · Apriori heuristic · Support
computing

1 Introduction

Frequent Itemsets Mining (FIM) aims to extract highly correlated items from
a large transactional database. It is defined as follows: Let T be a set of m
transactions, {T1, T2, . . . , Tm} a transactional database, and I a set of n different
items or attributes {I1, I2, . . . , In}. An itemset X is a subset of the set of items
(X ⊆ I). The support of X is the number of transactions that contains X divided
by the number of all transactions in T . The itemset X is called frequent if its
support is no less than a user’s predefined minimum support threshold [1].

Two categories of approaches have been proposed for solving the FIM prob-
lem. Approaches in the first category are based on the Apriori heuristic [1].
They first generate the k-sized candidate itemsets from the (k − 1)-sized fre-
quent itemsets and then test the frequency of the generated candidate itemsets.
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-57529-2 50
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Approaches in the second category are based on the FPgrowth heuristic [2].
They compress the transactional database in the main memory using an effi-
cient tree structure, then they apply recursively the mining process to find the
frequent itemsets. Although this second heuristic reduces the number of data-
base scanning as compared to Apriori, these approaches consume a high amount
of memory, particularly when dealing with large database instances.

We propose in this paper a different approach called SS-FIM (Single Scan
Frequent Itemsets Mining), which solves the FIM problem with only one scan
of the database T . In SS-FIM, candidates itemsets are first generated from each
transaction and stored in a hash table to maintain information about their sup-
port. When generating from a new transaction an itemset that already exists in
the hash table, then its entry counter is simply incremented. Otherwise, if the
itemset does not exist, then a new entry is created with the counter initiated
to one. In the end, the frequencies of itemsets’ occurrences in the hash table
are compared to the minimum support to determine which itemsets to retain
(considered as frequent). The proposed approach has been tested on several well
known FIM instances. The results show that SS-FIM outperforms the Apriori
heuristic for medium size and large size databases. They also show the scala-
bility of SS-FIM compared to the Apriori heuristic when varying the minimum
support.

The remainder of the paper is organized as follows. Section 2 reviews existing
FIM algorithms. In Sect. 3, the Apriori heuristic is presented in detail, followed
by the proposed SS-FIM approach in Sect. 4. The performance evaluation is
presented in Sect. 5, while Sect. 6 draws the conclusions.

2 Related Work

Deterministic optimal strategies for solving the FIM problem can be divided
into two categories. The first one is the generate and test strategy, where the
itemsets are first generated and then their frequency is tested. The second one
is the divide and conquer strategy. Solutions based on this strategy compress
the database in an efficient tree structure and then apply recursively the mining
process to extract the frequent itemsets. In the following, we discuss more in
detail the existing FIM approaches of both categories.

The first algorithm we cite within the generate and test category is Apriori, by
Agrawal et al. [1]. In this reference algorithm, candidate itemsets are generated
incrementally and recursively. To generate candidates of k-sized itemsets, the
algorithm calculates and combine the frequent (k−1)-sized itemsets. This process
is repeated until an empty candidate itemsets is obtained in an iteration. Many
FIM algorithms are based on Apriori. The Dynamic Itemsets Counting (DIC)
algorithm has been proposed by Brin et al. [3] as a generalization of Apriori where
the database is split into P equally sized partitions such that each of them fits in
memory. DIC then gathers support of single items for the first partition. Locally
found frequent items are used to generate candidate 2-sized itemsets. Then, the
second partition is read to find support of all current candidates. This process
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is repeated for the remaining partitions. DIC terminates if no new candidates
are generated from the current partition and all previous candidate have been
counted. Mueller [4] has proposed a sequential FIM algorithm that is similar to
Apriori, except that it stores candidates in a prefix tree instead of a hash tree.
This structure enables fast testing of whether subsets of prospective candidates
are frequent or not. However, both candidates and frequent itemsets are stored in
the same structure, which degrades the performance of the algorithm in terms of
memory footprint. Zaki et al. [5] have proposed the Eclat algorithm, which uses
vertical tidlists of itemsets. Frequent k-sized itemsets are organized into disjoint
equivalence classes by common (k − 1)-sized prefixes, so that candidate (k + 1)-
sized itemsets can be generated by joining pairs of frequent k-sized itemsets from
the same classes. The support of a candidate itemsets can then be computed
simply by intersecting the tid-lists of the two component subsets. In [6], a data
structure is proposed to store and compress the transactions in an efficient tidlist.
With this structure, the number of scans of the transactional database is reduced.
However, only regular frequent itemsets can be extracted.

For the divide and conquer strategy, we start with the FPgrowth algo-
rithm [2], which uses a compressed FP-tree structure for mining a complete
set of frequent itemsets without candidate itemsets generation. The algorithm
is divided into two phases: (i) construct a FP-tree that encodes the dataset by
reading the database and mapping each transaction onto a path in the FP-tree,
while simultaneously counting the support of each item, and (ii) extract frequent
itemsets directly from the FP-tree using a bottom-up strategy to find all possible
frequent itemsets that end with a particular item. Cerf et al. [8] have proposed
the NFP-growth algorithm. It improves the original FP-growth by constructing
an independent head table, which allows creating a frequent pattern tree only
once. This dramatically increases the processing speed. In [7], the authors pro-
posed a new FPGrowth algorithm for mining uncertain data. They develop a tree
structure to store uncertain data, in which the occurrence count of a node is at
least the sum of occurrence counts of all its children nodes. This allows to count
rapidly the support of each candidate itemset. In [9], an FP-array technique that
reduces the need to traverse FP-trees is proposed. This structure is adopted to
mine several types of frequent itemsets, such as maximal, closed and categorical
frequent itemsets. A more detailed survey of most existing FIM algorithms can
be found in [10].

The generate and test strategy requires multiple scanning of the database
to generate all frequent itemsets, whereas the divide and conquer requires only
two scans of the database. Divide and conquer approaches, however, are highly
memory consuming because of the need to compress the database into a tree
structure. Nowadays, transactional databases are very large and possibly extends
to several million transactions [11]. Storing these transactions into an efficient
tree structure is a very challenging problem. This makes the divide and con-
quer approaches inefficient for large transactional databases. Recently, some bio-
inspired approaches have been proposed to reduce the number of scans of the
transactional database. Among these, we cite BSO-ARM [12], PeARM [13] and
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PGARM [14], to quote just a few. These approaches deal with FIM in reasonable
time. However, the quality of their mining is limited, i.e., they discover only a
part of frequent itemsets, and miss many.

3 Apriori Heuristic

The goal of the Apriori heuristic is to reduce the search space of frequent item-
sets by exploring recursively the candidate itemsets. In the Apriori heuristic, an
itemset of size k is frequent iff all its subsets are frequent. Thus, at each iteration
k, the candidates itemsets of size k are generated by joining two frequent itemsets
of size (k − 1). This process is repeated until the set representing the candidate
itemsets of size k is empty. To determine the frequent itemsets at each iteration
from the candidates, the support of every candidate itemset is computed. If it
is greater than the minimum support threshold, then it is added to the set of
frequent itemsets.

The support of each itemset, t, is calculated as the ratio between the number
of transactions that contain t, and the total number of transactions in T , i.e.,
the frequency of a transaction t in the database T . To compute the support of
t, the entire transactional database T is scanned, such that t is verified against
each transaction Ti. If t belongs to Ti, then the numerator of the frequency ratio
is incremented by one.

Let us consider the example of a transactional database with 5 transactions
{T1, T2, T3, T4, T5} and 5 items {a, b, c, d, e}, as illustrated in Table 1.

Table 1. Illustrative example of a transactional database

TID T1 T2 T3 T4 T5

Items a, b b, c, d a, b, c e c, d, e

Figure 1 illustrates the results of the Apriori algorithm when applied with
minimum support σsup set to 0.4. The transactional database is first scanned
to calculate the support of each candidate itemset of size 1 (candidate itemsets
containing only one item). The frequent itemsets of size 1 are then extracted. In
this example, all candidates itemsets are frequent because their supports exceeds
0.4. In the second iteration, the candidate itemsets of size 2 are extracted by
joining the frequent itemsets of size 1. The support of each candidate itemsets
of size 2 is computed and then the frequent itemsets of size 2 are extracted, i.e.
{ab, bc, cd}. The itemsets {abc, abd, bcd} are candidates for the size 3, but as their
support is less than 0.4, they are not considered, and the process terminates. The
set of frequent itemsets with minimum support greater than 40% is the union of
the frequent itemsets of size 1 and 2, that is, {a, b, c, d, e, ab, bc, cd}.

The Apriori algorithm has two limitations:
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Fig. 1. Apriori heuristic illustration

1. Multiple scanning of the transactional database is required: To compute the
support of candidate itemsets, all existing approaches based on the Apriori
heuristic scan the entire transactional database. Thus, the number of database
scans is proportional to the number of generated candidate itemsets, which
tends to be high for large databases.

2. Setting the minimum support user’s threshold is challenging: Apriori heuristic
is very sensitive when varying the minimum support. When low minimum
support is chosen, a high number of candidate itemsets is obtained, which
worsens the runtime of the algorithm, as each candidate itemset requires a
scan of the entire database.

4 Single Scan Frequent Itemset Mining (SS-FIM)

This section presents our proposed algorithm, i.e., Single Scan Frequent Itemset
Mining (SS-FIM). The algorithm description is followed by a theoretical analysis
of SS-FIM in comparison to the Apriori heuristic.

4.1 SS-FIM Algorithm Description

The aim of SS-FIM is to minimize the number of database scans and the number
of generated candidates while discovering frequent itemsets. This to overcome the
limitations of the Apriori heuristic. The main idea of SS-FIM is to generate all
possible itemsets for each transaction. If a generated itemset t has already been
created when processing a previous transaction, then its support is incremented
by one. Otherwise, its support is created and initialized to one. The process is
repeated until all the transactions in the database have been processed.

SS-FIM allows to find all frequent itemsets by performing a single scan of the
transactional database. SS-FIM is also complete, because the frequent itemsets
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are extracted directly from the transactional database and, a given itemset is
frequent iff it is found (σsup × m) times in the transactional database. Conse-
quently, no information is lost in the itemset generation process. Algorithm1
describes SS-FIM in detail.

Algorithm 1. SS-FIM Algorithm
1: Input: T: Transactional database. σsup: user’s minimum support threshold.
2: Output :F: The set of frequent Itemsets.
3: for each Transaction Ti do
4: S ← GenerateAllItemsets(Ti).
5: for each itemset t ∈ S do
6: if t ∈ h then
7: h(t) ← h(t)+1.
8: else
9: h(t) ← 1.

10: end if
11: end for
12: end for
13: F ← ∅.
14: for itemset t ∈ h do
15: if h(t) ≥ σsup then
16: F ← F ∪ t.
17: end if
18: end for
19: return F

SS-FIM has as input the transactional database, T , and the minimum support
value, σsup. It also uses an internal data structure represented by a hash table
h to store all generated itemsets with their partial number of occurrences. The
algorithm returns the set of all frequent itemsets, F .

First, the set of itemsets, S, is computed from each transaction in T . For
instance, if the transaction Ti contains the items a, b, and c, then S contains the
itemsets a, b, c, ab, ac, bc, and abc. Afterwards, each itemset, t ∈ S, is stored in
the hash table h. If t already exists as a key in h, then the entry with key t in
h, i.e., h(t) is increased by one. Otherwise, a new entry with key, t, is created
in h and initialized to one. Finally, each entry, t ∈ h with support exceeding the
minimum support σsup is added to the set of the frequent itemsets F .

4.2 Illustration

Figure 2 shows the SS-FIM algorithm execution using the example of Table 1
with σsup set to 0.4. SS-FIM starts by scanning the first transaction {a, b} and
extracting from it all possible candidates itemsets, i.e., {a, b, ab}. The hash table,
h, is empty at this stage, so for each candidate itemset, an entry in h is created
and initialized to one. For the second transaction {b, c, d}, SS-FIM determines all
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possible candidate itemsets, i.e., {b, c, d, bc, bd, cd, bcd}. The itemset {b} already
exists in h, hence its entry is increased by one. As the remaining candidate item-
sets are not in h, their entries are created and initialized to one. The same process
is repeated for all remaining transactions {T3, T4, T5}. In the end, the itemsets in
h with supports no less 0.4 are selected. The returned set of frequent itemsets in
this example is {a, b, c, d, e, ab, bc, cd}, the same result as of the Apriori heuristic.

Fig. 2. SS-FIM approach illustration

4.3 Theoretical Analysis

The runtime cost of SS-FIM is the sum of (i) the cost of generating itemsets,
and (ii) the cost of determining the frequent itemsets. Regarding the former, the
number of all candidates generated from a transaction Ti is 2|Ti| − 1, where |Ti|
represents the number of items of Ti. The total number of generated candidate
itemsets is thus

∑m
i=1 2|Ti| − 1, where m is the number of transactions in the

database T . If p is the maximum number of items generated per transaction,
then the number of candidates itemsets is at most m(2p − 1). The complexity of
the operations needed for the generation of itemsets is then O(m(2p − 1)).

For determining the frequent itemsets, the hash table has to be scanned for
each candidate itemset, to evaluate its frequency against σsup. This operation is
O(m(2p − 1)).

Consequently, the runtime cost of SS-FIM is:

O(2m × (2p − 1)) = O(m2p). (1)



SS-FIM: Single Scan for Frequent Itemsets Mining 651

According to the theoretical study of Hegland [15], the complexity of Apriori
algorithm is:

O(m × n2), (2)

where n is the number of items in the database.
Although Eq. 1 has exponential form, while Eq. 2 has polynomial form, Eq. 1

generally yields lower values compared to Eq. 2 for most existing transactional
databases. In fact, Eq. 1 is exponential with respect to the parameter p, that
is, the maximum number of itemsets generated from a transactions, not the
problem size, i.e., the number of transactions in the database. In practice, the
value of p is usually much lower than the number of items in the database n. For
instance, for the well known case of supermarket basket analysis, the number of
products sold by a supermarket can be several thousands whereas the average
number of products bought by each client hardly exceeds a few dozens.

Table 2. Theoretical runtime complexity comparison of SS-FIM and Apriori using
standard database.

Data set type Data set name m n p SS-FIM cost/m Apriori cost/m

Small Bolts 40 8 8 510 64

Small Sleep 56 8 8 510 64

Small Pollution 60 16 16 131070 256

Small Basket ball 96 5 5 62 25

Small Quake 2178 4 4 30 16

Average BMS-WebView-1 59602 497 2.5 14 247009

Average BMS-WebView-2 77512 3340 5 62 11155600

Average retail 88162 16469 10 2046 271227961

Average Connect 100000 999 10 2046 998001

Large BMP POS 515597 1657 2.5 14 2745649

Table 2 presents a comparison between SS-FIM and Apriori using the stan-
dard FIM datasets described in [16]. The columns “SS-FIM cost” and “Apriori-
cost”, in particular, show an estimate of the number of CPU operations required
based on the theoretical study of the two algorithms presented in this section.
The table reveals that for small instances, the Apriori algorithm gives better
results compared to SS-FIM in terms of number of CPU operations. However, for
medium and large instances, SS-FIM clearly outperforms Apriori. These results
are confirmed by the experimental study presented in the next section. To con-
clude, SS-FIM is more scalable than the Apriori and has lower computation cost
for databases with medium and large number of items n.
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5 Experimental Results

To evaluate the SS-FIM algorithm, several experiments have been carried out
using three types of well known database instances [16]. The first one is a col-
lection of 5 small instances with number of transactions ranging between 40 and
2178, number of items ranging between 8 and 16 items, and the average size of
transactions between 8 and 16.

The second instance is a collection of 4 medium-sized database instances,
with number of transactions ranging between 59000 and 100000 transactions,
the number of items between 500 and 16000 items, and the average size of
transactions between 2 and 10 items.

The third type of instance is a large-sized database instance, named BMP-
POS, which contains more than 500000 transactions and more than 1600 items,
with average size of transaction equal to 2.5.

All algorithms in the experiments have been implemented in C++ and exper-
iments run on a desktop machine equipped with Intel I3 processor and 4 GB
memory.

Table 3. Runtime (Sec) of SS-FIM and Apriori using standard database.

Data set Name SS-FIM Apriori

Bolts 140 4

Sleep 110 6

Pollution 821 20

Basket ball 18 15

Quake 50 29

BMS-WebView-1 45 1002

BMS-WebView-2 80 3985

retail 525 4895

Connect 1285 2600

BMP POS 500 9825

Table 3 presents the runtime performance of the Apriori heuristic and SS-
FIM using the standard FIM datasets described above. This table shows that,
for small instances, the Apriori algorithm outperforms SS-FIM. However, for
medium and large instances, SS-FIM clearly outperforms Apriori. This result
confirms that our approach is better than Apriori when dealing with non dense
and large transactional database. Apriori, however, outperforms our approach
when dealing with dense but small transactional database.

The second experiment focuses on the sensitivity of both approaches to vari-
ations of the minimum support. Figure 3 shows the runtime performance of the



SS-FIM: Single Scan for Frequent Itemsets Mining 653

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

100 80 60 40 20 10

C
P

U
 T

im
e 

(S
ec

)

Minimum Support

SS-FIM
Apriori

Fig. 3. Runtime (Sec) of SS-FIM and Apriori approaches for different minimum support
(%) using the BMP-POS instance.

Apriori and SS-FIM approaches using the BMP-POS instance with variable min-
imum support. By varying the minimum support (from 100% to 10%), the exe-
cution time of the Apriori algorithm highly increases, while the one of SS-FIM
remains stable.

These results confirm that SS-FIM is not sensitive to variations of the mini-
mum support threshold. This can be explained by considering that SS-FIM is a
transaction-based approach, in which the number of generated candidates item-
sets is fixed no matter the support used in the input. Conversely, the Apriori
heuristic is an item-based approach, in which the number of generated candidates
increases when the minimum support is reduced.

6 Conclusions

This paper has proposed SS-FIM, a new intelligent frequent itemsets mining
algorithm. SS-FIM extracts frequent itemsets with only one scanning of the
database. Candidate itemsets are first generated from each transaction and a
hash table is used to keep track of the partial frequency of occurrence of candi-
date itemsets while processing transactions.

Both the theoretical and the experimental evaluation reveal that SS-FIM
outperforms the Apriori heuristic for large and non dense database instances.
The scalability of SS-FIM also has been proven when varying the minimum
support constraint.

Motivated by the promising results shown in this paper, we plan to extend
SS-FIM for solving domain specific big data related problems, such as in the
fields of business intelligence, e.g., process mining based on process event logs,
or Internet of things, e.g., mining of real-time sensor data.
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Abstract. Gaussian processes (GPs) have been proven to be powerful
tools in various areas of machine learning. However, there are very few
applications of GPs in the scenario of multi-view learning. In this paper,
we present a new GP model for multi-view learning. Unlike the existing
methods, it combines multiple views by regularizing marginal likelihood
with the consistency among the posterior distributions of latent functions
from different views. Moreover, we give a general point selection scheme
for multi-view learning and improve the proposed model by this crite-
rion. Experimental results on multiple real world data sets have verified
the effectiveness of the proposed model and witnessed the performance
improvement through employing this novel point selection scheme.

Keywords: Gaussian process · Multi-view learning · Posterior
consistency · Co-regularization · Supervised learning

1 Introduction

Gaussian processes (GPs) [10] are flexible and popular Bayesian nonparametric
tools for probabilistic modeling. Without giving concrete functional forms, they
can be employed to define distributions over functions. As effective probabilistic
models, they provide estimations of the uncertainty of predictions. With many
convenient properties, GPs are widely used in machine learning and statistics.
For instance, GPs have made great progress in semi-supervised learning [9,14,23],
active learning [8,22], multi-task learning [3,19], reinforcement learning [5,11],
and time series modeling [4,21].

Standard GPs only deal with single view data. However, in practice, many data
involve multi-view information, which may come from different feature extractors
or different domains. For example, in web-page classification, a web-page can be
described by its content and hyperlink structure. In image classification, an image
can be represented by its color, texture, shape, and so on. Therefore, recently,
multi-view learning has drawn great attention in machine learning field. There
are increasing number of algorithms proposed for multi-view learning, which can
be mainly divided into two major categories [15]: co-training style algorithm
[2,16] and co-regularization style algorithms [6,20]. However, GPs, as efficient and
c© Springer International Publishing AG 2017
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elegant methods in machine learning, have very few applications in multi-view
learning [13,20]. Our work intends to apply the GPs in multi-view learning.

Existing multi-view learning methods involving the GPs can be classified
into two categories: Bayesian co-training [20] and subspace learning [13,17]. The
Bayesian co-training approach [20] is a Bayesian undirected graphical model,
which pays attention to semi-supervised multi-view learning. The conditional
independence between the output y of each data and latent functions fj for
each view is ensured by involving a latent function fc [18]. The subspace learn-
ing methods [13,17] use the GPs as tools to construct a latent variable model
which could tackle the task of non-linear dimensional reduction. Compared to
the existing methods, our work, inspired by the thought of co-regularization,
directly extends the GPs to the context of the multi-view learning via the pos-
terior consistency regularization, leading to elegant inference and optimization.

Our method models the classifier of each separated view as a Gaussian
process. We optimize hyperparameters of the GPs by maximizing weighted
average of marginal likelihood on each view and minimizing the discrepancy
among the posterior distributions of the latent function on each view. As the
Kullback-Leibler (KL) divergence [7] is frequently used in describing the dif-
ference between two probability distributions, we employ it to characterize the
discrepancy among the posterior distributions. Moreover, as data sets in real
world are complex and may be seriously contaminated by noises, the sufficiency
assumption, i.e., each view is sufficient for classification on its own, and the
compatibility assumption, i.e., the target functions of all the views predict the
same labels with a high probability [18], may fail in some cases. Considering
these situations, we improve our model by using a selective regularization idea,
which is different from the previous multi-view methods. In the experiments,
we have compared the improved method with the original model to verify the
effectiveness of the idea of the selective regularization on real world data sets.

The highlights of our work can be summarized as follows. First, we present a
new GP model for multi-view learning, which extends the GPs to the scenario of
multi-view learning by simple and elegant posterior consistency regularization.
Secondly, our models can automatically learn which views of the data should
be trusted more when predicting class labels. Finally, we give a general point
selection scheme for multi-view learning to deal with the situations where the
sufficiency and compatibility assumptions fail, and propose the multi-view GPs
with selective posterior consistency inspired by this criterion.

The remainder of this paper is organized as follows. Section 2 reviews the
Gaussian processes. In Sect. 3, we present the multi-view GPs with posterior
consistency (MvGP1), our first algorithm, covering the principles and detailed
inference and learning in the proposed model. Moreover, we improve the MvGP1
to the multi-view GPs with selective posterior consistency (MvGP2) based on a
general idea of the consistent set in Sect. 4. Experimental results are provided in
Sect. 5. Finally, we conclude this paper and discuss the future work in Sect. 6.
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2 Gaussian Processes

This section briefly reviews the Gaussian process (GP) model.
GPs are powerful tools for classification and regression. A Gaussian process

is a collection of random variables, any finite number of which have a joint
Gaussian distribution [10]. The GP is widely used to describe a distribution over
functions, and can be completely specified by its mean function and covariance
function. Formally, suppose that the training set has N examples {(xi, yi)}Ni=1,
where xi ∈ RM is the ith input, and yi ∈ R is the corresponding label. Denote
X = [x1,x2, . . . ,xN ]T, and y = [y1, y2, . . . , yN ]T. Following standard nota-
tions for GPs, the prior distribution for the latent functions f is assumed to be
Gaussian, f |X ∼ N (0,K), with a zero mean and a covariance matrix K, whose
element Kij is determined by the covariance function k(xi,xj). Diverse covari-
ance functions can be employed in GPs. In this paper, we select a commonly
used covariance function, the squared exponential kernel,

k(xi,xj) = s2f exp(− 1
2l2

N∑

d=1

(xid − xjd)2), (1)

where s2f is the signal variance, and l is the length-scale of the covariance.
The Gaussian likelihood for regression can be written as y|f ∼ N (f , σ2I),

and after integrating out the hidden variables, the marginal likelihood is y|X ∼
N (0,K + σ2I).

Under these settings, the posterior of the latent functions should be

f |y ∼ N (μ,Σ), (2)

where μ = K(K + σ2I)−1y and Σ = K − K(K + σ2I)−1K are the mean and
the covariance of the posterior distribution, respectively.

We use Θ to denote the hyperparameters in the Gaussian process regres-
sion model, that is, Θ = {s2f , l, σ2}. These hyperparameters can be obtained by
generalized maximum likelihood. In generalized maximum likelihood, we cal-
culate the negative logarithmic marginal likelihood of the samples, L(Θ) =
− log p(y|X, Θ), and then minimize L(Θ) with respect to Θ.

For a new point x∗, the prediction is also Gaussian,

f∗|X,y,x∗ ∼ N (f̄∗, cov(f∗)), (3)

where f̄∗ = k∗T[K + σ2I]−1y, cov(f∗) = k(x∗,x∗) − k∗T[K + σ2I]−1k∗. Here,
k is the covariance function, and k∗ is the vector of covariance function values
between x∗ and the training data X.

Standard GPs only handle single view data. However, collected data sets
in the real world can often be represented by multiple views which may come
from different feature extractors or various measurement modalities. As GPs are
popular tools in machine learning, we propose to develop the GPs to multi-view
learning.
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3 Multi-view GPs with Posterior Consistency

In this section, we present the formulation of the multi-view GPs with posterior
consistency (MvGP1) and show the corresponding inference and optimization
in the proposed model. We pay attention to two views learning tasks, and then
give illustrations about the extensions to the scenario concerning more than two
views.

3.1 Model Representation

Assume that the two views training set D has N examples {(xi,zi, yi)}Ni=1,
where xi ∈ RM1 is the ith input on the first view, zi ∈ RM2 is the ith input
on the second view, and yi ∈ {+1,−1} is the corresponding label. Denote X =
[x1, . . . ,xN ]T, Z = [z1, . . . ,zN ]T, and y = [y1, . . . , yN ]T.

First, on account of leveraging the information in the separated single view,
we simply assume that each view of data is modeled by a GP. That is, the
prior distribution for the latent functions f1 on the first view and f2 on
the second view are supposed to be Gaussian, i.e. p(f1|X) = N (0,K1), and
p(f2|Z) = N (0,K2), where K1 and K2 are covariance matrixes determined by
the corresponding covariance functions of two views, respectively. In our model,
the covariance function is the squared exponential kernel as mentioned in (1).
Although the Gaussian noise model is originally developed for regression, it
has also been proved effective for classification, and its performance is typically
comparable to the more complex probit and logit likelihood models used in clas-
sification problems [1]. Therefore, we use the Gaussian regression likelihood in
our classification task to enjoy the elegant exact inference. The Gaussian likeli-
hood for regression on the first view is p(y|f1) = N (f1, σ

2
1I), and the likelihood

on the second view is p(y|f2) = N (f2, σ
2
2I). Secondly, we also need leverage

the consistence between two views. The KL divergence [7] can measure the dis-
crepancy between two distributions. Thus, we use the KL divergence between
the posterior distributions on two views to regularize the objective function in
MvGP1, enforcing the consistence between two views.

Suppose the posterior distribution of the latent function f1 on the first
view is

p1 = p(f1|X,y) = N (μ1,Σ1), (4)

and the posterior distribution of the latent function f2 on the second view is

p2 = p(f2|Z,y) = N (μ2,Σ2). (5)

Based on the above setting, our objective function of MvGP1 is

min �L1 = min{−[a log p(y|X)+(1−a) log p(y|Z)]+
b

2
[KL(p1||p2)+KL(p2||p1)]},

(6)
where

log p(y|X) = − 1
2yT(K1 + σ2

1I)−1y − 1
2 log |K1 + σ2

1I| − N
2 log 2π (7)
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is the marginal likelihood on the first view,

log p(y|Z) = − 1
2yT(K2 + σ2

2I)−1y − 1
2 log |K2 + σ2

2I| − N
2 log 2π (8)

is the marginal likelihood on the second view, and the KL divergences between
the posterior distributions f1 and f2 are

KL(p1||p2) = 1
2 [log |Σ2| − log |Σ1| + tr(Σ−1

2 Σ1)

+(μ2 − μ1)TΣ−1
2 (μ2 − μ1) − N ], (9)

and

KL(p2||p1) = 1
2 [log |Σ1| − log |Σ2| + tr(Σ−1

1 Σ2)

+(μ1 − μ2)TΣ−1
1 (μ1 − μ2) − N ]. (10)

Since the KL divergence is not a symmetrical quantity, that is, KL(p1||p2) �=
KL(p2||p1), and we have no general method to determine which one is better
for measuring the discrepancy between the two posterior distribution p1 and p2,
we construct a symmetrical quantity based on the above KL divergences, i.e.,
1
2 [KL(p1||p2) + KL(p2||p1)].

Parameters μ1, μ2, Σ1, and Σ2 in (9) and (10) are provided as follows.
The mean and covariance of the posterior distribution for the latent function
f1 are μ1 = K1(K1 + σ2

1I)−1y and Σ1 = K1 − K1(K1 + σ2
1I)−1K1. The

mean and covariance of the posterior distribution for the latent function f2 are
μ2 = K2(K2 + σ2

2I)−1y and Σ2 = K2 − K2(K2 + σ2
2I)−1K2.

3.2 Inference and Optimization

In our model, we consider the hybrid prediction function sign(af1 + (1 − a)f2),
a ∈ [0, 1]. For a new point {x∗,z∗}, the prediction distribution f1∗ of the first
view and the prediction distribution f2∗ of the second view are also Gaussian.
The mean of f1∗ is k1∗T(K1 + σ2

1I)−1y, and the covariance is k1(x∗,x∗) −
k1∗T(K1+σ2

1I)−1k1∗. Here, k1 is the covariance function, and k1∗ is the vector of
covariance function values between x∗ and the training data X. The mean of f2∗
is k2∗T(K2 +σ2

2I)−1y, and the covariance is k2(z∗,z∗)−k2∗T(K2 +σ2
2I)−1k2∗.

Here, k2 is the covariance function, and k2∗ is the vector of covariance function
values between z∗ and the training data Z. According to the hybrid prediction
function, we give our prediction on the new data point {x∗,z∗}.

As GPs are nonparametric models, the related hyperparameters need to be
determined. In the context of a single view, we often obtain the hyperparame-
ters via generalized maximum likelihood. In the case of two views, we optimize
the hyperparameters collaboratively by two views. Co-regularization approaches
often expect the predictions for the same observation of different views to be con-
sistent to optimize the parameters. Similarly, in the context of Bayesian learning,
we want the posterior distributions of the latent functions of the same observa-
tion across different views to be consistent to obtain the hyperparameters, which
can be realized via minimizing the above objective function shown in (6).
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The hyperparameters in our model can be divided into two classes: the trade-
off hyperparameters a, b and the GP related hyperparameters, which include the
hyperparameters s2f , l in the covariance functions and the noise hyperparameters
σ2 in the likelihood. We use Θ = {s2f1, l1, σ

2
1 , s

2
f2, l2, σ

2
2} to denote hyperpara-

meters in the second group, where s2f1, l1, σ
2
1 are hyperparameters related to the

first view, and others are hyperparameters related to the second view. The GP
related hyperparameters Θ are optimized by the gradient descent method. As
our model has an elegant formulation, the gradients with respect to Θ also have
graceful forms, and the code can be easily implemented by the existing toolbox
[12]. Following the above parameter notations, the gradient w.r.t the sf1 is

∂ �L1

∂sf1
=

a

2

{
−yT(K1 + σ2

1I)−1 2K1

sf1
(K1 + σ2

1I)−1y + tr

[
(K1 + σ2

1I)−1 2K1

sf1

]}

+
b

2
tr

{
Σ−1

2

[
2K1

sf1
− 2K1

sf1
(K1 + σ2

1I)−1K1 − K1(K1 + σ2
1I)−1 2K1

sf1
+

K1(K1 + σ2
1I)−1 2K1

sf1
(K1 + σ2

1I)−1K1

]
− Σ−1

1

[
2K1

sf1
− 2K1

sf1
(K1 + σ2

1I)−1K1

+K1(K1 + σ2
1I)−1 2K1

sf1
(K1 + σ2

1I)−1K1 − K1(K1 + σ2
1I)−1 2K1

sf1

]
Σ−1

1 Σ2

}

+
b

2

{[
2K1

sf1
(K1 + σ2

1I)−1y − K1(K1 + σ2
1I)−1 2K1

sf1
(K1 + σ2

1I)−1y

]T

(Σ−1
1 + Σ−1

2 )(μ1 − μ2) − (μ1 − μ2)
TΣ−1

1

[
2K1

sf1
− 2K1

sf1
(K1 + σ2

1I)−1K1

+K1(K1 + σ2
1I)−1 2K1

sf1
(K1 + σ2

1I)−1K1 − K1(K1 + σ2
1I)−1 2K1

sf1

]
Σ1

−1

(μ1 − μ2) + (μ1 − μ2)
T(Σ−1

1 + Σ−1
2 )

[
2K1

sf1
(K1 + σ2

1I)−1y

−K1(K1 + σ2
1I)−1 2K1

sf1
(K1 + σ2

1I)−1y

]}
(11)

The gradients with respect to other hyperparameters in Θ are similar with
(11), and hence we omit them here. The trade-off hyperparameters a and b
are obtained through grid search.

We summarize MvGP1 in Algorithm 1.

3.3 Extension to Multiple Views

In the above sections, we take two views as an example to illustrate our model
MvGP1. This model can be easily extended to multiple views because of the
elegant formulation. The posterior distribution of the latent function on each
view is the Gaussian distribution. Moreover, the KL divergence [7] between
two Gaussian distributions can be calculated analytically, i.e., for two Gaussian
distributions N0 = N (μ0,Σ0) and N1 = N (μ1,Σ1), we have KL(N0||N1) =
1
2{log( |Σ1|

|Σ0| ) + tr(Σ−1
1 Σ0) + (μ1 − μ0)TΣ−1

1 (μ1 − μ0) − N}. Therefore, we can
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Algorithm 1. Multi-view GPs with Posterior Consistency
Input: training data {xi, zi, yi}N1

i=1, test samples {x∗
i , z

∗
i , y∗

i }N2
i=1.

Output: accuracy acc, trade-off parameters a, b, and GP related hyperparameters Θ.

1: initialize Θ randomly.
2: for k = 1 to 10 do
3: Divide the training data {xi, zi, yi}N1

i=1 into the training set {xt
i, z

t
i , y

t
i}N

t
1

i=1 and

the validation set {xv
i , z

v
i , yv

i }N
v
1

i=1.
4: for a, b in the search grids do
5: while termination conditions are not satisfied do
6: Update Θ by gradient descent to minimize �L1 in (6).
7: end while
8: Calculate the predictions by sign(af1 + (1 − a)f2) on the validation set.

9: Calculate the accuracy accv on the validation set {xv
i , z

v
i , yv

i }N
v
1

i=1.
10: if accv is larger than the accuracy on the last iteration then
11: record the trade-off parameters a, b.
12: end if
13: end for
14: end for
15: while termination conditions are not satisfied do
16: Update Θ by gradient descent to minimize �L1 in (6).
17: end while
18: Calculate the predictions by sign(af1 + (1 − a)f2) on the test samples.
19: Calculate the accuracy acc on the test samples {x∗

i , z
∗
i , y∗

i }N2
i=1.

extend MvGP1 to multiple views by regularizing the weighted logarithm with
the KL divergences between every pair of the distinct posterior distributions.
Following the notations in MvGP1, given a data set which involves K views,
p(y|Xk) denotes the marginal distribution of the kth view, and pi represents
the corresponding posterior distribution of the latent function fi. The objective
function in multiple views is

min −
K∑

k=1

ak log p(y|Xk) +
K∑

i=1

K∑

j>i

{bij [KL(pi||pj) + KL(pj ||pi)]}. (12)

4 Multi-view GPs with Selective Posterior Consistency

When the predictions from different views are not consistent on some data points,
the multi-view sufficiency assumption and compatibility assumption cannot be
satisfied on the whole data set. In this context, it is not appropriate to enforce the
posteriors on the whole data set across different views as similar as possible. For
instance, in some cases, the input data of some views may be largely affected by
the noises, which may make the predictions of these points in these views totally
different from those in other views. In these cases, the multi-view assumptions
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fail, and enforcing the predictions of all views on these data points consistent
seems to be improper.

Considering the above problem, we improve MvGP1 and present multi-view
GPs with selective posterior consistency (MvGP2). In this model, we modify the
regularization term in the objective function to make the posterior distributions
across different views on a subset of the data set other than the whole one as sim-
ilar as possible. In order to find the proper subset, namely the consistent set, we
first optimize the hyperparameters through MvGP1 on the training set and give
the predictions for the training data on each view. Next, we select data points
whose predictions on each view are all consistent and are also consistent with
the true label to construct the consistent set. Finally, we optimize the hyperpa-
rameters with the analogous procedure to MvGP1 except that we regularize the
posteriors only on the chosen consistent set.

In fact, the key idea of MvGP2 is to construct the consistent set and con-
strain the multi-view assumptions on the consistent set. We construct the con-
sistent set by selecting the data points whose label predictions on each view are
all equal and the same as true labels. Formally, given two views of the input
data X = [x1, . . . ,xN ]T, Z = [z1, . . . ,zN ]T and the corresponding label data
y = [y1, . . . , yN ]T, we find a index set T = [t1, t2 . . . , tk], (k <= N) such that
for each t ∈ T , the predictions for Xt, Zt and the corresponding yt are all
agreed. Then the consistent set is {xi,zi, yi}i∈T . Let XT ,ZT , and yT denote
the corresponding data matrix of the consistent set. After constructing the con-
sistent set, we modify the objective function to only restrict the KL divergence
of the posterior distributions of the latent functions on the consistent set to be
minimized,

min �L′
1 = {−[a log p(y|X) + (1 − a) log p(y|Z)]

+
b

2
[KL(p1′||p2′) + KL(p2′||p1′)]}, (13)

where p1
′ = p(f ′

1|XT ,yT ) is the posterior distribution of the latent function f1
′

on the set {XT ,yT }, and p2
′ = p(f2

′|ZT ,yT ) is the posterior distribution of the
latent function f ′

2 on the set {ZT ,yT }.
We summarize MvGP2 in Algorithm 2. The idea of constraining the multi-

view assumption on the consistent set other than the whole data set is a novel
view in multi-view learning. In the real world, data are complex and noisy. It
is likely that not all the data satisfy the requirement that the predictions on
different views should be equal. Moreover, we have verified this selective idea
through the experiments on real world data sets in the following section.

5 Experiments

In this section, we performed experiments with our proposed MvGP1 and
MvGP2 on multiple real world data sets. For comparison, we use three single-
view methods corresponding to GPs named GP1, GP2, GP3, which use the first
view, the second view, and the combination of two views, i.e., concatenating two
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Algorithm 2. Multi-view GPs with Selective Posterior Consistency
Input: training data {xi, zi, yi}N1

i=1, test samples {x∗
i , z

∗
i , y∗

i }N2
i=1.

Output: accuracy acc, trade-off parameters a, b, GP related hyperparameters Θ and
the consistent index set T .

1: T = {}, initialize Θ randomly.
2: run MvGP1.
3: for i = 1 to N1 do
4: Calculate the predictions by fi1, fi2 on the training data xi and zi, respectively.
5: if fi1 = fi2 && fi2 = yi then
6: add i into the set T
7: end if
8: end for
9: for k = 1 to 10 do

10: Divide the training data {xi, zi, yi}N1
i=1 into the training set {xt

i, z
t
i , y

t
i}N

t
1

i=1 and

the validation set {xv
i , z

v
i , yv

i }N
v
1

i=1.
11: for a, b in the search grids do
12: while termination conditions are not satisfied do
13: Update Θ by gradient descent to minimize �L′

1 in (13).
14: end while
15: Calculate the predictions by sign(af1 + (1 − a)f2) on the validation set.

16: Calculate the accuracy accv on the validation set {xv
i , z

v
i , yv

i }N
v
1

i=1.
17: if accv is larger than the accuracy on the last iteration then
18: record the trade-off parameters a, b.
19: end if
20: end for
21: end for
22: while termination conditions are not satisfied do
23: Update Θ by gradient descent to minimize �L′

1 in (13).
24: end while
25: Calculate the predictions by sign(af1 + (1 − a)f2) on the test samples.
26: Calculate the accuracy acc on the test samples {x∗

i , z
∗
i , y∗

i }N2
i=1.

views to construct new high-dimensional data, respectively. In addition, we also
compare our algorithms with a multi-view method SVM-2K [6], which is a two-
view version of SVMs and is also inspired by the thought of co-regularization.

5.1 Data Sets

Web-Page. The web-page data sets have been extensively used in multi-view
learning, which consist of two-view web pages collected from computer science
department web sits at four universities: Cornell university, university of Wash-
ington, university of Wisconsin, and university of Texas. The two views are words
occurring in a web page and words appearing in the links pointing to that page.
The documents are described by 1703 words in the content view, and by 569
links between them in cites views. We list the statistical information about the
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four data sets in Table 1. The web pages are classified into five classes: student,
project, course, staff and faculty. We set the category with the greatest size to
be the positive class (denoted as class 1), and all the other categories as the
negative class (denoted as class 2) in each data set.

Table 1. Statistical information of four web-page data sets.

Data set Size View
size

Content
dimension

Cite
dimension

Class 1 size Class 2 size

Cornell 195 2 1703 195 83 112

Washington 230 2 1703 230 107 123

Wisconsin 265 2 1703 265 122 143

Texas 187 2 1703 187 103 84

Ionosphere. Downloaded from UCI,1 the ionosphere data set is collected by
a system in Goose Bay, Labrador. This system involves a phased array of 16
high-frequency antennas with a total transmitted power on the order of 6.4 kW.
The targets are free electrons in the ionosphere. Those showing evidence of some
type of structure in the ionosphere are good radar returns, while those which do
not show the above phenomenon and whose signals pass through the ionosphere
are bad returns. The data set consists of 351 examples in which 225 are “good”
instances and 126 are “bad” instances. There is only one view in this data set,
and we generate the other view via principal component analysis, resulting in
two views, which have 35 and 24 dimensions, respectively.

5.2 Experimental Setting

In the experiments, we select 60% data in each data set as the training set,
and the rest as the test set. Multiple values of the hyperparameters a and
b in MvGP1 and MvGP2 are explored in all the experiments. Given a divi-
sion of the training and test set, we use cross validation with 10 folds and
20% training set as the validation set for the selection of the hyperparame-
ters a and b in MvGP1 and MvGP2. The considered grid ranges are a ∈
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} and b ∈ {2−18, 2−12, 2−8, 2, 23, 28}.
Other hyperparameters in MvGP1, MvGP2 and hyperparameters in GP1, GP2,
and GP3 are initialized randomly. As for the kernel function in GP1, GP2, GP3,
MvGP1, and MvGP2, we all use the squared exponential kernel as mentioned
in (1). We repeat the experiments for all the data sets five times and record the
average accuracies and the corresponding standard deviations.

We compared our proposed MvGP1, MvGP2 with multi-view method SVM-
2K, and three single view methods GP1, GP2, and GP3. For SVM-2K, besides
the prediction functions sign(f1) and sign(f2) from the separated views, we also
consider the hybrid prediction function sign((f1 + f2)/2).
1 Data sets are available at http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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5.3 Results

We present the average accuracies and standard deviations of all the methods
on the webpage data sets and ionosphere data set in Table 2.

It is clearly shown in Table 2 that our proposed methods MvGP1 and MvGP2
are superior to GP1, GP2, GP3 and SVM-2K. We can also observe that MvGP2
further improves the performance over MvGP1, which benefits from the idea of
using the selective posterior regularization other than the posterior regulariza-
tion on the whole data sets to ensure the consistency.

Table 2. The average accuracies and standard deviations (%) of six methods on real
world data sets.

Data set Cornell Washington Wisconsin Texas Ionosphere

GP1 80.26 ± 14.52 67.61 ± 14.71 72.64 ± 16.02 56.01 ± 6.32 84.75 ± 2.15

GP2 62.56 ± 7.87 74.78 ± 1.42 61.51 ± 6.27 73.52 ± 12.66 98.72 ± 1.37

GP3 77.95 ± 14.66 73.04 ± 14.89 75.85 ± 17.15 62.35 ± 16.98 97.87 ± 4.76

SVM-2K 73.68 ± 5.04 74.78 ± 4.38 75.28 ± 5.75 75.15 ± 9.44 99.72 ± 0.39

MVGP1 85.64 ± 6.87 86.30 ± 6.08 91.32± 1.55 78.33 ± 15.14 99.29 ± 1.24

MVGP2 87.18± 5.94 87.18± 5.94 91.32± 2.04 81.29± 10.81 100± 0

6 Conclusion

In this paper, we have proposed MvGP1 which extends GPs to the scenario of
learning with multiple views via the methods of posterior consistency regulariza-
tion. This approach is very intuitive, resulting in an elegant objective function
formulation. Experimental results on real-world web-page classification validate
the effectiveness of the proposed MvGP1. Moreover, considering that the multi-
view assumptions may not be met on all data points, we have proposed MvGP2,
which constructs a consistent set and constrains the posterior consistency regu-
larization on the consistent set other than the whole data set, leading to further
improvements of the performance. In fact, the idea of constraining the multi-
view assumptions on a selective consistent set other than the whole data set is
general. It not only can be applied to GPs, but also can inspire other multi-view
learning methods.

In the future, we will attempt to apply the proposed models to big data,
which may use Nyström methods or other approximate approaches.

Acknowledgments. The corresponding author Shiliang Sun would like to thank sup-
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and 61370175.
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Abstract. Aspect identification is an important problem in opinion
mining. It is usually solved in an unsupervised manner, and topic models
have been widely used for the task. In this work, we propose a neural
network model to identify aspects from reviews by learning their distrib-
utional vectors. A key difference of our neural network model from topic
models is that we do not use multinomial word distributions but instead
embedding vectors to generate words. Furthermore, to leverage review
sentences labeled with aspect words, a sequence labeler based on Recur-
rent Neural Networks (RNNs) is incorporated into our neural network.
The resulting model can therefore learn better aspect representations.
Experimental results on two datasets from different domains show that
our proposed model can outperform a few baselines in terms of aspect
quality, perplexity and sentence clustering results.

1 Introduction

Sentiment analysis of online customer reviews has been well studied for over a
decade. One of the key tasks in mining customer reviews is aspect identifica-
tion [15]. Here aspects refer to features, components and other criteria on which
a product or service may be evaluated by online users. Since the seminal work
in [10], aspect identification has been recognized as a central problem in mining
and summarizing customer reviews. Given a collection of reviews from the same
domain (e.g., reviews of restaurants), aspect identification aims to discover a
set of aspects, each associated with a set of aspect terms (or a distribution over
such terms). For example, from restaurant reviews, we may expect to discover an
aspect on service, with aspect terms such as “waiter” and “serve,” and another
aspect on food, with aspect terms such as “pizza” and “burger.” The aspect
identification task is useful for downstream tasks such as aspect-based review
summarization [32] and product comparison [17].

Aspect identification is generally treated as an unsupervised task and a com-
monly adopted solution is based on topic models such as LDA (Latent Dirichlet
Allocation) [1]. Here each aspect is modeled as a topic, which is essentially a
multinomial distribution over words, and reviews are modeled as mixtures of
these topics. A number of special topic models have been proposed for aspect
identification [9,21,31].
c© Springer International Publishing AG 2017
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With recent advances in neural networks and representation learning for nat-
ural language processing, embedding words in a low-dimensional hidden space to
capture their distributional behaviors has shown to be effective for a number of
data mining tasks [7,28,30]. In this paper, we explore how neural network mod-
els can be used to address the review aspect identification problem and whether
they can outperform standard topic models. Our work is motivated by two obser-
vations: (1) Compared with the traditional multinomial word distribution based
language models, neural language models constructed in a continuous space may
better handle low-frequency words in reviews and address the data sparsity prob-
lem. (2) Sometimes review sentences with aspect terms annotated are available.
For example, the Aspect Based Sentiment Analysis task in SemEval-2014 pro-
vides such annotated data. It has been shown that neural network models can
achieve strong results on the supervised aspect term extraction task [16,29]. We
would like to explore how these trained neural network models can be used to
help the aspect identification task.

In this work, we propose a neural network model for review aspect identifi-
cation. Different from existing topic model based approaches to aspect identi-
fication, our model is based on continuous space language models, and it uses
a small amount of labeled review sentences to train an RNN model for semi-
supervised learning. Using reviews from two different domains, we show that
our model improves the quality of the identified aspects compared with some
baseline models, and both components of our proposed model contribute to the
improved performance.

2 Related Work

Unsupervised topic models are one of the most popular techniques used for
aspect identification. They have the advantages of requiring no supervision and
being easy to extend. A model that jointly considers aspect words and senti-
ment words was proposed in [14]. Simple prior information based on sentiment
lexicons is used in this work. Zhao et al. [31] developed a more advanced model
by using a Maximum Entropy classifier to separate words belonging to different
types. To further improve the performance of unsupervised topic model, some
distant supervision based on domain knowledge or prior information has been
incorporated [4–6]. With both users’ ratings and reviews available from online
review websites, aspect identification based on topic models is jointly studied
with many other tasks such as rating prediction [24] and item recommenda-
tion [19,27]. While these studies have advanced aspect identification effectively,
they do not take advantage of new emerging techniques like neural networks and
word embeddings.

Neural networks and word embeddings have been proven to be effective in
various data mining tasks, especially supervised learning problems. They have
been applied to information retrieval [23], opinion mining [8], recommender sys-
tems [11], online advertising [8] and many other various tasks. In recent years,
neural networks for unsupervised learning have also been invented. Autoencoder
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is one representative model among them [12,25]. However, these models lack
interpretability. So neural network based topic models are proposed to overcome
this shortcoming [2,13,22]. However, no one has combined supervised neural net-
works and unsupervised neural networks for aspect identification, which is what
we study in this paper.

3 Method

In this section, we present our neural network model for aspect identification.

3.1 Problem Formulation

The setup of our aspect identification task is as follows. We assume that we have
a set of unlabeled reviews R from the same domain, e.g., a set of restaurant
reviews. In addition, we have a set of review sentences S from the same domain
annotated with aspect terms, as shown in Table 1. Our goal is to discover K
aspects from R and S, where each aspect is associated with some parameter
vk and from vk we can understand the meaning of the kth aspect. In tradi-
tional topic model-based approaches to aspect discovery, each vk would be a
distribution over the words in the vocabulary, and the words with the high-
est probabilities in vk would well represent the aspect. In our work, we do not
constrain vk to be a probability distribution, as we will explain below.

Table 1. Examples of annotated sentences. Aspect words are highlighted and enclosed
with brackets.

From the [appetizers] we ate, the [dim sum] and other variety of [food], it was impossible
to criticize.
The [design] and [atmosphere] are just so good.

3.2 Model Overview

The general idea behind our model is as follows. We aim to re-construct the
reviews in R from a set of parameters capturing various properties of the reviews.
To re-construct a review, we treat the review as a bag of sentences and generate
the sentences one by one in a probabilistic way. Each sentence will probabilisti-
cally be assigned an aspect, and then be treated as a bag of words sharing the
same aspect.

Different from standard topic models, however, we also model the context
of each word using a recurrent neural network (RNN) and the context will be
used to influence the probability of generating the word. Specifically, the prob-
ability of generating a word comes from a combination of a number of vectors
representing different aspect models and a background model. This kind of a
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mixture model is inspired by [31]. However, our model has notably the following
differences from [31]: (1) Unlike [31], which is an extension of LDA, we do not
use multinomial distributions to model topics (i.e., aspects in this case). Instead,
we use a neural networks with continuous vectors to derive the probabilities of
generating different words. This treatment is similar to a number of recent work
on neural topic models [2,22]. (2) Unlike [31], which uses a Maximum Entropy
model to incorporate the context of word into its probabilistic modeling, we use
an RNN to incorporate the context, which presumably is more effective given
the recent success of using RNN models for sequence modeling problems.

3.3 Review Generation Process

Modeling Aspects. We assume that there are K underlying aspects. Similar
to [31], which assumes that each aspect has two word distributions, namely an
aspect word distribution and an opinion word distribution, we assume that each
aspect k has two embedding vectors associated with it: vk ∈ R

d and ck ∈ R
d.

Here vk is meant to capture words that directly describe the aspect, such as
“pizza” and “cake” for the aspect on food or “waiter” and “waitress” for the
aspect on service. ck is meant to capture other words closely associated with the
aspect but are not considered opinion target terms (as those highlighted terms
in Table 1). These may include “delicious” and “tasty” for the aspect on food
or “friendly” for the aspect on service. Note however that neither vk nor ck is
a distribution over the words in the vocabulary, and we will explain later how
they are used to generate words.

Modeling Background Words. We assume that there is a background dis-
tribution over words, which we denote with θb. This distribution represents how
reviews may contain words not related to any aspect.

Modeling Documents. Similar to [31], we assume that each review has a
multinomial distribution over the K aspects. Let us use βr to represent this
distribution for the rth review. We also assume that there is a document-
independent probability λ that controls how likely a word is associated with
an aspect or with the background model θb.

Modeling Word Context. We use wr,s,n to represent the nth word in the sth

sentence in the rth review. Here 1 ≤ wr,s,n ≤ V is an index in the vocabulary
and V is the vocabulary size. We assume that this word has a vector hr,s,n that
encodes its context using an RNN model we will describe later. With this vector
hr,s,n and the RNN model, there is a probability πr,s.n associated with word
wr,s,n to indicate how likely this word is an opinion target term rather than an
opinion term, i.e., how likely wr,s,n is going to be generated from some vk or
from some ck.
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Review Generation. With the various embedding vectors and probabilities
defined above, we now describe the re-construction loss function which we try to
minimize in order to learn the parameters. We use the negative log likelihood of
generating the words inside all the reviews in R as our objective function. The
overall objective function is as follows:

− log p(R) = −
|R|∑

r=1

log p(wr) = −
|R|∑

r=1

Mr∑

s=1

log
K∑

k=1

βr,kp(wr,s|k),

p(wr,s|k) =
Nr,s∏

n=1

p(wr,s,n|k)

=
Nr,s∏

n=1

[
(1 − λ)θbwr,s,n

+ λ
(
πr,s,nφk,wr,s,n

+ (1 − πr,s,n)ψk,wr,s,n

)]
,

where Mr is the number of sentences in the rth review, Nr,s is the number of
words in the sth sentence in the rth review, wr represents all the words in the
rth review, wr.s represents all the words in the sth sentence in the rth review,
and φk and ψk are two distributions corresponding to aspect terms and opinion
terms, which we will explain below.

Basically the loss function above shows that to generate a review r, for each
sentence in the review we pick an aspect k according to the distribution βr.
Then for each word in this sentence, we generate it either from the background
model θb or one of the two models φk and ψk.

So far the model above is very similar to [31]. However, φk and ψk are mod-
eled differently from [31]. Instead of treating these as multinomial distributions
and directly learning the probabilities, we assume that they are derived from the
embedding vectors vk and ck as follows:

φk = softmax(vk · WA),
ψk = softmax(ck · WC).

WA ∈ R
d×V and WC ∈ R

d×V are two matrices to model the semantic represen-
tations of words, which are initialized with pre-trained Google word2vec.1 Each
column in them is used to encode one word type.

3.4 RNN to Incorporate Context

We now explain how we obtain πr,s,n for each word wr,s,n by making use of
the annotated review sentences. Our method is again inspired by the MaxEnt-
LDA model [31], in which a Maximum Entropy model was trained on some
labeled data to help separate aspect words, opinion words and background words.
1 https://code.google.com/archive/p/word2vec/.

https://code.google.com/archive/p/word2vec/
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Algorithm 1. Gibbs-EM algorithm for learning
1: for i ← 1, maxEpoch do � maxEpoch is the maximum number of epochs.
2: E-step:
3: for r ← 1, |R| do
4: for s ← 1, Mr do
5: Sample an aspect ti

r,s according to Formula 1.
6: end for
7: end for
8: M-step:
9: Keep Ti fixed. Compute the gradient ∂Li

∂Θ
by back-propagation.

10: Use the gradient to update all parameters Θ.
11: end for

The same idea applies to our problem, but here we use a Recurrent Neural
Network (RNN) model, which represents the state of the art for aspect term
extraction [16].

The motivation of making use of the labeled review sentences is that there are
some patterns we can learn to locate aspect terms. For example, nouns following
adjectives which are sentiment words, such as the word “service” in the phrase
“excellent service,” are more likely to be aspect terms. We can try to learn such
patterns from the labeled review sentences, even though the labels only indicate
which words are aspect terms but do not group them into aspects.

Because usually there is only a small amount of such labeled review sentences,
to address the data sparsity problem, here we again make use of dense vector
representations to train a classifier. Specifically, we use Recurrent Neural Net-
work (RNN) models. Let us assume that (l1, l2, . . . , ln) is the sequence of words
in a labeled sentence, where each li ∈ Rd is a dense word embedding vector. Let
(y1, y2, . . . , yn) represent the corresponding labels marking the positions of the
aspect terms. We can build an RNN model from the sequence (l1, l2, . . . , ln) as
follows:

hi = f(Uhi−1 + Vli + e),

where f(·) is a non-linear activation function, U ∈ Rdo×do , V ∈ Rdo×d and
e ∈ Rdo are parameters to be learned, do is the output dimension and hi is the
hidden state at position i. We can then use hi to predict the label yi through
a softmax layer. While there exist some other RNN structures like LSTM(Long
Short Term Memory), Bidirectional-RNN, Bidirectional-LSTM and so on, RNN
has simpler structure and competitive performance [16]. So we only use RNN to
predict πr,s,n in this work.

To train this model, we maximize the probabilities of the observed labels in
the training dataset S. Given a new sentence, we can use the trained RNN model
to obtain the hidden states h, and for each word in the sentence, we can use its
corresponding hidden state to obtain a probability πr,s,n for the word to be an
aspect term.
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3.5 Connections with Topic Models

With certain configurations, our model is closely connected with traditional topic
models. However, our model learns aspect vectors and uses a linear transforma-
tion followed by the softmax function to model topic-word dependencies. Com-
pared with multinomial distributions, which are typically used in topic models,
our model can incorporate more information, like semantic meanings of words
and topics. In recent years, neural network based topic models have been invented
to incorporate pre-trained word embeddings [2,13,22]. Compared with these
models, our model is a more general framework. Each component of it can be
replaced with other suitable options. So it is easier to extend and adapt to dif-
ferent tasks. Besides this, we uses RNN to separate aspect words from context
words, which can potentially help us learn better topics. This has not been used
in existing neural topic models.

3.6 Learning

To learn our model, we need to find the optimal values of vk, ck, θb, βr, WA,
Wc and λ that can minimize the objective function − log p(R).

Back-propagations cannot be directly used to learn our neural network as
there are some constraints placed on hd. To deal with this, one alternative is
variational-EM algorithm. However, it is not an exact estimation algorithm as
it tries to optimize the lower bound of the objective function. Instead of using
variational inference to approximate posterior distributions at the E-step, we
adopt Gibbs sampling to sample an aspect for the sth sentence in the rth review
according to

p(tr,s = k) =
βr,kp(wr,s|k)∑
k′ βr,k′p(wr,s|k′)

. (1)

Then, in the M-step, we apply back-propagation to update all parameters in
our neural network with the sampled aspect for sentence fixed. The objective
function for the M-step in the ith epoch is

Li = − log p(R|Ti) = −
|R|∑

r=1

Mr∑

s=1

log p(wr,s|tir,s), (2)

where Ti is the sampled aspects of all sentences in epoch i and tir,s is the sam-
pled aspect in epoch i for the sth sentence in the rth review. An overview of
the learning process can be found in Algorithm 1, where Θ represents all para-
meters to be learned: Θ = {vk, ck,θb,βr,WA,WC , λ}, k ∈ {1, 2, · · · ,K}, r ∈
{1, 2, · · · , |R|}.

4 Experiments

In this section, we evaluate our proposed model from different angles. Through
the evaluation we mainly want to test if our neural network model using aspect



A Neural Network Model for Semi-supervised Review Aspect Identification 675

and context vectors to generate words work better than traditional topic models
based on multinomial unigram word distributions for aspect identification. In
addition, we also look at the generative ability and the effectiveness of clustering
sentences using our model.

We consider the following different models for comparison.

– LDA: Latent Dirichlet Allocation. This is a classical topic modeling technique
proposed in [1].

– JST: Joint Sentiment/Topic Model. It is an extension of LDA that models
both sentiments and topics [14].

– ME-LDA: LDA with Maximum Entropy classifier [31]. This models uses
both traditional topic models based on multinomial unigram word distribu-
tions and Maximum Entropy models for supervision.

– RNN-LDA: LDA with RNN.
We replace the maximum entropy classifier in ME-LDA with the trained RNN
model to estimate the probability of each word being an aspect word or not.
By comparing with this model, we can evaluate the effect of using aspect and
context vectors together with softmax to generate words.

– ME-NA: Neural network for aspect identification with Maximum Entropy.
This is a variation of our model. We replace LDA in ME-LDA with our neural
network model.
By comparing with this model, we can evaluate the usefulness of using RNN
instead of standard linear classifiers for the supervision.

– RNN-NA: Neural network for aspect identification with RNN. This is our
complete model as presented in Sect. 3, where we use both unlabeled and
labeled data for aspect identification. We do not fine tune WA and WC , i.e.,
the word embeddings are not updated during training.

– RNN-NA-t: This is also our complete model RNN-NA. However, we initial-
ize WA and WC with word embeddings and fine-tune them during training.

To compare the models above, we first conduct three experiments to evaluate
the quality of identified aspects. Then we do a quantitative evaluation based on
perplexity to check the model’s ability to predict words in unseen reviews. We
also do another quantitative evaluation using sentence clustering to evaluate
each model’s effectiveness in grouping review sentences into different aspects.

4.1 Data

We use two datasets for our experiments. The first one contains restaurant
reviews from the Yelp academic dataset.2 As the original dataset contains mil-
lions of reviews from different businesses, we only keep the restaurant reviews
and randomly sample 20,000 from them. The other dataset is a laptop dataset
crawled from Amazon, used by [26].3 For the set of labeled training sentences,
we use the sentences tagged with aspect terms from SemEval competitions.
2 https://www.yelp.com.sg/dataset challenge.
3 http://www.cs.virginia.edu/∼hw5x/dataset.html.

https://www.yelp.com.sg/dataset_challenge
http://www.cs.virginia.edu/~hw5x/dataset.html
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For the restaurant domain, the training sentences are from SemEval 2014 and
2015, and for the laptop domain, the training sentences are from SemEval 2015.

To pre-process the review data, we remove stop words and words with no pre-
trained embeddings. Sentences with less than 3 words are also removed. After
preprocessing, the Yelp dataset contains 17948 reviews, with each document
containing 9.1 sentences on average and each sentence containing 5.8 words on
average. In the Laptop dataset, there are 31,363 documents, where each docu-
ment has 8.8 sentences on average and each sentence has 7.6 words on average.

4.2 Aspect Quality

Word Intrusion. To evaluate the quality of aspects identified by our models,
we conduct the word intrusion experiment [3]. For each discovered aspect, we
extract 5 most probable words. We also extract another intrusion word that has a
high probability in some other aspect but low probability in the current aspect.
There words are then mixed and presented to the annotators to pick out the
intrusion word. We ask four graduate students for the annotation. Fleiss’ Kappa,
which is a standard way to measure agreement among more than two annotators,
shows that the inter-annotator agreement is 0.353 for the Yelp dataset and 0.487
for the Laptop dataset. These two scores indicate fair agreement and moderate
agreement respectively. Model Precision (MP ) is used as the evaluation metric,
which is defined as

MP =
1
N

N∑

a=1

Ma

T
.

Here, N is the number of annotators, T is the number of aspects, Ma is the
number of intrusion words that are correctly identified by annotator a.

The performances of all models with aspect number set to be 10 and 20 are
shown in Table 2. We can see that RNN-NA-t performs the best most of the
time, which demonstrates that our model is effective in mining aspects with
high quality. RNN-NA can only outperform RNN-NA-t in one case. It proves
that fine-tuning word embeddings in our model is important.

Coherence. Besides human evaluation, we also evaluated our models with topic
coherence, which is a metric measuring aspect quality based on co-occurrence of
words [20]. It is defined as

Table 2. Model precision (MP) of word intrusion by various models.

Dataset #Aspect JST LDA ME-LDA RNN-LDA ME-NA RNN-NA RNN-NA-t

Yelp 10 0.63 0.50 0.65 0.45 0.50 0.53 0.65

20 0.44 0.45 0.51 0.40 0.50 0.63 0.55

Laptop 10 0.40 0.33 0.50 0.70 0.70 0.58 0.73

20 0.64 0.44 0.59 0.74 0.65 0.55 0.75
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Table 3. Topic coherence.

Dataset #Aspect JST LDA ME-LDA RNN-LDA RNN-NA ME-NA RNN-NA-t

Yelp 10 −3.589 −2.854 −4.421 −4.110 −0.757 −0.639 −0.363

20 −3.579 −2.833 −4.319 −4.129 −0.698 −0.628 −0.443

Laptop 10 −3.218 −3.424 −5.476 −5.591 −1.090 −1.077 −0.866

20 −3.236 −3.459 −5.514 −5.698 −1.186 −1.111 −0.787

C(t, V (t)) =
2

M(M + 1)

M∑

m=2

m−1∑

l=1

log
D(v(t)

m , v
(t)
l ) + 1

D(v(t)
l )

,

where V (t) contains the M most probable words in topic t. v
(t)
m and v

(t)
l are the

mth and lth words in V (t). D(v(t)
l ) is the number of documents containing word

v
(t)
l and D(v(t)

m , v
(t)
l ) is the number of documents containing both v

(t)
m and v

(t)
l .

Table 3 displays the averaged topic coherence of different models. All models
based on our proposed neural network can get better performance than others.
Meanwhile, RNN-NA-t consistently gets the best performance. It proves that
aspects discovered by our models are more coherent than those discovered by
the competitors.

Qualitative Evaluation. To qualitatively study the quality of aspects iden-
tified by our proposed model, we show 4 sample aspects of the laptop dataset
identified by RNN-NA-t and ME-LDA in Table 4. The top 10 most probable
words of each aspect are displayed. Words that are closely related to the aspect
are emphasized in bold font. From the tables we can see that aspects learned by
RNN-NA-t look more coherent and more words are closely related to the topic.
The qualitative evaluation shows the advantage of our neural network for aspect
identification in discovering meaningful and coherent aspects.

Table 4. Sampled learned aspects from the Laptop dataset.

RNN-NA-t ME-LDA

Network Display OS Support Network Display OS Support

Wifi Screen Windows Support Windows Screen Windows Warranty

Wireless Display OS Service Screen Keyboard System Service

Connection Resolution System Customer Support Windows OS Customer

Internet Keyboard Operating Warranty Wireless Battery Screen Support

Windows Color Software Tech Wifi Quality Operating Drive

Driver Size XP Shipping Connection Display Software Screen

Card Quality Vista Samsung System Sound Use Hard

Network Colors Use Screen Internet Price Keyboard Windows

Drivers Brightness Works Battery Battery Touch Drive Battery

Support Retina Hardware System Keyboard Drive Battery Shipping
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Fig. 1. Perplexities over different numbers of aspects for different models.

4.3 Perplexity

We evaluate all models’ generative abilities using perplexity, which is a commonly
used metric to evaluate the quality of language models and topic models. The
definition of perplexity is as follows:

perplexity = exp(− 1
N

∑

s∈T
P (s)), (3)

where T is our held-out test dataset, N is the total number of sentences in it
and P (s) is the probability of generating sentence s. In our experiment, we leave
20% of our dataset for testing and train the models based on the remaining 80%
dataset. Perplexities over different numbers of aspects are shown in Fig. 1.

We can see that our complete model with fine tuning of word embeddings
is performing the best over various numbers of aspects on both datasets. Mean-
while, using RNN models to help separate aspect words from the rest performs
better than using Maximum Entropy based models most of the time. Both find-
ings verify that using neural networks in our model can improve generalization
capabilities.

Sentence Clustering

To show how topical embeddings learned by different models benefit downstream
tasks, we compare the different models in terms of sentence clustering. We man-
ually labeled 100 sentences from the Yelp dataset and 100 sentences from the
Laptop dataset. Normalized mutual information [18], which is a popular metric
in text clustering, is used to measure performances in our experiment. As topics
discovered by JST are sentiment oriented, we do not include it in this evaluation.

The results are shown in Fig. 2. We can see that our proposed neural network
models outperform all other competitors. As all sentences are from the same
domain, it is uneasy to effectively discover clear aspects and cluster sentences
by using co-occurrence statistics. So traditional topic models perform poorly.
By learning topic embeddings, our models can improve a lot. Figure 2 also shows
that using RNN to help separate out aspect words is much more effective than
Maximum Entropy classifier.
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Fig. 2. Normalized mutual information.

5 Conclusions

We explored aspect identification from reviews by proposing a novel neural net-
work model. Our model is able to associate aspects and words using distrib-
utional vectors. An RNN model trained on labeled sentences is embedded into
our model, which helped the model learn cleaner and more discriminative topics.
Experiments on two datasets from different domains show that our model is effec-
tive in discovering meaningful aspects, predicting words and benefiting down-
stream applications such as sentence clustering. In the future, we will explore
more complex neural network layers to model aspects and documents, and to
jointly train the RNN with the neural network model for aspect identification.
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Abstract. Recent years have witnessed the prosperity of Massive Open
Online Courses (MOOCs). One important characteristic of MOOCs is
that video clips and discussion forum are integrated into a one-stop learn-
ing setting. However, discussion forums have been in disorder and chaos
due to ‘Massive’ and lack of efficient management. A technical solution
is to associate MOOC forum threads to corresponding video clips, which
can be regarded as a problem of representation learning. Traditional tex-
tual representation, e.g. Bag-of-words (BOW), do not consider the latent
semantics, while recent semantic word embeddings, e.g. Word2vec, do
not capture the similarity between documents, i.e. latent similarity. So
learning distinguishable textual representation is the key to resolve the
problem. In this paper, we propose an effective approach called No-label
Sequence Embedding (NOSE) which can capture not only the latent
semantics within words and documents, but also the latent similarity. We
model multiform MOOC data in a heterogeneous textual network. And
we learn the low-dimensional embeddings without labels. Our proposed
NOSE owns some advantages, e.g. course-agnostic, and few parameters
to tune. Experimental results suggest the learned textual representation
can outperform the state-of-the-art unsupervised counterparts in the task
of associating forum threads to video clips.

Keywords: Unsupervised embedding · Latent similarity · Heteroge-
neous · MOOC

1 Introduction

As a new paradigm of online learning environments, Massive Open Online
Courses (MOOCs) are rapidly developed in recent years, e.g. Coursera, edX
and Udacity. Millions of learners have been benefited from the free and open
courses. Compared with traditional online education, an important characteris-
tic of MOOCs is the one-stop learning setting which integrates video clips and
c© Springer International Publishing AG 2017
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a discussion forum. However, due to ‘Massive’ and lack of efficient management,
there are overload and chaos in majority of MOOC forums [21]. Based on our
statistic of a MOOC forum as shown in Fig. 1, the various categories include
question of concept understanding, enquiry and advice of course arrangement,
feedback, and etc. In order to archive the threads, there are several methods
which have limited effect [3], e.g. defining sub-forums in advance empirically
according to weeks and asking learners to tag threads. Some machine learn-
ing methods have been studied recently, e.g. content-related thread identifica-
tion [21], confusion classification [1], sentiment classification [15,20], and so on.
But they are developed for specific research problems and cannot be applied for
other tasks.

Another idea is to associate threads to corresponding knowledge points, i.e.
video clips. The feasibility relies on some MOOCs’ natures. Firstly, the pace
of a MOOC is consistent to its off-line counterpart, i.e. learning contents are
regularly opened to learners by each week [2]. The temporal information can be
leveraged as a constraint. Secondly, learning contents are broken down to small
video clips, where each one usually lasts about 10 min and just contains one
piece of knowledge point in most situations. This makes the association result
educationally meaningful. As the snapshot showed in Fig. 2, the syllabus (or
knowledge points) of a MOOC is usually organized in a two-level structure. The
first level corresponds to weeks and the second are in the form of several video
clips. As to corresponding forums, by mining rich information, e.g. behavioral
log, textual content and social relationship [8], it is probable to fulfil the task.

The association between threads and video clips is profound. Both the learn-
ers and teachers can readily seek what they want, such that the learning effi-
ciency and teaching quality can be improved. After completing the association,
the result can be used as the prerequisite of subsequential applications, such as
knowledge management, learning guidance, and question answering system.

Fig. 1. Typical distri-
bution of threads in a
MOOC forum.

Fig. 2. A snapshot of video clips and threads.

The task of association between threads and course video clips, actually, can
be regarded as a document ranking problem in the view of information retrieval.
An intuitive idea is to use the weighted Bag-of-words (BOW) [16] as features
to calculate the similarities between threads and video clips, and then rank
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them by the computed similarities. However, BOW cannot effectively capture
semantic knowledge. Moreover, recent studied semantic word embeddings, e.g.
Word2vec [13], cannot capture the similarity of documents, and we call it latent
similarity. The latent similarity is crucial to distinguish whether a document
can be associated to the right target. In our task, the textual representation is
expected to preserve both the latent semantics and latent similarity.

On the other hand, as a kind of real-world data, it is very expensive to obtain
labeled training dataset, since associating MOOC threads to video clips requires
expertise. So we have to leverage more information to compensate the lack of
labels during learning word embeddings.

In this paper, we focus on the technical problem that how to discover latent
similarity knowledge from heterogeneous data. There are several challenges to
solve this problem: (1) how to leverage characteristics of data to compensate
the lack of labels, (2) how to build a model which can integrate heterogeneous
information, and (3) how to learn the latent similarity from the new data model.

By our observation, we find four kinds of information helpful: (1) word
sequence in threads and posts, (2) word sequence in subtitles of video clips,
(3) learners’ behavioral sequence of clickstream about videos and threads, and
(4) timestamp sequence of video clips (publishing time) and threads (posting
time). The reason that they are chosen will be discussed in Sect. 3.1.

Our basic idea is to first model all the sequential information into a heteroge-
neous textual network, and then embed the nodes of the network, i.e. words and
documents, to low-dimensional vectors which can preserve both latent semantics
and latent similarity. At last the learned vectors are used to rank video clips by
calculating similarities between threads and them under a constraint of time.
Inspired by methods of distributional representation which have been proven
successful in a mass of natural language processing tasks, e.g. word analogy [13],
text classification [10], sentiment analysis [11] and POS tagging [5], we propose
an approach called No-label Sequence Embedding (NOSE).

To summarize, our contributions in this paper include:

– We design a novel embedding model to integrate heterogeneous sequential
information, e.g. word sequence and clickstream sequence, in order to learn
latent semantics and latent similarity simultaneously.

– We develop a new computing framework to learn the textual representation
based on the proposed model.

– We collect two real-world MOOC data and conduct thorough experiments.
Results confirm that our proposed approach can effectively learn the latent
similarity without labels by modeling heterogeneous sequential information.
And our novel textual embeddings can outperform the state-of-the-art coun-
terparts in our task.

2 Related Work

It is a fundamental research question that how to better represent text. Existing
approaches can be generally classified into two aspects: unsupervised and super-
vised. Supervised embeddings, such as deep neural network, need to be fed with
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labels [9,12]. However, in the association task, we do not have the label infor-
mation. Thus, we review related work merely within this field of unsupervised
learning textual representation.

Unsupervised word embeddings are usually universal and can be applied
to various tasks. The process of learning them is often efficient to scale up to
millions of documents. Other advantages of unsupervised embeddings include
no label required and few parameters to tune. However, unsupervised embed-
dings are lightly under-performed compared with supervised ones in most spe-
cific tasks [18]. Among most learning methods of unsupervised embeddings, the
information of textual co-occurrence in local context at different levels are lever-
aged. For example, CBOW and Skip-gram [13] learn word embeddings based on
word co-occurrence. Para2vec [10] utilizes word and document co-occurrence to
learn their embeddings. Hierarchical Document Vector (HDV) [6] leverages both
document co-occurrence and contents to achieve better representation. Latest
Predictive Text Embedding (PTE) [18] models text to a uniform heterogeneous
network and obtains the state-of-the-art performance on textual classification.
However, it leverages labels to guarantee the performance of classification. It
cannot be adopted directly to solve the proposed problem in this paper.

Another series of methods for representing text without labels are discussed in
the task of Dataless Classification [4,17]. These methods commonly require large-
scale world knowledge, e.g. Wiki data, to extract textual features. But world
knowledge is hard to obtain and process in many cases. Also similar to BOW
and Word2vec, the latent similarity still cannot be embodied in the embeddings.
By the way, this is also a classification problem, which is different from ours.

3 No-Label Sequence Embedding and Ranking

In this section, we introduce our approach for learning word embeddings and
document ranking. Firstly, we introduce the motivation to extract the informa-
tion of latent similarity from four kinds of sequential data. Then we state the
data model to integrate heterogeneous information. Then the method of embed-
ding the heterogeneous network to low-dimensional vectors is described. At last
we introduce the algorithm to rank documents within a constraint of timestamps
sequence. We can place the problem definition after we have introduced the data.
Otherwise, people may not understand the definition.

3.1 Data Model

In order to compensate the missing of labels, the data model should integrate
as much as information. Besides, it also should capture the information of latent
similarity. Based on our observation of multiform MOOC data, subtitles of video
clips and contents of threads are essential for associating them. The subtitles of
video clips are well-organized and formal, since they are generated by instructors.
While the contents of threads are written by various learners, thus they are col-
loquial and informal. We should separately learn their embeddings because this
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way can preserve their linguistic peculiarity, i.e. latent similarity. This intuition
is also confirmed by our experimental analysis.

In addition, we find learners’ clickstream logs, that is records of watching
videos, reading threads and posting threads in chronological order, indicate that
the adjacent entities, especially a video clip and a thread, are semantically rel-
evant. An intuitive explanation is that a learner may jump between videos and
threads either he wants to seek some further discussion when he is watching a
video, or he wants to review the relevant video contents when he is reading a
thread. So behavioral logs contain the latent similarity.

In order to integrate all these different sources of text, we design a hetero-
geneous network which can facilitate learning embeddings both separately and
cooperatively. We leverage the co-occurrence of different textual levels and con-
struct four sub-networks which comprise a comprehensive heterogeneous network
as Fig. 3 shows.

Fig. 3. Data model constructed from raw sequential MOOC data.

Word-Word Network. A word-word network is based on word co-occurrence
in word sequence and denoted as Gww = (V, Eww). The V is the word vocabulary
and Eww is the edge between words. The edge weight wij is defined as the
co-occurrence times of words vi and vj within a fixed-size window. Word co-
occurrence is basic information to capture semantics between words.

Word-Subtitle Network. A word-subtitle network is based on word sequence
in document level contexts and denoted as Gws = (V ∪ S, Ews). The V is the
word vocabulary and S is the set of subtitles. Ews is the edge between words
and subtitles. The edge weight wij is defined as the occurrence times of word
vi in subtitle sj . Word-document co-occurrence is to capture semantics between
words and documents.

Word-Thread Network. Similar to word-subtitle network, a word-thread net-
work is also based on word sequence in document level contexts and denoted as
Gwt = (V ∪ T , Ewt). The only difference is that T is the set of threads and Ewt

is the edge between words and threads. We treat them as two different networks
due to their different latent linguistic styles as mentioned before.

Subtitle-Thread Network. A subtitle-thread network is based on document
sequence in local context of learners’ clickstream records and denoted as Gst =
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(S ∪ T , Est). The S is the set of subtitles and T is the set of threads. Est is the
edge between subtitles and threads. The edge weight wij is defined as the co-
occurrence times of subtitle si and thread tj in learners’ clickstream logs within
a window size. This network may capture knowledge of both latent semantics
and latent similarity between subtitles and threads.

Heterogeneous Network. Combining all the four sub-networks via common
nodes, we can get a heterogeneous network. Note that we only study the het-
erogeneous network with four sub-network by considering the latent semantics
information. The heterogeneous network can be extended by adding more sub-
networks.

Based on the heterogeneous networks, we define the No-label Sequence
Embedding problem as follows.

No-label Sequence Embedding. Given multiform sequential data, e.g. raw
behavioral sequence and textual sequence, the problem of No-label Sequence
Embedding is to construct a data model from all the data and unsupervisedly
learn low-dimensional word embeddings which can preserve both latent seman-
tics and latent similarity.

3.2 Learning Embedding

Except the word-word network, the other sub-networks are all directive graphs.
By replacing the edges with bidirectional ones in the word-word network, all the
four sub-networks can be treat as bipartite networks. Then we decompose the
task of heterogeneous network embedding to four sub-tasks of bipartite network
embedding.

There are several network embedding, such as DeepWalk [14], LINE [19] and
node2vec [7]. However, all of them are proposed for homogeneous network, and
cannot be simply used for the heterogeneous network. Inspired by LINE, we
develop a new algorithm to learn the embedding of heterogeneous networks.

Bipartite Network Embedding. Given an arbitrary bipartite network G =
(VA ∪VB , E), where VA and VB represent two separate sets of nodes and E is the
set of edges between nodes. The conditional probability of observing node vi in
set VA given the node vj in set VB is defined as:

p(vi|vj) =
exp(uT

i · uj)∑
i′ ∈A exp(uT

i′
· uj)

(1)

where ui is the embedding vector of node vi in VA, and uj is the embedding
vector of node vj in VB . Equation (1) actually computes the conditional proba-
bility of any vj in VB over all nodes in VA. Thus the second-order proximity can
be preserved if let p = (·|vj) close to its empirical distribution p̂ = (·|vj). So the
objective function to be minimize is:

O =
∑

j∈B

λjd(p̂(·|vj), p(·|vj)) (2)



Unsupervised Embedding for Latent Similarity 689

where d(·, ·) is the KL-divergence between two probability distribution, λj is
the importance of vertex vj in the network and can be defined as the degree
degreej =

∑
i wij , and the empirical distribution can be defined as p̂(vi|vj) =

wij

degreej
. Equation (2) can be simplified by removing some constants as:

O = −
∑

(i,j)∈E
wij log p(vj |vi) (3)

To optimize (3), we utilize stochastic gradient descent method of edge sam-
pling [19] and negative sampling [13] which are fast and efficient, instead of
computing the summation of the entire set of nodes in VA. Firstly a positive
sample is randomly selected based on probability proportional to its weight wij ,
and then a fixed size of negative samples are selected based on a noise distri-
bution pn(j). By using negative sampling, Equation (3) is in detail replaced
by:

O =
∑

(i,j)∈E

⎧
⎨

⎩
log σ(uT

i · uj) +
K∑

j=1

Evn∼Pn(v)[log σ(−uT
n · uj)]

⎫
⎬

⎭
(4)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function; the first term means
positive samples and the second term means negative samples of which K is the
fixed size. Noise distribution Pn(v) ∝ d

3/4
v is the same as in [13] where dv is the

out degree of node v.
The reason for adopting the edge sampling is to reduce the large variance

of edge weights, because very-large-weight edges may dominate the optimiza-
tion process. An alternative idea is to duplicate the edges proportional to their
weights. However, this will deteriorate the efficiency greatly due to the great
increase of edges.

Heterogeneous Network Embedding. In order to learn the word embed-
dings of four sub-networks separately and cooperatively, a simple strategy is
that each time one bipartite network is selected to learn eambeddings and the
intermediate results are transited to other bipartite networks. Although subtitle
ids and thread ids are two different kinds of nodes, for simplicity, we regard them
as the same one since there is no overlapping between them. Thus, in total we
set two kinds of nodes, document id (d) and words (v). They are shared between
bipartite networks. The whole objective function is:

ONOSE = Oww + Ows + Owt + Ost (5)

where
Oww = −

∑

(i,j)∈Eww

wij log p(vi|vj) (6)

Ows = −
∑

(i,j)∈Ews

wij log p(vi|dj) (7)
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Owt = −
∑

(i,j)∈Ewt

wij log p(vi|dj) (8)

Ost = −
∑

(i,j)∈Est

wij log p(di|dj) (9)

Although we can assign weights to each bipartite network for proportionally
selecting edges to learn each once, we choose to equally and sequentially learn
embeddings for simplicity. As shown in Algorithm 1, the algorithm is very effi-
cient because the time complexity is just O(KN) and K is a small number.

3.3 Document Ranking

After learning word embeddings, we simply use them to calculate the similar-
ity between threads and subtitles with metric of Cosine distance. Considering
the trait of MOOC data that the time of threads posted are usually behind
their corresponding video clips. So we have a constraint to make the ranking
more reasonable. The algorithm detail is shown in Algorithm 2. The reason for
why we do not integrate the subtitle sequence and thread sequence based on
timestamps into the heterogeneous network is that we believe they may contain
little semantics between any two entities.

Algorithm 1. Learning embeddings of heterogeneous network

INPUT: Gww, Gws, Gwt, Gst, number of samples N , number of negative samples K
OUTPUT: word embeddings w
1:while iteration ≤ N :
2: sample an edge eij and K negative edges from Eww, update uvi and uvj

3: sample an edge eij and K negative edges from Ews, update udi and uvj

4: sample an edge eij and K negative edges from Ewt, update udi and uvj

5: sample an edge eij and K negative edges from Est, update udi and udj

6:return word embeddings

Algorithm 2. Document Ranking

INPUT: thread embeddings T , subtitle embeddings S, timestamps Time
OUTPUT: rankings of subtitles for each thread L
1:for ti in T :
2: for sj in S
3: if Timeti > Timesj :
4: Lti .add(sj , cos(ti, sj))
5: Lti .rank()
6:return L
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4 Experiment

4.1 Data Sets

We collect the sequential data of two MOOCs from Coursera1 and China Uni-
versity MOOC2 respectively. The former is an interdiscipline called People and
Network which involves computer science, social science and economics, while
the other is a conceptual course called Introduction of MOOC which introduces
a new concept. From both course, we collect subtitles of video clips, forum con-
tents, learners’ sequential clickstream log and timestamps sequence. Since our
textual data is mostly in Chinese, we preprocess the raw data with a word seg-
ment tool consistently before evaluating our method.

As to evaluation, we invite the course TAs to tag some threads in advance.
Due to the chaos of MOOC forum threads as mentioned before, we discard the
threads about technical operation, social contact, advice to the course, thoughts
and others that are irrelevant to course contents. At a result we have 103 valid
threads of People and Network and 254 valid threads of Introduction to MOOC
in total. They are our whole available test samples. In some situations, there
may be more than one topics being asked in an initial post, we allow to tag the
test sample with the two most possible labels. The numbers of double-labeled
test samples in each course are 8/103 and 119/254 respectively. Table 1 shows
the course information.

Table 1. Statistics of two MOOC datasets.

Course name #users #video clips #threads #posts

People and Network 10,807 60 219 1,206

Introduction to MOOC 3,949 19 557 7,177

4.2 Baselines and Parameters

We only compare our embeddings with unsupervised rivals. Consistently, the
representation of subtitles is set as the average of all the word vectors which
belong to that document. While the representation of threads only use the word
vectors which belong to the title and the initial post of a thread. However, all
posts are kicked in for learning word embeddings.

– BOW: the classical text representation which firstly builds a vocabulary V
with the whole textual contents and then each document is represent as |V |-
dimensional vector like a bag of words. We remove stop words from the vocab-
ulary and TFIDF weights are set to each dimension.

1 https://www.coursera.org, which is an educational technology company that offers
MOOCs worldwide.

2 http://www.icourse163.org, which is a leading MOOCs platform in China. Sup-
ported by Ministry of Education of the People’s Republic of China and NetEase,
Inc.

https://www.coursera.org
http://www.icourse163.org
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– CBOW: the state-of-the-art word embeddings proposed by [13] which uses
context to predict the target word embedding.

– Skip-gram: another version of the state-of-the-art word embeddings proposed
by [13] which uses the target word to predict its context.

– Pare2vec: the state-of-the-art word embeddings which considers the document-
level context information [10].

– LINE: the large-scale information network embeddings which can be used to
textual network, but only homogeneous network. Here we simply combine dif-
ferent kinds of bipartite networks to one and see how LINE performs without
separately treating them.

– NOSE: our proposed no-label sequence embeddings which leverages all infor-
mation. We also try to remove one sub-network ordinally to see their contri-
bution degree.

The dimension of word vectors is empirically set as 100. In CBOW, Skip-
gram, Para2vec, the window sizes are all set as 5. In LINE and NOSE, the
number of negative samples are also set as 5, while the window size used in
constructing Gst is set as 3 because this can get best performance shown in later
experiments. Especially, in LINE and NOSE, the total number of edge samples,
N , is set 50 million since we find larger number may cause over-fitting.

4.3 Results and Analysis

As a ranking result, the measure metric we use is precision averaged by 10 times
of runs. From Table 2, we can find traditional sematic word embeddings, CBOW,
Skip-gram and Para2vec, are comparable to BOW in terms of precision @1. Sep-
arate learning the four sub-networks plays a crucial role since NOSE performs
better than LINE. This suggests latent similarity is captured by our learning
approach. Among the four sub-networks, Gst contributes the most while Gww

degrades the performance both in the series of LINE and NOSE, confirming
that Gst contains the latent similarity while Gww only contains latent semantics.
Building a data model in such a form of textual network may also strengthen the
distinctive relationship between documents, comparing LINE and NOSE with
CBOW, Skip-gram and Para2vec, indicating that the network can capture both
information of word-word semantics and word-document semantics simultane-
ously. Although BOW is competitive on results of @3 and @5, we concern more
about precision @1 because our task is to associate threads to videos rather than
a real search problem. We find NOSE (Gws+Gwt+Gst) algorithm can achieve the
best result @1. Table 3 shows that the constraint of time plays another crucial
role during document ranking.

Parameter Sensitivity. In this part, LINE and NOSE utilize information
of Gws, Gwt and Gst consistently. Figure 4 shows the results of different vec-
tor dimensions used during learning word embeddings. We find NOSE is better
than the others with various number of dimensions. Considering the trade-off
between learning efficiency and precision, number of dimensions is set as 100.
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Table 2. Ranking precision result of two MOOC datasets.

Algorithm People and network Introduction to MOOC

@1 @3 @5 @1 @3 @5

BOW 0.583 0.845 0.903 0.449 0.811 0.906

CBOW 0.563 0.718 0.786 0.512 0.697 0.795

Skip-gram 0.592 0.738 0.786 0.551 0.744 0.866

Para2vec 0.583 0.670 0.777 0.524 0.713 0.827

LINE(Gws + Gwt) 0.621 0.845 0.883 0.535 0.807 0.898

LINE(Gws + Gwt + Gww) 0.592 0.786 0.854 0.394 0.728 0.846

LINE(Gws + Gwt + Gst) 0.680 0.825 0.883 0.646 0.799 0.902

LINE(all) 0.650 0.767 0.845 0.406 0.728 0.862

NOSE(Gws + Gwt) 0.738 0.805 0.874 0.654 0.803 0.890

NOSE(Gws + Gwt + Gww) 0.699 0.835 0.874 0.657 0.827 0.886

NOSE(Gws + Gwt + Gst) 0.776 0.845 0.883 0.693 0.803 0.870

NOSE(all) 0.767 0.825 0.874 0.685 0.803 0.874

Table 3. Ranking precision @1 result without time constrain by NOSE.

Algorithm People and network Introduction to MOOC

NOSE(Gws + Gwt) 0.631 0.520

NOSE(Gws + Gwt + Gww) 0.621 0.512

NOSE(Gws + Gwt + Gst) 0.670 0.567

NOSE(all) 0.641 0.547

(a) People and Network (b) Introduction to MOOC

Fig. 4. Precision @1 of different vector dimensions. Gws, Gwt and Gst are utilized.

Figure 5 shows the results of different window sizes used when constructing Gst.
We set window sizes as 3, 5, 7 and 9, and find NOSE performs best with size
of 3 while LINE is best with 5. This result may stem from the guess that small
local context already can capture the latent similarity during separately learning
embeddings, while LINE needs larger contexts.
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(a) People and Network (b) Introduction to MOOC

Fig. 5. Precision @1 of different window sizes for constructing Gst.

5 Conclusion

Archiving forum threads to video clips is meaningful both for instructors and
learners. This task is technically regarded as a problem of document ranking. In
order to solve the problem, we propose an approach to learn latent semantics
and latent similarity simultaneously. Our approach can also overcome the con-
straints of no label and heterogeneous data, which often happen in real-world
datasets. The experimental results perform well and confirm the effectiveness of
our approach for learning latent similarity. Last but not the least, there is still
room to improve the precision by leveraging more effective information, e.g. in
the view of instructor’s behavior.

Acknowledgments. This research is supported by the National Research Foundation,
Prime Ministers Office, Singapore under its IDM Futures Funding Initiative, China
NSFC with Grant No.61532001 and No.61472013, and China MOE-RCOE with Grant
No.2016ZD201. We thank the anonymous reviewers for their insightful comments.

References

1. Agrawal, A., Venkatraman, J., Leonard, S., Paepcke, A.: YouEDU: Addressing
confusion in MOOC discussion forums by recommending instructional video clips.
In: EDM, pp. 297–304 (2015)

2. Anderson, A., Huttenlocher, D.P., Kleinberg, J.M., Leskovec, J.: Engaging with
massive online courses. In: WWW, pp. 687–698 (2014)

3. Anderson, A., Huttenlocher, D.P., Kleinberg, J.M., Leskovec, J.: Language inde-
pendent analysis and classification of discussion threads in coursera MOOC forums.
In: IRI, pp. 654–661 (2014)

4. Chang, M.W., Ratinov, L.A., Roth, D., Srikumar, V.: Importance of semantic
representation: dataless classification. In: AAAI, pp. 830–835 (2008)

5. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–
2537 (2011)

6. Djuric, N., Wu, H., Radosavljevic, V., Grbovic, M., Bhamidipati, N.: Hierarchical
neural language models for joint representation of streaming documents and their
content. In: WWW, pp. 248–255 (2015)



Unsupervised Embedding for Latent Similarity 695

7. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: KDD,
pp. 855–864 (2016)

8. Huang, J., Dasgupta, A., Ghosh, A., Manning, J., Sanders, M.: Superposter behav-
ior in MOOC forums. In: L@S, pp. 117–126 (2014)

9. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751 (2014)

10. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, pp. 1188–1196 (2014)

11. Mesnil, G., Mikolov, T., Ranzato, M., Bengio, Y.: Ensemble of generative and
discriminative techniques for sentiment analysis of movie reviews (2014), arXiv
preprint arXiv:1412.5335

12. Mikolov, T., Karafit, M., Burget, L., Cernocký, J., Khudanpur, S.: Recurrent neural
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Abstract. Data Jacket (DJ) is a technique for sharing information
about data and for considering the potential value of datasets, with the
data itself hidden, by describing the summary of data in natural lan-
guage. In DJs, variables are described by variable labels (VLs), which
are the names/meanings of variables, and the utility of data is estimated
through the discussion about combinations of VLs. However, DJs do not
always contain VLs, because the description rule of DJs cannot force
data owners to enter all the information about their data. Due to the
lack of VLs in some DJs, even if DJs are related to each other, the con-
nection cannot be made through string matching of VLs. In this paper,
we propose a method for inferring VLs in DJs whose VLs are unknown,
using the texts in outlines of DJs. We specifically focus on the similarity
of the outlines of DJs and created two models for inferring VLs, i.e., the
similarity of the outlines and the co-occurrence of VLs. The results of
experiments show that our method works significantly better than the
method using only the string matching of VLs.

Keywords: Data Jacket · Variable label · Meta-data · Co-occurrence

1 Introduction

The potential benefits of reusing and analyzing massive quantities of data have
been discussed among various stakeholders from diverse domains. The discussion
involves privacy and security of data. Acquisti and Gross raised awareness that
the combination of public databases may cause a serious violation of privacy [1].
Xu et al. reviewed the privacy issues related to data mining, by differentiating the
responsibilities of different users [2]. From the overviews of the current situations
of data utilization and exchange, the cost of data management and security issues
discourage private companies and individuals to open or share their datasets. In
order to overcome these problems, Data Jacket (DJ) has been developed as
a technique for sharing information of data and for considering the potential
value of data, with the data itself hidden, by describing the summary of data in
natural language [3]. The idea of DJ is to share “a summary of data” as meta-
data without sharing data itself, which reduces the risk of data management cost
and privacy and enables stakeholders to discuss the combination of data.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 696–707, 2017.
DOI: 10.1007/978-3-319-57529-2 54
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In the communication about data utilization and exchange using DJs, stake-
holders start from discussing variable labels (VLs). VL is the name/meaning
of variables in data. Variables and values in data are summarized as VLs in
DJs. For example, the dataset “daily weather data in March 2016 in Tokyo”
(Fig. 1) includes variables “yy,” “mm,” “dd,” “highest temperature,” and “low-
est temperature,” and each variable contains values. The VLs are the summary
of variables and values in the dataset. Even if the data itself is not open, we
can learn and evaluate which data is useful for your decision making from the
summary of data described in DJs. Some data include private information, i.e.,
values and variables, such as “name,” “address,” or “ID.” The values cannot be
shared, but the VLs may be shared. Introducing DJs with VLs, stakeholders can
learn the meaning of variables in data, by leading the hypotheses about possible
combinations of VLs, reducing the risks of data management and privacy.

The workshop-styled methods introducing DJs have been proposed for discus-
sions and generation of the feasible plans of data analyses. Once different stake-
holders recognize the utility of data, they can negotiate conditions for exchanging
their data. In the gamified workshops Innovators Marketplace on Data Jackets
(IMDJ) [4,5] and Action Planning (AP) [6], data owners provide DJs represent-
ing their data, data analysts create solutions for solving data users’ problems
stated as requirements. In the process of IMDJ and AP, participants negoti-
ate for data exchange or buying/selling to create new businesses. As a result
of this discussion and evaluation among participants, data owners are expected
to learn how to use their data from a possible combination of DJs proposed by
data analysts. Users are expected to learn how their requirements can be satis-
fied with proposed plans. However, DJs do not always contain VLs, because the
description rule of DJs does not force data owners to enter all the information
about their data. In other words, only the information written by data owners
is registered as DJs, therefore, due to the lack of descriptions about VLs, DJs
essentially related to each other may not have linkage via VLs, which makes it
difficult to think of plans for data analyses and combinations. In this paper, we
propose a method for inferring variable labels not explicitly included in the out-
line of data. Focusing on the similarity of outlines of data and the co-occurrence
of VLs, we construct models according to the following two features.

1. When a pair of datasets whose similarity of outlines is high, the pair of
datasets is considered to be similar and should have similar VLs.

2. When a pair of VLs (vli and vlj) frequently appears in datasets, and if vli
appears, vlj is considered to appear.

By modeling the features of VLs and using stored DJs as training data, even
if a new DJ misses the VLs, it is possible to infer the VLs from the outlines. In
the previous study of DJs, the co-occurrence of words in the outline of data [3,4]
has been used for discussing the combination of DJs, e.g. using the visualization
tool such as KeyGraph [7]. Our method suggests a possible connection between
DJs whose VLs are missing, via inferred VLs. The significance of our approach
and the contributions of our paper can be summarized as follows. It is the first
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Fig. 1. Example of the dataset and the Data Jacket

approach for inferring VLs focusing on the similarity of outlines of datasets and
the co-occurrence of VLs using DJs. The method for showing the related VLs
from the outlines of data in DJs may be useful for encouraging data utilization.
In particular, it is important not only to be useful for the purpose of knowledge
discovery from their data, but also for decision makers who want to acquire new
data. Our method can show them what kinds of set of variables to obtain are
useful. Furthermore, proposed models have extensibility for various calculation
methods. In this paper, in addition to the similarity of the data, we show the
performance of the model considering the co-occurrence of VLs.

2 Inference of Variable Labels

2.1 Our Approach

The purpose of this study is to infer VLs of DJs whose variable labels are
unknown. Because data itself is not open, it is impossible to know about the
VLs by observing the data itself. Therefore, we consider tackling the problem,
using the information about the data described in DJs. We assume that (1)
datasets are similar when the information for explaining data is similar, and (2)
datasets should have similar VLs when the similarity of datasets is high.

In this study, we introduce the outline of data (OD) as an indicator of
the similarity of DJs. OD represents a description written in natural language
for explaining data. For example, the OD of data in Fig. 1 is “Daily weather
data in March 2016 in Tokyo are provided by Japan Meteorological Agency.
It includes the highest and lowest temperature and weather information of each
day.” Although there are 12 items in the description of DJs (the title, the outline,
variable labels, the sharing policy of data, the format, and so forth), we empir-
ically consider ODs to be appropriate as the characteristic of datasets, because
ODs are provided with textual data. Data portal sites such as DATA.GOV.UK1

or DATA.GOV2 provide datasets with the outlines of data in natural language,
and users can search datasets from queries in free texts. Data Jacket Store3,

1 https://data.gov.uk/.
2 https://www.data.gov/.
3 http://www.panda.sys.t.u-tokyo.ac.jp/hayashi/djs/djs4ddi/.

https://data.gov.uk/
https://www.data.gov/
http://www.panda.sys.t.u-tokyo.ac.jp/hayashi/djs/djs4ddi/
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a recommender system for DJs, also allows free text queries for searching the
information about data using outlines in DJs. By the above discussion, in order
to infer VLs of data whose VLs are unknown, we propose the method to obtain
a set of likely VLs from the outlines of data.

2.2 Models

The expected function is to obtain sets of likely VLs ({vl ∈ V |fn(vl, ODx)})
stored in training data of DJs and VLs (V ) by inputting ODs (ODx) as queries.
fn(vl, ODx) represents a condition that a set of the top n variable labels (vl) are
associated with a query (ODx). In order to achieve above function, our models
are conducted as follows.

The Similarity of DJs from the Outlines (Model 1): This model is based
on the assumption that when a pair of datasets whose ODs are similar, the pair
of datasets has similar VLs. By this model, a scored set of VLs are obtained con-
sidering the similarity between DJs with VLs and OD whose VLs are unknown.

The Co-occurrence of Variable Labels (Model 2): This model takes into
account the co-occurrence of VLs. The co-occurrence of VLs is a feature that
there may be a high frequent pair of VLs appearing at the same time, e.g., “year”
and “day,” or “name” and “gender.” By introducing this model with Model 1,
a scored set of VLs are obtained from the similarity between DJs with VLs and
OD whose VLs are unknown.

2.3 Inference Process for Obtaining VLs

We show the inference process of VLs from ODs. In this study, we introduce
bag-of-words and the vector space model [9,11]. In the pre-processing steps, we
conduct morphological analysis of the text of ODs, (1) extracting words, (2)
removing stop words, and (3) restoring words to their original forms.

Term-VL Matrix E (Model 1). Based on Model 1, we consider an algorithm
to calculate the similarity among training data of ODs. After conducting the pre-
processing steps to ODs, the ODs are converted into a matrix representation.
Using the outlines of data as a corpus, a Term-OD matrix M (|W | × |D|) are
obtained, consisting of D-dimensional term vectors as rows, and W -dimensional
OD vectors as columns, with each element vij in an OD vector (odj) correspond-
ing to the frequency with which a term (a row i) occurs in an OD (a column j)
as shown in (1) and (2). Note that the subscript T on the upper-right corner of
vectors represents the transposition, and the vectors are highlighted in bold.

M = (od1, · · · ,odj , · · · ,odD) (1)
odj = (v1j · · · vij · · · vWj)T (2)
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In the second step, a set of VLs included in DJs is converted into a VL-OD
matrix. In the training data of DJs, ODs and VLs are linked when they appear
in the same DJs. A VL-OD matrix R (|V | × |D|) consists of V -dimensional VL
vectors as rows, and D-dimensional OD vectors as columns, with each element
rij in the jth OD vector (od′

j) corresponding to the frequency (0 or 1) with
which the ith VL occurs in the jth OD as shown in (3) and (4).

R = (od′
1, · · · ,od′

j , · · · ,od′
D) (3)

od′
j = (r1j · · · rij · · · rV j)T (4)

In the third step, we create a Term-VL matrix E (= MRT ) (|W |× |V |) from
a Term-OD matrix M (|W | × |D|) and a VL-OD matrix R (|V | × |D|) obtained
in the second step. This process is equivalent to mapping the ith (1 ≤ i ≤ |V |)
D-dimensional VL vector in the OD space into W -dimensional term space, by
the Term-OD matrix M . The Term-VL matrix E is represented as follows:

MRT = (vl1, · · · ,vlj , · · · ,vlV ) (5)
vlj = (e1j · · · eij · · · eWj)T (6)

eij =
|D|∑

k=1

vikrkj (7)

which means the sum of the product of the frequency (vik) with which the ith
term (ti) occurs in the kth OD (odk) and the frequency (rkj) with which the jth
VL (vlj) links with the kth OD (odk). In other words, eij represents the number
of OD related to both a term (ti) and a VL (vlj). Moreover, the Term-VL matrix
E is equivalent to the adjacency matrix of the 3-partite graph, which consists
of 3-disjoint sets of nodes, i.e., terms, ODs, VLs (Fig. 2). The element eij of the
Term-VL matrix E also represents the number of passes from the ith term (ti)
to the jth VL (vlj) by way of OD nodes.

Through the above process, Model 1 was implemented as the Term-VL matrix
E. With this matrix, a scored set of VLs are obtained considering the similarity
between ODs in the matrix E and ODx whose VLs are unknown. When ODx is
given, a W -dimensional feature vector of ODx (odx) is obtained after the pre-
processing of morphological analysis. By comparing the similarity of odx and
each W -dimensional feature vector of VL (vlj (1 ≤ j ≤ |V |)) in the matrix E,
a scored set of VLs are obtained.

Term-VL Matrix EC (Model 1 and 2). We combine Model 2 to Model 1,
considering the co-occurrence of VLs. First, we assume that any pair of VLs
in the same DJ occurs once. In order to combine with the Term-VL matrix
E created in Model 1, we conduct the VL co-occurrence matrix C (= RRT

(|V | × |V |)) whose element cij represents the number of DJs which include a
pair of VLs vli and vlj (8). In other words, when we define the frequency of
co-occurrences of a pair of VLs (vli, vlj) as co(vli, vlj), an element cij in the VL
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Fig. 2. Term-VL matrix E in the 3-partite graph

co-occurrence matrix C is represented as (9), where |vli|ods
means the frequency

of vli in ods (1 ≤ s ≤ |D|).

cij =
|D|∑

k=1

rikrkj = co(vli, vlj) (8)

=
|D|∑

s=1

|vli|ods
|vlj |ods

(9)

Finally, a Term-VL matrix EC is generated by a product of the Term-VL
matrix E (5) and the VL co-occurrence matrix C, considering the co-occurrence
of VLs. The Term-VL matrix EC consists of V -dimensional term vectors as
rows, and W -dimensional VL vectors as columns, which has the same structure
as the Term-VL matrix E. The difference between E and EC is whether the co-
occurrences of VLs (Model 2), i.e., the elements of the matrices, are considered.

The element eij of the matrix E is given as (7), which represents the number
of ODs related to both a term (ti) and a VL (vlj). On the other hand, the
element gij of matrix EC is given as follows:

gij =
|V |∑

m=1

⎛

⎝
|D|∑

k=1

vikrkm

⎞

⎠

⎛

⎝
|D|∑

l=1

rmlrlj

⎞

⎠ (10)

which represents the value considered the similarities of ODs and queries (the
function of the matrix E), and the co-occurrence of VLs (the function of the
matrix C). In other words, the Term-VL matrix EC is equivalent to the adja-
cency matrix of the 5-partite graph, which consists of 5-disjoint sets of nodes,
i.e., terms, ODs, VLs, ODs, VLs (Fig. 3). The element gij represents the number
of passes from the ith term (ti) to the jth VL (vlj) in the second VL nodes, by
way of the first OD nodes, the first VL nodes, and the second OD nodes.
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Fig. 3. Term-VL matrix EC in the 5-partite graph

When ODx whose VLs are unknown is given, a W -dimensional feature vec-
tor of ODx (odx) is obtained. By comparing the similarity of odx and each
W -dimensional feature vector of VL (vlj (1 ≤ j ≤ |V |)) in the matrix EC, a
scored set of VLs are obtained.

2.4 Example

Table 1 shows the list of top 10 inferred VLs for an OD “Data on consumption
and amount of beer consumed by foreign tourists visiting Japan at a restaurant.”
Whose VLs are unknown (the experimental conditions for obtaining the inferred
result will be explained in detail in the following section). Moreover, the OD
does not exist in training data of DJs. The inference with the matrix E, using
only the similarity of ODs, and with the matrix EC, considering both the co-
occurrence of VLs and the similarity of ODs, seems to be highly related VLs in
the OD. Looking at the example of the result in Table 1, it may be possible to
infer the related VLs which may be included in ODs whose VLs are unknown,
by introducing the models based on the similarity of ODs and the co-occurrence
of VLs.

3 Experimental Details

In this paper, we used 799 DJs including both ODs and VLs, which were collected
from business persons, researchers, and data holders who are interested in data
utilization in various domains. Each DJ is constructed from an OD and several
VLs. There are 3,215 unique VLs in total. The corpus and the dictionary were
constructed from all the words in OD texts. We removed punctuation marks and
symbols in the texts as stop words, restored words to their original forms, and
extracted nouns, verbs, adverbs, and adjectives which appear more than one. The
OD corpus consists of approximately 2,000 unique words. We used MeCab4 for
4 http://taku910.github.io/mecab/.

http://taku910.github.io/mecab/
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Table 1. The example of inferred result

The term-VL matrix E The term-VL matrix EC

Inferred VL Similarity Inferred VL Similarity

Languages which can be offered 0.381758 Languages which can be offered 0.381758

Languages understood by foreigners 0.381758 Languages understood by foreigners 0.381758

National origin 0.317921 Satisfaction level through visiting 0.277441

Attractions in Tokyo 0.277441 Attractions in Tokyo 0.277441

The number of visits by foreigners 0.277441 The number of visits by foreigners 0.277441

The number of visitors 0.277441 The number of visitors 0.272505

Experience with or without activity 0.272505 Experience with or without activity 0.272505

Attribution of visitors (age) 0.272505 Attribution of visitors (age) 0.272505

Consumption amount 0.272505 Consumption amount 0.272505

Purchase 0.272505 Purchase 0.272505

Table 2. Training data (corpus) statistics

Number of Data Jackets 799

Average number of terms in each OD 39.5

Average number of VLs in each Data Jacket 5.34

Total number of terms in ODs 30,767

Unique terms in ODs 1,935

Total number of VLs 4,160

Unique variable labels 3,216

the morphological analysis [8], which is one of the common tools for analyzing
morphemes of Japanese texts. The detail information of the training data is
shown in Table 2. For weighting the discriminative terms in DJs, we introduced
tf-idf in weighting scheme [10], which is reliable in identifying distinctive terms
in each DJ. The term frequency (tf) is the number of times a term appears in
a document, and the inverse document frequency (idf) diminishes the weight of
frequent terms in all the documents and increases the weight of terms which
appear rarely. As the test data, we collect 50 DJs from Open Data of Shizuoka
prefecture in Japan5, which publishes governmental records on the web. We
collected DJs with ODs and VLs of them. The detail information of the test
data is shown in Table 3.

The purpose of this experiment is to evaluate the inference ability of VLs
from ODs whose VLs are unknown, using the similarity of ODs and the co-
occurrence of VLs. We introduce the string matching as a comparative method
with the Term-VL matrix E and EC. It is because when someone retrieves
data from a description about data, a method using the string matching with
VLs using the outlines of data as a query can be considered. The function of the
string matching is to obtain sets of VLs which match the terms included in ODs,

5 http://open-data.pref.shizuoka.jp/.

http://open-data.pref.shizuoka.jp/
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Table 3. Test data statistics

Number of Data Jackets 50

Average number of terms in each OD 36.7

Average number of VLs in each Data Jacket 4.70

from the training data of VLs. Inputted ODs are converted into bag-of-words
in the same manner as our proposed method. The obtained VLs are scored in
descending order of the number of times of acquisition.

We prepare the 50 DJs as test data, and extract ODs from them. Using
these ODs as queries, we compare each feature vector of ODs with feature vec-
tors of VLs in the Term-VL matrix E and EC, and obtain the sets of VLs in
descending order. The similarity scores of ODx and vlj are calculated as cosine
similarities shown as sim(odx,vlj) = odx · vlj/|odx||vlj |. For the evaluation
of this experiment, we use Precision, Recall, and F measure. We define Preci-
sion as P = TP/(TP + FP ) and Recall as R = TP/(TP + FN), using the top
15 VLs returned as the inferred results scored by similarities, where TP =true
positives, FP =false positives, FN =false negatives. F measure is defined as
F = 2PR/(P + R). Finally, by calculating the average of F measure of each
query, we compare the performance of the matrix E, the matrix EC, and the
string matching.

For the second criterion, we define Average Similarity (AS) shown as (11),
considering the relationships of ODs and VLs by similarities, to compare the
performance of the matrix E and the matrix EC. Here, Vodq

means the set of
correct VLs included in odq, and rel(odq, vlp) is an indicator function equivalent
to 1 if vlp is the correct VL, i.e., vlp ∈ Vodq

, 0 otherwise. As well as F measure, by
calculating AS of each query, we compare the performance of the matrix E and
EC using a paired t-test. Although there is MAP (Mean Average Precision) for
evaluating the ranked inferred results [12], which is the method for evaluating
the order of the results, our method AS focuses on the similarity of the results.
In a DJ, each VL is equally linked with an OD, i.e., there is no order among VLs
in DJs. For example, the VLs “day,” “month,” and “weather” equally exist in
the weather data. Therefore, in this experiment we do not evaluate the inferred
results with MAP, but with AS.

ASodq
=

1
|Vodq

|
|V |∑

p=1

(sim(odq,vlp) · rel(odq, vlp)) (11)

4 Result and Discussion

We got the top 15 VLs returned as the inferred results scored by similarities from
each query using the matrix E and EC, and obtained the top 15 VLs from the
string matching of ODs and VLs. Comparing the F measures calculated from Pre-
cision and Recall of each method, the inferred results using the matrix E and EC
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Table 4. The evaluation of results (average scores ± standard deviation)

F measure Precision Recall

String matching 0.075 ± 0.104 0.104 ± 0.148 0.059 ± 0.083

Matrix E 0.207 ± 0.124 0.137 ± 0.083 0.462 ± 0.306

Matrix EC 0.190 ± 0.136 0.127 ± 0.091 0.424 ± 0.320

Table 5. Average similarity (average scores ± standard deviation)

Mean AS

Matrix E 0.329 ± 0.113

Matrix EC 0.399 ± 0.095

p-value **

**: p < 0.01

got higher performance than using only the string matching. Especially, The per-
formance of the matrixE was 2.76 times better in the score of F measure than that
of the string matching. This result shows that although the outline of data is one
of the important attributes for characterizing the data, they do not always include
the information about VLs. In other words, the string matching of ODs and VLs
is not enough to infer VLs in data. In this experiment, it is suggested that the
model that “when a pair of datasets whose similarity of outlines is high, the pair
of datasets is considered to be similar and should have similar VLs” works well for
inferring VLs. In other words, the information of other datasets (the relationship
between ODs and VLs) may compensate the missing terms for explaining data and
work well to discover VLs from the outlines of data whose VLs are unknown. In
addition, this result shows that the evaluations of inferred sets of VLs are almost
the same in the Term-VL matrix E and EC (Table 4).

On the other hand, comparing the average of AS for evaluating the similar-
ities of the inferred VLs, we found the significant differences in the Term-VL
matrix E and EC (t(98) = 9.52, p < 0.01). Although the evaluation of inferred
results is almost the same in a comparison of F measure, the evaluation values
of AS, which is the criterion of similarities of VLs with ODs, got higher marks
in the results introducing the Term-VL matrix EC than the matrix E (Table 5).
In terms of the number, the similarity of correct sets of VLs increase in 48 of
50 test data when introducing the matrix EC. This result shows that the model
considering the co-occurrence of VLs (when a pair of VLs (vli and vlj) frequently
appears in datasets, and if vli appears, vlj is considered to appear) may work
well to improve the similarity of VLs to ODs.

However, there is a possibility that the similarity of incorrect VL sets with
queries also increases by the matrix EC. Therefore, we define the average sim-
ilarity of incorrect VL sets to AS (12). |V ∩ Vodq

| represents the number of
VLs which are not included in odq, and unrel(odq, vlp) is an indicator function
equivalent to 1 if vlp is the incorrect VL, i.e., vlp /∈ Vodq

, 0 otherwise.
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ASodq
=

1
|V ∩ Vodq

|
|V |∑

p=1

(sim(odq,vlp) · unrel(odq, vlp)) (12)

Applying (12) to 50 test data, we compare AS values of the Term-VL matrix
E and EC. We found the evaluation values of AS of the Term-VL matrix EC
are significantly higher than those of the matrix E (t(98) = 30.7, p < 0.01). It
shows that the similarity of incorrect VL sets with queries also increases by the
matrix EC. However, comparing the points of increase of AS (the correct VL
sets) and AS (the incorrect VL sets) in each query with a paired t-test, the
points of increase of AS are significantly higher than the points of increase of
AS (AS : 0.0707, AS : 0.0422, t(98) = 4.47, p < 0.01). This result shows that the
similarities of the correct VL sets with ODs significantly increase by introducing
the Term-VL matrix EC.

5 Conclusion

In this paper, we proposed a method for inferring variable labels from the outline
of data whose variable labels are missing or unknown. Focusing on the similarity
of the outlines of data in DJs and the co-occurrence of variable labels, we con-
structed two models according to the features of DJs. By modeling the features of
variable labels and the outlines of data, we found that even if a query DJ misses
the variable labels, it is possible to infer the variable labels from the outline of
the DJ. The result of the experiment suggests that the model that “when a pair
of datasets whose similarity of outlines is high, the pair of datasets is considered
to be similar and should have similar variable labels” works well for inferring
variable labels. In addition, when we consider of not only the similarity of out-
lines, but also the co-occurrence of variable labels may improve the similarity of
variable labels to the outlines of data. When someone retrieves variable labels
from a description about data, it seems that a method using the string matching
with variable labels can be considered. However, outlines of data do not always
include the terms corresponding to variable labels. There is the problem that
decision makers who want to acquire new data cannot discover the information
about what kinds of data (set of variables) should be obtained. Our proposed
method using the outlines of data in DJs may be helpful for encouraging data
acquisition and utilization for the purpose of knowledge discovery.

In this study, because the outlines of data are small but include a certain
amount of terms, it was possible to discuss and compare the similarities in the
vector space model by creating the term-document matrix. However, a variable
label is a very small element composed of one or several words. Because the
description of DJs allows variable labels written in natural language, even if
the variable labels have the same meaning, they are sometimes presented in
different descriptions, e.g., “location” and “address,” “the number of births”
and “fertilities,” or “the number of death” and “fatalities.” In our future work,
we aim at constructing a model considering the meaning of variable labels and
synonyms, even if they have small descriptions. In addition, this study has been
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developed as a technique for supporting decision making in data utilization and
exchange. It is important to validate the performance of the application using
our proposed method in the workshops of IMDJ or AP.
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Abstract. Item recommendation task predicts a personalized ranking
over a set of items for individual user. One paradigm is the rating-based
methods that concentrate on explicit feedbacks and hence face the dif-
ficulties in collecting them. Meanwhile, the ranking-based methods are
presented with rated items and then rank the rated above the unrated.
This paradigm uses widely available implicit feedback but it usually
ignores some important information: item reviews. Item reviews not only
justify the preferences of users, but also help alleviate the cold-start prob-
lem that fails the collaborative filtering. In this paper, we propose two
novel and simple models to integrate item reviews into matrix factoriza-
tion based Bayesian personalized ranking (BPR-MF). In each model, we
make use of text features extracted from item reviews via word embed-
dings. On top of text features we uncover the review dimensions that
explain the variation in users’ feedback and these review factors repre-
sent a prior preference of a user. Experiments on real-world data sets
show the benefits of leveraging item reviews on ranking prediction. We
also conduct analyses to understand the proposed models.

1 Introduction

Users confront with the “information overload” dilemma and it is increasingly
difficult for them to choose the preferred items over others because of the growing
large item set, e.g., hundreds of millions products at Amazon.com and tens of
thousands videos at Netflix.com [1,6]. Recommender systems (RSs) assist users
in tackling this problem and help them make choices by ranking the items based
on their past behavior history. Item recommendation predicts a personalized
ranking over a set of items for individual user and hence alleviates the dilemma.

The rating-based (or point-wise) methods predict ratings that a user will give
to items and then rank the items according to their predicted ratings. Many
methods are proposed and matrix factorization based models are most popu-
lar due to their scalability, simplicity, and flexibility [2,4,5,10]. This paradigm
concentrates on explicit feedback and it faces the difficulties in collecting them.

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 708–720, 2017.
DOI: 10.1007/978-3-319-57529-2 55
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Meanwhile, the ranking-based (pair-wise) methods are presented with seen items
and then rank the seen above the unseen. Bayesian personalized ranking (BPR-
MF) and collaborative item selection are typical representatives [11,14]. This
paradigm takes advantage of widely available implicit feedback but it usually
ignores a kind of important information: item reviews.

Related Works. Item reviews justify the preferences of users and help alleviate
the cold-start problem; they are a diverse and complementary data source for rec-
ommendation beyond the user-item co-rating information. The CMF method [15]
can be adapted to factorize the user/item-word matrix constructed from the item
reviews. The CTR [16] and HFT [7] models integrate explicit ratings with item
content/reviews to build better rating predictors; they employ topic modeling to
learn hidden topic factors which explain the variations of users’ preferences. The
CTRank model [17] also adopts topic modeling to exploit item meta-data like
article title and abstract via bag-of-words representation for one-class collabora-
tive filtering [12], while the CDR [18] and CKE [19] models adopt stacked denois-
ing autoencoders. Nevertheless, integrating item reviews into the ranking-based
methods presents both opportunities and challenges for traditional Bayesian per-
sonalized ranking. There are few works on leveraging item reviews to improve
personalized ranking.

In this paper we propose two novel and simple models to incorporate item
reviews into BPR-MF. Like HFT, they integrate item reviews and unlike HFT
they generate a ranked list of items for individual ranking. Like CTRank, they
focus on personalized ranking and unlike CTRank they are based on matrix
factorization and using word embeddings to extract features. Like BPR-MF,
they rank preferred items over others and unlike BPR-MF they leverage the
information from item reviews. In each of the two models, we make use of text
features extracted from item reviews using word embeddings. And on top of text
features we uncover the review dimensions that explain the variation in users’
feedback. These review factors represent a prior preference of a user. One model
treats the review factor space independent of the latent factor space; another
connects implicit feedback and item reviews through the shared item space.

The contributions of this work are summarized as follows.

1. We propose two novel models to integrate item reviews into matrix factoriza-
tion based Bayesian personalized ranking (Sects. 3.2 and 3.3). They generate
a ranked list of items for individual user by leveraging the information from
item reviews.

2. For exploiting item reviews, we build the proposed models on the top of
text features extracted from them. We demonstrate a simple and effective
way of extracting features from item reviews by averagely composing word
embeddings (Sect. 4).

3. We empirically evaluate the proposed models on multiple real-world datasets
which contains over millions of feedback in total. The experimental results
show the benefit of leveraging item reviews on personalized ranking predic-
tion. We also conduct analyses to understand the proposed models including
the training efficiency and the impact of the number of latent factors.
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2 Notation and Problem Statement

Before proposing our models, we briefly review the personalized ranking task and
then describe the problem statement. To this end, we first introduce the nota-
tions used throughout the paper. Suppose there are M users U = {u1, ..., uM}
and N items I = {i1, ..., iN}. We reserve u, v for indexing users and i, j for
indexing items. Let X ∈ R

M×N denote the user-item binary implicit feedback
matrix, where xu,i is the preference of user u on item i, and we mark a zero
if it is unknown. Define Nu as the set of items on which user u has an action:
Nu ≡ {i|i ∈ I∧xu,i > 0}. Rating-based methods [5,10] and ranking-based meth-
ods [3,14] are mainly to learn the latent user factors P = [P1, ..., PM ] ∈ R

F×M

and latent item factors Q = [Q1, ..., QN ] ∈ R
F×N from partially observed feed-

back X.
Item i may have text information, e.g., review dui commented by user u. We

aggregate all reviews of a particular item as a ‘doc’ di = ∪u∈Udui. Approaches
like CTR and HFT [7,16] integrate item content/reviews with explicit ratings
for rating prediction using topic modeling. Another approach is to learn word
embeddings and then compose them into document level as the item text fea-
tures; we adopt this way of extracting text features fi ∈ R

D from di (see Sect. 4).

2.1 Problem Statement

Our work focuses on the item recommendation or personalized ranking task
where a ranked list of items is generated for each individual user. The goal is to
accurately rank the unobserved items which contain both truly negative items
(e.g., the user dislikes the Netflix movies or is not interesting in buying Amazon
products) and missing ones (e.g., the user wants to see a movie or buy a product
in the future when she knows it).

Instead of accurately predicting unseen ratings by learning a model from
training samples (u, i, xu,i) where xu,i > 0, personalized ranking optimizes for
correctly ranking item pairs by learning a model from training tuples DS ≡
{(u, i, j)|u ∈ U ∧ i ∈ Nu ∧ j ∈ I\Nu}. The meaning of item pairs of a user
(u, i, j) is that she prefers the former than the latter, i.e., the model tries to
reconstruct parts of a total order >u for each user u. From the history feedback
X we can infer that the observed items i are ranked higher than the unobserved
ones j; and for both observed items i1, i2 or both unobserved items j1, j2 we can
infer nothing. Random (negative) sampling is adopted since the number of such
pairs is huge. See the original BPR paper [14] for more details.

Problem 1. Personalized Ranking with Item Reviews.

Input: (1) A binary implicit feedback matrix X, (2) an item reviews corpus C,
and (3) a user u in the user set U .

Output: A ranked list >u over the unobserved items I\Nu.
In Problem 1, to generate the ranked list, we have item reviews to exploit

besides implicit feedback.
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3 The Proposed Models

In this section, we propose two models as a solution to Problem 1 which leverage
item reviews into Bayesian personalized ranking. One model treats the review
factor space independent of the latent factor space (Sect. 3.2). Another model
connects implicit feedback and item reviews through the shared item space
(Sect. 3.3). In each of the two proposed models, we make use of text features
extracted from item reviews via word embeddings (Sect. 4). On top of text fea-
tures we uncover the review dimensions that explain the variation in users’ feed-
back and these review factors represent a prior preference of a user. Both models
are based on basic matrix factorization (Sect. 3.1) and learned under the Bayesian
personalized ranking framework (Sect. 3.4).

3.1 Basic Matrix Factorization

The basic matrix factorization (Basic MF) is mainly to find the latent user-
specific feature matrix [Pu]M1 and item-specific feature matrix [Qi]N1 to approx-
imate the partially observed feedback matrix X in the regularized least-squares
(or ridge regression) sense by solving the following problem.

min
P,Q

∑
xu,i �=0

(xu,i − x̂u,i)
2 + λ(‖P‖2F + ‖Q‖2F ), (1)

where λ is the regularization parameter to avoid over-fitting. The predicted
scores x̂u,i can be modeled by various forms which embody the flexibility of
matrix factorization. A basic form is x̂Basic

u,i = α + βu + βi + PT
u Qi, where α, βu

and βi are biases [5].

3.2 Integrating Item Reviews into Basic MF: Different Space Case

In this section, we propose our first model TBPR-Diff to integrate item reviews
with implicit feedback. Analogical to the Basic MF which factorizes the ratings
into user- and item- latent factors, we can factorize the reviews into user- and
item- text factors (see the illustration in Fig. 1—Up). The TBPR-Diff model
sharpens this idea and teases apart the rating dimensions into latent factors and
text factors:

x̂Diff
u,i = α + βu + βi + PT

u Qi + θTu(Hfi) + β′Tfi, (2)

where the term θTu(Hfi) is newly introduced to capture the text interaction
between user u and item i. To exploit item reviews, text features fi ∈ R

D are
firstly extracted from item reviews via word embeddings (hence they are known
and fixed). The shared embedding kernel H ∈ R

K×D linearly transforms original
text features fi from high-dimensional space (e.g., 200) into a lower text rating
space (e.g., 15), and then it (Hfi) interacts with text factors of user θu ∈ R

K .
A text bias vector β′ is also introduced to model users’ overall preferences
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towards the item reviews. The details of text features extracted from item reviews
using word embeddings are described later (see Sect. 4).

Since the text factors of user θu and of item (Hfi) are independent of latent
factors Pu and Qi, there is no deep interactions between the information sources
of observed feedback and item reviews, and hence they cannot benefit from each
other. Also additional parameters increase the model complexity. Based on these
observations, we propose another model to alleviate the above challenges.

3.3 Integrating Item Reviews into Basic MF: Shared Space Case

In this section, we propose our second model TBPR-Shared to integrate item
reviews with implicit feedback more compactly. For an item i, its latent factors
Qi learned from feedback can be considered as characteristics that it processes;
meanwhile, these characteristics are probably discussed in its reviews and hence
exhibit in its text factors Hfi (see the illustration in Fig. 1—Down). For user u,
if we let Qi and {Hfk|k ∈ Nu} be in the same space then it leads to deep inter-
actions between text factors of user u and the latent factor of item i. The TBPR-
Shared model sharpens this idea and enables the deep interactions between text
factors and latent factors as well as reduces complexity of the model:

x̂Shared
u,i = QT

i (Pu + |Nu|−1/2
∑

k∈Nu

Hfk) + α + βu + βi + β′Tfi. (3)

On the right hand, the last four terms are the same with the TBPR-Diff
model. Different from the TBPR-Diff model, the shared item factors Qi now have
two-fold meanings: one is item latent factors that represent items’ characteristics;
another is to interact with item text factors that capture items’ semantics from
item reviews. Also different from the TBPR-Diff model, the preferences of a
user now have a prior term which shows the ‘text influence of her rated items’
captured by the text factors of corresponding items. In summary, on top of text
features the TBPR-Shared model uncovers the review dimensions that explain
the variation in users’ feedback and these factors represent a prior preference of
user.

Remarks I. The VBPR model [3] proposed an analogical formulation with
Eq. (2). It exploits visual features extracted from item images and we leverage
item features extracted from item reviews. The SVD++ and NSVD [5,13] models
proposed similar formulas with Eq. (3). They learn an implicit feature matrix
to capture implicit feedback and we learn a text correlation matrix to capture
text factors; note that they didn’t exploit item reviews and hence they had no
the text bias term. II. There can be an adjustable weight on the term of text
(i.e., θTu(Hfi) in Eq. (2) and QT

i |Nu|−1/2
∑

k∈Nu
Hfk in Eq. (3)) to balance the

influence from feedback and from reviews, but here we just let feedback and
reviews be equally important.

Before we delve into the learning algorithm, the preference predictors of
TBPR-Diff and of TBPR-Shared models are shown in Fig. 1.
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Fig. 1. Illustrating the preference predictors of our proposed two models. Up—TBPR-
Diff model: The rating dimensions are to tease apart into text factors and latent factors
for both user and item. Down—TBPR-Shared model: The rating dimensions are to
tease apart into text factors and latent factors for only users where the text factors
transformed from text features act as prior preference and show the ‘text influence of
her rated items’.

3.4 Model Learning with BPR

Revisit Problem 1, we need to generate a ranked list of items for individual user.
Bayesian personalized ranking [14] is a generic pair-wise optimization frame-
work that learns from the training item pairs using gradient descent. Denote the
model parameters as Θ and let x̂uij(Θ) (for simplicity we omit model parameters,
and the notation xui is the same with xu,i) represent an arbitrary real-valued
mapping under the model parameters. Then the optimization criterion for per-
sonalized ranking BPR-OPT is

L(Θ) ≡
∑

(u,i,j)∈DS

ln σ(x̂uij) − λ‖Θ‖2, (4)

where x̂uij ≡ x̂ui − x̂uj , and the sigmoid function is defined as σ(x) =
1/(1 + exp(−x)). The meaning behind BPR-OPT requires ranking items accu-
rately as well as using a simple model.

Under the generic BPR-OPT framework, we derive the learning process for
our proposed models TBPR-Diff and TBPR-Shared by embodying x̂ui with
x̂Diff
ui and x̂Shared

ui , respectively. The BPR-OPT defined in Eq. (4) is differ-
entiable and hence gradient ascent methods can be used to maximize it. For
stochastic gradient ascent, a triple (u, i, j) is randomly sampled from training
sets DS and then update the model parameters by:

Θ ← Θ + η(σ(−x̂uij)
∂x̂uij

∂Θ
− λΘ). (5)
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The same gradients for user latent factors and bias terms of both models are:

∂

∂Pu
x̂uij = Qi − Qj ,

∂

∂β′ x̂uij = fi − fj ,
∂

∂βi
x̂uij = 1,

∂

∂βj
x̂uij = −1.

Parameter gradients of the model TBPR-Diff are:

∂

∂Qi
x̂uij = Pu,

∂

∂Qj
x̂uij = −Pu,

∂

∂θu
x̂uij = H(fi−fj),

∂

∂H
x̂uij = θu(fi−fj)T.

Parameter gradients of the model TBPR-Shared are:

∂

∂Qi
x̂uij = Pu + |Nu|−1/2

∑
k∈Nu

Hfk,
∂

∂Qj
x̂uij = −(Pu + |Nu|−1/2

∑
k∈Nu

Hfk),

∂

∂H
x̂uij = |Nu|−1/2(Qi − Qj)(

∑
k∈Nu

fk)T.

Complexity of Models and Learning. The complexity of model TBPR-
Diff is (M + N)F + (M + D)K + D while the complexity of model TBPR-
Shared is (M + N)F + (D + 1)K. We can see that the latter model reduces the
complexity by O(MK), i.e., the parameters [θu]M1 . For updating each training
sample (u, i, j) ∈ DS , the complexity of learning TBPR-Diff is linear in the
number of dimensions (F,K,D) while the complexity of learning TBPR-Shared
is also linear provided that the scale of rated items of users is amortizing constant,
i.e.,

∑
u∈U |Nu|/|U| ≈ const 	 |I|, which holds in real-world datasets because

of sparsity (see Table 1).

4 Feature Representations of Item Reviews

Recall that when generating the ranked list of items for individual user, we have
item reviews to exploit besides implicit feedback. To exploit item reviews, we
extract text features from them, i.e., there is a feature vector for each item. Our
proposed two models are both built on the top of text features ([fi]Ni=1) and hence
they are important for improving personalized ranking. In this section, we give
one simple way to extract text features from reviews of item—word embedding.

The SGNS model [9] is an architecture for learning continuous representa-
tions of words from large corpus; these representations, or word embeddings,
can capture the syntactic and semantic relationships of words. We first run the
Google word2vec code on Amazon reviews corpus (see Table 1) using the default
setting (particularly, dimensionality D = 200) to learn a vector ew for each
word w. And then we directly sum up all of the embeddings in an item’s reviews
(excluding stop words) and get a composition vector as the text feature for this
item:

fi ≡ 1
|di|

∑
w∈di

ew. (6)

To get fi, we can also use complex methods (e.g., tensor networks to compose
word embeddings or learning the doc representation directly); they are left for
future work.
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Table 1. Statistics of datasets

Datasets #Users #Items #Feedback #Words #ColdUser #ColdItem Density (%)

Girls 778 3,963 5,474 302M 572 3,946 0.177

Boys 981 4,114 6,388 302M 787 4,080 0.158

Baby 1,238 4,592 8,401 302M 959 4,482 0.147

Men 21,793 55,647 157,329 302M 15,821 52,031 0.013

Women 62,928 157,656 504,847 302M 41,409 143,444 0.005

Phones 58,741 77,979 420,847 210M 43,429 67,706 0.009

5 Experiments

We evaluate our two models on multiple Amazon.com datasets in terms of rank-
ing performance (Sect. 5.1). They integrate item reviews into Bayesian person-
alized ranking optimization criterion and we want to know the benefit from
them. So we compare with BPR-MF [14] which ignores them and also with the
most popular (POP) baseline that doesn’t show personalized ranking (Sect. 5.2).
We report the results in different settings (Sect. 5.3) and analyse the proposed
methods (Sect. 5.4).

5.1 Datasets and Evaluation Protocol

Datasets. We evaluate our models on six Amazon datasets [8] http://jmcauley.
ucsd.edu/data/amazon/. They consist of five from clothing and shoes category,
and one from cell phones and accessories. We use the review history as implicit
feedback and aggregate all users’ reviews to an item as a doc for this item. We
draw the samples from original datasets such that every user has rated at least
five items (i.e., ∀u ∈ U : |Nu| ≥ 5) and the statistics of final evaluation datasets
are show in Table 1. From the table we can see that: (1) the observed feedback is
very sparse, typically less than 0.01%; (2) the average feedback events for users
are typical about ten, i.e.,

∑
u∈U |Nu|/|U| ≈ 10 	 |I|holds; (3) more than half

of the users and of the items are cold and have feedback less than seven. Note
that the cold-users/-items are those that have less than seven feedback events,
and the feedback Density = #Feedback/(#Users ∗ #Items).

We split each of the whole datasets into three parts: training, validation, and
test. In detail, for each user u ∈ U , we randomly sample two items from her
history feedback for test set Testu, two for validation set V alidu, and the rest
for training set Trainu; and hence Nu = Trainu ∪ V alidu ∪ Testu. This is the
reason that we discard users who rated items less than five to ensure that there
is at least one training sample for her.

Evaluation Protocol. For item recommendation or personalized ranking, we
need to generate a ranked list over the unobserved items. Therefore for the
hold-out test item i ∈ Testu of individual user u, the evaluation calculates
how accurately the model rank i over other unobserved items j ∈ I\Nu. The

http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
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widely used measure Area Under the ROC Curve (AUC) sharpens the ranking
correctness intuition:

AUC =
1

|U|
∑

u∈U

1
|E(u)|

∑

(i,j)∈E(u)

δ(x̂u,i > x̂u,j), (7)

where E(u) = {(i, j)|i ∈ Testu ∧ j ∈ I ∧ j /∈ Nu} and the δ(·) is an indicator
function. A higher AUC score indicates a better recommendation performance.

The validation set V = ∪u∈UV alidu is used to tune hyperparameters and we
report the corresponding results on the test set T = ∪u∈UTestu.

5.2 Comparing Methods

We compare our proposed models TBPR-Diff (see Eq. (2)) and TBPR-Shared
(see Eq. (3)) with the Most Popular (POP) and BPR-MF [14] baselines. The
difference of models lies in their preference predictors.

Reproducibility. We use the released code in [3] to implement the compar-
ing methods and our proposed models. The hyperparameters are tuned on the
validation set. Referring to the default setting, for the BRP-MF model, the
norm-penalty λ = 11, and learning rate η = 0.005. As with our proposed models
TBPR-Diff and TBPR-Shared, the norm-penalty λlatent = 11 for latent factors
and λtext = 5 for text factors, and learning rate η = 0.001. For simplicity, the
number of latent factors equals to the number of text factors; the default values
for them are both fifteen (i.e., F = K = 15). Since the raw datasets, compar-
ing code, and parameter setting are given publicly, we confidently believe our
experiments are easily reproduced.

Table 2. AUC performance results (#factors = 15, best result is boldfaced).

Datasets Setting POP BPR-MF TBPR-Diff TBPR-Shared Improv1 Improv2

Girls All 0.1699 0.5658 0.5919 0.5939 4.966 7.097

Boys All 0.2499 0.5493 0.5808 0.5852 6.535 11.99

Baby All 0.3451 0.5663 0.5932 0.6021 6.321 16.18

Men All 0.5486 0.6536 0.6639 0.6731 2.983 18.57

Cold 0.4725 0.5983 0.6114 0.6225 4.044 19.23

Women All 0.5894 0.6735 0.6797 0.6842 1.588 12.72

Cold 0.4904 0.6026 0.6110 0.6152 2.090 11.22

Phones All 0.7310 0.7779 0.7799 0.7809 0.386 6.396

Cold 0.5539 0.6415 0.6464 0.6467 0.811 5.936
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5.3 Performance Results

The AUC performance results on eight Amazon.com datasets are shown
in Table 2 where the last but one column is (AUCTBPR−Shared − AUCBPR−MF)
/AUCBPR−MF×100%, and the last column is (AUCTBPR−Shared−AUCBPR−MF)
/(AUCBPR−MF − AUCPOP) × 100%. For each dataset there are three evaluation
settings: The All Items or All setting evaluates the models on the full test set T ;
the Cold Start or Cold setting evaluates the models on a subset Tcold ⊆ T such that
the number of training samples for each item within Tcold is no greater than three
(i.e., |Trainu| ≤ 3 or |Nu| ≤ 7); the Warm setting evaluates the models on the
difference set of All and Cold. Revisit the Table 1 we can see that: (1) almost all of
the items are cold-item for datasets Girls, Boys, and Baby; and hence the results
of Cold setting are almost the same with All and the results of Warm setting is not
available to get a statistical reliable results; and (2) for other three datasets, the
percent of cold-items is also more than 86% which requires the model to address
the inherent cold start nature of the recommendation problem.

There are several observations from the evaluation results.

1. Under the All setting, TBPR-Shared is the top performer, TBPR-Diff is the
second, with BPR-MF coming in third and POP the weakest. These results
firstly show that leveraging item reviews besides the feedback can improve the
personalized ranking; and also show that the personalization methods are dis-
tinctly better than the user-independent POP method. For example, TBPR-
Shared averagely obtains relative 4.83% performance improvement compared
with BPR-MF on the first three smaller datasets in terms of AUC metric,
and 2.74% in total six datasets. This two figures show, to some extent, that
transferring the knowledge from auxiliary data source (here item reviews)
helps most when the target data source (here rating feedback) is not so rich.

2. Under the Cold setting, TBPR-Shared is the top performer, TBPR-Diff is
the second, with BPR-MF coming in third and POP is also the weakest.
These results firstly show that leveraging item reviews besides the feed-
back can improve the personalized ranking even in the cold start setting;
and also show that the personalization methods are distinctly better than
the user-independent POP method since the cold items are not popular. In
detail, TBPR-Shared averagely obtains relative 2.31% performance improve-
ment compared with BPR-MF in terms of AUC metric. Furthermore, TBPR-
Shared compared with BPR-MF, the relative improvement in the cold start
setting is about 1.6 times than that in the All setting which implies that
integrating item reviews more benefits when observed feedback is sparser. As
with the results on the Phones dataset, revisiting Table 1 we can see that the
ratio of cold items over all item is 86.8% which is far less than those on other
two datasets (∼92.2%). And in this case adding auxiliary information doesn’t
help much.

We also evaluate on the Warm setting (not shown in Table 2), and all of
the personalized, complex methods are worse than the user-independent, simple

http://www.Amazon.com
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Fig. 2. Performance results of AUC on the test set with varying the number of latent
factors. From top to bottom and left to right, the datasets are Girls, Boys, and Men
(due to limited space we omit the results on Baby, Women and Phones). For clarity,
we omit the results of TBPR-Diff where they are slightly better than BPR-MF and
slightly worse than TBPR-Shared.
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Fig. 3. Performance results of AUC on the validation set with training iterations (#fac-
tors = 15). From top to bottom and left to right, the datasets are Girls, Boys, Baby,
Men, Women, and Phones. For clarity, we omit the results of TBPR-Diff where they are
slightly worse than TBPR-Shared. As a reference, BPR-MF model usually converges
in 50 iterations. Due to limited space, we only give the validation results for #factors
= 15 and omit 5, 10, 20, 25.

method POP. Warm items are more likely to be popular and show less personal-
ized characteristics. It reminds us the commonplace that recommendation plays
an important role in long-tailed items.

5.4 Analysis of the Proposed Models

After demonstrating the benefits of leveraging item reviews, we analyse the pro-
posed models from two points; one is the impact of number of latent factors, and
one is the training efficiency and convergence analysis. More depth investigation
like the impact of embedding dimensionality and of corpus source to train the
embeddings, is left to future work.
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Impact of the Number of Latent Factors. The two proposed models TBPR-
Shared and TBPR-Diff have two important hyperparameters; one is the number
of latent factors F and one is the number of text factors K. For simplicity,
we let the two values equal. We vary the number of latent factors #factors =
{5, 10, 15, 20, 25} to observe the performance results of different methods. The
test AUC scores are shown in Fig. 2. On the Girls and Boys datasets, both of the
personalized models are to perform better as the number of factors increases; on
the other datasets, the performance improves as the number of factors increases
to around fifteen; then it doesn’t go up and may even downgrade. We set the
default value as 15.

Also the plots visually show the benefits of integrating item reviews (TBPR-
Shared vs. BPR-MF) and of generating a personalized ranking item list for
individual user (TBPR-Shared and BPR-MF vs. POP).

Training Efficiency and Convergence Analysis. The complexity of learning
is approximately linear in the number of parameters of our proposed models.
Figure 3 shows the AUC scores of the TBPR-Shared model on validation sets
with increasing training iterations. In summary, our models take 3–4 times more
iterations to converge than BPR-MF. On three smaller datasets (Girls, Boys,
and Baby), the first five iterations are enough to get a better score than POP;
and on the other larger datasets (Men, Women, and Phones), it takes longer.

As a reference, the BPR-MF model usually converges in 50 iterations. As
another reference, all of our experiments are completed in about one week using
one server that has 65 GiB memory and 12 cores with frequency 3599 MHz.

6 Conclusion and Future Work

We proposed two models to integrate item reviews into Bayesian personalized
ranking based on matrix factorization for cold start recommendation. In each
of the two models, we make use of text features extracted from item reviews
via word embeddings. On top of text features we uncover the review dimensions
that explain the variation in users’ feedback. These review factors represent
a prior preference of a user and show the ‘text influence of her rated items’.
Empirical results on multiple real-world datasets demonstrated the improved
ranking performance under the All and Cold start setting. And the shared space
model is slightly better than the different space one which shows the benefits
of considering the interactions between latent factors and text factors. Training
efficiency is analyzed.

Since we investigate the benefits of leveraging item reviews, we only compare
our models with BPR-MF (and POP); and to know the effectiveness, comparing
with more baselines is needed. The construction strategy of positive/negative
samples is also worth further investigating because it deeply affects the modeling
design, the learning results, and the evaluation performance.

Acknowledgments. The work is supported by HKPFS PF15-16701, NSFC
(61472183), and 863 Program (2015AA015406).
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Abstract. Online music services are increasing in popularity. They
enable us to analyze people’s music listening behavior based on play
logs. Although it is known that people listen to music based on topic
(e.g., rock or jazz), we assume that when a user is addicted to an artist,
s/he chooses the artist’s songs regardless of topic. Based on this assump-
tion, in this paper, we propose a probabilistic model to analyze people’s
music listening behavior. Our main contributions are three-fold. First, to
the best of our knowledge, this is the first study modeling music listening
behavior by taking into account the influence of addiction to artists. Sec-
ond, by using real-world datasets of play logs, we showed the effectiveness
of our proposed model. Third, we carried out qualitative experiments and
showed that taking addiction into account enables us to analyze music
listening behavior from a new viewpoint in terms of how people listen to
music according to the time of day, how an artist’s songs are listened to
by people, etc. We also discuss the possibility of applying the analysis
results to applications such as artist similarity computation and song
recommendation.

1 Introduction

Among various leisure activities such as watching movies, reading books, and
eating delicious food, listening to music is one of the most important for peo-
ple [14]. In terms of the amount of accessible music, the advent of online music
services (e.g., Last.fm1, Pandora2, and Spotify3) has made it possible for people
to access millions of songs on the Internet, and it has become popular to play
music using such services rather than physical media like CDs [8]. When users
play music online, such services record personal musical play logs that show
when users listen to music and what they listen to.

Since personal music play logs have become available, it has become popular
to use session information to analyze and model people’s music listening behav-
ior [2,4,13,18]. Here, a session is a sequence of logs within a given time frame.
Zheleva et al. [18] were the first to model listening behavior using a topic model
1 http://www.last.fm.
2 http://www.pandora.com.
3 http://www.spotify.com.
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based on session information. They revealed that a user tends to choose songs in
a session according to the session’s specific topic such as rock or jazz. However,
it is not always correct to assume that a user chooses songs according to the
session’s topic. For example, after a user buys an artist’s album or temporarily
falls in love with an artist, s/he will be addicted to the artist and repeatedly
listen to the artist’s songs regardless of topic.

In light of the above, this paper proposes a model that can deal with both
a session topic and addiction to artists. Our proposed model uses the model
proposed by Zheleva et al. [18] as the starting point. We present each song-
listening instance in terms of the corresponding song artist. In our model, each
user has a distribution over topics that reflects the user’s usual taste in music
and a distribution over artists that reflects the user’s addiction to artists. In
addition, each user has a different ratio between usual taste and addiction, and
probabilistically chooses a song in a session based on this ratio. That is, if a
user has a high addiction ratio, s/he will probably choose a song of an artist
from his/her artist distribution for addiction. Modeling people’s music listening
behavior by considering addiction is worth studying from various viewpoints:

– Our model can show topic characteristics (e.g., the rock topic has a high ratio
of addiction) and artist characteristics (e.g., most users choose an artist’s songs
when addicted to that artist). It is important to understand such characteris-
tics from the social scientific viewpoint.

– Our model can also show user characteristics (e.g., a user chooses songs based
on addiction in a session). There are many applications that could use this
data such as advertisements and recommendation systems. For example, if a
user chooses songs of an artist based on addiction in a session, it would be
useful to recommend songs of that artist; if s/he chooses songs based on a
topic, it would be better to recommend other artists’ songs in the same topic.

Our main contributions in this paper are as follows.

– To the best of our knowledge, this is the first study modeling music listening
behavior by considering both the usual taste in music and the addiction to
artists.

– We quantitatively evaluated our model by using real-world music play logs
of two music online services. Our experimental results show that the model
adopting both factors achieves the best results in terms of the perplexity
computed by using test data.

– We carried out qualitative experiments in terms of user characteristics, artist
characteristics, and topic characteristics and show that our model can be used
to analyze people’s music listening behavior from a new viewpoint.

The remainder of this paper is organized as follows. Section 2 presents related
work on analyzing music play logs and on modeling music listening behavior.
Section 3 describes the model that extends the model by Zheleva et al. [18]
by considering the addiction phenomenon. Section 4 presents a procedure to
infer the parameters. Sections 5 and 6 report on our quantitative and qualitative
experiments, respectively. Finally, Sect. 7 concludes this paper.



Taste or Addiction?: Using Play Logs to Infer Song Selection Motivation 723

2 Related Work

2.1 Analysis of Music Listening Behavior

Analyzing people’s music listening behavior has attracted a lot of attention
because (1) understanding how people listen to music is important from the
social scientific viewpoint and (2) the analysis results can give useful insight into
various applications such as music player interfaces and recommender systems.

People’s music listening behavior has been analyzed from various view-
points. Rentfrow and Gosling [14] carried out a questionnaire-based survey and
revealed the correlations between music preferences and personality, self-views
(e.g., wealthy and politically liberal), and cognitive ability (e.g., verbal skills and
analytical skills). Renyolds et al. [15] made an online survey and reported that
environmental metadata such as the user’s activity, weather, and location affect
the user’s music selection. Analysis by Berkers [3] using Last.fm play logs showed
the significant differences between male and female in terms of their music genre
preferences. More recently, Lee et al. [10] collected responses from users of com-
mercial cloud music services and reported the criteria for generating playlists:
personal preference, mood, genre/style, artists, etc. Among various factors, time
information has received a lot of attention. Herrera et al. [6] analyzed play counts
from Last.fm and discovered that a non-negligible number of listeners listen to
certain artists and genres at specific moments of the day and/or on certain days
of the week. Park and Kahng [12] used log data of a commercial online music
service in Korea and showed that there existed seasonal and time-of-day effects
on users’ music preference. Baur et al. [2] also showed the importance of seasonal
aspects, which influence music listening, using play logs from Last.fm.

In spite of the variety of listening behavior analyses, to the best of our knowl-
edge, no work has focused on users’ addiction to, for example, songs and artists.
In this work, we deal with this factor and analyze people’s music listening behav-
ior from a new perspective.

2.2 Application Based on Music Listening Logs

Listening logs have been used for various applications, including the detection of
similar artists. Schedl and Hauger [17] crawled Twitter4 for the hash tag #now-
playing and computed artist similarity using co-occurrence-based methods. Their
experimental results showed that listening logs can be used to derive similarity
measures for artists. Another application is playlist generation. Liu et al. [11]
proposed a playlist generation system informed by time stamps of a user’s lis-
tening logs in addition to the user’s music rating history and audio features such
as wave forms. The most popular application is music recommendation. Since
personal music play logs have become available, it has become popular to use
session information to recommend songs. Park et al. [13] proposed Session-based
Collaborative Filtering (SSCF), which extends traditional collaborative filtering

4 http://twitter.com/.

http://twitter.com/
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techniques by using preferred songs in the similar session. Dias and Fonseca [4]
proposed temporal SSCF, where for each session, a feature vector is created
consisting of five properties including time of day and song diversity. The work
closest to ours is that of Zheleva et al. [18], who proposed a statistical model
to describe patterns of song listening. They showed that a user tends to choose
songs in a session according to the session’s specific topic. We will describe the
details of their model in Sect. 3.2.

Although none of these applications used addiction information, we believe
that this information could improve the usefulness of these applications. We
discuss the possibility of using our analysis results to improve these applications
in Sect. 6.

3 Model

As was mentioned earlier, our model builds on the one proposed by Zheleva
et al. [18]. After summarizing the notations used in our model in Sect. 3.1, we
first describe the model by Zheleva et al. [18] in Sect. 3.2 and then propose our
model in Sect. 3.3.

3.1 Notations

Given a music play log dataset, let U be a set of users in the dataset. Let
lun = (u, a, tun) denote the nth play log of u ∈ U . More specifically, user u plays
a song of artist a ∈ A at time tun. Here, A is the set of artists in the dataset.
Without loss of generality, we assume that play logs are sorted in ascending
order of their timestamps: tun < tun′ for n < n′.

To capture user’s listening preferences over time, we divide user’s play logs
into sessions. Following Zheleva et al. [18] and Baur et al. [2], we use the time
gap approach to generate sessions. If the gap between tun and tun+1 is less than
30 min, lun and lun+1 belong to the same session; otherwise, they belong to
different sessions. Let Sur be the rth session of u where Sur consists of one or
more of u’s logs. Let Ru be the total number of u’s sessions; then the set of u’s
sessions is given by Du = {Sur}Ru

r=1. Hence, the set of sessions of all users is given
by D = {Du}u∈U .

3.2 Session Model

The model proposed by Zheleva et al. [18], which is called the session model, is a
probabilistic graphical model based on the Latent Dirichlet Allocation (LDA) [1].
The session model assumes that for each session, there is a latent topic (e.g., rock
or love song) that guides the choice of songs in the session. Figure 1(a) shows
the graphical model of the session model, where shaded and unshaded circles
represent observed and unobserved variables, respectively. In the figure, K is
the number of topics, Vur is the number of logs in the rth session of u, θ is the
user-topic distribution, and φ is the topic-artist distribution. We assume that θ
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Fig. 1. Graphical models of (a) session model and (b) session with addiction model.

and φ have Dirichlet priors of α and β, respectively. The generative process of
the session model is as follows:

– For each topic k ∈ {1, · · · ,K}, draw φk from Dirichlet(β).
– For each user u in U ,

• Draw θu from Dirichlet(α).
• For each session Sur in Du,

∗ Draw a topic zur from Categorical(θu).
∗ For each song in Sur, observe an artist aurj from Categorical(φzur

).

In the generative process, aurj represents the jth song’s artist in the rth session
of u.

3.3 Session with Addiction (SWA) Model

Although Zheleva et al. [18] reported the usefulness of generating played songs
based on a session’s topic, we hypothesize that users can choose a song indepen-
dently of topic. For example, after a user buys an artist’s album or temporarily
falls in love with an artist, s/he will repeatedly listen to the artist’s songs regard-
less of the topic. In other words, the user can be addicted to some artists. In such
an addiction mode, we assume that the user directly chooses a song without going
through the topic.

In light of the above, our model takes both session-topic-based and addiction-
based choices of songs. Figure 1(b) shows the graphical model of our proposed
model. Each user has a Bernoulli distribution λ that controls the weights of
influence for a session topic and addiction. To be more specific, when user u
chooses a song in a session, we assume that the choice is influenced by the
session topic with probability λu0 (x = 0) and by u’s addiction to the artist with
probability λu1 (x = 1), where λu0 + λu1 = 1. When x = 0, a song is generated
through the same process of the session model, while when x = 1, a song is
directly generated from a user-artist distribution ψ. The generative process of
the SWA model is as follows:
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– For each topic k ∈ {1, · · · ,K}, draw φk from Dirichlet(β).
– For each user u in U ,

• Draw θu from Dirichlet(α).
• Draw ψu from Dirichlet(γ).
• Draw λu from Beta(ρ).
• For each session Sur in Du,

∗ Draw a topic zur from Categorical(θu).
∗ For each song in Sur,

· Sample x from Bernoulli(λu).
· If x = 0, observe an artist aurj from Categorical(φzur

).
· If x = 1, observe an artist aurj from Categorical(ψu).

4 Inference

To learn the parameters of our proposed model, we use collapsed Gibbs sam-
pling [5] to obtain samples of hidden variable assignment. Since we use a Dirichlet
prior for θ, φ, and ψ and a Beta prior for λ, we can analytically calculate the mar-
ginalization over the parameters. The marginalized joint distribution of D, latent
variables Z = {{zur}Ru

r=1}u∈U , and latent variables X = {{{xurj}Vur
j=1}Ru

r=1}u∈U

is computed as follows:

P (D,Z,X|α, β, γ, ρ)

=
∫∫∫∫

P (D,Z,X|Θ,Φ,Ψ ,Λ)P (Θ|α)P (Φ|β)P (Ψ |γ)P (Λ|ρ)dΘdΦdΨdΛ,

(1)

where Θ = {θu}u∈U , Φ = {φk}Kk=1, Ψ = {ψu}u∈U , and Λ = {λu}u∈U . By
integrating out those parameters, we can compute Eq. (1) as follows:

P (D, Z, X|α, β, γ, ρ)

=

(
Γ(2ρ)

Γ(ρ)2

)|U| ∏
u∈U

Γ(ρ + Nu0)Γ(ρ + Nu1)

Γ(2ρ + Nu)

(
Γ(γ|A|)
Γ(γ)|A|

)|U| ∏
u∈U

∏
a∈A Γ(Nu1a + γ)

Γ(Nu1 + γ|A|)

×
(

Γ(β|A|)
Γ(β)|A|

)K K∏
k=1

∏
a∈A Γ(Nka + β)

Γ(Nk + β|A|)
(

Γ(αK)

Γ(α)K

)|U| ∏
u∈U

∏K
k=1 Γ(Ruk + α)

Γ(Ru + αK)
. (2)

Here, Nu0 and Nu1 are the number of u’s logs such that x = 0 and x = 1,
respectively, and Nu = Nu0 + Nu1. The term Nu1a represents the number of
times that user u chooses artist a’s song under the condition of x = 1, and
Nu1 =

∑
a∈A Nu1a. Furthermore, Nk =

∑
a∈A Nka where Nka is the number of

times artist a is assigned to topic k under the condition of x = 0. Finally, Ruk

is the number of times u’s session is assigned to topic k, and Ru =
∑K

k=1 Ruk.
For the Gibbs sampler, given the current state of all but one variable zur,

the new latent assignment of zur is sampled from the following probability:

P (zur = k|D,X,Z\ur, α, β, γ, ρ)

∝ Ruk\ur + α

Ru − 1 + αK

Γ(Nk\ur + β|A|)
Γ(Nk\ur + Nur + β|A|)

∏
a∈A

Γ(Nka\ur + Nura + β)
Γ(Nka\ur + β)

, (3)
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where \ur represents the procedure excluding the rth session of u. Moreover,
Nur and Nura represent the number of logs in rth session of u and the number
of a’s logs in rth session of u, respectively.

In addition, given the current state of all but one variable xurj , the probability
at which xurj = 0 is computed as follows:

P (xurj = 0|D,X\urj , Z, α, β, γ, ρ) ∝ ρ + Nu0\urj
2ρ + Nu − 1

Nzuraurj\urj + β

Nzur\urj + β|A| , (4)

where \urj represents the procedure excluding the jth song in the rth session
of u. Similarly, the probability at which xurj = 1 is computed as follows:

P (xurj = 1|D,X\urj , Z, α, β, γ, ρ) ∝ ρ + Nu1\urj
2ρ + Nu − 1

Nu1aurj\urj + γ

Nu1\urj + γ|A| . (5)

Finally, we can make the point estimates of the integrated out parameters as
follows:

θuk =
Cuk + α

Cu + αK
, φka =

Nka + β

Nk + β|A| , ψua =
Nu1a + γ

Nu1 + γ|A| . (6)

λu0 =
Nu0 + ρ

Nu + 2ρ
, λu1 =

Nu1 + ρ

Nu + 2ρ
, (7)

where remind that λu0 and λu1 represent the ratio of usual taste in music and
addiction when u chooses songs, respectively.

5 Quantitative Experiments

In this section, we answer the following research question based on our quanti-
tative experimental results: is adopting two factors, which are users’ daily taste
in music and addiction to artists, effective to model music listening behavior?

5.1 Dataset

To examine the effectiveness of the proposed model, we constructed two datasets.
The first one is created from music play logs on a music download service
in Japan. On the service, users can buy a single song and an album and lis-
ten to them. For this evaluation, we obtained 10 weeks of log data between
1/1/2016 and 10/3/2016. We call this dataset JPD. The second one consists
of logs on Last.fm. To guarantee the repeatability, we used a publicly available
music play log data on Last.fm provided by Schedl [16]. Similar with JPD, we
extracted 10 weeks of log data between 1/1/2013 and 11/3/2013; we call the
dataset LFMD.

From the 10 weeks of data of JPD, we created two pairs of training and test
datasets as follows. In the first/second dataset, the training dataset consists of
logs of the first four/eight weeks and the test dataset consists of the next two
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Table 1. Statistics of our datasets

4WJPD 8WJPD 4WLFMD 8WLFMD

Number of users 7,230 13,986 2,501 2,850

Number of artists 3,441 6,431 7,899 12,360

Number of logs in training data 141,381 331,437 400,410 872,614

Number of sessions in training data 35,780 82,427 50,106 106,840

Number of logs in test data 48,837 57,126 179,983 201,966

Number of sessions in test data 11,767 13,516 23,167 24,958

weeks. For each dataset, we excluded artists whose songs were played by ≤3
users and created session data as described in Sect. 3.1. Let the first and second
dataset be 4WJPD (4W means four weeks) and 8WJPD, respectively. As for
LFMD, we also created two pairs of training and test datasets 4WLFMD and
8WLFMD in the same manner as we created the 4WJPD and 8WJPD datasets.
Table 1 shows the statistics of the four datasets.

5.2 Settings

In terms of hyperparameters, in line with other topic modeling work, we set
α = 1

K and β = 50
|A| in the session model and the session with addiction (SWA)

model. In addition, in the SWA model, we set γ = 50
|A| and ρ = 0.5.

To compare the performance of the session model and the SWA model, we
use the perplexities of the two models. Perplexity is a widely used measure to
compare the performance of statistical models [1] and the lower value represents
the better performance. The perplexity of each model on the test data is given by:

perplexity(Dtest) = exp

⎛
⎝−

∑
u∈U

∑Rtest
u

r=1

∑V test
ur

j=1 p(aurj)∑
u∈U

∑Rtest
u

r=1 |V test
ur |

⎞
⎠ , (8)

where Rtest
u and V test

ur represent the number of u’s sessions and the number of
logs in rth session of u in the test data, respectively. The p(aurj) is computed
based on the estimated parameters obtained by Eqs. (6) and (7) as follows:

p(aurj) = λu0

K∑
k=1

θukφkaurj
+ λu1ψuaurj

. (9)

In terms of the number of topics, we compute the perplexity for K = 5, 10,
20, 30, 40, 50, 100, 200, and 300.

5.3 Results

Figure 2 shows the perplexity for each dataset. In any dataset, regardless of the
amount of training data and the number of topics, the SWA model outperformed
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Fig. 2. Perplexity for 4WJPD, 8WJPD, 4WLFMD, and 8WLFMD.

the session model. If we set the number of topics to be larger than 300, the session
model might outperform the SWA model; but we set the maximum value of K to
300 for the following two reasons. The first reason is due to the expended hours
for the learning process. For example, when the session model learns parameters
for K = 300 using 8WJPD, it takes 9.8 times longer than the SWA model does
for K = 30 using 8WJPD (1,713 min for the session model and 175 min for the
SWA model). In data analysis, the expended hours is an important factor; if it
takes a long time to learn the parameters for a model, the model is inappropriate
for data analysis. The second reason is due to the understandability of topics.
When the number of topics becomes too large, it is difficult to understand the
difference between topics because there are many similar topics. As we will show
in Sect. 6.3, analyzing the characteristics of each topic is useful to understand
people’s music listening behavior. Hence, it is undesirable to set K to a large
value. For these reasons, we conclude that the SWA model is a better model
than the session model.

6 Qualitative Experiments

In this section, we report on the qualitative analysis results in terms of user
characteristics, artist characteristics, and topic characteristics. Due to the space
limitation, we only show the results for the training data of 8WJPD with K = 30.
We not only analyze people’s music listening behavior but discuss how we can
apply the analysis results.
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6.1 User Characteristics

As we mentioned in Sect. 3.3, each user has a parameter λ that controls the degree
of usual taste in music and addiction when s/he chooses songs. Given a user u,
we can obtain the ratio of these two factors from Eq. (7), where λu0 + λu1 = 1.
Figure 3(a) shows a histogram based on the degree of addiction. Although most
people put a high priority on their usual taste in music (ratio ≤ 0.1), the second
highest histogram peak is for those who put the greatest weight on addiction
to artists (ratio > 0.9). The result where so many users lie somewhere between
these two extremes of behavior further indicates the usefulness of considering
the addiction mode in music listening behavior.

By using the posterior distribution of latent variables in Eqs. (4) and (5),
we can analyze the relationship between the degree of addiction and the time.
We first analyzed the transition of the degree of addiction on a per-hour basis.
For example, to analyze the degree between 9:00:00 and 9:59:59, we collected
all play logs during the time period in the training data. By summing p(x = 0)
of all logs, we can obtain the strength of usual taste in music during the time
period. Similarly, by summing p(x = 1) of all logs, we can obtain the strength of
addiction during the time period. Finally, we normalize their sum to 1 so that we
can see the ratio of the degree of the two factors. The left line chart in Fig. 4 shows
the results. It can be observed that the degree of addiction is high in the early
morning (i.e., at 5, 6, and 7 am), while it is low at night (i.e., at 9, 10, and 11 pm).
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We can estimate that people tend to be short on time in the morning, and as a
result, they listen to a specific artist’s songs rather than choosing various songs
according to a topic. On the other hand, at night, people have time to spare
and tend to listen to various artists’ songs by choosing from a topic. These
results indicate that the transition of the degree of addiction on a per-hour basis
enables us to analyze people’s music listening behavior from a new viewpoint.
In addition, we propose applying the knowledge to music recommendation. For
example, it would be more appropriate to recommend unknown songs to the
user at night rather than in the morning because s/he would have time to try
listening to new songs.

In the same manner as the above analysis, we also analyzed the transition
of the degree of addiction on a day of the week basis. The right line chart in
Fig. 4 shows the result. It can be observed that the degree of addiction is high
on weekdays, while it is low on weekends. We can also estimate that the degree
of addiction is high on weekdays because people are busy working on weekdays,
while the degree is low on weekends because people have more time. These results
would also be useful to recommend music.

6.2 Artist Characteristics

In the same way as Sect. 6.1, given an artist, by summing p(x = 0) and p(x = 1)
of all the artist’s logs, we can obtain the strength of usual taste and addiction
during the time period, respectively. Then their sum is normalized to 1 to com-
pute the ratio of each factor of the artist. Figure 3(b) shows a histogram based on
the degree of addiction. It can be observed that most artists have a high degree
of addiction. From these results, we can estimate whether the artist’s songs are
repeatedly played by users who are enthusiastic admirers of the artist or by var-
ious users who listen to the artist’s songs with other artists’ songs. In addition,
we believe that the results could be used as one of the features to compute the
similarity between artists by assuming that similar artists have similar degrees
of addiction.

6.3 Topic Characteristics

Finally, we show that our model can also be used for topic analysis. Given a
topic k, we collected representative artists in the category. To be more specific,
the top 20 artists in terms of φk were extracted. For each of the 20 artists,
we collected all logs in the training data and computed the ratio of the degree
of taste in music and addiction as described in Sect. 6.1. We then computed
the average values of each degree over 20 artists and normalized their sum to 1.
Figure 5 shows the ratio of 30 topics, where topics are sorted in ascending order of
addiction ratio. As can be seen, the ratio between two factors is largely different
from one topic to another: the addiction ratio ranged from 0.297 (10th topic) to
0.620 (17th topic). As for the low addiction topics, the 10th topic has the lowest
value of 0.297. This topic is related to songs created by using VOCALOID [9],
which is popular singing synthesizer software in Japan. The 8th topic has the
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Fig. 5. Ratio of taste in music and addiction for each topic.

second lowest value of 0.334 and its topic is related to anime songs. From these
results, we can estimate that when people listen to music related to popular
culture, they tend to listen to various artists’ songs in the topic. As for the
high addiction topic, the 17th topic, which is related to Western artists, and the
28th topic, which is related to old Japanese artists, have the highest values of
0.620 and 0.592, respectively. These results indicate the possibility of applying
the knowledge to playlist generation. In topics with a high addiction degree, it
would be useful to generate a playlist that consists of songs of a specific artist;
while in topics with a low addiction degree, it would be useful to generate a
playlist that consists of various artists’ songs.

7 Conclusion

In this paper we proposed a probabilistic model for analyzing people’s music
listening behavior. The model incorporates the user’s usual taste in music and
addiction to artists. Our experimental results using real-world music play logs
showed that our model outperformed an existing model that considers only the
user’s taste in terms of perplexity. In our qualitative experiments, we showed the
usefulness of our model in various aspects: time-dependent play log analysis (e.g.,
the degree of addiction is high in the early morning and on weekdays), topic-
dependent play log analysis (e.g., the degree of addiction is low in an anime song
topic), etc.

For future work, we are interested in applying the knowledge obtained from
log analysis to applications such as artist similarity computation and song rec-
ommendation as discussed in Sect. 6. We are also interested in extending our
model by considering the time transition of addiction. For example, a user who is
addicted to some artists in summer may be addicted to largely different artists in
autumn. Considering such time dependency by using the topic tracking model [7]
is one possible direction to take to extend our model.
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Abstract. We present a method of analyzing the relationships between
driver characteristics and driving behaviors on the basis of fusing het-
erogeneous datasources with large-scale vehicle recorder data. It can be
used, for example, by fleet managers to classify drivers by their skill level,
safety, physical/mental fatigue, aggressiveness, and so on. Previous stud-
ies relied on precise data obtained in only critical driving situations and
did not consider their circumstances, such as road width and weather.
In contrast, our approach takes into account not only a large-scale (over
100 fleet drivers) and long-term (one year’s worth) records of driving
operations, but also their circumstances. In this study, we focused on
classifying drivers by their accident history and examined the correla-
tion between having an accident and driving behavior. Our method was
able to reliably predict whether a driver had recently experienced an
accident (f-measure = 72%) by taking into account both circumstantial
information and velocity at the same time. This level of performance
cannot be achieved using only the drivers’ demographic information or
kinematic variables of operation records.

Keywords: Vehicle recorder · Fusing data from heterogeneous data-
sources · Driving safety · Accident history · Individual driving behavior

1 Introduction

Driver management has been an important issue for the transportation indus-
try. Keeping drives safe and at the same time efficient is still a hard problem;
transport companies typically manage their drivers by using demographic infor-
mation to estimate their safety; however, such information overlooks the current
condition and improvements in skill of the driver.

We have developed a method for analyzing the relationships between driver
characteristics and driving behaviors on the basis of vehicle recorder data com-
bined with other datasources such as weather reports and road maps. It can be
c© Springer International Publishing AG 2017
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used, for example, by fleet managers to classify drivers by their skill level, safety,
physical/mental fatigue, aggressiveness, and so on. Our method manages drivers
by not who they are, but rather how do they drive.

Several studies [1,3,5] have analyzed driving behaviors. They relied, how-
ever, on detailed and precise data on a small number of drivers, so it is difficult
to extrapolate their results to the general driver population. Many transporta-
tion companies have introduced dashboard cameras (dashcams) and/or vehicle
data recorders (which collect GPS, velocity, and acceleration data) into their
fleets. Although the amount of data collected tends to be sparse due to stor-
age limitations, data can be collected on a large number of drivers. Many kinds
of transportation related information, such as weather, road structure, degree
of traffic congestion, are also available nowadays. Utilizing such heterogeneous
datasources would improve the preciseness of the management’s understanding
of each driver’s characteristic.

Our method classifies drivers on the basis of long-term records of kinematic
variables (maximum velocity, acceleration, etc.) related to their driving opera-
tions (braking, steering, etc.). It is based on the assumption that the distributions
of these variables differs from driver to driver. Our method takes into account
the factors of driving circumstances by fusing various heterogeneous datasources.
We focused on classifying drivers who had recently been involved in accidents
and examined the correlation between having an accident and driving behavior.
Our findings are useful both for educating drivers and preventing accidents.

Many studies [4,13] have analyzed driving behaviors as a means of estimating
driver risks. However, they only used driving operation information and tended
to focus on extreme case of driving operation. Driver characteristics such as
driving skill are reflected in all situations, not only in critical ones; for exam-
ple, a skillful driver will brake smoothly on slippery roads during heavy rainfall.
The previous studies thus overlooked the information to be obtained from oper-
ations performed in non-critical situations. By contrast, in this study, we used
all driving information derived from many heterogeneous datasources to better
estimate a driver’s characteristics.

Our main contributions are:

– An intensive examination of large-scale vehicle recorder data covering all
driving operations demonstrated the effectiveness of our method for analyzing
the relationships between driver characteristics and driving behaviors. It was
able to reliably predict whether a driver had recently experienced an accident
(f-measure = 72%). This level of performance cannot be achieved by using only
drivers’ demographic information or kinematic variables of operation records.

– It showed that fusing heterogeneous data is essential to depicting driver behav-
ior precisely. When we only used kinematic variables of driving records as the
features of drivers, classification performance was poor (f-measure < 66%).

– We found an appropriate way to combine circumstantial information. When
we fused operation records and other non-kinematic information and took
into account these information separately, the classification performance was
almost same as using kinematic features. Performance improved after adding
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features that took into account both velocity and circumstantial information
at the same time.

In Sect. 2, we overview related work. In Sect. 3.1, we explain our analysis.
We explain the driving operation dataset we used in Sect. 3.2 and describe other
dataset to take into account driving circumstances in Sect. 3.3. In Sect. 3.4, we
present our method for analyzing the relationships between driver characteristics
and driving behaviors and evaluate its effectiveness. This article ends in Sect. 4
with a summary and a look at future work.

2 Related Work

There has been research on using vehicle recorded data, such as velocity and
location, for various purposes [6,9,11]. The studies can be grouped into two
categories: those that utilize large-scale vehicle location data [2] and those that
investigate a small amount of driving operation data. We believe that ours is
the first study to investigate both driving operation and its circumstances on a
large-scale (more than 1000 drivers).

The 100-Car Naturalistic Driving Study [7] is one of the largest studies on the
use of vehicle recorded data. It used many types of precise driving information
and driver demographic data (age, gender, personality, etc.) and thoroughly ana-
lyzed the driver information statistically. Several studies have used the driving
information in this archive to assess driver risk. For example, Guo et al. [4]
reported an effective model for identifying high-risk drivers by using driver demo-
graphic information and the occurrence of critical-incident events. Their model
mainly uses demographic information. Zheng et al. [13] collected data on natu-
ralistic driving and analyzed the relationship between the kinematic information
and driver risk-taking behavior. Their analysis focused on kinematic information
for critical driving operations involving large accelerations. Yokoyama et al. [12]
investigated the relationship between kinematic information and drivers’ acci-
dent histories; however they did not utilize driving circumstances.

Some studies have tried to classify drivers on the basis of the aggressiveness of
their driving behavior, with the aim of improving driving safety. Higgs et al. [5]
analyzed the car-following behaviors of three drivers and identified the differences
among them. Dang et al. [3] focused on the lane-changing behaviors of 12 drivers
driving on a highway and found differences among them. Miyajima et al. [10] used
data on 276 drivers and tried to identify drivers on the basis of their car-following
behaviors and pedal operations. However, their data collection required the use
of pedals with specially designed sensors. Their study and the other previous
research relied on precise information on driving behavior, which is not always
available.

3 Classification of Drivers’ Accident Histories

3.1 Approach

Our research purpose is to identify the characteristics of drivers through their
driving behaviors. In this study, we focused on classifying drivers as either safe
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Table 1. Summary of vehicle recorder dataset

All data Driving days ≥ 20, driving hours ≥ 20

Number of drivers 1469 320

Driving duration in total 77,450 h 60,190 h

or unsafe on the basis of their driving records. Instead of using only critical
operation records, we used a large amount of vehicle recorder data that included
all driving operations and investigated how effective such data is for classifying
drivers.

A driver performs various driving operations (braking, steering, etc.), each
associated with several variables (maximum velocity, acceleration, etc.). A driver
can be characterized by the distributions of these variables. We investigated ways
to derive features from these variable distributions for use in classifying drivers
as either safe or unsafe by using Support Vector Machine (SVM).

Each driving operation is affected by factors of the moment, such as the
weather condition, road condition, degree of congestion, and time of day. We
need to take into account the effects of these factors in order to derive good
features from the operation records. These factors cannot be observed from the
vehicle recorded operation records alone. Therefore, we should combine other
datasources such as weather data to reconstruct other factors. Here, we focus
on two circumstances: rainfall information and road width. We derived several
features from the distributions of operation variables, taking into account the
factors of the moment, and evaluated the effectiveness of our method.

3.2 Dataset

Vehicle Recorder Dataset. In our experiments, we used a large number of
actual driving records1 collected by a parcel delivery service company (transport
company). The data were for about 1450 drivers working in the Tokyo area and
covered one year (from 21 July 2014). A multifunctional data recorder in each
delivery vehicle recorded longitudinal accelerometer, lateral accelerometer, gyro
compass, and GPS data.

Since we focused on long-term driving behavior, we eliminated the data of
drivers who had driven on fewer than 20 days or for less than 20 h in total.
A summary of the data is shown in Table 1. The driving duration does not
include the time during which the engine was turned off.

The vehicle data recorder automatically detected four basic driving opera-
tions: braking, steering, turning, and stopping. Several variables, including max-
imum velocity and acceleration, during each operation were recorded. The oper-
ation variables are listed in Table 2. The numbers of recorded operations per
driver are summarized in Table 3. As mentioned, our dataset contained data on
all driving operations, while those used in previous studies contained data only
on critical operations involving high acceleration.

1 The vehicle recorder data was provided by Datatec Co., Ltd.
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Table 2. Operation record variables

Operation Variables

Braking Velocity (V), longitudinal acceleration (Gx), and jerk (derivative of
acceleration with respect to time, Jx)

Steering V, yaw velocity (Yr), yaw acceleration, and lateral acceleration (Gy)

Turning {Gx, V} before turn, {V, centrifugal force (CG), yaw acceleration}
during turn, and {V, CG} after turn

Stopping V, Gx, and stopping duration

Table 3. Operation record statistics

Operation No. of records
per driver

No. of records

(min) (max) (total)

Braking 114 45,861 1,993,341

Steering 239 46,452 2,783,723

Turning 121 21,027 1,218,957

Stopping 418 40,625 2,221,166

Driver Histories. With the cooperation of the transport company, we accessed
their drivers’ histories, including the traffic violations they had received and the
accidents in which they had been involved. We used their histories to define their
accident experience and driving experience.

Accident experience. Drivers who had at least one accident during a certain
time period were defined as an accident driver. Even though some accidents
were only small ones without any responsibility being assigned, we treated
all accidents the same.

Driving experience. To estimate how long a driver had been driving, we used
the oldest record in the driver’s history to estimate the minimum number of
driving years.

Using these definitions and the estimates, we investigated the differences in
driving operation between the accident and no-accident drivers. The no-accident
drivers, however, are not necessarily safe drivers. For example, a reckless driver
may simply have been lucky enough to avoid an accident over the course of
a year. We therefore focused on drivers who had at least five years’ worth of
driving experience. We defined a driver who had at least five years’ worth of
driving experience without any accidents in the previous five years as safe and
otherwise as unsafe. There were 82 safe drivers and 43 unsafe drivers.

3.3 Fusing the Driving Circumstances with Operation Records

To understand each driver’s driving behavior, we focused on the distributions of
variables for driving operations. Each driving operation is affected by factors of
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the moment, such as the weather condition, road structure, and degree of traffic
congestion. Therefore, we combined other datasources with the operation records
to reflect the effect of these factors. Each operation record contains GPS data
and time information; thus we could perform spatial- and temporal- matching
with the other datasources.

To take into account driving circumstances, we created two different variable
distributions: (a) splitting up operation records by circumstance and (b) split-
ting up operation records by the combination of two circumstances. We selected
several factors that represent driving circumstances; they are as follows.

Velocity. Operation variables are correlated due to kinematic restrictions for
both safe and unsafe drivers. For example, steering at a high velocity tends to
cause a low yaw rate. We therefore treated velocity as the basic variable for each
operation and split up the operation records according to their velocity values.
For example, we divided the braking operation records into six bins on the basis
of velocity and estimated the longitudinal jerk densities for each bin. We found
that the shapes of the distributions differ among the velocity bins.

Time of Day. The degree of traffic congestion heavily affects driving behav-
ior. To reflect this factor, we used the occurrence time of each operation record.
We separated the operation records into several time ranges, and compared the
variable distributions. We found the operation distributions in the morning and
evening differ from at other time, which seems to be the result of traffic con-
gestion. Time is not kinematic information; however, it surely affects kinematic
variables of operations.

Road Properties. Driving operations are also affected by the road width. For
example, turning onto a narrower road tends to require more deceleration than
turning onto a wider road. We could match each operation location with a point
on a digital road map2. We simply searched for the road segment nearest the
operation location. If the nearest segment was more than 30 m away (due, for
example, to being on a private site such as a factory or university), we considered
that the location could not be matched to a point on the map and ignored that
record. The road map contains information about the road width, represented
in several ranks, and whether the road is bi-directional or not. If the road was
bi-directional, we assumed that the width of the segment was one rank narrower.
We used four road width ranges: >13 m, 13 > w > 5.5, <5.5 m, and unknown.

Rainfall. Weather heavily affects road conditions and driving operations. When
it is raining, for example, the accident rate is eight times higher when the weather
is dry3. We used X-band Multi Parameter Radar information collected by the

2 We used the “Advanced Digital Road Map Database” developed by Sumitomo Elec-
tric System Solutions Co., Ltd. The database was provided by the Center for Spatial
Information Science at the University of Tokyo.

3 From discussions with an Expressway company.
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Ministry of Land, Infrastructure, Transport and Tourism4. It detects rainfall in a
250 m mesh every minute. This fine-grained weather radar can detect sudden rain
showers that happen frequently in Japan. Since every operation record contained
GPS data and time information, we could match each operation location with
the rainfall information at that time.

3.4 Features

Derivation. We used all 17 dataset variables listed in Table 2 to derive the
driver features. We also used driver demographic information known to be related
to driving safety.

First, we created basic features that represent demographic characteristics
or distributions of kinematic variables:

– Demographic features: We used the driver’s age, gender, and time since obtain-
ing a driver’s license as three demographic features. This information is com-
monly used by insurance companies to set auto insurance rates.

– License feature: In Japan, a driver who has not had any accidents and has not
been cited for a driving violation during the preceding five years is categorized
as a “gold license” driver and is generally considered to be a safe driver. We
thus defined a binary feature for whether a driver had a gold license or not.
The license category is updated when one’s license is renewed, and the renewal
interval is three to five years. Therefore, a gold license does not always mean
an accident-free driver; many drivers have had accidents in recent years and
still hold a gold license. When we classified drivers as safe or unsafe by using
their license category information alone, we achieved only a 35% precision,
which is virtually the same performance as with a random classifier.

– Operation frequency features: We counted the number of instances for each of
the four driving operations for each driver and normalized it by the driving
duration.

– Variable distribution features: We defined the shapes of the variable distribu-
tions as features. Each variable value was binned into one of ten intervals; the
maximum and minimum bin breakpoints were chosen by hand, and the other
bins were defined to have the same width. Therefore, each variable distribu-
tion was represented by ten values. There were thus 170 variable distribution
features (17 variables × 10 values).

Second, we consider the relationship between circumstances and basic kine-
matic variables (as described in Sect. 3.3, approach (a)):

– Variable distribution by velocity features: Driving operations are strongly
affected by the vehicle’s velocity. We therefore selected six velocity-related
variables for use in separating the operation records, and combined them with
other variables, as shown in Table 4. The operation records were separated by
the corresponding velocity-related variable, and the distributions of the other

4 XRAIN: http://www.river.go.jp/kawabou/ipXAreaMap.do.

http://www.river.go.jp/kawabou/ipXAreaMap.do
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Table 4. Combination patterns of operation variables

Operation Velocity-related variable
(number of bins)

Other variables combined with
velocity-related variable

Braking Velocity (6) Gx, Jx

Steering Velocity (5) Yr, yaw acceleration, Gy

Turning Velocity before turn (4) Gx before turn

Turning Velocity during turn (4) CG, yaw acceleration during
turn

Turning Velocity after turn (5) CG after turn

Stopping Velocity (5) Gx

variables were calculated separately. The velocity-related variables were dig-
itized into b values by intervals with a constant width (5 km/h). The other
variable distributions were digitized with ten intervals, so the feature of a
variable is represented by b × 10 values.

– Variable distribution by road width features: We defined each of the four road
width ranges as an indicator of a circumstance, and use it to split operation
records.

– Variable distribution by rainfall features: We decided the raining condition
to be when rainfall is larger than 5.0 mm/h. Thus we split up the operation
records into three rainfall ranges: >5.0, ≤5.0, unknown (that is caused by the
lack of observation).

– Variable distribution by time of day features: We defined five time ranges to
capture the different traffic conditions of the operation records: [6:00–9:00],
[9:00–12:00], [12:00–18:00], [18:00–21:00], [21:00–6:00].

Finally, we considered two of the above circumstances at the same time (as
described in Sect. 3.3, approach (b)). In this study, we limited the number of
sets of combination to three. Among the circumstance features, velocity has the
largest possibility to restrict vehicle’s motion. Thus we selected velocity as the
fixed feature, and combined it with the other three circumstance features as
follows:

– Variable distribution by velocity and road width features
– Variable distribution by velocity and rainfall features
– Variable distribution by velocity and time of day features

Increasing the number of combinations improved the accuracy of the depicted
variable distribution for each driver. Although this helped to describe the dif-
ference between driving behaviors precisely, it may cause data sparsity because
it reduces the number of operation occurrence in each bin, which means the
features will be more strongly affected by noise.

Feature Expression. We tested two methods of expressing the variable distri-
butions as features.
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Table 5. Feature settings

Feature category (no.) a b c d e f

Demographic (3)
License (1)
Operation frequency (4)
Variable distribution (170)
Variable distribution by velocity (540)

Number of available features 3 4 4 8 178 718
Number of frequent features 2 3 4 7 172 601

Feature category (no.) g h i j k l m

Features of setting f (718)
Variable distribution by road width (680)
Variable distribution by rainfall (510)
Variable distribution by time of day (850)

Number of available features 1398 1228 1568 1908 2248 2078 2758
Number of frequent features 1160 1032 1337 1591 1896 1768 2327

Feature category (no.) n o p q

Features of setting m (2758)
Variable dist. by velocity and road width (2160)
Variable dist. by velocity and rainfall (1620)
Variable dist. by velocity and time of day (2700)

Number of available features 4918 4108 5008 8158
Number of frequent features 3550 3295 3986 6177

Probability method. We denoted each driver’s frequency for each bin as Ni

and computed each driver’s occurrence probability Pi, which is Ni normalized
by the number of operation instances for the driver. We used Pi itself as a
feature.

KL divergence method. We described the difference between two distribu-
tions, P and Q. The KL divergence [8] is a representative definition of the
distance between two distributions: KL(P ||Q) =

∑
i Pi log Pi

Qi
.

We used Pi log Pi

Qi
of each bin as the feature.

Performance Evaluation. We tested 17 combinations of features, as shown in
Table 5. The feature settings are categorized into four groups; (a) to (d) use only
demographic and statistical information on the driver; (e) and (f) introduce the
variable distributions of the driving operations; (g) to (m) introduce driving cir-
cumstance information from other datasources or non-kinematic information in
the operation records; (n) to (q) take into account the effects of the combination
of the velocity and other circumstantial information.

We evaluated the performance by 10-fold cross validation. Features that
appeared in the driving records of less than 30 drivers were eliminated. The
number of remaining features of each combination is shown in Table 5, as the
“Number of frequent features”. All remaining features were normalized before-
hand. Three types of kernel functions (linear, polynomial, Gaussian) with hyper-
parameters (Table 6) were evaluated in a grid-search manner to achieve the best
AUC (area under the ROC curve) value. We also used feature selection based on
the χ2 value. The best number of features was determined from the grid search.
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Table 6. Parameters for grid search

Kernel Hyperparameter

Linear C : [2−5, ..., 210], waccident : {1, 2, 3, 5, 10}
Polynomial C : [2−5, ..., 210], γ : [2−10, ..., 23],

degree : {2, 3}, waccident : {1, 2, 3, 5, 10}
Gaussian C : [2−5, ..., 210], γ : [2−10, ..., 23], waccident : {1, 2, 3, 5, 10}

Table 7. Classification performance

Setting Method No. of selected features Precision Recall F-measure AUC

a - 2 0.36 1.00 0.52 0.57

b - 3 0.43 0.93 0.58 0.64

c - 4 0.36 1.00 0.53 0.45

d - 5 0.38 0.88 0.53 0.59

e p 50 0.47 0.88 0.62 0.71

f p 20 0.57 0.79 0.66 0.79

g KL 20 0.67 0.67 0.67 0.80

h KL 40 0.53 0.77 0.63 0.76

i KL 30 0.70 0.74 0.72 0.81

j KL 50 0.55 0.84 0.66 0.77

k KL 30 0.70 0.70 0.70 0.80

l KL 50 0.59 0.77 0.67 0.81

m KL 60 0.56 0.81 0.67 0.81

n KL 80 0.59 0.79 0.67 0.83

o KL 80 0.57 0.93 0.71 0.81

p KL 90 0.72 0.77 0.74 0.85

q KL 40 0.60 0.88 0.72 0.85

Random
classifier

0.37 0.50

Figures 1 and 2 show the best f-measure and AUC for each setting, respec-
tively. Representative results are shown in Table 7. The random classifier was
used as a baseline; it had a precision of 37% (= 43/125).

The demographic information was not so helpful in classifying drivers,
although it was slightly better than the random classifier: the AUC values for
settings (a) and (b) were greater than 0.5. Since all the drivers were well-trained
professionals, the demographic information may not have reflected their driving
skills so well.

The use of the kinematic information obtained from vehicle recorders was
helpful in classifying the drivers, as we can see from the results for setting (e).
When we took into account the velocity at which the operation was performed,
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performance improved slightly (see results for (e) and (f)). Adding circumstantial
information (road width, rainfall, and time of day) to the kinematic information
resulted in almost same performance ((g) to (i)). This circumstantial information
was of much help when it was combined with the velocity ((n) to (q)).

Figure 3 shows the ROC curves of representative results. Taking into account
the velocity of driving operations improved performance ((e) and (f)). Adding
circumstantial information improved performance; it was not so helpful when we
combined it with simple variable distributions (m); however, it greatly improved
performance when it was combined with both variable distributions and
velocity (q).

Fig. 1. F-measure for different feature
settings

Fig. 2. AUC under the ROC curve for
different feature settings

Fig. 3. ROC curves of representative results
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4 Conclusion

We thoroughly examined a large-scale archive of recorded vehicle data in order
to clarify the relationship between safety and driver behavior. We used multiple
datasources to compensate for driving circumstances in operation records and
successfully classified drivers as either safe or unsafe (f-measure = 72%). Methods
that use only driver demographic information or kinematic variables of operation
records have not achieved this level of performance.

This is the first step toward a better understanding of the relationship
between safe driving and driver behavior. Although this study considered only
past accidents, the knowledge acquired will be helpful in investigating driver
safety and preventing future accidents. We thus plan to apply our method to
predicting accidents. Our findings on the characteristics of drivers through their
driving behaviors will be helpful in educating drivers.
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Abstract. There are many tasks including diversified ranking and social
circle discovery focusing on the relationship between data as well as
the relevance to the query. These applications are actually related to
query-oriented clustering. In this paper, we firstly formulate the prob-
lem, query-oriented clustering, in a general form and propose the two
measures, query-oriented normalized cut (QNCut) and cluster balance to
evaluate the results for query-oriented clustering. We develop a model,
query-oriented graph clustering (QGC), that combines QNCut and the
balance constraint based on cluster balance in a quadratic form. In the
experiments, we show that QGC achieves promising results on improve-
ment in query-oriented clustering and social circle discovery.

Keywords: Query · Graph clustering · Laplacian eigenmaps

1 Introduction

Although most of the applications [1–5] are related to ranking (i.e., given a
query, vertices in a graph are ranked according to their relevance to the query),
the information requirement often goes beyond it. For instance, algorithms for
diversified ranking capture both the relevance to the query and the diversity
of the ranking result. As for social circle discovery [4], one may consider the
graph structure among the top ranked vertices to evaluate not only their rele-
vance to the query vertex (i.e., ego user) but also the similarity between them.
Though both ranking and clustering have been well studied respectively, it still
needs to be explored to consider the two objectives simultaneously. This issue is
called query-oriented clustering (QC) [16]. Different from the bicriteria objective
function in [16], we merge relevance and clustering into a graph-based objec-
tive function. Given an undirected graph and a query vertex, the graph can
be partitioned into clusters, each of which has strong intra-cluster edges and
weak inter-cluster edges, where these edges are weighted by the relevance of
their endpoints to the query. Unlike classical clustering (CC) algorithms which
treat all vertices on a graph with equal weights, such as k-means, query-oriented
clustering pays more attention to the subgraph around the query.

Consider a toy graph illustrated in Fig. 1(a). We obtain a clustering result
depicted in Fig. 1(b) by a CC method. Two different results for the QC problem
are shown in Fig. 1(c) and (d), where vertices with high relevance are painted

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 749–761, 2017.
DOI: 10.1007/978-3-319-57529-2 58
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Fig. 1. An illustration of difference between classical clustering (CC) and query-
oriented clustering (QC). Inter-cluster edges are painted red. (Color figure online)

dark colors and the inter-cluster edges are painted red. Before partitioning the
graph, the edges attached on the query vertex will be removed, which are shown
in dotted lines. If we use a CC method to tackle query-oriented clustering, given
query vertex v1, the clustering result is shown in Fig. 1(c). We can see that
top ranked vertices (i.e., v2, v3, v4 and v5) belong to the same cluster and
the subgraph around v1 can not be partitioned well. An ideal query-oriented
clustering result given query vertex v1 is shown in Fig. 1(d) since all three clusters
are close to v1. The top ranked vertices are partitioned into 3 clusters at the cost
of 2 edges: (v3, v9) and (v7, v8). Notice that the result in Fig. 1(d) is desirable
though its cost (i.e., sum of the weights of the inter-cluster edges) may be higher
than the cost of the result in Fig. 1(c). Hence, the CC methods are not adaptive
to the QC problem since there are two clusters.

The sum of the relevance of all the vertices in a cluster, called cluster relevance
in this paper, is the other evaluation criterion. In Fig. 1(c), the yellow cluster
and the green cluster are composed of vertices with low relevance while all the
high-relevance vertices belong to the blue cluster. Ideally, a good result should
contain clusters with similar relevance and we say that the result has high cluster
balance which will be formulated more clearly in Sect. 3. Figure 1(d) shows an
ideal result where the three clusters evenly cover the high ranked vertices. Thus,
an ideal QC result should appear “centripetally” around the query.

In this paper, we firstly formulate the problem by two evaluation criteria:
query-oriented normalized cut (QNCut) and cluster balance. Next, we propose
a model, query-oriented graph clustering (QGC), that combines QNCut and
cluster balance into a quadratic form by using Lagrange multiplier. For summa-
rization, our contributions are as follows:

– We formulate the query-oriented clustering problem by the two evaluation
criteria: QNCut and cluster balance.

– Considering QNCut minimization and entropy maximization simultaneously,
we propose a novel model, QGC, that is based on the objective function which
combines QNCut and the balance constraint into a quadratic form.
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– In the experiments, QGC outperforms other QC algorithms for subtopic dis-
covery. Moreover, QGC also outperforms the state-of-the-art methods for the
discovery of social circles in ego networks.

The remainder of the paper is organized as follows. In Sect. 2, we discuss
the related works including weighted clustering and graph clustering methods
related to this problem. In Sect. 3, the problem of QC is formulated and then
we define a novel measure, QNCut. In Sect. 4, our approach, QGC, containing
the objective function and the algorithm for cluster assignment, are formally
introduced. In Sect. 5, a comprehensive empirical analysis is described, followed
by our conclusion in Sect. 6.

2 Related Works

Our work has connections to existing works in diversified ranking and clustering.
We also discuss similar works that consider query and clustering simultaneously
in the section.

2.1 Weighted Clustering

The idea of weighted clustering, in which some data points should have a greater
effect on the utility of clustering than others, has been proposed [18–20]. In
[22], they observe that some algorithms are point proportional admissible (i.e.,
the output of an algorithm should be consistent if any point is duplicated). By
extending the concept, Ackerman et al. [21] conduct the analysis on the influence
of weighted data on classical clustering algorithms.

2.2 Clustering on Networks

To simplify the hierarchical structure, prior works discuss clustering on the sub-
graph constructed by 1-hop neighbors of the query, called the ego network. Park
et al. [7] re-rank retrieval results by HAC for content-based image retrieval. The
rank of the results is adjusted according to the distance of a cluster from a query.
Crabtree et al. [8] define the distance between webs according to the web-tag
bipartite relationship and also apply HAC to group webs. Schwander et al. [9]
propose a reranking framework based on contextual dissimilarity measures. On
social circles discovery, Mcauley et al. [4] propose a learning model not only
considering the 1-hop local graph structure and node features, but also uncov-
ering “mixed-memberships” of vertices. Huang et al. [15] propose an algorithm
based on the k-truss concept. Hence, compared with prior works, the formulated
problem considers the whole graph and its structure.

3 Preliminary

We firstly define the notation in this paper followed by the formulation of
query-oriented clustering. Then, we give two measures, QNCut and entropy, for
evaluation.
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3.1 Notation and Problem Formulation

Graph. Given a homogeneous undirected graph G = (V, E), where V =
{v1, v2, ..., vN} denotes the vertex set and E = {(vi, vj)|vi, vj ∈ V} denotes the
edge set. Let W be the weighted adjacency matrix of G. Given a query vertex
vq, we can obtain the relevance vector r̂ by a ranking algorithm.

Vertex Similarity. Similarity between two adjacent vertices is used to evaluate
their relationship so that similarity usually is customized and varies with datasets
and needs. We can construct an adjacent matrix W where the value of Wij

depends on the definition of similarity between vertex vi and vertex vj .

Query. Given a homogeneous network, we submit a vertex vq ∈ V as the query.
A ranking algorithm should return vertices relevant to vq.

Vertex Relevance. The relevance of vertex vi, denoted by ri, is defined as the
relevance between vi and query vertex vq. We denote r = {r1, r2, ..., rN} as the
relevance vector. In this paper, we use well-known personalized PageRank [14]
to calculate r toward the given query vertex vq. We denote p = {p1, p2, ..., pN}
as the preference vector where pi = 1 if i = q or pi = 0 otherwise. Thus, r can be
obtained by the recursion defined as r = (1 − α)W ̂D−1r+ αp, where α denotes
the damping factor and ̂D denotes a diagonal matrix with [̂d1, ̂d2, ..., ̂dN ] on the
diagonal, where ̂di =

∑N
j=1 Wij .

Cluster Relevance. The relevance of cluster Ak, denoted by r(Ak), can be
defined as r(Ak) =

∑

vi∈Ak
ri. Notice that r(Ak) represents the size of Ak when

ri = 1 for all i ∈ [1, N ].

Problem 1. Given query vertex vq, let f be a query-oriented clustering function
f(G, vq) = {A1,A2, ...,AK}, where Ak denotes the k-th cluster for all k ∈ [1,K].
Each cluster should consist of inter-cluster edges as less as possible and include
as many vertices close to vq as possible. In other words, the balance of cluster
relevance should be kept.

The task of f is to group vertices in V−{vq} into clusters, where the similarity
between adjacent vertices is determined by the weight of the edge linked between
them as well as their relevance. In Fig. 1(d), considering vertices v3, v4 and
v5 which are assigned to different clusters, any two of them have no common
neighbors except for v1 and they have similar relevance to v1 since they are the
1-hop neighbors of v1. In such a way, each cluster should include vertices with
high relevance to vq.

3.2 Measure: Query-oriented Normalized Cut

According to Problem 1, an ideal query-oriented clustering result should achieve
the two objectives stated as follows. First, some edges between high-relevance
endpoints must be cut to make each cluster include vertices with high relevance;
otherwise, there is at least one cluster composed entirely of irrelevant vertices.
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Second, like the minimum cut problem, edges with large weight should be cut as
few as possible. Now, we will introduce the measure, QGC, which extends the
concept of NCut [10] on the basis of the two objectives.

Given query vertex vq and relevance vector r, the cut between cluster Al and
its complement Al is defined as cut(Al,Al|vq) =

∑

vi∈Al,vj∈Al
riWijrj . The sum

of the weights of the edges in Al is defined as vol(Al|vq) =
∑

vi∈Al,vj∈V riWijrj .

We propose a novel measure, query-oriented normalized cut (QNCut), which is
defined as

QNCut(A1,A2, ...,AK |vq) =
K

∑

l=1

cut(Al,Al|vq)
vol(Al|vq) . (1)

A smaller value of QNCut indicates a better query-oriented clustering quality.

3.3 Measure: Cluster Balance

According to Problem 1, the relevance of the produced clusters should be similar
to make sure that each cluster contains the vertices with high relevance to vq.
Cluster balance is the measure to evaluate how close the relevance scores of the
produced clusters are. We use entropy as the measure which can be defined as

H(A) = −
K

∑

k=1

p(Ak)logp(Ak), (2)

where p(Ak) = r(Ak)/
∑K

l=1 r(Al) denotes the normalized relevance of cluster
Ak. When all the relevance scores of clusters are the same, i.e., p(A1) = p(A2) =
... = p(AK) = 1/K, we have H(A) = logK which is maximized. On the contrary,
the minimum, i.e., H(A) ≈ 0, is obtained when only one cluster, denoted by Ai

without loss of generality, relevant to vq, i.e., p(Ai) ≈ 1.
Considering the case when K = 2, we denote a1 and a2 as a N dimensional

vector where each element can only be 1 or 0. When the i-th element in a1 is
1, we have two facts: vi ∈ A1; i-th element in a2 must be 0 i.e., vi �∈ A2. When
H(A) is maximized, we have r�a1 = r(A1) = r(A2) = r�a2. Let ŷ ≈ a1 − a2
and then we have the equation r�ŷ ≈ 0 which is the concept of the balance
constraint in (6) in Sect. 4.

4 Query-oriented Graph Clustering

We will propose the objective function of QGC and derive a quadratic form for
dimensionality reduction.

Our idea is stated as follows. We will find the H partitions each of which
should minimize the sum of the weights of the edges crossing the cut. As such, K
clusters can be produced from the H partitions. Let Y = (ŷ1, ..., ŷH) ∈ R

N×H

be the partition matrix where H ≥ K and each column vector ŷh, called the
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partition vector, partitions G into two clusters according to the sign of each
element in ŷh. The positive elements and the negative ones in ŷh belong to
different clusters. The i-th row vector of Y, denoted by yi, represents which
partitions vi belongs to. yi is called the feature vector of vi. We define the
objective function as

F =
N

∑

i,j=1

Wijrirj‖ yi√
di

− yj
√

dj
‖2, (3)

subject to the constraints

ŷ�
h ŷh = 1, ∀h (4)

ŷ�
h ŷl = 0, ∀h �= l (5)

r�ŷh = 0, ∀h, (6)

where ‖‖ denotes the L2-norm and di is defined as di = ri
∑N

j=1 Wijrj . (3) is also
called the smoothness constraint, which means that nearby vertices will belong
to the same cluster with high probability by a good clustering method [12]. In
other words, a good clustering method is prone to cut weak edges to minimize
the objective function. The idea is inspired by normalized cut minimization.

We have three constraints with respect to the partition vectors. First, the
partition vectors should be normalized in (4). Second, (5) is the discriminative
constraint, which makes a partition as different as possible to one another by
minimizing the cosine similarity between their partition vectors. Third, (6) is
the balance constraint. Let C1 and C2 be the clusters divided by ŷ. According to
the explanation in Sect. 3.3, the cluster balance between C1 and C2 is maximized
when r�ŷ = 0.

By expanding (3), we have

f(Y) =
H

∑

h=1

ŷ�
h (I − D− 1

2RWRD− 1
2 )ŷh, (7)

where D is a diagonal matrix with [d1, d2, ..., dN ] on the diagonal and R is also
a diagonal matrix with r on the diagonal. When the relevance of all vertices are
equal, (7) can be reduced to the CC problem. By using the Lagrange duality,
(6) and (7) can be integrated as a dual function

g(τ ,μ) = min
Y

Λ(Y, τ ,μ) = min
Y

H
∑

h=1

ŷ�
h Lŷh − τh(ŷ�

h ŷh − 1) + 2μhr�ŷh,

where τh and μh are Lagrange multipliers and L = (I − D− 1
2 (RWR)D− 1

2 )
denotes a weighted Laplacian. To simplify the problem, without loss of generality,
we will demonstrate how to minimize yh by following the work in [13]. The
Lagrangian is defined as

Λ(ŷh, τ, μ) = ŷ�
h Lŷh − τ ŷ�

h ŷh + τ + 2μr�ŷh. (8)
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Lemma 1. The minimum of Λ(ŷh, τ, μ) equals to the smallest eigenvalue of
BL, where B = I − rr�.

Proof. Setting the first derivative of (8) to zero, we obtain Lŷh − τ ŷh + μr = 0.
Since r�r = 1, by multiplying on the left by r�, we have μ = −r�Lŷh. By
replacing μ, we have

BLŷh = τ ŷh, (9)

where B = (I− rr�) is the projection matrix (i.e., B = B2) which can project a
vector to the orthogonal complement of r. From (9), ŷh must be an eigenvector
of BL associated with eigenvalue τ . Since ŷh satisfies the constraint in (6), the
Lagrangian in (8) can be written as Λ(ŷh, τh, μ) = ŷ�

h Lŷh − ŷ�
h LBŷh + τ =

ŷ�
h rr

�ŷh + τ = τ . The value of the Lagrangian Λ(ŷh, τ, μ) must be one of the
eigenvalue of BL. Hence, the minimum of Λ(ŷh, τ, μ) is the smallest eigenvalue
of BL, which completes the proof.

From Lemma 1, the Lagrangian can be written as

Λ(ŷh, τh, μ) =
ŷ�
h BLŷh

ŷ�
h ŷh

. (10)

We already know that ŷh is an eigenvector of BL. Since BL is not symmetric,
the following task is to rewrite (10) as a quadratic form.

Lemma 2. Let λ and v be an eigenvalue and the associated eigenvector of BLB
respectively. v must be r or orthogonal to r.

Proof. First, we haveBLBr = BL(r − r) = 0. Second,BLB is symmetric so that
any two of the eigenvectors are orthogonal to each other. Since r is an eigenvector of
BLB, the other eigenvectors must be orthogonal to r, which completes the proof.

Lemma 3. Let λ and v be an eigenvalue and the associated eigenvector of BLB
respectively. When ŷh = Bv, where v �= r, Λ(ŷh, λ, μ) = λ.

Proof. First, we have BLBv = λv. By multiplying B on the left, we obtain

λBv = B(BLBv) = (BB)LBv = BLBv = λv.

Since BL(Bv) = λ(Bv), (9) is satisfied when ŷh = Bv. In other words, Bv is
an eigenvector of BL. Since v �= r, by using Lemma 2, (10) can be

Λ(Bv, λ, μ) =
v�BBLBv
v�BBv

=
v�BLBv

v�v
, (11)

which completes the proof.

Theorem 1. g(τ ,μ) = minV⊆r⊥
∑H

h=1
v�
h BLBvh

v�
h vh

, where r⊥ denotes the orthog-
onal complement of r and V = {v1, ...,vH}.
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Proof. Let ŷh = Bvh for k ∈ [1,K]. By using Lemma 3, we have the quadratic
objective function

g(τ ,μ) = min
V⊆r⊥

H
∑

h=1

Λ(Bvh, λh, μh) = min
V⊆r⊥

H
∑

h=1

v�
h BLBvh

v�
h vh

, (12)

which completes the proof.

From Theorem 1, we can use (12) to solve the objective function defined in
(3). Let λmin = λ1 ≤ λ2 ≤ ... ≤ λN = λmax be the eigenvalues of BLB in
increasing order. We select the eigenvectors [φ1,φ2, ...,φH ] associated with the
H smallest eigenvalues [λ1, λ2, ..., λH ]. Then we obtain the partition matrix Y =
[ŷ1, ŷ2, ..., ŷH ] = [Bφ1,Bφ2, ...,BφH ]. Notice that the orthogonal complement
of r is the column space of B, so that we have Br = 0. As such, r will not be
in Y. To reduce the computational cost, the Lanczos algorithm [11] is used to
find the eigenvectors associated with the H smallest eigenvalues approximately.
The time complexity is linear to the number of non-zero elements in W. Next,
we will show that Y satisfies the constraint in (5).

Theorem 2. For each two partition vectors ŷl and ŷm, we have ŷ�
l ŷm = 0.

Proof. Let ŷl = Bφl and ŷm = Bφm be two partition vectors, where φl and
φm are eigenvectors of BLB. Then we have

ŷ�
l ŷm = φ�

l φm − (r�φl)(r
�φm). (13)

Since BLB is positive semi-definite, we have φ�
l φm = 0. In addition, φl and

φm are both in the orthogonal complement of r so that the second term on the
right side of (13) is zero. Thus, the proof is completed.

So far, we have described the proposed objective function, the method for
eigenmaps and cluster assignment. The whole approach is shown in Algorithm 1
where PPR denotes the personalized PageRank algorithm.

5 Experimental Results

In this section, we evaluate the effectiveness of QGC empirically. Firstly, we
demonstrate the performances on QC problem. Then we conduct experiments
on social circle discovery. The experiment is conducted on Macbook Pro with
2.6 GHz Core i5 CPU and 8 GB main memory.

5.1 Query-oriented Clustering

We experiment with the weighted spectral clustering (WSC) [21], query-oriented
clustering (QC) [16] and RankComplete (RC) [23]. QC is a multi-objective app-
roach based on genetic algorithms considering two evaluation criteria: rele-
vance and within-cluster sum of similarity. RC considers clustering and ranking
simultaneously.
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Algorithm 1. Query-oriented Graph Clustering
Require: Weighted adjacent matrix W, query vertex vq, damping factor α and num-

ber of clusters K
Ensure: Cluster assignment l
1: Compute relevance r̂ = PPR(W, vq, α); r = r̂;
2: Set rq = 0 and normalize r = r/‖r‖2;
3: Construct R with r on the diagonal;
4: Construct D with d1, .., dN on the diagonal;
5: Obtain the eigenvectors z1, ..., zH associated with the H smallest eigenvalues

λ1, ..., λH of BLB, where H ≥ K, B = I − rr� and L = I − D− 1
2RWRD− 1

2

6: Compute Y = [λ1Bv1, ..., λHBvH ].
7: Compute clustering algorithm (i.e., K-means, hierarchical agglomerative) with Y

as the input.

Dataset. We experiment on two datasets which are described as follows.

ODP239. The dataset consists of 239 topics, each of which contains 100 subtopics
and about 100 documents associated with single subtopics. The topics, subtopics,
and their associated documents were selected from the Open Directory Project1.
By extracting words from the title and the document snippets and pruning
words with frequency 1, we construct a document-word matrix X with dimen-
sion 25, 580 × 43, 831. Then we use TF-IDF to re-weight entries in Xi,w =
fi,wlog |D|

|{Xi,w|Xi,w>0}| , where fi,w denotes the frequency of word w in docu-
ment i and |D| denotes the number of documents. To run the graph-based
algorithms, we construct the undirected graph according to the cosine simi-
larity Wi,j = x�

i xj

|xi||xi| . The entries are set to 0 if their values are smaller than μ,
where is set to 0.03 heuristically. As such, we build a document graph containing
4,587,568 edges and 25,880 vertices.

TR30. The dataset selected from the Open Directory Project consists of 30 top-
ics, each of which contains 10 subtopics and about 100 documents associated with
single subtopics. Following the matrix constructing procedure aforementioned in
ODP239, we build a document-word matrix X with dimension 2, 957 × 9, 973
and graph W containing 343,616 edges and 2,957 vertices.

In the two datasets, each topic is viewed as a query and its subtopics are
viewed as the clustering result. Given topic t, we introduce an augmented vertex
vt as the query vertex into G and link vt to its associated documents. As such,
QGC is run on the graph G = (V ′, E ′), where V ′ = V∪{vt} and E ′ = E∪{(vt, v)|v
is associated with vt}. After clustering G′, we retain the documents associated
with vt and drop the others. When evaluating the effectiveness of the algorithms,
we view the set of documents associated with the same subtopic as a cluster. QC
and RC run on matrix X while QGC and WSC run on W (i.e., graph G).

1 http://www.dmoz.org.

http://www.dmoz.org


758 L.-Y. Kuo et al.

Evaluation Criteria. Let C = {C1, ..., CK} be the predicted clusters and C =
{C1, ..., CK} be the ground-truth clusters. C should align closely to C. We use
F1 score as the measure. Since the correspondence between predicted clusters
and ground-truth clusters is unknown, we follow the works in [4,17] to evaluate
C by finding the optimal match: maxf :C→C

1
|f |

∑

c∈dom(f) F1(C, f(C)), where f

is an injective function from C to C. In other words, each ground-truth cluster
C ∈ C at most has one match C ∈ C. When |C| < |C|, each predicted cluster will
be assigned to a ground-truth cluster respectively by f .

Table 1. The performance of query-oriented clustering on ODP239 and TR30

QNCut Entropy Accuracy Pecision Recall F1score

ODP239 QGC-B 0.361 0.162 0.677 0.456 0.427 0.376

QGC 0.373 0.184 0.684 0.443 0.432 0.38

WSC 0.441 0.214 0.681 0.399 0.431 0.371

QC n/a 0.035 0.663 0.417 0.397 0.36

RC n/a 0.218 0.657 0.353 0.391 0.329

TR30 QGC-B 0.445 0.206 0.732 0.505 0.530 0.471

QGC 0.493 0.211 0.738 0.51 0.543 0.475

WSC 0.501 0.229 0.718 0.451 0.503 0.435

QC n/a 0.15 0.672 0.427 0.419 0.367

RC n/a 0.215 0.69 0.411 0.459 0.383

Performance. The performances of the five methods are shown in Table 1. QGC
outperforms the other methods in terms of both accuracy and F1 score in the
two datasets. QGC achieves slightly higher accuracy and F1 scores than WSC since
QGC is based on normalized cut (ncut) minimization so that it is prone to find
clumps in the graph while WSC, based on ratio cut (rcut) minimization, tends
to find splits according to the observation in [10]. Since documents associated
with the same subtopic have stronger intra-cluster relationship (i.e., more like
a clump), QGC can output more precise clustering results. For the same reason,
WSC which finds splits reaches higher entropy than QGC which finds clumps.

Considering the ncut-based algorithms, QGC-B reaches lower QNCut and
entropy scores than QGC, since QGC-B does not consider the balance constraint.
Considering a graph is perturbed by adding/deleting edges, QGC-B may output
clusters with tiny cluster relevance, while QGC is more insensitive to noise, since
QGC can avoid from outputting a result that consists of clusters with excessively
variant relevance and can preserve the property of ncut-based algorithm (i.e.,
finding clumps).
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5.2 Social Circle Discovery

We evaluate the efficiency and effectiveness of QGC applied to social circle dis-
covery on two real-world networks.

Dataset. We conduct experiments on two data sets described as follows.

Facebook. The first dataset is Facebook which is downloaded from the Stanford
Large Network Dataset Collection2. We only use the friend-to-friend feature to
construct the ego network containing 4,039 vertices and 88,234 edges.

Twitter. The Twitter dataset is also downloaded from the Stanford Large Net-
work Dataset Collection. We only use the friend-to-friend feature to construct
the ego network containing 81,306 vertices and 1,768,149 edges.

Fig. 2. Performance of social circles detection on Facebook and Twitter, in terms of
the F1 score (higher is better) and the query time.

Evaluation Criteria. The evaluation criteria are the same with Sect. 5.1.

Performance. We experiment with the social circle discovery model (SCD) [4]
and Enhanced link clustering (ELC) [17]. We also consider hierarchical agglom-
erative clustering algorithm (HAC). Since only the information of ego networks
are completed in the two datasets, we run QGC on ego networks. OGC is imple-
mented in Matlab and the other algorithms are implemented in C++.

The performance is shown in Fig. 2. QGC outperforms the other models and
achieves F1 scores of 0.67 on Facebook and 0.42 on Twitter. Compared to SCD,
QGC improves on the F1 scores by 13.6% on Facebook and 23.5% on Twitter. SCD
takes more time than the other methods while OGC costs less query time which are
approximately proportional to the number of edges. There are two explanations
that QGC run on the graph constructed merely from the friend-to-friend features
can reach the highest F1 score. First, introducing user profiles some of which are
uninformative may trap an algorithm into a local optimum. Second, according
to [17], the similarity between users is transitive (i.e., two users in one circle may
share few common features, if both of them are similar to a common node in the
same circle). A method based on user similarity graph will perform better since
graph-based methods can learn the transitive similarities [6,12].

2 https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/
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According to the explanation in [4], Facebook data is more complete than
Twitter data where only publicly-visible circles can be observed. The tweet-
based profiles are not so informative as the profile categories from Facebook.
Furthermore, Twitter data only encodes the follower relationships rather than
the friendships in Facebook.

6 Conclusion

In this paper, we precisely define the problem of query-oriented clustering and
the corresponding evaluation criteria, QNCut and cluster balance. We also define
the objective function and introduce the constraint of cluster balance to propose
a novel model, QGC, which can find more representative clusters by considering
the balance constraint. We conduct extensive experiments on real-world net-
works, and the results demonstrate the effectiveness and efficiency of QGC. In
the future, we will apply the proposed model to bipartite networks rather than
“compress” them into homogeneous ones as the preprocessing before running
QGC. Moreover, uncovering and measuring the overlap of clusters will make the
model more adaptive to real-world networks.
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Abstract. Networks have become ubiquitous in many real world appli-
cations and to cluster similar networks is an important problem. There
are various properties of graphs such as clustering coefficient (CC), den-
sity, arboricity, etc. We introduce a measure, Clique Conversion Coeffi-
cient (CCC), which captures the clique forming tendency of nodes in an
undirected graph. CCC could either be used as a weighted average of
the values in a vector or as the vector itself. Our experiments show that
CCC provides additional information about a graph in comparison to
related measures like CC and density. We cluster the real world graphs
using a combination of the features CCC, CC, and density and show that
without CCC as one of the features, graphs with similar clique forming
tendencies are not clustered together. The clustering with the use of
CCC would have applications in the areas of Social Network Analysis,
Protein-Protein Interaction Analysis, etc., where cliques have an impor-
tant role. We perform the clustering of ego networks of the YOUTUBE
network using values in CCC vector as features. The quality of the clus-
tering is analyzed by contrasting the frequent subgraphs in each cluster.
The results highlight the utility of CCC in clustering subgraphs of a
large graph.

1 Introduction

In many real world applications, data is naturally organized in the form of
networks such as social networks [5], road networks [7], collaboration networks
[3], communication networks, protein-protein interaction networks [4] and web
graphs. In graph theory various measures exist such as diameter, clustering coef-
ficient, density, arboricity [6], k-core number [2] and betweenness centrality [13]
which describe certain properties of graphs. An interesting problem correspond-
ing to data mining is to find similarity [14,15] between graphs. One of the main
challenges here is to list the properties of graphs that can be used as their fea-
tures in finding similarity.

Problem Statement: To determine the “goodness” of features for graph
similarity.

To list all the graph properties is near to impossible. Our focus in this paper
is on−Clique Conversion Ratio−the ratio at which the cliques of a particular
order expand into the cliques of a higher order. In this paper, we define Clique
Conversion Coefficient (CCC) to be a measure of the aforementioned tendency
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 762–773, 2017.
DOI: 10.1007/978-3-319-57529-2 59
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in graphs. Also, we show that the existing measures such as clustering coefficient
[1] and density do not capture the idea of the Clique Conversion Ratio as well
as CCC. To motivate the need for a measure like CCC we provide the following
example. Let A, B, and C be three people in a large Social Network G who
are mutually connected to each other. Let D be another person who forms at
least one triangle in G. The expansion of the clique {A,B,C} into the clique
{A,B,C,D} would require the presence of the cliques {A,B,D}, {A,C,D} and
{B,C,D} in G. Although D forms more than one triangle it need not be con-
nected to any of A,B and C. The clique {A,B,C} could expand into multiple
such cliques of size four. CCC, in fact, measures the ratio of actual conversions of
all cliques of a particular number of people into cliques having one more person
to the maximum number of such conversions possible. We could construct dense
graphs with many cliques of size three with only a few of those actually expand-
ing into cliques of size four. The Clustering Coefficient and Density would not be
able to differentiate such graphs from the ones that have high clique conversion
ratio. CCC is also useful in applications where the existence and expansion of
cliques plays an important role. For example, an advertiser might want to adver-
tise his product in a Social Network which is not only dense and well-connected
but also has higher clique forming tendency. This would help his advertisement
to percolate to more people in comparison to as in those networks having lesser
clique forming tendency. In this paper, we define CCC, explore its properties,
further provide experimental evidence that CCC provides new information in
comparison to the existing measures. The remainder of this paper is organized
as follows: definition of CCC in Sect. 2, heuristics to compute CCC are given in
Sect. 3, experimental results showing the utility of CCC are presented in Sects. 4
and 5 and the last section provides some conclusions.

2 Clique Conversion Ratios and CCC

2.1 Notations

Let G = (V,E) be an undirected graph where V is the set of nodes and E is the
set of edges such that |V | = n and |E| = m.

– Cp denotes the number of cliques of size p in G such that 2 ≤ p ≤ n. C2 is m.
– np denotes the number of nodes in G that participate in the formation of at

least one clique of size p. We need at least p nodes to form at least one clique
of size p. Hence np ≥ p, if Cp ≥ 1.

– rp+1 denotes the conversion ratio of cliques of size p to the cliques of size p+1
in G.

2.2 Conversion Ratios

We define rp+1 for 2 ≤ p ≤ n − 1 as

rp+1 =

{
Cp+1 (p+1)
Cp (np−p) if Cp ≥ 1

0 if Cp = 0
(1)

It could be seen that a complete graph with k nodes has rp+1 = 1,∀p ∈ [2, k−1].
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Combinatorial Justification of Ratios: In this section, we present a justifi-
cation that the conversion ratio rp+1 correctly computes the ratio of conversion
of cliques of size p to cliques of size p + 1. As per our notation the number of
cliques of size p are Cp and np nodes participate in at least formation of one
clique of size p. For a clique {v1, ..., vp} of size p there are at most (np −p) nodes
as choices to expand into a clique of size p + 1. But for such an expansion to
actually happen the node picked should have all p cliques of size p with each
subset of {v1, ..., vp} with size (p−1). Therefore, Cp cliques each having (np −p)
nodes to expand into a maximum of Cp(np−p)

(p+1) cliques of size p + 1. The denomi-
nator comes from the observation that the node picked to expand a clique of size
p could actually be forming all possible cliques of size p with subset of nodes in
this clique. Therefore the resultant clique of size (p + 1) could at most be over
counted (p+1) times. We know that Cp+1 is the number of cliques of size p+1.
Therefore, the ratio of the number of cliques of size p+1 to the maximum num-
ber of possible cliques of size p + 1 given Cp and np is our notion of conversion
ratio, i.e.,

Cp+1

Cp (np−p)
p+1

=
Cp+1 (p + 1)
Cp (np − p)

= rp+1 (2)

Range of the Ratios: The definition of the conversion ratio can be viewed as
the conditional probability of the event, where the formation of certain cliques of
size p+1 is the event which is conditioned on the occurrence of an event in which
certain cliques of size p are already formed by a set of np vertices. Therefore, the
conversion ratios naturally have a range [0, 1].

2.3 Global, Local and Average CCC

The Global CCC denoted by CCCg is defined as the weighted average of the
conversion ratios in a given graph defined for the following parameters:

1. A graph G = (V,E) where |V | = n and |E| = m.
2. A vector α = <α3, ..., αn> where αi corresponds to the weight of the respec-

tive ri and ∀i ∈ [3, n], αi ∈ [0, 1],
n∑

i=3

αi = 1.

CCCg(G,α) =
n∑

i=3

αiri

Fig. 1. (a) Petersen graph
(b) F4

We now present global CCC values for two special
graphs. Let α = { 1

3 , 1
3 , 1

3 , 0, ..., 0}.

1. In a Petersen Graph [9], we have 10 vertices and
15 edges connected as shown in Fig. 1(a). Let us
denote the Petersen graph with H. In spite of its
good connectivity it has no Cliques, i.e., all conver-
sion ratios equal to 0. Hence, CCCg(H,α) value
is 0.
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2. A Friendship Graph [12], Fn has n triangles joined at a common vertex.
Therefore, it has 2n + 1 vertices and 3n edges. This graph has no cliques of
size greater than 3. Therefore, CCCg(Fn, α) = 1

3(2n−1) for n ≥ 2. F4 shown
in Fig. 1(b), CCCg(F4, α) = 1

21 .
Let u ∈ V and N(u) denote the neighborhood of u such that every node

in it is connected by an edge to u. The Local CCC denoted by CCCl for u is
calculated with respect to the subgraph H induced by N(u). Assume H has
p nodes. CCCl is defined for the following parameters:
1. A graph G = (V,E) where |V | = n and |E| = m.
2. A node u ∈ V . Let us assume the neighborhood N(u) induced subgraph

H has p nodes.
3. A vector α = <α2, ..., αp> where αi corresponds to the weight of the

respective ri and ∀i ∈ [2, p], αi ∈ [0, 1],
p∑

i=2

αi = 1.

In local CCC, r2 is also considered, because every edge in H corresponds to a
clique of size three in G (as all nodes in H have an edge to u).

CCCl(G, u, α) =
p∑

i=2

αiri (3)

The average CCC denoted by CCCa is defined as an average on the local CCC
of all nodes of G and a given vector α = <α2, ..., αn> where αi corresponds to

the weight of the respective ri and ∀i ∈ [2, n], αi ∈ [0, 1],
n∑

i=2

αi = 1.

CCCa(G,α) =
1
n

∑
u∈V

CCCl(G, u, α) (4)

The measure CCC in all its three variants has range [0, 1]. This follows from the
fact that all the conversion ratios are defined to be in [0, 1] and the choice that
the sum of weights is to be 1.

2.4 Selection of Vector α

As per our experiments, different choices of vector α could strongly impact the
value of CCC. One simple choice of α is to give each ri equal weight. An example
where this choice may not seem ideal for all requirements is as follows: Let us
assume that a graph G consists of many triangles, only five cliques of size 4 and
one clique of size 5. In this case, r5 of G would be 1. This is because of all the
Cliques of size 4 join to form a clique of size 5. In other words, the conversion
of Cliques of size 4 if they exist to Cliques of size 5 is complete in G. If G has
very low r3 and r4, r5 would still skew the CCC value to be moderate to high.
If such phenomenon is not wanted the weights in α could be set in decreasing
order with increasing i values.
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3 Computation of CCC

Computing CCC is a computationally intensive task. In all our experiments the
heuristics presented in this section are used to compute conversion ratios and
consequently CCC of any graph. The two heuristics to make the computation of
CCC effective:

1. All vertices with degree less than p − 1 can never form a clique of size p.
Hence, these vertices can be pruned iteratively, so that the remaining vertices
are selected as candidates that could possibly form cliques of size p.

2. Any vertex that can not form a clique of size p − 1 also would not be able
to form a clique of size i, when i > p − 1. Therefore, only those vertices that
form at least a clique of size p − 1 are considered as candidates to check if
they could form cliques of size p.

Let G = (V,E), α be the graph and the weight vector respectively which are the
parameters required for computation of global CCC, CCCg(G,α).

Complexity Analysis of the Algorithm Based on Heuristics: Let δ =
Δ(G) be the maximum degree in G. Let γ = δ+1 be the size of maximum clique
possible in G. The upper bound on the running time of the algorithm is given

by
γ∑

i=3

(
ni−1

(
δ

i−1

))
= O(n δδ), where ni−1 is the number of nodes that form

at least one clique of size i − 1. Nevertheless, in the worst case, where G is a
complete graph, ∀i, ni = n and δ = n − 1. But on sparse graphs the heuristics
presented however help to reduce the running time, when ∀i, ni << n, and
δ << n.

4 Clustering of Graphs Using CCC as a Feature

Experimental Setup: In our experiments, we use the large networks of the
SNAP Dataset [8]. These graphs are selected from four different categories: road
networks, networks with ground truth communities, collaboration networks, and
peer-to-peer networks. We find the conversion ratios and global CCC values of
each network with the parameter α set as

αi =

{
1
3 if i ∈ {3, 4, 5}
0 otherwise

(5)

Table 1 presents the CCCg(., α) for each network where n,m represent the num-
ber of nodes and edges in the network respectively. The Road Networks(9, 10,
11) are almost planar and hence have very low conversion ratios, consequently
low global CCC values. This is also the case with Peer-to-peer Gnutella net-
works(5, 6, 8) except the fact that these are relatively very small networks and
that they have a high conversion of edges into triangles in comparison to the road
networks. Interestingly, in the Amazon network(7) the conversion ratios all have
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Table 1. Table presenting values of conversion ratios and global CCC values of each
network with CCC values in decreasing order

ID Dataset n m r3 r4 r5 CCCg(., α)

1 CA-GrQc 5242 14496 0.19 × 10−2 0.71 × 10−2 0.14 × 10−1 0.77 × 10−2

2 CA-HepTh 9877 25998 0.33 × 10−3 0.12 × 10−2 0.48 × 10−2 0.21 × 10−2

3 CA-CondMat 23133 93497 0.24 × 10−3 0.33 × 10−3 0.53 × 10−3 0.37 × 10−3

4 com-dblp 317080 1049866 0.20 × 10−4 0.11 × 10−3 0.40 × 10−3 0.18 × 10−3

5 P2p-Gnuetella05 8846 31839 0.12 × 10−4 0.15 × 10−3 0 0.53 × 10−4

6 P2p-Gnutella06 8717 31525 0.12 × 10−4 0.13 × 10−3 0 0.46 × 10−4

7 com-amazon 334863 925872 0.65 × 10−5 0.62 × 10−5 0.69 × 10−5 0.65 × 10−5

8 p2p-Gnuetella04 10876 39994 0.64 × 10−5 0.74 × 10−5 0 0.46 × 10−5

9 RoadNet-PA 1088092 1541898 0.12 × 10−6 0.70 × 10−8 0 0.42 × 10−7

10 RoadNet-TX 1379917 1921660 0.94 × 10−7 0.69 × 10−8 0 0.34 × 10−7

11 RoadNet-CA 1965206 2766607 0.67 × 10−7 0.44 × 10−8 0 0.24 × 10−7

similar values. Also, this phenomenon happens in CA-CondMat(3) adding to the
observation that this network is dense and has higher clique conversion in com-
parison to the Amazon network. In both these cases, any weight vector α would
give more or less a similar CCCg value for each network respectively. The collab-
oration networks CA-GrQc(1) and CA-HepTh(2) along with the ground truth
community com-dblp(4) have increasing conversion ratios rp as the p increases.
Hence, CCCg for these networks is sensitive to the changes in the weight vector
α. All these three networks are dense and have very high clique conversion ratios.

Comparison Between CCC, Clustering, and Density for Graphs in
our Dataset: Table 2 presents the normalized scores of CCCg(., α), clustering

Table 2. Z-normalization scores [10] of values of CCC, CC, and Density for each graph

ID Dataset CCCg(., α) CC Density

1 CA-GrQc 2.9106 1.0074 1.3241

2 CA-HepTh 0.4851 0.7868 1.3241

3 CA-CondMat −0.2511 1.3750 0.4712

4 com-dblp −0.3319 1.3750 −0.9765

5 p2p-Gnuetella05 −0.3860 −0.9147 0.7058

6 p2p-Gnutella06 −0.3889 −0.9165 0.7484

7 com-amazon −0.4057 0.5294 −0.9851

8 p2p-Gnuetella04 −0.4066 −0.9184 0.4286

9 RoadNet-PA −0.4085 −0.7684 −1.0158

10 RoadNet-TX −0.4085 −0.7684 −1.0171

11 RoadNet-CA −0.4085 −0.7721 −1.0183
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coefficient(CC) and density. Among the collaboration networks, CA-GrQc(1)
and CA-HepTh(2) both have high density and a very different clique conversion
nature. Also, CA-GrQc(1), CA-CondMat(3) and com-dblp(4) all have high CC
values, but only CA-GrQc among them has high CCC. All the peer-to-peer
networks(5, 6, 8) have moderate density values but very low CCC values. This
table shows that networks could still be dissimilar with respect to their clique
forming tendency in spite of having similar CC and density values.

Clustering Results: We perform three hierarchical clusterings with single link-
age of the eleven networks. All values are taken from Table 2. The three cluster-
ings are performed with: a) CCCg(., α) and CC as features, b) CC and Density
as features and c) CCCg(., α) and Density as features. Euclidean distance is
used to compute the similarity between any two networks in all clusterings.
Figure 2 shows the clustering of the networks. The green dotted ovals represent
the clusters, while the red dotted lines represent the level at which we break
the dendrogram to obtain clusters. Table 3 gives an overview of the clustering
results. Figure 2(a) shows the clustering obtained when CCCg(., α) and CC are
used as features. The first cluster in the result is just CA-GrQc(1) which has both
high CCC and CC. The second cluster consists of the networks CA-HepTh(2),
CA-CondMat(3), com-dblp(4) and com-amazon(7) which have moderate to high
values of CC but moderate CCC values. Only com-amazon(7) has a low CCC

Fig. 2. The dendrogram for the three hierarchical clusterings of the networks. (Color
figure online)
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in this cluster. The third cluster is the peer-to-peer networks and the road
networks which have very low CCC and CC values. Figure 2(b) shows the clus-
tering obtained when CC and Density are used as features. The first cluster
consists of the three collaboration networks(1, 2, 3) which have high CC and
Density values. The second cluster consists of all peer-to-peer networks(5, 6, 8)
which have high density and low CC. The third cluster consists of the rest of
networks(4, 7, 9, 10, 11) which have low density and low CC. The only exception
to this is com-dblp(4) which has the highest CC and very low Density. Interest-
ingly, the CCC value of com-dblp(4) is in the range of moderate to low which
is because its conversion ratios have almost same values. Figure 2(c) shows the
clustering obtained when CCCg(., α) and Density are used as features. The first
cluster consists of only CA-GrQC(1) which has very high density and CCC. The
second cluster consists of just CA-HepTh(2) which has high density and positive
CCC. The third cluster consists of networks(3, 5, 6, 8) which have positive den-
sity and moderate CCC. The fourth cluster consists of networks(4, 7, 9, 10, 11)
which have low values for both CCC and density. The important observation is
that when CCC is used as a feature, the clusters are formed taking into account
the similarity based on clique conversion ratio of graphs. But, in the absence
of CCC, the clusters do not take into account such similarity. For example, the
highly clique forming tendency in CA-GrQc is not considered in the clustering
obtained when CCC is not used as a feature. As CCC gives additional insights
into the clique forming tendency of graphs, we propose the use of CCC as one
of the features in clustering to get better clustering results.

Table 3. Clustering results

Features used Clusters obtained

CCC, CC {{1}, {2, 3, 4, 7}, {5, 6, 8, 9, 10, 11}}
CC, Density {{1, 2, 3}, {5, 6, 8}, {4, 7, 9, 10, 11}}
CCC, Density {{1}, {2}, {3, 5, 6, 8}, {4, 7, 9, 10, 11}}

5 Clustering of Subgraphs of YOUTUBE Network

Experimental Setup: The main idea in this section is to cluster the sub-
graphs of a large YOUTUBE graph using the Conversion Ratios as features.
We also cluster the same subgraphs using CC and Density as features. We find
the frequent subgraphs in each cluster of the clustering obtained when Conver-
sion Ratios (resp. CC and Density) are used as features. The two clusterings
are compared based on the frequent subgraphs in each cluster. The YOUTUBE
graph [17] has 1157827 users (nodes) and 4945382 user-to-user links (edges). In
our experiments, we generate 200 subgraphs such that each subgraph is induced
by the neighbors of a particular node, say, the ego node, of the corresponding
subgraph. All ego nodes are selected to have exactly 20 neighbors.

We find the local CC and Density of the 200 subgraphs. The clustering of
the subgraphs is performed by using DBSCAN [19] algorithm in Weka [18].
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The attributes of the clustering are CC and Density. The parameters of DBSCAN
are set as follows: ε = 0.04 and minPoints = 5. The result is two clusters of sub-
graphs as presented in Table 4. Around 10% of the subgraphs−the Outliers−are
not assigned to any cluster. Cluster 1 has subgraphs with low CC and high den-
sity whereas the Cluster 2 has subgraphs with high CC and density. Cluster 2
is a collection of subgraphs with nodes having a high tendency to group with
each other. From the cluster centers in Table 4 we can note that density does
not play a major role in Clustering. Majority of subgraphs belong to the Cluster
1 and have nodes with less tendency to group with eachother inspite of some
subgraphs having high density.

Table 4. Clustering of YOUTUBE subgraphs using CC and Density

Cluster ID (Size) Average {CC, Density} in cluster

1 (167) {0.0814, 0.3125}
2 (23) {0.2453, 0.3416}

Frequent Subgraphs in the Clusters: To analyze the quality of the clus-
tering lets look at the frequent subgraphs in each cluster ignoring the outliers.
Each cluster is viewed as a Graph Database and each subgraph in the cluster as
a transaction in it. Finding the frequent subgraphs in a cluster is then similar to
finding frequent itemsets in a set of transactions. All vertices in each subgraph
are labeled same. The Support S of each frequent subgraph I in a cluster is
defined to be the number of subgraphs in the cluster that consist of an isomor-
phic substructure to I. We use GASTON (a frequent subGrAph, Sequences, and
Tree ExtractiON)[16] to find the frequent subgraphs in each cluster. The mini-
mum support is set as 40%. We find frequent subgraphs with at most 6 vertices.
GASTON outputs the frequent subgraph patterns of three types: (i) frequent
cyclic graphs, (ii) real trees (iii) paths. The frequent cyclic graphs are the pat-
terns which consist of at least one cycle. The real trees are the patterns which
are tree kind of structures that are not just simple paths from a node to another
via intermediate nodes. We are mostly interested in analyzing the frequent cyclic
graphs as they correspond to clique forming tendency. The frequent subgraphs
in cluster 1 are 21 cyclic graphs and 8 real trees. The interesting frequent cyclic
graphs in cluster 1 are presented in Fig. 3 along with their support. We can note

Fig. 3. Support for the presented frequent subgraphs in Cluster (i) and Cluster (ii)
when CC and density are features.
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that in spite of low CC values the support for cliques of size 3 (a. i) and four
(b.i) in this cluster is over 75% and 50% respectively. More than 50% of the
subgraphs in Cluster 1 have good clique forming tendencies in spite of low CC.
The frequent subgraphs in cluster 2 are 23 cyclic graph and 8 real trees. The
cliques of size 3 (a.ii) and 4 (b.ii) both have a support of 100% in Cluster 2.
Also, a clique of size 5 (f.ii) has support over 90% in cluster 2. As cluster 2 has
highly dense subgraphs with high CC this result is not surprising, but only 23
subgraphs are in this cluster out of the 200 subgraphs. The support for frequent
subgraphs in the clusters shows us that both the clusters have many subgraphs
that have high clique forming tendencies. To contrast, let us now use conversion
ratios to find the clustering and analyze the frequent subgraphs in each cluster
obtained. The conversion ratios r2, r3, r4, r5 of the 200 subgraphs are calculated
and DBSCAN algorithm is used for the clustering with conversion ratios as the
attributes of clustering. The parameters of DBSCAN are set as follows: ε = 0.07
and minPoints = 3. DBSCAN outputs three Clusters with about 13% of the
subgraphs in the 200 subgraphs being outliers. The details of the three Clusters
obtained are presented in Table 5. Cluster 1 consists of 79 subgraphs with high
clique forming tendency, while Cluster 2 consists of 91 subgraphs with low clique
forming tendency. Cluster 3 consists of just four subgraphs with moderate values
of r2, but very high r3, r4 and r5. Cluster 3 appeared because each of these sub-
graphs has fewer edges among the neighbors of the ego nodes in comparison to
the subgraphs in Cluster 1. Most of these edges join to form at least a triangle.
Also, most of those triangles join to form at least one clique of size 4. In other
words, these subgraphs have nodes which once form at least an edge have high
tendency to form Cliques of higher orders as well. This could be noticed from
the Average Conversion Ratios values of the Cluster in Table 5.

Table 5. Clustering results of YOUTUBE subgraphs using the sequence of Clique
Conversion Ratios

Cluster ID (Size) Average {r2, r3, r4, r5}
1 (79) {0.1744, 0.1545, 0.1422, 0.0875}
2 (91) {0.0462, 0.0499, 0.0, 0.0}
3 (4) {0.1158, 0.2679, 0.3929, 0.3611}

Frequent Subgraphs in the Clusters: Again, using GASTON we find the
frequent subgraphs in each cluster obtained. We ignore the Cluster 3 (since it has
only 4 subgraphs) and the Outliers from this discussion. The frequent subgraphs
in Cluster 1 are 22 cyclic graphs and 8 real trees. Some interesting frequent
cyclic graphs in Cluster 1 and Cluster 2 are presented in Fig. 4. In Cluster 1 the
cliques of size 3, 4 and 5 (a.i, c.i and e.i) have support 100%, 94.94% and 41.77%
respectively. This shows that the subgraphs in the cluster have higher clique
forming tendency. The frequent subgraphs in Cluster 2 are 13 cyclic graphs and
8 real trees. In Cluster 2 the clique of size 3 (a.ii) has support over 54%. Cliques
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Fig. 4. Support for the presented frequent subgraphs in Cluster (i) and Cluster (ii)
when conversion ratios are features

of size 4 and 5 are infrequent and have support less than 20%. Cluster 2 has
subgraphs which do not have good clique conversions whereas Cluster 1 has
subgraphs which have very good clique forming tendency.

6 Summary

The main contribution of this work is the measure CCC, which unlike existing
measures, does not focus on the tendency of nodes to cluster alone, but also
focuses on the tendency of nodes to form cliques. This measure gives new insights
into graph properties, say, graphs with similar clustering coefficient or density,
might have a lot of variation in their clique conversion ratios. We compare the
clustering results of some real world graphs in the presence and absence of CCC.
Our results show that clustering with CCC as a feature helps to Cluster the
graphs with similar clique conversion ratios, while without CCC as a feature
this is not always possible. This highlights the need for a measure like CCC.
Also, we show the utility of CCC in clustering subgraphs of a large graph. The
quality of the clusters obtained is verified using the frequent subgraph patterns
in the clusters. This work could be further explored to find faster algorithms to
compute Clique Conversion Ratios either deterministically or approximately if
possible, to use the conversion ratios in the generation of synthetic graphs with
desired clique forming tendencies. Also, the exploration of the uses of CCC in
many applications areas has a good scope.
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Abstract. In recent years, community detection on plain graphs has
been widely studied. With the proliferation of available data, each user
in the network is usually associated with additional attributes for elab-
orate description. However, many existing methods only focus on the
topological structure and fail to deal with node-attributed networks.
These approaches cannot extract clear semantic meanings for commu-
nities detected. In this paper, we combine the topological structure and
attribute information into a unified process and propose a novel algo-
rithm to detect overlapping semantic communities. The proposed algo-
rithm is divided into three phases. Firstly, we detect local semantic
subcommunities from each node’s perspective using a greedy strategy.
Then, a supergraph which consists of all these subcommunities is cre-
ated. Finally, we find global semantic communities on the supergraph.
The experimental results on real-world datasets show the efficiency and
effectiveness of our approach against other state-of-the-art methods.

Keywords: Semantic community · Community detection · Node-
attributed graph

1 Introduction

In recent years, community detection on plain graphs has been widely stud-
ied [5,14,17]. In literature, a community or a cluster is a subgraph containing
nodes which are more densely linked to each other than to the rest of the graph
[11]. With the proliferation of available data, each user in the network is usu-
ally associated with additional attributes. However, most of existing community
detection methods only focus on plain graphs and fail to handle situations with
attributes. The underlying knowledge behind communities is hidden so that we
cannot interpret the communities we find, which limits our insight into the graph
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 774–785, 2017.
DOI: 10.1007/978-3-319-57529-2 60
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Fig. 1. The original graph and its semantic communities returned

structure. So detecting communities on node-attributed graphs becomes a criti-
cal problem. The communities we want to obtain should have cohesive structure
and specific common interpretations, which are called semantic communities.

Semantic communities have wide application scenarios in real world. For
example, each cluster has well-matched descriptions, so we can provide more
effective and precise recommendations for users on social platforms or make
proper market positioning strategy for target people. Furthermore, each object
can be grouped into various communities for its different attributes [12,16]. Thus,
finding overlapping semantic communities in node-attributed networks is mean-
ingful and realistic. Figure 1 illustrates a toy node-attributed graph. Each node
is associated with a set of attributes (interchangeably, features). And our goal is
to find out underlying overlapping semantic communities shown in Fig. 1(b) and
(c), which are two communities possessing attributes {A} and {C}, respectively.

Although some approaches have been proposed to handle community detec-
tion problem on node-attributed networks, there are still some problems
unsolved. First, some of these methods [10,18,21] can only deal with numeri-
cal attributes while some [20] can handle categorical attributes but suffer a high
time complexity. Next, the clusters detected by some algorithms [1,13] do not
consider attribute homogeneity and cohesive structure at the same time. More-
over, others [6,7] do not combine structural and attribute information into a
unified process for detecting communities. All of them above cannot give precise
interpretations to the results at the semantic level [2,15,19]. Furthermore, few
of the existing methods pay attention to the overlapping situations [8,21]. So we
aim to combine the available attributes and the topological structure to detect
meaningful overlapping semantic communities.

In this paper, we design a novel metric to integrate the topological structure
and attribute information to reveal communities leveraging a local-first strategy.
The local perspective of each individual node [3] instead of the global view of
the network is used to uncover semantic communities. Our method is capable
of finding out high-quality semantic communities that is compact in structure
and homogeneous in attribute. Also, this algorithm averts the trouble of tuning
user-defined parameters.

The main contributions of our work are as follows. (1) We study the prob-
lem of semantic community detection on node-attributed networks and propose
a parameter-free method based on a local-first strategy to find out overlapping



776 H. Du et al.

communities with specific interpretations. (2) A novel metric is proposed to
measure the centrality of node in attributed graphs. Based on the measure-
ment, our algorithm achieves a low time complexity, enabling the scalability for
large-scale networks. (3) We compare the performance of our algorithm with sev-
eral state-of-the-art community detection approaches under real-world datasets,
which demonstrates the efficiency and effectiveness of our method.

The rest of the paper is organized as follows. Our problem is defined in
Sect. 2. Then Sect. 3 presents our proposed algorithm in detail. Next we evaluate
our method against several approaches and present the experimental results in
Sect. 4. Finally, we make a conclusion in Sect. 5.

2 Problem Statement

Formally, we define a node-attributed graph as G = (V,E,A, f), where V is
the set of vertices, E ⊆ V × V is the set of edges, A = {a1, a2, · · · , ak} is
the set of k attributes and f : V → 2A is the mapping function from the
vertices to the attribute subsets of A. Figure 1(a) presents an example of node-
attributed graph. For one node vi ∈ V , it is annotated with a set of attributes
f(vi) = {ai1, ai2, · · · , aim}, where m denotes the number of attributes node vi
has and f(vi) ⊆ A.

Given a graph G = (V,E,A, f), the problem studied in this paper is to
find out all overlapping communities C = {Ci}ki=1, in which one cluster Ci may
overlap another cluster Cj with i �= j, such that: (1) nodes within clusters
are densely connected, and (2) all nodes in each cluster have some attributes
in common. Those clusters can be called semantic communities. If a cluster
C(U, S) is a semantic community, where U ⊆ V , then S =

⋂
v∈U f(v) and

S �= ∅. For example, Fig. 1(b) and (c) are two semantic communities uncovered
from Fig. 1(a).

3 The Algorithm

In this section, we present our Overlapping Semantic Community detection algo-
rithm OSCom in detail, which includes three phases.

3.1 Detecting Local Semantic Subcommunities

The first phase is to find local semantic subcommunities from the perspective of
each node. These subcommunities are obtained from centerless ego networks.

Definition 1 (Centerless Ego Network). Let G = (V,E,A, f) be a node-
attributed graph, the centerless ego network of a node v ∈ V is a subgraph which
deletes the node v and its adjacent edges from the ego network of node v, i.e.,

CEN(v,G) = (Γ (v),E ′,A, f ), (1)

where E′ = {(u,w)|u,w ∈ Γ (v), (u,w) ∈ E}.
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Definition 2 (Structural Neighborhood). Let G(V,E,A, f) be a attributed
graph, the structural neighborhood of node v ∈ V is the node set containing the
adjacent nodes to node v, i.e.,

Γ (v) = {u|(u, v) ∈ E}. (2)

Definition 3 (Attributed Neighborhood). In a attributed graph G(V,E,
A, f), the attributed neighborhood of a semantic community C(U, S) is the node
set containing nodes which satisfy: (1) locating outside of U but linking to any
one of nodes in U ; (2) having common attributes with cluster attributes S, i.e.,

ΓA(C ) = {u|Γ (u) ∩ C �= ∅, f (u) ∩ S �= ∅, u /∈ U }. (3)

Based on Definitions 2 and 3, we define the hybrid density.

Definition 4 (Hybrid Density). Given a node-attributed graph G(V,E,A, f),
the hybrid density of a semantic community C(U, S) is the ratio of inner degrees
to all degrees that are related to attributes S in C, i.e.,

σ(C) =
kin

kin + kA
out

, (4)

where kin is the total internal degrees of nodes in cluster C, and kA
out is the

number of links between node set U and its attributed neighborhood ΓA(C ).

On centerless ego networks, a greedy strategy is used to detect local semantic
subcommunities based on the hybrid density. We first introduce the concept of
density gain Δσ. When a node P is added into a semantic community C, the
gain in hybrid density is the difference between before and after, i.e.,

Δσ = σ(C + {P}) − σ(C). (5)

Initially, we randomly select a node O as an original community C, which
expands from node O: (1) scan all the attributed neighborhood ΓA(C ) of com-
munity C; (2) add the neighbor which has the largest Δσ into C to form a larger
cluster; (3) repeat from step (1) until ΓA(C ) is empty or all attributed neighbors
have negative Δσ. After these steps, the semantic subcommunity of node O is
obtained. Then we choose randomly another node which does not yet belong to
any group and do the same operation until there is no isolated node outside any
cluster. For example, we can obtain the local clusters {1, 2, 3, 4} and {3, 6, 8, 10}
on CEN(3, G) by adding central node into the results, which are shown in Fig. 2.

Instead of scanning all nodes and doing the same operation, we propose a
heuristic solution to decrease the iteration times. A new metric to value the
centrality of nodes in node-attributed graphs is introduced.

Definition 5 (Centrality of Node). Let G = (V,E,A, f) be a node-attributed
graph, the centrality of a node v ∈ V is defined as

θ(v) =

∑
u∈Γ(v) |f(v) ∩ f(u)|

|Γ (v)| , (6)
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Fig. 2. Local semantic subcommunities and the subcommunity graph

According to Eq. (6), we can sort all nodes by the centrality. In Fig. 1, the
final sequence of nodes after sorting is {3, 10, 1, 6, 7, 2, 9, 8, 4, 5}. We can begin
from the node with the maximal centrality. If one is selected as the central
node, the structural neighborhood and itself are labeled as visited so that we
can skip them in the ordered sequence. Thus all the nodes we need to consider
are {3, 7, 5}.

3.2 Creating Subcommunity Graph

After the first phase, we obtain a set of local subcommunities, which are limited
by the central nodes’ perspectives. Hence, we create a subcommunity graph H.
We firstly introduce the concept of average degree for a cluster.

Definition 6 (Average Degree). Given a cluster C in a graph G = (V,E,
A, f), the average degree of the cluster C is defined as:

d(C) =
|{(u, v)|u, v ∈ C, (u, v) ∈ E}|

|C| , (7)

where the numerator is the number of edges in cluster C and |C| denotes the
number of nodes in cluster C.

Definition 7 (Subcommunity Graph). A subcommunity graph is a super-
graph H = (V (H), E(H)), where

(1) each node v ∈ V (H) represents a local semantic subcommunity C = (U, S),
which can be called a supernode;

(2) an edge (u, v) ∈ E(H) with u : C = (U, S) and v : C ′ = (U ′, S′) iff the two
supernodes meet the following conditions: (a) U ∩ U ′ �= ∅; (b) S ∩ S′ �= ∅;
(c) d(U ∪ U ′) > d(U) and d(U ∪ U ′) > d(U ′), where d(U) represents the
average degree of U .

According to Definition 7, we utilize the average degree to decide whether
two subcommunities have connection or not. Take Fig. 2 for example, we
have obtained three local semantic subcommunities after the first phase:
{{A} : {1, 2, 3, 4}, {C} : {{3, 6, 8, 10}, {6, 7, 8, 9}}}. Then two subcommunities
{3, 6, 8, 10} and {6, 7, 8, 9} can build a link according to conditions. The struc-
ture of the subcommunity graph is illustrated in right of Fig. 2.
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3.3 Identifying Communities in Subcommunity Graph

After the subcommunity graph is created, we need to merge supernodes to obtain
final semantic communities of the global view. The subcommunity graph is also
a node-attributed network because the cluster attributes can be seen as the
attributes of corresponding supernode. So we can detect semantic communities
on the subcommunity graph using the same greedy method which is utilized in
the first phase.

For example, in Fig. 2, communities {3, 6, 8, 10} and {6, 7, 8, 9} can be merged
into a larger semantic community {3, 6, 7, 8, 9, 10} because their merging can
increase the hybrid density. Therefore, we can obtain the final semantic commu-
nities: {{A} : {1, 2, 3, 4}, {C} : {3, 6, 7, 8, 9, 10}} that are presented in Fig. 1(b)
and (c). Note that node 3 appears twice in different semantic communities, which
demonstrates that our algorithm can detect overlapping communities.

3.4 Complexity Analysis

The pseudo code of OSCom is described in Algorithm 1. Lines 1–13 are the first
phase of finding local semantic subcommunities. The second phase is specified in
Lines 14–21. Lines 22–25 present the final phase of detecting the global semantic
communities. We assume that there is a network with n nodes and m edges
and analyze the time complexity of each phase. In the first phase, the time
complexity of the speed-up strategy is O(n log n). Then we leverage the greedy
method to uncover local semantic subcommunities on selected central nodes,
and the worst time complexity is O(nc · k̄2), where nc is the number of central
nodes selected and k̄ is the average degree. In the second phase, we suppose
there are lc subcommunities from the first phase. The time complexity is O(l2c)
because we need to scan each pair of supernodes to build the subcommunity
graph. For the third phase, the worst time complexity is O(ns · k̄′2), where ns

is the number of selected central supernodes and k̄′ is the average degree of
these supernodes. Thus, the worst-case time complexity of OSCom algorithm is
O(n log n+nc · k̄2+ l2c +ns · k̄′2), where the number of selected nodes nc, selected
supernodes ns and subcommunities lc are much smaller than the number of
nodes n.

4 Experiments

In this section, we evaluate the performance of our algorithm on three real-
world datasets. All experiments are implemented in Python on a computer with
a 3.2 GHz CPU and 12 GB memory.

4.1 Datasets, Compared Algorithms and Evaluation Metrics

We use three real node-attributed graphs obtained from different sources in
our experiments: LastFM, Delicious and DBLP datasets, in which LastFM and
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Algorithm 1. The overlapping semantic community detection algorithm
OSCom
Input: Node-attributed network G = (V,E,A, f), result set C = ∅
Output: set of overlapping semantic communities C

(01) set of local communities LC = ∅;
(02) CalculateNodeCentrality(V );
(03) SV = Sort(V ); //sort all nodes in descending order of the centrality
(04) for all v ∈ SV do
(05) if v.visited == False then
(06) G(v) = RefineAttribute(CEN(v,G));
(07) C(v) = HybridDensityGreedy(G(v));
(08) LC.add(C(v));
(09) for all u ∈ Γ (v) do
(10) u.visited = True;
(11) end for
(12) end if
(13) end for
(14) Create a new network H, where V (H) → LC;
(15) for all vi ∈ V (H) do
(16) for all vj ∈ V (H) do
(17) if AveDegree(vi ∪ vj) > AveDegree(vi) and AveDegree(vi ∪ vj) >

AveDegree(vj) then
(18) Add (vi, vj) to E(H);
(19) end if
(20) end for
(21) end for
(22) tmpC = HybridDensityGreedy(H);
(23) for all C(U, S) ∈ tmpC do
(24) C(S).add(C);
(25) end for
(26) return C

Delicious come from the HetRec 2011 workshop1, DBLP dataset extracts from
DBLP2 co-authorship network. Some basic statistics are listed in Table 1, in
which |A| is the total number of attributes that the network has and Attr.density
is the average number of attributes per node has.

To evaluate the performance of our approach, we compare it with three exist-
ing algorithms. DEMON [4] can detect overlapping communities on plain graphs.
DBP [9] uncovers overlapping communities using matrix factorization on node-
attributed networks while only considering vertex attributes. LDense [6] reveals
overlapping communities in labeled graphs based on a generic greedy scheme,
which considers both structure and attribute information.

1 http://ir.ii.uam.es/hetrec2011/.
2 http://www.informatik.uni-trier.de/∼ley/db.

http://ir.ii.uam.es/hetrec2011/
http://www.informatik.uni-trier.de/~ley/db
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Table 1. Real-world datasets and their statistics

Dataset |V | |E| |A| Attr.density

LastFM 1, 892 12, 717 11, 946 17.9

Delicious 1, 861 7, 664 1, 350 52.5

DBLP 108, 030 276, 658 23, 285 14.3

Suppose that the final community result is C = {Ci}ki=1, where Ci = (Ui, Si)
and k is the total number of semantic communities, we adopt several metrics as
follows to quantitatively evaluate the quality of clustering results.

• Density. It measures the compactness of clusters in structure, formally,

density(C) =
1
k

k∑

i=1

ρ(Ci) =
1
k

k∑

i=1

2|{(u, v)|u, v ∈ U, (u, v) ∈ E}|
|U | × (|U | − 1)

. (8)

• Entropy. It measures the randomness of attributes on semantic clusters.

entropy(C) =
1
k

k∑

i=1

entropy(f(Ui), Ui), (9)

entropy(f(Ui), Ui) =
∑

aj∈f(Ui)

pj log2pj , pj =
|{v|aj ∈ f(v), v ∈ Ui}|

|Ui| . (10)

• Community quality. This metric evaluates the quality of clusters by integrat-
ing the structure and attribute, which also be use to select top-k communities
for comparison. Given a semantic cluster C(U, S), its quality is defined as:

Quality(C) = |U | × |S| × ρ(C). (11)

The quality of one semantic community depends on the scale of the commu-
nity |U |, the number of cluster attributes |S| and the density ρ(C). Generally, a
good semantic community should have high density and low entropy.

4.2 Experimental Results and Discussion

In the following, the clustering performance on real-world networks using metrics
above is reported. Note that Demon can automatically determine the number
of communities, while LDense and DBP need input parameter k to control the
number of output communities. Thus we analyze the clustering performance
from two aspects: one aspect is to evaluate performance on whole community
results, another is to select top-k communities for comparison.

Quality Evaluation on Overall Results. Since LDense and DBP need user-
defined parameters to determine the number of communities they return, we set
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Fig. 3. Overall performance comparison about density and entropy on three datasets
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Fig. 4. The performance of top-k communities of algorithms on LastFM dataset

the parameter k in LDense and DBP as the number of semantic communities
our algorithm output for fair comparison.

Figure 3 presents the density and entropy performance of these algorithms,
respectively. Specially, Fig. 3(a) shows that our algorithm outperforms all other
competitors in density on all datasets. Furthermore, OSCom achieves the low-
est values in entropy except for Delicious dataset according to Fig. 3(b). On the
other hand, DBP achieves better performance than DEMON and LDense in the
aspect of entropy on LastFM and Delicious datasets. Because DBP concentrates
on the attribute uniformity and ignores structural information, the communities
returned are extremely sparse in structure but competitive in attribute homo-
geneity. As for LDense, although it can also detect semantic communities, the
performance of LDense is not remarkable. This is because LDense does not take
the compactness of community into account.

Quality Evaluation on Top-k Results. We leverage the community quality to
select top-k communities for comparison. We respectively set the cluster number
k = 5, 10, 15, 20 as the inputs of LDense and DBP. For DEMON, we ignore the
influence of attributes to select top-k results.

Figure 4(a) presents the density comparison among four algorithms on
LastFM dataset. From the figure, we can find that our method gets the highest
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Fig. 5. The performance of top-k communities of algorithms on Delicious dataset

density no matter what the value of k is. This is because OSCom pays more
attention to the compactness of structure than DBP and LDense, which results
in clusters of moderate size and cohesive structure. Figure 4(b) shows the entropy
results of algorithms on LastFM dataset. OSCom outperforms other methods
apparently. Moreover, we find that OSCom retains stable performance in term
of entropy with the change of k. DEMON achieves the highest entropy, which is
comprehensible since it finds clusters without considering attributes of nodes.
Because DBP only focuses on attribute homogeneity, DBP keeps its advan-
tages compared with DEMON and LDense, but still obtains higher entropy than
OSCom.

Figure 5 shows the comparisons among algorithms on Delicious dataset.
Figure 5(a) presents the density performance with different values of k. Our
method OSCom achieves the best result while the performance of DBP is
extremely poor. Because DBP has no concern for graph structure. Similar with
the occasion in Fig. 4, DBP almost achieves the lowest entropy in Fig. 5(b)
because it merely focuses on the attribute information, resulting in high homo-
geneity of attributes. OSCom also outperforms DEMON in entropy. Further-
more, except for k = 5, OSCom almost achieves better performance than LDense
in term of entropy.

Since DBP is incapable of handling DBLP, Fig. 6 only shows three algo-
rithms in terms of density and entropy on DBLP dataset. Obviously, in Fig. 6(a),
OSCom and LDense achieve much better performance than DEMON in den-
sity. Besides, OSCom obtains a slight advantage compared with LDense. As for
entropy, OSCom performs better than LDense, but worse than DEMON. Because
local-first strategy exploited by DEMON detects communities on ego networks,
which in fact returns communities with vague interpretations, causing that the
entropy of DEMON is the lowest beyond expectation as shown in Fig. 6(b).

Running Time. Table 2 shows the running time of these algorithms on three
datasets. We can observe that OSCom is the most efficient method compared
with other approaches because OSCom adopts the speed-up strategy to decrease
the number of iterations. DEMON needs to scan each node to detect communities
on corresponding ego networks. LDense should operate on the entire network
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Fig. 6. The performance of top-k communities of algorithms on DBLP dataset

Table 2. Running time of four algorithms on the three datasets (sec.)

Algorithms LastFM Delicious DBLP

OSCom 8.5 10.2 346.5

DEMON 20.4 14.5 964.6

LDense 80.5 166.8 58555.0

DBP 541.6 38.4 −

over and over again to reveal each community. DBP adopts matrix factorization
method, the time of which is determined by the number of attributes. So DBP
is the most computationally expensive in LastFM.

5 Conclusion

In this paper, we study the problem of overlapping semantic community detec-
tion in node-attributed networks. A novel method OSCom which combines struc-
tural and attribute information is designed. The OSCom algorithm is divided
into three phases, whose results are cohesive in structure and homogenous in
attribute. Experimental results on real-world datasets demonstrate that our app-
roach outperforms state-of-the-art methods in efficiency and effectiveness.
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Abstract. In this paper, we propose a new approach to detect overlap-
ping communities in large complex networks. We first introduce a para-
metrized notion of a community, called k-linked community, allowing us
to characterize node/edge centered k-linked community with bounded
diameter. Such community admits a node or an edge with a distance at
most k

2
from any other node of that community. Next, we show how the

problem of detecting node/edge centered k-linked overlapping communi-
ties can be expressed as a Partial Max-SAT optimization problem. Then,
we propose a post-processing strategy to limit the overlaps between
communities. An extensive experimental evaluation on real-world net-
works shows that our approach outperforms several popular algorithms
in detecting relevant communities.

1 Introduction

Many complex interactions can be represented by networks, which are set of
nodes connected by edges. Such connections might represent different type of
relations between individuals or entities. Nodes in networks can be organized
into communities, which often correspond to groups of nodes that share common
properties, roles or functionnalities, such as functionally related proteins, social
communities, or topically related webpages.

One of the most important task when studying networks is that of identifying
communities. Indeed, detecting and analyzing communities is of great interest
in several application domains, including clustering web clients who have similar
interests, identifying clusters of customers in the network of customers-products
purchase relationships of online retailers (e.g. Amazon), etc. Several efficient
algorithm for discovering communities in complex networks have been proposed.
Let us mention for example, the most popular algorithm based on non-negative
matrix factorisation [12], the spectral clustering methods [17], the edge between-
ness based approach [8], and the seed set expansion algorithm [21]. Some of them
recuire several parameters such as the number of expected communities [12,17],
while others involve for example the computation of the shortest paths between
pairs of nodes [8].

In this paper, we introduce a parametrized notion of communities, called
k-linked community, allowing us to characterize node/edge centered k-linked
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 786–798, 2017.
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community admitting a node or an edge with a distance at most k
2 from any

other node of the community. This can be seen as a way to look for communities
of bounded diameter. Our approach is only dependent on this single parameter
k, and does not require any other knowledge about the network or about the
number of expected communities.

Our proposed overlapping communities detection framework is based on an
appropriate encoding of the centered k-linked community detection task as a par-
tial maximum satisfiability (Partial Max-SAT) optimisation problem. It allows
us to benefit from the recent advances in propositional satisfiability and its opti-
misation variants. Finally, we propose a post-processing strategy to limit the
overlaps between communities. Our proposed framework follows the recent data
mining research trend exploiting two powerful declarative models, namely con-
straint programming and propositional satisfiability. Indeed, several data mining
tasks including pattern mining [10] and clustering [7] have been modeled and
solved using these two well-known declarative and flexible models.

2 Formal Preliminaries

2.1 Propositional Logic and SAT Problem

Let L be a propositional language defined inductively from a finite set PS of
propositional symbols, the boolean constants � (true or 1) and ⊥ (false or 0) and
the standard logical connectives {¬,∧,∨,→,↔} in the usual way. We use the
letters x, y, z, etc. to range over the elements of PS. Formulas of L are denoted
by A,B,C, etc. A literal is a propositional variable (x) of PS or the negation of
a variable (¬x). The two literals x and ¬x are called complementary. A clause
is a (finite) disjunction of literals, i.e., a1 ∨ . . . ∨ an. For every propositional
formula A from L, P(A) denotes the symbols of PS occurring in A. A Boolean
interpretation I of a formula A is a truth assignment of PS, that is, a total
function from P(A) to {0, 1}. A model of a formula A is a Boolean interpretation
I that satisfies A, i.e. I(A) = 1. A formula A is satisfiable if there exists a model
of A. We denote by M(A) is the set of all models of A.

As usual, every finite set of formulas is considered as the conjunctive formula
whose conjuncts are the elements of the set. A formula in conjunctive normal
form (CNF) is a (finite) conjunction of clauses. The SAT problem consists in
deciding whether a given CNF formula admits a model or not. This well-known
NP-Complete problem has seen spectacular progress these recent years.

SAT has seen many successful applications in various fields such as elec-
tronic design automation, debugging of hardware designs, artificial intelligence,
and data mining. Several SAT extensions have been proposed to deal with opti-
misation problems. For example, the Max-SAT Problem seeks the maximum
number of clauses that can be satisfied. In this paper, we consider one of these
optimisation variants referred to as Partial Max-SAT problem. Partial Max-SAT
sits between SAT and Max-SAT problems. While SAT requires all clauses to be
satisfied, Partial Max-SAT relaxes this requirement by considering two kind of
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clauses, hard and soft. Partial MaxSAT is the problem of finding an optimal
assignment to the variables that satisfies all the hard clauses, while satisfying
the maximum number of soft clauses.

2.2 Overlapping Community Detection

In this subsection, we discuss the classic problem of detecting overlapping com-
munity structure in networks.

A network is an undirected graph N = (V,E) where V is a set of nodes and
E ⊆ V × V is a set of edges. We denote by n (respectively m) the number of
nodes (respectively edges) in N . The degree of a node u ∈ V , denoted du, is
the number of edges connected to it. The length of the shortest path between
two nodes u, v ∈ V is called the distance between the nodes, noted dist(u, v).
Given an edge e = (u, v) ∈ E and a node w ∈ V , the distance between e and w is
defined as dist(e, w) = min{dist(u,w), dist(v, w)}. In graph theory, a community
is described as a set of nodes densely connected internally. In real-world net-
works, nodes are organized into densely linked sets of nodes that are commonly
referred to as network communities, clusters or modules. Notice that communi-
ties in networks often overlap as nodes can belong to multiple communities at
once. Network overlapping community detection problem consists in dividing a
network of interest into (overlapping) communities for intelligent analysis. It has
recently attracted significant attention in diverse application domains. Identify-
ing the community structure is crucial for understanding structural properties
of the real-world networks. Various methods have been proposed to identify the
community structure of complex networks (see [6,15] for an overview).

Quality Metrics: Several measures have been proposed for quantifying the
quality of communities in networks (see [13] for a comparative study of quality
measures). In this paper, we adopt two popular metrics to assess the performance
of our method:

Modularity. The most widely used metric for measuring the quality of net-
work’s partition into communities (without a ground-truth) is Newman’s mod-
ularity function [18]. Modularity quantifies the community strength by compar-
ing the fraction of edges within the community with such fraction when random
connections between the nodes are made. Networks with high modularity have
dense connections between the nodes within communities but sparse connec-
tions between nodes in different communities. We use the following equation of
modularity, an extension of Newman’s modularity function designed to support
overlapping communities proposed in [19]. For the given community partition of
a network N = (V,E) with m edges, an extended modularity EQ is given by:

EQ =
1

2m

∑

C∈CN

∑

u,v∈C

1
OuOv

[
Auv − dudv

2m

]
(1)

with CN the set of communities in N ; Ou the number of communities to which
the node u belongs and Auv is the element of the adjacency matrix representing
the network.
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F1 Score. Let N = (V,E) be a network, and Ĉ (respectively C∗) the set of
(respectively ground truth) communities associated to N . The average F1 score
measure aims to quantify the level of correspondence between C∗ and Ĉ. More
precisely, we need to determine which Ci ∈ C∗ corresponds to which Ĉi ∈ Ĉ. The
F1 score is defined as the average of F1 score of the best matching ground-truth
community to each detected community, and the F1 score of the best matching
detected community to each ground-truth community [24]. More formally:

1
2

⎛

⎝ 1
|C∗|

∑

Ci∈C∗
F1(Ci, Ĉg(i)) +

1
|Ĉ|

∑

Ĉi∈Ĉ

F1(Cg(i), Ĉi)

⎞

⎠ (2)

where the best matching g and g′ is defined as follows: g(i) = arg max
j

F1(Ci, Ĉj),

g′(i) = arg max
j

F1(Cj , Ĉi), and F1(Ci, Ĉj) is the harmonic mean of Precision and

Recall.

3 A SAT-Based Framework for Community Detection

Fundamentally, communities allow us to discover groups of interacting objects
and the relations between them. A community (also referred to as a cluster) is
a set of cohesive nodes that have more connections inside the set than outside.
In this section, we propose an appropriate encoding of the community detec-
tion task as a SAT optimization problem. Proximity between nodes have been
expressed as direct edges expressing formally a direct relation. Individuals can
be grouped into the same cluster even if they are not linked directly. Relation-
ships between individuals can be expressed via some proximity conditions. For
instance, individuals having much common friends could be considered as very
closed to each other. Consequently, the definition of individuals proximity is
clearly a fundamental issue, as it have a great impact on the outcome. Next, we
establish the main definitions which will be used to formulate our problem.

Definition 1 (k-linked community). A community is k-linked if the nodes
are pairwise k-linked, i.e., the distance between each two nodes is less or equal
than k.

According to Definition 1, a k-linked community has a diameter less or equal
than k. Now, to simplify the encoding of the problem of discovering overlapping
communities, we focus on the following kinds of k-linked communities called k-
linked centered communities: those having a centroid node or centroid edge that
possesses a distance at most k

2 from each other node of the community.

Definition 2 (Node/Edge Centered k-linked Community). Let N =
(V,E) be a network and k > 1 a positive integer. A community C ⊆ V is
node (resp. edge) centered k-linked community of N iff there exists c ∈ C (resp.
e = (u, v) ∈ E with u, v ∈ C) s.t. ∀ w ∈ C, dist(c, w) � k

2 (resp. dist(e, w) � k
2 ).
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Obviously, a node centered k-linked community is an edge centered k-linked
community, while the converse is not true. Note also that a k-linked commu-
nity is not necessarily a centered k-linked community. A counter-example con-
sists of the network N = (V,E) where V = {1, 2, . . . , 8} and E = {(1, 2),
(2, 3), (3, 4), (5, 6), (6, 7), (7, 8), (1, 5), (4, 8)}. Then, C = V is a 4-linked commu-
nity, while there is neither a node v ∈ V (v ∈ {1, . . . , 8}) nor edge e ∈ E with
distance at most 2 from all the remaining nodes of C.

Lemma 1. Let N = (V,E) be a network, C ⊆ V a community and an inte-
ger k > 1. If C is a centered k-linked community, then C is also a k-linked
community.

Now, based on the notion of centered k-linked community, community detection
is defined as an optimization problem, solving Partial Max-SAT. To do so, our
starting point is to find a set of centroids S in the given network. The next
step is to formed the communities around the centroids based on a predefined
parameter k which represents the diameter of the communities. Clearly, we dis-
tinguish the following two cases: k-linked node (resp. edge) centered communities
corresponding to an even (resp. odd) value of k.

Next, we propose two appropriate reformulations as an optimization problem
for the community detection problem corresponding to node and edge centered
k-linked communities, respectively. To achieve this, propositional variables are
used for representing the network. Indeed, we associate each node u (resp. edge
e) with a propositional variable denoted xu (resp. ye) where xu, ye ∈ {0, 1}. The
key idea is that the variables assigned to 1 represent the centroids nodes (resp.
edges), i.e., Sv = {u ∈ V | I(xu) = 1} (resp. Se = {e ∈ E | I(ye) = 1}). We now
describe our SAT-based encodings using such propositional variables.

Node Centered k-linked Community: Our encoding consists of a set of
constraints. The first propositional formula expresses the fact that if a node u
is a centroid (I(xu) = 1), then the nodes with a distance at most k

2 from u are
placed to the same community that possesses u as a centroid.

∧

u∈V

(xu →
∧

v∈V |dist(u,v)� k
2

¬xv) (3)

Let us remark that constraint (3) can be expressed by a set of binary clauses:
∧

u∈V

∧

v∈V |dist(u,v)� k
2

(¬xu ∨ ¬xv)

After finding the centroids, we still have to determine whether a node u
belongs to community C or not depending on the value of k. To achieve this,
we use the following formula that affects nodes of the network to communities
where they belong to, i.e., nodes that have a distance at most of k

2 from the
centroid. ∧

u∈V

∨

v∈V |dist(u,v)� k
2

xv (4)
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Proposition 1. If the constraints (3) ∧ (4) are satisfied, then for all u �∈ Sv

there exists v ∈ Sv s.t. dist(u, v) � k
2 .

Proposition 1 ensures that if (3) ∧ (4) admits a model I, then the nodes cor-
responding to the variables assigned to 1 ({u ∈ V | I(xu) = 1}) are the centroids
and the network can be partitioned into |S| communities. The communities can
then be constructed by finding the nodes with a distance at most k

2 from each
centroid. Obviously, the formula (3) ∧ (4) may admits many candidate solutions
(i.e. models). However, choosing an arbitrary model do not always guarantee a
best partition of the network into communities. To alleviate this problem, we
will consider an objective function to optimize over the space of solutions. Then,
the node centered k-linked community detection problem can be formulated as
the following optimisation problem:

min/max
∑

u∈V

xu subject to (3) ∧ (4) (5)

Edge Centered k-linked Community: Now, to derive the formulation of
edge centered k-linked community detection problem, we use similar reasoning
as for node centered k-linked community, except that we consider centroid edges
instead of centroid nodes. To do so, a community is built around an edge e =
(u, v) by considering nodes with a distance at most k

2 from the edge e. This is
equivalent to partition the set of edges into modules and from that modules we
can deduce the set of communities of nodes.

In the same way as for centroid nodes, the following formula expresses the
fact that if an edge e = (u, v) is a centroid edge (I(ye) = 1), then the nodes with
a distance at most k

2 from u or v are assigned to 0.
∧

e=(u,v)∈E

(ye →
∧

e′∈E|dist(e′,u)� k
2 ||dist(e′,v)� k

2

¬ye′) (6)

Let us now introduce the following formula that affects nodes of the network
to their associated communities, i.e. nodes that have a distance of k

2 from the
centroid edge e.

∧

e=(u,v)∈E

∨

e′∈E|dist(e′,u)� k
2 ||dist(e′,v)� k

2

ye′ (7)

After fixing the centroids edges, the constraint 7 allows to identify whether
a node u belongs to a community C or not from the value of k.

Similarly, to improve the quality of the detected communities, our edge cen-
tered k-linked community detection problem is formulated as the following opti-
misation problem:

min/max
∑

e∈E

ye subject to (6) ∧ (7) (8)

We will use the notation CDSATk
min/max to denote the optimization problems

(5) and (8).
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Example 1. Let us consider the undirected network N = (V,E) depicted
in Fig. 1. Setting k = 4 can lead to the following solution of CDSAT4

max:
I = {¬x1,¬x2,¬x3,¬x4,¬x5, x6,¬x7, x8,¬x9,¬x10,¬x11}. So for that solu-
tion, N can be partitioned into the two communities C1 = {1, . . . , 6, 7, 11} and
C2 = {1, 2, 5, 6, 7, . . . , 11}. In contrast, CDSAT4

min leads to one community with
centroid x1 and containing all the nodes of N .

4

5

3 2

6

1

7

11 10

9

8

Fig. 1. A simple undirected network

Overlapping Enhancement: As said before, once the node/edge centroids are
found, the communities are formed arround them based on a predefined parame-
ter k. As a result, some nodes can belong to multiple communities as illustrated
in Example 1. However, such overlapping can be huge and not significant enough
w.r.t. real communities. To overcome this drawback and to allow for an accurate
partition of the network, we propose a simple but effective overlaps reduction
technique in order to correctly identify dense community overlaps. Starting from
a set of communities, each overlapping node will be assigned to its closest com-
munities according to its distance from the centroids of these communities.

Example 2. Let us consider again the network N = (V,E) of Fig. 1. By enhanc-
ing the overlapping, the two communities are reduced to C1 = {1, . . . , 6} and
C2 = {1, 7, . . . , 11}.

Algorithm 1 describes the general feature of our SAT-based node centered
k-linked community detection procedure1. The algorithm takes as input the net-
work and even integer k and returns a set of overlapping communities. It proceeds
as follows: First, we generate the corresponding optimization problem that can
be represented as a Partial MaxSAT problem (line 1). Then, a state-of-the-art
Weighted Partial MaxSAT solver WPM3 is used to get an optimal solution (i.e.
model) I. Next, the centroids are determined from the obtained model (lines
4–7). Using such centroids, the next step is to build communities by finding the
nodes with a distance at most k

2 from each centroid. Finally, the cleaning step
is called to improve the quality of detected communities (lines 11–13).
1 Algorithm 1 can be slightly modified to deal with edge centered k-linked community

detection problem.
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Algorithm 1. CDSATk
min/max

Input: A network N = (V,E) and an integer k > 1
Output: A set of overlapping communities S
Φ = encodeToOpt(k,G);1
I = solve(Φ) ;2
S ← ∅;3
for ux ∈ I do4

if I(ux) == 1 then5
Cu ← {u};6
S ← S ∪ Cu7

end8
end9
for vx ∈ I do10

for Cu ∈ S do11
if dist(u, v) � k

2 then Cu ← Cu ∪ {v}12
end13

end14
for Cu, Cv ∈ S × S do15

for w ∈ V do16
if dist(w, u) < dist(w, v) then Cv ← Cv \ {w}17

end18
end19
return S20

4 Performance Evaluation

4.1 Experiment Settings

In this section, we present an experimental evaluation of our proposed approach.
It was conducted on fourteen networks that cover a variety of application areas
and are briefly described in Table 1 (columns 1 and 2). Some of these networks
have ground-truth communities as presented in column 2 of Table 2. We have
also chosen three large networks (Facebook, DBLP, and Amazon taken from SNAP
[14]) to show the scalability of our model.

We evaluate the performance of our approaches by comparing them with the
following most prominent state-of-the-art overlapping community detection algo-
rithms: (i) Community-Affiliation Graph Model (AGM) [23], (ii) Clique Percolation
Method (CPM) [1], (iii) Cluster Affiliation Model for Big Networks (BIGCLAM) [24],
and (iv) Communities from Edge Structure and Node Attributes (CESNA) [25].
For the CPM algorithm, we use the cliques of size equal to 3. For BIGCLAM method,
user can specify the number of communities to detect, or let the program deter-
mine the number of communities from the topology of the network. We opt for
the case where the number of communities is not fixed in advance.

The proposed system, referred to as CDSATk
min/max, was written in Python.

Given an input network as a set of edges, our algorithm starts by generating the
corresponding optimization problem represented as a Partial MaxSAT problem.
To solve this problem, we consider the state-of-the-art Weighted Partial MaxSAT
solver WPM3 (best solver at the last MaxSAT competition2) [2]. As finding the

2 http://maxsat.ia.udl.cat/introduction/.

http://maxsat.ia.udl.cat/introduction/


794 S. Jabbour et al.

optimal solution is NP-hard, in our experiment, we consider the first solution
(not necessarily optimal) returned by the solver WPM3. For our experimental
study, all algorithms have been run on a PC with an Intel Core 2 Duo (2 GHz)
processor and 2 GB memory. We imposed 1 h time limit for all the methods.
Last, we use the symbol (–) in Tables 1 and 2 to indicate that the method is not
able to scale on the considered network under the time limit.

4.2 Choosing the Best Value of the Diameter

Our CDSATk
min/max algorithms take as input a network and a positive inte-

ger k and return a set of overlapping communities. In order to determine the
best diameter k, we run CDSATk

min/max on the fourteen considered networks,
while varying k from 3 to 6. The Fig. 2 summarises the relationship between
the average modularity and k. As Fig. 2 reveals, the best average modularity is
obtained by CDSAT4

min and CDSAT4
max with a value of 0.421 and 0.432, respec-

tively. We also observe that the average modularity obtained by both algorithms
decreases beyond k = 4. Overall, for both algorithms the best average modu-
larity is obtained for k = 4. These performances are relatively close. This can
be explained by the fact that real-world social networks possess small (aver-
age or effective) diameters (e.g. [5]). This can be related to the property of the
small-world phenomenon observed by several authors on real graphs (e.g. [20]).
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Fig. 2. Average modularity for CDSATk
min/max

4.3 Comparison with Baseline Algorithms

Results on Modularity Metric. Table 1 reports the performance comparison
between our CDSAT4

min/max approaches and the considered methods. Experi-
ments show that our methods outperform every baseline, in most cases, by an
interesting margin as shown by the average modularity reported in the last
line of Table 1. We observe that across all datasets and modularity metric,
CDSAT4

min yields the best performance in 8 out of 14 networks. We also note
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that CDSAT4
min shows a high margin in performance gain against the baselines

in two large networks DBLP and Amazon, and in a collaborations network such as
Coauthorship. In terms of average performance, CDSAT4

min outperforms CPM
by 111.55%, BIGCLAM by 26.42%, and CESNA by 40.80%. Similarly, we note
that CDSAT4

max outperforms all the other methods in 7 out of 14 datasets. In
terms of average performance, CDSAT4

max outperforms CPM by 117.08%, BIG-
CLAM by 29.72%, and CESNA by 44.48%. We also observe that CDSAT4

max

gives an important improvement against the baselines in two large networks
Facebook, DBLP, and also in a collaborations network like Coauthorship. On the
Lemis, Power grid, Pilgrim, and Jazz datasets, our methods remain relatively
competitive with the best baseline. A possible explanation for this phenomenon
is that the WPM3 solver don’t return the optimal solution for these datasets. Over-
all, our methods outperform BIGCLAM, which is the most competing algorithm,
on all large real datasets.

Table 1. Modularity based performance on fourteen datasets

Networks Nodes/Edges AGM CPM BIGCLAM CESNA CDSAT4
min CDSAT4

max

Dolphin [16] 62/159 −0.040 0.304 0.053 0.095 0.438 0.297

Karate [22] 34/78 0.200 0.230 0.195 0.180 0.310 0.311

Risk map [4] 42/83 0.415 0.488 0.194 0.504 0.571 0.528

Lemis [11] 77/254 0.162 0.205 0.444 0.311 0.064 0.419

Word-adj [17] 112/425 0.139 0.031 0.154 0.111 0.175 0.098

Football [8] 115/615 0.222 0.199 0.343 0.390 0.286 0.404

Facebook [14] 4039/88234 − − 0.391 0.539 0.449 0.701

DBLP [14] 317080/1049866 − 0.293 0.216 0.202 0.520 0.436

Amazon [14] 334863/925872 − 0.195 0.341 0.430 0.616 0.502

Books [8] 105/441 0.366 0.265 0.308 0.255 0.439 0.345

Power grid [20] 4941/6594 − 0.007 0.840 0.586 0.679 0.547

Coauthership [17] 1462/2742 0.619 0.456 0.679 0.031 0.923 0.852

Pilgrim [3] 34/128 0.368 0.096 0.415 0.321 0.312 0.407

Jazz [9] 196/2742 0.310 0.022 0.099 0.231 0.112 0.208

Average N/A N/A 0.199 0.333 0.299 0.421 0.432

Results on Ground-Truth Communities. After finding communities in a
given network, we can gauge the performance of each community that an algo-
rithm has discovered and whether a ground-truth community has been success-
fully identified. Table 2 summarizes the evaluation results, with F1 scores of
all algorithms on each network. Interestingly, it can be seen that CDSAT4

min

and CDSAT4
max produce more accurate average w.r.t. the ground-truth set-

ting than all the other baseline algorithms. In terms of average performance,
CDSAT4

min outperforms CPM by 16%, BIGCLAM by 22%, and CESNA by
35.05%. Moreover, notice that CDSAT4

max outperforms CPM by 6.49%, BIG-
CLAM by 12%, and CESNA by 23.98%. In the cases of Karate, Risk map and
DBLP data instances, CDSAT4

min and CDSAT4
max achieves a closely gain in the

F1 score compared to the best baseline (CPM in this case).
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Table 2. F1 Score using ground truth

Networks Communities AGM CPM BIGCLAM CESNA CDSAT4
min CDSAT4

max

Dolphin 2 0.120 0.579 0.628 0.100 0.749 0.659

Karate 2 0.864 0.857 0.629 0.663 0.847 0.851

Risk map 6 0.641 0.884 0.694 0.842 0.779 0.769

DBLP 13477 − 0.596 0.370 0.310 0.470 0.483

Amazon 75149 − 0.519 0.498 0.642 0.695 0.399

Books 3 0.684 0.557 0.549 0.591 0.804 0.652

Pilgrim 4 0.773 0.427 0.835 0.652 0.785 0.892

Average N/A N/A 0.631 0.600 0.542 0.732 0.672

As a summary, experimental results confirm that CDSAT4
min/max methods

achieve the overall best performance in terms of the accuracy of the detected
overlapping communities.

Evaluating Scalability. Finally, we evaluate the scalability of the different
community detection methods by measuring the CPU time (see Table 3). From
the results, it can be seen that our algorithms make few seconds to generate all
communities for small networks. However, the CPM, BIGCLAM and CESNA
baselines are faster than our methods for small networks (up to 200 nodes). We
can observe that CDSAT4

min and CDSAT4
max are third-fastest method overall,

when the network becomes larger. Interestingly, we also notice that our algo-
rithms are the second-fastest methods, next BIGCLAM, for DBLP and Amazon.

Table 3. Comparison in terms of running Time (s)

Networks AGM CPM BiGCLAM CESNA CDSAT4
max CDSAT4

min

Dolphin 6.77 0.09 0.24 0.07 14 8

Karate 35 0.07 0.29 0.07 11 7.15

Risk map 62 0.09 2.84 0.59 38 17

Lemis 200 0.10 0.55 0.09 16 12

Word-adj 60.35 0.09 0.97 0.13 60.60 11

Football 47.71 0.08 1.78 0.13 120.20 420

Facebook >1 h >1 h 240.38 4.81 360.30 480.7

DBLP >1 h 3240 60.56 900.34 720.50 780.40

Amazon >1 h >1 h 60.09 1200.49 780.20 900

Books 19.83 0.12 2.71 0.10 14.35 60.20

Power grid >1 h 0.66 0.81 4.48 420.15 480.25

Coauthership 360.17 0.07 14.08 0.05 360.58 360.20

Pilgrim 0.61 0.09 0.35 0.07 8.2 7

Jazz 60.02 0.09 2.84 0.59 360.12 120
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5 Conclusion

In this paper, we developed a new framework for detecting overlapping com-
munity structure of real-world networks. Our method is based on a partition
of the network into modules with bounded diameters. We have shown that the
problem of centered k-linked community detection can be expressed as a Partial
Max-SAT optimization problem. Experimental results showed that our approach
outperforms the state-of-the-art methods in accurately discovering network com-
munities. These performances are obtained while looking for the first non neces-
sarily optimal solution of the underlying optimisation problem. As a future work,
we intend to develop a parallel version to even improve the performance of our
optimisation based approach. We also plan to extend our proposed framework
to deal with dynamic community detection.
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Abstract. Deep learning methods are widely used in vision and face
recognition, however there is a real lack of application of such methods
in the field of text data. In this context, the data is often represented
by a sparse high dimensional document-term matrix. Dealing with such
data matrices, we present, in this paper, a new denoising auto-encoder for
dimensionality reduction, where each document is not only affected by its
own information, but also affected by the information from its neighbors
according to the cosine similarity measure. It turns out that the pro-
posed auto-encoder can discover the low dimensional embeddings, and
as a result reveal the underlying effective manifold structure. The visual
representation of these embeddings suggests the suitability of perform-
ing the clustering on the set of documents relying on the Expectation-
Maximization algorithm for Gaussian mixture models. On real-world
datasets, the relevance of the presented auto-encoder in the visualisa-
tion and document clustering field is shown by a comparison with five
widely used unsupervised dimensionality reduction methods including
the classic auto-encoder.

Keywords: Auto-encoder · Deep learning · Cosine similarity · Neigh-
borhood · Document clustering · Unsupervised learning · Dimensionality
reduction

1 Introduction

Analyzing sparse high-dimensional point clouds is a classical challenge in visu-
alization. Principal component analysis (PCA), one of the traditional techniques,
is certainly the best known. More efficient in nonlinear cases, a number of
techniques have been proposed, including Isometric Feature Mapping (Isomap),
Locally Linear Embedding (LLE), and Stochastic Neighbor Embedding (SNE).
Nevertheless these nonlinear techniques tend to be extremely sensitive to noise,
sample size, choice of neighborhood and other parameters (for details see for
instance [1]). On the other hand, t-SNE [2] and its parametric version [3] is bet-
ter than existing techniques at creating a single map that reveals structure at
many different scales. Parametric t-SNE learns the parametric mapping in such
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 801–813, 2017.
DOI: 10.1007/978-3-319-57529-2 62
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a way that the local structure of the data is preserved as well as possible in
the latent space. Generally, it works better in the case of image datasets but
it is very dependent on the adjustments of the hyper parameters, e.g. learning
rate noted η. Laplacian Eigenmap (LE) [4] is another interesting method where
the laplacian graph is used and has relatively the same objective as t-SNE, i.e.
preserving the local structure of data.

The auto-encoders, a special method of deep learning architecture, have
received more attention recently for dimensionality reduction tasks; their abili-
ties to adapt to different domains are promising. They make it possible to embed
the high dimensional data in a latent space of lower dimensionality while pre-
serving the original structure of the data. In its traditional version, each data
point is used to reconstruct itself from the code layer. If we have the same num-
ber of neurons in the code layer as in the input layer, the method learns the
identity function. In order to avoid this trivial solution, there are many different
approaches. The two most used consist in (1) using fewer number of neurons
in the code layer so as to force the auto-encoder to compress the features in a
lower space, (2) introducing some noise to data, for instance with a Gaussian
noise applied to the whole data or randomly replacing with zeros a percentage of
data entries. It is proved that some denoising auto-encoders (DAEs) correspond
to a Gaussian RBM (Restricted Boltzmann Machine) in which minimizing the
denoising reconstruction error estimates the energy function [5,6]. They gen-
erally give better results in comparison to classic auto-encoders without any
denoising step. We make use of the former type of auto-encoders in the follow-
ing. In this paper, we concentrate on the case of sparse high dimensional data
and in particular on document-term matrices. The cells of such matrices contain
the frequency counts of the terms belonging to the corresponding documents.
We known that the auto-encoders aim to find the low dimensional embeddings in
data by preserving the structure of the data as well as possible. Herein, with the
proposed auto-encoder, we aim to capture the relations among documents while
preserving the original structure. Therefore, the proposed method focuses on
the dimensionality reduction and the main contributions of the paper, presented
schematically in Fig. 1, are as follows:

– we propose a suitable normalization of document-term matrices;
– we introduce a weighted criterion where the weights rely on cosine simi-

larity, and derive an appropriate autoencoder able to effectively reduce the
dimension;

– finally in order to cluster the set of documents, we perform the Expectation-
Maximization [7] algorithm for Gaussian mixture models on the reduced space
instead of the k-means algorithm which is commonly used, and assess the
number of clusters relying on the Bayes Information Criterion [8].

The rest of the paper is organised as follows. In Sect. 2, we first intro-
duce different types of preprocessing that are mandatory in order to get the
auto-encoders work and then the role of the denoising procedure is described.
Section 3, is devoted to the introduction of the mathematical formulation of the
proposed auto-encoder. The experimental results on different text datasets and
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Fig. 1. Proposed method scheme (Color figure online)

clustering are presented in Sect. 4. Section 5 concludes the paper and presents
directions for future research.

2 Data Pre-processing

Let x1, . . . ,xm be a set of m objects where xi is a n-dimensional vector on R
n. In

practice, xi contains the variables corresponding to p measurements made on the
ith recording of some features on the phenomenon under study. Then data will be
denoted by an m by n data matrix x = (xij). Before applying of any clustering or
dimensionality reduction algorithm, a preprocessing step is necessary in order to
reduce the effect of the outliers and prepare the data for a better and more faith-
ful analysis. In the context of dimensionality reduction of document-term data,
different normalization methods are available which increase the performance of
such methods e.g. TF-IDF, mutual information or χ2 normalization. While this
type of normalizations is not widely employed for deep neural networks, the use
of TF-IDF normalization followed by centering, yields good results. On the other
hand it is shown in [9] that the other types of normalizations could contribute
to the deep architectures to work better and that consists in (1) centering (2)
applying KL-Expansion or PCA (3) using covariance equalization. The two steps
(2) and (3) can be combined by applying a PCA with whitening ; see for instance
[10]. As the networks learn the fastest from the most unexpected sample, it is
recommended to choose a sample at each iteration which is the most unfamiliar
to the system [9]. In order to rely on this hypothesis, after the normalization
step above, training data are shuffled to ensure that the successive examples
are not drawn from the same class. Finally we train the deep auto-encoder as a
pretraining step demonstrated in [11], by considering each layer separately as a
simple auto-encoder. The activations of a layer below become the input for the
next layer as in Fig. 2. In each layer we add some noise to the data by replacing
randomly 30% of the data by zeros, a procedure called corruption or denoising.
With this approach, we approximate the performance of RBMs with a lower cost
in terms of complexity.
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Fig. 2. Layer wise pretraining of a denoising autoencoder

3 Auto-encoder for Text Analysis

3.1 Classic Auto-encoders

Auto-encoders are traditionally composed of two parts, an encoder where the
high dimensional feature space of data is encoded and compressed to a lower
dimensional feature space by a function h as yi = h(W x̃i + b) where x̃ is a
corrupted input obtained by following the denoising procedure explained in the
last section, W is the weight matrix between the input and hidden layer as in
Fig. 2 where W ∈ R

d×p (d number of neurons in hidden layer, p number of input
features), b is the bias term where b ∈ R

d×1 and yi contains hidden layer values
in middle layers and code values in the last layer. The parameters W and b
are estimated using mini batch gradient descent algorithm in each iteration of
optimization and h is an activation function that can be a linear or non linear
such as sigmoid or hyperbolic tangent. In this paper we opt for the hyperbolic
tangent which generally provides better results. The second part of the auto-
encoder consists of a decoder which tries to reconstruct the original data from
the code layer yi by x′

i = g(W ′yi+b′). The layer of reconstructions has the same
dimensionality as the input layer. As the encoder part, the decoder layer has also
the same type of parameters (W ′ ∈ R

p×d and b′ ∈ R
p×1) that must be adjusted,

and an activation function g; like h it can be a linear or non linear function. In
classic auto-encoders, each example x′

i tries to reconstruct the original input xi

from the code or hidden layer yi. Therefore, the cost function takes the following
form

C(θ) = arg min
m∑

i=1

||g(W ′h(W x̃i + b) + b′) − xi||2 (1)

where C is a cost function with θ = (W, b,W ′, b′) the unknown parameters
to estimate by minimizing this function. The symbol ||.|| denotes an euclidean
distance between the reconstructed examples and original input.

3.2 The Proposed Unsupervised Auto-encoder

The classic auto-encoder, presented above and referred to as C-autoencoder in
the sequel, is not able to capture the original structure in the data, and to reveal
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the latent structure in the case of complex data. In order to achieve this, one
can modify the cost function (1) in a way where each example x′

i, in addition
to reconstructing the correspondent original input xi, also reconstructs the data
points that are in the neighborhood of xi, using cosine similarity metric. More-
over, each reconstruction term has a weight; this leads to the construction of
a weighted graph with edges connecting nearby documents to each other. At
first glance the idea is relatively similar to that in [12], but the prior normaliza-
tion step following a novel auto-encoder configuration and regularization make
this approach more relevant to cluster sparse text data, where the sparsity is
regularized in order to avoid overfitting. This procedure is depicted in Fig. 1,
where the example x′

i designated by a red circle reconstructs its correspondent
in input layer i.e. xi and its k nearest neighbors in input layer i.e. {xj ,xk}, that
are marked by a blue ellipse. The weights between these reconstruction terms
are denoted by ω. So the cost function for the proposed auto-encoder becomes,

C(θ) = arg min
m∑

i=1

∑

�∈Ψi

ωi�||x′
i − x�||2. (2)

where Ψi denotes the set of the k nearest neighbors of the document xi and
ω (not to be confused with W ) is the weight associated to document xi and
document x� belonging to Ψi. The set of parameters θ of the network in Eq. (1)
holds also for the new loss function. The weight draws on Laplacian Eigenmaps
where heat kernels are used to choose the weight decay function (parameter
t ∈ R) and the cosine between two documents is used as a similarity measure
between them. It takes the following form

ωi� = exp −(
cos(xi,x�)

t
) (3)

where t is a hyper parameter to adjust. The details on the choice of t is discussed
in [4]. Note that with t = 1, two very similar documents lead to ωi� ≈ 1/e,
and so similar documents in embeddings are less penalized; while two distinct
documents lead to ωi� ≈ 1 and so they are more penalized. Furthermore, we
have considered the sparsity regularization term in the cost function as follows,

Csparse(θ) = C(θ) + β

s∑

j=1

KL(ρ||ρ̂j) (4)

where β controls the importance of the regularization term and s is the num-
ber of neurons in hidden layer. KL(ρ||ρ̂j) is the Kullback-Leibler divergence
between ρ a sparsity parameter and ρ̂j its approximation by ρ̂j = 1

m

∑m
i=1 y

(j)
i

the average activation of hidden unit j; KL(ρ||ρ̂j) can be thought of as a mea-
sure of the information lost when ρ̂j is used to approximate ρ. The details of
this regularization are available in [13] and given by

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j
. (5)
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Hereafter, we describe in Algorithm 1, referred as T-autoencoder, the main
steps of the method, optimizing (4); we assume that W ′ = W� as is often the
case in the literature.

Algorithm 1. Unsupervised auto-encoder for Text data (T-autoencoder)

Input training set {xi}m
1

Hypothesis: Tied weights i.e. W ′ = W�; fixed sparsity level ρ = 0.05
Parameters: θ=(W , b, b′)
Notation: Ψi reconstruction set for xi

. ω weights between xi and Ψi

1. Compute the cosine similarity between documents and determine reconstruc-
tion set Ψ by k-nearest neighbor algorithm for each example.

2. Compute the weights ω between each example xi and its reconstruction set
Ψi, as in (3).

3. Update θ minimizing the Cost function Csparse in (4).
4. Update reconstruction set Ψ and weights ω with respect to each hidden layer

{yi}m
1 separately.

5. Repeat 3 and 4 until convergence.

The time complexity of T-autoencoder is O(n2) for cosine similarity com-
putation, O(n log n) for finding k-nearest neighbors and O(batch size × k) to
calculate each weighted reconstruction term in (2) in addition to the time com-
plexity of neural networks; where k is the number of neighbors. As n → ∞ the
added time complexity approaches O(n2).

4 Experiments

In order to evaluate the performance of T-autoencoder, we performed experi-
ments on different document-term datasets. Our implementations are based on
python and R languages, and the theano library in order to use the performance
of GPU for accelerating computations.

4.1 Experimental Setup

The characteristics of datasets1 used in experimentation are presented in Table 1.
Each dataset presented has its own complexity e.g. excessive number of variables
(Curse of dimensionality), high number of clusters or the complexity pertaining
to the data structure. We compared the T-autoencoder with a linear method
(PCA), and three non-linear methods (Isomap, LE and t-SNE). We run the meth-
ods which require the hyper parameters as number of neighbors or learning rate

1 http://dataexpertise.org/research.

http://dataexpertise.org/research
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to be adjusted e.g. Isomap, t-SNE and T-autoencoder, with diverse configura-
tions, and finally we picked the values corresponding to a minimum reconstruc-
tion error. As an example, for t-SNE we have opted for η = 100, as it provides
better results than other configurations. In addition to the state of the art meth-
ods, C-autoencoder is also considered in experiments, in order to point out the
improvement attained using T-autoencoder. We evaluated the performance of
these methods by means of three-dimensional plots of embeddings and also by
measuring different metrics such as Normalized Mutual Information (NMI) [14],
Adjusted Rand Index (ARI) [15] and Purity after applying the Expectation-
Maximization algorithm [7] for Gaussian Mixtures Models (GMM) instead of
k-means which is based on a restricted Gaussian mixture.

Table 1. Datasets used for experimentation, # denotes the cardinality.

Dataset #Documents #Terms Number of clusters

Classic3 3891 4303 3

CSTR 475 1000 4

20news 3970 8014 4

NG5 500 2000 5

Reviews 4069 18483 5

TR45 690 8261 10

TDT2 10 653 36771 10

For the auto-encoder part a n − n
2 − n

22 − . . . − d architecture is used, where
n represents the dimensionality of the data and d represents the dimensionality
of the latent space that should be attained in code layer. In this experimen-
tation we opt for three dimensional latent space, so d = 3. After extensive
numerical experiment trials, t = 0.5 in (3) appears appropriate, so we did not
get involved as much with tuning of such hyper parameters. The auto-encoders
were trained using the layer-wise pretraining procedure explained before, and
are fine-tuned by performing back-propagation such as minimizing the weighted
sum of squared errors between each example and its reconstruction set. We used
a decreasing learning rate, starting from a large value in higher layers and reduc-
ing it gradually in lower layers. Weight decay was set to 0.0001 for all the layers.
In our experiments, we opted for β = 0.01 and ρ = 0.05 for regularization term
in (4); where ρ controls the sparseness of representation, and has a fixed value
obtained via experimentation for all the datasets. Furthermore mini batch gra-
dient descent method was used to adjust weights and biases; the batch size was
fixed at 100.

4.2 Results

In this section, the results of the above mentioned methods are presented by
means of the visualization of the embeddings (Figs. 3, 4 and 5). Furthermore
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(a) PCA (b) t-SNE (η = 100) (c) Isomap

(d) LE (e) C-autoencoder (f) T-autoencoder

Fig. 3. Visualization of 500 documents from NG5 dataset by different unsupervised
dimensionality reduction methods

(a) PCA (b) t-SNE (η = 100) (c) Isomap

(d) LE (e) C-autoencoder (f) T-autoencoder

Fig. 4. Visualization of 475 documents from CSTR dataset by different unsupervised
dimensionality reduction methods

in order to have more precise comparisons, the embeddings are clustered in
homogeneous groups and are compared with true labels (Table 2).

Visualisation and Clustering. To illustrate the interest of T-autoencoder
in terms of visualization and clustering, because of the lack of space, we chose to
only present the visualizations of NG5, CSTR and TDT2 10 datasets obtained
by all the presented methods in Figs. 3, 4 and 5. In Table 2 comparisons are
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(a) PCA (b) t-SNE (η = 100) (c) Isomap

(d) LE (e) C-autoencoder (f) T-autoencoder

Fig. 5. Visualization of 653 documents from TDT2 10 dataset by different unsuper-
vised dimensionality reduction methods

reported for all the datasets in Table 1 using NMI, ARI and purity metrics
after applying the EM algorithm [7]. For each experiment the best performance
is highlighted in bold type. Note that EM is conducted considering the General
Gaussian Mixture (GMM) Model noted VVV in the sequel [16]. In the first step we
consider that the number of clusters is known. The different Gaussian models are
based on the cluster proportions and three characteristics of clusters (volume,
shape, orientation) that can be equal (E) or variable (V) (for details see, [17]).
For instance EVV corresponds to the model where the clusters have the same
volume but the shapes and orientations are different. In Fig. 3 we observe that
the latent structure of NG5 dataset is relatively complex and all the presented
methods have difficulties in distinguishing the five existing clusters. For example
PCA and LE can distinguish only three clusters and two remaining clusters are
mixed together while Isomap can only recognize some documents from the four
clusters while fifth group and the rest of documents are mixed in the center.
Furthermore it gives the worst performance (see Table 2). Using t-SNE, we can
see that in almost all the visualizations, the data are more dispersed than with
other methods, but the examples of the same cluster remain close to each other;
t-SNE gives the second best result. C-autoencoder cannot identify the frontier
between clusters whereas the result from Fig. 3(f) and Table 2 reveals a good
performance of T-autoencoder compared to the others. Using this method, we
can observe a good separability between the five groups of documents and the
best results in terms of purity, NMI and ARI.

In Fig. 4 we observe that two clusters are mixed together using most of the
methods, proving a complex latent structure of them. Considering PCA and
C-autoencoder, this complexity can be clearly observed. On the other hand
t-SNE is not able to capture the existing relations with other clusters too while
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Table 2. Comparison of all the presented methods in terms of clustering using NMI,
ARI and Purity (EM: Expectation-Maximization with the VVV model, KM: K-means)

Datasets Metrics PCA t-SNE Isomap LE C-autoencoder T-autoencoder

EM KM EM KM EM

Classic3 NMI 0.89 0.75 0.90 0.91 0.71 0.86 0.89 0.96

ARI 0.93 0.76 0.94 0.94 0.70 0.91 0.93 0.93

Purity 0.97 0.90 0.98 0.98 0.88 0.97 0.97 0.98

CSTR NMI 0.70 0.70 0.63 0.76 0.62 0.69 0.72 0.77

ARI 0.69 0.76 0.56 0.81 0.50 0.64 0.70 0.82

Purity 0.75 0.88 0.63 0.90 0.67 0.74 0.85 0.91

20news NMI 0.27 0.52 0.65 0.62 0.22 0.57 0.61 0.71

ARI 0.06 0.53 0.69 0.53 0.16 0.52 0.54 0.74

Purity 0.41 0.77 0.86 0.76 0.43 0.66 0.81 0.89

NG5 NMI 0.50 0.49 0.25 0.56 0.31 0.41 0.54 0.60

ARI 0.38 0.51 0.07 0.49 0.20 0.33 0.38 0.51

Purity 0.56 0.76 0.38 0.66 0.53 0.55 0.72 0.79

Reviews NMI 0.31 0.31 0.50 0.59 0.31 0.46 0.45 0.54

ARI 0.13 0.24 0.43 0.54 0.16 0.44 0.28 0.48

Purity 0.44 0.49 0.61 0.65 0.47 0.66 0.60 0.66

TR45 NMI 0.49 0.63 0.54 0.56 0.46 0.56 0.64 0.66

ARI 0.36 0.51 0.48 0.43 0.30 0.37 0.52 0.57

Purity 0.48 0.59 0.61 0.46 0.49 0.58 0.65 0.67

TDT2 10 NMI 0.70 0.96 0.81 0.80 0.71 0.87 0.80 0.98

ARI 0.30 0.95 0.70 0.57 0.43 0.81 0.66 0.98

Purity 0.48 0.97 0.80 0.70 0.52 0.85 0.75 0.99

Isomap shows good performance on this dataset in terms of separability of clus-
ters and clustering. Although the documents are dispersed in different directions
there is not a clear separation between four existing groups of documents. The
best visualizations are obtained using LE and T-autoencoder, where we can
clearly see that each projected cluster has its own direction. In Table 2 we can
also observe their higher performances in terms of all the metrics used.

In Fig. 5, the number of clusters is higher than in the two previous examples.
We note that PCA, Isomap and LE are not able to recognize all the ten obtained
clusters while LE has shown a good performance and t-SNE provides a good
result in terms of clustering but not in terms of visualisation (Table 2). Finally,
the good performance of T-autoencoder in terms of visualisation and clustering
is easy to observe; T-autoencoder clearly outperforms C-autoencoder.
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Assessing the Number of Clusters. Another reason why we used the GMM
for clustering instead of a simple k-means algorithm is that, this approach offers
the flexibility to fit the data, using an appropriate model. As we know, estimat-
ing the number of clusters for the input of a clustering algorithm is essential
and hard to achieve. So to estimate it, we have used the Bayesian Information
Criterion (BIC) [8] given by BICM,k = −2LM,k + υm,K log m, where M is the
model and k is the number of components. LM,k is the maximum likelihood
for M and k and υ is the number of free parameters in the model M with k
components. This criterion penalizes the number of parameters in model and
maximizes the likelihood of data simultaneously; it is efficient on a practical
ground. To choose the best model for mixture model with an appropriate num-
ber of clusters, we have considered the BIC criterion with different numbers of
components (clusters) K on the latent space obtained. Due to the lack of space,
we propose to illustrate the contribution of BIC on two data sets TDT2-10 and
NG5. In Fig. 6(a), BIC takes the maximum value when the number of compo-
nents is 10 with the VVV model (see Fig. 6(c)). In Fig. 7(a), we observe that the
highest value of BIC is attained for the model VVV with 6 clusters (marked by
red vertical dotted line) instead of 5 clusters (marked by green vertical dotted
line) with the EVV model; it is also an ellipsoidal model which considers the same
volume, but different shape and orientation for clusters. Notice that both sug-
gestions of BIC are interesting; Fig. 7 reinforces them. In Fig. 7(c), we simulated
the scheme of NG5 visualization depicted in Fig. 7(b), we have relatively five
clusters with different shapes and orientations. The orientations are shown by
arrows, and shapes by dotted ellipses.

Fig. 6. TDT2 10 dataset: Bic plot related to the latent space obtained by
T-autoencoder in (a), Latent space obtained by T-autoencoder with ground truth
clusters in (b), Estimated clusters scheme by mixture model using BIC criterion in (c).

In short, we observe that clustering on embeddings obtained via T-auto
encoder often outperforms all the presented methods including C-auto
encoder. This is due to the main difference in the architecture of the pro-
posed method in comparison with C-autoencoder. As mentioned earlier,
T-autoencoder is trained to reconstruct data from the corrupted input. This
procedure increases its ability to be less dependent on training data while
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Fig. 7. NG5 Dataset: Bic plot related to the latent space obtained by T-autoencoder

in (a), Latent space obtained via T-autoencoder with ground truth clusters in (b),
Estimated clusters scheme by mixture model using BIC criterion in (c). (Color figure
online)

promoting close documents; the GMM via EM confirms this performance by
providing a better clustering of documents. On the other hand, the autoen-
coders generally do not construct low-dimensional data representations in which
the natural clusters are widely separated. This could also be due to short-
coming of auto-encoders where latent relations in data cannot be discovered.
Unlike C-autoencoder, T-autoencoder learns these relations by reconstructing
an example from its k-nearest neighbors according to the more suitable cosine
similarity for document-term matrices.

5 Conclusion

In this paper a text specific version of denoising auto-encoders has been pro-
posed. We have seen that appropriate normalization applied on the set of docu-
ments combined with the use of a suitable weighted criterion where the weights
rely on the cosine similarity among documents is effective. The accuracy of auto-
encoders in determining the latent structure of data has been improved for the
task of dimensionality reduction and therefore for clustering by exploiting the
potential of GMM and BIC. Consequently, auto-encoders do not only aim at
maximizing the variance of the data, but also discovering the potential structure
in clusters.

The interest of our approach is to demonstrate the accuracy of the proposed
method in the buoyant field of visualization and document clustering [18,19]. The
efficiency in terms of time complexity is, however, another issue that could be
considered in future works. Although we have used the GPU performance using
the theano library, the efficiency should be improved by using more recent opti-
mization methods such as BFGSs which converge faster than gradient descent.
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Abstract. Adjective understanding is crucial for answering qualitative
or subjective questions, such as “is New York a big city”, yet not as
sufficiently studied as answering factoid questions. Our goal is to project
adjectives in the continuous distributional space, which enables to answer
not only the qualitative question example above, but also comparative
ones, such as “is New York bigger than San Francisco?”. As a basis, we
build on the probability P (New York—big city) and P (Boston—big city)
observed in Hearst patterns from a large Web corpus (as captured in a
probabilistic knowledge base such as Probase). From this base model,
we observe that this probability well predicts the graded score of adjec-
tive, but only for “head entities” with sufficient observations. However,
the observation of a city is scattered to many adjectives – Cities are
described with 194 adjectives in Probase, and, on average, only 2% of
cities are sufficiently observed in adjective-modified concepts. Our goal
is to train a distributional model such that any entity can be associated
to any adjective by its distance from the vector of ‘big city’ concept. To
overcome sparsity, we learn highly synonymous adjectives, such as big
and huge cities, to improve prediction accuracy. We validate our finding
with real-word knowledge bases.

Keywords: Adjective understanding · Commonsense knowledge · Word
embedding

1 Introduction

In recent years, database and search engines have shown the effectiveness in
answering quantitative questions on entities, such as “what is the population of
New York”. However, they are still limited in answering qualitative or subjec-
tive questions, often represented in adjective, such as “is New York a big city?”
or “is New York bigger than San Francisco”. This gets even harder for more
subjective adjectives such as “is New York beautiful?”. Adjectives, by modify-
ing or elaborating the meaning of other words, are studied in linguistics [6] to
play important roles in determining the semantic orientation of attributes, but
existing computational approaches have the following limitations.
c© Springer International Publishing AG 2017
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(a) KB baseline (Probase) (b) DS baseline (GloVe) (c) Ours

Fig. 1. The relation between population and the score of “big city”. In (b) and (c),
the size of circle is proportional to the population of the city

Existing work focuses on mining textual patterns to identify if ‘New York’
is frequently observed with ‘big city’ in Hearst patterns, like ‘big city such as
New York’ and ‘New York is a big city’, defining an is. A relationship between
New York and big city. Specifically, Probase [19] knowledge base (KB) captures
P (New York|big city) from a large web corpus, which we adopt as KB baseline.
However, in this KB, concept city is modified by 194 adjectives, such that textual
observations of New York are scattered over these adjective-modified concepts.
Such scattering makes lesser known, or tail entities, to be scarcely observed
especially in adjective-modified concepts, which we call a observation sparsity
problem – if Urbana is not observed in the ‘big city’ pattern, does this mean it
is not big or simply unobserved?

Trummer et al. [17] alleviate this problem by extending observations to
include not only positive isA patterns, but also negative isA patterns such as
‘Urbana is not a big city’. They use a provided threshold to map the given entity
and adjective pair, into positive state or negative state (binary condition). How-
ever, this still cannot handle the sparsity of entities observed in neither polarity.
Iwanari et al. [9] later generalize the binary classification into an ordering, using
textual patterns as evidences.

We summarize the limitations as follow:

– Observation sparsity: As New York can be associated with virtually infi-
nite adjectives, only few head entities are sufficiently observed in adjective-
modified concepts. (For example, New York is observed as a big city, but may
not be observed as a large city).

– Human intervention: Existing work requires human intervention to decide
a score threshold or provide human-generated ordering as training data. Our
goal is to give a graded score without human intervention, to not only classify
whether it is big, but also to compare how big it is with respect to another
entity.

Our first goal is thus to overcome observation sparsity, by answering “Is
New York a big city?” even when no Hearst co-occurrence pattern is observed.
A naive solution is adopting an existing distributed word representation
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technique, of using a big corpus as input and, by unsupervised learning, dis-
tributing words that have similar meaning in the near continuous space. In
Skip-gram model [13], word is represented into a vector to well predict con-
text words defined as a surrounding slide window. Recently, GloVe [14] trains a
distributional space combining the local and global model, which we adopt as
DS baseline. This model relaxes the sparsity by not being restricted to Hearst
patterns.

Our second goal is to train a graded score without human supervision. To
illustrate current limitations, Fig. 1(a) and (b) show KB and DS baseline results
for ordering cities to answer questions such as “Is X a big city?”. KB baseline
successfully grades the degree of “big city” (the bigger circle suggests higher
population), but includes only a few head entities actually observed in Fig. 1(a).
Meanwhile, though DS baseline overcomes the observation sparsity in Fig. 1(b)
by placing all cities in the space, close vectors to ‘big city’ are not necessarily
cities with higher population. Quantifying this failure requires a linear ordering
of all cities, which requires costly human-generated labels.

We combine the strength of the two models. First, we build on sparse but
highly precise Hearst patterns for training distributed word space. As a result,
we obtain Fig. 1(c) where the distance from big city preserves the correlation
with popularity. Meanwhile, DS baseline has higher recall but lower precision
by treating all co-occurrences as equal: Highly frequent co-occurrence of ‘big
city’ may include noisy words such as ‘where’, ‘like’, ‘small’. Second, we capture
the distributed similarity between adjective vectors. For example, as shown in
Fig. 1(c), big and huge cities are nearly synonymous, such that scattered obser-
vations from two concepts can be combined to enhance the correlation. In other
words, we can consider the distance to either vector (or the combination of the
two) to predict adjective grade more robustly.

We quantify the improved performance by comparing with a total order gen-
erated by attributes (for objective adjectives), or by a total ordering generated
by textual patterns (for subjective adjectives), as [17] confirms the quality of
such ordering. This enables to include up to 250 concepts and 500K entities in
evaluation.

2 Related Work

We categorize existing work for adjective understanding into implicit and explicit
modeling. Lastly, we describe how our work complements both approaches, and
describes other related attribute-related tasks.

2.1 Explicit Model

This approach considers textual patterns as explicit representation, to train a
graded adjective score. Probase [19] considers Hearst patterns to extract isA
relationship between concept and the given entity, observed from billions of
web documents. For our purpose of adjective understanding, we can consider
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Probase score for adjective-modified concepts, which we adopt as KB baseline.
Alternatively, Trummer et al. [17] consider both positive and negative isA pat-
terns, such as ‘New York is a big city’ and ‘Urbana is not a big city’, to train
a binary classifier given the ratio of positive and negative statements. Iwanari
et al. [9] use four textual patterns for finding various evidence between adjec-
tive and concept, aggregated into an ordering trained from supervised methods.
This ordering is evaluated against human-generated ordering, which limits the
scalability of evaluation. Our contribution is establishing Probase probability as
an ordering proxy, evaluating against data attributes (for objective adjective)
and missing probability (for subjective). WebChild Knowledge-Base [16] asso-
ciates entity with adjectives for fine-grained relations like hasShape, hasTaste,
evokesEmotion, etc.

The strength of explicit model in general is its high precision, but its weakness
is missing observation. However, as there are virtually infinite combinations of
adjective with concept, observations for adjective-modified concepts are typically
scarce, especially for lesser known entities, for which we cannot predict the score.

2.2 Implicit Model

Meanwhile, implicit approaches leverage a neural network model and large cor-
pus data to model latent semantic similarity between entities. For example,
the continuous bag-of-words model (CBOW) and the skip-gram model [12,13]
approaches predict semantic similarity between New York and Chicago based
on the similarity of surrounding words, such as mayor, city, population, etc. In
this space, the distance or similarity between every word can be calculated (or,
achieves high recall) even if the two words did not co-occur in sentence, and
the similarity will be high for two words with similar meaning. This helps infer
Chicago as a big city, even when it is not explicitly observed in the Hearst pattern
of “big city such as Chicago”, unlike New York being frequently observed.

Similarly, LSA [5] predicts two entities being similar, based on word co-
occurrence matrix. This model transforms a large co-occurrence matrix to low
dimensional vectors using a dimensional reduction technique. More recently,
GloVe [14] combines the strength of LSA and Skip-gram to train words into
the distributed space (DS), which we adopt as DS baseline. Huang et al. [8]
similarly predict similarity between query and document through deep learning,
but this line of approach shares a common weakness of compromising precision
for the increased recall.

Our goal is to increase recall without compromising precision. We thus use
high precision signals from explicit model to train a distributed entity space, then
infer missing scores based on its similarity with (possibly multiple synonymous)
adjectives.

2.3 Joint Model and Other Attribute Work

Existing joint approach of combining implicit and explicit models can be cate-
gorized into two directions: First, we can use explicit model as a supervision to
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train word embedding, such as syntactic or lexical knowledge [2,15] to improve
the quality of word embedding. Second, explicit knowledge can be projected onto
an embedding space [3,11,18], to enable the inference between relations. We take
the advantage of both approaches, by using explicit probability as supervision
for high-quality embedding, while projecting concepts in the space to enable the
inference of concept-concept or concept-entity similarity.

Our work is also related to attribute understanding, as adjective is often
viewed as a qualitative and subjective attributes describing the concept. First,
to understand a likely set of attributes describing the concept, [10] mines “the
[attribute] of [concept]” patterns. Proposed method derives attributes for mil-
lions of concepts and predicts the score of the attributes with regard to the
corresponding concepts. Second, to understand similar attributes, [7] discusses
how to automatically discover attribute synonyms to integrate hundreds of web
tables describing the same concept.

More recently, instead of textual data, several images of objects are used for
inferring the size or to predict whether the object is relatively big or small [1].
This work can capture graded property of size and complement our work, for
finding ‘big animal’ that can be captured in the photo, but not ‘big city’ which
cannot be photographed.

3 Proposed Model

This section first overviews existing approaches for quantifying the graded score
of the given entity for adjective-modified concepts. We then propose our app-
roach combining the strength of the two existing models.

3.1 Preliminary

Explicit Model. Probase [19] used a pattern-based method to estimate the
probability between the entity and its concept from billions of Web pages. We
selected only the adjective-modified concepts among various concepts in Probase
and used the probability as our score. The probability between concept and
entity was calculated by counting how frequently the pair of two word are found
in corpus, and can be defined as:

P (e|c) =
n(e, c)

∑
e′∈E(c) n(e′, c)

(1)

where e, c are respectively the entity and adjective-modified concept, E(c) is the
set of sub-entity of the adjective-modified concept c and n(e, c) is the num-
ber of times (e, c) discovered by Hearst pattern. In Probase data, when an
adjective-modified concept “big city” is given, the probability renders a cor-
rect size ordering, such as Chicago>London>Dublin> Washington DC, with
probability 3.82%, 3.58%, 1.42%, and 0.04% respectively. Though this signal
is highly precise, their coverage is limited – only 304 cities in USA (40.1%) are
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observed in the Heart patterns with ‘big city’, though their probability score does
meaningfully correlate with actual population with correlation score 0.75. How-
ever, this does not cover the rest 60% of big cities of comparable population.
It is thus difficult to decide whether the unseen city is not big or simply
unobserved.

Implicit Model. GloVe constructs a word embedding by using word co-
occurrence data. This model trained co-occurred word vector as following
equation.

F (wi, w̃k) = exp(wi
T w̃k) = P (j|i) =

n(i, k)
n(i)

(2)

where wi is vector of word i, w̃k is separate vector of context word j, and P (j|i) is
the conditional probability that word j appear in the context of word i. F denotes
a function that encode two vectors to real value and is used as exponential
function in this model.

A naive adoption of implicit model is to train a Glove embedding and use the
distance of words from the adjective-modified concept, such as ‘big city. Such
a naive adoption has two limitations. First, co-occurrence is more prominent
with non-entity words, such as “like”, “where” and “small”, compared to which
co-occurrence with city entities forms a long tail. This would work as a noise
in generating a robust ordering among the city entities. Second, eliminating
non-entity words in the space modeling cannot solve the problem either, as
entity co-occurrence may bear different meanings as well. As [17] pointed out,
co-occurrence of ‘New York is a big city’ and ‘Urbana is not a big city’ reflects
the opposite meaning.

We discuss the joint modeling overcoming the limitations of the two models.

3.2 Embeddings for Adjectives

In semantic space represented as vectors, the distance or similarity between every
word can be calculated even when two words do not co-occur in corpus. However,
as training with simple co-occurrence is too noisy, we use Probase probability
into the vector cosine distance in the range of −1 to 1. Therefore, we propose a
model that uses word embedding and cosine distance to overcome sparsity and
binary classification problem.

Loss Function for Concept. The proposed model trains adjective-modified
concept into semantic word space by applying the scores to cosine similarity from
the entity vector, instead of Glove model using co-occurrence. Our objective is
thus to find the vector of adjective-modified concept satisfying the following
condition.

F (ve, vc) = P (e|c) (3)

where vc, ve ∈ Rd are the vectors of adjective-modified concept and its entity
respectively. A simple way to obtain F is by inner product:

F (ve, vc) = vc · ve + be = P (e|c) (4)
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where be is bias of entity. As we normalize entity vectors to have size 1, this
corresponds to the cosine similarity of vc and ve, being proportional to the prob-
ability P (e|c). Suppose P (New York|big city) is higher than P (Boston|big city).
Then we want to train the vector “big city” to be located closer to the vector,
“New York” than “Boston”. F by inner product is the same as linear regression
model. P (e1:n|c) are dependent variables of (n by 1), ve1:n are independent vari-
ables of (n by d) and vc is intercept of (d by 1), where n is the number of data,
d is the dimension of vector.

However, as motivated in Fig. 2, the frequency is showing a power-law dis-
tribution, such that F cannot fit the frequency very well. We show the errors in
Fig. 2(left), contrasting with how we can improve in the right figure.
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Fig. 2. Error comparison of the two models

More specifically, we modify the equation such that the inner product of two
words in Eq. 2 equals to the “logarithm” of co-occurrence frequency showing
Fig. 2. In other words, we can train “exponential” of the inner product to refer
to the co-occurrence frequency as we reformulate as below:

F ′(vek
, vc) =

exp(ve · vc)∑
ek∈E(c) exp(vek

· vc)
= P (e|c) (5)

where E(c) is the entity set in concept c.
In Eq. 5, as the denominator is constant, P (ve|vc) is proportional to

exp(ve · ve). As a result, the entity vector placed closer to ‘big city’ can be
bigger. For satisfying Eq. 5, the loss function of proposed method is:

L(c) =
∑

ek∈E(c)

(

P (ek|c) − F ′(vek
, vc)

)2

(6)

Global Loss Function. To optimize loss function for all adjective-modified
concepts, a simple approach is minimizing

∑T
t=i L(ci), where T is the size of

whole adjective-modified concept. This function considers only positively labeled
data, as entities with high P (e|c) to adjective-modified concept c. However, due
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to the limitation of explicit model, it is unclear whether unlabeled data e′ /∈ E(c)
is missing because it is a negative evidence or simply unobserved.

To apply negative evidence, a naive method randomly samples some unla-
beled data as negative data. However, it may lead to false positive of selecting
unobserved big city as a negative label or insignificant effects by extracting
irrelevant data. To alleviate these problems, we firstly select entities which are
included in noun concept out of the adjective, but excluded in the adjective-
modified concept. For example, “Urbana” is included in “city” but excluded in
“big city”. And secondly, we weighted entities which likely to be more negative.
Our hypothesis is that, those entities that are frequently observed with city, but
not particularly with big city, are more likely not to be mentioned because it is a
negative evidence. Based on this observation, we define our global loss function
to consider the distance with negatively unlabeled data. To avoid false positive,
we use a weighted function. Our global loss function is:

Loss =
T∑

t=i

(

L(ci) +
∑

e′
k∈N(ci)

log(n(e′
k))

log(maxn(e′))
F ′(ve′

k
, vci)

2

)

(7)

where N(ci) is the sampled set of unlabeled entities which are excluded in
adjective-modified concept ci, but included in noun concept out of the adjective.
And n(e′) is the sum of the frequency of entity e′. Through this approach, we
can enhances the accuracy, as our empirical results confirm in Table 4 (precision
improves by 6.9%).

3.3 Finding Adjective Synonym

This section reports how distributed space can be used to detect semantic rela-
tionship between adjectives. In Fig. 1(c), “big city” is placed near “large city”,
“huge city”. We can observe that closest adjectives are all highly semantically
related. This suggests that using highly related adjectives as a cluster can aggre-
gate scattered observations of “big company” to “large company” or “huge
company”.

We can aggregate the closest pair at each iteration, until they converge to
synonym clusters, by adopting a bottom-up agglomerative hierarchical clustering
method [4]. Specifically, we compute a pairwise distance matrix using cosine
similarity in word embedding and use it for clustering: We can continue iterative
merges until the number of adjectives in one group is 4 or less.

Then, we combine the adjective set in cluster, i.e. (big, large, huge city), by
using the average score of synonyms, instead of the score of one adjective. As
shown in Table 4, we can show whether combining the statistical evidences from
similar adjectives can enhance the quality of the graded score prediction. This
average score indeed enhances the accuracy, as our empirical results confirm in
Table 4 (precision improves by 19.2%).
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4 Experiments

This section is organized to answer the following research questions respectively.

– RQ1: Some adjective can be used when people want to express objective
properties such as the size of the country. Therefore, we select some obvious
qualitative adjective and check the correlation with objective statistics to
show how our model captures such correlation.

– RQ2: Meanwhile, there exist non-measurable or subjective adjectives such as
great, valuable, or beautiful. We evaluate our model for these properties by
using human-made gold standard ordering.

– RQ3: We validate whether our model overcomes the limitation of explicit
models by extending prediction of P (e|c) to unseen objects.

4.1 RQ1: Interpreting Qualitative Adjective with Statistics

Some adjectives naturally correlate with objective statistics, such as big city with
statistics of population or area. We first demonstrate whether such correlation
confirms commonsense understanding of humans. We generalize our observation
to qualitative adjectives in Table 1, by using 8 field statistics. In these fields, we
show Spearman correlation between statistics and the graded scores calculated
by cosine similarity in word embedding.

In Table 1, we observe P (e|c) in KB baseline reflects human-perceived cor-
relation, but covers only a limited number of data. For example, KB baseline
grades “big city” only for 186 cities, but our model scores them for 278 cities.
Our model obtains high coverage, calculating the similarity of the entities that
cannot be extracted by specific pattern. The last column shows that our model
expands the coverage while preserving correlation.

Table 1. Spearman’s rho between the graded score and the statistics

Adjective-modified Statistics KB baseline Ours

concept type Correlation # of data Correlation # of data

Big city Population 0.705 186 0.706 278 (149%)

Land area 0.460 186 0.446 278 (149%)

Expensive city Big mac Index 0.630 54 0.648 70 (130%)

Cost of living 0.571 282 0.508 444 (157%)

Large country Population 0.651 119 0.741 191 (161%)

Land area 0.799 119 0.803 191 (161%)

Rich country GDP 0.690 120 0.690 169 (141%)

PPP GDP 0.717 120 0.708 169 (141%)
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(a) City (b) Country

Fig. 3. Correlations between adjectives and population/land area

We observed that the correlations between adjective and statistics are dif-
ferent depending on the combined concepts. As shown in Fig. 3, “large country”
is more highly correlated with population than land area, but “large city” is
more highly correlated with population than land area. The opposite meaning
of “large” is “ancient” or “dying” in city, but “tiny” in country. “dying” and
“ancient” are rarely used in country, and human tend to represent “small town”
for negative correlation word for population and land area not “tiny city”. The
use of “large city” correlates more with population than land area, while “large
country” correlates more with land area. This also confirms the human percep-
tion of considering countries such as Russia, China, or the US with large area as
big countries, while considering metropolis with high population as big cities.

4.2 RQ2: Comparing Correlation with Human-Made Gold-Standard

To evaluate our model in terms of correlation, we adopt the gold standard order-
ings made by human. Iwanari et al. [9] release evaluation dataset including 35
adjective-modified concepts and average 7 entities per each concept. They asked
multiple volunteers to order some entities set on attribute intensity expressed
by adjective. Then, they pick the ordering that achieved the best average Spear-
man’s correlation and use the ordering as gold standard. However, unlike our
English dataset, the model was built on Japanese corpus and evaluation set.
Because the domain of data we use is English, we excluded 16 specific concepts
related to Japanese, such as cartoon, alcohol, temple, corner store, and town.
Finally, we use ordering between 19 concepts and 134 entities for comparing our
model. Additionally, Iwanari et al. [9] translated the concept and adjective words
into English. However, the translated words are in less general form, we changed
the words to synonyms that are more frequently used. For example, we chose
the word “intelligent animal”, instead of “clever mammal” in dataset.

The experimental results are listed in Table 2. SVM and SVR refer to the
methods proposed by Iwanari et al. [9]. KB baseline refers to the pattern-based
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Table 2. Spearman’s rho against gold-standard ordering

Adj.concept Human KB baseline (coverage) SVM SVR Ours

Beautiful plant 0.767 0.866 (37.5%) 0.357 0.167 0.381

Valuable gemstone 0.682 0.782 (87.5%) 0.524 0.548 0.643

Popular sport 0.422 0.290 (75.0%) 0.381 −0.095 0.238

Intelligent animal 0.598 0.400 (66.7%) 0.143 0.029 0.600

Large animal 1.000 0.500 (50.0%) 0.771 0.886 0.600

Great food 0.639 0.058 (75.0%) 0.607 0.464 0.143

Beautiful instrument 0.583 0.257 (75.0%) 0.310 0.238 0.548

Easy language 0.845 0.750 (87.5%) 0.619 0.643 0.667

Slow language 0.840 0.100 (62.5%) 0.381 0.238 −0.167

Lovely animal 0.806 1.000 (37.5%) 0.548 0.595 0.738

Great vegetable 0.462 0.696 (75.0%) 0.524 0.476 0.429

Sweet fruit 0.729 0.783 (71.4%) 0.607 0.607 0.821

Great tool 0.772 0.300 (71.4%) 0.393 0.500 0.464

Good protein 0.662 0.900 (71.4%) 0.143 −0.286 0.964

Safe country 0.804 0.300 (100%) −0.200 0.000 0.500

Warm country 0.961 0.866 (60.0%) 0.700 0.700 1.000

Well-known brand 0.659 0.743 (87.5%) 0.619 0.286 0.900

Nice browser 0.856 0.600 (80.0%) −0.600 −0.600 0.429

Safe city 0.655 0.378 (100%) 0.357 0.250 0.762

Average 0.723 0.556 (72.2%) 0.378 0.297 0.561

method by the probability in Probase. While KB baseline has a coverage of only
72.2%, our model has not only 100% coverage, but also preserves precision.

We see that the correlation between our score and the gold standard ordering
is less than 0.4 for “popular sport”, “beautiful plant”, “popular sport”, “great
food”, and “slow language”. The reasons for this result are that the coverage at
extracted positive evidence is low or human’s agreement is inconsistent due to
its subjective property.

4.3 RQ3: Generalizing Beyond Implicit and Explicit Models

In this section, we evaluate further on how we predict P (e|c) for unseen pairs
during the training. Table 3 shows how we expand the observation made for four
adjective-modified concepts into 250 concepts.

More specifically, to validate our model for unobserved entities, we set some
P (e|c) to test set and estimate that probability. By Eq. 5, the probability P (e|c)
and cosine similarity between e and c are monotonically increasing. Therefore,
we evaluate the Spearman correlation of the cosine similarity and P (e|c) that
were not used in the training.
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Table 3. Datasets

Concept

Adjective-

modified

concept

Entity–

Adj.concept

pair

# of

data
37 250 498,007

Example

City,

Country,

Company,

Sport,

Movie

Big city,

Rich country,

Great sport,

Funny movie,

Big company

Big city-New York,

Great sport-Tennis,

Big company-Apple

Table 4. Experimental results

Model ρ

KB (5) 0.434

KB (10) 0.477

DS 0.484

KB+DS (5) 0.454

KB+DS (10) 0.461

Ours (Eq4) 0.469

Ours (Eq6) 0.535

Ours (Eq6+7) 0.572

Ours (Eq6+8) 0.641

Ours (Eq6+7+8) 0.682

For experiment, we split the entities which have the probability P (e|c) to 9/10
training set and 1/10 testing set. Because the distribution of P (e|c) is skewed,
random sampling selects mostly tail entities with low probability similar to each
other. Such sampling is inappropriate for comparing the correlation with the
actual and predicted ranking, as it contains mostly tail entities with tied ranks.
We thus sample more on head entities using stratified sampling, dividing sample
size n into 5 section by rank and select n

2i data from the highest rank (i = 1) to
lowest (i = 5).

We compare with KB and DS baselines, and consider its combination as well.
It is to show how each component technique we proposed contribute to overall
performance.

Baselines:

– KB baseline: KB baseline itself cannot be used for estimating missing
P (e|c), but we can extend by averaging the probability of the nearest 5 or 10
concepts, which we denote as KB(5) and KB(10) respectively.

– DS baseline: In DS baseline, we estimate P (e|c) by averaging the vector of
adjective and noun and computing the distance to this vector.

– KB + DS baseline: In KB+DS baseline, we estimate P (e|c) by averaging
the probability of 5 and 10 closest entities e′ in the word embedding, denoted
as KB + DS(5) and KB + DS(10).

Our model outperforms all these baselines. To show how we each equation
contributes to the overall performance, we denote the complete model as Ours
(Eq. 6+7+8) in the last line, which we compare with our model applying only
some of such equations.

5 Conclusions

This paper studied the problem of understanding adjective by predicting a
graded score for the given entity and adjective pair. Specifically, we train a
distributed space to reflect Probase probability as distance. Semantic similarity
with unseen objects is then used to predict missing Probase probability. Seman-
tic similarity between adjectives contributes to enhance recall by collapsing the
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scattered observations of an entity with synonymous adjectives. Our extensive
analysis using real-life data validates that we can predict adjective for unseen
entity with comparable quality to seen ones, and thus improves the coverage to
all adjective entity pairs.
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Abstract. Learning from multi-label data in an interactive framework
is a challenging problem as algorithms must withstand some additional
constraints: in particular, learning from few training examples in a lim-
ited time. A recent study of multi-label classifier behaviors in this context
has identified the potential of the ensemble method “Random Forest of
Predictive Clustering Trees” (RF-PCT). However, RF-PCT has shown
a degraded performance in terms of computation time for large feature
spaces. To overcome this limit, this paper proposes a new hybrid multi-
label learning approach IDSR-RF (Independent Dual Space Reduction
with RF-PCT) which first reduces the data dimension and then learns
a predictive regression model in the reduced spaces with RF-PCT. The
feature and the label spaces are independently reduced using the fast
matrix factorization algorithm Gravity. The experimental results on nine
high-dimensional datasets show that IDSR-RF significantly reduces the
computation time without deteriorating the learning performances. To
the best of our knowledge, it is currently the most promising learning
approach for an interactive multi-label learning system.

1 Introduction

Interactive machine learning, based on a close interaction loop between a human
and a learner, knows an increasing development today [1]. In particular, sev-
eral interactive classification systems have been developed for various real-world
applications: e.g. image classification [6], document classification [5], profile clas-
sification in social networks [2] and so on. In addition to the Human-Computer
Interaction (HCI) aspects, which are not considered in this paper, the further
developments of these systems face two major issues: (i) their extension to multi-
label classification, and (ii) the choice of an appropriate learning algorithm.

The vast majority of the current approaches are based on a single-label clas-
sification that constrains items to span one label at a time. This simplifying
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 828–839, 2017.
DOI: 10.1007/978-3-319-57529-2 64
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framework significantly limits the user’s expressiveness while he/she interacts
with data that are inherently multi-label. Multi-label classification has received
significant attention over the past few years and a large number of algorithms
have been proposed in the literature [9,17]. However, the integration of these
approaches into a human-centered interactive system is hampered by a double
constraint: learning from few training examples in a limited time. A user can
only annotate a very restricted set of examples and interactive systems are often
required to provide a response in a time shorter than 100 ms [4]. Motivated by
the importance of selecting a suitable classifier for an interactive multi-label
classification system, Nair Benrekia et al. [10] have recently proposed the first
extensive comparative study of the behavior of multi-label learning algorithms
in an interactive framework. Their experiments showed that the ensemble clas-
sifier Random Forest of Predictive Clustering Trees (RF-PCT) [8] is the most
efficient classifier. But, RF-PCT has shown a degraded performance in terms of
time computation for high-dimensional datasets.

In this paper, we propose to improve the computational efficiency of RF-
PCT by a preliminary dimensionality reduction of the data. From the pionneer-
ing work of Yu et al. [15] in the mid-2000’s, several dimensionality reduction
approaches have been proposed for multi-label classification. The vast majority
of them arise from well-known approaches in data analysis (Principal Compo-
nent Analysis, Latent Semantic Indexing, Linear Discriminant Analysis, Partial
Least Squares, etc.) and few of them are inspired by compressive techniques
in image processing [7]. Roughly speaking, the approaches can be classified in
two families: the single space reduction approaches reduce the dimensionality
of either the feature or the label space while the dual space ones reduce both
of them. A recent comparative study [11] tends to show that, by considering
both the curse of dimensionality in the feature space and the sparseness in the
label space, the dual approaches are the most efficient. However, in most of the
experiments considered in the literature, the learning models that are used are
classical Binary Relevance (with Linear Regression or Support Vector Machine
as base learners) and ML-kNN (Multi-label k nearest neighbors). And they are
not the best ones in an interactive framework [17].

Consequently, in this paper, we combine an efficient dual space reduction
with the most promising classifier for interactive multi-label learning. Our algo-
rithm called IDSR-RF (Independent Dual Space Reduction combined with the
RF-PCT classifier) is composed of two stages: an independent dual space reduc-
tion computed with the fast matrix factorization algorithm Gravity proposed
by Takacs et al. [14] for the Netflix challenge and a predictive regression model
learned with RF-PCT in the latent spaces. We have evaluated IDSR-RF on nine
high-dimensional multi-label datasets to measure the learning time reduction
and check that the dimensionality reduction does not damage the prediction
quality of RF-PCT. The number of training example was set to 100 examples
which is a maximal bound for a manually-operated labelling. Our experimental
results show that IDSR-RF achieves a major reduction in the dimensionality of
the data in a short time (less than a minute) and that it is able to both build a
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model and predict labels of a new example in less than half a second. Moreover,
this significant reduction is obtained without learning performance degradation:
IDSR-RF is as accurate as the original RF-PCT even with an advantage for a
dataset.

The rest of the paper is organized as follows. Section 2 briefly reviews the
dimension reduction algorithm. Section 3 defines the first phase of the interactive
multi-label learning on which this paper is focused and describes the IDSR-RF
algorithm. Section 4 presents the evaluation datasets, the evaluation criteria and
the experimental protocol. Comparative results with the original RF-PCT are
given in Sect. 5.

2 A Brief Review of Gravity for Dimensionality
Reduction

We here recall the main steps of Gravity [14] which was the co-winner of the
Netflix competition organized to develop a collaborative filtering algorithm to
predict the ratings of users for unseen films [3]. Let us denote by X = [xij ] the
n × m matrix describing a set of n examples in a m-dimensional feature space.
The objective is to redefine the original examples xi ∈ Rm in a latent space of
dimension k << m.

Unlike the traditional learning algorithms which learn from data vector-by-
vector, Gravity learns from one cell xij at a time. The matrix Xn×m can be
approximated by the product of two sub rectangular matrices Pn×k and Qm×k:

X ≈ P × QT

The matrices P and Q are learned by minimizing the Root Mean Squared
Error (RMSE) which is the square root of the average square error e2ij of the
model approximation for each cell xij :

RMSEX =

√∑
∀xij∈X(xij − x̂ij)2

|X| where x̂ij =
k∑

w=1

piw × qwj .

The RMSE yields an analytically easy-to-derive quadratic error function
which can be efficiently optimized with a descend gradient algorithm. Grav-
ity computes the quadratic difference e2ij between the model prediction x̂ij and
the ground-truth value xij and back-propagates its gradient in the factor vectors
Pi and QT

j . The gradient of e2ij according to each row factor and each column
factor is respectively computed in the following equations:

σ

σpiw
e2ij = −2 × eij × qwj and

σ

σqwj
e2ij = −2 × eij × piw.

To decrease the model mispredictions and better approximate the values xij ,
the factor vectors are updated in the opposite direction to the gradient:

p′
iw = piw + η × 2 × eij × qwj and q′

wj = qwj + η × 2 × eij × piw
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where η is the learning rate which usually takes values smaller than 0.1. And
to prevent overfitting and divergence of the factor values, a regularization rate
λ is introduced during the learning process:

p′
iw = piw +η×2×eij ×qwj −λ×piw and q′

wj = qwj +η×2×eij ×piw −λ×qwj .

At the end of each learning iteration, the RMSE is evaluated on a small
validation set: if it does not decrease during a fixed number of iterations, the
learning process stops and the latest matrices P and Q are considered as optimal.

The complexity of Gravity is linear with respect to the size of the matrix
X and is function of the number of passes NbPasses required to insure its
convergence: it is equal to O(n × m × NbPasses). However, experiments have
proven that NbPasses is generally limited.

3 Multi-label Learning from Latent Data

After a brief presentation of our interactive framework, we describe the two
phases of the IDSR-RF algorithm: (i) the dual dimensionality reduction with a
double matrix factorization, and (ii) the learning and predicting process in the
obtained latent spaces with RF-PCT.

3.1 Interactive Multi-label Learning

In the interactive process, the user initially labels a very small set of examples
from which a learning algorithm computes a predictive model. For instance,
to query a Video on Demand catalog for a film, a user defines his/her target
concepts such as “Funny”, “Masterpiece”, and “Fairytale” and with an adapted
interface he/she labels a small set of familiar films. The algorithm provides the
user with relevant labels for a selected film or with relevant films from the catalog
for one or a selection of labels. If the predictions do not align well with his/her
preferences, he/she can boost the performance by adding few more examples
and the learning process is run again. From the user’s requests, the model keeps
on refining its understanding of the desired concepts until his/her intervention
is no longer required.

We here restrict ourselves to the evaluation of the classifier predictive and
computation-time performances at the beginning of the learning task where few
examples are available. In practice, the efficiency of this phase is crucial for
catching the user’s interest and confidence in the system. More precisely, at the
beginning of the process, a user defines a set L of q desired labels and he/she
labels a small set XL of nL examples either positively or negatively. Let yi be the
binary vector of size q which describes the labels given to an example xi ∈ XL:
yij = 1 (resp. 0) if the jth label is positively (resp. negatively) associated to xi.
From the multi-label training set XL, a learned model h predicts the most likely
label set ŷi = h(xi) for each selected example xi in a test set S much larger
than XL.
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3.2 Dual Dimensionality Reduction

Instead of considering the X factorization only like in the Gravity basic schema,
we apply two matrix factorizations in order to reduce both the feature and the
label spaces. Let us denote by D the data matrix of size n×(m + q) which
contains the small number nL of the labelled examples xi ∈ XL described by
their m features and the q labels given by the user, and the n − nL unlabelled
examples. The matrix D contains two sub-matrices: an example-feature matrix
F of size n × m and an example-label matrix L of size nL × q. More precisely, F
includes the m features of both labelled and unlabelled examples and L includes
the q labels of the labelled examples only. The remaining part of size (n−nL)×q
is the part to predict. Two matrix factorizations are independently applied to
the matrices F and L:

1. F ≈ F’ ×CT where F’ and C are respectively of size n × k and m × k
2. L ≈ L’ ×GT where L’ and G are respectively of size nL × k′ and q × k′

Let us note that in practice the unlabelled data are available before the beginning
of the classification task. Consequently, we factorize the labelled and unlabelled
examples at the same time to take advantage of the useful information contained
in the unlabelled examples. This allows to learn more accurate feature factors.
By combining the two example-factor matrices F’ and L’, a new training set is
obtained where the original training examples are re-described in a smaller k-
dimensional latent feature space and labelled in a smaller k′-dimensional latent
label space.

3.3 Learning and Predicting with RF-PCT in the Latent Spaces

The predictive model from the new training set is learned with the classifier
RF-PCT (Random Forest of Predictive Clustering Trees) [8]. Let us recall that
RF-PCT is an ensemble classifier based on a set of predictive clustering trees
where each tree is considered as a hierarchy of clusters of increasingly small
sizes. The trees are built with a standard top-down induction of decision trees
algorithm. For diversity, RF-PCT trains a fixed number of decision trees with
a bagging strategy and by selecting a random feature subset at each tree node.
The size s of the feature subsets is function of the initial number k of latent
features: s = 0.1 × k + 1.

Here, RF-PCT is applied on the latent spaces: the criterion for selecting the
best features in each tree is the minimization of the sum of the label variances
and the leaves are associated with real-valued vectors containing the mean vote
for each label. Each regression tree provides a prediction of the latent labels
of the examples xi ∈ S from their description in the latent feature space. The
predictions of all trees are then averaged for each latent label. To bring the
predictions back to the original label space L, the vector of predictions ŷi ∈ Rk′

is multiplied by the latent matrix of labels GT . As the obtained predictions are
real-valued, we transform the real values into binary ones with the fast threshold
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Pcut (Proportional Cut Method) [12]. It chooses the threshold which minimizes
the label cardinality difference between the training data set XL and the classified
test data set S.

The complexity of RF-PCT in the latent spaces is O(N × nL × s × q) where
N is the number of trees (originally set to 100).

4 Experimental Study

In this section, we first present the selected datasets and the evaluation criteria,
and then we describe the experimental protocol.

4.1 Evaluation Datasets

We use nine textual multi-label datasets already selected in previous multi-label
learning studies (Table 1). The feature dimensionality is of the same order as
data in real-life applications: it varies from 21925 to 49060. The label number
(from 22 to 101) is slightly greater than that of the current interactive uses where
users would only define a limited number of labels to express their individual
preferences. But as far as we know, there are still no published specific data sets in
our context where the number of features is very high while the number of labels
is small and the order-of-magnitude remains compatible with our applicative
objectives.

Four datasets represent web pages collected through the hyperlinks from
Yahoo!’s top directory. They are associated with the four Yahoo!’s top cate-
gories (“Arts & Humanities”, “Business & Economy”, “Computers & Internet”,
“Health”), and each page is labelled with one or more second level subcategories.
The five other datasets come from the original Reuters dataset: they describe
newswire stories which can be labelled by various categories (e.g. agriculture,
fishing).

4.2 Evaluation Criteria

The prediction quality is evaluated with five complementary measures selected
according to the requirements considered in multi-label learning:

1. Ranking labels by relevance (evaluated with the Ranking Loss (RL)):
as users are mostly interested in a label ranking for a selected example, the
classifier only presents its most likely labels at the top of the prediction list;

2. Ranking examples by relevance (evaluated with the macro-Ranking Loss
(m-RL)): as users can also be interested in an example ranking for one or a
set of labels, the classifier only presents the most likely examples at the top
of the prediction list;

3. Label classification (evaluated with the Accuracy, F1-score, multi-label
Balanced Error Rate (BER)): if a label ranking is essential in practice, a
label classification may be also desired. When an example is selected, the
classifier only presents its most likely labels.



834 N.-Y. Nair-Benrekia et al.

Table 1. Basic statistics of the selected multi-label datasets (m: number of features, n:
number of examples, q: number of labels, LCard : label cardinality, PUniq : proportion
of unique label combinations, LDens: label density).

Dataset m q n LCard PUniq Dens

Arts 23146 24 1000 1.66 0.18 0.07

Business 21925 28 1000 1.55 0.07 0.05

Health 30605 25 1000 1.63 0.11 0.06

Computers 34097 30 1000 1.44 0.10 0.05

Reuters S4 47229 101 1000 2.48 0.14 0.03

Reuters S5 47235 101 1000 2.64 0.16 0.03

Reuters S1 47236 101 1000 2.88 0.17 0.03

Reuters S2 47236 101 1000 2.63 0.16 0.03

Reuters S3 47236 101 1000 2.61 0.16 0.03

The computation time is measured by the number of seconds required
for learning the predictive model and for predicting labels of the unlabelled
examples.

4.3 Experimental Protocol

Each dataset is partitioned into ten folds and each fold (10%) in turn is used
for training while the nine remaining ones (90%) are used for the evaluation.
Consequently, ten different data subsets are created. Each data subset is associ-
ated with two matrices: an example-feature matrix (with both labelled and unla-
belled data) and an example-label matrix (with labelled data only). Each matrix
is approximated with Gravity by the product of two latent matrices. From the
training set, RF-PCT learns a predictive regression model in the latent spaces.
Its predictive performance mainly depends on the choice of the Gravity parame-
ters: the factor numbers k and k′ of the two latent spaces, the learning rate η
and the regularization rate λ. Our practical experience with Gravity has shown
us that η and λ have less impact on the quality of the latent representation than
k and k′. Thus, we have selected the same η and λ for the two factorizations.
Precisely, four values {16, 32, 64, 128} (resp. {2, 4, 8, 16}) are selected for k and k′

and four values are randomly drawn in the interval [0.01; 0.1] (resp. [0.001; 0.01])
for η (resp. λ). Let us note that additional experiments have shown that larger
values for k and k′ do not significantly improve the classifier predictive perfor-
mance. The parameter selection is made by an exhaustive search in a limited
space: RF-PCT is evaluated with each parameter combination on a validation
set (10% of the training set) for the accuracy criterion. The predictive model
with the highest accuracy is then used to predict labels of the test examples.
The performance of IDSR-RF is an average over the ten data subsets.

To measure the contribution of the information contained in the unlabelled
examples to the predictive performance of IDSR-RF, we consider a variant
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IDSR∗-RF where the feature space reduction is based on the training set only.
A third matrix factorization is then performed to transfer the unlabelled exam-
ples to the latent feature space with the parameters used for the reduction of
the training set feature space (i.e., k, η and λ). The performances of IDSR-RF,
IDSR∗-RF and RF-PCT are obviously compared on the same ten data subsets.

5 Experimental Results

We first compare the original size of the feature and label spaces of each dataset
with the size of their respective latent spaces. Table 2 shows that IDSR-RF is
able to perform a strong reduction (more than 99%) and the computation time
required to provide the best latent representation is less than a minute which is
reasonable for the beginning of the classification task. Let us remark that, for
large training sets, we plan to re-run our approach without the time-consuming
parameter search by keeping the parameters selected for the previous reduction.
For each dataset, the factor numbers (k and k′) change across the ten data
subsets and we here report the most frequent factor combination.

Table 2. The reduction rate and computation time (in seconds) of IDSR-RF.

Dataset q m k′ k Reduction (%) Time (s)

Arts 24 23146 4 16 17.32

Business 28 21924 8 32 16.77

Health 25 30605 2 64 21.34

Computers 30 34096 16 16 23.86

Reuters S1 101 47236 2 16 > 99% 29.96

Reuters S2 101 47236 2 16 30.68

Reuters S3 101 47236 4 32 30.39

Reuters S4 101 47229 8 16 28.97

Reuters S5 101 47235 4 16 34.02

5.1 Learning and Prediction Speed in the Reduced Spaces

The computation time comparisons (Table 3) for IDSR-RF and RF-PCT show
that the learning time of IDSR-RF is very significantly shorter than that of
RF-PCT: the reduction is above 99% for all datasets and especially for the
largest datasets such as Reuters where IDSR-RF is 9 min ahead of RF-PCT.
While both approaches involve the same number of decision trees, the measured
computation times indicate that IDSR-RF not only reduces the learning time
but also the prediction time by over 98% for each dataset and especially for
Reuters datasets where its prediction time is ahead by more than 2.20 s on RF-
PCT (more than 99% reduction). The decision trees built from the latent data
are less complex than those learned from the original data: one latent feature
replaces a set of correlated features.
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Table 3. The average learning and prediction times (in seconds) of IDSR-RF and
RF-PCT.

Dataset Learning time (s) ↓ Prediction time (s) ↓
Arts IDSR-RF 0.22 0.02

RF-PCT 70.76 1.17

Business IDSR-RF 0.24 0.02

RF-PCT 61.50 1.23

Health IDSR-RF 0.25 0.02

RF-PCT 89.26 1.38

Computers IDSR-RF 0.25 0.02

RF-PCT 124.09 1.65

Reuters S1 IDSR-RF 0.23 0.02

RF-PCT 516.57 2.49

Reuters S2 IDSR-RF 0.27 0.02

RF-PCT 572.88 2.30

Reuters S3 IDSR-RF 0.23 0.02

RF-PCT 514.61 2.25

Reuters S4 IDSR-RF 0.22 0.02

RF-PCT 581.02 2.52

Reuters S5 IDSR-RF 0.22 0.02

RF-PCT 568.25 2.34

In real-life applications, the classification system must provide personalized
predictions at any time: when the user adds new examples, the predictive model
must compute predictions more adapted to his/her preferences. By compressing
the data, IDSR-RF significantly reduces the learning and prediction times of RF-
PCT. This allows to update the model with a low cost, and most importantly
to provide users with reliable predictions in a time compatible with the HCI
recommendations.

5.2 Predictive Performances

The comparison of the average predictive performances (Table 4) shows that
IDSR-RF and RF-PCT have a similar behavior. A Wilcoxon statistical test
confirms that there are no significant differences between the two approaches
except for the macro-ranking loss where RF-PCT remains on average slightly
more efficient. For the dataset Computers, IDSR-FR outperforms RF-PCT for
the majority of the criteria. This case shows that IDSR-RF not only maintains
the information processing quality but can also improve it by taking advan-
tage of the information contained in the unlabelled data and by exploiting the
underlying correlations between both the features and the labels. The predictive
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Table 4. The average predictive performances of IDSR-RF, IDSR∗-RF and RF-PCT
for the major quality criteria.

Dataset Approach RL (-) m-RL (-) Accuracy (+) F1-score (+) BER (-)

Arts IDSR-RF 0.23 0.48 0.17 0.22 0.40

IDSR∗-RF 0.22 0.50 0.17 0.22 0.40

RF-PCT 0.19 0.40 0.25 0.30 0.35

Business IDSR-RF 0.06 0.41 0.61 0.70 0.13

IDSR∗-RF 0.06 0.48 0.60 0.69 0.13

RF-PCT 0.06 0.36 0.64 0.72 0.12

Health IDSR-RF 0.12 0.45 0.38 0.44 0.29

IDSR∗-RF 0.13 0.47 0.35 0.41 0.29

RF-PCT 0.10 0.38 0.44 0.51 0.24

Computers IDSR-RF 0.13 0.39 0.48 0.53 0.24

IDSR∗-RF 0.14 0.49 0.38 0.45 0.27

RF-PCT 0.12 0.41 0.42 0.48 0.25

Reuters S1 IDSR-RF 0.22 0.46 0.11 0.18 0.42

IDSR∗-RF 0.24 0.47 0.10 0.16 0.43

RF-PCT 0.13 0.28 0.23 0.32 0.32

Reuters S2 IDSR-RF 0.24 0.45 0.14 0.21 0.39

IDSR∗-RF 0.25 0.48 0.14 0.21 0.39

RF-PCT 0.15 0.32 0.21 0.29 0.34

Reuters S3 IDSR-RF 0.26 0.47 0.12 0.18 0.40

IDSR∗-RF 0.24 0.49 0.12 0.18 0.41

RF-PCT 0.15 0.33 0.20 0.28 0.34

Reuters S4 IDSR-RF 0.23 0.44 0.13 0.20 0.39

IDSR∗-RF 0.22 0.46 0.13 0.20 0.39

RF-PCT 0.13 0.31 0.21 0.28 0.33

Reuters S5 IDSR-RF 0.23 0.45 0.15 0.23 0.38

IDSR∗-RF 0.25 0.47 0.14 0.21 0.39

RF-PCT 0.15 0.30 0.20 0.29 0.34

performances of ISDR∗-RF on all datasets and especially Computers clearly vali-
date this interpretation. Further experiments for five additional classical quality
criteria (Exact match, Coverage, Average precision, Hamming Loss and One
error) confirm the conclusions drawn from Table 4.

6 Conclusion

The efficiency of an interactive multi-label learning system closely depends
on the performances of the selected classifier both in prediction quality and
in computation time. We have here proposed a new hybrid approach which
improves the running time of the classifier RF-PCT which recently obtained the
best prediction performances in an interactive framework. Our approach, based
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on a preliminary dual space reduction, takes advantage of the sparsity of the
feature space and learns the latent features by only exploiting the informative
values in the example-feature matrix. The experimental results on nine datasets
with several tens of thousands of features have shown that IDSR-RF very sig-
nificantly reduces the learning time of RF-PCT while maintaining its prediction
quality. The experiments have also shown that IDSR-RF is significantly bet-
ter than its version which does not take into account the available unlabelled
data. Moreover, IDSR-RF reduces the dimensionality of any of our datasets in
a very short time, which allows an interactive system to dynamically update its
predictive model while the user is producing new preferences.

The numerical results obtained by IDSR-RF are very promising but we
believe that there is still room for improvement in its performances. In the near
future, we plan to follow two complementary research directions: (i) improving
the parameter selection of IDSR-RF, and (ii) extending the numerical compar-
isons for the dimensionality reduction. It is well known that parameter tuning
for a learning algorithm is a hard task. We here have simplified the problem
by considering a limited set of parameter combinations selected from our strong
practical experience with Gravity. However, parameter tuning has been investi-
gated for many years in discrete optimization and we are currently discussing
with optimization researchers how to build a new protocol which combines auto-
matic search and expert knowledge.

Moreover, we have here restricted ourselves to the choice of Gravity for the
matrix factorization because of its low complexity compared to that of the
approaches previously developed in the literature for the multi-label learning.
Nevertheless, new results [13] have recently allowed avoiding the eigendecompo-
sition for the multi-label dimensionality reduction via dependence maximization
(MDDM) initially proposed by [18] in an attempt to capture a shared informa-
tion among different labels. The approach has been tested with the multi-label
k-nearest neighbor classifier [16] whose performances are degraded in an inter-
active framework [10]. Nevertheless, we plan to investigate the properties of the
new version of MDDM very soon to assess its potential use for an interactive
learning and to compare it with Gravity in our IDSR-RF approach.
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Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 624–631. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74958-5 61

9. Madjarov, G., Kocev, D., Gjorgjevikj, D., Dzeroski, S.: An extensive experimental
comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104
(2012)

10. Nair-Benrekia, N.Y., Kuntz, P., Meyer, F.: Learning from multi-label data with
interactivity constraints: an extensive experimental study. Expert Syst. Appl.
42(13), 5723–5736 (2015)

11. Pacharawongsakda, E., Theeramunkong, T.: A comparative study on single
and dual space reduction in multi-label classification. In: Skulimowski, A.M.J.,
Kacprzyk, J. (eds.) Knowledge, Information and Creativity Support Systems:
Recent Trends, Advances and Solutions. AISC, vol. 364, pp. 389–400. Springer,
Cham (2016). doi:10.1007/978-3-319-19090-7 29

12. Read, J.: Scalable multi-label classification. Ph.D. thesis. University of Waikato
(2010)

13. Shu, X., Lai, D., Xu, H., Tao, L.: Learning shared subspace for multi-label dimen-
sionality reduction via dependence maximization. Neurocomputing 168, 356–364
(2015)

14. Takacs, G., Pilaszy, I., Nemeth, B., Tikk, D.: On the gravity recommendation
system. In: Proceedings of KDD Cup and Workshop, vol. 2007 (2007)

15. Yu, K., Yu, S., Tresp, V.: Multi-label informed latent semantic indexing. In: Pro-
ceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 258–265. ACM, New York (2005)

16. Zhang, M.L., Zhou, Z.H.: Ml-KNN: a lazy learning approach to multi-label learn-
ing. Pattern Recogn. 40(7), 2038–2048 (2007)

17. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE Trans.
Knowl. Data Eng. 26(8), 1819–1837 (2014)

18. Zhang, Y., Zhou, Z.H.: Multilabel dimensionality reduction via dependence maxi-
mization. ACM Trans. Knowl. Discov. Data (TKDD) 4(3), 1–21 (2010)

http://dx.doi.org/10.1007/978-3-642-23765-2_13
http://dx.doi.org/10.1007/978-3-540-74958-5_61
http://dx.doi.org/10.1007/978-3-319-19090-7_29


A Generalized Model for Multidimensional
Intransitivity

Jiuding Duan(B), Jiyi Li, Yukino Baba, and Hisashi Kashima

Department of Intelligence Science and Technology,
Kyoto University, Kyoto 606-8501, Japan

dj@ml.ist.i.kyoto-u.ac.jp, {jyli,baba,kashima}@i.kyoto-u.ac.jp

Abstract. Intransitivity is a critical issue in pairwise preference model-
ing. It refers to the intransitive pairwise preferences between a group of
players or objects that potentially form a cyclic preference chain, and has
been long discussed in social choice theory in the context of the dom-
inance relationship. However, such multifaceted intransitivity between
players and the corresponding player representations in high dimension
are difficult to capture. In this paper, we propose a probabilistic model
that joint learns the d-dimensional representation (d > 1) for each player
and a dataset-specific metric space that systematically captures the dis-
tance metric in R

d over the embedding space. Interestingly, by imposing
additional constraints in the metric space, our proposed model degener-
ates to former models used in intransitive representation learning. More-
over, we present an extensive quantitative investigation of the wide exis-
tence of intransitive relationships between objects in various real-world
benchmark datasets. To the best of our knowledge, this investigation
is the first of this type. The predictive performance of our proposed
method on various real-world datasets, including social choice, election,
and online game datasets, shows that our proposed method outperforms
several competing methods in terms of prediction accuracy.

Keywords: Representation learning · Preference · Matchup ·
Intransitivity

1 Introduction

The transitivity of pairwise comparison and matchup between individual objects
is a fundamental principle in both social choice theory [25,26] and preference
data modeling [24].

In pairwise comparison, two participants in a single round are evaluated by
a third-party judge or an objective rule that judges the discriminative win/lose
result for each player. Examples of applications of such a comparison include rec-
ommender systems [17], social choice systems [14,19,26], and so on. In pairwise
matchup, two participants are each other’s competitive opponents, and therefore
the discriminative win/lose result is a reflection of their strength in the game.
Examples of such matchup applications are sports tournaments [4] and online
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part II, LNAI 10235, pp. 840–852, 2017.
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Fig. 1. Directed asymmet-
ric graph illustration of the
observed game in Table 1

Table 1. Toy model demonstrating the subtle deteri-
oration in terms of test accuracy

Winner Loser #wins #loses GT predtrans predintrans

ID ID

1 2 10 5 � � �
1 3 1 2 � x �
1 4 10 5 � � �
1 5 1 2 � x �
2 3 10 5 � � �
3 4 10 5 � � �
3 5 10 5 � � �
4 5 10 5 � � �
Test Accuracy 0.6458 0.6667

games [6]. In both cases, the hidden winning ability of each individual object
can be quantitatively profiled by parametric probabilistic models [2,25].

However, in addition to the thorough theoretical justifications of these para-
metric probabilistic models that assume certain levels of transitivity, the exis-
tence of intransitivity, which overrides the transitivity of preference in the real
world, has been argued in ecometrics, behavior economics, and social choice
theory for decades [21,26]. Intransitivity refers to the property of binary rela-
tions (i.e., win/loss or like/dislike) that are not transitive. For instance, in a
rock-paper-scissors game, the pairwise matchup result is judged by three rules:
{opaper � orock, orock � oscissors, and oscissors � opaper}. A transitive model
results in a transitive dominance opaper � oscissors, that violates the third rule
oscissors � opaper. In other words, the binary relations in the rock-paper-scissors
game are not transitive. Such intransitivity in the real world exists in the form
of cyclic dominance that implies the non-existence of a local dominant winner
in the local preference loop. In many applications, the presence of a nested local
intransitive preference loop results in systematically intransitive comparisons
and matchups, and therefore predictive modeling is challenging. Intuitively, this
situation occurs when objects have multiple features or views of judgment and
each of these views dominates a corresponding pairwise comparison. The under-
estimation of such cyclic dominance is subtle in the numerical testing scores in
terms of prediction accuracy, but critical for the cost-sensitive decision making
based on the prediction results, as illustrated in the toy model in Fig. 1 and
Table 1.

Figure 1 shows a directed asymmetric graph (DAG) to illustrate the toy game
records in Table 1; the numbered nodes represent the corresponding player, the
arrows demonstrate the dominant relationship between players, and the three
dotted circles demonstrate the existing cyclic intransitive dominance relation-
ships in the observed game records. In Table 1, the last two columns are exemplar
predictions derived from transitive and intransitive models. The prediction of a
transitive model predtrans cannot fully capture the intrinsic intransitivity in the
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dataset, leading to a deterioration in terms of predictive performance, whereas
the prediction made by an intransitivity-compatible model predintrans is able
to accurately capture all the deterministic matchups. The mis-prediction of two
out of the eight relationships results in only a subtle deterioration of the average
test accuracy by 0.0208. Moreover, a growth in the number of observed records
leads to a further difficulty in the evaluation of the unveiled intransitivity. In this
toy model, the local intransitive sets {1, 2, 3} and {1, 4, 5} are nested in a global
intransitive set {1, 2, 3, 4, 5}. Such c locally nested structures in a dataset with
a large number of players n and active dominance e lead to an exponentially
growing number of intransitive cycles. The most efficient algorithm for searching
all such cycles yields a time complexity bounded by O((n+e)(c+1)) [18], which
is intractable for stochastically observed dense matchups with large numbers of
participants. Thus, the approach of modeling the multidimensional intransitive
embedding by ensemble learning of all the possible views is blocked. A detailed
quantitative exploration of the cyclic intransitivity in a variety of real-world
datasets is presented in later sections.

The challenge presented by intransitivity motivated the alternative approach
of learning the intransitivity-compatible multidimensional embedding from the
parametric probabilistic models for pairwise comparisons. Without loss of gener-
ality, we attribute both pairwise comparison and matchup to the single notion of
matchup and denote the individuals in the matchup as players in the following
context, and discuss only the non-tie case for simplicity.

Existing work in this line of research includes studies on the seminal Bradley-
Terry (BT) pairwise comparison model [2] and its extensions and applications in
various real-world data science applications, e.g., matchup prediction [4], social
choices [14,19,26], and so on. In the BT model, the strength of the players is
parameterized as a single scalar value, by which the matchups between players
always remain transitive. Other attempts to meet the challenge include extend-
ing the scalar into a 2-dimensional vector representation through a non-linear
logistic model [5], and the more recently proposed Blade-Chest (BC) model with
a multidimensional embedding scheme that imitates the offense and defense abil-
ity of a player in two independent multidimensional spaces [6,7]. However, the
BC model, which was extended directly from the seminal BT model, is limited
in its expressiveness of intransitivity by the arbitrary separation of the two rep-
resentation metric spaces and an unexpected numerical conjugation drawback.

In this paper, we address the problem of predictive modeling of the intransi-
tive relationships in real-world datasets by learning the multidimensional intran-
sitivity representation for each player, i.e., items in a recommender system, tennis
players in a tennis tournament, game players in online game platforms, or can-
didates in a political election. We focus on joint learning of the d-dimensional
representation (d > 1) for each player and a dataset-specific metric space that
systematically captures the distance metric in R

d over the embedding space.
The joint modeling of the multidimensional embedding representation and the
metric space is achieved by involving two types of covariate matrices, one to
capture the interactive battling result between two players on the metric space,
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and a second to capture the intrinsic strength of each player. Through an analy-
sis of the symmetry and expressiveness of our proposed embedding formulation,
we further argue that the constrained optimization problem that is induced by
our proposed multidimensional embedding formulation can be indentically trans-
formed into an unconstrained form, thus allowing a generic numerical solution of
the proposed model by using a stochastic gradient descent method [1]. Finally,
we evaluate the effectiveness of our proposed method on a variety of real-world
datasets, and demonstrate its superiority over other competitive methods in
terms of predictive performance.

Our contributions are as follows:

– An extensive investigation of the wide existence of intransitive relationships
between objects in many prevalent real-world benchmark datasets. This inves-
tigation required that special attention be paid to intransitive relationships.
To the best of our knowledge, this is the first quantitative exploration of the
existing intransitive relationships in these prevalent benchmark datasets, and
even the first in the data mining research community.

– The proposal of a generalized embedding formulation for learning the
intransitivity-compatible representation from pairwise matchup data, and an
efficient solution to the induced optimization problem, together with a system-
atic characterization of the model, bridging the proposed generalized model
and the former multidimensional representation learning methods.

– An empirical evaluation of the proposed method on various real-world
datasets, which demonstrates the superior performance of the proposed
method in terms of prediction accuracy.

The rest of the paper is organized as follows. Section 2 presents the related
work on modeling intransitive relationships from pairwise comparison data.
Section 3 defines the representation learning problem and presents our gener-
alized formulation of the multidimensional embedding. In Sect. 4 we describe
our investigation of the existence of intransitivity in the real-world datasets
and present the experimental results for both synthetic and real-world datasets.
Section 5 concludes our paper.

2 Related Work

Existing work on parametric models for pairwise matchups data, which originate
from seminal work performed decades ago and include the Thurstone model [25]
and the Bradley-Terry-Luce model [2], were surveyed extensively. The BT model
[2] is based on maximum likelihood estimation and was further generalized to
multiparty matchups [16] and adapted to comparisons involving a tie [10]. The
first BT model generalized to multi-dimensional representation was limited to
the 2-dimensional case with a non-linear logistic function, inspired by classical
multidimensional scaling [5]. In real-world matchups, the ranking of the players’
ability is an issue that is closely related to our parametric modeling for pairwise
matchup data. Especially in sports tournaments [3,15,20] and online games [13],
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the Elo ratings system [11] and the TrueSkill ratings system [9,13] are notewor-
thy. In addition, instead of modeling the matchups between individual players,
some methods concentrate on group matchup [15,20], rating individual players
from the group matchup records [22], or alternatively model the belief of each
collected record [8]. These methods are different from ours in that they were all
developed according to the principles of transitivity.

In the context of modeling intransitivity, by extending the BT model,
a 2-dimensional vector can be employed as the ability of players in matchups
[5], with no verification of the modeling of the intransitive relationships on large
datasets. The state-of-the-art model for intransitive modeling is the BC model
[6], which imitates the offense and defense characteristics of a player and learns
the corresponding multidimensional representations from matchup records. The
BC model was then further extended to contexture-aware settings [7] with an
improvement in the performance.

3 Proposed Model

Assume a given set of candidate players P with |P| = M . The dataset D
contains N pairwise matchup records xi(ai, bi) ∈ {0, 1}, i = [1:N ], where the
players ai and bi ∈ P. An ordinal matchup record oa � ob is the matchup
record between player a and player b, meaning a beats b, and oa ≺ ob, vice
versa. The observed record x(a, b) can be represented in a 4-tuple: either
x(a, b) = (a, b, 1, 0) meaning oa � ob or x(a, b) = (a, b, 0, 1) meaning oa ≺ ob.
The identical deterministic events can be aggregated, resulting in a collapsed
dataset Dcollapse. The data entry xaggregate(a, b) ∈ Dcollapse is given by 4-tuples
in xaggregate(a, b) = (a, b, na, nb), where na is the total count of observed event
oa � ob, and nb of oa ≺ ob, accordingly.

The goal is to predict the result of matchups by learning the interpretable
multidimensional representation of the players, that reflects their ability in
multiple views.

3.1 Bradley-Terry Model and Blade-Chest Model

In the BT model, each player p ∈ P is parameterized by a scalar γp ∈ R as
the indicator of his/her ability to win. Following the probability axiom, the
probability of the event is modeled as

Pr(oa � ob) =
exp(γa)

exp(γa) + exp(γb)
(1)

=
1

1 + exp(−Mab)
(2)

where Mab = γa − γb is the symmetric matchup function for player a and player
b, with property

Mab = −Mba (3)
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and
Pr(oa ≺ ob) = 1 − Pr(oa � ob)

The scalar-valued ability indicator of players γp is not intransitivity-aware
and this has been shown in various datasets [6,21]. The parameter estimation
of the BT model can be conducted by applying an EM algorithm for maximum
likelihood or more generalized techniques [16]. Note that the matchup function
Mab, a, b ∈ P is the learning oracle that accesses the latent metric of players’
ability, and therefore, it can be further extended to a multidimensional setting,
named the BC model [6]. Intransitivity is then embraced by the BC model, where
blade and chest vectors imitate the offense and defense, respectively.

Formally, in the BC model, the ability of player p ∈ P is parameterized by
ablade and achest ∈ R

d and the corresponding matchup function is formulated by

– the Blade-Chest-Inner (BCI) embedding MBCI(a, b)

MBCI(a, b) = aT
blade · bchest − bT

blade · achest (4)

– the Blade-Chest-Distance (BCD) embedding MBCD(a, b)

MBCD(a, b) = ‖bblade − achest‖22 − ‖ablade − bchest‖22
These formulations of the matchup function naturally ensure the symme-

try property denoted in Condition (3), and therefore are compatible with the
scalar-valued representation of the players’ strength in the BT model. The con-
nection between these two formulations can also be evidenced under a mild
condition [6]. Assembled by this multidimensional formulation, the BC model is
state-of-the-art in both predictive modeling and representation learning for the
players’ intransitivity.

3.2 Generalized Intransitivity Model

We propose a generic formulation of the matchup function that jointly captures
a d-dimensional representation (d > 1) for each player and a dataset-specific dis-
tance metric for the learned representation in R

d over the embedded dimensions.
Let us assume we have a d-dimensional representation a ∈ R

d for player a ∈ P;
then, we formulate the generalized intransitivity embedding MG(a, b) as,

MG(a, b) = aT Σb + aT Γa − bT Γb (5)

where a and b are the d-dimensional representation for player a and player b,
respectively, and Σ,Γ ∈ R

d×d are the transitive matrices. The model parameters
we attempt to learn are θG := {a,b, Σ, Γ}. In the proposed formulation, the
first term aT Σb reflects the interaction between players, and the latter term
aT Γa − bT Γb reflects the intrinsic strength of each individual. The embedding
is proposed to model the pairwise preference, in which two properties should be
preserved, i.e., preference symmetry and expressiveness.
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3.3 Properties

We characterize the detailed properties of the proposed formulation in terms
of symmetry and expressiveness in comparison with the BC model, and show
that the BC model is a specialized formulation in a family of our generalized
formulation.

Symmetry. Since we discuss the matchup result between two players, the sym-
metry must be preserved [25]. This is different from other problems, such as
link prediction in social networks, where the directed preference between items
is naturally asymmetric [23].

Obviously, the two numerical computations of the first term aT Σb and the
latter term aT Γa − bT Γb are independent given randomized d-dimensional
embeddings a and b. Without intuition of the specific design of a and b, a.k.a.
random initialization, the sufficient condition to preserve the symmetry of the
first term is

Σ = −ΣT (6)

which is difficult to regularize given the gradient ∇ΣMG(a, b):

∇ΣMG(a, b) = abT

However, if we introduce it as a constraint in the optimization, the induced
constrained optimization problem is difficult to solve. Alternatively, we devise
an efficient solution which transforms the constrained optimization problem into
an unconstrained optimization by reparameterizing Σ with Σ′ by

Σ = Σ′ − Σ′T (7)

where Σ′ is a free matrix having the same shape as Σ. To this end, it is trivial
to show that the symmetry of aT Σb is preserved. Together with the fact that
the symmetry of the self-regulation term aT Γa−bT Γb in MG holds constantly,
we conclude that the symmetry of the proposed matchup function formulation
is guaranteed.

Expressiveness. We further characterize the superior expressiveness of our
proposed intransitive representation learning technique. Interestingly, we show
that the BC model is a specialized formulation within a family of our proposed
formulation.

Suppose that we have blade and chest vectors for player a, ablade and achest

∈ R
d′

, where d′ = 3; then, we integrate them into a generalized vector ageneral

∈ R
2d′

defined by

ageneral =
[
ablade

achest

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

blade1
blade2
blade3
chest1
chest2
chest3

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)
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This metaphorical definition is derived from the BC model, and therefore
the 2d′-dimensional generalized ageneral has two distinct subspaces ablade and
achest, which explicitly indicate the physical strength and weakness of player a,
respectively.

Theorem 1 (Expressiveness). Given the proposed matchup formulation in
2d′-dimensional space, the proposed model degenerates to a BCI model in
d′-dimensional space, under mild condition

‖a‖22 = ‖b‖22 (9)

‖Γ‖F → 0

and,

Σ =
[

0 Id′×d′

−Id′×d′ 0

]

Proof 1. On the one hand, by the identified sufficient Condition (6) for the
symmetry of aT Σb, given Id′×d′ as a d′-dimensional identity matrix, a fixed
transitive matrix Σ with

Σ =
[

0 Id′×d′

−Id′×d′ 0

]

is a sufficient condition to preserve the symmetry of aT Σb, and results in

aT Σb =
[
ablade

achest

]T [
0 Id′×d′

−Id′×d′ 0

] [
bblade

bchest

]
(10)

= aT
blade · bchest − bT

blade · achest (11)

On the other hand, given ‖a‖22 = ‖b‖22 = c, the inequality
∥∥aT Γa − bT Γb

∥∥ ≤
2c ‖Γ‖ holds. Thus, aT Γa−bT Γb → 0 holds by ‖a‖22 = ‖b‖22 = c and ‖Γ‖F → 0.

Therefore, the BCI model can be recovered by our proposed model. 	

Base on the fact that BCI formulation MBCI achieves better predictive per-

formance than its variant MBCD in practice, and our proposed formulation MG

degenerates into MBCI by imposing additional conditions, we argue that the
proposed method is superior in terms of expressiveness over the BC model and
the former models [2,6].

3.4 Training

Without loss of generality, given a set of players P and a collapsed training
dataset Dcollapse with pairwise matchup between players in 4-tuple (a, b, na, nb),
as exemplified previously, our goal is to estimate the intransitivity parame-
ters θG := {a,b, Σ, Γ} so that the predictive model can better predict unseen
matchups. Following Eq. (7), we reparameterize the transitive matrix Σ as Σ′
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and optimize θG′
:= {a,b, Σ′, Γ} instead. In line with the BT model, we train

the model by maximum likelihood. The overall likelihood is given by

L(D|θG′
) =

∏
(a,b,na,nb)∈Dcollapse

Pr(oa � ob)na · Pr(oa ≺ ob)nb

where Pr(oa � ob) is the probability of the event oa � ob.
We take the log-likelihood and optimize it with a stochastic gradient descent

method [1], and randomly sample one 4-tuple from Dcollapse in each epoch, and
then update the model parameters θG′

w.r.t. the corresponding sample, until
convergence.

Regularization. We choose the regularization terms as follows:

R1(D|θG′
) =

∑
a∈P

1
2

‖a‖22

R2(D|θG′
) = ‖Σ′‖F

R3(D|θG′
) = ‖Γ‖F

where ‖·‖2 is L2 norm and ‖·‖F is Frobenius norm. R1 regularizes the scale of our
embedding by intuition, as well as the scale of the blade and chest jointly, since
they are integrated into our embedding. R2 regularizes the scale of the free matrix
Σ′ as well as the scale of the symplectic matrix Σ, because ‖Σ‖F =

∥∥Σ′ − Σ′T ∥∥
F

is upper bounded by 2‖Σ‖F . R3 regularizes the scale of the free matrix Γ , in
line with Condition (9) given in Theorem 1.

Therefore, the regularized training objective for a given training dataset is

Q(D, θG′
) = L(D|θG′

) −
∑

i

λiRi(θG′
) (12)

where θG′
:= {a,b, Σ′, Γ} denotes the model parameters and λ controls the

regularization.

4 Experiments

In this section, we first summarize the datasets with a quantitative investigation
of the existence of intransitivity. Then, we report the experimental results of
our proposed method on several challenging real-world benchmark datasets that
consist of pairwise comparisons in social choice and matchups between individual
players.

We used cross validation for parameter tuning in the experiments. Given the
dataset in 4-tuple format, we first split the dataset randomly into three folds for
cross validation and then identified the unique pairwise interactions and aggre-
gated them. The hyperparameters were the dimensionality of the embedding
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d and the regularization coefficient λ. The performance was measured by the
average test accuracy A(Dtest|θ), defined by

A(Dtest|θ) =
1

|Dtest|
∑

(a,b,na,nb)∈Dtest

na · 1(ôa � ôb) + nb · 1(ôa ≺ ôb)

where 1(·) is the indicator function of an event.
We compared our proposed method with three competitive methods, namely

the näıve method, BT model, and BC model. The näıve method estimates
the winning probability of each player based on the empirical observations, with
Pr(oa � ob) = na+1

(na+1)+(nb+1) . If na = nb, one player is randomly assigned as the
winner. The BT model estimates player ability with a scalar representation.
The BC model estimates player ability with two multidimensional vectors that
are independent of each other.

4.1 Datasets

We investigated several challenging benchmark datasets from diversified areas.
The datasets are commonly grounded on pairwise comparisons or matchups
between objects or players. SushiA and SushiB [19] are food preference datasets.
Jester [12] and MovieLens100K [14] are collective preference datasets in an online
recommender system. ElectionA5 [26] is an election dataset for collective decision
making. Within the area of online games, SF45000 [6] is a dataset collected from
professional players and is used to profile the characters in the virtual world.
Dota [6] is a dataset of game records produced by a large number of players on
an online RPG game platform.

Intransitivity in Datasets. Quantitative statistics of intransitive relation-
ships in these datasets are presented in Table 2. isIntrans indicates the existence
of the intransitivity relationships. Intrans@3 indicates the percentage of intransi-
tive loops that are analogous to the rock-paper-scissors game, where the number
of involved players equals 3. In Intrans@3, the denominator is the total number
of directed length-3 loops given by 2

(
N
3

)
for a fully observed pairwise dataset.

PlayerIntrans@3 is the number of players who are involved in a rock-paper-
scissors-like relationship. Both Intrans@3 and PlayerIntrans@3 characterize the
intensity of intransitivity, and a higher score indicates more intensive intran-
sitivity in the dataset. In the majority of the seven datasets we investigated,
an intransitive relationship exists. Moreover, in five out of the seven datasets,
more than half of the players are involved in local intransitive relationships. To
this end, we highlight the necessity of modeling the intransitivity, and to the
best of our knowledge, this is the first quantitative exploration of the existing
intransitive relationships in these prevalent benchmark datasets.

4.2 Experiments on Real Datasets

Table 3 shows the experimental results of our proposed method. For all of the four
transitivity-rich datasets, SushiB, Jester, ElectionA5, and SF45000, we observe
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Table 2. Summary of real-world datasets

Dataset No. of No. of isIntrans Intrans@3 No. PlayerIntrans@3

Players Records

SushiA 10 100000 x 0.00% 0/10

SushiB 100 25000 � 26.87% 92/100

Jester 100 891404 � 1.77% 97/100

MovieLens100K 1682 139982 � 0.19% 1130/1682

ElectionA5 16 44298 � 0.44 % 6/16

SF45000 35 5000 � 23.86% 34/35

Dota 757 10442 � 97.58% 550/757

improvement in terms of the average test accuracy. In addition to the predic-
tive performance, two practical facts are noteworthy. (a) The observed pairwise
interactions in all these datasets are rich, and a K-fold cross validation proce-
dure with no data augmentation results in a set of data bins, each of which
contains identical players. Therefore, it is guaranteed that the representation
of each player in the validation and test bin will be learned by a training
set with a size of K − 2 bins. However, as the number of players grows, the
number of records required to accommodate such a cross validation procedure
grows quickly. For instance, in the case of the SushiB dataset with 100 players,
25000 pairwise records, Intrans@3 = 26.87%, and PlayerIntrans@3 = 92/100,
the empirical down sampling for 3-fold cross validation is sufficient to perform a
fully-evidenced prediction of the dominance for all possible player pairs, instead
of a random guess caused by the existence of non-observed players in the valida-
tion and test bins. (b) Given a sampling scheme that is sufficiently stable to allow
the model to give a fully evidenced prediction, a K-fold cross validation results
in sparser interactions in the bins, which can be indicated by the connectivity of
the matchup network, i.e., Borda count or Copeland count for directed graphs.
However, in the challenging MovieLens100K and Dota datasets, the resultant
heterogeneous interactions between players prevent us from providing evidenced
dominance prediction from the observed sparse networks. A trivial solution for

Table 3. Test accuracy on real-world datasets

Dataset Näıve Bradley-Terry Blade-Chest Proposed Model

SushiA 0.6549 ± 0.0044 0.6549 ± 0.0021 0.6551 ± 0.0038 0.6551± 0.0027

SushiB 0.6466 ± 0.0042 0.6582 ± 0.0077 0.6591 ± 0.0051 0.6593± 0.0058

Jester 0.6216 ± 0.0006 0.6236 ± 0.0028 0.6242 ± 0.0035 0.6243± 0.0019

ElectionA5 0.6507 ± 0.0031 0.6531 ± 0.0038 0.6533 ± 0.0043 0.6535± 0.0055

SF45000 0.5297 ± 0.0102 0.5329 ± 0.0044 0.5329 ± 0.0062 0.5355± 0.0080
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such a case is a random guess, which is meaningless for intransitivity recovery.
The above two facts hold for all the competitive methods.

5 Conclusion

In this paper, we focused on the issue of modeling intransitivity and repre-
sentation learning for players involved in pairwise interactions. We proposed
a generalized embedding formulation for learning the intransitivity-compatible
representation from pairwise matchup data, and provided a theoretical charac-
terization of the properties of the proposed formulation in terms of symmetry and
expressiveness. We also tailored an efficient solution to the constraint optimiza-
tion problem and verified the expressiveness of the proposed model by bridging
it to former models. A thorough quantitative statistics analysis of the existing
intransitivity in various real-world datasets was presented. To the best of our
knowledge, it is the first of this kind in the data mining community. The results
of the experiments based on real-world datasets show that our method achieves
a better performance than the competitive models, including the state-of-the-art
BC model.
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