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Abstract. The increasing scale and sophistication of cyber-attacks has
led to the adoption of machine learning based classification techniques,
at the core of cybersecurity systems. These techniques promise scale and
accuracy, which traditional rule/signature based methods cannot. How-
ever, classifiers operating in adversarial domains are vulnerable to evasion
attacks by an adversary, who is capable of learning the behavior of the
system by employing intelligently crafted probes. Classification accuracy
in such domains provides a false sense of security, as detection can eas-
ily be evaded by carefully perturbing the input samples. In this paper,
a generic data driven framework is presented, to analyze the vulnera-
bility of classification systems to black box probing based attacks. The
framework uses an exploration-exploitation based strategy, to understand
an adversary’s point of view of the attack-defense cycle. The adversary
assumes a black box model of the defender’s classifier and can launch
indiscriminate attacks on it, without information of the defender’s model
type, training data or the domain of application. Experimental evalua-
tion on 10 real world datasets demonstrates that even models having
high perceived accuracy (>90%), by a defender, can be effectively cir-
cumvented with a high evasion rate (>95%, on average). The detailed
attack algorithms, adversarial model and empirical evaluation, serve as
a background for developing secure machine learning based systems.

Keywords: Adversary · Reverse engineering · Classification ·
Cybersecurity

1 Introduction

The Big Data revolution has fueled the development of scalable and practical
machine learning systems, which has in turn led to their widespread adaptation
and popularity. The domain of cybersecurity has also recognized the need for a
data driven solution [1,2,4,6,27], owing to the increased scale and sophistication
of attacks in recent times1. Although the use of machine learning techniques has

1 https://www.statista.com/chart/2540/data-breaches/.
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Fig. 1. Classifier systems in adversarial environments. An adversary making probes
to the model C(x) can use active learning to arrive at their own understanding of
the model, as C′(x). Probes are made through the same channels as by other users
accessing the ML service, and as such can be indistinguishable.

found early success in many cybersecurity applications (such as spam filtering
[11], CAPTCHA systems [10], and intrusion detection [6]), its own vulnerabilities
have mostly been overlooked. Machine learning systems were designed under the
assumption of stationarity, i.e. the training and the testing dataset should be
identically and independently distributed [9]. This assumption is often violated
in cybersecurity domains, as the systems operate in a dynamic and adversarial
environment [1,4].

In an adversarial environment, the accuracy of classification has little sig-
nificance if the deployed classifier can be easily evaded by an intelligent
adversary [11]. Classifiers operating in such environments are susceptible to
exploratory attacks by an adversary [1], who uses the same channel as the input
data to probe the system inorder to gain information about it. As seen in Fig. 1,
a model trained and deployed by a data miner (the defender) can provide ser-
vices to end users, but it is also vulnerable to attacks, which use carefully crafted
input samples to evade the classification. In doing so, the classifier system can
be viewed as a black box (C), providing tacit Accept/Reject feedback [18]. This
feedback can be harnessed by an adversary, who is also equipped with the knowl-
edge of machine learning, to reverse engineer (C ′) the behavior of the black box
and avoid detection on future samples. The symmetry of the attack-defense cycle
and the new gamut of vulnerabilities introduced by using classification at the
core of cybersecurity systems, warrants a data driven analysis of the problem
and its effects.

The security of machine learning has garnered recent interest in literature
[1,3,17,18,22,23]. A taxonomy of attacks against machine learning systems was
proposed in [4], with Causative and Exploratory attacks being the broad classi-
fication of attacks, based on the portion of the data mining process they affect.
Causative attacks affect the training data and are aimed at misleading the
learned model. These attacks can poison the trained model, but can be pre-
vented by careful curation of the training data [12] and by using data encryp-
tion techniques to safeguard the original training data. Exploratory attacks are
more commonplace and dangerous, as they affect the testing phase data, which
is often unlabeled and difficult to detect [2]. Using the same channels as a client
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user these attacks can masquerade as regular data samples, posing a risk to any
deployed machine learning model. Mimicry attacks [22], spoofing [2] and reverse
engineering [3] are all forms of exploratory attacks. Exploratory attacks cause
the training and testing data distributions to drift, leading to non-stationarity
and subsequent degradation in the predictive power of a classifier [11]. These
attacks can affect any deployed system, even if the system is available only
as a black box service. Recent advancements in black box Machine-Learning-
as a-Service providers (such as Amazon AWS2, Google Cloud Platform3 and
BigML4), promise a new era of flexibility and ubiquity in the usage of machine
learning. However, preliminary analysis in [23] has shown that these services
are vulnerable to exploratory attacks, by means of querying the system through
their APIs. Membership inference attacks presented in [21], shows that these
services are also vulnerable to data leakage, i.e. inferring whether a particular
sample belongs to a model’s training data, leading to privacy concerns in using
machine learning models. The scope of these attacks can be made independent
of the model trained and deployed as the black box. Deep neural networks were
shown to be vulnerable in [17], who later extended their work in [18] to show how
various classifiers, treated as transferable black boxes, are all equally vulnerable
to such attacks.

This paper analyzes the vulnerability of classification systems to exploratory
attacks, from a data driven perspective. The effects of an adversary, capable
of accessing the system only as a black box; without any information about the
learning process of the defender’s classifier, is presented. To the best of our knowl-
edge, this is the first work which aims at understanding attacks as a exploration-
exploitation problem and presents data generation attack algorithms, using the
classifier as a black box oracle. The following are the contributions of the pro-
posed work:

– The vulnerabilities of classifiers operating in adversarial environments, to
probing based attacks, is demonstrated. These attacks show that classification
systems should not be naively used in cybersecurity applications, as they can
be easily evaded.

– A domain independent and data-driven framework is presented, which can
be used to simulate attacks on classifiers. Under this general framework, two
specific attack algorithms are provided: the Anchor Points (AP) attacks and
the Reverse Engineering (RE) attacks.

– Experimental analysis on 10 real world datasets demonstrate that only infor-
mation about the feature space is sufficient to launch an attack against classi-
fiers, while being agnostic of the type of classifier, the training dataset and the
domain of application. This analysis serves as a background for developing
secure machine learning frameworks.

The rest of the paper is organized as follows. Section 2 presents related work
in the area of exploratory attacks on classifiers. Data driven attacks on binary
2 https://aws.amazon.com/machine-learning/.
3 https://cloud.google.com/prediction/.
4 https://bigml.com/.

https://aws.amazon.com/machine-learning/
https://cloud.google.com/prediction/
https://bigml.com/
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classifiers are presented in Sect. 3. Two specific strategies and algorithms are
presented in Sects. 3.1 and 3.2, for generating simple probing attacks to complex
reverse engineering attacks. Section 4 presents experimental evaluation on 10 real
world datasets, 7 from classification domains and 3 from cybersecurity domains.
Avenues for further development are presented in Sect. 5.

2 Related Work on Exploratory Attacks on Machine
Learning Based Classifiers

Once a model is trained and deployed in a cybersecurity application, it is vulner-
able to exploratory attacks. These attacks are non-intrusive and aim at gaining
information about the system, which is then exploited to create evasive samples,
to avoid detection. These attacks are universal and are difficult to eliminate
by traditional encryption/security techniques, because they use the same access
channels as regular client users and see the same black box view of the system.
Work in [16], shows that linear and convex inducing classifier are all vulnera-
ble to probing based exploratory attacks. Exploratory attacks are classified as
either: Targeted or Indiscriminate, based on the specificity of the attacks [4].
Targeted attacks aim at modifying a specific set of malicious input samples,
minimally, to disguise them as legitimate. Indiscriminate attacks are more gen-
eral in their goals, as they aim to produce any sample which will avoid detection
by the defender’s model. Most work on exploratory attacks are concentrated on
the targeted case, considering it as a constrained form of indiscriminate attacks,
with the goal of starting with a malicious sample and making minimal modifi-
cations to them to avoid detection [5,14].

Particular strategies developed for performing exploratory attacks vary based
on the amount of information available to the adversary, with a broad classifica-
tion presented in [3] as: (a) Evasion attacks and (b) Reverse Engineering attacks.
Evasion attacks are used when limited information about the system is available,
such as a few legitimate samples only. An example of evasion is seen in case of
the ‘Good Words’ attacks on spam classifiers, where the word SALE is modified
to SA1E, to avoid being flagged [15]. In [26], a general purpose domain inde-
pendent evasion technique was developed. Genetic programming was used to
generate variants of a set of malicious samples, as per a monotonically increas-
ing fitness function describing success of evasion. This technique is attractive
due to its generality, but its practically is limited by the lack of a graded fit-
ness function and limited probing budgets. The gradient descent attacks of [5]
provides an efficient heuristic approach to utilizing the information about the
classifier model, to generate optimal modification for targeted evasion of a set of
data samples. However, the attack strategy relies on knowing the exact model
of the defender and cannot be effectively used when only a black box interface
to the defender’s classifier is presented.

Reverse engineering attacks on classifiers, provides avenues for large scale
evasion, as it conveys important internal information about the importance of
features to the classification task. Reverse engineering was employed in [14],
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where a signed witness test was used to identify if a particular feature has a
positive or a negative impact on the prediction decision. Reverse engineering
of a decision tree model was presented in [25]. In [26], genetic programming
was used as a model independent reverse engineering tool, assuming that the
training data is known. The idea of reverse engineering was linked to that of
active learning in [3]. Here, the robustness of Support Vector Machines (SVM)
classifiers, to reverse engineering, was tested using active learning techniques of
random sampling, uncertainty sampling and selective sampling.

In the above described targeted-exploratory attacks, it is assumed that an
adversary would give up if an attack is expensive (far from the original samples).
These attacks do not consider the case of a determined adversary intending to
launch an indiscriminate attack. These type of attacks have been largely ignored,
with the only mention we found was in [28], where it is termed - the free range
attack, as an adversary is free to move about in the data space. Analyzing
performance of models under such attack scenarios is essential to understanding
its vulnerabilities in a more general and real world situation, where all types of
attacks are possible. Also, while most recent methodologies develop attacks as
an experimental tool to test their safety mechanisms, there is very few works
[18,21,23], which have attempted to study the attack generation process itself.
Our proposed work analyzes the vulnerability of classifiers to Indiscriminate-
Exploratory attacks, where only a black box model of the defender is available.
A data driven framework is proposed, thereby highlighting the symmetry of the
problem of attack and defense, to motivate a data driven solution.

3 Data Driven Attacks on Classifiers

Data driven attacks on classification systems are exploratory in nature. An adver-
sary proceeds by making probes to the classifier, by means of generated input
samples, which it presents to the system. The feedback, a simple accept/reject
in most cases, can then be used to infer the nature of the trained model. The
classifier is seen only as a black box, which can provide binary feedback on input
samples, in the same way as it provides classification on regular benign input
data (Fig. 1). As an example, a spam classification system will not provide any
information other than its intended behavior of marking input emails as spam,
based on its analysis. In this setting, the model of an adversary can be formalized
as follows:

– Knowledge: Adversary is aware of the number, range and type of features
used by the system. This can be approximated from publicly available case
studies or by educated guessing. No information about classifier type and
training data is known.

– Goals: Adversary intends to produce false negatives for the classification.
– Resources: The attacker has access to the system as a client user. It can

submit probe samples and receive feedback, up to a budget B, without being
detected.
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Based on the above model of an adversary, the problem of generating
exploratory attacks can be formalized. A binary classifier C, trained on a set
of training data D, is deployed to classify input samples as Legitimate or Mali-
cious. An adversary aims to generate samples D′

Attack, such that C(D′
Attack) has

a high false negative rate. The adversary has at its disposal a budget BExplore

of probing data D′
Explore, which it can use to learn about C and understand it

as C ′. This setting represents a natural scenario where attackers start with lim-
ited reconnaissance and then launch a dedicated campaign, based on the learned
vulnerabilities. An adversary operating in this scenario can utilize an Explore-
Exploit strategy, popular in search based optimization techniques [24], to best
utilize the budget BExplore to produce D′

Explore. Two specific instantiations of
this general idea are presented here as the Anchor Points (AP) attack and the
Reverse Engineering (RE) attack.

3.1 The Anchor Points(AP) Attack

Anchor Points attacks start with an adversary gaining information about a set of
samples classified as Legitimate by the classifier C, which it then uses as Anchors
to launch new attack instances. These attacks are characteristic of an adversary
who has a limited probing budget BExplore and who wishes to quickly exploit a
new found vulnerability, as is common in the case of zero day exploits [7].

From a data driven perspective, the attacks begin by obtaining a set of seed
Legitimate samples D′

Seed. As an example, the adversary could start with a set
of legitimate emails obtained from its’ own inbox, for a spam evasion task. The
obtained seed samples are then used to trigger the exploration phase as described
in Algorithm 1. The exploration phase intends to obtain a set of Anchor Points,
which will serve as ground truth for representing the space of samples classified
as Legitimate. This exploration is performed using a radius based incremental
neighborhood search around the seed samples, guided by the feedback from the
black box classifier C. Diversity of search is ensured by dynamically updating
the neighborhood radius Ri in every iteration, as given by (Line 5). This equa-
tion causes the radius of exploration to increase in cases where the number of
legitimate samples obtained are high, thereby balancing diversity of search with
its accuracy. Samples are explored by searching for a random sample within
the radius of exploration, as given by (Line 6). The final exploration dataset of
Anchor Points - D′

Explore, is comprised of all the explored samples xi such that
C(xi) is Legitimate. This is depicted in Fig. 2, as the set of positive points which
are obtained at the end of the exploration cycle.

The explored anchor points set D′
Explore, serves as the basis to launch a

dedicated attack campaign. Algorithm 2 incorporates information learned in the
exploration phase, to generate the attack samples while also imparting diversity
to the attack set D′

Attack. Diversity is imparted by adding random perturbation
to the samples (Line 4) and then generating a sample based on their convex
combination (Line 6), as inspired by the Synthetic Minority Oversampling Tech-
nique(SMOTE) for imbalanced datasets [8]. Random perturbation is controlled
by the input parameter RExploit, which is kept close to Rmin (Algorithm 1), as
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Algorithm 1. AP- Exploration Phase
Input : Seed Data D′

Seed, Defender black box C. Parameters: Exploration
budget BExplore, Exploration neighborhood- [Rmin, Rmax]

Output: Exploration data set D′
Explore

1 D′
Explore ← D′

Seed

2 count legitimate=0
3 for i = 1 .. BExplore do
4 xi ← Select random sample from D′

Explore

5 Ri = (Rmax − Rmin) ∗ (count legitimate/i) + Rmin

6 x̂i ← Perturb(xi , Ri) � Perturbed sample
7 if C.predict(x̂i) is Legitimate then
8 D′

Explore∪ x̂i

9 count legitimate ++

10 Procedure Perturb(sample, RNeigh)
11 return sample+=random(mean=0, std=RNeigh)

Algorithm 2. AP- Exploitation Phase
Input : Exploration data set D′

Explore, Number of attacks NAttack, Radius of
Exploitation RExploit

Output: Attacks set D′
Attack

1 D′
Attack ←[]

2 for i = 1 .. NAttack do
3 xA, xB ← Select random samples from D′

Explore

4 x̂A, x̂B ← Perturb(xA, RExploit), Perturb(xB , RExploit)
5 λ = random(0, 1) � Random number in [0,1]
6 attack samplei ← x̂A ∗ λ + (1 − λ) ∗ x̂B

7 D′
Attack ∪ attack samplei

8 Procedure Perturb(sample, RExploit)
9 return sample+=random(mean=0, std=RExploit)

no explicit feedback from the black box C, is available in this phase. The final
set of attack samples D′

Attack is submitted as attack on the classifier C, shown
as red samples in Fig. 2. An adversary aims to cause a high false negative rate
for C, while at the same time have high diversity in its attacks. D′

Attack is kept
much larger than BExplore to justify adversarial budget expenditure.

The performance of the Anchor Points attack depends on the diversity and
accuracy of samples collected in the exploration phase. Larger coverage ensures
flexibility in the attack phase. By the nature of these attacks, they could be
thwarted by blacklists capable of approximate matching [20]. Nevertheless, these
techniques are suited for adhoc swift exploits, to cause impact before a defender
has time to respond.
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Fig. 2. Illustration of AP attacks on 2D synthetic data. (Left - Right): The defender’s
model from training data. The Exploration phase depicting the seed (blue) and the
anchor points samples. The Exploitation phase samples generated based on the anchor
points, and submitted as attack payload. (Color figure online)

3.2 The Reverse Engineering(RE) Attack

These attacks aim to directly reverse engineer the classification boundary, so as
to better understand the classification landscape, which can then be leveraged
to launch large scale evasion attacks on the black box C. Reverse engineering
could be a goal in itself, as it provides information about features importance
to the classification task, or it could be a first step to launching an evasion or
availability attack [3]. A reverse engineering attack, if done effectively, can avoid
detection and can make retraining more difficult on the part of the defender.
However, unlike the AP attack, the reverse engineering process is affected by
the type of classifier model used by C, and is also dependent on the availability
of sufficient exploration budget BExplore, for the reverse engineering learning
task. Nevertheless, an adversary motivated to evade the classification system is
not concerned with fitting the decision boundary of C exactly. A linear approx-
imation to the non linear defender’s boundary is sufficient to launch a reduced
accuracy attack, which can be compensated for by launching a massive attack
campaign, utilizing the information provided by the reverse engineered model.

Effective reverse engineering depends on making best use of the BExplore.
Random sampling can lead to wasted probes, with no new information added.
The query synthesis strategy of [24] generates samples close to the decision
boundary and spreads these samples across the boundary, for better learning
of the decision landscape. The approach in [24] was used for selecting samples
for active learning. We modify the approach for the task of reverse engineer-
ing in Algorithm3, where a surrogate classifier C ′ is learned as a result of the
exploration phase. The algorithm begins by accepting a seed datasets, which is
comprised of atleast one Legitimate and Malicious sample. The algorithm then
employs the Gram-Schmidt process [24], to generate orthonormal samples near
the midpoint of two randomly selected points of the opposite classes, as shown
in Fig. 3. The magnitude of the orthonormal mid-perpendicular vector is set to
λi, selected as random value in [0,λ], to incorporate variability in the exploration
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Algorithm 3. RE Exploration - Using Gram-Schmidt process.
Input : Seed Data D′

Seed, Defender black box model C. Parameters:
Exploration budget BExplore, Magnitude of dispersion λ

Output: Exploration data Set D′
Explore, Surrogate classifier C′

1 D′
Explore L, D′

Explore M = Legitimate, Malicious samples of D′
Seed

2 for i = 1 .. BExplore do
3 xL, xM ← Select random samples from D′

Explore L, D′
Explore M

4 x0= xL − xM

5 Generate random vector xR

6 xR = xR − <xR,x0>
<x0,x0>

∗ x0 � Gram-Schmidt process - xR orthogonal to x0

7 λi = random(0, λ)

8 xR= λi
norm(xR)

*xR � Set magnitude of orthogonal midperpendicular

9 xS=xR + (xL + xM )/2 � Set xR to midpoint
10 if C.predict(xS) is Legitimate then
11 D′

Explore L ∪ xS

12 else
13 D′

Explore M ∪ xS

14 D′
Explore = D′

Explore L ∪ D′
Explore M

15 Train C′ using D′
Explore � Training can be based on linear classifier of choice

phase (Line 8). The resulting exploration samples are then classified as Legiti-
mate/Malicious by C, which can be probed upto BExplore. The final combined
dataset D′

Explore (Line 14) is then used to train a linear classifier of choice, to
form the surrogate reverse engineered model C ′ (Line 15).

The reverse engineered model C ′ can be used to crosscheck the randomly
generated samples in the exploitation phase, to ensure that attacks have high
accuracy. A practical and effective exploitation strategy is to use the D′

Explore as
the seed set for Algorithm 1, with the exception that we use C ′ to probe instead
of the original C. Since the C ′ is a locally trained model, probing it does not
impact BExplore. Thereby allowing an adversary to make, theoretically, infinite
queries to C ′, at effectively zero cost. The anchor points obtained can then be
used to perform exploitation using Algorithm2. The exploitation can use a large
RExploit, as the results can be verified against the surrogate C ′, to ensure higher
diversity and higher accuracy of attacks, than the AP attacks.

4 Empirical Evaluation

4.1 Experimental Setup

Experimental evaluation, presented here, shows an adversary’s point of view of
the classification system. The adversary is capable of generating data driven
attacks on the system, by making limited probes to it and then generating a
dedicated campaign of evasive samples. Since the adversary aims at evading the
classification system, its efficacy is measured as the Effective Attack Rate(EAR),
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Fig. 3. Illustration of RE attacks on 2D synthetic data.(Left - Right): The defender’s
model based on training data. The Exploration phase depicting reverse engineering
using the Gram-Schmidt orthonormalization process. The Exploitation attack phase
samples generated after validation from the surrogate classifier.

given by Eq. 1. This equation measures the accuracy of the attacks, from an
adversary’s point of view, and it indicates the false negative rate of the defender’s
classifier on the attack samples.

EAR =
|{x : C(x) = Legitimate ∧ x ∈ D′

Attack}|
|D′

Attack|
(1)

Here, C represents the defender’s black box classifier and D′
Attack is the set

of attack campaign samples generated by the adversary to attack C. The goal
of an adversary is to maximize EAR.

The evaluation is performed using 10 binary classification datasets, shown in
Table 1 (Column 1 ). The first 7 datasets represent standard classification tasks
and were obtained from the UCI machine learning repository [13]. The Spam-
base dataset for email classification [13], the KDD99 intrusion detection dataset
[13] and the CAPTCHA dataset for classifying human-bots based on behavioral
data [10], represent 3 different cybersecurity applications which employ machine
learning based classification at its core. All datasets were transformed to have
numerical values normalized in the range of [0,1]. Instances were shuffled to
remove any bias due to inherent concept drift. The class label 1 is taken as the
Malicious class and 0 is taken as the Legitimate class, as convention.

In all experiments, the exploration probe budget BExplore is taken as 1000
and the number of attack samples to be generated NAttack is taken as 2000. For
the Anchor Points (AP) attack, the neighborhood radius [Rmin, Rmax] is taken
as [0.1,0.5] and the exploitation radius as RExploit = 0.1. In case of the reverse
engineering (RE) attacks, a larger exploitation radius (RExploit=0.5) is consid-
ered, due to additional validation provided by the surrogate learned classifier
C ′. A SVM with linear kernel and high regularization constant (c=10) is taken
for the surrogate classifier, to prevent overfitting to D′

Explore. The magnitude of
dispersion (λ) is taken as 0.25, and it was found that changing this had little
affect on the final results. In all experiments, no information about the black box
C is known by the adversary. All experiments in this section are performed using
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Table 1. Results of AP and RE attacks on a linear defender model on 10 real world
datasets (EAR - Effective Attack Rate).

Dataset (#Instances,
#Attributes)

Defender’s
initial
accuracy

Explored
anchor
points/BExplore

Accuracy of
RE model C’

EAR

AP RE

Digits08 (1500, 16) 0.98 0.63 0.92 0.96± 0.01 0.93± 0.06

Credit (1000, 61) 0.79 0.71 0.71 0.98± 0.01 0.8± 0.15

Cancer (699, 10) 0.97 0.99 0.95 0.99± 0.01 0.99± 0.01

Qsar (1055, 41) 0.87 0.99 0.42 0.99± 0.01 0.99± 0.01

Sonar (208, 60) 0.88 0.98 0.61 0.99± 0.01 0.98± 0.01

Theorem (3060, 51) 0.72 0.67 0.57 0.97± 0.01 0.87± 0.08

Diabetes (768, 8) 0.78 0.5 0.71 0.98± 0.01 0.95± 0.04

Spambase (4600, 57) 0.91 0.5 0.59 0.93± 0.01 0.71± 0.2

KDD99 (494021, 41) 0.99 0.91 0.55 0.99± 0.01 0.93± 0.04

CAPTCHA (1885, 26) 1.0 0.92 0.91 0.99± 0.01 0.97± 0.02

Python 2.7 and the scikit-learn library [19]. Results are averaged over 30 runs
for every experiment. Section 4.2 presents the results of a symmetric case, where
both the adversary and the defender have similar model types, while Sect. 4.3
presents analysis on non symmetric model types, with 4 different classifiers for
the black box.

4.2 Experiments with Symmetric Defender Model

Experiments with a linear kernel SVM for the defender’s model (regularization
parameter, c = 1), is presented here, to show effects of a symmetric model type
between the adversary and the defender. The initial accuracy of the defender, as
perceived by cross-validation on its training dataset before deployment, is shown
in Table 1. The Effective Attack Rate (EAR) shows that even models which are
perceived to have a high accuracy (>70% in all 10 cases) by the defender, are
effectively evaded by an adversary, with an EAR of 97.7% in case of the AP
attacks and 91.2% for the RE attacks, on average. This shows the inherent
vulnerability of the classification models and the misleading nature of accuracy,
in an adversarial environment.

Both the attack methods of AP and RE are effective. The fundamental dif-
ference between the two approaches is that RE places its confidence in its under-
standing of the separating boundary, while the AP approach places its confidence
only on the anchor points obtained during exploration. From Table 1, it is seen
that the number of anchor points obtained is >50% of BExplore(Column 3 ), mak-
ing it a simple attack strategy in high dimensional spaces. For the RE attack,
the accuracy of the surrogate classifier C ′(Column 4 ) is computed by evaluating
it on the original dataset, as an adhoc metric of C ′s understanding of the origi-
nal data space and the extent of reverse engineering. It is observed that even in



60 T.S. Sethi et al.

Fig. 4. Improving diversity of attacks in AP leads to decreased EAR (a). In case of
RE, which has high diversity, EAR can be improved by increasing BExplore(b).

cases where the RE accuracy is low (0.41 for Qsar), a high EAR is seen (0.99).
This is because, the goal of the adversary is not to totally reverse engineer the
model C, but instead to learn it sufficiently enough to evade it. This enables
the linear approximation technique of the RE approach to work as an effective
attack strategy. The higher variability in EAR for the RE attacks is also a result
of this approximation and its dependence on the quality of the exploration data.

While the AP attacks have a higher EAR than the RE attacks (Table 1), the
RE approach provides better diversity of attacks, as it uses a larger RExploit =
0.5 (for AP,RExploit = 0.1). Diversity ensures that simple countermeasures of
blacklisting will not thwart an attack [20]. The effect of increasing the RExploit

for the AP attack, in an attempt to increase its diversity, is shown in Fig. 4(a).
It is seen that this leads to rapid deterioration in the EAR, as the only ground
truth information available is the Anchor Points obtained during exploration.
Increasing distance from these points leads to uncertainty and reduced accuracy
of attacks. For the RE attacks, the datasets of - Cancer, Theorem and Spambase,
are seen to have a low EAR in Table 1. Effects of increasing the BExplore, in an
attempt to increase the EAR is shown in Fig. 4(b). Increasing number of probes
leads to an increase in the understanding of the black box C, which translates
to better EAR. This increase plateaus after a critical mass of samples, needed
for active learning the model C, is reached. This indicates the efficacy of the
RE attacks as a long term attack strategy on a classification system, where over
time the additional information learned can lead to both high accuracy and high
diversity.

4.3 Experiments with Non-symmetric Defender Model

The development of the AP and the RE attack strategies considers a black box
defender’s model. These techniques are essentially data space search approaches,
which are independent of the defender’s underlying model type and their parame-
ters. Results of testing the behavior of these attack strategies on a non-symmetric
and non-linear defender models is presented in Table 2. The following defender
black box models are considered: K-Nearest Neighbor classifier (KNN) with K
= 3, SVM with a radial basis function kernel(SVM-RBF, γ = 0.1), C4.5 decision
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Table 2. Effective Attack Rate (EAR) of AP and RE attacks, with non linear
defender’s model (Low EAR values are italicized.)

Dataset KNN SVM-RBF DT RF

AP RE AP RE AP RE AP RE

Digits08 0.89 0.96 0.97 0.89 0.87 0.63 0.85 0.48

Credit 0.96 0.78 0.94 0.53 0.79 0.42 0.79 0.33

Cancer 0.99 0.99 0.99 0.99 0.97 0.89 0.99 0.98

Qsar 1 0.99 0.99 0.99 0.96 0.76 0.99 0.99

Sonar 0.99 0.98 1 1 0.97 0.62 0.99 0.95

Theorem 0.97 0.813 0.95 0.5 0.95 0.79 0.62 0.78

Diabetes 0.99 0.935 0.99 0.9 0.83 0.63 0.88 0.61

Spambase 0.93 0.99 0.48 0.84 0.08 0.11 0.99 0.98

KDD99 0.99 0.93 1 0.99 0.89 0.54 0.92 0.27

CAPTCHA 0.99 0.92 0.99 0.92 0.97 0.83 0.93 0.89

trees (DT), and random forest of 50 decision models (RF) [19]. The parameters
of the experiments are kept the same as in Sect. 4.2.

It is seen that the AP approach is minimally affected by the choice of the
defender’s model. The RE attacks are affected by the choice of the model, as seen
in the case of the Credit and the Theorem datasets. These datasets were seen to
have a low accuracy, when trained using a linear model (Table 1), indicating non
linearity in their model space. In these cases, the linear approximation in the RE
approach, is not sufficient to have a high EAR. However, in a majority of the
cases it is seen that a >50% attack rate is still possible with just a linear SVM
model used for reverse engineering. A high average attack rate, irrespective of the
underlying classifier used, indicates vulnerability of classification to purely data
driven attacks. An interesting observation warranting further investigation is the
comparatively low EAR on the decision tree models, which could be indicative
of their attack resistance and its inverse relation to model robustness.

5 Conclusion and Future Work

We present a general data driven framework for demonstrating the vulnerability
of classification systems to exploratory attacks at test time. Under this frame-
work, two specific attack algorithms were developed: The Anchor Points attack
(AP) and the Reverse Engineering attacks (RE). The effectiveness of these attack
algorithms on 10 real world datasets, demonstrates that adversarial attacks can
be launched having only the knowledge of the feature space of the data, agnostic
of the defender’s classifier type, training data and the domain of application.
The defender’s perceived accuracy was shown to be of little importance, if the
model can be easily evaded by such probing based attacks. This is especially
relevant in cybersecurity application domains, where the primary purpose of the
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classifier is to provide security. In these domains, it is worth emphasizing that -
higher accuracy in machine learning does not necessarily imply better security.

While the proposed work presents the adversary’s point of view of the attack-
defense cycle, its goal is to move towards a more secure paradigm of using
classifiers in cybersecurity domains, by clearly understanding its vulnerabilities.
Future work will include attack detection and effective relearning, in environ-
ments with adversarial activity.
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