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Abstract. Community mining is a powerful tool for discovering the
knowledge of networks and has a wide application. The modularity is
one of very popular measurements for evaluating the efficiency of commu-
nity divisions. However, the modularity maximization is a NP-complete
problem. As an effective optimization algorithm for solving NP-complete
problems, ant colony based community detection algorithm has been
proposed to deal with such task. However the low accuracy and prema-
ture still limit its performance. Aiming to overcome those shortcomings,
this paper proposes a novel nature-inspired optimization for the commu-
nity mining based on the Physarum, a kind of slime molds cells. In the
proposed strategy, the Physarum-inspired model optimizes the heuristic
factor of ant colony algorithm by endowing edges with weights. With
the information of weights provided by the Physarum-inspired model,
the optimized heuristic factor can improve the searching abilities of ant
colony algorithms. Four real-world networks and two typical kinds of
ant colony optimization algorithms are used for estimating the efficiency
of proposed strategy. Experiments show that the optimized ant colony
optimization algorithms can achieve a better performance in terms of
robustness and accuracy with a lower computational cost.
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1 Introduction

Community mining is associated with the graph clustering that is a powerful tool
for knowledge discovering in many real-world complex systems [1]. Identifying
the structural characteristics of a network has a wide application in knowledge
discovery, such as the function prediction in the protein-protein networks [2], the
real-time recommendation systems construction [3], and the information diffu-
sion analysis [4].
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Many algorithms have been proposed for mining such structures in networks,
such as optimization-based algorithms [5] and stochastic model based algorithms
[6]. Currently, a modularity measure Q has been proposed and widely used for
estimating the qualities of community divisions [7]. Specifically, the modularity
maximization is a NP-complete problem, which is intractable for traditional
optimization algorithms, such as mathematical programming [8]. In the field of
heuristics algorithms, ant colony optimization (ACO) algorithm is popular in
dealing with the NP-complete problems [9]. But low accuracy and robustness
limit its performance and application.

Recently, a kind of slime molds cell, Physarum, has shown an intelligence of
network designing and path finding in biological experiments [10,11]. Moreover,
for uncovering the key mechanism of the intelligent behavior of Physarum, a
mathematical model has been proposed by Tero et al. [12]. This Physarum-
inspired model has been used for optimizing the heuristic algorithms [13]. Based
on the characters of Physarum-inspired model, we wonder can the Physarum
model optimize the ant colony optimization algorithm for community mining?

Based on the above motivation, the main contributions of this paper are as
follows. Taking advantages of Physarum-inspired model, which could recognize
the inter-community edges coarsely, a novel nature-inspired optimization algo-
rithm has been proposed based on ant colony optimization. In the new algorithm,
the heuristics factor of traditional ACO is optimized based on the recognition of
Physarum-inspired model, which could instruct the ants to find better solutions
and improve the efficiency of algorithms. Meanwhile, four real-world networks
and two representative kinds of ant colony algorithms are used to demonstrate
the efficiency of the proposed nature-inspired optimization algorithm, in terms
of accuracy and robustness.

The remaining of this paper is organized as follows. Section 2 formulates
the community mining and introduces the ant colony optimization for commu-
nity mining. And then, the nature-inspired optimization is proposed based on
Physarum-inspired model in Sect. 3. Section 4 reports the experiments on four
real-world networks and two typical kinds of ant colony clustering algorithms.
Finally, Sect. 5 concludes this paper.

2 Related Work

2.1 Formulation of Community Detection

Community mining is to divide the vertexes in a network into communities,
where vertexes across communities are sparsely connected, and vertexes within
a community are relatively densely connected. Based on inherent structural fea-
tures, a modularity measure, denoted as Q, is proposed to evaluate the qualities
of community divisions [1]. Therefore, the community mining problem can be
formulated to an optimization problem, which is to maximize the modularity
value. The formulation of community mining is shown as follows.
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Considering a network G(V,E), where V and E stand for the sets of vertexes
and edges respectively. And a community is a subset of V , where vertexes have
a common certain feature. With NC indicating the number of communities, a
community division is a set of communities, C = {C1, C2, . . . , CNC}, in which
Ci �= ∅, Ci �= Cj , and Ci ∩ Cj = ∅, for all i and j. After that, the mission of
community mining can be represented as Eq. (1).

C∗ = arg max
C

Q(G,C) (1)

The modularity Q is computed based on the topological structure of a net-
work and its divisions, which is defined as Eq. (2). Specifically, δ(i, j) indicates
the community relationship between vertexes i and j, while A and di stand for
the adjacent matrix of a network and degree of vertex i, respectively. Ai,j is
equal to 1, if there is an edge connecting vertexes i and j. Otherwise, Ai,j is
equal to 0. Moreover, the degree of vertex i can be expressed as di =

∑
j Ai,j .

In details, δ(i, j) is equal to 1, if and only if vertexes i and j belong to the same
community. Otherwise, δ(i, j) is equal to 0.

Q =
1

2|E| (Aij − didj

2|E| )δ(i, j) (2)

2.2 Ant Colony Algorithms for Community Mining

Ant colony optimization is under a general category of nature-inspired algo-
rithm, which is inspired by the collective behaviors of ants. In the ant colony
optimization algorithm, each ant finds a community division based on a prob-
ability directed by the pheromone matrix and the heuristic factor. The most
important parts of a ant colony algorithm are searching, mutating and updating
pheromone matrix. Here, we take a typical ant colony optimization for cluster-
ing, denoted as ACOC, as an example to introduce the basic parts of an ant
colony algorithm for community mining [14].

Searching Strategy: In each iteration, every ant finds a community division
based on a probability matrix, which is as shown in Eq. (3). Pi,cj indicates the
probability of vertex i belonging to community Cj . And cj stands for the label
of community Cj .

Pi,cj =
(ηi,cj )

β(Taui,cj )
α

NC∑

k=1

(ηi,ck)β(Taui,ck)α

(3)

In Eq. (3), ηi,cj is the heuristic factor, which helps improve the search ability
of ants based on the adjacent matrix of networks. For example, the heuristic
factor in ACOC indicates the number of edges connecting the vertexes in com-
munity Cj from vertex i. Based on the character of community structure, the
more edges connecting vertexes in community Cj vertex i joints, the larger prob-
ability of vertex i belonging to community Cj is. And the expression of ηi,cj is
shown in Eq. (4), in which ni,cj indicates the number of edges connecting ver-
tex i and vertexes in community Cj . Here, Cj is based on the best community
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division found by algorithm. And Tau stands for the pheromone matrix, which
is updated by the ants in each iteration based on the qualities of solutions.

ηi,cj =
ni,cj

NC∑

k=1

ni,ck

(4)

Based on the P matrix, the details in ACOC of assigning a community label to
a vertex is introduced as follows. Taking the vertex i as an example, the community
label cj with maximal P value (i.e., arg maxcjPi,cj ) is assigned to vertex i with a
probability p0. Meanwhile, the community label of vertex i is assigned based on the
roulette way, with a probability 1 − p0. As shown in Fig. 1, assigning community
labels for all the vertexes in such way, a community division emerges.

Node
Label

Node
Label

Assign a community label to each node 
based on P,  which is shown as fellows.

Decode

Fig. 1. The formulation of community division based on ACOC. Each community
division is coded as a string of integers, which represents the community label of cor-
responding vertex.

Mutation Strategy: Mutation operator is a kind of random searching process,
which aims to improve the diversity of solutions and protect ant colony clustering
algorithms from premature. In the adopted mutation strategy of ACOC, each
vertex is reassigned by a random community label with a probability Pm. And
the mutation of a solution is accepted, if and only if the reassigning improves
the modularity value of corresponding community division. Figure 2 shows an
simple example of such mutation strategy.

Pheromone Matrix Updating Strategy: There are two phases for updating
the pheromone matrix Tau. The first phase is implemented when an ant finishes
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Node
Label

Mutation: Reassign a
community label randomly

Label

Label

Accept

Deny

The mutation is accepted, if and only if the 
Reassignment improve the quality of solution.

Q=0.36

Q=0.10

Q=0.21

Fig. 2. An example of the mutation strategy in ACOC. Each mutated vertex is reas-
signed by a random community label. And the mutation is accepted, if and only if the
reassigning improves the modularity value of corresponding community division.

its searching in an iteration. In this phase, every ant updates the pheromone
matrix based on Eq. (5). Specifically, ρ is the volatile coefficient of pheromone,
and Q indicates the quality of community division that the ant finds. The sec-
ond phase executes after all the ants finish their local searching. Based on the
community divisions with the top Q values in the current iteration, Eq. (6) is
implemented for enhancing the effects of better community divisions. In Eq. (6),
φ(i, cj) equals to 1, if and only if vertex i within community Cj based on the
corresponding community division. Otherwise, φ(i, cj) equals to 0.

Taui,cj = (1 − ρ) · Taui,cj + 2ρ · Q · φ(i, cj) (5)

Taui,cj = (1 − ρ) · Taui,cj + Qtop · φ(i, cj) (6)

With the local searching and updating for Tau, ants will aggregate to certain
community divisions with higher Q values. And the solution with the highest Q
value will be outputted as the optimal community division.

3 A Novel Nature-Inspired Optimization Algorithm
for Community Mining

3.1 Edges Endowed with Weights Based on the Physarum Model

Physarum is a kind of slime with the abilities of designing networks and solving
maze [10,11]. Moreover, inspired by the bio-experiments of Physarum, a math-
ematical model is proposed and used for optimizing the heuristic algorithms
[13]. In this paper, the Physarum model (PM) is modified to endow edges with
weights, which could be used to recognize the intra-community edges in a net-
work.

PQt
i,j =

Dt−1
i,j

Li,j
|pt

i − pt
j | (7)

The basic hypothesis of PM is a Poiseuille flow in a network. And the core
mechanism of PM is the feedback system between the cytoplasmic fluxes and
conductivities of tubes in the Poiseuille’s flow. This feedback system has two
main processes. First, PQt

i,j , Dt
i,j , Li,j and pt

i denote the flux, the conductiv-
ity, the length of ei,j , and the pressure of vi at time step t, respectively. Then,
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the relationship among the flux, conductivity, length, and pressure can be rep-
resented as Eq. (7). According to the Kirchhoff’s law, which is represented in
Eq. (8), the pressures and fluxes can be obtained, by solving such equations at
each iteration step. And then, PQt

i,j feeds back to Dt
i,j based on Eq. (9). After

that, an iteration step finishes. With such feedback going on, a highly efficient
network is generated.

∑

i

PQt−1
i,j =

⎧
⎨

⎩

I0, if vj is an inlet
−I0, if vj is an oulet
0, others

(8)

Dt
i,j =

PQt
i,j + Dt−1

i,j

k
(9)

The major modification of PM is the scheme of choosing inlets/outlets in
each iteration. In such model, when a vertex is chosen as an inlet, the others
are chosen as outlets. More specifically, Eq. (8) is modified as Eq. (10), in which
D and L are known. With a certain inlet and outlet, we can construct a set
of equations based on Eq. (10). By solving such equations, pi can be obtained.
And, in each iteration step of PM, every vertex is chosen as the inlet once.
When vl is chosen as the inlet, a local conductivity matrix, denoted as Dt(vl), is
calculated based on the feedback system (i.e., Eqs. (7), (8) and (9)). Finally, after
all the local conductivity matrixes are obtained, the global conductivity matrix
is updated by the average of local conductivity matrixes based on Eq. (11). A
detailed description of PM is represented in Algorithm1.

∑

i

Dt−1(vl)i,j

Li,j
|pt

i − pt
j | =

{
I0, if vj is an inlet

−I0
|V |−1 , others

(10)

Dt =
1

|V |
|V |∑

l=1

Dt(vl) (11)

With such modifications, the conductivities computed by Physarum model
contain the information about inter-community edges recognition. Physarum
model tends to endow inter-community edges with larger conductivities, vice
versa. Figure 3 shows the edges with the top 20 percent conductivities in two
networks based on such Physarum model. As it reported, the most of the edges
with 20 percent conductivities connect vertexes in different communities. And
there is almost no edge within the communities.

3.2 Nature-Inspired Optimization for Community Mining

Utilizing the character of conductivities computed by Physarum model, a novel
ant colony optimization algorithm is proposed in this section, which aims to
overcome the shortcomings of the low accuracy and premature. Through endow-
ing edges with weights based on the Physarum model, the heuristic factor of
proposed ant colony algorithm is optimized for improving the computational
efficiency.
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(b) Football(a) Polbooks

Fig. 3. Edges with top 20 percent conductivities in two networks based on the
Physarum model. The different colors are used to label communities.

Algorithm 1. Physarum network mathematical model for community mining
Input: An adjacent matrix A
Output: A conductivity matrix D
1. Initializing D0 and the maximal iteration step T
2. For t from 1 to T
3. For all vertexes in V
4. Choosing vl as the inlet
5. Calculating pti, ∀i, based on Eq. (10)
6. Calculating PQt

i,j , ∀i, j, based on Eq. (7)
7. Updating Dt(vl) based on Eq. (9)
8. End for
9. Updating Dt based on Eq. (11)
10.End for
11.Outputting DT

η∗
i,cj =

n∗
i,cj

NC∑

k=1

n∗
i,ck

=

∑

h∈Cj

1/wi,h

NC∑

k=1

∑

h∈Ck

1/wi,h

(12)

Taking the advantages of Physarum model, the intra-community edges tend
to have larger weights. In contrast, the inter-community edges tend to have a
small ones. Based on such character, we can optimize the heuristic factor of
ant colony clustering algorithms in order to improve the search ability of such
algorithms during the process of community detection. Takeing ACOC as an
example, we can optimize heuristic factor based on Eq. (12), in which wi,k indi-
cates the conductivity of ei,k and n∗

i,cj =
∑

h∈Cj

1
wi,h

. With such expression,
η∗

i,cj has a larger value when there are the same intra-community edges con-
necting vertex i and vertexes in community Cj , compared with the original ηi,cj ,
vice versa. Such nature-inspired optimization exaggerates the inhomogeneity of
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Initializing pheromone matrix

Initialization

Solution construction

Mutation

Probability matrix 
updating

Results

Input

Calculating the Pearson correlation 
between vertices based on 
conductivity matrix (D)

Calculating the heuristic factors
based on Pearson correlation 

Calculating the probability matrix 
based on heuristic factors and 

pheromone matrix

Building the initial divisions
based on pheromone matrix

Choosing the best community
division at current iteration

Calculating the heuristic factors based 
on the chosen community division and 

conductivity matrix (D)

Calculating the probability matrix
 based on the pheromone matrix and 

heuristic factors 

Updating the pheromone matrix

(a) (b) (c)

The probability matrix updating in ACOCThe initialization of IACO-Net

Fig. 4. Optimizing the heuristic factor in ACOC and IACO-Net based on the con-
ductivity matrix D returned by Physarum model. (a) A basic framework of ant colony
algorithm. (b) The optimized initialization of IACO-Net. (c) The optimized probability
matrix updating process of ACOC.

original heuristic factor, and offers a more obvious information to ants, which
leads to a higher accuracy and better robustness.

Although the heuristic factor is common and important in ant colony algo-
rithms for community mining, the heuristic factor is used in different way in var-
ious ant colony algorithms. However, the Physarum based optimization strategy
adapts various of ant colony algorithms easily. Here we employ two representative
ant colony algorithms (i.e., ACOC [14] and IACO-Net [15]) to show the flexibil-
ity of our proposed method. Figure 4 illustrates the flowchart of optimizing the
heuristic factors in ACOC and IACO.

4 Experiments

4.1 Datasets

Four real-world networks collected by Newman1 and two ant colony clustering
algorithms (i.e., ACOC [14] and IACO-Net [15]) are used to estimate the pro-
posed algorithm. The basic topological features of those networks are shown in
Table 1. For a clear expression, a prefix (i.e., P−) adds to the name of algorithm
with the proposed strategy. And all the experiments are implemented in the
same environment, which means that comparing algorithms have a same para-
meter setting and running environment. Moreover, the results are based on 20
repeated experiments to eliminate the fluctuation and evaluate the robustness.
1 http://www-personal.umich.edu/∼mejn/netdata/.

http://www-personal.umich.edu/~mejn/netdata/
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Table 1. The basic topological features of the real-world networks. N and E denote
the number of vertexes and edges in a network. k and C stand for the average degree
and clustering coefficient of networks, respectively. NC indicates the number of com-
munities in networks based on the background.

Name N E k C NC

Krateclub 34 78 4.588 0.588 2

Dolphins 62 160 5.129 0.303 2

Football 115 613 10.660 0.403 12

Polbooks 105 441 8.400 0.488 3

4.2 Experiment Results

Table 2 shows the box charts of modularity values returned by ACOC, IACO-
Net, and their optimized algorithms on four real-world networks, which reports
the distributions of results based on 20 repeated experiments. Due to the ran-
domness of maximum and minimum, the comparison of those algorithms focuses
on the first and third quartiles, and average. As is shown in such figure, the
P-ACOC and P-IACO-Net have a higher average on all the four networks. And
the first and third quartiles of optimized algorithms are also higher than that of
original algorithms on all of four networks. Meanwhile, the distribution ranges of
optimized algorithms are smaller, compared with that of original ones. It means
the proposed strategy can enhance the robustness of ant colony algorithms.

Table 2. Results returned by ACOC, IACO-Net and their optimized algorithms on
four networks in term of Q based on 20 repeated experiments. Q1 and Q3 indicate the
first and third quartiles, respectively. And AV E stands for the average of those results
on four networks.

Metrics Algorithm Karate Dolphins Football Polbooks

Q1 ACOC 0.2907 0.3031 0.1613 0.4060

P-ACOC 0.3286 0.3350 0.1943 0.4275

ACO-Net 0.4198 0.5078 0.5769 0.5086

P-IACO-Net 0.4198 0.5154 0.5866 0.5094

Q3 ACOC 0.3386 0.3751 0.2294 0.4363

P-ACOC 0.3718 0.3778 0.2508 0.4475

ACO-Net 0.4198 0.5170 0.5893 0.5169

P-IACO-Net 0.4198 0.5195 0.5945 0.5168

AV E ACOC 0.3149 0.3363 0.1947 0.4218

P-ACOC 0.3512 0.3564 0.2261 0.4401

ACO-Net 0.4196 0.5122 0.5824 0.5112

P-IACO-Net 0.4197 0.5176 0.5903 0.5133
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(b) Dolphins(a) Karate (c) Football (d) Polbook

Iterations Iterations Iterations Iterations

Iterations Iterations Iterations Iterations

Q Q Q Q

Q Q Q Q

Fig. 5. The dynamic averages of Q with the increment of iteration in four networks. The
results show that the proposed optimized strategy can obviously improve the search
abilities of ACOs.

For further estimating the efficiency of proposed strategy, Fig. 5 reports the
dynamic changes of average modularity values with the increments of iterations.
As is shown in such figure, at the initial phase, the Q values of the optimized
algorithms are close to those of original algorithms. However, the algorithms with
the proposed strategy have a higher growth rate, compared with the original ant
colony algorithms. With the growing of iterations, the difference between original
and optimized algorithms emerges. There is a distinct gap between the lines of
original and optimized algorithms at the end of iterations.

Other optimization and heuristic algorithms are also used to evaluate the effi-
ciency of proposed algorithms for community mining. The compared algorithms
include the evolution algorithm (i.e., GA-Net [16]), swarm intelligence algorithm
(i.e., RWACO [17]), hierarchical clustering algorithm (i.e., FN [18]), and label
propagation based algorithms (i.e., LPA [19]). Table 3 reports the modularity
values returned by those algorithms. As shown in such table, P-IACO-Net has
the highest Q values on three of four networks. Meanwhile, the Q values of
P-ACOC have significant improvements, compared with that of ACOC.

The cost of such Physarum-inspired optimized strategy is the computational
cost. And the time complexity of Physarum model is analyzed as follows. For
Physarum model, at each iterative step, every vertex should be chosen as the
inlet once. When a vertex is chosen, a corresponding system of equations needs
to be solved. In other words, there are N equations to solve in each iteration step.
The worst computation complexity of solving a system of equations is O(N3).
With an empirical setting (i.e., T = 1), the total computation complexity of
Physarum-inspired optimized strategy is O(N4). For a NP-complete problem,
this computation complexity is acceptable. Moreover, Table 4 shows the running
time of ACOC, IACOC-Net and their optimized algorithms in seconds, which
also verifies that the proposed Physarum-inspired optimized strategy does not
increase the computational complexity noticeably.
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Table 3. Comparison the proposed algorithms with other optimization and heuristic
algorithms. The community divisions are evaluated by modularity value Q.

Alg. Net.

KarateClub Dolphins Football Polbooks

ACOC 0.314 0.336 0.194 0.421

P-ACOC 0.350 0.365 0.226 0.440

IACO-Net 0.419 0.512 0.582 0.511

P-IACO-Net 0.419 0.517 0.590 0.512

FN 0.252 0.371 0.454 0.502

LPA 0.370 0.480 0.588 0.504

GA-Net 0.406 0.467 0.598 0.490

RWACO 0.371 0.377 0.601 0.456

Table 4. The running time of optimization-based algorithms in seconds. From this
table, we can conclude that our proposed computational framework does not bring
more computational burden for original algorithms.

Alg. Net.

Karate Dolphins Polbooks Football

P-ACOC 2.2814 4.3298 8.5971 9.9121

ACOC 2.1862 4.2678 8.4494 9.8882

P-IACO-Net 1.1906 2.4156 7.5031 15.4844

IACO-Net 1.0875 2.2906 7.2562 14.8844

5 Conclusion

Inspired by the Physarum-inspired model, a novel nature-inspired optimization
algorithm for community mining is proposed in this paper based on the optimized
ant colony optimization. In the proposed novel algorithm, the heuristic factor is
optimized by a Physarum-inspired strategy. The proposed strategy integrates the
knowledge of Physarum-inspired model into the heuristic factor for exaggerating
the inhomogeneity of original ones and offering more extra knowledge for ants.
Experiments on four real-world networks and two typical kinds of ant colony
algorithms show the improvements of optimized algorithm in terms of accuracy
and robustness. Moreover, the time complexity analysis shows that the proposed
strategy does not increase the computational complexity of ant colony clustering
algorithm noticeably.
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