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Abstract. In most practical problems of classifier learning, the train-
ing data suffers from label noise. Most theoretical results on robust-
ness to label noise involve either estimation of noise rates or non-convex
optimization. Further, none of these results are applicable to standard
decision tree learning algorithms. This paper presents some theoreti-
cal analysis to show that, under some assumptions, many popular deci-
sion tree learning algorithms are inherently robust to label noise. We
also present some sample complexity results which provide some bounds
on the sample size for the robustness to hold with a high probability.
Through extensive simulations we illustrate this robustness.
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1 Introduction

For supervised learning of a classifier, we make use of labeled training data.
When the class labels in the training data may be incorrect, it is referred to
as label noise. Subjectivity and other errors in human labeling, measurement
errors, insufficient feature space are some of the main reasons behind label noise.
In many large data problems, labeled samples are often obtained through crowd
sourcing and the unreliability of such labels is another reason for label noise.
Learning from positive and unlabeled samples can also be cast as a problem of
learning under label noise [5]. Thus, learning classifiers in the presence of label
noise is an important problem [6].

Decision tree is among the most widely used machine learning approaches
[19]. However, not many results are known about the robustness of decision tree
learning in presence of label noise. It is observed that label noise in the training
data increases size of the learnt tree; detecting and removing noisy examples
improves the learnt tree [3]. Through an extensive empirical study it is observed
that decision tree learning is fairly robust to label noise [13]. In this paper, we
present a theoretical study of robustness of decision tree learning.
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Most theoretical analyses of learning classifiers under label noise are in the
context of risk minimization. The robustness of risk minimization depends on
the loss function used. It is proved that any convex potential loss is not robust
to uniform or symmetric label noise [9]. While most standard convex loss func-
tions are not robust to symmetric label noise, the 0–1 loss is [11]. A general
sufficient condition on the loss function for risk minimization to be robust is
derived in [7]. The 0–1 loss, sigmoid loss and ramp loss are shown to satisfy
this condition while convex losses such as hinge loss and the logistic loss do not
satisfy this condition. Interestingly, we can have a convex loss (which is not a
convex potential) that satisfies this sufficient condition and the corresponding
risk minimization essentially amounts to a highly regularized SVM [18]. Robust
risk minimization strategies under the so called class-conditional (or asymmet-
ric) label noise are also proposed [12,17]. None of these results are applicable
for the popular decision tree learning algorithms because they cannot be cast as
risk minimization.

In this paper, we analyze learning of decision trees under label noise. We
consider some of the popular impurity function based methods for learning of
decision trees. We show, in the large sample limit, that under symmetric or
uniform label noise the split rule that optimizes the objective function under
noisy data is the same as that under noise-free data. We explain how this results
in the learning algorithm being robust to label noise (under the large sample
limit). We also derive some sample complexity bounds to indicate how large a
sample we need at a node. We explain how these results indicate robustness
of random forest also. We present empirical results to illustrate this robustness
of decision trees and random forests. For comparison we also present results
obtained with SVM algorithm.

2 Label Noise and Decision Tree Robustness

In this paper, we only consider binary decision trees for binary classification. We
use the same notion of noise tolerance as in [11,18].

2.1 Label Noise

Let X ⊂ Rd be the feature space and let Y = {1,−1} be the class labels. Let
S = {(x1, yx1), . . . , (xN , yxN

)} ∈ (X × Y)N be the ideal noise-free data drawn
iid from a fixed but unknown distribution D over X ×Y. The learning algorithm
does not have access to this data. The noisy training data given to the algorithm
is Sη = {(xi, ỹxi

), i = 1, · · · , N}, where ỹxi
= yxi

with probability (1 − ηxi
) and

ỹxi
= −yxi

with probability ηxi
. As a notation, for any x, yx denotes its ‘true’

label while ỹx denotes the noisy label. Thus, ηx = Pr[yx �= ỹx | x]. We use Dη

to denote the joint probability distribution of x and ỹx.
We say that the noise is uniform or symmetric if ηx = η, ∀x. Note that,

under symmetric noise, a sample having wrong label is independent of the feature
vector and the ‘true’ class of the sample. Noise is said to be class conditional or
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asymmetric if ηx = η+, for all patterns of class +1 and ηx = η−, for all patterns
of class −1. When noise rate ηx is a general function of x, it is termed as non-
uniform noise. Note that the value of η is unknown to the learning algorithm.

2.2 Criteria for Learning Split Rule at a Node of Decision Trees

Most decision tree learning algorithms grow the tree in top down fashion starting
with all training data at the root node. At any node, the algorithm selects a split
rule to optimize a criterion and uses that split rule to split the data into the left
and right children of this node; then the same process is recursively applied to
the children nodes till the node satisfies the criterion to become a leaf. Let F
denote a set of split rules. Suppose, a split rule f ∈ F at a node v, sends a
fraction a of the samples at v to the left child vl and the remaining fraction
(1 − a) to the right child vr. Then many algorithms select a f ∈ F to maximize

C(f) = G(v) − (aG(vl) + (1 − a)G(vr)) (1)

where G(·) is a so called impurity measure. There are many such impurity mea-
sures. Of the samples at any node v, suppose a fraction p are of positive class and
a fraction q = (1− p) are of negative class. Then the Gini impurity is defined by
GGini = 2pq [1]; entropy based impurity is defined as GEntropy = −p log p−q log q
[16]; and misclassification impurity is defined as GMC = min{p, q}. Often the cri-
terion C is called the gain. Hence, we also use gainGini(f) to refer to C(f) when
G is GGini and similarly for others.

A split criterion different from impurity is twoing rule [1]. Let p, q, a be as
above and let pl (pr), ql (qr) be the corresponding fractions at the left (right)
child vl (vr) under split rule f . Then twoing rule selects f ∈ F which maximizes
GTwoing(f) = a(1 − a)[|pl − pr| + |ql − qr|]2/4.

2.3 Noise Tolerance of Decision Tree

We want the decision tree learnt with noisy labels to have the same error on
noise-free test set as that of the tree learnt using noise-free data. Since label
noise is random, on any specific noisey training data, the tree learnt would also
be random. Hence, we say the learning method is robust if, in the limit as training
set size goes to infinity, the above holds. We now formalize this notion.

Definition 1. A split criterion C is said to be noise-tolerant if

arg min
f∈F

C(f) = arg min
f∈F

Cη(f)

where C(f) is the value of the split criterion C for a split rule f ∈ F on noise
free data and Cη(f) is the value of the criterion function for f on noisy data, in
the limit as the data size goes to infinity.

Let the decision tree learnt from training sample S be represented as
LearnTree(S) and let the classification of any x by this tree be represented
as LearnTree(S)(x).
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Definition 2. A decision tree learning algorithm LearnTree is said to be noise-
tolerant if

PD(LearnTree(S)(x) �= yx) = PD(LearnTree(Sη)(x) �= yx)

Note that for the above to hold it is sufficient if LearnTree(S) is same as
LearnTree(Sη). That is, if the tree learnt with noisy samples is same as that
learnt with noise-free samples.1

3 Theoretical Results

Robustness of decision tree learning requires the robustness of the split criterion
at each non-leaf node and robustness of the labeling rule at each leaf node.

3.1 Robustness of Split Rules

We are interested in comparing, for any specific split rule f , the value of C(f)
with its value (in the large sample limit) when there is symmetric label noise.

Let the noise-free samples at a node v be {(xi, yi), i = 1, · · · , n}. Under label
noise, the samples at this node would become {(xi, ỹi), i = 1, · · · , n}. Suppose
in the noise-free case a split rule f sends nl of these n samples to the left child,
vl, and nr = n − nl to right child, vr. Since the split rule depends only on the
feature vector x and not the labels, the points that go to vl and vr would be the
same for the noisy samples also. However, what changes with label noise are the
class labels and hence the number of examples of different classes at a node.

Let n+ and n− = n−n+ be the number of samples of the two classes at node
v in the noise-free case. Let these numbers for vl and vr be n+

l , n−
l and n+

r , n−
r .

Let these quantities in the noisy case be denoted by ñ+, ñ−, ñ+
l , ñ−

l etc. Define
binary random variables, Zi, i = 1, · · · , n, by Zi = 1 iff ỹi �= yi. By definition of
symmetric label noise, Zi are iid Bernoulli random variables with expectation η.

Let p = n+/n, q = n−/n = (1 − p). Let pl, ql and pr, qr be these fractions for
vl and vr. Let the corresponding quantities for the noisy case be p̃, q̃, p̃l, q̃l etc.
Let pη, qη, pη

l etc. be the values of p̃, q̃, p̃l in the large sample limit. We have

p̃ =
ñ+

n
=

1
n

⎛
⎝ ∑

i:ỹi=+1

1

⎞
⎠ =

1
n

⎛
⎝ ∑

i:yi=+1

(1 − Zi) +
∑

i:yi=−1

Zi

⎞
⎠ (2)

p̃l =
ñ+

l

nl
=

1
nl

⎛
⎝ ∑

i:xi∈vl,ỹi=+1

1

⎞
⎠ =

1
nl

⎛
⎝ ∑

i:xi∈vl,yi=+1

(1 − Zi) +
∑

i:xi∈vl,yi=−1

Zi

⎞
⎠

1 For simplicity, we do not consider pruning of the tree.
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All the above expressions involve sums of independent random variables.
Hence, by law of large numbers, in the large sample limit we get

pη = p(1 − η) + qη = p(1 − 2η) + η; pη
l = pl(1 − η) + qlη = pl(1 − 2η) + η(3)

Note that, under symmetric label noise, Pr[Zi = 1] = Pr[Zi = 1|yi] =
Pr[Zi = 1|xi ∈ B, yi] = η, for any subset B of the feature space and this
fact is used in deriving Eq. (3).

To find the large sample limit of criterion C(f) under label noise, we need
values of the impurity function which in turn needs pη, qη, pη

l etc. which are as
given above. For example, the Gini impurity is given by G(v) = 2pq for the noise
free case. For the noisy sample, its value can be written as G̃(v) = 2p̃q̃. Its value
in the large sample limit would be Gη(v) = 2pηqη. Using the above we can now
prove the following theorem about robustness of split criteria.

Theorem 1. Splitting criterion based on Gini impurity, mis-classification rate
and twoing rule are noise-tolerant to symmetric label noise given η �= 0.5.

Proof. We prove robustness of Gini impurity here. Robustness under other cri-
teria can similarly be proved.

Let p and q be the fractions of the two classes at a node v and let a be the
fraction of points (under a split rule) at the left child, vl. Recall that the fraction
a is same for noisy and noise-free data. The Gini impurity is GGini(v) = 2pq.
Under symmetric label noise, Gini impurity (under large sample limit) becomes
(using Eq. (3)),

Gη
Gini(v) = 2pηqη = 2[((1 − 2η)p + η)((1 − 2η)q + η)]

= 2pq(1 − 2η)2 + (η − η2) = GGini(v)(1 − 2η)2 + (η − η2)

Similar expressions hold for Gη
Gini(vl) and Gη

Gini(vr). The (large sample) value
of criterion or impurity gain of f under label noise can be written as

gainη
Gini(f) = Gη

Gini(v) − [a Gη
Gini(vl) + (1 − a)Gη

Gini(vr)]

= (1 − 2η)2[GGini(v) − a GGini(vl) − (1 − a)Gini(vr)] = (1 − 2η)2gainGini(f)

Thus for any η �= 0.5, if gainGini(f1) > gainGini(f2), then gainη
Gini(f

1) >
gainη

Gini(f
2). Which means that a maximizer of impurity gain based on Gini

index under noise-free samples will be also a maximizer of gain under symmetric
label noise, under large sample limit.

Remark: Another popular criterion is impurity gain based on entropy which
is not considered in the above theorem. The impurity gain based on entropy
is not noise-tolerant as can be shown by a counterexample. Consider a case
where a node has n samples (n is large). Suppose, under split rule f1(f2) we get
nl = 0.5n(0.3n), n+

l = 0.05n(0.003n) and n+
r = 0.25n(0.297n). Then it can be

easily shown that the best split under no-noise (f2) does not remain best under
40% noise. However, such counter examples may not be generic and entropy
based method may also be robust to label noise in practice.
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3.2 Robustness of Labeling Rule at Leaf Nodes

We next consider the robustness of criterion to assign a class label to a leaf node.
A popular approach is to take majority vote at the leaf node. We prove that,
majority voting is robust to symmetric label noise. We also show that it can be
robust to non-uniform noise also under a restrictive condition.

Theorem 2. Let ηx < 0.5,∀x. (a). Then, majority voting at a leaf node is
robust to symmetric label noise. (b). It is also robust to nonuniform label noise
if all the points at the leaf node belong to one class in the noise free data.

Proof. Let p and q = 1 − p be the fraction of positive and negative samples at
leaf node v.

(a) Under symmetric label noise, the relevant fractions are pη = (1−η)p+ηq and
qη = (1− η)q + ηp. Thus, pη − qη = (1− 2η)(p− q). Since η < 0.5, (pη − qη)
will have the same sign as (p−q), proving robustness of the majority voting.

(b) Let v contain all the points from the positive class. Thus, p = 1, q = 0. Let
x1, · · · ,xn be the samples at v. Under non-uniform noise (with ηx < 0.5,∀x),

pη =
1
n

n∑
i=1

(1 − ηxi
) >

0.5
n

n∑
i=1

1 = 0.5 (4)

Thus, the majority vote will assign positive label to the leaf node v. This proves
the second part of the theorem.

3.3 Robustness of Decision Tree Learning Under Symmetric Label
Noise: Large Sample Analysis

We have shown that the split rule that maximizes the criterion function under
symmetric label noise is same as the one which maximizes it under noise-free
case (under large sample limit). This means, under large sample assumption, the
same split rule would be learnt at any node irrespective of whether the labels
come from noise-free data or noisy data. (Here we assume for simplicity that
there is a unique maximizer of the criterion at each node. Otherwise we need
some prefixed rule to break ties. We are assuming that the xi at a node are
same in the noisy and noise-free cases. These are same at the root. If we learn
the same split at the root, then at both its children the samples would be same
in the two cases and so on).

Our result for leaf node labeling implies that, under large sample assumption,
with majority rule, a leaf node would get the same label under noisy or noise-free
data. To conclude that we learn the same tree, we need to examine the rule for
deciding when a node becomes a leaf. If this is determined by the depth of the
node or number of samples at the node then it is easy to see that the same tree
would be learnt with noisy and noise-free data. In many algorithms one makes a
node as leaf if no split rule gives positive value to the gain. This will also lead to
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learning of the same tree with noisy samples as with noise-free samples, because
we showed that the gain under noisy case is a linear function of the gain under
noise-free case.

Robustness Against General Noise: In our analysis, we have only considered
symmetric label noise. In the case of class-conditional noise, noise rate is same
for all feature vectors of a class though it may be different for different classes.
In the risk minimization framework, class conditional noise can be handled when
the noise rates are known (or can be estimated) [7,12,14,17]. We can extend the
analysis presented in Sect. 3.1 to relate expected fraction of examples of a class
in the noisy and noise-free cases using the two noise rates. Thus, if the noise
rates are assumed known (or can be reliably estimated) it should be possible to
extend the analysis here to the case of class-conditional noise. In the general case
when noise rates are not known (and cannot be reliably estimated), it appears
difficult to establish robustness of impurity based split criteria.

3.4 Sample Complexity Under Noise

We established robustness of decision tree learning algorithms under large sample
limit. Hence an interesting question is that of how large the sample size should be
for our assertions about robustness to hold with a large probability. We provide
some sample complexity bounds in this subsection. (Due to space constraint, we
provide proof sketch in Appendix).

Lemma 1. Let leaf node v have n samples. Under symmetric label noise with
η < 0.5, majority voting will not fail with probability at least 1 − δ when n ≥

2
ρ2(1−2η)2 ln(1δ ), where ρ is the difference between fraction of positive and negative
samples in the noise-free case.

The sample size needed increases with increasing noise (η) and decreasing ρ
(which can be viewed as ‘margin of majority’), which is intuitively clear.

Lemma 2. Let there be n samples at a non-leaf node v. Given two splits f1 and
f2, suppose gain (Gini, misclassification, twoing rule) for f1 is higher than that
for f2. Under symmetric label noise with η �= 0.5, gain from f1 will be higher
with probability 1−δ when n ≥ O( 1

ρ2(1−2η)2 ln(1δ )), where ρ denotes the difference
between gain of the two splits in the noise-free case.

While these results shed some lights on sample complexity, we emphasize
that these bounds are loose and are obtained using concentration inequalities.
In experimental section, we provide results on how many training samples are
needed for robust learning of decision trees on a synthetic dataset.

3.5 Noise Robustness in Random Forest

A random forest [2] is a collection of randomized tree classifiers. We represent
the set of trees as gn = {gn(x, π1), · · · , gn(x, πm)}. Here π1, · · · , πm are iid
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random variables, conditioned on data, which are used for partitioning the nodes.
Finally, majority vote is taken among the random tree classifiers for prediction.
We denote this classifier as ḡn.

In a purely random forest classifier , partitioning does not depend on the
class labels. At each step, a node is chosen randomly and a feature is selected
randomly for the split. A split threshold is chosen uniformly randomly from the
interval of the selected feature. This procedure is done k times. In a greedily
grown random forest classifier each tree is grown greedily by improving
impurity with some randomization. At each node, a random subset of features
are chosen. Tree is grown by computing the best split among those random
features only. Breiman’s random forest classifier uses Gini impurity gain [2].

A purely random forest classifier/greedily grown random forest, ḡn, is robust
to symmetric label noise with η < 0.5 under large sample assumption. In purely
random forest, randomization is on the partitions and the partitions do not
depend on class labels (which may be noisy). We proved robustness of majority
vote at leaf nodes under symmetric label noise. Thus, for a purely random forest,
the classifier learnt with noisy labels would be same as that learnt with noise-
free samples. Similarly for a greedily grown trees with Gini impurity measure,
we showed that each tree is robust because of both split rule robustness and
majority voting robustness. Thus when large sample assumption holds, greedily
grown random forest will also be robust to symmetric label noise. The sample
complexity for random forests should be less than that for single decision tree
because the ensemble classifier results in some variance reduction. Empirically
we observe that, often random forest has better robustness than a single decision
tree in finite sample cases.

4 Empirical Illustration

In this section, we illustrate our robustness results for learning of decision trees
and random forest. We also present results with SVM whose sensitivity towards
noise widely varies [9,11,13,18].

4.1 Dataset Description

We used four 2D synthetic datasets. Details are given below. (Here n denotes
total number of samples, p+, p− represent the class conditional densities, and
U(A) denotes uniform distribution over set A).

– Dataset 1: Checker board 2 × 2 Pattern: Data uniform over [0, 2] × [0, 2] and
one class region being ([0, 1] × [0, 1]) ∪ ([1, 2] × [1, 2]) and n = 30000.

– Dataset 2: Checker board 4 × 4: Extension of the above to a 4 × 4 grid.
– Dataset 3: Imbalance Linear Data. p+ = U([0, 0.5]× [0, 1]) and p− = U([0.5, 1]

× [0, 1]). Prior probabilities of classes are 0.9 & 0.1, and n = 40000.
– Dataset 4: Imbalance and Asymmetric Linear Data. p+ = U([0, 0.5] × [0, 1]) and

p− = U([0.5, 0.7]× [0.4, 0.6]). Prior probabilities are 0.8 & 0.2, and n = 40000.

We also present results for 6 UCI datasets [8].
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4.2 Experimental Setup

We used decision tree/random forest (RF) implementation in scikit learn library
[15]. We present results only with Gini impurity based decision tree classifier.
Number of trees in random forest was set to 100. For SVM we used libsvm
package [4]. For the results presented in Sect. 4.4, the following setup is used.
Minimum leaf size is the only user-chosen parameter in random forest and deci-
sion trees. For synthetic datasets, minimum samples in leaf node was restricted
to 250. For UCI datasets, it was restricted to 50. For SVM, we used linear kernel
(l) for Synthetic Datasets 3, 4 and quadratic kernel (p) for Checker board 2 × 2
data. In all other datasets we used gaussian kernel (g). For SVM, we selected
hyper-parameters using validation data. (Validation range for C is 0.01–500 and
for γ in the Gaussian kernel it is 0.001–10). We used 20% data for testing and
20% for validation. Noise rate was varied from 0%–40%. As synthetic datasets
are separable, we also experimented with class conditional noise with the two
noise rates for the two classes being 40% and 20%. In all experiments, noise was
introduced only on training and validation data. Test set was noise free.

4.3 Effect of Sample Size on Robustness of Learning

Here we present experimental results on the test accuracy for different sample
sizes using the 2 × 2 checker board data. We choose a leaf sample size and learn
decision tree and random forest with different noise levels. (The training set size
is fixed at 20000). We do this for a number of choices for leaf sample size. The
test accuracies in all these cases are shown in Fig. 1(a). As can be seen from
the figure, even when training data size is huge, we do not get robustness if leaf
sample size is small. This is in accordance with our analysis (as in Lemma 1)
because minimum sample size is needed for the majority rule to be correct with
a large probability. A leaf sample size of 50 seems sufficient to take care of even
30% noise.

Fig. 1. For 2×2 Checker board data variation of accuracy with (a) Minimum leaf size,
(b) Training data size, for different noise levels for DT
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Next we experiment with varying the (noisy) training data size. The results
are shown in Fig. 1(b). It can be seen that with 400/4000 sample size decision
tree learnt has good test accuracy (95%) at 20%/40% noise (the sample ratio is
close to (1−2×0.4)2

(1−2×0.2)2 = 1/9 as provided in Lemma 1). We need larger sample size
for higher level of noise. This is also as expected from our analysis.

4.4 Comparison of Accuracies of Learnt Classifiers

The average test accuracy and standard deviation (over 10 runs) on different data
sets under different levels of noise are shown in Table 1 for synthetic datasets and
in Table 2 for UCI datasets. In Table 2 we also indicate the dimension of feature
vector (d), the number of positive and negative samples in the data (n+, n−).

For synthetic datasets, the sample sizes are large and hence we expect good
robustness. As can be seen from Table 1, for noise-free data, all classifiers (deci-
sion tree, random forest and SVM) perform equally. However, with 30% or 40%
noise, the accuracies of SVM are much poorer than those of decision tree and
random forest. For example, for synthetic datasets 3 and 4, the average accu-
racies of decision tree and random forest classifiers continue to be 99% even at
40% noise while those of SVM drop to about 90% and 80% respectively. Note
that even with very large sample sizes, we do not get robustness in SVM. It
can be seen that decision tree and random forest classifiers are robust to class
conditional noise also, even without knowledge about noise rate (as indicated by
last column in the table). Our current analysis does not prove this robustness;
this is one possible extension of the theoretical analysis presented here.

Table 1. Comparison of accuracies on synthetic datasets

Data Method η = 0% η = 10% η = 20% η = 30% η = 40% η+ = 40%

η− = 20%

2 × 2

CB

Gini 99.95 ± 0.05 99.9 ± 0.06 99.91 ± 0.1 99.82 ± 0.16 98.97 ± 0.83 99.45 ± 0.83

RF 99.99 ± 0.02 99.96 ± 0.02 99.91 ± 0.05 99.87 ± 0.06 99.16 ± 0.18 99.11 ± 0.45

SVM (p) 99.83 ± 0.12 97.38 ±1.21 91.88 ± 2.65 87.96 ± 5.52 76.42 ± 4.43 68.78 ± 0.97

4 × 4

CB

Gini 99.76 ± 0.18 99.72 ± 0.16 99.46 ± 0.18 98.71 ± 0.32 95.21 ± 1.08 97.36 ± 1.23

RF 99.94 ± 0.02 99.9 ± 0.02 99.78 ± 0.04 99.35 ± 0.15 96.23 ± 0.91 95.41 ± 0.53

SVM (g) 99.6 ± 0.05 98.58 ± 0.23 97.81 ± 0.24 96.83 ± 0.46 92.22 ± 2.5 91.24 ± 0.85

Dataset

3

Gini 100.0 ± 0.01 100.0 ± 0.01 99.99 ± 0.01 99.99 ± 0.02 99.92 ± 0.07 99.92 ± 0.18

RF 100.0 ± 0.01 100.0 ± 0.01 99.99 ± 0.01 99.98 ± 0.02 99.86 ± 0.12 99.9 ± 0.13

SVM (l) 99.89 ± 0.04 96.65 ± 0.26 90.02 ± 0.3 90.02 ± 0.3 90.02 ± 0.3 90.1 ± 0.31

Dataset

4

Gini 100.0 ± 0.0 99.99 ± 0.01 99.99 ± 0.01 99.98 ± 0.03 99.73 ± 0.54 99.88 ± 0.26

RF 100.0 ± 0.0 99.99 ± 0.01 99.99 ± 0.01 99.93 ± 0.09 99.91 ± 0.11 99.7 ± 0.31

SVM (l) 99.86 ± 0.03 99.21 ± 0.24 96.55 ± 4.05 79.96 ± 0.34 79.96 ± 0.34 79.96 ± 0.34

Similar performance is seen on UCI datasets also as shown in Table 2. For
breast cancer dataset, there is a small drop in the average accuracy of decision
tree with increasing noise rate while for random forest the drop is significantly
less. This is also expected because the total sample size here is less. Although
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SVM has significantly higher average accuracy than decision tree in 0% noise,
at 40% noise its average accuracy drops more than that of decision tree. In all
other data sets also, decision tree and random forest are more robust than SVM
as can be seen from the table.

Table 2. Comparison of accuracies on UCI datasets

Data (d, n+, n−) Method η = 0% η = 10% η = 20% η = 30% η = 40%

Breast cancer

(10, 239, 444)

Gini 92.04 ± 3.0 90.36 ± 3.02 90.0 ± 2.24 90.22 ± 2.38 87.23 ± 7.72

RF 96.64 ± 0.93 96.79 ± 1.23 96.64 ± 1.82 95.91 ± 1.47 96.13 ± 1.39

SVM 96.79 ± 1.67 96.06 ± 1.91 95.91 ± 2.27 93.72 ± 4.55 92.48 ± 3.62

German

(24, 300, 700)

Gini 71.2 ± 3.47 71.7 ± 2.5 71.25 ± 3.16 70.25 ± 2.75 64.65 ± 6.29

RF 70.75 ± 2.71 70.8 ± 2.94 70.9 ± 2.84 71.05 ± 2.44 69.35 ± 3.41

SVM 75.25 ± 5.45 74.45 ± 3.68 72.1 ± 2.37 69.45 ± 3.06 64.55 ± 7.18

Splice

(60, 1648, 1527)

Gini 91.26 ± 1.65 91.23 ± 1.61 90.22 ± 1.53 86.22 ± 4.11 74.38 ± 5.54

RF 94.76 ± 0.68 93.94 ± 0.76 93.87 ± 1.39 91.97 ± 1.82 82.69 ± 3.05

SVM 91.1 ± 0.77 88.83 ± 1.08 87.67 ± 1.09 83.04 ± 1.36 70.47 ± 6.58

Spam

(57, 1813, 2788)

Gini 89.74 ± 1.15 89.01 ± 1.86 87.61 ± 2.05 84.57 ± 1.83 80.8 ± 3.0

RF 92.07 ± 1.1 92.2 ± 0.91 92.06 ± 1.15 91.04 ± 1.95 88.81 ± 1.5

SVM 89.2 ± 1.02 86.41 ± 0.88 82.55 ± 1.72 76.64 ± 2.28 68.02 ± 3.95

Wine (white)

(11, 3258, 1640)

Gini 75.36 ± 0.76 74.72 ± 1.69 73.56 ± 1.34 73.08 ± 1.94 69.4 ± 5.72

RF 76.4 ± 1.38 76.74 ± 1.22 76.45 ± 1.18 74.74 ± 3.27 72.89 ± 1.89

SVM 75.34 ± 0.76 72.43 ± 1.73 71.08 ± 2.0 68.07 ± 2.18 65.24 ± 2.71

Magic

(10, 12332, 6688)

Gini 83.75 ± 0.42 83.58 ± 0.49 82.33 ± 0.56 81.36 ± 1.08 78.0 ± 1.74

RF 85.24 ± 0.58 85.37 ± 0.61 85.3 ± 0.58 84.83 ± 0.71 82.37 ± 1.34

SVM 82.7 ± 0.43 82.24 ± 0.45 81.0 ± 0.34 79.16 ± 0.43 69.5 ± 3.33

5 Conclusion

In this paper, we investigated the robustness of decision tree learning under label
noise. We proved that decision tree algorithms based on Gini or misclassification
impurity and the twoing rule algorithm are all robust to symmetric label noise.
We also provided some sample complexity results for the robustness. Through
empirical investigations we illustrated the robust learning of decision tree and
random forest. Decision tree approach is very popular in many practical appli-
cations. Hence, the robustness results presented in this paper are interesting.
Though we considered only impurity based methods, there are other algorithms
for learning decision trees (e.g., [10]). Extending such robustness results to other
decision tree learning algorithms is an interesting problem. All the results we
proved are for symmetric noise. Extending these results to class conditional and
non-uniform noise is another important direction for future research.

A Proof Sketch of Lemmas 1, 2

Let n+(ñ+) and n−(ñ−) denote the positive and negative samples at the node
under noise-free case (noisy case). Taking positive class as majority, we note



696 A. Ghosh et al.

ρ = (n+ − n−)/n. Using Hoeffding bound it is easy to show Pr[ñ+ − ñ− < 0] ≤
exp

(
−ρ2n(1−2η)2

2

)
. This gives bound for samples needed as n > 2

ρ2(1−2η)2 ln(1δ ),
completing proof of Lemma 1.

Let n, nl, nr be the number of samples at v, vl, vr and recall nl = an and
nr = (1 − a)n. Recall that p̃, p̃l, p̃r are fraction of positive samples at v, vl, vr

and pη, pη
l , pη

r are their large sample values. Then, using Hoeffding bounds we
get (with ε1 = ε, ε2 = ε/

√
a and ε3 = ε/

√
1 − a),

Pr
[(|p̃ − pη| ≥ ε1

) ∪ (|p̃l − pη
l | ≥ ε2

) ∪ (|p̃r − pη
r | ≥ ε3

)] ≤ 6e−2nε2 (5)

When this event happens, with some algebraic manipulation, one can show for
Gini impurity, | ˆgain

η

Gini(f) − gainη
Gini(f)| ≤ 6(1 − 2η)ε where ˆgain

η

Gini is the
random Gini-gain under noise with sample size n and gainη

Gini is its large sample
limit. This gives us the bound as needed in Lemma2. We can prove the lemma
for other criteria also similarly.
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