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Abstract. Machine learning algorithms have been employed extensively
in the area of structural health monitoring to compare new measurements
with baselines to detect any structural change. One-class support vector
machine (OCSVM) with Gaussian kernel function is a promising machine
learning method which can learn only from one class data and then
classify any new query samples. However, generalization performance
of OCSVM is profoundly influenced by its Gaussian model parameter
σ. This paper proposes a new algorithm named Appropriate Distance to
the Enclosing Surface (ADES) for tuning the Gaussian model parameter.
The semantic idea of this algorithm is based on inspecting the spatial
locations of the edge and interior samples, and their distances to the
enclosing surface of OCSVM. The algorithm selects the optimal value of σ
which generates a hyperplane that is maximally distant from the interior
samples but close to the edge samples. The sets of interior and edge
samples are identified using a hard margin linear support vector machine.
The algorithm was successfully validated using sensing data collected
from the Sydney Harbour Bridge, in addition to five public datasets.
The designed ADES algorithm is an appropriate choice to identify the
optimal value of σ for OCSVM especially in high dimensional datasets.

Keywords: Machine learning · Structural health monitoring · One-class
support vector machine · Gaussian parameter selection · Anomaly
detection

1 Introduction

Structural health monitoring (SHM) is an automated process to detect the dam-
age in the structures using sensing data. It has earned a lot of interests in recent
years and has attracted many researchers working in the area of machine learn-
ing [6,9,17]. With the advances in the sensing technology, it is becoming more
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feasible to develop an approach for detection of structural damage based on the
information gathered from the sensor networks mounted to the structure [5]. The
focus now is to build a decision-making model that is able to detect damage on
the structure using sensor data. This can be solved using a supervised learning
approach such as a support vector machine (SVM) [2]. However, because of the
lack of available data from the damaged state of the structure in most cases, this
leads to the development of the OCSVM classification model [15]. The design of
OCSVM is well suited this kind of problems where only observations from the
positive (healthy) samples are required. Moreover, OCSVM has been extensively
used in the area of SHM for detecting different types of anomalies [3,8,11].

The rational idea behind OCSVM is to map the data into a high dimensional
feature space via a kernel function and then learn an optimal decision bound-
ary that separates the training positive observations from the origin. Several
kernel functions have been used in SVM such as Gaussian and polynomial ker-
nels. However, the Gaussian kernel function defined in Eq. (1) has gained much
more popularity in the area of machine learning and it has turned out to be
an appropriate setting for OCSVM in order to generate a non-linear decision
boundary.

K(xi, xj) = exp(−‖xi − xj‖2
2σ2

) (1)

This kernel function is highly affected by a free critical parameter called
the Gaussian kernel parameter denoted by σ which determines the width of the
Gaussian kernel. This parameter has a great influence on the construction of a
classification model for OCSVM as it controls how loosely or tightly the decision
boundary fits the training data. To demonstrate the effect of the parameter σ on
the decision boundary, we used a two-dimensional Banana-shaped data set. We
applied the OCSVM on the dataset using different values of parameter σ, and
then we plotted the resultant decision boundary of OCSVM for three different
values of σ as shown in Fig. 1. Comparing the lower and upper bounds of σ, it
can be clearly seen that the enclosing surface is very tight in Fig. 1a, while it is
loose in Fig. 1b. The optimal one is shown in Fig. 1c as the decision boundary
precisely describes the form of the data. At that point the issue is changed over
into how to estimate the suitability of the decision boundary.

Fig. 1. Illustrations for enclosing surfaces at different values of σ. (a) σ = 0.2. (b)
σ = 1.3. (c) σ = 0.8.

Several researchers have addressed the problem of selecting the proper value
of σ [4,16,18]. However, they are not considered as appropriate methods to be
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applied on high dimensional datasets. Furthermore, tuning the Gaussian kernel
for the OCSVM is still an open problem as stated by Tax and Duin [16] and
Scholkopf et al. [15].

This paper addresses the problem of tuning the Gaussian kernel parameter σ
in OCSVM to ensure the generalization performance of the constructed model to
unseen high dimensional data. Following the geometrical approach, we proposed
a Gaussian kernel parameter selection method which is implemented in two
steps. The first step aims to select the edge and interior samples in the training
dataset. The second step constructs OCSVM models at different settings of the
parameter σ and then we measure the distances from the selected edge-interior
samples to the enclosing surface of each OCSVM. Following these steps, we
can select the optimal value of σ which provides the maximum difference in the
average distances between the interior and edge samples to the enclosing surface.
The algorithm was validated using a real high dimensional data collected using a
network of accelerometers mounted underneath the deck on the Sydney Harbour
Bridge in Australia.

The rest of this paper is organized as follows: Sect. 2 briefly presents some
related work for tuning σ. The Gaussian kernel parameter selection method
is provided in Sect. 3. Section 4 presents experimental results using different
datasets. Section 5 presents some concluding remarks.

2 Related Work

Several methods have been developed for tuning the parameter σ in Gaussian
kernel function. For instance, Evangelista et al. [4] followed a statistics-based
approach to select the optimal value of σ using the variance and mean measures
of the training dataset. This method is known as VM measure which aims to
evaluate σ̂ by computing the ratio of the variance and the mean of the lower (or
upper) part of the kernel matrix using the following formula:

σ̂ = max
σ

(
v

m̄ + ξ
) (2)

where v is the variance, m is the mean and ξ is a small value in order to avoid
zero division. This method often generates a small value for σ̂ which results
in a very tight model that closely fits to a limited set of data points. Khazai
et al. [7] followed a geometric approach and proposed a method called MD to
estimate the optimal value of σ using the ratio between the maximum distance
between instances and the number of samples inside the sphere as in the following
equation:

σ2 =
dmax√− ln(δ)

(3)

where the appropriate value for δ is calculated by:

δ =
1

N(1 − ν) + 1
(4)
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This method often produces a large value of σ which yields to construct a
very simple and poor performance model especially when the training dataset
has a small number of samples. In this case, the value of the dominator term in
Eq. (3) (

√− ln(δ)) becomes small. Xiao et al. [18] proposed a method known as
MIES to select a suitable kernel parameter based on the spatial locations of the
interior and edge samples. The critical requirement of this method is to find the
edge-interior samples in order to calculate the optimal value of σ. The authors in
[18] adopted the Border-Edge Pattern Selection (BEPS) method proposed by Li
and Maguire [10] to select the edge-interior samples. This method performs well
in selecting edge and interior samples when the data exists in a low dimensional
space. However, it failed completely when it dealt with very high dimensional
datasets where all the samples are selected as edge samples.

In this paper, we propose a method for tuning the Gaussian kernel parameter
following a geometrical approach by introducing a new objective function and a
new algorithm, inspired by [1], for finding the edge-interior samples of datasets
exist in high dimensional space.

3 Gaussian Kernel Parameter Selection Method

The idea of the ADES method is based on the spatial locations of the edge and
interior samples relative to the enclosing surface. The geometric locations of edge-
interior samples with respect to the hyperplane plays a significant role in judging
the appropriateness of the enclosing surface. In other words, the enclosing surface
of OCSVM is very close to the interior samples when it has tightly fitted the
data (as shown in Fig. 1a), and it is very far from the interior and edge samples
when it is loose (as shown in Fig. 1b). However, the enclosing surface precisely
fits the form of the data in Fig. 1c where the enclosing surface is far from the
interior sample but at the same time is very close to the edge ones. This situation
is turned up to be our objective in selecting the appropriateness of the enclosing
surface. Therefore, we proposed a new objective function f(σi) described in
Eq. (5) to calculate the optimal value of σ̂ = argmax

σi

(f(σi)).

f(σi) = mean(dN (xn)xn∈ΩIN
) − mean(dN (xn)xn∈ΩED

) (5)

where ΩIN and ΩED, respectively, represent the sets of interior and edge samples
in the training positive data points, and dN is the normalized distance from these
samples to the hyperplane. This distance can be calculated using the following
equation:

dN (xn) =
d(xn)
1 − dπ

(6)

where dπ is the distance of a hyperplane to the origin described as dπ = ρ
‖w‖ ,

and d(xn) is the distance of the sample xn to the hyperplane obtained using the
following equation:
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d(xn) =
f(xn)
‖w‖ =

∑sv
i=1 αik(xi, xn) − ρ.

√∑n
ij αiαjK(xi, xj)

(7)

where w is a perpendicular vector to the decision boundary, α are the Lagrange
multipliers and ρ known as the bias term.

The aim of this objective function is to find the hyperplane that is maxi-
mally distant from the interior samples but not from the edge samples. In this
new objective function, we use the average distances from the interior and edge
samples to the hyperplane in order to reduce the effect of improper selection pos-
sibility of the interior and edge samples in high dimensional space datasets. The
key point of this method now is how to identify the interior and edge samples
in a given high dimensional dataset. Therefore, we propose a new method based
on linear SVM to select the interior and edge samples in high dimensional space.
This algorithm is described as follows: given a dataset of xi(i = 1, . . . , n), the
unit vector of each point xi with its k closest points xj is computed as follows:

vk
j =

xj − xi

‖xj − xi‖ (8)

Then we employ a hard margin linear SVM to separate vk
j , the closest points

to xi, from the origin by solving the OCSVM optimization problem of the
obtained unit vectors in Eq. (8). Once we get the optimal solution αj , j = 1, . . . , k
and calculating ρ, we estimate the value of the decision function using,

f(vj) =
sv∑

i=1

αivi.vj − ρ. (9)

The next step is to evaluate the optimization of the constructed linear
OCSVM using the following equation

si =
1
k

k∑

j=1

f(vj) > 0 (10)

where si represents the success accuracy rate of the model. If all the closest
points vk

j are successfully separated from the origin, then we count xi as an
edge sample. This approach may end up with a few number of edge samples.
Therefore, we have used a threshold 1 − γ (γ is a small positive parameter), to
control the number of edge samples by setting up a percentage of the acceptable
success rate for each sample xi to be an edge sample. For γ = 0.05, if 95% of the
closest points to a sample xi are successfully separated from the origin, then the
sample xi can be added to the edge sample set ΩED. We have also extended this
method to select the interior samples based on the furthest neighbours of the
edge samples. The assumption made is that the furthest neighbour samples to
the edge sample should be added to the interior sample set ΩIN . This method
is presented in Algorithm 1.
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Algorithm 1. Edge-interior samples selection method.
Input: A set of n positive samples x = {xi}n

i=1

For each sample xi in x
Find the k closest points to xi: xj , j = 1, . . . , k.
Calculate the unit vectors vk

j of xj according to (8).
Separate vk

j from the origin using a hard margin linear OCSVM.
Calculate the decission values of vk

j according to (9).
Calculate si according to (10).
If si ≥ 1 − γ, then xi and xjk are added to ΩED and ΩIN , respectively.

Output: ΩED and ΩIN .

The algorithm starts with the entire set of positive samples. Two parameters
are used in this algorithm; k, the number of the nearest neighbours which has
been thoroughly studied by [10] and they set k = 5 ln n, where γ take values in
the range [0, 0.1].

Once the edge and interior samples are identified, we start optimizing our
objective function presented in Eq. 5. The complete proposed method of ADES
is presented in Algorithm 2.

Algorithm 2. Gaussian kernel parameter selection method.
Input: A set of n positive samples x = {xi}n

i=1

1. Obtain the sample sets ΩED and ΩIN using Algorithm 1.
2. Generate a candidate set σi (i = 1, . . . , m.)for parameter σ in the form of

[dmin, dmax].
3. For each σi.

Solve the optimization problem for OCSVM, that is, πi (hyperplane).
Calculate the normalized distances from samples in ΩED and ΩIN to πi

according to (6).
Calculate the objective function value f(σi) according to (5).

4. Select the biggest value f(σi) as the optimal value σ̂.

Output: the optimal kernel parameter σ̂.

4 Experimental Results

Three experiments were carried to evaluate the performance of our proposed
algorithm. We initially applied our method on two-dimensional toy datasets
as it allows us to visually observe the performance of OCSVM by plotting its
decision boundary. The performance was also tested on benchmark datasets that
allows us to objectively compare our obtained results to the previously published
ones. The final experiments were applied on datasets obtained from an actual
structure, the Sydney Harbour Bridge, to demonstrate the ability of the proposed
algorithm to detect damage in steel reinforced concrete jack arches.
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4.1 Experiments on Artificial Toy Datasets

Three toys, {Round, Banana and Ring}-shaped, datasets were used in this
section to visualize the performance of our method. The R package mlbench was
used in order to generate these different geometric shaped datasets that vary
in their characteristics. Figure 2 shows the selected edge and interior samples
denoted by red “�” and green “�”, respectively. As it can be clearly observed
that the proposed edge samples selection method has the ability to select the
edge samples especially on the Ring-shaped dataset while the inner edge samples
play a significant role in constructing the decision boundary.

Fig. 2. Selected edge and interior samples: (a) Banana-shaped (b) Ring-shaped (c)
Round-shaped. (Color figure online)

Figures 3 and 4 show the resultant decision boundary of each toy dataset. The
enclosed surface of ADES method shown in each sub Figs. {3-4}(a) precisely fit
the shape of each toy dataset without suffering from the overfitting nor the
under-fitting problems. The MD and VM methods generate a loosely and tight
decision boundary, respectively. The same results appeared with the Ring-shaped
dataset (referring to Figs. 4(c) and (d)). The MIES method works well on the
Banana-shaped dataset but failed in finding the optimal decision boundary in
the Ring-shaped dataset. All the methods successfully enclosed the surface of
the Round-shaped dataset with an optimal fitted decision boundary.

Fig. 3. Performance on the Banana-shaped dataset: (a) ADES (b) MIES (c) MD (d)
VM.

Fig. 4. Performance on the Ring-shaped dataset: (a) ADES (b) MIES(c) MD (d) VM.
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4.2 Experiments on Benchmark Datasets

We further investigated the performance of our method using five publicly avail-
able datasets downloaded from the machine learning repository1. These datasets
were previously used in previous related studies [18,19]. The main characteristics
of these datasets are summarized in Table 1. Each dataset has been pre-processed
using the following procedure:

1. Label the class with a large number of samples as positive and the others as
negative.

2. Randomly select 80% of the positive samples for training and 20% for testing
in addition to the samples in the negative classes.

3. Normalize the training data to zero mean and unity variance.
4. Normalize the test data based on the mean and variance of the relating train-

ing dataset.

Table 1. Details of machine learning repository datasets.

Dataset Dim Positive Negative

Breast 9 444 239

Heart 13 137 160

Survival 3 225 81

Diabetes 8 500 268

Sonar 60 111 97

Biomed 5 200 145

For each dataset, we generated 20 bootstrap samples from the training
dataset to train OCSVM with σ parameter to be selected using Algorithm 2
and ν = 0.05 for all tests. Once we construct the OCSVM model, we evaluate its
classification performance on the test dataset and calculate the accuracy using
g-mean metric defined as

g-mean =
√

TPR+ × TNR− (11)

where TPR and TNR are the true positive rate and the true negative rate,
respectively. Table 2 shows the classification performance comparison between
ADES and the other methods described in Sect. 2. As shown in Table 2, the
average g-mean of our method outperformed the other state-of-the-art methods
on four datasets. ADES performed better than MIES algorithm on four datasets
and generated a comparable result on the Biomed dataset. We can also notice
that no results were reported in Table 2 for MIES method on the Sonar dataset.
This is due to the fact that MIES algorithm does not work on high dimensional
dataset where all the training data points are selected as edge samples.

1 http://archive.ics.uci.edu/ml/datasets.html.

http://archive.ics.uci.edu/ml/datasets.html
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Table 2. Optimal values of σ selected by different methods for the benchmark datasets
along with g-means, TPR and FPR.

Dataset Method σ g-mean TPR FPR

Breast ADES 11.78 0.96 0.93 0.03

MD 9.19 0.94 0.92 0.03

VM 0.40 0.54 0.29 0.00

MIES 2.43 0.93 0.86 0.00

Heart ADES 7.07 0.73 0.75 0.29

MD 3.97 0.62 0.96 0.60

VM 0.15 0.00 0.00 0.00

MIES 2.40 0.69 0.75 0.35

Sonar ADES 4.95 0.76 0.70 0.17

MD 8.84 0.61 0.73 0.50

VM 0.20 0.00 0.00 0.00

MIES — — — —

Diabetes ADES 5.56 0.71 0.64 0.22

MD 5.87 0.40 0.92 0.83

VM 0.21 0.68 0.55 0.15

MIES 1.96 0.66 0.70 0.38

Biomed ADES 3.22 0.83 0.82 0.16

MD 4.52 0.78 0.79 0.22

VM 0.30 0.00 0.00 0.00

MIES 2.85 0.85 0.83 0.13

Further, it was observed from the results that the MD method achieves high
classification accuracy on the positive samples represented by the value of the
TPR, and low accuracy on the negative samples represented by the FPR mea-
surement. This is what we anticipated discovering from the MD method based
on the decision boundary resulted from the toy datasets. The same expectation
with the VM method which achieves a high accuracy on the negative samples but
a very low TPR. These findings also reflect what we have obtained using the toy
datasets. Further, the VM method selects a very small value of σ when applied to
the Heart and Sonar datasets. These small values lead to over-fit in the OCSVM
model which completely failed to classify positive samples in the test datasets.
This explains why we can see zero values for FPR and g-means. According to
these results in Table 2, ADES has the capability to select the optimal value
of σ without causing the OCSVM model neither to over-fit nor to under-fit.
Moreover, ADES can work on high dimensional datasets while still being able to
select the edge and interior samples which are crucial for the objective function
presented in Eq. 5.
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4.3 Case Studies in Structural Health Monitoring

This work is part of the efforts to apply SHM to the iconic Sydney Harbour
Bridge. This section presents two case studies to illustrate how OCSVM using
our proposed method for tuning sigma is capable to detect structural damage.
The first case study was conducted using real datasets collected from the Sydney
Harbour Bridge and the second case study is a reinforced concrete cantilever
beam subjected to increasingly progressive crack which replicates one of the
major structural components in the Sydney Harbour Bridge.

Case Study I: Sydney Harbour Bridge.

Experiments Setup and Data Collection. Our main experiments were conducted
using structural vibration based datasets acquired from a network of accelerom-
eters mounted on the Sydney Harbour Bridge. The bridge has 800 joints on the
underside of the deck of the bus lane. However, only six joints were used in
this study (named 1 to 6) as shown in Fig. 5. Within these six joints, only joint
number four was known as a cracked joint [13,14]. Each joint was instrumented
with a sensor node connected to three tri-axial accelerometers mounted on the
left, middle and right side of the joint, as shown in Fig. 5. At each time a vehicle
passes over the joint, defined as event, it causes vibrations which are recorded
by the sensor node for a period of 1.6 s at a sampling rate of 375 Hz. An event
is triggered when the acceleration value exceeds a pre-set threshold. Hence, 600
samples are recorded for each event. The data used in this study contains 36952
events as shown in Table 3 which were collected over a period of three months.
For each reading of the tri-axial accelerometer (x,y,z), we calculated the magni-
tude of the three vectors and then the data of each event is normalized to have
a zero mean and one standard variation. Since the accelerometer data is repre-
sented in the time domain, it is noteworthy to represent the generated data in
the frequency domain using Fourier transform. The resultant six datasets (using
the middle sensor of each joint) has 300 features which represent the frequencies
of each event. All the events in the datasets (1, 2, 3, 5, and 6) are labeled positive
(healthy events), where all the events in dataset 4 (joint 4) are labeled negative
(damaged events). For each dataset, we randomly selected 70% of the positive
events for training and 30% for testing in addition to the unhealthy events in
dataset 4.

Fig. 5. Evaluated joints on the Sydney Harbour Bridge.
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Table 3. Number of samples in each joint of the bridge dataset.

Dataset Number of samples Training Test

Joint 1 6329 4430 1899

Joint 2 7237 5065 2172

Joint 3 4984 3488 1496

Joint 4 6886 0 6886

Joint 5 6715 4700 2015

Joint 6 4801 3360 1441

We trained the OCSVM for each joint (1, 2, 3, 5 and 6) using different values
of the Gaussian parameter calculated using the three methods ADES, MD and
VM. The MIES method was not used here because it does not work in high
dimensional datasets.

Table 4. Optimal selection of the σ values based on different methods using the bridge
datasets along with g-means, TPR and FPR.

Dataset Method σ g-means TPR FPR

Joint 1 ADES 18.5 0.986 0.984 0.01

MD 22.3 0.960 0.930 0.02

VM 14.5 0.02 0.001 0.00

Joint 2 ADES 16.3 0.978 0.976 0.02

MD 28.6 0.958 0.968 0.05

VM 11.1 0.04 0.001 0.00

Joint 3 ADES 23.4 0.983 0.977 0.02

MD 28.8 0.962 0.937 0.06

VM 16.6 0.043 0.001 0.00

Joint 5 ADES 25.3 0.951 0.950 0.03

MD 27.4 0.930 0.890 0.04

VM 16.5 0.038 0.001 0.00

Joint 6 ADES 22.3 0.969 0.973 0.03

MD 28.8 0.965 0.882 0.02

VM 15.4 0.037 0.001 0.00

Results and Discussions. This section presents the classification performance of
the OCSVM for each of the parameter selection methods. As shown in Table 4,
the ADES method significantly outperformed the other two methods on the
six experimented joints. The average g-mean value of ADES was equal to 0.971
compared to MD and VM, with their average values being 0.943 and 0.04, respec-
tively. The VM method performed badly on the five joints due to the generation
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Table 5. Average values of g-means, TPR and FPR over the five bridge datasets.

ADES MD VM

TPR 0.961 0.921 0.001

FPR 0.022 0.038 0.00

g-means 0.971 0.943 0.04

p-value — 0.01 2e−13

of a small value of σ which yields to over-fit the OCSVM model. It can be clearly
noticed in the results presented in Table 4 where the FPR of the VM method was
equal to zero which means that the model was able to fully predict the negative
samples but completely failed in predicting the positive ones. With respect to the
MD method, it is known from our discussion and experiments in Sect. 4.1 that
MD often generates a large value of σ which yields to produce a loose decision
boundary. As we expected, MD behaved similarly as it can be seen from Table 4
but with better results, since the number of samples was very large in these
experiments which results in producing a small value of σ for the MD method.
However, the values of FPR for the MD method are still consistently higher than
ADES.

We further investigated the classification performance among the three meth-
ods by conducting a paired t-test (ADES vs MD and ADES vs VM) to determine
whether the differences in the g-means between ADES and the two other meth-
ods are significant or not. The p-values were used in this case to judge the degree
of the performance improvement. The paired t-test of ADES vs MD resulted in
a p-value of 0.01 which indicates that the two methods do not have the same
g-means values and they were significantly different. As shown in Table 5, the
average g-means value of ADES is 0.971 compared to MD which has a mean
value equal to 0.943. This indicates a statistical classification improvement of
ADES over MD. The same t-test procedure was used to compare the classifica-
tion performance of ADES and VM. The t-test generated a very small p-value
of 2e−13 which indicates a very large difference between the two approaches.
The average g-means value indicates that ADES significantly outperformed VM
method and suggests not to consider VM method in the next experiments.

Case Study II: A Reinforced Concrete Jack Arch.

Experiments Setup and Data Collection. The second case study is a lab specimen
which was replicated a jack arch from the Sydney Harbour Bridge. A reinforced
concrete cantilever beam with an arch section was manufactured and tested as
shown in Fig. 6 [12]. Ten accelerometers were mounted on the specimen to mea-
sure the vibration response resulting from impact hammer excitation. A data
acquisition system was used to capture the impact force and the resultant accel-
eration time histories. An impact was applied on the top surface of the specimen
just above the location of sensor A9. A total of 190 impact test responses were
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collected from the healthy condition. A crack was later introduced into the spec-
imen in the location marked in Fig. 6 using a cutting saw. The crack is located
between sensor locations A2 and A3 and it is progressively increasing towards
sensor location A9. The length of the cut was increased gradually from 75 mm
to 270 mm, and the depth of the cut was fixed to 50 mm. After introducing each
damage case (four cases), a total of 190 impact tests were performed on the
structure in the location prescribed earlier.

Fig. 6. Test specimen: intact structure with arrow indicating the cut location

Classification performance evaluation was carried out in the same way that
was performed for the previous case study. The resultant 5 datasets has 950
samples separated into two main groups, Healthy (190 samples) and Damaged
(760 samples). Each sample was measured for vibration responses resulted in a
feature vectors with 8000 attributes representing the frequencies of each sample.
The same scenario was applied here where the damaged cases were sub-grouped
into 4 different damaged cases with 190 samples each.

Results and Discussions. In this section the classification results obtained using
the OCSVM algorithm are presented for each of the parameter selection meth-
ods. Two sensors were used in this study, A1 and A4. As we mentioned in the
above section, this dataset has four different levels of damage. The first level of
damage, that is Damage Case 1, is very close to the healthy samples. This will
allow us to thoroughly investigate the performance of the parameter selection
methods considering the issues of under fitting and over-fitting. Table 6 shows
the obtained results of each of the damage cases using sensors A1 and A4, respec-
tively. Considering Damage Case 1 dataset, the results obtained by ADES are
promising in comparison to MD. Although the samples in these dataset have a
minor damage, ADES generated an optimal OCSVM hyperplane that was able
to detect 80% of the damaged samples using sensors A1 and A4. 95% and 100%
of the healthy samples were successfully classified using sensors A1 and A4,
respectively. These results reveal the appropriateness of the generated enclosing
surface of OCSVM using ADES. MD, on the other hand, detected only 43% of
the damaged samples using A1 sensor, and 63% using A4 sensor. These results
again reflect the general behavior of the MD method which often generates a
loose OCSVM model. The results were improved with Damage Case 2 dataset
where the severity of damage is not as close to the healthy samples. ADES also
performs better than MD where the FPRs are 0.12 and 0.03 using A1 and A4,
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respectively. Both methods have similar performance on the two datasets, Dam-
age Case 3 and Damage Case 4. MD performed well in these cases because the
data points in these datasets were very far from the healthy samples.

Table 6. Optimal values of σ selected by different methods using specimen datasets
(A1) along with g-means, TPR and FPR.

Sensor A1 Sensor A4

Dataset Method σ g-means TPR FPR σ g-means TPR FPR

Damage case 1 ADES 42.2 0.87 0.95 0.20 41.8 0.89 1 0.20

MD 57.8 0.64 0.95 0.57 56.1 0.79 1 0.37

Damage case 2 ADES 38.2 0.93 0.98 0.12 41.5 0.98 1 0.03

MD 55.5 0.88 0.97 0.24 54.2 0.95 1 0.08

Damage case 3 ADES 42.7 0.94 0.89 0.00 37.3 1 1 0.00

MD 53.3 0.94 0.89 0.00 51.8 1 1 0.00

Damage case 4 ADES 42.7 0.94 0.89 0.00 41.7 1 1 0.00

MD 57.7 0.94 0.89 0.00 56.6 1 1 0.00

5 Conclusions

The capability of OCSVM as a warning system for damage detection in SHM
highly depends upon the optimal value of σ. This paper has proposed a new algo-
rithm called ADES to estimate the optimal value of σ from a geometric point of
view. It follows the objective function that aims to select the optimal value of σ so
that a generated hyperplane is maximally distant from the interior samples but
at the same time close to the edge samples. In order to formulate this objective
function, we developed a method to select the edge and interior samples which
are crucial to the success of the objective function. The experimental results on
the three 2-D toy datasets showed that the ADES algorithm generated optimal
values of σ which resulted in an appropriate enclosing surface for OCSVM that
precisely fitted the form of the three different shape datasets. Furthermore, the
experiments on the five benchmark datasets demonstrated that ADES has the
capability to work on high dimensional space datasets and capable of selecting
the optimal values of σ for a trustworthy OCSVM model. We have also con-
ducted our experiments on the bridge datasets to evaluate the performance of
the OCSVM model for damage detection. Our ADES method performed well
on these datasets and promising results were achieved. We obtained a better
classification result on the five joint datasets with a low number of false alarms.

Overall, ADES algorithm for OCSVM classifier was superior in accuracy to
VM, MD and MIES on the toy datasets, five publicly available learning datasets
and Sydney Harbour Bridge datasets.
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