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Abstract. Graph clustering has been extensively studied in the past
decades, which can serve many real world applications, such as commu-
nity detection, big network management and protein network analysis.
However, the previous studies focus mainly on clustering with graph
topology information. Recently, as the advance of social networks and
Web 2.0, many graph datasets produced contain both the topology and
node attribute information, which are known as attributed graphs. How
to effectively utilize the two types of information for clustering thus
becomes a hot research topic. In this paper, we propose a new attributed
graph clustering method, JWNMF, which integrates topology structure
and node attributes by a new collective nonnegative matrix factoriza-
tion method. On the one hand, JWNMF employs a factorization for
topology structure. On the other hand, it designs a weighted factoriza-
tion for nodes’ attributes, where the weights are automatically deter-
mined to discriminate informative and uninformative attributes for clus-
tering. Experimental results on seven real-world datasets show that our
method significantly outperforms state-of-the-art attributed graph clus-
tering methods.
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1 Introduction

Graph clustering is a widely studied research problem and receives considerable
attention in data mining and machine learning recently [1-8]. It aims to partition
a given graph into several connected components based on structural similarity.
Vertices from the same component are expected to be densely connected, and the
ones from different components are weakly tied. Graph clustering is popularly
used in community detection, protein network analysis, etc. [4-6]. The previous
work focused mainly on finding clusters by exploiting the topology structures.
Recently, as the advance of social networks and Web 2.0, many graph datasets
appear with both the topology and node attribute information. For example,
a webpage (i.e., vertex) can be associated with other webpages via hyperlinks,
and it may have some inherent attributes of itself, like the text description in
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the webpage. Such type of graphs are known as attributed graphs. Because the
topology and attributes together offers us a better probability to find high-
quality clusters, attributed graph clustering becomes a hot research topic.

However, finding clusters in attributed graphs is not trivial, and there are two
important challenges we need to address. Challenge 1: how to effectively uti-
lize the topology information and the attributes together. In conventional graph
clustering methods, only the topology structure is exploited to find clusters.
By contrast, conventional feature based clustering algorithms take merely the
attributes into account. Different from the two types of approaches, attributed
graph clustering algorithms should effectively use the two types of information
together. Challenge 2: how to automatically determine the importance of dif-
ferent attributes? It is well-known that weighting features appropriately can
help to find the inherent clusters, especially when there is a large portion of
noisy features for clusters. We face the same challenge for attributed graph clus-
tering. For example, in the aforementioned webpage example, each webpage
may contain different textual information at different locations, e.g., title, body,
advertisement, and features extracted thus may have distinct contributions to
clusters. Although some methods have been put forward recently to address the
first challenge [9-16], few of them notice the second challenge.

In this paper, we introduce a Joint Weighted Nonnegative Matrix
Factorization method for clustering attributed graphs, namely JWNMF, which
can address the two challenges. NMF [17,18] is a well-known technique, which
could produce the promising performance in graph clustering [7,8,19]. For a
given attributed graph, our method presents a mechanism by using joint-NMF
to integrate the structural and attribute information. Specifically, we design two
matrix factorization terms. One is modeling the topology structure and the other
is for attributes. Meanwhile, we modify the NMF by introducing a weighting vari-
able for each attribute, which can be automatically updated and determined in
each iteration. Experiments are performed on seven real-world datasets, includ-
ing two amazon information networks, one CMU email networks, one DBLP
information network, one webpage links network and two citation information
networks. Our experimental results show that the proposed JWNMF method
outperforms state-of-the-art attributed graph clustering algorithms, like BAGC
[11], PICS [13] and SANS [14].

The remainder of this paper is organized as follows: Sect. 2 reviews some exist-
ing work on attributed graph clustering. In Sect. 3, we introduce the proposed
JWNMF method. Section4 presents and discusses the experimental results.
Finally, the conclusions are given in Sect. 5.

2 Related Work

Several clustering methods have been introduced for mining attributed graphs
recently. They can mainly be categorized into two types, namely distance-based
methods [9,10,14] and model-based methods [11-13,15,16]. The idea of distance-
based methods is to design a unified distance which could combine and leverage



370 Z. Huang et al.

structural and attribute information, and then utilize existing clustering meth-
ods, e.g., k-means or spectral clustering, to cluster attributed graphs based on
the unified distance. Model-based methods leverage the interactions between
edges and node attributes to construct a joint model for clustering purpose.

2.1 Distance-Based Methods

Zhou et al. proposed a distance-based method SA-Cluster [9] in 2009 and its
efficient version Inc-Cluster [10] in 2011. The key idea of the two methods is
to construct a new graph by treating node attributes as new nodes and linking
the original nodes to the new attribute nodes if the corresponding attribute
values are non-zeros. A unified distance for the augmented graph is designed by
using a random walk process. Finally, k-mediods is performed to partition the
new augmented graph. As the augmenting step may increase the size of graphs
considerable, the two methods are hard to run on large-scale attributed graphs.

SANS was introduced in 2015 [14], which partitions attributed graph lever-
aging both structural and node attribute information. In the method, a weighting
vector is predefined. SANS chooses the node with the largest degree (out-degree
plus in-degree) as a cluster center, then other nodes connected with this node
are partitioned in the cluster. As a sequel, SANS assigns the clustered nodes
whose attribute similarities with those assigned nodes are larger than a thresh-
old into the cluster. After that, the weighting vector and attribute similarities are
updated. The procedure is repeated until all nodes are clustered. This method
can automatically partition attributed graph without pre-defined number of
clusters.

2.2 Model-Based Methods

Xu et al. proposed a model-based approach BAGC in 2012 [11]. This method
introduces a Bayesian probabilistic model by assuming that the vertices in same
cluster should have a common multinomial distribution for each node attribute
and a Bernoulli distribution for node connections. As a result, the attributed
graph clustering problem can be transformed into a standard probabilistic infer-
ence problem. The clusters can be identified by using the node-to-cluster prob-
abilities. The drawback is that this method cannot handle weighted attributed
graphs. To overcome this problem, Xu extended BAGC and proposed GBAGC
lately [12].

PICS was proposed by Akoglu in 2012 [13]. This method is a matrix com-
pression based model clustering approach. It treats clustering problem as a data
compression problem, where the structure matrix and attribute matrix are com-
pressed at the same time. Each cluster is regarded as a compression of a dense
connected subset, and the nodes in the same cluster have similar connectivity
and attribute properties. Due to less computational complexity, PICS can deal
with large-scale attributed graphs.

In 2014, Perozzi proposed a user interest based attributed graph clustering
method, namely FocusCo [15]. The method utilizes the similarities of users’
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interests to find an optimal clustering results for attributed graphs. CESNA
[16] models the correlations between structures and node attributes to improve
the intra-cluster similarities. The method differs from other attributed graph
clustering methods in that it can detect overlapping communities in social
networks.

Different from the existing studies, we propose a collective nonnegative
matrix factorization method to leverage both the topology and attribute infor-
mation. Moreover, we design a weighting vector to differentiate the contribution
of attributes to clusters, which can be automatically determined. Our method
addresses the two challenges mentioned in introduction.

3 Proposed Method

An attributed graph can be defined as G = (V, E, A), where V = {v1,v2,...,0,}
denotes the set of nodes, £ = {(v;,v;),1 < 4,j < n,i # j} denotes the set

of edges, and A = [a;,as,...,a,,] denotes the set of node attributes. In an
attributed graph G, each node v; in V is associated with an attribute vector
(a%,ab,...,al,), where each element of the vector is the attribute value of v; on

the corresponding attribute.

The key difference of attributed graph clustering to conventional graph clus-
tering is that it needs take node attributes into account. Consequently, the ideal
clustering results should follow two properties: (1) nodes in the same clusters are
densely connected, and sparsely connected in different clusters; (2) and nodes in
the same clusters have similar attribute values, and have diverse attribute values
in different clusters.

3.1 Overview of NMF

Here, we will briefly review the Nonnegative Matriz Factorization (NMF) [17,18].
Let X denotes a M x N matrix whose data elements are all nonnegative. The goal
of NMF is that to find two nonnegative matrix factors V = (V; j)mxx and U =
(Uij)Nx K, where K denotes the desired reduced dimension of original matrix
X. In general, K < min(M, N). After that, we can produce an approximation of
X by X =~ VUT. A commonly used objective function for NMF can be regarded
as a Frobenius norm optimizing problem, as follows:

min || X — VUT||%
V.U>0

where || - ||F is the Frobenius norm and V,U > 0 represent the nonnegative
constraints in matrix factorization.

3.2 Objective Function

Following the definition of attributed graphs above, we assume that S denotes the
adjacency matrix for topology structure, and matrix A represents the attribute
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information where rows denote nodes and columns represent attributes. In addi-
tion, we also introduce a diagonal matrix A to assign a weight for each attribute.
Inspired by SymNMF [7,8], which often delivers promising results for graph clus-
tering, we apply the idea for attributed graph clustering. Specifically, we have
factorizations S ~ VV7T and AA ~ VU?T, where V is a fusing representation of
topology and attribute information for nodes.

In order to integrate the two approximation into the NMF framework, we
propose a weighted joint NMF optimization problem over V, U, A:

Jmin 1S = VT + N[44 = VU 1)
where S € R?™ A € RY™ A € RP™ V e RP* U € R, Ry
denotes the set of nonnegative real numbers, n denotes the number of nodes,
m denotes the number of attribute categorizations, A is a diagonal matrix sat-
isfying 3", A;; = 1 and A > 0 is the weight to balance structural/attribute
fusion and k is the number of clusters. Actually, before optimizing Eq.1, we
preprocess the adjacency matrix S and the attribute information matrix A as:

S A
Z¢:1 Zj:l Sij Zi:l Zj:l Aij

Next, we will derive the updating rules of V, U and A.

S

3.3 Updating Rules

Let a, § and ~y denote respectively the Lagrange multiplier matrix for the con-
straints V' > 0, U > 0 and A > 0. By using the Lagrange formulation, we obtain
the loss function without constraints:

1
L= SIS = VVIE + MAA = VUT|E) + Tr(a’V) + Tr(87U) + Tr(y" A)

Taking partial derivatives of L with respect to V, U and A, we have
oL

Gy = SV + STV 4 NAAU) + QVVTV + \WWUTU + a) (3)
OL T T
T = —MATV £ 2UVTV 4+ 8 (4)
aL T T T
94 = MIVUT 44T AL+ (5)

In terms of Karush-Kuhn-Tucker (KKT) conditions oy, ,V,, =0, B4,Ugr =0
and vq,qAq,q = 0, it follows that g—{; =0, % =0 and % — 0. Base on these
conditions, we can derive the following updating rules with respect to V, U and

A:
Ve V. % (SV 4+ STV 4+ MAAU)./2VVTV + AVUTU) (6)

U — U.x (AATV)./(UVTV) (7)
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Ae— A« (ATVUT). /(AT AA) (8)

where .* and ./ represent the elementwise multiplication and division, respec-
tively. In order to assign the weights of A into a regular space, we normalize it

as: A
YT A ®)

Next, we briefly analyze the convergency and the computational complexity of
above updating rules.

For proving the convergency, we just need adopt the auxiliary function
described in [18]. In addition, the KKT conditions, which suffice the stationary
point of the objective function, also imply the convergency of those updating
rules.

Here, the computational complexity is discussed. Supposing the algorithm
stops after ¢ iterations, the overall cost for SymNMF [7,8] is O(n?kt). As the
objective function adds one more linear matrix factorization term, the overall
cost for updating rules is O((n? + m? + mn)kt).

A

3.4 The Joint Weighted NMF Algorithm

By combining the parts above, our attributed graph clustering algorithm
JWNMF can be summarized as follows: Firstly, we preprocess the adjacency
matrix S and attribute matrix A, and randomly initialize the matrices U, V and
assign the values of diagonal matrix A with 1/m. Then we iteratively update
matrices U, V and A as Eqgs. (6)—(9) until it converges. Finally, LiteKmeans® is

performed on the factorization result V' to identify k clusters.

4 Experimental Study

In this section, we evaluate the performance of our algorithm, and compare
it with three state-of-the-art attributed graph clustering methods: BAGC [11],
PICS [13] and SANS [14], and a benchmark clustering approach S-Cluster which
is implemented by using LiteKmeans and focuses only on structure information.
All algorithms were implemented in Matlab R2014b, and tested on a Windows
10 PC, Intel Core i5-4460 3.20 GHz CPUs with 32 GB memory.

4.1 Datasets

Seven real-world datasets are employed in our experiments, where four of them
do not have ground truth and three of them have ground truth. The datasets
without ground truth include two amazon information networks (Amazon Fail?
and Disney?), a CMU email address network (Enron (see footnote 2)) and a

! http://www.zjucadcg.cn/dengcai/Data/Clustering.
2 http://www.ipd.kit.edu/~muellere/consub/.
3 http://www.perozzi.net /projects/focused-clustering/.
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network of DBLP information (DBLP-4AREA (see footnote 3)). On the other
hand, the datasets with ground truth (WebKB, Citeseer, Cora)?* are all from
text categorization applications. We represent all of these datasets as undirected
networks. Table 1 summarizes the characteristics of the seven datasets.

Table 1. Description of seven real-world datasets

Dataset #Nodes | #Edges | #Attributes | #Clusters
Amazon Fail 1,418 3,695 21 -
Enron 13,533 | 176,987 18 -
Disney 124 335 25 -
DBLP-4AREA | 27,199 66, 832 4 -
WebKB 877 174 | 1,703 5
Citeseer 3,312 117 | 3,703 6
Cora 2,708 151 | 1,433 7

4.2 Evaluation Measures

The goal of attributed graph clustering is to effectively leverage the topology and
attribute information. Hence, we evaluate the attributed graph clustering based
on the two aspects. Specially, to evaluate clustering results from the topology
structure and the attribute points of view, we employ modularity and average
entropy. Modularity [20] is a widely used evaluation measure for graph partition,
and average entropy is often used in evaluating feature based clustering results.

Let C = (Cy, Cs, ..., Cy) represents the k partitions of an attributed graph,
the modularity @ and average entropy Avg_entropy are defined as:

k
Q=) (eii—c}) (10)
i=1
Avg_entropy = Z Z | j|entr0py(at, Cj) (11)
t=1 j=1

where e; ; is the fraction of edges with the start node in cluster ¢ and the end
node in cluster 7, and ¢; denotes the fraction of ends of edges that are attached
to nodes in cluster ¢, and entropy(a, C;) is the information entropy of attribute
a; in cluster C;. The value with respect to modularity and average entropy falls
within the range of [—1,1] and the range of [0, +00), where higher modularity
indicates dense connections between nodes within clusters but sparse connections
between nodes in different clusters, and lower average entropy indicates we have
similar attribute values within clusters but dissimilar attribute values in different
clusters, i.e., a better clustering result.

4 http://lings.cs.umd.edu/projects/ /projects/lbc/index.html.
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In addition to modularity and average entropy, we also utilize Normal-
ized Mutual Information (NMI) to evaluate the clustering performance for the
datasets with ground truth. Generally, higher NMI values indicate better clus-
tering results.

4.3 Performance on Datasets Without Ground Truth

Effectiveness Evaluation. We show how the modularity and average entropy
change with respect to different number of clusters on Amazon Fail in Fig. 1.
We observe JWNMF outperforms the four baseline methods in terms of mod-
ularity when varying the number of clusters. Meanwhile, in terms of average
entropy, JWNMF performs the best, except when the number of clusters is set
as 8. Similar observations can be found on Enron and Disney (in Figs. 2 and 3).
From Fig. 4, we can see that our method achieves the lowest average entropy on
DBLP-4AREA. However, according to modularity, JWNMEF is inferior to PICS.
The reason is that PICS treats attributed graph clustering problem as a data
compression problem, thus it prefers datasets which consist of large number of
nodes but sparse topology structures. Moreover, we can see from Figs.1, 2, 3
and 4 that average entropy has a descending trend as the number of clusters is

Amazon Fail ‘Amazon Fail

—=&—8-Cluster

—v—PICS
s BAGC
& SANS

—o— JWNMF

Modularity

Average Entropy

—=—8-Cluster

—v—PICS
BAGC s
o1 4 SANS
—e—JWNMF
0 8 28 48 68 88 ° 8 28 48 68 88
Clusters Clusters
(a) Modularity (b) Average Entropy

Fig. 1. Clustering qualities on Amazon Fail

Enron Enron

—=—8-Cluster T~
018l —7—PICS
BAGC
A SANS
0.14 { —e— JWNMF

Modularity

Average Entropy

—&—8-Cluster
a7 ——PICS
T DT BAGC

36[ & SANS
77777777777777777777777777 a ——JWNMF

14 23 32 i 49 14 23 32 41 49
Clusters Clusters

(a) Modularity (b) Average Entropy

Fig. 2. Clustering qualities on Enron
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increased. This is because increasing the number of clusters improves the chances
that the nodes with similar attributes are put into the same cluster.

Disney Disney

- —&—S-Cluster]
N —v—PICS
BAGC
A N N e A~ SANS
—e— JWNMF

Modularity
Average Entropy

—=&— S-Cluster|
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02F Y TT T T T T T AsANS |TT T
—o— JWNMF
0.15 2
3 7 1 15 18 3 7 1" 15 18
Clusters Clusters
(a) Modularity (b) Average Entropy

Fig. 3. Clustering qualities on Disney

DBLP-4AREA DBLP-4AREA

e o - 5

N AR e ——————
025 x —&—S-Cluster|
£ —=—S-Cluster £12 v PICS
s 02 v PICS u N BAGC
2 BAGC S SANS
Zo1s A SANS § —o— JWNMF
—e—JWNMF T A = A

Clusters Clusters

(a) Modularity (b) Average Entropy

Fig. 4. Clustering qualities on DBLP-4AREA

Efficiency Evaluation. Table 2 shows the running time of all the methods on
the four datasets without ground truth. We can see JWNMF runs much faster
than three sate-of-the-art attributed graph clustering methods, PICS, BAGC
and SANS. The reason is that JWNMEF is a quite efficient method whose iterate
computation converges very fast (usually in 100 iterations). Although S-cluster
achieves the best efficiency, its clustering results can be pretty poor as in Fig. 4.

Parameter Setting. In our experiments, we search the parameter A in the set
{1071%, 1078, 1077, 1075, 1075, 10~%, 1073, 0.5} to find its optimal settings on
Amazon Fail, Enron, Disney and DBLP-4AREA. According to our experience,
we advise to set the parameter A in terms of the sparsity of topology structures.
Specifically, it is more appropriate to use a small value of A\ for datasets with
dense topology structure.
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Table 2. Running time (sec) on datasets without ground truth

Dataset Clusters | S-Cluster | PICS BAGC SANS JWNMF
Amazon Fail 8 0.0033 9.2490 0.6575 - 0.3254
28 0.0075 - 1.4442 — 0.3351

48 0.0120 - 1.7249 — 0.3755

68 0.0133 - 1.6153 - 0.4369

88 0.0216 - 2.0932 4.2059 0.4320

Enron 14 0.4001 385.5467 | 360.9523 — 101.1421
23 0.7470 - 349.1356 — 103.0285

32 0.8329 - 319.1372 — 73.9748

41 1.5420 - 280.1238 — 103.1282

49 1.2942 - 250.1443 | 481.8581 | 105.3710

Disney 3 0.0017 0.1792 0.0138 — 0.0049
7 0.0015 - 0.0201 - 0.0062

11 0.0017 - 0.0287 — 0.0061

15 0.0015 - 0.0137 — 0.0081

18 0.0014 - 0.0350 0.0414 | 0.0074

DBLP-4AREA | 19 0.2162 762.0975 | 1666.9570 — 367.9434
22 0.2454 - 1663.7425 — 306.7181

25 0.2548 - 1601.4241 — 290.4555

28 0.2931 - 1544.3671 — 291.9064

32 0.3422 - 1540.0352 | 2182.5214 | 367.0382

4.4 Performance on Datasets with Ground Truth

Since PICS and SANS cannot output the ground-truth of number of clusters,
we do not compare with them in this section. Table 3 reports the performance
for S-Cluster, BAGC and JWNMF on the three datasets with ground truth. For
JWNMEF, we set A =1.5, 0.5 and 4.5 for the three datasets, respectively. Overall,
our method has better performance than the baseline methods. In particular,
the improvements are significant in terms of modularity and NMI. In terms of
average entropy, however, the superiority of JWNMF is slight. The reason is that
the textual attribute is with huge dimensions but very sparse, which makes the
computed entropies more or less equal.

In JWNMF, we introduced a weighting matrix A to handle noisy features. To
demonstrate the merits of the weighting scheme, we inject 30% noisy attributes
of random 0/1 distribution into the three datasets. Table4 reports the results
on those noisy datasets, where JNMF represents the variant of our method by
removing the weighting matrix. We find that JWNMF significantly outperforms
other methods including JNMF. The results show that the weighting scheme of
our model is very useful, especially in the presence of noisy attributes.
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Table 3. Performance on three textual datasets (%)

Dataset | Methods | Modularity | Average entropy | NMI
WebKB | S-Cluster | 0.1633 23.1949 1.4282
BAGC —0.0260 23.2986 0.3313
JWNMF | 33.7672 23.0107 2.1891
Citeseer | S-Cluster | 2.2419 5.9691 0.2895
BAGC 0 5.9791 0
JWNMEF | 23.999 5.9565 0.6178
Cora S-Cluster | —0.2060 8.3762 0.4014
BAGC 0 8.3963 0
JWNMF | 25.8493 8.3427 1.5033
Table 4. Performance on three noisy textual datasets (%)
Dataset | Methods | Modularity | Average entropy | NMI
WebKB | S-Cluster | 0.1633 35.8873 1.4282
BAGC 0 36.1062 0
JNMF 33.7928 35.7491 2.3884
JWNMF | 37.3405 35.7283 2.1879
Citeseer | S-Cluster | 2.2419 21.6018 0.2895
BAGC 0 21.6352 0
JNMF 27.4264 21.5915 0.6725
JWNMF | 32.1148 21.5890 0.7623
Cora S-Cluster | —0.2060 23.5784 0.4014
BAGC 0 23.6321 0
JNMF 38.7895 23.5460 1.6905
JWNMF | 41.3449 23.5439 1.8291

5 Conclusion

In this paper, we develop a joint weighted nonnegative factorization method,
namely JWNMF, to solve the attributed graph clustering problem. By using
two joint factorization terms, JWNMF nicely fuses the topology and attribute
information of attributed graphs for clustering. Moreover, a weighting scheme is
incorporated into JWNMEF to differentiate attribute importance to clusters. An
iterative algorithm is proposed to find solutions of JWNMF. Extensive exper-
imental results show that our method outperforms state-of-the-art attribute

graph clustering algorithms.
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