
Monte Carlo Based Incremental PageRank
on Evolving Graphs

Qun Liao1, ShuangShuang Jiang2, Min Yu1, Yulu Yang1(&),
and Tao Li1

1 College of Computer and Control Engineering,
Nankai University, Tianjin, China

liaoqun@mail.nankai.edu.cn, yumin2021@163.com,

{yangyl,litao}@nankai.edu.cn
2 Alibaba Cloud (Aliyun), Beijing, China
highfly@mail.nankai.edu.cn

Abstract. Computing PageRank for enormous and frequently evolving
real-world network consumes sizable resource and comes with large computa-
tional overhead. To address this problem, IMCPR, an incremental PageRank
algorithm based on Monte Carlo method is proposed in this paper. IMCPR
computes PageRank scores via updating previous results accumulatively
according to the changed part of network, instead of recomputing from scratch.
IMCPR effectively improves the performance and brings no additional storage
overhead. Theoretical analysis shows that the time complexity of IMCPR to
update PageRank scores for a network with m changed nodes and n changed
edges is O((m+n/c)/c), where c is reset probability. It takes O(1) works to update
PageRank scores as inserting/removing a node or edge. The time complexity of
IMCPR is better than other existing state-of-art algorithms for most real-world
graphs. We evaluate IMCPR with real-world networks from different back-
grounds upon Hama, a distributed platform. Experiments demonstrate that
IMCPR obtains PageRank scores with equal (or even higher) accuracy as the
baseline Monte Carlo based PageRank algorithm and reduces the amount of
computation significantly compared to other existing incremental algorithm.

Keywords: PageRank � Web mining � Incremental computing � Monte Carlo
algorithm � Parallel and distributed processing

1 Introduction

PageRank plays an important role in Web search, social network analysis and many
other application fields [1]. Nowadays, the volume of data in Internet and social net-
works are tremendous and evolving frequently. Computing PageRank for a large and
evolving graph cost huge computational resources. Recomputing from scratch is
impractical due to its considerable overhead. Many incremental PageRank algorithms
are designed to improve the performance of PageRank computation for dynamic
graphs. Algorithm proposed in [2] is one of the most efficient state-of-art algorithms.
However, its storage overhead, due to storing all the random walk segments in previous
computation, is a limitation which cannot be overlooked.

© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 356–367, 2017.
DOI: 10.1007/978-3-319-57454-7_28

Aiming to compute PageRank for evolving graph efficiently, we propose IMCPR, a
novel incremental PageRank algorithm based on Monte Carlo method in this paper.
Inspired by previous works [2, 3], our proposed algorithm reuses pervious PageRank
scores and updates them incrementally. The proposed avoids a large amount of
recomputation and improves the performance significantly.

The most important characteristic of our algorithm is that it stores no previous
random walk segments at all, which brings no extra storage overhead. Theoretical
analysis also proves that the time complexity of our newly proposed algorithm is lower
than other existing related algorithms for most real-world graphs. Moreover, it is also
proved that IMCPR performs as good as the original Monte Carlo method in PageRank
computation [4] in accuracy. Evaluations based on experiments of real-world graphs
demonstrate that IMCPR improves the performance of PageRank significantly com-
pared to other existing PageRank algorithms.

2 PageRank and Related Work

2.1 PageRank

Let G = (V, E) be an unweighted directed graph, where V is the set of nodes and E is
the set of edges. Vj j is the number of nodes and Ej j is the number of edges. For an
arbitrary node j, N(j) donates the set of j’s outgoing neighbors. N jð Þj j is the number of
node j’s outgoing neighbors. Let A be the transition matrix, where Aði; jÞ ¼ 1= N ið Þj j if
and only if there is a direct edge e(i, j) 2 E, and Aði; jÞ ¼ 0 otherwise. Let p be a vector
consisted of PageRank scores of all nodes in V. p is defined as Eq. (1), where a is
teleport probability and h is a vector consisted of fraction 1= Vj j.

p ¼ aApþ 1� að Þh ð1Þ

The definition of PageRank also has an interpretation based on random walk
simulation. Consider a random walk simulation on graph G defined as follows: do
R random walks starting from each node of G, for a random walker, at each step it stops
with probability c (here we call c as the reset probability and c = 1 − a), or jumps to a
random chosen outgoing neighbor of current node with probability a. Assume for each
node v, X(v) is the total number of times that all random walk segments who visits it.
The approximate PageRank of node v ~p vð Þ is defined as Eq. (2).

~pðvÞ ¼ cX vð Þ= R Vj jð Þ ð2Þ

Power Iteration [1] is a fundamental algorithm for PageRank computation which
computes qualified solution of Eq. (1) iteratively. It is easy to understand and imple-
ment, but it’s not efficient enough in dealing with massive graph. Many improved
algorithms based on this iteration method are well discussed in [5]. Another group of
fundamental algorithms are Monte Carlo based algorithms [2, 4]. They simulate the
random walks defined above and get accurate approximations efficiently. It is proved
that even when R = 1, the approximations of important nodes are accurate enough for
many applications [4]. These algorithms are also easy to be parallelized.

Monte Carlo Based Incremental PageRank on Evolving Graphs 357

2.2 Related Work

Bahmani et al. have provided a detailed list of incremental PageRank algorithms in [2].
However, for completeness and for comparison with our own results, we concentrate
on reviewing the latest PageRank algorithms for evolving graphs. There are two main
categories of incremental PageRank algorithms.

• Aggregation Algorithms

These algorithms [3, 6–8] are based on the idea of graph partition and aggregation.
They partition the graph into several sub-graphs and try to limit the affect of changed part
of graph in the level of sub-graphs. These methods help to reduce unnecessary recom-
putation. However, the limitations of these algorithms are high computational load for
aggregation, difficulty in partitioning real-world graphs efficiently and unstable perfor-
mance depending on partitioning. A lot of evidences were discussed in detail in [2].

• Monte Carlo Based Algorithms

The most efficient incremental Monte Carlo based PageRank algorithm was pro-
posed in [2], whose time complexity is O Vj j ln nð Þ=c2ð Þ to update PageRank scores as n
edges arrivals in a graph [2, 9]. Though it is efficient to update PageRank, the large
storage cost for all the random walk segments in history limits the application of this
algorithm for large graphs.

Our proposed algorithm doesn’t suffer from the shortages of aggregation based algo-
rithms. It handles evolving graphs with nodes and edges inserted and/or removed effi-
ciently. Comparing to the state-of-art algorithm in [2], it requires no extra storage overhead
and performs a lower time complexity to update PageRank for most of real-world graphs.

3 Incremental Monte Carlo Method for Pagerank (IMCPR)

We compute approximate PageRank scores according to Eq. (2) as initial solution. As
graph evolves, IMCPR updates PageRank based on reusing previous PageRank scores
and starting a proper number of random walks around the changed part. The newly
started random walks help to adjust each node’s times of visited by all random walk
segments via adding or subtracting contribution from corresponding random walk
segments. How IMCPR update PageRank scores when edges and nodes evolve are
described respectively as follows.

3.1 IMCPR for Evolving Edges

Suppose an arbitrary edge e(u, r) is added, we do M random walks starting from node
r. For any node s, if s is passed through by any one of these random walks once, X(s) is
increased by one. M is a non-negative integer defined as Eq. (3). Then we do another
M random walks. Each of these walks randomly picks one of u’s outgoing neighbors
except node r as its starting node. For any node s, if s is passed through by any one of
these random walks once, X(s) decreases by one.

Method for updating PageRank as edges removed is similar. Suppose an arbitrary
edge e(u, r) is removed, we doM random walks starting from node r. For any node s, if
s is passed through by any one of these random walks once, X(s) is decreased by one.

358 Q. Liao et al.

Then we do another M random walks. Each of these walks randomly picks one of u’s
outgoing neighbors except node r as its starting node. For any node s, if s is passed
through by any one of these random walks once, X(s) increases by one. Algorithm 1.
presents the pseudo-code of updating PageRank for a graph with evolving edges.

M ¼ 1� cð ÞX uð Þ= N uð Þj j; edge eðu; rÞ is added
1� cð ÞX uð Þ= N uð Þj j � 1ð Þ; edge eðu; rÞ is removed

�
ð3Þ

Monte Carlo Based Incremental PageRank on Evolving Graphs 359

3.2 IMCPR for Evolving Nodes

Adding an arbitrary node r into graph G, can be regarded as two separate operations.
First a node r is added, secondly edges associated with r are added. Similarly, an
arbitrary node r removed means edges associated with r and the node r itself removed
respectively. Thus, as an arbitrary node r added, we set X(r) equal to R, times of
random walks started from each node before, for initialization. Then we update
PageRank scores according to the method described above. Supposes an arbitrary node
r is removed, we set X(r) equal to zero and update PageRank scores to process the
removed edges. Adding the process for changed nodes and edges together, the
pseudo-code of IMCPR algorithm is shown in Algorithm 2.

4 Correctness and Time Complexity

4.1 Correctness Discussion

In this section, we prove that for an arbitrary node u; ~pðuÞ got by IMCPR is sharply
concentrated around its expectation, which is its real PageRank score pðuÞ.
Theorem 1. The expected PageRank score of an arbitrary node u got from IMCPR is
equal to the real score. It is written as Eq. (4).

E ~pðuÞ½ � ¼ pðuÞ ð4Þ

Prove: It is proved that E ~pðuÞ½ � got by the original Monte Carlo based PageRank is
equal to p uð Þ in [4]. Thus, here we only need to prove that E ~pðuÞ½ � got by IMCPR is
equal to the expectation got by the original algorithm.

For an arbitrary node u, IMCPR reuses X(u) computed by the original Monte Carlo
based PageRank in initial. It is equal to that IMCPR starting R random walks from each

360 Q. Liao et al.

node of the graph G. As an edge added or removed, IMCPR updates X(u) as the method
defined above, which is equal to rerouting the random walks which passes through the
changed edge. The fundamental idea of IMCPR is that the expectation of contribution
of X(u) from an arbitrary edge e(s, u) is equal to 1� cð ÞX sð Þ= N sð Þj j. Though the
contribution of X(u) from a particular edge varies, its expectation is steady.

The expected X(u) for a node u in a Monte Carlo based algorithm can be computed
as Eq. (5), where P(v, u) donates the number of random walk segment which starts
from v and visits u.

E XðuÞ½ � ¼ R� E
X
v2V

P v; uð Þ
" #

ð5Þ

The expected P(v, u) for any node u and v only depend on the graph and how to
choose next node in a random walk. As described in Sect. 3.1, it is straightforward that
our proposed algorithm doesn’t change the probability of choosing next node in ran-
dom walks, so according to Eq. (5), we can tell that E XðuÞ½ � computed by IMCPR is
equal to it computed by the original Monte Carlo based PageRank algorithm. Theo-
rem 1 is proved.

Theorem 2. The PageRank score got from IMCPR is sharply concentrated around its
expectation. Theorem 2 can be written as Eq. (6) for any node v, where d is a con-
centrated factor and d0 is a constant depending on both d and the reset probability c.

Pr ~pðvÞ � pðvÞj j � dpðvÞ½ � � e� Vj jRp vð Þd0 ð6Þ

The proof of Theorem 2 is similar as some previous works [2, 10], but we still present
the detailed derivation of the proof for the completeness of this paper.

Prove: Assuming R = 1(the situation that R > 1 can be proved like this), for an arbi-
trary node v, define Z(u) donates c times of the visited time of node v got from the path
start from node u. Y(u) is the length of the random walk segment starting from u. Let
WðuÞ ¼ cYðuÞ; zðuÞ ¼ E ZðuÞ½ �. Z(u) of different node u are independent. Thus,

~p vð Þ ¼
X

u2V Z uð Þ= Vj j; p vð Þ ¼
X

u2V z uð Þ= Vj j ð7Þ

It is obvious that 0� ZðuÞ�WðuÞ and E WðuÞ½ � ¼ 1.

From the definition of expectation, Eq. (8) can be derived.

E ehZ uð Þ
h i

� 1
� �

= E ehW uð Þ
h i

� 1
� �

�E Z uð Þ½ �=E W uð Þ½ � ð8Þ

E ehZ uð Þ
h i

� z uð ÞE ehW uð Þ
h i

þ 1� zðuÞ ¼ zðuÞ � E ehW uð Þ
h i

� 1
� �

þ 1 ð9Þ

Monte Carlo Based Incremental PageRank on Evolving Graphs 361

Because for an arbitrary y meets 1þ y� ey, thus,

E ehZ uð Þ
h i

� e�z uð Þ� 1�E ehW uð Þ½ �ð Þ ð10Þ

Pr ~p vð Þ� 1þ dð Þp vð Þ½ � � E eh Vj j~p vð Þ� �
eh Vj j 1þ dð Þp vð Þ ¼

E eh
P

u
Z uð Þ

h i
eh Vj j 1þ dð Þp vð Þ �

Q
u E e�z uð Þ� 1�E ehW uð Þ½ �ð Þh i

eh Vj j 1þ dð Þp vð Þ

¼ e� Vj jp vð Þ� 1�E ehW uð Þ½ �ð Þ=eh Vj j 1þ dð Þp vð Þ � e� Vj jd0p vð Þ

ð11Þ
Similar as Eq. (11), Eq. (12) can be proved.

Pr ~p vð Þ� 1� dð Þp vð Þ½ � � e� Vj jd0p vð Þ ð12Þ

In addition, in Eqs. (11) and (12) d0 ¼ 1þ h 1þ dð Þ � E ehW
� �

where W = cY is a
random variable with Y having geometric distribution with parameter c. It means that
the probability of the approximation deviated from its expectation is quite small and
Theorem 2 is proved. So it is convinced that IMCPR performs as good as the original
Monte Carlo based PageRank in accuracy. Above all, the correctness of IMCPR is
proved.

4.2 Complexity Analysis

Supposing an arbitrary node r changed, IMCPR starts R random walks from r. Sup-
posing an arbitrary edge e(u, v) changed, there are 2 � M random walks starting,
including M random walks starting from node v and the same number of random walks
starting from node u’s other outgoing neighbors. Here we discuss the amount of
operations as m nodes and n edges changed. The total number of newly started random
walks in IMCPR, donated by TotalRW, can be calculated as Eq. (13).

Total RW ¼ mRþ 2
X

e u;vð Þ2DE M ¼ mRþ
X

e u;vð Þ2DE 2 1� cð ÞX uð Þ= N uð Þj j ð13Þ

For an arbitrary node u, its outgoing neighbors must be more than zero. So Eq. (14)
must be true, where �X uð Þ refers to the average number of random walk segments
visiting node u in initial.

Total RW �mRþ 2
X

e u;vð Þ2DE X uð Þ ¼ mRþ 2n�X uð Þ ð14Þ

Supposing the edge e(u, v) is inserted and/or removed randomly, �Xt uð Þ can be
calculated as Eq. (15).

�X uð Þ ¼
X

u2V X uð Þ= Vj j ¼ R Vj j= c Vj jð Þ ¼ R=c ð15Þ

362 Q. Liao et al.

The length of the newly started random walks is equal to the number of operation of
update X(u) for any arbitrary node u. So, we define the amount of computing operations
of IMCPR donated by TotalComp as Eq. (16).

TotalComp ¼ TotalRW=c�R=c mþ 2n=cð Þ ð16Þ

The computational cost of IMCPR is only related to the size of changed parts of the
graph. Algorithm in [2] takes complexity of Oð Vj j ln nð Þ�c2Þ to update PageRank
scores as n edges inserted and/or removed. We compare |E| and ln(|E|)|V| for each graph
from Stanford Network Analysis Project [11]. It is found that |E| is closed to ln(|E|)|V| in
most graphs and there are only 5 graphs which have |E| obviously bigger than ln(|E|)|V|.
Meanwhile, some graphs such as memetracker, LiveJournal, wiki-Talk, web-Google
and so on, their |E| are much smaller than ln(|E|)|V|. So we can tell that in many
real-world applications with little percentages of graph changed, IMCPR takes a lower
time complexity compared to algorithm in [2].

5 Experiments and Evaluations

5.1 Experimental Setup

We perform our experiments upon a five-machine homogeneous Hama [12] cluster.
Each machine in the cluster has an intel-i7 2600 CPU, 2 GB memory, 4 TB hard disk
and 1 Gigabit Ethernet card. Ubuntu 14.04 and zookeeper-3.4.6 are deployed on each
machine. The version of Hama is hama-0.6.4 and HDFS component is provided by
hadoop-1.2.1. Eight real-world graphs from widely used datasets [11] are used in our
experiments. The key parameters of these graphs are listed in Table 1.

In the experiments, we only consider the scenarios that edges and nodes are inserted
into graphs, because removal is similar. In order to generate the edges inserted, we
randomly choose 10% edges in each graph as evolving edges and use the rest part of
each graph as initial graph. In order to generate the inserted nodes, we randomly add a
certain percentage of nodes to each dataset, and appoint a stochastic incoming and
outgoing neighbor for each newly added node. We set c = 0.15 and R = 20.

Table 1. Main parameters of data sets

Graph p2p-Gnutella-31 Amazon-
0312

Web-
NotreDame

Web-
BerkStan

Higgs-
twitter

Wiki-
talk

Wiki-
vote

Email-
Enron

Nodes 63K 401K 326K 685K 457K 2.3M 7.1K 37K
Edges 148K 3.2M 1.5M 7.6M 14.9M 5.0M 104K 184K
Dangling
nodes

46K 12K 187K 4.7K 0.03K 2.2M 1K 0

Monte Carlo Based Incremental PageRank on Evolving Graphs 363

5.2 Comparison with Existing Algorithms

We evaluate the performance of our approach (Algorithm 2) by comparing it to the
work in [2] and the non-incremental algorithm in [4]. For simplicity, we use Bah-
maniPR to refer to the algorithm proposed in [2] by Bahmani et al., and use BasicPR to
refer to the original Monte Carlo based PageRank proposed in [4]. We also use PI to
refer to Power Iteration [1] for short.

We evaluate the accuracy of the proposed algorithm with metric of L1 error which
is defined as Eq. (17), where pðuÞ is the “ground-truth” PageRank score of node u and
~pðuÞ is the approximation. In experiments pðuÞ is computed by PI algorithm (with
parameter e = 5 � 10−4).

Err ¼
X

u2V ~pðuÞ � pðuÞj j ð17Þ

We also evaluate the amount of computation of the proposed algorithm. We
implement all the algorithms based on the BSP model [13] upon Hama. A message is
sent as long as a random walker jumps to a node in these Monte Carlo based algo-
rithms. So we get the amount of computation by counting the messages received by all
machines (including messages received locally) during computation. We use Cost(Alg)
to refer to the amount of computation of a particular algorithm Alg.

5.3 Accuracy

We evaluate the accuracy of the proposed algorithm. Firstly, we compare the average
L1 error of BasicPR and IMCPR with 10% edges inserted. Table 2 describes the
results. We found that the accuracy of IMCPR is roughly equal to original Monte Carlo
based PageRank algorithm.

To verify that the errors do not accumulate as updating PageRank for evolving
graph, we trace the accuracy of IMCPR as edges inserted continuously. There are
p edges inserted respectively (p = 1, 10, 100, 1000, 1000). We record the errors of
IMCPR and BasicPR. To make the figures intuitive, we depict Err(IMCPR)/Err
(BasicPR) in the following figures. As Fig. 1(a) shows, the accuracy of IMCPR is stable
and always close to the original Monte Carlo based PageRank algorithm. We also trace
the accuracy as d percentages of edges inserted (d = 1%%,5%%,0.1%,0.5%,1%,
5%,10%). As Fig. 1(b) depicted, we found that the accuracy of IMCPR is always close
to the baseline algorithm. In some cases (P2P with 5% and 10% edges inserted) IMCPR
even gets slightly higher accuracy than the baseline algorithm does.

Table 2. Accuracy comparison of IMCPR and BasicPR with 10% edges inserted

Graph Amazon0312 Web-
BerkStan

Web-
NotreDame

Higgs-twitter p2p-Gnutella31 Wiki-talk

BasicPR 0.19 0.20 0.28 0.21 0.34 0.36
IMCPR 0.20 0.20 0.29 0.21 0.31 0.36

364 Q. Liao et al.

5.4 Amount of Computation

Comparison with Existing Incremental Algorithm.
To demonstrate our proposed algorithm is efficient, we compare the amount of com-
putation of our algorithm to BahmaniPR. We insert n edges (n = 50, 100, 150) in our
experiments and record the amount of computation. We found that BahmaniPR cost 8.9
to 70 times as much amount of computation compared to our proposed algorithm which
is depicted in Fig. 2.

Comparison with Non Incremental Algorithm.
We also compare our proposed algorithm to original Monte Carlo based PageRank
algorithm, we found our proposed algorithm reduces significant amount of computation
compared to the original algorithm intuitively. Figure 3(a) and (b) describe the com-
parison of amount of computation of IMCPR and BasicPR in experiments of nodes and
edges inserted respectively. As there is 1% data changed, IMCPR cuts down over 96%
amount of computation at least. As 10% edges inserted IMCPR just cost 0.2 times
amount of computation compared to the original algorithms at most.

(a) 1 to 10000 edges inserted (b) 0.01% to 10% edges inserted

Fig. 1. Comparison of accuracy

Fig. 2. Comparison of amount of computation to BahmaniPR

Monte Carlo Based Incremental PageRank on Evolving Graphs 365

Comparison as Different Number of Edges Changed.
Last but not least, we verifying the efficiency of IMCPR as different number of edges
evolves. We compare the amount of computation of IMCPR as 1 to 10000 edges
inserted mentioned above. We found that the amount of computation has a nearly linear
correlation with the number of the edges inserted. These results consistent with the
theoretical analysis in the previous section. Particular results are depicted in Fig. 4, to
make the figure intuitive, we take the logarithms of amount of computation as the
vertical axis.

6 Conclusion

In this paper, we investigate Monte Carlo based PageRank algorithms and propose an
incremental algorithm called IMCPR, which significantly reduces the amount of
computation for dynamic graphs. Both the theoretical analysis and experimental results
with several typical real-world graphs demonstrate that IMCPR performs well in
accuracy and performance. In addition, the proposed algorithm can be extended to
Monte Carlo based Personalized PageRank [14], Single-Source Shortest Paths [15] and
other random walk based algorithms.

(a) 0.01% to 10% nodes inserted (b) 0.01% to 10% edges inserted

Fig. 3. Comparison of amount of computation to BasicPR

2.5

3

3.5

4

4.5

5

5.5

6

6.5

1 1 0 1 0 0 1 0 0 0 1 0 0 0 0

amazon berkstanweb notredame
p2p social wiki

Number of Increased Edges

lo
g(

C
os

t(
IM

C
PR

))

Fig. 4. Amount of computation of IMCPR as different numbers (1 to 10000) of edges inserted

366 Q. Liao et al.

Acknowledgement. We would like to thank Shan Shan for helpful suggestions.

References

1. Page, L., et al.: The PageRank citation ranking: bringing order to the web (1999)
2. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pagerank. Proc.

VLDB Endow. 4(3), 173–184 (2010)
3. Desikan, P., et al.: Incremental page rank computation on evolving graphs. In: Special

Interest Tracks and Posters of the 14th International Conference on World Wide Web. ACM
(2005)

4. Avrachenkov, K., et al.: Monte Carlo methods in PageRank computation: when one iteration
is sufficient. SIAM J. Numer. Anal. 45(2), 890–904 (2007)

5. Langville, A.N., Meyer, C.D.: Deeper inside pagerank. Internet Math. 1(3), 335–380 (2004)
6. Chien, S., et al.: Towards exploiting link evolution (2001)
7. Langville, A.N., Meyer. C.D.: Updating pagerank with iterative aggregation. In: Proceedings

of the 13th International World Wide Web Conference on Alternate Track Papers & Posters.
ACM (2004)

8. Kamvar, S., et al.: Exploiting the block structure of the web for computing pagerank.
Technical report, Stanford University (2003)

9. Lofgren, P.: On the complexity of the Monte Carlo method for incremental PageRank. Inf.
Process. Lett. 114(3), 104–106 (2014)

10. Das Sarma, A., Molla, A.R., Pandurangan, G., Upfal, E.: Fast distributed PageRank
computation. In: Frey, D., Raynal, M., Sarkar, S., Shyamasundar, Rudrapatna K., Sinha,
P. (eds.) ICDCN 2013. LNCS, vol. 7730, pp. 11–26. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-35668-1_2

11. Jure, L.: Stanford Large Network Dataset Collection. http://snap.stanford.edu/data/index.
html

12. Seo, S., et al.: HAMA: an efficient matrix computation with the mapreduce framework. In:
2010 IEEE Second International Conference on IEEE Cloud Computing Technology and
Science (CloudCom) (2010)

13. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103–111
(1990)

14. Jeh, G., Jennifer, W.: Scaling personalized web search. In: Proceedings of the 12th
International Conference on World Wide Web. ACM (2003)

15. Pettie, S.: Single-source shortest paths. In: Encyclopedia of Algorithms, pp. 847–849 (2008)

Monte Carlo Based Incremental PageRank on Evolving Graphs 367

http://dx.doi.org/10.1007/978-3-642-35668-1_2
http://dx.doi.org/10.1007/978-3-642-35668-1_2
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

	Monte Carlo Based Incremental PageRank on Evolving Graphs
	Abstract
	1 Introduction
	2 PageRank and Related Work
	2.1 PageRank
	2.2 Related Work

	3 Incremental Monte Carlo Method for Pagerank (IMCPR)
	3.1 IMCPR for Evolving Edges
	3.2 IMCPR for Evolving Nodes

	4 Correctness and Time Complexity
	4.1 Correctness Discussion
	4.2 Complexity Analysis

	5 Experiments and Evaluations
	5.1 Experimental Setup
	5.2 Comparison with Existing Algorithms
	5.3 Accuracy
	5.4 Amount of Computation

	6 Conclusion
	Acknowledgement
	References

