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Abstract. Previous work in network analysis has focused on modeling
the roles of nodes in graphs. In this paper, we introduce edge role dis-
covery and propose a framework for learning and extracting edge roles
from large graphs. We also propose a general class of higher-order role
models that leverage network motifs. This leads us to develop a novel
edge feature learning approach for role discovery that begins with higher-
order network motifs and automatically learns deeper edge features. All
techniques are parallelized and shown to scale well. They are also effi-
cient with a time complexity of O(|E|). The experiments demonstrate
the effectiveness of our model for a variety of ML tasks such as improving
classification and dynamic network analysis.
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1 Introduction

In the traditional graph-based sense, roles represent node-level connectivity pat-
terns such as star-center, star-edge nodes, near-cliques or nodes that act as
bridges to different regions of the graph. Intuitively, two nodes belong to the
same role if they are “similar” in the sense of graph structure. Our proposed
research will broaden the framework for defining, discovering and learning net-
work roles, by drastically increasing the degree of usefulness of the information
embedded within rich graphs.

Recently, role discovery has become increasingly important for a variety of
application and problem domains [5,6,9,15,19,28] including descriptive network
modeling [30], classification [14], anomaly detection [30], and exploratory analy-
sis [29]. See [28] for other applications. Despite the importance of role discovery,
existing work has only focused on discovering node roles (e.g., see [5,7,11,23]).
We posit that discovering the roles of edges may be fundamentally more important
and able to capture, represent, and summarize the key behavioral roles in the net-
work better than existing methods that have been limited to learning only the roles
of nodes in the graph. For instance, a person with malicious intent may appear nor-
mal by maintaining the vast majority of relationships and communications with
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individuals that play normal roles in society. In this situation, techniques that
reveal the role semantics of nodes would have difficulty detecting such malicious
behavior since most edges are normal. However, modeling the roles (functional
semantics, intent) of individual edges (relationships, communications) in the rich
graph would improve our ability to identify, detect, and predict this type of mali-
cious activity since we are modeling it directly. Nevertheless, existing work also
have many other limitations, which significantly reduces the practical utility of
such methods in real-world networks. One such example is that the existing work
has been limited to mainly simple degree and egonet features [14,30], see [28] for
other possibilities. Instead, we leverage higher-order network motifs (induced sub-
graphs) of size k ∈ {3, 4, . . .} computed from [1,2] and other graph parameters
such as the largest clique in a node (or edge) neighborhood, triangle core number,
as well as the neighborhood chromatic, among other efficient and highly discrim-
inative graph features. The main contributions are as follows:

• Edge role discovery: This work introduces the problem of edge role discov-
ery and proposes a computational framework for learning and modeling edge
roles in both static and dynamic networks.

• Higher-order role discovery models: Proposed a general class of higher-
order role models that leverage network motifs and higher-order network fea-
tures for learning both node and edge roles. This work is also the first to use
higher-order network motifs1 for role discovery in general.

• Edge feature representation learning: Proposed a novel deep graph rep-
resentation learning framework that begins with higher-order network motifs
and automatically learns deeper edge features.

• Efficient and scalable: The proposed feature and role discovery methods
are efficient (linear in the number of edges) for modeling large networks. In
addition, all methods are parallelized and shown to scale to massive networks.

2 Related Work

Related research is categorized into the following parts: (1) role discovery, (2)
higher-order network analysis, (3) graph representation learning, (4) sparse
graph features, and (5) parallel role discovery.

Role Discovery: There has been a lot of work on role discovery in gen-
eral [5,6,9,14,15,19,28,30]. However, all existing approaches have focused on
learning roles of nodes in graphs. See [28] for a recent survey on role discov-
ery. In contrast, this work introduces the problem of edge role discovery and
presents a computational framework for learning and extracting edge roles from
large networks. Additional key differences are as follows: (1) our approach uses
higher-order graphlets for discovering more intuitive and meaningful roles, and
(2) the proposed role methods are parallelized and thus able to scale to extremely
large real-world networks. Moreover, our approach supports graphs that are
directed/undirected/bipartite, attributed, typed/heterogeneous, and signed.
1 4-vertex induced subgraphs (graphlets, motifs) and larger.
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Higher-Order Network Analysis: Small induced subgraphs called graphlets
(motifs) have recently been used for graph classification [36], link prediction [25],
and visualization and exploratory analysis [1]. However, this work focuses on
using graphlets for learning and extracting more useful and meaningful roles
from large networks. Furthermore, previous feature-based role methods have
been learned based on simple degree and egonet-based features. Thus, another
contribution of this work is the use of higher-order network motifs (based on
small k-vertex subgraph patterns called graphlets) for role discovery of nodes
and edges — a key and fundamental difference between existing work.

Graph Representation Learning: While a lot of work has engineered features
by hand (or manually selected them) for various ML applications, not much work
has been done on learning a set of useful features automatically. Our approach
is different from previous work in four fundamental ways: (1) the proposed app-
roach learns important and useful edge features automatically, whereas existing
approaches were designed for learning node features, (2) our approach is space-
efficient as it learns sparse features and fast/efficient with a time complexity that
is linear in the number of edges. (3) an efficient parallel implementation with
strong scaling results as shown in Sect. 4 and thus well-suited for large-scale net-
works, and finally, (4) most graph representation learning methods were used in
SRL systems for classification [12], whereas we use the proposed approach for
edge role discovery.

Sparse Graph Features: We also make a significant contribution in terms of
space-efficient role discovery. In particular, this work proposes the first practical
space-efficient approach for feature-based role discovery by learning sparse graph
features automatically. In contrast, feature-based node role methods [14,30] store
hundreds/thousands of dense features in memory, which is impractical for any
relatively large network, e.g., they require more than 2TB of memory for a 500M
node graph with 1,000 features.

Parallel Role Discovery: The existing role discovery methods are sequential,
despite the practical importance of parallel role discovery algorithms that scale
to massive real-world networks. This work is the first parallel role discovery app-
roach. Furthermore, the proposed edge feature learning techniques are also paral-
lelized and designed to be both efficient in terms of space and communication.

3 Framework

This section introduces edge role discovery along with higher-order edge role
models and a computational framework for learning and extracting roles based
on higher-order structures.

Extracting Higher-Order Graphlet Features: Given the graph G = (V,E),
we first decomposes G into its smaller subgraph components called graphlets
(motifs). For this, we use parallel edge-centric graphlet decomposition meth-
ods such as [1] to compute a variety of graphlet edge features of size k =
{3, 4, . . .} (Algorithm 1 Line 2). Moreover, our approach canleverage directed,
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Algorithm 1. A framework for learning deep edge feature representations from
graphs
Input:

a directed and possibly weighted/labeled/attributed graph G = (V, E)

a set of relational edge kernels/operators Φ

a feature similarity function K〈·, ·〉
an upper bound on the number of feature layers to learn T

a feature similarity threshold λ, and bin size α, 0 ≤ α ≤ 1

1: Set τ ← 1

2: parallel for each ei ∈ E and subgraph Hk ∈ H do

3: Compute Xik, the number of instances of graphlet Hk that contain edge ei ∈ E

4: Given G and X, compute in/out/total/weighted edge egonet and edge degree features
(feature layer F1 which includes the graphlet features as well). Append these to X and
set F ← F1

5: repeat � feature layers Fτ for τ = 1, 2, ...,T

6: if τ > 1 then

7: Derive candidate features using the set of relational operators Φ over each of the
novel features fi ∈ Fτ−1 learned in previous layers. Append the candidate features
to X and the feature definitions to Fτ .

8: For each feature fi ∈ Fτ , sort the feature values in ascending order and then map the
feature values using logarithmic binning (with a bin size of α). Given feature fi ∈ Fτ ,
we set the αm edges with smallest feature values to 0, then α edges remaining are set
to 1, and so on.

9: Let GF = (VF , EF ) be the initial feature graph for feature layer Fτ where VF is the set
of features from F ∪ Fτ and EF = ∅

10: parallel for each edge feature fi ∈ Fτ do

11: for each edge feature fj ∈ (Fτ ∪ F) do

12: if K(xi,xj) ≥ λ then

13: Add edge (fi, fj) to EF

14: Partition the feature graph GF using connected components C = {C1, C2, . . .}
15: parallel for each Ck ∈ C do � Prune features

16: Find the earliest feature fi s.t. ∀fj ∈ Ck : i < j.

17: Remove Ck from Fτ and set Fτ ← Fτ ∪ {fi}
18: Discard features from X that were pruned (not in Fτ ) and set F ← F ∪ Fτ

19: Set τ ← τ + 1 and initialize Fτ to ∅ for next feature layer

20: until feature layer Fτ−1 = ∅ (no new features emerged) or max layers reached (τ = T)

21: return X and the set of feature definitions F

undirected, and weighted/typed graphlet counts (among other useful and dis-
criminative graphlet edge statistics) using either exact or estimation methods.
These graphlet features are then used to learn deeper higher-order edge features
(see below for further details).

Edge Feature Representation Learning Framework: This section presents
our deep edge feature representation learning framework (Algorithm1). Recall
that our approach leverages the previous higher-order graphlet counts as a
basis for learning deeper and more discriminative higher-order edge features
(Line 2–3). Next, primitive edge features are computed in Line 4, including
in/out/total/weighted edge egonet and edge degree features. After computing
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the initial feature layer F1 (Line 2–4), redundant features are pruned (Line 5–
20). The framework proceeds to learn a set of feature layers where each successive
layer represents increasingly deeper higher-order edge features (Line 5–20), i.e.,
F1 < F2 < · · · < Fτ such that if i < j then Fj is said to be a deeper layer
than Fi.

The feature layers F2,F3, · · · ,Fτ are learned as follows (Line 5–20): For
each layer Fτ , we first construct and search candidate features using the set
of relational edge feature operators Φ (See Line 7), which include mean, sum,
product, min, max, variance, L1, L2, and even parameterized relational ker-
nels based on RBF, polynomial functions, among others. See Table 1 for a few
examples. Now, we compute the similarity between all pairs of features and
prune edges between features that are not significantly correlated (Line 9–13):
EF = {(fi, fj) | ∀(fi, fj) ∈ |F| × |F| s.t. K(fi, fj) > λ}. This process results
in a feature similarity graph where large edge weights indicate strong similar-
ity/correlation between two features. Now, the feature similarity graph GF from
Line 9–13 is used to prune all redundant edge features from Fτ . Features are
pruned by first partitioning the feature graph (Line 14) using connected compo-
nents, though our approach is flexible and allows other possibilities (e.g., largest
clique). Intuitively, each connected component is a set of redundant edge fea-
tures since edges in GF represent strong dependencies between features. For
each connected component Ck ∈ C (Line 15–17), we identify the earliest feature
in Ck = {..., fi, ..., fj , ...} (Line 16) and remove all others from Fτ (Line 17).
After pruning the feature layer Fτ , Line 18 ensures the pruned features are
removed from X and updates the set of edge features learned thus far by setting
F ← F ∪ Fτ . Line 19 increments τ and set Fτ ← ∅. Finally, Line 20 checks
for convergence, and if the stopping criterion is not satisfied, then the approach
tries to learn an additional feature layer (Line 5–20).

Table 1. Relational edge feat. operators

Operator Definition

Hadamard � ∏

ej∈Γ (ei)
fk(ej)

Mean � 1
di

∑

ej∈Γ (ei)
fk(ej)

Sum ⊗ ∑

ej∈Γ (ei)
fk(ej)

Wt. Lp ‖ · ‖p̄

∑

ej∈Γ (ei)
|fk(ei) − fk(ej)|p

Learning Higher-Order Edge Roles:
Let X =

[
xij

] ∈ R
m×f be an edge

feature matrix with m rows represent-
ing edges and f columns representing
higher-order graph features learned
from our edge feature representation
learning approach. Given X ∈ R

m×f ,
the edge role discovery optimization
problem is to find U ∈ R

m×r and
V ∈ R

f×r where r � min(m, f) such that the product of two lower rank matri-
ces U and VT minimizes the divergence between X and X′ = UVT . Intuitively,
U ∈ R

m×r represents the latent role mixed-memberships of the edges whereas
V ∈ R

f×r represents the contributions of the features with respect to each of
the roles. Each row uT

i ∈ R
r of U can be interpreted as a low dimensional rank-r

embedding of the ith edge in X. Alternatively, each row vT
j ∈ R

r of V repre-
sents a r-dimensional role embedding of the jth feature in X using the same
low rank-r dimensional space. Also, uk ∈ R

m is the kth column representing a
“latent feature” of U and similarly vk ∈ R

f is the kth column of V. For learning
higher-order edge roles, we solve:
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arg min
(U,V)∈C

{
Dφ(X‖UVT ) + R(U,V)

}
(1)

where Dφ(X‖UVT ) is an arbitrary Bregman divergence [10] between X and
UVT . Furthermore, the optimization problem in (1) imposes hard constraints
C on U and V such as non-negativity constraints U,V ≥ 0 and R(U,V) is a
regularization penalty. In this work, we mainly focus on solving Dφ(X‖UVT )
under non-negativity constraints:

arg min
U≥0,V≥0

{
Dφ(X‖UVT ) + R(U,V)

}
(2)

Given the edge feature matrix X ∈ R
m×f , the edge role discovery problem is

to find U ∈ R
m×r and V ∈ R

f×r such that X ≈ X′ = UVT . To measure the
quality of our edge mixed membership model, we use Bregman divergences:

∑

ij

Dφ(xij‖x′
ij) =

∑

ij

(
φ(xij) − φ(x′

ij) − �(xij , x
′
ij)

)
(3)

where φ is a univariate smooth convex function and �(xij , x
′
ij) = ∇φ(x′

ij)(xij −
x′

ij) where ∇pφ(x) is the p-order derivative operator of φ at x. Furthermore,
let X − UVT = X(k) − ukvT

k denote the residual term in the approximation
X ≈ X′ = UVT where X(k) is the k-residual matrix defined as:

X(k) = X −
∑

h�=k

uhvT
h = X − UVT + ukvT

k , for k = 1, . . . , r (4)

We use a fast scalar block coordinate descent approach that easily generalizes
for heterogeneous networks [32]. The approach considers a single element in U
and V as a block in the block coordinate descent framework. Replacing φ(y) with
the corresponding expression from Table 2 gives rise to a fast algorithm for each
Bregman divergence. Table 2 gives the updates for Frobenius norm (Fro.), KL-
divergence (KL), and Itakura-Saito divergence (IS). Note that Beta divergence
and many others are also easily adapted for our higher-order edge role discovery
framework.

Table 2. Role divergences and update rules

φ(y) ∇2φ(y) Dφ(x‖x′) Update (vjk =)

Fro. y2/2 1 (x − x′)2/2

∑m
i=1 x

(k)
ij

uik
∑m

i=1 uikuik

KL y log y 1/y x log x
x′ − x + x′

∑m
i=1 x

(k)
ij

uik/x′
ij

∑m
i=1 uikuik/x′

ij

IS − log y 1/y2 x
x′ − log x

x′

∑m
i=1 x

(k)
ij

uik/x′
ij

2
∑m

i=1 uikuik/x′
ij

2

Model Selection: In this
section, we introduce an
approach that automati-
cally learns the appropri-
ate role mixed-membership
model. The approach is
based on the Minimum
Description Length (MDL) [13,26] principle; a practical formalization of Kol-
mogorov complexity [17]. More formally, we find the model M� = (Vr,Ur) that
leads to the best compression by solving:

M� = arg min
M∈M

L(M) + L(X |M) (5)
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where M is the model space, M� is the model given by the solving the above
minimization problem, and L(M) as the number of bits required to encode M
using code Ω, which we refer to as the description length of M with respect
to Ω. Recall that MDL requires a lossless encoding. Therefore, to reconstruct
X exactly from M = (Ur,Vr) we must explicitly encode the error E such that
X = UrVT

r +E. Hence, the total compressed size of M = (Ur,Vr) with M ∈ M
is simply L(X |M) = L(M)+L(E). Given a role mixed-membership model with
r roles M = (Ur,Vr) ∈ M, the description length is decomposed into: (1) bits
required to describe the model, and (2) cost of describing the approximation
errors X − Xr where Xr = UrVT

r is the rank-r approximation of X,

Ur =
[
u1 u2 · · · ur

] ∈ R
m×r, and Vr =

[
v1 v2 · · · vr

] ∈ R
f×r (6)

The model M� is the model M ∈ M that minimizes the total description length:
the model description cost X and the cost of correcting the errors of our model.
Let |U| and |V| denote the number of nonzeros in U and V, respectively. Thus,
the model description cost of M is: κr(|U| + |V|) where κ is the bits per value.
Similarly, if U and V are dense, then the model description cost is simply κr(m+
f) where m and f are the number of edges and features, respectively. Assuming
errors are non-uniformly distributed, one possibility is to use KL divergence (see
Table 2) for the error description cost2. The cost of correcting a single element
in the approximation is Dφ(x‖x′) = x log x

x′ − x + x′ (assuming KL-divergence),
and thus, the total reconstruction cost is:

Dφ(X‖X′) =
∑

ij

Xij log
Xij

X ′
ij

− Xij + X ′
ij (7)

where X′ = UVT ∈ R
m×f . Other possibilities are given in Table 2. The above

assumes a particular representation scheme for encoding the models and data.
Recall that the optimal code assigns log2 pi bits to encode a message [34]. Lloyd-
Max quantization [18,22] with Huffman codes [16,35] are used to compress the
model and data [8,24]. Notice that we require only the length of the description
using the above encoding scheme, and thus we do not need to materialize the
codes themselves. This leads to the improved model description cost: κ̄r(|U| +
|V|) where κ̄ is the mean bits required to encode each value3. In general, the
higher-order (edge) role discovery framework can easily leverage other model
selection techniques such as AIC [4] and BIC [33].

4 Experiments

This section investigates the effectiveness and scalability of the proposed edge
role discovery framework (Sect. 3). All network data is available at nr [27].

2 The representation cost of correcting approximation errors.
3 Note log2(m) quantization bins are used.



298 N.K. Ahmed et al.

5 10 15 20 25 30 35 40

Number of latent roles

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

D
es

cr
ip

tio
n 

le
ng

th

104

Description length
Confidence Bounds
Optimal

Fig. 1. The valley identifies the
correct number of latent roles.

Higher-Order Model Selection: We now
validate our model learning approach. Figure 1
demonstrates the effectiveness of our app-
roach for automatically selecting the “best”
model from the space of models expressed
in the framework (Sect. 3). In particular, our
approach finds the best model with r = 18
roles by minimizing the description length
(in bits)4. As expected, the model descrip-
tion cost is inversely proportional to the error
description cost. We also demonstrate the effi-
ciency of our approach in Fig. 2. Furthermore,
Fig. 4 demonstrates the impact on the learn-
ing time, number of novel features discovered, and their sparsity, as the tolerance
(ε) and bin size (α) varies.
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Fig. 2. Runtime of our edge role
model selection. The curve is
the average over 50 experiments
and the dotted lines represent
three standard deviations. The
result reported above is from a
laptop with a single core.

Modeling Dynamic Networks: In this sec-
tion, we investigate the Enron email communi-
cation networks using the higher-order dynamic
edge role mixed-membership model. The Enron
email data consists of 151 Enron employees
whom have sent 50.5k emails to other Enron
employees over a 3 year period. The email com-
munications are from 05/11/1999 to 06/21/2002.
For learning we use only the first year of emails.
A dynamic network {Gt}T

t=1 is constructed from
the remaining email communications (approxi-
mately 2 years) where each snapshot graph Gt,
t = 1, . . . , T represents a month of communi-
cations. Interestingly, our higher-order dynamic
node role mixed-membership model has 5 latent
roles, whereas we learn 18 roles using the edge
role model. Evolving edge and node mixed-
memberships from the Enron email communication network are shown in Fig. 3.
The set of edges and nodes visualized in Fig. 3 are selected using the differ-
ence entropy rank (defined below) and correspond to the edges and nodes with
largest difference entropy rank d. The first role in Fig. 3 represents inactivity
(dark blue). The above empirical results suggest that edge roles are superior
to node roles in three fundamental ways: (1) Edge roles reveal novel behavioral
characteristics that are not captured by the node role models. We posit that
these novel behavioral roles are intrinsic to the edge semantics (which represent
communications in Fig. 3). (2) Roles learned on the edges represent behavioral
characteristics at a much lower-level of granularity than those learned on nodes.
(3) Edge roles are better at modeling dynamic/temporal networks and avoid

4 We note that MDL is used in Fig. 1, though AIC/BIC gave similar results.
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Fig. 3. Temporal changes in the edge and node mixed-membership vectors. The hori-
zontal axes of each subplot is time, whereas the vertical axes represent the components
of each mixed-membership vector. Roles are represented by different colors. (Color
figure online)

Fig. 4. Impact on the learning time, number of features, and their sparsity, as the
tolerance ε (rows) and bin size α (columns) varies.

many of the unrealistic assumptions that lie at the heart of dynamic node role
mixed-membership models.

Fig. 5. Edge and node roles for
ca-netscience. Link color repre-
sents the edge role and node
color indicates the correspond-
ing node role. (Color figure
online)

We define d = maxt H(ut) − mint H(ut)
as the difference entropy rank where H(ut) =
−ut · log(ut) and ut is the r-dimensional mixed-
membership vector for an edge (or node) at
time t. Using the difference entropy rank, we
are able to reveal important communications
between key players involved in the Enron Scan-
dal, such as Kenneth Lay, Jeffrey Skilling, and
Louise Kitchen. In particular, anomalous rela-
tionships between these individuals appear in
the top anomalies from the difference rank.
Notice that when node roles are used for iden-
tifying dynamic anomalies in the graph, we are
only provided with potentially malicious employ-
ees, whereas using edge roles naturally allow us
to not only detect the key malicious individu-
als involved, but also the important relationships between them, which can be
used for further analysis, among other possibilities. Many results are removed
for brevity.

Exploratory Analysis: Figure 5 visualizes the node and edge roles learned
for ca-netscience. While our higher-order role edge discovery method learns a
stochastic r-dimensional vector for each edge (and/or node) representing the
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individual role memberships, Fig. 5 assigns a single role to each link and node,
i.e., the role with maximum likelihood k� ← arg maxk uik. The higher-order
edge and node roles from Fig. 5 are clearly meaningful. For instance, the red
edge role represents a type of bridge relationship.

Table 3. Higher-order sparse graph feature
learning for latent node and edge network
modeling. Recall that f is the number of fea-
tures, L is the number of layers, and ρ(X) is
the sparsity of the feature matrix. Edge values
are bold.

Graph f L ρ(X) ρ(Z)

socfb-MIT 2080 (912) 8 (9) 0.318 (0.334)

Yahoo-msg 1488 (405) 7 (7) 0.164 (0.181)

Enron 843 (109) 5 (4) 0.312 (0.320)

Facebook 1033 (136) 7 (5) 0.187 (0.162)

bio-DD21 379 (723) 6 (6) 0.215 (0.260)

Sparse Graph Feature Learn-
ing: Recall that the proposed fea-
ture learning approach attempts
to learn “sparse graph features”
to improve learning and effi-
ciency, especially in terms of space-
efficiency. This section investigates
the effectiveness of our sparse graph
feature learning approach. Results
are presented in Table 3. In all
cases, our approach learns a highly
compressed representation of the
graph, requiring only a fraction of the space of current (node) approaches. More-
over, the density of edge and node feature representations learned by our app-
roach is between [0.164, 0.318] and [0.162, 0.334] for nodes (See ρ(X) and ρ(Z)
in Table 3) and up to 6x more space-efficient than other approaches.

Improving Classification via Link Prediction: This section demonstrates
the effectiveness of edge roles for improving relational classification by predict-
ing links between nodes in the graph. For consistency, we first construct node
features from the edge role memberships using a set of relational operators (e.g.,
relational mean, sum, var, max, among others), as introduced in [31]. Thus, let
us assume xi is a k-dimensional feature vector for node vi ∈ V . Given xi and
xj , and a positive semidefinite kernel function K〈·, ·〉, the relationship strength
between vi and vj is defined as:

S = [Sij ], ∀i, j and Sij =

{
K〈xi,xj〉 if (vi, vj) ∈ E ∧ K〈xi,xj〉 > ε

0 otherwise
(8)
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Fig. 6. Relative improvement in label consistency (homophily) — a known proxy for
classification performance. In all cases, links predicted using edge roles improves the
label consistency over both the initial graph as well as links predicted using node roles.
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where K〈xi,xj〉 represents the “closeness” between node vi and vj in the latent
lower-dimensional subspace, S ∈ R

n×n is the (implicit) “similarity” matrix
(which can be thought of as the weighted adjacency matrix for a graph G′)
and Sij represents the relationship strength between node vi and vj such that
(vi, vj) ∈ E, and 0 otherwise. Note ε is a small scalar that controls sparsity. In
this work, we use K〈xi,xj〉 = exp(−‖xi − zj‖2/2σ2). Given S, let G′ = (V,E′)
denote the predicted latent graph where E′ is the set of k predicted links with
the largest relationship strength weights. By definition |E| + |E′| = m + k and
thus E ∩ E′ = ∅.

For quantitative evaluation of the edge roles, we use a measure of homophily
called label consistency [21]. Let ξ(vi) be the class of vi, then the label consis-
tency of G is defined as: L(G) = 1/|E|

∑
(vi,vj)∈E L(vi, vj) where L(vi, vj) = 1 if

ξ(vi) = ξ(vj) and 0 otherwise. Hence, label consistency measures how often two
connected nodes belong to the same class. It is a good proxy measure for classifi-
cation performance since most existing statistical relational learning (SRL) [12]
methods assume the labels of neighbors are highly correlated, i.e., the network
exhibits high relational autocorrelation (or homophily) [12,20]. To determine
the effectiveness of edge roles for link prediction, we measure L(G) and L(G′).
Notice that if the higher-order edge roles (and node roles for that matter) are
useful and effective, one would expect that L(G) < L(G′), that is, the predicted
links resulted in higher homophily among the connected nodes since the class
labels of the connected nodes in G′ are more consistent than G. Results are pro-
vided in Fig. 6 for six different networks. In particular, Fig. 6 demonstrates the
effectiveness of the higher-order edge roles (and node roles) for link prediction.
In all cases, both the higher-order node and edge roles significantly outperform
the baseline. Further, the edge role models always perform significantly better
than the node roles.

Computational Complexity: Recall that m is the number of edges, f is the
number of features, and r is the number of latent roles. The total computational
complexity of the higher-order latent space model is O(

f(mf + mr)
)
. The com-

putational complexity is decomposed into the following main parts: Edge feature
learning takes O(f(m + mf)). Model learning takes O(mfr) in the worst case
(which arises when U and V are completely dense). The quantization and Huff-
man coding terms are very small and therefore ignored. Role assignment using
scalar element-wise coordinate descent has worst case complexity of O(mfr) per
iteration which arises when X is completely dense. We assume the initial graphlet
features are computed using fast and accurate estimation methods, seel [3].

Scalability: To evaluate the scalability of the parallel framework for modeling
higher-order latent edge roles, we measure the speedup defined as Sp = T1/Tp

where T1 is the execution time of the sequential algorithm, and Tp is the execu-
tion time of the parallel algorithm with p processing units. Overall, the methods
show strong scaling (See Fig. 7). Similar results were observed for other networks.
The experiments used a machine with 4 Intel Xeon E5-4627 v2 3.3 GHz CPUs.
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Fig. 7. Strong parallel scaling is
observed.

In this paper, we introduced the edge role
discovery problem and presented a compu-
tational framework for learning and extract-
ing edge roles from large networks. In addi-
tion, we proposed higher-order role discov-
ery methods that leverage network motifs
(including all motifs of size 3, 4, and larger)
for learning more meaningful and discrimi-
native roles. We also proposed a novel edge
feature learning approach, which was used
for our feature-based edge roles. Furthermore, all methods are space-efficient
(by learning sparse features) and efficient with a runtime that is linear in
the number of edges. Finally, the approach also supports graphs that are
directed/undirected/bipartite, attributed, typed, and signed.
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17. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applica-
tions. Springer Science & Business Media, Heidelberg (2009)

18. Lloyd, S.: Least squares quantization in PCM. TOIT 28(2), 129–137 (1982)
19. Lorrain, F., White, H.: Structural equivalence of individuals in social networks. J.

Math. Sociol. 1(1), 49–80 (1971)
20. Macskassy, S., Provost, F.: A simple relational classifier. In: KDD MRDM (2003)
21. Macskassy, S.A., Provost, F.: Classification in networked data: a toolkit and a

univariate case study. JMLR 8, 935–983 (2007)
22. Max, J.: Quantizing for minimum distortion. TOIT 6(1), 7–12 (1960)
23. Nowicki, K., Snijders, T.: Estimation and prediction for stochastic blockstructures.

J. Am. Stat. Assoc. 96(455), 1077–1087 (2001)
24. Oliver, B., Pierce, J., Shannon, C.E.: The philosophy of PCM. IRE 36(11), 1324–

1331 (1948)
25. Rahman, M., Hasan, M.A.: Link prediction in dynamic networks using graphlet.

In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML PKDD
2016. LNCS (LNAI), vol. 9851, pp. 394–409. Springer, Cham (2016). doi:10.1007/
978-3-319-46128-1 25

26. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

27. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph
analytics and visualization. In: AAAI (2015). http://networkrepository.com

28. Rossi, R.A., Ahmed, N.K.: Role discovery in networks. TKDE 27(4), 1112 (2015)
29. Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Role-dynamics: fast mining

of large dynamic networks. In: WWW Companion, pp. 997–1006 (2012)
30. Rossi, R.A., Gallagher, B., Neville, J., Henderson, K.: Modeling dynamic behavior

in large evolving graphs. In: WSDM, pp. 667–676 (2013)
31. Rossi, R.A., McDowell, L.K., Aha, D.W., Neville, J.: Transforming graph data for

statistical relational learning. JAIR 45(1), 363–441 (2012)
32. Rossi, R.A., Zhou, R.: Parallel collective factorization for modeling large hetero-

geneous networks. Soc. Netw. Anal. Mining 6(1), 30 (2016)
33. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464

(1978)
34. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. 27(1),

379–423 (1948)
35. Van Leeuwen, J.: On the construction of Huffman trees. In: ICALP, p. 382 (1976)
36. Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M.: Graph

kernels. JMLR 11, 1201–1242 (2010)

http://dx.doi.org/10.1007/978-3-319-46128-1_25
http://dx.doi.org/10.1007/978-3-319-46128-1_25
http://networkrepository.com

	Edge Role Discovery via Higher-Order Structures
	1 Introduction
	2 Related Work
	3 Framework
	4 Experiments
	5 Conclusion
	References


