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Abstract. Enterprises constantly share and exchange digital documents
with sensitive information both within the organization and with exter-
nal partners/customers. With the increase in digital data sharing, data
breaches have also increased significantly resulting in sensitive infor-
mation being accessed by unintended recipients. To protect documents
against such unauthorized access, the documents are assigned a secu-
rity policy which is a set of users and information about their access
permissions on the document. With the surge in the volume of digital
documents, manual assignment of security policies is infeasible and error
prone calling for an automatic policy assignment. In this paper, we pro-
pose an algorithm that analyzes the sensitive information and historic
access permissions to identify content-access correspondence via a novel
multi-label classifier formulation. The classifier thus modeled is capa-
ble of recommending policies/access permissions for any new document.
Comparisons with existing approaches in this space shows superior per-
formance with the proposed framework across several evaluation criteria.
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1 Introduction

Enterprises constantly share and exchange digital documents containing sensi-
tive information - internally with employees, externally with partners and with
customers. With the increase in data sharing, the incidents of data breaches have
also increased significantly [2]. A data breach is an incident in which sensitive,
protected or confidential data, such as personally identifiable information (PII),
personal health information (PHI), trade secrets and enterprise financial infor-
mation is maliciously or inadvertently viewed, stolen or used by unauthorized
entities. Until recently, the most common concept of a data breach embodied only
malicious attackers hacking into enterprise networks to steal sensitive informa-
tion. Data Loss Prevention (DLP) e.g. McAfee, Symantec are a class of software
that detect and prevent such data breaches by malicious attackers by continu-
ously monitoring sensitive data and providing appropriate encryption based on
the sensitivity of the data.

However, according to a study by Johnson [14] in 2008, inadvertent disclosure
of sensitive information represents one of the largest classes of security breaches
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exceeding even the number of malicious data attacks. The consequences of such
inadvertent data disclosures for enterprises could be severe: compromising cus-
tomer’s privacy, losing market share or damaging intellectual property. DLP
software cannot tackle the inadvertent data disclosures since these occur outside
the enterprise boundary. This has led to the development of Digital Rights Man-
agement (DRM) solutions e.g. Microsoft which are designed to protect sensitive
data outside the enterprise boundary as well by ensuring only intended recipients
can access the shared sensitive information regardless of their location.

The data being shared in DRM often vary in the degree of sensitive infor-
mation. A security policy is applied to protect it against unauthorized access.
A security policy is a collection of information that includes the confidentiality
settings and a list of authorized users corresponding to the confidentiality set-
tings. The confidentiality setting in the policy determines how the recipient can
use the shared data, for example whether recipients can print, copy, or edit text
in a protected document is dictated by the confidentiality settings corresponding
to those recipients.

There are two major pitfalls with existing DRM solutions in identifying data
breaches. First, the data breach identification in DRM is heavily based on key-
word matching with a manually curated dictionary, thus limiting their capabil-
ities severely [13]. Further, the policies in DRMs are manually assigned, which
can lead to an error prone process [20]. With the increase in online document
transactions, such a manual process is incapable of scaling to the enterprise
document volumes, calling for an automated approach to protect against unau-
thorized access of information.

In this paper, we present an algorithm that analyzes the sensitive information
and suggests appropriate access to the documents thus mitigating the risk from
inadvertent disclosures. Our algorithm analyzes the historic information and
extracts the semantics of the underlying content. The access permissions (that
constitutes the document’s DRM policy) associated with the information is then
analyzed to identify content-access correspondence via a multi-label classifier for-
mulation. The classifier thus modeled is capable of recommending policies/access
permissions for any new document.

This paper is organized as follows. In Sect. 2, we describe existing literature
in the light of our problem. In Sect. 3, we formulate the DRM policy model-
ing in a multi-label classification framework [17] and adapt the cost function to
simultaneously optimize for precision and recall to suit the needs of the policy
modeling. In Sect. 4, we compare the proposed framework against several alterna-
tive frameworks along with state-of-the-art security modeling systems showing
the viability and superior performances of the proposed framework. Section 5
concludes the paper.

2 Related Work

While automatic recommendation of security/DRM policies for documents is
less studied, one direction of explorations that is close to our problem is the
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prediction of email recipients based on its content. Carvalho and Cohen [8] have
proposed an algorithm to generate a ranked list of intended recipients of an
email via several algorithmic formulations including an expert search framework
and a multi-class framework. Graus et al. [12] address the same problem via
a graphical model framework of already composed email messages. Carvalho
and Cohen [7] and Liu et al. [16] model the problem of identifying unintended
recipients of emails as an outlier detection problem and a binary classification
problem respectively based on the textual analysis of the email content overlayed
with a correlation based on social network analysis. Zilberman et al. [22] propose
an algorithm that extracts topics for all recipients and approves recipients for
an email based on its topics and the common topics between the sender and the
recipient. All these works focus just on identifying who are the right recipients of
an e-mail from a curated list of recipients. However, in the context of DRMs, it
is required not only to identify the ‘recipients’ of a content but also to determine
the access permissions of the identified recipients on the content.

Evaluating the sensitive nature of information in a content is another direc-
tion of exploration that is related to our work. Existing DLP systems use regu-
lar expressions [6] and keyword matching to identify PII and other confidential
information. Cumby and Ghani [9] present a semi automatic method to identify
and redact private content from documents. However, they do not factor in the
intended recipients of these documents while making such decisions. Hart et al.
[13] propose a binary text classification algorithm to categorize a document as
sensitive or non-sensitive. Geng et al. [11] use association mining between differ-
ent types of PIIs to predict PIIs in emails. All these works are purely based on
the document content, without any emphasis on the intended recipients of the
content, which is a key factor in our problem.

To the best of our knowledge, there are no prior works that addresses the
problem of suggesting appropriate DRM policy by a joint modeling between the
document content and its intended recipients (along with their access permis-
sions) which is the novel contribution of our work here.

3 Method

Consider an intra-organizational document repository that comprises of a set
of documents with appropriate DRM policies attached to each of them. Let
D denote the set of documents in the system, U be the set of all authorized
users in the system and ACL be the set of access rights (permissions) in the
system. For example, ‘read’, ‘read-modify’, ‘read-modify-delete’ are potential
access rights for documents. Each document d ∈ D is assigned a security policy
p which describes the access rights of the authorized users for the document.
A security policy is represented as a set of (user, permission) pairs, where each
pair defines an authorized user ∈ U and its corresponding permission ∈ ACL,
i.e., p = {(useri, permissionj)|1 ≤ i ≤ |U |, 1 ≤ j ≤ |ACL|}. Let P represent the
set of all such policies available in the system. Further, we denote L to be the
set of all (user, permission) pairs, thus, |L| = |U | × |ACL|.
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Given such a repository with documents and their respective security poli-
cies, we propose an algorithm to suggest a set of (user, permission) pairs for any
new document based on its textual content. More formally, for a new document
d, the algorithm aims to provide a ranked list L

′
=

[
(user1, permission1), (user2,

permission2), ···, (userk, permissionk)
]
asthepolicytoprotectthedocumentfrom

unauthorized access.

Feature Extraction: For a given document, we first extract features that cap-
ture the personal/sensitive information present in the document. These features
include mentions of individuals and organizations, locations, dates, references
to currency/money, phone number, social security number and email addresses.
We use the Stanford Named Entity Tagger [3] to identify individual and orga-
nization names, locations, dates and currency. We further define regular expres-
sions to identify phone numbers, social security numbers and email addresses
in the document text. The feature set is further expanded to include individual
words found in the document (after removing stop words and stemming the root
words) using a “bag of words” representation. TFIDF (Term-Frequency-Inverse-
Document-Frequency) [15] is extracted based on the bag-of-words representation
for every document d.

With increasing size of document repository, the dimensions of the feature
space also increases due to introduction of new words. We therefore reduce the
dimensionality by removing features that might be irrelevant to the policy mod-
eling to improve both the overall accuracy and scalability of the model. We
calculate the information gain [10] of each feature f in the feature set as,

IG(f) =
∑

l∈L

∑

f ′∈{f,f̃}
P (f ′, l).log

P (f ′, l)
P (f ′)P (l)

(1)

where, l is a (user, permission) pair. Information Gain measures the amount of
information in bits obtained for (user, permission) pair prediction by knowing
the presence or absence of a feature, f . We retain the top k% (70% in our
experiments later) informative features for our modeling.

Policy Modeling: Our framework to model security policies aims to suggest
(user, permission) pairs for any new document. A brute-force way to formulate
this could be as a multi-class classification task where each class represents a
security policy. A classifier g : Rd −→ P can be learned based on the training
set {(xi, pi)| 1 ≤ i ≤ |D|}, where xi ∈ Rd is the set of features for document
di, and pi ∈ P is the corresponding security policy. For a new document, the
above classifier can provide a probability of the existing policies pi ∈ P being
suitable for the given document which can be used to decide on the final secu-
rity policy for the document. However, modeling the problem as a multi-class
framework problem captures neither the relation between the various security
policies nor the overlap between security policies in terms of common users and
permissions. Moreover, such a multi-class framework is also incapable of sug-
gesting new policies outside what already exists in the repository and hence can
be restrictive.
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The above shortcomings can be addressed by formulating the problem in a
multi-label classification framework, considering each unique (user, permission)
pair as a separate label on the document. In this framework, a function f :
Rd −→ 2L is learned from the training set {(xi, yi) |1 ≤ i ≤ |D|}, where xi is
defined as before and Y = {y1, y2, ..., y|L|} denotes the label space. For a new
document di, the multi-label classifier f predicts the set of labels, i.e., identifies
the most relevant (user, permission) pairs that must be assigned to a document
as its policy. Unlike the multi-class framework, such a formulation is capable of
recommending any set of (user, permission) pairs in the repository.

There are several alternatives for multi-label classification. One class of algo-
rithms transforms the multi-label classification problem to a binary classification,
either by training binary classifier for each label in data-set (binary relevance
method) [18] or by training binary classifier for multiple label subsets in data-set
[21]. Another class of algorithms adapt traditional classification frameworks to
the multi-label task [18]. However, both these methods are highly sensitive to
the distribution of labels and do not perform well when the labels have very few
training examples. Also, as these methods rely on independent models for each
label/label sets, prediction cost increases with increasing number of labels.

In light of these drawbacks, a recent exploration in this space is centered
on Fast Extreme Multi-label Learning (FastXML) which deals with large
number of labels having skewed label distributions. FastXML learns a hierar-
chy over the feature space by recursively partitioning a parent’s feature space
between its children. The partitioning at each node is done by optimizing a rank-
ing loss function, i.e., normalized Discounted Cumulative Gain (nDCG). Agrawal
et al. [5,17] observe that in the case of XML problems, only a small number of
labels are active in each partition of feature space, thus improving the modeling
capacity.

However, the ranking-loss function in FastXML [17] only includes a reward
for a high recall (correctly predicting all the relevant labels) without accounting
for the precision (reducing incorrectly predicted labels) in the prediction. For
modeling security policies, it is also important to penalize wrongly predicted
(user, permission) pairs, as that means that an ineligible user has been given
permission to sensitive information. Given a ranking r of (user, permission)
pairs and the ground truth vector yi, the discounted cumulative gain LDCG(r, yi)
is modified as,

LDCG@k(r, yi) =
k∑

l=1

(yrl) + (yrl − 1)
log(1 + l)

, (2)

where, yrl is the binary ground truth for the lth label according to ranking r (as
defined in [17]), i.e. it has the value 1 if the lth label is attached to document di.
We add (yrl −1) term to the definition of LDCG [17] to introduce a −1/log(1+ l)
term for each wrongly predicted (user, permission) pair in the top-k labels. This
ensures that apart from positive labels predicted with high ranks being rewarded,
highly ranked negative labels are also penalized. Algorithm1 outlines the steps
required to obtain the hierarchy.
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Algorithm 1. FastXML: Grow Tree
Require: {xi, yi}N

i=1

1: Nroot ← new node
2: if no. of (user, permission) pairs active in Nroot < MaxLeaf then
3: Create Nroot into a leaf node
4: else
5: Learn linear separator w
6: n+ = {xi|wTxi > 0}
7: n− = {xi|wTxi < 0}
8: Nroot(linear separator) = w
9: Nroot(left child) = GrowTree({xi, yi}i∈n+)

10: Nroot(right child) = GrowTree({xi, yi}i∈n−)
11: end if
12: return Nroot

Finally, the FastXML algorithm learns a linear separator w at each node of
the tree, which divides the feature space into the positive and negative partition
respectively, by minimizing a ranking loss function given by,

min||w||1 +
∑

i

log(1 + exp(−δiw
Txi)) −

∑

i

(1 + δi)LnDCG(r+, yi)

−
∑

i

(1 − δi)LnDCG(r−, yi) (3)

where, w ∈ Rd, δ ∈ {−1,+1}, r+, r− is the ranked list of labels in the positive
and negative partitions respectively. The labels are ranked in decreasing order
of the number of documents in the partition that they are assigned to.

Prediction: To suggest (user, permission) pairs for a new document, first a
feature representation (xi) of the new document di is extracted as before. The
algorithm starts with the root node of each tree in the model and traverses down
the tree till it reaches a leaf node. For traversal at each node, it calculates the
value of the term wTx where w is the linear separator at that node. Since the
linear separator at each node divides the feature space into two parts, depending
on the sign of wTx, the document di is passed down to the left child node (if
wTx < 0) or the right child node (if wTx > 0) till it reaches a leaf node. Each leaf
node contains a subset of points from the training data. The algorithm returns
the ranked list of the top k (user, permission) pairs active in the leaf nodes of
all trees, where the rank is defined as:

r(x) = rank(
1
T

|T |∑

t=1

P leaf
t (xi)) (4)

where T is the number of trees, P leaf
t (xi) ∝ ∑

Sleaf
t (xi)

yi and Sleaf
t (xi) are the

label distributions of the set of points in the leaf node that xi reaches in tree t.
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4 Experimentation and Results

The problem of automatic DRM policy assignment can be framed as a multi-
class classification problem, with each policy being considered as a separate label.
However, we had articulated the shortcomings of such a formulation and over-
came these with our multi-label framework. In our experiments, we first compare
our formulation with a multi-class framework and show the superior performance
of our formulation to test our hypothesis. We also test our algorithm against
several multi-label frameworks to show the viability of the proposed algorithm.
Finally, we compare the performance of the proposed framework against existing
security modeling in the context of email protection.

Dataset: All our experiments were performed on the Wikileaks Cablegate [4]
data which includes diplomatic cables sent by the US State Department to its
consulates, embassies, and diplomats around the world. Each cable is marked
with a group of recipients to whom it was addressed, and a classification scale
denoting the security level of the document. The classification scale on each
document was one of Unclassified, Limited Official Use, Confidential or Secret.

In order to replicate an intra-organization document collection, we considered
only the unique documents sent by Department of State for our experiments.
Documents with insufficient textual content were discarded. The document’s
classification scale was used as the access permission given to its corresponding
recipients. The set of all such (recipient, classification level) combinations for
a document yielded the document’s policy for our experiments. The filtered
data-set contained 11,760 unique documents, 842 unique policies, 114 unique
users/recipients and 452 (user, permission) pairs across all documents. This
included 3,301 unclassified, 3,318 limited official use, 3,676 confidential and 1,465
secret documents. Table 1(a) provides additional details about the data-set, at
the user level and the (user, permission) level.

Table 1. Wikileaks cablegate dataset

(a) WikiLeaks

Label Description User User-Permission

Unique Labels 114 452

avg. labels/doc 5.11 5.11

avg. docs/label 185.01 47.18

min doc/label 49 1

max doc/label 1093 371

(b) (user, permission) distribu-
tion.

The average cardinality of labels, i.e., (user, permission) pairs, for doc-
uments is 5.11, which indicate that the security policies on each document
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constitutes a set of 5 (user, permission) pairs on an average. The average
number of documents for each (user, permission) pair is 47. However, the
(user, permission) pair distribution is highly skewed as seen in Table 1(b) and
ranges between a maximum 371 documents with the same user-permission pair
to a minimum of 1 document for a user-permission pair.

For all our experiments, the FastXML was built with 50 trees and the max-
imum number of instances allowed in a leaf node (MaxLeaf) was set at 10. The
number of labels k in a leaf node whose probability scores are retained was set
to 10.

4.1 Comparison with Multi-class Frameworks

Here, we compare our proposed method against two multi-class formulation to
check the viability of our formulation over the multi-class formulation. The first
framework is a frequency based approach, where all candidate policies are
ranked in decreasing order according to the number of times they were assigned
to any document in the training set. The top k policies, thus ranked, constitute
the set of policies suggested to the user. The second framework is a 1-vs-All
approach where a separate SVM [19] is trained for each policy. For any new
document, the scores from each of the corresponding classifiers decides the pol-
icy ranking. To obtain a ranking of the policies for our proposed approach, we
obtain a binary vector representation ({0, 1}|L|) of the algorithmically suggested
(user, permission) pairs with value 1 for entries corresponding to the top k pairs.
Also, we represent all existing security policies present in the system into equiv-
alent binary representations. Then, we use cosine similarity metric to identify
the nearest security policies and rank them accordingly.

To evaluate the performance of different approaches, we define the
Accuracy@k which measures the probability of the actual policy being in the
top k predicted policies,

Accuracy@k =
1

|test set|
∑

doc∈test set

1p∈fk(doc), (5)

where p is the actual policy of document doc and fk(doc) is the set of top-k
policies predicted by the algorithm f for the document doc.

Because of the training data requirements of an SVM model, we evaluated
only on those policies that had at least n corresponding documents and report
the accuracy for various values of n. Note that the proposed approach does not
suffer from this limitation since it does not try to generate individual models for
each (user, permission) pair.

Table 2 shows the performance of the proposed framework against the multi-
class baselines. The results of our experiments indicate the superiority of our
proposed multi-label approach in comparison to the multi-class baselines. In
particular, the proposed approach performs significantly better in identifying
the relevant policy with smaller values of n. For instance, the Accuracy@10 for
our proposed approach is almost 6% higher than that achieved by 1-vs-All for
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Table 2. Comparison against multi-class approaches

Dataset Freq based 1-vs-All Proposed approach

n #policies Acc@5 Acc@10 Acc@5 Acc@10 Acc@5 Acc@10

20 95 0.205 0.323 0.565 0.656 0.581 0.682

30 73 0.226 0.356 0.601 0.691 0.664 0.758

40 54 0.258 0.406 0.634 0.728 0.686 0.789

50 43 0.278 0.442 0.685 0.771 0.713 0.791

the data-set with n = 30. This indicates that our algorithm is relatively agnostic
to lower number of documents per policy in the training data. As the number
of documents per label increases, the performance of the 1-vs-All approach is
at par with the proposed approach - indicating that a multi class framework
requires a lot of training data per policy to perform on par with the proposed
framework.

Real world data-sets often contain numerous policies that might have very few
supporting documents to train on as reflected in the Wikileaks data-set as well
where only 95 out of 842 policies have been applied to more than 20 documents.
Thus, any algorithm that aims to suggest policies by training on such a data-set
needs to be robust enough to provide reasonably accurate predictions with lesser
documents per policy.

4.2 Comparison with Multi-label Approaches

Next, we compare our approach against multi-label frameworks, 1-vs-All and
Rakel [21]. For both these approaches, each (user, permission) pair is considered
as a separate label, similar to the proposed algorithm. In the 1-vs-All framework,
a separate linear SVM classifier is trained for each unique (user, permission)
pair different from the multi-class framework where the modeling was done at
the policy level. For Rakel, linear SVM classifiers are built for random ensembles
of labels. For any new document, the final score for any label (user-permission
pair in our context) is obtained by taking the cumulative score of all ensembles
that the label is a part of.

In multi-label frameworks, output is generated at a lower granularity - (user,
permission) pairs instead of the entire policy. We therefore use a different set of
metrics to evaluate the algorithms in this framework. Since the candidate set of
labels is typically large and only a small fraction of those labels is attached to any
document, the algorithm needs to be measured on both its ability to correctly
predict the highly ranked labels (precision), as well as the ability to retrieve
all relevant labels (recall). Here, we define these metrics in the context of our
problem. The Precision@k counts the correct pairs in the top k predicted pairs,
whereas the Recall@k counts the fraction of the actual pairs that the algorithm
is able to predict in the top k pairs. More formally,
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Precision@K(y′, y) =
1
k

∑

i∈rankk(y′)

yi, and Recall@K(y′, y) =

∑
i∈rankk(y′) yi
∑

i∈|y| yi
.

(6)

where y′ is the vector of predicted (user, permission) pair vector, y is the ground
truth permission set. In our evaluations, we report the average Precision@k and
Recall@k across all documents in the test set.

We first evaluate our algorithm’s prediction capability at the user level by
retaining only the unique users from the k predicted (user, permission) pairs
for each document. These are compared against the actual users that have been
given some permission by the policy. Modeling at the user level provides a mea-
sure of how correctly the set of users who should have permission to a given
document is identified. High precision in these cases suggests that fewer irrel-
evant users are being given access to a certain document whereas high recall
suggests that most users that must be given some level of access to the docu-
ment have been identified. Tables 3 and 4 summarize the results at the user level.
Table 4 shows that the algorithm is able to surface 85% of all users if it returns
a list of the top 25 labels. Thus, the administrator has to only go through this
much condensed list instead of the entire list of 114 users in the system.

Table 3. Precision for different values of k evaluated at user and user-permission level

Precision@1 Precision@2 Precision@3 Precision@4 Precision@5

User level

1 vs All 0.619 0.557 0.496 0.447 0.408

Rakel 0.508 0.478 0.441 0.4 0.365

Proposed algorithm 0.653 0.609 0.548 0.502 0.463

User-permission level

1 vs All 0.34 0.32 0.3 0.286 0.272

Rakel 0.256 0.257 0.259 0.26 0.25

Proposed algorithm 0.524 0.490 0.454 0.420 0.387

Table 4. Recall for different values of k evaluated at user and user-permission level

Recall@5 Recall@10 Recall@15 Recall@20 Recall@25

User level

1 vs All 0.502 0.652 0.729 0.767 0.791

Rakel 0.486 0.64 0.674 0.705 0.723

Proposed algorithm 0.521 0.688 0.767 0.815 0.848

User-permission level

1 vs All 0.29 0.416 0.483 0.524 0.553

Rakel 0.283 0.42 0.493 0.54 0.57

Proposed algorithm 0.466 0.614 0.698 0.753 0.788
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Next, we evaluate the performance of the algorithms at the user-permission
level. As previously elaborated, each policy assigns a unique permission to a
user. That is, a policy cannot contain multiple (user, permission) pairs with the
same user. However, in multi-label classification, the predicted list of labels may
contain multiple labels/(user, permission) pairs corresponding to the same user.
We leverage the nature of our problem to solve this. Since the algorithm aims
to suggest policies to safeguard against data leak, we hypothesize that a stricter
policy is preferable to a more lenient one which may provide extraneous rights
to some users. Hence, if a particular user is a part of multiple (user, permission)
pairs finally predicted, we make use of the inherent hierarchy in the permissions
and assign the strictest permission to that user. For instance, if both (ui, pm)
and (ui, pn) are in the top k predicted labels, we compare the permissions pm
and pn and retain the stricter permission. In ACL permissions, for example, a
Read permission is stricter than a Modify permission, as the latter gives more
rights to the user. Tables 3 and 4 shows the results at the user, permission level.
Table 4 shows that the algorithm is able to surface 78% of all user, permission
pairs if it returns a list of the top 25 labels. This is greatly reduced from the 452
total user, permission pairs that exist in the system.

The proposed algorithm performs the best among all compared frameworks.
One reason for this is the ability of our model to handle the skewed distribution
of (user, permissions). There exists some user, permission pairs that have been
assigned to a very few documents as reflected in the Wikileaks dataset and our
proposed algorithm is robust in such scenarios. Traditional methods like 1-vs-All
and Rakel, which depend on training independent models for each label/label
sets do not perform well in policy modeling with very few training examples.

4.3 Evaluation on Enron Email Dataset

While none of the existing literature addresses the exact problem of assigning
security policies for documents, a related exploration is the task of predicting
recipients for an email based on its content, e.g. [8]. Due to the robustness of
our framework, our approach is capable of handling these tasks as well and here
we evaluate the performance of our algorithm for the aforementioned task on
the Enron Email Dataset [1] and compare it against the best performing app-
roach in [8]. Our experiments are run on emails sent by 30 Enron users, selected

Table 5. Results on the Enron dataset

Precision@1 Precision@2 Precision@3 Precision@4 Precision@5

Carvalho and Cohen [8] 0.606 0.440 0.352 0.301 0.264

Proposed algorithm 0.892 0.550 0.415 0.341 0.293

Recall@1 Recall@2 Recall@3 Recall@4 Recall@5

Carvalho and Cohen [8] 0.485 0.640 0.711 0.761 0.789

Proposed algorithm 0.747 0.809 0.835 0.850 0.861
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based on the volume of emails sent, after discarding emails having insufficient
textual content. Table 5 provides a summary of the results. The proposed app-
roach clearly outperforms the baseline in [8] thus proving the robustness of the
proposed formulation.

5 Conclusion

In this work, we have addressed the problem of automatically recommending
appropriate access permissions for users by deciding the appropriate DRM secu-
rity policies for the document. We have proposed an algorithm that analyzes the
sensitive information in the document and determines the right policies for it.
Experiments on a real world dataset against several alternate frameworks estab-
lish the viability of the proposed approach. Comparison with existing baseline
modeling approaches further establishes the superiority of the proposed approach
across several evaluation criteria.
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