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PC Chairs’ Preface

It is our great pleasure to introduce the proceedings of the 21st Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2017).

We received a record-breaking number of 458 submissions from 36 countries all
over the world. This highest number of submissions is very encouraging because it
reflects the improving status of PAKDD. To rigorously review the submissions, we
conducted a double-blind review following the tradition of PAKDD and constructed
the largest ever committee consisting of 38 Senior Program Committee (SPC) members
and 196 Program Committee (PC) members. Each valid submission was reviewed by
three PC members and meta-reviewed by one SPC member who also led the discussion
with the PC members. We, the PC co-chairs, considered the recommendations from the
SPC members and looked into each submission as well as its reviews to make the final
decisions. Borderline papers were thoroughly discussed by us before final decisions
were made.

As a result, 129 out of 458 papers were accepted, yielding an acceptance rate of
28.2%. Among them, 45 papers were selected as long-presentation papers, and 84
papers were selected as regular-presentation papers. Mining social networks or graph
data was the most popular topic in the accepted papers. The review process was
supported by the Microsoft CMT system. During the three main conference days, these
129 papers were presented in 23 research sessions. A long-presentation paper was
given 25 minutes for presentation, and a regular-presentation paper was given 15
minutes for presentation. These two types of papers, however, are not distinguished in
the proceedings.

We would like to thank all SPC members, PC members, and external reviewers for
their hard work to provide us with thoughtful and comprehensive reviews and rec-
ommendations. Also, we would like to express our sincere thanks to Yang-Sae Moon
for compiling all accepted papers and for working with the Springer team to produce
the proceedings.

We hope that the readers of the proceedings find the content interesting and
rewarding.

April 2017 Longbing Cao
Jae-Gil Lee
Xuemin Lin



General Chairs’ Preface

Welcome to the proceedings of the 21st Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining. PAKDD has successfully brought together researchers and
developers since 1997, with the purpose of identifying challenging problems facing the
development of advanced knowledge discovery. After 14 years since PAKDD 2003 in
Seoul, PAKDD was held again in Korea, during May 23–26, 2017, in Jeju Island.

We are very grateful to the many authors who submitted their work to the PAKDD
2017 technical program. The technical program was enhanced by three keynote
speeches, delivered by Sang Cha from Seoul National University, Rakesh Agrawal
from Data Insights Laboratories, and Dacheng Tao from the University of Sydney. In
addition to the main technical program, the offerings of this conference were further
enriched by three tutorials as well as four international workshops on leading-edge
topics.

We would like to acknowledge the key contributions by Program Committee
co-chairs, Longbing Cao, Jae-Gil Lee, and Xuemin Lin. We would like to extend our
gratitude to the workshop co-chairs, U. Kang, Ee-Peng Lim, and Jeffrey Xu Yu; the
tutorial co-chairs, Dongwon Lee, Yasushi Sakurai, and Hwanjo Yu; the contest
co-chairs, Nitesh Chawla, Younghoon Kim, and Young-Koo Lee; the publicity
co-chairs, Sang-Won Lee, Guoliang Li, Steven Whang, and Xiaofang Zhou; the reg-
istration co-chairs, Min-Soo Kim and Wookey Lee; the local Arrangements co-chairs,
Joonho Kwon, Jun-Ki Min, Chan Jung Park, and Young-Ho Park; the Web chair,
Ha-Joo Song; the finance co-chairs, Jaewoo Kang and Jaesoo Yoo; the treasury chair,
Chulyun Kim; and the proceedings chair, Yang-Sae Moon. We would like to express
our special thanks to our honorary chair, Kyu-Young Whang, for providing valuable
advice on all aspects of the conference’s organization.

We are grateful to our sponsors that include: platinum sponsors — Asian Office of
Aerospace Research & Development/Air Force Office of Scientific Research,
Mirhenge, Naver, NCSOFT, Seoul National University Big Data Institute and SK
Holdings C&C; gold sponsors — KISTI (Korea Institute of Science and Technology
Information); silver sponsors— Daumsoft, Douzone, HiBrainNet, Korea Data Agency,
and SK Telecom; and publication sponsors — Springer for their generous and valuable
support. We are also thankful to the PAKDD Steering Committee for its guidance and
Best Paper Award, Student Travel Award, and Early Career Research Award spon-
sorship. In addition, we would like to express our gratitude to the KIISE Database
Society of Korea for hosting this conference. Finally, we thank the student volunteers
and everyone who helped us in organizing PAKDD 2017.

April 2017 Jinho Kim
Kyuseok Shim
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Abstract. A web search query is considered inappropriate if it may
cause anger, annoyance to certain users or exhibits lack of respect,
rudeness, discourteousness towards certain individuals/communities or
may be capable of inflicting harm to oneself or others. A search engine
should regulate its query completion suggestions by detecting and fil-
tering such queries as it may hurt the user sentiments or may lead to
legal issues thereby tarnishing the brand image. Hence, automatic detec-
tion and pruning of such inappropriate queries from completions and
related search suggestions is an important problem for most commercial
search engines. The problem is rendered difficult due to unique chal-
lenges posed by search queries such as lack of sufficient context, natural
language ambiguity and presence of spelling mistakes and variations.

In this paper, we propose a novel deep learning based technique for
automatically identifying inappropriate query suggestions. We propose
a novel deep learning architecture called “Convolutional Bi-Directional
LSTM (C-BiLSTM)” which combines the strengths of both Convolution
Neural Networks (CNN) and Bi-directional LSTMs (BLSTM). Given a
query, C-BiLSTM uses a convolutional layer for extracting feature repre-
sentations for each query word which is then fed as input to the BLSTM
layer which captures the various sequential patterns in the entire query
and outputs a richer representation encoding them. The query represen-
tation thus learnt passes through a deep fully connected network which
predicts the target class. C-BiLSTM doesn’t rely on hand-crafted fea-
tures, is trained end-end as a single model, and effectively captures both
local features as well as their global semantics. Evaluating C-BiLSTM on
real-world search queries from a commercial search engine reveals that
it significantly outperforms both pattern based and other hand-crafted
feature based baselines. Moreover, C-BiLSTM also performs better than
individual CNN, LSTM and BLSTM models trained for the same task.
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1 Introduction

Web search engines have become indispensable tools for people seeking informa-
tion on the web. Query Auto Completion (QAC) [1–3] feature improves the user
search experience by providing the most relevant query completions matching
the query prefix entered by the user. QAC has many advantages such as saving
user time and keystrokes required to enter the query, avoiding spelling mistakes
and formulation of better queries etc [4]. The candidates for query completion
are usually selected from search query logs which record what other users have
searched for [1]1. During query time, those candidates which match the given
query prefix are ranked based on various relevance signals such as time, location
and user search history to finally arrive at the top k relevant completions to be
displayed [4,5]. The value of k usually varies from 4–10 depending on each web
search engine.

With more than a billion searches per day, search queries have become a
mirror of the society reflecting the attitudes and biases of people. Hence, besides
queries with a clean intent, search query logs also contain queries expressing
violence, hate speech, racism, pornography, profanity and illegality. As a result,
while retrieving potential completions from search logs, search engines may inad-
vertently suggest query completions which are inappropriate to the users.

Definition 1. A search query is defined as inappropriate if its intent is any
of the following - (a) rude or discourteous or exhibiting lack of respect towards
certain individuals or group of individuals (b) to cause or capable of causing
harm (to oneself or others) (c) related to an activity which is illegal as per the
laws of the country or (d) has extreme violence.

Figure 1 shows a few inappropriate query completions currently shown in
some popular web search engines. For example, the query completions for “chris-
tianity is” are christianity is fake, christianity is not a religion, christianity is a
lie and christianity is the true religion. Out of these, the first three suggestions
are inappropriate since they are likely to offend and hurt the sentiments of chris-
tians. Similarly, the first query completion suggestion for “angelina jolie is” is

Fig. 1. Sample inappropriate query suggestions from popular web search engines.

1 http://googleblog.blogspot.com/2004/12/ive-gotsuggestion.html.

http://googleblog.blogspot.com/2004/12/ive-gotsuggestion.html
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angelina jolie is a heroin addict. This suggestion is inappropriate as it tries to
characterize her entire personality with heroin addiction. Inappropriate queries
are different from queries with an adult intent such as pornography and sexu-
ality. Adult queries are much more coherent when compared to inappropriate
class which includes a large number of sub-categories within it.

Although, users still have the right to search whatever they want, a search
engine offering such inappropriate completions/suggestions inadvertently may -
(a) be considered as endorsing those views thereby tarnishing the brand image or
(b) damage the reputation of certain individuals or communities leading to legal
complications or (c) help a person who is trying to harm oneself or others. In the
past, there have been some instances2 where search engines were dragged into
legal tussles over such inappropriate suggestions. Hence, due to their potential
to negatively influence their users and brand, it is imperative for search engines
to identify and filter or block such inappropriate suggestions during QAC. Once
the inappropriate queries are automatically identified, they can be pruned out
during candidate generation phase thereby blocking their passage into the next
modules of the QAC pipeline.

Automatic detection of inappropriate search queries is challenging due to lack
of sufficient context and syntactic structure in web queries, presence of spelling
mistakes and natural language ambiguity. For instance, a query like “defecate on
my face video” may sound extremely offensive and hence inappropriate but it is
the name of a famous song. Similarly, “what to do when tweaking alone” is a query
where the term tweaking refers to the act of consuming meth - a drug which is
illegal and hence the suggestion is inappropriate. A query like “hore in bible” has
a spelling mistake where hore refers to whore which makes the query inappropri-
ate. Previous approaches [6–9] have focused on identifying offensive language or
flames in the messages posted on online or social networking forums such as twit-
ter, facebook etc. They mainly rely on the presence of strong offensive keywords
or phrases and grammatical expressions. They also explored the use of supervised
machine learning based classification techniques, which require hand-crafted fea-
tures, such as - Naive Bayes, SVMs, Random Forests etc. to automatically learn
the target pattern with the help of labeled training data. However, such techniques
are not suited well for inappropriate search query detection since the ambiguity
is high, context is less and there is no linguistic structure to be exploited.

In this paper, we propose a novel deep learning based technique for automatic
detection of inappropriate web search queries. We combine the strengths of both
Convolutional Neural Networks (CNN) and Bi-directional LSTM (BLSTM) deep
learning architectures and propose a novel architecture called “Convolutional,
Bi-Directional LSTM (C-BiLSTM)” for automatic inappropriate query detec-
tion. Given a query, C-BiLSTM uses a convolutional layer for learning a feature
representation for the query words which is then fed as input to the BLSTM
which captures the sequential patterns and outputs a richer representation
encoding those patterns. The query representation thus learnt passes through

2 http://searchengineland.com/google-trouble-racist-autocomplete-suggestions-uk-
184031.

http://searchengineland.com/google-trouble-racist-autocomplete-suggestions-uk-184031
http://searchengineland.com/google-trouble-racist-autocomplete-suggestions-uk-184031
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a deep fully connected network which predicts the target class. C-BiLSTM does
not require any hand-crafted feature engineering, is trained end-end as a single
model and effectively captures both local features as well as their global seman-
tics. Evaluating C-BiLSTM on real-world search queries and their prefixes from a
popular commercial search engine reveals that it significantly outperforms both
pattern based and other hand-crafted feature based baseline models in identifi-
cation of inappropriate queries. Moreover, C-BiLSTM also performs better than
individual CNN, LSTM and BLSTM models. In this context, the following are
our main contributions:

– We introduce the research problem of automatic identification of inappropri-
ate web search queries

– We propose a novel deep learning based approach called “Convolutional, Bi-
Directional LSTM (C-BiLSTM)” for the above problem

– We evaluate the various techniques proposed so far, including standard deep
learning techniques (such as CNN, LSTM and BLSTM), on a real-world
search query and prefix dataset and compare their effectiveness for the task
of inappropriate query detection

The rest of the paper is organized as follows: Sect. 2 discusses the related work
in this area. Section 3 presents our contribution C-BiLSTM in greater detail.
Section 4 discusses our experimental set-up. Section 5 presents our results and
finally Sect. 6 concludes the paper.

2 Related Work

Vandersmissen et al. [6] applied Machine Learning (ML) techniques to automat-
ically detect messages containing offensive language on Dutch social networking
site Netlog. They report that a combination of SVM and word list based clas-
sifier performs best and observed their models perform badly with less context
which is usually the case with search queries as well. Xiang et al. [7] used sta-
tistical topic modeling (LDA) [10] and lexicon based features to detect offensive
tweets in a large scale twitter corpus. These try various models (SVMs, Logis-
tic Regression (LR) and Random Forests (RF) with these features and report
that LR performs best. It is pretty hard to extract topical features from search
queries which are usually short and have less context. Razavi et al. [9] detect
flames (offensive/abusive rants) from text messages using a multi-level classi-
fication approach. They use a curated list of 2700 words, phrases and expres-
sions denoting various degrees of flames and then used them as features for a
two-staged Naive Bayes classifier. Xu et al. [8] use grammatical relations and
a curated offensive word list to identify and filter inappropriate/offensive lan-
guage in online social forums. Chuklin et al. [11] automatically classify queries
with adult intent into three categories - black (adult intent), grey, white (clean
intent). They use gradient boosted decision trees for classification.

Shen et al. [12] use a series of convolution and max-pooling layers to create a
Convolution Latent Semantic Model (CLSM) aimed at learning low-dimensional
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Fig. 2. Architecture of Convolutional Bi-Directional LSTM (C-BiLSTM) model.

semantic representations of search queries and web documents. CLSM uses char-
acter trigram and word n-gram features, is trained using click-through data.
Results on a real-world data set showed better performance over state of the art
methods such as DSSM [13].

Researchers have tried combining CNN and LSTM architectures in the con-
text of other text mining problems such as Named Entity Recognition (NER)
and Sentiment Analysis. Zhou et al. [14] combined CNN and LSTM architectures
to create a hybrid model C-LSTM and apply it for sentiment analysis of movie
reviews and question type classification. Although, the combination of CNN and
LSTM is similar to our current model, there are some minor differences - (a)
Through Convolutional layer, we’re interested in learning a better representation
for each input query word and hence we don’t use max-pooling since it reduces
the number of input words and (b) We use a bi-directional LSTM layer instead
of LSTM layer since it can model both forward and backward dependencies and
patterns in the query. Sainath et al. [15] also sequentially combine convolutional,
LSTM and fully connected layers into a single architecture named CLDNN for
the problem of speech recognition. Chiu et al. [16] combined Bi-directional LSTM
and CNN models for NER. They augment the features learnt by the CNN with
additional word features like capitalization and lexicon features for forming a
complete feature vector. This complete feature vector then is then fed into Bi-
directional LSTM layer for sequentially tagging the words with their NER tags.
Unlike them, we only use the final outputs of forward and backward layers of
the Bi-Directional LSTM since we’re interested in query classification.

To the best of our knowledge, we are first one to introduce the research
problem of detecting search queries with inappropriate/offensive intents and also
to propose an end-end deep learning model for solving it.

3 C-BiLSTM for Inappropriate Query Detection

The architecture of our proposed C-BiLSTM model is shown in Fig. 2. C-
BiLSTM takes an input search query and outputs the probability of the query
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belonging to the inappropriate class. The input search query is fed into the
model in the form of a word embedding matrix. C-BiLSTM model consists
of three sequential layers - (a) Convolution (CONV) Layer (b) Bi-directional
LSTM (BLSTM) Layer and (c) Fully Connected (FC) layer. Given the input
query embedding matrix, the CONV Layer learns a new lower-dimensional fea-
ture representation for the input query which is then fed into the BLSTM layer.
The BLSTM layer takes the CONV layer query representation as input and in
turn outputs a feature representation which encodes the sequential patterns in
the query from both forward and reverse directions. This feature representation
then passes through the FC layer, which models the various interactions between
these features and finally outputs the probability of the query belonging to the
inappropriate class. We share more details about each of the above layers below.

3.1 Input Query Embedding and Padding

For each word in the input query, we obtain its DSSM [13] word embedding in
300 dimensions and use it to form the input query matrix. We chose DSSM for
representing the words since - (a) it has been specifically trained on web search
queries and (b) it uses character grams as input and hence can also generate
embeddings for unseen words such as spelling mistakes and other variations
which are common in search queries. As the CONV layer requires fixed-length
input, we pad each query with special symbols, indicating unknown words, at
the beginning and at the end to ensure the length is equal to maxlen (in our case
24). We randomly initialize the DSSM word vectors for these padded unknown
words from the uniform distribution [−0.25, 0.25].

3.2 Learning Feature Representations Using Convolution Layer

Let w ∈ R
MaxLen×d denote the entire query where MaxLen is the length of the

final padded query where wi ∈ R
d be the DSSM word representation of the ith

word of the input query in d dimensions. In our case, MaxLen = 24 and d = 300.
Let k× l be the size of the 2-D convolution filter with weight m ∈ R

k×l then each
filter will produce a feature map v ∈ R

MaxLen−k+1×d−l+1. We consider multiple
such filters and if there are n filters then C = [v1, v2, . . . , vn] will be the combined
feature representation of these filters. After each convolution operation, we apply
a non-linear transformation using a Rectified Linear Unit (ReLU) [17] as it
simplifies back propagation and makes learning faster while avoiding saturation.
In our case, we used four 3 × 25 filters. As shown in Fig. 2, we apply three
successive steps of convolution and non-linearity to arrive at the final feature
representation which has a dimension of 18 × 228.

3.3 Capturing Sequential Patterns with Bi-directional LSTM

Long-Short Term Memory (LSTMs) [18] are variants of Recurrent Neural Net-
works (RNN) [19,20] architectures which - (a) overcome the vanishing gradient
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Table 1. Optimal hyper-parameter set for all models after tuning on validation set.

Parameter CNN LSTM BLSTM C-BiLSTM

Batch size 1000 1000 1000 1000

Max Len. 24 24 24 24

WordVecDim. 300 300 300 300

CNN depth 4 NA NA 3

Filter size 2 × 20 NA NA 3 × 25

Pooling Max-pooling NA NA NA

Non-linearity ReLU NA NA ReLU

LSTM cells NA 40 40 32

Optimizer Adagrad Adagrad Adagrad Adagrad

Learning rate 0.01 0.05 0.05 0.05

Epsilon 1e-08 1e-08 1e-08 1e-08

problem of conventional RNNs and (b) have the ability to capture long-term
dependencies present in a sequential pattern due to their gating mechanisms
which control information flow. While LSTMs can only utilize previous con-
texts, Bi-Directional LSTMs (BLSTMs) overcome this limitation by examining
the input sequence from both forward and backward directions and then combine
the information from both ends to derive a single representation. This enables
them to capture much richer sequential patterns from both directions and also
helps in learning a much better feature representation for the input query.

The 18 × 228 feature representation from the previous convolution layer is
fed as a sequence of 18 words, each with a 228 dimensional representation, to the
BLSTM layer. The LSTM cells inside the forward and backward LSTM networks
of BLSTM read the word representations in the forward and reverse orders and
each of them output a 16 dimensional representation which is then combined
to produce a 32 dimensional feature representation which encodes the various
semantic patterns in the query.

The output of the BLSTM layer (32 dimensional feature vector) is given as
input to a Fully Connected (FC) layer which models the interactions between
these features. The final softmax node in the FC layer outputs the probability
of the query belonging to the inappropriate class.

3.4 Model Training

We train the parameters of C-BiLSTM with an objective of maximizing their
predication accuracy given the target labels in the training set. We randomly
split the given dataset into train, validation and test sets. We trained the models
using the training set and tuned the hyper-parameters using the validation set.
The optimal hyper-parameter configuration thus found for various models is
shown in Table 1. If t is the true label and o is the output of the network with
the current weight configuration, we used Binary Cross Entropy (BCE) as the
loss function which is calculated as follows:
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Category No. of. Queries Sample Queries

Extreme Violence
Self Harm
Illegal Activity

1619 woman beheaded video
how many pills does it take to kill yourself
growing marijuana indoors for beginners

Race
Religion
Sexual Orientation
Gender

2241 new zealanders hate americans
anti islam shirts
gays are destroying this country
butch clothing for women

Other Offensive
Celebrity

1124 jokes about short people
louie gohmert stupid quotes

Clean 74057 20 adjectives that describe chocolate
what is the order of the planets

Total 79041

Fig. 3. Statistics of inappropriate categories in our evaluation dataset.

BCE(t, o) = −(t · log(o) + (1 − t) · log(1 − o))

We use Adagrad [21] as the optimization routine and the models were trained
by minimizing the above loss function in a batch size of n which was tuned
differently across models as given in Table 1.

4 Experimental Setup

In this section, we describe the details of our dataset, baseline approaches used
for comparison and evaluation metrics.

4.1 Dataset Details

For evaluating this task, we created a dataset comprising of 79041 unique web
search queries along with their class labels (inappropriate/clean) provided by
human judges. The details of the dataset along with the statistics is shown
in Fig. 3. These queries were sampled from the query suggestions being cur-
rently served through the auto-completion service of a well-known commer-
cial search engine in the US market. The sampled queries were then judged
by human judges through a crowd-sourcing platform. Each query had to be
classified into one of two categories - (a) Clean (b) Inappropriate. In case of
Inappropriate, they were also asked to mark one of the following three finer cat-
egories - (a) Violence/Illegal/Self-Harm (b) Race/Religion/Sexual/Gender and
(c) Other/Profane. To avoid any individual bias, each query was judged by nine
judges. An odd number of judges was chosen to easily decide the majority vote.
The judges were given clear guidelines, along with sample query label pairs, on
how to classify the queries. A query was finally labeled inappropriate if a majority
of the judges labeled it as inappropriate. The inter-annotator agreement based
on fleiss’ kappa value [22] was found to be 0.632 which is substantial. As shown
in Table 2, we randomly split the dataset into train, validation and test sets. The
train set was used for training the models while the validation set was used for
tuning the parameters of individual models and the test set for evaluation.
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Table 2. Evaluation dataset label distribution across train, validation and test sets.

Label Training Validation Test Total

Inappropriate 4594 212 178 4984

Clean 65447 4788 3822 74057

Total 70041 5000 4000 79041

Sample Patterns Sample Matching Queries Sample Words in Category

Proper Noun AND 
NegativePersonalityWord

hillary clinton is terrible
marie harf is an idiot

NegativePersonalityWord: terrible, idiot, 
moron, miser..

Proper Noun AND ‘not’/’no’ AND 
PositivePersonalityWord ellen degeneres is not funny PositivePersonalityWord:

calm, affectionate, charming..

SelfHarmPrefix AND SelfHarmSuffix how can i commit suicide
methods to kill myself

SelfHarmPrefix:
how can I, how should I, ways of…
SelfHarmSuffix:
hang myself, shoot myself, commit suicide…

Ethnicity/Religion AND
CommunityDislikeWord

americans hate black people
muslims murdered christians

Ethnicity/Religion:
americans, jews, muslims..
CommunityDislikeWord:
hate, disrespect, kill…

CoreOffensiveWord slut shaming quotes
the bitch is back

CoreOffensiveWord:
fuck, asshole, bitch, slut..

Fig. 4. Sample patterns and keywords used in PKF baseline.

4.2 Baseline Approaches

We compare our approach with three baselines - (a) Pattern and Keyword based
Filtering (PKF) and (b) Support Vector Machine (SVM) [23] based classifier
and (c) Gradient Boosted Decision Trees (BDT) [24] based classifier. In PKF,
based on manual query analysis, we curated a list of typical inappropriate query
patterns and high-confidence inappropriate/offensive keywords. If a given query
matches any of the inappropriate/offensive query patterns or contains one of
the inappropriate/offensive keywords then it will be labeled as inappropriate.
Some sample patterns and inappropriate/offensive keywords are shown in Fig. 4.
SVM and BDT classifiers are supervised learning models and we implemented
both of them using Scikit Learn [25]. We use the query words as features and
the labeled training set for training. In order to test the efficacy of deep learn-
ing based word embeddings, we also implemented variants of SVM and BDT
approaches called SVM-DSSM and BDT-DSSM where besides regular word fea-
tures, DSSM embeddings of query words were also included as additional fea-
tures. We optimized the performance of all models by tuning their parameters
using the validation set. In the case of SVMs, we tuned the parameter C and also
tried various kernels. We also handled class imbalance in all the models by appro-
priately setting the class weight parameter. The best performance was found
with C = 0.5 and linear kernel. In case of BDT, the optimal parameter choice
was found to be no. of trees = 50, max. depth = 7, min. samples split = 350 and
min. samples leaf = 10. We use the standard classification evaluation metrics -
Precision, Recall and F1 score [26].
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Table 3. Final results of various models on test set. C-BiLSTM and BLSTM results
are found to be statistically significant with p < 0.005

Model Precision Recall F1 score

PKF 0.625 0.2142 0.3190

BDT 0.7926 0.2784 0.4120

BDT-DSSM 0.9474 0.3051 0.4615

SVM 0.8322 0.3593 0.5019

SVM-DSSM 0.9241 0.4101 0.5680

CNN 0.7148 0.8952 0.7949

LSTM 0.8862 0.7047 0.7850

BLSTM 0.8018 0.8285 0.8149

C-BiLSTM 0.9246 0.8251 0.8720
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Fig. 5. Runtime performance of various models during train and test phases.

5 Results and Discussion

Table 3 presents the overall results of various techniques on the test set of the
evaluation dataset. C-BiLSTM gives the best performance on F1 score which
measures the overall quality of classification and also shows significant improve-
ment over the baseline approaches which employ either pattern/keyword based or
hand-crafted feature based identification techniques. It is also interesting to note
that the other deep learning techniques such as CNN, LSTM and BLSTM also
perform significantly better than the baseline approaches. The results show that
DL approaches, with the help of automatically learnt feature representations,
can perform better than competitively trained hand-crafted baselines. We can
also observe that BDT and SVM perform better when we provided with DSSM
word embedding features instead of word features alone. The results also prove
that combining convolutional layer and BLSTM architectures in C-BiLSTM is
better than individual CNN and BLSTM models and is especially helpful in
improving precision as shown in the significant improvement of precision (more
than 29% when compared to CNN). Although BDT baseline shows the highest
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Query True 
Label

C-BLSTM 
Label

Judgment 
Explanation Comments

nigerplease.com Inappropriate Inappropriate The word niger is an 
Inappropriate word

Since nigerplease.com is a single word, PKF, SVM, 
BDT models fail. Other deep learnt models also 
misclassify this query. C-BLSTM alone correctly 
classifies this one.

shake and bake meth 
instructions Inappropriate Inappropriate

"meth" is a drug which 
is illegal in US and some 
other parts of world

"meth" is a short form for Methamphetamine and 
hence PKF, SVM, BDT models fail. Other deep learnt 
models also misclassify this query. C-BLSTM alone 
correctly classifies this one.

a**monkey Inappropriate Inappropriate
It refers to the 
Inappropriate word -
"assmonkey"

C-BLSTM perfectly classifies it. PKF, SVM, BDT fail 
because it includes "**". Other deep learnt models also 
fail in this case.

hore in the bible Inappropriate Inappropriate

It is a spell mistake of 
the word "whore" and is 
Inappropriate to 
christians

PKF, SVM, BDT fail because of not catching the spell 
mistake. Other deep learnt models also fail except for 
C-BLSTM.

marvin gaye if i should 
die tonight download Clean Clean Not Inappropriate since 

it is a song download

PKF misclassifies it as "Inappropriate" due to presence 
of "die tonight" pattern. Remaining models classify 
correctly.

asshat in sign language Inappropriate Clean An Inappropriate term in 
sign language

BDT perfectly classifies it. Remaining all models 
misclassify it.

why do asians speak the 
ching chong Inappropriate Clean

Ching chong is a 
pejorative term for 
chinese language

PKF classifies it correctly since "ching chong" is 
included in list of core Inappropriate words. Remaining 
classifiers fail.

Fig. 6. Qualitative analysis of C-BiLSTM results vis-a-vis other baseline approaches.

precision of 0.9474, the recall is poor (0.3051) which means it is precise only for a
small class of inappropriate queries. Figure 5 shows a comparison of the relative
running times taken by the various models during train and test phases.

5.1 Qualitative Analysis

Figure 6 presents a qualitative analysis of C-BiLSTM results vis-à-vis other base-
line approaches using queries from the test set. Since, C-BiLSTM uses DSSM
embeddings for query words, it understands the spelling mistakes and variations
of a word. Due to this, it correctly classifies the queries - “hore in the bible” and
“a**monkey” whereas the baseline approaches fail since the particular words
may not have been observed in the training data or in the pattern dictionary.
Similarly, C-BiLSTM correctly classifies the query “nigerplease.com” although
the offensive word is fused with another word without any space. This shows that
C-BiLSTM has effectively captured the character grams associated with the tar-
get label. However, there are still some queries where C-BiLSTM performs badly
and needs to be improved. For example, it incorrectly classifies the query “why
do asians speak the ching chong” which was perfectly classified by PKF due to
the presence of the word “ching chong” in its inappropriate/offensive word list.

5.2 Query Autocompletion Filtering Task

In order to demonstrate the effectiveness of the proposed techniques for query
autocompletion filtering task, we randomly selected 200 unique inappropri-
ate/offensive queries from the pool of inappropriate queries excluding training
set (i.e. from Validation (212) and Test (178)). From the above set, for each
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Fig. 7. Results on QPBAD dataset using top five query completion suggestions.

query, we generated a prefix of random length. Later, for each of these 200 query
prefixes, we retrieved the current top 5 autocompletion suggestions offered by
a popular commercial search engine and got them labeled from human judges
using the same process described earlier in Sect. 4.1. We call this dataset of 200
query prefixes with 5 query suggestions each as the “Query Prefix Based Auto-
completions Dataset (QPBAD)”. We ran all the models on QPBAD and report
their average precision (at 5), average recall (at 5) and F1 scores across queries in
Fig. 7. In tune with earlier observation, C-BiLSTM shows better performance in
identifying inappropriate query completion suggestions based on query prefixes
than the baseline and individual deep learning models.

6 Conclusions

We introduced the problem of automatically detecting inappropriate search
queries and proposed a novel deep learning based technique called “Convolu-
tional, Bi-Directional LSTM (C-BiLSTM)” for solving it. Given a query, C-
BiLSTM uses a convolutional layer for extracting a sequence of high-level phrase
representations from query words and then feeds it into a BLSTM which then
captures the sequential patterns in the given query and learns an output rep-
resentation for the entire query. The query representation thus learnt passes
through a deep fully connected network which predicts the target class. C-
BiLSTM does not require any hand-crafted feature engineering, is trained end-
end as a single model, and effectively captures both local query features as well
as its global semantics. Evaluation on real-world search queries and their pre-
fixes from a large scale commercial search engine revealed that it significantly
outperforms both pattern based and other hand-crafted feature based baselines.
C-BiLSTM also proved to be better than other individual deep learning based
architectures CNN, LSTM and BLSTM.
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Abstract. This paper proposes an inexpensive way to learn an effective
dissimilarity function to be used for k-nearest neighbor (k-NN) classi-
fication. Unlike Mahalanobis metric learning methods that map both
query (unlabeled) objects and labeled objects to new coordinates by
a single transformation, our method learns a transformation of labeled
objects to new points in the feature space whereas query objects are kept
in their original coordinates. This method has several advantages over
existing distance metric learning methods: (i) In experiments with large
document and image datasets, it achieves k-NN classification accuracy
better than or at least comparable to the state-of-the-art metric learning
methods. (ii) The transformation can be learned efficiently by solving
a standard ridge regression problem. For document and image datasets,
training is often more than two orders of magnitude faster than the
fastest metric learning methods tested. This speed-up is also due to the
fact that the proposed method eliminates the optimization over “nega-
tive” object pairs, i.e., objects whose class labels are different. (iii) The
formulation has a theoretical justification in terms of reducing hubness
in data.

1 Introduction

Let X be a feature space and Y be a set of class labels. The k-nearest neighbor
(k-NN) classifier predicts the class label of an unknown query object x ∈ X by
its nearest neighbors. Given x and a set of labeled objects D = {(xi, yi)}ni=1

where xi ∈ X is the feature vector of the ith object and yi ∈ Y its class label,
the classifier first computes the distance between x and each labeled object xi.
It then predicts the class label ŷ of x by the majority among its k nearest labeled
objects. When k = 1, the decision rule of the k-NN (1-NN) classifier is simply:

ŷ = arg min
yi:(xi,yi)∈D

f(x,xi), (1)

where function f : X × X → R is some distance/dissimilarity function.
Obviously, the choice of function f affects the accuracy of classification.

Therefore, many researchers [2,11,13,15] have tackled metric learning, which
is the task of learning a suitable distance function from data.

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 17–29, 2017.
DOI: 10.1007/978-3-319-57454-7 2



18 Y. Shigeto et al.

For Euclidean object space X = R
d, metric learning is usually formulated

as the task of finding a Mahalanobis distance. In this formulation, the distance
between two objects x, z ∈ R

d is defined by

f(x, z) =
√

(x − z)TM(x − z), (2)

with some positive (semi)definite matrix M. By defining matrix L by M = LTL,
we can write the distance in Eq. (2) as

f(x, z) = ‖Lx − Lz‖. (3)

This equation shows that learning Mahalanobis distance is equivalent to learning
a suitable linear transformation L.

In the context of k-NN classification, distance needs to be measured only
between query (unlabeled) objects and labeled objects, as can be seen from
Eq. (1); when distance f(x, z) is computed, the first object x is always a query
object, and the second object z is always a labeled object xi. Moreover, function
f need not be metric and can be any measure of dissimilarity; for instance, f
being asymmetric is perfectly acceptable.

In this paper, we learn one such dissimilarity function. The idea is to compute
a transformation of labeled objects to new points while unlabeled objects are
kept at their original points. Thus, our objective is to find a suitable matrix W
that defines a dissimilarity function

f(x, z) = ‖x − Wz‖, (4)

where x is a query object, and z is a labeled object.
Because the coordinates of query objects are fixed, our formulation might

appear less flexible than Mahalanobis distance learning (Eq. (3)). However, as
shown in a subsequent section, it gives a better k-NN classification accuracy
than Mahalanobis distance learning methods on many datasets that feature
high-dimensional space. Moreover, optimizing W in Eq. (4) is much easier and
substantially (often more than two orders of magnitude) faster.

The effectiveness of the proposed approach has a theoretical foundation in
terms of reducing hubness in data [7,9]. Recent studies have shown that the pres-
ence of hubs, which are a few objects that appear in the k-NNs of many objects,
is an obstacle that can harm the performance of many vector space methods
[7,8,10]. We show that metric learning is no exception, and the transformation
of labeled objects restrains hubs from emerging. This approach is justified by a
recent result of Shigeto et al. [9], who used regression to reduce hubness in zero-
shot problems. In their work, the problem was cast as a task of cross-domain
matching, whereas in this paper, we are concerned with improving the accuracy
of k-NN classification in a single space.

Another notable feature of the proposed method is that it eliminates opti-
mization over “negative” object pairs, i.e., objects belonging to difference classes.
In other words, our method only attempts to make objects of the same class
(“positive” object pairs) to be closer. Its objective function does not have any
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constraints or terms that promote negative object pairs to be apart from each
other. Such constraints are indispensable in Mahalanobis metric learning to
prevent trivial solutions M = O in Eq. (2) or L = O in Eq. (3), and metric
learning typically optimizes over a large number of negative object pairs. More-
over, incorporating negative pairs results in a non-convex optimization problem
with respect to matrix L. Existing metric learning methods [2,5,11,13,15] hence
resorts to optimizing M = LTL using computationally intensive methods such
as semi-definite programming. By contrast, since we only transforms labeled
objects, we need not worry about W = O being the solution (see Eq. (4)), thus
eliminating the need of negative pairs. This makes the solution easily obtained
with ridge regression, which contributes to reduced computation time.

2 Related Work

We briefly review some of the metric learning methods, mostly those used in the
experiments in Sect. 5. For comprehensive survey of the field, see [1,6].

A majority of the metric learning methods adopt Mahalanobis distance
(Eq. (3)) as the distance function, and minimize the training loss under vari-
ous constraints. As mentioned earlier, these methods do not make distinction
between unlabeled (query) objects and labeled objects, in the sense that their
coordinates are transformed by the same matrix, L in Eq. (3). Our approach
differs from these methods in that it projects only the labeled objects to new
coordinates.

There are various strategies for learning Mahalanobis distance. Xing et al. [13]
formulated metric learning as a convex optimization problem, and demonstrated
its effectiveness in clustering tasks. The large-margin nearest neighbor (LMNN)
method [11] is probably the most popular of all metric learning methods. Its
objective is to minimize distances between objects with the same label, and
to penalize objects with different labels when they are closer than a certain
distance. Hence objects from different classes are separated by a large margin.
To make the problem convex, in Xing et al.’s method and LMNN, optimization
is done over not L but M = LTL, with semidefinite programming. Ying and Li
[15] presented an eigenvalue optimization framework for learning Mahalanobis
distance. Davis et al. [2] proposed information-theoretic metric learning (ITML).
ITML minimizes the LogDet divergence subject to linear constraints. It thus
requires no eigenvalue computation or semi-definite programming.

Although it has been shown that these methods work well in many applica-
tions, learning Mahalanobis distance typically incurs high computational cost.
Indeed, as we show in an experiment (Sect. 5), these methods spend substantial
time in optimizing M, when applied to large datasets.

3 Proposed Method

In this section, we present our approach for improving the k-NN classification
accuracy.
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In nearly all metric learning methods, the objective function to be optimized
involves a term that encourages objects of the same class to be placed closer.
In the same vein, our method also optimizes the transformation matrix W in
Eq. (4) by minimizing the distance between objects of the same class. However,
in our formulation, the learned transformation W is only applied to labeled
objects.

Our training procedure consists of two steps. We first make training object
pairs for which the distance should be minimized. To this end, we follow Wein-
berger and Saul [11]: for each labeled object xi ∈ R

d in the training set, we define
its “target” objects Ti to be the k objects in the training set that belong to the
same class as xi and are closest to xi as measured by the original Euclidean
distance (i.e., the one before training). We then find a matrix W ∈ R

d×d that
moves objects in Ti towards xi, by solving the following optimization problem:

min
W

n∑
i=1

∑
z∈Ti

‖xi − Wz‖2 + λ‖W‖2F, (5)

where λ ≥ 0 is a hyperparameter for regularization and ‖ · ‖F represents the
Frobenius norm. Equation (5) is a familiar objective function of ridge regression,
and we have the closed-form solution:

W = XJXT(XXT + λI)−1, (6)

where X = [x1, . . . ,xn] ∈ R
d×n, and J ∈ {0, 1}n×n is an indicator matrix such

that [J]i,j = 1 if xj ∈ Ti and 0 otherwise.
In the test phase, we first compute the image x′

i = Wxi of every labeled
object xi by the learned matrix W. We then carry out k-NN classification by
regarding D′ = {(x′

i, yi)} as the labeled objects in place of the original ones,
D = {(xi, yi)}. In the case of 1-NN classification, for example, this amounts
to using the dissimilarity function f given by Eq. (4) in the decision rule of
Eq. (1), i.e.,

ŷ = arg min
yi:(x′

i,yi)∈D′
‖x − x′

i‖2 = arg min
yi:(xi,yi)∈D

‖x − Wxi‖2. (7)

4 Proposed Method Reduces Hubness

In this section, we argue that the proposed method is by design less susceptible
to producing hubs [7] in the transformed labeled objects. This property is desir-
able, as hubs have been recognized as one of the major factors that harm the
effectiveness of nearest neighbor methods.

4.1 Hubness Phenomenon

The hubness phenomenon [7] states that a small number of objects in the dataset,
called hubs, may occur as the nearest neighbor of many objects. The presence
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of hubs will diminish the utility of nearest-neighbor methods, because the lists
of nearest neighbors frequently contain the same hub objects regardless of the
query.

Hubs occur in data because of an inherent bias present in Euclidean space,
called spatial centrality [7]; i.e., objects closest to the mean of the data tend to
be the nearest neighbors of many objects. This bias is known to grow stronger
with the dimensionality of the space.

The following proposition by Shigeto et al. [9] quantifies the degree of spatial
centrality as a function of the dimension of the space and the variance of data dis-
tribution, when the feature values of query and data follow zero-mean Gaussian
distributions with different variances. Let EX [·] and VarX [·] respectively denote
the expectation and variance under a distribution X .

Proposition 1 [9, Proposition 1]. Let z be a d-dimensional random vector sam-
pled i.i.d. from a normal distribution with zero means and diagonal covariance
matrix s2I; i.e., z ∼ Z, where Z = N (0, s2I). Further let σ =

√
VarZ [‖z‖2] be

the standard deviation of the squared norm ‖z‖2.
Consider two fixed samples z1 and z2 of random vector z, such that the

squared norms of z1 and z2 are γσ apart. In other words,

‖z2‖2 − ‖z1‖2 = γσ.

Let x be a point sampled from a distribution X with zero mean.
Then, the expected difference between the squared distances from x to z1 and

z2 is given by

Δ = EX
[‖x − z2‖2

] − EX
[‖x − z1‖2

]

= γs2
√

2d. (8)

The quantity in Eq. (8) can be interpreted as the degree of the spatial cen-
trality bias present in the data, which causes hub formation. If z1 is closer to
the origin (data mean) than z2 is, Δ > 0 because in this case γ > 0.

This implies that a query object x sampled from X is more likely to be closer
to object z1 than to z2; i.e., given query object x, z1 is more likely to become its
nearest neighbor. Because this reasoning applies to any pair of objects z1 and
z2 in the dataset, it can be concluded that the objects closest to the data mean
is most likely to be a hub.

Further, the factor s2 in Eq. (8) suggests that, for a fixed query distribution
X , the data distribution Y with smaller variance s is preferable to reduce spatial
centrality, and hence hubness as well.

4.2 Hubness and the Proposed Method

Ridge regression reduces the variance of mapped feature values (observables)
relative to that of target (response) variables; see, for example, Shigeto et al. [9,
Proposition 2]. Thus, in our model of Eq. (5), the variance of the components of
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the mapped objects Wz tends to be smaller than that of x. From the discussion
on hubness in Sect. 4.1, reducing the variance of data objects (which correspond
to the image Wz of the labeled objects z in the proposed method) relative to the
query (unlabeled object x) can reduce the spatial centrality. By combining these
arguments, we expect that the proposed approach should alleviate the emergence
of hubs, and, consequently, improve the accuracy of k-NN classification.

Note that we could think of a different regression problem in which query
object x, not labeled object z, is mapped to new coordinates:

min
W

n∑
i=1

∑
z∈Ti

‖Wxi − z‖2 + λ‖W‖2F. (9)

This would result in function f as follows:

f(x, z) = ‖Wx − z‖2. (10)

However, this dissimilarity function is useless as it actually promotes hubness.
The variance of the transformed query objects shrinks as a result of regression.
Thus, in this model, the variance of the labeled objects is made larger than
the transformed query objects, but this is not a desirable situation according to
Proposition 1. We also verify this in one of the experiments in Sect. 5.

5 Experiments

We evaluate the proposed approach on various classification tasks. The objective
of these experiments is to investigate whether the proposed approach can reduce
the emergence of hubs, and improve the performance of k-NN classification. The
performance is measured against several popular metric learning methods.

5.1 Experimental Setups

Dataset Description. Three types of datasets were used for our evaluation:
UCI, document, and image datasets.

From the UCI machine learning datasets,1 we chose balance-scale, glass,
ionosphere, iris, and wine, as they are frequently used for evaluation in metric
learning literature [2,5,11,15]. However, they are mostly toy problems, and their
small feature dimensions, the numbers of labels and objects do not necessarily
reflect real-world problems. We therefore used document and image datasets also
for our evaluation.

For document and image classification, support vector machines are known to
provide state-of-the-art accuracy. Notice, however, that our goal is not to design
a state-of-the-art classifier. Rather, the main objective of this experiments is to
evaluate the performances of the proposed method in comparison with metric
learning methods, and to show its usefulness for k-NN classification.
1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Table 1. Dataset statistics. In document and image datasets, “original dim.” indicates
the number of raw dimensions before applying PCA.

(a) UCI datasets.

dataset ionosphere balance-scale iris wine glass

#objects 351 625 150 178 214
#classes 2 3 3 3 6
dimension 34 4 4 13 9

(b) Document datasets.

dataset RCV News Reuters TDT

#objects 9625 18846 8213 10021
#classes 4 20 41 56
dimension 300 300 300 300
original dim. 29992 26214 18933 36771

(c) Image datasets.

dataset AwA CUB SUN aPY

#objects 30475 11788 14340 15339
#classes 50 200 717 32
dimension 300 300 300 300
original dim. 4096 4096 4096 4096

For document classification tasks, we used four publicly available document
datasets: RCV1-v2 (RCV), 20 newsgroups (News), Reuters21578 (Reuters), and
TDT2 (TDT).2 In Reuters21578 and TDT2, we removed minority classes that
hold less than 10 objects in the dataset. After this removal, Reuters21578 and
TDT2 had 56 and 41 classes, respectively.

For image classification, we used the following image datasets: aPascal &
aYahoo (aPY), Animals with Attributes (AwA), Caltech-UCSD Birds-200-2011
(CUB), and SUN Attribute.3

The computational cost of metric learning methods is heavily dependent on
the dimension of the feature space. In our preliminary experiment, training of
the metric learning methods (LMNN, ITML, and DML-eig; see below) did not
complete in a reasonable time on document and image datasets. We therefore
had to use principal component analysis to reduce the dimensionality of features
to 300 for these datasets.4

The dataset statistics are summarized in Table 1.
All data (set of feature vectors) were centered before training. For the wine

dataset, we further converted the features to z-scores, following the remark on
the UCI website that a k-NN classifier achieved a high accuracy with this stan-
dardization.

2 Datasets were downloaded from http://www.cad.zju.edu.cn/home/dengcai/Data/
TextData.html.

3 We used the publicly available features from https://zimingzhang.files.wordpress.
com/2014/10/cnn-features1.key.

4 We also conducted experiments where the dimensionality of features was set to 100.
The results are not presented here due to lack of space, but the same trend was
observed.

http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
https://zimingzhang.files.wordpress.com/2014/10/cnn-features1.key
https://zimingzhang.files.wordpress.com/2014/10/cnn-features1.key
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Each dataset was randomly split into training (70%) and test (30%) sets.
Experiments were repeated on four different random splits, for which we report
the average performance.

Compared Methods. We trained distance/dissimilarity functions using the
following methods, and carried out k-NN classification on the datasets above.

– original metric: Euclidean distance in the original feature space, without any
training. This is the baseline.

– LMNN: Large margin nearest neighbor classification [11]. This method has
often been used in distance metric learning experiments as a baseline.

– ITML: Information theoretic metric learning [2].
– DML-eig: Distance metric learning with eigenvalue optimization [15].
– Move-labeled (proposed method): Learning to move labeled objects toward

query objects. This is our proposed approach that optimizes the ridge regres-
sion objective of Eq. (5), and predicts the labels using Eq. (7).

– Move-query: Learning to move query (unlabeled) objects toward fixed labeled
objects. This is the method discussed in Sect. 4.2 and optimizes Eq. (9). Like
Move-labeled it is also based on ridge regression, but the roles of the input
and response variables are exchanged. The resulting dissimilarity function of
Eq. (10) is then used for k-NN classification.

Notice that Move-query was tested only to verify the claim made in Sect. 4.2;
i.e., although both Move-labeled and Move-query are based on ridge regression,
the proposed method, Move-labeled, is expected to perform well by reducing
hubness, whereas Move-query is expected to do the contrary, by promoting hub-
ness. It was therefore not meant as a competitive method.

LMNN, ITML, and DML-eig learn a Mahalanobis distance. For these meth-
ods, we used the publicly available MATLAB implementations provided by the
respective authors5. We implemented the proposed method also in MATLAB6,
for fair evaluation of running time.

For LMNN, Move-labeled, and Move-query, the number of target objects for
each training object was set to 1; i.e., for each object xi in the training set,
we made a training pair (xi, z) whose distance should be minimized, where z
is the object nearest to xi among those with the same class label as xi in the
training set, with the distance measured by the original Euclidean metric. For
the parameters of ITML on UCI datasets, the default values in the authors’
implementation were used, and for document and image datasets, we followed
Jain et al. [5]. For DML-eig, the default setting in the authors’ code was used
for obtaining pairwise constraints. We calibrated the parameter k of k-NN clas-
sification to be used at the test time and all other parameters (γ in ITML, μ
in DML-eig, and λ in Move-labeled and Move-query) by cross validation on the
training set.
5 LMNN: https://bitbucket.org/mlcircus/lmnn/downloads,

ITML: http://www.cs.utexas.edu/∼pjain/itml/,
DML-eig: http://www.albany.edu/∼yy298919/software.html.

6 This code will be made available at our homepage.

https://bitbucket.org/mlcircus/lmnn/downloads
http://www.cs.utexas.edu/~pjain/itml/
http://www.albany.edu/~yy298919/software.html
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Evaluation Criteria. The methods were evaluated in three respects: (i) the
accuracy of k-NN classification using the distance/dissimilarity measure learned
by each method, (ii) training time, and (iii) the degree of hubness in the data
with respect to the learned distance/dissimilarity.

Following the literature [4,7–10], we used the skewness of N10 distribution
as the measure of hubness in the data. The N10 distribution is the empirical
distribution of the number N10(i) of times each labeled object i is found in the
10-nearest neighbors of query (unlabeled) objects, and its skewness is defined as
follows:

(N10 skewness) =
∑n

i=1 (N10(i) − E [N10])
3
/n

Var [N10]
3
2

where n is the total number of labeled objects, and E[N10] and Var[N10] are
respectively the empirical mean and variance of N10(i) over n labeled objects.
A large N10 skewness value indicates the existence of labeled objects that fre-
quently appear in the 10-nearest neighbor lists of query objects, i.e., hubs.

5.2 Experimental Results and Discussion

Skewness. Table 2 shows the skewness of N10 distribution. For all datasets,
we observe that the proposed approach (Move-labeled) reduced N10 skewness
considerably compared with the original Euclidean distance, meaning that it
effectively suppressed the emergence of hub objects. N10 skewness was reduced
by metric learning methods (LMNN, ITML, and DML-eig) on many datasets,
most notably by DML-eig. Also, as expected from the discussion of Sect. 4.2,
Move-query increased N10 skewness except for the iris dataset.

Accuracy. Table 3 shows the classification accuracy. In most datasets, both the
metric learning methods and the proposed method outperformed the original dis-
tance metric. The proposed method is comparable with, or slightly better than,
the metric learning methods. Although Move-query optimized the minimizing
distance between objects in same class (our proposed method also optimized
such distance), the method obtained poor results even compared with the orig-
inal Euclidean metric except for the iris datasets.

Note that, in UCI datasets, we observed that the proposed method did
not work well, and even Move-query were competitive with others. This is an
expected result, because the UCI datasets did not have much hubness even with
the original metric (see Table 2a). Hubs tend to be emerge in high dimensional
space [4,7,8], but all the UCI datasets have a small dimensionality (see Table 1a).
Consequently, hub reduction/promotion methods did not affect the result sig-
nificantly.
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Table 2. Skewness of N10 distribution: a high skewness indicates the emergence of
hubs (smaller is better). The bold figure indicates the best performer.

(a) UCI datasets.

method ionosphere balance-scale iris wine glass

original metric 1.65 0.93 0.40 0.71 0.77
47.016.093.036.050.1NNML

97.069.0LMTI 0.10 0.43 0.70
DML-eig 0.78 0.66 0.41 0.38 0.59
Move-labeled (proposed) 1.04 0.56 0.32 0.55 0.59
Move-query 1.67 1.13 0.32 0.89 1.18

(b) Document datasets.

method RCV News Reuters TDT

original metric 13.35 21.93 7.61 4.89
LMNN 3.86 14.74 7.63 4.01

93.203.756.9172.4LMTI
DML-eig 1.71 1.45 3.05 1.34
Move-labeled (proposed) 1.14 2.88 4.53 1.44
Move-query 21.57 33.36 17.49 6.71

(c) Image datasets.

method AwA CUB SUN aPY

original metric 2.49 2.38 2.52 2.80
LMNN 3.10 2.96 2.80 3.94
ITML 2.42 2.27 2.37 2.69
DML-eig 1.90 1.77 2.39 2.17
Move-labeled (proposed) 1.24 0.97 1.02 1.23
Move-query 7.81 7.83 7.48 11.65

Training Time. To investigate the computational cost, we measured the
elapsed real time needed to train the proposed method and the metric learn-
ing methods.

Table 4 shows the average training time in document and image datasets. We
observe that the proposed approach has a clear advantage in terms of training
cost. It was faster than any metric learning methods compared. Indeed, on all
datasets except RCV, it was more than two orders of magnitude faster than
the fastest metric learning methods. This can be explained by the fact that the
metric learning methods take burden of optimizing over Mahalanobis metric.
To enforce the constraint that the matrix M in Eq. (2) should remain positive
semi-definite, these methods pay high computational cost, e.g., to check the non-
negativity of eigenvalues, at every training iteration. In contrast, the proposed
approach has a closed-form solution; although this solution depends on matrix
inverse, it needs to be calculated only once.
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Table 3. Classification accuracy [%]: bold figures indicate the best performers for each
dataset.

(a) UCI datasets.

method ionosphere balance-scale iris wine glass

original metric 86.8 89.5 97.2 98.1 68.1
LMNN 90.3 90.0 96.7 98.1 67.7

5.987.78LMTI 97.8 99.1 65.0
7.78gie-LMD 91.2 96.7 98.6 66.5

Move-labeled (proposed) 89.6 89.5 97.2 98.6 70.8
Move-query 79.7 89.4 97.2 96.3 62.3

(b) Document datasets.

method RCV News Reuters TDT

original metric 92.1 76.9 89.5 96.1
LMNN 94.7 79.9 91.5 96.6
ITML 93.2 77.0 90.8 96.5
DML-eig 94.5 73.3 85.9 95.7
Move-labeled (proposed) 94.4 81.6 91.6 96.7
Move-query 89.1 70.0 85.9 95.4

(c) Image datasets.

method AwA CUB SUN aPY

original metric 83.2 51.6 26.2 82.2
LMNN 83.0 54.7 24.4 81.8
ITML 83.1 51.3 26.0 82.4
DML-eig 82.0 53.5 22.4 81.6
Move-labeled (proposed) 84.1 52.4 28.3 83.4
Move-query 79.2 43.3 14.6 78.7

Table 4. Training time [sec]: bold figures indicate the best performer for each dataset.

(a) Document datasets.

method RCV News Reuters TDT

LMNN 1713.0 1164.7 676.2 886.1
ITML 35.5 1512.5 124.1 169.0
DML-eig 762.2 6145.9 2710.4 2350.6
proposed 6.0 7.0 4.6 16.1

(b) Image datasets.

method AwA CUB SUN aPY

LMNN 1525.5 1098.2 15704.3 317.3
ITML 1536.3 577.6 1126.4 9211.2
DML-eig 2048.0 2084.7 2006.1 1787.1
proposed 9.5 1.5 4.1 6.4
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6 Conclusion

In this paper, we have proposed a simple regression-based technique to improve
k-NN classification accuracy. The results of our work can be summarized as
follows:

– To improve k-NN classification accuracy, we proposed learning a transforma-
tion of labeled objects, without altering the coordinates of query (unlabeled)
objects. This approach is justified from the perspective of reducing hubness
in the labeled objects. Because our method is inherently designed to suppress
hubness, it need not consider pairs of objects from different classes during
training. The number of such pairs can be enormous and their use also ren-
ders the optimization problem non-convex, which is therefore a major obstacle
to the scalability of metric learning methods.

– Our method deviates from the metric learning framework as the learned trans-
formation W does not provide a proper metric. In k-NN classification, how-
ever, labeled objects can be interpreted not as mere points but rather a rep-
resentation of the (non-linear) decision boundaries between classes. Our app-
roach follows this interpretation and changes the decision boundaries, through
W, to improve classification accuracy.

– In the experiments of Sect. 5, our approach indeed improved the classifica-
tion accuracy when the data was high-dimensional and hubs emerged. It out-
performed metric learning methods on most document and image datasets,
and comparable on the rest. However, its effect was not evident on the UCI
datasets, in which hubness was not noticeable because of the low dimension-
ality of the data.

– The experiments showed that our approach was substantially faster than the
compared metric learning methods. For large document and image datasets,
the speed-up was more than two orders of magnitude over the fastest metric
learning methods, although the classification accuracy was better or compa-
rable.

We have focused on multi-class classification problems in this paper, but
hubness is known to be harmful in other situations, such as clustering and semi-
supervised classification in high-dimensional space [7]. We plan to extend our
approach to deal with these situations. We will also extend our method to learn
nonlinear metrics.

Another direction of future work is to investigate the effect of our approach on
kernel machines. Metric learning has been shown to be an effective preprocess-
ing for kernel machines [3,12,14], and we will pursue a similar line using our
approach.
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Abstract. Deep neural networks (DNNs) often require good regular-
izers to generalize well. Currently, state-of-the-art DNN regularization
techniques consist in randomly dropping units and/or connections on
each iteration of the training algorithm. Dropout and DropConnect are
characteristic examples of such regularizers, that are widely popular
among practitioners. However, a drawback of such approaches consists
in the fact that their postulated probability of random unit/connection
omission is a constant that must be heuristically selected based on the
obtained performance in some validation set. To alleviate this burden, in
this paper we regard the DNN regularization problem from a Bayesian
inference perspective: We impose a sparsity-inducing prior over the net-
work synaptic weights, where the sparsity is induced by a set of Bernoulli-
distributed binary variables with Beta (hyper-)priors over their prior
parameters. This way, we eventually allow for marginalizing over the
DNN synaptic connectivity for output generation, thus giving rise to
an effective, heuristics-free, network regularization scheme. We perform
Bayesian inference for the resulting hierarchical model by means of an
efficient Black-Box Variational inference scheme. We exhibit the advan-
tages of our method over existing approaches by conducting an extensive
experimental evaluation using benchmark datasets.

1 Introduction

In the last few years, the field of machine learning has experienced a new wave of
innovation; this is due to the rise of a family of modeling techniques commonly
referred to as deep neural networks (DNNs) [10]. DNNs constitute large-scale
neural networks, that have successfully shown their great learning capacity in
the context of diverse application areas. Since DNNs comprise a huge number
of trainable parameters, it is key that appropriate techniques be employed to
prevent them from overfitting. Indeed, it is now widely understood that one of
the reasons behind the explosive success and popularity of DNNs consists in the
availability of simple, effective, and efficient regularization techniques, developed
in the last few years [10].

Dropout is a popular regularization technique for (dense-layer) DNNs [13].
In essence, it consists in randomly dropping different units of the network on

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 30–41, 2017.
DOI: 10.1007/978-3-319-57454-7 3
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each iteration of the training algorithm. This way, only the parameters related
to a subset of the network units are trained on each iteration; this ameliorates
the associated network overfitting tendency, and it does so in a way that ensures
that all network parameters are effectively trained. In a different vein, [14] pro-
posed randomly dropping DNN synaptic connections, instead of network units
(and all the associated parameters); they dub this approach DropConnect. As
showed therein, such a regularization scheme yields better results than Dropout
in several benchmark datasets, while offering provable bounds of computational
complexity.

Despite these merits, one drawback of these regularization schemes can be
traced to their very foundation and rationale: The postulated probability of ran-
dom unit/connection omission (e.g., dropout rate) is a constant that must be
heuristically selected; this is effected by evaluating the network’s predictive per-
formance under different selections of this probability, in some validation set,
and retaining the best performing value. This drawback has recently motivated
research on the theoretical properties of these techniques. Indeed, recent theoret-
ical work at the intersection of deep learning and Bayesian statistics has shown
that Dropout can be viewed as a simplified approximate Bayesian inference algo-
rithm, and enjoys links with Gaussian process models under certain simplistic
assumptions (e.g., [1,5]).

These recent results form the main motivation behind this paper. Specifically,
the main question this work aims to address is the following: Can we devise an
effective DNN regularization scheme, that marginalizes over all possible configu-
rations of network synaptic connectivity (i.e., active synaptic connections), with
the posterior over them being inferred from the data? To address this problem,
in this paper, for the first time in the literature, we regard the DNN regular-
ization problem from the following Bayesian inference perspective: We impose
a sparsity-inducing prior over the network synaptic weights, where the spar-
sity is induced by a set of Bernoulli-distributed binary variables. Further, the
parameters of the postulated Bernoulli-distributed binary variables are imposed
appropriate Beta (hyper-)priors, which give rise to a full hierarchical Bayesian
treatment for the proposed model.

Under this hierarchical Bayesian construction, we can derive appropriate pos-
teriors over the postulated binary variables, which essentially function as indi-
cators of whether some (possible) synaptic connection is retained or dropped
from the network. Once these posteriors are obtained using some available train-
ing data, prediction can be performed by averaging (under a Bayesian inference
sense) over multiple (posterior) samples of the network configuration. This infer-
ential setup constitutes the main point of differentiation between our approach
and DropConnect. For simplicity, and to facilitate reference, we dub our app-
roach DropConnect++. We derive an efficient inference algorithm for our model
by resorting to the Black-Box Variational Inference (BBVI) scheme [12].

The remainder of this paper is organized as follows: In Sect. 2, we provide
a brief overview of the theoretical background of our approach. Specifically, we
first briefly review DropConnect, which is the existing work closest related to our
approach; subsequently, we review the inferential framework that will be used in



32 H. Partaourides and S.P. Chatzis

the context of the proposed approach, namely BBVI. In Sect. 3, we introduce our
approach, and derive its inference and prediction generation algorithms. Next,
we perform an extensive experimental evaluation of our approach, and compare
to popular (dense-layer) DNN regularization approaches, including Dropout and
DropConnect. To this end, we consider a number of well-established benchmarks
in the related literature. Finally, in the concluding section, we summarize our
contribution and discuss our results.

2 Theoretical Background

2.1 DropConnect

As discussed in the Introduction, DropConnect is a generalization of Dropout
under which each connection, rather than each unit, may be dropped with some
heuristically selected probability. Hence, the rationale of DropConnect is similar
to that of Dropout, since both introduce dynamic sparsity within the model.
Their core difference consists in the fact that Dropout imposes sparsity on the
output vectors of a (dense) layer, while DropConnect imposes sparsity on the
synaptic weights W .

Note that this is not equivalent to setting W to be a fixed sparse matrix
during training. Indeed, for a DropConnect layer, the output is given as [14]:

r = a((Z ◦ W )v) (1)

where ◦ is the elementwise product, a(·) is the adopted activation function, W
is the matrix of synaptic weights, v is the layer input vector, and r is the layer
output vector. Further, Z is a matrix of binary variables (indicators) encoding
the connection information, with

[Z]i,j ∼ Bernoulli(p) (2)

where p is a heuristically selected probability. Hence, DropConnect is a general-
ization of Dropout to the full connection structure of a layer [14].

Training of a DropConnect layer begins by selecting an example v, and draw-
ing a mask matrix Z from a Bernoulli(p) distribution to mask out elements of
both the weight matrix and the biases in the DropConnect layer. The parameters
throughout the model can be updated via stochastic gradient descent (SGD), or
some modern variant of it, by backpropagating gradients of the postulated loss
function with respect to the parameters. To update the weight matrix W in a
DropConnect layer, the mask is applied to the gradient to update only those ele-
ments that were active in the forward pass. Additionally, when passing gradients
down, the masked weight matrix Z ◦ W is used.

2.2 BBVI

In general, Bayesian inference for a statistical model can be performed either
exactly, by means of Markov Chain Monte Carlo (MCMC), or via approximate
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techniques. Variational inference is the most widely used approximate technique;
it approximates the posterior with a simpler distribution, and fits that distrib-
ution so as to have minimum Kullback-Leibler (KL) divergence from the exact
posterior [8]. This way, variational inference effectively converts the problem of
approximating the posterior into an optimization problem.

One of the significant drawbacks of traditional variational inference consists
in the fact that its objective entails posterior expectations which are tractable
only in the case of conjugate postulated models. Hence, recent innovations in
variational inference have attempted to allow for rendering it feasible even in
cases of more complex, non-conjugate model formulations. Indeed, recently pro-
posed solutions to this problem consist in using stochastic optimization, by form-
ing noisy gradients with Monte Carlo (MC) approximation. In this context, a
number of different techniques have been proposed so as to successfully reduce
the unacceptably high variance of conventional MC estimators. BBVI [12] is one
of these recently proposed alternatives, amenable to non-conjugate probabilistic
models that entail both discrete and continuous latent variables.

Let us consider a probabilistic model p(x,z) with observations x and latent
variables z, as well as a sought variational family q(z;φ). BBVI optimizes an
evidence lower bound (ELBO), with expression

log p(x) ≥ L(φ) = Eq(z;φ)[log p(x,z) − log q(z;φ)] (3)

This is performed by relying on the “log-derivative trick” [7,15] to obtain MC
estimates of the gradient. Specifically, by application of the identities

∇φq(z;φ) = q(z;φ)∇φlog q(z;φ) (4)

Eq(z;φ)[∇φlog q(z;φ)] = 0 (5)

the gradient of the ELBO (3) reads

∇φL(φ) = Eq(z;φ)[f(z)] (6)

where
f(z) = ∇φlog q(z;φ) [log p(x,z) − log q(z;φ)] (7)

The so-obtained MC estimator, based on computing the posterior expecta-
tions Eq(z;φ)[·] via sampling from q(z;φ), only requires evaluating the log-joint
distribution log p(x,z), the log-variational distribution log q(z;φ), and the score
function ∇φlog q(z;φ), which is easy for a large class of models. However, the
resulting estimator may have high variance, especially if the variational approxi-
mation q(z;φ) is a poor fit to the actual posterior. In order to reduce the variance
of the estimator, one common strategy in BBVI consists in the use of control
variates.

A control variate is a random variable that is included in the estimator,
preserving its expectation but reducing its variance. The most usual choice for
control variates, which we adopt in this work, is the so-called weighted score
function: Under this selection, the ELBO gradient becomes

∇φL(φ) = Eq(z;φ)[f(z) − �h(z)] (8)
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where the score function reads

h(z) = ∇φlog q(z;φ) (9)

while the weights � yield the (optimized) expression [12]

� =
Cov (f(z), h(z))

Var (h(z))
(10)

On this basis, derivation of the sought variational posteriors is performed by
utilizing the gradient expression (8) in the context of popular, off-the-shelf opti-
mization algorithms, e.g. AdaM [9] and Adagrad [4].

3 Proposed Approach

The output expression of a DropConnect++ layer is fundamentally similar to
conventional DropConnect, and is given by (1). However, DropConnect++ intro-
duces an additional hierarchical set of assumptions regarding the matrix of
binary (mask) variables Z = [zij ]i,j , which indicate whether a synaptic con-
nection is inferred to be on or off.

Specifically, as usual in hierarchical graphical models, we assume that the
random matrix Z is drawn from an appropriate prior; we postulate

p(Z|Π) =
∏

i,j

p(zij |πij) =
∏

i,j

Bernoulli(zij |πij) (11)

Subsequently, to facilitate further regularization for DropConnect++ layers
under a Bayesian inferential perspective, the prior parameters πij � p(zij = 1)
are imposed their own (hyper-)prior. Specifically, we elect to impose a Beta
hyper-prior, yielding

p(πij |α, β) = Beta(πij |α, β), ∀i, j (12)

Under this definition, to train a postulated DNN incorporating DropConnect++
layers, we need to resort to some sort of Bayesian inference technique. In this
paper, we resort to BBVI, as we explain next.

3.1 Training DNNs with DropConnect++ Layers

Let us consider a DNN the observed training data of which constitute the set
D = {dn}N

n=1. In case of a generative modeling scheme, each example dn is
a single observation, say xn, from the distribution we wish to model. On the
other hand, in case of a discriminative modeling task, each example dn is an
input/output pair, for instance dn = (xn,yn). In both cases, conventional DNN
training consists in optimizing a negative loss function, measuring the fit of the
model to the training dataset D. Such measures can be equivalently expressed
in terms of a log-likelihood function log p(D); under this regard, DNN training
effectively boils down to maximum-likelihood estimation [3,6].
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The deviation of a DNN comprising DropConnect++ layers from this simple
training scheme stems from obtaining appropriate posterior distributions over
the latent variables of DropConnect++, namely the binary indicator matrices of
synaptic connectivity, Z, as well as the associated parameters with hyper-priors
imposed over them, namely the matrices of (prior) parameters Π. To this end,
DropConnect++ postulates separate posteriors over each entry of the random
matrices Z, that correspond to each individual synapse, (i, j):

q(Z) =
∏

i,j

q(zij |π̃ij), with : q(zij |π̃ij) = Bernoulli(zij |π̃ij) (13)

Further, we consider that the matrices of prior parameters, Π, yield a factorized
(hyper-)posterior with Beta-distributed factors of the form

q(πij) = Beta(πij |α̃ij , β̃ij) (14)

Our construction entails a conditional log-likelihood term, log p(D|Z). This
is similar to a conventional DNN, with the weight matrices W at each
layer multiplied with the corresponding latent indicator (mask) matrices, Z
(in analogy to DropConnect). The corresponding posterior expectation term,
Eq(Z)[log p(D|Z)], constitutes part of the ELBO expression of our model. Unfor-
tunately, this term is analytically intractable due to the entailed nonlinear depen-
dencies on the indicator matrix Z, which stem from the nonlinear activation
function a(·). Following the previous discussion, we ameliorate this issue by
resorting to an efficient approximation obtained by drawing MC samples. The
so-obtained ELBO functional expression eventually becomes:

L(D) ≈ −
∑

i,j

KL
[
q(zij |π̃ij)||p(zij |πij)

]−
∑

i,j

KL
[
q(πij |α̃ij , β̃ij)||p(πij |α, β)

]

+
1

L

L,N∑

l,n=1

log p(dn|Z(l))

(15)

where L is the number of samples, Z(l) = [z(l)ij ]i,j and z
(l)
ij ∼ Bernoulli(zij |π̃ij).

This concludes the formulation of the proposed inferential setup for a
DNN that contains DropConnect++ layers. On this basis, inference is per-
formed by resorting to BBVI, which proceeds as described previously. Denoting
π̃ = (π̃ij)i,j , α̃ = (α̃ij)i,j , β̃ = (β̃ij)i,j , the used ELBO gradient reads

∇π̃,α̃,β̃,W L(D) ≈ 1

L

L,N∑

l,n=1

∇W log p(dn|Z(l)) −
∑

i,j

∇π̃,α̃,β̃KL
[
q(zij |π̃ij)||p(zij |πij)

]

−
∑

i,j

∇α̃,β̃KL
[
q(πij |α̃ij , β̃ij)||p(πij |α, β)

]

− �
∑

i,j

∇π̃,α̃,β̃ [log q(zij |π̃ij) + q(πij |α̃ij , β̃ij)]

(16)

where � is defined in (10). As one can note, we do not perform Bayesian infer-
ence for the synaptic weight parameters W . Instead, we obtain point-estimates,
similar to conventional DropConnect.
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3.2 Feedforward Computation in DNNs with DropConnect++
Layers

Computation of the output of a trained DNN with DropConnect++ layers, given
some network input x∗, requires that we come up with an appropriate solution
to the problem of computing the posterior expectation of the DropConnect++
layers output, say r∗.

Let us consider a DropConnect++ layer with input v∗ (corresponding to a
DNN input observation x∗); we have

r∗ = Eq(Z)[a((Z ◦ W )v∗)] (17)

This computation essentially consists in marginalizing out the layer synaptic
connectivity structure, by appropriately utilizing the variational posterior dis-
tribution q(Z), learned by means of BBVI, as discussed in the previous Section.
Unfortunately, this posterior expectation cannot be computed analytically, due
to the nonlinear activation function a(·).

This problem can be solved by approximating (17) via simple MC sampling:

r∗ ≈ 1
L

L∑

l=1

a((Z(l) ◦ W )v∗) (18)

where the Z(l) are drawn from q(Z). However, an issue such an approach suffers
from is the need to retain in memory large sample matrices {Z(l)}L

l=1, that may
comprise millions of entries, in cases of large-scale DNNs. To completely allevi-
ate such computational efficiency issues, in this work we opt for an alternative
approximation that reads

r∗ ≈ a((Π̃ ◦ W )v∗) (19)

where the matrix Π̃ = [π̃ij ]i,j is obtained from the model training algorithm,
described previously. Note that such an approximation is similar to the solution
adopted by Dropout [13], which undoubtedly constitutes the most popular DNN
regularization technique to date. We shall examine how this solution compares
to MC sampling in the experimental section of this work.

4 Experimental Evaluation

To empirically evaluate the performance of our approach, we consider a number
of supervised learning experiments, using the CIFAR-10, CIFAR-100, SVHN,
and NORB benchmarks. In all our experiments, the used datasets are normalized
with local zero mean and unit variance; no other pre-processing is implemented in
this work1. To obtain some comparative results, apart from our method we also
evaluate in our experiments DNNs with similar architecture but: (i) application
of no regularization technique; (ii) regularized via Dropout; and (iii) regularized
via DropConnect.
1 Hence, our experimental setup is not completely identical to that of related works,

e.g. [14]; these employ more complex pre-processing for some datasets.
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Table 1. Predictive accuracy (%) of the evaluated methods.

Method CIFAR-10 CIFAR-100 SVHN NORB

No regularization 74.47 41.96 90.53 90.55

Dropout 75.70 46.65 92.14 92.07

DropConnect 76.06 46.12 91.41 91.88

DropConnect++ 76.54 47.01 91.99 93.75

Table 2. Computational complexity per iteration at training time (L = 1).

#Method CIFAR-10 CIFAR-100 SVHN NORB

No regularization 9 s 10 s 15 s 5 s

Dropout 9 s 10 s 15 s 5 s

DropConnect 9 s 10 s 15 s 5 s

DropConnect++ 10 s 13 s 19 s 6 s

In all cases, we use Adagrad with minibatch size equal to 128. Adagrad’s
global stepsize is chosen from the set {0.005, 0.01, 0.05}, based on the network
performance on the training set in the first few iterations2. The units of all the
postulated DNNs comprise ReLU nonlinearities [11]. Initialization of the network
parameters is performed via Glorot-style uniform initialization [6]. To account
for the effects of random initialization on the observed performances, we repeat
our experiments 50 times; we report the resulting mean accuracies, and run the
Student’s-t statistical significance test to examine the statistical significance of
the reported performance differences.

Prediction generation using our method is performed by employing the effi-
cient approximation (19). The alternative approach of relying on MC sampling
to perform feedforward computation [Eq. (18)] is evaluated in Sect. 4.2. In all
cases, we set the prior hyperparameters of DropConnect++ to α = β = 1; this
is a convenient selection which reflects that we have no preferred values for the
priors πij . The Dropout and DropConnect rates are selected on the grounds of
performance maximization, following the selection procedures reported in the
related literature. Our source codes have been developed in Python, using the
Theano3 [2] and Lasagne4 libraries. We run our experiments on an Intel Xeon
2.5 GHz Quad-Core server with 64 GB RAM and an NVIDIA Tesla K40 GPU.

2 We have found that Adagrad allows for the best possible network regularization by
drawing just one sample per minibatch; that is, we use L = 1 at training time. This
alleviates the training costs of both DropConnect and DropConnect++. We train
all networks for 100 epochs; we do not apply L2 weight decay.

3 http://deeplearning.net/software/theano/.
4 https://github.com/Lasagne/Lasagne.

http://deeplearning.net/software/theano/
https://github.com/Lasagne/Lasagne
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CIFAR-10. The CIFAR-10 dataset consists of color images of size 32 × 32, that
belong to 10 categories (airplanes, automobiles, birds, cats, deers, dogs, frogs,
horses, ships, trucks). We perform our experiments using the available 50,000
training samples and 10,000 test samples. All the evaluated methods comprise a
convolutional architecture with three layers, 32 feature maps in the first layer, 32
feature maps in the second layer, 64 feature maps in the third layer, a 5×5 filter
size, and a max-pooling sublayer with a pool size of 3× 3. These three layers are
followed by a dense layer with 64 hidden units, regularized via Dropout, Drop-
Connect, or DropConnect++. The resulting performance statistics (predictive
accuracy) of the evaluated methods are depicted in the first column of Table 1.
As we observe, our approach outperforms all the considered competitors.

CIFAR-100. The CIFAR-100 dataset consists of 50,000 training and 10,000
testing color images of size 32 × 32, that belong to 100 categories. We retain this
split of the data into a training set and a test set in the context of our experi-
ments. The trained DNN comprises three convolutional layers of same architec-
ture as the ones adopted in the CIFAR-10 experiment, that are followed by a
dense layer comprising 512 hidden units. As we show in Table 1, our approach
outperforms all its competitors, yielding the best predictive performance. Note
also that the DropConnect method, which is closely related to our approach,
yields in this experiment worse results than Dropout.

SVHN. The Street View House Numbers (SVHN) dataset consists of 73,257
training and 26,032 test color images of size 32× 32; these depict house numbers
collected by Google Street View. We retain this split of the data into a training
set and a test set in the context of our experiments, and adopt exactly the same
DNN architecture as in the CIFAR-100 experiment. As we show in Table 1, our
method improves over the related DropConnect method.

NORB. The NORB (small) dataset comprises a collection of stereo images of
3D models that belong to 6 classes (animal, human, plane, truck, car, blank).
We downsample the images from 96 × 96 to 32× 32, and perform training and
testing using the provided dataset split. We train DNNs with architecture similar
to the one adopted in the context of the SVHN and CIFAR-100 datasets. As we
show in Table 1, our method outperforms all the considered competitors.

4.1 Computational Complexity

Another significant aspect that affects the efficacy of a regularization technique
is its final computational costs, and how they compare to the competition. To
allow for investigating this aspect, in Table 2 we illustrate the time needed to
complete one iteration of the training algorithms of the evaluated networks in our
implementation. As we observe, the training algorithm of our approach imposes
an 11%–30% increase in the computational time per iteration, depending on
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Table 3. Variation of the predictive accuracy (%) of the MC-driven approach (18)
with the number of MC samples.

#Samples, L CIFAR-10 CIFAR-100 SVHN NORB

1 74.57 43.28 91.32 90.04

30 75.95 46.33 91.70 90.78

50 76.01 46.33 91.72 91.04

100 76.01 46.54 91.78 91.41

500 76.36 46.94 91.78 91.58

the sizes of the network and the dataset. Note though that DNN training is an
offline procedure; hence, a relatively small increase in the required training time
is reasonable, given the observed predictive performance gains.

On the other hand, when it comes to using a trained DNN for prediction gen-
eration (test time), we emphasize that the computational costs of our approach
are exactly the same as in the case of Dropout. This is, indeed, the case due to
our utilization of the approximation (19), which results in similar feedforward
computations for DropConnect++ as in the case of Dropout.

4.2 Further Investigation

A first issue that requires deeper investigation concerns the statistical signif-
icance of the observed performance differences. Application of the Student’s-t
test on the obtained sets of performances of each method (after 50 experiment
repetitions from different random starts) has shown that these differences are sta-
tistically significant among all relevant pairs of methods (i.e. DropConnect++
vs. DropConnect, DropConnect++ vs. DropOut, and DropConnect++ vs. no
regularization); only exception is the SVHN dataset, where DropConnect++
and DropOut are shown to be of statistically comparable performance.

Further, in Table 3 we show how the predictive performance of DropCon-
nect++ changes if we perform feedforward computation via MC sampling, as
described in Eq. (18). As we observe, using only one MC sample results in rather
poor performance; this changes fast as we increase the number of samples. How-
ever, it appears that even with a high number of drawn samples, the MC-driven
approach (18) does not yield any performance improvement over the approxi-
mation (19), despite imposing considerable computational overheads.

Further, in Fig. 1(a) we illustrate predictive accuracy convergence; for demon-
stration purposes, we consider the experimental case of the CIFAR-10 bench-
mark. Our exhibition concerns both application of the approximate feedforward
computation rule (19), as well as resorting to MC sampling. We observe a clear
and consistent convergence pattern in both cases.

Finally, it is interesting to get a feeling of the values that take the inferred
posterior probabilities, π̃, of synaptic connectivity. In Fig. 1(b), we illustrate the
inferred values of π̃ for all the network synapses, in the case of the CIFAR-10
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experiment. As we observe, out of the almost 300 K synapses, around 50 K take
values less than 0.35, another 50 K take values greater than 0.6, while the rest
200 K take values approximately in the interval [0.4, 0.6]. This implies that, out
of the total 300 K postulated synapses, almost half of them are most likely to be
omitted during inference. Most significantly, this figure depicts that our approach
infers (in a data-driven fashion) which specific synapses are most useful to the
network (thus yielding relatively high values of π̃ij), and which should rather
be omitted. This is in contrast to existing approaches, which merely apply a
homogeneous, random omission/retention rate on each layer.

Fig. 1. (a) Accuracy convergence. (b) Inferred posterior probabilities, π̃.

5 Conclusions

In this paper, we examined whether there is a feasible way of performing DNN
regularization by marginalizing over network synaptic connectivity in a Bayesian
manner. Specifically, we sought to derive an appropriate posterior distribution
over the network synaptic connectivity, inferred from the data. To this end, we
imposed a sparsity-inducing prior over the network synaptic weights, where the
sparsity is induced by a set of Bernoulli-distributed binary variables. Further,
we imposed appropriate Beta (hyper-)priors over the parameters of the postu-
lated Bernoulli-distributed binary variables. Under this hierarchical Bayesian
construction, we obtained appropriate posteriors over the postulated binary
variables, which indicate which synaptic connections are retained and which or
dropped during inference. This was effected in an efficient and elegant fashion,
by resorting to BBVI. We performed an extensive experimental evaluation, using
several benchmark datasets. In most cases, our approach yielded a statistically
significant performance improvement, for competitive computational costs.
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Appendix

KL[q(zij |π̃ij)||p(zij |πij)
]

= π̃ij logπ̃ij + (1 − π̃ij)log(1 − π̃ij)
− π̃ijEq(πij)[logπij ] − (1 − π̃ij)Eq(πij)[log(1 − πij)]

(20)
KL

[
q(πij |α̃ij , β̃ij)||p(πij |α, β)

]
= logΓ (α̃ij + β̃ij) − logΓ (α̃ij) − logΓ (β̃ij)

+(α̃ij − α)Eq(πij)[logπij ] + (β̃ij − β)Eq(πij)[log(1 − πij)]
(21)

where:
Eq(πij)[logπij ] = ψ(α̃ij) − ψ(α̃ij + β̃ij) (22)

Eq(πij)[log(1 − πij)] = ψ(β̃ij) − ψ(α̃ij + β̃ij) (23)

Γ (·) is the Gamma function, and ψ(·) is the Digamma function.
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Abstract. Machine learning algorithms have been employed extensively
in the area of structural health monitoring to compare new measurements
with baselines to detect any structural change. One-class support vector
machine (OCSVM) with Gaussian kernel function is a promising machine
learning method which can learn only from one class data and then
classify any new query samples. However, generalization performance
of OCSVM is profoundly influenced by its Gaussian model parameter
σ. This paper proposes a new algorithm named Appropriate Distance to
the Enclosing Surface (ADES) for tuning the Gaussian model parameter.
The semantic idea of this algorithm is based on inspecting the spatial
locations of the edge and interior samples, and their distances to the
enclosing surface of OCSVM. The algorithm selects the optimal value of σ
which generates a hyperplane that is maximally distant from the interior
samples but close to the edge samples. The sets of interior and edge
samples are identified using a hard margin linear support vector machine.
The algorithm was successfully validated using sensing data collected
from the Sydney Harbour Bridge, in addition to five public datasets.
The designed ADES algorithm is an appropriate choice to identify the
optimal value of σ for OCSVM especially in high dimensional datasets.

Keywords: Machine learning · Structural health monitoring · One-class
support vector machine · Gaussian parameter selection · Anomaly
detection

1 Introduction

Structural health monitoring (SHM) is an automated process to detect the dam-
age in the structures using sensing data. It has earned a lot of interests in recent
years and has attracted many researchers working in the area of machine learn-
ing [6,9,17]. With the advances in the sensing technology, it is becoming more
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 42–57, 2017.
DOI: 10.1007/978-3-319-57454-7 4
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feasible to develop an approach for detection of structural damage based on the
information gathered from the sensor networks mounted to the structure [5]. The
focus now is to build a decision-making model that is able to detect damage on
the structure using sensor data. This can be solved using a supervised learning
approach such as a support vector machine (SVM) [2]. However, because of the
lack of available data from the damaged state of the structure in most cases, this
leads to the development of the OCSVM classification model [15]. The design of
OCSVM is well suited this kind of problems where only observations from the
positive (healthy) samples are required. Moreover, OCSVM has been extensively
used in the area of SHM for detecting different types of anomalies [3,8,11].

The rational idea behind OCSVM is to map the data into a high dimensional
feature space via a kernel function and then learn an optimal decision bound-
ary that separates the training positive observations from the origin. Several
kernel functions have been used in SVM such as Gaussian and polynomial ker-
nels. However, the Gaussian kernel function defined in Eq. (1) has gained much
more popularity in the area of machine learning and it has turned out to be
an appropriate setting for OCSVM in order to generate a non-linear decision
boundary.

K(xi, xj) = exp(−‖xi − xj‖2
2σ2

) (1)

This kernel function is highly affected by a free critical parameter called
the Gaussian kernel parameter denoted by σ which determines the width of the
Gaussian kernel. This parameter has a great influence on the construction of a
classification model for OCSVM as it controls how loosely or tightly the decision
boundary fits the training data. To demonstrate the effect of the parameter σ on
the decision boundary, we used a two-dimensional Banana-shaped data set. We
applied the OCSVM on the dataset using different values of parameter σ, and
then we plotted the resultant decision boundary of OCSVM for three different
values of σ as shown in Fig. 1. Comparing the lower and upper bounds of σ, it
can be clearly seen that the enclosing surface is very tight in Fig. 1a, while it is
loose in Fig. 1b. The optimal one is shown in Fig. 1c as the decision boundary
precisely describes the form of the data. At that point the issue is changed over
into how to estimate the suitability of the decision boundary.

Fig. 1. Illustrations for enclosing surfaces at different values of σ. (a) σ = 0.2. (b)
σ = 1.3. (c) σ = 0.8.

Several researchers have addressed the problem of selecting the proper value
of σ [4,16,18]. However, they are not considered as appropriate methods to be
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applied on high dimensional datasets. Furthermore, tuning the Gaussian kernel
for the OCSVM is still an open problem as stated by Tax and Duin [16] and
Scholkopf et al. [15].

This paper addresses the problem of tuning the Gaussian kernel parameter σ
in OCSVM to ensure the generalization performance of the constructed model to
unseen high dimensional data. Following the geometrical approach, we proposed
a Gaussian kernel parameter selection method which is implemented in two
steps. The first step aims to select the edge and interior samples in the training
dataset. The second step constructs OCSVM models at different settings of the
parameter σ and then we measure the distances from the selected edge-interior
samples to the enclosing surface of each OCSVM. Following these steps, we
can select the optimal value of σ which provides the maximum difference in the
average distances between the interior and edge samples to the enclosing surface.
The algorithm was validated using a real high dimensional data collected using a
network of accelerometers mounted underneath the deck on the Sydney Harbour
Bridge in Australia.

The rest of this paper is organized as follows: Sect. 2 briefly presents some
related work for tuning σ. The Gaussian kernel parameter selection method
is provided in Sect. 3. Section 4 presents experimental results using different
datasets. Section 5 presents some concluding remarks.

2 Related Work

Several methods have been developed for tuning the parameter σ in Gaussian
kernel function. For instance, Evangelista et al. [4] followed a statistics-based
approach to select the optimal value of σ using the variance and mean measures
of the training dataset. This method is known as VM measure which aims to
evaluate σ̂ by computing the ratio of the variance and the mean of the lower (or
upper) part of the kernel matrix using the following formula:

σ̂ = max
σ

(
v

m̄ + ξ
) (2)

where v is the variance, m is the mean and ξ is a small value in order to avoid
zero division. This method often generates a small value for σ̂ which results
in a very tight model that closely fits to a limited set of data points. Khazai
et al. [7] followed a geometric approach and proposed a method called MD to
estimate the optimal value of σ using the ratio between the maximum distance
between instances and the number of samples inside the sphere as in the following
equation:

σ2 =
dmax√− ln(δ)

(3)

where the appropriate value for δ is calculated by:

δ =
1

N(1 − ν) + 1
(4)
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This method often produces a large value of σ which yields to construct a
very simple and poor performance model especially when the training dataset
has a small number of samples. In this case, the value of the dominator term in
Eq. (3) (

√− ln(δ)) becomes small. Xiao et al. [18] proposed a method known as
MIES to select a suitable kernel parameter based on the spatial locations of the
interior and edge samples. The critical requirement of this method is to find the
edge-interior samples in order to calculate the optimal value of σ. The authors in
[18] adopted the Border-Edge Pattern Selection (BEPS) method proposed by Li
and Maguire [10] to select the edge-interior samples. This method performs well
in selecting edge and interior samples when the data exists in a low dimensional
space. However, it failed completely when it dealt with very high dimensional
datasets where all the samples are selected as edge samples.

In this paper, we propose a method for tuning the Gaussian kernel parameter
following a geometrical approach by introducing a new objective function and a
new algorithm, inspired by [1], for finding the edge-interior samples of datasets
exist in high dimensional space.

3 Gaussian Kernel Parameter Selection Method

The idea of the ADES method is based on the spatial locations of the edge and
interior samples relative to the enclosing surface. The geometric locations of edge-
interior samples with respect to the hyperplane plays a significant role in judging
the appropriateness of the enclosing surface. In other words, the enclosing surface
of OCSVM is very close to the interior samples when it has tightly fitted the
data (as shown in Fig. 1a), and it is very far from the interior and edge samples
when it is loose (as shown in Fig. 1b). However, the enclosing surface precisely
fits the form of the data in Fig. 1c where the enclosing surface is far from the
interior sample but at the same time is very close to the edge ones. This situation
is turned up to be our objective in selecting the appropriateness of the enclosing
surface. Therefore, we proposed a new objective function f(σi) described in
Eq. (5) to calculate the optimal value of σ̂ = argmax

σi

(f(σi)).

f(σi) = mean(dN (xn)xn∈ΩIN
) − mean(dN (xn)xn∈ΩED

) (5)

where ΩIN and ΩED, respectively, represent the sets of interior and edge samples
in the training positive data points, and dN is the normalized distance from these
samples to the hyperplane. This distance can be calculated using the following
equation:

dN (xn) =
d(xn)
1 − dπ

(6)

where dπ is the distance of a hyperplane to the origin described as dπ = ρ
‖w‖ ,

and d(xn) is the distance of the sample xn to the hyperplane obtained using the
following equation:
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d(xn) =
f(xn)
‖w‖ =

∑sv
i=1 αik(xi, xn) − ρ.

√∑n
ij αiαjK(xi, xj)

(7)

where w is a perpendicular vector to the decision boundary, α are the Lagrange
multipliers and ρ known as the bias term.

The aim of this objective function is to find the hyperplane that is maxi-
mally distant from the interior samples but not from the edge samples. In this
new objective function, we use the average distances from the interior and edge
samples to the hyperplane in order to reduce the effect of improper selection pos-
sibility of the interior and edge samples in high dimensional space datasets. The
key point of this method now is how to identify the interior and edge samples
in a given high dimensional dataset. Therefore, we propose a new method based
on linear SVM to select the interior and edge samples in high dimensional space.
This algorithm is described as follows: given a dataset of xi(i = 1, . . . , n), the
unit vector of each point xi with its k closest points xj is computed as follows:

vk
j =

xj − xi

‖xj − xi‖ (8)

Then we employ a hard margin linear SVM to separate vk
j , the closest points

to xi, from the origin by solving the OCSVM optimization problem of the
obtained unit vectors in Eq. (8). Once we get the optimal solution αj , j = 1, . . . , k
and calculating ρ, we estimate the value of the decision function using,

f(vj) =
sv∑

i=1

αivi.vj − ρ. (9)

The next step is to evaluate the optimization of the constructed linear
OCSVM using the following equation

si =
1
k

k∑

j=1

f(vj) > 0 (10)

where si represents the success accuracy rate of the model. If all the closest
points vk

j are successfully separated from the origin, then we count xi as an
edge sample. This approach may end up with a few number of edge samples.
Therefore, we have used a threshold 1 − γ (γ is a small positive parameter), to
control the number of edge samples by setting up a percentage of the acceptable
success rate for each sample xi to be an edge sample. For γ = 0.05, if 95% of the
closest points to a sample xi are successfully separated from the origin, then the
sample xi can be added to the edge sample set ΩED. We have also extended this
method to select the interior samples based on the furthest neighbours of the
edge samples. The assumption made is that the furthest neighbour samples to
the edge sample should be added to the interior sample set ΩIN . This method
is presented in Algorithm 1.
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Algorithm 1. Edge-interior samples selection method.
Input: A set of n positive samples x = {xi}n

i=1

For each sample xi in x
Find the k closest points to xi: xj , j = 1, . . . , k.
Calculate the unit vectors vk

j of xj according to (8).
Separate vk

j from the origin using a hard margin linear OCSVM.
Calculate the decission values of vk

j according to (9).
Calculate si according to (10).
If si ≥ 1 − γ, then xi and xjk are added to ΩED and ΩIN , respectively.

Output: ΩED and ΩIN .

The algorithm starts with the entire set of positive samples. Two parameters
are used in this algorithm; k, the number of the nearest neighbours which has
been thoroughly studied by [10] and they set k = 5 ln n, where γ take values in
the range [0, 0.1].

Once the edge and interior samples are identified, we start optimizing our
objective function presented in Eq. 5. The complete proposed method of ADES
is presented in Algorithm 2.

Algorithm 2. Gaussian kernel parameter selection method.
Input: A set of n positive samples x = {xi}n

i=1

1. Obtain the sample sets ΩED and ΩIN using Algorithm 1.
2. Generate a candidate set σi (i = 1, . . . , m.)for parameter σ in the form of

[dmin, dmax].
3. For each σi.

Solve the optimization problem for OCSVM, that is, πi (hyperplane).
Calculate the normalized distances from samples in ΩED and ΩIN to πi

according to (6).
Calculate the objective function value f(σi) according to (5).

4. Select the biggest value f(σi) as the optimal value σ̂.

Output: the optimal kernel parameter σ̂.

4 Experimental Results

Three experiments were carried to evaluate the performance of our proposed
algorithm. We initially applied our method on two-dimensional toy datasets
as it allows us to visually observe the performance of OCSVM by plotting its
decision boundary. The performance was also tested on benchmark datasets that
allows us to objectively compare our obtained results to the previously published
ones. The final experiments were applied on datasets obtained from an actual
structure, the Sydney Harbour Bridge, to demonstrate the ability of the proposed
algorithm to detect damage in steel reinforced concrete jack arches.
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4.1 Experiments on Artificial Toy Datasets

Three toys, {Round, Banana and Ring}-shaped, datasets were used in this
section to visualize the performance of our method. The R package mlbench was
used in order to generate these different geometric shaped datasets that vary
in their characteristics. Figure 2 shows the selected edge and interior samples
denoted by red “�” and green “�”, respectively. As it can be clearly observed
that the proposed edge samples selection method has the ability to select the
edge samples especially on the Ring-shaped dataset while the inner edge samples
play a significant role in constructing the decision boundary.

Fig. 2. Selected edge and interior samples: (a) Banana-shaped (b) Ring-shaped (c)
Round-shaped. (Color figure online)

Figures 3 and 4 show the resultant decision boundary of each toy dataset. The
enclosed surface of ADES method shown in each sub Figs. {3-4}(a) precisely fit
the shape of each toy dataset without suffering from the overfitting nor the
under-fitting problems. The MD and VM methods generate a loosely and tight
decision boundary, respectively. The same results appeared with the Ring-shaped
dataset (referring to Figs. 4(c) and (d)). The MIES method works well on the
Banana-shaped dataset but failed in finding the optimal decision boundary in
the Ring-shaped dataset. All the methods successfully enclosed the surface of
the Round-shaped dataset with an optimal fitted decision boundary.

Fig. 3. Performance on the Banana-shaped dataset: (a) ADES (b) MIES (c) MD (d)
VM.

Fig. 4. Performance on the Ring-shaped dataset: (a) ADES (b) MIES(c) MD (d) VM.
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4.2 Experiments on Benchmark Datasets

We further investigated the performance of our method using five publicly avail-
able datasets downloaded from the machine learning repository1. These datasets
were previously used in previous related studies [18,19]. The main characteristics
of these datasets are summarized in Table 1. Each dataset has been pre-processed
using the following procedure:

1. Label the class with a large number of samples as positive and the others as
negative.

2. Randomly select 80% of the positive samples for training and 20% for testing
in addition to the samples in the negative classes.

3. Normalize the training data to zero mean and unity variance.
4. Normalize the test data based on the mean and variance of the relating train-

ing dataset.

Table 1. Details of machine learning repository datasets.

Dataset Dim Positive Negative

Breast 9 444 239

Heart 13 137 160

Survival 3 225 81

Diabetes 8 500 268

Sonar 60 111 97

Biomed 5 200 145

For each dataset, we generated 20 bootstrap samples from the training
dataset to train OCSVM with σ parameter to be selected using Algorithm 2
and ν = 0.05 for all tests. Once we construct the OCSVM model, we evaluate its
classification performance on the test dataset and calculate the accuracy using
g-mean metric defined as

g-mean =
√

TPR+ × TNR− (11)

where TPR and TNR are the true positive rate and the true negative rate,
respectively. Table 2 shows the classification performance comparison between
ADES and the other methods described in Sect. 2. As shown in Table 2, the
average g-mean of our method outperformed the other state-of-the-art methods
on four datasets. ADES performed better than MIES algorithm on four datasets
and generated a comparable result on the Biomed dataset. We can also notice
that no results were reported in Table 2 for MIES method on the Sonar dataset.
This is due to the fact that MIES algorithm does not work on high dimensional
dataset where all the training data points are selected as edge samples.

1 http://archive.ics.uci.edu/ml/datasets.html.

http://archive.ics.uci.edu/ml/datasets.html
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Table 2. Optimal values of σ selected by different methods for the benchmark datasets
along with g-means, TPR and FPR.

Dataset Method σ g-mean TPR FPR

Breast ADES 11.78 0.96 0.93 0.03

MD 9.19 0.94 0.92 0.03

VM 0.40 0.54 0.29 0.00

MIES 2.43 0.93 0.86 0.00

Heart ADES 7.07 0.73 0.75 0.29

MD 3.97 0.62 0.96 0.60

VM 0.15 0.00 0.00 0.00

MIES 2.40 0.69 0.75 0.35

Sonar ADES 4.95 0.76 0.70 0.17

MD 8.84 0.61 0.73 0.50

VM 0.20 0.00 0.00 0.00

MIES — — — —

Diabetes ADES 5.56 0.71 0.64 0.22

MD 5.87 0.40 0.92 0.83

VM 0.21 0.68 0.55 0.15

MIES 1.96 0.66 0.70 0.38

Biomed ADES 3.22 0.83 0.82 0.16

MD 4.52 0.78 0.79 0.22

VM 0.30 0.00 0.00 0.00

MIES 2.85 0.85 0.83 0.13

Further, it was observed from the results that the MD method achieves high
classification accuracy on the positive samples represented by the value of the
TPR, and low accuracy on the negative samples represented by the FPR mea-
surement. This is what we anticipated discovering from the MD method based
on the decision boundary resulted from the toy datasets. The same expectation
with the VM method which achieves a high accuracy on the negative samples but
a very low TPR. These findings also reflect what we have obtained using the toy
datasets. Further, the VM method selects a very small value of σ when applied to
the Heart and Sonar datasets. These small values lead to over-fit in the OCSVM
model which completely failed to classify positive samples in the test datasets.
This explains why we can see zero values for FPR and g-means. According to
these results in Table 2, ADES has the capability to select the optimal value
of σ without causing the OCSVM model neither to over-fit nor to under-fit.
Moreover, ADES can work on high dimensional datasets while still being able to
select the edge and interior samples which are crucial for the objective function
presented in Eq. 5.
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4.3 Case Studies in Structural Health Monitoring

This work is part of the efforts to apply SHM to the iconic Sydney Harbour
Bridge. This section presents two case studies to illustrate how OCSVM using
our proposed method for tuning sigma is capable to detect structural damage.
The first case study was conducted using real datasets collected from the Sydney
Harbour Bridge and the second case study is a reinforced concrete cantilever
beam subjected to increasingly progressive crack which replicates one of the
major structural components in the Sydney Harbour Bridge.

Case Study I: Sydney Harbour Bridge.

Experiments Setup and Data Collection. Our main experiments were conducted
using structural vibration based datasets acquired from a network of accelerom-
eters mounted on the Sydney Harbour Bridge. The bridge has 800 joints on the
underside of the deck of the bus lane. However, only six joints were used in
this study (named 1 to 6) as shown in Fig. 5. Within these six joints, only joint
number four was known as a cracked joint [13,14]. Each joint was instrumented
with a sensor node connected to three tri-axial accelerometers mounted on the
left, middle and right side of the joint, as shown in Fig. 5. At each time a vehicle
passes over the joint, defined as event, it causes vibrations which are recorded
by the sensor node for a period of 1.6 s at a sampling rate of 375 Hz. An event
is triggered when the acceleration value exceeds a pre-set threshold. Hence, 600
samples are recorded for each event. The data used in this study contains 36952
events as shown in Table 3 which were collected over a period of three months.
For each reading of the tri-axial accelerometer (x,y,z), we calculated the magni-
tude of the three vectors and then the data of each event is normalized to have
a zero mean and one standard variation. Since the accelerometer data is repre-
sented in the time domain, it is noteworthy to represent the generated data in
the frequency domain using Fourier transform. The resultant six datasets (using
the middle sensor of each joint) has 300 features which represent the frequencies
of each event. All the events in the datasets (1, 2, 3, 5, and 6) are labeled positive
(healthy events), where all the events in dataset 4 (joint 4) are labeled negative
(damaged events). For each dataset, we randomly selected 70% of the positive
events for training and 30% for testing in addition to the unhealthy events in
dataset 4.

Fig. 5. Evaluated joints on the Sydney Harbour Bridge.
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Table 3. Number of samples in each joint of the bridge dataset.

Dataset Number of samples Training Test

Joint 1 6329 4430 1899

Joint 2 7237 5065 2172

Joint 3 4984 3488 1496

Joint 4 6886 0 6886

Joint 5 6715 4700 2015

Joint 6 4801 3360 1441

We trained the OCSVM for each joint (1, 2, 3, 5 and 6) using different values
of the Gaussian parameter calculated using the three methods ADES, MD and
VM. The MIES method was not used here because it does not work in high
dimensional datasets.

Table 4. Optimal selection of the σ values based on different methods using the bridge
datasets along with g-means, TPR and FPR.

Dataset Method σ g-means TPR FPR

Joint 1 ADES 18.5 0.986 0.984 0.01

MD 22.3 0.960 0.930 0.02

VM 14.5 0.02 0.001 0.00

Joint 2 ADES 16.3 0.978 0.976 0.02

MD 28.6 0.958 0.968 0.05

VM 11.1 0.04 0.001 0.00

Joint 3 ADES 23.4 0.983 0.977 0.02

MD 28.8 0.962 0.937 0.06

VM 16.6 0.043 0.001 0.00

Joint 5 ADES 25.3 0.951 0.950 0.03

MD 27.4 0.930 0.890 0.04

VM 16.5 0.038 0.001 0.00

Joint 6 ADES 22.3 0.969 0.973 0.03

MD 28.8 0.965 0.882 0.02

VM 15.4 0.037 0.001 0.00

Results and Discussions. This section presents the classification performance of
the OCSVM for each of the parameter selection methods. As shown in Table 4,
the ADES method significantly outperformed the other two methods on the
six experimented joints. The average g-mean value of ADES was equal to 0.971
compared to MD and VM, with their average values being 0.943 and 0.04, respec-
tively. The VM method performed badly on the five joints due to the generation
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Table 5. Average values of g-means, TPR and FPR over the five bridge datasets.

ADES MD VM

TPR 0.961 0.921 0.001

FPR 0.022 0.038 0.00

g-means 0.971 0.943 0.04

p-value — 0.01 2e−13

of a small value of σ which yields to over-fit the OCSVM model. It can be clearly
noticed in the results presented in Table 4 where the FPR of the VM method was
equal to zero which means that the model was able to fully predict the negative
samples but completely failed in predicting the positive ones. With respect to the
MD method, it is known from our discussion and experiments in Sect. 4.1 that
MD often generates a large value of σ which yields to produce a loose decision
boundary. As we expected, MD behaved similarly as it can be seen from Table 4
but with better results, since the number of samples was very large in these
experiments which results in producing a small value of σ for the MD method.
However, the values of FPR for the MD method are still consistently higher than
ADES.

We further investigated the classification performance among the three meth-
ods by conducting a paired t-test (ADES vs MD and ADES vs VM) to determine
whether the differences in the g-means between ADES and the two other meth-
ods are significant or not. The p-values were used in this case to judge the degree
of the performance improvement. The paired t-test of ADES vs MD resulted in
a p-value of 0.01 which indicates that the two methods do not have the same
g-means values and they were significantly different. As shown in Table 5, the
average g-means value of ADES is 0.971 compared to MD which has a mean
value equal to 0.943. This indicates a statistical classification improvement of
ADES over MD. The same t-test procedure was used to compare the classifica-
tion performance of ADES and VM. The t-test generated a very small p-value
of 2e−13 which indicates a very large difference between the two approaches.
The average g-means value indicates that ADES significantly outperformed VM
method and suggests not to consider VM method in the next experiments.

Case Study II: A Reinforced Concrete Jack Arch.

Experiments Setup and Data Collection. The second case study is a lab specimen
which was replicated a jack arch from the Sydney Harbour Bridge. A reinforced
concrete cantilever beam with an arch section was manufactured and tested as
shown in Fig. 6 [12]. Ten accelerometers were mounted on the specimen to mea-
sure the vibration response resulting from impact hammer excitation. A data
acquisition system was used to capture the impact force and the resultant accel-
eration time histories. An impact was applied on the top surface of the specimen
just above the location of sensor A9. A total of 190 impact test responses were
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collected from the healthy condition. A crack was later introduced into the spec-
imen in the location marked in Fig. 6 using a cutting saw. The crack is located
between sensor locations A2 and A3 and it is progressively increasing towards
sensor location A9. The length of the cut was increased gradually from 75 mm
to 270 mm, and the depth of the cut was fixed to 50 mm. After introducing each
damage case (four cases), a total of 190 impact tests were performed on the
structure in the location prescribed earlier.

Fig. 6. Test specimen: intact structure with arrow indicating the cut location

Classification performance evaluation was carried out in the same way that
was performed for the previous case study. The resultant 5 datasets has 950
samples separated into two main groups, Healthy (190 samples) and Damaged
(760 samples). Each sample was measured for vibration responses resulted in a
feature vectors with 8000 attributes representing the frequencies of each sample.
The same scenario was applied here where the damaged cases were sub-grouped
into 4 different damaged cases with 190 samples each.

Results and Discussions. In this section the classification results obtained using
the OCSVM algorithm are presented for each of the parameter selection meth-
ods. Two sensors were used in this study, A1 and A4. As we mentioned in the
above section, this dataset has four different levels of damage. The first level of
damage, that is Damage Case 1, is very close to the healthy samples. This will
allow us to thoroughly investigate the performance of the parameter selection
methods considering the issues of under fitting and over-fitting. Table 6 shows
the obtained results of each of the damage cases using sensors A1 and A4, respec-
tively. Considering Damage Case 1 dataset, the results obtained by ADES are
promising in comparison to MD. Although the samples in these dataset have a
minor damage, ADES generated an optimal OCSVM hyperplane that was able
to detect 80% of the damaged samples using sensors A1 and A4. 95% and 100%
of the healthy samples were successfully classified using sensors A1 and A4,
respectively. These results reveal the appropriateness of the generated enclosing
surface of OCSVM using ADES. MD, on the other hand, detected only 43% of
the damaged samples using A1 sensor, and 63% using A4 sensor. These results
again reflect the general behavior of the MD method which often generates a
loose OCSVM model. The results were improved with Damage Case 2 dataset
where the severity of damage is not as close to the healthy samples. ADES also
performs better than MD where the FPRs are 0.12 and 0.03 using A1 and A4,
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respectively. Both methods have similar performance on the two datasets, Dam-
age Case 3 and Damage Case 4. MD performed well in these cases because the
data points in these datasets were very far from the healthy samples.

Table 6. Optimal values of σ selected by different methods using specimen datasets
(A1) along with g-means, TPR and FPR.

Sensor A1 Sensor A4

Dataset Method σ g-means TPR FPR σ g-means TPR FPR

Damage case 1 ADES 42.2 0.87 0.95 0.20 41.8 0.89 1 0.20

MD 57.8 0.64 0.95 0.57 56.1 0.79 1 0.37

Damage case 2 ADES 38.2 0.93 0.98 0.12 41.5 0.98 1 0.03

MD 55.5 0.88 0.97 0.24 54.2 0.95 1 0.08

Damage case 3 ADES 42.7 0.94 0.89 0.00 37.3 1 1 0.00

MD 53.3 0.94 0.89 0.00 51.8 1 1 0.00

Damage case 4 ADES 42.7 0.94 0.89 0.00 41.7 1 1 0.00

MD 57.7 0.94 0.89 0.00 56.6 1 1 0.00

5 Conclusions

The capability of OCSVM as a warning system for damage detection in SHM
highly depends upon the optimal value of σ. This paper has proposed a new algo-
rithm called ADES to estimate the optimal value of σ from a geometric point of
view. It follows the objective function that aims to select the optimal value of σ so
that a generated hyperplane is maximally distant from the interior samples but
at the same time close to the edge samples. In order to formulate this objective
function, we developed a method to select the edge and interior samples which
are crucial to the success of the objective function. The experimental results on
the three 2-D toy datasets showed that the ADES algorithm generated optimal
values of σ which resulted in an appropriate enclosing surface for OCSVM that
precisely fitted the form of the three different shape datasets. Furthermore, the
experiments on the five benchmark datasets demonstrated that ADES has the
capability to work on high dimensional space datasets and capable of selecting
the optimal values of σ for a trustworthy OCSVM model. We have also con-
ducted our experiments on the bridge datasets to evaluate the performance of
the OCSVM model for damage detection. Our ADES method performed well
on these datasets and promising results were achieved. We obtained a better
classification result on the five joint datasets with a low number of false alarms.

Overall, ADES algorithm for OCSVM classifier was superior in accuracy to
VM, MD and MIES on the toy datasets, five publicly available learning datasets
and Sydney Harbour Bridge datasets.
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Abstract. With the popularity of the Internet and crowdsourcing, it
becomes easier to obtain labeled data for specific problems. Therefore,
learning from data labeled by multiple annotators has become a com-
mon scenario these days. Since annotators have different expertise, labels
acquired from them might not be perfectly accurate. This paper derives
an optimization framework to solve this task through estimating the
expertise of each annotator and the labeling difficulty for each instance.
In addition, we introduce similarity metric to enable the propagation of
annotations between instances.

Keywords: Noisy labeler · Crowdsourcing

1 Introduction

With the emerging of social networks and web services, it becomes popular to
exploit crowdsourcing to obtain annotations of instances through online services
such as Amazon Mechanical Turk (AMT)1 for training a classification model.
Although it is easy to obtain labels this way, those labels often come from imper-
fect labelers whose expertise toward the assigned task may vary significantly.
Such noisy annotations can affect the performance of a traditional supervised
machine learning model, which assumes all the training labels are reliable.

To address this issue, previous works [1–3] proposed a probabilistic
framework to estimate the annotation quality from each annotator. One main
disadvantage of such framework is that it fails to consider the feature-based simi-
larities between instances. Moreover, they rely on certain predefined distribution
to model annotator’s expertise, which is often challenged in real scenario.

Instead of probabilistic framework, this paper proposes a novel optimization
framework, which relaxes the predefined assumption of annotator’s expertise
toward instances. Our method further captures the similarity information shared
among instances in feature space to yield a more effective solution. Our task can

H.-E. Sung and C.-K. Chen—denotes equal contribution.
1 https://www.mturk.com/mturk/welcome.
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be represented using Fig. 1. On the left side of this figure, we are obtaining a set
of training instances i1 to i3, and each instances is labelled by every annotator
from u1 to u3. The spirit of our proposed optimization framework is shown as the
right figure of Fig. 1. It not only learns the annotator-instance confidence (dashed
line) but also acquires the instance-instance relationship in feature space (solid
line) to improve the performance.

The main contribution of this paper can be summarized as follows.

1. We introduce a novel framework that enables the propagation of annotations
between instances. It relaxes the probabilistic distribution presumption on
annotators’ expertise as well as the independence assumption between anno-
tations, which are usually required by probabilistic models.

2. Our model learns the latent variables to capture the expertise of each annota-
tor and the labeling difficulty of each instance, which are essential information
for most active learning frameworks.

3. We have conducted experiments on several datasets to verify our model.

Fig. 1. Black nodes and white nodes represent annotators and instances, respectively.
Dashed arrow that links one black node and one white node indicates the annotator-
instance relationship; whereas, solid line that links two white nodes represents the
instance-instance relationship.

The organization of this work is listed as follows. We first introduce the
related works in Sect. 2. The formal problem definition and the derivation of our
learning model are introduced in Sect. 3. In Sect. 4, we show the performance of
our model on both simulated and real annotation datasets. We finally summarize
this paper and propose future works in Sect. 5.

2 Related Work

There are mainly two kinds of scenarios for modeling multiple-annotator prob-
lems, and various algorithms solve either of them with different motivations.
One of the prevalent frameworks tries to detect malicious annotators in order to
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remove or flip their responses; while the other models rank the expertise of each
annotator and re-weight the annotation results based on the ranking.

For the first scenario, two-coin model for annotators was proposed in [2,4]
to detect potential malicious annotators, which is also known as MAP-ML algo-
rithm. A classification model with weighting matrix w is obtained during model
learning and the label of each instance with feature xi equips the probability
σ(wTxi) of being true, where σ(·) is the sigmoid function. Each annotator flips a
coin with bias αi as sensitivity if the label is predicted true; whereas a coin with
bias βi as specificity is flipped if the label is predicted false. Under this frame-
work, nasty annotations will be flipped automatically during model learning.
In his later work [5], it further defines a criterion to evaluate spammer during
learning process. These two works implicitly assume that the sensitivity and
specificity of each annotator are independent from instances and they neglect
the possibility that one annotator might equip varied levels of expertise toward
different instances, which is often challenged in real world applications.

For the second scenario, [3] uses Gaussian Mixture Model combined with
MAP-ML (known as GMM-MAPML) to evaluate annotator performances. Later
works in [6,7] further define a specific threshold to eliminate low-quality anno-
tations during model learning. Another model proposed in [1] and his later
extended learning and active learning works [8–12] use a probabilistic model
p(y(u)

i |xi, zi) to learn annotations provided by different annotators, where zi is
the ground truth, xi is the feature vectors, and y

(u)
i is the label of instance i given

by annotator u. Apart from the first scenario, it assumes that each annotator
has varied levels of expertise toward different kinds of problems, which implies
p(y(u)

i |xi, zi) �= p(y(u)
i |zi). The labeling expertise from u to i can be calculated

through Logistic Regression with Bernoulli or Gaussian model.
The above-mentioned methods rely on two strong assumptions: annotator

expertise follows predefined distribution and annotation processes are indepen-
dent with one another. In our work, we relax these two assumptions and further
integrate the similarity relationship between instances into our model. We also
notice that some recent works [13,14] address the similar problem as ours. How-
ever, one main difference is that their work focus on active learning while ours
is to design a new learning framework.

3 Methodology

To convey our idea, we formally define the problem in Sect. 3.1. In Sect. 3.2, we
propose our learning model with detailed derivations.

3.1 Problem Definition

This paper mainly focus on the binary classification task, and leave multi-class
one as our future work. We consider a dataset with n instances X = {x1, ...,xn},
where xi is a d dimensional feature vector for instance i, i.e. xi ∈ R

d. Each
instance i is assumed to be annotated by arbitrary number of annotators u with
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label y
(u)
i ∈ {0, 1}, while we mainly follow the settings in [1] to consider full

annotations in our following experiments.
The goal is to learn a model to predict each instance label by aggregating

labels provided by all annotators toward all instances. Since the annotations are
noisy, here we want to exploit the item similarity for a more robust model. For
instance, if we want to predict the label ŷ1 in Fig. 1, not only annotations toward
instance 1 but also annotations toward instance 2 and 3 are taken into account,
weighted by corresponding similarity between those items. The propagation of
annotations weighted by similarity relationships is motivated by neighbor-based
algorithm that similar instances are more likely to share similar annotations.

3.2 Learning Model

To model the annotator-instance relationship and the similarity relationship, we
introduce two latent variables that will be jointly updated during optimization.
One is the difficulty denoted as dft ∈ R, which is used to model the labeling
difficulty: the more difficult in labeling an instance, the higher it is. The other
one is the expertise vector denoted as expt ∈ R

d, which is designed to convey
the annotator expertise toward one instance. We model the annotator’s expertise
as a vector instead of a scalar because the annotator might have varied level of
expertise toward different instances. We then define the task as minimizing an
objective function f (Eq. 1), which consists of 4 components corresponding to 4
hypotheses as will be described later.

f = α · h1 + β · h2 + γ · h3 + δ · h4, (1)

where α, β, γ, δ are hyperparameters chosen based on cross validation on each
dataset. To simplify the notation, we denote sigmoid function as S(·). Intuitively,
we also use 1 − S(dft) instead of S(dft) to represent how easy it is to label such
instance in following hypotheses.

Hypothesis 1 (h1): similar instances should share the same annota-
tion, unless they are difficult to be classified

To model the similarity relationship between instances, we compute the similar-
ity score Ri,j by euclidean distance in feature space and map them into [0, 1] by
e−|xi−xj |2 . The larger Ri,j indicates i and j are more similar to each other. The
prediction ŷ is a real value, which is mapped into [0, 1] through S(·). Naively, we
set 0.5 as the threshold for label 0 and 1. With the introduction of Ri,j , ŷ and
dft, we can write down our first hypothesis as follows.

h1(dfti, ŷi) :=
∑

i,j

Ri,j · (S(ŷi) − S(ŷj))
2 · ((1 − S(dfti)) + (1 − S(dftj))) (2)

The equation shows that for any given pairs of prediction outcomes, if they
are similar (i.e. large Ri,j), then their prediction shall less likely to be different,
unless they are considered as instances that are not easy to be classified (repre-
senting by small latent variables 1−S(dfti)). In other words, the predicted label



62 H.-E. Sung et al.

of an instance j can be more easily propagated to another instance i if they are
similar and assumed to be classified easier. There are actually multiple ways to
represent the joint easiness measurement 1 − S(dft), while we find that simple
summation is effective through the experiments.

Hypothesis 2 (h2): the model shall trust labelers whose expertise
matches the instance better

This hypothesis assumes the quality of annotation depends on how the expertise
of annotators matches the instances to be announced. We assume a latent vector
exptu is used to represent the annotator’s expertise, and its inner product with
an instance shows the confidence of this annotator toward this specific instance.
With these factors, we model the annotations as Eq. (3):

h2(expt, dfti, ŷi) :=
∑

u,i

(
S(ŷi) − y

(u)
i

)2

· (S(exptᵀu · xi) + (1 − S(dfti))) . (3)

For any given pair of annotated label y
(u)
i and predicted label ŷi, the model

will favor one with higher annotator’s confidence and lower instance difficulty by
minimizing Eq. (3). Our model leverages the annotator’s confidence toward each
instance, and downplays the ones without sufficient confidence during learning.

Hypothesis 3 (h3): instances are generally not difficult to be classified

Model with only terms h1 and h2 have the tendency to maximizes the instance
difficulty, which will inevitably reduce the amount of information that can be
used to make the final prediction ŷi. Thus, we add summation of reciprocal of
1 − S(dft) as regularization term to our model that encourages our model to
reduce its belief to the difficulty of each instance.

h3(dfti) :=
∑

i

(1 − S(dfti))−1 (4)

Hypothesis 4 (h4): each annotator’s expertise vector should be
smooth

To avoid overfitting, we need to constraint the annotator’s expertise vector exptu
as a regularization term.

h4(expt) :=
∑

u

‖exptu‖22 (5)

Put everything together. The objective function to be minimized looks like:

f(exptu, dfti, ŷi)

= α ·
⎛

⎝
∑

i,j

Ri,j · (S(ŷi) − S(ŷj))
2 · ((1 − S(dfti)) + (1 − S(dftj)))

⎞

⎠
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+ β ·
⎛

⎝
∑

u,i

(
S(ŷi) − y

(u)
i

)2

· (S(exptᵀu · xi) + (1 − S(dfti)))

⎞

⎠

+ γ ·
(

∑

i

(1 − S(dfti))−1

)
+ δ ·

(
∑

u

‖exptu‖22
)

(6)

We can infer annotations for each instance by jointly update the latent parame-
ters to minimize the object. We apply gradient descent to get the local optima
of exptu, dfti, and ŷi. The update formulas are listed as follow:

– Update formula for annotator expertise

∂f

∂exptu
= S(exptᵀu · xi) · (1 − S(exptᵀu · xi))

·β ·
(

∑

i

(
S(ŷi) − y

(u)
i

)2

· xi

)
+ 2 · δ · exptu. (7)

– Update formula for instance difficulty

∂f

∂dfti
= −S(dfti) · (1 − S(dfti)) ·

⎡

⎣α ·
⎛

⎝
∑

i,j

Ri,j · (S(ŷi) − S(ŷj))
2

⎞

⎠

+β ·
⎛

⎝
∑

u,i

(
S(ŷi) − y

(u)
i

)2

⎞

⎠ − γ · (1 − S(dfti))−2

⎤

⎦ . (8)

– Update formula for predicted label

∂f

∂ŷi
= S(ŷi) · (1 − S(ŷi))

·
⎡

⎣2 · α ·
⎛

⎝
∑

i,j

Ri,j · (S(ŷi) − S(ŷj)) · ((1 − S(dfti)) + (1 − S(dftj)))

⎞

⎠

+ 2 · β ·
⎛

⎝
∑

u,i

(
S(ŷi) − y

(u)
i

)
· (S(exptᵀu · xi) + (1 − S(dfti)))

⎞

⎠

⎤

⎦ (9)

4 Experiment

We compare the derived algorithm to the state-of-the-art learning model pro-
posed in [1]. There are two learning models in Yan’s work: M.L-Bernoulli
and M.L-Gaussian. Since the former has better performance than the latter
according to the original paper, we compare our results to M.L-Bernoulli only.

Similar to [1], we also compare our model with multiple baseline algorithms.
Beside individual annotator models, where each annotator learns a logistic
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regression model disjointly from others, we also consider two majority-voting
models learned with logistic regression — L.R.-Majority and L.R.-Ensemble.
The former baseline, as in [1], takes the majority vote from all annotators as
target labels while the later learns each annotator model separately in the first
stage, and then combine learned models with a weighting matrix in the second
stage.

We mainly perform our experiments on two kinds of dataset. One is simu-
lated dataset that uses UCI datasets provided by [15], including UCI::Ionosphere,
UCI::Cleveland, and UCI::Statlog. The experiment results are recorded in
Sect. 4.1. The other one is a real dataset that uses Medical Text dataset cited
in [16] with three different targets: Medical::Evidence, Medical::Focus and Med-
ical::Polarity. The model performance is shown in Sect. 4.2. Finally, we demon-
strate the contribution of each component of our model using UCI::Ionosphere
in Sect. 4.3 and a summary of our experiment results in Sect. 4.4.

4.1 Simulated Datasets

For all UCI datsets, we follow similar setup in [1] with minor modifications to
fit the scenario in real world better. The main procedure is summarized below.

1. Data preprocessing: including filling missing values, feature normalization and
one-hot encoding.

2. Distribute instances into K = 5 clusters using K-Means algorithm. It tries to
simmulate the instances into 5 different categories.

3. Assign |U | = 5 annotators to K = 5 clusters correspondingly. Each annotator
is considered as an expert in its own cluster with higher labelling accuracy.
Our simulation assumes the labelling accuracy of an expert to an instance is
guilded by 0.6 + 0.4 × e−‖xi−ck‖2 , where ck is the center of cluster k. In other
words, for one annotator, the labeling accuracy is closed to one in its own
cluster, and can go down to 0.6 in the other clusters.

We consider fully-assigned annotations from each annotator to each instance
for model learning and conduct experiments under 5-fold cross-validation. For
evaluation, we use area-under-ROC curve (AUC) as the evaluation metric and
report the average performance. We then repeat 5-fold experiments for T = 30
times to conduct Wilcoxon Signed Rank Test to examine whether the comparison
is statistically significant under.

For all simulated experiments, we provide the ROC curve and calculate AUC
as the performance metric, as shown in Figs. 2(b), 3(b) and 4(b). In addition, we
provide an auxiliary cluster graph to show that our model can effectively locate
difficult instances. To plot the cluster graph, we apply PCA to reduce high-
dimension feature space to two-dimensional space then color each instance with
its dft value: the lighter the color, the more difficult it is. Since each instance is
annotated by five annotators during the experiment, they are represented as five
centroids in K-Means. We would expect our model give higher difficulty value
(i.e. lighter in color) to instances which are closer to boundary. The results are
presented in Figs. 2(a), 3(a) and 4(a).



A Classification Model for Diverse and Noisy Labelers 65

(a) Cluster Distribution (b) ROC Curve

Fig. 2. UCI:: Ionosphere dataset

(a) Cluster Distribution (b) ROC Curve

Fig. 3. UCI:: Cleveland dataset

(a) Cluster Distribution (b) ROC Curve

Fig. 4. UCI:: Statlog dataset

The results in Figs. 2(b), 3(b) and 4(b) show that our model (denoted as
N.B. optimization) outperforms the state-of-the-art and other baselines. For
the cluster distribution figures, we do find that the points near the cluster
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boundary are of lighter color, which means that the instance difficulty are cor-
rectly captured by our model. We would like to point out that being able to
identify instances with higher difficulty is very important for tasks such as active
learning, which implies our model as a suitable basis for active learning given
multiple noisy annotators.

4.2 EvaluationMedical Text Dataset

Medical text data is annotated by real annotators and was first used in [16]. In
the collected corpus, there are total of 10000 sentences; whereas one sentence
may be consisted of multiple text fragments. Annotation process runs in two
rounds. In the first round of annotation, 3 annotators are randomly chosen from 8
annotator-pool to label 10000 sentences. Later in the second round of annotation,
randomly selected 1000 sentences are labeled by other 5 annotators.

(a) Medical::Evidence ROC Curve (b) Medical::Focus ROC Curve

(c) Medical::Polarity ROC Curve

Fig. 5. Medical text dataset

Since there may be multiple labels for one text segment, Medical Text label-
ing is actually a multilabel-multiclass problem. Based on [16], available labels
for each text fragment include focus (G for generic, M for methodology, S for
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Table 1. h1, h2, are two hypotheses on annotators and instances we mentioned in
Sect. 3.2. h3, h4 are two regularization terms we used to prevent model from overfitting.

Hypothesis combination Area Under Curve (AUC)

h1 + h2 + h3 + h4 0.896

h1 + h2 + h3 0.895

h1 + h2 + h4 0.824

h1 + h2 0.847

Table 2. Hypothesis tests between Yan’s and our algorithm are examined on 3 simu-
lated datasets and a real dataset with three targets through AUC evaluation metric.
Experiments on simulated datasets are repeated 30 times with 5-fold cross-validation;
while experiments on real dataset are repeated 5 times with 5-fold cross-validation.
P-value with ∗ indicates siginificance.

M.L.-Bernoulli N.B.-Optimization P-value

UCI:: Ionosphere 0.822 ± 0.033 0.896 ± 0.026 < 0.00001∗

UCI:: Cleveland 0.865 ± 0.027 0.899 ± 0.010 < 0.00001∗

UCI:: Statlog 0.891 ± 0.014 0.901 ± 0.009 0.000034∗

Medical:: Evidence 0.837 ± 0.005 0.852 ± 0.004 0.004065∗

Medical:: Focus 0.598 ± 0.029 0.816 ± 0.009 0.000034∗

Medical:: Polarity 0.677 ± 0.006 0.861 ± 0.008 < 0.00001∗

science), evidence (E0 means no evidence, E3 means direct evidence, while E1,
E2 are in between), and polarity (P for positive, N for negative, ranging from
N3 to N0, then from P0 to P3). In our experiment, we regard Medical::Evidence,
Medical::Focus, and Medical::Polarity as different tasks, and transform each of
them into a binary classification task. For Medical::Focus and Medical:Evidence,
we follow the binarization process in [7]. For Medical:Polarity, the annotation
contains N3, N2, N1, N0, P0, P1, P2, P3. We treat P0, P1, P2, P3 as 1 while
others are 0. The results are presented in Fig. 5(a) through Fig. 5(c).

1. Select 1000 sentences that have been labeled from all 8 annotators.
2. Remove 309 sentences that are segmented differently by various annotators.

691 sentences remain.
3. Partition 691 sentences into 874 text fragments.
4. Apply stopword removal and rare term removal to get 848 text segments and

279 words as column features.
5. Calculate TF-IDF scores for each word in 279 column features as instance fea-

tures and transform origin multi-class ground truths into binary ones accord-
ing to different task targets.

6. Repeat 5-fold experiments for T = 5 times, and then put Paired T-test on
averaged 5-fold results to judge the significance of performance improvement.
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4.3 Component Importance of N.B.-Optimization

To examine which component has the most influence on the prediction quality, we
use UCI::Ionosphere as the experimental dataset to evaluate some combinations
of parameters, i.e. α, β, γ, and δ, and set some of them to 0. From Table 1, it
is clear that h1 and h2 are both the crucial components to the model and the
model become more robust with h3. h4 provides only marginal boost on the
performance.

4.4 Experiment Summary

From the above experiment results, we can tell that our model is good at iden-
tifying instance difficulty and has great performance in both simulated and real
dataset with four robust hypotheses.

5 Conclusion

Unlike the existence of ground truths in traditional supervised learning problems,
perfect labels in crowdsourcing scenario are not guaranteed, as the labelers may
equip varied levels of expertise toward different scope of knowledge. Thus, a
model such as ours that can utilize information from highly-diversified and noisy
data sources is highly demanded.
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Abstract. We present a flexible non-parametric generative model for
multilevel regression that strikes an automatic balance between identi-
fying common effects across groups while respecting their idiosyncrasies.
The model is built using techniques that are now considered standard
in the statistical parameter estimation literature, namely, Hierarchical
Dirichlet processes (HDP) and Hierarchical Generalized Linear Models
(HGLM), and therefore, we name it “Infinite Mixtures of Hierarchical
Generalized Linear Models” (iHGLM). We demonstrate how the use of a
HDP prior in local, groupwise GLM modeling of response-covariate den-
sities allows iHGLM to capture latent similarities and differences within
and across groups. We demonstrate iHGLM’s superior accuracy in com-
parison to well known competing methods like Generalized Linear Mixed
Model (GLMM), Regression Tree, Least Square Regression, Bayesian
Linear Regression, Ordinary Dirichlet Process Regression, and several
other regression models on several synthetic and real world datasets.

1 Introduction

Multilevel Regression is the method of choice for research design whenever
response-covariate data is collected across multiple groups. When a common
regressor is learned on the amalgamated data, the model fails to identify idio-
syncratic effects for the responses across individual groups. Modeling separate
groups via separate regressors results in a model that is devoid of common latent
effects across the groups. Multilevel regression attempts to find a middle ground
between these two extremes: a common regressor for the entire dataset versus
separate regressors for the individual groups/levels. What this middle ground
should be and how it may be inferred from the data is the subject matter of this
paper.

The complexities that underlie the search for this middle ground are best
motivated through examples. In Clinical Trials, for example, a group of people
are prescribed either a new drug or a placebo to estimate the efficacy of the
drug for the treatment of a certain disease. At a population level, this efficacy
may be modeled using a single Normal or Poisson mixed model distribution with
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mean set as a (linear or otherwise) function of the covariates of the individuals
in the population. A closer inspection might however disclose potential factors
that explain the efficacy results better. For example, there might be regularities
at the subpopulation level—Caucasians as a whole might react differently to the
drug than, say, Asians. Regularities might be found at a subpopulation level of
a different kind—individuals with a particular genetic trait, whether they be
Caucasians or Asians, might react similarly to the drug. Modeling the latent
common and idiosyncratic effects of cross-cutting subpopulations is therefore an
important problem to solve. Similar situations are found in the height imputation
problem [15] for forest stands.

When the data is collected along a certain group structure, such as ethnic
background in clinical trials, other group structures, such as genetic traits, natu-
rally become subgroups within these groups. Identifying these latent subgroups
through their similar responses, has, to our knowledge, not been satisfactorily
accomplished. We present a framework here that fills this void.

We begin with a brief description of the weaknesses of Hierarchical Gen-
eralized Linear Models [8], the most popular multilevel regression technique.
In regression theory, Generalized Linear Model (GLM), proposed in [13], brings
erstwhile disparate techniques such as, Linear regression, Logistic regression, and
Poisson regression, under a unified framework. Hierarchical Generalized Linear
Model (HGLM), proposed in [8], extends GLM to grouped observations. HGLM
is formally defined as:

f (y; θ, ψ, v) = exp

{
yθ − b (θ)

a (ψ)
+ c (y;ψ)

}
(1)

Here, ψ is a dispersion parameter and v is the random effect component. exp
denotes the exponential family density. The mean response is E [Y |X] = b (θ) =
μ = g−1

(
XT β + v

)
, where g is the link function, XT β is the linear predictor

and v is a strictly monotonic function of u,{v = v (u)}. Here, v signifies over-
dispersion. u has a prior distribution chosen appropriately.

It follows from above that in HGLM, the separate densities are characterized
by two components. First, there is the fixed effect parameter,

(
XT β

)
of the

density which includes the covariates X and its coefficients β. This remains the
same across all the groups. Second, there is the random effect (v) which differs
from group to group. Notwithstanding its effectiveness, the inherent assumptions
in HGLM limit its applicability and need to be relaxed.

Firstly, the random effect (v) is not a function of the linear transformation
of the covariates, XT β. Therefore, this automatically assumes that the mean
function and the variance of the outcomes in different groups depend neither on
the covariate, X, nor on the coefficients. This makes the model suitable only for
grouped data where properties of the outcomes in different groups vary inde-
pendently of the covariates. Secondly, although the response-covariate pairs are
grouped, two different pairs in the same group may come from different response-
covariate densities (different latent effects within the same group). Alternatively,
two pairs from two different groups may be generated from the same density



72 S.M. Islam and A. Banerjee

(same latent effects in different groups). We need a robust model that can capture
this hidden intra/inter clustering effect in grouped data. Thirdly, the covariate
(XT β) is associated with the response-covariate density only through a linear
function. Although we can introduce a non-linear function for the response at the
output, it does not include the covariates. Finally, data may be heteroscedastic
within individual groups, i.e., the variance of the response may be a function of
the predictors within a group. The response variance however does not depend
on the predictors in ordinary HGLM. Some later version [9] of HGLM pick het-
eroscedasticity between the groups (different variance for different groups), but
not within a group.

In this article, we alleviate these shortcomings of HGLM by developing
iHGLM, a Non-parametric Bayesian Mixture Model of the Hierarchical Gen-
eralized linear Model. The iHGLM framework is specified to all the models of
HGLM, i.e. Normal, Poisson, Logistic, Inverse Gaussian, Probit, Exponential
etc.

In iHGLM, we model outcomes in the same group via mixtures of local densi-
ties. This captures locally similar regression patterns, where each local regression
is effectively a GLM. To force the density of the covariate, X, and its coefficients,
β, to be shared among groups, we make the coefficients, β, and the covariates,
X, for different groups be generated from the same prior atomic distribution. An
atomic distribution places finite probabilities on a few outcomes from the sample
space [19]. When the coefficients, β, and the covariates, X, are drawn from this
atomic density, it enables the X and β in different groups to share densities. In
this manner, in the Bayesian setting, the density of the random effect (v), as
well as the density of fixed effect (XT β) are shared among groups. We obtain
this prior atomic density for the fixed and random effects, while ensuring a large
support, through a Hierarchical Dirichlet Process (HDP) prior [17].

From the HDP prior, our primary goal is to generate prior densities for u and
XT β for each group. We draw a density G0 from a Dirichlet Process (DP (γ,H))
[4]. In this case, γ is a scale parameter and the H (the base distribution) is
basically the set of densities in the parameter space of random (v) and fixed
effect (XT β). According to [16], this ensures that G0 is atomic, yet with a broad
support. Therefore, G0 is a atomic density in the parameter space of u and XT β
which puts finite probabilities on some discrete points which acts as its support.
Then, for each group, we draw group specific densities Gj from DP (α,G0).
Since G0 is already atomic, and according to [16] Gj is also atomic, the support
of group specific densities Gjs must share common points in their respective
parameter space of fixed (XT β) and random effects (v). Now, these Gj ’s act as
prior densities for the u and XT β for each group. Subsequently, both u and XT β
are modeled through mixture of local densities which are shared among groups.

Although the mean function for each component (clusters within a group)
in the mixture of response-covariate densities in a single group is linear, mar-
ginalizing out the local distribution creates a non-linear mean function. In addi-
tion, the variance of the responses vary among mixture components (clusters),
thereby varying among covariates. The non-parametric model ensures that the
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data determines the number of mixture components (clusters) in specific groups
and the nature of the local GLMs.

2 An Illustrative Example

We show a simple posterior predictive trajectory of the iHGLM Normal Model
in a four-group synthetic dataset with a 1-D Covariate in Fig. 1. The “yellow”
trajectory is the smoothed response posterior learned by the model. All the
groups were created with four mixture components equally weighted. For the
first group, responses were generated through four response-covariate densities
with mean and standard deviation set as, (1 + x, .5), (1.75 + .5x, .8), (1.15 +
.8x, .2), (2.40 + .3x, .4). For the 2nd group they were (8.5 − x, 1.2), (1.75 +
.5x, .8), (−18.25 + 4.5x, .1), (1 + x, .5). For the 3rd, (10.90 − .5x, .9), (1.15 +
.8x, .2), (49.15 − 5.2x, 1.1), (2.4 + x, .3), and for the 4th, (3.55 + .2x, 1),
(10.90 − .5x, .9), (−40.80 + 4.2x, .3), (1.75 + .5x, .8). Observe that any two
groups have at least one density in common. To capture this kind of multi-
level data, a regression model is needed which captures sharing of latent den-
sities between the groups. Also, every group must be modeled by a mixture of
densities. The model must capture heteroscedasticity within groups where the
variance of the responses depend upon the covariates in each group. The iHGLM
normal model captures all of these hidden intra/inter-clustering effects between
the groups as well as heteroscedasticity within the groups, as shown in Fig. 1.
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Fig. 1. The posterior trajectory of the synthetic dataset with 4 groups. Different colors
represent different subgroups. (Color figure online)

3 Mathematical Background

3.1 Models Related to HGLM

After its introduction, Hierarchical Generalized Linear Model was extended to
include structured dispersion [9] and models for spatio-temporal co-relation [10].



74 S.M. Islam and A. Banerjee

Generalized Linear Mixed Models (GLMMs) were proposed in [3]. The random
effects in HGLM were specified by both mean and dispersion in [11]. Mixture of
Linear Regression was proposed in [18]. Hierarchical Mixture of Regression was
done in [7]. Varying co-efficient models were proposed in [5]. All of these models
suffer the shortcomings of not picking up the latent inter/intra clustering effect
as well as varying uncertainty with respect to covariates across groups, which
the iHGLM inherently models.

3.2 Hierarchical Dirichlet Process and Chinese Restaurant
Franchise

HDP defines a set of probability measures Gj , one for each group and a global
random probability measure, G0. G0 is distributed as a Dirichlet Process with
concentration parameter γ and base distribution H. A Dirichlet Process [4],
DP (α0, G0) is defined as a probability measure over a sample space of probability
measures, G ∼ DP(α0, G0). According to the Chinese Restaurant Process or the
Polya urn scheme [1,2], the density is given by,

(
θi|θ1:(i−1)

) ∼ 1
α+i−1

∑i−1
k=1 δθk

+
α

α+i−1G0. Here, θi is a draw from the polya urn.

G0|γ,H ∼ DP (γ,H) , Gj |α0, G0 ∼ DP (α,G0) ,
θj,i|Gj ∼ Gj , xj,i|θj,i ∼ F (θj,i)

(2)

This proves the clustering/atomic property of DP. Gj , conditioned on G0

follows a DP with parameters α0 and G0. HDP is used as a prior distribution
for the grouped data. In HDP mixture, the latent variable θj,i is a draw from
Gj and it parameterizes the density F of observed data xj,i.

In the Chinese Restaurant Franchise (CRF), we have a finite number of
restaurants (groups) with infinitely many tables (clusters) with shared dishes
(parameter) among all restaurants. Let θji be the customers, φ1:K be the global
dishes, Ψjt be the table-specific dishes and tji be the table index for the jth

restaurant (Ψjt) and ith customer (θji). kjt be the table menu index of the jth

restaurant (Ψjt) and tth table (φk). Furthermore, let njt· and nj·k denote the
number of customers in the tth table-jth restaurant and jth restaurant-kth dish,
respectively. Let mjk, mj·, m·k and m·· denote the number of tables in the jth

restaurant serving dish k, the number of tables in the jth restaurant serving
any dishes, the number of tables serving dish k, and the total number of tables,
respectively. Now, from Eq. (2), we have, θji|θj1:j(i−1), α0, G0 ∼ α0

α0+i−1G0 +∑mj·
t=1

njt·
α0+i−1δΨjt

. Integrating out G0, we have, Ψjt|Ψ11:j(t−1), γ,H ∼ γ
γ+m··

H +∑K
k=1

m·k
γ+m··

δφk
(Fig. 2).

4 iHGLM Model Formulation

4.1 Normal iHGLM Model

In Normal iHGLM, the generative model of the covariate-response pair is given
by the following set of equations. Here, Xji and Yji represent the ith con-
tinuous covariate-response pairs of the jth group. The distribution, {μd, λxd}
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(a) Dirichlet
Process Mixtures
with Indicator
Variables.

(b) Hierarchical
Dirichlet Pro-
cess Mixtures
with Indicator
Variables.

(c) Hierarchi-
cal Dirichlet
Process Mix-
tures of HGLM
with Indicator
Variables.

Fig. 2. Plate notation of the iHGLM model.

(Normal-Gamma) is the prior distribution on covariates. The distribution,
{βd, λy} (Normal-Gamma) is the prior distribution on the covariate coeffi-
cient β. Both the distributions are base distributions (H) of the first DP.
The set {mxd0, βxd0, axd0, bxd0} and {myd0, βy0, ay0, by0} constitute the hyper-
parameters for the covariates and covariate coefficients (β), respectively.

{μd, λxd} ∼ N
(
μd|mxd0, (βxd0λxd)

−1
)

Gamma (λxd|axd0, bxd0) ,

{βd, λy} ∼ N
(
βd|myd0, (βy0λy)−1

)
Gamma (λy|ay0, by0) ,

G0 ∼ DP (γ,H) , Gj ∼ DP (α0, G0) ,
{
μkd, λ

−1
xkd

} ∼ Gj ,
{βkd, λyk} ∼ Gj , Xjid|μkd, λxkd ∼ N (

Xjid|μkd, λ
−1
xkd

)
,

Yji|Xji ∼ N
(
Yji|

∑D
d=0 βkdXjid, λ

−1
yk

)
(3)

4.2 Logistic Multinomial iHGLM Model

In the Logistic Multinomial iHGLM model, the continuous covariates are mod-
eled by a Gaussian mixture (identically as the Normal model above) and a
Multinomial Logistic framework is used for the categorical response (Number of
Categories is P ). Here, Xji and Yji represent the ith continuous covariate and
categorical response pair of the jth group. p is the index of the category. The
distribution, {μd, λxd} (Normal-Gamma) is the prior distribution on the covari-
ates. The distribution, {βpd} (Normal) is the prior distribution on the covariate
coefficient β. Both the distributions are base distributions (H) of the first DP.
The set {mxd0, βxd0, axd0, bxd0} and

{
mypd0, s

2
ypd0

}
constitute the set of hyper-

parameters for the covariates and covariate coefficients (β), respectively. The
complete model is as follows:
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{μd, λxd} ∼ N
(
μd|mxd0, (βxd0, λxd)

−1
)

Gamma (λxd|axd0, bxd0) ,

{βpd} ∼ N
(
βd|mypd0, s

2
ypd0

)
, G0 ∼ DP (γ,H) ,

Gj ∼ DP (α0, G0) ,
{
μkd, λ

−1
xkd

} ∼ Gj , {βkpd} ∼ Gj ,
Xjid|μkd, λxkd ∼ N (

Xjid|μkd, λ
−1
xkd

)
,

{Yji = p|Xji} ∼ exp(∑D
d=0 βkpdXjid)

∑P
p=1 exp(∑D

d=0 βkpdXjid)

(4)

5 Gibbs Sampling

We write down the Gibbs Sampler for inference. For all the models, we sample
index tji, kjt and φk ({μkd, λxkd} and {βkd, λyk} for the Normal model). As the
Normal model is conjugate, we have a closed form expression for the conditional
density of φk, but for Poisson and Logistic Multinomial models we have used
Metropolis Hastings algorithm as presented in [12]. The Normal model’s solution
is given by the following,

{μkd, λxkd} ∼ N
(
μkd|mxkd, (βxkd, λxkd)

−1
)

Gamma (λxkd|axkd, bxkd)
{βkd, λyk} ∼ N

(
βkd|mykd, (βyk, λyk)−1

)
Gamma (λyk|ayk, byk)

(5)

Here,

mxkd =
βxd0mxd0+

∑
zji=k xji

βxd0+nj·k
βxkd = βxd0 + nj·k axkd = axd0 + nj·k/2
bxkd = bxd0 + 1

2

∑
zji=k (xjid − xjid)

2 + βxd0nn·k(xjid−mxd0)
2(βxd0+nj.k)

myk =
{
XT X + (βy0) I

}−1 {
XT y + βy0Imy0

}
βy,k =

(
XT X + βy0I

)
ay,k = ay0 + nj·k/2

by,k = by0 + 1
2

{
yT y + mT

y0βy0my0 − mT
ykβykmyk

}
(6)

Again, the distribution of tji and kjt is given below.

p
(
tji = t|t−ji, k

) ∝ n−ji
jt. f

−xji,yji

kjt
(xji, yji) if t is used

p
(
tji = t|t−ji, k

) ∝ α0p
(
xji, yji|t−ji, k

)
if t = tnew

(7)

If tnew is sampled, new sample of kjtnew is obtained from

p (kjtnew = k) ∝ m−ji
·k f

−xji,yji

k (xji, yji) if k is used
p (kjtnew = k) ∝ γf

−xji,yji

knew (xji, yji) if k = knew
(8)

Sampling of kjt is given by,

p (kjtnew = k) ∝ m−jt
·k f

−xjt,yjt

k (xjt, yjt) if k is used
p (kjtnew = k) ∝ γf

−xjt,yjt

knew (xjt, yjt) if k = knew
(9)
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Here, p (xji, yji), f
−xji,yji

k (xji, yji) and f
−xji,yji

knew (xji, yji) is given by the fol-
lowing equations. For the Normal model, the integrals have close form solutions
where it leads to a Student-t distribution. We solve other integrals by Monte
Carlo integration.

p (xji, yji) =
∑K

k=1
m·k

m··+γ f
−xji,yji

k (xji, yji)
+ γ

m··+γ f
−xji,yji

knew (xji, yji)
f

−xji,yji

knew (xji) =
∫

f (yji|xji, φ) f (xji|φ) h (φ) dφ,

f
−xji,yji

k (xji, yji)
=

∫
f (yji|xji, φk) f (xji|φk) h (φk| − xji, yji) dφk

(10)

6 Predictive Distribution

Finally, we derive the predictive distribution for a new response
(
Yj(N+1)

)
given

a new covariate Xj(N+1) and the set of previous covariate-response pairs {D}.
For prediction, we compute the expectation of Yj(N+1) given training data and
Xj(N+1) using M samples of ψj1:jT .

E[Yj(N+1)|Xj(N+1),D] = E[E[Yj(N+1)|Xj(N+1), ψj1:jT ]|D]
= 1

M

∑M
m=1 E[Yj(N+1)|Xj(N+1), ψ

m
j1:jT ]

(11)

We now need to compute the likelihood of this expectation which is given in
the following equation,

E[Yj(N+1)|Xj(N+1), ψjt = φkjt
] ∝ (njt.)E[Yj(N+1)|Xj(N+1), ψjt = φkjt

]fkjt

(
xj(N+1)

)
,

if t is used previously.

E[Yj(N+1)|Xj(N+1), ψjt = φkjt
] ∝ (α0njt.)E[Yj(N+1)|Xj(N+1), ψjt = φkjt

] p
(
xj(N+1)|tnew, k

)
,

if t = tnew.

(12)
Firstly, p

(
xj(N+1)

)
is given by Eq. (11) with the y part omitted. A new

sample of kjtnew (If tnew is sampled) is obtained from Eq. (9). A new sample of
φk is obtained if k = knew. After obtaining the specific table, ψjt, for Xj(N+1)

and corresponding φK , we compute the expectation E[Yj(N+1)|Xj(N+1), ψjt].
Averaging out successive expectations, we get the estimate of Yj(N+1) (Table 1).

Table 1. Algorithm: Gibbs sampler for iHGLM

1. Initialize Generative Model Parameters in its State Space.

Repeat

2. Sample Model Parameters according to Eq. (6).

3. Sample tji according to Eq. (8).

4. Sample kjtnew according to Eq. (9), If Required.

5. Sample kjt according to Eq. (10).

until converged

6. Evaluate E[Yj(N+1)] for a new covariate, Xj(N+1), according
to Eq. (12) and Eq. (13).
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7 Experimental Results

In all experiments, we collected samples from the predictive posterior via the
Gibbs Sampler and compared the accuracy of the model against its competi-
tor algorithms, including standard Normal GLMM, group specific Regression
algorithms like Linear Regression(OLS), Random Forest, and Gaussian Process
Regression [14].

7.1 Clinical Trial Problem Modeled by Poisson iHGLM

We explored a Clinical Trial problem [6] for testing whether a new anticonvulsant
drug reduces a patient’s rate of epileptic seizures. Patients were assigned the new
drug or the placebo and the number of seizures were recorded over a six week
period. A measurement was made before the trial as a baseline. The objective was
to model the number of seizures, which being a count datum, is modeled using a
Poisson distribution with a Log link. The covariates are: Treatment Center size
(ordinal), number of weeks of treatment (ordinal), type of treatment–new drug
or placebo (nominal) and gender (nominal). For ordinal covariates, we used a
Normal-Gamma Mixture (Like the Normal model) as the Base Distribution. For
nominal covariates, we used a Dirichlet prior Mixture as the Base Distribution
(H). A Poisson distribution with log link was used for the count of seizures.
Here, Xji and Yji represent the ith continuous covariate and count response
pair of the jth group. The distribution, {μd, λxd} (Normal-Gamma) is the prior
distribution on the ordinal covariates. The distribution, {βd} (Normal) is the
prior distribution on the covariate coefficient β. m is the index of the number of
categories for the nominal covariate. pdm is the probability of the mth category
of the dth dimension. adm0 is the hyper-parameter for the Dirichlet. Therefore,
this becomes an infinite mixture of Dirichlet density. So, a draw G0 is an infinite
mixture of pdm. Another draw Gj leads to an infinite collection of pdm for groups
separately, but this time the pdm’s are shared among the groups because G0

is atomic. After the draw of Gj , one of the mixture components, pkdm gets
picked for the jth group and dth dimension with k denoting mixture index.
Then, covariate Xjid is drawn from a Categorical Distribution with parameters
as pkdm.

We found that most patient’s number of seizures (they form the groups)
comes from a single underlying cluster. This signifies that a majority of the
patients across groups show the same response to the treatment. We obtained
10 clusters from 300 out of 565 patients (the remaining 265 were set aside for
testing). Among them 8 clusters showed that the new drug reduces the num-
ber of epileptic seizures with increasing number of weeks of treatment while the
remaining 2 clusters did not show any improvement. We also report the forecast
error of the number of epileptic seizures of the remaining 265 patients in Table 4.
Our recommendation for the usage of the new drug would be a cluster based
solution. For a specific patient, if she falls in one of those clusters with decreasing
trend in the number of seizures with time, we would recommend the new drug,
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and otherwise not. Out of 265 test case patients, 220 showed signs of improve-
ments while 45 did not. Traditional Poisson GLMM cannot infer this findings
since the densities are not shared at the patient group level. Moreover, only the
Poisson iHGLM based prediction is formally equipped to recommend a patient
cluster based solution for the new drug, whereas all traditional mixed models
predict a global recommendation for all patients.

{μd, λxd} ∼ N
(
μd|mxd0, (βxd0, λxd)

−1
)

Gamma (λxd|axd0, bxd0) ,

{βd} ∼ N
(
βd|myd0, s

2
yd0

)
, pdm ∼ Dir (adm0) ,

G0 ∼ DP (γ,H) , Gj ∼ DP (α0, G0) ,
{
μkd, λ

−1
xkd

} ∼ Gj ,
{βkd} ∼ Gj , pkdm ∼ Gj , Xjid ∼ categorical (pkdm) ,
Xjid|μkd, λxkd ∼ N (

Xjid|μkd, λ
−1
xkd

)
{Yji|Xji} ∼ Poisson

(
yji| exp

(∑D
d=0 βkdXjid

))
(13)

7.2 Height Imputation Problem

We propose a new iHGLM based method for height imputation [15] based on
height-diameter regression in forest stands. A forest stand is a community of trees
uniform in composition, structure, age and size class distribution. Estimating
volume and growth in forest stands is an important feature of forest inventory.
Since there is generally a strong proportionality between diameter and other tree-
attributes like past increment, forecasting height using diameter can proceed
with limited loss of information. We processed data for five stands. The data
incorporated in the model is through the logarithmic transformation Y new =
log

(
Y old − 4.5

)
and inverse transformation Xnew =

(
1 + Xold

)−1. We show the
tree heights with respect to the diameters for each stand which clearly depicts
the sharing of clusters among stands and different clusters within each stand.
Also, different clusters within stands have different variability of growth, thereby
modeling heteroscedasticity at the stand level. Roughly, there are 2 to 3 primary
clusters in each stand totaling 5 primary clusters. The remaining clusters have
very few trees (maximum 5) and represent outliers. We report the mean tree
heights and also the variance of growth of the trees within each primary cluster
in Table 3. We also report the forecast error of the trees of the testing set (20%)
and compare against Normal GLMM, group specific OLS, Random Forest and
Gaussian Process Regression.

7.3 Market Dynamics Experiment

In this experiment, instead of presenting a third example to demonstrate the
efficacy of the model, we decided to demonstrate how the model could be used
as an “exploratory” tool (as opposed to a classical “inference” tool) for analyzing
the temporal dynamics of stocks from S&P 500 companies. This strength draws
from the model’s large support (i.e., hypothesis space). The companies belong
to disparate market sectors such as, Technology (Microsoft, Apple, IBM and
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Google), Finance (Goldman Sachs, JPMorgan, BOA and Wells-Fargo), Energy
(XOM, PTR, Shell and CVX), Healthcare (JNJ, Novartis, Pfizer and MRK),
Goods (GE, UTX, Boeing and MMM), and Services (WMT, AMZN, EBAY and
HD). Using iHGLM Normal Model, we modeled each company’s stock value
at a given time point as a function of the values of the others at that time
point (the remaining 23). Each stock of one particular sector(tech., finance,
healthcare sector etc.) formed one group (e.g. tech. sector has 4 groups/stocks
(IBM,MSFT,goog,aapl)) and a whole sector (tech., finance etc.) was modeled
by one HGLM. Experiments were run over all such groupings. Past stock prices

Table 2. List of stocks with top 3 most significant stocks that influence each stock
from all the sectors.

Time-

Period

XOM PTR Shell CVX AAPL MSFT IBM GOOG BOA JPM WFC GS

2009-14 PTR XOM PTR XOM IBM GOOG AAPL AAPL WFC GS GS JPM

CVX CVX XOM SHELL JPM IBM MMM GS GS WFC JPM BOA

GS GOOG HD BOA GOOG GS GOOG MSFT JPM XOM PFE WFC

2007-09 HD GS MSFT JNJ BOA GE JPM WFC EBAY MMM GS WMT

PTR PFE XOM IBM WMT GOOG Shell MMM GE AMZN HD GE

JPM CVX MMM HD GS JPM NVS UTX MRK CVX PFE GS

Time-

Period

JNJ NVS PFE MRK GE UTX BA MMM WMT AMZN EBAY HD

2000-14 MRK JNJ JNJ NVS BA MMM MMM BA AMZN HD HD GOOG

NVS PFE GS JPM MMM GE GE AAPL EBAY EBAY WMT WMT

GE AAPL MRK JNJ PTR PFE UTX GE GOOG MSFT MSFT GS

2007-09 MSFT BA PTR IBM AXP GS JPM WMT HD MMM GS WMT

CVX PFE AAPL CVX P& G BOA MRK PTR GE CVX GE GE

GS WFC MMM HD GS JPM HD WFC MMM HD IBM WFC

Table 3. MSE and MAE of
the Algorithms for the Height
Imputation Dataset and Means
and Standard Deviation of the
individual Clusters from many
Stands. For Stand-1, the Main
Clusters were C1,C2,C3, For S-2,
these are C4,C5,C3, For S-3, they
are C1,C4,C3, For S-4, these are
C2,C3 and For S-5, they are
C1,C4,C3.

Clusters C1 C2 C3 C4 C5

Mean .1317 .0692 .014 .0302 .0143

STD .0087 .00086 .00049 .00038 .00015

iHGLM GLMM OLS Rforest GPR CART

MAE (L1 Error)

.0094 .0114 .01243 .01527 .01319 .0252

MSE (L2 Error)

1.008e-2 9.8e-3 1.2e-2 4.2e-2 1.8e-2 3.4e-2

Table 4. MSE and MAE of the Algorithms
for the Clinical Trial Dataset and Number of
Patients in Clusters for Training and Testing
Sets.

Patient Number in Clusters for Training Set

Positive Negative

26 39 15 28 22 53 32 24 37 24

Patient Number in Clusters for Testing Set

19 33 27 19 16 38 26 31 34 22

iHGLM Poisson GLMM Poisson Regression CART RForest

Mean Square Root Error(L2 Error)

1.41 1.58 1.92 1.65 1.75

Mean Absolute Error Root Error(L1 Error)

.94 1.34 1.51 1.23 1.62
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were not included. We recorded the stocks having the most impact on the deter-
mination of the value of each stock. The impacts are by definition the magnitude
of the weighted coefficients of the covariates (the stock values) in iHGLM. All
the experiments were done on daily close out stock prices after the financial crisis
(June-09 to March-14) and in the middle of the crisis (May-07 to June-09). Few
trends were noteworthy.

Prices of a given set of Firstly, stocks from any given sector were impacted
largely by the same stock (not necessarily from the same sector), with few stocks
being influential overall. Secondly, the stocks having the most impact on a spe-
cific sector were largely the same. For example, Microsoft (tech. sector), is largely
modeled by GOOG, IBM (tech), GS (Finance) after the crisis (in descending
order of weights). However, during the crisis, the stocks showed no such trends.
For example, Microsoft is impacted by GE, GOOG, JPM showing no sector wise
trend. We report results for all the sectors/stocks in Table 2.

Diamater

H
ei

gh
t

Plot Of Height−Diamaters, Regression Clusters and Estimates

Fig. 3. Depiction of several clusters in the Height Imputation dataset for different
stands which is shared by clusters. Every stand is shown with its own single color.
(Color figure online)

8 Conclusion

In this paper, we have formulated an infinite mixtures of Hierarchical Gener-
alized Linear Model (iHGLM), a flexible model for hierarchical regression. The
model captures identical response-covariate densities in different groups as well
as different densities in the same group. It also captures heteroscedasticity and
overdispersion across groups. We proved posterior consistency of the iHGLM
model, and experimentally evaluated it on a wide range of problems where tradi-
tional mixed effect models fail to capture structure in the grouped data. Although
the Gibbs sampler turned out to be fairly accurate for the iHGLM models, devel-
oping a variational inference alternative would be an interesting topic for future
research. Finally, the number of mixture components in each group depends on
the scale factors γ and α (scale parameters of the DP) of the model, and at
times grows large in specific groups. This occurs mostly when any group has a
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large number of data points compared to others. In most cases, beyond a few
primary clusters, the remaining represent outliers. Although, careful tuning of
scale parameters can mitigate these problems, a theoretical understanding of the
dependence of the model on scale parameters could lead to better modeling and
application (Fig. 3).
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Abstract. Pairwise classification is a computational problem to deter-
mine whether a given ordered pair of objects satisfies a binary relation
R which is specified implicitly by a set of training data used for ‘learn-
ing’ R. It is an important component for entity resolution, network link
prediction, protein-protein interaction prediction, and so on. Although
deep neural networks (DNNs) outperform other methods in many tasks
and have thus attracted the attention of machine learning researchers,
there have been few studies of applying a DNN to pairwise classification.
Important properties of pairwise classification include using feature con-
junctions across examples. Also, it is known that making the classifier
invariant to the data order is an important property in applications with
a symmetric relation R, including those applications mentioned above.
We first show that a simple DNN with fully connected layers cannot sat-
isfy these properties and then present a pairwise DNN satisfying these
properties. As an example of pairwise classification, we use the author
matching problem, which is the problem of determining whether two
author names in different bibliographic data sources refer to the same
person. We show that the method using our model outperforms methods
using a support vector machine and simple DNNs.

1 Introduction

Pairwise classification is a computational problem to determine whether a given
ordered pair of objects satisfies a binary relation R which is specified implicitly
by a set of training data used for ‘learning’ R. It is an important component
for entity resolution, network link prediction, and so on. The method commonly
used for identifying two objects includes defining a manually tuned similarity.
However, defining suitable similarities is difficult. Therefore, machine learning
techniques for learning from labeled data have been used.

When typical machine learning methods are applied to pairwise classifica-
tion using the “Learn a classifier directly” approach, the design of the feature
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 83–95, 2017.
DOI: 10.1007/978-3-319-57454-7 7
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vector representing the pair of two objects is essential and important. Bilenko
and Moony [3] represented a pair of objects by using a feature vector based
on common features between the two objects and a support vector machine
(SVM). This method is effective for a problem like citation matching, where
two objects belonging to the same class have many common features. However,
if the two objects have few common features, this method is not effective. An
example problem is the “author matching problem” in which the task is to deter-
mine whether two author names in different bibliographic data sources refer to
the same person. Oyama and Manning [14] proposed applying a kernel method
to this problem that uses the conjunctions of not only the common features
but also those of different features across the two objects and using an SVM.
Their method outperforms Bilenko and Moony’s method in the author matching
problem.

Deep neural networks (DNNs) have begun attracting attention in the field of
machine learning as they have better performance than existing methods (e.g.,
SVM) in image classification [13], speech recognition [10], and many other tasks.
While there have been many studies of applying a DNN to datum-wise classifi-
cation, there have been few studies of applying a DNN to pairwise classification.
Tran et al. [17] used a DNN as a classifier for the author matching problem. Since
they represented feature vectors representing pairs of objects by concatenating
fixed similarities and distance metrics, their approach does not take advantage
of a DNN’s ability to obtain feature representations automatically. A method
using a DNN should be able to outperform existing methods even in pairwise
classification by using feature vectors that enable a DNN to effectively learn
feature representations.

A straightforward way of creating a feature vector representing a pair of
objects is to concatenate the feature vectors of the two objects. The resulting
vector can be used as input to a simple DNN with fully connected layers. The
fully connected layers should enable even a simple DNN to use feature conjunc-
tions across the two objects. In many applications such as entity resolution, the
classifier results for training and prediction should be invariant with respect to
the order of the pair values (the symmetry property).

In this paper, we first show that determining whether two objects satisfy
relation R while satisfying symmetry is difficult for a simple DNN with fully con-
nected layers. Next, we present a DNN-based model, i.e., a pairwise deep neural
network (pairwise DNN), that ensures symmetry and enables feature conjunc-
tions across examples. Then we present experimental results demonstrating that
the method using our model outperforms other methods in the author matching
problem.

2 Pairwise Classification

2.1 Problem Formulation

Pairwise classification is the computational problem to determine whether a
pair of objects, xα and xβ , satisfies relation R. Therefore, our goal is to obtain
classifier f :
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f(xα,xβ) =
{

1 (if xαandxβsatisfy R)
−1 (otherwise).

It is difficult to obtain accurate classifiers by using manually tuned similarities
and thresholds. Therefore, machine learning methods in which learning is done
from labeled data have been used. Many methods sample pair objects from the
data, and then a person labels them in accordance with whether they satisfy
relation R or not. Then these training examples are fed into classifier learning
algorithms.

2.2 Symmetry

In many applications such as entity resolution, the classifier output should be
invariant with respect to the order of the pair. Therefore, the classifier should
satisfy symmetry; that is, f(xα,xβ) = f(xβ ,xα). Furthermore, the learning
result should be invariant with respect to the order of the training data pairs.

3 Related Work

Machine learning approaches for determining the identity of two objects can be
roughly grouped into three categories:

1. Learning a classifier directly.
2. Learning a similarity between two objects and deciding they are the same if

the similarity exceeds a threshold.
3. Learning a distance between two objects and deciding they are the same if

the distance is less than a threshold.

Then, toward lower approach, problem is more general and difficult. If the dis-
tance is obtained, the similarity can be obtained by reversing its sign. To learn
the distance, it is necessary to satisfy the distance axiom. In many applications,
there are cases in which only a classifier or a similarity suffice. In such cases,
learning a classifier or a similarity is suitable according to Vapnik’s principle [18]:
“When solving a given problem, try to avoid solving a more general problem as
an intermediate step”. Furthermore, when learning a classifier directly, it is not
necessary to set a threshold manually.

Bilenko and Moony [3] proposed a method for learning a classifier directly
for the citation matching problem, in which a determination is made as to
whether two citations in different bibliographic data sources refer to the same
paper. They represent the original object as a bag-of-words feature vector
xα = (xα

1 , xα
2 , . . . , xα

n)T and a pair object consisting of xα = (xα
1 , xα

2 , . . . , xα
n)T

and xβ = (xβ
1 , xβ

2 , . . . , xβ
n)T as feature vector xHadamard:

x̂Hadamard = (xα
1 xβ

1 , xα
2 xβ

2 , . . . , xα
nxβ

n)T. (1)

This feature vector is a Hadamard product of xα and xβ . They labeled it
y and used an SVM. The classifier satisfies the symmetry because the feature
vectors representing the pair objects satisfy symmetry.
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Fig. 1. Matching authors

Bilenko and Mooney’s method is effective for a problem like citation match-
ing, in which two objects from the same class have many common features, but
it is not effective if the two objects from the same class have few common fea-
tures because it cannot distinguish between positive pairs and negative pairs.
An example of this is the author matching problem, in which a determination
is made as to whether two author names in different bibliographic data sources
refer to the same person. In the illustrative example in Fig. 1, where A. Gupta is
the abbreviated form of Ashish Gupta and Anoop Gupta, the first two records
have no common words even though A. Gupta is the same person in both cases.
One approach to such problems includes using not only common features but
also conjunctions of different features across examples. Oyama and Manning [14]
proposed using x̂Cartesian,

x̂Cartesian = (xα
1 xβ

1 , . . . , xα
1 xβ

n, xα
2 xβ

1 , . . . , xα
2 xβ

n, . . . , xα
nxβ

1 , . . . , xα
nxβ

n)T. (2)

as a feature vector representing a pair of objects. This is the Cartesian product
between xα and xβ . However, the dimension of this feature vector is n2, so doing
this straightforwardly is computationally intensive. They thus represented a pair
object by using feature vector x̂ concat,

x̂ concat =
(
xα

xβ

)
= (xα

1 , . . . , xα
n, xβ

1 , . . . xβ
n)T, (3)

which concatenates original objects, and proposed using the following kernel:

K(x̂ concat, ẑ concat) = 〈x̂Cartesian, ẑCartesian〉. (4)

Using the SVM with this kernel enables classification on the Cartesian prod-
uct space between two objects without high computational cost. Although this
feature vector is not symmetrical, they showed that including a pair that is
reversed with respect to the concatenation order or symmetrizing the kernel
ensures classifier symmetry. A similar method has been used to predict protein-
protein interactions [1].

As mentioned in the Introduction, DNNs are attracting attention in the field
of machine learning as methods using them have better performance than exist-
ing methods in many tasks. Since DNNs can automatically obtain feature repre-
sentations, a method using them should be able to outperform existing methods
even in pairwise classification.

Also as mentioned in the Introduction, while there have been many studies
of applying a DNN to datum-wise classification, there have been few studies of
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applying a DNN to pairwise classification, and most of these studies used learn-
ing of similarity or distance metric. Bromley et al. [5] proposed using a Siamese
network for handwritten signature pair determination. In a Siamese network, two
objects are input to a NN individually, and the similarity or distance between
the outputs of the NN is output. Also, there have been several proposed methods
based on a Siamese network for face verification [6,11,16]. Tran et al. [17] applied
a DNN as a classifier to the author matching problem. Since they represented
feature vectors representing pairs of objects by concatenating fixed similarities
or distance metrics, this approach cannot utilize a DNN’s ability to obtain repre-
sentations automatically. A method using a DNN should be able to outperform
existing methods even in pairwise classification by using feature vectors to effec-
tively learn feature representations.

4 Problem of DNN in Pairwise Classification

Because only one object can be input to a DNN, it is necessary to design a feature
vector representing a pair of objects. Given that a DNN can automatically obtain
feature representations, the feature vector should self-sufficiently represent the
information of the two objects. Hence, we first present a straightforward design
of a feature vector representing a pair of objects that concatenates the feature
vectors of the two objects, as given by Eq. (3). Because the input and hidden
layers of a simple DNN are fully connected, the DNN should provide feature
representation considering feature conjunctions across examples.

Since the feature vector represented by Eq. (3) does not satisfy symmetry,
a symmetric DNN should be used when this feature vector is input. Bishop [4]
classified the approaches to making a NN invariant into four approaches

1. The training set is augmented using replicas of the training patterns, trans-
formed in accordance with the desired invariance.

2. A regularization term is added to the error function that penalizes changes
in the model output when the input is transformed.

3. Invariance is built into the pre-processing by extracting features that are
invariant under the required transformations.

4. Invariance is built into the structure of the NN.

In pairwise classification, the NN should be invariant with respect to the order
of the data values in a pair; i.e., it should have symmetry. Approach 1, called
data augmentation, incurs extra computational costs. Approach 2 cannot be
used in pairwise classification because transformation that changes the data
order is not continuous. Approach 3 is problematic because designing suitable
features is difficult. Therefore, we took Approach 4. If the values of the hidden
layer connected with the input layer satisfy symmetry, the NN output satisfies
symmetry. Namely, let W be the weight matrix between the input and the
hidden layer. If the following equation holds, the NN output satisfies symmetry.

W

(
xα

xβ

)
= W

(
xβ

xα

)
(5)
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Fig. 2. Symmetric DNN

Let W 1 be the weight matrix between the partial input layer for the
first object and the entire hidden layer, W 2 be the weight matrix between
remaining input layer for the second object and the entire hidden layer. Since
W = (W 1,W 2), Eq. (5) can be rewritten: W 1(xα − xβ) = W 2(xα − xβ).
For arbitrary xα and xβ , this equation holds if W 1 = W 2. However, there is
actually a problem here. If this equation holds, the following equation holds.

Wx concat = Ŵ (xα + xβ), (6)

where Ŵ is equal to W 1 and W 2. From Eq. (6), it follows that the addition
of feature vectors of two objects is input to the DNN. However, the addition of
feature vectors of two objects is not suitable for pairwise classification because
the information about the features of the individual objects is lost. For example,
in the author matching problem, it cannot be determined which words appear
in which papers.

5 Proposed Method

5.1 Pairwise DNN

Our proposed pairwise DNN ensures symmetry without losing information about
the features of individual objects and enables feature conjunctions across exam-
ples. In a pairwise DNN, two objects, xα and xβ , are first mapped individually
to zα = Ŵ xα and z β = Ŵ xβ , where Ŵ is a common m × n weight matrix.
Next, a Hadamard layer, which calculates the Hadamard product of zα and z β ,
is introduced, and ẑ = (zα

1 zβ
1 , zα

2 zβ
2 , . . . , zα

mzβ
m)T is calculated. Finally, ẑ is input

to a simple fully connected DNN. Ŵ is not a fixed parameter but a parameter
that is learned when a simple fully connected DNN is trained by stochastic gra-
dient descent (SGD) with backpropagation. Figure 3 provides an overview of a
pairwise DNN.

5.2 Symmetry

Since a Hadamard product is commutative and Ŵ is common between two
objects, the output of a pairwise DNN satisfies symmetry. Let ŵ i be the ith row
vector of Ŵ and wij be the jth element of ŵ i. Then ẑi, the ith element of ẑ ,
can be written as
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Fig. 3. Pairwise DNN

ẑi =
n∑

k=1

n∑
l=1

ŵikŵilx
α
k xβ

l . (7)

In the elements of ẑ , only ẑi depends on ŵij . The partial differential of ẑi

with respect to wij is given by

∂ẑi

∂ŵij
=

n∑
k=1

(ŵik(xα
j xβ

k + xα
k xβ

j )). (8)

Since this satisfies symmetry, the learning result satisfies symmetry. There-
fore, a pairwise DNN satisfies symmetry.

A pairwise DNN can be considered to extract a feature ẑ . However, since this
feature extraction itself is also learned, invariance is built into the structure of
a pairwise DNN. This is Approach 4 described above, making the NN invariant
as classified by Bishop [4].

5.3 Feature Conjunctions Across Examples

In Eq. (7), which formulates ẑi, xα
k xβ

l is the feature conjunction of the kth feature
of the first object and lth is the feature of the second object. Therefore, each
element of ẑi can be considered to be the weighted summation of feature con-
junctions across examples. Our approach is the same as Bilenko and Moony’s
with respect to using a vector expressed by a Hadamard product but differ-
ent with respect to enabling feature conjunctions across examples by using the
Hadamard product of a mapped vector. Like Oyama and Manning’s approach,
our approach using feature conjunctions should be effective when two objects
belonging to the same class have few common features.

Even though the mapping of each object is linear, like a general NN, it is
possible to use a non-linear activation function. However, if non-linear activation
function h(·) is used, the ith element of ẑ becomes ẑi = h(zα

i )h(zβ
i ), so a pairwise
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DNN does not always enable feature conjunctions across examples. For example,
let h(·) be a sigmoid function. Then ẑi becomes:

ẑi =
1

1 + exp(−zα
i ) + exp(−zβ

i ) + exp(−zα
i − zβ

i )
.

Since zα
i =

∑n
j=1 ŵijx

α
j and zβ

i =
∑n

j=1 ŵijx
β
j , feature conjunctions do not

appear in ẑi.

6 Experiment

6.1 Dataset and Overview

We experimentally evaluated our proposed method using the author matching
problem on the DBLP dataset, which is a bibliography of computer science
papers. We extracted 3,384 papers for which there were 729 unique author names.
We only used papers for which the full name of author was given. Papers with
the same author name were assumed to have been written by the same person.
For the author matching problem, we abbreviated first names into initials and
removed middle names. We used all words appearing in their titles, coauthor
names and publication venues. Each original object was represented by a bag-
of-words feature vector and the dimension of all vectors was 9,264.

There are two methods for creating a training set and a test set: (1) First,
create a pair set from the original objects set. Next, split the pair set into a
training set and a test set. (2) First, split the original objects set into a training
objects set and a test objects set. Next, create a training set and a test set by
making pairs from each objects set. With the method (1), the problem is easy
because the objects constituting the test set are also in the training set. We thus
used the method (2). If the authors specified by the objects of the pair are the
same person, the pair was given a positive label, and if authors are not the same
person, the pair was given a negative label. We only used pairs constituted by
two papers with the same abbreviated author name.

Table 1. Size of dataset

Fold 1 Fold 2

No. of papers 1,692 1,692

No. of pair objects 22,264 22,416

If the training set and test set are made using method (2), the number of
negative pairs is much larger than that of positive pairs. We thus balanced the
two sets by sampling the negative pairs, as described elsewhere [3]. The sizes of
the datasets are shown in Table 1. Because author matching problem is binary
classification problem, we evaluated accuracy, precision, and recall on the test
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set. Since which precision or recall is more important depends on situation, we
evaluated the precision-recall curve and the area under the curve (AUC), as
discussed elsewhere [2].

6.2 Experiment 1: Comparison of Proposed Method
with Other Methods

In Experiment 1, we compared five methods:

Pairwise DNN Proposed method. The number of units in each layer
was 1000, and the number of hidden layers behind the
Hadamard layer was 3. The mapping of each objects was
linear.

Concat DNN A simple fully connected DNN with feature vectors of
pairs of objects represented by Eq. (3). The number of
units in each layer was 1000, and the number of hidden
layers was 4.

Concat DNN (aug) Same as Concat DNN except that feature vectors with
the concatenation order reversed were included in the
training set. Also, at the time of prediction, feature vec-
tors with the concatenation order reversed were pre-
dicted, and the mean of the two outputs was used as
the final output. In short, data augmentation was per-
formed on the training and test sets.

Addition DNN A simple fully connected DNN with feature vectors
of pairs of objects represented by the addition of two
objects. This model is equivalent to a symmetric DNN,
as illustrated in Fig. 2. The number of units in each layer
was 1000, and the number of hidden layers was 4.

Pairwise SVM An SVM with the kernel proposed by Oyama and
Manning [14].

In the DNN-based methods, the ReLU activation function [9] was used for
the hidden layers, a sigmoid function was used for the output layer, and a loss
function was used for cross entropy. Dropout [15] was used for all hidden layers
and the Hadamard layer. All weight were initialized using Glorot’s method [8],
which uses a uniform distribution with the interval adjusted in accordance with
the number of units.

We used SGD with a mini-batch of size 128 for 100 epochs. The Adam
optimizer [12] was effective for Pairwise DNN. The AdaGrad optimizer [7]
was effective for Concat DNN, Concat DNN(aug), and Addition DNN.
The default learning rate of Adam is 0.001, but we found that a learning rate
several times higher produced better results. We thus set the learning rate to
0.002. We set it to 0.005 for the methods using AdaGrad. For hyper-parameter
C of Pairwise SVM, we tested using 21 values, [2−10, 2−9, . . . , 210], and found
that ten test values produced comparably good results. We thus set C = 20 = 1.
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As shown in Table 2, Pairwise DNN had the highest recall, accuracy, and
AUC. Although there is a trade-off relationship between precision and recall,
the precision of Pairwise DNN was kept high. As shown in Fig. 4, Pairwise
DNN and Pairwise SVM, both of which enable feature conjunctions across
examples, retained high precision at higher recall levels, especially Pairwise
DNN. The results of Concat DNN(aug) and Concat DNN indicated that
data augmentation was ineffective in this experiment.

Table 2. Precision (P), recall (R), AUC, and accuracy (Acc) for five methods.

Method P R AUC Acc

Pairwise DNN 0.938 0.717 0.924 0.835

Concat DNN 0.881 0.600 0.869 0.760

Concat DNN (aug) 0.908 0.564 0.869 0.754

Addition DNN 0.932 0.413 0.839 0.692

Pairwise SVM 0.968 0.540 0.918 0.761
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Fig. 4. Precision-recall curves for five methods.

6.3 Experiment 2: Evaluation of Proposed Method

In Experiment 2, we evaluated the proposed pairwise DNN. First, we changed the
number of hidden layers behind the Hadamard layer, [0, 1, 2, 3, 4, 5, 6]. The results
for Pairwise DNN in Experiment 1 (in which there were three hidden layers)
were used as a baseline. The number of parameters in each model was made
almost the same by adjusting the number of units. The other conditions were the
same as for Experiment 1. As shown in Table 3, as the number of hidden layers
was increased, recall and accuracy tended to increase while precision tended to
decrease.
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Table 3. Precision (P), recall (R), AUC, and accuracy (Acc) for seven models with
different numbers of hidden layers (n = number of hidden layers).

Models P R AUC Acc

Layer 0 0.966 0.599 0.905 0.789

Layer 1 0.971 0.624 0.926 0.803

Layer 2 0.936 0.693 0.921 0.823

Layer 3 0.938 0.717 0.924 0.835

Layer 4 0.922 0.755 0.925 0.845

Layer 5 0.921 0.734 0.905 0.836

Layer 6 0.920 0.757 0.925 0.846

Table 4. Precision (P), recall (R), AUC, and accuracy (Acc) for four models whose
mapping of each object was linear and non-linear.

Models P R AUC Acc

Linear 0.938 0.717 0.924 0.835

Sigmoid 0.913 0.453 0.799 0.705

Tanh 0.949 0.706 0.925 0.834

ReLU 0.964 0.569 0.898 0.774

Next, we compared four models whose mapping of each object was linear
(Linear) and non-linear (Sigmoid, Tanh, and ReLU). The other conditions
(e.g., the number of hidden layers) were the same as for Pairwise DNN in
Experiment 1. As shown in Table 4, the results with Sigmoid and ReLU were
significantly worse than with Linear except for precision. Clearly, a pairwise
DNN does not enable feature conjunctions across examples when mapping each
object with Sigmoid or ReLU. In contrast, the results with Tanh were nearly
the same as those with Linear. Clearly, Tanh is almost linear for low absolute
input values, and the weights are initialized using a uniform distribution with a
mean of 0.

7 Conclusion and Future Work

Pairwise classification is an important component in entity resolution, network
link prediction, protein-protein interaction prediction, and so on. We showed
that there is a problem regarding symmetry and object information when a sim-
ple DNN is learned directly as a classifier with feature vectors represented by
concatenating two objects. Our proposed DNN-based model, a pairwise DNN,
satisfies symmetry without losing the information of each object and enables fea-
ture conjunctions across examples. Experimental results for the author matching
problem showed that a pairwise DNN had higher recall, accuracy, and AUC.
Experiments on a pairwise DNN clarified several properties.
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This work focused on the author matching problem. Future work includes
application of the pairwise DNN to other problems (e.g., face verification) and
extension of the pairwise DNN model to convolutional neural networks, recursive
neural networks, and so on.
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Abstract. A clustering result needs to be interpreted and evaluated for
knowledge discovery. When clustered data represents a sample from a
population with known sample-to-population alignment weights, both
the clustering and the evaluation techniques need to take this into
account. The purpose of this article is to advance the automatic knowl-
edge discovery from a robust clustering result on the population level. For
this purpose, we derive a novel ranking method by generalizing the com-
putation of the Kruskal-Wallis H test statistic from sample to population
level with two different approaches. Application of these enlargements to
both the input variables used in clustering and to metadata provides
automatic determination of variable ranking that can be used to explain
and distinguish the groups of population. The ranking method is illus-
trated with an open data and then, applied to advance the educational
knowledge discovery from large-scale international student assessment
data, whose robust clustering into disjoint groups on three different lev-
els of abstraction was performed in [19].

Keywords: Population analysis · Kruskal-Wallis test · Robust
clustering · Educational knowledge discovery

1 Introduction

Various large-scale educational assessments, like the Programme for Interna-
tional Student Assessment (PISA), regularly collect large amount of data char-
acterizing worldwide student populations to assess and compare arrangements
and policies between different educational systems [16]. Although data originat-
ing from these assessments are of high quality and publicly available, there is
surprisingly little research activity on the secondary analysis. This is due to the
technical complexities within the different representations and transformations
of data and the lack of methods that allow advanced analysis of these large
datasets [18]. One example of the complication of analyzing PISA datasets are
the weights. Through complex sampling designs only certain students of the stud-
ied population are selected for the assessment and weights are used to indicate
the number of students in the population that a sampled student represents.
This means that these weights must be taken into account in all steps of the
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 96–109, 2017.
DOI: 10.1007/978-3-319-57454-7 8
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knowledge discovery to analyze the population instead of the collected sample
(e.g., [14,20]).

The purpose of this paper is to advance the educational knowledge discov-
ery from a robust, weighted clustering result. There exists various clustering
methods and approaches, like e.g. density-based, probabilistic, grid-based, and
spectral clustering [2], together with their comparisons and evaluations (e.g., [6]).
Although hierarchical methods allow summarization and exploration of a given
dataset through the visual dendrogram, the basic form of the technique is not
scalable to large number of observations because of the pairwise distance matrix
requirement [25]. Moreover, it is not clear how to take into account the weights
in hierarchical clustering as presented, e.g., in PISA datasets. On the other hand,
in [3] a robust (cf. [24]) prototype-based clustering algorithm was developed that
can handle large datasets with high and unknown sparsity patterns (i.e., tens of
percents of missing values). This paper continues the efforts of [19], where the
weighted enlargement of the above-mentioned algorithm was applied to create
prototypes for the PISA 2012 dataset on three different levels of abstraction,
with different numbers of clusters of the student population. The dynamic num-
bers of clusters were based on the use of multiple cluster indices (e.g., [13])
suggesting the number of clusters, again taking into account the weights (see
[19] for details).

One main advantage of crisp, prototype-based clustering result is the guaran-
tee of globally separable subsets of data. The data division is completely deter-
mined by the disjoint labels, typically integers from 1 to K for K clusters, encod-
ing the clustering result. This means that, in order to make an interpretation of
the result, one can consider and compare data distributions of both the actual
variables used in clustering as well as relevant metadata. Note that the use of
a hierarchical clustering method with locally greedy aggregation could produce
clusters of arbitrary shape in the data space, which could then be difficult or
even impossible to interpret because of the overlapping variable distributions.

The results in [19] were obtained with a robust clustering method with (avail-
able data) spatial median as the cluster prototype, which is characterized by the
Laplace density distribution. A feature selection approach for the robust EM-
algorithm with Laplace mixture models was suggested in [5]. There the feature
selection, similarly to the construction of classifiers [11], referred to ranking the
given input features to select the most important ones for the clustering result.
Here, our purpose is, similarly to the techniques proposed in [4,23], to assess the
importance of variables with a given labeling. For this purpose, we apply the
same method as in [5] where it was suggested that the feature ranking can be
realized by Kruskal-Wallis (KW) statistical test. More precisely, the estimate of
importance of a random variable with clustering provided labeling is supplied by
the H statistics of the KW test [15], without need to compute the p-values and
perform the actual statistical testing. To omit the hypothesis testing relaxes both
the requirements of the KW test concerning the equal variances [15] and selec-
tion of appropriate distribution for the test statistics [21]. Moreover, because
KW is a univariate method, it is easy to restrict the computation of the test
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statistic to the available values of a variable. This means utilizability with an
arbitrary sparsity pattern.

Hence, one needs to generalize the KW H into the population level by using
the weights. This is a difficult problem in statistics because of the reliance of KW
on data ranking. After an extensive search for relevant literature and knowledge
we were able to identify one related work generalizing KW [1], but not solving
the problem at hand. The only article that was identified as fully relevant was
[22], which suggested a very natural generalization of KW for integer weights:
create univariate data to compute the KW test statistic, where each observation
is copied as many times as the integer weight suggests. Clearly, we then precisely
test the target population and not the sample. The purpose of this paper is to
propose an approximate extension of this approach to real-valued weights, by
utilizing the classical bootstrapping [8], and to compare this to an analytically
derived novel heuristic formula. Both of these approaches are tested and evalu-
ated with two different existing clustering results from [19], when ranking both
actual input variables and selected set of metadata variables.

2 On PISA Data

The collected data of each PISA assessment, which since 2000 is conducted
every three years, can be downloaded from the website1 of the Organisation of
Economical and Cultural Development (OECD). To select a reliable sample of
the population, which in PISA are all 15-year-old students within the partici-
pating countries, the OECD applies a two-stage sampling design: First, schools
attended by 15-year-old students are assigned to mutually exclusive groups based
on explicit strata and schools from these groups are selected with probabilities
proportional to their size. Then, students within those school are selected ran-
domly with equal probability. The weight wi assigned to each participating stu-
dent i consists of the school base weight, the within-school base weight, and five
adjustment factors, especially the one which compensates the non-participation
of a sampled student [17]. Students that are sampled for the PISA test are asked
to show their proficiencies in a cognitive test and answer a background question-
naire, which gathers information about demographics, activities, and attitudes
of the students.

Table 1 details all PISA 2012 variables used in this study. The left-hand side
of the table shows all the variables that in [19] were clustered on a population-
level. The ESCS combines all information of the PISA background questionnaire
that relate to the students’ economic, social and cultural situation. The next five
variables on the left-hand side of Table 1 are generally associated with the stu-
dents’ success in the PISA cognitive test, and the remaining nine variables relate
directly to the students’ mathematics performance, which was the main assess-
ment area in PISA 2012. All of these 15 variables are so-called PISA scale indices
that summarize many of the original questions in the students’ background ques-
tionnaires by employing the Rasch model [17]. Since only a subset of all test item
1 https://www.oecd.org/pisa/pisaproducts/.

https://www.oecd.org/pisa/pisaproducts/
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Table 1. PISA variables used in this study with the original variables (i.e., the data
that was used for clustering) on the left-hand side and metadata (i.e., additional PISA
variables used to explain the clustering result) on the right-hand side.

PISA data used for clustering PISA metadata

Variable ID Variable ID

Economic, social and
cultural status

ESCS ICT availability at home ICTHOME

Sense of belonging BELONG ICT availability at school ICTSCH

Attitude towards school:
learning outcome

ATSCHL ICT entertainment use ENTUSE

Attitude towards school:
learning activities

ATTLNACT ICT use at home for
school-related tasks

HOMSCH

Perseverance PERSEV Use of ICT at school USESCH

Openness to problem
solving

OPENPS Use of ICT in math
lessons

USEMATH

Self-responsibility for
failing in math

FAILMAT Positive attitudes
towards computers

ICTATTPOS

Interest in mathematics INTMAT Positive attitudes
towards computers

ICTATTPOS

Instrumental motivation
to learn math

INSTMOT Plausible values 1–5 in
mathematics

PVMATH

Self-efficacy in
mathematics

MATHEFF Plausible values 1–5 in
reading

PVREADING

Anxiety towards
mathematics

ANXMAT Plausible values 1–5 in
science

PVSCIENCE

Self-concept in math SCMAT

Behaviour in math MATBEH

Intentions to use math MATINTFC

Subjective norms in math SUBNORM

are allocated to each student (this is called rotated design), around one third of
the values for these 15 variables are missing.

On the right-hand side of Table 1, the meta-variables to be used in this study
are listed. The first eight variables of general interest are all PISA scale indices
that were computed to summarize the information obtained from the ICT ques-
tionnaire, which assessed the students’ computing availability and familiarity as
well as their attitudes towards computers. The next and last set of variables in
Table 1 are the plausible values (PVs) for each assessment domain (mathemat-
ics, reading, and science). PISA does not provide individual test performance
scores. Instead, to reliably assess the proficiencies of populations, five PVs for
each assessment domain are estimated with Bayesian statistics and reported
for each student. Note that we have allocated only one line in the table per
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assessment domain for the three sets of PVs but there are five single PVs vec-
tors per assessment domain, i.e., 15 PVs altogether, that are used in the analysis.

The PVs are random draws from the Bayesian posterior distribution of a
student’s ability. In PISA, the prior distribution is a population model that is
estimated with a latent regression model. This latent regression computes the
average proficiencies of examinee subgroups given evidence about the distrib-
ution and associations of collateral variables in the data. In PISA 2012, these
collateral variables included to the latent regression model were all available
student-level information besides their performance in the cognitive test [17, p.
157]. That means, in particular, that also all variables listed in Table 1 except
the 15 PVs themselves have been used to estimate the PVs, and therefore, the
PVs cannot be seen totally independent of them. The likelihood of the success
in test is a Rasch model, where the probability of success is a logistic function of
the latent ability and some parameters (e.g. difficulties) of the test items. The
obtained posterior distribution of a student’s ability is specific for each student,
since each student has different values of background variables and test results.

To sum up, student proficiencies in PISA are not directly observed. The PVs
are estimates for group performance and only a selection of likely proficiencies
for students that attained each score. Moreover, for the study at hand, it is
important to note that all background information (i.e., all data that were clus-
tered and all metadata except the PVs themselves) have been used in the latent
regression model which contributes to the posterior distribution from which the
PVs are drawn from.

3 Methods and Formulations

Let {xi}Ni=1 be a given, multidimensional dataset, where N observations xi ∈ R
n

are given. Assume further that a given set of positive, real-valued weights {wi}Ni=1

is also given. Moreover, assume that there is a set of missing values in {xi} with
unknown sparsity pattern. To identify this pattern, define the projection vectors
pi, i = 1, . . . , N, that capture the existing variable values:

(pi)j =

{
1, if (xi)j exists,
0, otherwise.

(1)

3.1 Robust, Prototype-Based Clustering Method for Weighted
Sparse Data

Let us briefly recapitulate the clustering method and the overall approach that
was used hierarchically in [19], to produce three levels of disjoint clusters of PISA
2012 population with 2, 8, and 53 clusters, respectively.

The spatial median clustering algorithm, k-SpatMeds, proceeds similarly to
any prototype-based method: first, an initial set of complete (i.e., no missing
values) prototypes is created and second, these are refined by iteratively linking
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observations to the closest prototype whose value is then recomputed. The algo-
rithm stops when there are no more changes in the linking. Mathematically, the
score function that is locally minimized via the search procedure reads as follows:

Jw =
K∑
j=1

nj∑
i=1

wi‖Diag{pi}(xi − cj)‖2. (2)

Here, Diag transforms a vector into a diagonal matrix. The latter sum is
computed over the subset of data attached to the jth cluster. One observes
from (2) that to take into account the first-order alignment of the sample data
with the corresponding population is straightforward. Moreover, projection of
the Euclidean distance between the observation and the prototype to available
values creates an implicit (secondary) weighting that favors more complete obser-
vations over the sparser ones in cluster creation. Algorithmically, one still needs
to check that the iterative refinement of the prototypes does not introduce miss-
ing values to them, because the resulting set of cluster prototypes {ci}Ki=1 should
be complete to allow proper interpretation. The robustness of this algorithm as
thoroughly described and tested in [3], refers to the tolerance of both missing
values and noisy data. To this end, one can apply the k-SpatMeds algorithm
hierarchically to refine a set of disjoint clusters further.

3.2 Construction of Test Statistic for Kruskal-Wallis with Weights

Next we describe two different approaches to estimate the test statistic H of the
KW rank-test with real-valued weights. Because the KW test is univariate, we
can restrict ourselves to univariate random variable.

Integer Approximation with Bootstrapping. Let {xi, li}Ni=1 be the pairs
of a univariate observation xi ∈ R and its cluster-indicating label li ∈ N, where
1 ≤ li ≤ K for K denoting the number of clusters/groups. Let nk = |Ck| = {i ∈
N | li = k} determine the size of cluster Ck. The original formula for the KW H
is given by [15]

H =
12

N(N + 1)

K∑
k=1

s2k
nk

− 3(N + 1), (3)

where ri denotes the rank of observation xi in global sorting and sk =
∑

i∈Ck
ri

the sum of ranks in cluster Ck. When there are equal values (ties) in data, one
can compute the mean rank of equal observations and share this value among
the ties.

As described, wi ∈ R measures the amount of population that the ith obser-
vation represents. If all wi’s are integers, then in [22] it was proposed how to
modify the basic KW test: rank a derived dataset representing the whole popu-
lation, where each (available) observation is copied as many times as the weight
suggests. This approach is referred from now on as Integerweighted-KW, IW-
KW. Note that when such an enlarged data are ranked we end up with multiple
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ties whose mean ranks are then shared. In the following, we describe a novel
approach how to approximate this integer-weighted KW using a bootstrapping
technique.

Let w denote an arbitrary, real-valued weight. The proposed technique is,
firstly, based on approximating w up to an accuracy of the first decimal place.
This can be simply done as follows: determine the two integers wl = �w� and
wh = �w� that provide lower and upper bound of w as integers. Let then d =
[10 ∗ (w − wl)] be the rounded integer that encapsulates the decimal place 1 of
w. Vector v of ten integers, which is created by repeating wl 10−d times and wh

d times, provides an integer-approximating set of real-valued w in such a way
that the mean of v is exactly the same as w up to the first decimal. For instance,
for w = 8.647, wl = 8, wh = 9, and d = 6. And, for v =

[
8 8 8 8 9 9 9 9 9 9

]
,

we have mean{v} = 8.6. Similarly, in order to create an integer-approximation
of w being accurate to the second decimal place, it is enough to just redefine
d = [100 ∗ (w −wl)]. Proceeding with the example just given, the integer vector
of size 100 with 65 nines and 35 eights would yield to mean{v} = 8.65. For the
general procedure, the result of the just proposed integer approximation of all
weights is stored in the matrix W ∈ N

N×D, where D is 10 when approximating
the first decimal place and 100 for the second decimal place, correspondingly.

Next we suggest to use the classical bootstrapping [8] to create a set of
KW test statistics based on the IW-KW and W . Hence, we create a random
sample of indices {1, . . . , N} with replacement, and for the resulting unique set
of indices Ĩ, for the available values of {xi}i∈Ĩ , we apply IW-KW. When this
is repeated D times for all the integer columns of W , we obtain D different
samples of the bootstrap estimate of the KW H. To this end, similarly as with
the derivation of W , we then simply take the mean of the D-vector to produce
the final approximation of H for the real-valued weights.

Analytic Formula. Let r̄ denote the global mean rank (equal to 1+N
2 ) and

r̄k the mean rank of the observations in cluster Ck. An equivalent form of the
original formula (3) for the KW test statistic H, as given in [9], reads as

H = (N − 1)
∑K

k=1 nk(r̄k − r̄)2∑N
i=1(ri − r̄)2

. (4)

From this form, it is easy to derive an interpretation of the KW test statistic.
With clusterwise r̄k and global r̄ mean ranks, the dividend presents sum of
clusterwise variances multiplied by the size of the cluster whereas the divisor
computes the global variance of ranks. Hence, when the weights represent the
number of samples in the population, it is straightforward to derive an analogous
formula to (4) in the population level. Hence, let r̄w =

∑N
i=1 wiri∑N
i=1 wi

be the weighted
average rank and (r̄w)k the weighted average rank of cluster Ck. Then, we define

Hw =

∑K
k=1(

∑
i∈Ck

wi)((r̄w)k − r̄w)2∑N
i=1 wi(ri − r̄w)2

. (5)
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Note that we have omitted the multiplier (N − 1) from (4), which would be
generalized into (

∑
i wi −1) to represent the whole population. With PISA 2012

weights, which align the half a million students sample to the 24 million pop-
ulation, this means we do not include multiplication of Hw by over 24 million.
Because the final ranking of variables, as suggested in [5], is based on sorting
the H values of the variables in descending order, this omission does not change
the result.

4 Evaluation

Implementation. We computed the KW rank-test H test statistics for real-
value weighted data with two approaches, as described in Sect. 3. The bootstrap-
ping with the IW-KW was tested with two different W s. We will refer to the
bootstrapping based method as Bootstrap KW. Further, Bootstrap KW with
D = 10 refers to the one decimal place approximation of real-valued weights.
Similarly, the two decimal place approximation is referred as Bootstrap KW
with D = 100. In addition, the KW test statistics were computed directly from
formula (5). In the following, this is shortly referred as Analytic KW. The two
clustering results that are used in the experiments corresponded to 8 (Labels
1 ) and 53 (Labels 2 ) clusters from [19] in the second and third levels of refine-
ment, respectively. The first result in [19] with the two clusters is excluded here,
since the KW rank-test exactly generalizes the Mann-Whitney U-test for the
two groups.

To speed up the computations, we implemented a parallel version of Boot-
strap KW with Matlab PCT, SPMD blocks and message passing functions. The
tests were run in Matlab 8.5.0 environment by using a cluster of 8 nodes. Each
node consists of Intel Xeon CPU E7-8837 with 8 cores and 128 GB RAM. Each
worker in the distributed computations corresponds to one of the 64 cores. Since
Bootstrap KW computes the KW H values independently for each variable in a
loop, those loop iterations can be easily parallelized with SPMD blocks. First,
each worker reads one column of variable values from the data matrix and the
corresponding sparsity indicator (1). Next, each worker computes the KW H
values by utilizing its local data. Finally, results are aggregated and rankings for
the variables based on the H values are formed. The number of workers is equal
to the number of variables in all parallel runs.

The five individual PVs for mathematics, reading, and science, as given in
Table 1, were first treated as independent variables, such that five H values were
computed for them. The final value of the test statistic was then taken as the
mean of these according to the recommended way of analysis in [17].

Results. To generally test the proposed approaches, we first used the Iris
data from UCI machine-learning repository. For this, we created random integer
weights in the range 5–25 and newly generated the data for each run. The KW H
values for Analytic KW and Bootstrap KW D = 100 approaches gave the same
variable ranking results in eight out of ten runs. After adding 5% zero-mean
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Table 2. Rankings for full (original and metadata) variables for the different analysis
approaches for both PISA clustering results.

Variable Labels 1 Labels 2 Rank of
rankings

Analytic
KW

Bootstrap KW Analytic
KW

Bootstrap KW

D = 10 D = 100 D = 10 D = 100

ESCS 3 1 1 1 1 1 1

BELONG 11 13 13 9 13 13 12

ATSCHL 7 6 6 7 7 7 6

ATTLNACT 4 3 3 4 2 2 3

PERSEV 15 15 15 15 16 16 15

OPENPS 12 11 11 11 11 11 11

FAILMAT 20 18 18 17 18 18 19

INTMAT 1 2 2 3 3 3 2

INSTMOT 5 5 5 5 6 6 5

MATHEFF 9 9 9 10 12 12 9

ANXMAT 6 7 7 6 8 8 7

SCMAT 2 4 4 2 4 4 4

MATHBEH 14 14 14 12 9 9 13

MATINTFC 8 8 8 8 5 5 8

SUBNORM 13 10 10 13 10 10 10

ICTHOME 10 19 19 14 19 19 17

ICTSCH 25 24 24 25 25 25 25

ENTUSE 24 22 22 24 22 22 22

HOMSCH 22 21 21 23 21 21 21

USESCH 16 26 26 18 26 26 23

USEMATH 26 23 23 26 23 23 24

ICTATTPOS 21 20 20 21 20 20 20

ICTATTNEG 23 25 25 22 24 24 26

PVMATH 17 12 12 16 14 14 14

PVREADING 19 17 17 20 17 17 18

PVSCIENCE 18 16 16 19 15 15 16

uniformly distributed noise to make weights real-values, we obtained the same
ranking order for the different approaches in nine out of ten runs. Moreover,
similarly as in [7], features 4 and 3 were always selected as the important ones
while features 1 and 2 were always last in the list. When we used the same data
for each run the ranking order was always the same.
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(a) Analytic KS for Labels 1 (b) Analytic KS for Labels 2

(c) Bootstrap KS for Labels 1 (d) Bootstrap KS for Labels 2

Fig. 1. KW H values for two clustering results for the combined (originally clus-
tered and meta) PISA data determined with the analytic and the two bootstrap KW
approaches.

Table 2 summarizes all ranking for the combined (originally clustered and
meta) PISA data. In the table, the last column rank of rankings indicates for
each variable the total rank, i.e. the rank of the sum of rankings of all methods
on both labeling levels. KW H values for both clustering results are shown in
Fig. 1. As can be seen from Table 2, variable rankings between the analytic and
the bootstrapped results are highly similar with the exception that variable
USESCH had a ranking difference 10 for Labels 1 and ranking difference 8 for
Labels 2. In addition, variable ICTHOME had ranking difference 9 for Labels 1
and ranking difference 5 for Labels 2.

The Kendall’s tau distance (see [10]) provides a way to compute distance
between two ranking lists with an equal set of variables. The Kendall’s tau
distance is equal to the bubble sort algorithm steps to convert one list to the
same order as the other one. If m is the number of elements in the list, then the
maximum value for the Kendall’s tau distance is m(m − 1)/2 which is typically
used to normalize this distance metric. Thus, the Kendall’s tau distance is limited
to an interval [0, 1], where value 0 refers to the identical lists and value 1 to the
case where one list is the reverse of the other list. The Kendall’s tau distances
between the Analytic KW and Bootstrap KW with D = 100 were 0.1015 for
Labels 1 and 0.1138 for Labels 2. This concludes that, overall, the rankings are
highly similar as measured by the Kendall’s tau distance.
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Bootstrap KW with D = 10 and Bootstrap KW with D = 100 gave iden-
tical rankings for the variables. Experimentally, it seems that approximation of
the real-valued weights using just the first decimal place (D = 10) is accurate
enough. However, for a few variables slight differences can be noticed from the
Figs. 1c and d. We also computed speedups for the distributed Bootstrap KW.
We measured running time for the first variable computations by using a serial
implementation of the Bootstrap KW, and multiplied this with the total num-
ber of variables to get an estimate for the serial implementation running time.
Further, we measured running time for the corresponding parallel implementa-
tion. Thus, parallel Bootstrap KW with D = 100 gives 34× speedup compared
to sequential code for Labels 1 and 35× speedup for Labels 2. Correspondingly,
parallel Bootstrap KW with D = 10 gives 28× speedup for Labels 1 and 33×
speedup for Labels 2. In practice, this means that using the distributed version
enables one to carry out the whole cluster analysis chain in realtime.

As expected, we see from Table 2 and Fig. 1 that the actually clustered
variables generally contribute more to the clustering result than the meta-
data variables. However, this first observation does not hold for all variables:
The metadata PVs in mathematics were more important than the level of self-
responsibility for failing in mathematics (see row FAILMAT in Table 2), which
was clustered. Generally, the PVs are the most important variables from the
metavariables. This ranking result makes sense because the clustered variables
are, as explained in Sect. 2, part of the posterior model from which the PVs were
sampled. Moreover, most of the clustered variables are directly associated with
the students’ mathematics proficiencies. Hence, the PVs in mathematics should
be important variables when explaining the clustering result and, thus, these
observations support the validity of our results.

As can be seen in Table 2, the students’ ESCS is the most important variable
determining the different clusters. This was already assumed in [19] where the
most distinguishing country clusters were those that showed different stages of
development. Moreover, the students’ ESCS is the single variable in the whole
PISA data, which accounts for most of the variance in performance [16]. There-
fore, it is reasonable to assume that the variable that explains the mathematics
proficiency the most, is also the most important when variables associated with
the mathematics performance, are clustered. The students’ ESCS takes not only
the highest parental education and occupation into account but also the students’
home possessions. Therefore, the ICTHOME, which summarizes the home pos-
sessions in the ICT area, is partly associated with the students’ ESCS [17, p.
132]. Hence, it seems reasonable that ICTHOME is next to the PVs one of the
most important variables from the metadata (see Table 2).

To sum up, weighted enlargements with all approaches proposed in Sect. 3
successfully enabled ranking of input and metadata. Triangulation for both
actual input and metadata by using two clustering results of a PISA dataset
and two different algorithms/formulae showed very similar results for all method-
ological approaches and also for the two clustering results that were analyzed.
Hence, it seems that the interpretation is not an artifact of the method used to
analyze the data or only a result of the particular sample, but reflects genuine
and overarching aspects of the data [12].
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5 Discussion and Conclusions

Large-scale educational assessment data provide interesting and high quality
resources for educational knowledge discovery. Although the data from these
assessments are made available to the public a scarce pool of research outcomes
exist that make use of those rich datasets because of the technical difficulties in
them. Only one study [19] was identified, in which the whole PISA 2012 con-
textual data were clustered by taking the complexities of these data (especially
the sparsity and the weights) into account. However, the work in [19] lacked a
clear frame how to assess the importance of individual variables to interpret the
clustering results.

In this study, we proposed weighted enlargements of the KW H test with
different approaches, which as an independent statistical problem is not trivial.
All approaches successfully enabled ranking of input and metadata. In particular,
when applied to the two clustering results in [19], all approaches supported the
finding that the students’ ESCS is the most important variable determining the
clusters—a fact that was also hypothesized in [19] but could not be statistically
shown in there. Moreover, also the ranking of the other variables seem to support
the interpretations made in [19].

The y-scales of Figs. 1c and d illustrate the very large size of the KW test
statistic(s) H for a large population, which in our case is characterized by over
24 million students worldwide. Hence, even if the nonparametric KW test can be
used for testing large samples [9], the actual hypothesis testing seems practically
useless. We tested the computation of the p-values for the original sample, for
both clustering results and for all data and metadata variables, and found in
each case that the p-value was equal to zero up to six decimal places. Hence,
the hypothesis test itself does not provide any useful information for educational
knowledge discovery.

Based on the high similarity of the results of the different ranking approaches,
we suggest the direct KW formula with weights to be used for quick evaluation
of significance of a variable on the population level. If the weighted estimates are
used to derive, e.g., confidence intervals for the test statistics and the resulting
rankings, the bootstrap-based approach should be used. This approach is also
better aligned to the existing literature [5,8,22]. To this end, we conclude that
the proposed approach supports quantified educational knowledge discovery from
PISA and similar large-scale educational datasets.

Acknowledgments. The authors would like to thank Ph.D. Salme Kärkkäinen for
her kind and valuable suggestion to use bootstrapping.
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19. Saarela, M., Kärkkäinen, T.: Do country stereotypes exist in PISA? A clustering
approach for large, sparse, and weighted data. In: Proceedings of the 8th Interna-
tional Conference on Educational Data Mining, pp. 156–163 (2015)
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Abstract. In the retail context, there is an increasing need for under-
standing individual customer behavior in order to personalize marketing
actions. We propose the novel concept of customer signature, that identi-
fies a set of important products that the customer refills regularly. Both
the set of products and the refilling time periods give new insights on
the customer behavior. Our approach is inspired by methods from the
domain of sequence segmentation, thus benefiting from efficient exact and
approximate algorithms. Experiments on a real massive retail dataset
show the interest of the signatures for understanding individual cus-
tomers.

1 Introduction

Retail, and more specifically understanding the behavior of supermarket cus-
tomers, has been a strong motivation for data mining researchers since the early
1990s. Several methods have been developed in this field, such as mining fre-
quent itemset [1], frequent sequential patterns [2] or more recently high utility
itemsets [3]. These methods discover sets of products that are bought together
in a large enough number of tickets, possibly with some extra information (e.g.
sequencing, utility). They can be exploited to understand (large) groups of cus-
tomers. However, with the success of loyalty programs and the increasing number
of customers shopping at online grocery pick-up, a promising trend is “person-
alized marketing”. This requires a fine grained understanding of the purchas-
ing behavior of individual customers, in order to make relevant personalized
suggestions.

In this context of personalized marketing, an important information is the
“rhythm” of the individual customer. The main idea is to identify the set of
products that the customer always wants to have stocked at home, and that she
will thus buy on a more or less regular basis. The rhythm corresponds to the
“refilling period”. Extracting such information may help analysts to get insights
about their customers in order to design personalized marketing campaigns. In
practice, the problem is to discover from the set of the customer receipts, a set of
products that are regularly purchased. A difficulty is that all the products that
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 110–121, 2017.
DOI: 10.1007/978-3-319-57454-7 9
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the customer wants to have in stock are not likely to be bought at the same time:
depending on depletion rates, renewing all such products will be distributed over
several receipts.

Recently, Customer Relationship Management (CRM) has manifested inter-
est in data mining [4], but with a focus on clustering techniques, for example to
characterize segment profiles [5]. However, clustering cannot uncover the flexi-
ble time regularity of customers’ purchases since time periods have to be fixed
in advance. Most existing itemset mining algorithms [1,6] consider only sets of
products that are bought on a single receipt, and cannot be used for this prob-
lem. Periodic patterns [7] can find regularities through a sequence of receipts
however they extract patterns with strict temporal period. Mannila et al. [8]
have proposed parallel episodes to extract temporal regularities but the app-
roach requires fixed predefined equal size windows over the sequence of events,
which lacks flexibility for the problem at hand. In [9], Casas-Garriga defined a
method that also adapts the window size to the data, however it still requires a
maximal time interval between two events.

In this paper, we define the problem of extracting customer signature through
a sequence of receipts. A customer signature represents a maximal set of products
that are bought regularly, possibly in several receipts and such that the regu-
larity is not strict. We show that this problem can be formalized as a sequence
segmentation problem. There is an important literature about sequence segmen-
tation. We have adapted the formal setting provided in Bingham’s survey [10].
The most significant adaptation lies in the notion of segment representatives
that represent occurrences of a common set of products and on the distance
from sequence elements to their related representatives. Roughly, we shift from
a local error view to a global one (see Sect. 2 for more details).

The contributions of this paper are threefold. First, the signature mining
problem is defined as a segmentation problem allowing to take advantage of
the many algorithms that have been proposed in the sequence segmentation
field (Sect. 3.1). Second, we have adapted and evaluated an algorithm based
on dynamic programming for sequence segmentation [11] which gives an exact
solution (Sect. 3.2). Third, a thorough experimental study on real massive super-
market data shows the interest of our approach (Sect. 4).

2 Background

This section provides the data mining vocabulary used in the sequel, and presents
briefly the well-studied sequence segmentation problem.

In pattern mining, an itemset T is a set of literals called items. Let I be
the set of all items. A sequence α is an ordered list of itemsets, denoted by
α = 〈T1, . . . , Tm〉. In the retail context, a receipt is an itemset (a set of purchased
products) and a customer purchase sequence is a sequence of receipts identifying
the products bought by a customer at each of her visits to a supermarket during
the analysis period. For instance, 〈(p1, p2)(p3)(p1)(p4, p2, p3)(p1)〉 is a sequence
of five receipts where four different products are bought one or several times.



112 C. Gautrais et al.

A receipt may have an associated timestamp which indicates the purchase date.
We assume that the timestamp of Tk is implicitly the index of Tk, i.e. k. By
extension, the timestamp of any product of a receipt Tk is the timestamp associ-
ated with this receipt Tk. A customer sequence database SDB is a set of tuples
(Cid, α) where Cid is a customer identifier and α is the sequence of her receipts.

Our proposal is grounded on sequence or time series segmentation which
has received much attention in the literature. In [10], the segmentation problem
is formulated as follows. Let α = 〈T1, T2, . . . , Tn〉 be a d-dimensional sequence
where Ti ∈ R

d. A k-segmentation S of α is a partition of α into k non-overlapping
contiguous subsequences called segments, i.e. S = 〈S1, S2, . . . , Sk〉 and ∀i ∈
1 . . . k, Si = 〈Tb(i), . . . , Tb(i+1)−1〉, where b(i) is the index of the first element
of the i-th segment. A segmentation associates a representative, μ(Si), with
each segment by aggregating the values of the segment. Generally μ(Si) is a
single value such as mean or median, or a pair of values such as (min, max) or
(mean, slope). This reduction results in a loss of information in the sequence
representation which can be measured by the reconstruction error defined as:

Ep(α, S) =
∑

Si∈S

∑

T∈α

dist(T, μ(Si))p

where dist(T, μ(s)) represents the distance between the d-dimensional point T
and the representative of the segment it belongs to. The p parameter refers to
the Lp norm. In practice, the median (p = 1) or the mean (p = 2) usually serves
as segment representatives. The segmentation problem consists in finding the
segmentation that minimizes the reconstruction error:

Sopt(α, k) = arg min
S∈Sn,k

Ep(α, S)

where Sn,k represents the set of all k-segmentations of sequences of length n.

3 Mining Signatures

In this section, we present the signature mining problem in the sequence segmen-
tation framework. Indeed, mining a signature from a customer purchase sequence
α can be seen as segmenting α into k non-overlapping and non-empty segments
that cover all receipts from α and such that every segment contains a common
maximal subset of products, called the customer signature. The signature mining
problem can thus be fitted to the segmentation problem providing the opportu-
nity to use the many exact or approximate algorithms that have been proposed
in the sequence segmentation field.

3.1 Mining Signatures with Sequence Segmentation

Section 2 introduced the problem of segmenting a sequence α = 〈T1, T2, . . . , Tn〉
into k segments. Let Sn,k denote the set of all k-segmentations of a sequence
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α of length n and S = 〈S1, S2, . . . , Sk〉 be an element of Sn,k. Following the
representation proposed in SPAM [12], a receipt can be represented by a bitmap1

of dimension d such that if item ij belongs to the receipt then the j-th bit of
the bitmap is set to 1, otherwise the j-th bit is set to 0. The representative ri

of a segment is then defined as the set of items that belongs to at least one
receipt in the segment, i.e. the union of the segment receipts. This union can be
computed by a boolean disjunction on bitmaps: ri =

∨
t∈Si

t. The k-signature
of a purchase sequence is the set of items that are common to every segments
from a segmentation of size k, so it corresponds to the intersection of the k
segment representatives. It can be computed by a boolean intersection of the
related bitmaps: Sigk(α, S) =

∧k
j=1rj . As we intend to represent a customer

purchase sequence by its signature, the reconstruction error is related to the loss
of information in the signature. A simple way to estimate the error is to count
the items that are not present in the signature, i.e. the number of bits equal to
0 in the bitmap:

Ek(α, S) = |I| − ‖Sigk(α, S)‖ = ‖Sigk(α, S)‖

where ‖X‖ represents the number of bits equal to 1 in bitmap X and X represents
the complement of X. The signature of a customer’s purchase sequence T is the
maximal signature for a segmentation of size k:

Sigk(α) = Sigk(α, Sopt(α, k)), where Sopt(α, k) = arg max
S∈Sn,k

‖Sigk(α, S)‖

The segmentation size k is given a priori, either as an integer or as a percent-
age of n, the size of the input sequence (similar to support count and support [1]).
The latter is called the relative number of blocks denoted by RNB.

3.2 Dynamic Programming for Signature Mining by Segmentation

Now, we present an algorithm for computing signatures by sequence segmenta-
tion based on Dynamic Programming (DP). This algorithm returns an optimal
solution, i.e. a maximal signature.

Bingham [10] presents a formulation of DP for sequence segmentation. It is
based on a table A of size k × n where k is the size of the segmentation and
n is the number of itemsets (receipts) in the input sequence α. So, rows of A
represent segments and columns represent itemsets of the input sequence. Let
α[j, i] denote the subsequence of α starting at index j and ending at index i.
A cell A[s, i] of table A denotes the error of segmenting the sequence α[1, i] using
s segments, formally defined by:

A[s, i] = min
2≤j≤i

(A[s − 1, j − 1] + E(Sopt(α[j, i], 1))) (1)

1 For the sake of simplicity, we focus here on a bitmap representation. To cope with
memory consumption, a more efficient representation method, such as the dynamic
bit vector (DBV) architecture, could be used [13].
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where E(Sopt(α[j, i], 1)) is the minimum error that can be obtained for the sub-
sequence α[j, i] when representing it as one segment. In our case, it is simply
the number of items that are present in the segment receipts. In the signature
mining problem, as presented in Sect. 3.1, the representative of a segment is not
a numeric value but a set of items. In order to compute the reconstruction error,
an A cell stores the bitmaps of the best signatures obtained so far. Since several
signatures may exhibit the same reconstruction error value, an A cell contains
a set of bitmaps. Intuitively, A[s, i] is computed by considering, for all j ∈ [s, i],
the composition of a signature obtained for an (s − 1)-segmentation of a subse-
quence α[1, j −1], stored in A[s−1, j −1], and the signature of the new segment
Sig1(α[j, i]).

Formally, it is defined by:

A[s, i] = amaxN
s≤j≤i

( amaxN
Sigs−1∈A[s−1,j−1]

(Sigs−1 ∧ Sig1(α[j, i]))) (2)

where
amaxN

i
P (i) ≡ arg max

P (i)

|P (i)|

(amaxN returns the maximal elements of a set with respect to norm |.|). The
representation error associated with cell A[s, i] is simply E(P ), which is identical
for every bitmap P ∈ A[s, i]. Thus, all such signatures having a maximal size
are stored in A[s, i].

Table 1 displays the progressive segmentation by Dynamic Programming of
sequence α = 〈(ab)(abc)(acd)(abd)〉. The leftmost column gives the indices of
segments. The bottom row gives the indices over sequence α as well as their
associated itemset and bitmap. Other cells of Table 1 details the results of oper-
ations performed by DP formalized by Eqs. (1) and (2). m represents the error
minimization operation of segmentation. Note, that in the signature mining we
are looking for maximal signatures w.r.t. the number of items and thus, m is
a max operator on signatures. For example, cell [2, 3] computes the best signa-
ture obtained by segmenting sub-sequence α[1, 3] into 2 segments. There are 2
ways to segment α[1, 3]: α[1, 2] − α[3, 3] and α[1, 1] − α[2, 3]. In the first case,
the representative of α[3, 3] (i.e. its associated bitmap) is composed with the

Table 1. DP segmentation table for sequence α = 〈(ab)(abc)(acd)(abd)〉. To be read
from bottom-left to top-right.

3 m(α[3,3]◦A[2,2])
=m(1011∧1100)
={1000}

m(α[4,4]◦A[2,3],α[3,4]◦A[2,2])
=m(1001∧1010, 1001∧1100, 1011∧1100}
={1000}

2 m(α[2,2]◦A[1,1])
=m(1110∧1100)
={1100}

m(α[3,3]◦A[1,2],α[2,3]◦A[1,1])
=m(1011∧1110, 1111∧1100)
={1010, 1100}

m(α[4,4]◦A[1,3],α[3,4]◦A[1,2],α[2,4]◦A[1,1])
=m(1001∧1111, 1011∧1110, 1001∧1111)
={1001, 1010, 1001}

1 m(α[1,1])
={1100}

m(α[1,2])
={1110}

m(α[1,3])={1111} m(α[1,4])={1111}

1: (ab)
1100

2: (abc)
1110

3: (acd)
1011

4: (ad)
1001
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best signature obtained for sub-sequence α[1, 2] given by A[1, 2]. Actually, the
composition operation (denoted by ◦ in the table), is simply a logical AND on
bitmaps. In the second case, the representative of α[2, 3] is composed with the
best signature for sub-sequence α[1, 1] given by A[1, 1]. The representative of
several sequence elements is simply a logical OR on their associated bitmaps.
The best signature for the whole sequence α and a 3-segmentation is given by
A[3, 4].

Algorithm 1. Dynamic Programming for segmentation-based signature
extraction
Input: α = 〈T1, . . . , Tn〉: receipt sequence of length n, min seg: the minimal

segmentation size
Result: Sig: signatures

1 A[1, 1] = T1;
2 /*Initialization of the first row of A*/
3 for i = 2, n do
4 A[1, i] = Ti ∨ A[1, i − 1];
5 end
6 for s = 2, min seg do
7 for i = s, n do
8 Sig = ∅;
9 for j = s, i do

10 Sig = Sig ∪ {A[s − 1, j − 1] ∧ (
∨

T∈α[j,i] T )};

11 end
12 A[s, i] = arg maxp∈Sig |p|;
13 end

14 end
15 Sig = A[min seg, n];
16 return Sig

Algorithm 1 presents a DP algorithm for sequence segmentation and signa-
ture extraction. The first row of the DP table is initialized in lines 4–6. Then
rows are added iteratively until reaching the min seg threshold. To build Ak,
for k ∈ [2,min seg[, we just have to add the row k to Ak−1 (lines 9–13). Finally,
A[n,min seg] provides the best signatures and related min seg-segmentations
(line 16).

The dynamic programming algorithm has a complexity in O(n2k) and com-
putes the optimal solution, here the maximal signature and related segmentation.

4 Experiments

In this section, we compare signatures with some other data representation mod-
els for analyzing customer purchase regularity. We demonstrate that we are able
to find new regularities, that can be used to answer practical questions, such as
targeted marketing.
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The experiments were performed on anonymized basket data provided by
a major French retailer. They were collected from may 2012 to august 2014
(27 months) from customers owning a loyalty card. To remove occasional cus-
tomers, whose data do not make sense for our experiments, only customers hav-
ing more than 20 baskets during the period were kept. 149 942 distinct customers,
worth 16.6 GB of data, remained. The resulting database contains 3,887,979
distinct items. The retailer also provided a taxonomy that relates items to sub-
categories (item class). We ended up with a total of 3388 item categories. Such
categories are used to get rid of minor items differences (e.g. packaging or brand).

4.1 Capturing Purchase Regularity

Mining methods that extract patterns while giving some insight of regularity,
go from top-k item mining [14] to periodic pattern mining. Top-k items are the
k most frequently bought items within all customer’s baskets. However, top-
k items do not provide an explicit information about purchase regularity. Yet,
item frequency can be considered as a rough mean regularity. Periodic patterns
[15] represent items that are purchased at a strict periodicity. However, some
purchase delay could break the periodicity and prevent a pattern to be periodic.
Signatures stand in the middle: they represent sets of items that are bought
within a limited period of time and such items are bought together several times
but under a non strict periodicity.

In the sequel, we compare signatures with top-k items and periodic patterns
to exhibit some common and distinctive features.

Signatures vs Top-k Items. In this experiment, we compare the signature
content with the top-k items for each customer. We compute signatures with a
relative number of blocks of 0.15 (see Sect. 3.1). We try different values of k for
the top-k items method, and compare all of them with the signature content
in Fig. 1, on the left. Setting the value of k to the signature length for each
customer is not possible in practive, as we do not know the signature length
before hand. We therefore do not show experiments with this particualr value of
k. More elaborate methods to adapt the k value to each customer, such as elbow
methods [16], did not bring better results than the ones presented in Fig. 1-
left. The Jaccard similarity between the signature and the top-k items of most
customers is between 0.5 and 0.3. This means that top-k items and signature
products overlap partially. When the k value is low, the number of top-k items is
significantly lower than the number of items in the signature. This leads to a low
Jaccard value, even though most of the top-k items are included the signature.
A similar behavior is observed for large values of k, where the top-k contains
more items than the signature, leading to a low Jaccard value. For values of k
close to the mean signature length: between 5 and 10 items, the Jaccard goes
higher, as both sets have a similar size. Overall, the signature overlaps partially
with the top-k items, and the main source of difference comes from the fact that
the number of items in the signature changes for each customer, whereas it is
constant for all customers in the top-k computation. The number of items in
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Fig. 1. On the left: Jaccard similarity between the signature and the top-k items,
for different k values. This has been computed on 149 942 customers. On the right:
Jaccard similarity between the signature and the longest periodic pattern, for different
time scales. This was computed on 20 000 customers.

the signature could therefore be seen as a way to estimate a relevant value of
k for the top-k items of a given customer. Another source of difference between
signatures and top-k items is the fact that items that are very frequently bought
during a short period of time do not appear in the signature, while they are
more likely to appear in the top-k items.

Periodic Patterns Comparison. In this experiment, we compare the signa-
ture content with the periodic patterns for each customer. We used an algorithm
that allows gaps between consecutive occurrences of periodic patterns [7]. As
periodic patterns can only be found in a single time scale, a preprocessing step
that aggregates the receipts on a given time scale (e.g., merge all receipts at the
given granularity) is required. As we do not know in advance what is the relevant
time scale for each customer, we are using 4 time scales to compute the periodic
patterns: daily, weekly, bi-weekly and monthly purchases. For each time scale,
we computed the Jaccard similarity between the longest periodic pattern and
the signature. We chose the longest periodic pattern as the signature finds the
longest regular pattern. If several longest periodic patterns are found, we take
the one that has the largest Jaccard similarity with the signature. The results
are presented in Fig. 1, on the right. In this figure, we can see that the Jac-
card similarity between the signature and the longest periodic pattern is mostly
between 0.3 and 0.45. This means that these two sets have common elements, but
still differ. Further analysis showed that the longest periodic pattern is almost
totally contained in the signature. This means that the signature is composed of
most items from the longest periodic pattern. This periodic part of the signature
represents between one third and one half of the total signature. The remaining
part of the signature contains items that are not periodic but that are regularly
bought. This highlights the flexibility of the signature, as it manages to capture
periodic products, while also capturing non periodic regular purchases.

Signatures capture non periodic regularities because their segments can be of
arbitrary length. More specifically, each customer signature segment can contain
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multiple baskets, and can therefore span on different time scales. On the other
hand, periodic patterns have a fixed segment length and cannot span on different
time scales. To illustrate this difference, we plot the coefficient of variation of
the segment size for each customer in Fig. 2, on the left. Most customers have a
coefficient of variation greater than 0.4, which means that most customers have
variations in their purchase rhythms. Almost no customers have a coefficient of
variation equal to zero, whereas all customers have a coefficient of variation of
0 for periodic patterns by definition. Nevertheless, the coefficient of variation
remains mostly below 1, which means that customers show a regular purchase
behavior. Therefore, the signature segment still captures a regular behavior of
the customer. This shows that introducing flexibility in the period allows us to
capture more regular products than existing methods (see Fig. 1-right), while
capturing a regular behavior (see Fig. 2-left).

Fig. 2. On the left: distribution of the segment length coefficient of variation of 149 942
customers. On the right: difference between the signature period and the most similar
periodic pattern period.

Because signatures are more flexible, their detected temporal regularity can
be different than the one found by periodic patterns. To compare the period
found by both methods, we compared the difference between the mean segment
size of the signature, with the largest period of the periodic pattern that is the
most similar with the signature (according to the Jaccard similarity). We choose
the largest period of the periodic pattern, because signatures segments are as
large as possible. This effect is due to the fact that segments have to cover the
whole sequence. The results are presented in Fig. 2, on the right. We can see
that most periods found by the signature are close to the period found by the
most similar periodic pattern. While there can be some differences between both
periods, these differences are usually contained within a reasonable time span.

To summarize, signatures are able to find regularly purchased products,
whether they are periodically bought are not. The flexibility of the regularity
definition of the signatures allows us to find these products without any pre-
processing step. Moreover, signatures are able to find the underlying period of
customers, that is consistent with the one found by periodic patterns. Signatures
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therefore find the time regularity of a customer, along with the regular products.
This regularity cannot be totally captured by existing methods.

4.2 Insights from Signatures

As shown in the previous section, signatures group transactions into segments to
find a set of regular products, that can not be totally found by existing methods.
More specifically, let us consider the case of a real customer (named A). The
store visits of customer A are represented in Fig. 3, on the top. For comparison,
we also consider customer B whose store visits have a signature identical to her
largest periodic pattern (shown in Fig. 3 on the bottom). The comparison of both
Figures clearly shows that the customer A has no clear buying pattern, while
the customer B has a clear buying pattern: she buys her groceries almost every
Saturday. Nevertheless, by computing the signature on the customer A, we are
able to detect her underlying period. Indeed, her signature contains 9 products:

Fig. 3. Receipts of a non periodic customer (A), on the top, and periodic customer
(B), on the bottom. Each green rectangle represents a visit to the store. The darker
the green, the more products were bought during that visit. (Color figure online)
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Biscuits, Hazelnut spread, cheese, frozen meat, pasta, cream, butter, ham and
chocolate powder. Only some of them are bought during the same store visit,
and these purchases usually spread over 4 transactions, for a segment length
of 2 weeks on average. Among these products, some of them have a periodic
buying pattern (pasta, ham and hazelnut spread), while the others are bought
more sporadically. Nevertheless, this whole set of products has consistency and
is related to meal and break food for children. The signature was therefore able
to identify the purchase rhythm (both period and products) of a customer who
had no clear buying pattern when using existing methods.

Signatures can also help marketers to answer the problem of finding the
most appropriate time and products to give a coupon on, for a given customer.
To achieve this targeted coupon policy, it would be interesting to be able to
know what kind of products this customer is likely to buy in the next visits,
to be able to give this customer targeted coupons. Thanks to the signature, we
can provide the marketer with information about the time and content of next
purchases. Indeed, if this customer has purchased Biscuits, cheese, frozen meat,
cream and butter over 2 transactions in a week, we know from the signature that
this customer is likely to be buying Hazelnut spread, pasta, ham and chocolate
powder in the next 2 transactions over the next week. This because we know
from the signature that this customer has the habit of buying Biscuits, Hazelnut
spread, cheese, frozen meat, pasta, cream, butter, ham and chocolate powder in 4
transactions over 2 weeks. As we are observing a portion of a signature segment,
we can guess the products that are likely to be bought in the next week. This
information is of prime interest for retailers, as they could then target their
ads on the right products for each customer. It should be noted that periodic
patterns would have missed the part related to break food for children, as only
pasta, ham and hazelnut spread were considered periodic.

5 Conclusion

Getting a better understanding of individual customers is becoming a differen-
tiating factor in a data-driven retail context. We have presented a novel notion
of customer signature, that gives for each customer a good understanding of the
products most regularly bought, as well as of the household rhythm. Our experi-
ments have shown that this approach, thanks to its flexibility, allows to get deep
insights on purchasing rhythms that are not provided by existing algorithms.
The approach itself builds up on a large body of work on sequence segmenta-
tion, taking advantage of years of research on efficient exact algorithms.

This work opens new perspectives. A first one is to take product categories
into account, allowing to find new types of regularities over product categories
or brands. From an application point of view, with our retail partner we are
investigating the use of signatures for preventive actions against churn. Another
exciting perspective is to test the use of signatures on other domains than retail.
Thanks to the generality of the definitions, it can be easily applied on any
sequence of itemsets where a segmentation is relevant. We performed prelim-
inary experiments on datasets of labeled TV programs, with promising results:
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while signatures with a high number of blocks detect regular daily programs,
signatures with fewer segments but many items can detect relatively short span
events (such as Roland-Garros tennis contest) for which TV channels devote
many special programs, that are picked up by the signature.
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1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proceedings of 17th International Conference on Man-
agement of Data, pp. 207–216 (1993)

2. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of 11th Inter-
national Conference on Data Engineering, pp. 3–14 (1995)

3. Tseng, V.S., Shie, B.-E., Wu, C.-W., Yu, P.S.: Efficient algorithms for mining
high utility itemsets from transactional databases. Trans. Knowl. Data Eng. 25(8),
1772–1786 (2013)
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Abstract. A data stream’s concept may evolve over time, which is
known as the concept drift. Concept drifts affect the prediction accu-
racy of the learning model and are required to be handled to maintain
the model quality. In most cases, there is a trade-off between maintaining
prediction quality and learning efficiency. We present a novel framework
known as the Volatility-Adaptive Classifier System (VACS) to balance
the trade-off. The system contains an adaptive classifier and a non-
adaptive classifier. The former can maintain a higher prediction quality
but requires additional computational overhead, and the latter requires
less computational overhead but its prediction quality may be suscepti-
ble to concept drifts. VACS automatically applies the adaptive classifier
when the concept drifts are frequent, and switches to the non-adaptive
classifier when drifts are infrequent. As a result, VACS can maintain a
relatively low computational cost while still maintaining a high enough
overall prediction quality. To the best of our knowledge, this is the first
data stream mining framework that applies different learners to reduce
the learning overheads.

Keywords: Data stream · Concept drift · Stream volatility

1 Introduction

Data streams are sequences of unbounded data arriving in real time. For example,
electricity usage records produced by a power station, online tweets generated
in a region, transactions recorded in a stock market can all be presented as
data streams. Such real-world data are generated in order and are considered
to be infinite. The task of data stream mining is to find valuable information
from these unbounded streams of data. Data stream’s properties raise various
requirements when designing data stream algorithms. Instances in a stream can
arrive very fast, allowing only limited time and memory for the algorithm to
learn its underlying concepts. Moreover, a data stream may evolve over time such
that the underlying concepts in a stream may change. Consequently, the learning
model loses prediction accuracy over time. This is known as concept drifts. To
maintain the quality of a learning model, stream learning algorithms are expected
to detect changes and update their models to overcome these concept drifts. The
frequency of concept drifts is known as stream volatility [6]. High volatility means
a high frequency of concept drifts.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 122–134, 2017.
DOI: 10.1007/978-3-319-57454-7 10
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Some data stream learners can overcome a concept drift by adjusting their
models to generalise the new concept and maintain a high prediction quality
during the drift. These learning models can be classified as adaptive learners.
Other data stream learners that cannot adjust their models are known as non-
adaptive learners. Model adaptations come with a large computational cost.
Thus, there is a trade-off between the model quality and the learning efficiency.
It is also known that stream volatility may change in a stream over time [6].
For example, in stock market transactions, an anomalous event can result in an
increasing number of concept drifts over a short period. One way to balance the
trade-off between model quality and efficiency is to apply the model adaptation
only when the stream volatility is high to maintain a stable prediction quality.
When the volatility becomes low, we disable the model adaptation to save cost.
We are addressing this problem by creating a new learning framework containing
both adaptive and non-adaptive learners.

We designed a framework called Volatility Adaptive Classifier System
(VACS). VACS has lower computational cost than the state-of-art adaptive
learner while maintaining a similar prediction quality in a stream with volatility
changes. VACS is composed of both adaptive and non-adaptive classifiers. VACS
uses stream volatility [6] as the criterion to switch between classifiers. In particu-
lar, when the volatility is high, VACS applies the adaptive learner to maintain a
better prediction quality. When volatility is low, it is deemed to be unnecessary
to spend large overheads to handle infrequent concept drifts, so it switches to the
non-adaptive classifier. As a result, VACS will maintain a sufficiently high pre-
diction accuracy with relatively low overheads. Our contributions are as follows:
(1) We proposed a Volatility Adaptive Classifier System (VACS), which is able
to choose between the adaptive classifier and the non-adaptive classifier given
different levels of stream volatility. (2) We show that the accuracy of VACS is
comparable to state-of-the-art techniques, while maintaining low computational
cost. To the best of our knowledge, this is the first data stream learning tech-
nique that uses stream volatility to adjust model adaptation behaviour to reduce
computational cost while maintaining high model quality.

In the next section, we discuss the related work in the area. In Sect. 3, we
illustrate how VACS works. In Sect. 4, we discuss the experimental results. Lastly,
we conclude our paper in Sect. 5.

2 Related Work

There are various methods, derived from traditional learning methods, for mining
data series including ensemble based methods [10] and neural network based
methods [8]. In our research, we focus on tree based models: VFDT [4] and
HAT-ADWIN [2] which have different expected properties.

VFDT is a decision tree classifier that is specifically designed for learning
data streams. Because a data stream is infinite, VFDT splits an inner node
using confident enough instances from a stream rather than seeing all instances.
CVFDT [7] is a variant of VFDT. CVFDT maintains a sliding window storing
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recent instances learned, and it adjusts its tree model to be consistent with the
instances in the window.

Hoeffding Adaptive Tree using ADWIN (HAT-ADWIN) was proposed by
Bifet et al. [2]. This algorithm installs the drift detector ADWIN [1] on each node
of the VFDT decision tree. The ADWIN drift detector monitors the attribute-
class statistics on its host node. If a change in the attribute-class statistics at that
node is detected, it starts to grow an alternative tree rooted at that node. When
the alternative sub-tree has a better prediction accuracy, the current sub-tree is
replaced by the alternative one.

We can categorise those two tree algorithms into two classes: adaptive learner
and non-adaptive learner. VFDT is considered to be a non-adaptive learner. It
does not have the ability to adjust its tree model to new concepts in an evolving
data stream. Instead, VFDT with drift detector ADWIN (VFDT-ADWIN) can
rebuild its tree model when a concept drift is detected. However, a severe pre-
diction accuracy drop can be experienced during model rebuilding. In contrast,
HAT-ADWIN and CVFDT are adaptive learners. Adaptive learners are able to
partially update their models to fit the new concept in an evolving stream such
that they can maintain a stable accuracy when encountering concept drifts.
However, adaptive learners such as HAT-ADWIN have larger overhead than
non-adaptive learners in terms of training time and memory. This is because
adaptive algorithms need additional computation and storage to perform model
adaptation.

Recurring Concept Drift (RCD) framework [5] is similar to our proposed sys-
tem (VACS) in that they both use more than one learner to mine data streams.
However, RCD is designed for improving the prediction quality, while VACS is
designed to reduce learning overheads.

3 Volatility Adaptive Classifier Systems

We propose the Volatility Adaptive Classifier System (VACS). Intuitively, when
mining a stream, VACS automatically applies the adaptive classifier in high
volatility periods, and it switches to the non-adaptive classifier in low volatility
periods. It aims to reduce learning overheads while maintaining high prediction
quality. VACS is composed of several modules: Volatility Measurement Window,
Double Reservoirs Classifier Selector, a drift detector and two component learn-
ers. Figure 1 presents an overview of VACS. In particular, we use VFDT with

Fig. 1. VACS Overview
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ADWIN (VFDT-ADWIN) in low volatility periods and we use HAT-ADWIN in
high volatility periods. We use ADWIN as the drift detector.

3.1 Volatility Measurement Window

One task of VACS is to measure the volatility level of a stream such that it can
switch classifiers based on different volatility levels. Huang et al. [6] calculate a
stream’s current volatility by calculating time intervals between each drift point
in a buffer. In other words, their method measures the time differences among a
fixed number of drifts. Small time differences denote high volatility while large
differences denote low. Their method is appropriate to calculate relative volatility
shift in a stream. However, it introduces a volatility measurement delay because
it needs to wait for the next drift in order to calculate the new volatility level.
The delay problem can be severe if the volatility drops from high to low. This is
because the time difference between the next drift and the recent drift increases,
and it needs to wait a longer period for the next drift to appear in order to
update the measurement.

We develop a new method to measure the level of volatility using a sliding
window with fixed size T . It contains indices of the most recent T instances
learned from the stream. When a new instance’s index is inserted into the win-
dow, the oldest instance’s index is removed. The window maintains a value γ,
which is the number of concept drifts detected in the most recent T instances.
Then γ can represent the level of the current volatility. In the case when the
level of volatility decreases, it does not need to wait until the next drift occurs.
Instead, the window constantly updates γ over time. This new method mitigates
the delay problem.

3.2 Double Reservoirs Classifier Selector

Double Reservoirs Classifier Selector (DRCS) is another module in VACS. DRCS
uses the reservoir sampling technique [9] to sample and approximate both high
and low levels of volatility of a stream while learning. We do not want to lose
information about high volatility periods of a stream when sampling at low
volatility. Similarly, we do not want to lose information about low volatility
periods when sampling at high volatility. A single reservoir will not satisfy this
requirement because reservoir sampling removes a random element when insert-
ing a new element. DRCS separately samples the volatility levels from low and
high volatility periods in a stream using two independent reservoirs.

In particular, DRCS has two functions: sampling and suggesting. The “sam-
pling” function is called by VACS constantly when learning a stream. The sam-
pling function of DRCS maintains two reservoirs named High Reservoir and Low
Reservoir. Those two reservoirs sample each input γ value (volatility level) from
the volatility measurement window using the reservoir sampling method [9]. The
first γ is inserted into the low reservoir for initialisation. After initiation, when
a new measured stream volatility γ arrives, it compares γ with the mean of the
elements in the two reservoirs. If the value is lower than the mean, it stores this
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value into the Low Reservoir. If the value is greater than the mean, it stores the
value into the High Reservoir. We specify a means’ difference threshold λ. If the
difference between two reservoirs’ means is greater than λ, the DRCS is set to be
active. VACS can only switch a classifier when DRCS is active. This setting can
prevent two undesirable behaviours. Firstly, it prevents VACS from switching
classifiers when there are rare volatility changes in the stream. Secondly, if there
are volatility changes in the stream but these changes only appear in a later
period, it prevents VACS from switching classifiers at the early stage in which a
changing volatility has not been measured yet. Intuitively, λ is used to indicate
the size of the volatility change that matters to the user. If there are volatility
differences greater than this threshold in a stream, we can treat the stream as a
volatility-changing stream and activate our system, otherwise, we use the single
learner to handle the stream. λ is also related to the volatility measurement
window size T . A larger T value can result in larger measured numbers of drifts
in the window. Thus, larger γ (volatility level) can be obtained and inserted into
reservoirs. So λ should increase with T . However, if λ is overly large, VACS may
never be activated.

The second function of DRCS is a “suggesting” function. This is used when
VACS queries DRCS. When VACS queries DRCS, it compares the most recent
input γ with the mean of all other γ values in two reservoirs. If the recent
γ is greater than the reservoirs’ mean, it returns the high volatility classifier
suggestion (adaptive learner). Otherwise, it returns the low volatility classifier
suggestion (non-adaptive learner).

3.3 Pseudocode

In this section, we compose each module discussed in the previous sections into
the complete Volatility Adaptive Classifier System (VACS). The pseudocode
can be seen in Algorithm 1. The algorithm firstly initiates the Double Reservoirs
Classifier Selector (DRCS) and a drift detector. By default, we use ADWIN for
the drift detector. It also initiates the volatility measurement window count-
ing concept drifts detected in the recent T instances. We provide two classifiers
for VACS. One classifier is considered to be suitable in high volatility periods
(adaptive learner) while the other is deemed to be appropriate in low volatility
periods (non-adaptive learner). In our implementation, we use HAT-ADWIN as
the adaptive learner and VFDT-ADWIN as the non-adaptive learner. In VACS,
only one classifier is active at any time to perform the learning task. The user
decides which classifier should be active at the start when no volatility level has
been detected. When the algorithm starts, it takes each arriving instance from
the stream and classifies it with the active classifier. If the classifier correctly
classifies the instance, we input 0 into the drift detector. Otherwise, we input 1
into the drift detector. The drift detector is modified such that it signals a drift
only if the prediction error is increasing. Next, it updates the volatility measure-
ment window and γ (volatility level), which is the number of drifts detected in
the recent T examples. If the number of classified instances since the last volatil-
ity level measurement reaches a user-specified count τ , the algorithm measures
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and inputs γ into DRCS and then queries DRCS. The reason for adding an
interval τ between two consecutive γ measurements is because it is not likely
to measure a change on γ if two measurements are close. Next, DRCS returns
one classifier option from the two that are suggested to be used, best suited to
the current level of volatility. If the suggested classifier is not consistent with
the one active in VACS, it switches the current active classifier to the suggested
one. It then re-initiates the new classifier. In the case of a decision tree, it resets
the decision tree to a one-node tree without learning examples. When the user
wants to make a classification with an instance with the unknown class, VACS
will use the currently active classifier to make the prediction.

4 Results and Evaluation

We implemented VACS in the Massive Online Analysis (MOA) Framework [3]. In
our experiments, we measure the performance of HAT-ADWIN, VFDT-ADWIN
and VACS by evaluating total training time (Time), mean memory usage (Mem),
maximal memory usage (Max Mem), the mean prediction accuracy (Acc) and
the mean prediction accuracy when concept drifts occur (dAcc) on each algo-
rithm. We compare the measurement results of those algorithms and contrast
the differences among them.

Beyond those measurements, we also explore whether VACS switches between
classifiers as expected. We introduce a new measurement called Percentage of
Instances Classified by the Expected Classifier (PICEC). It denotes whether
VACS applies the correct classifier accurately given a volatility level. Our syn-
thetic datasets’ volatility fluctuates between low and high volatility periods.
VACS has two classifier options: high volatility classifier (adaptive) and low
volatility classifier (non-adaptive). We obtain PICEC using the following calcu-
lation: we count the number of instances from the high volatility period in a
stream classified by the high volatility classifier, and the number of instances
from the low volatility period in a stream classified by the low volatility classi-
fier. We divide the sum of these two numbers by the total number of instances
in the streaming dataset.

Here we specify all parameters for VACS.
Each reservoir in DRCS has size 200, volatility measurement window size (T )

is 300000, means’ difference threshold (λ) is 15, the interval length between each
volatility level measurement (τ) is 10000, the drift detector of VACS is ADWIN,
the high volatility classifier is HAT-ADWIN, and the low volatility classifier is
VFDT with ADWIN as the external drift detector (VFDT-ADWIN). The default
starting classifier is VFDT-ADWIN. ADWIN uses the Hoeffding Bound whereby
the δ value [1] is set to 0.002.

4.1 Experiments on Mutating Random Tree Generator Datasets

We show the evaluation results run on data generated by the mutating ran-
dom tree generator. We intend to evaluate whether VACS has a reduction of
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Algorithm 1. VACS: Volatility Adaptive Classifier System
input : S: Stream of examples

τ : Interval length between each volatility level measurement.
T : Size of sliding window for measuring current volatility level.
HighV olClassifier: The classifier used in high volatility period.
LowV olClassifier: The classifier used in low volatility period.
StartingClassifier: The classifier chosen at the start.
DT : Drift Detector.

1 begin
2 Initiate drift detector DT ;
3 Initiate Double Reservoir Classifier Selector DRCS;
4 Initiate Volatility measurement window W ;
5 Let ActiveClassifier = StartingClassifier;
6 Let γ = Number of drifts detected when classifying the most T instances;
7 foreach example(x, yk) ∈ S do
8 ActiveClassifier classifies (x, yk);
9 if ActiveClassifier correctly classified (x, yk) then

10 Let e = 0;
11 else
12 Let e = 1;
13 Input e into DT ;
14 Update W and γ;
15 Let i = number of instances that has been classified;
16 if i%τ = 0 then
17 Input γ in DRCS (Call DRCS Sampling);
18 Query DRCS for the suggestion (Call DRCS Suggesting);
19 Let SuggestedClassifier = Suggested Classifier of DRCS;
20 if SuggestedClassifier is not null AND is not CurrentClassifier

then
21 if SuggestedClassifier is HighV olClassifier then
22 Set ActiveClassifier = HighV olClassifier;
23 else
24 Set ActiveClassifier = LowV olClassifier;
25 Re-initiate ActiveClassifier;

26 Train ActiveClassifier with (x, yk);

27 end for

28 end

computational cost compared with the adaptive learner (HAT-ADWIN). We
also inspect if VACS switches classifiers as expected.

We developed the mutating random tree generator based on the random tree
generator presented in [4]. Our generator randomly chooses a branch of the tree
and rebuilds it when we want to add a concept drift in the synthetic stream.

The synthetic data has 10 attributes and 2 classes. The maximal depth of
the random tree is 5. We add 5% noise to the data. The synthetic data stream
is made up of 28 blocks. Each block has 1 million instances. We have two types
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of blocks: high volatility blocks containing 50 concept drifts, and low volatility
block containing 5 concept drifts. We interleave high volatility blocks and low
volatility blocks such that the stream fluctuates between high volatility and low
volatility over time. We generated three types of datasets. (1) balanced volatility
periods streams: they contain equal numbers of high and low volatility blocks (2)
majority of low volatility periods streams: they contain 8 high volatility blocks
and 20 low volatility blocks (3) majority of high volatility periods stream: they
contain 20 high volatility blocks and 8 low volatility blocks. For each pattern, we
generate 20 stream samples with different random seeds, and we run experiments
on each of them.

Experimental results of 20 sample streams are shown in Table 1. The bold
font denotes the worst performance mean among the three algorithms. Generally,
all experiments show that the prediction accuracy of VACS is close to the predic-
tion accuracy of HAT-ADWIN in drifting periods. So it has similar stability to
HAT-ADWIN when drifts occur. However, compared with HAT-ADWIN, VACS
effectively saves on training time and memory usage. Results show that VACS
has a better average prediction accuracy than VFDT-ADWIN and a slightly
worse prediction accuracy than HAT-ADWIN. This is the expected result since

Table 1. Performance on mutating random tree generator datasets

Dataset Balanced Majority low vol Majority high vol

Mean Std dev. Mean Std dev. Mean Std dev.

VACS

Acc % 84.86 0.28 86.71 0.456 83.43 0.38

dAcc % 81.2 0.41 81.85 0.49 80.9 0.55

Mem (B) 413178.93 30237.52 515455.88 48911.55 338391.59 22452.62

Max Mem (B) 2200813.6 540997.42 2372156 430484.32 2108248 480220.7

Time (s) 230.31 5.83 190.78 2.75 256.93 6.11

VFDT-ADWIN

Acc % 83.5 0.24 85.62 0.5 81.78 0.4

dAcc % 78.85 0.37 79.45 0.6 78.85 0.37

Mem (B) 275669.66 29343.87 392995.25 55100 194866.07 24074.3

Max Mem (B) 2068718.4 519383.28 2274702 485691.92 1987230.4 469304.53

Time (s) 123.72 2.04 126.31 2.62 116.47 2.34

HAT-ADWIN

Acc % 85.77 0.25 87.68 0.41 84.06 0.29

dAcc % 81.8 0.41 82.35 0.49 81.3 0.47

Mem (B) 775754.48 86571.52 1115474.7 158771.26 520137.73 77229.29

Max Mem (B) 5139417.6 1143583.34 5754436 1218915.82 4763293.2 959179.97

Time (se) 364.69 6.55 392.04 11.84 333.41 8.87
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VACS’s prediction accuracy is produced by the hybrid system composed of HAT-
ADWIN and VFDT-ADWIN.

4.2 Evaluation of the Classifier Switch Quality

The objective of these experiments is to evaluate whether VACS applies appro-
priate learners as expected. We test VACS with the three different types of
datasets from the mutating tree generator. The results are shown in Table 2.
Results show decent PICECs for all types of data. PICECs for all datasets’
experiments reach around 90%. The percentage of applying the low volatility
learner and the high volatility learner are also consistent with the type of data.
For example, in streams with a majority of low volatility periods, 72% of the
instances are classified by the low volatility classifier (VFDT-ADWIN) and 28%
of the instances are classified by the high volatility classifier (HAT-ADWIN).

Table 2. VACS behaviour on different streams

Dataset Balanced Majority low vol Majority high vol

Mean Std dev. Mean Std dev. Mean Std dev.

PICEC % 89 1.8 94 1.5 88 2.4

Low vol learner usage % 52 2.1 72 1.3 37 1.9

High vol learner usage % 48 2.1 28 1.3 63 1.9

4.3 Experiments on Different Volatility Measurement Window Size

The objective of these experiments is to inspect the influences of different Volatil-
ity Measurement Window Size T on the learner selection quality of VACS. In
previous experiments, we use 300,000 as the default value for T . In this exper-
iment, we vary T by both increasing and decreasing from its default value. We
run VACS on 20 samples of the balanced volatility stream. The experimental
results are shown in Table 3.

We can summarise that classifier selection quality of VACS is influenced by
the volatility measurement window size T . Setting the value T to either too
small or too large may cause low PICEC, which means a poor classifier selection
quality. From our experiments, we found that T should be large enough such

Table 3. VACS with different volatility measurement window size

T PICEC % (Mean) PICEC % (Std dev.)

30000 50 0

100000 88 1.6

300000 89 1.8

3000000 29 4.3
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that the measurement is not strongly influenced by the volatility fluctuation of
randomness. Also, T should not be too large such that VACS can always measure
one volatility level at a time in a stream with volatility changing between differ-
ent levels. One suggestion for selecting T is to run a test on the stream before
starting VACS. A user can start from a small T value and gradually increase T
meanwhile evaluating whether measurements are susceptible to volatility fluc-
tuations caused by noise. When VACS performs as expected, stop increasing T
and use this value. We assume that the T value obtained in the pre-experiment
period from a continuous stream is also appropriate in the upcoming period in
that stream. This assumption holds true in all of our experiments.

4.4 Experiments on SEA Generator Datasets

We use SEA Generator as our second data generator from MOA. The SEA gen-
erator has 3 attributes and 2 classes by default. We generate the same three types
of volatility-changing data streams as the previous experiments. The experimen-
tal results can be viewed in Table 4. The bold font denotes the worst perfor-
mance metrics among three algorithms. Results show a similar conclusion for
VACS reducing training time. VACS uses less training time than HAT-ADWIN.

Table 4. Performance on SEA generator datasets

Dataset Balanced Majority of low vol Majority of high vol

Mean Std dev. Mean Std dev. Mean Std dev.

VACS

Acc % 92.14 0.08 92.62 0.07 91.69 0.19

dAcc % 90.85 0.37 90.9 0.31 90.75 0.44

Mem (B) 173849.41 3951.98 172856.88 2138.16 163834.01 2091.83

Max Mem (B) 572069.6 56281.64 576905.2 58845.55 532899.6 57047.26

Time (s) 127.33 4.33 105.41 2.39 143.82 3.3

VFDT-ADWIN

Acc % 92.09 0.08 92.52 0.07 91.67 0.16

dAcc % 90.85 0.37 90.8 0.41 90.65 0.49

Mem (B) 56843.41 1871.21 63692.83 1191.53 41673.5 1123.55

Max Mem (B) 186323.2 15153.59 177403.6 9168.92 175032 5283.07

Time (s) 64.33 1.64 65.06 1.04 62.41 1.26

HAT-ADWIN

Acc % 92.2 0.08 92.66 0.07 91.71 0.19

dAcc % 90.85 0.37 90.9 0.31 90.75 0.44

Mem (B) 161413.3 4963.52 201208.75 3811.19 112874.55 4215.42

Max Mem (B) 666700 71667.62 688492.4 88055.91 637625.2 67176.21

Time (s) 188.22 3.38 209.84 3.4 171.86 2.82
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Table 5. VACS behaviour on different streams (SEA)

Balanced Majority of low vol Majority of high vol

Mean Std dev. Mean Std dev. Mean Std dev.

PICEC % 90 2.6 94 1.6 91 2.7

Low vol learner usage % 49 2.9 71 1.4 33 1.8

High vol learner usage % 51 2.9 29 1.4 67 1.8

Moreover, in streams composed of a majority of low volatility periods, VACS
has the most effective reduction in time compared with HAT-ADWIN.

We also evaluate VACS’s classifier switch quality in these datasets. We show
the results in Table 5. VACS in all three types of datasets return around 90%
values, which is similar to earlier experiments in mutating random tree datasets.
This tells us the classifier switch quality of VACS is also decent on SEA generated
datasets.

5 Experiments on Real-World Data

The aim of this set of experiments is to evaluate whether VACS can achieve the
cost reduction compared with the adaptive learner on real-world datasets. We
chose Poker Hand, Forest Cover Type, and Airlines real world datasets available
on MOA, which contain volatility changes. After testing, we chose volatility
measurement window size T = 20, 000 and we set λ to 3 for VACS. Table 6

Table 6. Performance with real-world datasets

Dataset Poker Hand Forest Cover Type Airline

VACS

Acc % 72.0 82.14 64.98

Mem (B) 124684.11 176295.35 2642422.83

Max Mem (B) 163392 357528 10468520

Time (s) 4.29 11.62 10.14

VFDT-ADWIN

Acc % 69.68 81.77 65.28

Mem (bytes) 28676.98 67016.01 1832277.51

Max Mem (B) 40192 131256 7855680

Time (s) 2.36 5.94 9.05

HAT-ADWIN

Acc % 66.42 81.42 63.37

Mem (B) 23741.62 98633.23 7024953.36

Max Mem (B) 83600 304024 13914984

Time (s) 5.12 14.37 15.82
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shows the experiment’s results. We also plot the measured volatility level γ and
the mean of double reservoirs in Fig. 2 to demonstrate the classifier switching
behaviour of VACS. When γ is greater than the reservoirs’ mean, VACS applies
the high volatility classifier (HAT-ADWIN). When γ is lower than the mean,
VACS uses the low volatility classifier (VFDT-ADWIN).

In all experiments, VACS achieves a training time reduction compared with
HAT-ADWIN. In experiments with Poker Hand and Forest Cover Type, VACS
has the highest prediction accuracy.
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Fig. 2. Volatility measurements in the real world datasets

6 Conclusions and Future Work

We developed a system, called VACS, that can automatically choose the most
suitable classifier between adaptive and non-adaptive algorithms in real time
when mining a stream with changing volatility. The system applies the adaptive
learner when the volatility is high and the non-adaptive learner when the volatil-
ity is low. It aims to reduce the learning costs while maintaining high enough
prediction accuracy. We tested VACS on both synthetic and real-world data with
changing volatility. In all of our experiments, VACS reduces the training time
compared with the state-of-art adaptive learner, and VACS’s prediction accuracy
is also close or better than the adaptive learner. Through the experiments, we
have shown that VACS is an effective approach to balance the trade-off between
model prediction quality and efficiency.

One possible improvement is to enable VACS to adjust its volatility mea-
surement window size T automatically when mining. The window is expected to
shrink its size when the volatility changes notably and enlarge its size when the
volatility is stable. When the volatility changes notably, it can remove the out-
dated elements by shrinking the window size such that it can react quickly to the
changed volatility level. It can improve the accuracy of volatility measurement.
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Abstract. We consider a problem of word embedding for tables, and we
obtain distributed representations for words found in tables. We propose
a table word-embedding method, which considers both horizontal and
vertical relations between cells to estimate appropriate word embedding
for words in tables. We propose objective functions that make use of
horizontal and vertical relations, both individually and jointly.

1 Introduction

Neural word embedding, also called distributed representation, has been studied
extensively in recent years. It is a challenge to represent words by real-valued
vectors, a method well known for its ability to obtain high-quality word similarity
or provide answers to analogy questions [9].

Most previous neural word-embedding methods focus on obtaining distrib-
uted representations from sentences by modeling them as lists of words, learning
parameters by predicting pivot words from their contexts (i.e., the words sur-
rounding the pivot words).

In this paper, we focus on tables as a source of learning word embeddings.
One principal property of table representation is that it is two-dimensional, in
the sense that each cell in a table is related not only to the cells to the left and
right of it, but also to the cells above and below it. See the example table shown
in Table 1. Cell “25” is related not only to the cell “John Smith,” indicating
that the entity named “John Smith” is 25 years old, but also to the cell “age”,
which shows the attribute name for the value “25.” Furthermore, cells in the
same column, such as “25,” “30,” and “32” are related in the sense that they
indicate values in the same class (i.e., person’s age).

Table 1. An example table

Name Age

John Smith 25

Taro Yamada 30

Hanako Tanaka 32

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 135–146, 2017.
DOI: 10.1007/978-3-319-57454-7 11
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The above example suggests a need for approaches to embedding that differ
from those used for sentences, which are essentially one-dimensional. We propose
a method for obtaining word embeddings that is appropriate for representing
words found on tables. Our table word-embedding method reflects the structure
of tables, such as cells being in the same column having the same type, and cells
being in the same row representing the same object.

In particular, we focus on the attributes shown in tables. The problem
with embedding for attributes in tables is that there are two types of con-
texts for attributes, the co-occurrence context, which considers other co-occurring
attributes as contexts, and the value context, which considers the values of the
attributes as contexts. For example, word similarity using co-occurrence con-
texts finds the word “RAM” as a word similar to “CPU” because “CPU” and
“RAM” co-occur frequently in personal computer specification tables. In con-
trast, word similarity using value contexts will find the attribute “event date” be
similar to “birthday” because “birthday” and “event date” have similar values
because both indicate some date. Word embedding for attributes in tables must
locate words to reflect these two types of contexts. These are clearly different
types of similarity compared to those of words in sentences, e.g., semantic con-
texts vs. syntactic contexts, or local similarity (i.e., contexts surrounding words
in some small window) vs. document-level similarity (i.e., words co-occurring in
the same document are considered to be similar, as in latent Dirichlet allocation,
for example.) To deal with these issues, we define a new analogy task, which we
call the “attribute analogy task”, to measure how well each embedding reflects
these similarities.

2 Related Work

Methods for obtaining neural word embeddings from sentences, including well-
known word2vec [9] and GloVe [12] methods, have been studied extensively in
recent years.

There have been also several research reports on using structured knowledge
combined with sentences for learning distributed representations of words. In
addition, there have been several efforts to obtain embeddings for hand crafted
knowledge sources [2,8,16], and to combine these knowledge bases into word
embeddings for sentences [1,11,15]. Tables also reflect a kind of knowledge struc-
ture, but the representation of that structure is implicit, and to make appropriate
use of such structure requires new research efforts.

Tables have been receiving considerable attentions as knowledge sources in
recent years owing to the increased number of available documents in the big data
era. For example, [3] provided a system that can extract knowledge regarding
attributes of objects from a large number of web tables. Pimplinkar and Sarawagi
[13] proposed a system that accepts multiple queries describing multiple columns
in HTML tables. Limaye et al. [7] presented a method for labeling each cell in
HTML tables with labels from a knowledge base. Munoz et al. [10] proposed
using Wikipedia tables as the source of triples. Our new table word-embedding
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methods and these table-based intelligent systems are complementary in that the
new embedding provides a better way to represent tables, and better similarity
calculations between tables to improve the quality of the output of table-related
systems.

Recently, Yin et al. [17] proposed a question answering (QA) system that
learn to extract information from database tables by modeling both query sen-
tences and database table by distributed representations. Their work is aimed at
task-oriented modeling of tables (i.e., to extract valid information from tables,)
so different from ours in that our objective is to propose better models for words
in tables that reflect attribute-value relations represented by two-dimensional
layouts.

3 Data Sets and Notations

We used Japanese Wikipedia articles downloaded in 2013 as our corpus.1

We have a set of cells C, and each cell c ∈ C is represented by one word w(c).
c has the position (xc, yc), where xc is the horizontal position (i.e., the position
of the column that contains c), and yc is the vertical position (i.e., the position
of the row that contain c).

We assume that the first row in each table represents attributes, and we
perform different preprocessing operations for attribute and other cells. Many
previous studies have attempted to find attribute positions in tables [5,18], but
we cannot avoid estimation errors using such methods as preprocessing. However,
most of the tables in our data set are row-wise2, in the sense that cells in the
same column have values of the same attribute (including the case in which
attributes are omitted).

We call the cells in the first row attribute cells, and other rows value cells.3

For attribute cells (i.e., the cells in the first row), we extract the string in
the cell as one word. For other cells, we use a morphological analyzer, Kuromoji,
to break the string into a list of words, and obtain the last element of the list
as the representative (head) word of the cell, because in many cases the strings
found in table cells are noun phrases, which can be normalized by obtaining the
last word (i.e., the head of a noun phrase is the last word in most cases).

We normalize each number using a significant digit approach. That is, we
parse the number strings to obtain the numeric value (e.g., parse “123,000” to
obtain the value 123 thousand), and retain only the significant digits (currently,
the leftmost 2 digits) and discard the other digits, resulting in the string “120000”
in this example.

1 The total number of tables found in the corpus was 255,039.
2 In our data set, 266 (93.7%) out of 284 randomly sampled tables were row-wise.
3 In this research, we ignore tables that have no attribute names. Although this strat-

egy can cause noise in the set of attribute vectors, the effects of such noise are small,
because values are of many types and their frequency is relatively lower than that
of the attributes.
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Each cell c ∈ C has a horizontal context Hc, which consists of the cells in the
same row as the pivot cell, and a vertical context Vc, which consist of the cells
in the same column.

Embedding for cells in the table must consider these two different kinds
of contexts, in contrast to word embedding for sentences, as in word2vec, for
example, which requires only one-dimensional contexts, i.e., the words to the
left and right of the pivot word.

4 Proposed Method

In this section, we describe our algorithm for learning table word embeddings.
Following the implementation of word2vec, which learns vectors using the skip-
gram model with negative sampling (SGNS), we first introduce SGNS and then
explain how to extend it to learn table word embeddings.

All of our methods define the objective function as the sum of the scores for
every “pivot” (“target”) cell.

4.1 SGNS

The objective function of this approach is the sum of the plausibility scores of
predicting the “output word” wO given the “input word” wI where the input
word is every word in the corpus and the output word is one of the context words
of wI . The score for the pair of wI and wO is defined as follows:

log σ(v′
wO

· vwI
) +

K∑

k=1

log σ(−v′
wk

· vwI
)

where K is the number of negative samples, vw and v′
w are two types of vec-

tors called the “input” and “output” vectors, respectively, and σ is the sigmoid
function. Negative samples wk are selected randomly in each learning step.

SGNS maximize this function to obtain word vector representations vw
and v′

w.

4.2 Table Word Embedding

Our approach is a simple modification of SGNS as described above.
SGNS learns two vector representations, which are called “input” and “out-

put” vectors. We use an approach similar to SGNS, but use four vectors in total,
attribute vectors va

w, attribute context vectors vac
w , value vectors vv

w, and value
context vectors vvc

w instead of output and input vectors.
These four vectors are defined as follows (see Fig. 1 for their positional

relations).
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Attribute and attribute context vectors: These are used for words in the
cells in the attribute positions (i.e., the first row of the table). We use the skip-
gram model in which the task is to predict words in the target cell represented
by attribute vectors from the words in the other cells represented by attribute
context vectors, resulting in maximizing the value of the dot product of va

w

and vac
z where w is the word in the pivot cell and z is the word in the context

cell.
Value and value context vectors: In value cells, value vectors vv

w are pre-
dicted by value context vectors vvc

z , resulting in maximizing the value of the
dot product of vv

w and vvc
z where w is the word in the pivot cell and z is the

word in the context cell.

The above explanations described the horizontal relations between cells. We
can also consider another relation between attribute vectors and value vectors
reflecting the vertical relation between attribute cells and cells in the same col-
umn as an attribute cell, resulting in maximizing the value of the dot product
of va

w and vv
z′ where z′ is the vertical context word. This additional objective is

intended to predict the attribute vector in the pivot cell from the value vector
in the vertical context cell. Here we use the vertical relation of cells, assuming
that cells in the same column contain words in the same category (see Table 1).

Fig. 1. Relation of the vectors

For each cell, we take every pair of a pivot word w and its context word c, and
vectors for w and c are selected from “value”, “attribute context”, “attribute”,
or “value context” according to the positions of the cell pair. More details are
provided in the following sections. The vectors are learned to maximize the
likelihood of the training samples. The definition of the likelihood function is
also provided below.

4.3 Objective Functions

We now describe four types of objective functions. Each objective function uses
its own combination of the vectors described above.
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Horizontal Objective. In the horizontal approach, only two vectors va and
vac and the relation between them are considered. The objective function in this
approach is similar to that of SGNS4.

For each word w in attribute cells (i.e., the cells in the first row) and its
horizontal context word z, the score function is defined by:

log σ(vac
z · va

w) +
K∑

k=1

log σ(−vac
z · va

wk
)

where K is the number of negative samples, wk is a randomly sampled word
from a uniform distribution, and the global objective function for each table is:

l =
∑

c∈C∧yc=1

∑

z∈Hc

{log σ(vac
z · va

w) +
K∑

k=1

log σ(−vac
z · va

wk
)}

Vertical Objective. In the vertical approach, only two vectors va and vv and
the relations between them are considered. The objective function in the vertical
approach is similar to that in the horizontal approach, except that the words
in the remaining cells in the same column as the pivot word are considered as
contexts.

For each word w and its context word z, the score function is:

log σ(vv
z · va

w) +
K∑

k=1

log σ(−vv
z · va

wk
)

and the global objective function is:

l =
∑

c∈C∧yc=1

∑

z∈Vc

{log σ(vv
z · va

w) +
K∑

k=1

log σ(−vv
z · va

wk
)}

Unified Objective I (CROSS). In the “cross” approach, we consider both
horizontal and vertical contexts for each word in the attribute cells. This app-
roach uses three types of vectors, va, vac, vv, and the relations among them (i.e.,
the upper-left edges in Fig. 1.) For each such cell, we define score function taking
words from both contexts.

l(z,w) =

{
log σ(vv

z · va
w) +

∑K
k=1 log σ(−vv

z · va
wk

) if z is from a vertical context,

log σ(vac
z · va

w) +
∑K

k=1 log σ(−vac
z · va

wk
) if z is from a horizontal context.

4 The original paper of word2vec derived this objective by maximizing the probability
of a word appearing in the given contexts, but here we ignore these derivations and
consider only the following objectives as merely the score function for the purpose
of obtaining word-embedding vectors.
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The final objective function for attribute vectors is thus the combination of
the horizontal and vertical objectives, as follows:

l =
∑

c∈C∧yc=1

[
∑

z∈Vc

{log σ(vv
z · va

w) +
K∑

k=1

log σ(−vv
z · va

wk
)}

+
∑

z∈Hc

{log σ(vac
z · va

w) +
K∑

k=1

log σ(−vac
z · va

wk
)}])

Note that attribute vectors are combined with both attribute context vectors
and value vectors in the objective function5.

Unified Objective II (SQUARE). In the “square” approach, all the vectors
va, vac, vv, and vvc are considered.

The final objective function for attribute vectors is thus the combination of
the horizontal and vertical objectives considering all relations6 (i.e., all edges
shown in Fig. 1), as follows:

l =
∑

c∈C∧yc=1

[
∑

z∈Vc

{log σ(vv
z · va

w) +
K∑

k=1

log σ(−vv
z · va

wk
)}

+
∑

z∈Vc

{log σ(vvc
z · vac

w ) +
K∑

k=1

log σ(−vvc
z · vac

wk
)}

+
∑

z∈Hc

{log σ(vac
z · va

w) +
K∑

k=1

log σ(−vac
z · va

wk
)}])

+
∑

c∈C∧yc �=1

∑

z∈Hc

{log σ(vvc
z · vv

w) +
K∑

k=1

log σ(−vvc
z · vv

wk
)}

4.4 Parameter Learning

We used the stochastic gradient descent (SGD) in the same manner as in the
word2vec implementation [6], taking each pair of a word and its context as one
training data and optimizing on it, iterating this process for every pair in the
training data.

We used the same approach as the word2vec implementation, parallelized
using the Hogwild approach [14], assigning each process a subset of tables in the
corpus.

The number of iterations was set to 50.
5 In addition, note that only two of these four terms are used for each (w, z) pair, ren-

dering the SGD implementation for this model nearly the same as that of word2vec.
6 Although two (the first and second) terms are used for the word w and its vertical

context word c, we can differentiate each term independently because there are no
vectors appearing both of the terms, thus we can use the iteration method similar
to that of word2vec.
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5 Experiments

To measure the appropriateness of the obtained vector representations for rep-
resenting tables, we conducted two experiments: a similar attribute ranking task
and an attribute analogy task. We compare our approach with simple distribu-
tional representation, which is so-called vector space models, which simply counts
the number of words appearing in the table.

The dimension size was set to 50 and the negative sampling size, K, was set
to 25.

5.1 Similar Attribute Ranking Task

As a standard evaluation criterion for word embeddings, we conducted a word
similarity task designed for table word embedding. As mentioned previously, we
used strings in the first row of the table as-is, without word segmentation or
POS tagging. We normalized each word by removing all spaces and obtained a
list of synonym sets in which all words in each set having the same normalized
form. (For example, “n a m e” and “name” are regarded as synonyms and the
list of synonyms contains the set that includes these two strings.) We discarded
the strings that contained numeric characters, because such strings are noisy in
most cases, as attributes such as mere numbers (e.g., “5”) or simple variations
of other attributes (e.g., “name3”.)

For each word contained in these synonym sets, we created a word list ordered
by cosine similarity values based on the vector representations for attribute
vectors va.

We used average precision [4] for each list by regarding each synonym set as
correct answers.

Assuming that we obtained a list of synonym candidates 〈c1, c2, . . . , cn〉
ranked on the basis of their similarity to the query, and given the synonym
set S = {s1, s2, . . . , }, the average precision of the resulting list is calculated as

1
|S|

∑

1≤k≤n

rk · precision(k),

where precision(k) is the accuracy (i.e., ratio of correct answers [answers
included in the gold standard list] to all answers) of the top k candidates, and
rk represents whether the k-th document is relevant (1) or not (0). (In other
words, rk = 1, if ck ∈ S, and rk = 0, otherwise.) This measure is the average
of the precisions, where each precision is calculated for every correct answer x
appearing in the output list as the precision for the set of all words above x in
the list. The possible maximum value of the average precision is 1.0. We took the
average (mean) of the average precisions over all the queries (the mean average
precision) and used this value as the measure of total system performance.

For each set, we selected every string in the set as a query, regarding other
strings as the answers, and calculated average precisions. This resulted in 2,869
queries. Final results were obtained by averaging the average precision values
across all of these queries.
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5.2 Attribute Analogy Task

As stated in the introduction, there are two types of attribute similarities, value
and co-occurrence similarity. Here, we define another task, the “attribute anal-
ogy task” which is analogous to the analogy task for the evaluation of word
embedding learning from sentences. Our assumption is that “if the attributes
in the pair (a, b) co-occur in one table, and the attributes in another pair (c, d)
co-occur in another table, where a � c and b � d according to value similarity,
then b − a � d − b, and we can guess the attribute d given (a, b, c) by searching
for the attributes near c + (b − a)”.

We constructed the test set for this task through the following steps.

1. We created a list of the top 1,000 most frequent schema from the tables in
the data set. Here, the schema is the list of words in the first row in each
table.

2. From these schema, we obtained similar word pair lists by calculating the
similarity between every pair of words found in one or more schema. Here the
similarity is calculated according to a simple vector space model in which the
vector for each attribute is the bag of words found in the same column as the
attribute. If the cosine similarity is greater than 0.5, then we regard the pair
is similar.

3. For every similar word pairs a � b and c � d, we checked whether the attribute
pair (a, c) co-occur in one schema, and the attribute pair (b, d) also co-occurs
in another schema. If this is true, then the question a:b - c:? whose answer
is d, is added to the test set.

As a result, we obtained 15,248 analogy questions. For example, we obtained
“Shimei (name)”:“Chakunin (inauguration date)” - “Guest (guest name)”:
“Housoubi (broadcasting date)” as one tuple.

We again calculated the average precision for the list of words obtained by
ordering the attributes by the similarity to the vector c+b−a. Here, the value is
simply the precision when the output is the set of words from rank-1 to rank-n
where n is the position of the correct answer in the output list.

Table 2 shows the results on both tasks. The combination of the two results is
shown in the simple average and the harmonic mean (F-measure). The “baseline”
is an approach that uses simple vector space models representing the contexts
of each attribute word by the vector constructed by counting the number of
words appearing in the same row or in the same column. We use three weighting
methods, including the simple count, the pointwise mutual information (PMI),
and the log of the counts (LOG). The label “mixed” means simply merging the
horizontal and vertical contexts, which is equivalent to using the “horizontal” (or
“vertical”) method except that the contexts are a mixture of both (“horizontal”
and “vertical).

The results clearly indicate that the vertical contexts are indispensable for
this task because depending on only the horizontal contexts provided very poor
results. In this task, the “vertical” method outperformed the “unified” method.
We observed that the horizontal contexts had negative effects on ranking for
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Table 2. Results: attribute similarity and attribute analogy task

Method Similarity task Analogy task Average F-measure

Full data

Baseline (distributional vectors)

Horizontal 2.46 13.04 7.75 9.72

Vertical 16.29 4.74 10.52 7.34

Mixed 12.96 18.04 15.5 15.08

Cross 13.10 18.09 15.60 15.20

Mixed (PMI) 16.08 10.28 13.18 12.54

Cross (PMI) 16.61 10.23 13.42 12.66

Mixed (LOG) 15.62 13.81 14.72 14.66

Cross (LOG) 13.60 15.89 14.75 14.66

Embedding (distributed vectors)

Horizontal 1.47 12.22 6.85 2.62

Vertical 20.25 3.35 11.8 5.75

Mixed 14.65 15.59 15.12 15.11

Cross 13.51 16.52 15.02 14.86

Square 18.89 17.61 18.25 18.23

some queries, yielding high similarity scores for the attributes co-occurring with
the query attribute (thus having high similarity in horizontal contexts) but low
similarity in vertical contexts.

We observed that there are performance trade-offs between the similarity and
analogy tasks. For example, using different configurations of weights for the base-
line method showed that an increase in similarity task performance reduced the
analogy task performance. We observed that the proposed embedding methods
are slightly weaker than the baselines in that the F-measure of the embedding
method was less than the baseline with the same configuration (e.g., “cross” in
the embedding and “cross” in the baseline.) However, “square”, which makes
use of the property of embedding, by virtue of which it can modify vectors
reflecting other vectors (i.e., to learn “attribute context vectors”, the contexts
of “attribute” vectors, with “value context vectors” as shown in Fig. 1) showed
better performance (in F-measure) than the others.

Baseline showed good performance especially for the analogy task. We think
the reason for this is that the test set contained a large number of contexts suf-
ficient for a simple approach. Consequently, we also conducted another experi-
ment, in which the data size for learning was reduced to one-tenth, with other
conditions left unchanged.7

7 Note that as a result, the size of the similarity and analogy task queries was reduced
to 445 and 5,124, respectively.
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Table 3 shows the results. In this setting, “square” slightly outperformed the
baseline in the analogy task, and again showed the best performance in terms
of the F-measure.

Table 3. Results: attribute similarity and attribute analogy task on the small data set

Method Similarity task Analogy task Average F-measure

Small data (1/10 Samples)

Baseline (distributional vectors)

Mixed 17.50 20.52 19.01 18.89

Cross 17.65 20.10 18.88 18.80

Embedding (distributed vectors)

Cross 15.68 19.70 17.69 17.46

Square 23.72 20.78 22.25 22.15

6 Conclusions and Future Work

In this paper, we proposed a method for table word embedding that learns vec-
tor representations for words found in tables. We tested several approaches, one
that considers horizontal relations as contexts, another that considers vertical
relations as contexts, and another that considers both contexts. Experiments
showed that our proposed method, especially the one considering vertical con-
texts, contributed to obtaining good representations of words in tables. Future
work includes combining or comparing our table word embedding with word
embeddings for sentences, such as sentences surrounding tables in Wikipedia
articles.
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Abstract. This paper presents a new probabilistic generative model
(PGM) that predicts links for isolated nodes in a heterogeneous network
using textual data. In conventional PGMs, a link between two nodes is
predicted on the basis of the nodes’ other existing links. This method
makes it difficult to predict links for isolated nodes, which happens when
new items are recommended. In this study, we first naturally expand
the relational topic model (RTM) to a heterogeneous network (Hetero-
RTM). However, this simple extension degrades performance in a link
prediction for existing nodes. We present a new model called the Grouped
Hetero-RTM that has both latent topics and latent clusterings. Through
intensive experiments that simulate real recommendation problems, the
Grouped Hetero-RTM outperforms baseline methods at predicting links
for isolated nodes. This model, furthermore, performs as effectively as
the stochastic block model in the link prediction for existing nodes. We
also find that the Grouped Hetero-RTM is effective for various textual
data such as item reviews and movie descriptions.

Keywords: Relational model · Topic model · Link prediction ·
Recommendation

1 Introduction

Link prediction means to extract missing information in a network using exist-
ing links or nodes’ attributes, and is applicable for various real problems. For
example, the interactions between users and items are considered as links, and
a recommendation or purchase forecasting can be transformed into a link pre-
diction [4,5].

In link prediction, probabilistic generative models (PGM) are common
approaches with many advantages: (1) they reveal community structures of
nodes, (2) not only predict missing links but also identify possible spurious
links, and (3) capture considerable roles of nodes in the network [14]. One of
the famous PGMs, the stochastic block model (SBM), clusters nodes in accor-
dance with existing links [19]. In a mixed membership stochastic block model
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 147–159, 2017.
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(MMSB), all nodes have distribution of the clusters, and overlapping clustering
is taken into account [2]. However, since these approaches need existing links,
they cannot be used to predict links of isolated nodes, such as for recommending
new items.

The relational topic model (RTM) models documents and links for a homo-
geneous network [6]. On the other hand, real recommendation situations are
basically heterogeneous textual and link data, for example, recommend movies
to users on NetFlix with movie reviews or captions, propose videos on YouTube
with comments, find web-sites on the Web, and predict which company will
purchase a patent. In this article, we first naturally expand the RTM to a het-
erogeneous network. This model, called Hetero-RTM, predicts the purchases of
new items by using only their textual data. This simple extension, however,
degrades performance in link predictions for existing nodes. One reason for the
degradation is that a latent value corresponds to both a link and a topic cluster.

We thus present a new model (Grouped Hetero-RTM) that has two separated
latent values: link and topic cluster. Consequently, the Grouped Hetero-RTM
performs as effectively as the SBM in link prediction for existing nodes. Further-
more, our models can also be used for topic labeling like a topic model [10]. This
function helps model-users to understand the meaning of each item cluster and
to label it with words.

Specifically, this article provides the following contributions:

– Link prediction for isolated nodes. As mentioned above, our models pre-
dict links of isolated nodes by using their textual data.

Proposed Link Prediction

Item reviews 
Movie captions 
Product instructions

Textual data

Conventional Link Prediction

Fig. 1. Differences between proposed and conventional link predictions. Since conven-
tional systems predict links by using existing links, they cannot predict links of isolated
nodes, such as new items. Our models predict links by using nodes’ textual data. Mod-
els also predict links that conventional models can predict. Red lines show the predicted
links. (Color figure online)
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– No performance loss in link prediction for existing nodes. In the link
prediction for existing nodes, the Grouped Hetero-RTM performs as effectively
as the SBM.

– Labeling clusters. Due to mixing with a topic model, item clusters are
labeled with related words automatically (Fig. 1).

2 Related Works

Link prediction uses two types of features: graph based and collective local [13].
For the graph-based feature, purchase histories or ratings of items are converted
into an interaction graph, and then the feature is analyzed by using various
algorithms [9,21]. The SBM is one of the most widely used probabilistic relational
models and predicts links using co-clustering of a heterogeneous network [1].
However, the SBM cannot predict any links of an isolated node correctly.

The collective local feature indicates items’ attributes used for recommenda-
tion, and one of solutions for link prediction of an isolated node. In this study,
we focus on textual data as a collective local feature of nodes. Topic models,
such as the PLSA [12] and the LDA [3], are used to extract topics and make a
topic-based clustering of the documents. In this model, documents have a topic
distribution that generates a latent topic for each word. Simple topic models,
however, ignore other rich information about the documents including their links,
such as citations and hyperlinks.

Several methods that jointly model topics of documents and their links have
emerged as extensions of the topic models. The Link-PLSA [7] and the Link-
LDA [8] are simple extensions using links. The Pairwise-Link LDA [18] and the
Link-PLSA-LDA [17] are developed, which are based on the concept that the
simple extensions generate links from the same latent topic for word generations
and fail to model the link generation.

Chang and Blei developed the RTM, which jointly models documents and
their links [6]. Unlike the previous models, the RTM predicts links without any
existing links using only their textual data. In case of paper citations, the model
predicts citations only using their contents. The process of document generation
is the same as that of the LDA; thus, a document has the same number of
latent topics as words. A link is generated by the link probability by using the
normalized topic distribution zd = 1

Nd

∑
n zd,n.

The RTM and its extensions, however, cannot be naturally used in a het-
erogenous network. For instances, while items have documents, it is difficult and
unnatural to expand for users. In this study, we first transform and extend the
RTM to capture the heterogeneous network as follows. We additionally devel-
oped a new model that combines the SBM and topic-based clustering.

3 Proposed Models

3.1 Probabilistic Generative Models

For modeling heterogeneous textual and link data, we developed two models:
Hetero-RTM and Grouped Hetero-RTM. Hetero-RTM is a simple extension of
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the RTM, and Grouped Hetero-RTM is a new model that combines the SBM
and topic-based clustering. In this section, we describe Bayesian models of our
models. Nodes with and without textual data were defined as an item and a
user, respectively. We assumed that D = {(ui,wj , yi,j)}(i,j)∈I is a whole dataset,

where ui is a user i, wj = {wj,n}Nj

n=1 is a document of an item j, and yi,j is 1 or
0 if a user i and an item j are linked or not, respectively. Nj is the number of
words in the document j, and I is a set of pairs of users and items. Graphical
models of our two models are shown in Fig. 2.

(b) Grouped Hetero-RTM(a) Hetero-RTM

Fig. 2. Graphical model representations of the proposed models.

Hetero-RTM. We developed Hetero-RTM as a simple extension of the RTM.
A topic is assigned from a multinomial distribution in each word n, z2j,n ∼
Multi(π2

j ). A topic distribution in each document j is sampled from a Dirichlet
prior, π2

j ∼ Dir(α2). Then, a word is generated by the selected topic that has a
multinomial distribution of words, w2

j,n ∼ Multi(φz2
j,n

). The process of a user’s
cluster assignment is the same as above. A word distribution in each topic k
is also sampled from a Dirichlet prior, φk ∼ Dir(κ). However, the process to
generate links is different from that of the RTM due to heterogeneous textual
and link data. We use an averaged η, η = 1

Nj

∑Nj

n=1 ηz1
i ,z2

j,n
, as the Bernoulli

parameter between i and j. Each η is sampled from a Beta prior like in the
RTM, η ∼ Beta(β).

Grouped Hetero-RTM. In the Hetero-RTM, topics are shared in both rela-
tional and topic parts. However, a group structure in the link data may dif-
fer from that in the textual data. To take this into account, we developed the
Grouped Hetero-RTM. A topic distribution is defined in each item cluster that
is related to a group structure in the relational part, and a topic is sampled
from this distribution, z2j,n ∼ Multi(θz2

j
). A item cluster is assigned for each

document from the same multinomial distribution in a corpus like in the SBM,
z2j ∼ Multi(π2). Then, a word is generated from a word multinomial distribution
in each topic.
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Our final goal is to obtain the posterior distribution of the latent variables
conditioned on the existing data and obtain statistics using the distribution.
Unfortunately, this distribution is usually intractable. We used the Gibbs sam-
pling, a Markov chain Monte Carlo sampling methods, to obtain an approxi-
mated posterior distribution.

3.2 Inference: Gibbs Sampling

Hetero-RTM. The full joint distribution of the Hetero-RTM is:

p(w,z1,z2,y,π1,π2,φ,η|α1,α2,κ,β)

=
U∏

i=1

p(z1i |π1
i )p(π1

i |α1)
D∏

j=1

Nj∏

n=1

p(w2
j,n|φz2

j,n
)p(z2j,n|π2

j )p(φz2
j,n

|κ)p(π2
j |α2)

∏

(i,j)∈I
p(yi,j |η)p(η|β). (1)

Algorithm 1. Gibbs sampling for Hetero-RTM
Inputs:

{(wj , yi,j)}(i,j)∈I
Initialize:

α1, α2 ← 0.1, κ ← 0.01, β ← 1.0

1: for s = 1 to S do
2: for j = 1 to D do
3: for w = 1 to Wd do
4: Sample z2

j,w from (2).
5: end for
6: Sample π2

j from (4).
7: for (i, j) ∈ I do
8: Sample z1

i from (3).
9: end for

10: Sample π1
i from (6).

11: end for
12: Sample η from (7).
13: for k = 1 to K do
14: Sample φ from (5).
15: end for
16: end for

From the full joint distribution and the graphical model, we derive conditional
distributions of all parameters. The conditional distribution of latent topic z2j,n
is the LDA’s conditional distribution of z multiplied by the link probability:
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p(z2j,n = k|w2
j,n = v,z1

¬j,n,w2
¬j,n,φ,π2,y,η)

∝
π2

j,kφk,v
∑K

k′=1 π2
j,k′φk′,v

∏

(i,j)∈I
η

yi,j

z1
i ,z2

j,n
(1 − ηz1

i ,z2
j,n

)1−yi,j , (2)

p(z1i = g1|π1,y,η) ∝ π1
i,g1

∏

(i,j)∈I
η

yi,j

z1
i ,z2

j,n
(1 − ηz1

i ,z2
j,n

)1−yi,j , (3)

where K is the number of topics. The conditional distributions of other parame-
ters are as follows:

p(π2
j |z2

j,n, α2) ∝
K∏

k′=1

(π2
j,k′)nj,k′+α1

k−1 (nj,k′ =

Nj∑

n=1

δ(z2
j,n = k′)), (4)

p(φk|w2
j,n, z2

j,n, κ) ∝
V∏

v′=1

φ
nv′+κk−1

k,v′ (nv′ =
D∑

j=1

Nj∑

n=1

δ(w2
j,n = v′, z2

j,n = k)), (5)

p(π1
i |z1

i , α1) ∝
G1∏

g1=1

(π1
i,g1)

ni,g1+αg1−1 (ni,g1 = δ(z1
i = g1)), (6)

p(ηg1,k|y, η, β) ∝ Beta(β′
1, β

′
2) (β′

1 = β1 + ny=1
g1,k, β′

2 = β2 + ny=0
g1,k), (7)

where G1 and V are the number of user clusters and words in the dictionary.
α1,α2,κ, andβ are the hyperparameters of Dirichlet and Beta priors. ny=1

g1,k and
ny=0

g1,k are the numbers of links and negative links between an user cluster g1 and
an item cluster k. Algorithm 1 summarizes the Gibbs sampling for the Hetero-
RTM.

Grouped Hetero-RTM. The full joint distribution of the Grouped Hetero-
RTM is as follows:

p(w, z
1
i , z

2
, z

′2
, y, π

1
, π

2
, θ, φ, η|α1, α2, γ, κ, β)

=
U∏

i=1

p(z
1
i |π1

)p(π
1|α1)

D∏

j=1

p(z
2
j |π2

)p(π
2|α2)

Nj∏

n=1

p(w
2
j,n|φ

z2
j,n

)p(z
2
j,n|θ

z2
j
)p(φ

z2
j,n

|κ)p(θ
z2
j
|γ)

∏

(i,j)∈I
p(yi,j |η

z1
i
,z2

j
)

G1∏

g1

G2∏

g2

p(ηg1,g2 |β), (8)

where z′2 is a vector of z2j,n. G2 is introduced in the model and shows the number
of item clusters. The assignment of a latent topic is simply estimated by following
equation:

p(z2j,n = k|w2
j,n = v,z2

¬j,n,w2
¬j,n,φ,θ) ∝

∏G2
g′
2=1 θg′

2,kφk,v

∑K
k′=1

∏G2
g′
2=1 θg′

2,k′φk′,v
. (9)
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Algorithm 2. Gibbs sampling for Grouped Hetero-RTM
Initialize:

α1, α2, γ ← 0.1, κ ← 0.01, β ← 1.0

1: for s = 1 to S do
2: for i = 1 to I do
3: Sample z2

j from (11).
4: for w = 1 to Wd do
5: Sample z2

j,w from (9).
6: end for
7: for (i, j) ∈ I do
8: Sample z1

i from (10).
9: end for

10: end for
11: Sample π1 from (14).
12: Sample π2 from (15).
13: for g2 = 1 to G2 do
14: Sample θ from (12).
15: end for
16: for k = 1 to K do
17: Sample φ from (13).
18: end for
19: Sample η from (15).
20: end for

For the cluster assignment, we have to consider the network terms. The resulting
conditional distributions for the assignment of a user and an item cluster are

p(z1i = g1|y,η,π1) ∝ π1
g1

∏

(i,j)∈I
η

yi,j

z1
i ,z2

j,n
(1 − ηz1

i ,z2
j,n

)1−yi,j , (10)

p(z2j = g2|y,θ,η,π2) ∝ π2
g2

Nj∏

n=1

θg2,z2
j,n

∏

(i,j)∈I
η

yi,j

z1
i ,z2

j,n
(1 − ηz1

i ,z2
j,n

)1−yi,j . (11)

Other parameters are sampled by the following equations:

p(θg2 |z2
j , z2

j,n, γ) ∝
K∏

k′=1

θ
nk′+γk−1

g2,k′ (nk′ =
D∑

j=1

Nj∑

n=1

δ(z2
j,n = k′, z2

j = g2)), (12)

p(φk|z2
j,n, w2

j,n, κ) ∝
V∏

v′=1

φ
nv′+κk−1

k,v′ (nv′ =
D∑

j=1

Nj∑

n=1

δ(w2
j,n = v′, z2

j,n = k)), (13)

p(π1|z1
i , α1) ∝

G1∏

g1=1

(π1
g1)

ng1+αg1−1 (ng1 =
D∑

j=1

δ(z1
i = g1)), (14)

p(π2|z2
j , α2) ∝

G2∏

g2=1

(π2
g2)

ng2+αg2−1 (ng1 =
U∑

i=1

δ(z2
j = g2)), (15)
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p(ηz1
i ,z2

j
|y, η, π1) ∝ Beta(β′

1, β
′
2) (β′

1 = β1 + ny=1
g1,g2 , β′

2 = β2 + ny=0
g1,g2). (16)

Algorithm 2 summarizes the Gibbs sampling for the Grouped Hetero-RTM.

4 Experiments

4.1 Datasets

We evaluated our models on the following three different kinds of datasets: the
MovieLens rating dataset [11] with the OMDb1, and the Amazon review rating
datasets [15] for Digital Music and Automotive. In the MovieLens dataset, we
regarded ratings with more than three scores as links. The numbers of users,
items, words (vocabulary), and links are listed in Table 1. Only 0.2% of negative
links were randomly used for learning. We implemented all the approaches using
Python (version 2.7.3) from scratch.

Table 1. Statistics of datasets used in our experiments.

#users #items #vocabulary #links

MovieLens & OMDb 943 1518 1265 79174

Amazon (digital music) 5541 1819 1101 39160

Amazon (automotive) 2928 1412 623 12904

For link predictions of new items, we separated items and link matrixes into
training and test datasets. Our models used 80% of the items as a training
dataset to learn the parameters and predicted links of 20% of the items as a test
dataset. For a link predictions of existing items, we separated only links into
training and test datasets with the same rates.

4.2 Baseline Method: KL Divergence-Based and Word2Vec-Based

We considered two baseline methods: KL divergence-based and Word2Vec-based.

Baseline 1 (KL divergence-based): Each user maintains a bag of words
(BOW) of purchased items. The similarity between a new item and a user is
defined by Kullback-Leibler (KL) divergence of multinomial distributions of
words.
Baseline 2 (Word2Vec-based): Ozsoy assumes that items have a BOW
and users also have a bag of items (locations) [20]. Word2Vec is a group of
models to project words into a lower dimensional vector space via the neural
network [16]. In this study, we also used an item-word space and a user-item
space. When a new item is released, first we find the nearest conventional
items in the sentence-word space and then recommend the new item to users
who are near to the conventional items. The similarity was defined by using
the cosine similarity between two vectors.

1 http://www.omdbapi.com/.

http://www.omdbapi.com/
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4.3 Recommendation Using Link Prediction

All the models provide a way to predict a link using textual data, and we used
the link prediction for recommendation. All links between users and items were
ordered as follows:

Baseline1: KL divergence of word distributions between users and items,
and recommended in ascending order.
Baseline2: (Step 1) In the item-word space, we picked out the item most
similar to a new item using Word2Vec. (Step 2) In the user-item space, the
new item was recommended to users who had high similarity with the item
chosen in Step 1.
Hetero-RTM: The test documents were separated into two parts: Dtest1

and Dtest2. Dtest1 was used for sampling and calculating a distribution of
topics in each test document π2

test1. Using π2
test1 and Dtest2, we calculated

the distribution of topics in each test document by using Eq. 2. Finally, new
items were recommended in accordance with the link strength calculated by
p(z1i )ηp(z2j ).
Grouped Hetero-RTM: First, a distribution of topics was calculated by
using Eq. 2. Then, the distribution of item cluster assignment θ was calculated
by using the following equation similarly to Eq. 11:

p(z2j = g2|θ,π2) ∝ π2
g2

Nj∏

n=1

θg2,z2
j,n

(17)

The process of calculating the strength was the same as that of the Grouped
Hetero-RTM.

5 Results

5.1 Performances of All Models

Figure 3(a) shows the Receiver Operator Characteristic (ROC) curves of our
models and two baselines in the MovieLens & OMDb datasets. The proposed
models dominate the baselines in all ROC space, which indicates that they out-
perform the baselines. Moreover, the proposed models always perform superiorly
to the baselines in all thresholds. Figure 3(b) shows the ROC curve in the link
prediction of existing items, and our models maintain high performances. Sur-
prisingly, the Grouped Hetero-RTM suffers no performance loss. These results
lead to the conclusion that the Grouped Hetero-RTM successfully predicts links
of new items using their textual data without performance loss in predicting
links of existing items.

We applied the same models to other two datasets. Table 2 summarizes the
area under the curve (AUC) in all datasets. The boldfaced AUC values indicate
the best performance in each dataset. The Grouped Hetero-RTM performs the
best in all datasets, and the Hetero-RTM also predicts as much as the Grouped
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(a) (b)

Fig. 3. ROC curves of each model for link prediction of (a) new items by textual data
and (b) existing items in MovieLens & OMDb datasets.

Table 2. AUC values of link prediction of new items for various datasets.

Baseline1 Baseline2 Hetero-RTM Grouped Hetero-RTM

MovieLens & OMDb 0.482 0.503 0.709 0.690

Digital music 0.519 0.574 0.609 0.625

Automotive 0.528 0.536 0.557 0.621

Hetero-RTM. As textual data (vocabulary) decrease, new items cannot be sig-
nificantly clustered and the prediction becomes harder. However, the Grouped
Hetero-RTM maintains high performance in all datasets. In particular, only the
Grouped Hetero-RTM predicts links in Automotive (which has a vocabulary
below 650 words).

5.2 Comparison with Different Numbers of Clusterings

Next, we discuss effects of the multinomial parameters related to the number of
clusters. The Grouped Hetero-RTM has one more parameter related to the num-
ber of clusters than the Hetero-RTM. Figure 4 shows the AUC values with differ-
ent numbers of parameters in the Hetero-RTM and the Grouped Hetero-RTM.
Both models maintain their performance with various numbers of parameters;
however, the number of topics should be set below 15 for the Grouped Hetero-
RTM. Although the LDA [3] and the SBM react simply for different numbers of
parameters, the behaviors of the proposed models do not change monotonically.
The behaviors are complex because (1) the model itself is a mixture of topic and
relational models, and (2) the task (link prediction of new items) requires both
abilities of topic and link based clustering.

5.3 How to Predict Links Using Textual Data

All above points make it clear that our models predict links of new items with
high performance. Since our models are based on PGMs, they capture the group
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(a) (b)

Fig. 4. AUC values of link prediction with different numbers of parameters in (a)
Hetero-RTM and (b) Grouped Hetero-RTM. All AUC values are calculated in Movie-
Lens & OMDb datasets. Squares, triangles and circles show the number of user clusters,
item clusters and topics, respectively.

structure and role of the links in the network. In this subsection, we investigate
the proposed links with high probability, particular those of the Hetero-RTM.
The left part of Fig. 5 shows the parameter η that indicates the strength of
relationships between the user and item clusters. As η becomes a high value,
the probability of a link generation increases. The right part of Fig. 5 describes
two highly recommended movies. Red and boldfaced words are ranked in the
top 20 words of a multinomial distribution in item cluster 4. For instance, both

Top 20 words of group 4

In the sewers of gotham city to the rooftops of the 
gotham city the penguin wants to know where he 
came from well in his villain ways catwoman plans 
to kill rich man of gotham max shreak but as he 
battles with million air Bruce Wayne both ladies men 
have their own secrets Bruce Wayne is back as Bat 
man trying to stop the penguin Max is helping
penguin steal gotham city while selina Kyle/
catwoman tries to help penguin not knowing her 
man murder target also her murder is helping him 
but all four men have their goals taking gotham from 
crime winning gotham city assassination for two 
men and more money to be gotham citys number 
one rich man. 

Batman Returns

The Crossing Guard
Freddie Gale is a seedy jeweler who has sworn to 
kill the drunk driver who killed his little girl. 

Fig. 5. Heat map of parameter η that shows strength of relationships between user
and item clusters in Hetero-RTM. “Batman Returns” and “The Crossing Guard” are
assigned as item cluster 4 with high probability. Red and boldfaced words are ranked
in top 20 words of multinomial distribution in item cluster 4. These two movies were
highly recommended to user clusters 4 or 5. These results were obtained in MovieLens
& OMDb datasets. (Color figure online)
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movies have a word (“kill”) in their descriptions that highly contributes to their
assignment to item cluster 4. From the parameter η, item cluster 4 has strong
relationships with user clusters 4 and 5 (η � 1.0). Therefore, the two movies are
highly recommended to those who were weakly belong to user clusters 4 and 5.

6 Conclusion

In this paper, we focused on predicting links for isolated nodes. This link pre-
diction can be used to recommend new items using their textual data (e.g. item
reviews and product instructions). Our proposed models, the Hetero-RTM and
the Grouped Hetero-RTM, are probabilistic generative models (PGMs) that
treat heterogeneous textual and link data. We applied our models to three
datasets and compared the results with those of baselines. The experimental
results of the link prediction demonstrate that our models outperform baselines
in all receiver operator characteristic (ROC) space. Furthermore, the Grouped
Hetero-RTM predicts links of existing nodes as effectively as the stochastic block
model (SBM). Overall, our models successfully predict purchases of new items
without their purchase histories by using their textual data.
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Program for Leading Graduate Schools and Keio University Doctorate Student Grant-
in-Aid Program.
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Abstract. Predicting a user’s destinations from his or her partial move-
ment trajectories is still a challenging problem. To this end, we employ
recurrent neural networks (RNNs), which can consider long-term depen-
dencies and avoid a data sparsity problem. This is because the RNNs
store statistical weights for long-term transitions in location sequences
unlike conventional Markov process-based methods that count the num-
ber of short-term transitions. However, how to apply the RNNs to the
destination prediction is not straight-forward, and thus we propose an
efficient and accurate method for this problem. Specifically, our method
represents trajectories as discretized features in a grid space and feeds
sequences of them to the RNN model, which estimates the transition
probabilities in the next timestep. Using these one-step transition prob-
abilities, the visiting probabilities for the destination candidates are effi-
ciently estimated by simulating the movements of objects based on sto-
chastic sampling with an RNN encoder-decoder framework. We evaluate
the proposed method on two different real datasets, i.e., taxi and per-
sonal trajectories. The results demonstrate that our method can predict
destinations more accurately than state-of-the-art methods.

1 Introduction

Mobile devices equipped with a GPS sensor enable us to easily collect location
information on moving objects, known as trajectories. Predicting future destina-
tions from their current trajectories is crucial for various location-based services
such as personal navigation systems and ride sharing services. For example, it is
more effective to deliver advertisements on sightseeing places around the desti-
nations rather than advertisements on the current places.

To predict destinations from a partial trajectory, existing methods model the
movement tendencies by using data-driven approaches and have achieved satis-
factory results in some applications [7,13,14,19]. In particular, they are based
on relatively low-order Markov processes, which count the number of transi-
tions of short sequences in historical trajectories to alleviate a data sparsity
problem. However, the ability to learn long-term dependencies between a des-
tination and long sequences towards the destination is important for accurate
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 160–172, 2017.
DOI: 10.1007/978-3-319-57454-7 13



Predicting Destinations from Partial Trajectories Using RNN 161

(ii)

(iii)

(iv)

(v)

(vii)

(vi)(i) (viii)

Query trajectory
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Fig. 1. Our destination prediction problem. Given a query trajectory, our method
predicts top-k destinations on the basis of only historical trajectories. E.g., given T 1

q ,
it iterates one-step ahead predictions, starting from the cell (vi), to derive multi-step
ahead predictions such as the cell (ix).

prediction because individuals move through the same area with different con-
texts (challenge 1). Figure 1 shows an example. We use a grid space because
such discretized information is useful for modeling changes in trajectories. Given
query trajectories T 1

q , T 2
q , and T 3

q , the task is to predict likely destinations, on
the basis of historical trajectories T 1, T 2, and T 3. For example, given T 1

q , cell
(ix) is the location that the user is most likely to visit. To compute this, Markov
processes first calculate the transition probabilities from the current location
(vi) to the subsequent locations (v), (vii), and (viii) for each query trajectory. If
we assume a first-order Markov process for T 1

q , we can compute the transition
probabilities P (v|T 1

q ) = P (vii|T 1
q ) = P (viii|T 1

q ) = 0.33 by counting the same
transitions in the historical trajectories. Meanwhile, if we assume a second-order
one, P (vii|T 1

q ) = P (viii|T 1
q ) = 0.5, and a fourth-order one can narrow down

the candidates, that is, P (viii|T 1
q ) = 1. However, high-order Markov processes

cause the data sparsity problem (challenge 2). For example, when a user departs
another place, like in T 2

q , or takes a detour, like in T 3
q , P (vii|T 2

q ) and P (vii|T 3
q )

are not calculable in the fourth-order one. These two challenges lie in modeling
the movements of specific individuals and also unknown individuals such as taxi
users.

To overcome these two challenges, we exploit a recurrent neural network
(RNN) [12], which can store sequential information in hidden layers. In order
to model the transition information consisting of location points by using an
RNN model, we represent the sequence of locations in a discretized grid space
and let the model learn transitions from one cell to the next in each timestep.
Different from the other count-based models, the RNN embeds sequences of
sparse representations of cell locations into dense vectors consisting of statistical
weights for the sequence of locations. The RNN can also handle variable lengths
of trajectories without a strict built-in limit. These characteristics are useful for
avoiding the data sparsity problem.

Specifically, the contributions in this paper are summarized as follows:
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– Location sequence modeling for movement trajectories using an RNN architec-
ture, which can learn long-term dependencies of trajectories as well as alleviate
the data sparsity problem.

– Efficient and effective destination prediction algorithm with an RNN encoder-
decoder framework using voting-based sampling simulation.

– Extensive evaluation using taxi and personal trajectories, in which our method
produced overall improvements on the previous work in terms of predictive
accuracy and distance error.

2 Related Work

Several studies have focused on the problem of destination prediction using exter-
nal information such as trip time distribution [6–8] and road conditions [19].
Although external information is often useful to improve predictive accuracy, it
is costly to obtain.

As a method that takes only trajectory data, Xue et al. [13,14] proposed Sub-
Trajectory Synthesis (SubSyn) algorithm. This algorithm first estimates every
transition probability in a grid space by using sub-trajectories based on low-order
Markov process. Given a query trajectory, the algorithm then estimates visiting
probabilities for destination candidates by using the transition probabilities from
the starting and current locations to the candidates. Although their method
efficiently alleviates the data sparsity problem, modeling transitions based on
low-order Markov processes is not sufficient in terms of predictive accuracy for
trajectories with diverse and long movements.

Brébisson et al. [1] formulated the destination prediction as a regression prob-
lem and solved it by using a multilayer perceptron (MLP). Their method assumes
that the location of a destination can be represented as a linearly weighted com-
bination of popular destination clusters, and the weights are computed using
the MLP. Because the number of dimensions of the input of the MLP must be
fixed, the oldest five points and newest five points in each trajectory are fed
to the MLP. While their sequence-to-point prediction can minimize the overall
distance error in dense areas of the training data, accurately predicting destina-
tions is difficult especially in areas where trajectories are sparse. Furthermore,
unlike the SubSyn algorithm [13,14] and ours, theirs is designed for predicting
a single destination; it does not output multiple top k results. Although they
also tried to use RNNs based on this method but it did not outperformed their
MLP-based method.

Recently, another RNN-based model [9] was proposed and achieved satisfac-
tory results in the task of the next location prediction based on check-in history.
However, their model is not suitable for the multi-step prediction based on tra-
jectory data. That is, while a next destination can be directly computed by
considering a single transition for check-in data, transitions between multiple
location points on the routes from a current location to a destination must be
considered for trajectory data. Our focus in this paper is to efficiently predict
destinations from trajectory data, which are collected at shorter intervals and
enable earlier prediction than check-in data.
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Fig. 2. Modeling transitions in trajectories using the RNN.

3 Method

Given a query trajectory Tq = {g1, g2, ..., gc} from starting time t = 1 to current
time t = c, our goal is to accurately predict the probabilities P ∈ R

|C| of
visiting destination candidates d ∈ C. The trajectories are represented in a
grid space, where an index g is assigned to each cell. The data available for
solving this problem are only training data D consisting of historical trajectories
T = {g1, g2, ..., geT

} from starting time t = 1 to arrival time t = eT , which are
obtained from either unknown or specific individuals.

Note that our focus is to predict not a single destination but the visiting prob-
abilities of multiple destinations. This is because the probabilities are useful in
diverse applications. For example, location-based services can deliver multiple
advertisements to users according to probability values. Additionally, car navi-
gation systems allow users to efficiently select their destinations from candidates.

The procedure of our method is split into two phases: learning and predic-
tion. In the learning phase, it uses historical trajectories to generate destination
candidates d ∈ C and estimates the model parameter θ of an RNN for the des-
tination prediction. In the prediction phase, our method computes the visiting
probabilities P from a query trajectory Tq by using the learned RNN model with
θ. Section 3.1 describes our RNN model, and Sect. 3.2 describes our prediction
algorithm based on the learned model.

3.1 Model

Architecture. Figure 2 illustrates our RNN architecture. The RNN takes as
input a vector gt, which is a one-hot representation computed from a location
index gt at timestep t. The one-hot vector gt is then embedded into a relatively
low-dimensional space to obtain semantic representations of a location. Next,
the embedded features are fed to the hidden layers consisting of long short-
term memory (LSTM) units [3,5], which can memorize long-term sequences with
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variable sequence lengths. The LSTM units also take two previous state vectors,
hidden state ht−1 and cell state ct−1. Finally, the soft-max layer outputs a
transition probability pt+1 = P (gt+1|gt, gt−1, ..., g1) for each grid cell while the
LSTM units compute the next two state vectors ht and ct. Although there is
an alternative way that directly uses as input and output the sequences of two
scalar values of raw spatial coordinates (longitude and latitude), it is difficult to
train such a simple model in the RNN architecture because any prior information
on the distribution of the data is not taken into account [1].

Learning. We first generate destination candidates C. Given historical trajec-
tories T ∈ D, we consider the last location point of each trajectory T as a past
destination (e.g., taxi drop-off locations and stay points). The algorithm extracts
the index d on the basis of the past destination for each trajectory and uses the
set of the indices as the destination candidates C.

Next, we learn the model parameters of the RNN by maximizing the condi-
tional likelihood over the set of all historical trajectories as:

θ̂ = arg max
θ

∑

T∈D

eT −1∏

t=1

P (gt+1|gt, gt−1, ..., g1; θ). (1)

This is equivalent to minimizing the cross-entropy loss between the output prob-
ability distributions pt and the one-hot representations gt at t = 2, 3, ..., teT

.
To optimize θ based on Eq. (1), we use truncated back propagation through
time (BPTT) [20] based on mini-batch AdaDelta [15], which is more efficient
than vanilla stochastic gradient decent (SGD) or full-batch optimization. In our
experiments, we set the length of truncated BPTT and size of a mini-batch to
20 and 100, respectively. We also clip the norm of the gradients (normalized by
mini-batch size) at 5 to deal with exploding gradients [11].

3.2 Destination Prediction

Using the RNN model with θ, our method predicts visiting probabilities P for
C from an input query trajectory Tq. Specifically, we exploit the RNN encoder-
decoder framework. First, we compute hidden states hc and cc at the current
timestep t = c by using the RNN encoder with the LSTM units, which takes
as input the sequence of one-hot representations g1, ...,gc of Tq and recurrently
updates the state vectors. The visiting probabilities P are then computed from
the current hidden states hc by using the RNN decoder with the soft-max layer.
However, the soft-max layer only estimates transition probabilities P (gc+1|Tq)
on the next timestep because the RNN decoder is based on sequence-to-sequence
modeling. In most cases, more than one timestep is taken to get to destinations
from current locations, and thus we need additional operations to obtain P.

A näıve solution is to directly calculate transition probabilities for all transi-
tion patterns and integrate them. Given the maximum step size M for detours,
which is computed from training data, the visiting probability for a destination
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Fig. 3. Sampling simulation for destination prediction using the RNN encoder-decoder.

d of P is obtained as P (gc+1 = d|Tq) + P (gc+2 = d|Tq) + ... + P (gc+M = d|Tq),
where P (gc+m|Tq) for variable m and any d is defined as:

∑

∀gc+m−1

...
∑

∀gc+1

c+m−1∏

t=c

P (gt+1|gt, gt−1, ..., gc+1, Tq; θ). (2)

Compared with low-order Markov processes, the RNN decoder takes a large
amount of time to compute P (gc+m|Tq) because RNN depends on longer
sequences. For example, to compute P (gc+M |Tq) as exact as possible, we need
to iterate RNN decoding |G|M−1 times; this is impossible because |G| and M
are usually a few thousand and a few dozen, respectively. If we assume that
users move to adjacent cells in a single transition, the computational complexity
reduces to O(8M−1), but the prediction still takes a long time.

Instead, analogous to what is done in Monte Carlo methods and word
sequence generation [4], our algorithm efficiently estimates the visiting prob-
abilities for each destination candidate. As shown in Fig. 3, the algorithm simu-
lates the movement of objects by stochastically sampling a position at the next
timestep according to the transition probabilities obtained by the RNN decoder.
Specifically, the algorithm first samples a position according to P (gc+1|Tq) and
then samples a position according to P (gc+2|gc+1, Tq). This process is repeated
up to M times or until the sampling reaches one of the destination candidates.
If one of the destination candidates is reached, a vote is cast on the element of
P corresponding to the destination. After P is initialized to a zero vector, this
sampling simulation is iterated N times. Finally, by normalizing P, we can esti-
mate the visiting probability distribution for each destination candidate. This
procedure can be easily parallelized for each simulation step.

Considering Spatial Proximity. In our sampling simulation, there is no con-
straint on the distance of a single transition in a discretized grid space. This
results in the algorithm predicting wrong destinations far away from a true
destination because a simulation sample may suddenly jump to a distant cell.
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Fig. 4. Virtual goal grid cells to distinguish arrival states from goal states. If indices
of destination candidates are defined on the common grid space, the sample stops at
a false destination candidate on the routes to a true destination (a). If indices of goal
grid cells are defined, the sample does not stop at the false destination candidates and
jumps to the goal grid cell of a true destination from a nearby cell (b).

To consider distance information, we control the transition probabilities on the
basis of the spatial proximity of the cells. In practice, we update the transition
probabilities pt estimated using the RNN decoder and obtain new transition
probabilities p′

t so that a sample does not easily jump to a distant cell:

p′
t =

pt ◦ sgt−1

|pt ◦ sgt−1 |
, (3)

sg = [exp(−Dist(g, 1)
σ2

), ..., exp(−Dist(g, |G|)
σ2

)], (4)

where ◦, Dist(·, ·), and |G| denote element-wise multiplication, distance (in
meters) between two cells, and the number of all grid cells, respectively. σ2

denotes the variance of the distribution. The smaller σ2 is, the harder it is for
the sampling to jump to a distant cell. We set σ2 to 200 m based on the size of
a cell (i.e., 150 m × 150 m as explained in the Sect. 4.1). σ2 can also be automat-
ically determined from historical trajectories.

Distinguishing Arrival States from Moving States. If indices of destina-
tion candidates are defined on the common grid space, the sampling procedure
stops when a sample reaches any of the other false destinations on the route to
the true destination (Fig. 4(a)). This fact may prevent the sample from getting
to a true destination far away from its current place. As shown in Fig. 4(b),
we solve this problem by assigning destination candidates with indices of vir-
tual goal grid cells to distinguish arrival states from moving states. The goal
grid cells are connected with other common grid cells and indicate whether the
sample arrives at a destination or moves through it.

4 Experiments

To validate the effectiveness of our method, we compared our method with the
SubSyn algorithm [14], which is a state-of-the-art parameter-free algorithm that
uses low-order Markov process modeling, and the MLP-based algorithm [1].
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Table 1. Geographical ranges and statistics of the datasets.

Dataset TST GL

Latitude [41.131571, 41.162477] [39.68, 40.19]

Longitude [−8.613876, −8.565437] [116.05, 116.72]

# of trajectories 154,616 8,390 (in 46 users)

Avg. distance (m) 2127.4± 1130.0 5258.1± 8172.7

Avg. cell length 14.8± 7.0 13.3± 13.8

4.1 Datasets

We used a taxi service trajectory (TST) dataset [10], which contains trajectories
for hundreds of taxis. Each trajectory includes sequences of latitude and lon-
gitude from a boarding location to a drop-off location. Additionally, we used a
GeoLife dataset [16–18], which is publicly available dataset of personal trajecto-
ries in Beijing. We assumed that a change point of a transportation mode was
a stay point and considered a segment with the same transportation mode as a
single trajectory from an origin to a destination. We omitted users that had less
than ten trajectories from the dataset. For our method and the SubSyn algo-
rithm, cell size and a grid space need to be defined. We used 150 m × 150 m cells
and a grid space consisting of a part of the full dataset to reduce the high compu-
tational costs of conducting various experimental conditions. Table 1 summarizes
statistics of these datasets.

4.2 Experimental Settings

Evaluation Measures. We used Accuracy@k and Distance@k as the evalua-
tion measures. Accuracy@k indicates the ratio of destinations that are accurately
predicted in a cell to all query trajectories Tq. On the other hand, Distance@k
indicates the average distance error between the true destinations and the pre-
dicted destinations for all query trajectories Tq. We computed these measures
for the top k destinations based on destination visiting probabilities P and used
the best values in top k.
Evaluation Methods. We sorted the trajectories in each dataset in ascending
order of time and used the first 70% for training and the remaining 30% for test.
For the TST dataset, we generated a single model for all of the trajectories to
evaluate our method for unknown individuals. Meanwhile, for the GL dataset,
we generated multiple models for multiple users to evaluate our method for
specific individuals. In this case, we computed Accuracy@k and Distance@k for
each user and averaged them. As a query trajectory Tq, we used the older α%
location points in each test trajectory and took the last location point to be the
ground-truth destination.

4.3 Results and Analysis

In this section, we answer the research questions that correspond to the two
challenges, explained in Sect. 1, by analyzing our experimental results.
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RQ1. Can the proposed method make improvements to the destination
prediction by learning long-term dependencies?

Figure 5 shows Accuracy@k and Distance@k for each dataset. As can be seen in
the results for the TST dataset, our method outperformed SubSyn in terms of
both Accuracy and Distance when using the same input length α. In particular,
the degree of Accuracy improvement was remarkable when larger values of α
were used (i.e., query trajectories have longer sequences). Moreover, Ours50%
outperformed SubSyn70% that used a longer input. MLP, which formulates the
destination prediction as a regression problem, minimizes the overall Distance in
the training dataset; on the other hand, our method optimizes the probabilities
of visiting destination cells, i.e., the Accuracy measure. Therefore, our method
performed significantly better than MLP in terms of Accuracy@1. In contrast,
MLP significantly outperformed our method in Distance@1 when α = 30%, but
ours yielded comparable or slightly poor results to MLP when α = 50% and
performed slightly better than MLP when α = 70%. These results indicate the
capability of our method for handling long-term dependencies.

(a) Accuracy@k on TST (b) Distance@k on TST

(c) Accuracy@k on GL (d) Distance@k on GL

Fig. 5. Overall performance of destination prediction.

Our method worked much
better than the other meth-
ods on the GL dataset,
especially for larger values
of α. One reason for the
improvements is that our
method can capture per-
sonal routines based on long
sequences of trajectories.
Meanwhile, larger values of
α worsened the predictive
accuracy and distance error
of SubSyn in contrast to the
results of Ours and MLP.
In the GL dataset, there
are several frequent origins
(e.g., home), and the cur-
rent location of a query
trajectory will be distant
(near) from such origins when α is large (small). That is, larger values of α
seemed to decrease the number of training transitions between the current and
destination locations although SubSyn needs the transition probabilities between
current and destination locations.

RQ2. Can the proposed method alleviate the data sparsity problem?

Figure 6 shows performance for each method with different training data sizes on
the TST dataset. Despite modeling longer sequences, our method often worked
well even when the number of historical trajectories for learning was small. This
is because our RNN stored the statistical weights of variable-length trajectories
instead of counting fixed-length transitions. Additionally, as shown in Table 1
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Fig. 6. Accuracy@1 (left) and Distance@1 (right)
with different training data size in the TST dataset.

and Fig. 5, although the GL
dataset had a smaller num-
ber of trajectories than the
TST dataset, the improve-
ments of our method over
the other methods on it
were larger than on the TST
dataset. In this case, MLP
performed worst because it
faced the data sparsity prob-
lem when determining the
density-based destination clusters and when learning the sequence-to-point rela-
tion. Although SubSyn performed slightly better than MLP thanks to their
sub-trajectory approach, Ours performed best because our sequence-to-sequence
RNN model can cope with a small dataset more effectively.

(a) (b)

Fig. 7. (a) Prediction time and (b) Accuracy@1
depending on the number of simulation N .

Computational Time. Figure 7(a)
shows the time needed to
make a prediction for a
query trajectory. We par-
allelized the sampling sim-
ulation using 10 processes
on the CPU. In this figure,
computational times linearly
increase depending on the
number of sampling simula-
tions N , except when N =
10 because most time was
taken for overhead costs of the parallelization. In particular, the prediction takes
only a few seconds when N is a few hundred. Figure 7(b) shows Accuracy depend-
ing on N in 2,500 trajectories sampled from the TST dataset. As can be seen,
while a large N tends to give better performance, the gain in accuracy begins
to level off after N = 100. As for the learning time, we took a few days worth
of data from the TST dataset, and took about a half hours worth for one user
of the GL dataset. Although the learning time exceeded the prediction time,
this does not matter much in real application services because the model can be
learned in advance.

Parameter Sensitivity. We evaluated the sensitivity of our method to varia-
tions of the cell size using the GL dataset as shown in Table 2. For the grid-based
methods (Ours and SubSyn), the cell size is important to determine the granular-
ity of predicted destinations. The larger cell, the more difficult it is to identify the
true location of a destination in a cell. That is, the large cell increases Accuracy
while it decreases the resolution of predicted locations, which affects Distance.
Nevertheless, ours outperformed the existing methods for every cell size in terms
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Table 2. Performance of each method with different cell sizes when α = 50%.

Cell width 5000m 1200 m 150 m 40 m

MLP (Accuracy@1) 0.466 0.268 0.101 0.012

SubSyn (Accuracy@1) 0.506 0.310 0.103 N/A

Ours (Accuracy@1) 0.618 0.408 0.147 0.029

MLP (Distance@1) 4448 4448 4448 4448

SubSyn (Distance@1) 4376 4247 4346 N/A

Ours (Distance@1) 3427 2401 2380 2647

of both metrics. For MLP, Distance did not depend on the cell size because it
directly predicts a location of a specific destination. When the cell size was small
(the number of cells was large), SubSyn could not predict destinations because
its orders of computational complexity and memory space were O(|G|3.5) and
O(|G|2.5), where |G| is the number of cells.

For the network structure, we evaluated our method with other parameters
(128–1024 LSTM units and 1–3 RNN layers). In the results, there were no sig-
nificant differences in performance between them.

Comparison with Other Possible Approaches. We also validated our indi-
vidual approaches (i.e., sampling simulations (SS), spatial proximity (SP), and
goal cells (GC) described in Sect. 3.2). Table 3 compares the performance of the
methods with and without these approaches using 2,500 trajectories sampled
from the TST dataset. The results demonstrated that each of these approaches
improved the accuracy and distance metrics.

Table 3. Performance of ours and other possible approaches when α = 50%.

Method Ours Ours w/o SS Ours w/o SP Ours w/o GC

Accuracy@1 0.141 0.051 0.115 0.050

Distance@1 701 1200 939 770

5 Conclusion

We proposed a method of predicting destinations from partial trajectories. Our
method represents trajectories as sequences of one-hot representations on a grid
space and explicitly learns transitions of objects by using an RNN model that
stores statistical weights of sequential information in its hidden layers. This
enables us (i) to model long-term dependencies while (ii) avoiding the data spar-
sity problem. Additionally, our method efficiently predicts destinations using a
stochastically sampling simulation based on the RNN encoder-decoder frame-
work. We conducted evaluation experiments using two different datasets and
demonstrated that our method was effective for both unknown individuals and
specific individuals.
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Limitations and Future Work. The computational time for learning the
RNN model linearly increases with the number of grid cells |G|, and thus it seems
to be difficult to target a huge area with fine grids. Although we did not use
finer grids with 150 m× 150 m cells in our experiments, our method performed
in large areas such as downtown in Beijing. A simple solution to expand a target
area would be to divide a single RNN model that covers a huge area into multiple
RNN models that cover a small area.

Another challenge is to incorporate time information into our method. Time
information is helpful for predicting user activities; e.g., a user goes to an office
in the morning and a bar in the evening. Multi-view models [2] for handling such
information in trajectories would thus be an interesting topic of future work.
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Abstract. Enterprises constantly share and exchange digital documents
with sensitive information both within the organization and with exter-
nal partners/customers. With the increase in digital data sharing, data
breaches have also increased significantly resulting in sensitive infor-
mation being accessed by unintended recipients. To protect documents
against such unauthorized access, the documents are assigned a secu-
rity policy which is a set of users and information about their access
permissions on the document. With the surge in the volume of digital
documents, manual assignment of security policies is infeasible and error
prone calling for an automatic policy assignment. In this paper, we pro-
pose an algorithm that analyzes the sensitive information and historic
access permissions to identify content-access correspondence via a novel
multi-label classifier formulation. The classifier thus modeled is capa-
ble of recommending policies/access permissions for any new document.
Comparisons with existing approaches in this space shows superior per-
formance with the proposed framework across several evaluation criteria.

Keywords: Digital Rights Management · Extreme Multi-label Learning

1 Introduction

Enterprises constantly share and exchange digital documents containing sensi-
tive information - internally with employees, externally with partners and with
customers. With the increase in data sharing, the incidents of data breaches have
also increased significantly [2]. A data breach is an incident in which sensitive,
protected or confidential data, such as personally identifiable information (PII),
personal health information (PHI), trade secrets and enterprise financial infor-
mation is maliciously or inadvertently viewed, stolen or used by unauthorized
entities. Until recently, the most common concept of a data breach embodied only
malicious attackers hacking into enterprise networks to steal sensitive informa-
tion. Data Loss Prevention (DLP) e.g. McAfee, Symantec are a class of software
that detect and prevent such data breaches by malicious attackers by continu-
ously monitoring sensitive data and providing appropriate encryption based on
the sensitivity of the data.

However, according to a study by Johnson [14] in 2008, inadvertent disclosure
of sensitive information represents one of the largest classes of security breaches
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 173–185, 2017.
DOI: 10.1007/978-3-319-57454-7 14
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exceeding even the number of malicious data attacks. The consequences of such
inadvertent data disclosures for enterprises could be severe: compromising cus-
tomer’s privacy, losing market share or damaging intellectual property. DLP
software cannot tackle the inadvertent data disclosures since these occur outside
the enterprise boundary. This has led to the development of Digital Rights Man-
agement (DRM) solutions e.g. Microsoft which are designed to protect sensitive
data outside the enterprise boundary as well by ensuring only intended recipients
can access the shared sensitive information regardless of their location.

The data being shared in DRM often vary in the degree of sensitive infor-
mation. A security policy is applied to protect it against unauthorized access.
A security policy is a collection of information that includes the confidentiality
settings and a list of authorized users corresponding to the confidentiality set-
tings. The confidentiality setting in the policy determines how the recipient can
use the shared data, for example whether recipients can print, copy, or edit text
in a protected document is dictated by the confidentiality settings corresponding
to those recipients.

There are two major pitfalls with existing DRM solutions in identifying data
breaches. First, the data breach identification in DRM is heavily based on key-
word matching with a manually curated dictionary, thus limiting their capabil-
ities severely [13]. Further, the policies in DRMs are manually assigned, which
can lead to an error prone process [20]. With the increase in online document
transactions, such a manual process is incapable of scaling to the enterprise
document volumes, calling for an automated approach to protect against unau-
thorized access of information.

In this paper, we present an algorithm that analyzes the sensitive information
and suggests appropriate access to the documents thus mitigating the risk from
inadvertent disclosures. Our algorithm analyzes the historic information and
extracts the semantics of the underlying content. The access permissions (that
constitutes the document’s DRM policy) associated with the information is then
analyzed to identify content-access correspondence via a multi-label classifier for-
mulation. The classifier thus modeled is capable of recommending policies/access
permissions for any new document.

This paper is organized as follows. In Sect. 2, we describe existing literature
in the light of our problem. In Sect. 3, we formulate the DRM policy model-
ing in a multi-label classification framework [17] and adapt the cost function to
simultaneously optimize for precision and recall to suit the needs of the policy
modeling. In Sect. 4, we compare the proposed framework against several alterna-
tive frameworks along with state-of-the-art security modeling systems showing
the viability and superior performances of the proposed framework. Section 5
concludes the paper.

2 Related Work

While automatic recommendation of security/DRM policies for documents is
less studied, one direction of explorations that is close to our problem is the
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prediction of email recipients based on its content. Carvalho and Cohen [8] have
proposed an algorithm to generate a ranked list of intended recipients of an
email via several algorithmic formulations including an expert search framework
and a multi-class framework. Graus et al. [12] address the same problem via
a graphical model framework of already composed email messages. Carvalho
and Cohen [7] and Liu et al. [16] model the problem of identifying unintended
recipients of emails as an outlier detection problem and a binary classification
problem respectively based on the textual analysis of the email content overlayed
with a correlation based on social network analysis. Zilberman et al. [22] propose
an algorithm that extracts topics for all recipients and approves recipients for
an email based on its topics and the common topics between the sender and the
recipient. All these works focus just on identifying who are the right recipients of
an e-mail from a curated list of recipients. However, in the context of DRMs, it
is required not only to identify the ‘recipients’ of a content but also to determine
the access permissions of the identified recipients on the content.

Evaluating the sensitive nature of information in a content is another direc-
tion of exploration that is related to our work. Existing DLP systems use regu-
lar expressions [6] and keyword matching to identify PII and other confidential
information. Cumby and Ghani [9] present a semi automatic method to identify
and redact private content from documents. However, they do not factor in the
intended recipients of these documents while making such decisions. Hart et al.
[13] propose a binary text classification algorithm to categorize a document as
sensitive or non-sensitive. Geng et al. [11] use association mining between differ-
ent types of PIIs to predict PIIs in emails. All these works are purely based on
the document content, without any emphasis on the intended recipients of the
content, which is a key factor in our problem.

To the best of our knowledge, there are no prior works that addresses the
problem of suggesting appropriate DRM policy by a joint modeling between the
document content and its intended recipients (along with their access permis-
sions) which is the novel contribution of our work here.

3 Method

Consider an intra-organizational document repository that comprises of a set
of documents with appropriate DRM policies attached to each of them. Let
D denote the set of documents in the system, U be the set of all authorized
users in the system and ACL be the set of access rights (permissions) in the
system. For example, ‘read’, ‘read-modify’, ‘read-modify-delete’ are potential
access rights for documents. Each document d ∈ D is assigned a security policy
p which describes the access rights of the authorized users for the document.
A security policy is represented as a set of (user, permission) pairs, where each
pair defines an authorized user ∈ U and its corresponding permission ∈ ACL,
i.e., p = {(useri, permissionj)|1 ≤ i ≤ |U |, 1 ≤ j ≤ |ACL|}. Let P represent the
set of all such policies available in the system. Further, we denote L to be the
set of all (user, permission) pairs, thus, |L| = |U | × |ACL|.
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Given such a repository with documents and their respective security poli-
cies, we propose an algorithm to suggest a set of (user, permission) pairs for any
new document based on its textual content. More formally, for a new document
d, the algorithm aims to provide a ranked list L

′
=

[
(user1, permission1), (user2,

permission2), ···, (userk, permissionk)
]
asthepolicytoprotectthedocumentfrom

unauthorized access.

Feature Extraction: For a given document, we first extract features that cap-
ture the personal/sensitive information present in the document. These features
include mentions of individuals and organizations, locations, dates, references
to currency/money, phone number, social security number and email addresses.
We use the Stanford Named Entity Tagger [3] to identify individual and orga-
nization names, locations, dates and currency. We further define regular expres-
sions to identify phone numbers, social security numbers and email addresses
in the document text. The feature set is further expanded to include individual
words found in the document (after removing stop words and stemming the root
words) using a “bag of words” representation. TFIDF (Term-Frequency-Inverse-
Document-Frequency) [15] is extracted based on the bag-of-words representation
for every document d.

With increasing size of document repository, the dimensions of the feature
space also increases due to introduction of new words. We therefore reduce the
dimensionality by removing features that might be irrelevant to the policy mod-
eling to improve both the overall accuracy and scalability of the model. We
calculate the information gain [10] of each feature f in the feature set as,

IG(f) =
∑

l∈L

∑

f ′∈{f,f̃}
P (f ′, l).log

P (f ′, l)
P (f ′)P (l)

(1)

where, l is a (user, permission) pair. Information Gain measures the amount of
information in bits obtained for (user, permission) pair prediction by knowing
the presence or absence of a feature, f . We retain the top k% (70% in our
experiments later) informative features for our modeling.

Policy Modeling: Our framework to model security policies aims to suggest
(user, permission) pairs for any new document. A brute-force way to formulate
this could be as a multi-class classification task where each class represents a
security policy. A classifier g : Rd −→ P can be learned based on the training
set {(xi, pi)| 1 ≤ i ≤ |D|}, where xi ∈ Rd is the set of features for document
di, and pi ∈ P is the corresponding security policy. For a new document, the
above classifier can provide a probability of the existing policies pi ∈ P being
suitable for the given document which can be used to decide on the final secu-
rity policy for the document. However, modeling the problem as a multi-class
framework problem captures neither the relation between the various security
policies nor the overlap between security policies in terms of common users and
permissions. Moreover, such a multi-class framework is also incapable of sug-
gesting new policies outside what already exists in the repository and hence can
be restrictive.
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The above shortcomings can be addressed by formulating the problem in a
multi-label classification framework, considering each unique (user, permission)
pair as a separate label on the document. In this framework, a function f :
Rd −→ 2L is learned from the training set {(xi, yi) |1 ≤ i ≤ |D|}, where xi is
defined as before and Y = {y1, y2, ..., y|L|} denotes the label space. For a new
document di, the multi-label classifier f predicts the set of labels, i.e., identifies
the most relevant (user, permission) pairs that must be assigned to a document
as its policy. Unlike the multi-class framework, such a formulation is capable of
recommending any set of (user, permission) pairs in the repository.

There are several alternatives for multi-label classification. One class of algo-
rithms transforms the multi-label classification problem to a binary classification,
either by training binary classifier for each label in data-set (binary relevance
method) [18] or by training binary classifier for multiple label subsets in data-set
[21]. Another class of algorithms adapt traditional classification frameworks to
the multi-label task [18]. However, both these methods are highly sensitive to
the distribution of labels and do not perform well when the labels have very few
training examples. Also, as these methods rely on independent models for each
label/label sets, prediction cost increases with increasing number of labels.

In light of these drawbacks, a recent exploration in this space is centered
on Fast Extreme Multi-label Learning (FastXML) which deals with large
number of labels having skewed label distributions. FastXML learns a hierar-
chy over the feature space by recursively partitioning a parent’s feature space
between its children. The partitioning at each node is done by optimizing a rank-
ing loss function, i.e., normalized Discounted Cumulative Gain (nDCG). Agrawal
et al. [5,17] observe that in the case of XML problems, only a small number of
labels are active in each partition of feature space, thus improving the modeling
capacity.

However, the ranking-loss function in FastXML [17] only includes a reward
for a high recall (correctly predicting all the relevant labels) without accounting
for the precision (reducing incorrectly predicted labels) in the prediction. For
modeling security policies, it is also important to penalize wrongly predicted
(user, permission) pairs, as that means that an ineligible user has been given
permission to sensitive information. Given a ranking r of (user, permission)
pairs and the ground truth vector yi, the discounted cumulative gain LDCG(r, yi)
is modified as,

LDCG@k(r, yi) =
k∑

l=1

(yrl) + (yrl − 1)
log(1 + l)

, (2)

where, yrl is the binary ground truth for the lth label according to ranking r (as
defined in [17]), i.e. it has the value 1 if the lth label is attached to document di.
We add (yrl −1) term to the definition of LDCG [17] to introduce a −1/log(1+ l)
term for each wrongly predicted (user, permission) pair in the top-k labels. This
ensures that apart from positive labels predicted with high ranks being rewarded,
highly ranked negative labels are also penalized. Algorithm1 outlines the steps
required to obtain the hierarchy.
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Algorithm 1. FastXML: Grow Tree
Require: {xi, yi}N

i=1

1: Nroot ← new node
2: if no. of (user, permission) pairs active in Nroot < MaxLeaf then
3: Create Nroot into a leaf node
4: else
5: Learn linear separator w
6: n+ = {xi|wTxi > 0}
7: n− = {xi|wTxi < 0}
8: Nroot(linear separator) = w
9: Nroot(left child) = GrowTree({xi, yi}i∈n+)

10: Nroot(right child) = GrowTree({xi, yi}i∈n−)
11: end if
12: return Nroot

Finally, the FastXML algorithm learns a linear separator w at each node of
the tree, which divides the feature space into the positive and negative partition
respectively, by minimizing a ranking loss function given by,

min||w||1 +
∑

i

log(1 + exp(−δiw
Txi)) −

∑

i

(1 + δi)LnDCG(r+, yi)

−
∑

i

(1 − δi)LnDCG(r−, yi) (3)

where, w ∈ Rd, δ ∈ {−1,+1}, r+, r− is the ranked list of labels in the positive
and negative partitions respectively. The labels are ranked in decreasing order
of the number of documents in the partition that they are assigned to.

Prediction: To suggest (user, permission) pairs for a new document, first a
feature representation (xi) of the new document di is extracted as before. The
algorithm starts with the root node of each tree in the model and traverses down
the tree till it reaches a leaf node. For traversal at each node, it calculates the
value of the term wTx where w is the linear separator at that node. Since the
linear separator at each node divides the feature space into two parts, depending
on the sign of wTx, the document di is passed down to the left child node (if
wTx < 0) or the right child node (if wTx > 0) till it reaches a leaf node. Each leaf
node contains a subset of points from the training data. The algorithm returns
the ranked list of the top k (user, permission) pairs active in the leaf nodes of
all trees, where the rank is defined as:

r(x) = rank(
1
T

|T |∑

t=1

P leaf
t (xi)) (4)

where T is the number of trees, P leaf
t (xi) ∝ ∑

Sleaf
t (xi)

yi and Sleaf
t (xi) are the

label distributions of the set of points in the leaf node that xi reaches in tree t.
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4 Experimentation and Results

The problem of automatic DRM policy assignment can be framed as a multi-
class classification problem, with each policy being considered as a separate label.
However, we had articulated the shortcomings of such a formulation and over-
came these with our multi-label framework. In our experiments, we first compare
our formulation with a multi-class framework and show the superior performance
of our formulation to test our hypothesis. We also test our algorithm against
several multi-label frameworks to show the viability of the proposed algorithm.
Finally, we compare the performance of the proposed framework against existing
security modeling in the context of email protection.

Dataset: All our experiments were performed on the Wikileaks Cablegate [4]
data which includes diplomatic cables sent by the US State Department to its
consulates, embassies, and diplomats around the world. Each cable is marked
with a group of recipients to whom it was addressed, and a classification scale
denoting the security level of the document. The classification scale on each
document was one of Unclassified, Limited Official Use, Confidential or Secret.

In order to replicate an intra-organization document collection, we considered
only the unique documents sent by Department of State for our experiments.
Documents with insufficient textual content were discarded. The document’s
classification scale was used as the access permission given to its corresponding
recipients. The set of all such (recipient, classification level) combinations for
a document yielded the document’s policy for our experiments. The filtered
data-set contained 11,760 unique documents, 842 unique policies, 114 unique
users/recipients and 452 (user, permission) pairs across all documents. This
included 3,301 unclassified, 3,318 limited official use, 3,676 confidential and 1,465
secret documents. Table 1(a) provides additional details about the data-set, at
the user level and the (user, permission) level.

Table 1. Wikileaks cablegate dataset

(a) WikiLeaks

Label Description User User-Permission

Unique Labels 114 452

avg. labels/doc 5.11 5.11

avg. docs/label 185.01 47.18

min doc/label 49 1

max doc/label 1093 371

(b) (user, permission) distribu-
tion.

The average cardinality of labels, i.e., (user, permission) pairs, for doc-
uments is 5.11, which indicate that the security policies on each document
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constitutes a set of 5 (user, permission) pairs on an average. The average
number of documents for each (user, permission) pair is 47. However, the
(user, permission) pair distribution is highly skewed as seen in Table 1(b) and
ranges between a maximum 371 documents with the same user-permission pair
to a minimum of 1 document for a user-permission pair.

For all our experiments, the FastXML was built with 50 trees and the max-
imum number of instances allowed in a leaf node (MaxLeaf) was set at 10. The
number of labels k in a leaf node whose probability scores are retained was set
to 10.

4.1 Comparison with Multi-class Frameworks

Here, we compare our proposed method against two multi-class formulation to
check the viability of our formulation over the multi-class formulation. The first
framework is a frequency based approach, where all candidate policies are
ranked in decreasing order according to the number of times they were assigned
to any document in the training set. The top k policies, thus ranked, constitute
the set of policies suggested to the user. The second framework is a 1-vs-All
approach where a separate SVM [19] is trained for each policy. For any new
document, the scores from each of the corresponding classifiers decides the pol-
icy ranking. To obtain a ranking of the policies for our proposed approach, we
obtain a binary vector representation ({0, 1}|L|) of the algorithmically suggested
(user, permission) pairs with value 1 for entries corresponding to the top k pairs.
Also, we represent all existing security policies present in the system into equiv-
alent binary representations. Then, we use cosine similarity metric to identify
the nearest security policies and rank them accordingly.

To evaluate the performance of different approaches, we define the
Accuracy@k which measures the probability of the actual policy being in the
top k predicted policies,

Accuracy@k =
1

|test set|
∑

doc∈test set

1p∈fk(doc), (5)

where p is the actual policy of document doc and fk(doc) is the set of top-k
policies predicted by the algorithm f for the document doc.

Because of the training data requirements of an SVM model, we evaluated
only on those policies that had at least n corresponding documents and report
the accuracy for various values of n. Note that the proposed approach does not
suffer from this limitation since it does not try to generate individual models for
each (user, permission) pair.

Table 2 shows the performance of the proposed framework against the multi-
class baselines. The results of our experiments indicate the superiority of our
proposed multi-label approach in comparison to the multi-class baselines. In
particular, the proposed approach performs significantly better in identifying
the relevant policy with smaller values of n. For instance, the Accuracy@10 for
our proposed approach is almost 6% higher than that achieved by 1-vs-All for
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Table 2. Comparison against multi-class approaches

Dataset Freq based 1-vs-All Proposed approach

n #policies Acc@5 Acc@10 Acc@5 Acc@10 Acc@5 Acc@10

20 95 0.205 0.323 0.565 0.656 0.581 0.682

30 73 0.226 0.356 0.601 0.691 0.664 0.758

40 54 0.258 0.406 0.634 0.728 0.686 0.789

50 43 0.278 0.442 0.685 0.771 0.713 0.791

the data-set with n = 30. This indicates that our algorithm is relatively agnostic
to lower number of documents per policy in the training data. As the number
of documents per label increases, the performance of the 1-vs-All approach is
at par with the proposed approach - indicating that a multi class framework
requires a lot of training data per policy to perform on par with the proposed
framework.

Real world data-sets often contain numerous policies that might have very few
supporting documents to train on as reflected in the Wikileaks data-set as well
where only 95 out of 842 policies have been applied to more than 20 documents.
Thus, any algorithm that aims to suggest policies by training on such a data-set
needs to be robust enough to provide reasonably accurate predictions with lesser
documents per policy.

4.2 Comparison with Multi-label Approaches

Next, we compare our approach against multi-label frameworks, 1-vs-All and
Rakel [21]. For both these approaches, each (user, permission) pair is considered
as a separate label, similar to the proposed algorithm. In the 1-vs-All framework,
a separate linear SVM classifier is trained for each unique (user, permission)
pair different from the multi-class framework where the modeling was done at
the policy level. For Rakel, linear SVM classifiers are built for random ensembles
of labels. For any new document, the final score for any label (user-permission
pair in our context) is obtained by taking the cumulative score of all ensembles
that the label is a part of.

In multi-label frameworks, output is generated at a lower granularity - (user,
permission) pairs instead of the entire policy. We therefore use a different set of
metrics to evaluate the algorithms in this framework. Since the candidate set of
labels is typically large and only a small fraction of those labels is attached to any
document, the algorithm needs to be measured on both its ability to correctly
predict the highly ranked labels (precision), as well as the ability to retrieve
all relevant labels (recall). Here, we define these metrics in the context of our
problem. The Precision@k counts the correct pairs in the top k predicted pairs,
whereas the Recall@k counts the fraction of the actual pairs that the algorithm
is able to predict in the top k pairs. More formally,
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Precision@K(y′, y) =
1
k

∑

i∈rankk(y′)

yi, and Recall@K(y′, y) =

∑
i∈rankk(y′) yi
∑

i∈|y| yi
.

(6)

where y′ is the vector of predicted (user, permission) pair vector, y is the ground
truth permission set. In our evaluations, we report the average Precision@k and
Recall@k across all documents in the test set.

We first evaluate our algorithm’s prediction capability at the user level by
retaining only the unique users from the k predicted (user, permission) pairs
for each document. These are compared against the actual users that have been
given some permission by the policy. Modeling at the user level provides a mea-
sure of how correctly the set of users who should have permission to a given
document is identified. High precision in these cases suggests that fewer irrel-
evant users are being given access to a certain document whereas high recall
suggests that most users that must be given some level of access to the docu-
ment have been identified. Tables 3 and 4 summarize the results at the user level.
Table 4 shows that the algorithm is able to surface 85% of all users if it returns
a list of the top 25 labels. Thus, the administrator has to only go through this
much condensed list instead of the entire list of 114 users in the system.

Table 3. Precision for different values of k evaluated at user and user-permission level

Precision@1 Precision@2 Precision@3 Precision@4 Precision@5

User level

1 vs All 0.619 0.557 0.496 0.447 0.408

Rakel 0.508 0.478 0.441 0.4 0.365

Proposed algorithm 0.653 0.609 0.548 0.502 0.463

User-permission level

1 vs All 0.34 0.32 0.3 0.286 0.272

Rakel 0.256 0.257 0.259 0.26 0.25

Proposed algorithm 0.524 0.490 0.454 0.420 0.387

Table 4. Recall for different values of k evaluated at user and user-permission level

Recall@5 Recall@10 Recall@15 Recall@20 Recall@25

User level

1 vs All 0.502 0.652 0.729 0.767 0.791

Rakel 0.486 0.64 0.674 0.705 0.723

Proposed algorithm 0.521 0.688 0.767 0.815 0.848

User-permission level

1 vs All 0.29 0.416 0.483 0.524 0.553

Rakel 0.283 0.42 0.493 0.54 0.57

Proposed algorithm 0.466 0.614 0.698 0.753 0.788
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Next, we evaluate the performance of the algorithms at the user-permission
level. As previously elaborated, each policy assigns a unique permission to a
user. That is, a policy cannot contain multiple (user, permission) pairs with the
same user. However, in multi-label classification, the predicted list of labels may
contain multiple labels/(user, permission) pairs corresponding to the same user.
We leverage the nature of our problem to solve this. Since the algorithm aims
to suggest policies to safeguard against data leak, we hypothesize that a stricter
policy is preferable to a more lenient one which may provide extraneous rights
to some users. Hence, if a particular user is a part of multiple (user, permission)
pairs finally predicted, we make use of the inherent hierarchy in the permissions
and assign the strictest permission to that user. For instance, if both (ui, pm)
and (ui, pn) are in the top k predicted labels, we compare the permissions pm
and pn and retain the stricter permission. In ACL permissions, for example, a
Read permission is stricter than a Modify permission, as the latter gives more
rights to the user. Tables 3 and 4 shows the results at the user, permission level.
Table 4 shows that the algorithm is able to surface 78% of all user, permission
pairs if it returns a list of the top 25 labels. This is greatly reduced from the 452
total user, permission pairs that exist in the system.

The proposed algorithm performs the best among all compared frameworks.
One reason for this is the ability of our model to handle the skewed distribution
of (user, permissions). There exists some user, permission pairs that have been
assigned to a very few documents as reflected in the Wikileaks dataset and our
proposed algorithm is robust in such scenarios. Traditional methods like 1-vs-All
and Rakel, which depend on training independent models for each label/label
sets do not perform well in policy modeling with very few training examples.

4.3 Evaluation on Enron Email Dataset

While none of the existing literature addresses the exact problem of assigning
security policies for documents, a related exploration is the task of predicting
recipients for an email based on its content, e.g. [8]. Due to the robustness of
our framework, our approach is capable of handling these tasks as well and here
we evaluate the performance of our algorithm for the aforementioned task on
the Enron Email Dataset [1] and compare it against the best performing app-
roach in [8]. Our experiments are run on emails sent by 30 Enron users, selected

Table 5. Results on the Enron dataset

Precision@1 Precision@2 Precision@3 Precision@4 Precision@5

Carvalho and Cohen [8] 0.606 0.440 0.352 0.301 0.264

Proposed algorithm 0.892 0.550 0.415 0.341 0.293

Recall@1 Recall@2 Recall@3 Recall@4 Recall@5

Carvalho and Cohen [8] 0.485 0.640 0.711 0.761 0.789

Proposed algorithm 0.747 0.809 0.835 0.850 0.861
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based on the volume of emails sent, after discarding emails having insufficient
textual content. Table 5 provides a summary of the results. The proposed app-
roach clearly outperforms the baseline in [8] thus proving the robustness of the
proposed formulation.

5 Conclusion

In this work, we have addressed the problem of automatically recommending
appropriate access permissions for users by deciding the appropriate DRM secu-
rity policies for the document. We have proposed an algorithm that analyzes the
sensitive information in the document and determines the right policies for it.
Experiments on a real world dataset against several alternate frameworks estab-
lish the viability of the proposed approach. Comparison with existing baseline
modeling approaches further establishes the superiority of the proposed approach
across several evaluation criteria.
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Abstract. Social media services deploy tag recommendation systems to
facilitate the process of tagging objects which depends on the informa-
tion of both the user’s preferences and the tagged object. However, most
image tag recommender systems do not consider the additional infor-
mation provided by the uploaded image but rely only on textual infor-
mation, or make use of simple low-level image features. In this paper,
we propose a personalized deep learning approach for the image tag
recommendation that considers the user’s preferences, as well as visual
information. We employ Convolutional Neural Networks (CNNs), which
already provide excellent performance for image classification and recog-
nition, to obtain visual features from images in a supervised way. We
provide empirical evidence that features selected in this fashion improve
the capability of tag recommender systems, compared to the current state
of the art that is using hand-crafted visual features, or is solely based
on the tagging history information. The proposed method yields up to
at least two percent accuracy improvement in two real world datasets,
namely NUS-WIDE and Flickr-PTR.

Keywords: Image tagging · Convolutional Neural Networks · Person-
alized tag recommendation

1 Introduction

Tags assigned freely by users can be used to support users organizing or search-
ing resources of social media systems [1]. However, a considerable number of
shared resources has few or no tags because of the time-consuming aspect of the
tagging task. For example, between February 2004 to June 2007, around 64%
of Flickr uploaded photos had 1 to 3 tags and around 20% had no tags [20].
To encourage users annotating their resources, tag recommendation systems are
used to facilitate the tagging task by suggesting relevant tags for them. These
systems can be personalized systems that recommend different tags depending
on the users’ preferences, or non-personalized ones that omit the users’ interests.
Because the tags represent the user’s view to his resource, the recommended tag
list for a user is practically a personalized list containing his “favorite” keywords.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 186–197, 2017.
DOI: 10.1007/978-3-319-57454-7 15
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The personalized models can be based on the relation between users, items and
tags, or otherwise on the correlation information of tags [4,16,19].

The personalized approaches are not efficient for new images with no histori-
cal information. As Sigurbjörnsson and Van Zwol mentioned [20], people usually
choose the words related to the contents or contexts such as location or time
to annotate images. The visual information can be considered to be used in the
personalized recommendation models in order to enhance the prediction qual-
ity. The recommended tags of a personalized content-aware tag recommendation
express personal and content-aware characteristics as in Fig. 1.

Fig. 1. The tags recommended for u1
contain his favorite word italy, a word
mountain related to the content of the
image and a word nature from u3 being
similar to u1.

Fig. 2. The architecture of CNN-
PerMLP

In this work, we show how a deep learning approach can be adapted to
solve a personalized image tag recommendation. For a personalized problem, the
features used in a deep learning model have to include the information of a user
and an associated image. We propose a new way to add the user’s information
into the CNN models. A new layer that captures the interaction between users
and visual features plays a bridged role between a CNN image feature extractor
and a multilayer perceptron as in Fig. 2. In addition, we adapt the Bayesian
Personalized Ranking optimization [18] in a different way to apply for the model.

Empirically, our experiments obtained in two real datasets, namely NUS-
WIDE and Flickr-PTR, show that the proposed model outperforms the state-
of-the-art personalized tag recommendation models, which are purely based on
tagging history, up to at least four percent. The experiments also indicate the
stronger support of the supervised features to increase the prediction quality
up to at least two percent compared to low-level features.

2 Related Work

A large number of tag recommendation approaches focus on various features of
objects, such as the contents of media objects, the relation between users and
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images, or the objects’ contexts. The neighbor voting model [10] assembles the
votes of similar images to retrieve the relevant tags. The collective knowledge
approach [20] recommends the correlated tags with the user-provided tags based
on the co-occurrence metric. The metric is also used for the personalized tag
recommendation [4]. The model predicts the relevant tags for users based on the
global and personal correlated scores of tags.

The correlated scores of tags achieved from different contexts are aggregated
to look for the relevant tags [15]. The contexts include the information of the
whole system, the social contacts of a user and the attending groups. In another
approach, both the content and context information are used to find the neigh-
bors of a given image from the historical tagging collection of the owner’s images.
The most frequent tags selected from its neighbors are recommended for the
image [14]. In the model proposed by Chen and Shin [2], textual and social
features that are extracted from tags, titles, contents, comments or users’ social
activities are combined to represent tags. Then, logistic regression or Näıve Bayes
is employed as the recommender.

Factorization models are widely applied and show a good performance for tag
recommendation. One of the state-of-the-art models is the Pairwise Interaction
Tensor Factorization (PITF). It models all interactions between different pairs
of users, items and tags, and accumulates all pairwise scores to the tags’ scores
[19]. Factorization Machine (FM) [16] is an approach that takes advantage of
feature engineering and factorization. It can be applied to solve different tasks,
such as regression, classification or ranking.

Tag recommendation based on the visual information of items only can be
viewed as a multilabel classification or an image annotation task. A Convolu-
tional Neural Network (CNN), a strong model for image classification and recog-
nition [8,9,22], is applied to solve image annotation [5,23]. The approach can
learn the predictor by optimizing different losses, such as pairwise, or Weighted
Approximate Ranking (WARP), either to deal with the ranking problem [5], or
to predict labels from arbitrary trained objects [23].

Because the factorization models merely depend on the relation between
users, images and tags, they perform worse when predict new images. Our pro-
posed model relied on users and visual features of images overcomes the limita-
tion of recommending tags for new images.

The image annotation models do not contain the user’s information so they
work poorly in a personalized scenario. The proposed model has a personalized
layer that captures the user-aware features so that the deep learning model can
be adapted into a personalized tag recommendation.

3 The Proposed Model

3.1 Problem Formulation

The personalized tag recommender suggests a ranked list of relevant tags to a
user annotating a specific image. The set of tag assignments A can be represented
as a combination of users U , images I and tags T . It is denoted as A = (au,i,t) ∈
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R
|U |×|I|×|T | [11] where au,i,t = 1 if the user u assigns the tag t to the image i, or

otherwise au,i,t = 0. The observed tagging set is defined as S := {(u, i, t)|au,i,t ∈
A ∧ au,i,t = 1}. The set of relevant tags of a user-image tuple (u, i) is denoted
as Tu,i := {t ∈ T | (u, i, t) ∈ S}. Let PS := {(u, i) | ∃t ∈ T : (u, i, t) ∈ S} be all
observed posts [17].

In addition, the collection of all RGB squared images is defined as R. The
visual features of the i-th image Ri is a vector zi ∈ R

m. In this paper, we crop
each image into Q patches to enhance the value of extracted features so we can
define the collection of images R = {Ri,q|Ri,q ∈ R

d×d×3 ∧ i ∈ I ∧ q ∈ Q}.
The scoring function of the recommendation model computes the scores of

tags for a given post pu,i which are used to rank tags. The score of a tag to a
given post is represented as ŷ(u, i, t) : U ×I ×T → R. If the score ŷu,i,ta is larger
than the score ŷu,i,tb , the tag ta is more relevant to the post pu,i than the tag tb.
The tag recommendation model is expected providing a top-K tag list T̂u,i that
is ranked in descending order of tags’ scores for a post pu,i.

T̂u,i := argmax
t∈T,|T̂u,i|=K

ŷ(u, i, t) (1)

3.2 Personalized Content-Aware Tag Recommendation

The architecture of the proposed model called CNN-PerMLP based on the
relation between the user and the visual features of the given image is illustrated
in Fig. 2. The supervised visual features are achieved by passing a patch q of the
image i through the CNN feature extractor.

To personalize the visual features, a proposed specific layer called the per-
sonalized fully-connected layer is obtained following the extractor. The layer
captures the interaction between the user and each visual feature to generate
the latent features for the post pu,i.

A neural network is deployed as a predictor to compute the relevant prob-
abilities of tags. The network receives the user-image features as the input and
its outputs are used to derive a ranking of recommended tags.

In this paper, we divide images into several patches and the final scores of
tags are the average scores computed from different patches. If the score of a tag
to a given post pu,i and a patch q is represented as ŷ′ : U ×R×T → R, the final
tag’s score is

ŷ(u, i, t) = avg
Ri,q,q∈Q

ŷ′(u,Ri,q, t) (2)

Convolution Neural Networks. The CNN is obtained to represent high-level
abstraction of image features. One or more convolutional layers are employed to
generate several feature maps by moving kernel windows smoothly across images.
The k-th feature map of a given layer is denoted as τk, the weights and the biases
of the filters for τk are W k ∈ R

p1 × R
p2 × R

p2 and bk where p1 is the number
of the previous layer’s feature maps and p2 is the dimension of kernel windows.
The element at the position (i, j) of τk is acquired as
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τk
ij = ϕ

(
bk +

p1∑
a=1

(W k
a ∗ ξa)ij

)
(3)

with ∗ being the convolution operator, ξa being the a-th feature map of the
previous layer and ϕ being the activation function. The subsampling layer, which
pools a rectangular block of the previous layer to generate an element for the
current feature map, follows the convolutional layer. If the max pooling operator
is used, the element at the position (i, j) of the k-th feature map τk is denoted
as follows

τk
ij = max

a,b
(ξk)a,b (4)

where a and b are the positions of the element associating to the pooled block.
The output of the CNN feature extractor is a dense feature vector representing
the image. We define the extraction process of the patch q of the i-th image by

zq
i = fcnn(Rq

i ) : Rd×d×3 → R
m (5)

Personalized Fully-Connected Layer. The extracted features from the CNN
only contain the information of the image i. To personalize visual features of an
image, the user’s information has to be added or combined with these features.
For this reason, a layer stood between the feature extractor and the predictor is
employed to generate the user-aware features that are used as the input of the
predictor.

If the model uses only the user’s id as the personalized information, the user’s
features u are described as a sparse vector represented κu := {0, 1}|U |. Both the
visual feature vector zq

i and the sparse vector κu are the input of this layer.
The layer is responsible to capture the interaction between the user and to each
visual feature. If the output of this layer is denoted by ψ ∈ R

m, it is obtained
as follows

ψj(u, zq
i ) = ϕ(bj + wper

j · (zq
i )j + Vjκu) (6)

where wper ∈ R
m is the weights of the visual features and V ∈ R

m×|U | is
the weights of the user features. As in the convolutional layer, the elementwise
activation function ϕ is used after combining the weighting visual feature and
the user’s features.

Multilayer Perceptron as the Predictor. To compute the scores of the tags,
a multilayer perceptron is adopted as a predictor and its input is the output of the
personalized fully-connected layer ψ. The output of the network is the relevant
scores of tags associated with the post (u, i) and the patch q of the image i.
Because the network in the proposed model has one hidden layer, we denote the
neural network score function as follows

ŷ′(u,Rq
i , tj) = ϕ

(
wout

j · ϕ(Whiddenψ + bhidden) + bout
j

)
(7)

where Whidden and bhidden are the weights and the biases of the hidden layer;
wout

j ∈ W out and bout are the weights and the biases of the output layer.
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3.3 Optimization

We adapt the Bayesian Personalized Ranking (BPR) optimization criterion [18]
in a different way so that the algorithm can be applied to learn the deep learning
personalized image tag recommendation.

Algorithm 1. Learning BPR
1: Input: PS , S, R, N , α
2: Output: Θ

3: Initialize Θ ← N (0, 0.1)
4: repeat
5: Pick (u, i) ∈ PStrain and Rq

i ∈ R randomly
6: Get T+

u,i := {t ∈ T | (u, i, t) ∈ S}
7: Pick T −

u,i := {t ∈ T | (u, i, t) /∈ S} randomly where | T −
u,i |= N

8: Compute zq
i = fcnn(Rq

i ) and ψ(u, zq
i )

9: for t ∈ 1, . . . , |T | do
10: if t ∈ T+

u,i ∨ t ∈ T −
u,i then

11: Compute ŷ′(u, Rq
i , t)

12: end if
13: end for

14: Update Θ ← Θ + α

(
∂ BPR(u,i)

Θ

)

15: until convergence
16: return Θ

The optimization based on BPR finds the model’s parameters that maximize
the difference between the relevant and irrelevant tags. In addition, the stochas-
tic gradient descent applied for BPR is in respect of the quadruple (u, i, t+, t−);
i.e., for each (u, i, t+) ∈ Strain and an unobserved tag of pu,i drawn at random,
the loss is computed and is used to update the model’s parameters. The afore-
mentioned BPR is not efficient to be used to learn the proposed model. The
BPR criterion with respect to the posts is proposed to use and it is defined as

BPR(u,Rq
i ) :=

1
| T+

u,i || T−
u,i |

∑
t+∈T+

u,i,t
−∈T −

u,i

ln σ(ŷ′(u,Rq
i , t

+, t−)) (8)

where T+
u,i := {t ∈ T | (u, i, t) ∈ Strain} is the set of tags selected by the

user u for the image i. The rest of tags is the unobserved tag set denoted as
T−

u,i := {t ∈ T | (u, i) ∈ PStrain
∧ (u, i, t) /∈ Strain}. The function σ(x) is

described as σ(x) = 1
1+e−x . The difference between the score of relevant tags

and irrelevant tags is defined as ŷ′(u,Rq
i , t

+, t−) = ŷ′(u,Rq
i , t

+) − ŷ′(u,Rq
i , t

−).
The learning model’s parameters process is described in Algorithm 1. For

each random post, a random patch of the associated image is chosen to extract
the visual features. An irrelevant set having N tags is selected at random from
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the unobserved tags of the post. The system computes the scores of all relevant
tags and the drawn irrelevant tags. From Eq. (8), the gradient of BPR with
respect to the model parameters is obtained as follows:

∂ BPR
∂Θ

= Ω
∑

t+∈T+
u,i

∑
t−∈T −

u,i

Ψt+,t−
∂ŷ′(u,Rq

i , t
+, t−)

∂Θ
(9)

where

Ω =
1

| T+
u,i || T−

u,i | Ψt+,t− =
e−ŷ′(u,Rq

i ,t+,t−)

1 + e−ŷ′(u,Rq
i ,t+,t−)

To learn the model, the gradients ∂ŷ′(u,Rq
i ,t+)

∂Θ and ∂ŷ′(u,Rq
i ,t−)

∂Θ have to be com-
puted. Depending on the weights in the different layers, one or both the gradients
are computed. For example, if the parameter θj depends on the relevant tags t+j ,
Eq. (9) becomes

∂ BPR
∂θj

=
∂ BPR

∂ŷ′(u, i, t+j )
× ∂ŷ′(u,Rq

i , t
+
j )

∂θj
=

∂ŷ′(u,Rq
i , t

+
j )

∂θj
· Ω

∑
t−∈T −

u,i

Ψt+j ,t− (10)

To find the gradients of the CNN parameters, the derivatives with respect to the
visual features are propagated backward to CNN. From the Eqs. (6) and (9), the
derivatives are computed as

∂ BPR
∂(zq

i )j
= Ω

∑
t+∈T+

u,i

∑
t−∈T −

u,i

Ψt+,t−
∂ŷ′(u,Rq

i , t
+, t−)

∂ψj
· wper

j (11)

4 Evaluation

In the evaluation, we performed experiments addressing the impact of supervised
visual features and the personal factor on the tag recommendation process.

4.1 Dataset

We obtained experiments on subsets of the publicly available multilabel dataset
NUS-WIDE [3] that contains 269,648 images and Flickr-PTR [12] that was cre-
ated by crawling around 2 million Flickr images. We preprocessed the NUS-
WIDE dataset as follows: keeping available images annotating by the 100 most
popular tags, sampling 1.000 users, refining to get 10-core dataset referring to
users and tags where each user or tag occurs at least in 10 posts [6] and remov-
ing tags assigning more than 50% of images by one user to avoid the case that
users tag all their images by the same words. Similarly, the Flickr-PTR dataset
is preprocessed by mapping all tags to WordNet [13], refining dataset to get the
40-core regarding to users and 400-core to tags dataset, sampling 500 users and
removing tags assigning more than 50% of images by a user.
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Table 1. Dataset characteristics

Dataset Users
|U |

Images
|I|

Tags
|T |

Triples
|S|

Posts
|PS |

Training posts
|PStrain |

Test posts
|PStest |

NUS-WIDE 1000 27.662 100 81.263 27.858 25.858 2.000

Flickr-PTR 323 29.095 133 94.387 29.096 23.402 5.694

Table 2. Layer characteristics of the convolutional architectures

Layer NUS-WIDE Flickr-PTR

The 1st ConvL 6 × 6 × 3 (stride: 3) 5 × 5 × 3 (stride: 2)

The 1st MaxPoolL 2 × 2 2 × 2

The 2nd ConvL 6 × 6 × 10 (stride: 2) 5 × 5 × 10 (stride: 1)

The 2nd MaxPoolL 2 × 2 3 × 3

The 3rd ConvL 2 × 2 × 30 (stride: 1) 3 × 3 × 30 (stride: 1)

We adapted leave-one-post-out [11] for users to split the dataset. For each
user, 20% of Flickr-PTR posts and 2 NUS-WIDE posts are randomly picked and
put into the test sets. These subdivided dataset can be described with respect to
users, images, tags, triples and posts as in Table 1. Images crawled by Flickr API1

were cropped from the aspect ratio retained 75 × 75 for NUS-WIDE or 50 × 50
for Flickr-PTR into 3 pieces at 3 positions top-left, center and bottom-right to
be used as the input patches for training and predicting.

4.2 Experimental Setup

The architectures used for both datasets contain 3 convolutional layers (ConvL)
alternated with 2 max-pooling layers (MaxPoolL). ConvLs in these architectures
have the same number of kernels that are 10 for the first, 30 for the second and
128 for the third. Because of the difference of the image size, the dimensions
of convolutional kernels and pooling blocks in these architectures are different
shown in Table 2. The hidden layers of the predictor have the dimension 128 for
both architectures and the rectifier function max (0 , x ) is used as the activation
function. The evaluation metric used in this paper is F1-measure in top K tag
lists [19].

F1@K =
2 · Prec@K · Recall@K
Prec@K + Recall@K

(12)

where

Prec@K = avg
(u,i)∈Stest

|T̂u,i ∩ Tu,i|
K

Recall@K = avg
(u,i)∈Stest

|T̂u,i ∩ Tu,i|
|Tu,i|

1 https://www.flickr.com/services/api/.

https://www.flickr.com/services/api/
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T̂u,i = Top(u, i,K) = argmax
t∈T,|T̂u,i|=K

ŷ(u, i, t)

The grid search mechanism was used to find the best learning rate α among
the range {0.001, 0.0001, 0.00001} for all ConvLs and {0.01, 0.0001, 0.0001} for
all fully-connected layers, the best L2-regularization λ from the range λ ∈
{0.0, 0.0001, 0.00001} while the momentum value μ was fixed to 0.9. The 64-
dimension color histogram (CH) and 225-dimension block-wise color moments
(CM55) provided by NUS-WIDE’s authors [3] and the 64-dimension color his-
togram (CH) of Flickr-PTR images are used for comparison.

The proposed model CNN-PerMLP is compared to following personalized
tag recommendation methods that use only the users’ preference information
and do not consider the visual features: Pairwise Interaction Tensor Factoriza-
tion (PITF) [19], Factorization Machine (FM) [16], most popular tags by users
(MP-u) [6].

It is also compared to the non-personalized models including most popu-
lar tags (MP) [6], the multilabel neural networks (BP-MLLs) [24] that have
low-level visual features as the input (CH-BPMLL, CM55-BPMLL), CNNs
obtained for image annotation which optimizes the pairwise ranking loss to learn
the parameters as the loss used by Zhang and Zhou [24]. The reimplemented
CNN is similar to the proposed model of Gong et al. [5] with respect to optimiz-
ing the loss under the ROC curve (AUC).

The adjusted models (CH-PerMLP and CM55-PerMLP) of the proposed
model using low-level features were obtained for the comparison. We used the
Tagrec framework [7] to learn MP and MP-u, and the Mulan library [21] to learn
CH-BPMLL and CM55-BPMLL.

4.3 Results

As shown in Fig. 3, the non-personalized models cannot capture the user’s inter-
ests and they just recommend tags related to the content. The prediction quality
of these models is lower than that of the personalized model. However, the model
with CNN supervised features captures more information than the models using
low-level features, leading to a boosted performance around 2%.

The claim that visual features improve the prediction quality is more serious
in Fig. 4. In the test having most new images, the weights associated with these
images are not learned in the training process. So the prediction of the person-
alized content-ignored models like FM and PITF solely depends on users and
their results are clearly comparable to the prediction of MP-u. The personal-
ized content-aware models work better than them in this case and recommended
tags rely on both users and visual image information. The visual features help
increasing the prediction quality around 4%. The supervised features also prove
their strength in the recommendation quality compared to the low-level features.
The performance is improved around 2 to 3% as a result of using the learned
visual features.

Examples in Table 3 show that the proposed model can predict both personal
tags and content tags compared to MP-u that purely predicts personal tags and
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Fig. 3. The results of the non-personalized models are not as good as the personalized
models but the model using supervised features outperforms the model using low-level
features.

Fig. 4. CNN-PerMLP outperforms the personalized models based purely on tagging
history and the personalized models using low-level visual features.

Table 3. Examples of top 5 recommended tags of CNN-PerMLP, CNN and MP-u

Image
Ground
truth

CNN-
PerMLP

CNN MP-u Image
Ground
truth

CNN-
PerMLP

CNN MP-u

flower
red
orange
white

red
white
flowers
orange
flower

red
woman
girl
white
people

flowers
white
orange
pink
flower

green
grass
landscape
park

landscape
green
sky
park
grass

green
bravo
blue
nature
flowers

beautiful
park
landscape
color
animal

CNN recommending content tags. As a result, the CNN-PerMLP suggests more
relevant tags to the image. For example, in the first photo, the recommender can
catch personal tags as “flowers”, “flower”, “orange” and content tags as “white”
or “red”. Through Tables 4 and 5, CNN-PerMLP works well in the case that
people use their frequent tags or tags related to the image’s content to annotate
a new image. However, the prediction quality of the model is poor if the users
assign tags that are new and do not relate to the content.
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Table 4. Example having the highest
accuracy of top 5 recommended tags

Image
Ground
truth

Prediction

lake
sunset
water
blue
sun

sunset
water
lake
blue
sun

Table 5. Example having the lowest
accuracy of top 5 recommended tags

Image
Ground
truth

Prediction

green sea
beach
sunset
clouds
ocean

5 Conclusion

In this paper, we propose a deep learning model using supervised visual fea-
tures for personalized image tag recommendation. The experiments show that
the proposed method has advantages over the state-of-the-art personalized tag
recommendation purely based on tagging history, like PITF or FM in the nar-
row folksonomy scenarios. Moreover, the learnable features strongly influence the
recommendation quality compared to the low-level features. The information of
users used in the proposed models is plainly the users’ id and it does not really
represent the characteristic of the users, such as favorite words or favorite images.
In the future, we plan to investigate how to use the textual features of users, in
combination with the visual features of images to enhance the recommendation
quality.
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Abstract. A comprehensive understanding of complex data requires
multiple different views. Subspace clustering methods open up multi-
ple interesting views since they support data objects to be assigned to
different clusters in different subspaces. Conventional subspace clustering
methods yield many redundant clusters or control redundancy by difficult
to set parameters. In this paper, we employ concepts from information
theory to naturally trade-off the two major properties of a subspace clus-
ter: The quality of a cluster and its redundancy with respect to the other
clusters. Our novel algorithm NORD (for NOn-ReDundant) efficiently
discovers the truly relevant clusters in complex data sets without requir-
ing any kind of threshold on their redundancy. NORD also exploits the
concept of microclusters to support the detection of arbitrarily-shaped
clusters. Our comprehensive experimental evaluation shows the effec-
tiveness and efficiency of NORD on both synthetic and real-world data
sets and provides a meaningful visualization of both the quality and the
degree of the redundancy of the clustering result on first glance.

1 Introduction

Clustering is a powerful data exploration tool capable of uncovering previously
unknown patterns in data. Subspace clustering is an extension of traditional
clustering. It is based on the observation that different clusters, i.e., groups
of mutually similar data objects, may exist in different subspaces of a data
set. Research on subspace clustering has attracted a lot of attention, since in a
plethora of applications domains, it is natural that objects are clustered flexibly
in different subspaces. Typical applications for subspace clustering include:

– life science data, like genes under different experimental conditions [4] or in
identification and classification of diseases [7]

– security and privacy in recommended systems [17],
– computer vision, e.g. image/motion/video segmentation [5,6] as well as image

representation and compression [16].

How can we define the quality of a clustering? Our solution relies on the
information-theoretic idea of linking data mining to data compression. Any kind
of non-random patterns can be exploited to compress data. The stronger the
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 198–209, 2017.
DOI: 10.1007/978-3-319-57454-7 16
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patterns and the better an algorithm succeeds in detecting them, the better is
the compression rate. We define the quality of a cluster as its contribution to
the overall compression rate.

The challenge is to distinguish interesting novel information from undesired
redundancy. We approach this challenge by our novel clustering method NORD
(for NOn-ReDundant) via information theoretic measures that automatically
balances the novelty and quality of a subspace cluster. The information we gain
by a subspace cluster on our data is two-fold: we learn which attributes span
the subspace of the cluster and we learn which objects belong to that cluster.
Information-theoretic measures allow to quantify the amount of novel informa-
tion provided by each cluster as well as its redundancy to the remaining clusters.
We combine this idea with the quality measure to obtain a novel information-
theoretic optimization goal for subspace clustering, that automatically balances
both aspects.

Contributions

1. Non-redundant Subspace Clustering by Balancing Quality and
Information: Besides optimizing the cluster quality we consider maximiz-
ing the amount of non-redundant novel information in terms of cluster and
subspace identification as a second major optimization goal for subspace clus-
tering. NORD is the first approach relying on information theory to make
both aspects measurable in a comparable way such that they can be inte-
grated into a common objective function.

2. Complex Clustering easy depicted: Measuring both properties in bits
opens up the opportunity to plot the clusters in the space of quality and
novelty. This plot gives a summary on the overall cluster structure.

3. Efficient and Automatic Clustering: Besides the parameters required for
redundancy control the comparison methods require further parameters spe-
cific to the underlying clustering method, e.g., density thresholds. We also
avoid such difficult to estimate parameters relying on the Minimum Descrip-
tion Length Principle.

2 How to Balance Quality and Novelty

Notations

Definition 1 (Database). Let DB ⊂ Rd be a finite collection of d-dimensional
vectors. We call n := |DB| the database size, d the dimensionality of DB, and
we call the set S := (1, ..., d) the set of all dimensions-, or full space.

Definition 2 (A Subspace Cluster). A subspace cluster C is defined as a
pair C = (O ⊆ DB,S ⊆ S), where O is a set of data points existing in a cluster
C of subspace S. In the following, if multiple clusters are considered, we use C.O
and C.S to reference the set of objects and set of dimensions of C, respectively.
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Definition 3 (Subspace Clustering). A subspace clustering C = {C1, ..., Ck}
is a set of k subspace clusters such that two clusters sharing the same subspace
do not contain the same objects, formally:

∀Ci, Cj ∈ C, Ci �= Cj : Ci.S = Cj .S ⇒ Ci.O ∩ Cj .O = ∅.

Thus, subspace clustering sharing the same subspace are assumed to have dis-
jointed objects [1,2]. We note that different subspace clusters are allowed to
share, or all, dimensions in their respective subspace, and subspace clusters hav-
ing non-identical subspaces may share common objects.

2.1 Making Cluster Information Measurable

The information provided by a subspace cluster on the data is two-fold: infor-
mation about which objects are contained in the cluster and information about
which dimensions span the corresponding subspace, more specifically:

Definition 4 (Information of a Subspace Cluster). The amount of infor-
mation H(C) of a subspace cluster C = (S,O) is defined as:

H(C) = H(O) + H(S) (1)

H(O) denotes the entropy of the cluster labels, i.e.

H(O) = − |O|
|DB| · log2

|O|
|DB| − |DB\O|

|DB| · log2
|DB\O|
|DB| ,

and H(S) is defined analogously for the dimensions S of C. We note that H(C)
is a measure which quantifies, in bits, the novel information provided by cluster
C on the data set D. As a subspace cluster represents a subset of objects and
dimensions of the data space, H(C) is the sum of the entropies of object- and
dimension-assignments.

The information of multiple subspace clusters can be highly redundant. High
redundancy can be due to the fact that multiple clusters are composed by similar
subsets of the objects and/or reside in similar subspaces of the data space. It is
therefore interesting to quantify how much non-redundant information a single
cluster contributes to the overall clustering result.

Definition 5 (Non-redundant Information). The amount of non-redundant
information of two subspace clusters C1 = (O1, S1) and C2 = (O2, S2) is defined
as:

NR(C1, C2) = V I(O1, O2) + V I(S1, S2), (2)

where V I denotes the Variation of Information, i.e. V I(C1, C2) = H(C1) +
H(C2) − 2I(C1, C2) with I(C1, C2) is the mutual information of both clusters
I(C1, C2) = |O1 ∩ O2|

|DB| · log2
|O1 ∩ O2|

|DB| · |O1|
|DB| · |O2|

|DB| .
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NR is a metric, since it is the sum of two metrics. In [8] the authors used V I as
similarity measure for comparing the results of different approaches to classical
partitioning clustering. We use the basic concept of V I to quantify the similarity
of the information which two subspace clusters from the result set of our method
provide on the data. A NR of zero among C1 and C2 implies that V I(O1, O2)
and V I(S1, S2) are zero, i.e. both clusters are composed of independent subsets
of objects and dimensions of the data.

2.2 Encoding Quality

We follow an information-theoretic perspective [14] to quantify the quality of a
subspace cluster. To measure the quality of a subspace cluster, we regard a sub-
space cluster as a pattern which we can exploit to compress the data. The more
information (in bits) we can save by having identified some subspace cluster C in
the data, the higher its quality. Intuitively, the aim of this section is to describe
the points of a cluster by a probability distribution. The better this function
fits the data, the more of the data is explained by this function. The remaining,
unexplained, error needs to be encoded separately from the parameters of the
PDF (probability density function) to achieve a lossless compression. We first
define how we can encode the set of objects O belonging to some subspace cluster
C = (O,S).

We model the data of a subspace cluster C = (O,S) by a probability density
function pdfC . In a nutshell, the coding cost of a subspace cluster C corresponds
to the deviation of the subspace clusters’ points from its expectation. Formally,

Definition 6 (Coding cost of a Subspace Cluster). Let pdfC = No(μC , σC)
be a probability density function. The coding costs of a subspace cluster C =
(O,S) consist of two parts, data costs dc and parameter costs pc, i.e. costpre

(C) = dc(C) + pc(C) with

dc(C) =
∑

o∈C log2
1

p(o,pdfC(πS(o))) and

pc(C) = |params|
2 · log2 |O|,

(3)

where πS(o) is the projection of object o to subspace S, params is the set of
parameters of pdfC , p(o, pdfC(o)) is a function that returns the probability that
the distance between o and a random point x sampled from pdfC is greater than
the distance between o and the expectation E(pdfC) of pdfC , formally:

p(o, pdfC) =
∫

x∈O
pdfC(x) · I(dist(o, x) > dist(E(pdfC), o)),

E(pdfC) =
∫

x∈O
pdfC(x) · x.

(4)

The data cost dc is provided by the negative log-likelihood of all associated points
w.r.t. the PDF. The parameters of the PDF are determined after projecting the
objects into the subspace S of the cluster. The better the cluster model fits the
data, the smaller is this term. By using the dual logarithm, we obtain the coding
length in bits. In pc(C) the first term represents the costs required to encode the
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|params| model parameters of the pdf, in case of a spherical Gaussian PDF we
have |p| = 2 · |O|. Following central results from information theory [8,13], we
use 1

2 · log2 |C| to represent a parameter.
In the remainder of this paper we use a spherical Gaussian PDF requiring

|p| = 2 · |S| parameters (mean, variance) but our coding scheme can be extended
to support different distributions and rotated clusters.

Definition 7 (Baseline Coding Cost). The baseline coding cost for some
unclustered data set U is as follows:

db(U) =
∑

u∈U

log2(
1

pdfDB(u)
). (5)

The baseline is unimodal with parameters estimated from the complete data set
DB and therefore denoted by PDFDB.

It is useful to compare the baseline coding cost of the full data set DB in full-
dimensional space A which models all data as one unimodal PDF in comparison
to the coding costs of any intermediate or final subspace clustering result. Sub-
space clustering only makes sense if we can improve on the baseline coding cost,
otherwise we have evidence that our data does not contain any subspace clusters
which can be represented by our cluster model. It is also useful to consider the
baseline coding cost of a subspace cluster to define its quality in a comparable
way:

Definition 8 (Quality of a Subspace Cluster). The quality of a subspace
cluster C = (S,O) is provided by the savings in bit over the baseline:

Q(C) = db(U) − costpre(C). (6)

To facilitate the comparison of the quality of different clusters, we often also con-
sider the normalized quality Q̂(C) = Q(C)

|O| which represents the average number
of bits saved per object over the baseline.

2.3 Balancing Quality and Information

Having formalized quality and information, we exploit the Minimum Description
Length (MDL) [14] for coping with two challenges: We not only aim at auto-
matically selecting the number and dimensionality for the subspace clusters, but
also aim at balancing information and quality of the clusters. In other words, the
second aspect means that the better the quality of a subspace cluster, the more
redundancy we allow w.r.t. the remaining clusters in terms of object assignment
and subspace identification. When a cluster provides a greater quantity of novel
information, our algorithm allows a lower quantity of quality.

Definition 9 (Encoding of a Subspace Cluster). The full description length
of a subspace cluster C extends the coding costs costpre(C) in Definition 6 for
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extra parameter costs pc describing the cluster object assignments and the cluster
subspace assignments.

cost(C) = costpre(C) + |O| · log2
n

|O| + |S| · log2
d

|S| . (7)

This coding scheme naturally balances quality and information: For a result
consisting of many high quality but very redundant clusters, the data costs are
low but the parameter costs are unnecessarily high, due to many similar sub-
spaces and clusters. In his case the MDL score would be far from its optimum.
Also the result with random non-sense clusters has excessively high data costs
due to low cluster quality. In MDL it scores poorly as well. However, this basic
coding scheme encodes each cluster separately and does not consider any depen-
dencies among clusters. Since we already know that dependencies exist, because
objects and dimensions can be assigned to multiple clusters, we should also
exploit this information for more compact coding.

Last, we define the overall optimization goal for our subspace clustering which
corresponds to minimizing the overall cost of the sorted cluster sequence:

Definition 10 (Overall Optimization Goal). Our optimization goal is to
minimize the coding cost of the overall subspace clustering result, i.e.

min
∑

Ci∈C
cost(Ci|Cj <s Ci).

3 NORDs Algorithmic Procedure

After formalizing our quality functions and how to optimize the compression,
we will now explain the algorithm of our approach in detail. Our algorithm is
a greedy bottom-up approach divided into two phases: first, the initialization
phase for creating the microclusters and second a recursive refinement step in
which the initial quality of the clustering is improved by (a) combining these
microclusters and by (b) removing redundancy by choosing and merging the
most similar clusters first.

3.1 Initialization Phase

Our initialization phase – although quite simple – contains one of the main
concepts used in our algorithm and provides the algorithms’ flexibility to
find arbitrarily-oriented clusters: creating so called microclusters in each sin-
gle dimension similar to the one in [15]. A microcluster M(σ, μ) is a gaussian
cluster generated by K-Means of variance σ and mean μ with as few data points
as possible but no less than a given minimum m. Up to this point, the quality
of each dimension of the data set consisting of very small microclusters is very
low. Now, raising the quality in this first step considers only the quality per
dimension, merging the microclusters to larger ones in each dimension.
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Algorithm 1. Non-redundant Algorithm NORD
Require: Numeric, high dimensional data set DB
Ensure: Overlapping label (optional)
1: Initialization;
2: for all one dimensional microcluster M do
3: Generate the coding cost CC as base cost bc cf. Sect. 2.3
4: end for
5: Apply quality step
6: Re-generate CC
7: while CC decreases AND CC > 0 do
8: for every two (one dimensional) cluster do
9: Calculate symmetric VI-Matrix V I(Ci, Cj) cf. Sect. 2.1

10: end for
11: Rank the minimal VI entries
12: Select (next) minimum entry from V I
13: Merge the clusters with highest redundancy
14: Re-calculate CC cf. Sect. 2.3
15: end while
16: Compute visualization
17: return non-redundant Clustering C.

3.2 Merging Phase

After merging each single dimension to its highest possible quality outcome, the
dimensions are combined to higher dimensional subspaces. For this process we
need a smart suggestion on how to search through every subspace not to end up in
exponential possibilities. This smart suggestion is provided by the information-
theoretical concept of Variation of Information (VI). With VI we are enabled to
measure novel content/information compared to other clustering results. Those
cluster pairs, providing the least novel information in terms of VI are the ones
which are very similar to each other, thus not very interesting on their own.
These clusters are the ones suggested by VI to be merged with each other. But a
suggestion is not a proof that this would be a correct decision. The real decision
whether it is a good choice to merge two - often multi-dimensional - clusters
globally is done by our quality function. If the suggestions holds, which means
in general the costs are decreased, the algorithm goes on recursively, if not, the
merging is rolled back and other suggestions are tried until the algorithm finishes
in a local cost optimum. The overall procedure is described in Algorithm1.

3.3 Complexity Analysis

The single steps of our heuristic approach are efficient: Our initialization step
where the creation of microclusters takes place is determined by the runtime of
our partitioning clusterer which is O(nkdi), with k being the number of micro-
clusters chosen and i the number of iterations. Then, raising the quality of these
one dimensional clusters needs to create the cost matrix Mcc for each com-
bination of clusterlabel l, for which the MDL for every cluster combination is



Information-Theoretic Non-redundant Subspace Clustering 205

calculated. The quality function from the MDL is linear in the number of objects
O by exploiting the gaussian entropy, the overall runtime of this step is O(l2O).
For the last step, the heuristic search via a matrix MV I that holds the variation
of information (VI) is also quadratic in the number of matrix entries. The VI
itself needs a linear calculation over the number of clusterlabel l for the entropy
H and a quadratic calculation for the mutual information I for the number of
dimensions d. Therefore the overall procedure for creating a smart suggestion
from the VI, costs O(M2

V I ld
2).

4 Experimental Evaluation of NORD

In this section, we compare NORD with recent competitor approaches for non-
redundant subspace clustering paradigms like RESCU [10], INSCY [2] and
STATPC [9]. For a fair comparison we implemented NORD in JAVA and used
the evaluation frameworks OpenSubspace [11] and OutRules [12], WEKA exten-
sions, where all mentioned competitor methods are implemented in JAVA as well.
All runtime experiments were done on the same machine, an Intel Core Quad
with 3 GHz and 6 GB main memory.

We compare all synthetic and real world data sets with four algorithms,
which three of them are specifically created to tackle the problem of too many
redundant subspace clusters in the final result.

– Curler [15] is an approach for finding non-linear correlation clusters with-
out considering redundancy in their results. We chose it as baseline as the
algorithmic procedure resembles NORD, because the concept of microclus-
ters is applied fo find arbitrary clusters. Both algorithms use microclusters
as an divide approach to create small gaussian mixture models to find non-
linear clusters, Curler by applying the EM algorithm and NORD by apply-
ing kMeans. Both create some visualization for arbitrary clusterings. But in
Curler microclusters are applied to find the different orientation of the neigh-
bors, an information that is necessary for their objective function, where in
NORD the orientation of the microclusters in space does not matter. Their
objective function does not consider redundancy in subspaces. The visualiza-
tion differs in the sense that Curlers NNC plot plots the microclusters and
their co-sharing level (the number of tuples overlaping), whereas NORD plots
the final clustering result without any microclusters. Besides, Curler needs
five input parameter to work properly. By applying EM for the microclusters
some level of approximation is considered.

– INSCY [2] is the most related competitor to our approach in terms of redun-
dancy reduction and cluster definition we could find in literature so far. Both
aim at finding all shapes of cluster no matter in which dimensions, so called
arbitrary clusters. As for most newer clustering algorithms INSCY allows over-
lapping objects and overlapping dimensions. It needs seven parameters to be
set by the user to work properly.

– RESCU [10] is a complex non-redundant subspace clusterer using a grid to find
combined clusters. With such cluster definition it does not find all arbitrary
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cluster shapes. RESCU applies even eight parameters to process redundancy
accurately.

– STATPC [9] is an approximative non-redundant statistical method which
defines cluster as hyper-rectangle. It needs three input parameters given by
the user.

With these methods being the state-of-the-art for redundancy removal in
clustering, we can say that so far correct parametrization was crucial to process
redundancy adequately.

4.1 Synthetic Data

For each synthetic dataset, we generate a number clusterlabel clusters. For each
cluster C = (O,S), we randomly select a set ⊂ S of dimensions randomly,
by choosing each dimension with a probability of 0.5. We generate the same
number of |O| = n

clusterlabel of objects for each cluster. These points follow a
uniform distribution in [0,1] in all dimensions except when in subspace S. In each
dimension in S, the points in O follow a gaussian distribution, using a uniformly
chosen value in [0,1] as mean, and using a variance scaling from variance on
average. Average variance means the average of all variances of each cluster per
dimension.

Fig. 1. Quality evaluation for scaling the variances (average variance shown on x-axis).

Scaling the variance allows us to experimentally evaluate the level of over-
lap between different clusters and how the algorithm reacts to it. The variances
are given in Fig. 1 as the average variance of two clusters. For example, if the
plot shows a variance of 35, then this combines a higher variance of 50 and
a lower variance 20. Figure 1 shows clearly, that for all methods the quality
decreases with a higher overlap. Depending on how redundancy is implemented
and removed in the different approaches raises the quality. STATPC as approxi-
mate method has the most problems with the mutually overlapping data points
that come with varying the variance of the cluster while NORD achieves the
highest results in NMI as well as in F1-score. The baseline, Curler, is far off
from these results due to no redundancy reduction.
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Fig. 2. Scalability runtime experiments for dimension size and db size.

For scalability we show runtime experiments for db size (number of data
points) and dimension size as well as quality evaluation for scaling the variances
of our synthetic data sets. Figure 2 shows the results for all comparison methods.
While NORD scales similar with RESCU for the db size, it outperforms all
other algorithms when scaling the dimensions of the data set. Besides the level
of redundancy removal also seems to affect the runtime performance. STATPC
has the worst approximative redundancy removal scales compared to the fully
non-redundant comparison methods. CURLERs results on efficiency are omitted
as it does not tack non-redundancy.

4.2 Real World Data

For real world data sets we apply two data sets. The data set wages is publicly
available on a webpage1 and the genes data set belongs to the Spellman gene
expression data available at the MINE projects webpage2. If possible we applied
the exact same parameter settings for the competitors that were given by their
authors3.

The “wages” data that we derived from UCI Machine Learning Repository [3]
consist of a random sample of 534 persons from the Current Population Survey
(CPS). This social studies goal was to determine the impact of gender and other
attributes like years of education, work experience and age on wage. The study
provides information on wages and other characteristics of the workers, including
sex, number of years of education, years of work experience, occupational status,
region of residence and union membership. From all attributes only wage, age,
work experience and year of education were numeric and thus relevant. The goal
of the study was to determine (i) correlations between wage and characteristics
of the workers, and (ii) whether there is a gender gap in wages. Our clustering
algorithm NORD is able to find 9 meaningful clusters on this data set which
are depicted in Fig. 3(a). The cluster with the highest quality shows the strong

1 http://lib.stat.cmu.edu/datasets/CPS 85 Wages.
2 http://www.exploredata.net/Downloads/Gene-Expression-Data-Set.
3 http://dme.rwth-aachen.de/de/OpenSubspace/RESCU.

http://lib.stat.cmu.edu/datasets/CPS_85_Wages
http://www.exploredata.net/Downloads/Gene-Expression-Data-Set
http://dme.rwth-aachen.de/de/OpenSubspace/RESCU
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(a) [NORDs result on wages data. (b) NORDs result on gene data.

Fig. 3. The information content of two subspace clusters. The overlapping part of
cluster 1 and cluster 2 is redundant, the other parts are novel information provided
by this one cluster. Together, novelty and redundancy form the full information of a
cluster.

correlation between work experience and age. The three close cluster combine
wage to age and experience. Years of education had no apparent correlation with
wage. RESCU had a very similar result with 10 clusters. STATPC scored well
with 15 clusters but INSCY did not manage to gain a high quality score with
F1-score of 0.27.

The Spellman gene expression data does study the mitotic cell cycle of yeast
genes. This data set is also quite well known in our discipline as a means of iden-
tifying functionally related genes using cluster analysis. In this relatively large
data set (nearly 5000 data points), NORD finds 15 meaningful clusters depicted
in Fig. 3(b). Clearly, the two clusters with highest quality are also relatively simi-
lar to one another, both contain 13 dimensions but are both important in quality.
RESCU could not process this dataset (and logically also not the metabolic data
with nearly 10,000 samples). Even after we running the data on a machine with
48 GB RAM, the JVM got an out of memory error. For INSCY we needed to
modify this data set somewhat, because it works with positive values only.

5 Conclusion

In this paper, we introduced a novel approach to subspace clustering that bal-
ances the quality of a clustering with the novel information gained. As the first
information-theoretic algorithm that is applied to the topic of non-redundant
subspace clustering. NORD can be considered parameter-free in the sense, that
no sensitive input parameter are necessary to gain a highly valuable result. We
showed clearly in our experiments that the heuristic search method is relatively
fast compared to other state-of-the-art algorithms and achieves a high quality
even without the need for parameters. Last but not least we proposed a visu-
alization of the clustering result of our algorithm, that intuitively shows the
relationship between quality and novelty. To conclude, we feel that our proposed
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solution is able to yield more useful subspace clustering results: Instead of yield-
ing a potentially overwhelmingly large set of high-quality clusters, that might be
highly redundant, our solutions narrows down the space of interesting clusters
to the most representative clusters.
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Abstract. Connectivity and automation are evermore part of today’s
cars. To provide automation, many gauges are integrated in cars to col-
lect physical readings. In the automobile industry, the gathered multiple
datasets can be used to predict whether a car repair is needed soon.
This information gives drivers and retailers helpful information to take
action early. However, prediction in real use cases shows new challenges:
misclassified instances have not equal but different costs. For example,
incurred costs for not predicting a necessarily needed tire change are
usually higher than predicting a tire change even though the car could
still drive thousands of kilometers. To tackle this problem, we intro-
duce a new example-dependent cost sensitive prediction model extending
the well-established idea of logistic regression. Our model allows differ-
ent costs of misclassified instances and obtains prediction results leading
to overall less cost. Our method consistently outperforms the state-of-
the-art in example-dependent cost-sensitive logistic regression on various
datasets. Applying our methods to vehicle data from a large European
car manufacturer, we show cost savings of about 10%.

1 Introduction

Automation has become of prime importance to improve the quality of our life.
An example from the vehicle industry, where predictive maintenance [17] looms
large, is to predict whether the tires of a car need to be changed soon. Goals are
(i) providing customers services with less latency for tire change, and (ii) fore-
casting tire delivery in correct number for all customers with a tire change need.

Given historical data, such potential ‘malfunctions’ (required tire change) can
be predicted based on binary classification algorithms like logistic regression,
support vector machines, ARIMA models or neural networks etc. [2–5]. Such
approaches, however, often do not meet the real world use cases since intuitively
they try to minimize the so called zero-one loss with the assumption that all
misclassified instances have equal cost. Meaning correct classifications lead to a
cost of zero and misclassification gets a cost of one [6].

In many applications, however, the costs for misclassified instances might
vary significantly from one instance to the other. Predicting tire change is ranked
among these applications. The cost associated with, e.g., an incorrect early tire

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 210–222, 2017.
DOI: 10.1007/978-3-319-57454-7 17
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Fig. 1. Left: result of a cost-insensitive
classifier; right: result of a cost-sensitive
classifier with smaller overall cost

True Pos. True Neg.
(yi = 1) (yi = 0)

Predicted Pos.
0 ci

FP

(ŷi = 1)

Predicted Neg.
ci

FN 0
(ŷi = 0)

Fig. 2. Cost matrix for cost-sensitive
classification

change prediction is smaller than the expected cost for not predicting an immi-
nent tire change at all, which could even cause customer dissatisfaction. Also,
instances where the tire change has been predicted too early might show differ-
ent costs. In some cases the tires might actually be used for further 20,000 km
compared to only 1,000 km. Hence, in practical applications different misclassi-
fied instances can cause different costs. Since standard binary classifiers are not
suited for such scenarios, example-dependent cost-sensitive classification [7] has
been introduced, considering the different costs of instances during learning.

Technically, to distinguish between different misclassified instances, a prede-
fined cost value can be assigned to each instance in the dataset. Figure 2 shows
the cost for an instance according to their actual class vs. their predicted class.
When the instance is a false positive, we have cost of cFP

i , if it is a false negative,
the cost is cFN

i . If the instance is correctly classified (i.e. true positive or true
negative), we assign a cost of zero. Note that each instance i might get differ-
ent cost (indicated by the index i). Having assigned costs to each instance i, a
possible way to estimate the overall misclassification cost is

Cost =
m∑

i

yi · (1 − ŷi) · cFN
i + (1 − yi) · ŷi · cFP

i (1)

where yi ∈ {0, 1} is the observed and ŷi ∈ {0, 1} the predicted label of instance
i, with m as the number of overall instances [3]. Accordingly, instead of consid-
ering each instance equally, our goal is to train a classifier that takes the overall
misclassification cost into account. The benefit of such an approach is shown in
Fig. 1. On the left, the cost-insensitive classifier misclassified only one instance
but its associated cost is very high (10). On the right, the potential result of a
cost-sensitive classifier is shown. Although now two instances are classified false,
they have only very low cost of 1 and 2; the previously misclassified instance
with cost of 10 is classified correctly. Thus, the overall misclassification cost is
only 3. Based on this motivation, in this work, we focus on the well established
classification model of logistic regression – and we extend it by the principle of
example-dependent cost sensitive learning. The contributions of this paper are:

– We propose an enhanced binary classification model that includes the indi-
vidual costs of instances while fitting a model to the training set – thus, costs
are not simply used in a post-processing step but during training.
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– We propose four different variants of our model each extending the sound
principle of logistic regression but considering different properties.

– We perform experiments on multiple real-world datasets including data from
a leading European car manufacturer showing that our methods successfully
lower misclassification costs.

2 Background

In a binary classification problem, input vectors X = {x1, . . . , xm} with xi ∈ R
d,

and class labels Y = {y1, . . . , ym} with yi ∈ {0, 1} are given. Here, xi is the i-th
instance described by d features, and yi = 1 represents the class of instances with
a certain issue (tire change required) and yi = 0 the opposite. In our scenario,
each instance i is associate with a certain predefined cost ci.1 The higher the
cost, the worse is a potential misclassification of this instance. Our goal is to fit
a model on observed data X to predict Y denoted by Ŷ at best. More precisely,
our aim is to find a model that leads to small overall misclassification cost.

2.1 Logistic Regression and Important Properties

Logistic regression treats the binary classification problem from a probabilistic
perspective. Given the instance x, the probability of the occurrence of an issue
(i.e. y = 1) is denoted by p(y = 1 | x), and p(y = 0 | x) = 1 − p(y = 1 | x)
respectively for y = 0. Here, p(y = 1 | x) is defined as the sigmoid function,
known as logit:

p(y = 1 | x) = f(g(x, β)) =
1

1 + e−g(x,β)
(2)

where 0 ≤ f(g(x, β)) ≤ 1 and g(x, β) = β0 +
∑m

j=1 βj · xj is a linear expression
of Eq. 2 including the explanatory features and the regression coefficients β.
Considering the sigmoid equation, the question is how to estimate β in g(x, β)
to make f(g(x, β)) = ŷ close to y? To formalize this, and assuming that the
m samples in the data are independent, we can write p(Y |X;β) as a product,
leading to the following overall Likelihood function:

L(Y,X, β) =
m∏

i=1

f(g(xi, β))yi · (1 − f(g(xi, β)))1−yi (3)

The β in logistic regression can be obtained by maximizing Eq. 3, i.e. it corre-
sponds to the maximum likelihood estimate. Obviously, instead of maximizing
L(Y,X, β), we can equivalently minimize the negative log likelihood given by

l(Y,X, β) =
m∑

i=1

yi · (− log f(g(xi, β))) + (1 − yi) · (− log(1 − f(g(xi, β)))) (4)

1 Note that we do not have to explicitly distinguish between cFP
i and cFN

i . If yi = 0,
then cFP

i = ci, if yi = 1, then cFN
i = ci. For a single instance, cFP

i and cFN
i can

never occur together.
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which is the logistic loss function. Figure 3 shows the logistic loss function for
yi = 1 (e.g. tire change)2: yi · (− log f(g(xi, β))). Clearly, if f(g(xi, β)) = 1 the
prediction is correct and we have zero loss. For f → 0, in contrast, the loss will
increase. Thus, minimizing the loss means lowering the prediction error.

Loss of Correctly Classified Instances: In logistic regression the return
values of the sigmoid function are between 0 and 1. Therefore, we have no deter-
ministic decision which samples are classified correctly and which are classified
wrong. To turn the predicted probabilities into binary responses, a threshold is
used. Based on the probabilistic view and as default in literature, we choose 0.5
as threshold. That is, if f(g(xi, β)) ≥ 0.5, the predicted class is 1, otherwise
0. The resulting observation is that even for correctly classified instances the
logistic loss is not zero. This becomes obvious in Fig. 3: e.g. an instance with
f(g(xi, β)) = 0.9 has a loss of 0.05 even if it is correctly classified.

Assuming the correctly classified instances get a probability f(g(xi, β)) uni-
formly random between 0.5 and 1, then the average loss of a correctly classified
instance is proportional to Tlog :=

∫ 1

0.5
yi · (− log f(g(xi, β))) df ≈ 0.15.3 Here,

Tlog can also be illustrated as the area under the ‘logistic loss’-curve as shown
in Fig. 3. Likewise, the incorrectly classified instances get an average loss pro-
portional to Flog :=

∫ 0.5

0
yi · (− log f(g(xi, β))) df ≈ 0.85 where Flog represents

the area from 0 to 0.5. Also note that Tlog + Flog = 1. That is, the average loss
assigned to an instance (independent if correctly or incorrectly classified) is 1.
Obviously Flog > Tlog, which means that a correct prediction actually leads to
smaller loss. However, the two loss terms Flog and Tlog are constant and identical
for each instance. That is, the standard logistic loss function does not distinguish
between different losses caused by different instances with different costs.

3 Example Dependent Cost-Sensitive Logistic Regression

The above discussion leads to the core motivation of our paper: How can we
adapt the logistic loss function in a sound way, so that different samples having
different costs are treated differently? How can we define a loss function to make
sure that instances with higher costs are more likely to be predicted correctly?

General Framework. To answer these questions, we adapt the standard logis-
tic loss function to a cost sensitive one in four different ways. The general frame-
work we explore in these versions is to minimize the loss function l(Y,X, β)
defined as

m∑

i=1

ai · yi · (− log f(g(xi, β))bi) + ai · (1 − yi) · (− log(1 − f(g(xi, β)))bi) (5)

2 The case yi = 0 is equivalent; only mirrored. W.l.o.g. we consider in the following
only yi = 1.

3 More precise, the average loss for correctly classified instances would be 2 · Tlog.
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Fig. 3. Loss function of
standard logistic regression
for y = 1.
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Fig. 4. Loss function for A
& B. The loss ratio for
B is smaller. (Color figure
online)
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Fig. 5. Loss function for
variant C & D. Both vari-
ants control the loss ratio.

where ai and bi depend on ci. That is, ai = a(ci) and bi = b(ci) based on
functions a : R

+ → R
+ and b : R

+ → R
+. As shown next, given different

choices of a and b, we realize different properties. For convenience, let us already
introduce the following notation: Failogbi :=

∫ 0.5

0
ai · (yi · (− log f(g(xi, β)))bi) df

represents the average loss for misclassified instances and Tailogbi :=
∫ 1

0.5
ai · (yi ·

(− log f(g(xi, β)))bi) df is the average loss for correctly classified instances.

Variant A: Weighting the Logistic Loss Function. The first, simplest way
is to weight the logistic loss function depending on the cost value ci by setting
the area under the curve – representing the average loss – equal to the cost.

∫ 1

0

ai · (yi · (− log f(g(xi, β)))) df
!= ci (6)

This way, instances with a higher cost will get a higher average loss value. Since
in standard logistic regression the area is 1, it obviously holds that the weight
factor ai needs to be equal to ci. The variable bi is equal to 1. The purple curve
in Fig. 4 shows the plot for ci = 3. Clearly, by weighting the loss function, we
oversample the instances proportional to their costs, i.e. an instance with cost 2
is basically considered twice. But this solution has one drawback: By weighting
the loss, not only the misclassification loss Failog1 but also the ‘correct’ loss
Tailog1 will be higher. Correctly classified instances are penalized by this version,
too. In particular, the ratio between Failog1 and Tailog1 does not change. Thus,
for every instance a misclassification has always Flog

Tlog
≈ 5.5 higher loss than a

correct classification. Thus, this solution might not well represent the intuition
that the cost of misclassification will be higher.

Variant B: Logistic Loss Function to the Power of b. To avoid penalizing
correctly classified instances, we exchange the weighting in Eq. 6 by an exponen-
tiation of the logistic loss function to the power of b. That is, we increase the
average loss from 1 to ci by using the term bi and keeping ai = 1:

∫ 1

0

yi · (− log f(g(xi, β)))bi df
!= ci (7)

Since Eq. 7 is equal to Γ (bi +1), the solution for bi given a specific ci is equal to
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bi = Γ−1(ci) − 1 (8)

Γ−1 is the inverse of the Gamma function Γ which can be computed numerically.
Figure 4 shows the corresponding loss function by the blue curve with ci =

3. While the loss area T1logbi is pressed downwards, the loss area of instances
in F1logbi wins on more importance since instances with high costs are more
important to be classified correct. Thus, not only the average loss increases
for these instances but also the ratio between F1logbi and T1logbi . A potential
drawback is that the ratio F1logbi /T1logbi is not controlled explicitly.

Variant C: Controlling the Ratio - I. We aim to control the ratio between
the loss area of Failogbi and Tailogbi . That is, for an instance with cost ci we

want to ensure
F

ailog
bi

T
ailog

bi

!= Flog

Tlog
· ci. The ratio between the loss of false and correct

classification is ci times higher than for an instance with cost 1. Simultaneously,
the average loss of the instances should be independent of ci. The motivation
is that in average each instance is equally important, but for some of them the
misclassification should be penalized stronger. That is, the area under the curve
has to be equal to 1, meaning Failogbi +Tailogbi

!= 1. This constraint implies that

ai =
1

Γ (bi + 1)
(9)

The value of bi > 0 can be computed numerically by solving (see Appendix)

Γ (bi + 1)
Γ (bi + 1, 0.6931)

= 1 +
Tlog

ci · Flog
(10)

where Γ (s, r) is the incomplete gamma function. The effect of this variant is
shown in Fig. 5 as variant C, again for ci = 3. Here, we have F ≈ 0.94 and
T ≈ 0.057. Thus, the ratio is ci times higher than in the standard case. Still the
average loss is identical (i.e. equal to 1).

Variant D: Controlling the Ratio - II. In version C, we kept the average
loss at 1 but increased the ratio between false and correct classification; thus,
the area Tailogbi needs to decrease. Accordingly, instances with a high costs will
not only have higher misclassification loss but also lower correct classification
loss compared to instances with low costs – which again, might not be intended
since the costs for correct classification is constant. Therefore, we introduce our
last version which (i) directly controls the ratio, and (ii) ensures that the correct

classification loss stays constant. This idea can be transformed to
F

ailog
bi

T
ailog

bi

!=

Flog

Tlog
· ci and Tailogbi

!= Tlog. Solving this, we obtain for bi the identical solution
as in variant C; only the weighting ai changes to

ai =
Tlog

Γ (bi + 1) − Γ (bi + 1, 0.6931)
(11)
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variant ai bi avg. loss ratio F/T T

LR 1 1 1 constant Tlog

A ci 1 ci constant ci · Tlog

B 1 Eq. 8 ci adaptive adaptive
C Eq. 9 Eq. 10 1 ∝ ci adaptive
D Eq. 11 Eq. 10 Tlog + ci · Flog ∝ ci Tlog

Fig. 6. Proposed variants and their properties Fig. 7. Loss function used in [7].

Indeed, what we observe is that for this variant we have Failogbi = ci ·Flog. Thus,
we only increase the average loss for the misclassified instances by a factor of
ci. This effect is shown in Fig. 5 as variant D. As one can also observe, the area
Failogbi in variant D is equal to the area Failogbi of variant A; in both variants the
area increases by a factor of ci compared to standard logistic regression. While
in variant A, however, also the area Tailogbi increases, it stays constant in variant
D. Thus variant D better captures the increased costs for misclassification.

Summary and Algorithmic Solution. Figure 6 summarizes our different
variants. While variants A and B focus on increasing the average loss according
to the costs, variants C and D focus on increasing the fraction between false and
correct classification loss.

Our final goal is to find the parameter β that minimizes the loss func-
tion in Eq. 5: β∗ = arg minβ l(Y,X, β). For this purpose we exploit a gradient
descent search. Starting from a random solution, we iteratively follow the steep-
est descent direction: βt+1 ← βt − α∇l(β) where α is the learning rate.

4 Related Work

Various research papers are published with focus on cost sensitivity [1,7–13].
Often, the main objective is predicting potential customers with financial oblig-
ation based on their existing financial experience. While [11–14] use constant
costs for misclassified instances, the authors in [9] propose a Bayes minimum
risk classifier including the financial costs of credit card fraud detection in order
to have a cost sensitive detection system. Another interesting approach is intro-
duced in [15], by presenting a taxonomy of cost-sensitive decision tree algorithm
using the class-dependent cost. An extension of [15] with focus on example-
dependent cost for decision trees is published by [16].

The only method similar to ours is [7], which proposes an example-dependent
cost sensitive logistic regression. Here the loss function of logistic regression
is changed to a cost sensitive one by integrating the cost as a factor into its
calculation. A drawback of [7] is that the loss function is no longer a logarithmic
function but linear. That is, for the case that correct classification has 0 cost, [7]
uses 1

m

∑m
i yi(1 − f(g(xi, β)))ci + (1 − yi)f(g(xi, β))ci. Thus, the loss decreases

linearly: starting from ci to 0 (see Fig. 7). Using a linear loss function causes
weak differentiation between false and correctly classified instances. The two
areas marked by F and T in Fig. 7 show this problem. As we will see in our
experimental analysis, this principle will often perform worse than our technique.
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5 Experimental Analysis

In this section we compare our four variants A–D with standard logistic regres-
sion LR and the competition model proposed in [7]. For this purpose, we test
our designed models on the basis of three different datasets: (i) a vehicle dataset
from a large European car manufacturer for predicting tire change service, (ii)
the dataset breast cancer4 to predict whether a patient is affected by breast
cancer or not, and (iii) data from the 2011 Kaggle competition Give Me Some
Credit5 to predict whether a customer will experience financial distress in the
next two years.

Our main goal is to achieve low overall misclassification cost (see. Eq. 1).
Thus, a technique is successful if it obtains the lowest overall cost. As an evalua-
tion measure we compute the savings of our techniques w.r.t. logistic regression
savings = CostLR−Costx

CostLR
where CostLR is the obtained misclassification cost

(Eq. 1) based on the result of logistic regression and Costx the cost based on the
result of the technique x. In each scenario we used 2

3 of the data for training our
models and 1

3 to evaluate them.

5.1 Tire Change Service

The vehicle dataset is a binary classification dataset containing 1,800 instances,
each with 40 features. The features are indirectly influenced by tire wear and
which, thus, indicate a resultant tire change. An example of such features could
be acceleration.6 Important to mention is that features resulting through, e.g.
a sensor which directly measures the tire tread to asses a tire wear are not
considered here. The target variable is whether a vehicle needs a tire change:
yes = 1 or no = 0. Instances requiring a tire change account to ∼ 15% amount of
the whole data. Each instance is assigned with a cost; the higher the cost value,
the more urgently a tire change is needed. The degree of urgency was determined
by the domain experts.

Figure 8 shows the results. Here, the threshold to cast the predicted proba-
bilities to binary responses is set to 0.5. Generally all of our four versions obtain
lower overall misclassification cost than traditional logistic regression. But the
best savings are achieved by B, C, and D with a win of around 10%. Applying
the competing variant from [7] shows even higher overall cost than our variants.
As discussed, this is caused by the used non-discriminative loss function in their
logistic regression model.

While a threshold of 0.5 is from a probabilistic view the correct one, it might,
however, not lead to smallest misclassification cost. Thus, in Fig. 9 we report the
results for each method when individually using the threshold that leads to
lowermost misclassification cost. These ‘optimal’ thresholds are given in Table 1.
Note that in practice such a tuning is not possible since we a-priori do not know
the true class of an instance.
4 https://goo.gl/U2Uwz2.
5 http://www.kaggle.com/c/GiveMeSomeCredit/.
6 Due to nondisclosure agreements we unfortunately can not provide more details on

the dataset. The two other datasets studied in this work are publicly available.

https://goo.gl/U2Uwz2
http://www.kaggle.com/c/GiveMeSomeCredit/
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Fig. 8. Savings of the methods when
threshold is 0.5. Our techniques signif-
icantly outperform logistic regression.

Fig. 9. Savings of the methods with vari-
able threshold with minimal misclassifica-
tion cost. Our techniques perform better

The results show that even in a scenario of complete knowledge our techniques
significantly outperform logistic regression. Example dependent cost improves
the ability to make less failure than the standard process. Also, the results from
Table 1 are very close to t = 0.5. Thus, applying our models for t = 0.5 without
tuning the threshold in practice would still obtain very good performance.

Table 1. Variable thresholds leading to minimal costs in vehicle datasets

LR A B C D Competing

0.4542 0.4509 0.4950 0.5060 0.4775 0.5001

5.2 Breast Cancer

The Wisconsin breast cancer dataset is a binary classification dataset, e.g., avail-
able in scikit-learn. The total number of instances is 569, each with 30 attributes.
212 (∼ 37.2%) of records are malignant denoted by 1 and 357 (∼ 62.8%) records
are benign presented by 0. Since the instances are not presented by different
costs we randomly assigned each instance a cost between 1 to 5 to guaranty the
fairness. To obtain reliable results, we generated n = 10 such datasets.

Table 2 shows the number of correctly classified instances and false classified
ones (on avg. on the test data). Also, the average corresponding misclassification
cost of the false classified instances are presented by the column cost. The left
part of the table presents results for t = 0.5, the right part shows the results for
the ‘optimal’/tuned thresholds.

For t = 0.5, versions B and D return the lowest overall cost with a small
number of false classified malignant instances. Surprisingly, not only the cost is
lower in our variants, but also the classification accuracy increases. The same
behavior can be seen for the variable threshold. In comparison to the competing
variants LR and [7] our results are much better.

Figures 10 and 11 show the relative savings of the techniques w.r.t. logistic
regression. Since we applied the algorithms 10 times based on different randomly
assigned costs, different savings are observed. In Fig. 10, the bars show the mean
savings for t = 0.5 achieved by each algorithm; the black lines represent the
standard deviation over the 10 runs. In average, D as well as B save at most
whereas the model in [7] cause even more loss than standard LR. As shown by
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Table 2. Wisconsin breast cancer dataset. Left: threshold t = 0.5; right: variable
thresholds with overall minimum misclassification cost.

Method, t Incorrect Correct Avg. cost Method, t Incorrect Correct Avg. cost

LR, 0.5 ≈ 17 ≈ 171 52.61 0.39 ≈ 14 ≈ 174 38.07

A, 0.5 ≈ 13 ≈ 175 40.29 0.52 ≈ 11 ≈ 177 36.23

B, 0.5 ≈ 12 ≈ 176 36.96 0.4857 ≈ 11 ≈ 177 33.37

C, 0.5 ≈ 14 ≈ 174 43.72 0.496 ≈ 13 ≈ 175 38.61

D, 0.5 ≈ 12 ≈ 176 37.21 0.496 ≈ 11 ≈ 177 34.02

Competing, 0.5 ≈ 87 ≈ 101 282.8 0.499 ≈ 38 ≈ 150 115.49

Fig. 10. Average savings when thresh-
old t = 0.5. Average over 10 runs.

Fig. 11. Average savings when selecting
variable t with minimal misclassification
cost (see. Table 2). Average over 10 runs.

the black lines, these results are significant. While all our 4 versions return very
similar good results, [7] shows bad performance and strong fluctuation. A similar
behavior can be considered in Fig. 11 for variable thresholds.

benign instances malignant instances

predicted
as benign

predicted
as malignant

our predictionprediction 
of LR

predicted probability

co
st
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Fig. 12. Comparison between LR and D. The pre-
dicted probabilities of D (big end of each line) reflect
better the true labels. Triangles should be on the left;
circles on right. (Color figure online)

Finally, Fig. 12 shows why
our techniques (here variant
D) perform better than LR,
that is we show the differ-
ence in their prediction. Each
line in Fig. 12 represents one
instance from the dataset.
The start of each line indi-
cates the predicted proba-
bility based on LR, while
the end (shown by a cir-
cle/triangle) the probability
assigned by our model. In an
optimal classification, all tri-
angles (green) should be on
the left of the threshold line
(t = 0.5); all circles (blue) on
the right. We grayed out all
instances which are correctly
classified by both techniques;
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thus, the colored lines show the interesting differences between LR and model
D. As we can see, our method pushes more instances to the correct side of the
line, i.e. classifies them correctly. Specifically, we also observe these changes for
instances with high costs, thus, leading to overall lower misclassification cost.

5.3 Credit Datasets

The Kaggle Credit dataset is a bi-class dataset containing 112,915 credit bor-
rowers as instances. Each instance has 10 features with a proportion of 6.74%
positive examples. Some features are, e.g., monthly income or monthly debt. Our
goal is to perform credit score prediction using our different versions of logistic
regression. For assigning instances different costs, we took the same costs pro-
portion as in [7]. Table 3 shows the corresponding results. In contrast to the first
two experiments, the best models for Kaggle Credit data, are A and [7]. For
t = 0.5, indeed version A has the best accuracy of around 93.0% but it saves
slightly less than [7]. In contrast, using the optimal threshold, version A wins
more on savings than [7] but the number of false classified instances is higher.
This means that in model A, primarily instances with low costs are classified
incorrectly. The model D performs good w.r.t. the savings and shows in both
cases a low number of false classified instances.

Table 3. Results on credit dataset. Left: threshold t = 0.5; right: variable t with overall
minimum misclassification cost.

Method, t Incorrect Correct Cost Savings t Incorrect Correct Cost Savings

LR, 0.5 2470 34792 8260.35 - 0.39 2573 34689 8056.65 -

A, 0.5 2444 34818 7972.32 3% 0.38 2586 34676 7732.88 4%

B, 0.5 2474 34788 8248.05 0.1% 0.36 2483 34779 8056.65 −2%

C, 0.5 2471 34791 8261.57 −0.01% 0.40 2547 34715 8225.40 −2%

D, 0.5 2466 34796 8152.35 1% 0.33 2480 34782 7893.33 2%

Comp., 0.5 2695 34567 7823.53 5% 0.503 2497 34765 7766.05 3%

In summary, considering all datasets together, model D has consistently
ranked among the best competing methods. Based on our model description
(Sect. 3) it also very naturally captures example-dependent cost.

6 Conclusion

In this paper we have presented four different extensions of logistic regression
to a cost sensitive one, each using a different loss functions having different
properties. We evaluated the impact of each model based on two different public
datasets as well as on a vehicle dataset to predict tire change. Our results confirm
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that a cost sensitive model not only classifies instances with higher importance
better but can also improve the accuracy of classical logistic regression. For our
use case on tire change service, we obtained significant savings of 10%.

A Appendix

Failogbi

Failogbi

=
aiΓ (bi + 1, 0.6931)

ai(Γ (bi + 1) − Γ (bi + 1, 0.6931))
!= ci · Flog

Tlog

⇔ Γ (bi + 1, 0.6931) != ci · Flog

Tlog
· Γ (bi + 1) − ci · Flog

Tlog
Γ (bi + 1, 0.6931)

⇔ Γ (bi + 1)
Γ (bi + 1, 0.6931)

!=
1 + ci · Flog

Tlog

ci · Flog

Tlog

= 1 +
Tlog

ci · Flog
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Abstract. If Alice is majoring in Computer Science, can we guess the
major of her friend Bob? Even harder, can we determine Bob’s age or
sexual orientation? Attributed graphs are ubiquitous, occurring in a wide
variety of domains; yet there is limited literature on the study of the inter-
play between the attributes associated to nodes and edges connecting
them. Our work bridges this gap by addressing the following questions:
Given the network structure, (i) which attributes and (ii) which pairs
of attributes show correlation? Prior work has focused on the first part,
under the name of assortativity (closely related to homophily). In this
paper, we propose ProNe, the first measure to handle pairs of attributes
(e.g., major and age). The proposed ProNe is (a) thorough, handling
both homophily and heterophily (b) general, quantifying correlation of a
single attribute or a pair of attributes (c) consistent, yielding a zero score
in the absence of any structural correlation. Furthermore, ProNe can be
computed fast in time linear in the network size and is highly useful, with
applications in data imputation, marketing, personalization and privacy
protection.

Keywords: Attributed networks · Homophily · Heterophily ·
Assortativity

1 Introduction

Suppose we know that Alice is majoring in Computer Science. To what extent
can we comment on the major of her friend Bob? How accurately can we predict
his age or sexual orientation? At a broader level, given the structure of a network
and some attributes (e.g., major, age) on the nodes, how can we find out (a)
which attributes (b) which pairs of attributes show correlation?

Attributed networks are ubiquitous, occurring in a number of domains. For
instance in social networks, where nodes represent people, and edges indi-
cate friendships, the attributes may include interests/demographics of indi-
viduals. Similarly in citation networks, where papers (nodes) cite each other
(edges), each paper also incorporates information regarding the venue or key-
words (attributes). However, despite the prevalence of attributed graphs, the vast
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 225–237, 2017.
DOI: 10.1007/978-3-319-57454-7 18
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majority of network science has dealt solely with the graph structure/topology
[4,5] ignoring the attributes.

Studies focusing on the interplay between the network structure and
attributes are fairly recent [9,14,15]. For example, in a typical social network, the
similarity of individuals motivates them to form relations (social selection) and
in turn the individuals may themselves be affected by their relations (a.k.a. social
influence) [14]. This assortative mixing and peer influence results in a homophily
pattern observed in many real world networks [17], where neighboring nodes
exhibit similar characteristics/attributes. Several works use this observation to
cluster data [6], build realistic generative models [2,12] and accurate prediction
models [1,11]. There are still fewer studies that try to understand assortativity
in networks: by quantifying the correlation of nodal attributes and the structure
in a static network [17,18], or by investigating the interplay of social selection
and influence over time [9].

Table 1. All variants of ProNe are thorough, general and consistent in contrast
to the baseline assortativity measures.

Assortativity, as a measure for structural correlation of a single attribute,
presents a major drawback that it can capture homophily mixing pattern
(i.e., when nodes of same attribute value link together) only. This is demon-
strated in Table 1. Assortativity (r-index) gives a full score of 1 to perfect
homophily (i.1); but is unable to distinguish between perfect heterophily (i.2)
and randomness (i.3). Further, it cannot characterize or distinguish the mix-
ing patterns involving a pair of attributes (e.g., ii.1 where there is correlation
between color and shape based on structure, and ii.2. where shape and color are
independent).

The goal of this work is the formal characterization of the proclivity of
attributed networks, i.e., the inclination or predisposition of nodes with a cer-
tain value for an attribute to connect to nodes with a certain other value for the
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same (self-proclivity) or a different attribute (cross-proclivity). The problem we
address in this work can be informally stated as:

Informal Problem 1. Given: an attributed network G, two different attributes
a1, a2

To measure:

– Self-proclivity which captures how predictable neighbors’ attribute values for a1

are, given a node’s value for a1.
– Cross-proclivity which captures how predictable neighbors’ attribute values for

a2 are, given a node’s value for a1 or vice versa.

We propose ProNe (PROclivity index for attributed NEtworks) for quanti-
fying both self- and cross-proclivity in attributed networks, by drawing upon the
clustering validation literature. In place of the confusion matrix (a.k.a. contin-
gency table) which is used to measure the agreements between two groupings of
datapoints, we propose to consider the mixing matrix (which will be introduced
in Sect. 3) of attributes. ProNe has the following desirable properties:

✓ Thoroughness: ability to capture homophily and heterophily
✓ Generality: applicability in characterizing both self- and cross-proclivity
✓ Consistency: quantification of the absence of correlation as zero
✓ Scalability: linear running time with respect to the number of edges

ProNe will help with numerous settings, including:

– data imputation: what attributes should we use to guess a missing attribute
of Alice, given the attributes of her friends

– marketing: for ad placement and enhancing e-shopping experience
– personalization: for early depression-detection from online networks [7,8]
– anonymization/privacy: which attributes, or pairs of attributes can reveal sen-

sitive information about Alice and thus should be masked

The outline of the paper is as follows. In Sect. 2, we review related work and
present the assortativity indices proposed in literature. Section 3 formally intro-
duces our proposed metric ProNe and Sect. 4 establishes its theoretical proper-
ties. After presenting the results upon applying ProNe to Facebook attribute
networks in Sect. 5, we finally conclude in Sect. 6.

2 Related Work and Background

In this section, we briefly review the prior work for attributed graphs and present
more background on the two assortativity measures proposed in the literature
which we will use as our baseline for comparison.
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2.1 Related Work

We will group related work under the following four categories: (i) measures for
attribute correlation [16–18] (ii) dynamic patterns in attributed graphs [9,12]
(iii) models for attributed networks [13,19] (iv) link prediction and inference
[10,11,14,21,24].

The correlation of attributes with the structure of the network was first stud-
ied in [17], in which the assortative mixing of a single attribute was quantified
through r-index. To the same end, Q-modularity is proposed [16] based on the
surprise in encountering edges connecting attributes of the same value. For vec-
tor attributes, assortativity is extended by considering average similarities of
connected nodes (e.g., using euclidean or cosine similarity) [18]. There is little
work beyond this on quantifying structural correlation of attributes.

On the other hand, several studies try to better understand the dynamics
of homophily [9,12]. For example, a clear feedback effect between social influ-
ence and selection in the network of Wikipedia editors has been discovered
in [9], where they observe a sharp increase in the average cosine similarity of
users right before they interact for the first time followed by a steady increase
in their similarity. In a related study, patterns of attributes in Google+ net-
work have been investigated [12] by modeling it as a social-attribute network
(SAN), which simply augments the graph by adding nodes which correspond to
attribute values and connects them to the individuals who have those attributes.
Multiplicative attributes graph model [13] is proposed for attributed networks
using a link-affinity matrix, where they assume that the attributes are binary
and are independent. To incorporate the attribute correlations into this model,
[19] an accept-reject sampling framework was used to filter the edges generated
from the underlying model and selectively accept those that match the desired
correlations.

Since nodal similarities and social interactions are two tangled factors which
affect the evolution of networks [9], models which incorporate the correlation
between attributes and relations better predict links and infer attributes, as con-
firmed by many recent studies [10,11,14,24]. A large body of predictive models
extract topological features from the network and combine them with the nodal
features to achieve better classification [23] while others directly utilize the gen-
erative graph models to jointly predict links and infer attributes [10,11].

We are interested in the more fundamental question of quantifying structural
correlations of a single attribute (more general than assortative mixing) or a
pair of attributes and thus our work falls into group (i). We will review our only
competitors – r-index [17] and Q-modularity [16] in the following section.

2.2 Background

r-index: Given an attributed network, r-index for assortativity constructs the
k×k normalized mixing matrix E whose (i, j)th entry, eij , determines the fraction
of edges connecting nodes with attribute value i to nodes with value j. This
matrix can be then summarized by an assortativity coefficient [17] defined as:
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r =
∑

i eii − ∑
i ei.e.i

1 − ∑
i ei.e.i

=
Tr[e] − ||e2||

1 − ||e2|| (1)

where ei. =
∑

j eij , e.i =
∑

j eji, and
∑

ij eij = 1. Here, r = 1 shows perfect
assortative mixing and r = 0 when there is no assortative mixing.

Q-Modularity: An alternate characterization of assortativity is to measure
how unexpected the edges between the nodes with the same attribute value are
compared to random. Here, random refers to the distribution of edges at random
after fixing the degree distribution of the nodes. Mathematically,

Q =
∑

i

eii − e2i. = Tr[e] − ||e2|| (2)

Observation: We can see that Q-modularity (Eq. 2) is equivalent to the numer-
ator of r-index (Eq. 1). In fact, the normalized Q proposed for measuring the
assortativity in [16] is equivalent to Eq. 1 (since the maximum value of Tr[e] is 1).

3 Proposed Method: PRONE

Consider the k × r mixing matrix E for two categorical/nominal attributes a1

and a2, with respectively k and r distinct values (cardinality). More precisely,
elements of E denote the number of edges connecting nodes with the correspond-
ing attributes, i.e., eij represents the number of edges that connect a node that
possesses ith value of a1 (va1

i ) to a node that has the jth value of attribute a2

(va2
j ). The resulting mixing matrix (and its marginals) is summarized in the fol-

lowing table and form the basis of our ProNe index for measuring the structural
correlation between a1 and a2 (Table 2).

Table 2. Mixing matrix of two categorical attributes, a1 and a2

va2
1 va2

2 . . . va2
r marginal sums

va1
1 e11 e12 . . . e1r e1.
va1
2 e21 e22 . . . e2r e2.
...

...
...

. . .
...

...
va1
k ek1 ek2 . . . ekr ek.

marginal sums e.1 e.2 . . . e.r e..

Here, we have ei. =
∑

j eij , e.i =
∑

j eji, and e.. =
∑

i

∑
j eij . This mixing

matrix is analogous to the confusion matrix or contingency table of two cluster-
ings if we assume distinct values of each attribute are class labels for a grouping
based on that attribute. Hence, we can quantify the divergence in this matrix
as [20]:
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Df =

∑
i [f(ei.) − ∑

j f(eij)] +
∑

j [f(e.j) − ∑
i f(eij)]

∑
i f(ei.) +

∑
j f(e.j) − 2

∑
i

∑
j f( e.jei.

e..
)

(3)

The numerator aggregates the per-row and per-column divergences of this
matrix, while the denominator normalizes this quantity using the maximum
divergence value when the marginals are fixed. The correlation or agreement of
the two attributes a1 and a2 is then obtained from 1 − Df . We consider three
specific derivations of this measure using f(x) = x log x, f(x) = x2, f(x) = x3;
the first two correspond to the two most commonly used clustering agreement
indexes: respectively Normalized Mutual Information (NMI), and Adjusted Rand
Index (ARI). Specifically, if we normalize E so that e.. = 1, the ProNel

(f(x) = x log x) and ProNe2 (f(x) = x2) derivations are simplified as:

ProNel =

∑
j e.j log(e.j) +

∑
i ei. log(ei.) − ∑

ij eij log(eij)
1
2 [

∑
j e.j log(e.j) +

∑
i ei. log(ei.)]

(4)

ProNe2 =

∑
ij e2ij − (

∑
i e2i.)(

∑
j e2.j)

1
2 [

∑
i e2i. +

∑
j e2.j ] − (

∑
i e2i.)(

∑
j e2.j)

(5)

4 Theoretical Properties

4.1 Thoroughness

ProNe considers all combinations of attribute values when measuring proclivity.
Therefore, it can capture all proclivity patterns inherent in the data including
homophily and heterophily; whereas the original assortativity index only con-
siders the matched attribute values abd hence can only capture homophily. In
particular, ProNe can capture any mixing patterns between the nodes which are
regularly link together, i.e., of two given but not necessarily the same attributes.

For instance, in the test case of (i.2) in Table 1, ProNe detects perfect pro-
clivity as red nodes always connect to yellow nodes, and light blue nodes always
link to dark blue nodes. This is not captured by the assortativity index (Q or its
normalized version r) which only measures the links between nodes of the same
color (homophily) and neglects the off-diagonal elements in the mixing matrix
E. These indices in fact have the exact same value for (i.2) and (i.3), even though
(i.3) has random color assignments and hence zero proclivity. ProNe, however,
returns the maximum value 1 for the perfect proclivity in (i.2) and is close to
zero for the random case.

Lemma 1. (r-index is not thorough). R-index does not capture perfect het-
erophily, especially when the number of attribute values is high.

Proof. We prove this by giving a counter example. Consider a graph with a
single attribute which takes values {1, 2, . . . , 2k} and shows perfect heterophily
in the following manner: Nodes with value i (for i = 1, . . . , k) are connected only
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to nodes with value k + i. If pi is the fraction of total edges connecting nodes
of attribute value i with nodes of attribute value k + i, the k × k normalized
mixing matrix E is given by ei,k+i = ek+i,i = pi/2 and eij = 0 otherwise.
Note that the leading diagonal elements are zero and the row/column sums are
ei. = e.i = ek+i. = e.k+i = pi/2 for i = 1, . . . , k. Using these, the r-index (Eq. 1)
may be calculated as

r =
0 − 0.5

∑k
i=1 p2i

1 − 0.5
∑k

i=1 p2i

Taking pi = 1/k, r = −1
2k−1 . The maximum negative assortativity of −1 is

attained only when k = 2. As k is increased, the value approaches zero (ran-
domness). Thus r-index fails to capture perfect heterophily, particularly for
large k. �

Lemma 2 (Heterophily and self-proclivity). Perfect heterophily leads to a
perfect self-proclivity score of 1, for any choice of f .

Proof. Let an attribute assume values 1, . . . , k and let π be a permutation of the
values such that πi �= i and πi = j ⇐⇒ πj = i. Let the probability of edge
between i and j be pi = pj if j = πi and 0 otherwise. Also, let

∑
i pi = 1.

The row/column marginals are ei. = e.i = pi while
∑

i

∑
j f(eij) =∑

i f(eiπi
) =

∑
i f(pi). From Eq. 3,

ProNe = 1 −
∑

i f(pi) +
∑

j f(pi) − 2
∑

i f(pi)
∑

i f(pi) +
∑

j f(pi) − 2
∑

i

∑
j f(pipj)

= 1

�
4.2 Generality

Equation 3 and its ProNe derivations including Eqs. 4 and 5 do not impose any
assumptions on the mixing matrix Er×k and hence can be applied to general
cases. On the other hand, the definition of previous measures for assortativity
in Eqs. 1 and 2 require E to be a square matrix (r = k) and hence cannot
be extended to measure cross-proclivity of two attributes which have different
cardinalities.

For instance, in the test case of (ii.1) in Table 1, we see a mixing pattern
between color and shape: i.e., red and yellow circles mix together while light and
dark blue squares link to each other. The assortativity measure Q and its nor-
malized version, r, cannot be applied in this case, as the diagonal is not defined
for the 4×2 mixing matrix. ProNe, on the other hand, is able quantify this non-
square mixing matrix, since it is defined based on average divergence/dispersion
in the rows and columns of E. We can see that all variations of ProNe cor-
rectly detect a high correlation between shape and color for this case, whereas
they return the baseline of 0.0 for the random case of (ii.2) where there is no
such correlation.

Lemma 3 (r-index and PRONE). Squashing the off-diagonal elements in for-
mula of ProNex yields r-index.
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Proof. Let E be the normalized mixing matrix with e.. =
∑

i ei. =
∑

j e.j = 1.
Using f(x) = x, we have

ProNex = 1 −
∑

i ei. +
∑

j e.j − 2
∑

i

∑
j eij

∑
i ei. +

∑
j e.j − 2

∑
i

∑
j ei.e.j

= 1 − 1 − ∑
i

∑
j eij

1 − ∑
i

∑
j ei.e.j

Squashing the off-diagonal products to 0 using the indicator function I(i = j),
we get

1 − 1 − ∑
i

∑
j I(i = j)eij

1 − ∑
i

∑
j I(i = j)ei.e.j

= 1 − 1 − Tr[e]
1 − ∑

i ei.e.i

which is the expression for r-index. �

4.3 Consistency

ProNe is expected to return zero when there is no structural correlation in the
network. This is a known desired property for the clustering validation indexes.
ARI, in particular, is called Adjusted Rand Index for the very same reason that
it returns a constant baseline of zero for agreements by chance. This complies
with the ∼0 correlations we observed for random color assignments in the two
test cases of (i.3) and (ii.2) of Table 1.

Lemma 4 (Consistency of PRONE). For any choice of f , ProNe is consis-
tent (adjusted for chance), i.e., if values for a nodal attribute are drawn from a
categorical distribution ignoring the network structure, its self-proclivity is zero
in expectation.

Proof. Let the multinomial distribution from which the values for attributes a1

and a2 are drawn be parameterized by p1, . . . , pk and q1, . . . , qr where k and
r are the cardinalities of categorical attributes a1 and a2 respectively. Here,∑

i pi =
∑

j qj = 1. In the absence of structural correlation of attributes, the
expected fraction of edges that connect nodes of attribute values a1 = i and
a2 = j is piqj , which is the expected entry eij in the normalized mixing matrix
E. The expected marginal of row i (or column j) in E is

∑
j piqj = pi (or qj).

Thus, in expectation,

ProNef = 1 −
∑

i f(pi) +
∑

j f(qj) − 2
∑

i

∑
j f(piqj)

∑
i f(pi) +

∑
j f(pj) − 2

∑
i

∑
j f(piqj)

= 0

which proves the consistency of ProNe. �

4.4 Scalability

ProNe has the same computational complexity as the previous measures Q and
r, which is the cost of building the mixing matrix E. E can be computed by a
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single pass over all edges in the graph and hence ProNe is linear in order of
number of edges.

In more detail, if we assume m is the total number of edges in the network and
k represents the maximum cardinality of attributes, ProNe can be computed in
O(m+k2) time. This matches the computational order for the previous measures,
O(m + k), as k � m (the number of edges in a graph is typically much larger
than the cardinality of a nodal attribute).

Here, we also empirically measure the computation time of ProNe for net-
works of varying sizes to show the scalability of the ProNe. In particular, we a
generate network of size m, and assign nodes a single attribute with cardinality
k, i.e., we assign to each node u, a value in {1, . . . , k} chosen uniformly at ran-
dom. Figure 1 plots the computational time in seconds as the number of edges
grows. The observed linear trend confirms our claim.

number of edges

Fig. 1. Scalability of ProNe on networks generated using Barabási and Albert [3]
model with 1K nodes and ∼10K edges. The attribute cardinality was varied in
{5, 10, 20, 100} and the results were averaged over 10 runs.

Choice of f in Practice

Although the above properties are valid for arbitrary choice of f , we recommend
choosing f to be a superadditive function1 satisfying f(x) ≥ 0∀x ∈ [0, 1] and
f(1) = 1 for the proclivity scores to be bounded in [0, 1] [20].

5 Empirical Studies Using Real World Data

Here, we study the ProNe in Facebook friendship network of 100 US collages
available in a.k.a. Facebook 100 dataset [22]. In networks of this dataset, each
user has six categorical attributes: (1) gender (male/female), (2) status (fac-
ulty/student/etc.), (3) major, (4) second major/minor (high missing values),
(4) dormitory of residence, (5) class year and (6) high school. Figure 2 shows

1 f is superadditive ⇐⇒ f(x + y) ≥ f(x) + f(y).
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one sample network of this dataset which has 6386 nodes and 217662 friendships
edges. The same network is plotted with six different color codings of the nodes,
i.e., one plot per attribute in which nodes are colored based on their value for
that particular attribute.

major
62(76) values
9.94% missing

dorm
23(25) values
48.2% missing

gender
2(2) values

5.87% missing

status
5(6) values

0.03% missing

year
9(20) values
12% missing

highschool
198(2881) values
13.7% missing

Fig. 2. An example Facebook friendship network, where nodes are colored based on
their corresponding attribute value (missing values are white, and non-frequent values
are gray). For attribute status and year, we visually observe some correlation between
the color of the nodes and their locations, whereas the locations are derived from a
layout algorithm that looks only at the connectivity between the nodes. (Color figure
online)

In Fig. 2, locations of nodes are derived from a network visualization algo-
rithm which only looks at the topology or structure of the graph and tries to
place nodes together as cohesive groups. Depending on the layout algorithm used,
we can visually observe some of the correlations between attributes (colors) and
the structure. In particular, with this example layout, the self proclivityof year
might be obvious. ProNe provides a fast and quantitative way to detect both
the obvious and the hidden structural correlations in such a dataset.

We can see the values of ProNe for Facebook dataset in Fig. 2 reported in
Table 3. The diagonal of this matrix show the self-proclivity values for the corre-
sponding attributes, and the off-diagonal values provide the cross-proclivity mea-
surements between the corresponding pairs of attributes.

Table 3 reports the results using ProNe2; we observe a similar trend using
the ProNel and ProNe3 variations. These are reported in Table 4. The choice
of ProNe, i.e., the generative function used in Eq. 3, depends on the application
at hand.

We observe similar patterns over different samples in the Facebook 100
dataset. Here, for example, we report the proclivity for another sample,
i.e., Rice31 network from this collection which has 4087 nodes and 184828 edges.

Discussion: From the ProNe scores, we infer that the dormitory is significantly
correlated with friendship as it has a high self-proclivity. This is also the case
for status (faculty or student) and year. What this means is the following: Given
Smith’s dormitory (or status or year) attribute value, we can predict the dorm
(or status or year, respectively) value of his friends. On the other hand, highschool
and minor show zero self-proclivity and the same cannot be said of them. Also,
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Table 3. Proclivity of attributes for the Facebook dataset in Fig. 2 using ProNe2.
The diagonal and off-diagonal entries represent the self-proclivity and the cross-
proclivity values respectively. Nodes with missing values were removed before the
computation.

ProNe2 Major Gender Year Status Dorm Highschool Minor

Major 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Gender 0.00 0.00 −0.00 −0.00 −0.00 0.00 −0.00

Year 0.00 −0.00 0.22 0.03 0.04 0.00 0.00

Status 0.00 −0.00 0.03 0.27 0.02 0.00 0.00

Dorm 0.00 −0.00 0.04 0.02 0.11 0.00 0.00

Highschool 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Minor 0.00 −0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Proclivity of attributes for the Facebook dataset in Fig. 2 using ProNel and
ProNe3. These tables provide alternative measurements to Table 3.

ProNel ProNe3

MajorGenderYearStatusDormHighschoolMinorMajorGenderYearStatusDormHighschoolMinor

Major 0.01 0.00 0.01 0.00 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Gender 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Year 0.01 0.00 0.250.07 0.07 0.07 0.01 0.00 0.00 0.150.01 0.02 0.00 0.00

Status 0.00 0.00 0.070.09 0.02 0.02 0.00 0.00 0.00 0.01 0.29 0.00 0.00 0.00

Dorm 0.01 0.00 0.070.02 0.16 0.10 0.02 0.00 0.00 0.02 0.00 0.05 0.00 0.00

Highschool0.05 0.00 0.070.02 0.10 0.31 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Minor 0.01 0.00 0.01 0.00 0.02 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Proclivity of attributes for Rice31 dataset using different derivations of
ProNe.

PRONEl
major gender year status dorm highschool minor

major 0.02 0.00 0.01 0.00 0.01 0.03 0.01
gender 0.00 0.00 0.00 0.00 0.00 0.00 0.00
year 0.01 0.00 0.17 0.08 0.00 0.05 0.01
status 0.00 0.00 0.08 0.11 0.00 0.02 0.00
dorm 0.01 0.00 0.00 0.00 0.25 0.09 0.01

highschool 0.03 0.00 0.05 0.02 0.09 0.21 0.05
minor 0.01 0.00 0.01 0.00 0.01 0.05 0.01

PRONE3
major gender year status dorm highschool minor
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.07 0.02 0.00 0.00 0.00
0.00 0.00 0.02 0.30 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.15 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00

PRONE2
major gender year status dorm highschool minor

major 0.01 0.00 0.00 0.00 0.00 0.00 0.00
gender 0.00 0.00 0.00 0.00 0.00 0.00 0.00
year 0.00 0.00 0.13 0.05 0.00 0.00 0.00
status 0.00 0.00 0.05 0.26 0.00 0.00 0.00
dorm 0.00 0.00 0.00 0.00 0.24 0.00 0.00

highschool 0.00 0.00 0.00 0.00 0.00 0.01 0.00
minor 0.00 0.00 0.00 0.00 0.00 0.00 0.01

we uncover a surprising pattern that attribute values for year and dorm show
correlation given the friendship network, based on their cross-proclivity of 0.04.
Thus, given Smith’s dorm, it may be possible to predict Smith’s friends’ year
values, an inference which is otherwise not possible, from just visualization.
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In sum, ProNe is (i) novel and is the first to characterize pairwise attribute
correlations given the structure; (ii) is fast to compute and scales linearly with
network size; (iii) is effective and discovers interesting correlation patterns when
applied to real world graphs. These together make ProNe extremely useful in
practice – with applications in anonymizing networks, marketing, data imputa-
tion and many more (Table 5).

6 Conclusion

In this paper, we proposed ProNe to measure the self- and cross-proclivity pat-
terns and quantify the correlation of a single attribute or a pair of attributes
with the network structure. Our proposed ProNe has the following desirable
characteristics:

✓ Thoroughness: ProNe can capture the full range of mixing patterns in
networks, including homophily and heterophily (Lemma2).

✓ Generality: ProNe can capture both self-proclivity (mixing patterns of
a single attribute) and cross-proclivity (mixing patterns of any pair of
attributes) (Lemma 3).

✓ Consistency: In the absence of structural correlation of nodal attributes,
ProNe consistently returns a value of zero in expectation (Lemma 4).

✓ Scalability: ProNe can quantify the mixing patterns, a.k.a. structural cor-
relation, in O(m) time where m is the number of edges in the network and is
fast, processing million-scale graphs in a few seconds.

ProNe is also highly useful, with applications in (i) data imputation to guess
the values of missing attributes of nodes, (ii) marketing for ad-placement, (iii)
personalization for early depression detection and (iv) privacy protection and
anonymization of social network.
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Abstract. Most existing network representation learning (NRL) meth-
ods are designed for homogeneous network, which only consider topolog-
ical properties of networks. However, in real-world networks, text or cat-
egorical attributes are usually associated with nodes, providing another
description for networks in a different perspective.

In this paper, we present a joint learning approach which learns the
representations of nodes and attributes in the same low-dimensional vec-
tor space simultaneously. Particularly, we show that more discriminative
node representations can be acquired by leveraging attribute features.
The experiments conducted on three social-attribute network datasets
demonstrate that our model outperforms several state-of-the-art base-
lines significantly for node classification task and network visualization
task.

Keywords: Social-attribute network · Representation learning · Joint
learning

1 Introduction

The growth of online social media produces massive amounts of user-generated
content, such as tweets posted in Twitter, personal profile in LinkedIn. These
data and social relations among users make up complex heterogeneous informa-
tion network [16], which is an effective organization form of multi-source data.
Mining such heterogeneous information network is crucial for various research
tasks and commercial applications, for example, node classification [9] and prod-
uct recommendation [15].

During the last few years, representation learning, also known as embed-
ding, has become a promising and powerful tool in network analysis area. Since
the density of typical social network is usually quite small in the real world,
c© Springer International Publishing AG 2017
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traditional network representation such as adjacency matrix suffers from the
data sparsity problem. Thus we can’t apply most statistical machine learning
algorithms to solve network analysis task directly. To overcome this problem,
many NRL methods which aim to project the nodes into a low-dimensional
continuous vector space have been proposed. Among those representative meth-
ods, DeepWalk [14], LINE [17], GraRep [3] and node2vec [8] learn general node
representations which are not tuned for specific task for homogeneous network
by only considering the structural features. However, both text and categorical
attributes play an crucial role in real-life networks, e.g., papers or authors in cita-
tion networks are associated with corresponding text content, users in Twitter
or Facebook have profiles with categorical attributes such as gender and job. It
is necessary to uncover the potential effect of nodes’ attributes in NRL process.

To utilize the rich text content information of nodes, Yang et al. [20] presents
Text-associated DeepWalk (TADW) to learn network representations from both
network structure and text attributes in an inductive matrix completion frame-
work. Because of high dimensionality of text attributes (namely words), singular-
value decomposition is performed on the node-attribute matrix to get robust
attribute features in TADW. However, TADW has two serious weaknesses:

1. Unlike text attributes, categorical attributes space is low-dimensional, e.g.,
only up to dozens of demographic attributes appears in the mobile social
network [6] and Twitter network [4], which makes TADW unsuitable in such
a scenario.

2. The performance of TADW falls fast if texts of some nodes are missing. Note
that, text information is often incomplete. For example, in online social media,
some users’ text features are difficult to obtain due to their privacy settings
or they actually never publish any texts.

To overcome the above problems, in this paper, we propose Social-Attribute
Network Representation Learning (SANRL), a scalable joint NRL framework
which preserve both structural and attribute information in the unified repre-
sentations. Compared with TADW, which only learn representations of nodes,
our model also learn representations of attributes in the same low dimensional
vector space. A hierarchical mixed neural network model is adopted to model
the interactive relationship between the nodes and the attributes. We conduct
experiments with three real-world network datasets, including a social network
with categorical attributes, a co-author network with text attributes and a cita-
tion network with text attributes. In summary, this paper has the following three
major contributions:

1. We propose a network representation learning model for the heterogeneous
social-attribute networks, which can handle either categorical attributes or
text attributes. Our model can make use of limited attribute information by
using a coupled architecture, which makes it more flexible in real scenarios.

2. Our model can map the nodes and the attributes to the same space, which
provide meaningful features for various applications.

3. The experimental results show that our model outperforms other competitive
baselines significantly.
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2 Related Work

Most existing unsupervised NRL models only consider the network structure
information. These models are mainly based on two classical assumptions. The
first is only suitable for the undirected networks, called smoothness assumption,
in which two linked nodes should have close representations. Laplacian Eigen-
maps [1], LINE with first-order proximity, SDNE [19] all adopt the smoothness
assumption. The second is also applicable to the directed networks, in which two
nodes should have close representations if they have similar neighbors. Here, the
neighbors can be high-order. DeepWalk, GraRep and node2vec all adopt this
assumption. To incorporate the text attribute information, TADW adopts the
inductive matrix completion technique to incorporates the tfidf matrix into Deep-
Walk. As far as we know, how to use the categorical attributes of nodes has not
been studied yet.

Recently, learning network representations in a semi-supervised way has
drawn many attentions by incorporating the label information [11,18,21]. All
these models are trained in a transductive way, which means that they use
a combination of an unsupervised NRL model and a classifier trained on the
labeled nodes. However, all these models only learn the distributed representa-
tions of the nodes. Unlike semi-supervised NRL models which leverage the label
information to get more discriminative node representation, our motivation is to
enhance node representation with rich categorical or text attributes via jointly
projecting the nodes and the attributes into the same vector space. In this paper,
we follow the line of the unsupervised NRL models. In the future, we will explore
the semi-supervised extension of our model by adding a classifier to it.

3 Problem Definition

We adopt a social-attribute network (SAN) [7] G = (V,E,A,C) to represent an
attributed network in this work. V is the set of social nodes, each representing a
data object. E is the set of social links, each representing an edge between two
social nodes. A is the set of attribute nodes, each representing an attribute. C is
the set of attribute links, each representing an affiliation relationship between an
attribute node and a social node. For simplification, we use A(v) = {a|(a, v) ∈ C}
to represent the attribute sets of node v ∈ V . All attribute links are undirected,
while social links can be directed or undirected and weighted or unweighted
depending upon the data type. Moreover, the weight of attribute links are defined
as relative importance of certain attribute for corresponding social node.

As shown on the left side of Fig. 1, we present a sample SAN which has
five social nodes and four attribute nodes. Our research target is to a learn
informative continuous vector representation u ∈ R

d for each social node of
a SAN, where d � |V |. In vector space R

d, both structural information and
attribute information should be preserved. Then the learned low-dimensional
representations can used as input features to a variety of machine learning models
such as logistic regression for classification task, k-means for clustering task. For
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Fig. 1. Illustration of learning representations
jointly for a toy social-attribute network.
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uv or ua 

Fig. 2. Mixed binary Huffman
tree used in SANRL.

simplification and clarification, in the following paper, when we say “node”, we
refer to a social node. And when we say “attribute”, we refer to an attribute
node.

4 SANRL Model

4.1 Loss Function for Structural Information

We adapt DeepWalk to learn representations of social nodes based on the
assumption that nodes which have similar neighborhoods will have similar repre-
sentations. Here, neighborhoods refer to both direct neighbors and higher order
neighbors. Next, we give a brief outline of DeepWalk.

Given a social network G = (V,E) (e.g., social layer of Fig. 1), Deep-
Walk generates many node sequences as training data. More specifically, star-
ing from a node v1, DeepWalk generates γ fixed-length sequences of nodes
Sv1

k = {v1, v2, . . . , vt} through random walk for 1 ≤ k ≤ γ. Repeat the above
process for every node v ∈ V . Then we get a set Sseq which contains γ|V | node
sequences. By feeding shuffled Sseq to Skip-Gram [12], an efficient and scalable
method for learning word representations, the following objective loss function
will be minimized:

O1 = − log P (Sseq)

= −
∑

v∈V

∑

1≤k≤γ

log P (Sv
k)

= −
∑

v∈V

∑

1≤k≤γ

∑

vi∈Sv
k

log P (vi−w, . . . , vi−1, vi+1, . . . , vi+w|vi)

= −
∑

v∈V

∑

1≤k≤γ

∑

vi∈Sv
k

∑

i−w≤j≤i+w,j �=i

log P (vj |vi),

(1)

where w is the size of the sliding window and P (vj |vi) is formulated using softmax
function:

P (vj |vi) =
exp(u′ T

vj
uvi

)
∑

v∈V

exp(u′ T
v uvi

)
, (2)

where uv and u′
v are the “input” and “output” representations of social node v.
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In the context of SAN, we replace Eq. (2) with the following Eq. (3) in O1 to
take attribute nodes into consideration:

P (vj |vi) =
exp(u′ T

vj
uvi

)
∑

v∈V

exp(u′ T
v uvi

) +
∑

a∈A

exp(u′ T
a uvi

)
. (3)

Here ua and u′
a are the “input” and “output” representations of attribute node

a. In addition, the original DeepWalk is only applicable to unweighted networks.
Therefore, weighted random walk is adopted in the sampling process to handle
weighted network in our model.

4.2 Loss Function for Attribute Information

Considering a social node v with categorical attribute sets A(v), we use the
co-occurrence patterns to model P (A(v))

log P (A(v)) =
∑

ai∈A(v)

{log P (ai|v) + log P (v|ai) +
∑

aj∈A(v),j �=i

log P (aj |ai)}, (4)

where log P (ai|vj), log P (vj |ai) and log P (aj |ai) are defined as:

P (ai|vj) =
exp(u′T

ai
uvj

)∑
v∈V

exp(u′T
v uvj

) +
∑

a∈A

exp(u′T
a uvj

)
, (5)

P (vj |ai) =
exp(u′T

vj
uai

)
∑

v∈V

exp(u′T
v uai

) +
∑

a∈A

exp(u′T
a uai

)
, (6)

P (aj |ai) =
exp(u′T

aj
uai

)
∑

v∈V

exp(u′T
v uai

) +
∑

a∈A

exp(u′T
a uai

)
. (7)

The above three kinds of conditional probability can capture different similarities
in the SAN. Firstly, by maximizing P (ai|vj), nodes with many similar attributes
will tend to have close representations, which is the key idea of the PV-DBOW
model [10]. Secondly, by maximizing P (aj |ai), paradigmatic relations will be
modeled. As a consequence, attributes with many similar contexts will tend to
have close representations, which is the key idea of the Word2Vec model [12].
Finally, by maximizing P (vj |ai), syntagmatic relations will be modeled. Then
attributes often co-occur will tend to have close representations.

Unlike categorical attributes, word order and word frequency are essential
properties of text attributes, which are not captured in Eq. (4). To make Eq. (4)
suitable for both categorical and text attributes, we replace A(v) by a attribute
set sampled from A(v). More specifically, given a node v ∈ V , we generate γ
fixed-length sequences of attributes T v

k = {a1, . . . , aw} through random sampling
for 1 ≤ k ≤ γ. For text attributes, T v

k is a text window whose length is w
sampled from the corresponding document of v. But for categorical attributes,
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T v
k is generated by sampling w attributes independently from A(v). Using T to

represent the γ|V | attribute sequences acquired in the preceding procedure, we
define the following objective loss function for attribute information:

O2 = − log P (T )

= −
∑

v∈V

∑

1≤k≤γ

log P (T v
k )

= −
∑

v∈V

∑

1≤k≤γ

∑

ai∈Tv
k

{log P (ai|v) + log P (v|ai) +
∑

aj∈A(v),j �=i

log P (aj |ai)}.

(8)

4.3 Loss Function of SANRL

To integrate both structure and attribute information into a joint representation
learning framework, we use a weighted linear combination of O1 and O2 to
formulate our objective loss function of the SANRL model:

Ojoint = O1 + λO2, (9)

where λ is a trade-off parameter. If the network has rich discriminative attributes,
λ should be a big number. Otherwise, a small λ is suitable. By minimizing Ojoint,
we can get two resulting vectors uv and u′

v for each node v, and two resulting
vectors ua and u′

a for each attribute a. Finally, uv will be used as the feature
vector of v.

4.4 Learning and Complexity Analysis

The optimization scheme of SANRL model is similar to DeepWalk, in which Skip-
Gram is applied to maximize the co-occurrence probability among node-node
pairs, node-attribute pairs, attribute-attribute pairs and attribute-node pairs.
In practice, all the representation vectors are initialized randomly at first. Then
node sequences and attribute sequences are sampled alternately and iteratively
as the input data streams. In our implementation, the effect of λ is reflected
by controlling the sampling probability of attribute sequences. By using the
back-propagation algorithm to estimate the derivatives, Eq. (9) can be optimized
by adopting the asynchronous stochastic gradient descent (ASGD) algorithm.
Directly computing softmax functions defined in Eqs. (3), (5), (6) and (7) is very
expensive, so we use hierarchical softmax technique to speed up training.

In previous works [5,13], hierarchical softmax is widely used to train a similar
neural network, in which only one type of objects such as words or nodes are
mapped to the leaves of one binary Huffman tree. However, the application of
hierarchical softmax in our model is very different from them. As shown in Fig. 2,
every social node and attribute node are associated with one leaf in a same single
mixed Huffman tree. And the input of this neural network can be either the
representation vector of a node or an attribute. Thus given an arbitrary training
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instance whose form is an input-output pair, the computational complexity of
computing P (output|input) can be reduced from O(|V |+|A|) to O(log(|V |+|A|)).
Overall, the time complexity of SANRLis γ|V |d(t + λw) log(|V | + |A|) Because
|A| is much more smaller than |V | in most cases, the computational complexity
of SANRL is still acceptable.

5 Experiments

5.1 Dataset

Weibo Dataset. We have crawled 294,634 users’ detailed information from
Sina Weibo, the most popular microblogging service in China, including profiles
and 3,183,187 following relationships among them. In our Weibo dataset, the
user profile contains four demographic variables:

– Gender: male; female.
– Age: 1–11; 12–17; 18–29; 30–44; 45–59; 60+.
– Education: literature, history; natural science; engineering; economics; medi-

cine; art.
– Job: Internet industry; creative design industry; cultural media industry; pub-

lic service industry; manufacturing industry; scientific research industry; phar-
maceutical industry; business management industry;

Here, we regard every possible value of each demographic variable as a
categorical attribute. Moreover, an user may have multiple education or job
attributes but values in gender and age are exclusive. We build two SANs based
on Weibo dataset for node classification task, i.e., the Weibo-education net-
work and the Weibo-job network. In the Weibo-education network, education
attributes are treated as labels, which are not used in the representation learn-
ing process. The Weibo-job network is organised in the same manner.

DBLP Dataset. We use “DBLP-four-area” dataset provided in [9] to build
a weighted co-author network. This data contains 20 major computer confer-
ences from four related areas, i.e., data mining, database, information retrieval
and machine learning, and 27,199 authors and all their publications in these
conferences. If two authors have co-authored a paper, we add an undirected
edge between them. The weight of the edge is the number of their collaborative
papers. Finally, the number of edges in 66,832. The titles of all the paper pub-
lished by one author is recognized as his or her text attributes. The size of the
word vocabulary is 12,091. If an author publishes a paper in a certain conference,
the research areas of this conference will be added to the author’s label set.

5.2 Compared Algorithms

– DeepWalk [14]. DeepWalk is the first work which adopts the neural network
language model to solve NRL problem.



Hierarchical Mixed Neural Network for Joint Representation Learning 245

– LINE [17]. LINE can learn two representation vectors for each node by opti-
mizing two carefully designed objective function that preserves the first-order
proximity and second-order proximity. Then the two representations are con-
catenated as the final representation.

– LDA [2]. Latent Dirichlet Allocation (LDA) is a classical probabilistic topic
model. Each node can be represented as a topic distribution vector.

– TADW [20]. TADW is a state-of-the-art NRL algorithm based on matrix
decomposition. First, Singular-value decomposition is performed on the tf-
idf matrix to get robust text features of nodes. Then, the text features and a
node relation matrix are fed to an inductive matrix completion framework to
get node representations.

– SANRL. Our proposed method. For SANRL, the sliding window size w = 10,
the length of each node sequence t = 40, number of node sequences for per
node γ = 80. We set the trade-off parameter λ = 2 for two Weibo networks
and λ = 8 for DBLP-author network.

– SANRLdoc. A simplified version of SANRL, in which the final objective loss
function is Eq. (8). We treat the attribute sets of a node as its pseudo docu-
ment. Parameter settings of SANRLdoc is same to SANRL.

5.3 Node Classification

Table 1. Macro-F1 (%) of node classification on the Weibo-education network.

% labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 33.15 33.34 33.40 33.30 33.38 33.50 33.27 33.57 34.04

LINE 34.61 34.75 34.94 34.87 34.84 34.96 34.83 34.86 34.91

SANRLdoc 33.52 33.61 33.59 33.74 33.88 33.65 33.85 33.96 34.12

SANRL 39.97 40.03 40.14 40.09 40.09 40.12 40.07 40.09 40.29

Table 2. Macro-F1 (%) of node classification on the Weibo-job network.

% labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 28.69 28.85 29.09 28.72 28.89 28.75 28.69 28.71 28.52

LINE 30.08 30.26 30.37 30.57 30.36 30.57 30.76 30.55 29.56

SANRLdoc 31.09 31.07 31.01 30.98 31.05 31.04 31.04 30.96 30.99

SANRL 38.19 38.33 38.36 38.37 38.26 38.39 38.47 38.42 38.45

Following the settings in previous works [14,17], we also use the multi-label
node classification task to evaluate the quality of the representation vectors
learned by different models. The one-vs-the-rest logistic regression classifier
implemented in LibLinear is used in our experiments. The Macro-F1 is chosen as
the evaluation metric. We follow the suggested parameter settings in the original
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Table 3. Macro-F1 (%) of node classification the DBLP-author network.

% labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 63.54 64.57 64.81 65.06 65.18 65.26 65.14 65.49 65.28

LINE 56.16 56.18 57.37 57.75 57.82 57.63 58.09 58.14 58.25

SANRLdoc 74.17 75.29 75.64 75.69 75.78 75.77 76.03 76.33 75.79

SANRL 77.40 78.66 79.00 79.12 79.30 79.32 79.37 79.39 79.52

LDA 70.35 71.39 71.70 71.73 71.90 71.92 71.95 72.00 72.14

TADW 75.27 75.70 76.00 76.16 76.15 76.31 76.50 76.87 76.49

papers for the baseline models. Note that, since there is no text attributes in the
Weibo dataset, LDA and TADW are inapplicable to Weibo. Tables 1, 2, and 3
show the results of classification with different training ratios on three networks
when d = 128 for all the models. All reported results are averaged over 10 runs.

Firstly, we observe that SANRL always significantly outperform other base-
lines. Compared with DeepWalk, SANRL achieves nearly 6% and 10% improve-
ment on two Weibo networks and 13% improvement on DBLP-author network,
which proves that the network represent can be enhanced with either categorical
attributes or text attributes.

Secondly, on the DBLP-author network, the two content-based methods,
SANRLdoc and LDA, perform better than the structure-based methods, Deep-
Walk and LINE. By benefiting from incorporating attributes information and
structure information, SANRL and TADW both outperform other four meth-
ods. But the relative improvement of SANRL over TADW is around 3.5% since
attributes information and structure information is better balanced with a tun-
able trade-off parameter λ in SANRL.

5.4 Parameter Sensitivity

We also explore the sensitivity of the performance w.r.t. the dimension d and the
trade-off parameter λ. Here, we take the DBLP-author network as an example.
By setting the training ratio to 20%, we report the grid search results over d
and λ on the DBLP-author network in Fig. 3. We observe that SANRL achieves
best performance when λ = 8 and d = 256.

To further investigate the effect of increasing dimension d, we use Fig. 4 to
show the Micro-F1 and Macro-F1 curves of different models. By varying d from
64 to 1024, we can see that SANRL consistently performs best.

In SANRL, we add a constraint to DeepWalk to let nodes with similar
attributes have similar representations. Our motivation is based on the statis-
tics shown in Fig. 5. The Jaccard coefficient is calculated between the attribute
sets of two social nodes sampled from the network at random. Then we com-
pute the conditional probability that two nodes share a same label given the
corresponding discretized Jaccard coefficient. Our assumption is validated on all
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three networks. Note that the DBLP-author network has much more discrimina-
tive attributes than those two Weibo networks. That’s why a smaller λ is more
suitable for the Weibo dataset.

Next, we will test the robustness of SANRL in an incomplete data scenario.
We random choose some users and remove their text contents. We use α to
represent the percentage of users whose texts are removed. LDA and SANRLdoc

could not work in this situation. By ranging α from 0.5 to 0.9, we report the
Macro-F1 of different models when the training ratio is 0.1 in Fig. 6. Obviously,
SANRL has greater robustness than TADW whose performance is very poor.
The reason lies with the fact that the text content matrix calculated from the
tf-idf matrix which has many rows with all zeros is uninformative. In contrast,
SANRL benefits from limited text information by using a coupled design.

5.5 Network Visualization

Network visualization is an essential task in network analysis area. In this part,
we use the t-SNE package which takes the node representation vectors as inputs
to generate network layouts in a 2D space. Our target is to compare the proper-
ties of the layouts of DeepWalk and SANRL qualitatively. Because our previous
three networks are not mono-labeled, we build a paper-citation network by using
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a large-scale DBLP database1. We select three computer conferences to repre-
sent different research fields: SIGMOD from “database”, ICML from “machine
learning”, and ACL from “natural language processing”. Papers published on
these three conferences and citation relationships among them are extracted to
build this DBLP-citation network. We also use words in the title of each paper
as their text attributes. Finally, this network has 1280 papers from SIGMOD,
568 papers from ICML, 1,206 papers from ACL, 6,647 edges and 3,814 unique
attributes.

Fig. 7. t-SNE 2D representations on the DBLP-citation network. We use blue, green
and red to indicate papers from SIGMOD, ICML and ACL respectively. Words are
colored black (Color figure online)

Under the same parameter configuration, the 2-D layouts of the DBLP-
citation network are shown in Fig. 7. Three different colors, blue, green and
red are used to indicate papers from SIGMOD, ICML and ACL respectively.
Attributes are colored black. In Fig. 7, (a) and (b) are generated by only feeding
the node representations to the t-SNE toolkit. And (c) and (d) are generated
by feeding the node representations and attributes representations together to
the t-SNE toolkit. We have three observations: First, We observe that node dis-
tributions in (b) and (a) are very similar, but groups in (b) seem to be more
tighter. Second, after plotting the papers and the words in a same space simul-
taneously in (c), the words are spread throughout the space, but most of them
are densely populated in the center while different paper groups are surround-
ing the word groups. Finally, it is obvious that each paper groups are becoming
more denser and separable in (d) which is obtained by removing words from (c).
These observations show that the distinguishability of node representations is
improved significantly by jointing learning the representations of their associated
attributes in SANRL model.

1 https://aminer.org/DBLP Citation.

https://aminer.org/DBLP_Citation
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Table 4. Top-10 related words for selected papers.

Paper title Recommended words

Dynamic multidimensional histograms Histogram, filesystem, stholes, braid,
histograms, lag, partiqle, frequencies, filtered,
multidimensional

Computing weakest readings Weakest, readings, ambiguities, scope,
semantically, formalisms, polysemic, hole,
dominance, distributions

5.6 Case Study

To explore the correlations among node vectors and attribute vectors learned in
SANRL, we provide a case study on the DBLP-citation dataset. We recommend
top-10 most related words to papers by calculating the cosine similarly between
the paper vector and the word vector. As shown in Table 4, we can see that
though the titles of two selected papers both have only three words, SANRL can
find much richer related words by considering the citation relationship between
the papers and the interactive relationship between the papers and the words.

6 Conclusion and Future Work

In this paper, we propose SANRL, an efficient model which integrates both
structure and attribute information into the NRL task. By embedding nodes
and attributes into the same vector space, the quality of the node representa-
tions are improved significantly. The experimental results show that SANRL
outperforms competitive baselines for different data mining tasks. We strive to
adapt SANRL to learn more discriminative representations by using the semi-
supervised learning technique in the future.
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Abstract. A time-constrained viral marketing campaign allows a busi-
ness to promote a product or event to social network users within a
certain time duration. To perform a time-constrained campaign, existing
works select the duration of the campaign, and then a set of k seeds that
maximize the spread (expected number of users to which the product or
event is promoted) for the selected duration. In practice, however, there
are many alternative durations, which determine the monetary cost of
the campaign and lead to seeds with substantially different spread. In
this work, we aim to select the duration of the campaign and a set of
k seeds, so that the campaign has the maximum spread-to-cost ratio
(i.e., cost-effectiveness). We formulate this task as an optimization prob-
lem, under the LAIC information diffusion model. The problem is chal-
lenging to solve efficiently, particularly when there are many alternative
durations. Thus, we develop an approximation algorithm that employs
dynamic programming to compute the spread of seeds for several pos-
sible durations simultaneously. We also introduce a new optimization
technique that is able to provide an additional performance speed-up by
pruning durations that cannot lead to a solution. Experiments on real
and synthetic data show the effectiveness and efficiency of our algorithm.

1 Introduction

Many businesses perform time-constrained viral marketing campaigns over social
networks, such as Facebook [2,5,6,11,12]. In these campaigns, a product or event
is promoted to a small set of users, who diffuse information about it, with the
aim to activate their friends (make them aware of the product or event). The
active friends of these users diffuse information, attempting to activate their
own friends, and the process proceeds similarly, until the end of the campaign
duration (e.g., the end of the sales period of the product, or the time the event
is held). Typically, the social network is modeled as a graph whose nodes and
edges correspond to users and their connections, respectively, and the initial
users correspond to a subset of nodes called seeds.

c© Springer International Publishing AG 2017
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Motivation. To perform a time-constrained campaign, it is necessary to deter-
mine its duration. The duration of the campaign can be modeled as a time
window (interval). In practice, the start time of the window is selected by the
business based on market properties, such as season, competitors’ actions, and
availability of products or resources to hold an event [7]. However, there are
multiple choices for the end time of the window, which are determined by char-
acteristics of the product and social network. For example, the end time of a
campaign that promotes a film corresponds to a time between a few days and
five weeks before the release of the film [14]. Therefore, we will assume a zero
start time and model (refer to) each alternative duration as a window defined in
terms of its size.

The cost of the campaign, in terms of monetary expense to a business, is a
non-decreasing function of the campaign duration. For instance, a social network
provider which implements a campaign on a product, as a service to the business
[13], charges a fee that increases with the campaign duration. The reason is
that multiple businesses compete for performing campaigns simultaneously on
the same social network, and executing a campaign with large duration for a
product (e.g., a comedy film) reduces the spread (expected number of users to
which the product is promoted) [11] of other campaigns on substitute products
(e.g., different comedy films). Furthermore, the spread of the campaign is also a
non-decreasing function of the campaign duration [11].

Thus, a fundamental question for performing a cost-effective campaign is:
“Which window (duration) offers the maximum benefit-to-cost ratio?” [16]. The
need to perform cost-effective campaigns has been recognized in the marketing
literature [3,7,14]. However, the problem has not been studied before. That
is, existing methods [2,6,11,12] assume a fixed window that is selected by the
business and aim to select a subset of k nodes, as seeds, to maximize the spread
for the selected window.

Contributions. Our work makes the following contributions:
First, we formulate the Time-constrained Spread-to-cost Maximization

(TSM) problem, as follows. Given a graph G and a set of candidate windows,
each having an associated cost, select: (I) a window, and (II) a subset of k nodes
of G as seeds, such that the ratio between the spread of the seeds in the window
and the window cost is maximum. In the TSM problem, the spread is computed
under the Latency Aware Independent Cascade (LAIC) [11] model. The model
takes into account the varying delays (latencies) with which nodes may be acti-
vated in practice and generalizes other models [2,8]. Solving TSM allows imple-
menting a cost-effective campaign. However, this is challenging because TSM is
NP-hard and cannot be approximated by directly applying the greedy submod-
ular maximization algorithm [15]. This is because the optimization function that
computes the maximum spread-to-cost ratio of a seed-set over all windows is not
submodular, as we show, whereas the algorithm of [15] requires its optimization
function to be submodular. To illustrate TSM, we provide Example 1.
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size cost
(end time) in $

|W1| = 1 10
|W2| = 2 30

(a) (b)

Spread gain
nodes W1 W2

u1 1.1 2.01
u2 1.3 2.877
u3 2 2.525
u4 1.2 1.84
u5 1 1

(c)

max. min.
seed-set ratio ratio
W1.S 0.33 0.2
W2.S 0.18 0.096

(d)

Spread
gain

nodes W1

{u3, u1} 1
{u3, u2} 1.05
{u3, u4} 0.6
{u3, u5} 0.5

(e)

Fig. 1. (a) Size and cost of windows W1 and W2. (b) Graph and probability vectors
of edges (the probabilities reflect how likely a node is activated by its in-neighbor with
delay 0 and 1, respectively). (c) Spread gain of the empty seed-set for W1 and W2. The
gain is caused by adding a node into the seed-set. (d) Bounds for the spread-to-cost
ratio of W1 and W2, after k iterations. (e) Spread gain of the seed-set {u3} for W1.
The gain is caused by adding a node into the seed-set.

Example 1. A business plans a campaign for a new product, which starts on the
day of product launch and can last one or two weeks. This is modeled with the
windows W1 and W2, whose sizes are shown in Fig. 1a. A social network provider
implements the campaign on the graph of Fig. 1b, as a service to the business.
Under the LAIC model, each edge (u′, u) in Fig. 1b is associated with a vector
of probabilities that u is activated by u′ with delay 0 and 1, respectively. The
social network provider also determines the window costs as shown in Fig. 1a.
The business wants to perform the campaign with the largest spread-to-cost
ratio and can give away a product to two users, as an incentive to start diffusing
information. Thus, the social network provider needs to solve TSM with k = 2.

Second, we propose a dynamic programming equation to compute the prob-
ability that a node u has been activated in [0,W.t], where W.t is the end time of
a window W . The probability is denoted with P[0,W.t](u) and computed as:

P[0,W.t](u) = 1 − [1 − PW.t(u)] · [1 − P[0,W.t−1](u)], (1)

where PW.t(u) is the probability that u becomes active at W.t and P[0,W.t−1](u)
is the probability that u has been activated before (at any previous time point).
In addition, we sum P[0,W.t](u) over each node u, to compute the spread of a
seed-set in W . The spread is computed by a subroutine of our algorithm for
TSM. The subroutine is called DPSC and computes the exact value of spread,
unlike existing algorithms [11,12].

Third, we propose MASP , an approximation algorithm for the TSM problem.
The algorithm starts by associating an empty seed-set with each window. Then,
it performs k iterations, where k is the input number of seeds. In each iteration
j, MASP : (I) Computes the spread gain of each window’s seed-set, for each
available node (i.e., node that is not contained in the seed-set). The spread gain
is the difference in spread, before and after the addition of a node into the seed-
set of the window. (II) Adds into each seed-set the node that maximizes the
spread gain of the seed-set. (III) Prunes windows that cannot lead to a solution.
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After that, the algorithm returns the window with the largest spread-to-cost
ratio, among all windows, and its associated seed-set. To improve efficiency,
MASP creates clusters, each containing all windows with the same seed-set, and
applies the Multiple-window spread gain computation technique to each cluster.
In addition, it uses the Pruning technique. These techniques are summarized as
follows:

Multiple-Window Spread Gain Computation. It efficiently computes the spread
gain of the seed-set in each window of the cluster, for each available node. To
compute the spread gain for an available node, DPSC is applied to the cluster
and computes the spread of the seed-set in the largest window, W , of the cluster,
after adding the node. Since all windows in the cluster have the same seed-set,
the spread in every subwindow W ′ of W , with end time W ′.t, is also obtained, by
summing the probability P[0,W ′.t](u) of each node u, which is computed during
the recursion of Eq. 1. Then, the spread gain is calculated for each window as the
difference between the spread obtained by DPSC and the spread before adding
the available node.

Example 2. MASP is applied in Example 1 with k = 2. Initially, the windows W1

and W2 are associated with the empty seed-set, and a single cluster {W1,W2} is
created. Then, the spread gain of the empty seed-set for each available node, u1 to
u5, is computed. For instance, the spread gain for u1 is computed as follows. First,
DPSC is applied to the cluster {W1,W2} and computes the spread of the seed-
set {u1} in the largest window, W2, of the cluster as P[0,2](u1) + . . . + P[0,2](u5).
Each of these probabilities is computed recursively using Eq. 1. Thus, the spread
in W1 is also obtained as P[0,1](u1) + . . . + P[0,1](u5). Next, the spread gain in
W1 and in W2 is calculated as the difference between the spread computed by
DPSC and the spread before adding u1.

Pruning. In iteration j, it computes, for each window, the maximum and min-
imum spread-to-cost ratio that the window can have after k iterations. The
maximum ratio is computed for spread equal to the sum of the spread of the
seed-set in the window and the spread gain for each of the top k−j (i.e., remain-
ing) available nodes, in terms of spread gain. The minimum ratio is computed
for spread equal to the sum of the spread of the seed-set in the window. This
corresponds to the worst case, in which the spread gain for each node is zero.
Then, each window whose maximum ratio is smaller than the largest minimum
ratio of all windows in the current iteration is removed.

Example 3 (continuing from Example 2). MASP adds u3 into the seed-set of
W1, since u3 maximizes the spread gain in W1 (see Fig. 1c). The spread of the
seed-set {u3} is 2. Thus, the maximum ratio for W1 is 2+1.3

10 = 0.33. This is
because the spread gain caused by u2, the top available node in terms of spread
gain, is 1.3 (see Fig. 1c), and the cost of W1 is 10. The minimum ratio for W1 is
2
10 = 0.2. The maximum and minimum ratio for W2 is computed similarly and is
equal to 0.18 and 0.096, respectively. Since the maximum ratio for W2 is smaller
than the largest minimum ratio, W2 is pruned.
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MASP produces a solution whose spread-to-cost ratio is at least 1− 1
e ≈ 63%

of that of the optimal solution. This is because it applies the greedy submodular
maximization algorithm [15] to the seed-set of each window, using a submodular
optimization function that computes the spread in the window. As we show
experimentally, our algorithm is both effective and efficient, unlike baselines that
are constructed based on the existing methods for maximizing the spread of a
given window in the LAIC model [11,12]. For example, it was at least one order
of magnitude faster than a baseline which applies an existing approximation
algorithm [11] for finding the subset of k nodes with the maximum spread to
each window, and then selects the solution with the largest ratio.

2 Related Work

In [11,12], the problem of selecting k seeds that maximize the spread in a fixed
window was studied under the LAIC model, and the following methods were
proposed: MC, ISP, and MISP. These methods select a subset of k nodes as
seeds, by iteratively selecting the available node that causes the maximum gain to
a spread estimate. MC estimates the spread by performing many Monte Carlo
simulations of the diffusion process. ISP estimates the spread assuming that a
node can be activated only by a path which does not share edges with other
paths and has probability at least θ to activate the node. MISP is a variation
of ISP that approximates the spread gain, caused by a node, based on the
spread of the node and the probability that the out-neighbors of the node are
already activated. These methods are not alternatives to the MASP algorithm
we propose, because they assume a fixed window. On the contrary, there are
multiple possible windows in our TSM problem, and the challenge is to compute
the spread of seeds over all windows efficiently.

In [4,10,13], the problem of seed selection when there are costs associated
with nodes was studied. Specifically, in [10], each node has a given cost, while
in [4,13] all nodes have the same cost. Unlike these works, we consider a time-
constrained campaign where each window has an associated cost.

3 Background

Preliminaries. Let G(V,E) be a directed graph, where V is a set of nodes
and E is a set of edges. The set of in-neighbors of a node u is denoted with
n−(u) and has size |n−(u)|, which is referred to as the in-degree of u. The set of
out-neighbors of u is denoted with n+(u) and has size |n+(u)|, which is referred
to as the out-degree of u.

A path q = [u1, u2, . . . , um] is an ordered set of nodes, which has length
|q| = m − 1. A path q in which each node is unique (i.e., a path with no cycle)
is a simple path. A path that starts and ends at the same node is a cycle path.
We assume simple paths, unless stated otherwise.

Each window W has the following attributes: (I) seed-set W.S, (II) end time
W.t, (III) spread W.σ, and (IV) spread gain W.g(). The spread W.σ is defined as
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σ(W.S,W.t), where σ() computes the expected number of nodes that are active
at time W.t, when the seed-set is W.S, under the LAIC model [11]. The spread
gain W.g() is defined, for a given node u, as W.g(u) = σ(W.S ∪ {u},W.t) −
σ(W.S,W.t).

Let U be a universe of elements and 2U its power set. A set function f : 2U →
R is non-decreasing, if f(X) ≤ f(Y ) for all subsets X ⊆ Y ⊆ U , monotone, if
f(X) ≤ f(X ∪ u) for each u /∈ X, and submodular, if and only if it satisfies the
diminishing returns property f(X ∪ {u}) − f(X) ≥ f(Y ∪ {u}) − f(Y ), for all
X ⊆ Y ⊆ U and any u ∈ U \ Y [9].

LAIC Model. In the LAIC model [11], each node is active or inactive. A sub-
set S ⊆ V of nodes, referred to as seeds, are active at the initial time 0, and
all other nodes are inactive. Each edge has a probability vector m((u′, u)) =
[m0((u′, u)), . . . ,mδ((u′, u))], where mi((u′, u)) is the probability that the inac-
tive node u is activated by its active in-neighbor u′ with delay i ∈ [0, δ]. The
probability vectors of edges are selected based on the population targeted by the
campaign [11]. For example, in [11], each mi((u′, u)) was set to Pu′(i) ·p((u′, u)),
where Pu′ is a Poisson distribution with a random parameter (mean rate) λ in
[1, 20] that is associated with the node u′ and p((u′, u)) = 1

|n−(u)| .
The diffusion process in the LAIC model proceeds as follows. Each seed s tries

to activate its out-neighbors at the initial time 0 only and, if multiple seeds have
the same out-neighbor, they all try to activate it in arbitrary order. The out-
neighbor u of a seed s becomes active at time 1 + i with probability mi((s, u)),
where the delay i takes each value in [0, δ]. Each out-neighbor that becomes
active remains active, and it tries to activate its own inactive out-neighbors.
The process proceeds similarly and ends when no new node becomes active.

Let S be a seed-set and [X0,u, . . . , Xt,u] be a sequence of binary variables,
such that Xj,u = 1, if the node u of the graph G becomes active at time j,
and Xj,u = 0 otherwise. For brevity, we denote P (Xj,u = 1) with Pj(u) and∑

j∈[0,t] Pj(u) with P[0,t](u). The expected number of active nodes of G at time
t is given by σ(S, t) =

∑
u∈G P[0,t](u) [11,12]. This equation is used in the DPSC

subroutine.

4 Computing the Probability P[0,t](u)

We examine the computation of P[0,t](u), the probability that a node u has
been activated in [0, t]. P[0,t](u) cannot be computed directly using Eq. 1 because
(1−Pt(u)), the probability that u does not become active at t, is not given. Thus,
we show how to compute (1 − Pt(u)) by taking into account each in-neighbor of
u which may activate u at t with any possible delay.

Clearly, if the node u is a seed, then P[0,t](u) = 1. Otherwise, P[0,t](u) is given
by Eq. 2:

P[0,t](u) = 1−
⎛
⎝ ∏

u′∈n−(u)

∏
i∈[0,min(t−1,δ)]

[
1− Pt−1−i(u

′) ·mi((u
′, u))

]
⎞
⎠ · (1− P[0,t−1](u))

(2)
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Equation 2 computes P[0,t](u) as the probability of the complement of the
event “u does not become active at t nor before t”. The probability that u does
not become active at t is given in the large parentheses, and it takes into account
each in-neighbor u′ of u and each possible delay i. The probability that u is not
active (i.e., has not been activated) before t is given by 1 − P[0,t−1](u). The
correctness of Eq. 2 follows from Theorem 1.

Theorem 1. Let u be a node that is not a seed. Equation 2 computes the prob-
ability u is active at time t, under the LAIC model.

Proof (Sketch). Let A0, . . . , Aδ′ , B be sets of in-neighbors of u, such that any
node in Ai can activate u at t with delay i ∈ [0, δ′], and any node in B can
activate u before t. The maximum delay δ′ is equal to min(t − 1, δ), since u will
not become active at t if the delay is larger. Let also EAi

(respectively, EB)
be the event “u became active by at least one node in Ai” (respectively, in B).
Clearly, P[0,t](u) = P (∪i∈[0,δ′]EAi

∪ EB) = 1 − P (∪i∈[0,δ′]EAi
∪ EB) and, by

DeMorgan’s laws and the multiplication rule, P[0,t](u) = 1−P (EAδ′ | ∩i∈[0,δ′−1]

EAi
∩ EB) · P (∩i∈[0,δ′−1]EAi

∩ EB) = 1 − P (EAδ′ | ∩i∈[0,δ′−1] EAi
∩ EB) ·

P (EAδ′−1
| ∩i∈[0,δ′−2]EAi

∩ EB)·. . .·P (EA0 | EB)·P (EB). The proof follows from:
(I) P (EAi

| ∩j∈[0,i−1]EAj
∩ EB) =

∏
u′∈n−(u)(1−Pt−1−i(u′)·mi((u′, u))), which

holds for each delay i ∈ [0, δ′]. This is because EAi
occurs when each in-neighbor

u′ of u is contained in Ai and fails to activate u; (II) P (EB) = 1 − P[0,t−1](u),
which holds by definition. 
�

5 The Time-Constrained Spread-to-Cost Maximization
Problem

The Time-constrained Spread-to-cost Maximization problem is defined as fol-
lows.

Problem (Time-constrained Spread-to-cost Maximization (TSM)). Given the
graph G(V,E), the probability vector m(e) of each edge e in E, a set of windows
W = {W1, . . . , Wn}, where each Wi has a nonnegative cost Wi.c, and a parame-
ter k, find a window W in W and a subset S ⊆ V of k nodes, such that the ratio
between the spread of S in W and the cost W.c is maximum, over all possible
windows of W and their corresponding subsets of k nodes.

The set of windows W is determined by the business, based on characteristics
of the product and social network [14], while the window costs are determined
by the party performing the campaign. TSM is NP-hard, because it generalizes
the NP-hard problem in [11], which requires finding a subset of k nodes with
maximum spread in a fixed window. The existence of multiple windows makes
our problem challenging. For example, we cannot approximate TSM using the
greedy algorithm for submodular maximization [15] with the function f(S) =
max(f1(S), . . . , fn(S)) (i.e., iteratively add into the seed-set S the node causing
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the largest gain f(S ∪ {u})−f(S)), where fi outputs the spread-to-cost ratio of
S in the window Wi. This is because the algorithm of [15] offers approximation
guarantees only for submodular functions, whereas f is not submodular (for
arbitrary window costs), as shown in Example 4.

Example 4. Consider the graph in Fig. 2a and the windows W1 and W2, whose
sizes are 1 and 2 and costs are W1.c = 1 and W2.c = 1.19. The spread and
the spread-to-cost ratios of different node subsets are shown in Figs. 2b and c,
respectively. In Fig. 2c, f1 (resp., f2) computes the ratio in W1 (resp., W2), and
the function f = max(f1, f2) computes the maximum ratio. The function f is
not submodular because, for {u3} ⊆ {u2, u3} and u1 ∈ {u1, . . . , u6} \ {u2, u3},
it holds f({u3} ∪ {u1}) − f({u3}) = 3.29 − 2 = 1.29 < f({u2, u3} ∪ {u1}) −
f({u2, u3}) = 4.89 − 3.29 = 1.6.

(a)

node spread
subset W1 W2

u1 1.1 1.91
u2 1.1 1.91
u3 2 2

{u1, u2} 2.2 3.82
{u1, u3} 3.1 3.91
{u2, u3} 3.1 3.91

{u1, u2, u3} 4.2 5.82
(b)

node spread-to-cost ratio
subset f1 f2 f

u1 1.1 1.6 1.6
u2 1.1 1.6 1.6
u3 2 1.68 2

{u1, u2} 2.2 3.2 3.2
{u1, u3} 3.1 3.29 3.29
{u2, u3} 3.1 3.29 3.29

{u1, u2, u3} 4.2 4.89 4.89

(c)

Fig. 2. (a) Graph and probability vectors of edges. (b) The spread of different subsets
of nodes of a. (c) The spread-to-cost ratios of different subsets of nodes of a. The ratio
in W1 and W2 is given by f1 and f2, respectively, and the maximum ratio is given by
the function f .

6 The MASP Algorithm

In this section, we present our MASP algorithm and its DPSC and Pruning
subroutines.

MASP initializes, for each window Wi in the given set of windows, its seed-
set Wi.S and spread Wi.σ (steps 1 to 2). It also initializes a set of clusters C
with a single cluster that contains all windows (steps 3 to 4). Then, it performs
k iterations (steps 6 to 18). In each iteration, MASP :

I. Applies Multiple-window spread gain computation to each cluster, to effi-
ciently compute the spread gain Wi.g(v), for each window Wi in the cluster
and each available node v (steps 7 to 11). Specifically, the largest window,
WC , in the cluster is found and each node v that is not contained in the
seed-set of WC is considered. This is without loss of generality, since all
windows in the cluster contain the same seed-set. Then, DPSC is applied to
the cluster and efficiently computes the spread of Wi.S ∪ v for every win-
dow Wi in the cluster (including WC). After that, the spread gain Wi.g(v) is
computed as the difference between the spread that is obtained from DPSC ,
and the spread Wi.σ, which was computed before.
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Algorithm: MASP (Multiple-window Addition Spread computation Pruning)
Input: Graph G(V, E), probability vector of each edge of G, set of windows W and their

costs, and parameter k
Output: A window W ∈ W and a subset S ⊆ V of k nodes

1 foreach window Wi of W do
2 Wi.S ← ∅; Wi.σ ← 0
3 Create cluster C comprised of all windows in W
4 Add C into the empty set of clusters C
5 j ← 1 // iteration counter
6 while j ≤ k do
7 foreach cluster C in C do
8 WC ← the largest window in C
9 foreach node v in V \ WC .S do

10 Apply DPSC to the cluster C and node v
11 Compute the spread gain Wi.g(v), for each window Wi in C

12 foreach window Wi in W do
13 u ← the node u in V \ Wi.S with the largest spread gain Wi.g(u)
14 Wi.S ← Wi.S ∪ {u}
15 Wi.σ ← Wi.σ + Wi.g(u)

16 Pruning(W)
17 C ← set of clusters, each containing all windows of W with the same seed-set
18 j ← j + 1

19 W ← the window Wi in W with the maximum
Wi.σ

Wi.c

20 S ← the seed-set of the window W
21 return {W, S}

II. Adds the available node with the largest spread gain into the seed-set Wi.S
and updates the spread Wi.σ, for each window Wi (steps 12 to 15).

III. Applies Pruning to prune windows that cannot lead to a solution (step 16).
IV. Creates a new set of clusters, each containing all windows that are associated

with the same seed-set (step 17).

Last, the algorithm finds and returns the window with the largest spread-to-cost
ratio, among all windows in W, and its corresponding seed-set (steps 19 to 21).

Theorem 2 explains the approximation guarantee of MASP .

Theorem 2. MASP finds a solution with spread-to-cost ratio at least 1 − 1
e of

that of the optimal solution to the TSM problem, where e is the base of the natural
logarithm.

Proof (Sketch). Let σi be the maximum spread of a subset of k nodes in a
window Wi. MASP constructs each seed-set Wi.S using the greedy algorithm
for submodular maximization [15] with the submodular spread function [11] (i.e.,
iteratively adds into Wi.S the node u causing the largest spread gain Wi.g(u)).
This guarantees that, for each Wi, Wi.σ ≥ (1− 1

e ) ·σi [11]. Thus, for the window
with the maximum ratio maxi∈[1,n]Wi.σ, we have maxi∈[1,n]Wi.σ ≥ (1 − 1

e ) ·
maxi∈[1,n]σi, which implies maxi∈[1,n]

Wi.σ
Wi.c

≥ (1− 1
e ) ·maxi∈[1,n]

σi

Wi.c
. The proof

follows from observing that the spread-to-cost ratio of the solution of MASP is
maxi∈[1,n]

Wi.σ
Wi.c

and that of the optimal solution to TSM is maxi∈[1,n]
σi

Wi.c
. 
�

MASP needs O(k · |W| · |V |3 · |Wn|) time, where |Wn| is the size of the largest
window in W, in the worst case in which the graph is complete, all sets contain
different seeds in each iteration, and no window is pruned.
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Algorithm: DPSC (Dynamic Programming Spread Computation)
Input: Graph G(V, E), probability vector of each edge of G, cluster of windows C, node v
Output: Spread of the seed-set Wi.S ∪ v, for each window Wi in the cluster C

1 WC ← the largest window in C
2 T ← 2D array with |V | rows and |WC | columns, with each element equal to zero

3 S̃ ← WC .S ∪ v // temporary seed-set

4 foreach node s in the seed-set S̃ do
5 T [s][0] ← 1

6 t ← 1
7 R ← reachable(t)
8 while R 	= ∅ and time t in WC do
9 foreach node u in R do

10 T [u][t] ← the probability P[0,t](u)

11 foreach node u /∈ S̃ and u /∈ R and u may have been activated before t do
12 T [u][t] ← T [u][t − 1]

13 t ← t + 1
14 R ← reachable(t)

15 foreach window Wi in C do
16 Wi.σ̃ ←∑

u∈V T [u][|Wi|] // spread of the seed-set Wi.S ∪ v

17 return {W1.σ̃, . . . , WC .σ̃}

DPSC. Given a cluster C and a node v, DPSC constructs a temporary seed-set
by adding v into the seed-set of the largest window in C (steps 1 to 3), fills
a dynamic programming array T , whose element T [u][t] stores the probability
P[0,t](u) for a node u at time t (steps 4 to 14), and computes Wi.σ̃, the spread
of the seed-set Wi.S ∪ v, for each window Wi in C (steps 15 to 16). To improve
efficiency, P[0,t](u) is computed only for the set of nodes that may become active
at t, which is found by a function reachable(t). For all other nodes that are not
seeds and may have been activated before, P[0,t](u) is set to P[0,t−1](u) (steps
11–12). In addition, the probability Pt−1−i(u′) in Eq. 2 is computed based on
the dynamic programming array as T [u′][t − 1 − i] − T [u′][t − 2 − i].

The function reachable(t) finds all nodes that are reachable from the seeds
through simple paths of length t − i, for each delay i ∈ [0,min(t − 1, δ)], using
a concurrent breadth-first-search (bfs). The bfs discovers only nodes that may
become active at t, which is necessary to accurately compute the probability
P[0,t](u), for each discovered node u. Cycle paths are discarded, because the node
u1 in a cycle path [u1, . . . , um−1, u1] cannot be activated by the edge (um−1, u1).

DPSC needs O(|V |2 · |WC |) time, where |V | is the number of nodes of the
graph and |WC | the size of the largest window in C, in the worst case when
the graph is complete. In practice, social network graphs are sparse, and DPSC
scales much better.

Pruning. This subroutine prunes windows that cannot lead to a solution of
MASP . When applied in an iteration j, Pruning computes, for each window,
the maximum spread-to-cost ratio that the window can have after all remaining
k − j iterations (steps 1 to 3). Then, it removes each window whose maximum
ratio is smaller than a lower bound, which is computed as the largest spread-
to-cost ratio of all windows (steps 4 to 5). The lower bound corresponds to the
minimum spread-to-cost ratio of a solution. That is, we assume the worst case,
in which every available node in a subsequent iteration is certainly active (i.e.,
each such node u has spread gain Wi.g(u) = 0).
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Function: Pruning
Input: Set of windows W

1 foreach window Wi in W do

2 L ← argmax{u1,...,uk−j}⊆V \Wi.S(
∑

u∈{u1,...,uk−j}
Wi.g(u))

3 Wi.r ← Wi.σ+
∑

u∈L Wi.g(u)
Wi.c // max. ratio of Wi

4 lbound ← largest ratio
Wi.σ

Wi.c of each Wi in W
5 Remove from W each window Wi such that Wi.r < lbound

The maximum spread-to-cost ratio, Wi.r, of a window Wi is computed based
on the following property:

– The spread, Wi.σ, of Wi cannot increase by more than
∑

u∈L Wi.g(u) after
any remaining iterations, where L is the set of k − j available nodes with the
largest spread gain assigned by Wi.g().

The property holds because, due to the submodularity of spread [11]: (I) no
node that is not contained in L can have a larger spread gain than that of a
node in L, in any of the remaining k − j iterations of MASP , and (II) after the
remaining k − j iterations, the spread Wi.σ cannot increase by more than the
sum of the spread gain of the nodes that are added into Wi.S in the remaining
iterations.

7 Experimental Evaluation

In this section, we evaluate MASP in terms of effectiveness and efficiency and
demonstrate the benefit of its optimization techniques. Since no existing algo-
rithms can deal with the TSM problem, we compared MASP against three base-
lines that are based on the MC, ISP, and MISP methods of [11,12] (see Sect. 2).
The MCB baseline applies the MC approximation algorithm to each window
independently and then selects the solution with the largest spread-to-cost ratio.
The ISPB and MISPB baselines differ from MCB in that they estimate the
spread using ISP and MISP, respectively.

All algorithms were implemented in C++ and applied to the datasets in
Table 1. All datasets are real and were used in [2,11,12], except AB, a synthetic
dataset generated by the Albert-Barabasi model. POL is available at http://
www-personal.umich.edu/∼mejn/ and all other real datasets at http://snap.
stanford.edu/data.

Table 1. Characteristics of datasets.

Dataset Description # of nodes

(|V |)
# of edges

(|E|)
Avg in-degree Max in-degree

WI Wikipedia adminship vote graph 7115 103689 13.7 452

PH High energy physics citation graph 34546 421578 24.3 846

EPIN Whom-trusts-whom graph 75879 508837 13.4 3079

POL Graph of weblogs 1490 19090 11.9 305

AB Synthetic dataset 10000 45040 9 9997

http://www-personal.umich.edu/~mejn/
http://www-personal.umich.edu/~mejn/
http://snap.stanford.edu/data
http://snap.stanford.edu/data
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Following [11,12], the probability vector of each edge (u′, u) was constructed
by setting p((u′, u)) to 1

|n−(u)| and Pu′ to the Poisson distribution with a random
parameter (mean rate) λ in [1, 20]. In addition, a window set W of size |W| was
comprised of the windows ending at time 1, . . . , |W|, and δ was set to |W|−1. The
default values for k and |W| were 25 and 10, respectively. In addition, following
[11], we set the number of Monte Carlo simulations in MCB to 20000, and θ
(minimum path probability in ISP and MISP) to 10−5.

The window costs were assigned by the concave piece-wise linear function in
Eq. 3

c(Wi) =

{
|W| i = 1
|W|

i + c(Wi−1) otherwise
(3)

Clearly, the cost of a window c(Wi) increases with the end time of the window,
but the increase is smaller for larger windows. Concave piece-wise linear functions
model “economies of scale” (i.e., the social network provider offers discounts for
longer campaigns, which makes it cheaper to extend the length of an already
long campaign) [1]. All experiments ran on an Intel Xeon at 2.60 GHz with
16 GB RAM.
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Fig. 3. Spread-to-cost ratio vs. k for (a) WI, (b) PH, and (c) EPIN. Spread-to-cost
ratio vs. |W| for (d) WI.
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Fig. 4. Spread-to-cost ratio vs. |W| for (a) PH, (b) EPIN. Runtime vs. k for (a) POL,
and (b) WI.

Effectiveness. We demonstrate that MASP finds solutions with high spread-
to-cost ratio, due to its exact spread computation strategy, unlike ISPB and
MISPB . Figures 3a, b, and c show the result for varying k. The spread-to-cost
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Fig. 5. Runtime vs. |W| for (a) POL and (b) WI. Ratio of pruned windows vs. (c) k
and (d) |W|, for POL and AB.

ratio for MASP was higher than that of both heuristics by 28% on average. Fig-
ures 3d, 4a, and b show the spread-to-cost ratio for varying number of windows
|W|. The spread-to-cost ratio for MASP was higher than that of both heuristics
by 32% on average and up to 116%. MCB found the same solutions with MASP ,
due to the large number of Monte Carlo simulations.
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Fig. 6. Ratio of saved windows vs. (a)
k and (b) |W|, for the POL and AB
datasets.

Efficiency. We demonstrate that MASP
is significantly faster than MCB , the
only baseline that offers approximation
guarantees. Figures 4c and d show the
runtime for varying k. MASP is at
least 1, and on average 6, orders of mag-
nitude faster than MCB , and it scales
much better with respect to k. Figures 5a
and b show the runtime for varying num-
ber of windows |W|. MASP is at least 2
orders of magnitude faster than MCB

and scales better with respect to |W|.
MASP is more efficient and scalable than MCB , due to the pruning and multiple-
window spread gain computation, as explained below. However, it is generally
less scalable than ISPB and MISPB .

Thus, the conclusion from the effectiveness and efficiency experiments is that
MASP : (I) finds the same solutions with MCB , substantially outperforming
ISPB and MISPB , and (II) is at least one order of magnitude faster than
MCB but less efficient than ISPB and MISPB .

Benefit of Pruning. Figure 5c shows the ratio of pruned windows, for varying
k. The ratio is at least 0.7 and 0.8, for the POL and AB dataset, respectively.
Figure 5d reports the ratio of pruned windows, for varying |W|. The ratio is at
least 0.77 and 0.6 for POL and AB and increases with |W|. This is because more
windows have similar ratios, due to the small increase in cost and spread, when
|W| is large.
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Benefit of Multiple-Window Spread Gain Computation. We define the
ratio of saved windows as

∑
i∈[1,k]

∑
C∈C(|C|−1)

∑
i∈[1,k]

∑
C∈C |C| , where i is an iteration of MASP

and C is a cluster of windows in the set of clusters C (see steps 4 and 17 of
MASP). A saved window is not the largest in its cluster and its spread is com-
puted efficiently by DPSC . Figures 6a and b show the ratio of saved windows
for varying k and |W|, respectively. The ratio decreases with k, because the
probability that two windows have the same seed-set decreases with the size of
the seed-set. On the other hand, the ratio increases with |W|, because there are
more windows that can have the same seed-set and form a cluster.

8 Conclusion

The task of performing a cost-effective, time-constrained campaign requires
selecting a window, among given alternatives, and a set of k seeds, such that
the ratio between the spread of the seeds in the window and the window cost
is maximum. In this work, we formulated this task as an optimization problem
and developed an approximation algorithm to solve it. The algorithm employs
dynamic programming and pruning to improve efficiency, and it is effective and
efficient, as shown experimentally. In the future, we plan to extend the TSM
problem when the nodes are also associated with costs.

Acknowledgments. The authors would like to thank the reviewers for their construc-
tive comments.
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Abstract. Modern social recommendation has been steadily receiving
more attention, which utilizes social relations among users to improve
the efficiency of recommendation. However, most social recommendation
methods only consider simple similarity information of users as social reg-
ularization and ignore the improvement of predictors of people’s opin-
ions. Meanwhile, due to the simple characteristics of data in various
applications, previous works mostly leverage pointwise methods based
on absolute rating assumption to solve the problem. In this paper, we
propose a novel Dual Similarity Bayesian Personalized Ranking model
to incorporate the similarity information of users and items into our
preference predictor function. Having improved the preference predictor,
we employ Bayesian Personalized Ranking model as training procedure
which is a pairwise method. Empirical results on three public datasets
show that our proposed model is an efficient algorithm compared with
the state-of-the-art methods.

Keywords: Recommendation system · Bayesian Personalized Ranking ·
Heterogeneous information network

1 Introduction

With a large number of items available all the time, users have great diffi-
culty finding the items that best match their preferences. Recommender systems
appear as a natural solution to overcome the problem by learning from historical
feedback. Among numerous techniques, collaborative filtering (CF) [4] has been
a most popular recommender approach. Due to the efficiency and effectiveness,
the low rank matrix factorization [5] becomes a primary choice for implementing
CF. Despite the great success, it has been suffering inherently from cold start
problem because of the sparsity of real-world datasets. In the situation, hybrid
recommendation [1] has become a hot topic gradually, which can achieve better
recommendation performance through combining user feedback and additional
information of users and items.

Particularly, with continuous increasing popularity of social media, there is a
surge of social recommendation methods [3], which utilize social relations among
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 266–277, 2017.
DOI: 10.1007/978-3-319-57454-7 21
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users or other types of information. Most social recommendation techniques
leverage social regularization to restrict optimization function, but they neglect
the shortcomings of the basic preference predictor. Moreover, traditional Matrix
Fatorization (MF) approaches face the challenge of the vagueness of explaining
non-observed feedback. Recently, pointwise [6] and pairwise [7] methods, based
on MF approaches, have achieved some success. Pointwise methods suppose non-
observed feedback to be intrinsically negative to certain extent while pairwise
methods may be on the basis of more credible assumption. Specifically, pair-
wise methods assume that non-observed feedback must be less preferable than
positive feedback, which directly optimize ranking item pairs instead of scoring
single items (e.g., Bayesian Personalized Ranking).

In order to overcome the limitation of basic preference predictor in traditional
social recommendation and pointwise methods in practical scenarios, we propose
a Dual Similarity Bayesian Personalized Ranking (DSBPR). Due to the success
of Heterogeneous Information Network (HIN) in many applications, we consider
organizing objects and relations in a recommender system as a HIN. In the
model, we integrate the heterogeneous information to generate rich similarity.
Futhermore, inspired by the thought of collective intelligence, we incorporate
the similarity information (i.e., the similarity between users and items) into the
basic preference predictor. At last, we employ Bayesian personalized ranking as
the training procedure.

Experimentally our model demonstrates significant performance improve-
ments on three real-world datasets. The major contributions of this paper are
summarized as follows:

(1) In order to inject rich heterogeneous information among users and items,
we introduce a novel MF-based approach that incorporates HIN signals into
the basic preference predictor.

(2) Different from traditional social recommendation, we leverage the pairwise
method (i.e., Bayesian Personalized Ranking) as training procedure.

(3) We thoroughly evaluate our proposed approach on three real-world datasets
and demonstrate its effectiveness in contrast to state-of-the-art recom-
menders.

The rest of this paper is organized as follows. We present some prelimi-
nary knowledge in Sect. 2 and the proposed DSBPR model is detailed in Sect. 3.
Experiments and analysis are shown in Sect. 4. At last, we describe related work
in Sect. 5 and draw the conclusion in Sect. 6.

2 Preliminary

In the section, we declare notations employed in the paper and convey some
preliminary knowledge.



268 L. Shi et al.

2.1 Dual Similarity Generated from HIN

A heterogeneous information network [13] is a special type of information net-
work with the underneath data structure as a directed graph, which either con-
tains multiple types of objects or multiple types of links. Fig. 1 shows the network
schema of a typical heterogeneous network in a movie recommender system. The
HIN contains objects from multiple types of entities: user (U), movie (M), loca-
tion (L), group (G), actor (A), director (D), and type (T).

User Movie1 - 5

Actor

Type

Director

Group

Location

Fig. 1. Network schema of HIN example.

Two different types of objects in a HIN can be connected via different meta
path [13], which represents a compound relation between these two types of
objects. A meta path P is a path defined on a schema S = (A,R), and is denoted
in the form of A1

R1−−→ A2
R2−−→ · · · Rl−→ Al+1 (abbreviated as A1A2 · · · Al+1), which

defines a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl between type A1 and Al+1,
where ◦ denotes the composition operator on relations. As an example shown in
Fig. 1, users can be connected via “User-User” (UU), “User-Movie-User”(UMU),
“User-Group-User” (UGU) and so on. Among these, different meta paths have
different semantic relations. For example, the UU path means users have social
relations, while UMU path means users have watched the same movies. There-
fore, we can evaluate the similarity of users (or movies) based on different meta
paths. We can consider UU, UMU, UGU for users. Analogously, meaningful meta
paths connecting movies include MAM, MDM, and so on.

There are several paths based similarity measures to evaluate the similarity
of objects in HIN [12,13]. We define S

(p)
U to denote the similarity matrix of

users under the given meta path P(p)
U connecting users, and S

(p)
U (i, j) denotes

the similarity of users i and j under the path P(p)
U . Similarly, S

(q)
I denotes the

similarity matrix of items under the given meta path P(q)
I connecting items, and

S
(q)
I (i, j) denotes the similarity of items i and j under the path P(q)

I .
Since users (or items) have different similarities under different meta paths,

we combine their similarities under all paths through assigning weights on these
paths. For users and items, we define SU and SI to represent the similarity
matrix of users and items on all meta paths, respectively.
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SU =
|PU |∑

p=1

w
(p)
U S

(p)
U , (1)

SI =
|PI |∑

q=1

w
(q)
I S

(q)
I , (2)

where w
(p)
U denotes the weight of meta path P(p)

U among all meta paths PU

connecting users, and w
(q)
I denotes the weight of meta path P(q)

I among all meta
paths PI connecting items. In the paper, we utilize a weight learning method in
[15] to learn the weights of different similarities.

2.2 Bayesian Personalized Ranking

Bayesian Personalized Ranking (BPR) [10] is a pairwise ranking optimazation
model which adopts stochastic gradient descent as the training procedure. Based
on the Bayesian formulation, the BPR model intends to maximize the following
posterior probability:

p(Θ| >u) ∝ p(>u |Θ)p(Θ), (3)

where Θ represents the parameter vector of a arbitrary model (e.g., matrix fac-
torization). Here, there are two fundamental assumptions.

• If the user-item pair (u, i) is observed but (u, j) is not observed, it assumes
that the user u prefers an item i than an item j.

• Each user is presumed to act independently from the others.

With these assumptions, the above likelihood function p(>u |Θ) can be writ-
ten as the following:

∏

u∈U

p(>u |Θ) =
∏

(u,i,j)∈U×I×I

p(i >u j|Θ)δ((u,i)�(u,j))

·(1 − p(i >u j|Θ))[1−δ((u,i)�(u,j))],

(4)

where (u, i) � (u, j) denotes that user u prefers item i to item j.
In order to complete the Bayesian modeling approach of the personalized

ranking task, it defines the individual probability that a user really prefers item
i to item j as the following:

p(i >u j|Θ) = σ(x̂uij), (5)

where σ is the logistic sigmoid function. When using matrix factorization as the
preference predictor (i.e., BPR-MF), x̂uij is defined as

x̂uij = x̂u,i − x̂u,j . (6)
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Moreover, it introduces a general priori density p(Θ) which accords with a
normal distribution with zero mean and variance-covariance matrix ΣΘ. Then
it sets ΣΘ = λΘI, so we deduced the optimization criterion (BPR-OPT):

∑

(u,i,j)∈Ds

ln σ(x̂uij) − λΘ‖Θ‖2. (7)

3 The DSBPR Method

In this section, we will introduce our DSBPR method which incorporates similar-
ity information into matrix factorization based on BPR model. We firstly review
the basic preference predictor based on matrix factorization. Then we introduce
the improved model through incorporating dual similarity information. Finally,
we develop our training procedure using BPR framework, and infer the learning
algorithm of DSBPR.

3.1 Preference Predictor

Our preference predictor is based on a state-of-the-art rating predicton model,
namely the low-rank matrix factorization, whose basic formulation assumes the
following model to predict the preference of a user u towards an item i [4],

r̂ui = α + βu + βi + puqT
i , (8)

where α is the overall average rating, βu and βi indicate the observed devia-
tions of user u and item i respectively, and pu and qi are K-dimensional vectors
describing the latent factors of user i and item i. The inner product puqT

i cap-
tures the interaction between user u and item i (i.e., the overall interest of users
in the items’ characteristics).

3.2 Dual Similarity Improvement Criterion

In theory, latent factors seem to uncover any relevant dimensions. However,
for the “lonely” items in the practical scenario, it’s hard to estimate their latent
dimensions because there are too few associated observations about them. There-
fore, we consider adding more auxiliary signals (i.e., the similarity information
in HIN) into the rating model to alleviate the problem mentioned above. In par-
ticular, we add the similarity of users into the left of the inner product PQT and
then add the similarity of items into the right of the inner product as follows:

R = α + βu + βi +
μSimuPQT

Φu
+

γPQT Simi

Φi
, (9)

where R is an m × n rating matrix, α and β are as in Eq. (8). P and Q are
m × k and n × k latent factor matrices respectively. Simu is users’ similarity
matrix with the size of m×m and Simi is items’ similarity matrix with the size



DSBPR: Dual Similarity Bayesian Personalized Ranking 271

of n × n. Here, we leverage the similarity matrices that are generated from the
above HIN. In order to restrict the rating function within a reasonable range,
we consider Φu and Φi as the denominator in the fourth and the fifth terms of
Eq. (9). Here, both Φu and Φi are m × n matrices. Specifically, we show the two
terms as follows:

Φu =

⎛

⎜⎜⎜⎝

φu
11 φu

12 . . . φu
1n

φu
21 φu

22 . . . φu
2n

...
...

. . .
...

φu
m1 φu

m2 . . . φu
mn

⎞

⎟⎟⎟⎠ (10)

where φu
ij =

m∑
l=1

Simu
il. Similarly, we can also design the latter constrain term as

follows:

Φi =

⎛

⎜⎜⎜⎝

φi
11 φi

12 . . . φi
1n

φi
21 φi

22 . . . φi
2n

...
...

. . .
...

φi
m1 φi

m2 . . . φi
mn

⎞

⎟⎟⎟⎠ (11)

where φi
ij =

n∑
l=1

Simi
lj . Because of using the inner product twice, we introduce

the normalized parameters μ, γ, which meet:

μ + γ = 1. (12)

3.3 The Learning Algorithm

The learning algorithm of DSBPR is based on BPR model as mentioned above.
We follow the widely used stochastic gradient descent SGD) algorithm to opti-
mize the objective function in Eq. (7). Therefore, the learning algorithm updates
parameters in the following fashion:

Θ ←− Θ + η(
e−x̂uij

1 + e−x̂uij
· ∂

∂Θ
x̂uij + λΘΘ). (13)

At each iteration, one sample is uniformly drawn from DS (i.e., the training
set comprised of triples in the form of (u, i, j)) and the parameters are updated
in the opposite direction of the loss function’s gradient at the sampling point.
Algorithm 1 shows the framework of the optimization algorithm. Moreover, x̂uij

derivatives are:

∂

∂Θ
x̂uij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

μSimu
u

Φu
u

(Qi − Qj) + γ(Simi
i

Φi
i

Qi − Simi
j

Φi
j

Qj) if Θ = Pu,

μSimu
u

Φu
u

Pu + γSimi
i

Φi
i

Pu if Θ = Qi,

−μSimu
u

Φu
u

Pu − γSimi
j

Φi
j

Pu if Θ = Qj ,

0 else.
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Algorithm 1. Alogrithm of DSBPR
Input:

DS : training set
Θ: the parameter vector
PU , PI : meta path sets of users and items
η: learning rate for gradient descent

Output:
P, Q: the latent factor of users and items

1: for P(p)
U ∈ PU and P(q)

I ∈ PI do

2: Calculate the similarity of users and items (S
(p)
U and S

(q)
I )

3: end for
4: Initialize Θ
5: repeat
6: draw (u, i, j) from DS

7: Update Θ ←− Θ + η( e
−x̂uij

1+e
−x̂uij

· ∂
∂Θ

x̂uij + λΘΘ)

8: until convergence

Furthermore, we use three regularization constants: λP is used for users’
features P ; for the item features Q we have two regularization constants, λQ+

which is used for positive updates on Qi, and λQ− for negative updates on Qj .

4 Experiments

In this section, we will verify the effectiveness of our model by a series of exper-
iments compared to several state-of-the-art recommendation methods.

4.1 Datasets

Although there are many public datasets for recommendation, some of them
may not contain enough objects attributes but only focus on the rating informa-
tion. In order to get more available information, including rating information,
attribute information of uers and items and social relations, we use three real
datasets in our experiments. Movielens dataset1 contains rating information of
users on movies and attributes information of users (e.g., age, gender, occupa-
tion). Douban is a well-known social media network in China, on which users
post their likes or dislikes on movies through ratings and comments, whose movie
dataset (i.e., Douban Movie2) includes 3022 users and 6971 movies with 195493
ratings ranging 1 from 5. Stemming from the business domain, Yelp3 is a famous
user review website, which includes 14085 users and 14037 movies with 194255
ratings (scales 1–5). The detailed description can be seen in Table 1.

1 https://grouplens.org/datasets/movielens/.
2 http://www.douban.com/.
3 http://www.yelp.com/.

https://grouplens.org/datasets/movielens/
http://www.douban.com/
http://www.yelp.com/
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Table 1. Statistics of datasets

Datasets Relations (A-B) Number of of A/B/A-B Ave. degrees of A/B

MovieLens User-Movie 6040/3952/180037 29.8/52.0

User-Gender 6040/2/6040 1.0/3020.0

User-Age 6040/7/6040 1.0/862.8

User-Occupation 6040/21/6040 1.00/287.6

Movie-Type 3952/18/3952 1.0/219.6

Movie-Year 3952/9/3952 1.00/439.1

Douban-Movie User-Movie 3022/6971/195493 64.69/28.04

User-User 779/779/1366 1.75/1.75

User-Group 2212/2269/7054 3.11/3.11

User-Location 2491/244/2491 1.00/10.21

Movie-Director 3014/789/3314 1.09/4.20

Movie-Actor 5438/3004/15585 2.87/5.19

Movie-Type 6787/36/15598 2.29/433.28

Yelp User-Business 14085/14037/194255 4.6/20.7

User-User 9581/9581/150532 10.0/10.0

Business-Category 14037/575/39406 2.8/73.9

Business-Location 14037/62/14037 1.0/236.1

4.2 Evaluation

We split these datasets into training sets and test sets by selecting a random
item for each user u and the result is shown in Table 2. Moreover, we use the
widely employed metric AUC (i.e., Area Under the ROC curve) to evaluate the
performance of different methods. The metric AUC is defined as:

AUC =
1

|U |
∑

u∈U

1
|E(u)|

∑

(i,j)∈E(u)

δ(x̂ui > x̂uj) (14)

where the evaluation pairs per user u are:

E(u) = {(i, j)|(u, i) ∈ Dtest ∧ (u, j) /∈ (Dtest ∪ Dtrain)} (15)

and δ(b) is an indicator function that returns 1 iff b is true. A higher value of
the AUC indicates a better quality.

Table 2. Description of the datasets used in the experiments

Datasets User-item pairs training/test

MovieLens 39054/7810

Douban-Movie 29461/5892

Yelp 28666/5733
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4.3 Baseline Methods

For better evaluation of the proposed DSBPR method, we compare it with the
following well-known and representative methods.

• Random (RAND). This baseline ranks items randomly for all users.
• PopRank. The baseline ranks items according to their popularity and is

non-personalized.
• PMF [11]. Salakhutdinov and Minh proposed the basic low-rank matrix fac-

torization method for recommendation.
• BPR-MF [10]. It is a pairwise method introduced by Rendle et al. and is

the state-of-the-art personalized ranking for implicit feedback datasets.
• Hete-MF [14]. Yu et al. proposed the HIN based recommendation method

through combining user ratings and items’ similarity matrices.
• DSR [15]. Zheng et al. proposed a new dual similarity regularization to

impose the constraint on users and items with high and low similarities simul-
taneously.

We employ HeteSim [12] to evaluate the similarity of objects. For MovieLens
dataset, we use 6 meaningful meta paths for users (i.e., UAU, UGU, UOU, UMU,
UMTMU, UMYMU) and 3 meaningful meta paths for movies (i.e., MTM, MYM,
MUM). For Douban Movie dataset, we leverage 7 meta paths for users (i.e., UU,
UGU, UMU, UMDMU, UMTMU, UMAMU) and 5 meta paths for movies (i.e.,
MTM, MDM, MAM, MUM, MUUM). Similarly, for Yelp dataset we utilize 4
meta paths for users (i.e., UU, UBU, UBCBU, UBLBU) and 4 meta paths for
business (i.e., BUB, BCB, BLB, BUUB). These similarity data are fairly used
for Hete-MF, DSR and DSBPR.

4.4 Experimental Results

In the expeiment, the tradeoff parameters are searched as the learning rate
η ∈ {0.5, 0.05, 0.005} and the regularization term λ ∈ {0.1, 0.01, 0.001}, and
the iteration number is chosen from T ∈ {100, 200, 300}. Results in terms of the
average AUC on different datasets are shown in Table 3, from which we can have
the following observations:

Table 3. AUC of the sets

Dataset Metrics (a) (b) (c) (d) (e) (f) (g)

AUC/(vs. c) RAND PopRank PMF Hete-MF BPR-MF DSR DSBPR

MovieLens AUC 0.5001 0.7401 0.7800 0.8247 0.8204 0.8683 0.8720

Improvement −35.89% −5.12% - 5.73% 5.13% 11.32% 11.79%

Douban-Movie AUC 0.4899 0.6069 0.9187 0.9167 0.9246 0.9365 0.9407

Improvement −46.47% −33.93% - −0.21% 0.67% 1.94% 2.39%

Yelp AUC 0.4979 0.5573 0.8296 0.8504 0.8337 0.8687 0.8373

Improvement −39.98% −32.80% - 2.51% 0.49% 4.71% 0.93%
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1. The PopRank algorithm is not as effective as the personalized recommenda-
tion methods, because “lonely” items are inherently unpopular.

2. Building on the basis of BPR-MF, DSBPR performs better than MF and
BPR-MF algorithms, which demonstates the effectiveness of incorporating
the similarity of users and items via heterogeneous information network.

3. DSBPR has better performance than Hete-MF and DSR in most cases. It
reveals that the improvement of the basic preference predictor instead of
regularization term is also feasible. However, we also discover DSR performs
better than DSBPR in Yelp, which demonstrates DSBPR is more suitable
for datasets with rich relations.

Sensitivity. In addition, we conduct the experiments with different latent fac-
tors. As the number of latent factors increases (i.e., ranging from 2 to 20), BPR-
MF, DSBPR perform better than the last time, which demonstrates the ability
of pairwise methods in avoid overfitting as shown in Fig. 2.

Fig. 2. AUC with varying dimensions

Training Efficiency. In Fig. 3 we show the AUC with increasing training itera-
tions. Generally speaking, our proposed model performs better than other meth-
ods in each iteration and take no longer to converge.

5 Related Work

Through uncovering latent dimensions, MF methods relate users and items,
which are the basis of many state-of-the-art recommendation approaches.
When it comes to personalized ranking from implicit feedback, traditional MF
approaches are challenged by the ambiguity of explaining “non-observed” feed-
back. Pointwise methods assume “non-observed” feedback to be inherently neg-
ative to certain degree. In contrast to pointwise methods, pairwise methods
assume that positive feedback must only be more preferable than “non-observed”
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Fig. 3. AUC with training iterations (#factors = 20)

feedback, which is a little weaker but more realistic. Rendle et al. proposed a gen-
eralized BPR framework, which is the first method with such pairwise preference
assumption.

Due to the great success of pairwise methods, some new algorithms have been
proposed to combine BPR with some auxiliary data, such as BPR with user-side
social connections [2], BPR with group preference [8] and so on. Futhermore,
more and more researchers have been aware of the importance of HIN, in which
objects are of different types and links. Yu et al. [14] proposed Hete-MF through
combining rating information and items’ similarities derived from meta paths in
HIN.

However, most recommender methods only consider designing the social reg-
ularization without the improvement of the basic preference predictor. For exam-
ple, Hete-MF proposed by Yu et al. merely takes the similarity information as
the regularization term by the pointwise method. Qiao et al. [9] proposed the
model combining heterogeneous social information with MF, which places zero-
mean spherical Gaussian priors for the regularization term. Compared with the
aforementioned works, DSBPR method we proposed not only incorporates the
similarity of HIN information into the basic prefernce predictor but also uses
the classic pairwise model (i.e., BPR) as the training procedure, which performs
better to improve the recommendation results.

6 Conclusions

In this paper, we study the limitations of basic preference predictor in traditional
social recommendation and pointwise methods in many applications, and design
a novel algorithm called DSBPR. DSBPR introduces the similarity of users and
items into the basic preference predictor based on low-rank matrix factorization
framework. Moreover, our model is trained with BPR using stochastic gradient
descent. Experimental results on three real-world datasets validate the effective-
ness of DSBPR.
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Abstract. Appropriate tagging of images is at the heart of efficient
recommendation and retrieval and is used for indexing image content.
Existing technologies in image tagging either focus on what the image
contains based on a visual analysis or utilize the tags from the textual
content accompanying the images as the image tags. While the former
is insufficient to get a complete understanding of how the image is per-
ceived and used in various context, the latter results in a lot of irrelevant
tags particularly when the accompanying text is large. To address this
issue, we propose an algorithm based on graph-based random walk that
extracts only image-relevant tags from the accompanying text. We per-
form detailed evaluation of our scheme by checking its viability using
human annotators as well as by comparing with state-of-the art algo-
rithms. Experimental results show that the proposed algorithm outper-
forms base-line algorithms with respect to different metrics.

1 Introduction

A popular English idiom says “An image is worth a thousand words”. Content
writers always look out for good visual supplements to enrich their content and
make it more appealing to the target audience. Fortunately, a huge repertoire of
such content (images, video, etc.) is available in the Internet - however proper
annotation with appropriate tags is necessary for their efficient retrieval. The
size of online visual data clearly calls for an automatic approach to tag them.

Existing tagging systems work towards capturing the denotational aspects of
the image, viz. what the image denotes/contains. This includes tags capturing
the various aspects present in the image. These details are either captured via
the visual features of the images or via human added tags. However, the former
tags are often generic and do not capture the entire information that is contained
in the image. Let us consider an example in Table 1 which shows an image of the
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 278–290, 2017.
DOI: 10.1007/978-3-319-57454-7 22
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Table 1. Example: an image of Apple co-founder Steve Jobs along with the text from
an article using a similar image in InShortsa, an on-line news aggregator.

Apple sells its 1 billionth iPhone
Apple on Wednesday announced that it sold its one billionth iPhone
last week. The news comes about two years after the company sold
the 500 millionth unit of its handheld device. The iPhone was first
introduced in 2007 by late Co-founder Steve Jobs and had registered
its one millionth sale after 74 days of the launch.

ahttps://inshorts.com/news/apple-sells-its-1-billionth-iphone-1469693675991

Apple co-founder, Steve Jobs from the web. Figure 1(a) shows the set of tags for
the image based on the visual tagging system in [18]. It can be seen that the tags
thus obtained are generic in nature e.g. ‘person’, ‘business’ and do not capture
any deeper information about the image e.g. Steve Jobs, Apple Inc., etc. While
an author uploading these images can be expected to add some of these tags, it
is not possible to cover all aspects of the image.

movieman
one

facial expression

business

people

portrait

adult

recreation

(a) Visual Tags

sa
le

days

years

Steve_Jobs

iP
ho

ne

launch

Apple_Inc

unitdevice

company
week

billionth
Wednesday

news

Co−founder

(b) Text based
Tags

Apple_Inc
billionth

launch

Steve_Jobs

Co−founder
sale

deviceiPhone

(c) UBTer Tags

Fig. 1. Tags for the image in Table 1 based on a visual tagger [18], textual parsing and
our system - UBTer.

Often such images are used in different illustrations which contain valuable
information about the image. To address the shortcomings of the visual tags,
the accompanying content of the images can be analyzed to extract the tags.
Such information can enhance both the denotational and connotational (how
the image is perceived) understanding of the image. To test this hypothesis,
we conducted a survey among 30 participants to rate the relevance of the text
around an image in several articles on the web and its usefulness to enhance
the understanding of the image. It was observed that in 91.23% of cases, the
participants found the text relevant to the image. Survey respondents further
opined that while the original image tags were very appropriate, the image had
a different connotation when appeared along with the text, thus calling for a
need to incorporate these into the image tags.

https://inshorts.com/news/apple-sells-its-1-billionth-iphone-1469693675991
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We identified an article (text included in Table 1) from InShorts1, an on-line
news aggregator using an image similar to the one in Table 1. A simple text
based tagging can add a lot of noise to the tags as seen in Fig. 1(b), where
the text in Table 1 was parsed to extract the textual tags e.g. “days”, “week”,
“billionth”. These noise occur primarily because of the extract textual tags that
are prominent in the text but irrelevant to the image’s context. The level of
noise will increase with the size of the accompanying content. This calls for an
automated tagging system that optimally combines the tags from accompanying
text with the image tags capturing the right denotational and connotational
information around the images while discarding the unrelated tags from the
accompanying text resulting tags.

In this work, we propose a novel framework UBTer - Usage Based image
Tagger that combines the tags derived from accompanying (usage) content with
the image tags based on the visual features [18], thus integrating the information
from content and usage cues. We thus achieve a balance between connotational
and denotational aspects of an image. The resultant tags are shown in Fig. 1(c).
We show that such a combination beats the state-of-the-art (visual and textual)
tagging engines in our subjective and objective evaluations.

The paper is organized as follows. In Sect. 2, we describe the existing state
of image tagging and position our framework with respect to existing systems.
Section 3 introduces UBTer, - the proposed usage based tagger along with its key
components. In Sect. 4 we compare the performance of UBTer against existing
works via subjective and objective evaluations. We also evaluate the different
parameters of UBTer to arrive at the right system configuration. Section 5 con-
cludes the paper.

2 Related Work

Tagging and understanding textual content has been widely studied. The first
step in textual tagging is extracting and detecting named entities; the popular
one here is the Stanford NLP parser [11]. Once the named entities are identified,
they are disambiguated and resolved into various categories [9]. Finally, the
inter relationships in the content or hierarchies are identified by a semantic
understanding of the text. In these works, the entities in the textual content are
typically processed into a rich semantic representation (e.g. [1]) which is utilized
to gain a deeper understanding of their inter-relationships.

Yang et al. [23] extract the textual tags based on a nearest-neighbor based
approach and utilize the neighbors to extract the relationships between entities.
Nallapatti et al. [13] use “event threading” to join different pieces of text and
identify the undercurrent events in the textual topics. Shahaf and Guestrin [16]
estimate the importance and “jitteriness” of the entities in the text and use it
to infer the connections between different parts of the textual content.

With the advent of knowledge bases like YAGO [19], relationships from these
sources are used to further enhance the understanding of the textual content.
1 https://inshorts.com/news/apple-sells-its-1-billionth-iphone-1469693675991.

https://inshorts.com/news/apple-sells-its-1-billionth-iphone-1469693675991
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Kuzey et al. [6] resolve temponym based on a YAGO based entity resolution
to understand textual content with temporal scopes. They develop an Integer
Linear Program that jointly optimizes the mappings to knowledge base for a
rounded document representation. Tandon et al. [20] mine activity knowledge
from Hollywood narratives to answer questions around these activities. They
capture the spatio-temporal context of the topics by constructing multiple graphs
to capture relationships among activity frames which is leveraged for effective
understanding. However, none of these works aim at understanding images based
on a combination of visual tags and usage context which is the key challenge in
our problem, where we have to combine the content and usage cues in tagging.

There also exists a large body of literature in the space of image tagging.
Li et al. [8] propose methods for assignment of tags from visual aspects and use
them for effective retrieval of images. Once an image is tagged, its relationships
with other images have been used for further enhancing the tag set [14] or alter-
natively, using these tags to enhance tags of similar images [3]. The visual tags
can also be enhanced and disambiguated with knowledge bases and conceptnets
[22]. With the successful emergence of deep learning for image understanding,
convolution neural networks have been used to find an intermediary representa-
tion Visual Word2Vec [5] in order to generate the image tags from this latent
space. However, all these works focus on tagging the image from their visual
cues/content. In our problem, we capture the usage of the images along with the
visual content in the image tags to have a rounded understanding of the image.

One work that is close to the proposed solution framework is by Leong et
al. [7], which relies exclusively on accompanying content for mining information
relevant to the image. They construct relationships among entities based on
multiple factors to arrive at the final set of tags. However, they do not use the
visual tags of the images to align the accompanying content to the image and
therefore have the same pitfall that we illustrated in our example in Table 1.

3 UBTer - Usage Based Tagger

We propose a novel framework, UBTer, which enriches the tags around an image
which may not be initially contained in the set of image based tags based on the
visual features. UBTer takes as input the image tags (author given and the auto
tags) along with the “usage” content which uses the image for illustration. The
content is processed to extract key tag candidates. Many of these tags may not
be directly related with the image and hence needs to be pruned. The pruning
is initiated by establishing the context of a tag. This is done by (a) scoring
the importance of the tag by measuring its usage pattern in the local textual
context and (b) capturing the inter-tag relationship based on certain global
knowledge base. Thus we obtain a graph with weighted nodes (local importance)
and weighted edges. The final tags are selected by performing a biased (based on
node weight and edge weight) random walk starting from the image tags. Those
nodes reached by random walk are selected in the final set. They are found not
only rich and appropriate but also diverse bringing out various connotational
aspects of the same image.
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3.1 Tag Shortlisting

The input to UBTer is the image along with its visual tags and the accom-
panying text(s). The accompanying text might contain several entities that
could be ambiguous e.g. Apple, Jobs in Table 1. The algorithm therefore starts
with disambiguating the accompanying content for such ambiguous entities via
Ambiverse [4]. Ambiverse provide a technology to automatically analyze a tex-
tual data and disambiguate named entities. It relies on the knowledge base
YAGO for an accurate characterization of all the entities in the text. These
entity characteristics are used along with the context of the entity in the text
to disambiguate them into formal YAGO entries. We replace each occurrence
of the entity with their disambiguated version. The disambiguated content is
extensively parsed to identify all named entities and noun phrases using the
Stanford NLP Parser [11]. Note that the image may/may not be relevant to the
entirety of the entities in the accompanying text and we address this in Sect. 3.3.
At the end of this step, we have a set of all candidate tags for consideration in
the final tags.

3.2 Tag Importance

For each tag candidate, a score is assigned based on their importance in the local
context. We calculate the total frequency of the candidate tag occurrence in the
usage content accounting for the co-reference of the candidates via proper nouns
by co-reference parsing. Thus, not just the direct mentions, the indirect mentions
of the entities are also accounted in their local importance. We normalize the
frquency counts by the counts of all entities in the text to keep the measure
between 0 and 1.

For every tag candidate we also compute the average distance of the entity
from the root of the corresponding dependency tree (obtained by passing the
accompanying content through a dependency parser [2]). A candidate tag at
the root (distance = 1) is the central topic of discussion in a sentence and hence
is more important indicating the local relevance of the entity in the discussed
subject. The inverse distance is considered as the tag importance (tags at the
root gets a value of one).

The average of the two measures yields the final tag importance (ni) whereby
the tags that are in the center of discussion in the accompanying content getting
higher value. We assume that a picture is added to further emphasize the central
point of discussion.

3.3 Inter-tag Relationship

We build the relationships between each tag candidates leveraging two inde-
pendent global knowledge base. (A) We used the Word2Vec [12] model trained
on a corpus of Google News dataset with 100 billion words resulting in a final
corpus of about 3 million word representations. Word2Vec yields a 300 dimen-
sional vector for every tag candidate that represents the word in the space of
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the trained deep neural network. We compute the cosine-similarity between the
vectors in this space which captures the semantic closeness between the tags. (B)
We calculate the point-wise mutual information [21] between two entities based
on their co-occurrences in the Wikipedia articles. This yields a similarity score
based on how coherent the two tags are with respect to the entire Wikipedia
corpus (English).

The Word2Vec based measure captures the semantic similarity between the
tags because the Word2Vec space groups similarly meaning entities together.
Therefore, entities closer in this space can often be interchangeably used in
several context. On the other hand, the Wikipedia based measure captures the
topical closeness - since entities that occur together in the several articles are
closer in this space. Our final edge weight (eij) is the average of the two measures.

The edge weights along with the node importance yield a graphical represen-
tation of the candidate tags with the edge weights capturing the global relation-
ship between the tags and the node weights indicating their local importance in
the usage content.

Infusing Image Tags: To extract the usage-specific tags from the accompa-
nying content, it is important to understand how these tag candidates relate
to the visual tags. However, there may be duplicates or near duplicates to the
visual tags already present within the tag set. Therefore, we first calculate the
edge weight between the visual tags and every tag candidate in the graph based
on the combined measure above. The tag pairs with similarity greater than a
threshold (0.95 in our experiment) are merged into a single node, thus avoid-
ing duplicity in tags. We then propagate the importance of the merged node to
the adjacent nodes (at a distance of 2 edges) using an exponential decay. This
ensures the propagation of the strength of the merged nodes to its neighbors
and thus emphasizing the relevant pieces of the tag graphs with respect to the
visual tags.

For tag pairs less than the matching threshold, an edge is added between
every tag candidate whose similarity with the visual tag is significant (> 0.1 in
our experiments). This ensures that the visual tags are connected to the relevant
parts of the tag-graph. The series of steps is summarized in Algorithm1.

3.4 Tag Extraction

With the graphical representation of the tags, the problem of extracting the
tags that capture the context around the image boils down to identifying the
top nodes in the tag graph that are closely connected to the image tags. For
this we use a random walk based algorithm [15], starting the random walk from
the visual tags, thus ensuring the node ranking relevant to the tag images and
avoiding irrelevant tags from the accompanying text.

We define the probability of the random walk moving from a node i to another
node j as, P (tri→j) = eij×nj where, eij is the weight of the edge (from Sect. 3.3)
between tags i and j and nj is the node importance of tag j from Sect. 3.2.
The probability of the random walk staying in the same node is defined as
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Algorithm 1. Tag Unifier
1: procedure Unify(tagsFromImage, TagGraph)
2: tag ← normalize(tag)
3: for tag ∈ tagsFromImage do
4: for node ∈ TagGraph do
5: val ← similarity(tag,node) (from Sect. 3.3)
6: if val > σ1 then
7: MergeNodes(tag,node)
8: node.weight ← MergedWeight()
9: PropagateWeight(node)

10: else if val > σ2 then
11: edge ← createNewEdge(tag,node)
12: edge.weight ← val
13: else
14: continue
15: end if
16: end for
17: end for
18: end procedure

P (tri→i) = ni. The probabilities are normalized to conform to the requirements
of a probability distribution. The final set of tags is then extracted by performing
a random walk over several iteration starting from the visual/author tag nodes.
This ensures that the tags selected are not just based on their importance from
the accompanying text but also emphasizes on a strong relationship with the
visual tags. The random walk is terminated after k (20 in our experiments)
iterations and the average number of visits to a node across all runs is used as
the score of the tags. The top-k tags is output as the final set of tags for the
images.

4 Experimental Evaluation

We first evaluate the importance of usage tags from UBTer based on an anno-
tator based evaluation. We then introduce 3 independent metrics that measure
different aspects of the extracted tags and use them to extensively test the per-
formance of UBTer against existing tagging baselines on the dataset from [7].
Finally, we evaluate the different parts of the UBTer to measure their significance
in extracting the final tags.

4.1 Importance of Usage Tags

In order to assess the importance of usage tags over the visual tags, we conducted
a survey among 45 participants to rate the overall relevance and diversity of the
tags on a scale of 0–10 for the outputs from UBTer as well as those provided by
the visual tagger [18] on a subset of 20 images. On a scale of 10 for tag relevance
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to the image, usage tags were rated at 8.08 ± 0.58 on an average against the
score of 5.73±1.19 for the visual tags. For diversity, usage tags received a rating
of 6.79 ± 0.8, whereas, the visual tags received 5.93 ± 0.73. This indicates that
UBTer increases the overall relevance of the tags to the image and also performs
better in terms of the diversity of the tags indicating the viability of UBTer.

4.2 Ground Truth Data Set

We utilized the dataset curated by Leong et al. [7] which contains 300 image-text
pairs collected by issuing a query to Google Image API and processing one of
the query results that has a significant amount of text around the images. Leong
et al. [7] have also created a gold standard tag set based on manual annotations
from 5 annotators via Amazon Mechanical Turk accepting annotations from
annotators with approval rating > 98%. The annotators have suggested the tags
about the image based on their understanding of the accompanying text. We
used the Clarifai API [18] to generate the visual tags for all our experiments.

4.3 Metrics for Evaluation

Human annotations cannot be extended for a comprehensive evaluation of the
tags. We therefore extend several existing metrics to measure different aspects
of the tags which are described below.

The term-significance [10] is calculated as the significance of the tags to
the textual content and is calculated by computing the Normalized Discounted
Cumulative Gain (NDCG) over the term frequency of the tags from the usage
content normalized based on the tag’s inverse document frequency in a global
corpus. The intuition here is to compute how important a tag is to the given
context (usage) and normalize it with its “commonness” across a bigger corpus
(as computed by the idf). We use Wikipedia as the bigger corpus similar to
Leong et al. [7].

The term-significance metric purely tests the relevance of the tags to the
usage content. To further capture the tag relevance of the tags to the gold
standard tags and its overall diversity, we propose two additional metrics. To
determine how relevant our tags are to the gold standard tags, we compute
a weighted cosine similarity between the Word2Vec [12] representation of the
extracted tags and the gold tags as given by,

sim =
1
N

∑

i

∑
aj∈TopK(Gi,Ii)

cos(aj , Ii)γj

∑
j γj

, (1)

where N is the number of tags generated for the images, Ii is the vector repre-
sentation of the ith image tag and Gi is the set of all vector representations of
the gold standard tags. The inner sum above computes a weighted average of the
similarity between the generated tag and the most similar gold-standard tags.
An average of the similarity can lead to higher relevance only when the tag is
relevant to all human annotated tags. Alternatively, a max over the similarities
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can lead to high scores for tags even if they are similar to a single human tag.
The parameter γ, (0 ≤ γ ≤ 1) addresses both these scenarios via a similarity-
ranked-decayed-weighted-average. The outer summation averages this measure
between all the generated image tags and the gold standard tags.

Finally, for measuring the diversity in the tags, we use the cophenet cor-
relation coefficient [17] (which is a measure of how faithfully a dendogram
preserves the pairwise distances between the original un-modeled data points).
We perform a hierarchical clustering on the tags based on their Word2Vec repre-
sentation and compute the cophenet correlation coefficient as the diversity score.
Cophenet correlation coefficient is then given by,

c =

∑
i<j(x(i, j) − x̄)(t(i, j) − t̄)

√
[
∑

i<j(x(i, j) − x̄)2][
∑

i<j(t(i, j) − t̄)2]
(2)

where, x(i, j) is the distance between the ith and jth tag. t(i, j) is the height
of the node at which the clusters corresponding to ith and jth clusters are first
joined together. A higher value of the cophenet correlation coefficient indicates
the presence of more significant clusters and hence more tag diversity.

4.4 Tagging Performance

To evaluate the proposed UBTer based tags, we compare it against the baseline
algorithm in [7]. Leong et al. [7] propose 3 independent algorithms based on
“Wikipedia Salience”, “Flickr Picturability” and “Topic Modeling” to extract
tags for an image from its accompanying textual content. In their experiments,
the Wikipedia Salience based tagger was best performing in terms of the precision
and recall. We used this algorithm as the baseline for our evaluations. We also
compare the performance of our UBTer against the visual tagger in [18]. Figure 2
shows the Term Significance, Tag Relevance and Tag Diversity for the tags from
[7,18] and UBTer.
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Fig. 2. Term Significance, Tag Relevance (Eq. 1) and Diversity (Eq. 2) for tags based
on Clarifai [18], Wikipedia Salience [7] and UBTer

The term significance checks significance of the tags with respect to the
accompanying text and hence text based taggers are expected to perform better



Usage Based Tag Enhancement of Images 287

in this measure. Along the expected lines, both the UBTer and the tagger by
Leong et al. [7] perform better than the visual tagger. Between the text based
taggers, the term significance is the best for UBTer indicating the superiority of
the tags in capturing the local context.

The tags from UBTer are also more relevant/close to the human annotated
tags based on the tag relevance (Eq. 1). A superior performance here indi-
cate that UBTer captures the denotational aspects as well as the connotational
aspects.

Capturing the connotational aspects of the images yields more diversity as
indicated by the superior performances of both the text-based taggers on the
scales of diversity. Here again, the tags from UBTer are marginally more diverse
than the tags from Leong et al. [7].

4.5 Evaluation of Algorithmic Parameters

Finally, we independently evaluate the different parts of UBTer and their impor-
tance in extracting relevant and diverse tags capturing the image usage.

Local vs Global Context: In this experiment, we compare the local context
captured by the node importance (Sect. 3.2) against the combined context cap-
tured in UBTer. We extract the top tags based on their node importance score
and compare it against the UBTer tags.
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Fig. 3. Term Significance, Tag Relevance (Eq. 1) and Diversity (Eq. 2) for tags for
different algorithmic parameters. (a) Compares the tags extracted solely based on Node
Importance against the tags from UBTer (where the local and global context of the
tags are jointly accounted for). (b) Compares the effects of different edge weighting
mechanisms on the tagging performance

Figure 3(a) compares the Term Significance, Tag Relevance (Eq. 1) and Tag
Diversity for the two cases. The term significance of the tags based on the local
context with an average of 0.275 is marginally better than the term significance
of UBTer (average at 0.26). Since the term significance captures the local impor-
tance of the tags in the accompanying text, hence the tags from local context is
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expected to be better here. However, the overall tag relevance (average of 0.1090
for local context against 0.1654 for the combined context) and tag diversity
(average of 0.7554 for local context against 0.0.8155 for the combined context) is
better with the combined approach since it accounts for the global relationship
between the tags as well as similarity of connotational tags with visual tags.
Hence better tags without compromising much on the term significance (since
the difference between the two methods is not significant) is derived.

Effect of Edge Weights: In the next experiment, we compare the term sig-
nificance, tag relevance and tag diversity among the edge weighting mechanisms
based on Word2Vec, Wikipedia and the combined metric defined in Sect. 3.3.

From Fig. 3(b), it can be seen that while Word2Vec performs marginally
better than the Wikipedia based relationship on the scales of term significance
(average of 0.2516 for Word2Vec based metric against the 0.2398 average for
the Wikipedia based metric) and tag relevance (average of 0.1567 for Word2Vec
based metric against the 0.1451 average for the Wikipedia based metric). In
terms of overall tag diversity, Wikipedia based metric is marginally better than
Word2Vec (average of 0.7897 for Wikipedia based metric against the 0.7617 aver-
age for the Word2Vec based metric). This could perhaps be because Wikipedia
includes more entities than the Google News Corpus on which the Word2Vec
were trained, and hence aid in the extraction of diverse tags. Note that the
combined approach yields the best tags across all metrics.
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Fig. 4. Correlation between the quality of visual tags and the tags from UBTer

Effect of Visual Tag Quality: We finally compare the correlation between
the quality of the visual tags and the tags from UBTer.

Figure 4 shows the correlation between the two sets of tags on the scales of
Term Significance, Tag Relevance and Tag Diversity. It can be seen that there is
a strong dependence of the term significance and relevance of UBTer tags with
the visual tags as indicated by the slopes of 0.95 and 0.89 respectively of the
corresponding line fits. This is expected since the algorithm starts the random
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walk from the visual tags and hence the output tag quality is directly dependent
on the quality of visual tags. However the tag diversity is less dependent on
the visual tags, since the diversity of the output tags is obtained more from the
accompanying text than from the visual tags indicated by a lower slope of the
corresponding line (0.36).

5 Conclusion

In this paper, we have proposed a novel system - UBTer to enhance the tags of
an image by capturing its usage. Capturing usage through tags is not straight-
forward as majority of the tags describing the neighboring text of an image
don’t pertain to the image - our approach gleans out the relevant tags. This
is done first through understanding the importance of the tag in local con-
text (we conduct sophisticated dependency test to compute the importance)
and then derive the inter-tag relationship (we use Word2Vec and Wikipedia-
co-occurrence) and finally run a biased random walk to shortlist relevant tags.
The tags thus obtained outperform the state-of-the art systems in the lights of
several quality metrics capturing the relevance and diversity of the tags. Such a
tagging system will serve well to improve the image retrieval and recommenda-
tion systems by effectively expressing the user’s context.
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Abstract. Previous work in network analysis has focused on modeling
the roles of nodes in graphs. In this paper, we introduce edge role dis-
covery and propose a framework for learning and extracting edge roles
from large graphs. We also propose a general class of higher-order role
models that leverage network motifs. This leads us to develop a novel
edge feature learning approach for role discovery that begins with higher-
order network motifs and automatically learns deeper edge features. All
techniques are parallelized and shown to scale well. They are also effi-
cient with a time complexity of O(|E|). The experiments demonstrate
the effectiveness of our model for a variety of ML tasks such as improving
classification and dynamic network analysis.

Keywords: Role discovery · Edge roles · Higher-order network analy-
sis · Graphlets · Network motifs · Latent space models · Transfer learning

1 Introduction

In the traditional graph-based sense, roles represent node-level connectivity pat-
terns such as star-center, star-edge nodes, near-cliques or nodes that act as
bridges to different regions of the graph. Intuitively, two nodes belong to the
same role if they are “similar” in the sense of graph structure. Our proposed
research will broaden the framework for defining, discovering and learning net-
work roles, by drastically increasing the degree of usefulness of the information
embedded within rich graphs.

Recently, role discovery has become increasingly important for a variety of
application and problem domains [5,6,9,15,19,28] including descriptive network
modeling [30], classification [14], anomaly detection [30], and exploratory analy-
sis [29]. See [28] for other applications. Despite the importance of role discovery,
existing work has only focused on discovering node roles (e.g., see [5,7,11,23]).
We posit that discovering the roles of edges may be fundamentally more important
and able to capture, represent, and summarize the key behavioral roles in the net-
work better than existing methods that have been limited to learning only the roles
of nodes in the graph. For instance, a person with malicious intent may appear nor-
mal by maintaining the vast majority of relationships and communications with
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 291–303, 2017.
DOI: 10.1007/978-3-319-57454-7 23
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individuals that play normal roles in society. In this situation, techniques that
reveal the role semantics of nodes would have difficulty detecting such malicious
behavior since most edges are normal. However, modeling the roles (functional
semantics, intent) of individual edges (relationships, communications) in the rich
graph would improve our ability to identify, detect, and predict this type of mali-
cious activity since we are modeling it directly. Nevertheless, existing work also
have many other limitations, which significantly reduces the practical utility of
such methods in real-world networks. One such example is that the existing work
has been limited to mainly simple degree and egonet features [14,30], see [28] for
other possibilities. Instead, we leverage higher-order network motifs (induced sub-
graphs) of size k ∈ {3, 4, . . .} computed from [1,2] and other graph parameters
such as the largest clique in a node (or edge) neighborhood, triangle core number,
as well as the neighborhood chromatic, among other efficient and highly discrim-
inative graph features. The main contributions are as follows:

• Edge role discovery: This work introduces the problem of edge role discov-
ery and proposes a computational framework for learning and modeling edge
roles in both static and dynamic networks.

• Higher-order role discovery models: Proposed a general class of higher-
order role models that leverage network motifs and higher-order network fea-
tures for learning both node and edge roles. This work is also the first to use
higher-order network motifs1 for role discovery in general.

• Edge feature representation learning: Proposed a novel deep graph rep-
resentation learning framework that begins with higher-order network motifs
and automatically learns deeper edge features.

• Efficient and scalable: The proposed feature and role discovery methods
are efficient (linear in the number of edges) for modeling large networks. In
addition, all methods are parallelized and shown to scale to massive networks.

2 Related Work

Related research is categorized into the following parts: (1) role discovery, (2)
higher-order network analysis, (3) graph representation learning, (4) sparse
graph features, and (5) parallel role discovery.

Role Discovery: There has been a lot of work on role discovery in gen-
eral [5,6,9,14,15,19,28,30]. However, all existing approaches have focused on
learning roles of nodes in graphs. See [28] for a recent survey on role discov-
ery. In contrast, this work introduces the problem of edge role discovery and
presents a computational framework for learning and extracting edge roles from
large networks. Additional key differences are as follows: (1) our approach uses
higher-order graphlets for discovering more intuitive and meaningful roles, and
(2) the proposed role methods are parallelized and thus able to scale to extremely
large real-world networks. Moreover, our approach supports graphs that are
directed/undirected/bipartite, attributed, typed/heterogeneous, and signed.
1 4-vertex induced subgraphs (graphlets, motifs) and larger.
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Higher-Order Network Analysis: Small induced subgraphs called graphlets
(motifs) have recently been used for graph classification [36], link prediction [25],
and visualization and exploratory analysis [1]. However, this work focuses on
using graphlets for learning and extracting more useful and meaningful roles
from large networks. Furthermore, previous feature-based role methods have
been learned based on simple degree and egonet-based features. Thus, another
contribution of this work is the use of higher-order network motifs (based on
small k-vertex subgraph patterns called graphlets) for role discovery of nodes
and edges — a key and fundamental difference between existing work.

Graph Representation Learning: While a lot of work has engineered features
by hand (or manually selected them) for various ML applications, not much work
has been done on learning a set of useful features automatically. Our approach
is different from previous work in four fundamental ways: (1) the proposed app-
roach learns important and useful edge features automatically, whereas existing
approaches were designed for learning node features, (2) our approach is space-
efficient as it learns sparse features and fast/efficient with a time complexity that
is linear in the number of edges. (3) an efficient parallel implementation with
strong scaling results as shown in Sect. 4 and thus well-suited for large-scale net-
works, and finally, (4) most graph representation learning methods were used in
SRL systems for classification [12], whereas we use the proposed approach for
edge role discovery.

Sparse Graph Features: We also make a significant contribution in terms of
space-efficient role discovery. In particular, this work proposes the first practical
space-efficient approach for feature-based role discovery by learning sparse graph
features automatically. In contrast, feature-based node role methods [14,30] store
hundreds/thousands of dense features in memory, which is impractical for any
relatively large network, e.g., they require more than 2TB of memory for a 500M
node graph with 1,000 features.

Parallel Role Discovery: The existing role discovery methods are sequential,
despite the practical importance of parallel role discovery algorithms that scale
to massive real-world networks. This work is the first parallel role discovery app-
roach. Furthermore, the proposed edge feature learning techniques are also paral-
lelized and designed to be both efficient in terms of space and communication.

3 Framework

This section introduces edge role discovery along with higher-order edge role
models and a computational framework for learning and extracting roles based
on higher-order structures.

Extracting Higher-Order Graphlet Features: Given the graph G = (V,E),
we first decomposes G into its smaller subgraph components called graphlets
(motifs). For this, we use parallel edge-centric graphlet decomposition meth-
ods such as [1] to compute a variety of graphlet edge features of size k =
{3, 4, . . .} (Algorithm 1 Line 2). Moreover, our approach canleverage directed,
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Algorithm 1. A framework for learning deep edge feature representations from
graphs
Input:

a directed and possibly weighted/labeled/attributed graph G = (V, E)

a set of relational edge kernels/operators Φ

a feature similarity function K〈·, ·〉
an upper bound on the number of feature layers to learn T

a feature similarity threshold λ, and bin size α, 0 ≤ α ≤ 1

1: Set τ ← 1

2: parallel for each ei ∈ E and subgraph Hk ∈ H do

3: Compute Xik, the number of instances of graphlet Hk that contain edge ei ∈ E

4: Given G and X, compute in/out/total/weighted edge egonet and edge degree features
(feature layer F1 which includes the graphlet features as well). Append these to X and
set F ← F1

5: repeat � feature layers Fτ for τ = 1, 2, ...,T

6: if τ > 1 then

7: Derive candidate features using the set of relational operators Φ over each of the
novel features fi ∈ Fτ−1 learned in previous layers. Append the candidate features
to X and the feature definitions to Fτ .

8: For each feature fi ∈ Fτ , sort the feature values in ascending order and then map the
feature values using logarithmic binning (with a bin size of α). Given feature fi ∈ Fτ ,
we set the αm edges with smallest feature values to 0, then α edges remaining are set
to 1, and so on.

9: Let GF = (VF , EF ) be the initial feature graph for feature layer Fτ where VF is the set
of features from F ∪ Fτ and EF = ∅

10: parallel for each edge feature fi ∈ Fτ do

11: for each edge feature fj ∈ (Fτ ∪ F) do

12: if K(xi,xj) ≥ λ then

13: Add edge (fi, fj) to EF

14: Partition the feature graph GF using connected components C = {C1, C2, . . .}
15: parallel for each Ck ∈ C do � Prune features

16: Find the earliest feature fi s.t. ∀fj ∈ Ck : i < j.

17: Remove Ck from Fτ and set Fτ ← Fτ ∪ {fi}
18: Discard features from X that were pruned (not in Fτ ) and set F ← F ∪ Fτ

19: Set τ ← τ + 1 and initialize Fτ to ∅ for next feature layer

20: until feature layer Fτ−1 = ∅ (no new features emerged) or max layers reached (τ = T)

21: return X and the set of feature definitions F

undirected, and weighted/typed graphlet counts (among other useful and dis-
criminative graphlet edge statistics) using either exact or estimation methods.
These graphlet features are then used to learn deeper higher-order edge features
(see below for further details).

Edge Feature Representation Learning Framework: This section presents
our deep edge feature representation learning framework (Algorithm1). Recall
that our approach leverages the previous higher-order graphlet counts as a
basis for learning deeper and more discriminative higher-order edge features
(Line 2–3). Next, primitive edge features are computed in Line 4, including
in/out/total/weighted edge egonet and edge degree features. After computing
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the initial feature layer F1 (Line 2–4), redundant features are pruned (Line 5–
20). The framework proceeds to learn a set of feature layers where each successive
layer represents increasingly deeper higher-order edge features (Line 5–20), i.e.,
F1 < F2 < · · · < Fτ such that if i < j then Fj is said to be a deeper layer
than Fi.

The feature layers F2,F3, · · · ,Fτ are learned as follows (Line 5–20): For
each layer Fτ , we first construct and search candidate features using the set
of relational edge feature operators Φ (See Line 7), which include mean, sum,
product, min, max, variance, L1, L2, and even parameterized relational ker-
nels based on RBF, polynomial functions, among others. See Table 1 for a few
examples. Now, we compute the similarity between all pairs of features and
prune edges between features that are not significantly correlated (Line 9–13):
EF = {(fi, fj) | ∀(fi, fj) ∈ |F| × |F| s.t. K(fi, fj) > λ}. This process results
in a feature similarity graph where large edge weights indicate strong similar-
ity/correlation between two features. Now, the feature similarity graph GF from
Line 9–13 is used to prune all redundant edge features from Fτ . Features are
pruned by first partitioning the feature graph (Line 14) using connected compo-
nents, though our approach is flexible and allows other possibilities (e.g., largest
clique). Intuitively, each connected component is a set of redundant edge fea-
tures since edges in GF represent strong dependencies between features. For
each connected component Ck ∈ C (Line 15–17), we identify the earliest feature
in Ck = {..., fi, ..., fj , ...} (Line 16) and remove all others from Fτ (Line 17).
After pruning the feature layer Fτ , Line 18 ensures the pruned features are
removed from X and updates the set of edge features learned thus far by setting
F ← F ∪ Fτ . Line 19 increments τ and set Fτ ← ∅. Finally, Line 20 checks
for convergence, and if the stopping criterion is not satisfied, then the approach
tries to learn an additional feature layer (Line 5–20).

Table 1. Relational edge feat. operators

Operator Definition

Hadamard � ∏

ej∈Γ (ei)
fk(ej)

Mean � 1
di

∑

ej∈Γ (ei)
fk(ej)

Sum ⊗ ∑

ej∈Γ (ei)
fk(ej)

Wt. Lp ‖ · ‖p̄

∑

ej∈Γ (ei)
|fk(ei) − fk(ej)|p

Learning Higher-Order Edge Roles:
Let X =

[
xij

] ∈ R
m×f be an edge

feature matrix with m rows represent-
ing edges and f columns representing
higher-order graph features learned
from our edge feature representation
learning approach. Given X ∈ R

m×f ,
the edge role discovery optimization
problem is to find U ∈ R

m×r and
V ∈ R

f×r where r � min(m, f) such that the product of two lower rank matri-
ces U and VT minimizes the divergence between X and X′ = UVT . Intuitively,
U ∈ R

m×r represents the latent role mixed-memberships of the edges whereas
V ∈ R

f×r represents the contributions of the features with respect to each of
the roles. Each row uT

i ∈ R
r of U can be interpreted as a low dimensional rank-r

embedding of the ith edge in X. Alternatively, each row vT
j ∈ R

r of V repre-
sents a r-dimensional role embedding of the jth feature in X using the same
low rank-r dimensional space. Also, uk ∈ R

m is the kth column representing a
“latent feature” of U and similarly vk ∈ R

f is the kth column of V. For learning
higher-order edge roles, we solve:
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arg min
(U,V)∈C

{
Dφ(X‖UVT ) + R(U,V)

}
(1)

where Dφ(X‖UVT ) is an arbitrary Bregman divergence [10] between X and
UVT . Furthermore, the optimization problem in (1) imposes hard constraints
C on U and V such as non-negativity constraints U,V ≥ 0 and R(U,V) is a
regularization penalty. In this work, we mainly focus on solving Dφ(X‖UVT )
under non-negativity constraints:

arg min
U≥0,V≥0

{
Dφ(X‖UVT ) + R(U,V)

}
(2)

Given the edge feature matrix X ∈ R
m×f , the edge role discovery problem is

to find U ∈ R
m×r and V ∈ R

f×r such that X ≈ X′ = UVT . To measure the
quality of our edge mixed membership model, we use Bregman divergences:

∑

ij

Dφ(xij‖x′
ij) =

∑

ij

(
φ(xij) − φ(x′

ij) − �(xij , x
′
ij)

)
(3)

where φ is a univariate smooth convex function and �(xij , x
′
ij) = ∇φ(x′

ij)(xij −
x′

ij) where ∇pφ(x) is the p-order derivative operator of φ at x. Furthermore,
let X − UVT = X(k) − ukvT

k denote the residual term in the approximation
X ≈ X′ = UVT where X(k) is the k-residual matrix defined as:

X(k) = X −
∑

h�=k

uhvT
h = X − UVT + ukvT

k , for k = 1, . . . , r (4)

We use a fast scalar block coordinate descent approach that easily generalizes
for heterogeneous networks [32]. The approach considers a single element in U
and V as a block in the block coordinate descent framework. Replacing φ(y) with
the corresponding expression from Table 2 gives rise to a fast algorithm for each
Bregman divergence. Table 2 gives the updates for Frobenius norm (Fro.), KL-
divergence (KL), and Itakura-Saito divergence (IS). Note that Beta divergence
and many others are also easily adapted for our higher-order edge role discovery
framework.

Table 2. Role divergences and update rules

φ(y) ∇2φ(y) Dφ(x‖x′) Update (vjk =)

Fro. y2/2 1 (x − x′)2/2

∑m
i=1 x

(k)
ij

uik
∑m

i=1 uikuik

KL y log y 1/y x log x
x′ − x + x′

∑m
i=1 x

(k)
ij

uik/x′
ij

∑m
i=1 uikuik/x′

ij

IS − log y 1/y2 x
x′ − log x

x′

∑m
i=1 x

(k)
ij

uik/x′
ij

2
∑m

i=1 uikuik/x′
ij

2

Model Selection: In this
section, we introduce an
approach that automati-
cally learns the appropri-
ate role mixed-membership
model. The approach is
based on the Minimum
Description Length (MDL) [13,26] principle; a practical formalization of Kol-
mogorov complexity [17]. More formally, we find the model M� = (Vr,Ur) that
leads to the best compression by solving:

M� = arg min
M∈M

L(M) + L(X |M) (5)
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where M is the model space, M� is the model given by the solving the above
minimization problem, and L(M) as the number of bits required to encode M
using code Ω, which we refer to as the description length of M with respect
to Ω. Recall that MDL requires a lossless encoding. Therefore, to reconstruct
X exactly from M = (Ur,Vr) we must explicitly encode the error E such that
X = UrVT

r +E. Hence, the total compressed size of M = (Ur,Vr) with M ∈ M
is simply L(X |M) = L(M)+L(E). Given a role mixed-membership model with
r roles M = (Ur,Vr) ∈ M, the description length is decomposed into: (1) bits
required to describe the model, and (2) cost of describing the approximation
errors X − Xr where Xr = UrVT

r is the rank-r approximation of X,

Ur =
[
u1 u2 · · · ur

] ∈ R
m×r, and Vr =

[
v1 v2 · · · vr

] ∈ R
f×r (6)

The model M� is the model M ∈ M that minimizes the total description length:
the model description cost X and the cost of correcting the errors of our model.
Let |U| and |V| denote the number of nonzeros in U and V, respectively. Thus,
the model description cost of M is: κr(|U| + |V|) where κ is the bits per value.
Similarly, if U and V are dense, then the model description cost is simply κr(m+
f) where m and f are the number of edges and features, respectively. Assuming
errors are non-uniformly distributed, one possibility is to use KL divergence (see
Table 2) for the error description cost2. The cost of correcting a single element
in the approximation is Dφ(x‖x′) = x log x

x′ − x + x′ (assuming KL-divergence),
and thus, the total reconstruction cost is:

Dφ(X‖X′) =
∑

ij

Xij log
Xij

X ′
ij

− Xij + X ′
ij (7)

where X′ = UVT ∈ R
m×f . Other possibilities are given in Table 2. The above

assumes a particular representation scheme for encoding the models and data.
Recall that the optimal code assigns log2 pi bits to encode a message [34]. Lloyd-
Max quantization [18,22] with Huffman codes [16,35] are used to compress the
model and data [8,24]. Notice that we require only the length of the description
using the above encoding scheme, and thus we do not need to materialize the
codes themselves. This leads to the improved model description cost: κ̄r(|U| +
|V|) where κ̄ is the mean bits required to encode each value3. In general, the
higher-order (edge) role discovery framework can easily leverage other model
selection techniques such as AIC [4] and BIC [33].

4 Experiments

This section investigates the effectiveness and scalability of the proposed edge
role discovery framework (Sect. 3). All network data is available at nr [27].

2 The representation cost of correcting approximation errors.
3 Note log2(m) quantization bins are used.
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Fig. 1. The valley identifies the
correct number of latent roles.

Higher-Order Model Selection: We now
validate our model learning approach. Figure 1
demonstrates the effectiveness of our app-
roach for automatically selecting the “best”
model from the space of models expressed
in the framework (Sect. 3). In particular, our
approach finds the best model with r = 18
roles by minimizing the description length
(in bits)4. As expected, the model descrip-
tion cost is inversely proportional to the error
description cost. We also demonstrate the effi-
ciency of our approach in Fig. 2. Furthermore,
Fig. 4 demonstrates the impact on the learn-
ing time, number of novel features discovered, and their sparsity, as the tolerance
(ε) and bin size (α) varies.
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Fig. 2. Runtime of our edge role
model selection. The curve is
the average over 50 experiments
and the dotted lines represent
three standard deviations. The
result reported above is from a
laptop with a single core.

Modeling Dynamic Networks: In this sec-
tion, we investigate the Enron email communi-
cation networks using the higher-order dynamic
edge role mixed-membership model. The Enron
email data consists of 151 Enron employees
whom have sent 50.5k emails to other Enron
employees over a 3 year period. The email com-
munications are from 05/11/1999 to 06/21/2002.
For learning we use only the first year of emails.
A dynamic network {Gt}T

t=1 is constructed from
the remaining email communications (approxi-
mately 2 years) where each snapshot graph Gt,
t = 1, . . . , T represents a month of communi-
cations. Interestingly, our higher-order dynamic
node role mixed-membership model has 5 latent
roles, whereas we learn 18 roles using the edge
role model. Evolving edge and node mixed-
memberships from the Enron email communication network are shown in Fig. 3.
The set of edges and nodes visualized in Fig. 3 are selected using the differ-
ence entropy rank (defined below) and correspond to the edges and nodes with
largest difference entropy rank d. The first role in Fig. 3 represents inactivity
(dark blue). The above empirical results suggest that edge roles are superior
to node roles in three fundamental ways: (1) Edge roles reveal novel behavioral
characteristics that are not captured by the node role models. We posit that
these novel behavioral roles are intrinsic to the edge semantics (which represent
communications in Fig. 3). (2) Roles learned on the edges represent behavioral
characteristics at a much lower-level of granularity than those learned on nodes.
(3) Edge roles are better at modeling dynamic/temporal networks and avoid

4 We note that MDL is used in Fig. 1, though AIC/BIC gave similar results.
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Fig. 3. Temporal changes in the edge and node mixed-membership vectors. The hori-
zontal axes of each subplot is time, whereas the vertical axes represent the components
of each mixed-membership vector. Roles are represented by different colors. (Color
figure online)

Fig. 4. Impact on the learning time, number of features, and their sparsity, as the
tolerance ε (rows) and bin size α (columns) varies.

many of the unrealistic assumptions that lie at the heart of dynamic node role
mixed-membership models.

Fig. 5. Edge and node roles for
ca-netscience. Link color repre-
sents the edge role and node
color indicates the correspond-
ing node role. (Color figure
online)

We define d = maxt H(ut) − mint H(ut)
as the difference entropy rank where H(ut) =
−ut · log(ut) and ut is the r-dimensional mixed-
membership vector for an edge (or node) at
time t. Using the difference entropy rank, we
are able to reveal important communications
between key players involved in the Enron Scan-
dal, such as Kenneth Lay, Jeffrey Skilling, and
Louise Kitchen. In particular, anomalous rela-
tionships between these individuals appear in
the top anomalies from the difference rank.
Notice that when node roles are used for iden-
tifying dynamic anomalies in the graph, we are
only provided with potentially malicious employ-
ees, whereas using edge roles naturally allow us
to not only detect the key malicious individu-
als involved, but also the important relationships between them, which can be
used for further analysis, among other possibilities. Many results are removed
for brevity.

Exploratory Analysis: Figure 5 visualizes the node and edge roles learned
for ca-netscience. While our higher-order role edge discovery method learns a
stochastic r-dimensional vector for each edge (and/or node) representing the
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individual role memberships, Fig. 5 assigns a single role to each link and node,
i.e., the role with maximum likelihood k� ← arg maxk uik. The higher-order
edge and node roles from Fig. 5 are clearly meaningful. For instance, the red
edge role represents a type of bridge relationship.

Table 3. Higher-order sparse graph feature
learning for latent node and edge network
modeling. Recall that f is the number of fea-
tures, L is the number of layers, and ρ(X) is
the sparsity of the feature matrix. Edge values
are bold.

Graph f L ρ(X) ρ(Z)

socfb-MIT 2080 (912) 8 (9) 0.318 (0.334)

Yahoo-msg 1488 (405) 7 (7) 0.164 (0.181)

Enron 843 (109) 5 (4) 0.312 (0.320)

Facebook 1033 (136) 7 (5) 0.187 (0.162)

bio-DD21 379 (723) 6 (6) 0.215 (0.260)

Sparse Graph Feature Learn-
ing: Recall that the proposed fea-
ture learning approach attempts
to learn “sparse graph features”
to improve learning and effi-
ciency, especially in terms of space-
efficiency. This section investigates
the effectiveness of our sparse graph
feature learning approach. Results
are presented in Table 3. In all
cases, our approach learns a highly
compressed representation of the
graph, requiring only a fraction of the space of current (node) approaches. More-
over, the density of edge and node feature representations learned by our app-
roach is between [0.164, 0.318] and [0.162, 0.334] for nodes (See ρ(X) and ρ(Z)
in Table 3) and up to 6x more space-efficient than other approaches.

Improving Classification via Link Prediction: This section demonstrates
the effectiveness of edge roles for improving relational classification by predict-
ing links between nodes in the graph. For consistency, we first construct node
features from the edge role memberships using a set of relational operators (e.g.,
relational mean, sum, var, max, among others), as introduced in [31]. Thus, let
us assume xi is a k-dimensional feature vector for node vi ∈ V . Given xi and
xj , and a positive semidefinite kernel function K〈·, ·〉, the relationship strength
between vi and vj is defined as:

S = [Sij ], ∀i, j and Sij =

{
K〈xi,xj〉 if (vi, vj) ∈ E ∧ K〈xi,xj〉 > ε

0 otherwise
(8)
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Fig. 6. Relative improvement in label consistency (homophily) — a known proxy for
classification performance. In all cases, links predicted using edge roles improves the
label consistency over both the initial graph as well as links predicted using node roles.
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where K〈xi,xj〉 represents the “closeness” between node vi and vj in the latent
lower-dimensional subspace, S ∈ R

n×n is the (implicit) “similarity” matrix
(which can be thought of as the weighted adjacency matrix for a graph G′)
and Sij represents the relationship strength between node vi and vj such that
(vi, vj) ∈ E, and 0 otherwise. Note ε is a small scalar that controls sparsity. In
this work, we use K〈xi,xj〉 = exp(−‖xi − zj‖2/2σ2). Given S, let G′ = (V,E′)
denote the predicted latent graph where E′ is the set of k predicted links with
the largest relationship strength weights. By definition |E| + |E′| = m + k and
thus E ∩ E′ = ∅.

For quantitative evaluation of the edge roles, we use a measure of homophily
called label consistency [21]. Let ξ(vi) be the class of vi, then the label consis-
tency of G is defined as: L(G) = 1/|E|

∑
(vi,vj)∈E L(vi, vj) where L(vi, vj) = 1 if

ξ(vi) = ξ(vj) and 0 otherwise. Hence, label consistency measures how often two
connected nodes belong to the same class. It is a good proxy measure for classifi-
cation performance since most existing statistical relational learning (SRL) [12]
methods assume the labels of neighbors are highly correlated, i.e., the network
exhibits high relational autocorrelation (or homophily) [12,20]. To determine
the effectiveness of edge roles for link prediction, we measure L(G) and L(G′).
Notice that if the higher-order edge roles (and node roles for that matter) are
useful and effective, one would expect that L(G) < L(G′), that is, the predicted
links resulted in higher homophily among the connected nodes since the class
labels of the connected nodes in G′ are more consistent than G. Results are pro-
vided in Fig. 6 for six different networks. In particular, Fig. 6 demonstrates the
effectiveness of the higher-order edge roles (and node roles) for link prediction.
In all cases, both the higher-order node and edge roles significantly outperform
the baseline. Further, the edge role models always perform significantly better
than the node roles.

Computational Complexity: Recall that m is the number of edges, f is the
number of features, and r is the number of latent roles. The total computational
complexity of the higher-order latent space model is O(

f(mf + mr)
)
. The com-

putational complexity is decomposed into the following main parts: Edge feature
learning takes O(f(m + mf)). Model learning takes O(mfr) in the worst case
(which arises when U and V are completely dense). The quantization and Huff-
man coding terms are very small and therefore ignored. Role assignment using
scalar element-wise coordinate descent has worst case complexity of O(mfr) per
iteration which arises when X is completely dense. We assume the initial graphlet
features are computed using fast and accurate estimation methods, seel [3].

Scalability: To evaluate the scalability of the parallel framework for modeling
higher-order latent edge roles, we measure the speedup defined as Sp = T1/Tp

where T1 is the execution time of the sequential algorithm, and Tp is the execu-
tion time of the parallel algorithm with p processing units. Overall, the methods
show strong scaling (See Fig. 7). Similar results were observed for other networks.
The experiments used a machine with 4 Intel Xeon E5-4627 v2 3.3 GHz CPUs.
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5 Conclusion
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Fig. 7. Strong parallel scaling is
observed.

In this paper, we introduced the edge role
discovery problem and presented a compu-
tational framework for learning and extract-
ing edge roles from large networks. In addi-
tion, we proposed higher-order role discov-
ery methods that leverage network motifs
(including all motifs of size 3, 4, and larger)
for learning more meaningful and discrimi-
native roles. We also proposed a novel edge
feature learning approach, which was used
for our feature-based edge roles. Furthermore, all methods are space-efficient
(by learning sparse features) and efficient with a runtime that is linear in
the number of edges. Finally, the approach also supports graphs that are
directed/undirected/bipartite, attributed, typed, and signed.
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Abstract. Variable selection plays an important role in analyzing high
dimensional data. When the data possesses certain group structures in
which individual variables are also meaningful scientifically, we are nat-
urally interested in selecting important groups as well as important vari-
ables. We introduce a new regularization by combining the �p,0-norm
and �0-norm for bi-level variable selection. Using an appropriate DC
(Difference of Convex functions) approximation, the resulting problem
can be solved by DC Algorithm. As an application, we implement the
proposed algorithm for estimating multiple covariance matrices sharing
some common structures such as the locations or weights of non-zero
elements. The experimental results on both simulated and real datasets
demonstrate the efficiency of our algorithm.

Keywords: Sparse group · Variable selection · Covariance matrix · DC
programming · DCA

1 Introduction

Variable selection plays an important role in many applications and has drawn
increased attention from many researchers in various domains such as machine
learning, statistics, computational biology, signal processing and other related
areas. In recent years, there are many works based on regularization methods
for variable selection. When the data possesses certain group structures in which
individual variables are also meaningful scientifically, we are naturally interested
in selecting important groups as well as important variables within the selected
groups. This is referred as bi-level variable selection. For example, in genomic
data analysis, the correlations between genes sharing the biological pathway can
be high. Hence these genes should be considered as a group. Moreover, we also
would like to identify particularly important genes in pathways of interest. In
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this paper, we introduce a natural approach for enforcing sparsity of groups and
within each group by using the �0 + �p,0 regularization with p ≥ 1.

We define the step function s : R → R by s(t) = 1 if t �= 0 and s(t) = 0 oth-
erwise. Assume that x = (x1, ..., xd) ∈ R

d is partitioned into J non-overlapping
groups x1, ..., xJ , then the �p,0-norm and �0-norm of x are respectively defined by

‖x‖p,0 =
J∑

j=1

s(‖xj‖p) and ‖x‖0 =
d∑

i=1

s(xi). (1)

The �0 + �p,0 regularization problem takes the form

min
{
f(x) + λ‖x‖0 + γ‖x‖p,0 : x ∈ K ⊂ R

d
}
, (2)

where λ and γ are non-negative tuning parameters. The corresponding approx-
imate problem of (2) is

min

⎧
⎨

⎩Fp(x) := f(x) + λ
d∑

i=1

ηα(xi) + γ
J∑

j=1

ηα(‖xj‖p) : x ∈ K

⎫
⎬

⎭, (3)

where ηα(t) = min{1, α|t|} is the Capped-�1 function [8], and α is a tuning
parameter such that ηα(t) approximates the step function s(t) as α tends to +∞.

Many statistical modeling problems take the form of (2), for example, multi-
ple linear/logistic/Cox regression, multiple graphical models, multiple covariance
matrices estimation, and compressed sensing, etc. Several existing works have
been developed for bi-level variable selection in the literature. The first work,
named the group bridge method, was proposed in [5]. [2,3] proposed the compo-
sition of group-level penalties with other individual variable-level penalties for
bi-level variable selection and developed a group coordinate descent algorithm for
solving these problems. Using a convex approximation approach of the �0 + �2,0

regularization, [4,10] proposed the sparse group lasso (�1 + �2,1 regularization)
to achieve bi-level selection.

In this paper, we investigate a DC (Difference of Convex functions) approxi-
mation approach for the general �0 + �p,0 regularization with p ≥ 1. We consider
the problem (2), where K is a convex set in R

d and f is a finite DC function on
R

d. The paper makes the following contributions.
Firstly, we develop a solution method based on DC programming and DCA

(DC Algorithms), a powerful technique in nonconvex optimization [6,9], for solv-
ing the nonconvex approximate problem (3). Considering a special formulation of
the approximate problem we propose a special DCA which requires to compute
a proximal operator at each iteration. This proximal operator can be computed
in closed form or by an inexpensive algorithm, hence the proposed algorithm is
very useful in many real application problems.

Secondly, among �0 + �p,0 regularizations, we note that the �0 + �1,0 regular-
ization is the most interesting with several useful properties from computational
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aspect. The DCA scheme for solving the resulting approximate problem itera-
tively computes a proximal operator which can be separated into independent
sub-operators in many applications. This interesting feature makes our proposed
approach very efficient in terms of computational complexity.

Finally, as an application, we consider the problem of simultaneous group and
individual variable selection in estimation of multiple covariance matrices and
perform a careful empirical experiment on both simulated and real datasets to
study the performance of the proposed approach. The proposed DCA schemes
move the difficulty terms to the second DC components, hence the resulting
sequence of convex sub-problems is easier to solve. Especially, the convex sub-
problem at each iteration of the first DCA can be decomposed into separable
smaller sub-problems.

The rest of the paper is organized as follows. In Sect. 2, we present a brief
introduction of DC programming and DCA for general DC programs, and illus-
trate how to apply DCA to solve the approximate problem. The application
of the proposed algorithm to bi-level variable selection in estimation of multi-
ple covariance matrices is described in Sect. 3. The numerical experiments are
reported in Sect. 4 and Sect. 5 concludes the paper.

2 Solution Methods via DC Programming and DCA

2.1 A Brief Introduction of DC Programming and DCA

DC programming and DCA constitute the backbone of smooth/nonsmooth non-
convex programming and global optimization. They address the problem of min-
imizing a DC function on the whole space R

n or on a closed convex set Ω ⊂ R
n.

Generally speaking, a standard DC program takes the form:

α = inf{F (x) := G(x) − H(x) |x ∈ R
n} (Pdc),

where G,H are lower semi-continuous proper convex functions on R
n. Such a

function F is called a DC function, and G − H a DC decomposition of F while
G and H are the DC components of F . A DC program with convex constraint
x ∈ Ω can be equivalently expressed as an unconstrained DC program by adding
the indicator function χΩ (χΩ(x) = 0 if x ∈ Ω and +∞ otherwise) to the first
DC component G.

For a convex function θ, the subdifferential of θ at x0 ∈ domθ := {x ∈ R
n :

θ(x0) < +∞}, denoted by ∂θ(x0), is defined by

∂θ(x0) := {y ∈ R
n : θ(x) ≥ θ(x0) + 〈x − x0, y〉,∀x ∈ R

n}.

The subdifferential ∂θ(x0) generalizes the derivative in the sense that θ is dif-
ferentiable at x0 if and only if ∂θ(x0) ≡ {∇xθ(x0)}.

A point x∗ is called a critical point of G−H, or a generalized Karush-Kuhn-
Tucker point (KKT) of (Pdc)) if ∂H(x∗) ∩ ∂G(x∗) �= ∅.
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Starting from an initial point x0, the DCA consists in constructing two
sequences {xl} and {yl} such that, for any l = 0, 1, 2, . . .

yl ∈ ∂H(xl) and xl+1 ∈ arg min
x∈Rn

{G(x) − 〈yl, x〉}.

The sequence {xl} generated by DCA enjoys the following properties [6,9]:

(i) The sequence {F (xl)} is decreasing;
(ii) If F (xl+1) = F (xl), then xl is a critical point of (Pdc). In such a case, DCA

terminates at l-th iteration.
(iii) Any limit point of the sequence {xl} is a critical point of (Pdc).

Note that the construction of DCA is based on G and H but not on F
itself, and there are as many DCA as there are DC decompositions. This is a
crucial fact in DC programming. It is important to study various equivalent
DC forms of a DC problem, because each DC function F has infinitely many
DC decompositions which have crucial implications for the qualities (speed of
convergence, robustness, efficiency, globality of computed solutions,...) of DCA.

2.2 DCA for Solving the Approximate Problem

First of all, we assume that the DC function f = g1 + g2 − h and there exists
a nonnegative number μ such that μ

2 ‖x‖2 − g2(x) is convex, where g1, g2 and h
are convex functions. In addition, the function ηα(t) can be expressed as a DC
function:

ηα(t) = α|t| − r(t), (4)

where r(t) = −1+max{1, α|t|}. Hence, we have a special DC formulation of the
problem (3) as follows:

min
x

{Fp(x) = Gp(x) − Hp(x)} , (5)

where

Gp(x) = χK(x) + g1(x) +
μ

2
‖x‖2 + λα‖x‖1 + γα‖x‖p,1,

Hp(x) = h(x) +
μ

2
‖x‖2 − g2(x) + λ

d∑

i=1

r(xi) + γ

J∑

j=1

r(‖xj‖p).

Following the generic DCA scheme, DCA for solving the problem (5) can be
described as follows.
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DCA (special DCA for solving the problem (5))

Initialization: Choose x0 ∈ K, l ← 0 and a tolerance τ > 0.
repeat

1. Compute yl ∈ ∂Hp(xl).
2. Compute xl+1 by solving the problem:

min
x

{
χK(x) + g1(x) +

μ

2
‖x‖2 + λα‖x‖1 + γα‖x‖p,1 − 〈yl, x〉

}
, (6)

i.e., xl+1 = proxχK+g1+λα‖.‖1+γα‖.‖p,1
μ (yl/μ)

3. l ← l + 1.
until ‖xl −xl−1‖2 ≤ τ(‖xl−1‖2 +1) or |Fp(xl)−Fp(xl−1)| ≤ τ(|Fp(xl−1)|+1)

Here, proxϕ
μ stands for the proximal operator associated to ϕ defined by

proxϕ
μ(t) = arg min

x
{ϕ(x) +

μ

2
‖x − t‖2}.

Remark 1. (i) We consider a special case p = 1, then we have ‖x‖1,1 ≡ ‖x‖1 and
the problem (6) can be rewritten as follows.

min
x

{
χK(x) + g1(x) +

μ

2
‖x‖2 + α(λ + γ)‖x‖1 − 〈yl, x〉

}
. (7)

This problem has the form of an �1-perturbed problem which can be found in
many previous works (see [7] and referenes therein). Thanks to the �1-norm, if
χK(x)+ g1(x) is separable in its variables, so is the problem (7). This leads to a
potential massive reduction in computational complexity. Thus, we can say that
the �0 + �1,0 is the most interesting regularization for DCA.

In addition, the �1,0 regularization term can simultaneously encourage spar-
sity at the level of both groups and individual variables in each group. Hence,
we can set λ = 0 in this case to avoid performing tuning this parameter.

(ii) Special DCA moves the difficulty terms in g2 to the second DC component
H, hence the resulting sequence of convex sub-problems are easier to solve.

3 Application to Estimation of Multiple Covariance
Matrices

Estimation of sparse covariance matrices plays an important role in various areas
of statistical analysis such as portfolio management and risk assessment, high
dimensional classification, analysis of independence and conditional indepen-
dence relationships between components in graphical models, etc. In recent years,
much interest has focused on estimating a covariance matrix on the basis of an
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n × d data matrix X, where n is the number of observations and d is the num-
ber of features. Suppose that the observations x1, ..., xn ∈ R

d are independent
and identically distributed N (0, Σ), where Σ is a positive definite d × d matrix.
A natural way to estimate the covariance matrix Σ is via minimizing negative
log-likelihood. The resulting optimization problem is

min
Σ�0

{
log det Σ + tr(Σ−1S)

}
, (8)

where S = 1/n
∑n

i=1 xix
T
i is the sample covariance matrix and the notation

Σ � 0 means that Σ is symmetric positive definite.
In this paper, we consider the case of multiple classes. Suppose that we

have a dataset with Q classes. For the k-th class, let Xk be an nk × d matrix
consisting of nk observations with the number of features d common to all classes.
Furthermore, we assume that the observations within each class are independent
and identically distributed according to N (0, Σk). Let Sk = 1

nk
(Xk)T Xk be

the sample covariance matrix for the k-th class. The Q covariance matrices are
estimated via minimizing negative log-likelihood

min
Σk�0

{
Q∑

k=1

nk

[
log detΣk + tr((Σk)−1Sk)

]
}

. (9)

In the problem of estimating multiple covariance matrices, the covariance
matrices share some common structures such as the locations and weights of
non-zero elements. Therefore, the elements (i, j) across all Q covariance matrices
should be considered as groups. Moreover, each variable within each group also
has different roles in its covariance matrix. Hence, we propose the bi-level variable
selection problem in estimation of multiple covariance matrices which takes the
form:

min
Σk�0

{
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk)

]
+ λ‖{Σ}‖0 + γ‖{Σ}‖p,0

}
, (10)

where λ and γ are non-negative tuning parameters, and

‖{Σ}‖0 =
Q∑

k=1

∑

i,j

s(Σk
ij), ‖{Σ}‖p,0 =

∑

i,j

s(‖(Σ1
ij , ..., Σ

Q
ij )‖p).

If Sk is nonsingular for all k, then there exist δ1, ..., δQ > 0 such that the problem
(10) is equivalent to the following problem

min
{Σ}∈Ω

{
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk)

]
+ λ‖{Σ}‖0 + γ‖{Σ}‖p,0

}
, (11)

where Ω = {{Σ} := {Σ1, ..., ΣQ} : Σk � δkI, k = 1, ..., Q}. Here, I denotes
the d × d identity matrix, and the notation Σk � δkI means that Σk − δkI is
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symmetric positive semidefinite. Note that if Sk is not full rank, we can replace
Sk with Sk + εI for some ε > 0.

We observe that the problem (11) takes the form of (2) where the function
f is given by

f({Σ}) =
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk)

]
,

and the corresponding approximate problem is

min
{Σ}∈Ω

⎧
⎨

⎩f({Σ}) + λ

Q∑

k=1

∑

ij

ηα(Σk
ij) + γ

∑

ij

ηα(‖(Σ1
ij , ..., Σ

Q
ij )‖p)

⎫
⎬

⎭ . (12)

We note that log det Σk is concave while tr((Σk)−1Sk) is convex in Σk. Hence
we have a natural DC decomposition of f as follows:

f({Σ})) = g1({Σ}) + g2({Σ}) − h({Σ}), (13)

where g1({Σ}) = 0 and

g2({Σ}) =
Q∑

k=1

nktr((Σk)−1Sk), h({Σ}) =
Q∑

k=1

−nk log det Σk.

For estimating μ such that μ
2 ‖{Σ}‖2 − g2({Σ}) is convex, we have the following

lemma.

Lemma 1. If μ ≥ max
k

nk‖Sk‖2δ−3
k , then μ

2 ‖{Σ}‖2−g2({Σ}) is convex in {Σ}.

Remark 2. From the Lemma 1, we can choose μ = maxk nk‖Sk‖2δ−3
k .

According to DCA with p = 1, at each iteration l, we have to compute
{V l} ∈ ∂H1({Σl}), and

{Σl+1} = proxχΩ+λα‖.‖1+γα‖.‖1,1
μ

({V l}/μ
)
. (14)

Computing {V l} can be explicitly given by {V l} = {Al} + {Bl} + {Cl}, where

(Ak)l = μ(Σk)l + nk[(Σk)l]−1Sk[(Σk)l]−1 − nk[(Σk)l]−1, (15)

(Bk)l
ij =

{
λαsgn(Σk)l

ij if α|(Σk)l
ij | ≥ 1

0 otherwise
, (16)

(Ck)l
ij =

{
γαsgn(Σk)l

ij if α‖(Σ1)l
ij , ..., (Σ

Q)l
ij‖1 ≥ 1

0 otherwise
. (17)
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For computing {Σl+1}, we notice that ‖{Σ}‖1,1 = ‖{Σ}‖1 is separable. Hence
the proximal operator (14) can be separated into Q independent sub-problems
of the same form

min
Σk�δkI

{
ϕ(Σk) :=

μ

2
‖Σk‖2F + λα‖Σk‖1 + γα‖Σk‖1 − 〈(V k)l, Σk〉

}
. (18)

For solving each convex sub-problem (18), we use the alternating direction
method of multipliers (ADMM) [1]. The augmented Lagrangian function of this
problem is

L1(Σ
k, X, Y ) =

μ

2
‖Σk‖2F − 〈(V k)l, Σk〉 + (λ + γ)α‖X‖1 + 〈Y, Σk − X〉 + ρ

2
‖Σk − X‖2F .

More specifically, at each iteration m of ADMM, we compute

Σk,l,m+1 = arg min
Σ�δkI

L1(Σ,Xm, Y m) = UDδk
UT (19)

Xm+1 = arg min
X∈Rd×d

L1(Σk,l,m+1,X, Y m) = S
(

Σk,l,m+1 +
Y m

ρ
,
(λ + γ)α

ρ

)
(20)

Y m+1 = Y m + ρ(Σk,l,m+1 − Xm+1). (21)

where Dδk
= diag(max(Dii, δk)), UDUT = ((V k)l − Y m + ρXm)/(μ + ρ),

and S is the elementwise soft-thresholding operator defined by S(A,B)ij =
sgn(Aij)(|Aij | − Bij)+. DCA for solving (12) with p = 1 is summarized in the
following algorithm.

DCA1: (DCA for solving (12) with p = 1)

Initialization: Choose {Σ0} ∈ Ω, l ← 0 and a tolerance τ > 0.
repeat

1. Compute (V k)l = (Ak)l + (Bk)l + (Ck)l using (15)-(17).
2. Parallel compute (Σk)l+1, k = 1, ..., Q by ADMM:
Set m = 0, choose X0, Y 0 ∈ R

d×d.
repeat

+ Compute Σk,l,m+1,Xm+1, Y m+1 using (19)-(21),
+ m ← m + 1.

until |ϕ(Σk,l,m) − ϕ(Σk,l,m−1)| ≤ τ(|ϕ(Σk,l,m−1)| + 1).
3. l ← l + 1.

until Stopping criterion.

According to DCA with p = 2, at each iteration l, we have to compute
{V l} ∈ ∂H2({Σl}), and

{Σl+1} = proxχΩ+λα‖.‖1+γα‖.‖2,1
μ

({V l}/μ
)
. (22)
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Computing {V l} can be explicitly computed as {V l} = {Al} + {Bl} + {Dl},
where {Al}, {Bl} are respectively computed by using (15) and (16), and

(Dk)l
ij =

⎧
⎨

⎩

γα(Σk)l
ij

‖(Σ1)l
ij ,...,(ΣQ)l

ij‖2
if α‖(Σ1)l

ij , ..., (Σ
Q)l

ij‖2 ≥ 1

0 otherwise
. (23)

The proximal operator (22) cannot be separated into smaller sub-operators as
the previous case. Here we also apply the ADMM algorithm for computing this
operator. For summary, we describe the algorithm for (12) with p = 2 in the
algorithm below.

DCA2: (DCA for solving (12) with p = 2)

Initialization: Choose {Σ0} ∈ Ω, l ← 0.
repeat

1. Compute (V k)l = (Ak)l + (Bk)l + (Dk)l using (15), (16) and (23).
2. Compute {Σl+1} by ADMM: set m = 0, choose {X0}, {Y 0} ∈ (Rd×d)Q.
repeat

+ Compute Σk,l,m+1 = UDδk
UT as in (19) for all k = 1, ..., Q.

+ Compute (Xij)m+1 = [‖Rij‖2 − λγ/ρ]+
Rij

‖Rij‖2
,

where Rij = S (
(Σij)l,m+1 + (Yij)m/ρ, λα/ρ

)
and Xij = (X1

ij , ...,X
Q
ij ).

+ {Y m+1} = {Y m} + ρ({Σl,m+1} − {Xm+1}),
+ m ← m + 1.

until Stopping criterion.
3. l ← l + 1.

until Stopping criterion.

Theorem 1 (Convergence properties of DCA1 and DCA2). Let {{Σl}}
be the sequence generated by DCA1 (resp. DCA2)), we have

(a) {F1({Σl})} (resp. {F2({Σl})}) is decreasing and {{Σl}} is bounded.
(b)

∑+∞
l=0 ‖{Σl}−{Σl+1}‖2F < +∞, and hence liml→+∞ ‖{Σl}−{Σl+1}‖F = 0.

(c) The sequence {{Σl}} has at least one limit point and every limit point of
this sequence is a critical point of the problem (12).

4 Numerical Experiments

We will compare the proposed algorithms (DCA1 and DCA2) with the app-
roach based on the �1 + �2,1 regularization (�1/�2,1(DCA)). The �1/�2,1(DCA)
is a convex approximation approach of the �0 + �p,0 regularization replaced by
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the �1 + �2,1 regularization [4,10]. The resulting problem of estimating multiple
covariance matrices is

min
{Σ}∈Ω

{
Q∑

k=1

nk

[
log det Σk + tr((Σk)−1Sk)

]
+ λ‖{Σ}‖1 + γ‖{Σ}‖2,1

}
. (24)

This problem is still nonconvex and then still difficult. We propose DCA for
solving it. The �1/�2,1(DCA) is similar to DCA2. We simply replace the compu-
tation of {V l} ∈ ∂H({Σl}) with {V l} = {Al} computed by (15) in the step 1 of
DCA2.

The proposed algorithms are implemented in R software and all algorithms
are performed on a PC Intel i7 CPU3770, 3.40 GHz of 8 GB RAM. In exper-
iments, we set the stop tolerance τ = 10−4 for DCA based algorithms and
ADMM. The starting point {Σ0} of DCA is the sample covariance matrices
{S1, ..., SQ}. The values of parameter λ, γ and ε are chosen through a 5-fold
cross-validation procedure on training set. The approximation parameter α of
the Capped-�1 is set 1. By Remark 1, we set λ = 0 in DCA1 to avoid performing
tuning this parameter.

Experiment on Synthetic Datasets

We evaluate the performance of the proposed algorithms on two synthetic
datasets. We consider two types of covariance graphs with three-class:

Model 1: We generate a covariance matrix for the first class as follows. Σ1 =
diag(Σ1, ..., Σ5), where Σ1, ..., Σ5 are dense matrices. We create Σ2 by resetting
one of its 5 sub-network blocks to the identity, i.e., Σ2 = diag(I,Σ2, ..., Σ5).
Resetting an additional sub-network block to the identity, we have Σ3 = diag
(I, I,Σ3, ..., Σ5).

Model 2: Σ1 = diag(Σ1, ..., Σ5) again, however each submatrix Σk is zero
except elements in the last row and the last column. This corresponds to a sub-
graph with five connected components each of which has all nodes connected
to one particular node. Similarly to model 1, we create Σ2 = diag(I,Σ2, ..., Σ5)
and Σ3 = diag(I, I,Σ3, ..., Σ5).

The nonzero entries of matrices Σk, k = 1, 2, 3 are randomly drawn in
the set {+1,−1}. Finally, for each class we generate independently, identi-
cally distributed observations Xk = [xk

1 , ..., x
k
nk

] from an N (0, Σk) distribu-
tion. In this experiment, for each model, we generate 10 training sets with size
n1 = n2 = n3 = 200, d = 100.

To evaluate the performance of each method, we consider three loss functions
which are the average root-mean-square error (ARMSE), the average entropy loss
(AEN), and the average Kullback-Leibler loss (AKL), respectively.

ARMSE =
1
Q

Q∑

k=1

||Σ̂k − Σk||F
d

,
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AEN =
1
Q

Q∑

k=1

[
− log det(Σ̂k(Σk)−1) + tr(Σ̂k(Σk)−1) − d

]
,

AKL =
1
Q

Q∑

k=1

[
− log det((Σ̂k)−1Σk) + tr((Σ̂k)−1Σk) − d

]
,

where Σ̂k is a sparse estimate of the covariance matrix Σk.
The experimental results on synthetic datasets are given in Table 1. In this

Table, the ARMSE, AEN, AKL, number of nonzero elements on each covariance
matrix (NZ1, NZ2, NZ3), and their sum (NZ), CPU time in seconds, and their
standard deviations over 10 samples are reported.

We observe from Table 1 that in the both models, DCA1 gives the best
results in terms of three losses. In terms of the sparsity, the number of the
nonzero elements, this approach also achieves better performances than the other
approaches. The second and third performing approaches with respect to the
losses and the sparsity are DCA2 and �1/�2,1(DCA), respectively.

Regarding the training time, DCA1 is much faster than the other algorithms.
This can be explained by the fact that DCA1 leads to the sequence of convex
problems which can be separated into the independent sub-problems.

Experiment on Real Datasets

We illustrate the use of the sparse covariance matrix estimation problem via
a real application: a classification problem based sparse quadratic discriminant
analysis (SQDA). This application requires estimates of the covariance matrices.
We assume that the nk observations xk

i (i = 1, ..., nk) within the k-th class Ck

are normally distributed N (μk, Σk). We denote the prior probability of the k-th
class by πk. The quadratic discriminant function is

δk(x) = −1
2

log det Σk − 1
2
(x − μk)T Σ−1

k (x − μk) + log πk. (25)

Then the predicted class for a new observation x is arg maxk δk(x). In practice
we do not know πk, μk, Σk, and will need to estimate them using the training
data.

For the experiment, we evaluate the proposed algorithms on four datasets
from UCI Machine Learning Repository1 (Ionosphere, Waveform 2, Optical
Recognition of Handwritten Digits, and Semeion Handwritten Digit). We use
the cross-validation scheme to validate the performance of various approaches
on these two datasets. The dataset is split into a training set containing 2/3 of
the samples and a test set containing 1/3 of the samples. This process is repeated
10 times, each with a random choice of training set and test set.

The computational results are reported in Table 2. We observe that, on
the Ionosphere dataset, DCA1 and DCA2 are comparable and better than
�1/�2,1(DCA) in terms of the testing error and training error. On the Wave-
form 2 and Optimal datasets, DCA1 gives better testing error and training error

1 https://archive.ics.uci.edu/ml/datasets.

https://archive.ics.uci.edu/ml/datasets
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Table 1. Comparative results of DCA1, DCA2, and �1/�2,1(DCA). The numbers in
parentheses are standard deviations. Bold fonts indicate the best result in each row.

DCA1 DCA2 �1/�2,1(DCA)

Model 1 ARMSE 0.381 (0.004) 0.415 (0.007) 0.445 (0.002)

AEN 12.97 (1.07) 17.53 (1.12) 18.08 (2.62)

AKL 17.31 (2.24) 18.58 (3.1) 31.86 (2.75)

NZ1 1903.2 (298.61) 2138.6 (313.7) 2242.4 (271.5)

NZ2 1781.6 (307.96) 2172.18 (281.6) 1464.6 (316.4)

NZ3 1728.2 (288.12) 2058.37 (215.5) 1918.8 (251.2)

NZ 5413 (892.69) 6369.15 (810.8) 5625.8 (839.1)

CPUs 642.11 (3.74) 3180.56 (7.92) 3471.66 (5.18)

Model 2 ARMSE 0.082 (0.003) 0.09 (0.007) 0.094 (0.005)

AEN 3.57 (0.52) 18.02 (1.31) 28.08 (2.16)

AKL 3.93 (0.56) 6.65 (1.66) 7.76 (1.82)

NZ1 352.8 (13.51) 394.18 (52.47) 448.6 (52.3)

NZ2 259 (13.61) 347.45 (38.52) 378.27 (36.1)

NZ3 255.8 (11.18) 359.72 (12.98) 264.61 (31.6)

NZ 867.6 (38.3) 1101.35 (103.97) 1091.48 (120)

CPUs 267.22 (39.33) 3843.57 (27.37) 5593.15 (24.61)

Table 2. Comparative results of real datasets. The bold font indicates the best result
in each column.

Testing error (%) Training error (%) Training time (s)

Ionosphere DCA1 5.13 (1.3) 3.41 (0.48) 0.094 (0.02)

DCA2 5.13 (0.54) 3.84 (0.72) 0.94 (0.01)

�1/�2,1(DCA) 6.79 (1.78) 4.27 (0.82) 0.97 (0.04)

Waveform 2 DCA1 13.01 (0.25) 11.41 (1.3) 3.28 (1.14)

DCA2 14.64 (0.38) 12.68 (0.32) 157.64 (23.99)

�1/�2,1(DCA) 15.6 (1.01) 14.57 (0.39) 259.28 (84.06)

Optical DCA1 2.74 (0.31) 1.92 (0.14) 97.9 (10.43)

DCA2 3.64 (0.18) 2.05 (0.39) 582.92 (22.75)

�1/�2,1(DCA) 3.98 (0.41) 3.18 (0.51) 574.66 (36.81)

Semeion DCA1 7.58 (0.17) 5.28 (0.85) 184.13 (10.69)

DCA2 7.31 (0.29) 6.17 (0.73) 949.5 (29.17)

�1/�2,1(DCA) 9.52 (0.84) 6.89 (0.47) 1027.73 (75.61)

than both the algorithms DCA2 and �1/�2,1(DCA). On the Semeion dataset,
DCA2 is slightly better than DCA1 and both these algorithms are better than
�1/�2,1(DCA) in terms of the testing error and training error. In terms of training
time, DCA1 is significantly faster than DCA2 and �1/�2,1(DCA) on all datasets.
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5 Conclusion

We have studied DC programming and DCA for bi-level variable selection prob-
lem including the �0 + �p,0 regularization in the objective function. Considering
the special formulation of the approximate problem we have developed DCA
for solving it. Concerning the bi-level variable selection in multiple covariance
matrices estimation problem, numerical experiments on both simulation and real
datasets have showed that DCA1 has obtained the best performance in terms of
most of comparison criteria, and has taken the shortest time for training.

For the future works, we plan to study bi-level variable selection for other
applications. We believe that the success of the �1,0-regularization motivates and
opens up a new avenue for the bi-level variable selection problems.
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Abstract. Entity set expansion (ESE) is the problem that expands a
small set of seed entities into a more complete set, entities of which have
common traits. As a popular data mining task, ESE has been widely used
in many applications, such as dictionary construction and query sugges-
tion. Contemporary ESE mainly utilizes text and Web information. That
is, the intrinsic relation among entities is inferred from their occurrences
in text or Web. With the surge of knowledge graph in recent years, it is
possible to extend entities according to their occurrences in knowledge
graph. In this paper, we consider the knowledge graph as a heterogeneous
information network (HIN) that contains different types of objects and
links, and propose a novel method, called MP ESE, to extend entities in
the HIN. The MP ESE employs meta paths, a relation sequence connect-
ing entities, in HIN to capture the implicit common traits of seed entities,
and an automatic meta path generation method, called SMPG, is pro-
vided to exploit the potential relations among entities. With these gener-
ated and weighted meta paths, the MP ESE can effectively extend enti-
ties. Experiments on real datasets validate the effectiveness of MP ESE.

Keywords: Heterogeneous information network · Entity set expansion ·
Knowledge graph · Meta path

1 Introduction

Entity Set Expansion (ESE) refers to the problem of expanding a small set with a
few seed entities into a more complete set, entities of which belong to a particular
class. For example, given a few seeds like “China”, “America” and “Russia” of
country class, ESE will leverage data sources (e.g., text or Web information) to
obtain other country instances, such as Japan and Korea. ESE has been used
in many applications, e.g., dictionary construction [4], query refinement [6] and
query suggestion [2].

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-57454-7 25



318 Y. Zheng et al.

Numerous methods have been proposed for ESE and most of them are based
on the text or Web environment [5,9,14,19,20]. These methods utilize distrib-
ution information or context pattern of seeds to expand entities. For instance,
Wang and Cohen [19] propose a novel approach that can be applied to semi-
structured documents written in any markup language and in any human lan-
guage. Recently, knowledge graph has become a popular tool to store and retrieve
fact information with graph structure, such as Wikipedia and Yago. Among those
text or Web based methods, some researchers also began to leverage knowledge
graph as auxiliary for the performance improvement of ESE. For example, Qi
et al. [12] use Wikipedia semantic knowledge to choose better seeds for ESE.
However, seldom work only utilizes knowledge graph as individual data source
for ESE.

In this paper, we firstly study the entity set expansion with knowledge graph.
Since knowledge graph is usually constituted by <Subject, Property,Object>
tuples, we can consider it as a heterogeneous information network (HIN) [15],
which contains different types of objects and relations. Based on this HIN,
we design a novel M eta Path based Entity Set Expansion approach (called
MP ESE). Specifically, the MP ESE employs the meta path [18], a relation
sequence connecting entities, to capture the implicit common feature of seed
entities, and designs an automatic meta path generation method, called SMPG,
to exploit the potential relations among entities. In addition, a heuristic weight
learning method is adopted to assign the importance of meta paths. With the
help of weighted meta paths, MP ESE can automatically extend entity set. Based
on the Yago knowledge graph, we generate four different types of entity set
expansion tasks. On almost all tasks, the proposed method outperforms other
baselines.

2 Related Work

In recent years, there has been a significant amount of work on ESE and ESE
has received considerable attention from both research [11,19,20] and industry
circles (e.g., Google Sets). According to the difference of data sources utilized
by ESE, these methods are based on text, Web environment and others.

For those text data source based ESE methods, they utilize the distribution
information of the surrounding words of entities to expand certain class [5,9,14].
For those Web environment based ESE methods, proper patterns of seeds are
extracted and then these patterns are used to extract new candidate entities.
This kind of methods can also be used in text data source. Recently, some
researchers began to take advantage of external semantic information to improve
performance of set expansion for text or Web data source. Qi et al. [12] introduce
the semantic knowledge by leveraging Wikipedia and reduce the seed ambiguity.
Sadamitsu et al. [13] use topic information to alleviate semantic drift. Jindal and
Roth [7] specify some negative examples to confine the expansion category.

More recently, HIN and knowledge graph have also been applied for related
work. Yu et al. [21] propose a meta-path-based ranking model ensemble to rep-
resent semantic meaning for entity query. Different from our work, it has solved
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a similar but different problem (i.e., entity query), and the meta paths in their
method need to be provided by domain expert users. QBEES [10] is designed for
entity similarity search based on aspects of the entities, and Chen et al. [3] design
a system for entity exploration and debugging. They both utilize the knowledge
graph, but they do not employ the HIN method.

3 Preliminary

In this section, we describe some key concepts and present some preliminary
knowledge in this paper.

Knowledge graph (KG) [16] is a large and complex graph dataset,
which consists of triples of the form <Subject, Property,Object>, such as
<StevenSpielberg, directed,War Horse(film)> shown in Fig. 1. Yago [17] and
DBpedia [1] are two prime examples of KG. The types of entities or relations
in KG are often organized as concept hierarchy structure, which describes the
sub-class relationship among entity types or relations. Figure 1(b) is a snapshot
of Yago and we can see that actor is sub-class of person shown by the dashed
line in Fig. 1(b). All the types share a common root called thing.

Fig. 1. A snapshot of Yago with concept hierarchy structure.

Heterogeneous information network (HIN) [18] is defined as a directed graph
G = (V,E) with an object type mapping function ϕ : V → A and a link type
mapping function ψ : E → R, where V , E, A and R denotes object set, link
set, object type set and relation type set, respectively, and the number of object
types |A| > 1 or the number of relation types |R| > 1. In HIN, meta path [18] is
widely used to capture the rich semantic meaning and is denoted in the form of
A1

R1−−→ A2
R2−−→ . . .

Rl−→ Al+1, which is a sequence of object types and link types
between objects.

Since KG contain different types of objects (i.e., subject and object) and
links (i.e., property), KG is a natural HIN. In Fig. 1, actedIn and directed
are two kinds of links types, actor and film director are different object types.
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Person
actedIn−−−−−→ Movie

directed−1

−−−−−−−→ Person is a meta path shown by the dashed
line in Fig. 1(a), directed−1 is the opposite direction of the edge directed.

In addition, Toby Kebbell and Martin McCann belong to actor class. Toby
Kebbell and Nigel Havers are not only the instances of actor class but also
included in the actors who acted in movies Steven Spielberg directed. In order
to distinguish the two kinds of sets, we call the latter as the fine grained set and
the former as the coarse grained set.

4 The Proposed Method

In order to solve the problem of ESE with knowledge graph, we propose a novel
approach called M eta Path based Entity Set Expansion (MP ESE). As we have
said, KG is a natural HIN, we employ the widely used meta path in HIN to exploit
the potential common feature of seeds. The MP ESE includes the following three
steps. Firstly, we design a strategy of extracting candidate entities. Secondly,
we develop an algorithm called Seed-based Meta Path Generation (SMPG) to
automatically discover important meta paths between seeds. Finally, we get a
ranking model through combining the meta paths with a heuristic strategy.

4.1 Candidate Entities Extraction

Because the number of entities in knowledge graph is extremely huge, it is
unpractical and unreasonable to compute the similarity of each entity and seed.
In order to reduce the number of candidate entities, we design a strategy, which
leverages concept hierarchy structure introduced in Sect. 3, to get a proper set of
candidate entities from knowledge graph. Specifically, it includes the following
four steps as shown in Fig. 2. Step 1 obtains entity types of each seed. Step 2
generates the initial candidates types by the intersection operation. Step 3 filters
the initial candidates types with the concept hierarchy structure. Step 4 extracts
candidate entities of satisfying the ultimate candidates types.

Fig. 2. The procedure of candidate entities extraction.

In order to clearly illustrate the process of candidate entities extraction,
we take Fig. 1 as an example and choose Toby Kebbell and Nigel Havers as
the seeds. Their entity types set is {person, actor} and {son, person, actor},
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respectively. And the intersection of them is {person, actor} called the initial
candidates types. These candidates types may be too general, which makes the
number of candidate entities large. Therefore, we filter some candidates types
using concept hierarchy structure as shown in Fig. 1(b). We choose the most
specific class closest to the bottom as the ultimate candidates types. Here, we
choose actor class. According to the ultimate types, we extract the candidate
entities from Yago.

4.2 Seed-Based Meta Path Generation

In order to automatically discover meta paths between seeds, we design the Seed-
based Meta Path Generation algorithm (SMPG). The basic idea is that SMPG
begins to search the KG from all seeds and finds important meta paths that
connect certain number of seed pairs, and the meta paths can reveal the implicit
common character of seeds.

Fig. 3. Notation of data structure and seed combination pairs.

The process of meta path generation is traversing the KG in deed, and thus a
novel tree structure is introduced in SMPG. SMPG works by expanding the tree
structure and Fig. 3(a) shows the data structure of each tree node, which stores a
tuple list of entity pairs with similarity value and the set of being visited entities.
The tuple form of the list is 〈(s, t), σ(s, t|∏), (s, · · · , t)〉, where (s, t) denotes the
source node and target node of the current path

∏
. Each tree edge denotes the

link type between entities. The root node of the tree contains all entity pairs
composed of each seed and itself. SMPG starts to expand from the root node
step by step to discover important meta paths. At each step, we check whether
the score SC of the tree node is larger than the predefined threshold value ν,
which guarantees that the meta path is important enough to reveal the character
of seeds. If so, we pick out the corresponding meta path, otherwise make a move
forward until the tree can not be further expanded. When moving forward, we
choose the tree node with the maximum number of source set as well as the
minimum number of tuples to expand, which indicates that the path of the tree
node covers more seeds and has a better discriminability.
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Fig. 4. Seed-based meta path generation method.

Specifically, in SMPG, we use a source set in the tree node to record the
source nodes of all entity pairs in tuple list. In order to prevent the circle,
we record the nodes having been visited along the path

∏
in (s, · · · , t) of the

tuple 〈(s, t), σ(s, t|∏), (s, · · · , t)〉. Here, σ(s, t|∏) is the similarity that represents
whether node t is in the target node set of source node s, it is 1 if so and 0 other-
wise. The target node set of each source node can be found in seed combination
pairs as shown in Fig. 3(b) and each seed can be combined with the other seeds.
σ(s, t|∏) also means that whether the meta path connects the seed pair. And
seed pairs that each meta path connects are also recorded. In addition, LP is
the passing link path and the score SC of the tree node is the sum of all tuples
similarity, which measures the importance of the tree node or path.

Let us elaborate the algorithm with an example shown in Fig. 4, where the
set of seeds is {Toby Kebbell, Nigel Havers, Harrison Ford} marked as {1,2,3}.
The set of seed combination pairs is {[1,(2,3)], [2,(1,3)], [3,(1,2)]} shown in Fig. 4.
The root node of the tree contains all entity pairs composed of each seed and
itself, and has SC = 0. The first expansion passes through two types of links:
actedIn and wasBornIn, and gets two new tree nodes. For each new tree node,
SMPG records each tuple, P and SC as well as source set. At the moment,
all paths do not connect any seed pairs, so we choose the tree node with the
maximum number of source set as well as the minimum number of tuples to
expand. Here, we choose the tree node with link actedIn to expand and then get
five new tree nodes. Figure 4 only demonstrates two of them. After the second
expansion, there is not still path connecting seed pairs. Then we continue to
choose the tree node with the maximum number of source set and the minimum
number of tuples to expand, and we update the corresponding values. Except
seeds 1, 2 and 3, the other marked entities such as 35, 62 denote those being
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visited in-between entities of the path. After several expansions, a length-4 path

Actor
actedIn−−−−−→ Movie

directed−1

−−−−−−−→ Person
directed−−−−−→ Movie

actedIn−1

−−−−−−−→ Actor is
found shown by the dash line in Fig. 4. And we continue to repeat the process
until the condition is satisfied or the tree can not be further expanded.

Algorithm 1. Seed-based Meta Path Generation Algorithm
Input: Knowledge graph G, seed set S = {s1, s2, . . . , sm}.
Output: The set of meta paths P , seed pairs SP that each meta path connects.

1 Create the root node of the tree T ;
2 sl ⇐ link types set;//the link needs connect 2 seeds or more
3 while T can be expanded do
4 N ⇐ tree nodes with the maximum number of source set in T ;
5 n ⇐ tree node with the minimum number of tuples in N;
6 for each tuple tp ∈ n do
7 get pair tp.(s, t);
8 for each neighbor e of tp.t in G do
9 l ⇐ link from tp.t to e;

10 if e not being visited and l ∈ sl then
11 if l not in n.child then
12 add l to n.child;
13 create a new child tree node with key n.key + l;

14 if (s, e) ∈ seed combination pairs then
15 σ(s,e|∏) ⇐ 1;
16 add seed pair (s, e) to the tree node with key n.key + l;

17 else
18 σ(s,e|∏) ⇐ 0;

19 add e to the visited set (s, . . . , t);
20 insert tuple 〈(s, e),σ(s,e|∏),(s, e, · · · , t)〉 into tree node with key n.key + l;
21 add tp.s to the source set of tree node with key n.key + l;
22 update the SC of tree node with key n.key + l;

23 for each node en in T do
24 if en.SC > threshold ν then
25 add meta path

∏
of en into P ;

26 add the corresponding seed pairs that
∏

connects into SP ;

27 return P , SP

We present the detailed steps of SMPG in Algorithm 1. Firstly, we create
the root node of the tree in Step 1 and give some predefined constants in Step 2.
Then we expand the tree and find the important meta paths in Steps 3–26. At
each expansion, we choose the tree node with the maximum number of seeds as
well as the minimum number of tuples in Steps 4, 5. Step 10 judges whether the
link is in the set of the given link type, whether the neighbor node isn’t visited
before. If so, we make an expansion and examine whether the entity pair is in
seed combination pairs in Step 14. If so, Step 15 records the connected entity
pair. And we insert the new tuple into the corresponding tree node in Step 20.
Meanwhile Step 21 adds the source node of the entity pair to the source set of
the tree node and Step 22 updates SC. Steps 23–26 get the expected meta paths
and the corresponding seed pairs.

4.3 Combination of Meta Path

SMPG discovers the important meta paths P , but the importance of each meta
path is different for the further entity set expansion and it is related to the
number of seed pairs that meta paths connect. Intuitively, the more seed pairs



324 Y. Zheng et al.

the meta path connects, the more important it is. Thus, we consider the ratio of
SPk and m ∗ (m − 1) to be the weight w′

k of meta path pk(pk ∈ P ), where SPk

is the number of seed pairs that meta path Pk connects, m∗ (m−1) denotes the
total number of seed pairs and m is the number of seeds. In order to normalize
w′

k, we define the final weight as follows:

wk =
w′

k
∑l

k=1 w′
k

, (1)

where l is the number of meta paths P .
With the wk, we can combine meta paths to get the following ranking model.

R(ci, S) =
1
m

m∑

j=1

l∑

k=1

wk · r{(ci, sj)|pk} sj ∈ S, i ∈ {1, 2, · · · , n}, (2)

where ci denotes the ith candidate entity, n is the number of candidates. S =
{s1, s2, · · · , sm} is the set of seeds. r{(ci, sj)|pk} denotes whether the path pk
connects ci and sj , it is 1 if connected and 0 otherwise.

We can compute relevance between each candidate entity and each seed using
the ranking model in Eq. 2, and then rank all candidate entities.

5 Experiments

5.1 Dataset

As a typical KG, Yago is a huge semantic knowledge graph derived from
Wikipedia, WordNet and GeoNames [17]. Currently, it has knowledge about
more than 10 million entities and contains more than 120 million facts. We adopt
“yagoFacts”, “yagoSimpleTypes” and “yagoTaxonomy” parts of this dataset to
conduct experiments, which contain 35 relationships, more than 1.3 million enti-
ties of 3455 instance classes. Table 1 is the description of the relevant data.

Table 1. Description of the data.

Data Template of triples # triples

yagoFacts <entity relatinship entity> 4,484,914

yagoSimpleTypes <entity rdf:type wordnet type> 5,437,179

yagoTaxonomy <wordnet type rdfs:subclassof wordnet type> 69,826

We choose four representative expansion tasks to evaluate the performance
of MP ESE. The classes used in these tasks are summarized as follows: actors
of the movies Steven Spielberg directed, softwares of the companies located in
Mountain View of California, movies whose director won National Film Award,
and scientists of the universities located in Cambridge of Massachusetts. Four
classes are written as Actor∗, Software∗, Movie∗ and Scientist∗, the real number
of instances in these four classes are 112, 98, 653 and 202, respectively.
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5.2 Criteria

We employ two popular criteria of precision-at-k (p@k) and mean average preci-
sion (MAP) to evaluate the performance of our approach. p@k is the percentage
of top k results that belong to correct instances. Here, they are p@30, p@60 and
p@90. MAP is the mean of the average precision (AP) of the p@30, p@60 and

p@90. AP =
∑k

i=1 p@i×reli
# of correct instances , where reli equals 1 if the result at rank i is

correct instance and 0 otherwise.

5.3 Effectiveness Experiments

In this section, we will validate the effectiveness of MP ESE on entity set expan-
sion. Since there are no direct solutions for ESE on KG, we design three baselines.
(1) Link-Based. According to the pattern-based methods in text or Web envi-
ronment, we only consider 1-hop link of an entity, denoted as Link-Based. (2)
Nearest-Neighbor. Inspired by QBEES [10], we consider 1-hop link and 1-hop
entity at the same time, called Nearest-Neighbor. (3) PCRW. Based on the path
constrained random walk [8], we only compare with length-2 path, denoted as
PCRW. The reason is that the longer path needs more running time.

For each class introduced above, we randomly take three seeds from the
instance set to conduct an experiment. We run algorithms 30 times and record
the average results. In MP ESE, we set the predefined threshold value ν to be
m ∗ (m − 1)/2 + 1, which can guarantee that the path connects half number of
seeds or more, m is the number of seeds. And the max length of path is set to be
4 since meta paths with length more than 4 are almost irrelevant. The optimal
parameters are set for other baselines.

The overall results of entity set expansion are given in Fig. 5. From Fig. 5,
we can see that our MP ESE approach achieves better performances than other
methods on almost all conditions, especially on the Actor∗ and Movie∗ tasks. All
baselines have very bad performances on Actor∗ and Movie∗. We think the reason
is that the 1-hop link or 1-hop entity can not further distinguish the character
of the fine grained class but MP ESE can distinguish well. On the Software∗

task, MP ESE and PCRW have close performance. The reason is that Software∗

is an overlapping class and has another class label depicted by length-2 path

Software
created−1

−−−−−−→ Company
created−−−−−→ Software. Due to the fact that it has

few semantic meaning, Link-Based has very bad performance. In all, MP ESE
has the best performances because it employs the important meta paths between
seeds and can capture the subtle semantic meaning.

In order to intuitively observe the effectiveness of discovered meta paths,
Table 2 depicts the top 3 meta paths returned by SMPG for Actor∗. We observe
that these meta paths reveal some common character of actor. The first meta
path indicates that actors act in movies directed by the same director, which
shows that SMPG can effectively mine the most important semantic meaning
of Actor∗. The second and the third meta paths imply that some actors act in
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Fig. 5. The result of entity set expansion.

movies edited or composed by the same person. Through leveraging the impor-
tant meta paths discovered by SMPG, we can find other entities belonging to
the same class with seeds.

Table 2. Most relevant 3 meta paths for Actor∗

Meta path w

Person
actedIn−−−−−−→ Movie

directed−1
−−−−−−−−→ Person

directed−−−−−−→ Movie
actedIn−1
−−−−−−−−→Person 0.2180

Person
actedIn−−−−−−→ Movie

writeMusicF or−1
−−−−−−−−−−−−−→ Person

writeMusicF or−−−−−−−−−−−→ Movie
actedIn−1
−−−−−−−−→Person 0.1495

Person
actedIn−−−−−−→ Movie

edited−1
−−−−−−−→ Person

edited−−−−→ Movie
actedIn−1
−−−−−−−−→Person 0.1476

5.4 Impact of Seed Size

To evaluate the impact of seed size on the performance, we conduct relevant
experiments in the range of seed size from 2 to 6 for Actor∗. For each seed size,
we randomly select the corresponding seeds from the instance set to conduct
an experiment. We run our algorithm 30 times and record the maximum, the
minimum and the average results, which are demonstrated in Table 3.
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Table 3. The impact of seed size on Actor∗.

Seed size p@30 p@60 p@90 MAP

Max Min Mean Max Min Mean Max Min Mean Max Min Mean

2 1.0 0.067 0.858 1.0 0.117 0.834 1.0 0.111 0.811 1.0 0.110 0.900

3 1.0 0.433 0.970 1.0 0.333 0.959 1.0 0.256 0.945 1.0 0.427 0.976

4 1.0 0.733 0.977 1.0 0.517 0.957 1.0 0.4 0.938 1.0 0.852 0.988

5 1.0 0.967 0.998 1.0 0.95 0.996 1.0 0.767 0.988 1.0 0.967 0.997

6 1.0 1.0 1.0 1.0 0.933 0.996 1.0 0.867 0.991 1.0 0.987 0.999

From Table 3, we can see that the performance has an improvement with
the increasing of seed size. The performance with 2 seeds is the lowest, since 2
seeds do not contain plenty of information and may have several class labels.
The performance with 3 seeds has been good enough. When the number of
seeds is larger than 3, the improvement is tiny but the running time is much.
Therefore, we employ 3 seeds in other experiments. In all, the proper seed size
should be determined. Besides, there is a big difference between the maximum
and minimum precisions because of the random seed sets.

5.5 Influence of Weight

To demonstrate the influence of the weight on the performance, We conduct
experiments with different seed combinations of size 3 many times and record
the average results. Table 4 reports the results with different weights on the four
tasks introduced above. We can observe that the heuristic weight has better
performance than average and random weights on the whole, which suggests
that the importance of meta paths is different and some paths can better reflect
the implicit character of seeds than others. For Software∗ task, weight has a tiny
effect on performance, because the total number of meta paths is 5 and there
exist several class labels.

Table 4. The impact of different weights.

Class Heuristic weight Average weight Random weight

p@30 p@60 p@90 MAP p@30 p@60 p@90 MAP p@30 p@60 p@90 MAP

Actor∗ 0.970 0.959 0.945 0.976 0.948 0.934 0.917 0.958 0.941 0.915 0.889 0.949

Software∗ 0.915 0.911 0.830 0.926 0.911 0.908 0.824 0.925 0.918 0.903 0.812 0.930

Movie∗ 0.711 0.620 0.554 0.760 0.639 0.530 0.461 0.710 0.480 0.414 0.369 0.554

Scientist∗ 0.887 0.833 0.770 0.905 0.822 0.743 0.665 0.871 0.546 0.486 0.429 0.627
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6 Conclusions

In this paper, we study the problem of entity set expansion in knowledge graph.
We model knowledge graph as a heterogeneous information network and propose
a M eta Path based Entity Set Expansion approach called MP ESE, which
employs the meta path to exploit the implicit common feature of seeds. In order
to automatically find the important meta paths between seeds, MP ESE designs
a novel algorithm called SMPG. And then we design a heuristic strategy to
assign the importance of meta paths. MP ESE utilizes the weighted meta paths
to expand entities. Experiments on Yago validate the effectiveness of MP ESE.
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Using Network Flows to Identify Users Sharing
Extremist Content on Social Media
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Abstract. Social media has been leveraged by many groups to share
their ideas, ideology, and other messages. Some of these posts promote
extremist ideology. In this paper, we propose an approach for identify-
ing users who engage in extremist discussions online. Our approach uses
detailed feature selection to identify relevant posts and then uses a novel
weighted network that models the information flow between the publish-
ers of the relevant posts. An empirical evaluation of a post collection
crawled from a web forum containing racially driven discussions and a
tweet stream discussing the ISIS extremist group show that our pro-
posed method for relevant post identification is significantly better than
the state of the art and using a network flow graph for user identification
leads to very accurate user identification.

Keywords: Extremism detection · Information flow network

1 Introduction

Users endorsing extremist ideology have been increasingly leveraging social
media to spread their viewpoint and promote their agenda. For example, Islamic
State of Iraq and Syria (ISIS) has been using social media platforms to share
their ideas and recruit members/jihadists to their groups. This work presents
a method for identifying users who share extremist viewpoints on social media.
Our hope is that early identification will provide law enforcement options for
early identification of individuals before they become dangerous.

Previous literature concerning identification of users sharing extremist con-
tent [4,6,7,14] assumes that the target user is a friend (or within a few hops
of friends) of validated accounts affiliated with extremist groups [6,7], or alias
accounts of these validated accounts [4,14]. While an important direction, our
approach focuses on a method that does not require knowledge of the network
structure in advance.

Specifically, we divide the problem into two subproblems: identifying rele-
vant posts and then using those posts to identify individuals sharing content
consistent with extremist views. Because different extremist groups use differ-
ent vocabulary on social media, generic dictionaries are less effective. Therefore,

c© Springer International Publishing AG 2017
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we propose an approach that begins by identifying features that best distin-
guish seed posts exhibiting extremist ideology from seed posts exhibiting anti-
extremist ideology. We then use these features to identify relevant posts. The
posts are then used to construct two weighted networks that model the informa-
tion flow between the publishers of the identified posts. Different node centrality
metrics are considered to evaluate users’ contribution to spreading extremist
ideology and anti-extremist ideology. Users with more contribution to sharing
content and/or spreading extremist ideology than anti-extremist ideology are
regarded as promoting extremist content.

The Main Contributions of Our Work Include: (1) we propose a new
method for identifying relevant content that results in much higher accuracy
than the state of the art; (2) we propose using information flow networks to
find users sharing extremist and anti-extremist viewpoints; (3) we empirically
evaluate our method on a web forum and a tweet stream and find that our
method leads to accuracies above 90% in some case.

2 Related Literature

We briefly review the most recent research focusing on extremist content detec-
tion on social media, and extremist user detection on social media. We refer you
to [5,15] for more general surveys of the broad area.

A primary task of extremist content detection on social media is crawl-
ing extremist contents, for which several solutions have been proposed [8,16].
Mel and Frank [16] classify a webpage into four sentiment-based classes: pro-
extremist, anti-extremist, neutral, and irrelevant. They propose a web crawler
capable of crawling webpages with pro-extremist sentiment, achieving 80% accu-
racy. Bouchard et al. [8] explore the features distinguishing terrorist websites
from anti-terrorist websites, and further present a web crawler which automati-
cally searches the Internet for extremist contents based on these features. Beyond
simply crawling extremist contents, [10,12,20] analyze content exposing extrem-
ist ideology. Chatfield et al. [12] investigate the problem of how extremists lever-
age social media to spread their propaganda. They perform network and content
analysis of tweets published by a user previously identified as an information
disseminator of ISIS. Burnap et al. [10] study the propagation pattern of the
information following a terrorist attack. Zhou et al. [20] analyze the hyperlink
structure and the content of the extremist websites to better understand connec-
tions between extremist groups. Buntain et al. [9] study the response of social
media to three terrorism attacks: the 2013 Marathon bombing in Boston, the
2014 hostage crisis in Sydney, and the 2015 Charlie Hebdo shooting in Paris.
They find that the use of retweets, hashtags, and urls, along with reference to
the events increases throughout the event. Rowe and Saif [17] conduct research on
the behavior of Europe-based Twitter users during their transition toward pro-
ISIS ideology. They show that these users exhibit significant behavioral diver-
gence before and after their activation in terms of language usage and social
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interaction. We will leverage a combination of these approaches to help identify
users conversing about extremist ideology.

Research on extremist user detection mainly leverages two techniques:
authorship matching [4,14] and connectivity ranking [6,7]. Berger and Morgan
[6] consider accounts within two hops of the verified accounts, and use different
network statistics to measure these accounts’ probability of being extremist-
affiliated. [7] leverages an information flow network to identify accounts serving
as information hubs for discussion promoting extremist ideology. Our approach
is an improvement on these previous approaches in the following ways: (1) our
approach pre-filters posts irrelevant to extremist ideology while [7] does not; (2)
when ranking users according to their likelihood of being extremist-affiliated,
our approach considers various network statistics and does not require friendship
links to users exhibiting extremist behavior to identify users with this behav-
ior. Finally, sentiment analysis is widely used to identify extremist content on
social media [16,18], based on the assumption that in a discussion of extremist
ideology, a post endorsing extremist ideology would contain positive sentiment.
Our approach does not use sentiment, but we will compare to state of the art
sentiment detectors in our evaluation.

3 Notation, Assumptions, and Definitions

This section presents definitions, assumptions, and a formal problem statement.

Notation and Assumptions. Let P be a set of posts associated with a partic-
ular forum or discussion stream on a social media site. These posts are written
by a set of users U . A particular post p is written by a specific user u and is
denoted pu. For ease of exposition, we will use positive as a proxy for posts or
users exhibiting extremist ideology, and negative as a proxy for posts or users
exhibiting anti-extremist ideology.

We make the following assumptions about the post collection P :

1. There are features differentiating positive posts P+ and negative posts P−.
2. A user u might publish posts containing content that has contradictory view-

points on extremism, e.g., a user endorsing extremist ideology might publish
tweets exhibiting extremist ideology, while at the same time retweeting and
replying to tweets containing content of the opposite position.

3. While user u may post a range of differing ideological messages, we assume
that there is a direct relationship between the number of positive posts u
propagates and the probability of promoting an extremist ideology. Similarly,
we assume there is a direct relationship between the number of negative posts
u propagates and the probability of promoting an anti-extremist ideology.

4. A user u that has an extremist viewpoint would play a more important role
in spreading positive information than spreading negative information.

Problem Statement. Given a post collection P and the set of their publishers
U , the task of identifying users sharing extremist content has two subtasks:
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1. Relevant Content Identification: Identify the posts from P that have content
consistent with extremist ideology (P+) and anti-extremist ideology (P−).

2. Extremist User Identification: Identify the users from U that have a viewpoint
consistent with extremism (U+).

4 Extremism Detection

The framework for our proposed approach is divided into two subtasks: Rele-
vant Content Identification and Extremist User Identification. Figure 1 shows
the major steps associated with each subtask: feature selection, post retrieval,
network creation, user centrality calculation, and user centrality integration.

Fig. 1. The framework of our proposed approach

Algorithm 1 presents a high level view of this proposed approach. The input
to our approach is a post collection P , a set of positive seed posts S+, and a
set of negative seed posts S−. The output is a set of users U+ identified as
having a viewpoint consistent with extremism. The approach begins by identify-
ing features F+ best distinguishing positive seed posts from negative seed posts
(Line 1), and features F− best distinguishing negative seed posts from positive
seed posts (Line 2). From P , posts containing F+ and F− are retrieved, respec-
tively, denoted as P+ and P− (Line 3 and Line 4). An information flow network
G+(V,E) is constructed, in which each node in V represents a user of a post
in P+ (Line 5). A directed edge in G+(V,E) is added to the network if a node
vi responds or reposts a message sent by node vj . For nodes in G+(V,E), cen-
trality metrics C+ are calculated (Line 7). Similarly, using P−, an information
flow network G−(V,E) is constructed. For all the nodes in G−(V,E), centrality
metrics C− are calculated (Line 6 and Line 8). For all the nodes in G+(V,E) and
in G−(V,E), their centrality C+

u and C−
u are integrated into a single score cen-

trality score Cu (Line 9). Users with positive integrated centrality are regarded
as individuals sharing content containing extremist views.
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Algorithm 1. High level algorithm for extremist user detection
Input:
A post collection: P
A set of positive seed posts: S+

A set of negative seed posts: S−

Output: Users identified as endorsing extremism ideology

1 F+ = select positive features(S+, S−)
2 F− = select negative features(S−, S+)
3 P+ = retrieve positive posts(F+, P )
4 P− = retrieve negative posts(F−, P )
5 G+(V,E) = create positive information flow network(P+)
6 G−(V,E) = create negative information flow network(P−)
7 C+ = calculate centrality(G+)
8 C− = calculate centrality(G−)
9 C = integrate centrality(C+, C−)

10 return {u|Cu > 0}

4.1 Feature Selection

Our approach uses all the ngrams in the seed posts S as the feature pool. The
goal of feature selection is to select features best distinguishing positive seed
posts from negative seed posts, or vice versa. A basic way to accomplish this
is to compute the difference between the number of occurrences of an n-gram
f in S+ and in S−: N(f, S+) − N(f, S−), where N(f, S+) denotes the number
of occurrences of f in S+, and N(f, S−) denotes the number of occurrences of
f in S−. N(f, S) only considers the intensity of a feature being used, ignoring
its popularity among users. This can result in noisy features being retained.
In an extreme case, a small number of users may repeatedly publish the same
post. Considering only N(f, s), most of words (excluding stopwords) in this
post would be selected as features, including words that may be less relevant
to extremism. Therefore, we consider incorporating user coverage of a feature.
A higher user coverage indicates a feature being associated with posts written
by different people. To evaluate user coverage of a ngram, we define a feature’s
Author Entropy (E): E(f, S) =

∑
u(N(f, Su) log

∑
u N(f,Su)

N(f,Su)
), where N(f, Su)

denotes the number of seed posts published by user u containing feature f .
We use this notion in conjunction with intensity of feature usage to define a
feature’s importance (I): I(f, S) = E(f, S)×N(f, S) We calculate each feature’s
importance I(f, S+) for positive seed posts and I(f, S−) for negative seed posts.
Then we rank all the features in a descending order according to their I(f, S+)
score. We only consider those where I(f, S+) > 0 and I(f, S−) = 0. We select
the top k features, denoted as F+ and use these features to retrieve positive
posts from P in the next step. In a similar way, we rank all the features in
a descending order according to their I(f, S−), and select the top k features,
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denoted as F−, with the constraints that I(f, S+) = 0 and I(f, S−) > 0. These
features are leveraged to retrieve negative posts from P .

4.2 Post Retrieval

This step focuses on retrieving posts containing the selected features F . To
measure a post’s relevance to a set of features F , we define Feature Relevance
(Fr) as: Fr(p, F ) =

∑
f∈F Tf(f, p)Ae(f, p) where Tf(f, p) represents the term

frequency of feature f in a post p. We do not incorporate the commonly used
inverse document frequency (IDF) into Feature Relevance. IDF prioritizes items
most different from the rest of the corpus. Its success relies on the premise that a
query term occurring less frequently in a corpus contains more information, and
thus, is of more importance. However, this assumption does not hold in our case,
e.g., the occurrence of white nationalist in a post would be a strong indicator of
promoting white supremacy; however, it would not have a low IDF value on a
forum discussing ethnic/racial issues.

For each post, we calculate its Feature Relevance to positive features
Fr(p, F+) and to negative features Fr(p, F−), respectively. We retain all the
posts satisfying Fr(p, F+) − Fr(p, F−) > 0, denoted as P+, and retain all the
posts satisfying Fr(p, F−) − Fr(p, F+) > 0, denoted as P−.

4.3 Information Flow Network Creation

While there are many different representations of networks, we choose to leverage
an information flow network. Posts on social media are information flows between
users, e.g., on Twitter, a user can reply to, retweet, or mention other user(s) in a
tweet; on a forum, a user can reply to or quote another user’s post. We propose
constructing information flow networks to identify the flow of extremist views.

A weighted information flow network G = (V,E) is composed of a set of
nodes V (G) = v1, ..., vn and a set of edges E(G) = e1, ..., em. Each node vi
represents a user ui, and an edge (vj , vk) is added to the network G if user uj

responds to (e.g., retweets, replies to, quotes, etc.) a post of user uk. If the post
does not result in an edge between two users, a self edge is added to the graph.
This is important because it allows us to capture extreme content that is being
posted, but not necessarily propagating. G is also an edge weighted graph W(ei),
where an edge weight represents absolute information flow (described below).

While a single information flow graph can be constructed with edges contain-
ing both positive and negative post information, we choose to separately analyze
positive and negative information flow by constructing two more focused graphs,
G+ and G−. For the positive posts P+, we construct an information flow network
G+(V,E) and define the edge weight to be the the difference between the posi-
tive and negative features that are relevant to the post Fr(p, F+) − Fr(p, F−).
We choose this edge weight scheme since it reflects the absolute amount of posi-
tive information flowing along the edge. Similarly, for the negative posts P−, we
construct an information flow network G−(V,E) and define the edge weight to



336 Y. Wei and L. Singh

be the the difference between the negative and positive features that are relevant
to the post Fr(n, F−) − Fr(p, F+).

4.4 User Centrality Calculation

We use node centrality to measure each user’s importance in sharing relevant
positive and negative content. Among node centrality metrics, we consider degree
(number of connections of ui), node betweenness (fraction of shortest paths
going through node vi), pagerank (importance of node vi based on importance
of connections of vi), and personalized pagerank (customized importance for
specific types of graphs). In computing personalized pagerank [11], we need to
designate a user-custom adjustment to pagerank in each iteration: C = αA×C+
(1−α)C ′, where A denotes the transition probability matrix, C ′ is a user-custom
vector to adjust the pagerank vector, and α is a user-custom weighing factor. We
use the sum of the weight of outgoing edges incident to nodes as the user-custom
vector: C ′

u =
∑

p Fru(p, F ). In other words, we are increasing a user’s score if
he/she is sharing more content in G+ or G−. We calculate centrality C+ and
C− for nodes in the positive G+(V,E) and the negative G−(V,E) networks.

4.5 User Centrality Integration

As stated in Sect. 3, we make the assumption that a user might publish posts
containing content having contradicting viewpoints. We also assume that a user
posting content consistent with extremist views would play a more important
role in spreading positive information when compared to spreading negative
information. In this step, we integrate C+

u and C−
u into a single score Cu to

measure a user’s absolute importance for sharing/spreading positive information:
Cu = C+

u − C−
u . Users satisfying Cu > 0 are considered to be users promoting

extremist views.

5 Evaluation

In this section we begin by describing the data sets, and then evaluate the
different steps of our framework.

5.1 Data Sets

For our empirical analysis, we consider two distinct types of social media:
microblogs and forums. The microblog data set is a Twitter stream. The forum
data set is the Stromfront [2] data set.

Microblog Data Set: We work with an interdisciplinary team consisting of stu-
dents, researcher, and policymakers. Some of them have years of in-field research
experience in the Middle East. With help from our subject matter experts, we
identified a set of hashtags that are related to ISIS. Using the Twitter API, we
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collected tweets containing these hashtags between September 2014 and April
2016. In total, this data set consists of 23 million tweets, published by approx-
imately 2 million users. In previous work, we have shown that this data set
contains extremist content [19]. For this evaluation, our task is to identify users
sharing extremist views consistent with Islamic fundamentalism, or showing sup-
port for jihadist groups, including ISIS, Al-Qaeda, Jabhat Al Nusra, etc.

Forum Data Set: Stromfront [2] is a web forum that includes many radi-
cally driven discussions with a right-wing extremist focus. The most prevailing
extremist ideologies are racism and antisemitism. The forum consists of scores
of sub-forums, and each sub-forum has an explicitly-stated focus. From the sub-
forums having an explicitly-stated focus on philosophy and ideology, we crawled
2.9 million posts. Our task here is to identify users promoting and/or sharing
content that is racist or antisemitic.

5.2 Feature Selection

Subject matter experts on our team manually identify 1,300 tweets contain-
ing content promoting extremist ideology, 1,300 tweets containing content con-
sistent with anti-extremist ideology, and 2,600 neutral tweets from the tweet
collection. We use these 2,600 positive/negative tweets as seed posts to select
features best distinguishing positive seed posts and negative seed posts. Basic
pre-processings, including punctuation removal, stop word removal, and non-
English word removal, are applied to these seed posts. Using the feature selection
approach described in Sect. 4, the top 20 distinguishing features are identified.
We set k = 20, since 20 is commonly regarded as an appropriate number of
query terms for retrieval tasks [13]. Table 1 shows the top 5 positive features and
negative features. We can see that the positive features have a clear focus on
martyrdom and caliphate, while the negative features focus on terror, Daesh (a
derogatory term for ISIS), and Yezidi (ISIS is holding thousands of Yezidi girls
as slaves).

For the Stromfront post collection, we identify 500 seed posts containing
extremist views and 500 seed posts containing anti-extremist views. Feature
selection is applied to these 1,000 seed posts. The results are also shown in
Table 1. We see that the positive features have a theme of white knights, while
the negative features focus on evil and hate. We pause to mention that we also
considered the simpler approach for feature selection that only uses the intensity
of the word to identify features. Using this approach resulted in a larger number
of noisy, information poor words, e.g., hey, entire, good claim, agenda.

5.3 Post Retrival

For the tweet collection, using the top 20 positive features and top 20 negative
features as query terms, 24,452 tweets and 462,436 tweets are retrieved as posi-
tive tweets and negative tweets; for the Stromfront post collection, 462,436 posts
and 12,696 are retrieved as positive posts and negative posts.
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Table 1. Top 5 features selected using feature importance I

Twitter Stromfront

Positive Negative Positive Negative

1 mujahideen tcot knights nazis

2 martyrdom yazidi united white evil nazis

3 allah accept bombers klux klan hate crime

4 alhamdulilah suicide bombers white knights warmongers

5 martyrdom operation kittens daesh jews liberals

To better understand the accuracy of using our post retrieval method
(referred to as XtremePost), we compare our method to four other methods:

1. A Naive Bayes classifier (NB Classifier) that incorporates unigrams, emoti-
cons, urls, and POS taggers to identify extremism. It was built using the
labeled ground truth data. Note, we did experiment with other classic machine
learning algorithms, including Logistic Regression, Support Vector Machines,
K Nearest Neighbors and Decision Trees. Naive Bayes performed better than
the other models.

2. Two state of the art sentiment detection tools - Stanford CoreNLP [1] and
vaderSentiment [3]1

3. Using features generated by computing the difference in frequency intensity
of positive and negative posts (referred to as Count).

(a) Twitter (b) Stromfront

Fig. 2. Accuracy of extremism post identification by different approaches

Due to the lack of ground truth labels of the retrieved tweets, we randomly
sample 200 posts from each of the two classes. The results are shown in Fig. 2.

1 vaderSentiment is also the tool employed by [18] to identify extremist users.
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We can see that our approach achieves 62%/66% accuracy in identifying posi-
tive/negative posts in the tweet collection, and 71%/64% accuracy in the Strom-
front post collection, significantly outperforming other methods. When analyzing
the results, we find that our approach performs well because: (1) it is insensi-
tive to abnormal grammar structures and made-up words; (2) it is insensitive to
data with a skewed distribution across classes. The Naive Bayes classifier has the
second best performance, but it has a very low accuracy in identifying positive
posts in the tweet collection. This is not surprising since only 0.5% of the tweets
in this collection are positive. The underperformance of two sentiment analyzers
can be attributed to the prevalence of noise in social media posts. Social media
posts tend to contain made-up words and do not to follow normal grammar
rules.

5.4 Centrality Calculation

Based on the retrieved positive/negative posts, we build the information flow
network. For the tweet network, an edge is added to the network if a user is
retweeted, replied, or mentioned in a tweet. For a tweet that does not refer to
another user, a self-edge incident to its author is added to the network. For the
Stromfront post network, an edge is added to the network if a user is quoted or
replied to in a post. Similarly, self-edges are added if the post does not refer to
another user.

Network analysts use different measures of centrality to define importance.
As mentioned in Sect. 4, we consider degree, betweenness, pagerank, and person-
alized pagerank. We compare all of these methods to a simple method that only
considers the frequency of positive and negative posts. All the methods return
a comparable number of users. For the tweet collection, the number is around
7,000; for Stromfront post collection, the number is around 20,000.

We sample 100 users from all the users identified by the different meth-
ods and evaluate what percentage of the 100 users post extremist content. The
results are shown in Fig. 3. We can see that using the information flow graph and
the centrality metrics of degree and personalized pagerank result in the highest
accuracies. However, all of the information flow methods and the simpler count
method have comparable accuracies.

In order to better understand the percentage of all the users endorsing
extremist ideology, we take a 400 user random sample from each post collection,
and manually check their posts. We find that about 38% users in the Stromfront
post collection endorse extremist ideology in their posts, while only 0.5% users
in the tweet corpus endorse extremist ideology in theirs posts.

In another experiment, we rank the identified users according to their cen-
trality scores for each method. We are interested in the accuracy of our proposed
approach at different positions along the scale. We take a 50 user sample from
users identified as endorsing extremist ideology by each method at different
positions along the scale, and manually evaluate what percentage of them post
extremist content. For example, we take all the top 50 users, sample 50 users
from the top 1,000 users, sample 50 users from the 1,001 to 2,000 ranking, etc.;
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Fig. 3. Accuracy of extremist user identification by different methods

(a) Twitter (b) Stromfront

Fig. 4. Accuracy of extremist user identification at different positions along the scale
of users ranked according to different methods

then we classify them as sharing extremist content or not. The results are shown
in Fig. 4. We observe a trend that the higher an identified user ranks in the scale,
the more likely the user posts contain extremist views. This means that all the
information flow methods can identify the most extreme users effectively.

Finally, we evaluate the efficiency of different methods. Since Betweenness,
Pagerank, and Personalized Pagerank are computationally intensive, we imple-
ment them on a distributed yarn cluster, which consists of 12 nodes. Each node
has 16 CPUs. In computing these metrics, we designate 10 executors, with 10
cores for each executor, which result in 100 cores. On the other hand, since both
the Count and Degree method are computationally trivial and the overhead of
initializing the yarn cluster would cost more than calculating these two metrics,

Table 2. Cost of centrality computation. ×100 represents 100 cores allocated

Twitter Stromfront

Count 0.6 s 0.9 s

Degree 0.8 s 1 s

Betweenness 744 s× 100 86 s× 100

Pagerank 911 s× 100 261 s× 100

Personalized pagerank 942 s× 100 302 s× 100
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we implement them as single thread programs. Table 2 shows the time cost of
the different methods. We can see that the Betweenness, Pagrank, and Person-
alized Pagerank methods are considerably more expensive than the Count and
Degree methods. Considering both accuracy and computational cost, the Degree
method ends up being the best performer.

6 Conclusions

In this paper, we propose an approach for identifying users endorsing extremist
ideology on social media. Our approach first identifies posts exposing extrem-
ist ideology and posts exposing anti-extremist ideology, then constructs two
weighted networks to model the information flow between the publishers of
the identified posts. Different node centrality metrics are considered to evaluate
users’ contribution to spreading extremist ideology and anti-extremist ideology.
Users with more contribution to spreading extremist ideology than anti-extremist
ideology are labeled as individuals sharing extremist views. We empirically eval-
uate our approach on two social media post collections. We find that our app-
roach for identifying posts that contain extremist views is significantly better
than the state of the art. We also showed that using an information flow graph
can achieves over 90% accuracy when identifying the top scoring users sharing
extremist content.
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Abstract. In this paper, we propose MC3, an ensemble framework
for multi-class classification. MC3 is built on “consensus learning”, a
novel learning paradigm where each individual base classifier keeps on
improving its classification by exploiting the outcomes obtained from
other classifiers until a consensus is reached. Based on this idea, we pro-
pose two algorithms, MC3-R and MC3-S that make different trade-offs
between quality and runtime. We conduct rigorous experiments com-
paring MC3-R and MC3-S with 12 baseline classifiers on 13 differ-
ent datasets. Our algorithms perform as well or better than the best
baseline classifier, achieving on average, a 5.56% performance improve-
ment. Moreover, unlike existing baseline algorithms, our algorithms also
improve the performance of individual base classifiers up to 10%. (The
code is available at https://github.com/MC3-code.)

Keywords: Ensemble learning · Consensus · Multi-class classification

1 Introduction

Suppose there are multiple experts sitting together. The moderator gives an
object (and its features) and asks the experts to predict its true class from a set
of predefined classes. In the first round, experts use their individual heuristics
to predict the true class. At the end of the round, every expert discloses her
prediction, and learns the predictions made by others. If the moderator does not
receive a consensus between the experts’ predictions, she allows another round
of predictions. In the next round, each expert uses the knowledge of others’
predictions, and may modify her heuristics to come up with some other class
for that object. Similarly at the end of the second round, the moderator again
checks for a consensus. The iteration continues until a consensus is achieved; and
finally the class obtained at the consensus is assigned to the object. This is the
underlying philosophy of our proposed ensemble classification framework MC3
(Multi-Class Consensus Classification). Experts are like base classifiers and the
final prediction is achieved via consensus.

The power of ensemble classification has been widely accepted by the machine
learning community [16]. Existing ensemble classifiers such as Bagging [4], Boost-
ing [17] improve predictions of a base classifier by learning from mistakes.
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In contrast, our ensemble algorithms support learning across multiple base clas-
sifiers in order to achieve consensus to not only achieve high prediction accuracy,
but also to improve the performance of base classifiers individually. We propose
two versions of MC3: (i) MC3-R, a recursive version of MC3, (ii) MC3-S,
a two-stage single iterative version of MC3. Although MC3-R is computation-
ally more expensive, it produces better predictions than MC3-S (which slightly
trades off accuracy for lower runtime).

We conduct experiments on 13 datasets with different properties (w.r.t. size of
data and feature set, class distribution etc.). We compare MC3-R and MC3-S
with 12 (7 standalone and 5 ensemble) classifiers, and observe that our algorithms
are either as good as the best baseline or sometimes perform even better than
that, achieving an average of 5.56% higher accuracy than the best baseline.
Although the best baseline varies from one dataset to another, our algorithm is
a single algorithm that achieves the best performance across different datasets.
Additionally, the performance of individual base classifiers is improved up to
10%. We also suggest how to select the best parameters for our classifiers.

2 Related Work

Ensemble classification has been an active research area in machine learning (see
an exhaustive survey in [16]). Due to the abundance of literature in this area,
we restrict our discussion to recent work. Classical ensemble classifiers such as
Bagging [4], Boosting [17], Stacking [15], Random Forest [5] etc. [18] use reduced
versions of training samples to train ensemble classifiers. BPNNAdaBoost and
BPNN-Bagging [20] built on AdaBoost and Bagging are back-propagation neural
network models for financial distress prediction. [19] used an Artificial Bee
Colony algorithm for selecting the optimal base classifier and meta configura-
tion in stacking. [8] proposed a classifier ensemble particularly for incomplete
datasets. [12] used Artificial Neural Networks with Levenberg-Marquardt back
propagation as base classifiers for the Rotation Forest ensemble. [9] combined
bagging and rank aggregation. [22] proposed an ensemble classification approach
based on supervised clustering for credit scoring. [11] designed a new ensemble
pruning method which highly reduces the complexity bagging.

The philosophy behind the existing methods is that base classifiers perform
well in different segments of the data and make mistakes in other segments.
Ensemble methods combine predictions by balancing between quality and diver-
sity. However, the philosophy behind our ensemble classifiers is completely differ-
ent – we let each base classifier leverage the predictions made by other classifiers
and train itself iteratively to come to a consensus. At the end of the iterations,
we expect all the base classifiers to produce exactly the same prediction for an
unknown instance. This in turn not only provides a strong ensemble classification
in general, but also improves the performance of individual base classifiers.

Suppose we are given Str, a set of Mtr training instances taken from a domain
D. The ith entry of Str is represented by Si

tr = (xi, yi), where xi ∈ R
d is a
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d-dimensional feature vector1 and yi is the true class of Si
tr chosen from a set L

(where l = |L| ≥ 2). We are also given Sts, a similar set of Mts test instances
taken from D; however the true classes of the instances Sj

ts = (xj , yj) ∈ Sts are
unknown, i.e., yj = φ. It is also known that each unknown instance belongs to
only one class in L. The task is to predict the true class of each instance in Sts.

Ensemble Classification: Let CF = {CF1, . . . , CFM} be a set of base clas-
sifiers. Each base classifier CFj is trained on Str to predict a probability
distribution over possible classes for an unknown instance Si ∈ Sts, i.e.,
pj(Si) = {pj(L1|Si), . . . , pj(Ll|Si)}, based on which Lj

i is assigned to Si such
that Lj

i = arg maxkpj(Lk|Si). The final class Li ∈ L of Si is obtained by feed-
ing the output classes/probabilities obtained from all the base classifiers into
an ensemble function E(L1

i , . . . , L
M
i ) or E(pj(Si), . . . ,pM (Si)). The task is to

design an appropriate ensemble function to predict the final class of an unknown
instance.

3 Multiclass Consensus Classification

We propose two ensemble classifiers. The first classifier, MC3-R is a recursive
multi-class consensus classifier that achieves consensus by recursively updating
each base classifier using the outcomes of other base classifiers. This classifier
turns out to be most accurate, although it suffers from high computational com-
plexity. The second classifier, MC3-S is a single iteration multi-class consensus
classifier that approximates consensus in one iteration. MC3-S is much faster
than MC3-R and is the closest competitor in terms of accuracy. In the rest of
the section, we will elaborate these classifiers.

3.1 MC3-R: Recursive MC3

MC3-R (pseudo-code in Algorithm 1) takes the following inputs – training set
STR, test set STS , a set of M base classifiers {CF}M

i=1, a number of iterations
Iter, a subset selection strategy SS that selects a subset of the M base classifiers,
a combination function W , and a consensus function CONS. It consists of two
fundamental steps – achieving consensus and combining predictions of the base
classifiers. MC3-R trains each base classifier Iter times on the training set
separately and selects the best parameter setting. In each iteration, MC3-R
achieves consensus after ι levels (the value of ι varies across different iterations).
Finally, MC3-R combines the outputs of all optimal base classifiers using a
weighted function W and predicts the final classes of STS .

Achieving Consensus: In Step 7 of Algorithm 1, MC3-R invokes a
getConsensus function which starts by randomly dividing STR equally into STR1

and STR2 (Step 20). It then calls getMetaFeatures twice – in the first (resp. sec-
ond) call each CFi is trained on STR1 (resp. STR2) to predict STR2 (resp. STR1).

1 We use boldface lower case letters for vectors (e.g., x).
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Algorithm 1. MC3-R: Recursive MC3
Data: Training set ST R, Test set ST S , No. of iterations Iter, Set of M base classifiers

{CF}M
i=1, Subset selection function SS, a combination function W , Consensus

function CONS
Result: Prediction of ST S

1 P∗(i) = φ, 1 ≤ i ≤ M // Stores the optimal parameters of the classifiers
2 A = φ // Stores the fitness error of the classifiers
3 j = 1
4 while j ≤ Iter do
5 ι = 1
6 Pι

i = φ, 1 ≤ i ≤ M
7 A=getConsensus (CF , ST R, ι,j)
8 j + +

9 end
// Select best optimal parameters of base classifiers from multiple iterations

10 for (i = 1; i ≤ M; i + +) do

11 ĵ = argmax1≤j≤Iter Ai
j , where Ai

j ∈ A
12 for (k = 1; k ≤ ι; k + +) do

13 ĈF
k
i is constructed using Parameter∗(i, ĵ, k), where Parameter∗(i, ĵ, k) ∈ P∗(i)

14 end

15 end

16 Use ĈF
k
i (1 ≤ i ≤ M) in k different levels (where 1 ≤ k ≤ ι) to predict the classes of ST S

17 Combine the predictions of {ĈF i}M
i=1 using W to obtain final classes of ST S

18 return Classes of ST S Procedure getConsensus(CF, ST R, ι,j)
19 Divide ST R equally into ST R1 and ST R2 randomly

// Obtain ιth level optimal classifiers

20 Parameter∗(i, j, ι) = 0, 1 ≤ i ≤ M // Parameters of CFi at ιth level of jth iter.
21 Se

T R2
, CF∗ι ← getMetaFeatures(CF, ST R1 , ST R2)

22 Se
T R1

, CF∗ι ← getMetaFeatures(CF, ST R2 , ST R1)

23 Parameter∗(i, j, ι) = Parameters of CF ∗ι
i (j), 1 ≤ i ≤ M

24 P∗(i) = P∗(i) ∪ Parameter∗(i, j, ι), 1 ≤ i ≤ M
25 if CONS == True then

26 Errori
j = Fitness error of CF ∗

i at the end of jth iteration

27 Ai
j = 1 − Errori

j

28 A = A ∪ Ai
j

29 return A
30 end
31 else
32 S = Se

T R1
∪ Se

T R2
33 Use SS to select a subset of meta-features from S and augment it with the original

feature set of ST R to get an expanded feature set Se
T R

34 getConsensus(CF, Se
T R, ι + +)

35 end

36 Procedure getMetaFeatures(CF, Str, Sts)
37 K-fold cross-validation of each CFi on ST r to get optimal classifier CF ∗

i
38 Use each CF ∗

i to predict the classes of Sts and treat them as meta-features
39 Augment the meta-features with the original features and create an expanded feature

set for Sts (call it Se
ts)

40 return Se
ts, CF∗

The predictions of CFis then become meta-features for STR2 (resp. STR1) and
they are augmented with the original features to generate an expanded feature
set Se

TR2
(resp. Se

TR1
). In Step 26, if MC3-R reaches consensus based on the

consensus function CONS (possible definitions are given in Sect. 4), it returns
the fitness error of individual classifiers which will further be used for best para-
meter selection (Step 11); otherwise a subset of meta-features are selected using
SS (possible definitions are given in Sect. 4) and augmented with the original
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features of STR to obtain an extended set Se
TR (Step 40). The entire

getConsensus is repeated recursively until the consensus is achieved (Step 35).

Combining Predictions: Once consensus is achieved, the best parameters for
each classifier at each level are selected based on the fitness error in different
iterations (Step 13). The optimal classifiers are then used to predict the class
of Sts. Finally, the predictions of the classifiers are combined using W (possible
definitions are given in Sect. 4) to generate the final class of Sts (Step 17).

3.2 MC3-S: Single Iteration MC3

MC3-S (pseudo-code in Algorithm 2) takes the same inputs as MC3-R (except
the consensus function CONS since it assumes that consensus is achieved after
two levels). MC3-S starts by randomly dividing STR into two equal subsets
STR1 and STR2 (Step 7). Each classifier CFi considers STR1 and uses k-fold
cross validation to obtain optimal parameter settings (we refer to each such
optimal classifier as CF ∗

i ) (Step 8). Each CF ∗
i is then used to predict the classes

of STR2 (Step 9).
In the next step, the classes of STR2 obtained from optimal classifiers CF∗

are used as meta-features of STR2 . We then select a subset of meta-features using
SS (Step 10) and augment them with the original features of STR2 to get an
expanded set Se

TR2
(Step 11). Note that these optimal classifiers CF∗ will be used

later for generating new features. After this, we consider each original classifier
CFi and run k-fold cross-validation on Se

TR2
. This step will produce another

optimal set of classifiers denoted by {CF∗∗}n
i=1 (Step 12). This set of optimal

classifiers will be used later for final class prediction of unknown instances.
The above steps (Steps 7–16) are repeated Iter times, and the optimal para-

meter settings for CF∗ and CF∗∗ are stored into Parameter∗ and Parameter∗∗,
respectively. At the same time, the accuracies of CF∗∗ are stored in Accuracy.

Once Iter iterations are completed, we select the best parameter setting for
each CF ∗

i and CF ∗∗
i based on the values stored in Accuracy. We call ˆCF∗

for
feature generation and ˆCF∗∗

for class prediction (Step 17–20). Finally, on the
test set STS , the ˆCF∗

classifiers are run to generate meta-features (Step 21), and
SS is used to select a subset of meta-features (Step 22). ˆCF∗∗

are then run to
predict the classes (Step 23). The final class of each instance in STS is generated
by combining the outputs of ˆCF∗∗

using W (Step 24).

4 Functions Used in MC3-R and MC3-S

Here, we describe some possible definitions of the functions used in our classifiers.

• Meta-feature Generation: Experimental evidence from prior research [10,
15,21] indicates that augmenting the confidence of base classifiers in predicting
class levels as meta-features is more useful than considering the predicted classes
directly. Ting and Witten [21] suggested using as meta-features, the probabilities
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Algorithm 2. MC3-S: Single Iteration MC3
Data: Training set ST R, Test set ST S , No. of iterations Iter, Set of M base classifiers

{CF}M
i=1, Subset selection function SS, a combination function W

Result: Prediction of ST S

1 for (i = 1; i ≤ M; i + +) do
2 Parameter∗(i, j) = 0, 1 ≤ j ≤ Iter
3 Parameter∗∗(i, j) = 0, 1 ≤ j ≤ Iter
4 Accuracy(i, j) = 0, 1 ≤ j ≤ Iter

5 j = 1
6 while j ≤ Iter do
7 Divide ST R equally into ST R1 and ST R2 randomly

8 K-fold cross-validation of each CFi on ST R1 to get level-1 optimal classifier CF ∗
i

9 Use each CF ∗
i to predict the classes of ST R2 and consider them as meta-features

10 Use SS to select a subset of features from the set of meta-features
11 Augment the selected subset of meta-features with the original features and create an

expanded feature set for ST R2 (call it Se
T R2

)

12 K-fold cross validation of each CFi on Se
T R2

to get level-2 optimal classifier CF ∗∗
i

13 Parameter∗(i, j) = Parameters of CF ∗
i , 1 ≤ i ≤ M

14 Parameter∗∗(i, j) = Parameters of CF ∗∗
i , 1 ≤ i ≤ M

15 Accuracy(i, j) = Accuracy of CF ∗∗
i , 1 ≤ i ≤ M

16 j = j + 1

// Best CF ∗
i (resp. CF ∗∗

i ) is used for feature generation (resp. final classification)

17 for (i = 1; i ≤ M; i + +) do

18 ĵ = argmax1≤j≤Iter Accuracy(i, j)

19 ĈF
∗
i is constructed using Parameter∗(i, ĵ)

20 ĈF
∗∗
i is constructed using Parameter∗∗(i, ĵ)

// Prediction on test set

21 Use each ĈF
∗
i to predict classes of ST S and use them as meta-features

22 Use SS to select a subset of meta-features and augment it with the original feature set of
ST S to get an expanded feature set Se

T S

23 Predict the classes of Se
T S using ĈF

∗∗
i

24 Combine the predictions of {ĈF
∗∗
i }M

i=1 using W to obtain final classes of ST S

25 return Classes of ST S

(often used as confidence values) predicted for each possible class by each base
classifier, i.e., pj(Si) = {pj(L1|Si), . . . , pj(Ll|Si)}, where j = 1, . . . ,M and Lk ∈
L. We further extend them by augmenting two additional sets of meta-features
for each instance Si and each classifier CFj : (i) the probability distribution
multiplied by the maximum probability: p̂j(Si) = pj(Si) × max

1≤k≤l
pj(Lk|Si),

(ii) the entropies of the probability distributions: Ej(Si) = −∑l
k=1 pj(Lk|Si) ·

log2 pj(Lk|Si). Therefore, the total number of meta-features for each instance
would become M(2l + 1).

• Subset Selection: Instead of considering all classifiers, we propose to use
SS to select a subset of classifiers for meta-feature generation. Our selection
strategies are based on two fundamental quantities – quality and diversity.

(i) Quality (Q): We measure the quality of each base classifier in terms of –
Area under the ROC curve (AUC) (further used to measure the performance of
individual classifiers in Sect. 6).
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(ii) Diversity (D): We measure the diversity between the predictions of base
classifiers in two ways: (i) NMI-based measure: Dnmi = 1 − 1

M

∑
1≤i,j≤M NMI

(yi,yj), where Normalized Mutual Information (NMI) is a measure of simi-
larity between two results [14], (ii) Entropy-based measure: DE = 1

|Str|
∑

s∈Str

1
M− M

2
min{l(s), L − l(s)}, where l(s) =

∑M
i=1 δ(Yi(s), c(s)), and δ(a, b) = 1, if

a = b, 0 otherwise.

Greedy Strategy (G): Given the predictions of all base classifiers {yi}M
i=1

as inputs, we select a subset by considering a trade-off between quality and
diversity, which can be viewed as a multi-objective optimization problem. We
choose a subset SCF that maximizes the objective function:

J = α
1

|SCF |
|SCF |∑

i=1

Q(yi) + (1 − α)D (1)

The parameter α controls the trade-off between these two quantities. However,
selecting a proper subset is computationally expensive. Therefore, we adopt the
following greedy strategy. We start by adding the solution with highest quality
and incrementally add solutions one at a time that maximizes J until local
maxima is reached. We set 0.5 as the default value of α. We also consider all
the features (ALL) and compare the performance of the classifiers with that of
greedy strategy (see Sect. 6, Table 2(c) and (d)).

• Output Combination: In the final stage of our proposed classifiers (Step 17
in MC3-R and Step 24 in MC3-S), the outputs of the optimal base classifiers
are aggregated through a function W . We consider two definitions for W .

(i) Majority Voting (MV): For each test instance we assign the class that
the majority of base classifiers agree with. Tie breaking is resolved by assigning
that class on which the base classifiers have highest confidence.

(ii) Feature-Weighted Linear Combination (FWLC): As opposed to linear
stacking where each base classifier is given a weight, here we assign weights to
features. Simple linear stacking defines the weighted function as W (Lk|s) =
∑M

i=1 wip
i(Lk|s), for each Lk ∈ L and s ∈ Str. FWLC instead models the

weight wi as a linear function of features (including d original and M(2l + 1)
meta-features), i.e., wi(s) =

∑d+M(2l+1)
j=1 vijfj(s) for learning weights vij ∈ R.

Then the weighted function yields the following objective function:

minv

∑

s∈Str

(
M∑

i=1

d+M(2l+1)∑

j=1

(vijfj(s)pi(Lk|s)) − 1)2 (2)

The prediction is subtracted from 1 because we assume that the actual class of
s is assigned the probability 1. We use linear regression to obtain the optimal
weight for each feature.

• Consensus Function: MC3-R uses CONS to reach a consensus among the
base classifiers. Ideally, all the classifiers should predict the same class for an
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unknown instance at the end (complete consensus). However, in practice it may
not be possible, and therefore we stop MC3-R once it reaches a certain threshold
of consensus. Two possible definition of CONS are as follows:

(i) Binary Consensus (BIN): For each unknown instance, we check
if all pairs of classifiers agree with their predictions: 1

|Str|
1
M

∑
s∈Sts∑

{CFi,CFj} δ(Yi(s), Yj(s)), where δ(x, y) = 1, if x = y, 0, otherwise.

(ii) NMI-based Consensus (NMI): We measure the average similar-
ity between the prediction of two base classifiers using NMI: 1

M

∑
{CFi,CFj}

NMI(yi,yj).
The classifier stops once the difference between the values of the consensus

function for two consecutive levels falls below a certain threshold (we take it as
0.02). Later we will see in Fig. 2(d) that MC3-R achieves consensus within 4–5
levels for most of the datasets.

5 Experimental Setup

Datasets: We perform our experiments on a collection of 13 datasets. These
datasets are highly diverse (in terms of size, class distribution, feature size) and
widely used. A summary of these datasets is shown in Table 1.

Base Classifiers: Seven (standalone) base classifiers are used in this study: (i)
DT: CART algorithm for decision tree with Gini coefficient, (ii) NB: Naive

Table 1. The datasets (ordered by the size) and their properties: number of instances,
number of classes, number of features, probability of the majority class (MAJ), and
entropy of the class probability distribution (ENT). We further report the accuracy
(AUC) of our classifiers and the best baseline for different datasets. The best baseline
varies across datasets (see Sect. 6 for detailed discussion).

Properties of the dataset Accuracy (AUC)

Dataset #

instances

#

classes

#

features

MAJ ENT Best baseline MC3-R MC3-S

Binary Titanic [1] 2200 2 3 0.68 0.90 0.66 (SVM) 0.67 0.66

Spambase [13] 4597 2 57 0.61 0.96 0.93 (RF) 0.95 0.95

Magic [13] 19020 2 11 0.64 0.93 0.55 (RF) 0.56 0.56

Creditcard [23] 30000 2 24 0.78 0.76 0.67 (BAG) 0.70 0.67

Adults [13] 45000 2 15 0.75 0.80 0.78 (SGD) 0.83 0.80

Diabetes [13] 100000 2 55 0.54 0.99 0.64 (RP) 0.65 0.65

Susy [2] 5000000 2 18 0.52 0.99 0.77 (BAG) 0.77 0.77

Multiclass Iris [13] 150 3 4 0.33 1.58 0.97 (RP) 0.98 0.98

Image [13] 2310 7 19 0.14 2.78 0.98 (BAG) 0.98 0.98

Waveform [13] 5000 3 21 0.34 1.58 0.89 (STA) 0.91 0.90

Statlog [13] 6435 6 36 0.24 2.48 0.92 (RP) 0.95 0.94

Letter

recognition

[13]

20000 26 16 0.04 4.69 0.49 (BOO) 0.54 0.50

Sensor [13] 58509 11 49 0.09 3.45 0.98 (BOO) 0.99 0.99
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Bayes algorithm with kernel density estimator, (iii) K-NN: K-nearest neighbor
algorithm, (iv) LR: multinomial logistic regression, (v) SVM: Support Vector
Machine with linear kernel, (vi) LDA: supervised latent Dirichlet allocation
[6], (vii) SGD: stochastic gradient descent classifier [3]. We utilize standard grid
search for hyper-parameter optimization. These algorithms are further used later
as standalone baseline classifiers to compare with MC3-R and MC3-S.

Baseline Algorithms: We compare MC3-R and MC3-S with the standalone
classifiers mentioned earlier. We additionally compare them with 5 state-of-
the-art ensemble classifiers: (i) Linear Stacking (STA): stacking with multi-
response linear regression [15], (ii) Bagging (BAG): bootstrap aggregation
method [4], (iii) AdaBoost (BOO): Adaptive Boosting [17], (iv) Random
Forest (RF): random forest with Gini coefficient [5], and (v) RP: a recently
proposed random projection ensemble classifier [7]. Thus, in all, we compare our
algorithms with 12 classifiers including sophisticated ensembles.

6 Experimental Results

In this section, we first present the parameter selection strategy for our clas-
sifiers. In the interest of space, we will only present the results of parameter
selection for Creditcard and Waveform (as representatives of binary and mul-
ticlass datasets respectively); however exceptions will be explicitly mentioned.
Following this, we will present the performance of all the algorithms for different
datasets. The performance is reported after 10-fold cross validation. All exper-
iments were performed on a cluster of 64 Xeon 2.4 GHz machines with 24 GB
RAM running RedHat Linux.

Parameter Selection: Table 2 shows the performance of our classifiers for dif-
ferent parameter combinations. For instance, the top left entry in Table 2(a)
indicates that the AUC value of MC3-R on the Creditcard dataset is 0.64 (resp.
0.63) with NMI-based greedy subset selection G : Dnmi and binary consensus
BIN (resp. NMI-based greedy subset selection G : Dnmi and NMI-based consen-
sus NMI). We observe that in general MC3-R and MC3-S perform the best
with majority voting (MV ) as W (exception including FWLC for the Magic
dataset), greedy strategy (G) with entropy-based diversity DE as SS (exception

Table 2. Parameter selection for MC3-R and MC3-S on Creditcard and Waveform
datasets (see abbreviations in Sect. 4). The accuracies are reported in terms of AUC.

(a) MC3-R (Creditcard)
SS + CONS

G : Dnmi+BIN(NMI) G : DE+BIN(NMI) ALL+BIN(NMI)

W

FWLC 0.64 (0.63) 0.66 (0.65) 0.65 (0.65)
MV 0.65 (0.66) 0.67 (0.68) 0.66 (0.67)

(b) MC3-R (Waveform)
SS + CONS

G : Dnmi+BIN(NMI) G : DE+BIN(NMI) ALL+BIN(NMI)

W

FWLC 0.76 (0.79) 0.76 (0.78) 0.77 (0.78)
MV 0.88 (0.88) 0.86 (0.91) 0.89 (0.90)

(c) MC3-S (Creditcard)
SS

G : Dnmi G : DE ALL

W

FWLC 0.66 0.66 0.67
MV 0.67 0.70 0.68

(d) MC3-S (Waveform)
SS

G : Dnmi G : DE ALL

W

FWLC 0.56 0.56 0.76
MV 0.90 0.91 0.89
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including greedy Dnmi-based strategy for the Sensor dataset) and NMI-based
CONS. Moreover, for both the classifiers, we observe in Fig. 2(c) that the per-
formance does not change much with the number of iterations (Iter); therefore
we take Iter = 1 to speedup the classifier. The rest of the experiments are
conducted with these parameter settings for MC3-R and MC3-S.

Comparative Analysis: The performance of the classifiers is evaluated based
on two evaluation measures – AUC and F-score. For better visualization, we
present here the composite performance of all classifiers – for each evaluation
measure (AUC and F-score), we separately scale the scores of the competing
classifiers so that the best performing classifier has a score of 1. The composite
performance of a classifier is the sum of the 2 normalized scores. If a classifier
outperforms all others, then its composite performance is 2. Figure 1 shows that
our classifiers outperform others, irrespective of the datasets. The composite
performance of MC3-R and MC3-S is 1.99 and 1.97 respectively, followed by
RF (1.92), Bagging (1.92), RP (1.87), DT (1.82), KNN (1.82), BOO (1.92), STA
(1.81), LDA (1.81), SVM (1.80), LR (1.80), NB (1.73) and SGD (1.55). The
absolute performance of each classifier averaged over all datasets as shown in
the bottom table of Fig. 1 indicates that MC3-R performs 3.89% (resp. 5.56%)
better than the best baseline in terms of AUC (resp. F-Score). For further com-
parison, the absolute accuracy of MC3-R and MC3-S along with the bast base-
line is presented in Table 1. Interestingly, we observe in Table 1 that although
the best baseline tends to be competitive with our classifiers, there is no par-
ticular baseline which is the best across all datasets. Therefore, one may choose
our classifiers rather than spending time deciding on which classifier to choose
because our classifiers are at least as good as any existing classifier irrespective
of the dataset.

Fig. 1. (a) Composite performance of all the classifiers ((A)-(G): standalone, (H)-(L):
ensemble, (M)-(N): ours) on different datasets. (b) The results on Sensor dataset are
zoomed out separately. The order of classifiers on x-axis (i.e., labels on x-axis) in (a)
is same as that in (b) and is omitted for better visualization. The table below presents
the average accuracy of the classifiers over all the datasets, and the runtime on three
largest datasets.
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As expected, we observe in the bottom table of Fig. 1 that MC3-S is much
faster than MC3-R. Note that the runtime is reported after running base clas-
sifiers sequentially. We further measure overhead ratio of an ensemble algorithm
as the ratio between the total runtime of the ensemble algorithm and the total
runtime taken by the base algorithms used in the ensemble algorithm. We notice
that the overhead ratio of our algorithms is the minimum (around 1; while the
maximum is 714 for Bagging). It essentially indicates that the runtime of our
algorithms is high due to the sequential execution of the base algorithms, which
can be parallelized easily.

We further study other aspects of the classifiers:

(i) Dependency on the Feature Size : We consider Spambase2 having highest
number of features (57) and drop 5 features at a time based on descending
order of importance3 and plot AUC in Fig. 2(a). We observe that our algorithms
consistently perform well despite dropping features – MC3-R almost remains
invariant up to 12 features. The reason might be that our classifiers produce
additional meta-features to separate instances well in the feature space. This
suggests that our classifiers add high value for datasets with a small number of
original features.

(ii) Dependency on the Size of the Training Set : We consider Creditcard
(see footnote 2) and decrease the training size from 75% to 50% (with 5% inter-
val) of the entire dataset. Training set is selected randomly, and for each training
size, the average AUC is reported in Fig. 2(b) after repeating it 20 times. We
observe that our classifiers are less affected by the training size. Therefore, one
may choose our classifiers when the training size is small.

(iii)Dependency on the Number of Iterations: In both MC3-R and MC3-
S, we choose the best parameter setting of the base classifiers after running them
Iter times. Figure 2(c) shows that the overall performance does not vary much with
an increase in Iter. Therefore, we choose Iter = 1 to make the classifiers fast.

(iv) Convergence of MC3-R: MC3-R takes ι levels to achieve consensus.
Table 2 shows that NMI-based consensus is more effective than binary consensus.
Although there is no theoretical guarantee of achieving consensus since the base
classifiers are treated as a black box, we empirically observe that for all the
datasets MC3-R converges after a certain level. Figure 2(d) shows that for small
datasets (e.g., Iris) consensus is achieved much faster (within 2–3 levels) than
large datasets (e.g., Creditcard, Susy) for which MC3-R usually takes 7–8 levels
of iterations (on average 4–5 levels for most of the datasets).

(v) Dependency on the Base Classifiers: For each dataset, we drop each
base classifier in isolation and measure the change in performance of MC3-R
and MC3-S. Figure 2(e) shows that LDA affects the performance the most. As
mentioned in the comparative analysis, LDA seems to be the best standalone

2 The patterns are exactly the same for the other datasets.
3 We separately measure the importance of each feature by dropping it in isolation

and calculate the decrease in accuracy (more decrease implies more relevance).
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classifier. This may imply that incorporating strong classifiers into the base set
may have a bigger impact than incorporating the weak classifiers.
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Fig. 2. Performance (normalized) of each classifier for (a) different number of features
and (b) different training size. The lines corresponding to MC3-S and MC3-R are
significantly different (McNemar’s, p < 0.005) from other lines. (c) Performance of our
classifiers after considering different number of iterations (Iter). (d) Normalized NMI-
based consensus of MC3-R over different levels of iterations for different datasets. (e)
Decrease in performance of our classifiers after dropping each base classifier in isolation.
(f) Performance improvement of each base classifier due to our ensemble classifiers.

(vi) Improvement of Individual Base Classifiers: As opposed to tradi-
tional ensemble classifiers, our classifiers improve individual base classifiers sep-
arately once consensus is reached. Figure 2(f) shows the percentage improvement
of base classifiers after incorporating meta-features generated by our classifiers.
We observe that the improvement is significantly high, ranging up to 10% in
some cases. Interestingly, our classifiers are able to gear up the performance of
strong base classifiers (such as LDA, LR, SVM) as well.

7 Conclusion

In this paper, we have advanced the paradigm of ensemble classification by
providing a new notion of “consensus learning”. We have shown that there is
no existing classifier which always performs the best across different datasets.
Our classifiers are at the top, performing as well or better than the best existing
classifier (baseline and ensembles) across all 13 datasets we considered. The
rigorous study of 13 different datasets and the comparative analysis with 12
baseline classifiers allows us to assert that achieving consensus not only provides
a better way of designing ensemble classifiers, but also enhances the accuracy of
individual base classifiers by a significant level (up to 10%).
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Abstract. Computing PageRank for enormous and frequently evolving
real-world network consumes sizable resource and comes with large computa-
tional overhead. To address this problem, IMCPR, an incremental PageRank
algorithm based on Monte Carlo method is proposed in this paper. IMCPR
computes PageRank scores via updating previous results accumulatively
according to the changed part of network, instead of recomputing from scratch.
IMCPR effectively improves the performance and brings no additional storage
overhead. Theoretical analysis shows that the time complexity of IMCPR to
update PageRank scores for a network with m changed nodes and n changed
edges is O((m+n/c)/c), where c is reset probability. It takes O(1) works to update
PageRank scores as inserting/removing a node or edge. The time complexity of
IMCPR is better than other existing state-of-art algorithms for most real-world
graphs. We evaluate IMCPR with real-world networks from different back-
grounds upon Hama, a distributed platform. Experiments demonstrate that
IMCPR obtains PageRank scores with equal (or even higher) accuracy as the
baseline Monte Carlo based PageRank algorithm and reduces the amount of
computation significantly compared to other existing incremental algorithm.

Keywords: PageRank � Web mining � Incremental computing � Monte Carlo
algorithm � Parallel and distributed processing

1 Introduction

PageRank plays an important role in Web search, social network analysis and many
other application fields [1]. Nowadays, the volume of data in Internet and social net-
works are tremendous and evolving frequently. Computing PageRank for a large and
evolving graph cost huge computational resources. Recomputing from scratch is
impractical due to its considerable overhead. Many incremental PageRank algorithms
are designed to improve the performance of PageRank computation for dynamic
graphs. Algorithm proposed in [2] is one of the most efficient state-of-art algorithms.
However, its storage overhead, due to storing all the random walk segments in previous
computation, is a limitation which cannot be overlooked.
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Aiming to compute PageRank for evolving graph efficiently, we propose IMCPR, a
novel incremental PageRank algorithm based on Monte Carlo method in this paper.
Inspired by previous works [2, 3], our proposed algorithm reuses pervious PageRank
scores and updates them incrementally. The proposed avoids a large amount of
recomputation and improves the performance significantly.

The most important characteristic of our algorithm is that it stores no previous
random walk segments at all, which brings no extra storage overhead. Theoretical
analysis also proves that the time complexity of our newly proposed algorithm is lower
than other existing related algorithms for most real-world graphs. Moreover, it is also
proved that IMCPR performs as good as the original Monte Carlo method in PageRank
computation [4] in accuracy. Evaluations based on experiments of real-world graphs
demonstrate that IMCPR improves the performance of PageRank significantly com-
pared to other existing PageRank algorithms.

2 PageRank and Related Work

2.1 PageRank

Let G = (V, E) be an unweighted directed graph, where V is the set of nodes and E is
the set of edges. Vj j is the number of nodes and Ej j is the number of edges. For an
arbitrary node j, N(j) donates the set of j’s outgoing neighbors. N jð Þj j is the number of
node j’s outgoing neighbors. Let A be the transition matrix, where Aði; jÞ ¼ 1= N ið Þj j if
and only if there is a direct edge e(i, j) 2 E, and Aði; jÞ ¼ 0 otherwise. Let p be a vector
consisted of PageRank scores of all nodes in V. p is defined as Eq. (1), where a is
teleport probability and h is a vector consisted of fraction 1= Vj j.

p ¼ aApþ 1� að Þh ð1Þ

The definition of PageRank also has an interpretation based on random walk
simulation. Consider a random walk simulation on graph G defined as follows: do
R random walks starting from each node of G, for a random walker, at each step it stops
with probability c (here we call c as the reset probability and c = 1 − a), or jumps to a
random chosen outgoing neighbor of current node with probability a. Assume for each
node v, X(v) is the total number of times that all random walk segments who visits it.
The approximate PageRank of node v ~p vð Þ is defined as Eq. (2).

~pðvÞ ¼ cX vð Þ= R Vj jð Þ ð2Þ

Power Iteration [1] is a fundamental algorithm for PageRank computation which
computes qualified solution of Eq. (1) iteratively. It is easy to understand and imple-
ment, but it’s not efficient enough in dealing with massive graph. Many improved
algorithms based on this iteration method are well discussed in [5]. Another group of
fundamental algorithms are Monte Carlo based algorithms [2, 4]. They simulate the
random walks defined above and get accurate approximations efficiently. It is proved
that even when R = 1, the approximations of important nodes are accurate enough for
many applications [4]. These algorithms are also easy to be parallelized.
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2.2 Related Work

Bahmani et al. have provided a detailed list of incremental PageRank algorithms in [2].
However, for completeness and for comparison with our own results, we concentrate
on reviewing the latest PageRank algorithms for evolving graphs. There are two main
categories of incremental PageRank algorithms.

• Aggregation Algorithms

These algorithms [3, 6–8] are based on the idea of graph partition and aggregation.
They partition the graph into several sub-graphs and try to limit the affect of changed part
of graph in the level of sub-graphs. These methods help to reduce unnecessary recom-
putation. However, the limitations of these algorithms are high computational load for
aggregation, difficulty in partitioning real-world graphs efficiently and unstable perfor-
mance depending on partitioning. A lot of evidences were discussed in detail in [2].

• Monte Carlo Based Algorithms

The most efficient incremental Monte Carlo based PageRank algorithm was pro-
posed in [2], whose time complexity is O Vj j ln nð Þ=c2ð Þ to update PageRank scores as n
edges arrivals in a graph [2, 9]. Though it is efficient to update PageRank, the large
storage cost for all the random walk segments in history limits the application of this
algorithm for large graphs.

Our proposed algorithm doesn’t suffer from the shortages of aggregation based algo-
rithms. It handles evolving graphs with nodes and edges inserted and/or removed effi-
ciently. Comparing to the state-of-art algorithm in [2], it requires no extra storage overhead
and performs a lower time complexity to update PageRank for most of real-world graphs.

3 Incremental Monte Carlo Method for Pagerank (IMCPR)

We compute approximate PageRank scores according to Eq. (2) as initial solution. As
graph evolves, IMCPR updates PageRank based on reusing previous PageRank scores
and starting a proper number of random walks around the changed part. The newly
started random walks help to adjust each node’s times of visited by all random walk
segments via adding or subtracting contribution from corresponding random walk
segments. How IMCPR update PageRank scores when edges and nodes evolve are
described respectively as follows.

3.1 IMCPR for Evolving Edges

Suppose an arbitrary edge e(u, r) is added, we do M random walks starting from node
r. For any node s, if s is passed through by any one of these random walks once, X(s) is
increased by one. M is a non-negative integer defined as Eq. (3). Then we do another
M random walks. Each of these walks randomly picks one of u’s outgoing neighbors
except node r as its starting node. For any node s, if s is passed through by any one of
these random walks once, X(s) decreases by one.

Method for updating PageRank as edges removed is similar. Suppose an arbitrary
edge e(u, r) is removed, we doM random walks starting from node r. For any node s, if
s is passed through by any one of these random walks once, X(s) is decreased by one.
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Then we do another M random walks. Each of these walks randomly picks one of u’s
outgoing neighbors except node r as its starting node. For any node s, if s is passed
through by any one of these random walks once, X(s) increases by one. Algorithm 1.
presents the pseudo-code of updating PageRank for a graph with evolving edges.

M ¼ 1� cð ÞX uð Þ= N uð Þj j; edge eðu; rÞ is added
1� cð ÞX uð Þ= N uð Þj j � 1ð Þ; edge eðu; rÞ is removed

�
ð3Þ
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3.2 IMCPR for Evolving Nodes

Adding an arbitrary node r into graph G, can be regarded as two separate operations.
First a node r is added, secondly edges associated with r are added. Similarly, an
arbitrary node r removed means edges associated with r and the node r itself removed
respectively. Thus, as an arbitrary node r added, we set X(r) equal to R, times of
random walks started from each node before, for initialization. Then we update
PageRank scores according to the method described above. Supposes an arbitrary node
r is removed, we set X(r) equal to zero and update PageRank scores to process the
removed edges. Adding the process for changed nodes and edges together, the
pseudo-code of IMCPR algorithm is shown in Algorithm 2.

4 Correctness and Time Complexity

4.1 Correctness Discussion

In this section, we prove that for an arbitrary node u; ~pðuÞ got by IMCPR is sharply
concentrated around its expectation, which is its real PageRank score pðuÞ.
Theorem 1. The expected PageRank score of an arbitrary node u got from IMCPR is
equal to the real score. It is written as Eq. (4).

E ~pðuÞ½ � ¼ pðuÞ ð4Þ

Prove: It is proved that E ~pðuÞ½ � got by the original Monte Carlo based PageRank is
equal to p uð Þ in [4]. Thus, here we only need to prove that E ~pðuÞ½ � got by IMCPR is
equal to the expectation got by the original algorithm.

For an arbitrary node u, IMCPR reuses X(u) computed by the original Monte Carlo
based PageRank in initial. It is equal to that IMCPR starting R random walks from each
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node of the graph G. As an edge added or removed, IMCPR updates X(u) as the method
defined above, which is equal to rerouting the random walks which passes through the
changed edge. The fundamental idea of IMCPR is that the expectation of contribution
of X(u) from an arbitrary edge e(s, u) is equal to 1� cð ÞX sð Þ= N sð Þj j. Though the
contribution of X(u) from a particular edge varies, its expectation is steady.

The expected X(u) for a node u in a Monte Carlo based algorithm can be computed
as Eq. (5), where P(v, u) donates the number of random walk segment which starts
from v and visits u.

E XðuÞ½ � ¼ R� E
X
v2V

P v; uð Þ
" #

ð5Þ

The expected P(v, u) for any node u and v only depend on the graph and how to
choose next node in a random walk. As described in Sect. 3.1, it is straightforward that
our proposed algorithm doesn’t change the probability of choosing next node in ran-
dom walks, so according to Eq. (5), we can tell that E XðuÞ½ � computed by IMCPR is
equal to it computed by the original Monte Carlo based PageRank algorithm. Theo-
rem 1 is proved.

Theorem 2. The PageRank score got from IMCPR is sharply concentrated around its
expectation. Theorem 2 can be written as Eq. (6) for any node v, where d is a con-
centrated factor and d0 is a constant depending on both d and the reset probability c.

Pr ~pðvÞ � pðvÞj j � dpðvÞ½ � � e� Vj jRp vð Þd0 ð6Þ

The proof of Theorem 2 is similar as some previous works [2, 10], but we still present
the detailed derivation of the proof for the completeness of this paper.

Prove: Assuming R = 1(the situation that R > 1 can be proved like this), for an arbi-
trary node v, define Z(u) donates c times of the visited time of node v got from the path
start from node u. Y(u) is the length of the random walk segment starting from u. Let
WðuÞ ¼ cYðuÞ; zðuÞ ¼ E ZðuÞ½ �. Z(u) of different node u are independent. Thus,

~p vð Þ ¼
X

u2V Z uð Þ= Vj j; p vð Þ ¼
X

u2V z uð Þ= Vj j ð7Þ

It is obvious that 0� ZðuÞ�WðuÞ and E WðuÞ½ � ¼ 1.

From the definition of expectation, Eq. (8) can be derived.

E ehZ uð Þ
h i

� 1
� �

= E ehW uð Þ
h i

� 1
� �

�E Z uð Þ½ �=E W uð Þ½ � ð8Þ

E ehZ uð Þ
h i

� z uð ÞE ehW uð Þ
h i

þ 1� zðuÞ ¼ zðuÞ � E ehW uð Þ
h i

� 1
� �

þ 1 ð9Þ
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Because for an arbitrary y meets 1þ y� ey, thus,

E ehZ uð Þ
h i

� e�z uð Þ� 1�E ehW uð Þ½ �ð Þ ð10Þ

Pr ~p vð Þ� 1þ dð Þp vð Þ½ � � E eh Vj j~p vð Þ� �
eh Vj j 1þ dð Þp vð Þ ¼

E eh
P

u
Z uð Þ

h i
eh Vj j 1þ dð Þp vð Þ �

Q
u E e�z uð Þ� 1�E ehW uð Þ½ �ð Þh i

eh Vj j 1þ dð Þp vð Þ

¼ e� Vj jp vð Þ� 1�E ehW uð Þ½ �ð Þ=eh Vj j 1þ dð Þp vð Þ � e� Vj jd0p vð Þ

ð11Þ
Similar as Eq. (11), Eq. (12) can be proved.

Pr ~p vð Þ� 1� dð Þp vð Þ½ � � e� Vj jd0p vð Þ ð12Þ

In addition, in Eqs. (11) and (12) d0 ¼ 1þ h 1þ dð Þ � E ehW
� �

where W = cY is a
random variable with Y having geometric distribution with parameter c. It means that
the probability of the approximation deviated from its expectation is quite small and
Theorem 2 is proved. So it is convinced that IMCPR performs as good as the original
Monte Carlo based PageRank in accuracy. Above all, the correctness of IMCPR is
proved.

4.2 Complexity Analysis

Supposing an arbitrary node r changed, IMCPR starts R random walks from r. Sup-
posing an arbitrary edge e(u, v) changed, there are 2 � M random walks starting,
including M random walks starting from node v and the same number of random walks
starting from node u’s other outgoing neighbors. Here we discuss the amount of
operations as m nodes and n edges changed. The total number of newly started random
walks in IMCPR, donated by TotalRW, can be calculated as Eq. (13).

Total RW ¼ mRþ 2
X

e u;vð Þ2DE M ¼ mRþ
X

e u;vð Þ2DE 2 1� cð ÞX uð Þ= N uð Þj j ð13Þ

For an arbitrary node u, its outgoing neighbors must be more than zero. So Eq. (14)
must be true, where �X uð Þ refers to the average number of random walk segments
visiting node u in initial.

Total RW �mRþ 2
X

e u;vð Þ2DE X uð Þ ¼ mRþ 2n�X uð Þ ð14Þ

Supposing the edge e(u, v) is inserted and/or removed randomly, �Xt uð Þ can be
calculated as Eq. (15).

�X uð Þ ¼
X

u2V X uð Þ= Vj j ¼ R Vj j= c Vj jð Þ ¼ R=c ð15Þ
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The length of the newly started random walks is equal to the number of operation of
update X(u) for any arbitrary node u. So, we define the amount of computing operations
of IMCPR donated by TotalComp as Eq. (16).

TotalComp ¼ TotalRW=c�R=c mþ 2n=cð Þ ð16Þ

The computational cost of IMCPR is only related to the size of changed parts of the
graph. Algorithm in [2] takes complexity of Oð Vj j ln nð Þ�c2Þ to update PageRank
scores as n edges inserted and/or removed. We compare |E| and ln(|E|)|V| for each graph
from Stanford Network Analysis Project [11]. It is found that |E| is closed to ln(|E|)|V| in
most graphs and there are only 5 graphs which have |E| obviously bigger than ln(|E|)|V|.
Meanwhile, some graphs such as memetracker, LiveJournal, wiki-Talk, web-Google
and so on, their |E| are much smaller than ln(|E|)|V|. So we can tell that in many
real-world applications with little percentages of graph changed, IMCPR takes a lower
time complexity compared to algorithm in [2].

5 Experiments and Evaluations

5.1 Experimental Setup

We perform our experiments upon a five-machine homogeneous Hama [12] cluster.
Each machine in the cluster has an intel-i7 2600 CPU, 2 GB memory, 4 TB hard disk
and 1 Gigabit Ethernet card. Ubuntu 14.04 and zookeeper-3.4.6 are deployed on each
machine. The version of Hama is hama-0.6.4 and HDFS component is provided by
hadoop-1.2.1. Eight real-world graphs from widely used datasets [11] are used in our
experiments. The key parameters of these graphs are listed in Table 1.

In the experiments, we only consider the scenarios that edges and nodes are inserted
into graphs, because removal is similar. In order to generate the edges inserted, we
randomly choose 10% edges in each graph as evolving edges and use the rest part of
each graph as initial graph. In order to generate the inserted nodes, we randomly add a
certain percentage of nodes to each dataset, and appoint a stochastic incoming and
outgoing neighbor for each newly added node. We set c = 0.15 and R = 20.

Table 1. Main parameters of data sets

Graph p2p-Gnutella-31 Amazon-
0312

Web-
NotreDame

Web-
BerkStan

Higgs-
twitter

Wiki-
talk

Wiki-
vote

Email-
Enron

Nodes 63K 401K 326K 685K 457K 2.3M 7.1K 37K
Edges 148K 3.2M 1.5M 7.6M 14.9M 5.0M 104K 184K
Dangling
nodes

46K 12K 187K 4.7K 0.03K 2.2M 1K 0
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5.2 Comparison with Existing Algorithms

We evaluate the performance of our approach (Algorithm 2) by comparing it to the
work in [2] and the non-incremental algorithm in [4]. For simplicity, we use Bah-
maniPR to refer to the algorithm proposed in [2] by Bahmani et al., and use BasicPR to
refer to the original Monte Carlo based PageRank proposed in [4]. We also use PI to
refer to Power Iteration [1] for short.

We evaluate the accuracy of the proposed algorithm with metric of L1 error which
is defined as Eq. (17), where pðuÞ is the “ground-truth” PageRank score of node u and
~pðuÞ is the approximation. In experiments pðuÞ is computed by PI algorithm (with
parameter e = 5 � 10−4).

Err ¼
X

u2V ~pðuÞ � pðuÞj j ð17Þ

We also evaluate the amount of computation of the proposed algorithm. We
implement all the algorithms based on the BSP model [13] upon Hama. A message is
sent as long as a random walker jumps to a node in these Monte Carlo based algo-
rithms. So we get the amount of computation by counting the messages received by all
machines (including messages received locally) during computation. We use Cost(Alg)
to refer to the amount of computation of a particular algorithm Alg.

5.3 Accuracy

We evaluate the accuracy of the proposed algorithm. Firstly, we compare the average
L1 error of BasicPR and IMCPR with 10% edges inserted. Table 2 describes the
results. We found that the accuracy of IMCPR is roughly equal to original Monte Carlo
based PageRank algorithm.

To verify that the errors do not accumulate as updating PageRank for evolving
graph, we trace the accuracy of IMCPR as edges inserted continuously. There are
p edges inserted respectively (p = 1, 10, 100, 1000, 1000). We record the errors of
IMCPR and BasicPR. To make the figures intuitive, we depict Err(IMCPR)/Err
(BasicPR) in the following figures. As Fig. 1(a) shows, the accuracy of IMCPR is stable
and always close to the original Monte Carlo based PageRank algorithm. We also trace
the accuracy as d percentages of edges inserted (d = 1%%,5%%,0.1%,0.5%,1%,
5%,10%). As Fig. 1(b) depicted, we found that the accuracy of IMCPR is always close
to the baseline algorithm. In some cases (P2P with 5% and 10% edges inserted) IMCPR
even gets slightly higher accuracy than the baseline algorithm does.

Table 2. Accuracy comparison of IMCPR and BasicPR with 10% edges inserted

Graph Amazon0312 Web-
BerkStan

Web-
NotreDame

Higgs-twitter p2p-Gnutella31 Wiki-talk

BasicPR 0.19 0.20 0.28 0.21 0.34 0.36
IMCPR 0.20 0.20 0.29 0.21 0.31 0.36
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5.4 Amount of Computation

Comparison with Existing Incremental Algorithm.
To demonstrate our proposed algorithm is efficient, we compare the amount of com-
putation of our algorithm to BahmaniPR. We insert n edges (n = 50, 100, 150) in our
experiments and record the amount of computation. We found that BahmaniPR cost 8.9
to 70 times as much amount of computation compared to our proposed algorithm which
is depicted in Fig. 2.

Comparison with Non Incremental Algorithm.
We also compare our proposed algorithm to original Monte Carlo based PageRank
algorithm, we found our proposed algorithm reduces significant amount of computation
compared to the original algorithm intuitively. Figure 3(a) and (b) describe the com-
parison of amount of computation of IMCPR and BasicPR in experiments of nodes and
edges inserted respectively. As there is 1% data changed, IMCPR cuts down over 96%
amount of computation at least. As 10% edges inserted IMCPR just cost 0.2 times
amount of computation compared to the original algorithms at most.

(a) 1 to 10000 edges inserted  (b)    0.01% to 10% edges inserted

Fig. 1. Comparison of accuracy

Fig. 2. Comparison of amount of computation to BahmaniPR

Monte Carlo Based Incremental PageRank on Evolving Graphs 365



Comparison as Different Number of Edges Changed.
Last but not least, we verifying the efficiency of IMCPR as different number of edges
evolves. We compare the amount of computation of IMCPR as 1 to 10000 edges
inserted mentioned above. We found that the amount of computation has a nearly linear
correlation with the number of the edges inserted. These results consistent with the
theoretical analysis in the previous section. Particular results are depicted in Fig. 4, to
make the figure intuitive, we take the logarithms of amount of computation as the
vertical axis.

6 Conclusion

In this paper, we investigate Monte Carlo based PageRank algorithms and propose an
incremental algorithm called IMCPR, which significantly reduces the amount of
computation for dynamic graphs. Both the theoretical analysis and experimental results
with several typical real-world graphs demonstrate that IMCPR performs well in
accuracy and performance. In addition, the proposed algorithm can be extended to
Monte Carlo based Personalized PageRank [14], Single-Source Shortest Paths [15] and
other random walk based algorithms.

(a)   0.01% to 10% nodes inserted                (b)  0.01% to 10% edges inserted

Fig. 3. Comparison of amount of computation to BasicPR
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Abstract. Graph clustering has been extensively studied in the past
decades, which can serve many real world applications, such as commu-
nity detection, big network management and protein network analysis.
However, the previous studies focus mainly on clustering with graph
topology information. Recently, as the advance of social networks and
Web 2.0, many graph datasets produced contain both the topology and
node attribute information, which are known as attributed graphs. How
to effectively utilize the two types of information for clustering thus
becomes a hot research topic. In this paper, we propose a new attributed
graph clustering method, JWNMF, which integrates topology structure
and node attributes by a new collective nonnegative matrix factoriza-
tion method. On the one hand, JWNMF employs a factorization for
topology structure. On the other hand, it designs a weighted factoriza-
tion for nodes’ attributes, where the weights are automatically deter-
mined to discriminate informative and uninformative attributes for clus-
tering. Experimental results on seven real-world datasets show that our
method significantly outperforms state-of-the-art attributed graph clus-
tering methods.

Keywords: Attributed graph · Clustering · Weight · NMF

1 Introduction

Graph clustering is a widely studied research problem and receives considerable
attention in data mining and machine learning recently [1–8]. It aims to partition
a given graph into several connected components based on structural similarity.
Vertices from the same component are expected to be densely connected, and the
ones from different components are weakly tied. Graph clustering is popularly
used in community detection, protein network analysis, etc. [4–6]. The previous
work focused mainly on finding clusters by exploiting the topology structures.
Recently, as the advance of social networks and Web 2.0, many graph datasets
appear with both the topology and node attribute information. For example,
a webpage (i.e., vertex) can be associated with other webpages via hyperlinks,
and it may have some inherent attributes of itself, like the text description in
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 368–380, 2017.
DOI: 10.1007/978-3-319-57454-7 29
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the webpage. Such type of graphs are known as attributed graphs. Because the
topology and attributes together offers us a better probability to find high-
quality clusters, attributed graph clustering becomes a hot research topic.

However, finding clusters in attributed graphs is not trivial, and there are two
important challenges we need to address. Challenge 1: how to effectively uti-
lize the topology information and the attributes together. In conventional graph
clustering methods, only the topology structure is exploited to find clusters.
By contrast, conventional feature based clustering algorithms take merely the
attributes into account. Different from the two types of approaches, attributed
graph clustering algorithms should effectively use the two types of information
together. Challenge 2: how to automatically determine the importance of dif-
ferent attributes? It is well-known that weighting features appropriately can
help to find the inherent clusters, especially when there is a large portion of
noisy features for clusters. We face the same challenge for attributed graph clus-
tering. For example, in the aforementioned webpage example, each webpage
may contain different textual information at different locations, e.g., title, body,
advertisement, and features extracted thus may have distinct contributions to
clusters. Although some methods have been put forward recently to address the
first challenge [9–16], few of them notice the second challenge.

In this paper, we introduce a Joint Weighted Nonnegative Matrix
Factorization method for clustering attributed graphs, namely JWNMF, which
can address the two challenges. NMF [17,18] is a well-known technique, which
could produce the promising performance in graph clustering [7,8,19]. For a
given attributed graph, our method presents a mechanism by using joint-NMF
to integrate the structural and attribute information. Specifically, we design two
matrix factorization terms. One is modeling the topology structure and the other
is for attributes. Meanwhile, we modify the NMF by introducing a weighting vari-
able for each attribute, which can be automatically updated and determined in
each iteration. Experiments are performed on seven real-world datasets, includ-
ing two amazon information networks, one CMU email networks, one DBLP
information network, one webpage links network and two citation information
networks. Our experimental results show that the proposed JWNMF method
outperforms state-of-the-art attributed graph clustering algorithms, like BAGC
[11], PICS [13] and SANS [14].

The remainder of this paper is organized as follows: Sect. 2 reviews some exist-
ing work on attributed graph clustering. In Sect. 3, we introduce the proposed
JWNMF method. Section 4 presents and discusses the experimental results.
Finally, the conclusions are given in Sect. 5.

2 Related Work

Several clustering methods have been introduced for mining attributed graphs
recently. They can mainly be categorized into two types, namely distance-based
methods [9,10,14] and model-based methods [11–13,15,16]. The idea of distance-
based methods is to design a unified distance which could combine and leverage
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structural and attribute information, and then utilize existing clustering meth-
ods, e.g., k-means or spectral clustering, to cluster attributed graphs based on
the unified distance. Model-based methods leverage the interactions between
edges and node attributes to construct a joint model for clustering purpose.

2.1 Distance-Based Methods

Zhou et al. proposed a distance-based method SA-Cluster [9] in 2009 and its
efficient version Inc-Cluster [10] in 2011. The key idea of the two methods is
to construct a new graph by treating node attributes as new nodes and linking
the original nodes to the new attribute nodes if the corresponding attribute
values are non-zeros. A unified distance for the augmented graph is designed by
using a random walk process. Finally, k-mediods is performed to partition the
new augmented graph. As the augmenting step may increase the size of graphs
considerable, the two methods are hard to run on large-scale attributed graphs.

SANS was introduced in 2015 [14], which partitions attributed graph lever-
aging both structural and node attribute information. In the method, a weighting
vector is predefined. SANS chooses the node with the largest degree (out-degree
plus in-degree) as a cluster center, then other nodes connected with this node
are partitioned in the cluster. As a sequel, SANS assigns the clustered nodes
whose attribute similarities with those assigned nodes are larger than a thresh-
old into the cluster. After that, the weighting vector and attribute similarities are
updated. The procedure is repeated until all nodes are clustered. This method
can automatically partition attributed graph without pre-defined number of
clusters.

2.2 Model-Based Methods

Xu et al. proposed a model-based approach BAGC in 2012 [11]. This method
introduces a Bayesian probabilistic model by assuming that the vertices in same
cluster should have a common multinomial distribution for each node attribute
and a Bernoulli distribution for node connections. As a result, the attributed
graph clustering problem can be transformed into a standard probabilistic infer-
ence problem. The clusters can be identified by using the node-to-cluster prob-
abilities. The drawback is that this method cannot handle weighted attributed
graphs. To overcome this problem, Xu extended BAGC and proposed GBAGC
lately [12].

PICS was proposed by Akoglu in 2012 [13]. This method is a matrix com-
pression based model clustering approach. It treats clustering problem as a data
compression problem, where the structure matrix and attribute matrix are com-
pressed at the same time. Each cluster is regarded as a compression of a dense
connected subset, and the nodes in the same cluster have similar connectivity
and attribute properties. Due to less computational complexity, PICS can deal
with large-scale attributed graphs.

In 2014, Perozzi proposed a user interest based attributed graph clustering
method, namely FocusCo [15]. The method utilizes the similarities of users’
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interests to find an optimal clustering results for attributed graphs. CESNA
[16] models the correlations between structures and node attributes to improve
the intra-cluster similarities. The method differs from other attributed graph
clustering methods in that it can detect overlapping communities in social
networks.

Different from the existing studies, we propose a collective nonnegative
matrix factorization method to leverage both the topology and attribute infor-
mation. Moreover, we design a weighting vector to differentiate the contribution
of attributes to clusters, which can be automatically determined. Our method
addresses the two challenges mentioned in introduction.

3 Proposed Method

An attributed graph can be defined as G = (V,E,A), where V = {v1, v2, . . . , vn}
denotes the set of nodes, E = {(vi, vj), 1 ≤ i, j ≤ n, i �= j} denotes the set
of edges, and A = [a1,a2, . . . ,am] denotes the set of node attributes. In an
attributed graph G, each node vi in V is associated with an attribute vector
(ai

1, a
i
2, . . . , a

i
m), where each element of the vector is the attribute value of vi on

the corresponding attribute.
The key difference of attributed graph clustering to conventional graph clus-

tering is that it needs take node attributes into account. Consequently, the ideal
clustering results should follow two properties: (1) nodes in the same clusters are
densely connected, and sparsely connected in different clusters; (2) and nodes in
the same clusters have similar attribute values, and have diverse attribute values
in different clusters.

3.1 Overview of NMF

Here, we will briefly review the Nonnegative Matrix Factorization (NMF) [17,18].
Let X denotes a M×N matrix whose data elements are all nonnegative. The goal
of NMF is that to find two nonnegative matrix factors V = (Vi,j)M×K and U =
(Ui,j)N×K , where K denotes the desired reduced dimension of original matrix
X. In general, K ≤ min(M,N). After that, we can produce an approximation of
X by X ≈ V UT . A commonly used objective function for NMF can be regarded
as a Frobenius norm optimizing problem, as follows:

min
V,U≥0

‖X − V UT ‖2F

where ‖ · ‖F is the Frobenius norm and V,U ≥ 0 represent the nonnegative
constraints in matrix factorization.

3.2 Objective Function

Following the definition of attributed graphs above, we assume that S denotes the
adjacency matrix for topology structure, and matrix A represents the attribute
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information where rows denote nodes and columns represent attributes. In addi-
tion, we also introduce a diagonal matrix Λ to assign a weight for each attribute.
Inspired by SymNMF [7,8], which often delivers promising results for graph clus-
tering, we apply the idea for attributed graph clustering. Specifically, we have
factorizations S ≈ V V T and AΛ ≈ V UT , where V is a fusing representation of
topology and attribute information for nodes.

In order to integrate the two approximation into the NMF framework, we
propose a weighted joint NMF optimization problem over V,U,Λ:

min
V,U,Λ≥0

‖S − V V T ‖2F + λ‖AΛ − V UT ‖2F (1)

where S ∈ R
n×n
+ , A ∈ R

n×m
+ , Λ ∈ R

m×m
+ , V ∈ R

n×k
+ , U ∈ R

m×k
+ , R+

denotes the set of nonnegative real numbers, n denotes the number of nodes,
m denotes the number of attribute categorizations, Λ is a diagonal matrix sat-
isfying

∑m
i=1 Λi,i = 1 and λ > 0 is the weight to balance structural/attribute

fusion and k is the number of clusters. Actually, before optimizing Eq. 1, we
preprocess the adjacency matrix S and the attribute information matrix A as:

S =
S

∑n
i=1

∑n
j=1 Si,j

, A =
A

∑n
i=1

∑m
j=1 Ai,j

(2)

Next, we will derive the updating rules of V, U and Λ.

3.3 Updating Rules

Let α, β and γ denote respectively the Lagrange multiplier matrix for the con-
straints V ≥ 0, U ≥ 0 and Λ ≥ 0. By using the Lagrange formulation, we obtain
the loss function without constraints:

L =
1
2
(‖S − V V T ‖2F + λ‖AΛ − V UT ‖2F ) + Tr(αT V ) + Tr(βT U) + Tr(γT Λ)

Taking partial derivatives of L with respect to V , U and Λ, we have

∂L

∂V
= −(SV + ST V + λAΛU) + (2V V T V + λV UT U + α) (3)

∂L

∂U
= −λΛAT V + λUV T V + β (4)

∂L

∂Λ
= −λAT V UT + λAT AΛ + γ (5)

In terms of Karush-Kuhn-Tucker (KKT) conditions αp,rVp,r = 0, βq,rUq,r = 0
and γq,qΛq,q = 0, it follows that ∂L

∂V = 0, ∂L
∂U = 0 and ∂L

∂Λ = 0. Base on these
conditions, we can derive the following updating rules with respect to V, U and
Λ:

V ←− V. ∗ (SV + ST V + λAΛU)./(2V V T V + λV UT U) (6)

U ←− U. ∗ (ΛAT V )./(UV T V ) (7)
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Λ ←− Λ. ∗ (AT V UT )./(AT AΛ) (8)

where .* and ./ represent the elementwise multiplication and division, respec-
tively. In order to assign the weights of Λ into a regular space, we normalize it
as:

Λ =
Λ

∑m
i=1 Λi,i

(9)

Next, we briefly analyze the convergency and the computational complexity of
above updating rules.

For proving the convergency, we just need adopt the auxiliary function
described in [18]. In addition, the KKT conditions, which suffice the stationary
point of the objective function, also imply the convergency of those updating
rules.

Here, the computational complexity is discussed. Supposing the algorithm
stops after t iterations, the overall cost for SymNMF [7,8] is O(n2kt). As the
objective function adds one more linear matrix factorization term, the overall
cost for updating rules is O((n2 + m2 + mn)kt).

3.4 The Joint Weighted NMF Algorithm

By combining the parts above, our attributed graph clustering algorithm
JWNMF can be summarized as follows: Firstly, we preprocess the adjacency
matrix S and attribute matrix A, and randomly initialize the matrices U , V and
assign the values of diagonal matrix Λ with 1/m. Then we iteratively update
matrices U , V and Λ as Eqs. (6)–(9) until it converges. Finally, LiteKmeans1 is
performed on the factorization result V to identify k clusters.

4 Experimental Study

In this section, we evaluate the performance of our algorithm, and compare
it with three state-of-the-art attributed graph clustering methods: BAGC [11],
PICS [13] and SANS [14], and a benchmark clustering approach S-Cluster which
is implemented by using LiteKmeans and focuses only on structure information.
All algorithms were implemented in Matlab R2014b, and tested on a Windows
10 PC, Intel Core i5-4460 3.20 GHz CPUs with 32 GB memory.

4.1 Datasets

Seven real-world datasets are employed in our experiments, where four of them
do not have ground truth and three of them have ground truth. The datasets
without ground truth include two amazon information networks (Amazon Fail2

and Disney3), a CMU email address network (Enron (see footnote 2)) and a
1 http://www.zjucadcg.cn/dengcai/Data/Clustering.
2 http://www.ipd.kit.edu/∼muellere/consub/.
3 http://www.perozzi.net/projects/focused-clustering/.

http://www.zjucadcg.cn/dengcai/Data/Clustering
http://www.ipd.kit.edu/~muellere/consub/
http://www.perozzi.net/projects/focused-clustering/
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network of DBLP information (DBLP-4AREA (see footnote 3)). On the other
hand, the datasets with ground truth (WebKB, Citeseer, Cora)4 are all from
text categorization applications. We represent all of these datasets as undirected
networks. Table 1 summarizes the characteristics of the seven datasets.

Table 1. Description of seven real-world datasets

Dataset #Nodes #Edges #Attributes #Clusters

Amazon Fail 1, 418 3, 695 21 -

Enron 13, 533 176, 987 18 -

Disney 124 335 25 -

DBLP-4AREA 27, 199 66, 832 4 -

WebKB 877 174 1, 703 5

Citeseer 3, 312 117 3, 703 6

Cora 2, 708 151 1, 433 7

4.2 Evaluation Measures

The goal of attributed graph clustering is to effectively leverage the topology and
attribute information. Hence, we evaluate the attributed graph clustering based
on the two aspects. Specially, to evaluate clustering results from the topology
structure and the attribute points of view, we employ modularity and average
entropy. Modularity [20] is a widely used evaluation measure for graph partition,
and average entropy is often used in evaluating feature based clustering results.

Let C = (C1, C2, . . . , Ck) represents the k partitions of an attributed graph,
the modularity Q and average entropy Avg entropy are defined as:

Q =
k∑

i=1

(ei,i − c2i ) (10)

Avg entropy =
m∑

t=1

k∑

j=1

|Cj |
nm

entropy(at, Cj) (11)

where ei,j is the fraction of edges with the start node in cluster i and the end
node in cluster j, and ci denotes the fraction of ends of edges that are attached
to nodes in cluster i, and entropy(at, Cj) is the information entropy of attribute
at in cluster Cj . The value with respect to modularity and average entropy falls
within the range of [−1, 1] and the range of [0,+∞), where higher modularity
indicates dense connections between nodes within clusters but sparse connections
between nodes in different clusters, and lower average entropy indicates we have
similar attribute values within clusters but dissimilar attribute values in different
clusters, i.e., a better clustering result.
4 http://linqs.cs.umd.edu/projects//projects/lbc/index.html.

http://linqs.cs.umd.edu/projects//projects/lbc/index.html


Joint Weighted Nonnegative Matrix Factorization 375

In addition to modularity and average entropy, we also utilize Normal-
ized Mutual Information (NMI) to evaluate the clustering performance for the
datasets with ground truth. Generally, higher NMI values indicate better clus-
tering results.

4.3 Performance on Datasets Without Ground Truth

Effectiveness Evaluation. We show how the modularity and average entropy
change with respect to different number of clusters on Amazon Fail in Fig. 1.
We observe JWNMF outperforms the four baseline methods in terms of mod-
ularity when varying the number of clusters. Meanwhile, in terms of average
entropy, JWNMF performs the best, except when the number of clusters is set
as 8. Similar observations can be found on Enron and Disney (in Figs. 2 and 3).
From Fig. 4, we can see that our method achieves the lowest average entropy on
DBLP-4AREA. However, according to modularity, JWNMF is inferior to PICS.
The reason is that PICS treats attributed graph clustering problem as a data
compression problem, thus it prefers datasets which consist of large number of
nodes but sparse topology structures. Moreover, we can see from Figs. 1, 2, 3
and 4 that average entropy has a descending trend as the number of clusters is
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increased. This is because increasing the number of clusters improves the chances
that the nodes with similar attributes are put into the same cluster.
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Efficiency Evaluation. Table 2 shows the running time of all the methods on
the four datasets without ground truth. We can see JWNMF runs much faster
than three sate-of-the-art attributed graph clustering methods, PICS, BAGC
and SANS. The reason is that JWNMF is a quite efficient method whose iterate
computation converges very fast (usually in 100 iterations). Although S-cluster
achieves the best efficiency, its clustering results can be pretty poor as in Fig. 4.

Parameter Setting. In our experiments, we search the parameter λ in the set
{10−10, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 0.5} to find its optimal settings on
Amazon Fail, Enron, Disney and DBLP-4AREA. According to our experience,
we advise to set the parameter λ in terms of the sparsity of topology structures.
Specifically, it is more appropriate to use a small value of λ for datasets with
dense topology structure.
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Table 2. Running time (sec) on datasets without ground truth

Dataset Clusters S-Cluster PICS BAGC SANS JWNMF

Amazon Fail 8 0.0033 9.2490 0.6575 − 0.3254

28 0.0075 - 1.4442 − 0.3351

48 0.0120 - 1.7249 − 0.3755

68 0.0133 - 1.6153 − 0.4369

88 0.0216 - 2.0932 4.2059 0.4320

Enron 14 0.4001 385.5467 360.9523 − 101.1421

23 0.7470 - 349.1356 − 103.0285

32 0.8329 - 319.1372 − 73.9748

41 1.5420 - 280.1238 − 103.1282

49 1.2942 - 250.1443 481.8581 105.3710

Disney 3 0.0017 0.1792 0.0138 − 0.0049

7 0.0015 - 0.0201 − 0.0062

11 0.0017 - 0.0287 − 0.0061

15 0.0015 - 0.0137 − 0.0081

18 0.0014 - 0.0350 0.0414 0.0074

DBLP-4AREA 19 0.2162 762.0975 1666.9570 − 367.9434

22 0.2454 - 1663.7425 − 306.7181

25 0.2548 - 1601.4241 − 290.4555

28 0.2931 - 1544.3671 − 291.9064

32 0.3422 - 1540.0352 2182.5214 367.0382

4.4 Performance on Datasets with Ground Truth

Since PICS and SANS cannot output the ground-truth of number of clusters,
we do not compare with them in this section. Table 3 reports the performance
for S-Cluster, BAGC and JWNMF on the three datasets with ground truth. For
JWNMF, we set λ =1.5, 0.5 and 4.5 for the three datasets, respectively. Overall,
our method has better performance than the baseline methods. In particular,
the improvements are significant in terms of modularity and NMI. In terms of
average entropy, however, the superiority of JWNMF is slight. The reason is that
the textual attribute is with huge dimensions but very sparse, which makes the
computed entropies more or less equal.

In JWNMF, we introduced a weighting matrix Λ to handle noisy features. To
demonstrate the merits of the weighting scheme, we inject 30% noisy attributes
of random 0/1 distribution into the three datasets. Table 4 reports the results
on those noisy datasets, where JNMF represents the variant of our method by
removing the weighting matrix. We find that JWNMF significantly outperforms
other methods including JNMF. The results show that the weighting scheme of
our model is very useful, especially in the presence of noisy attributes.



378 Z. Huang et al.

Table 3. Performance on three textual datasets (%)

Dataset Methods Modularity Average entropy NMI

WebKB S-Cluster 0.1633 23.1949 1.4282

BAGC −0.0260 23.2986 0.3313

JWNMF 33.7672 23.0107 2.1891

Citeseer S-Cluster 2.2419 5.9691 0.2895

BAGC 0 5.9791 0

JWNMF 23.999 5.9565 0.6178

Cora S-Cluster −0.2060 8.3762 0.4014

BAGC 0 8.3963 0

JWNMF 25.8493 8.3427 1.5033

Table 4. Performance on three noisy textual datasets (%)

Dataset Methods Modularity Average entropy NMI

WebKB S-Cluster 0.1633 35.8873 1.4282

BAGC 0 36.1062 0

JNMF 33.7928 35.7491 2.3884

JWNMF 37.3405 35.7283 2.1879

Citeseer S-Cluster 2.2419 21.6018 0.2895

BAGC 0 21.6352 0

JNMF 27.4264 21.5915 0.6725

JWNMF 32.1148 21.5890 0.7623

Cora S-Cluster −0.2060 23.5784 0.4014

BAGC 0 23.6321 0

JNMF 38.7895 23.5460 1.6905

JWNMF 41.3449 23.5439 1.8291

5 Conclusion

In this paper, we develop a joint weighted nonnegative factorization method,
namely JWNMF, to solve the attributed graph clustering problem. By using
two joint factorization terms, JWNMF nicely fuses the topology and attribute
information of attributed graphs for clustering. Moreover, a weighting scheme is
incorporated into JWNMF to differentiate attribute importance to clusters. An
iterative algorithm is proposed to find solutions of JWNMF. Extensive exper-
imental results show that our method outperforms state-of-the-art attribute
graph clustering algorithms.
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Abstract. Online social networks (OSNs) have become a major plat-
form for people to obtain information and to interact with their friends.
People tend to post their thoughts and activities online and share their
emotions with friends, which provides a good opportunity to study the
role of online social networks in happiness spreading and mutual influ-
ence among the users. In this paper, we propose a framework to study the
influence of happiness in OSNs. We first quantify the happiness states
of users by analyzing their daily posting texts, and then conduct the
statistical analysis to show that users’ happiness states are influenced
by their social network neighbors. Since the influence of each individ-
ual is unequal, we develop a regression model and a greedy algorithm
to detect the high influence users known as emotion representatives. By
using a small number of detected emotion representatives as features to
train prediction models, we show that it achieves good performance in
predicting the happiness states of the whole online social network users.

1 Introduction

Happiness and other emotions have been shown to be contagious: emotion states
can be transferred directly from person to person via mimicry [9] and the copying
of bodily actions like facial expressions [24]. Experiments have demonstrated
that diverse emotions such as happiness [8], loneliness [4], and depression [17]
are highly correlated between socially connected individuals in human social
networks.
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In the recent years, online social networks (OSNs) such as Facebook and
Twitter have attracted more and more users, which have become the most impor-
tant source of information and the most popular platform for people to com-
municate with their friends. Online social network users are actively involved,
frequently interacting with each other, regularly posting their status, and will-
ingly sharing their happiness and other emotions with their friends. With the
rich source of online social media and social connections, exploring the happi-
ness states of online users and their mutual influence has caused great attention
of the academic community [6,7]. Despite the evidence of emotion contagion in
social networks [6–9,24], the role of online social networks in happiness influence
and the key of influential users in happiness spread have not been well addressed
in the past.

In this paper, we focus on the quantitative analysis of happiness influence
in online social networks. We mainly focus on the following key questions:
(1) How to quantify the happiness states of online social network users by explor-
ing their daily posting texts? (2) Are the happiness states of OSN users influenced
by their social network neighbors? (3) Are there high emotion influential users
and how to detect them? (4) Are the happiness states of online social network
users predictable by observing a small number of representatives?

To address the above issues, we propose a framework to study the influence
of happiness in online social networks. As illustrated in Fig. 1, the study is based
on a dataset of online social network, which is formulated as a social graph. We
introduce the happiness score to quantify the happiness state of an individual
based on analyzing his/her daily post on social media. We then analyze the
happiness influence among users. Specifically, we apply a multi-linear regression
model and significance test to show that users’ happiness scores are correlated
with their social network neighbors and some of the users have significant influ-
ence to the others’ emotion states. We further detect a set of influential users
called emotion representatives by solving an influence maximization problem.
A greedy algorithm with bounded approximate ratio is proposed for represen-
tative detection. We use the detected emotion representatives as features to
predict the happiness states of random users in the network, which shows better
performance than the baseline algorithms.

Fig. 1. The framework of happiness influence study.
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The novelty and contribution of this paper are summarized as follows.

– We present the happiness influence problem in online social networks. The
issues of happiness spread in large scale OSNs and the detection of emotion
representatives have not been well addressed in the past.

– We propose a framework for happiness influence study in OSNs. The proposed
framework provides quantitative analysis on the happiness states of OSN users
and it confirms the influence of happiness between OSN users and their social
network neighbors.

– We propose a greedy algorithm to detect a set of emotion representatives that
maximize happiness influence. Extensive experiments show that the detected
emotion representatives can be used as features to predict the happiness states
of the whole online social network users with good performance.

2 Related Work

The contagion of emotion in the human society has been widely addressed in
the literature. An early work showed that human emotion states can be directly
transferred to the other by copying of facial expressions [24]. Data from a large
real-world social network collected over 20-year period suggested that longer-
lasting moods (e.g., depression, loneliness) can be transferred through networks
[4,17]. Experiments in [8] showed that happiness can spread up to three hops in
face-to-face human social network.

In the recent years, researchers have paid more attention to emotion analysis
in the context of online social networks. The study of [7] provided quantified
analysis to explain temporal variations of happiness in Twitter. Several works
focused on inferring user’s emotions from existing emotion labels or generated
emotion scores [2,13,16]. Wang et al. proposed a constraint optimization frame-
work to discover emotions from social media content of the users [20]. Coviello et
al. proposed the instrumental variables regression method to explain the reason
of emotion influence due to social contagion or homophily [6]. The “MoodCast”
model [19] considered the influence from all friends as structural features to
infer individuals’ emotional states. Yang et al. took both user interest in text
and image domains and social influence among friends into consideration for
emotion prediction [22]. Despite the study of emotion contagion and prediction
in online social networks, the issues such as detecting emotion influential users
and predicting the emotion states of the crowd by observing a small number
of representatives have not been well addressed in the massive online social
networks.

Mining influential nodes in online social networks has been studied recently,
whose methods can be classified into two categories: rank-based and model-
based. The rank-based methods used different metrics to measure the importance
of a node in the network. The most commonly used metrics are the degree
centrality, betweenness centrality, and closeness centrality [23]. In addition, Page
Rank [3] or PageRank-based methods (LeaderRank) [12] were also widely used
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in identifying influential nodes in social networks. The model-based methods
developed different models for different networks. Aral and Walker used hazard
models to identify not only the influential but also the susceptible members by
designing randomized experiments in Facebook [1]. Sharara et al. presented a
new surveying method which combines secondary data with partial knowledge
from primary sources to guide the information gathering process and to identify
opinion leaders in social networks [18]. However, none of the works has addressed
the problem of detecting a set of key emotion representatives to maximize their
influence in online social networks, as will be studied in our work.

3 Quantifying User’s Happiness State

3.1 Online Social Network Dataset

Our study is based on the Twitter dataset published in the literature [21]. The
dataset was collected starting from the most popular 20 users as the seed users.
The snowball crawling method [11] was used to crawl the tweet data. The crawl-
ing period lasted for one month. The overall dataset contains 3,117,750 users
including their profiles, social relationships and all the tweets published by the
users up to Apr. 2, 2010.

The social relationships of the users can be described by a directed graph
G = (V,E), where V is the set of |V | = N users and E ⊂ V × V is the set of
directed edges. In Twitter, users can follow each other. If user A follows user B,
A is called the follower of B and B is the followee of A, and there is a directed
edge from A to B. A followee’s published tweets can be viewed by all his/her
followers. The dataset contains 538,726,224 published tweets which are used to
analyze the happiness states of the users.

3.2 Happiness Score

To represent the happiness state of an individual, we introduce the happiness
score, which is a quantified metric obtained by analyzing the text of user’s daily
tweets. Each tweet consists of a number of words reflecting the emotion states
of a user. Following the work in [7], we adopt the same word list with labeled
happiness score using crowdsourcing. Using word-by-word analysis, the happi-
ness score of each tweet can be computed by averaging the happiness score of
each word in the word list. And further the daily happiness score of a user can
be obtained by the average score of all tweets posted in a day. To make the
results more accurate, we take into account the sentence structure such as the
appearing negative words (e.g., don’t and isn’t) which make the happiness states
of the tweet reverse.

With the quantification method, the daily happiness score of an individual is
represented by a real number range from 0 to 9, where 0 indicates very unhappy,
and 9 indicates very happy. Applying the method to the Twitter dataset, we
can find that the collective happiness states of all users approximately follow



Predicting Happiness State Based on Emotion Representative Mining 385

the Gaussian distribution with mean = 5.48 and variance = 0.11. For each day,
we evaluate the happiness state of each user. If an individual’s happiness score
is larger than the mean in that day, the individual is considered as a happy user,
otherwise, a unhappy user.

To study the long-term happiness states of users and their correlations, we
filter out the users who rarely publish Tweets in the dataset (since there is no
enough information to analyze their emotions) and only keep the active users
defined as follows.

Active User: We denote the number of days that a user posted tweets by t.
A user is active if t ≥ αT in consecutive T days, where α is a tunable parameter
with 0 ≤ α ≤ 1.

In our work, we set T = 90 days from 14/12/2009 to 13/3/2010, and choose
α = 2/3. After processing the dataset, there are 168,661 nodes and 2,923,633
directed edges remained in the social network graph.

With the quantification method, the happiness states of each user v ∈ V can
be represented by a happiness vector E(v) = [si(v)|i = 1, 2, · · · , T ], where si(v)
is the happiness score of v in the ith day.

4 Happiness Influence Analysis

With the social graph formed by the active users, we study the mutual influence
of users’ happiness states. We show that the happiness state of an individual
is correlated with his/her followees in online social network. We apply a multi-
linear regression model to infer the significance of happiness influence.

4.1 Influence of Happiness

Since Twitter is a directed social network, a user can read the tweets posted
by his/her followees, but not vice versa. Intuitively, the influence of happiness is
directional: the happiness states of followees can influence that of their followers.
We conduct the statistical analysis to verify this claim.

We first show the correlation of happiness scores. For each active user v, we
calculate v’s happiness score and the average happiness score of v’s followees,
which results are compared in Fig. 2(a). Noted that the mean happiness score
of all users is 5.48. Figure 2(a) shows high correlation between the individual’s
happiness score and the average score of his/her followees. It can be interpreted
as: the more happier the users you followed, the more likely you are happy.

Given a user v, we define v’s fraction of happiness as #of happy
#of happy and un

followees
happy followees . Figure 2(b) shows the fraction of happiness for happy and
unhappy users in five different days. It is clear that happy users have much
higher fraction of happy followees (which is close to 0.6) than that of unhappy
users (which is around 0.5).

To show that the higher fraction of happiness is not formed by chance, we
use significance test to verify such phenomenon. We adopt a similar method



386 X. Zhang et al.

 5.3

 5.35

 5.4

 5.45

 5.5

 5.55

 5.6

5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8

A
ve

ra
ge

 h
ap

pi
ne

ss
 s

co
re

Happiness score

(a) Correlation of happiness scores.

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

13/3 12/3 11/3 10/3 9/3

Fr
ac

tio
n

Date

Happy users
Unhappy users

(b) Fraction of happy users.

Fig. 2. Influence of happiness.

introduced in [14]. We construct N randomized networks which preserve the
topology, number of happy users, and number of unhappy users. Then we ran-
domly shuffle the happiness states of every user in every randomized network.
For each randomized network i, we denote the mean fraction of happiness (over
all happy users) as Hi. Then the mean of N networks is H = 1

N

∑N
i=1 Hi. We

conduct significance test by comparing H with the mean of the original network.
The result shows that the phenomenon (happy user has more happy followees)
is significant for all the days since their P-values are less than 0.01.

4.2 Multi-linear Regression Model

The above analysis shows that users’ happiness states are influenced by their
social network neighbors. However, the influence of each neighbor is not equal:
some user may have higher influence than the others. To verify this, we introduce
a multi-linear regression model to test the significance of happiness influence by
different individuals.

Personalized Multi-Linear Regression Model. For a user i, we model i’s
happiness state as a function of the his/her previous happiness state and the
happiness states of the user’s followees, which is expressed by the multi-linear
regression model below.

Y i
t = α + βY i

t−1 +
K∑

j=1

γjY
j
t + ε, (1)

where

– Y i
t is the user i’s happiness score at time t.

– K is the number of user i’s followees in the social graph.
– γj is the key parameter, which means user j’s influence on user i.
– α is the intercept and ε is the error term.
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After training the multi-linear regression model, we apply the Wald test, a
parametric statistical test method, to test the significance of the coefficients.
Specifically, we test whether the coefficients γj (j = 1, 2, · · · ,K) is 0 or non-
zero: if γj is non-zero with high probability, then the happiness state of user j
is considered to have significant influence on that of user i.

Using the regression model and significance test, we can divide the whole
users into three sets:

Influential Users I: The set of users who have significant influence to the other
users.

Affected Users A: The set of users who are influenced by the influential users.

Unaffected Users U : The set of users who are neither influential users nor
affected users.

Noted that a user maybe both influential and affected by the others, thus there
is overlap of I and A. In the Twitter dataset, we found 64,200 influential users and
84,977 affected users among the 168,661 active users in the social graph.

With the directed influence relationship, we define the influence graph that
forms by the influential users and affected users as follows.

Influence Graph: An influence graph is denoted as Ḡ = (V̄ , Ē), where V̄ =
I ∪ A is the set of influential and affected users, and Ē ⊂ V̄ × V̄ is the set of
directed edges from influential user to affected user.

Algorithm 1. Emotion Representatives Detection
1: S ← ∅
2: for i=1 to M do
3: Let vi be a node with maximum degree in B̄ = (L̄, R̄, Ē′)
4: Set S ← S ∪ {vi}
5: Delete all nodes connected with vi from R̄
6: Delete vi from L̄
7: end for

Figure 3 shows the statistics of the influence graph obtained from the Twitter
dataset. For a user v ∈ Ḡ, the outdegree of v is the number of nodes affected by v.
Figure 3(a) illustrates the cumulative distribution function (CDF) of outdegree
in Ḡ. According to the figure, about 90% users have outdrgree less than 5, and
only about 1% users are highly influential who can affect more than 20 users in
the social network. Figure 3(b) compares the cumulative influence scale of the
top influential users, which shows that the top 20% influential users can affect
about 80% other users in the influence graph.

5 Emotion Representatives Detection

According to the above analysis, some users have significant influence to
the happiness states of the others. We call such influential users as emotion
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Fig. 3. Statistics of the influence graph.

representatives. In this section, we propose a method to identify the emotion
representatives in online social networks. Specifically, given a number M , we
want to find M users who have the greatest influence to the whole network. We
formulate the problem as follows.

5.1 Problem Formulation

Given the influence graph Ḡ = (V̄ , Ē), the number of emotion representatives
M , ∀vi ∈ V̄ , the set of users influenced by vi is denoted by A(vi). Let S be the
set of chosen representatives. The problem can be formulated as

max f(S) = |
⋃

vi∈S

A(vi)| s.t. S ⊂ V̄ , |S| ≤ M (2)

where |A(vi)| indicates the cardinality of set A(vi).

5.2 Algorithm

The problem is similar to the influence maximization problem introduced by
Kempe et al. in [10], but with a different influence model. According to the
study of [15], finding a set S with M elements to maximize f(S) is an NP-hard
optimization problem. Thus we seek approximate solution to the problem. The
following theorem shows some properties of the objective function f .

Theorem 1. f(S) is a monotone and submodular function.

Proof. The monotonicity is obvious as

f(S + v) = |(
⋃

vi∈S

A(vi)) ∪ A(v)| ≥ f(S).

To prove the submodularity, we find that for any S ⊆ T ⊆ V , and v ∈ V \T ,

f(S + v) − f(S) = |A(v)/(
⋃

vi∈S

A(vi))| ≥ |A(v)/(
⋃

vi∈T

A(vi))| = f(T + v) − f(T )
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Based on the work of [15], an optimization problem with submodular property
can be solved by a greedy algorithm with bounded approximate ratio. The basic
idea is to choose the emotion representatives in a greedy way, and for each step
a user with maximum marginal gain is chosen, until M users are found. To
evaluate the marginal gain of a user, we transform the influence graph into a
bipartite graph and then describe our algorithm.

Given the influence graph Ḡ = (V̄ , Ē) which is a directed graph, we transform
it into a bipartite graph B̄ = (L̄, R̄, Ē′), where L̄ = {vi | ∃vj ∈ V̄ , (vi, vj) ∈ Ē},
R̄ = {vj | ∃vi ∈ V̄ , (vi, vj) ∈ Ē}, and Ē′ = {(vi, vj) | vi ∈ L̄, vj ∈ R̄, (vi, vj)
∈ Ē}. That is, the node set V̄ is divided into two sets in the bipartite graph: the
influential nodes L̄ and the affected nodes R̄. If a node is both an influencer and
also affected by the others, we simply duplicate the node in the two sets. An edge
in B̄ represents that a node in R̄ is influenced by a node in L̄. With the derived
bipartite graph B̄, we proposed the greedy algorithm as shown in Algorithm 1.

In each iteration, we choose the user with maximum influence in R̄ as a
representative, and then delete the affected users from R̄ to make sure that we
can choose the one with maximum marginal gain in the next round. In each
iteration the algorithm deletes several edges (and nodes) from B̄, and in the
worse case, all edges are deleted, which means the chosen M representatives
cover all the users in R̄. Thus the complexity of the algorithm is O(Ē′) in the
worst case.

The following theorem shows that the approximate ratio of the proposed
algorithm is guaranteed.

Theorem 2. Let S∗ be the set of M nodes that maximize f(·). The greedy algo-
rithm has approximate ratio (1 − 1/e), i.e., the set S found by the algorithm
satisfies f(S) ≥ (1 − 1

e )f(S∗).

Proof. By Theorem 1, the objective function f is non-negative, monotone and
submodular. According to the work [15], a greedy algorithm that always picks
the element v with largest marginal gain f(S

⋃{v}) − f(S) is a (1 − 1/e)-
approximation algorithm for maximizing f on M element sets S. Thus the the-
orem holds.

5.3 Performance Evaluation

Comparison Methods. Numerous works have been done to identify the influ-
ential users or opinion leaders in online social networks, which mainly focus on
the degree centrality, betweenness centrality, closeness centrality [5], and Page
Rank score [12]. In contrast with the existing methods, we detect emotion rep-
resentatives by solving an influence maximization problem and apply a greedy
algorithm to choose users with maximum marginal influence gains. Given the
number M , we apply different methods to choose M influential users and com-
pare their performance.

We first compare the overlapping of the set of influential users chosen by
different methods. We use Jaccard coefficient to measure their similarity. Given
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two sets A and B, the Jaccard coefficient [23] is calculated by coef = |A∩B|
|A∪B| .

The larger the Jaccard coefficient is, the more similar the two sets are.
We vary the value of M in 1%, 5%, 10%, 15%, 20% of the total influential

user size, and calculate the Jaccard coefficient of our algorithm with the existing
methods. The results are shown in Table 1(b). As shown in the table, when M
is 1%, our method is most close to the Betweenness method with 60% over-
lap. The Degree and PageRank method have 48% and 54% overlap accordingly,
which means that high degree nodes or structural important nodes are not nec-
essary emotional influential and half of them do not have significant influence
to the others’ happiness. The Closeness method has very low Jaccard coefficient
due to the reason that multi-hop emotion influence is not significant. With the
increasing of M , most of the Jaccard coefficient decreases. The overlap is below
30% when M reaches to 20%, which means that the emotion representatives
chosen by our algorithm is quite different from the existing methods.

Table 1. Comparison of Pearson correlation coefficients and Jaccard coefficient.

(a) Pearson correlation coefficient.
x Gre. Deg. Bet. Clo. PR
1 0.1892 0.0921 0.0917 0.0923 0.0912
5 0.1866 0.0931 0.0926 0.0933 0.0924
10 0.1865 0.0933 0.0929 0.0933 0.0927
15 0.1868 0.0934 0.093 0.0934 0.0929
20 0.1871 0.0934 0.0931 0.0933 0.093

(b) Jaccard coefficient.
% x% Deg. Clo. Bet. PR

1 0.48 0.03 0.6 0.54
5 0.37 0.14 0.36 0.43
10 0.3 0.15 0.28 0.35
15 0.27 0.15 0.25 0.32
20 0.25 0.15 0.23 0.28

In the next, we compare the performance of our algorithm with the existing
methods in terms of correlation coefficient and Euclidian distance.

Comparison of Correlation Coefficient. Assume the set of emotion rep-
resentatives is V̄R. For a random user vi ∈ V̄ , if he/she is influenced by a user
vj ∈ V̄R, we calculate their Pearson correlation coefficient [23] of their happiness
vectors by

C(E(vi), E(vj)) =

∑T
t=1(st(vi) − s̄(vi))(st(vj) − s̄(vj))

√∑T
t=1(st(vi) − s̄(vi))2

√∑T
t=1(st(vj) − s̄(vj))2

.

The larger value of Pearson correlation coefficient means the higher correlation
of two data series.

We use different methods to choose V̄R and calculate the average Pearson
correlation coefficient of 10,000 random users in the social network. The results
are compared in Table 1(a). As shown in the table, the proposed algorithm has
twice correlation coefficient compared to the other methods, which means that
the emotion representatives chosen by our algorithm are more correlated to the
happiness states of the whole social network.
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Comparison of Distance. Similarly, we can compare the distance of the happi-
ness states of users. The Euclidian distance of two happiness scores is calculated
by |scorex − scorey|. Again, we choose 10,000 random users in the social net-
work and calculate their average distance to the users in V̄R of 90 days. The
performance of different methods is compared in Fig. 4.

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0  10  20  30  40  50  60  70  80  90

D
is

ta
nc

e

Day

Greedy
Degree

Betweenness
Closeness
PageRank

Fig. 4. Comparison of Euclidian distance.

According to the figure, the proposed algorithm has the smallest Euclidian
distance in each of the 90 days, which means that the happiness score of the
detected emotion representatives with our algorithm is the most close to that of
the other users in the social network.

6 Happiness State Prediction

Furthermore, we use the detected emotion representatives to predict the hap-
piness states of the whole online social network. We apply both regression and
classification methods for prediction, which is discussed in the following.

Regression. Since the chosen emotion representatives have significant influence
to the happiness states of other users in the social network, a natural idea is
that the emotion representatives can be used to predict the happiness states of
the other users. To verify this, we adopt the linear regression model to predict
happiness score of random users by using the emotion representatives’ happiness
scores as input features. Specifically, for a random chosen user, if he/she follows
some users in the set of emotion representatives, then we use the happiness
scores of the corresponding emotion representatives as features for prediction;
otherwise, we set the features as the happiness scores of all his/her followees (the
baseline algorithm). We randomly select 10,000 users from the social graph. For
each individual, we use the user’s 90 day’s happiness scores as the features to
train the linear regression model and perform the 10-fold cross validation.

We compare the prediction performance of using the features chosen by the
proposed greedy algorithm with that by the conventional methods. Table 2 shows
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Table 2. MAE of 10,000 random users.

Top x% Gre. Deg. Clo. Bet. PR

Ave. SD Ave. SD Ave. SD Ave. SD Ave. SD

1 0.2271 0.109 0.228 0.109 0.2273 0.109 0.228 0.109 0.228 0.109

5 0.2179 0.099 0.2223 0.099 0.2207 0.099 0.2217 0.099 0.2222 0.099

10 0.2157 0.097 0.222 0.099 0.2201 0.098 0.2211 0.098 0.2219 0.098

15 0.2142 0.096 0.2224 0.099 0.2201 0.097 0.2211 0.097 0.2222 0.098

20 0.2136 0.096 0.2231 0.099 0.2208 0.098 0.2214 0.097 0.2229 0.099

the average MAE (mean absolute error) and standard deviation of the prediction
results of the random users. Note that the baseline algorithm using all followees
as features has MAE 0.2336 and standard deviation 0.116. As shown in the table,
the proposed method achieves the lowest MAE and standard deviation among
all strategies, and in most cases there is 1% to 5% improvement in predicting
the happiness score. When the number of emotion representatives increases from
1% to 20%, the accuracy improves slightly, which means that choosing a small
percentage of influential users is good enough to predict the happiness states of
the whole social network users.

Classification. We then use classification method such as Logistic Regression
(LR) and Support Vector Machine (SVM) to classify the social network users
into two states: happy users (emotion scores larger than average) and unhappy
users (emotion scores lower than average). Similarly, we use the emotion rep-
resentatives chosen by different methods as features to predict the happiness
states of random users. We select randomly 10,000 users and use their 90 day’s

Table 3. MAE of 10,000 random users.

Top x% Gre. Deg. Clo. Bet. PR

Ave. SD Ave. SD Ave. SD Ave. SD Ave. SD

1 LR 61.21 0.131 61.16 0.13 61.12 0.131 61.16 0.13 61.17 0.13

SVM 58.49 0.134 58.36 0.135 58.35 0.134 58.38 0.134 58.42 0.134

5 LR 61.55 0.132 61.21 0.131 61.14 0.132 61.22 0.131 61.24 0.131

SVM 58.51 0.134 58.37 0.134 58.27 0.134 58.35 0.134 58.29 0.134

10 LR 61.64 0.132 61.18 0.131 61.13 0.132 61.19 0.131 61.23 0.131

SVM 58.41 0.135 58.23 0.135 58.22 0.135 58.31 0.135 58.2 0.135

15 LR 61.73 0.133 61.13 0.131 61.08 0.133 61.17 0.131 61.2 0.131

SVM 58.45 0.134 58.27 0.135 58.14 0.135 58.32 0.134 58.27 0.135

20 LR 61.77 0.133 61.09 0.132 61.06 0.132 61.14 0.132 61.15 0.131

SVM 58.44 0.134 58.3 0.135 58.16 0.135 58.24 0.135 58.23 0.135
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happiness scores to train the model and perform the 10-fold cross validation.
Table 3 compares the average F1-score and standard deviation of different meth-
ods. Again, the proposed algorithm achieves the highest F1-score among all
methods with both LR and SVM classifiers. The classification result of LR is
much better than SVM, with the F1-score larger than 61 %. The F1-score is not
sensitive to the number of the chosen emotion representatives. It verifies that a
small number of representatives can be good indicators to infer the happiness
states of the online social network users.

7 Conclusion

In this paper, we addressed the issues of happiness influence analysis in massive
online social networks. We proposed quantification method to calculate the hap-
piness scores of OSN users, based on which we showed that the happiness states
of individuals in OSN are influenced by some of their social network friends
(the followees in the Twitter network). To identify the high influential users,
we presented a multi-linear regression model to test the significance of influ-
ence and a greedy algorithm to detect the emotion representatives. Extensive
experiments showed that the detected emotion representatives can be used as
features to accurately predict the happiness states of the online social network.
In the future, we will further improve the performance of prediction using the
combination of different features.
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Abstract. Location information of social media users provides crucial
context to monitor real-time events such as natural disasters, terrorism
and epidemics. Since only a small amount of social media data are geo-
tagged, inference techniques play a substantial role to predict user spa-
tial locations by incorporating characteristics of their behavior. Based on
utilized source of information, related works are divided into text-based
(based on text posted by users), network-based (based on the friendship
network), and some hybrid methods. In this paper, we propose a novel
approach based on the notion of celebrities to infer the location of Twit-
ter users. We categorize highly-mentioned users (celebrities) into local
and global, and consequently utilize local celebrities as a major location
indicator for inference. A label propagation algorithm is then utilized
over a refined social network for geolocation inference. Finally, we pro-
pose a hybrid approach by merging a text-based method as a back-off
strategy into our network-based approach. Empirical experiments using
three standard Twitter benchmark datasets demonstrate the superior
performance of our approach over the state-of-the-art methods.

Keywords: Social networks · Geolocation inference · Celebrity filtering

1 Introduction

Social media provides a huge volume of data which has proven useful for pre-
dicting group behaviors and modeling populations [14]. Associating data with
a particular geolocation from which it originated creates a powerful tool for
different application such as rapid disaster response [1], opinion analysis [16],
and recommender systems [22]. However, only a small amount of social media
data are geolocation-annotated; for example, less than 1% of Twitter posts have
geolocations provided [13]. Therefore, recent work has focused on geolocation
inference (geoinference) for predicting the locations of social media posts or
users.

User geolocation inference is the task of predicting the primary (or “home”)
location of a user from available sources of information, such as text posted by
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 395–406, 2017.
DOI: 10.1007/978-3-319-57454-7 31
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that individual, or network relationships with other individuals [10]. Geolocation
inference methods usually train a model on the small set of users whose location
is known (e.g., through GPS-based geotagging), and predict locations of other
users using the resulting model. These models broadly fall into two categories:
text-based, and network-based. Most previous researches on user geolocation
inference have focused either on text-based classification approaches [8,20,26]
or network-based regression approaches [13]. Recently, some methods have com-
bined these two categories into a hybrid approach to improve the accuracy of
geoinference [18,19]. They have utilized a text-based approach as a back-off
strategy prior to a network-based geoinference method.

Our current work makes three key contributions: (1) we hypothesize that user
geolocation inference will be improved by discriminating between different types
of highly-mentioned users (celebrities). To this end, we propose a clustering-
based approach to categorize users into local and global celebrities based on
social network information; (2) we demonstrate that local celebrities are good
location predictors for their ego networks (i.e., the part of network directly con-
nected to them) while the global celebrities have adverse effects on geolocation
inference. We utilize a label propagation algorithm to propose a network-based
approach in which underlying network is based on filtering celebrities and show
that it outperforms the state-of-the-art network-based approaches over three
standard datasets; (3) we demonstrate that combining a text-based back-off
strategy and the proposed network-based approach achieves better results than
other geoinference methods.

2 Related Work

Recent increasing interest on user geolocation over social media data has caused
the development of different approaches to automatic geolocation prediction
based on available information sources such as the text of messages, social net-
works, user profile data, and temporal data. These approaches can be divided
into three categories: text-based, network-based, and hybrid methods.

2.1 Text-Based Methods

The main assumption in text-based methods is that language in social media is
geographically biased. It is clearly evident not only for regions speaking differ-
ent languages, but also in regional dialects and use of region specific terminology
[10]. In this area, early works used Gazetted expressions [15] and geographical
names [17] as feature, but were shown to be sparse in coverage. In [8], a latent
variable model to geolocation inference has been proposed based on the assump-
tion that words are generated from hidden topics and geographical regions. Their
model describes a sophisticated generative process from multivariate Gaussian
and Latent Dirichlet Allocation (LDA) for predicting a user geolocation from
tweet text via variational inference. This idea has been extended to model regions
and topics jointly [11]. Similarly, another work used graphical models to jointly
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learn spatio-temporal topics for users [27]. Other models have used bag of word
features to learn per-region classifier [20], including feature selection for location-
indicative terms [3].

In [26], supervised models have been used for geolocation inference with
geodesic grids having different resolutions. Information-theoretic methods have
been utilized by [10] to automatically extract location-indicative words for loca-
tion classification. It was reported by [25] that discriminative approaches based
on hierarchical classification over adaptive grids, when optimized properly, are
superior to explicit feature selection. Another research showed that sparse cod-
ing can be used to effectively learn a latent representation of tweet text to use
in user geolocation inference [4]. The advantage of these generative approaches
is that they are able to work with the continuous geographical space directly
without any pre-discretisation, but they are algorithmically complex and do not
scale well to larger datasets. A kernel-based method is used by [12] to smooth
linguistic features over very small grid sizes to alleviate data sparseness. While
having good results, text-based approaches are often limited to only those users
who generated text that contain geographic references [13].

2.2 Network-Based Methods

Although online social networking sites allow for global interaction, users tend
to befriend and interact with many of the same people online as they do off-
line [21]. Network-based methods exploit this property to infer the location of
users from the locations of their friends [13,21]. An early work by [7] proposed
an approach in which the location of a given user is inferred by simply taking
the most-frequently seen location among its social network. In [13], the idea
of location inference has been extended as label propagation over some form
of friendship graph by interpreting location labels spatially. In his approach,
locations are inferred using an iterative, multi-pass procedure. This method has
been further extended by [6] to take into account edge weights in the social
network and to limit the propagation of noisy locations. They weights locations
as a function of how many times users interacted, thereby favoring locations of
friends with whom there exists a stronger evidence of a close relationship. The
main limitation of network-based models is that they completely fail to geolocate
users who are not connected to geolocated components of the graph.

2.3 Hybrid Methods

As shown by [19], geolocation predictions from text can be used as a back-off
for disconnected users in a network-based approach. In [18], a hybrid approach
has been proposed by propagating information on a similarity graph built from
user mentions in Twitter messages, together with dongle nodes corresponding
to the results of a text-based geoinference method. They have reported that
the performance of geolocation inference is increased by eliminating celebrities
from the social network. Their approach achieved the state-of-the-art results over
three standard datasets.
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3 Datasets

We use three standard geotagged Twitter datasets to evaluate our approach:

GeoText is a corpus of 377,616 geotagged tweets originating within the United
States by 9,475 users recorded from the Twitter API in March 2010 [8].

TwUs is a dataset of tweets compiled by [20]. In this dataset, tweets outside of a
bounding box covering the contiguous United States (including parts of Canada
and Mexico) were discarded, as well as users that may be spammers or robots
(based on the number of followers, followees and tweets).

TwWorld is a dataset of tweets compiled by [3] in a similar fashion to TwUs;
but differs in that it covers the entire Earth, and consists only of geotagged
tweets. Non-English tweets and those not near a city were removed, and non-
alphabetic, overly short and overly infrequent words were filtered.

We use the training, test, and development sets that come with each dataset.
Table 1 summarizes descriptive statistics for the three datasets.

Table 1. Datasets details

DATASET SCOPE #TWEETS #MENTIONS #USERS #TRAIN #TEST #DEV

GeoText US 378K 109K 9,475 5,685 1,895 1,895

TwUs US 38M 3.63M 450K 430K 10K 10K

TwWorld World 12M 16.8M 1.4M 1.38M 10K 10K

4 The Proposed Approach

We first construct a mention network as a representative of social relationships
between twitter users. Next, a novel approach is proposed to categorize celebri-
ties to local and global types. Global celebrities are removed from the network as
they do not carry useful geolocation information. Local celebrities, on the other
hand, are preserved in the network since they are powerful location indicators.
Considering train users and local celebrities as seeds, we run a label propaga-
tion algorithm over the mention network to infer locations of other users with
unknown location. We consider this network-based approach as our baseline.
Finally, we propose a hybrid approach by merging a text-based geoinference
method into our baseline approach.

4.1 Mention Network

One of the prior requirements of network-based geoinference methods is a defi-
nition of what forms a relationship in Twitter to create the social network [14].
In [13], an undirected network is defined from interactions among Twitter users
based on @-mentions in their tweets, a mechanism which is used for conversations
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between friends. Consequently these links often correspond to offline friendships,
and accordingly the network will exhibit a high degree of location homophiles.
In this network, nodes are all users in a dataset (train and test), as well as other
external users mentioned in their tweets, and edges are created when both users
mentioned one another. Since bi-directional mentions were too rare to be useful
in the three datasets, we follow [19] to consider uni-directional mentions (i.e.,
if either user mentioned the other) as undirected edges instead. Each edge is
weighted by the total number of @-mentions in tweets by either user.

4.2 Differentiating Celebrities

We consider all users that are mentioned by more than T distinct users as celebri-
ties. Previously, [18] assumed all celebrities as global, and excluded them from
the mention network (Based on the best results achieved over the development
sets, T (celebrity threshold) was set to 5, 15, and 5 for GeoText, TwUs, and
TwWorld respectively). They simply ignore the fact that lots of these celebri-
ties are useful in geolocation inference. To tackle this issue, we propose a novel
approach to detect location indicative celebrities (locals) and utilize them to infer
location of other users. In particular, we define a celebrity as local, if the majority
of geolocated users who mentioned it (its mentioners) are geographically close.
Otherwise, it is considered as a global celebrity.

We utilize a density based clustering algorithm, DBSCAN [9], in order to
cluster the geolocated mentioners based on their geographical coordinates. This
algorithm is highly efficient and can identify arbitrary shaped clusters, where
clusters are defined as dense regions separated by low dense regions. More pre-
cisely, considering a set of points to be clustered, the points are classified as core
points, (density-)reachable points and outliers, as follows: (1) A point p is a core
point if at least MinPts points are within distance ε of it (including p). Those
points are said to be directly reachable from p. Note that no points are directly
reachable from a non-core point. (2) A point q is reachable from p if there is a
path p1, . . . , pn with p1 = p and pn = q, where each p(i+1) is directly reachable
from pi (so all the points on the path must be core points, with the possible
exception of q). (3) All points not reachable from any other point are outliers.
Each core point p forms a cluster together with all points (core or non-core)
that are reachable from it. Each cluster contains at least one core point; non-
core points can be part of a cluster, but they form its “edge”, since they cannot
be used to reach more points.

DBSCAN requires two parameters: ε (eps) and the minimum number of
points required to form a dense region (MinPts). The ε-neighborhood of a point
p is defined as the set of points whose distance from p is not greater than ε.
DBSCAN starts with an arbitrary starting point that has not been visited. This
point’s ε-neighborhood is retrieved, and if it contains sufficiently many points,
a cluster is started. Otherwise, the point is labelled as noise. It should be noted
that this point might later be found in a sufficiently sized ε-environment of
a different point and hence be made part of a cluster. If a point is found to
be a dense part of a cluster, its ε-neighborhood is also part of that cluster.
Hence, all points that are found within the ε-neighborhood are added, as is their
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own ε-neighborhood when they are also dense. This process continues until the
density-connected cluster is completely found. Then, a new unvisited point is
retrieved and processed, leading to the discovery of a further cluster or noise.

Since our goal is to cluster users based on their geographical coordinate,
we have modified DBSCAN algorithm to use Haversine formula as its distance
metric. Haversine formula calculates great-circle distances between two points
on a sphere from their longitudes and latitudes.

For each celebrity in the set of external users, we run DBSCAN to cluster its
geolocated mentioners. If the algorithm outputs only one cluster containing more
than predefined proportion (δ) of total geolocated mentioners, the celebrity is
considered as a local one. Otherwise, it will be considered as a global celebrity. As
a formal definition, we specify the type of celebrity C by the following equation:

Type(C) =

{
Local, if ClusNo(DBSCAN(MC , ε,MinPts)) = 1
Global, otherwise

(1)

where MC denotes mentioners of C, and ClusNo is the number of clusters. We
set parameter ε to 70(mile) for GeoText and TwUs datasets, and 130 for
TwWorld dataset. Since the number of points (mentioners) to be clustered
are different for each celebrity, we set the MinPts dynamically as η percent of
total number of points (30% in our experiments). The parameter δ was set to
0.8. It should be noted that all parameters (ε, η, and δ) were tuned over the
development sets. Figure 1 demonstrates sample results of the proposed clus-
tering algorithm for mentioners of local and global celebrities in TwUs and
TwWorld datasets. Our experiments show that more than 40% of detected
celebrities in all datasets are local.

In order to construct a refined mention network, we filter out the global
celebrities and preserve local ones. In the next step, we utilize a label propagation
algorithm over this refined mention network to infer the location of other users.

4.3 Label Propagation with Modified Adsorption

In our network-based approach, we formulate geolocation inference as label prop-
agation over the refined mention network. Following [18], we utilize Modified
Adsorption [23] as our label propagation algorithm, since it allows different lev-
els of influence between prior/known labels and propagated label distributions.

Modified Adsorption is a graph-based semi-supervised learning algorithm
which has been used for open domain class-instance acquisition. It computes a
soft assignment of labels to the nodes of a graph G = (V,E,W ), where V is the
set of nodes with |V | = n, E is the set of edges, and W is an edge weight matrix.
Out of the nl+nu = n nodes in G, we have prior knowledge of labels for nl nodes
(training set), while the remaining nu nodes are unlabeled (test set). An edge
e = (a, b) ∈ V ×V indicates that the label of the two vertices a, b ∈ V should be
similar and the weight Wab ∈ R+ reflects the strength of this similarity. Assume
C is the set of labels, with |C| = m representing the total number of labels. Y
is the n × m matrix storing training label information. The lth element of the
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Fig. 1. Sample results for clustering mentioners of celebrities in TwUs(top) and
TwWorld(buttom) datasets. When DBSCAN outputs only one cluster of mentioners
(as highlighted by red points in left figures), the corresponding celebrities are identified
as local type. On the other hand, celebrities are global if no cluster can be found by
DBSCAN (right figures). (Color figure online)

vector Yv encodes the prior knowledge for vertex v. The higher the value of Yvl,
the stronger we a-priori believe that the label of v should be l ∈ L and a value
of zero Yvl = 0 indicates no prior about the label l for vertex v. Another vector,
Ŷ ∈ R+, is the output of the algorithm, using similar semantics as Y .

Modified Adsorption is an iterative algorithm, where label estimates on node
v in the (t + 1)th iteration are updated using estimates from the tth iteration:

Ŷ (t+1) =
(µ1 × pinj

v × Yv + µ2 × D
(t)
v + µ3 × pabnd × r)

Mvv
(2)

where:

D(t)
v =

∑

u

(pcont
v Wvu + pcont

u WuvŶu) (3)

and:

Mvv = µ1 × pinj
v + µ2

∑

u �=v

(pcont
v Wvu + pcont

u Wuv) + µ3 (4)

pinjv ,pcontv , and pabndv are three probabilities defined on each node v ∈ V, and
r is a vector to express label uncertainty at a node. On each node v, the three
probabilities sum to one, i.e., pinjv + pcontv + pabndv = 1, and they are based on
the random-walk interpretation of the Adsorption algorithm [24]: To label any
vertex v ∈ V (either labeled or unlabeled) a random-walk is initiated starting at
v facing three options: with probability pinjv it stops and return (i.e., inject) the
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pre-defined vector information Yv. We constrain pinjv = 0 for unlabeled vertices
v. Second, with probability pabndv the random-walk abandons the labeling process
and return the all-zeros vector 0m. Third, with probability pcontv the random-walk
continues to one of v’s neighbors v′ with probability proportional to Wv′v ≥ 0.

The main idea of Adsorption [2] is to control label propagation by limiting
the amount of information that passes through a node. For instance, Adsorption
can reduce the importance of a high-degree node v during the label inference
process by increasing pabndv on that node [23]. The goal of Modified Adsorption
is to compute Ŷ such that the following objective function is minimized:

C(Ŷ ) =
∑

l

[µ1(Yl − Ŷl)
TS(Yl − Ŷ ) + µ2Ŷ

T
l LŶl + µ3‖Ŷl − Rl‖2

2] (5)

where μ1, μ2, and μ3 are hyperparameters; L is the Laplacian of an undirected
graph derived from G, but with revised edge weights; and R is an n×m matrix of
per-node label prior, with Rl representing the lth column of R. The probabilities
pinjv , pcontv , and pabndv are folded inside the matrices S, L, and R, respectively.

In our experiments, we set the label confidence for training and test users to
1.0 and 0, respectively. For each local celebrity, we initialize its location to the
weighted median latitude and weighted median longitude of all its geolocated
mentioners. We set the label confidence for local celebrities to 0.6, so that their
labels can be changed over the propagation process. Training users along with
local celebrities with their corresponding labels confidences are added to the seed
set. We set μ1, μ2, and μ3 to 0.9, 0.15, and 0, respectively. These three parameters
and label confidence have been tuned based on the best results achieved over the
development sets. We run the Modified Adsorption algorithm iteratively until
convergence, which usually occurs at or before 10 iterations.

4.4 Text-Based Back-Off Strategy

As reported by [19], many test users are not transitively connected to any train-
ing node (it is about 25% for GeoText and TwUs, and 3% for TwWorld).
It results in label propagation fails to assign isolated users any location. This
usually happens when users do not use @-mentions, or when a set of nodes con-
stitutes a disconnected component of the graph [19]. In order to alleviate this
problem, we use the tweets from each test user to estimate their location, which
is then used as an initial estimation during label propagation.

Following [18], we use the text-based approach proposed by [25] as our back-
off strategy. In their approach, the continuous space of geographical coordinates
is discretized using a k-d tree such that each sub-region (leaf) has similar num-
bers of users. This results in many small regions for areas of high population
density and fewer larger regions for country areas with low population density.
Next, these regions are used as class labels to train a logistic regression model.
We use hierarchical logistic regression with a beam search since it achieves higher
results than logistic regression over a flat label set [25]. Following [18], we set the
number of users in each region to 50, 2048, and 2400 for GeoText, TwUs, and
TwWorld respectively. We also use a bag of unigrams (over both words and
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@-mentions) and remove all features that occurred in less than 10 documents,
following [25]. The features for each user are weighted using tf-idf, followed by
per-user l2 normalization [18].

In our hybrid approach, we first estimate the location for each test node using
the logistic regression classifier described above, before running label propagation
over the mention network. Following [18], we attach a dongle node to each test
user containing its text-based estimated location. The dongle nodes with their
corresponding label confidences are added to the seed set, and are treated in the
same way as other labeled nodes (i.e., the training nodes and local celebrities).
This iteratively adjusts the locations based on both the known training users and
guessed test users, while simultaneously inferring locations for the external users.
In such a way, the inferred locations of test users will better match neighboring
users in their sub-graph, or in the case of disconnected nodes, will retain their
initial classification estimate. For evaluation, same as [18], we use the median
coordinates of all training points in the sub-region predicted by the classifier,
from which we measure the error against a test user’s gold standard location.

5 Experimental Results

5.1 Evaluation Metrics

In line with other work on user geolocation prediction, we use the following
evaluation measures: Acc@161 : The percentage of predicted locations which are
within a 161 km (100 mile) radius of the actual location [5], as a proxy for accu-
racy within a metro area; Mean: The mean distance from the predicted location
to the actual location [8]; Median: The median distance from the predicted loca-
tion to the actual location [8]; Post Coverage: The percentage of tested posts
(users in our experiments) for which a geoinference method can predict a location
[14]. Post Coverage is a challenging metric for network-based geoinference meth-
ods, which are only able to predict locations for users in their underlying social
network and therefore may be unable to infer locations for frequently-posting
users that do not have social relationships (i.e., are not in the network).

So, we evaluate using the mean and median errors (in km) over all test users,
and also accuracy within 161 Km of the actual location. We also evaluate our
network-based approach and state-of-the-art using Coverage. Note that higher
numbers are better for Acc@161 and Coverage but lower numbers are better for
mean and median errors.

5.2 Results

Table 2 shows the performance of our proposed network-based (PROP-NB) and
hybrid (PROP-HYB) approaches over the GeoText, TwUs and TwWorld
datasets. The results are also compared with prior network-based geoinfer-
ence approaches [18,19], text-based classification models [3,4,18,25], and hybrid
methods [18].
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Table 2. Performance of geolocation inference methods over the three Twitter datasets;
CHA [4], HAN [3], WB [25], LP-RAHIMI and LR-RAHIMI [19], MADCEL-W and
MADCEL-W-LR [18] (“?” signifies that no results were reported for the given metric;
“-” signifies that no results were published for the given dataset)

GeoText TwUs TwWorld

Acc@161 Mean Median Acc@161 Mean Median Acc@161 Mean Median

CHA ? 581 425 - - - - - -

HAN - - - 45 814 260 24 1953 646

WB-UNIFORM - - - 49 703 170 32 1714 490

WB-KDTREE - - - 48 686 191 31 1669 509

LP-RAHIMI 45 676 255 37 747 431 56 1026 79

LR-RAHIMI 38 880 397 50 686 159 63 866 19

MADCEL-W 58 586 60 54 705 116 71 976 0

MADCEL-W-LR 59 581 57 60 529 78 72 802 0

PROP-NB 61 486 38 59 546 83 77 547 0

PROP-HYB 64 476 32 66 438 56 79 491 0

Our network-based approach outperforms the text-based models and also
previous network-based models. Although network-based approach based on
removing all celebrities as proposed by [18] further reduces the size of mention
network; it sacrifices the accuracy by ignoring the importance of local celebrities.
It also results in more isolated test users because all related edges are removed
along with each celebrity node. Our network-based approach, on the other hand,
improve the performance of geolocation inference in multiple ways: (1) Location
information of local celebrities is propagated through the network and results in
superior Acc@161, Median, and Mean; (2) As can be seen in Table 3, our network-
based approach outperforms the state-of-the-art network-based approach (i.e.,
[18]) in terms of Coverage by 9% and 14% over the three datasets. The main
reason is that we preserve and utilize local celebrities in the network, while [18]
filters out all celebrities which leads more isolated users in the network.

Table 3. Post coverage of different network-based approaches

GeoText TwUs TwWorld

MADCEL-W 57% 51% 72%

PROP-NB 66% 65% 81%

By using text-based approach as the back-off strategy, our hybrid geolocation
inference model achieves the state-of-the-art results over all three datasets. The
main reason is that the text-based method provides a user-specific geolocation
prior for disconnected users.
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6 Conclusion

We proposed a novel network-based approach for user geolocation inference
in social media. We utilized a density based clustering algorithm to catego-
rize different type of highly-mentioned users into local and global celebrities.
We showed that utilizing local celebrities as powerful location indicators and
eliminating global celebrities from the mention network, along with the use of
Modified Adsorption for propagating location information over this network,
our approach outperforms the state-of-the-art network-based approaches. We
also demonstrated that by using a text-based strategy as a back-off to alleviate
the problem of disconnected users, our hybrid approach achieved the best result
among other user geolocation inference methods.
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Abstract. With the prosperity of social media, online rumors become
a severe social problem, which often lead to serious consequences, e.g.,
social panic and even chaos. Therefore, how to automatically identify
rumors in social media has attracted much research attention. Most exist-
ing studies address this problem by extracting features from the contents
of rumors and their reposts as well as the users involved. For these fea-
tures, especially diffusion features, these works ignore systematic analysis
and the exploration of difference between rumors and non-rumors, which
exert targeted effect on rumor identification. In this paper, we system-
atically investigate this problem from a diffusion perspective using Sina
Weibo data. We first extract a group of new features from the diffu-
sion processes of messages and then make a few important observations
on them. Based on these features, we develop classifiers to discriminate
rumors and non-rumors. Experimental comparisons with the state-of-
the-arts methods demonstrate the effectiveness of these features.

Keywords: Rumor identification · Diffusion tree · Sina Weibo

1 Introduction

Social media (e.g., Twitter and Sina Weibo), as a novel type of media, has
become an important platform for people to obtain, share and spread infor-
mation. According to the 38th Statistical Report on Internet Development in
China released by China Internet Network Information Center (CNNIC) and
Sina reports, as of June 2016, the usage of Sina Weibo was about 34% and ranked
second in typical social applications. Daily active users reached 126 million. Sim-
ilarly, Twitter also had 100 million daily active users. However, as a side-effect
of social media, rumors, commonly defined as unconfirmed and uncertain infor-
mation posted intentionally or unintentionally by some users, are also widely
propagated over social media, which may lead to significant negative effects and
even severe social problems, e.g., social panic and even chaos. For example, a
hacker released a fake tweet about explosions in the White House through the
official Twitter account of the Associated Press (AP) on April 23, 2013. This
c© Springer International Publishing AG 2017
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rumor was widely reposted and caused an immediate social panic: S&P 500
Index instantaneously dropped 14 points, wiping out $136.5 billion in a matter
of seconds, and the Dow Jones Industrial Average also dropped about 145 points
within three minutes.

Therefore, how to identify rumors from non-rumors become an important
research problem in recent years. The key to solve the problem of rumor identi-
fication is to consider both the generation and diffusion process of rumors. How-
ever, it is difficult to obtain a large amount of rumor data containing the whole
life course of rumors and to label rumors with high credibility, which needs pro-
fessional knowledge to discriminate. Existing works are mainly based on content
features, user features, or their combinations to identify rumors. Some studies
confirmed that temporal features [10,13], structural features [23] may also help
improve the accuracy of rumor identification. However, they suffer from two
drawbacks. First, they fail to quantify the concrete differences of the proposed
features between rumors and non-rumors; Second, they only take rumors and
non-rumors with a great number of reposts into account, which account for only
a small proportion of all messages.

We empirically observed that the diffusion patterns of rumors and non-
rumors are significantly different. Particularly, the reposts of non-rumors are
usually triggered directly by the source, while rumors generally have many sub-
sequent relaying users to trigger new reposts. This key insight motivates us to
study the automatic identification of rumors by systematically investigating the
discriminative features of rumors and non-rumors from a diffusion perspective.
Specifically, in this paper we first represent the diffusion process of messages into
diffusion trees. By analyzing diffusion trees, we identify a group of new diffusion
based features. For these features, we quantify their differences between rumors
and non-rumors. Finally, we construct classifiers using the diffusion features to
identify rumors with much fewer reposts.

This paper makes two main contributions to the field: (i) We systematically
study the diffusion processes of rumors and non-rumors and discriminate a group
of new diffusion features from the diffusion processes, on which rumors and non-
rumors are significantly different. We further make a few important observations
through empirical analysis over these features. We find that, for instance, the
diffusion trees of rumors are deeper but narrower than those of non-rumors;
rumors are more likely to be reposted at the first moment (i.e., within one
minute). (ii) By combining the above identified features with the features widely
used in existing methods, we develop classifiers to classify rumors and non-
rumors, exhibiting better performance in terms of widely used metrics including
accuracy and F1-measure to the state-of-the-arts baselines. This indicates that
diffusion based features provide a good supplement to those existing ones for
rumor identification.

2 Related Works

Existing works usually regard rumor identification as a classification problem and
extract features from different perspectives for developing effective classifiers.
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These works on identifying rumors can be divided into two categories according
to the features used for identification.

The first category of methods is mainly based on superficial features of the
original messages and the users who post them. For instance, Castillo et al. [4]
extracted a wide range of features from tweets on Twitter and then used a J48
decision tree to judge the credibility of news topic. Qazvinian et al. [17] exploited
three types of features, namely, content-based features, network-based features,
and microblog-specific features (e.g., hashtags and URLs [18]) to identify rumors
and users who endorse and spread them. Yang et al. [24] identified two new
features, i.e., client program and location, to detect rumors on Sina Weibo. Sun
et al. [21] particularly made use of multimedia-based features, coupled with
content- and user-based features, to automatically detect event rumors on Sina
Weibo. Although these features fail to achieve good classification accuracy, they
can be used as important auxiliary features to identify rumors.

The other category of works identifies rumors from non-rumors mainly based
on features extracted from the perspective of propagation, including the num-
ber and contents of the reposts and the users involved. First, from the contents
of reposts, Mendoza et al. [15] found that on Twitter rumors often cause more
questions in the propagation than non-rumors. Starbird et al. [20] and Tanaka
et al. [22] observed that the emergence of corrections provides important cues
in identifying or counteracting rumors. Liu et al. [11] combined these cues with
verification features to debunk rumors in a real time manner. Ma et al. [12,13]
used Dynamic Series-Time Structure (DSTS) and Recurrent Neural Networks
(RNNs) to capture the variation of content-based and user-based features in
the lifecycle of events to discriminate rumors from non-rumors, respectively.
Second, from the structures of diffusion, Nadamoto et al. [16] found that the
diffusion hierarchies of rumors are different between normal situations and dis-
aster situations and in particular the hierarchies in a normal situation is higher.
Through an empirical study, Friggeri et al. [7] observed that rumors get deeper
cascades in social networks than reshared messages. Wu et al. [23] developed
a random walk graph kernel to capture the similarity of the diffusion patterns
between messages and combine message-based, user-based, and repost-based fea-
tures to detect rumors. Jin et al. [9] employed the well-known SEIZ model pro-
posed in [3] to characterize the diffusion patterns of rumors and further adopt
it to detect rumors. Kwon et al. [10] used three network structure features and
combined temporal and linguistic features to classify rumors and non-rumors.
Although these works utilize diffusion based features, some even combined with
content and user features, to improve the performance of rumor identification,
there still lacks of a systematic study on the features in the diffusion process
of messages, which may be very helpful to rumor identification. Therefore, in
this paper we analyze the diffusion of messages from structural, temporal and
user perspectives and propose a group of diffusion based features for rumor
identification.
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3 Data Collection

To analyze the diffusion processes of messages and examine their effect on rumor
identification, a labeled dataset is needed. Sina Weibo has an official account for
rumor busting. All messages announced by this account as rumors are confirmed
misinformation or disinformation, which are relevant to certain events/topics and
have been widely spread. Therefore, rumor busting provides high-quality rumor
labels and quite diverse rumor messages. In this paper, we first crawled 453 rumor
events posted by this rumor busting account, spanning from November 18, 2011
to December 31, 2014. We further adopted keyword-based search provided by
“Sina Weibo advanced search” to extract all messages that are directly related
to these events with human labeling as post-processing. Finally, we employed
Grubbs’ test to filter out outlier events which contained too much messages
than other events, and retained 44,096 original messages corresponding to 178
rumor events as the rumor dataset. Sina Weibo API provides interfaces to obtain
the detailed information of each message, including the message’s content, its
reposts and the information of all users involved in the diffusion of a message.
The information of a message or a repost includes the content, the post time,
the number of reposts, the number of comments, etc. The information of a user
includes his/her profile, the number of followers, the number of followees, etc.
Using a similar method, we extracted 180,212 original messages corresponding
to 367 newsworthy non-rumor events from some news media’s Weibo accounts
as the non-rumor dataset of this study. Table 1 presents our datasets.

Table 1. Statistics of the datasets used in this paper

Statistics Rumors Non-rumors

Number of messages All 44, 096 180, 212

With reposts 14, 219 51, 617

With no less than 10 reposts 3, 286 16, 897

With no less than 100 reposts 805 4, 790

Number of users 1, 183, 163 6, 344, 693

4 Empirical Analysis

In this section, we explore features from the perspective of diffusion to discrim-
inate rumors from non-rumors.

4.1 Diffusion Tree

To facilitate the analysis of structural patterns of diffusion process of message,
either rumor or non-rumor, we propose to use diffusion tree to represent its
diffusion process. A diffusion tree of a message is represented as T = 〈V,E〉. Each
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node in V corresponds to a user who participates in the forwarding process of
the message, and the root node is the source user who posts the original message.
A link in E, from a user node u to another user node v, indicates that v forwards
the message from user u. In this way, the size of the diffusion tree is the total
number of reposts of the original message. Its depth is the longest path from
the root node to leaf nodes, which indicates the penetrability of the message [1].
Its width is the number of nodes in the layer which has the largest number of
nodes, which indicates the expansion rate of the message.

4.2 Features Extracted from the Diffusion Perspective

We originally extracted 24 features from the diffusion perspective and further
applied Pearson correlation analysis for feature selection. We then employed
an entropy based method [14] to identify key features. The final feature set is
presented in Table 2. Those features are classified into four categories, namely,
structural features extracted from diffusion trees, temporal features and repost
user features obtained from all reposts of the original messages, and content
features indicating the opinions and sentiment of users to the messages, reflected
by questions and refutations, as well as sentiment words and emoticons in all
reposts. We call these four categories of features as Diffusion Features (DFs),
among which the first three categories, including 8 features, are proposed and
verified in this paper. We have experimentally observed that most of the diffusion
trees with less than 10 reposts have a star-shaped structure, which has very little
topological information for differentiating rumors from non-rumors. Therefore,
in this paper we use the dataset with no less than 10 reposts for each message
to explore the diffusion characteristics of rumors and non-rumors.

A. Structural Features. Structural features are salient features of information
propagation and has been leveraged for popularity prediction and cascade pre-
diction [2]. Here, we analyze the structure of diffusion tree to acquire potential
structural features for rumor identification. Figure 1(a) presents the Complemen-
tary Cumulative Distribution Function (CCDF) of the depth of diffusion trees
corresponding to rumors and non-rumors, respectively. The CCDFs of rumors
and non-rumors follow an exponential distribution with the exponents being 0.33
and 0.53, respectively. The maximal and average depth of diffusion trees are 34
and 4.96 for rumors, 25 and 3.65 for non-rumors. Moreover, the diffusion trees
of rumors with the depth less than 5 account for 66.41%, while those of non-
rumors occupy 84%. Figure 1(b) presents the relationship between the size and
the average depth of diffusion trees. It is obvious that with the increase of the
number of reposts, the average depth of diffusion trees also increases. Note that
the average depth of diffusion trees of rumors is deeper than that of non-rumors
in each size interval. Moreover, the average depth of diffusion trees of most of
non-rumors is less than 10. All these observations suggest that the diffusion trees
of the majority of rumors are deeper than those of non-rumors. It implies that
the penetrability of rumors are stronger than that of non-rumors.

For diffusion trees with the same depth, we further distinguish them using
the total path length of a diffusion tree T , defined as the sum of the length of all
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Table 2. Description of features

Type Name Description

Structural features Depth of diffusion tree # of nodes in the longest path
from the root to leaf nodes

Width of diffusion tree # of nodes in the layer containing
the largest number of nodes

Inter-layer width ratio Sum of the ratios between the
numbers of nodes of two
consecutive non-root layers lower
than five

Total path length Sum of the length of paths from
the root node to all other nodes

Temporal features Response time Time interval between the post
time of the message and the time
of its first repost

Lifecycle Survival time of the original
message

User features Repost-participation ratio Ratio of repost users to all users
who repost/comment/thumb up for
the original message

Repost-exposure ratio Ratio of the number of repost users
to the total number of followers of
all users who post or repost the
message

Content features Number of refutations # of refutations to original
message in all reposts

Number of questions # of questions to original message
in all reposts

Sentiment score # of positive and negative
sentiment words or emoticons in all
reposts of original message

Fig. 1. The depth of diffusion trees.
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paths from the root node vr to any other nodes vj , i.e., D(T ) =
∑

vj∈V,vj �=vr
dr,j ,

where dr,j is the length from vr to vj . In general, the metric D(T ) provides a
measure to the structure of diffusion tree. For two diffusion trees with the same
size, the higher the value of D(T ), the more likely that T corresponds to a rumor.

Regarding the width of diffusion trees, in Fig. 2(a) we present the width-to-
size ratio averaged on different size intervals of diffusion trees for both rumors
and non-rumors. We see that with the increase of tree size, the averaged width-to-
size ratio decreases gradually. However, the averaged width-to-size ratio of non-
rumors is consistently greater than that of rumors. Therefore, we can conclude
that the diffusion trees of the majority of non-rumors are wider than those of
rumors. Combining Figs. 2(a) and 1(b), we expect that the higher the value of
width-to-size ratio, the wider and the lower the diffusion tree.

The width-indictor layer of a diffusion tree means that it is the widest layer
of the tree and thus indicates its width. We found that the width-indictor layer
of most diffusion trees are layer 2 to 5. Moreover, the width of the diffusion
tree reflects the expansion rate of the information spreading. To measure this
property, we define the inter-layer width ratio of a diffusion tree, T , as the sum of
the ratios between the numbers of nodes of two consecutive non-root layers lower
than five in the diffusion tree, i.e., L(T ) =

∑5
k=2(lk+1/lk), where lk denotes the

number of nodes in the k-th layer of the diffusion tree T . The results presented
in Fig. 2(b) show that L(T ) of most diffusion trees of rumors is greater than that
of non-rumors, indicating that rumors are more probably to motivate users to
further spread them, as compared to non-rumors.

Fig. 2. The width and inter-layer width ratio of diffusion trees.

B. Temporal Features. Temporal pattern is the most effective feature for pre-
dicting of the popularity of messages [6,19]. Here, we analyzed the temporal
features that are potentially useful for rumor identification. The response time
of a message indicates how fast it causes response. Figure 3(a) plots the Cumula-
tive Distribution Function (CDF) of response time of rumors and non-rumors. It
shows that the response time of 48.94% rumors and 56.58% non-rumors, respec-
tively, is less than two minutes; up to 72.11% rumors and 83.82% non-rumors
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are responded within five minutes. Figure 3(a) shows a special case in the first
one minute, where the curves corresponding to rumors and non-rumors inter-
sect with each other. To explain this phenomenon, we analyzed the relationship
between reposts and response time. We found that 52.3% of rumors with more
than 100 reposts get the first repost within one minute, while non-rumors are
39.7%. It indicates that rumors are more likely to be responded quickly at the
first moment, and get lots of reposts in subsequent time. This may be because
rumors are often about issues that people greatly concern, such as child traf-
ficking and people’s livelihood. These rumors can only be obtained from a few
sources, thus leading to people’s anxiety and are spread widely.

The lifecycle of both rumors and non-rumors follows power law distributions,
as shown in Fig. 3(b), with exponents as 1.79 and 2.04, respectively. There are
46.1% rumors and 50.2% non-rumors whose lifecycle is less than 3 days, while
81.9% rumors and 84.4% non-rumors have a lifecycle less than two weeks. But,
the lifecycle of the majority rumors is longer than that of non-rumors. In addi-
tion, we empirically found that among rumors with a relatively long lifecycle,
nearly a half are messages with a small number of reposts. The last few reposts
include three possibilities: the forwarding of new fans, the forwarding of refuting
rumor, or the forwarding of rumor recurrence.

Fig. 3. The response time and lifecycle of messages.

C. User Features. Users play a crucial role in the diffusion of messages. In what
follows, we investigate two user oriented features, namely, repost-participation
ratio and repost-exposure ratio.

Formally, the repost-participation ratio of a message is defined as R(mi) =
ri/(ri + ci + ai), where ri is the number of reposts of message mi, ci is the
number of its comments and ai is the number of thumb-ups for it. Empirical
analysis shows that the repost-participation ratio of more than 90% of messages
is greater than 0.5. Indeed, the ratio for rumors is higher than that for non-
rumors, indicating that among all users participated in the diffusion of rumors
and non-rumors, those who are involved in rumors are more likely to repost
them.

Regarding the repost-exposure ratio of a message, we first assume that if a
user posts or reposts a message, all his/her followers will see it. We can then
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formally define the repost-exposure ratio as E(mi) = ri/(
∑N

j=1 fj + fi), where
ri is the number of reposts of message mi posted by user ui, fi is the number
of followers of ui, and fj is the number of followers of the repost user uj . We
find that given a rumor and a non-rumor with a similar number of reposts,
the repost-exposure ratio of rumor is usually higher than that of non-rumor. It
indicates that a rumor more probably motivates users to repost it as compared
to a non-rumor.

5 Rumor Identification

In this section, we evaluate the effectiveness of the proposed diffusion features
(DFs) on rumor identification from three aspects. Specifically, we first examine
the effectiveness of each DF category and then investigate the effectiveness of
all DFs combined with features developed in existing studies on both balanced
and imbalanced datasets.

5.1 Effectiveness of Each DF Category

In order to better understand the effectiveness of different DF categories (see
Table 2) on distinguishing rumors from non-rumors, we successively exclude each
DF category and use the remained DF categories to train an SVM classifier with
the RBF kernel. Table 3 presents the results of the experiment, where (−)X indi-
cates that the DF categories except X are adopted to train the SVM classifier.

Table 3. The effectiveness of different feature categories.

Accuracy Rumor Non-rumor

Precision Recall F1 Precision Recall F1

(-)Structural features 0.679 0.676 0.716 0.696 0.683 0.641 0.661

(-)Temporal features 0.723 0.781 0.637 0.701 0.681 0.813 0.741

(-)User features 0.711 0.778 0.610 0.684 0.667 0.817 0.735

(-)Content features 0.695 0.756 0.597 0.667 0.654 0.798 0.719

All features 0.739 0.770 0.673 0.718 0.715 0.803 0.757

The results show that as compared to other DF categories, structural fea-
tures improve the accuracy of rumor identification by 8.8% from 0.679 to 0.739,
achieving the largest improvement among all feature categories. They are the
most effective one in detecting the non-rumor messages. User features have a
remarkable impact on rumor identification, which can effectively identify the
rumor messages. It indicates that the participation of users directly reflects the
different attractions of rumor and non-rumor messages. Temporal features have
a relatively little effect on the results, as compared with structural features and
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user features. This is because temporal features reflect temporal characteristics
of user activity. Their ability to distinguish rumors from non-rumors is weak,
especially, on those messages with a small number of reposts and a short life-
cycle. Content features have also strong influence on the results, which contain
people’s opinions on messages.

Table 4. The performance of different methods on rumor identification.

Reposts Methods Accuracy Rumor Non-rumor

Precision Recall F1 Precision Recall F1

≥ 100 HybridF 0.884 0.890 0.884 0.887 0.877 0.883 0.880

HybridSVM 0.919 0.906 0.942 0.924 0.935 0.895 0.915

HybridF+DF 0.928 0.926 0.936 0.931 0.931 0.920 0.925

HybridSVM+DF 0.943 0.928 0.965 0.946 0.961 0.920 0.940

≥ 10 HybridF 0.875 0.897 0.854 0.875 0.854 0.897 0.875

HybridSVM 0.777 0.796 0.758 0.776 0.758 0.796 0.777

HybridF+DF 0.906 0.929 0.883 0.905 0.883 0.930 0.906

HybridSVM+DF 0.810 0.815 0.814 0.814 0.805 0.806 0.806

5.2 Rumor Identification on Balanced Datasets

In order to verify the effectiveness of the proposed DFs and improve the perfor-
mance of rumor identification, we combine the proposed DFs with the features
adopted in the state-of-the-art study in [23]. The features and method used
in [23] are employed as baselines in the following experiments, as they perform
much better than those commonly used baselines presented in [4,24].

In [23], Wu et al. observed the difference of user type in diffusion trees
between rumors and non-rumors, and thus developed a random walk graph ker-
nel to calculate the similarity between diffusion trees. They further combined the
graph kernel with the conventional RBF kernel to build a hybrid SVM classifier
(denoted as HybridSVM) for rumor identification. Although their hybrid classi-
fier achieved high classification accuracy, they only considered messages with at
least 100 reposts, which accounts for only 2% to 4% of all messages. To identify
rumors on a broader range, in this paper we relax the above restriction to those
messages with no less than 10 reposts. We train several SVM classifiers to com-
pare their performance on rumor identification. We denote the classifier based on
the features proposed in [23] as HybridF , and the one combining these features
with our 11 DFs as HybridF + DF . The classifier integrating our DFs into
HybridSVM is denoted as HybridSVM + DF . We implement experiments on
datasets containing messages with no less than 10 and 100 reposts, respectively.

Table 4 presents the experimental results. It can be seen that the results
corresponding to the cases with no less than 100 reposts are generally better
than the other cases with no less than 10 reposts. This is obvious, as the former
cases have much more large diffusion trees of messages and thus the structural
features are more notable. More importantly, in the former cases, both classifiers
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where the 11 DFs are integrated (i.e., HybridF +DF and HybridSVM +DF )
perform better than their original versions (i.e., HybridF and HybridSVM),
respectively. HybridSVM + DF particularly achieve the best performance in
terms of all adopted metrics. These observations justify the effectiveness and
values of the proposed DFs. In the cases with no less than 10 reposts, HybridF+
DF shows the best performance, and HybridF +DF outperforms HybridF and
HybridSVM + DF overwhelms HybridSVM , respectively, which reconfirms
the values of the proposed DFs. However, we can also see that in these cases,
HybridSVM and HybridSVM+DF are no match for HybridF and HybridF+
DF , respectively, indicating that the random walk graph kernel in HybridSVM
does not perform well in the cases taking lots of messages with much fewer reposts
into consideration. This is because the effectiveness of the random walk graph
kernel highly depends on the structure of the diffusion trees of messages. In the
cases with no less than 10 reposts, there are a large percentage of messages with
small diffusion trees. Consequently, HybridSVM cannot completely exhibit its
advantages. However, DFs can well reflect the characteristics of diffusion without
stringent restriction to the number of reposts.

5.3 Rumor Identification on Imbalanced Datasets

In the real world, rumors only account for a small fraction of all messages,
as compared to non-rumors. Therefore, rumor identification is essentially an
imbalanced classification problem. To verify whether or not DFs are robust to
imbalanced data, we examine their performance by comparing HybridF with
HybridF + DF in terms of varying proportions of rumors and non-rumors.

In the experiment, we consider five settings of data, with the proportions
of rumors and non-rumors being 1:10, 1:20, 1:50, 1:80 and 1:100, respectively.
There have been many methods for dealing with the problem of data imbal-
ance [8]. In this paper, we adopt the Synthetic Minority Over-sampling Tech-
nique (SMOTE) [5] that balances different classes by oversampling the minor
class until the two classes are approximately of equal size. For each proportion,
we randomly extract 5 sub-datasets of rumors and non-rumors from the original
data; For each sub-set, 100 runs are conducted to obtain the average values of
the adopted metrics, i.e., F1, G-mean and AUC.

Figure 4 presents the results of rumor identification using HybridF and
HybridF +DF at five data settings. Note that for the sake of space limitation,
the results corresponding to AUC is not presented in Fig. 4. In both Fig. 4(a)
and (b), for each proportion the result of HybridF is on the left, while that of
HybridF +DF is on the right. The diamond symbols in the figure represents the
average values of F1 and G-mean. We can observe that HybridF +DF exhibits
better results than HybridF on each proportion of rumors to non-rumors on
both F1 and G-mean. Similar to F1 and G-mean, AUC for HybridF + DF
ranges from 80% to 93%, and is better than that of HybridF by approximately
1% to 3.4% for each setting. These observations indicate that the proposed DFs
can effectively improve the performance of rumor and non-rumor classification
even in the case of imbalanced datasets.
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Fig. 4. Comparison between HybridF and HybridF +DF in terms of F1 and G-mean
with different proportions of rumors and non-rumors.

6 Conclusions

Online rumors have been a severe social problem with the prosperity of social
media. Therefore, in recent years, how to automatically identify rumors in social
media has attracted lots of research interests in related communities. In this
paper, we studied the automatic rumor identification problem from a diffusion
perspective in Sina Weibo. Specifically, we first extracted 11 features of four
types, including structural, temporal, user, and content features, from the dif-
fusion processes of messages. We further observed a few interesting phenomena
over these features: the diffusion trees of rumors are deeper but narrower than
those of non-rumors; rumors are more likely reposted at the first moment. Cou-
pling those new features with commonly used ones, we implemented classifiers
based on SVM for classifying rumors and non-rumors. Through experiments on
both balanced and imbalanced datasets and comparisons with the state-of-the-
arts methods, we demonstrated the effectiveness of the new features for rumor
identification. In the future, we will study the dynamic change of these features
in the streaming data for real-time rumor identification.
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Abstract. The powerful emergence of religious faith and beliefs within
political and social groups, now leading to discrimination and violence
against other communities has become an important problem for the
government and law enforcement agencies. In this paper, we address the
challenges and gaps of offline surveys by mining the public opinions, senti-
ments and beliefs shared about various religions and communities. Due to
the presence of descriptive posts, we conduct our experiments on Tumblr
website- the second most popular microblogging service. Based on our
survey among 3 different groups of 60 people, we define 11 dimensions of
public opinion and beliefs that can identify the contrast of conflict in reli-
gious posts. We identify various linguistic features of Tumblr posts using
topic modeling and linguistic inquiry and word count. We investigate
the efficiency of dimensionality reduction techniques and semi-supervised
classification methods for classifying the posts into various dimensions of
conflicts. Our results reveal that linguistic features such as emotions, lan-
guage variables, personality traits, social process, and informal language
are the discriminatory features for identifying the dynamics of conflict
in religious posts.

Keywords: Mining user-generated data · Public opinions ·
Religious conflicts · Social computing · Text classification · Tumblr ·
Semi-supervised learning

1 Introduction

Research shows that with the unexpected emergence of religion and faith in soci-
ety, has led to the discrimination and violence against rival religious groups [1].
It is seen that the people use various different platforms (chat groups, forums,
blogs, social media) to share their beliefs and opinions about their religion [6].
These people also outburst their extremist and hateful views towards other reli-
gions [3,5]. These groups of individuals take the leverage of freedom of speech
and social media to post their sentiments and beliefs about a variety of sensi-
tive topics including religion and race [3]. Despite several guidelines of social
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media platforms1 and constraints of freedom of speech [9], people post racist
and harsh comments against other religions that can hurt religious sentiments of
an individual or a community [5,11]. Figure 1 shows examples of several online
posts showing the conflicts in context of Islamic religious beliefs and sentiments
of authors. Figure 1 reveals that while some users posted defensive and promo-
tional content about Islam religion; other users posted negative comments and
insulting the beliefs of people believing in Islam. Further, some users only make
posts to share information on real time incidents or news and not presenting any
sentiment or argument for a religion. As seen in the real world, many young age
people and students get influenced from social media messages and join religious
wars [6]. Therefore, monitoring such content on social media and identifying
religious conflicts within society, understanding the root cause of such conflicts
and arguments have become an important problem for the government, social
scientist and law enforcement agencies.

Fig. 1. A concrete example of 5 Tumblr posts showing differences and conflicts in
beliefs of Tumblr bloggers on Islam religion

Background: We conduct a literature survey in the area of political and reli-
gious conflict identification on social media. We find that over the past 3 decades,
social science researchers have been conducting offline surveys for identifying reli-
gious conflicts within society. Whereas, the area of identifying such conflicts by
using computer science applications is not much explored. Based on our analysis,
we divide our literature survey into four lines of research:

1. Offline Data and Manual Analysis: Swinyard et al. [13] and Wilt
et al. [16] conducted surveys to examine the relationship between religious
and spiritual beliefs and emotions of people such as happiness and anxiety.
Yang et al. [17] present a study on the impact of low coverage of HindRAF
event in media causing the religious conflicts among citizens of Malaysia.

2. Offline Data and Automated Analysis: Vüllers et al. [15] present a study
on the religious factors of 130 developing countries. Their analysis reveal that
the clashes between religious groups and attacks by religious actors are the
main cause of religious conflict within state and community. Basedau et al.
[7] used logistic regression approach on the same dataset to identify several
discriminatory religious factors that causes conflicts, religious violence and
grievances.

1 https://www.tumblr.com/abuse/maliciousspeech.

https://www.tumblr.com/abuse/maliciousspeech
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3. Online Data and Manual Analysis: In addition to the social science
researchers, various non-profit organizations like Pew Research Center2,
Berkley Center for Religion, Peace and World Affairs3 and United States
Institute of Peace4 conduct online polls, offline statistical and text analysis
on blogs and social media data to identify religious beliefs and issues within
local and global regions. Some of the recent studies of Pew Research Cen-
ter include the global trend and projection of population growth of various
religions, gender gap in religious commitment of Muslim and Christian com-
munities and increment and decrement rate of government restrictions on
religion and social hostilities.

4. Online Data and Automated Analysis: Chesnevar et al. [8] propose
an opinion tree using IR and argumentation technique for identifying con-
flicts and confronting opinions in E-Government contexts. They conduct their
analysis on Twitter messages and identify the polarity (positive, negative
and neutral) of contrasting arguments. In our previous study [5], we conduct
a manual analysis on Tumblr posts to investigate the feasibility of content
analysis for identifying religious conflicts and fill the gaps of traditional offline
surveys.

Motivation: The work presented in this paper is motivated by the prior liter-
ature and a need to develop an automatic solution to identify religious conflicts
among social media users. However, automatic identification of religious beliefs
and faith by mining user-generated data is a technically challenging problem.
In order to enhance our understanding of religious conflicts and address the
challenge of local and regional data, we conduct our experiments on a wider
community of Tumblr. Tumblr is the second most popular micro-blogging ser-
vice that allows users to post eight different types of content including image,
video, audio, chat, quote, answer, text and url [3]. Unlike Twitter, Tumblr has no
character limit for tags, image captions, text body content, allowing it’s users to
make descriptive posts. Presence of noisy content such as misspelt words, short
text, acronyms, multi-lingual text and incorrect grammar decreases the accu-
racy of linguistic features and Natural Language Processing tools [6]. Further,
the presence of ambiguity in posts and the intent of author makes it difficult even
for human annotation [3]. We, however conduct our analysis on Tumblr website
because Tumblr allows users to make longer posts and express their opinions and
beliefs in an open and descriptive manner which fills the gaps of offline surveys.
Furthermore, Tumblr facilitates it’s users to send anonymous messages and use
the leverage of expressing their opinions without revealing their names [2].

Research Contributions: In contrast to the existing work our paper makes
the following novel and technical contributions: (1) To the best of our knowl-
edge, we present the first study on automated identification of religious beliefs,
opinions and faith in global public communities. (2) We address the challenge of

2 http://www.pewresearch.org/topics/religion-and-society/.
3 https://berkleycenter.georgetown.edu.
4 http://www.usip.org/about-usip.

http://www.pewresearch.org/topics/religion-and-society/
https://berkleycenter.georgetown.edu
http://www.usip.org/about-usip
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social media content by translating multi-lingual posts into base language and
extracting textual metadata of multimedia posts such as photo and video. (3)
We identify various linguistic features that are discriminatory for identifying con-
trast in different opinions on religious posts and (4) We investigate the efficiency
of multi-class semi-supervised classifier across various dimensionality reduction
techniques for classifying Tumblr posts into various dimensions of conflicts.

2 Dimensions of Conflicts

We conducted a survey among 3 different groups of people- we selected 10
graduate students of our department, 30 Tumblr bloggers (followers on authors’
personal Tumblr account) and 20 people from society randomly. In extension to
our previous study [5], we conducted a small questionnaire consisting of ques-
tions related to their activities on social media platforms e.g. how frequently they

Table 1. Concrete examples of 11 dimensions and 3 polarities of religious beliefs and
sentiments in Tumblr posts created about Christian religion and community

Type Post content

IS In a show of solidarity, Muslims are standing with Christians and giving
up guilty pleasures for lent

Query Doesn’t the Bible teach us not to take a life of another? To turn the
other cheek and not respond with violence? Isn’t better to die and be in
heaven then kill and stay on earth?

N/A Pray for abortion access. People deserve easy access to abortion services

Defensive I’m still over the moon about God. I’m in total awe that He not only
hears me, but actually listens and does something about it. I feel so loved
and acknowledged

Disappointment If you’re a Christian and voted for Trump I wanna ask you a question.
What does it feel like to go against everything God wanted for us?

Annoyance Jesus himself could crawl out of his grave, take me by the hand, and
point me to salvation and heaven. I would say no. I would seriously 100%
rather die as a Jew then live for even a millisecond as a Christian. So stop
trying to convert me to Christianity because it is not going to happen

Insult Burn churches not calories. Christianity is stupid!- Well I am not the
only one that feels the same way

Disgust So this dude that was running in local elections for council said women
who have abortions are worse than ISIS

Ashamed I feel like a bad Christian. I have so much hate in my heart after this
election, at Drumpf, at his voters, at my country. I know I should turn
the other cheek and love radically and protest without hating but I’m so
angry. I feel like I can’t let that hate go, not so soon. But I need to and
I’m furious at myself

Disbelief Imagine the peace we’d all have without religion. Wouldn’t it be a better
world?

Sarcasm When Christ has a cold he sneesus
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make religion based posts on social media or react to other religious posts. We
created a set of 30 posts about different religions and asked for their opinions.
Based on the dimensions proposed in our previous study and our survey, we
decided 11 dimensions of opinions that can be used to define the contrast of
conflict among people: Information Sharing (IS), Query, Not a religion based
post (N/A), Disbelief, Defensive, Annoyance, Insult, Disappointment, Sarcasm,
Ashamed and Disgust. Table 1 shows the examples of 11 Tumblr posts created
about Christian religion and community reflecting the different dimensions of
public opinions about the community.

3 Experimental Setup

Acquiring the Dataset: To conduct our experiments, we use the Tumblr
dataset [4] extracted and made publicly available in our previous study [5]. As of
November 9, 2016, this dataset is the largest dataset available of Tumblr posts
and bloggers and contains all types of Tumblr posts (answer, photo, text, audio,
video, url, chat, and quote) consisting of various tags frequently used in religion
based posts. The published dataset contains a total of 107, 586 posts collected
for 10 such tags (hinduism, islam, muslim, religion, isis, jihad, christian, islam-
ophobia, judaism, and jews). The statistics reveal that the maximum number
of posts consisting of religious tags are either posted as photo (49, 072) or text
(34, 902). While, URL or link posts (10, 062) are relatively higher in comparison
to chat (507), audio (390) and answer/ask box (1, 077) categories [5].

Data Pre-processing: In order to identify the religious conflicts, we conduct
our analysis only on textual metadata of posts. Therefore, in this phase, we
address the challenge of multi-lingual and multi-media content of the posts.
In Tumblr, each type of post contains a different set of textual attributes. We
acquire different metadata of all records for each type of posts available in our
experimental dataset. For example, for photo and video posts, we extract only
the caption and description of posts, for chat and answer posts, we extract the
phrases used in the conversation. While, for URL, quote and text posts, we
extract the title and body content of the posts. We discard the audio posts since
these post contains only track name, artist name and album name which do
not reveal any information about the content. In this paper, we conduct our
experiments only on English language posts. Therefore, in order to address the
challenge of multi-lingual posts, we translate all non-English posts into our base
language. We use Yandex Language API5 to detect the language of source con-
tent and translate it to English language. We further remove the posts consisting
of no textual metadata. For example, photo posts with no caption or text posts
consisting of only external URLs. We also remove all redundant posts from the
dataset consisting of different post id but having duplicate content. After pre-
processing of the raw data, we were able to acquire a total of 89, 803 posts calling
them as our experimental dataset.

5 https://translate.yandex.com/developers.

https://translate.yandex.com/developers
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Data Annotation: In order to create the ground truth for our dataset and
creating a training dataset, we use 89, 803 pre-processed posts for further anno-
tation which spans only 83.4% of the acquired data. In order to remove the bias
from our annotation, we hired a group of Tumblr users who had an experience of
2 to 3 years of using Tumblr website. We published a post on Tumblr and asked
bloggers to volunteer for data annotation. In a span of one week, 34 bloggers
replied and agreed to annotate an average of 30 posts. We declined 4 bloggers
who joined Tumblr recently. Among 30 bloggers, only 23 bloggers reverted back
with 690 annotated posts among which 6 posts were sampled more than once.
Due to the large amount of Tumblr posts and challenge of creating ground truth
[6]; we used only these 684 posts for creating our training dataset.

4 Features Identification

Topic Modeling: During our survey for identifying the dimensions of conflict,
we observe that many users add religion based tags in their posts while the
content of the post is irrelevant to any religion or community. Since, our experi-
mental dataset is collected using a keyword based flagging approach, we identify
the topic of each post to filter the irrelevant posts. Figure 2 shows the statis-
tics of number of posts consisting of religion based tags and actually discussing
about those religions. Figure 2 reveals that among all posts (85% of experimental
dataset) consisting of seed tags related to Islam religion (islam, muslim, islamo-
phobia, isis and jihad), only 31% of the posts are about Islam religion. Similarly,
among 20, 106 posts (22% of experimental dataset) consisting of judaism and
jews tags, only 15% (13, 695) posts belong to Judaism religion. For each post,
we assign a binary value where 1 denotes the topic (religion based post) and
0 denotes the non-topic (not a religion specific post). We further extract the
name of the religion being discussed in the post since a post can have content
about more than one religion. For example, in the following post “KKK burns
black Churches even tho they claim Christianity as their religion and ISIS blows
up mosques even tho they claim Islam as their religion.”; author mention about
both Islam and Christian religion. In our experimental dataset, we find that only
40% of posts (35, 799) belong to a religious topic (Islam, Hinduism, Christian
and Judaism) while the remaining 60% of posts (54, 004) only contains religious
tags but do not contain the content related to a religious group or community.

LIWC: In order to compute the correlation between various linguistic features
and sentiments, we use an open source API by LIWC- Linguistic Inquiry and
Word Count [14]. We extract a total of 45 features grouped into 14 categories
of linguistic dimensions. In order to identify the sentiments and emotions of the
bloggers, we compute relative percentage of the emotions e.g. sadness, anxiety,
anger, happiness. We measure the authenticity and personality traits of authors
by computing summary of language variables in a post e.g. analytical thinking
and authenticity. Further, in order to identify the personal beliefs and relation
with the real world incidents, we compute the percentage of sexual terms, men-
tion of family, friends, male and female references in a post. In order to identify
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the level of aggression and certainty of a post, we compute the percentage of use
of informal language such as swear words, slangs and fillers. Apart from these
features, we also compute the presence of various other linguistic dimensions
such as pronouns, negations, interrogatives words, cognitive process, perceptual
process, power, time orientations (mention of past, present or future incidents),
time and personal concerns (work, religion, and death).

Fig. 2. Relative percentage of number
of posts consisting of a religion based
tag and topic

Fig. 3. Relationship between variance
and components in principal compo-
nent analysis

5 Features Selection

1. Using All Features (FS1): In first iteration, we use all 45 linguistic, sen-
timent and text based features extracted using LIWC. We train our model
on available features and investigate the efficacy of classification of Tumblr
posts into 11 dimensions of conflicts.

2. Principal Component Analysis (FS2): In second iteration, we use PCA-
a dimensionality reduction technique to reduce the number of feature vectors.
We compute the correlation among all feature vectors and identify the com-
ponents chracterizing the whole data. For n = 45 vectors in our experimental
data, we get n eigenvectors. We select the first p = 10 eigenvectors having
maximum eigenvalues and discard the ones with less significance. We project
our dataset into 10 dimensions and form our feature vector FS2 by taking the
eigenvectors of 10 components. Figure 3 shows the distribution of variances
for all 10 components selected after dimensionality reduction of the data.

3. Attribute Selection Correlation (FS3): In third iteration, we use Cor-
relation Attribute Evaluation technique to identify a set of discriminatory
attributes. We measure the Pearson’s correlation between each attribute (fea-
ture vector) and the class. We create a correlation matrix of 45 attributes and
class for each record in the dataset and compute the overall correlation by
computing the weighted average of the attribute. Based on the correlation
between each attribute vector and class, we create a set of 10 features having
moderately higher positive and negative correlation and drop the features
having correlation closer to zero. For our experimental dataset, FS3 returns
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the following 10 features: mention of past and present tense, pronouns, male
references, perceptual process, negative emotions, clout, presence of negation,
swear words and anger.

6 Classification

Classes and Membership Groups: Based on the polarity of opinions in reli-
gious posts and their importance in defining the dynamic of conflicts, we split
the dimensions of conflicts into six classes: information sharing, query, N/A,
sarcasm, defensive and disagreement. We further divide disagreement class into
six subclasses reflecting a higher range of negative emotions: disappointment,
annoyance, insult, disgust, ashamed and disbelief. For a given data point ym, in
order to identify the polarity of the post, we first classify the post into six classes
and assign a label om. If the post is identified as a disagreement or negative post,
we further classify into six subclasses identifying the low-level details of negative
emotions in a given post.

Classification Approach: Due the constraint of lack of ground truth and only
a very small portion of available labeled data (2%), we use semi-supervised clas-
sification method to classify the unlabelled posts over unsupervised method.
Semi-supervised classification approach uses both annotated and unlabelled
data to learn the model iteratively in a snowball manner. We use 684 posts
annotated by Tumblr bloggers and use them to train our model in first itera-
tion of semi-supervised classifier. We conduct our experiments on 35, 799 posts
identified as topic related (discussing about any religious group or commu-
nity). Given a labeled data (XN , CN ) where the data points are denoted by
XN = (x1, x2, x3 . . . xn) and their labels are denoted by CN = (c1, c2, c3 . . . cn).
The unlabelled data points YM = (y1, y2, y3 . . . ym) and their unknown labels
OM = (o1, o2, o3 . . . om) are denoted as (YM , OM ).

We use the ‘R’ statistical language to perform classification using “upclass”
package [12]. “Upclass”6 is a semi-supervised classification method and an adap-
tive version of the model-based classification method proposed in Dean et al. [10].
Upclass uses an iterative method that initiates by using model-based classifica-
tion method and uses Expectation- Maximization (EM) algorithm in further
iteration until convergences. In the first iteration of classification, a set of 14
models is applied on the dataset considering different constraints (E- equal, V-
variable, I- identity) upon covariance structure- volume, shape and orientation
of the cluster. For example, in EEE model each cluster has equal volume, same
shape and same orientation along the axis. The clustering is performed in mul-
tiple iteration by estimating group membership on unlabelled data based on the
maximum likelihood of EM algorithm. In order to perform the model based dis-
criminatory analysis on unlabelled data points, the model of data (combination
of E, I, V constraints) must be known. If the model is null then Upclass fit
every model to the data and identifies the best-fitted model of given data and

6 http://CRAN.R-project.org/package=upclass.

http://CRAN.R-project.org/package=upclass
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attributes. To identify the best-fitted model, Upclass calculates the bayesian
information criterion (BIC) value for each model. BIC = 2 log (l) − p log (n);
where l is the likelihood of the data, p is the number of model parameters and n
is the number of data points. The model with the highest BIC value is selected
as best-fitted model for the data.

7 Empirical Analysis and Evaluation Results

In this Section, we present the classification results of Upclass semi-supervised
method applied for both classes and sub-classes identification. We apply 3 iter-
ations of Upclass supervised classification methods on all 35, 799 posts for each
feature vectors model (FS1, FS2 and FS3) discussed in Sect. 5. If a post is labeled
as “Disagreement or Negative”, we further train our model on the posts labeled
under the six subclasses of disagreement and classify unknown data points into
one of the six sub-groups using Upclass semi-supervised classification method.
Table 2 shows the experimental results of classification performed using each
feature vector model for each membership groups. Table 2 reveals that the clas-
sification model converges for each set of feature vectors. During the first step
of classification both FS1 and FS3 takes similar number of iterations whereas,
FS2 takes approximately 2.5 times of their iterations. Further, for FS1 and FS3,
VEV is selected as the best-fitted model while for FS2 attributes, VVV showing
the non-linear distribution of labels (different orientation of each cluster against
the axis). Figure 4 shows the visual representation of clusters created using dif-
ferent models (considering the constraints on covariance structure). Table 2 also
reveals that during the second set of classification (sub-groups of disagreement

Table 2. Classification results all feature selection techniques for different membership
groups and observations

FS1 FS2 FS3

Attribute Class Sub-class Class Sub-class Class Sub-class

Converged TRUE TRUE TRUE TRUE TRUE TRUE

Iteration 272 491 604 252 207 110

Dimension 45 45 10 10 10 10

Model name VEV EEV VVV VVV VEV VVI

Fig. 4. Visualization of volume, shape and orientation constraints for best-fitted models
for classification. V= variation, E= equal and I=identical
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class), Upclass method takes a different number of iteration for each feature
vector model. Further, for each feature vector, a different discriminant model is
selected. While, in FS2, for both classes and sub-classes identification Upclass
uses the same model i.e. VVV. While using all attributes as features, it classifies
all observations into equal parts and create clusters of equal shapes varying in
the orientation against axis. While, using features selected using Pearson’s cor-
relation technique, it classifies the observations in a linear manner- varying the
shape and volume of the clusters while all data points aligned towards an axis.
Unlike, FS1 and FS3, while using principal components as feature vectors the
clusters are created in a non-linear manner- varying in size, shape and orientation
of data points.

Fig. 5. Classification results of Upclass semi-supervised method for unknown posts
categorized into polarity based classes and extreme emotions based sub-classes

Figure 5 shows the distribution of Tumblr posts classified into different groups
of classes and sub-classes based on the polarity of opinions. Figure 5(a) shows the
relative percentage of posts classified into each of the defined classes. Figure 5(a)
reveals that while using all attributes as features, maximum number of posts
(43%) are labeled as sarcasm posts which is below 10% while using dimension-
ality reduction techniques. While only a very small percentage of posts (5%)
are classified as non-religion based posts which is significantly higher for both
FS2 and FS3 (approximately 25%). The classification results shows that except
FS3, using FS1 and FS2 feature vectors, the classifier does not have sufficient
examples for labelling query posts. The graph in Fig. 5(a) shows that for each
feature selection method, the classifier classifies 10% to 12% posts as disagree-
ment/negative that are further classified into sub-classes. Figure 5(b) shows the
relative percentage of these 10% to 12% posts further classified into sub-classes of
extreme negative emotions. Figure 5(b) reveals that while taking all attributes
into account, a very small percentage (∼negligible) of posts are classified as
“Annoyance” posts while the distribution of other classes are significantly higher.
While the distribution of posts for FS2 and FS3 is varying for each category-
as reflected in best-fitted model selected for classification (refer to Table 2.
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The variation in distribution of all posts in different categories shows the dynam-
ics of public opinions on religious posts. The size of each cluster (number of posts
grouped in a class) for different combinations of attribute selection techniques
and classification method shows the presence of religious conflicts among users
on Tumblr.

Fig. 6. Distribution of classification results of Tumblr posts specific to a religion.

In order to address the challenge of identifying public beliefs and opinions in
Tumblr posts where authors are discussing about more than religion. We identify
the name of religions being discussed in each post available in our experimental
dataset. We classify each post into classes (polarity based groups) and sub-classes
(extreme negative emotions based groups) and discuss the results of classifica-
tion for identifying religion specific conflicts among Tumblr users. Due to the
large volume size of Sarcasm cluster and no post classified as Query post, we
discard the FS1 technique for identifying the conflicts among individual religious
groups. Figure 6 shows the classification results and distribution of Tumblr posts
classified into various dimensions of conflicts. For Fig. 6(a), C1, C2, C3, C4, C5
and C6 denote defensive, disagreement, sharing, not religion, query and sarcasm
dimensions respectively. Similarly, for Fig. 6(b), C1, C2, C3, C4, C5 and C6
denote annoyance, ashamed, disappointment, disbelief, disgust and insult.

As shown in Table 2, while using principal component analysis feature vec-
tors, the semi-supervised classification method selects VVV as best-fitted model.
Figure 6(a) also reveals that for FS2 feature vectors the volume of all clus-
ters are different making some cluster too large or too small. Further, Fig. 6(b)
reveals that maximum number (more than 60%) of disagreement posts belong
to “ashamed” category. Whereas, while using Pearson’s correlation selection
method, the posts are grouped into all classes. During the first phase of classi-
fication, there is variation in volume of observations in each cluster and while
the shape of each cluster is the same. Whereas, in second phase of classification,
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the volume of observation and shape of each cluster varies. The classification of
Tumblr posts for each religion into several dimensions of conflict shows that a
lot of discussion about religious topics happen on social media where users have
different opinions, beliefs and sentiments about these religions. Our results shows
that various linguistic features, emotions, social presence, summary of language
variables and other linguistic dimensions of user-generated data can be used to
identify the conflicts within religious faith and beliefs. Furthermore, Tumblr is a
rich source of collecting public opinion posted in a descriptive and open manner
which is useful to study the low-level details of religious beliefs and overcome
the challenges of offline data and surveys.

8 Conclusions and Future Work

Research shows that due to the rapidly growing influence of religious faith and
beliefs and leading to discrimination and violence against other rivalry communi-
ties, identification of dynamics of religious conflict has become an important and
challenging problem for the government and law enforcement agencies. In this
paper, we address the challenge of offline surveys by mining the public opinions
and beliefs from Tumblr website. We conduct our experiments on an open source
dataset consisting of the largest collection of Tumblr posts. We conduct a survey
among three different groups of people (graduate students, Tumblr bloggers and
people from society) and define 11 dimensions of public opinion that can identify
the contrast of conflicts. We investigate the feasibility and efficiency of linguis-
tic features and different dimensionality reduction techniques and compare their
results of classifying Tumblr posts into different dimensions of conflicts. Due to
the small size of labelled data, we use Upclass- a semi-supervised classification
method to train our model and classify unlabelled observations. Based on our
results, we conclude that despite the presence of noise and ambiguity in content,
linguistic features are discriminatory features for identifying the dynamics of
religious conflicts. Furthermore, identifying the topic prior to the identification
linguistic features can be used to disambiguate the sentiments of author while
discussing about more than one religion in a single post.

Future work includes the improvement in linguistic features and making them
efficient for classifying very short and short text posts. Furthermore, future work
includes the identification of age and location of bloggers for identifying the
collision of religious beliefs and sentiments in different age groups or different
regions across the world.
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Abstract. Some important limitation of frequent itemset mining are
that it assumes that each item cannot appear more than once in each
transaction, and all items have the same importance (weight, cost, risk,
unit profit or value). These assumptions often do not hold in real-world
applications. For example, consider a database of customer transactions
containing information about the purchase quantities of items in each
transaction and the positive or negative unit profit of each item. Besides,
uncertainty is commonly embedded in collected data in real-life appli-
cations. To address this issue, we propose an efficient algorithm named
HUPNU (mining High-Utility itemsets with both Positive and Negative
unit profits from Uncertain databases), the high qualified patterns can be
discovered effectively for decision-making. Based on the designed verti-
cal PU±-list (Probability-Utility list with Positive-and-Negative profits)
structure and several pruning strategies, HUPNU can directly discovers
the potential high-utility itemsets without generating candidates.

Keywords: Frequent itemset · Uncertainty · Negative unit profit ·
PU±-list

1 Introduction

Frequent itemset mining (FIM) [1,3] has become one of the core data mining
tasks that is essential to a wide range of applications. However, some impor-
tant limitations of FIM are that it assumes that each item cannot appear more
than once in each transaction and that all items have the same importance
(weight, cost, risk, unit profit or value). These assumptions often do not hold
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in real-world applications. For example, consider a database of customer trans-
actions containing information about the purchase quantities of items in each
transaction and the unit profit of each item. All the developed FIM algorithms
would discard this information and may thus discover many frequent itemsets
generating a low profit. Hence, FIM fails to discover high profit patterns for
many real-world applications.

To address this issue, the problem of high-utility itemset mining (HUIM)
was developed [6,15]. HUIM considers the case where items can appear more
than once in each transaction and where each item has a user-specified “utility”
(e.g., unit profit). The goal of HUIM is to discover items/itemsets with their
utility in a database is no less than the minimum utility threshold, called the
high utility itemsets (HUIs), i.e., itemsets generating a high profit. HUIM plays
an important role in a wide range of applications, such as website click stream
analysis, cross-marketing in retail stores, and biomedical applications [4,9,14].
The problem of HUIM is more difficult than FIM, the reason is that the well-
known downward-closure property of the support of an itemset is no longer hold
in HUIM. In HUIM, however, the utility of an itemset is neither monotonic
or anti-monotonic, it means that a high utility itemset may have its supersets
or subsets with lower, equal or higher utility [3]. Thus, it is very difficult to
prune the search space in HUIM. Many studies have been carried to develop
efficient HUIM algorithms, such as Two-Phase [10], IHUP [4], UP-Growth [14],
HUI-Miner [9], and FHM [8], etc.

However, these algorithms are designed under a assumption that all items
having positive unit profits in a database, they cannot be applied to handle
items having negative unit profits, despite that such items occur in many real-
life transaction databases. For example, it is common that retail stores or super-
market sell items at a loss (e.g., printers) to stimulate the sale of other related
items (e.g., proprietary printer cartridges). Although giving away a unit of some
items results in a loss for supermarkets, they could provide opportunities for
cross-selling and could possibly earn more money from the promotion. It was
demonstrated that if classical HUIM algorithms are applied on databases con-
taining items with negative unit profits, they can generate an incomplete set
of HUIs [7]. The HUINIV-Mine [7] and FHN [12] were developed to handle the
problem of HUIM with negative unit profits. In real-life applications, uncer-
tainty is common seen when data is collected from noisy data sources such as
RFID, GPS, wireless sensors, and WiFi systems [2,5]. Some algorithms of FIM
have been developed to discover useful information in uncertain databases. Since
utility and uncertainty are two different measures for an object (e.g., an useful
pattern). The utility is a semantic measure (how “utility” of a pattern is based
on the user’s priori knowledge and goals), while uncertainty is an objective mea-
sure (the probability of a pattern is an objective existence). Up to now, most
algorithms of HUIM have been extensively developed to handle precise data, but
they are not suitable to handle the data with uncertainty. It may be useless or
misleading if the discovered results of HUIs with low existential probability [11].
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In light of these, in this paper, we attempt to design en efficient algorithm to
discover high-utility itemsets from uncertain transaction databases by consider-
ing both positive and negative unit profits. This algorithm is named HUPNU
(mining High-Utility itemsets with both Positive and Negative unit profits from
Uncertain databases) to mine HUIs. To the best of our knowledge, it is the first
work to address this problem. The contributions of this paper are described
below. (1) A vertical list structure, called PU±-list (Probability-Utility list with
Positive-and-Negative profits), is designed to store all the necessary information
for the database. (2) A one-phase efficient algorithm named HUPNU is proposed
to mine HUIs without multiple time-consuming database scan. It relies on a series
of PU±-lists to directly mine HUIs without generating and testing candidates.
(3) Several efficient pruning strategies are further proposed to reduce the search
space, a number of unpromising itemsets can be early pruned when constructing
the PU±-list. (4) An extensive experimental study carried on several real-life
datasets shows that the complete set of HUIs can be efficiently discovered by
the proposed HUPNU algorithm.

2 Preliminaries and Problem Definition

Definition 1. Let I be a set of items (symbols). An uncertain transaction data-
base is a set of uncertain transactions D = {T1, T2, . . . , Tn} such that for each
transaction Tc ∈ I, and Tc has a unique identifier c called its tid. As the attribute
uncertainty model [2,5], each item i has a unique probability of existence p(i, Tc).
Each item i ∈ I is associated with a positive or negative value pr(i), called its
external utility (e.g., unit profit). For each Tc such that i ∈ Tc, a positive number
q(i, Tc) is called the internal utility of i (e.g., purchase quantity). Each item im
in D has a unique profit pr(im), they are provided in a profit table and denoted
as ptable = {pr(i1), pr(i2), . . ., pr(im)}.

Table 1. An example uncertain quantitative database.

tid Transaction (item: quantity, probability) TU RTU

T1 (b:3, 0.85); (c:1, 1.0); (d :2, 0.70) 14 24

T2 (a:1, 1.0); (b:1, 0.60); (c:3, 0.75); (e:1, 0.40) 19 19

T3 (a:1, 0.55); (b:2, 0.60); (c:4, 1.0); (d :1, 0.90); (e:5, 0.40) 34 39

T4 (b:3, 0.90); (d :1, 0.45) 16 21

T5 (a:4, 1.0); (c:3, 0.85); (d :2, 0.70); (e:2, 0.45) 23 33

Example 1. Consider the running example w.r.t. Table 1, it contains five trans-
actions (T1, T2, . . . , T5). Transaction T1 indicates that items (b)1, (c), and (d)
appear in T1 with purchase quantity as 3, 1, and 2, respectively. And assume
that the unit profit of (a) to (e) are respectively defined as: {pr(a):6, pr(b):7,
pr(c):1, pr(d):-5, pr(e):3}. Thus, item (d) is sold at loss.
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Definition 2. The utility of an item i in a transaction Tc is denoted as u(i, Tc)
and defined as pr(i) × q(i, Tc). The utility of an itemset X (a group of items
X ⊆ I) in Tc is denoted as u(X,Tc) and defined as u(X,Tc) =

∑
i∈X u(i, Tc).

The utility of an itemset X in a database D is denoted as u(X), it can be
calculated as u(X) =

∑
X⊆Tc∧Tc∈D u(X,Tc).

Example 2. The utility of item (e) in T2 is u(e, T2) = 3 × 1 = 3. The utility
of the itemset {a, e} in T2 is u({a, e}, T2) = u(a, T2) + u(e, T2) = 6 × 1 + 3 ×
1 = 9. The utility of the itemset {a, e} is u({a, e}) = (u(a, T2) + u(e, T2))+
(u(a, T3)+u(e, T3))+ (u(a, T5)+u(e, T5)) = (6+3)+(6+15)+(24+6) = 60. The
utility of the itemset {a, d, e} is u({a, d, e}) = (u(a, T3) + u(d, T3)) + u(e, T3))+
(u(a, T5) + u(d, T5)) + u(e, T5)) = (6 + (−5) + 15) + (24 + (−10) + 6) = 36.

Definition 3. The probability of an itemset X (a group of items X ⊆ I) in Tc is
denoted as p(X,Tc) and defined as p(X,Tc) =

∏
i∈X p(i, Tc). The probability of

X in D is denoted as Pro(X) and defined as Pro(X) =
∑

Tc∈D(
∏

i∈X p(i, Tc)).

Example 3. The probability of item (e) in T2 is p(e, T2) = 0.40. The probability
of the itemset {a, e} in T2 is p({a, e}, T2) = p(a, T2)×p(e, T2) = 1.0×0.40 = 0.40.
The probability of item (e) in D is Pro(e) = 1.25. The probability of the itemset
{a, d, e} in D is p({a, d, e}) = p(ade, T3) + p(ade, T5) = 0.198 + 0.315 = 0.513.

Definition 4. An itemset X in an uncertain database D is said to be a potential
high-utility itemset (PHUI) if it satisfies the following two conditions: (1) u(X) ≥
minUtil, and (2) Pro(X) ≥ minPro × |D|. A PHUI is thus an itemset having
both a high expected/potential probability and a high utility value.

The problem of mining high-utility itemsets with both positive and negative
unit profits from uncertain databases is to discover all potential high-utility
itemsets (having a high expected/existential probability and a high utility) in
an uncertain database where external utility values may be positive or negative.

Example 4. If the user-specified minPro = 0.20 and minUtil = 20, ten PHUIs
should be found in the running example database. They are ({a}:36, 2.55; {b}:63,
2.95; {e}:24, 1.25; {a, c}:46, 2.15; {a, e}:60, 1.07; {b, c}:52, 1.90; {b, d}:36, 1.54;
{c, e}:34, 1.0825; {a, c, d}:22, 1.09; {b, c, d}:27, 1.135). {{a}: 36, 2.55} means that
the utility of {a} is 36, and its expected probability is 2.55.

3 Proposed HUPNU Algorithm

3.1 Properties of Positive and Negative Unit Profits

According to the previous studies, the utility measure is not monotonic or anti-
monotonic [9,10,14]. In other words, an itemset may have a utility lower, equal
or higher than those of any of its subsets. To handle the problem for mining HUIs
with both positive and negative unit profits, the HUINIV-Mine [7] and FHN [12]
algorithms were developed by redefining the notion of transaction utility (TU)
and the TWU measure [10] as follows.
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Definition 5. The TU(Tc) =
∑

i∈Tc
u(i, Tc), but the redefined transaction util-

ity (RTU) of Tc is defined as RTU(Tc) =
∑

i∈Tc∧pr(i)>0 u(i, Tc). The rede-
fined transaction-weighted utilization (RTWU ) of X is defined RTWU(X) =∑

X⊆Tc∧Tc∈D RTU(Tc). Thus, RTWU(X) ≥ u(X).

Example 5. Table 1 shows the TU and RTU of five transactions. Consider item-
sets {a, e} and {a, d, e}, the RTWU({a, e}) = 91 and RTWU({a, d, e}) = 71,
which are over-estimations of u({a, e}) = 60 and u({a, d, e}) = 36.

Let pu(X) and nu(X) respectively denotes the sum of positive utilities and
negative utilities of items in X in a transaction (or in a database). Since u(X) =
pu(X) + nu(X), the relationship nu(X) ≤ u(X) ≤ pu(X) holds [12]. Thus,
both u(X) and nu(X) cannot be used to overestimate the utility of an itemset.
Although pu(X) for an itemset is an upper-bound on utility, it still does not
hold the downward closure of extensions with positive or negative items.

3.2 Probability-Utility List with Positive-and-Negative Profits

Definition 6. In the designed HUPNU algorithm, we define the total process-
ing order � such that (1) items are sorted in RTWU -ascending order, and (2)
negative items always succeed all positive items.

Definition 7. The PU±-list of an itemset X in an uncertain database D is
denoted as X.PUL. It consisted of a set of tuples, <tid, pro, pu, nu, rpu> for
each transaction Ttid containing X. For each tuple, (1) The tid element is the
transaction identifier; (2) The pro element is the existential probability of X in
Ttid, i.e., pro(X,Ttid) ≥ 0; (3) The pu element is the positive utility of X in Ttid,
i.e., u(X,Ttid) ≥ 0; (4) The nu element is the negative utility of X in Ttid, i.e.,
u(X,Ttid) < 0; (5) The rpu element is defined as

∑
i∈Ttid∧i�x∀x∈X u(i, Ttid) ≥ 0,

such that only positive utility values of the remaining items.

Example 6. The search space of HUPNU can be represented as a PU±-list
based Set-enumeration tree [13], we named it as PU±-tree. Since {RTWU(a):
91; RTWU(b): 103; RTWU(c): 115; RTWU(d): 117; RTWU(e): 91;}, the
designed processing order � in PU±-list is {a � e � b � c � d}, we have
{a}.PUL = {(T2, 1.0, 6, 0, 13), (T3, 0.55, 6, 0, 33), (T5, 1.0, 24, 0, 9)}; {d}.PUL =
{(T2, 0.70, 0,−10, 0), (T3, 0.090, 0,−5, 0), (T4, 0.45, 0,−5, 0), (T5, 0.70, 0,
−10, 0)}; {a, d}.PUL = {T3, 0.495, 6,−5, 0), (T5, 0.70, 24,−10, 0)}.

Definition 8. Let SUM(X.iu), SUM(X.pu), SUM(X.nu), and SUM(X.rpu) are
respectively the sum of the utilities, the sum of pu values, the sum of nu
values and the sum of rpu in the PU±-list of X, that are: SUM(X.pu) =∑

X∈Tc∧Tc⊆D X.pu(Tc); SUM(X.nu) =
∑

X∈Tc∧Tc⊆D X.nu(Tc);
SUM(X.rpu) =

∑
X∈Tc∧Tc⊆D X.rpu(Tc); SUM(X.iu) = SUM(X.pu) +

SUM(X.nu).
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Lemma 1. Based on the PU±-list, given two itemsets X and Y in a subtree in
the PU±-tree, if (1) SUM(X.pu)+SUM(X.rpu) -

∑
∀Tc∈D,X⊆Tc

∧
Y �Tc

(X.pu+
X.rpu) < minUtil, or (2) SUM(X.pro) -

∑
∀Tc∈D,X⊆Tc

∧
Y �Tc

(X.pro) <

minPro × |D|, then neither {X,Y } nor any of X it extensions will be a PHUI.

Strategy 1 (PU-Prune strategy). Let X be a node of the PU±-tree,
and Y be the right sibling node of X. If SUM(X.pu) + SUM(X.rpu)
-

∑
∀Tc∈D,X⊆Tc

∧
Y �Tc

(X.pu + X.rpu) < minUtil, or SUM(X.pro) -
∑

∀Tc∈D,X⊆Tc

∧
Y �Tc

(X.pro) < minPro × |D|, then {X,Y } and any of X its
child nodes is not a PHUI. The construction of the PU±-lists of X its children
is unnecessary to be performed.

Based on the PU-Prune strategy, a huge number of unpromising k -itemset
(k ≥ 2) can be pruned. The PU±-list construct procedure with PU-Prune strat-
egy is given in Algorithm 1. Thus, PU±-list for k -itemsets (k > 1) can be easily
constructed from PU±-lists of (k -1)-itemsets without scanning the database.

Input: P : a pattern, Px: the extension of P with an item x, Py: the extension
of P with an item y

output: The PU±-list of Pxy

1 Pxy.PUL ← ∅;
2 set Probability = SUM (X.pro), Utility = SUM (X.pu) + SUM (X.rpu);
3 foreach tuple ex ∈ Px.PUL do
4 if ∃ey ∈ Py.PUL and ex.tid = exy.tid then
5 if P.PUL �= ∅ then
6 Search element e ∈ P.PUL such that e.tid = ex.tid.;
7 exy ←< ex.tid, ex.pro × ey.pro/e.pro, ex.pu + ey.pu − e.pu, ex.nu +

ey.nu − e.nu, ey.rpu >;

8 else
9 exy ←< ex.tid, ex.pro×ey.pro, ex.pu+ey.pu, ex.nu+ey.nu, ey.rpu >;

10 Pxy.PUL ← Pxy.PUL ∪ {exy};

11 else
12 Probability = Probability − ex.pro, Utility = Utility − ex.pu − ex.rpu;
13 if Probability < minPro × |D|||Utility < minUtil then
14 return null;

15 return Pxy.PUL

Algorithm 1. The PU±-list construct procedure with PU-Prune

3.3 Proposed Pruning Strategies

Based on the PU±-list and the properties of probability and utility, several
pruning strategies are designed in HUPNU to early prune unpromising item-
sets. Assume a (k-1)-itemset w.r.t. a node in the Set-enumeration PU±-tree be
Xk−1(k ≥ 2), and any of its child nodes be denoted as Xk.
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Theorem 1 (downward closure property of RTWU and probability). In
the PU±-tree, the Pro(Xk−1) ≥ Pro(Xk) and RTWU(Xk−1) ≥ RTWU(Xk).

Proof. Since p(X,Tc) =
∏

i∈X p(i, Tc) for any Tc in D, it can be found
that: p(Xk, Tc) ≤ p(Xk−1, Tc). Xk−1 is subset of Xk, the tids of Xk is
the subset of the tids of Xk−1, thus, Pro(Xk) =

∑

Xk⊆Tc∧Tc∈D

p(Xk, Tc) ≤
∑

Xk−1⊆Tc∧Tc∈D

p(Xk−1, Tc) = Pro(Xk−1). It can be found that Pro(X k−1)

≥ Pro(X k). Besides, Xk−1 ⊆ Xk, RTWU(Xk) =
∑

Xk⊆Tc∧Tc∈D

tu(Tc) ≤
∑

Xk−1⊆Tc∧Tc∈D

tu(Tc) = RTWU(Xk−1).

Lemma 2 (probability upper-bound of PHUI). The sum of all the proba-
bilities of any node in the PU±-tree is no less than the sum of the probabilities
of any of its child nodes.

Strategy 2. After the first database scan, we can obtain the RTWU and prob-
ability value of each 1-item. If the RTWU of a 1-item and the sum of the prob-
abilities of an item do not satisfy the two conditions of PHUI, this item can be
directly pruned, and none of its supersets is a desired PHUI.

Strategy 3. When traversing the PU±-tree based on a depth-first search strat-
egy, if the sum of all the probabilities of a tree node X w.r.t. Pro(X) in its
constructed PU±-list is less than minPro× |D|, then none of the child nodes of
this node is a desired PHUI.

Lemma 3 (utility upper-bound of PHUI). For any node X in the search
space w.r.t. the PU±-tree, the sum of SUM(X.pu) and SUM(X.rpu) in the
PU±-list of X is larger than or equal to utility of any one of its children.

Thus, the sum of utilities of Xk in D w.r.t u(Xk) is always less than or
equals to the sum of SUM (Xk−1.pu) and SUM (Xk−1.rpu), it ensures that the
downward closure of transitive extensions with positive or negative items. Based
on these upper-bounds, we can use the following pruning conditions.

Strategy 4. When traversing the PU±-tree based on a depth-first search strat-
egy, if the sum of SUM(Xk−1.pu) and SUM(Xk−1.rpu) of any node X is less
than minUtil, any of its child node is not a PHUI, they can be regarded as
irrelevant and be pruned directly.

Strategy 5. After constructing the PU±-list of an itemset, if X.PUL is empty
or the Pro(X) value is less than minPro × |D|, X is not a PHUI, and none
of X its child nodes is a PHUI. The construction of the PU±-lists for the child
nodes of X is unnecessary to be performed.
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We further extend the Estimated Utility Co-occurrence Pruning (EUCP)
strategy [8] in the HUPNU algorithm, a structure named Estimated Utility Co-
occurrence Structure (EUCS ) is built. EUCS is a matrix that stores the RTWU
values of the 2-itemsets, details can be referred to [8].

Strategy 6. Let X be an itemset (node) encountered during the depth-first
search of the Set-enumeration PU±-tree. If the RTWU of a 2-itemset Y ⊆ X
according to the constructed EUCS is less than the minimum utility threshold,
X would not be a PHUI; none of its child nodes is a PHUI. The construction of
the PU±-lists of X and its children is unnecessary to be performed.

3.4 Main Procedure of HUPNU

As shown in Algorithm 2, the main procedure of the proposed HUPNU algorithm
first scans the uncertain database to calculate the RTWU (with the redefined
RTU) and Pro(i) of each item (Line 1). Then, it finds the set I∗ of all items
that not only having a existence probability no less than minPro×|D|, but also
having a RTWU no less than minUtil, other items are ignored since they cannot
be part of a potential HUI (Line 2). A second database scan is then performed
(Line 4) after sorting the set of I∗ in the designed order as � (Line 3). During this
database scan, items in transactions are reordered according to the total order
�, the PU±-list of each 1-item i ∈ I∗ is built and the structure named EUCS
is built simultaneously. After that, the depth-first search exploration starts by
calling the recursive procedure Search with the empty itemset ∅, the set of single
items I∗, minPro, minUtil and the EUCS (Line 5).

Input: D: an uncertain transaction database; minPro, a minimum potential
probability threshold; minUtil: a minimum utility threshold; ptable: a
profit-table

output: The set of potential high-utility itemsets (PHUIs)

1 Scan D to calculate the RTWU and Pro(i) of single item;
2 I∗ ← each item i such that Pro(i) ≥ minPro × |D| ∧ RTWU(i) ≥ minUtil;
3 Sort the set of I∗ in the designed order as 
;
4 Scan D again to built the PU±-list for each item i ∈ I∗ and built the EUCS

structure;
5 call Search (∅, I∗, minPro, minUtil, EUCS);
6 return PHUIs

Algorithm 2. The HUPNU algorithm

As shown in Algorithm 3, the search procedure operates as follows. For each
extension Px of P , if the probability of Px is no less than minPro×|D|, and the
sum of the actual utilities values of Px in the PU±-list (denoted as SUM (X.pu) +
SUM (X.nu)) is no less than minUtil, then Px is a PHUI and be output (Lines
2 to 3). Then, it uses the pruning strategies 3 and 4 to determine whether the
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extensions of Px would be the PHUIs and should be explored (Line 4). This
is performed by merging Px with all extensions Py of P such that y � x and
RTWU({x, y}) ≥ minUtil (Line 7, pruning strategy 6), to form extensions of
the form Pxy containing |Px|+1 items. The PU±-list of Pxy is then constructed
by calling the Construct procedure to join the PU±-lists of P , Px and Py (Lines
8 to 11). Only the promising PU±-lists would be explored in next extension (Line
11, pruning strategy 5). Then, a recursive call to the Search procedure with Pxy
is done to calculate its utility and explore its extension(s) (Line 12).

Input: P : an itemset, ExtensionsOfP: a set of extensions of P , the minPro
threshold, the minUtil threshold, the EUCS structure

Output: The set of potential high-utility itemsets (PHUIs)

1 foreach itemset Px ∈ ExtensionsOfP do
2 if

SUM(Px.pro) ≥ minPro×|D| ∧SUM(Px.pu)+SUM(Px.nu) ≥ minUtil
then

3 output Px as a PHUI ;

4 if
SUM(Px.pro) ≥ minPro×|D|∧SUM(Px.pu)+SUM(Px.rpu) ≥ minUtil
then

5 ExtensionsOfPx ← ∅;
6 foreach itemset Py ∈ ExtensionsOfP such that y 
 x do
7 if RTWU({x, y}) ≥ minUtil then
8 Pxy ← Px ∪ Py;
9 Pxy.PUL ← Construct (P, Px, Py);

10 if Pxy.PUL �= ∅ ∧ SUM(Pxy.pro) ≥ minPro × |D| then
11 ExtensionsOfPx ← ExtensionsOfPx ∪ Pxy;

12 call Search (Px, ExtensionsOfPx, minPro, minUtil);

13 return PHUIs

Algorithm 3. The Search procedure

4 Experimental Study

In this section, we evaluated the performance of the proposed HUPNU algo-
rithm. Experiments were implemented in Java and performed on a computer
with a third generation 64 bit Core i5 processor running Windows 7 operating
system and 4 GB of free RAM. In the literature, note that there is none study
which is related to the task of mining HUIs from uncertain database with both
positive and negative profits. We compared the performance of HUPNU with
the proposed several pruning strategies. Note that the HUPNUP1 adopts the
pruning strategies 2, 3 an 4, the HUPNUP2 adopts the pruning strategies 1, 2,
3 an 4, the HUPNUP123 adopts pruning strategies 1, 2, 3, 4 and 5, while the
HUPNUP1234 adopts all pruning strategies including EUCP strategy.
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All memory measurements were done using the Java API. Experiments were
carried on four real-life datasets, kosarak, accidents, psumb and mushroom which
having varied characteristics. The #transactions, #distinctitems, avg.length
and max.length of these four datasets are respectively as: 990002, 41270, 8.09,
2498; 340183, 468, 33.8, 51; 49046, 2113, 74, 74; 8124, 119, 23, 23. For all datasets,
external utilities for items are generated between -1,000 and 1,000 by using a
log-normal distribution and quantities of items are generated randomly between
1 and 5, similarly to the settings of [8,12,14]. In addition, due to the attribute
uncertainty property, a unique probability value in the range of (0.0, 1.0] was
assigned to each item in every transaction in these datasets.

4.1 Runtime Performance

The comparison of execution times with various minUtil threshold and various
minPro are shown in Fig. 1 for all datasets. From Fig. 1, it can be observed
that the runtime of all the algorithms is decreased along with the increasing
of minUtil with a fixed minPro, or with the increasing of minPro with a
fixed minUtil. In particular, the proposed improved algorithms are generally
up to almost one or two orders of magnitude faster than the baseline one on
all datasets. Among the four version algorithms, HUPNUP1234 which adopts all
pruning strategies has the best performance. It is reasonable since HUPNUP1234

uses six pruning strategies to early prune unpromising itemsets and search space,
which can avoid the costly join operations of a huge number of PU±-lists for
mining PHUIs. When the minUtil or minPro is set quite low, longer desired
patterns are discovered, and thus more computations w.r.t. runtime are needed
to process, especially in a dense dataset. Based on the PU±-list, the four HUPNU
algorithms directly determine the PHUIs from the Set-enumeration tree with-
out candidate generation, it can effectively avoid the time-consuming dataset
scan. Moreover, the six pruning strategies help to prune a huge of unpromising
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444 W. Gan et al.

itemsets and to greatly reduce the computations than the baseline one. More-
over, the less memory usage is required, but we omit the detailed memory usage
results due to space constraint. We can see this trend more clearly when the
minUtil or minPro is set quite low. Thus, they can lead to a more compact
search space and obtain the effectiveness and efficiency for mining PHUIs.

4.2 Scalability Analysis with Memory Usage and Patterns

As shown in Fig. 2, the scalability of the four algorithms is compared in the
real-life dataset BMS-POS with different scales, which is set minPro = 0.0001,
minUtil = 10k, and data size is set varying from 100k to 500k. It can be
observed that the runtime of all compared algorithms is linear increased along
with the increasing of dataset size. The runtime of HUPNUP123 is close to
that of HUPNUP12, but significantly faster than that of HUPNUP1. Specially,
HUPNUP1234 performs the best, and the gap of runtime among them grows
wider with the increasing of dataset size. With the increasing of dataset size,
the runtime of algorithms are linearly increasing as well. Figure 2(b) shows the
memory usages of four algorithms which indicates the linearity in term of dataset
size. In addition, HUPNUP1 requires the most memory usage, HUPNUP123 and
HUPNUP1234 have the similar performance on memory usage, they consume the
least memory. To show the effect of the developed pruning strategies, the number
of potential nodes (visited nodes in the PU±-tree, denoted as N1, N2, N3, and
N4) and the final derived PHUIs are further evaluated as shown in Fig. 2(c). It
can be observed that N1 > N2 > N3 > N4, the larger dataset size is, the bigger
gap among them is.
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5 Conclusion

In this paper, we proposed an algorithm named HUPNU (mining High-utility
itemsets with both Positive and Negative unit profits from Uncertain databases),
it is the first work to address this problem. A novel vertical list structure, called
PU±-list (probability-utility list with positive-and-negative profits), is designed
for HUPNU to mine potential high-utility itemsets (PHUIs) without generating
candidates. Several efficient pruning strategies are further developed to reduce
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the search space and speed up computation. Experiments carried on several real-
life datasets shows that the complete set of PHUIs can be efficiently discovered by
the proposed HUPNU algorithm. HUPNU is quite efficient in terms of runtime
and scalability, and the designed pruning strategies are acceptable.
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Abstract. The massive amount of digital text information and deliver-
ing them in streaming manner pose challenges for traditional inference
algorithms. Recently, advances in stochastic inference algorithms have
made it feasible to learn topic models from very large-scale collections
of documents. In this paper, we however point out that many existing
approaches are prone to overfitting for extremely large/infinite datasets.
The possibility of overfitting is particularly high in streaming environ-
ments. This finding suggests to use regularization for stochastic inference.
We then propose a novel stochastic algorithm for learning latent Dirich-
let allocation that uses regularization when updating global parameters
and utilizes sparse Gibb sampling to do local inference. We study the
performance of our algorithm on two massive data sets and demonstrate
that it surpasses the existing algorithms in various aspects.

Keywords: Stochastic inference · Topic models · Large-scale/Stream
data · Regularization

1 Introduction

Latent Dirichlet allocation (LDA) was initially presented as a graphical model for
discovering topics in document collections [2]. It has then found many successful
applications in wide range of fields, including bioinformatics [13,16], psychology
[17], politics [7,9], to name a few.

One of the core issues in LDA is the inference of the posterior distribution of
the latent variables. Unfortunately, the posterior is intractable and researchers
have to approximate posterior inference. Many “batch” posterior inference algo-
rithms have been proposed, including variational Bayes (VB) [2], collapsed vari-
ational Bayesian inference (CVB) [18], CVB0 [1], and collapsed Gibbs sampling
(CGS) [8]. However, those “batch” algorithms are not practical for large scale
data analysis because they often requires many sweeps through all documents
in the corpus.

Recently, researchers have introduced stochastic algorithms, including sto-
chastic variational inference (SVI) [11], moving average stochastic variational
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 447–459, 2017.
DOI: 10.1007/978-3-319-57454-7 35
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Fig. 1. Growth of global parameters (λt) and overfitting possibility as mini-batch t
grows (i.e., as seeing more documents). Mis-specification ((a) and (c)): when LDA
with too many topics is learned. Noisy condition ((b) and (d)): when data are highly
noisy. Magnitude shows the average magnitude of λt; and Log Predictive Probability
shows predictiveness and generalization of the learned models on unseen data. Higher
predictiveness is better.

inference (MASVI) [12], sufficient statistic update (SSU) [4], sparse stochastic
inference (SSI) [14], stochastic collapsed variational Bayesian inference (SCVB0)
[6], and stochastic gradient Riemannian Langevin dynamics (SGRLD) [15].
These algorithms repeatedly subsample a small set of documents from the collec-
tion and then update the global parameters by stochastic gradient approximated
from the subsample. Such a scheme allows them to update global parameters
more frequently. In addition, they do not require multiple passes through an
entire document collection and storing local variables for the full corpus. Hence,
the stochastic algorithms have faster convergence rate and lower memory require-
ment, enabling us to deal with very large scale data. Those properties make them
more preferable than traditional “batch” algorithms.

In this paper, we point out that existing stochastic methods for learning
topic models are prone to overfitting, especially in streaming environments. The
unconstrained nature of global parameters in existing methods is the main rea-
son. As an example, SSU [4] updates global parameters (λt) at time t from the
old (λt−1) and current statistics (λ̂t) by λt ← λt−1+λ̂t. Such an update scheme
allows the global parameters λt grow arbitrarily large in either of the following
three conditions:

– t → ∞ (or the number of documents go to infinity in a text stream),
– Data is highly noisy such as those from Twitter [5,10,20], causing λ̂t to be

uncontrolled,
– A is-specified model (e.g., with too many topics) is to be learned. This is

common in practice of topic modeling. Mis-specification might add too much
artificial information to λ̂t.
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Therefore, overfitting might easily occur. Figure 1 shows the growth of λt

and overfitting as learning from more documents. Note that the possibility of
overfitting happens not only with SSU, but also with many other methods. This
finding urges us to use some regularization.

Our second contribution is a novel stochastic algorithm, namely Regularized
Sparse Stochastic Inference (RSSI), for learning LDA from large/streaming text
collections. RSSI combines online learning [3] with sparse Gibbs sampling [14]
to do posterior inference for individual texts. The global parameter (topics) is
regularized to belong to a simplex, which helps RSSI avoid overfitting. RSSI can
deal well with real streaming environments because it does not require specifying
data size in advance. In addition, taking advantages of sparse Gibbs sampling
allows RSSI to perform more efficiently than most existing algorithms. Extensive
experiments show the advantages of RSSI in both efficiency and predictiveness.
We believe that our methodology for developing RSSI can be easily extended to
a wide class of topic models.

The rest of the paper is organized as follows. In Sect. 2, we discuss possibility
of overfitting in existing stochastic algorithms. We derive regularized sparse sto-
chastic inference (RSSI) for LDA in Sect. 3. Empirical results are given in Sect. 4.

2 LDA and Possibility of Overfitting

Latent Dirichlet allocation (LDA) assumes that all documents in corpus C shares
a fixed number of topics β = (β1, ...,βK), each of which is a distribution over
V-dimensional vocabulary. Each document is assumed to be generated from the
following generative process:

For the ith word wi in document d:

– draw topic indicator zi|θd ∼ Multinomial(θd)
– draw word wi|zi,β ∼ Multinomial(βzi

)

where θd = (θd1, ..., θdK) is topic proportion which is assumed to be drawn from
Dirichlet(α), representing contribution of the topics to document d. One can
consider β as parameters or further assumes that βk ∼ Dirichlet(η).

Estimating the posterior of the latent variables given a corpus is intractable.
SVI [11], MASVI [12], and SSU [4] approximate this posterior by optimizing a
fully factorized variational distribution where dependence between latent vari-
ables is relaxed. SCVB0 [6] instead uses a variational distribution which still
remains the dependency between z and (θ,β). SRGLD [15] is a Markov Chain
Monte Carlo scheme that asymptotically produces samples from the posterior
distribution. Unlike SVI, MASVI, SSU, and SCVB0 which approximate full joint
posterior distribution of the latent variables, SSI [14] try to approximate poste-
rior distribution over z and β given the corpus P (z,β|C) where the variables θ
are marginalized out.
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2.1 Overfitting Problem

The stochastic inference algorithms mentioned above use a similar framework to
learn global parameters λ (variational topic-word parameters in SVI, MASVI,
SSU, SSI and SGRLD, or per-topic word token counts in SCVB0). They repeat-
edly subsample a mini-batch of documents from the corpus/stream, and infer
local parameters which associate with each document of the mini-batch. Inter-
mediate global parameters correspond to that mini-batch are formed, using the
local parameters, in order to update the global parameters. There are two main
ways for updating. After forming intermediate global parameter (λ̂t) for the
t-th mini-batch, SSU update the global parameter (λt) at the t-th iteration as
follows:

λt ← λt−1 + λ̂t, (1)

while many other algorithms (e.g., SVI, SSI, MASVI) use the following update,
with ρt = (τ0 + t)−κ, κ ∈ (0.5, 1], τ0 ≥ 0,

λt ← (1 − ρt)λt−1 + ρtλ̂
t. (2)

Those update schemes allow the global parameters λt to grow arbitrarily
large in either of the following conditions:

– Data comes from a text stream ( t → ∞, or the number of documents go to
infinity). Since λ̂t is always non-negative, the update formula (1) can make
λ increase rapidly as t → ∞. The formula (2) slows down the increase in
magnitude by imposing that the new λt is a convex combination of λt−1 in
the last iteration and λ̂t. Note that λ̂t is not always constrained to be small, as
it is sometimes the variational parameter of the posterior of interest (as in SVI,
SSI, MASVI,...). Therefore, when data arrive infinitely, the global parameters
might grow enormously.

– Data are highly noisy. When working with online social networks such as
Twitter and Facebook, the data are notoriously noisy [5,10,20]. Noises come
from different sources including typos, ad hoc abbreviations, ungrammatical
structures, etc. Those noises cause λ̂t to be uncontrolled.

– A mis-specified model is to be learned. In practice, we could not know the
exact number K of topics contained in a corpus. Hence mis-specification often
happens. A mis-specification might cause a learning method to add too much
artificial information to λ̂t.

When the global parameter grows sufficiently large, the learned LDA might
not exhibit the inherent characteristics of real texts, leading to overfitting and
bad generalization. Indeed, it is well-known [8] that the Dirichlet hyperpara-
meters are often less than 1 when LDA is learned from real texts by a batch
algorithm. Meanwhile, the global parameter λk in SSU (also SVI, SSI, MASVI)
play the role as hyperparameter of the variational Dirichlet distribution that
generates topic βk. Therefore, the arbitrary growth of λ seems to be in contrary
to the practice of LDA.
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The arbitrary growth in magnitude of global parameters comes from the addi-
tive nature of the updates in (1) and (2), and from no limitation on those parame-
ters. This suggests that when working with massive/streaming data, one should
employ some regularization on global parameters in order to avoid overfitting.

2.2 A Simulation Study

We have seen the overfitting possibility of existing stochastic methods. This
subsection investigates the behaviors of SSU, SVI, and SSI on simulated data to
see further on overfitting. We designed two scenarios in this investigation:

– Scenario 1: (Mis-specification: The learned model has too many topics) The
training data are generated from a model of 20 topics and 5000-dimensional
vocabulary. At each iteration, the mini-batch contains 2000 documents which
have average length of 200 word tokens. The number of topics of the learned
model is set up to 50 topics.

– Scenario 2: (Noisy condition: Data are highly noisy) The learned model has
the same configuration as the model generates data, which is remained as in
scenario 1, but the training data are added 5% uniformly distributed noise.

We firstly consider magnitude of the global parameters. Figure 1a and b show
how fast they increased as the three algorithms saw more data. Although all
global parameters increased in both experiments, λ returned by SSU grew much
faster than those fitted by SSI and SVI did. One of the main reason is that
the constraint in formula (2) allows SSI and SVI significantly reduce speed
of increasing magnitude of λ. This result suggests that SSU is more sensitive
with overfitting than the other algorithms. Figure 1c and d shows qualities of
the learned models in the two scenarios. It can clearly be seen that overfitting
happened to all three algorithms in both experiments. However, SSU fell into
overfitting much quicker than SSI and SVI. The constrained update formula
maybe the main factor helps SSI and SVI resist overfitting longer. In addition,
overfitting in the second experiment is more quickly and easily recognized. Noisy
data seemed to have considerable influence on performance of those algorithms,
making overfitting problem appears earlier.

3 Regularized Sparse Stochastic Inference (RSSI)

In this section we describe a new stochastic algorithm for LDA, namely Regular-
ized Sparse Stochastic Inference (RSSI). Our algorithm considers topics (β) as
parameters and tries to learn them from data by doing MAP estimation of topic
proportions (θ). The topics (β) are learned in a stochastic manner [3]. Estima-
tion of the intermediate topics requires computing the local variables (θd). We
derive the approximation of θd from zd, whose posterior is approximated by col-
lapsed Gibbs sampling (CGS) which is similar as SSI [14] does. Details of RSSI
are presented in Algorithm 1.
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3.1 Estimation of Topics

We consider the posterior of topic proportions given the corpus C (whose size
might be infinite): P (θ|C,β, α) where the topic indicators are integrated out.
Since the documents are i.i.d., we have

P (θ|C,β, α) =
∏

d∈C
P (θd|d,β, α) (3)

where
P (θd|d,β, α) ∝ P (θd, d|β, α) = P (d|θd,β)P (θd|α) (4)

is the posterior over topic proportion of the document d ∈ C. The first term of
(5) can be expressed as

P (d|θd,β) =
∏

j

P (w = j|d) =
∏

j

(
K∑

k=1

θdkβkj

)dj

, (5)

where dj is number of times word j appears in the document d. Because θd ∼
Dirichlet(α), the second term is P (θd|α) ∝ ∏K

k=1 θ
(α−1)
k . Taking the logarithm

of the posterior (3) and ignoring constants, we obtain

L =
∑

d∈C

⎛

⎝
∑

j

dj log
K∑

k=1

θdkβkj + (α − 1)
K∑

k=1

log θdk

⎞

⎠ (6)

Algorithm 1. RSSI for learning LDA
Input: text data/ text stream, K, α > 0, τ0 ≥ 0, κ ∈ (0.5, 1]
Output: β
initialize β0

k ∈ ΔV randomly.
for mini-batch t ∈ 1, ..., ∞ do

ρt ← (τ0 + t)−κ

sample a subset Ct of documents
for d ∈ Ct do

initialize z0
d

discard B burn-in sweeps
for sample s ∈ 1, ..., S do

for token i ∈ 1, ..., Nd do
φs

ik ∝ (α + N−i
dk )βkj

sample zs
di from Multinomial(φs

i )
end for

end for
compute Ndk ≈ 1

S

∑S
s=1 N

(s)
dk

compute θdk = Ndk+α
Nd+Kα

end for
compute β̂t

kj ∝∑d∈Ct
djθdk

βt ← (1 − ρt)β
t−1 + ρtβ̂

t

end for
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The task of learning the model is to estimate all topics β, given the corpus C and
α > 0. β can be found by maximizing L subject to the constraint that βk ∈ ΔV

where ΔV = {x ∈ R
V : x ≥ 0,

∑V
i=1 xi = 1}. Basing on framework used by [11]

we can design a stochastic algorithm which repeats the following steps:

– Sample a mini-batch Ct from the corpus C.
– Estimate the local variables θd for each document d ∈ Ct that maximize

LCt
=

∑

d∈Ct

⎛

⎝
∑

j

dj log
K∑

k=1

θdkβkj + (α − 1)
K∑

k=1

log θdk

⎞

⎠

s.t. θd ∈ ΔK (∀d ∈ Ct),

(7)

given βt−1 from the previous iteration.
– Form intermediate topics β̂t for Ct that maximize LCt

subject to β̂t
k ∈ ΔV

– Update the topics
βt ← (1 − ρt)βt−1 + ρtβ̂

t. (8)

Note that ρt = (τ0 + t)−κ in (8) must satisfy
∑∞

t=1 ρt = ∞ and
∑∞

t=1 ρ2t < ∞ to
make sure that the learning algorithm will converge. In order to compute β̂t we
use the same arguments as [19], arriving at the following formula:

β̂t
kj ∝

∑

d∈Ct

djθdk. (9)

3.2 Estimation of Topic Proportion

Our algorithm requires solving the following problem

θ∗
d = arg max

θd∈ΔK

∑

j

dj log
K∑

k=1

θdkβkj + (α − 1)
K∑

k=1

log θdk, (10)

to infer topic proportion for each document. In the case of α ≥ 1, the problem
(10) can easily be proved to be concave, therefore it can be solved in polyno-
mial time. However, α is often set to be small in practice, and (10) is unfortu-
nately NP-hard in the worst case when α < 1 [21]. For that reason, instead of
directly estimating the exact optimal solution of the problem (10), we try to find
an approximation. In fact, if we know zd, we can recover θd by the following
approximation

θdk =
Ndk + α

Nd + Kα
, (11)

where Ndk is the number of indicators z in the document having value k, and
length of the document Nd =

∑K
k=1 Ndk. Information about topic indicator con-

figuration can be obtained from posterior distribution over it given the document
P (zd|d). We employ Gibbs sampling [14] to estimate Q(zd) - the variational
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Table 1. Average learning time per mini-batch in second.

RSSI SSI SCVB0 SSU SVI

New York Times 141 ± 15 92 ± 8 1663 ± 21 5891 ± 41 5974 ± 38

PubMed 21 ± 1 20 ± 1 429 ± 16 8592 ± 79 8410 ± 75
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Fig. 2. Performance of RSSI compared
with SSI, SVI, and SSU on simulated
data (a) Mis-specification (b) Noisy
condition

0 20 40
−10.5

−10

−9.5

−9

−8.5

Mini−batch

Lo
g 

Pr
ed

ic
tiv

e 
Pr

ob
ab

ilit
y NYT

0 200 400
−10.5

−10

−9.5

−9

−8.5

Mini−batch

Lo
g 

Pr
ed

ic
tiv

e 
Pr

ob
ab

ilit
y PUB

RSSI SSI SCVB0 SVI SSU

Fig. 3. Predictiveness of models learned
by the five methods on New York Time
and PubMed datasets as more data arrive.

distribution used to approximate the true posterior. More specifically, for each
document d we iteratively resamples the topic indicator of each word token from
distribution of that indicator given the current states of all the other indicators

Q(zdi = k|wdi = j,z−i
d ) ∝ (α + N−i

dk )βkj , (12)

where z−i
d and N−i

dk means that zdi is excluded. After B burn-in sweeps, S
samples of topic indicator configurations {z}1,...S are saved. Approximation of
Ndk in (11) can be derived as following one:

Ndk ≈ N̂dk =
1
S

S∑

s=1

N
(s)
dk . (13)

This average over a finite set of samples provides a sparse approximation of Ndk.

3.3 Comparison with Existing Algorithms

Since both βt−1 and βt belong to ΔV , update formula (8) always regularizes new
topics βt remains in ΔV . This regularized update scheme brings RSSI capability
of avoiding overfitting which is an important advantage over existing stochastic
algorithms. We turn back to the simulated experiments in Sect. 2.2 with our
new algorithm. The performances of RSSI in the two experiments are depicted
in Fig. 2. It shows that overfitting did not happen with RSSI in both experiments.
In addition, qualities of models learned by RSSI were also improved significantly
even when data are contaminated by noise.

Besides, while SVI [11], MASVI [12], SSI [14] and SGRLD [15] require spec-
ifying the number of all documents in advance, and SCVB0 [6] need to know
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the number of word tokens in the corpus beforehand, RSSI does not require any
information about data size. It makes RSSI to be more suitable when working
with data stream. In addition, while RSSI can take advances of sparse Gibbs
sampling when inferring local variables, the existing algorithms (excepts SSI)
never return sparse solutions. Hence, RSSI seems to be more efficient in terms
of reducing runtime and memory requirement.

4 Experimental Evaluation

We compared our algorithm (RSSI) with four existing stochastic algorithms,
including SVI [11], SSU [4], SSI [14], and SCVB0 [6]. To avoid possible bias in
our comparison we implemented all the algorithms1 above by Python with our
best efforts. Our experiments were taken on two large data sets:

– PubMed (PUB)2 contains 8.2 millions of medical articles from the pubmed
central. Those documents were composed from a vocabulary of 141044 distinct
words, including more than 717 million word tokens.

– New York Time (NYT)2 consists of 300 thousand news with more than 65
million word tokens. The vocabulary includes more than 100 thousand distinct
words.

We randomly set aside 1000 documents from each corpus for testing.

4.1 Measures for Evaluation

We evaluated our algorithm based on two quantity

– Predictive probability: This quantity shows the predictiveness and generaliza-
tion of a model on new data. We followed the procedure in [11], randomly
dividing each document in testing data set into two disjoint parts wobs and
wuobs. We repeated the split 5 times to create 5 sets {wobs, wuobs}1,...,5 with
ratio of 80 : 20. We then did inference for wt

obs and estimated the distribution
over wt

uobs given wt
obs and the model. The final predictive distribution was

averaged through the 5 sets.
– Sparsity: In practice, a document is expected to be composed from some topics

rather than the whole K topics in the corpus. We define sparsity of topic
proportion without accounting for the smoothing parameters α as follow

Sθ =
∑K

k=1 Iθk �=0

K
(14)

where θ is computed using (12) with α removed.

1 SSI was taken from http://www.cs.princeton.edu/∼blei/downloads/onlineldavb.tar.
2 The data were retrieved from http://archive.ics.uci.edu/ml/datasets/.

http://www.cs.princeton.edu/~blei/downloads/onlineldavb.tar
http://archive.ics.uci.edu/ml/datasets/
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4.2 Parameter Settings

We set K = 100, α = 1
K , η = 1

K which were often used in previous studies. When
inferring for a document, we terminated SVI and SSU if relative improvements
of the lower bound on likelihood of that document is not better than 10−4 or
the iterations exceed 50. We set 25 burn-in and 25 samples sweeps for SSI and
RSSI. Total 50 iterations were used for SCVB0 to do inference for each document
where 25 iterations were burn-in. According to [6,14], these settings are often
enough to get good solutions. Based on suggestions from [11,14] we used the
learning parameters: κ = 0.9, τ0 = 1, and mini-batch size |Ct| = 5000.

4.3 Performance of 5 Algorithms

We firstly focus on how fast the algorithms learn models from the data sets.
Average learning time for the five algorithms are reported in Table 1. SSI and
RSSI worked fastest, followed by SCVB0. SVI and SSU had slowest speeds. This
was due to the fact that SVI and SSU require many evaluations of Digamma,
logarit and exponent functions. In addition, they have to check convergence when
doing inference for each document which is very expensive. SCVB0 although
contains no computationally expensive functions, it has to update all local and
global variables after processing each word token, raising the total computations
as the length of document increases. RSSI and SSI worked much faster than the
other algorithms because of their ability of utilizing sparseness of the solutions
and containing fewer evaluations of Digamma and exponent functions. RSSI was
slightly slower than SSI because it has to make approximation of topic proportion
after doing inference for each document.

We next investigate how good are the models returned by the five algorithms
as they see more data. As we can see in Fig. 3, all the five algorithms can learn
better models as they see more documents. However, after processing the same
number of documents RSSI learned models with highest predictiveness levels in
both data sets, followed by SCVB0. SSI only did well in NYT and SVI and SSU
had inferior results in both corpora. The reason for poorer performance of SVI
and SSU was that they try to optimize the same variational distributions, which
relax all dependencies between the latent variables, as VB does. Hence, signif-
icant bias could be produced when approximating the true posterior. SCVB0,
an incremental version of CVB0, surpassed the two algorithms as it can better
approximate the posterior than VB [1,18]. Although having the similar scheme
for inferring the local variables, RSSI and SSI are very different in updating
global parameters. The update scheme in SSI makes global parameters grow
arbitrarily, easily learning overfitted model. This might be the reason why SSI
had different performances on the two data sets. Unlike the other algorithms,
RSSI regularizes the global parameters (topics) to remain in a simplex ΔV . This
important feature allows RSSI to avoid overfitting, learning models that have
better generalization.

We then want to see sparsity of the solutions returned by SSI and RSSI. The
results are depicted in Fig. 4. We observe that both algorithms could provide
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sparse solutions; however, the solutions of RSSI tended to be sparser than those
of SSI. While SSI returned an average of 8 to 11 topics for each document, the
figure for RSSI was 3 to 5 topics. In practice, a document written by human
often relates to a few number of topics, therefore 3 to 5 topics in a document
seemed to be more rational.

4.4 Sensitivity of RSSI

We now consider how the parameters affect the performance of RSSI. The para-
meters of RSSI include the forgetting factors and number of samples. To see the
effect of a parameter, we changed its value in a finite set, but kept the other
parameters fixed. We performed experiments to evaluate sensitivity of RSSI on
data set NYT.

Forgetting factors: Forgetting factors κ, τ0 appear in the learning rate ρt =
(τ0 + t)−κ. We found that κ did not significantly affect the performance of RSSI
after investigating five settings of κ ∈ {0.6, 0.7, 0.8, 0.9, 1}, while change in τ0
made considerable influence on the performance of RSSI. We ran RSSI with six
values of τ0 ∈ {1, 32, 64, 128, 1024}. The results are depicted in Fig. 5 (a). It is
worth noticing that dependence of the performance of the algorithm on τ0 is
monotonic. We recommend that τ0 should be chosen to be small for RSSI to
work well in practice.

Number of samples: RSSI employs Gibbs sampling for doing inference for each
document. Gibbs sweeps performed on each document contain B burn-in sweeps
which are discarded and S additional sweeps for saving the topic indicator con-
figurations. Number of samples is the total number of sweeps B+S. We changed
the value of B+S through the set {5, 10, 20, 50, 80}. For B+S = 5 we considered
there settings of the pairs (B,S) : (2, 3), (3, 2), and (4, 1). For the other values of
B + S we used the settings where B = S. The results are presented in Fig. 5(b).
Performance was similar across three settings where B +S = 5. We observe that
the algorithm learned good model when B + S = 20 and increasing the number
of samples could not considerably improve quality of the model. These results
suggest that the mixing rate of Gibbs sampling in RSSI is very fast and 15–20
sweeps is sufficient.
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5 Conclusion

We have theoretically analyzed the possibility of overfitting of existing stochastic
algorithms for LDA. We also demonstrated it via a simulation study with two
scenarios that close to practice. In order to prevent overfitting, especially when
working with massive/streaming data, we suggest employing regularization on
the optimized parameters. From that suggestion, we proposed regularized sparse
stochastic inference (RSSI) that regularizes global parameter when updating and
utilizes sparse Gibbs sampling for doing local inference for LDA. That combi-
nation gives RSSI many advantages over existing algorithms. Our methodology
can significantly improves quality of the fitted model and can be easily adapted
to various probabilistic models.
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Abstract. Social Networking Services (SNS), such as Facebook, Twit-
ter, and Foursquare, allow users to perform check-in and share their loca-
tion data. Given the check-in data records, we can extract the features
(e.g., the spatial-temporal features) to infer the social ties. The chal-
lenge of this inference task is to differentiate between real friends and
strangers by solely observing their mobility patterns. In this paper, we
explore the meeting events or co-occurrences from users’ check-in data.
We derive three key features from users’ meeting events and propose
a framework called SCI framework (Social Connection Inference frame-
work) which integrates all derived features to differentiate coincidences
from real friends’ meetings. Extensive experiments on two location-based
social network datasets show that the proposed SCI framework can out-
perform the state-of-the-art method.

1 Introduction

The research on mining the relationship between virtual data and physical data
(e.g., users’ mobilities, social links, preferences, etc.) gradually increases in the
past decade. Specifically, from the check-ins in the location-based social networks
(LBSNs), one can extract precious information such as the mobility patterns and
the social links between users. Using check-in data is beneficial yet challenging.
Various applications can be derived from using check-in data such as social
strength analysis [7,11], friendship recommendation [1,3], and targeted market-
ing [13]. However, the challenge is that check-in data is usually sparse because
some users may have more check-ins and some have fewer.

It is intuitive that friends have a greater chance to appear together at the
same occasions compared to strangers because of some common events or shared
interests, such as attending a wedding party of their common friends or spend-
ing time together at a coffee shop which they love. Based on this intuition, some
researchers [1,3,7,11] have studied the relationship between user’s mobility and
social links solely based on the difference of check-ins behavior between friends
and non-friends. These studies have employed co-occurrences, which simulates
meeting events using check-in data, to solve the friendship prediction problem.

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 460–471, 2017.
DOI: 10.1007/978-3-319-57454-7 36
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Fig. 1. The overview of SCI framework

Despite the efforts made to uncover friendships using check-in data, these stud-
ies do not report the number of friendships that can be retrieved from their
approaches. Further, while some studies such as [3,11] employ temporal factor
in their models, they do not adopt temporal duration and stability in their meth-
ods. Whereas duration and stability can capture the general idea of how long
and how often that the users have interacted with each other. Moreover, none of
the studies mentioned above considers the impact of weekend data (either quali-
tatively or quantitatively) for depicting social links, even though it is commonly
known that weekend activities usually involve social activities [1].

In this paper, we propose a unified framework called SCI framework (Social
Connection Inference framework) which consists of three stages (shown in
Fig. 1). First, we extract the co-occurrences from check-in data by using the map-
reduce technique. Second, we quantify three key features in the co-occurrences:
diversity, stability, and duration. Finally, we aggregate co-occurrence features
using machine learning algorithms to predict the social ties or friendships
between users.

In summary, the contributions of this paper are as follows.

– We propose two novel features (stability and duration) in the temporal domain
of the co-occurrence, which can reflect the consistency and the total duration
of the meetings between users.

– We present an analysis of the benefits and the limitations of applying co-
occurrence to infer the social ties and propose a map-reduce algorithm to
accelerate the co-occurrence generation.

– Our experiments provide insights to the significance of weekend data for pre-
dicting social links from users’ mobility data and the predictive power of each
feature.

The remainders of this paper are organized as follows. Section 2 discusses
related works. Section 3 formally defines the notations in our work. Section 4
describes co-occurrence generation process and the proposed features. Section 5
reports our experimental results. Finally, Sect. 6 concludes our work.
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2 Related Works

We categorize the related works in the social tie analysis into two groups based
on their focus: co-occurrences [1,3,7,11] and other approaches [8–10,12]. Our
proposed method belongs to the former; therefore, we provide the comparisons
between related works using co-occurrences and our method in Table 1.

Table 1. Comparison between SCI and prior works

Features [7] [11] [3] [1] Our method

Location entropy V V V V

Diversity V V

Time gap V V

Time interval sequence V

Stability V

Duration V

Co-location graph V

Previous works such as [1,3,7,11] introduced a concept called co-occurrence
to infer the social relationship between users. Both the authors in [7,11] focused
on quantifying the continuous social strength between users. However, their orig-
inal problem can be altered into link prediction problem by setting a threshold
that differentiate friends from non-friends. Most previous works utilized loca-
tion entropy concept which has been introduced by [2] in their model. Location
entropy could explain the significance of a meeting event based on the loca-
tion’s property: meeting in a private place matters more than in a public place.
However, in this paper, we use diversity concept which is also used in [7] to
avoid the impact produced by frequent yet coincidental meeting events. Alter-
natively, the authors in [11] employed personal, global, and temporal features
(PGT) to uncover social links in the co-occurrences data. They calculated the
importance of meeting events by considering the user’s location visit distribu-
tion, the location’s popularity, and the time difference between two consecutive
meeting events. Instead of using time threshold, the authors in [1] proposed a
time interval sequence to identify co-occurrences; their proposed approach is on
par with [7] in coarser spatial granularity but suffers from lower performance in
the finer spatial granularity. Similar to [11], the authors in [3] employed the same
features that are used in [11] but they built a co-occurrence graph to depict the
indirect social ties between users; however, they only evaluated the top 10,000
users in their experiments and the computation cost to create the co-occurrence
graph is high. It is also worth noting that although we measure the temporal
feature but the proposed temporal feature is entirely different from the one sug-
gested in [3,11]. In this paper, we measure the stability and the duration of a
co-occurrence behavior by accommodating all meetings, not just the consecutive
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meetings. Stability is similar to the time gap that is proposed in [3,11] but is
more general. On the other hand, duration represents how long the users have
known each other, as in the real world we observe that friends tend to have
known each other longer and meet from time to time.

Prior works have also explored social tie analysis using various methods.
The authors in [12] presented the idea of using communication logs, such as
call logs and message logs to depict the social link between users. However,
the authors in [12] concluded that partial communication records cannot be
used as a proxy to represent the social relationship. The authors in [10] took
advantage of social network structure to explore the social tie strength between
users, but they do not consider the correlation between spatiotemporal data
and social link. The authors in [9] proposed place features and social features
to predict the friendship in the location-based social network. Place features
take frequent places between users into account, while social features assume
that common neighbors can help on predicting the friendship. On the other
hand, our work aims to accommodate spatiotemporal data without any social
network information to predict the social ties. Another work [8] proposed a
friendship prediction method by predicting the location that a user would visit.
The authors in [8] calculated the text similarities between users from the Twitter
dataset, extracted the number of common neighbors and the number of triads
formed in the social graph, and derived the co-locations from each tweet; they
further assumed that user will not move to other locations if he/she does not post
another tweet. We argue that the assumption in [8] is too strong and may not
be suitable for the real-world applications, as few users tweet on every location
that they visit.

3 Notations and Problem Formulation

We denote u ∈ U as the user in the dataset and c ∈ C as the check-in data of
the users. Each user has a sequence of check-ins Cu = {c1, . . . , cn} to represent
all check-ins made by user u. Each c reflects the appearance of a user u at a
specific location l at a specific time t with the form of {u, t, l}. Co-occurrence
θz

x,y is a four tuple {ux, uy, ti,j , lz} to reflect a situation where two users ux and
uy meet in a particular location lz through their check-in ci and cj (ci ∈ Cx and
cj ∈ Cy) and the time difference between ci and cj is lower than threshold τ ,
and ti,j is the average check-in time between ci and cj . Co-occurrence set Θx,y is
the collection of meeting events between two users ux and uy among all meeting
locations. Ψz

x,y ∈ Ψx,y quantifies the meeting frequency between users ux and
uy in the location lz. Ψx,y = {Ψz1

x,y, · · · , Ψzm
x,y} is the meeting frequency set for

all meeting locations between users ux and uy. Please note that every Ψx,y = 0
is omitted and

∑
z∈L Ψx,y = |Θx,y|, where L is the set of all meeting locations

between users ux and uy. Finally, social tie σ is measured between user ux and
uy using their co-occurrence set Θx,y, where ux, uy ∈ U and σ ∈ {0, 1}. Finally,
the problem that we aim to solve in this paper is as follow. Given ux, uy ∈ U and
a check-in dataset C in the form of {u, t, l}, the problem is to predict whether
ui and uj are friends or not.
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4 Methodology

In this section, we first elaborate the co-occurrence generation process. Second,
we describe three features in the co-occurrences, such as how diverse the meeting
location is, how regular users meet each other, and how long their encounters
have occurred. Finally, we derive diversity score wd, stability score ws and dura-
tion score wδ from each meeting event between users. Finally, we combine these
scores to predict the friendship links between users.

4.1 Co-occurrence Generation

Algorithm 1 explains the process of co-occurrence generation. Co-occurrences
between two users ux and uy are generated from the check-in sequences Cx and
Cy from user ux and uy respectively using two parameters: distance threshold
Δ and time threshold τ . As the check-ins sequences are ordered by timestamp,
we can generate the co-occurrence by using two iterators ic1 and ic2 for both
Cx and Cy. The next ic1 and ic2 are generated based on the timestamp order
between two check-ins. Suppose c1 is the current check-in of user ux and c2 is
the current check-in of user uy. Then, if the time in c1 is larger than that in c2,
then we increment the value of ic2. Otherwise, we increase the value of ic1. Using
this approach, we only need to select at most |Cx| + |Cy| times for generating
the co-occurrences between two users. Additionally, if parameter Δ is set to
0, then location locz is depicted from the location id. Otherwise, location locz

is calculated using the average of two locations’ coordinate. Also, co-occurrence
time in θz

x,y is generated based on the average time between two users’ check-ins.
The complexity of computing co-occurrences is high because we need to cal-

culate every combination of every user pairs. However, we observe that the com-
putation can be parallelized by splitting the user pair combinations into several
subsets. Here, we apply the map-reduce technique to parallelize the co-occurrence
generation.

Map. Suppose we have N users in the dataset, then we can split the users into k
chunks, so each chunk has approximately N/k users. Subsequently, each chunk
is processed iteratively from the first to the last user. Thus, we will have N2

2×k2

computation for each chunk or N2

2×k for all chunks, which theoretically can speed
up the co-occurrence generation process approximately by k times.

Reduce. For each generated co-occurrence set in each chunk, we aggregate all co-
occurrences. We separate the aggregation into two parts. First, we aggregate the
co-occurrences which have similar user ids and location ids to obtain the frequency
of the co-occurrences between two users at a particular location. Second, we can
aggregate all the raw co-occurrences together in a file, without any further pre-
processing. The latter serves as the generated raw co-occurrences in the dataset.

4.2 Diversity

Variation in the meeting places between users is useful for reducing the possi-
bilities of coincidences. Supposedly we know that user u1 often meets users u2
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Algorithm 1. Co-occurrence generation algorithm
Input: Cx, Cy, Δ, τ
Output: θx,y

1 Define θx,y ← ∅;
2 Define ic1, ic2 ← 0;
3 while ic1 < |Cx| and ic2 < |Cy| do
4 c1 = Cx[ic1]
5 c2 = Cy[ic2]
6 if (Δ = 0 and c1.vid != c2.vid) or (timediff > τ) or (distance > Δ) then
7 Next ic1 or ic2
8 continue

9 end
10 θz

x,y = {ux, uy, locz, avg(time)}
11 θx,y.append(θz

x,y)
12 Next ic1 or ic2
13 end
14 return θx,y

and u3 through their check-ins. Consider the following scenarios. First, user u1

meets user u2 several times in the same location. Second, user u1 meets user u3

a few times in several locations. Thus, the meeting occasions in the former are
more likely to happen by chance than those in the latter. The reason is that
the possibility of meeting in more diversified locations is lower than the pos-
sibly of meeting in the same location. Here, we adapt the concept of diversity
in co-occurrences which is introduced by recent work [7]. Shannon entropy [5]
is employed to reflect the diversity as follows. Let Ψz

x,y be the frequency of co-
occurrence in the location z where Ψz

x,y ∈ Ψx,y, then the diversity score wd is
determined using Eq. 1.

wd(x, y) = −
∑

Ψz
x,y · log(Ψz

x,y) (1)

4.3 Temporal

Temporal feature indicates how long a co-occurrence between two users is and
how stable it is. While strangers rarely have co-occurrences or have ones in
a short time due to coincidences, friends tend to spend more time together
in a more precise and less coincident fashion because they could arrange their
meetings. For every meeting event between two users ux and uy, calculation of
friendship duration using timestamps tix,y (Eq. 2) from their co-occurrence in the
co-occurrence vector Θx,y is defined in Eq. 3.

tix,y = timei − timei−1 (2)

where timei is the timestamp of the i-th co-occurrence in Θx,y and the co-
occurrence vector Θx,y is ordered by timestamp in ascending order.

δx,y = max
i

(tx,y) − min
i

(tx,y) (3)
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To normalize the value, we divide the duration with the maximum friendship
duration of all users. For any pair of users ux and uy, we calculate maxu∈U (δx,y)
for maximum friendship duration among all users. Finally, wδ is the duration
score between users from their meeting events and maxu∈U (δx,y) is the maximum
friendship duration, and then duration score is calculated by using Eq. 4.

wδ(x, y) =
δx,y

maxu∈U (δx,y)
(4)

Further, we need to quantify the stability of co-occurrence to uncover social
tie between users who have numerous meeting events together. We first quantify
the average time of each pair of user’s meeting μx,y by dividing each wδ with the
co-occurrence frequency of a pair of users ux and uy in all locations, as shown
in Eq. 5.

μx,y =
wδ∑
z Ψz

x,y

(5)

Subsequently, we consider standard deviation of the time of each users’ meet-
ing to understand the consistency of meeting events. Given average meeting time
μx,y and time distribution of the co-occurrence tx,y between each pair of users
ux and uy, we calculate the stability σx,y using Eq. 6.

σx,y =
∑

i

(
tix,y

maxi(tix,y)
− μx,y

)2

(6)

Further, to calculate the density of meeting event among various locations,
we need to normalize σx,y by using Eq. 7.

ρx,y =
√

σx,y

|Ψx,y| (7)

Finally, we deliver the calculation of stability weight ws, as shown in Eq. 8.

ws(x, y) = exp (−(μx,y + ρx,y)) (8)

Here, we use the average duration between meetings, by dividing δx,y with∑
z Ψz

x,y. Average duration shows us the time gap between meetings, indicating
cycle period of having co-occurrences. On the other hand, consistency value σx,y

shows us the stability of the time gap between each meeting. Lower average dura-
tion of co-occurrences and lower standard deviation value on the co-occurrences
density are more desired. Moreover, the weight is delivered as an exponential
function because time distributions between check-ins are sparse. Further, if the
co-occurrence frequency is smaller than or equal to 1 then we set the stability
score to 0 because we cannot quantify the temporal stability of those who only
meet once.

All in all, co-occurrences score is measured by considering diversity wd, and
temporal feature. Whereas, temporal feature consists of both stability score ws

and duration score wδ. We first normalize all the values of wd, ws, wδ to the
range of [0,1]. Finally, we use the tuple {wd, ws, wδ} which is extracted from
Θx,y given all combinations of user ux and uy as the input for the machine
learning algorithms.
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5 Experiments

In this section, we first present our datasets and parameter settings. Second, we
analyze the impact of time threshold parameter in the co-occurrence generation.
Subsequently, we show the comparison between the performance of the proposed
method and the performance of the state-of-the-art method, and additionally we
examine the predictive power of each feature.

5.1 Dataset and Metrics

In our experiments, we use two real datasets collected from location-based social
networking services: Gowalla and Brightkite [4]. We differentiate the data into
two types (all data and weekend data) to evaluate the effectiveness of the pro-
posed method and the capability of weekend data to perceive friendship informa-
tion. The statistics for all data and weekend data for each dataset are exhibited
in Table 2. Here, G and B represent Gowalla dataset and Brightkite dataset
respectively, while A and W represent all data and weekend data respectively.
Each check-in record is a tuple of user ID, latitude, longitude, timestamp, and
venue ID. Friendship information is present in both datasets, which can serve as
the ground truth in our evaluation. An average number of check-ins among all
users and users that have friends are presented in the Table 2 as well. Specifi-
cally, we observe that the number of users in the check-in data (User check-ins)
is different from the number of users in the friendship data (User friends). Fur-
thermore, we also notice that average number of check-ins of User friend [Avg.
Check-ins (Friend)] is lower than that of User check-ins [Avg. Check-ins (All)],
whereas in all data, there may be some users who have no friendships. This
suggests that some of the social links cannot be captured through the mobility
data alone.

Using Scikit-learn [6], we evaluate the AUC score of the friendship predic-
tion. AUC is calculated using the area of the receiver operating characteristic
(ROC) curve. Higher AUC represents that less non-relevant data is retrieved by
the query. Also, we have also conducted preliminary experiments to obtain the
best classifier for the experiments, and we finally select Random Forests for our
classifier as it outperforms other classifiers (SVM, Decision Tree, and Logistic
Regression in both datasets. Lastly, all the experiments are done by using 5-fold
cross-validation.

5.2 Co-occurrence Generation

The parameters for co-occurrence generation are as follows. First, in our exper-
iments, the time threshold τ is set to 0.5 h, 1 h, 1.5 h, or 2 h. Second, we assume
that the co-occurrence happens only if the check-ins between users are associ-
ated with the same venue id. This assumption seems to be strong, but we can
still retrieve friendships from the datasets1.
1 We have also evaluated the performances in the various distance thresholds Δ to

{0 m, 250 m, 500 m, 750 m, 1000 m} in the preliminary experiments. The number of
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Table 2. Statistical Information of Experimental Datasets.

GA GW BA BW

#Users (Check-ins) 107,092 92,988 51,406 35,390

#Users (Friend) 196,575 86,477 58,228 34,236

#Check-ins 6,442,890 2,013,871 4,491,143 1,334,404

#Friendships 950,327 804,878 428,156 305,671

Avg. Check-ins (All) 60.16 21.66 92.35 37.71

Avg. Check-ins (Friend) 32.77 22.54 81.53 38.57

Figure 2a shows us the percentage of the original friendships that can be
retrieved through co-occurrence method alone, and Fig. 2b shows the imbalance
between friends and non-friends in both datasets. We discuss several observations
in this result. First, we observe that the numbers of co-occurrences generated by
different time thresholds vary. With a smaller time threshold, we can only cap-
ture few friendship links because of the above assumption. Second, as explained
in the Sect. 5.1, some of the friendship links cannot be captured through the
mobility data alone. This issue is not discussed quantitatively in the previous
works such as [3,7,11]. Here, we present that in the LBSN services, we can
capture approximately 1% of the friendship links by using their mobility data
alone. Third, this result promotes that weekend data is a useful indicator for
predicting friendship links. Even though the percentage of check-ins in weekend
data is as low as 30% of the original data, weekend data can achieve as high
as 48% of the performance achieved by the original data. Fourth, it is difficult
to capture 100% of the friendships because some inactive users (e.g., 45% of
users in Gowalla dataset) also report their friendships, even though they have
no check-ins at all. Fifth, the highest portion of friend data is only 23%, which
is in Brightkite weekend data, and the rests are lower than 20%. On the light of
the co-occurrence generation performance by applying map-reduce implementa-
tion, we observe that by increasing the number of chunks, we can gain higher
speed-up. For example, in the Brightkite weekend dataset, by using 5 chunks,
we can achieve speed-up of 2.33.

5.3 Performance Evaluation

Here, we evaluate the AUC of the proposed method and the state-of-the-art
method, namely PGT [11]. PGT is a method proposed by [11] which employed
the personal background mobility of the users, the global popularity of a venue,
and the temporal difference between two consecutive meetings.

Figure 3 shows the AUC of the proposed method and PGT in both datasets.
From Fig. 3, it is clear that our method outperforms PGT in all cases. We also

retrieved friendships in higher Δ is slightly higher (up to 1.5 times to Δ = 0m).
However, the overall prediction performance is similar to Δ = 0 m.
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(a) Friendships retrieval. (b) Imbalance in the dataset

Fig. 2. Percentages of friendships under various time thresholds and the degrees of
imbalance in the datasets.

Fig. 3. AUC of SCI and PGT [11] in both datasets

observe that in general the AUC performance degrades along with the increase of
the time threshold τ . This is contrast to the observation regarding the relation-
ship between friend coverage and the time threshold. Therefore, the selection of
the value of the time threshold is the trade-off between friend coverage percent-
age and AUC performance. In addition, the AUC values of the weekend’s data
are generally higher than those of the all data. This implies that the mobility
data in the weekend can capture more activities relevant to social relationships.

Further, we evaluate the predictive power of each feature. In our model,
we employ three features in co-occurrence: diversity (D), stability (TS), and
duration (TD). To show the predictive power of each feature, we consider the
combinations of each feature. Also, we present the predictive power of PGT’s
feature separately, in order to understand what combination of PGT’s features
performs well. Here, P0 is the sum of personal factor in PGT, P is the max of
personal factor, PG is personal factor collaborate with the global factor, and
finally PGT is the complete framework of PGT.

Figure 4 presents the AUC of each feature combination. The leftmost feature
is the best feature in the average of the two datasets, while the rightmost feature
is the worst of all. As expected, the models with more features outperform the
models with fewer features, except for the diversity feature. We summarize the
observations as follows. In the single feature case, diversity of meeting events
performs stably in both datasets, while duration and stability cannot achieve
good performance. However, we observe that the combination of stability and



470 G.S. Njoo et al.

Fig. 4. Performance each feature and its combinations.

duration can achieve high performance in the Gowalla dataset. On the other
hand, we observe that the improvement of the temporal factor in PGT is mar-
ginal, while our proposed temporal feature boosts the performance well. All in
all, in both datasets, the combination of all features (diversity, stability, and
duration) performs the best.

6 Conclusions

In this paper, we addressed the problem of inferring social ties among users in
the location-based social networks. We proposed SCI framework to explore the
co-occurrence concept and distinguish friends from strangers. We derive three
features (diversity, temporal stability, and duration) from the co-occurrences and
utilize a machine learning algorithm to predict the social ties. In addition, we
identify the benefits and the limitations of co-occurrence to uncover the friend-
ship links. On the experiments on two real datasets, we show that the SCI frame-
work can outperform state-of-the-art method by achieving higher AUC. Further,
we study the significance of the weekend data for depicting social relationship
from mobility data. We show that although weekend data is only subset of the
full dataset, it can retrieve the social links as much as half of the full dataset
can achieve and achieve similar AUC performances.

Acknowledgements. Wen-Chih Peng was partially support by the TAIWAN MOST
(104-2221-E-009-138-MY2 and 105-2634-E-009-002) and Academic Sinica Theme
project No. AS-105-TP-A07.

References

1. Cheng, R., Pang, J., Zhang, Y.: Inferring friendship from check-in data of location-
based social networks. In: Proceedings of the 2015 IEEE/ACM International Con-
ference on Advances in Social Networks Analysis and Mining 2015, ASONAM 2015,
pp. 1284–1291. ACM, New York (2015)

2. Cranshaw, J., Toch, E., Hong, J., Kittur, A., Sadeh, N.: Bridging the gap between
physical location and online social networks. In: Proceedings of the 12th ACM
International Conference on Ubiquitous Computing, UbiComp 2010, pp. 119–128.
ACM, New York (2010)



Exploring Check-in Data to Infer Social Ties 471

3. Hsieh, H.-P., Yan, R., Li, C.-T.: Where you go reveals who you know: analyzing
social ties from millions of footprints. In: Proceedings of the 24th ACM Interna-
tional on Conference on Information and Knowledge Management, CIKM 2015,
pp. 1839–1842. ACM, New York (2015)

4. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data.

5. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf.
Theor. 37(1), 145–151 (2006)

6. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine
learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

7. Pham, H., Shahabi, C., Liu, Y.: EBM: An entropy-based model to infer social
strength from spatiotemporal data. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, pp. 265–276.
ACM, New York (2013)

8. Sadilek, A., Kautz, H., Bigham, J.P.: Finding your friends and following them to
where you are. In: Proceedings of the Fifth ACM International Conference on Web
Search and Data Mining, WSDM 2012, pp. 723–732. ACM, New York (2012)

9. Scellato, S., Noulas, A., Mascolo, C.: Exploiting place features in link pre-
diction on location-based social networks. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1046–1054. ACM (2011)

10. Sintos, S., Tsaparas, P.: Using strong triadic closure to characterize ties in social
networks. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2014, pp. 1466–1475. ACM, New
York (2014)

11. Wang, H., Li, Z., Lee, W.-C.: PGT: measuring mobility relationship using per-
sonal, global and temporal factors. In: 2014 IEEE International Conference on
Data Mining, pp. 570–579. IEEE (2014)

12. Wiese, J., Min, J.-K., Hong, J.I., Zimmerman, J.: You never call, you never write:
call and SMS logs do not always indicate tie strength. In: Proceedings of the 18th
ACM Conference on Computer Supported Cooperative Work & Social Computing,
pp. 765–774. ACM (2015)

13. Zhu, W.-Y., Peng, W.-C., Chen, L.-J., Zheng, K., Zhou, X.: Modeling user mobility
for location promotion in location-based social networks. In: Proceedings of the
21th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2015, pp. 1573–1582. ACM, New York (2015)

http://snap.stanford.edu/data


Scalable Twitter User Clustering Approach
Boosted by Personalized PageRank

Anup Naik(B), Hideyuki Maeda, Vibhor Kanojia, and Sumio Fujita

Yahoo Japan Corporation, Tokyo, Japan
anaik@yahoo-corp.jp, hidmaeda@yahoo-corp.jp, vkanojia@yahoo-corp.jp,

sufujita@yahoo-corp.jp

Abstract. Twitter has been the focus of analysis in recent years due
to various interesting and challenging problems, one of them being Clus-
tering of its Users based on their interests. For graphs, there are many
clustering approaches which look at either the structure or at its contents.
However, when we consider real world data such as Twitter Data, struc-
tural approaches may produce many different user clusters with similar
interests. Similarly, content-based clustering approaches on Twitter Data
produce inferior results due limited length of Tweet and due to lots of
garbled data. Hence, these approaches cannot be directly used for practi-
cal applications. In this paper, we have made an effort to cluster Twitter
Users based on their interest, looking at both the structure of the graph
generated using Twitter Data, as well as its contents. By combining these
approaches, we improve our results compared to the existing techniques,
thereby generating results befitting the practical applications.

1 Introduction

There is huge fan following for idol groups or celebrities on social networks like
Twitter. These fans frequently tweet about the events of the concerned celebrity,
their latest news, videos, photos and other information; in a sense act as a groupie
of the celebrity/idol groups. Such users can be used as a source to obtain real-
time information about the concerned celebrity. This inspires us to cluster these
Social Influencers in the fan following social network communities.

Huge user base has made Twitter user-graph very complex, and hence, analy-
sis of Twitter Data has become burdensome. Existing structural approaches fail
to perform effectively when we consider millions of nodes having active, inac-
tive and spam users. On the other hand, content based approaches deteriorate
because of limited length of textual contents in a tweet and garbled data. This
observation acted as the basis of our approach to use both the structural as
well as the content aspects of Twitter, thereby nullifying the drawbacks of each.
Although follower list is available in Twitter, most of the users are inactive and
interaction among them is lacking. The users in the follower list mostly read
the tweets about the celebrity rather than posting something. Also, some of the
celebrities (especially in Japan) do not have official accounts to get the follower
list from. So for getting clusters, just taking the follower list is not effective.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 472–485, 2017.
DOI: 10.1007/978-3-319-57454-7 37
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Our standpoint is consistent with the analyses made by Cha et al. where they
endorsed the million follower fallacy by collecting empirical evidences [8]. Our
contribution in this paper includes:

– We proposed a new approach for user clustering based on both content and
graph features with topical relevance and influential ranking(using Personal-
ized PageRank score) which can be used in many areas such as online adver-
tising, viral marketing, personalized content dissemination and so on.

– We intensively compared our approach with content based, graph based and
hybrid approaches in view of topical relevance and influential measures.

– Upon empirical evaluations, we confirmed that our approach outperforms
strong and the state-of-the-art baseline systems even on massive data sets.
Our data consisted of one month Twitter Data (1.6 TB in its compressed
form).

2 Related Work

Graph Clustering: One of the graph clustering algorithm is SCAN [1]. It clus-
ters vertices based on a structural similarity measure. It uses the fact that nodes
in a clusters are densely connected with other nodes in the group and sparsely
connected to nodes outside. Apart from clusters, it also finds hub nodes, which
bridge two clusters, and outlier nodes which are vertices marginally connected
to clusters. SCAN algorithm (Sect. 3.1) gives good results when we consider the
structure of the graph and hence, a modified version of it acts as the first phase
of our approach. One of the drawbacks of this algorithm is that it does not look
at the contents of the nodes. So some of the clusters produced may belong to the
same topic but stay as different clusters in this approach which we would like
to merge in ideal case. Other algorithms use number of possible “betweenness”
measures to iteratively remove edges to find clusters, as used in [3]. The min-
max cut method [2] partitions the graph into two clusters A and B, by removing
the minimum number of edges needed to isolate A and B. One drawback of
this approach is that one has to specify the number of clusters beforehand. The
most crucial problem is that if one cuts out a single node, one may achieve the
optimum solution. In practice, this approach requires some constraint, such as
|A| ≈ |B| which are inappropriate in real social networks.

Content Clustering: Content Clustering algorithms use various features of
Twitter data to cluster users, such as the approach used in paper [5]. In this
approach, they have used various similarity measure as feature for k-means clus-
tering algorithm. Even though the paper claims to successfully cluster the users
based on their interest, we are unable to reproduce the results due to large size
of Twitter data we use, which is much larger than the data of the Twitter pub-
lic API they used, that returns only a small portion of vast Tweet data. We
empirically experienced that their method is not scalable to real Tweet streams.
Hayashi et al. tried to detect hijacked topics when factorizing the user-term
frequency matrix [10]. Our approach solves the same problem quite differently.
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Social Graph Analysis: Leskovec et al. proposed network community profile
plot to illustrate structural properties of network communities mainly based on
the graph conductance measure [4]. They analyzed various kinds of social and
information networks and pointed out the existence of many small scale and
tight communities. We have addressed the same problem from a different but
practically very effective approach. Cha et al. analyzed the Twitter network
introducing three influential measures of users namely indegrees, retweets and
mentions [8]. Their observation endorsed the intuitions of some observers such
as [9] and pointed out that each measure indicate different features of tweets and
users. Their influential measure is mainly for scientific observation and analysis
purposes especially for topical relevant influentials and they eliminated chrono-
logically mature topics due to hijacked keywords by spammers. Although we are
inspired by their insights on the characteristics of Twitter network, they did
not propose any methods to extract topically relevant influential users from real
Twitter network in view of industry usage. Weng et al. proposed an approach
for finding topic-sensitive influential twitterers [11]. They evaluated only on a
small dataset of less than 5000 active users (compared to 3 million in our app-
roach). Their method works only on a toy size dataset although the LDA method
on Twitter texts normally outputs junk topics due to the topic hijacking and
Twitter specific text usage such as short text with many emoticons.

3 Graph Clustering

First we describe the graph clustering algorithm which partitions twitter user
networks by analyzing the structural properties of the graph. We adopt SCAN
algorithm [1] and propose its enhancement, namely, Weighted SCAN, which is
intended to more effectively partition users according to their network activities.

3.1 SCAN Algorithm

In this section, we describe in detail, the SCAN algorithm. This algorithm acts as
the first phase in our approach. It takes two parameters as input; ε: a threshold
value to determine structural similarity between two nodes and μ: the minimal
size of a cluster. Let us define some of the commonly used terms. The list of
symbols and its meaning is given in Table 1.

Definition 1. STRUCTURAL SIMILARITY: The structural similarity betwe-
en node u and v, denoted by σ(u, v), is defined as

σ(u, v) =
|Γ (u) ∩ Γ (v)|
√|Γ (u)||Γ (v)| (1)

where Γ is defined as Γ (v) = {w ∈ V | (v, w) ∈ E} ∪ {v}.
So, |Γ (u)∩Γ (v)| becomes the number of common neighbours between u and v

and
√|Γ (u)||Γ (v)| becomes the geometric mean of the two neighbourhoods’ size.
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Definition 2. CORE: Node u is core iff |Nε[u]| ≥ μ, where Nε, called
ε-neighbourhood, is Nε[u] = {v ∈ N [u] : σ(u, v) ≥ ε}.
Definition 3. HUB AND OUTLIER: Assume node u does not belong to any
cluster C. u ∈ H iff node v and w exist in N [u] such that C[v] �= C[u]. Otherwise
u ∈ O.

For more information about the algorithm, please refer the paper [1].
We have modified the structural similarity formula in SCAN algorithm to

incorporate the weighted edge and named the new formula as weighted structural
similarity and the algorithm as Weighted SCAN (WSCAN) algorithm, the details
of which is described in Sect. 3.2.

Table 1. Terms and symbols used

Symbol Definition Symbol Definition

ε Threshold of

structural similarity,

0 ≤ ε ≤ 1

H Set of hubs in G

μ Minimal number of nodes in a cluster

O Set of outliers in G N [u] Set of nodes in the structure neighbourhood of node u

G Given graph Nε[u] Set of nodes in the ε-neighbourhood of node u

V Set of nodes in G C[u] Set of nodes that belong to the same cluster as node u

E Set of edges in G σ(u, v) Structural similarity between node u and v

Algorithm 1. SCAN Clustering Algorithm
Input : Graph G(V, E), Parameters - ε, μ
Output: Set of clusters, hubs, and outliers
1: for each unclassified vertex v belongs to V do
2: if Core(V ) then
3: Create new clusterID
4: for all structurally similar neighbors x of V do
5: if x is unclassified or non-member then
6: Assign clusterID to x
7: end if
8: if x is also a core then
9: Expand the graph using x also
10: end if
11: end for
12: end if
13: end for
14: Further classify non-members into hubs and outliers

3.2 WSCAN as an Expansion of SCAN

In our approach, we construct a graph using the Reply and Re-Tweet (RT)
features of tweet data. Adopting the original SCAN approach, an edge between
two user nodes is created if a user has Re-Tweeted/Replied to another user,
irrespective of how many times they did. However, some users RT more than
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once, the tweets of the same user. In the same way, some users might reply to
another user many times. Clearly influential users get more than one RT.

To take these features into consideration, we have modified the structural
similarity formula of SCAN algorithm to use weighted structural similarity (σw).

Definition 4. WEIGHTED STRUCTURAL SIMILARITY: Let u, v ∈ V where
V is the set of nodes, where each node represents a user, ωu,v is defined as a
linear function of RT and Reply count between the two nodes u and v.

σw(u, v) =
ω(u,v)

ω(u,v) + 1
| Γ (u) ∩ Γ (v) |
√|Γ (u) || Γ (v)| (2)

where Γ is defined earlier and ωu,v = α · RT + β · R

This weight factor allows us to retain a significant node which would, other-
wise, have been marked as a hub as described in [1]. Figure 2 shows a histogram
of Reply and RT count. From this graph we observed that Reply and RT counts
are following the same trend, and are proportional to each other. Hence we have
used α = 1 and β = 1 in Eq. 2 for all the evaluation purposes.

We illustrate the effectiveness of weights using a toy example Graph in Fig. 1.
The edge weights represent Reply and RT counts, which are considered only in
WSCAN and have no significance in SCAN algorithm. Let us consider two nodes:
Node 5 and 6. In case of SCAN, both these nodes are structurally similar as they
have same similarity (σ) to neighbours, i.e., σ(2, 5) = σ(4, 6) = 0.63, whereas
in case of WSCAN, the similarities are σw(2, 5) = 0.32, and σw(4, 6) = 0.47
respectively. Node 6 seems to have stronger connection with the cluster of Nodes
1, 2, 3 and 4 due to larger edge weight, thereby acting as an influential user who
actually has a great influence upon a member of a strongly connected community.
By appropriately selecting the value of ε, Node 5 can be classified as an outlier,
i.e. an insignificant node, whereas, Node 6 can be included in the cluster. The
steps followed for clustering the graph in WSCAN are same as SCAN, explained
in Algorithm 1.

1

2

3

45 6

12

1

1

1 2

3

Fig. 1. Example of WSCAN
(weighted structural similarity)

Fig. 2. Histogram of Reply and RT counts
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4 Our Approach

Our approach has basically the following steps which are discussed in detail in
subsequent sections. System diagram is shown in Fig. 3:

Twitter
Graph
Data

SCAN
Algorithm
Module

User
Clus-
ters

Merge
Similar
Clusters

Seed
Data

for each
Cluster

Graph
Processing

Phase

Final
List of

Users for
each

Cluster

Fig. 3. System block diagram

– Construction Phase: Construct graph using Reply and RT feature.
– Structural Clustering Phase: Cluster the graph using WSCAN algorithm

(refer Sect. 3.2).
– Merging Similar Clusters: Combine similar clusters and get the users of

each cluster to be used as seed data for next step.
– Graph Processing Phase: Expand the list of seed users and rank them

using Personalized PageRank algorithm.

4.1 Construction of Graph

Our approach starts with constructing an undirected, weighted graph from Twit-
ter Data using Reply (R) and RT, since these are logically more meaningful
than just follow feature when we consider the similarity of two users in interests.
Consider two users u1 and u2. If u1 has replied or re-tweeted the tweets of u2,
then (u1, u2) will have an edge in our graph. The sum of Reply and RT count
between u1 and u2 becomes the weight of the edge, and is denoted by ω(u1,u2).
We have experimented with R, RT and both R+RT for constructing the graph.
The results obtained after executing WSCAN on these three types of graphs
with ε = 0.5, 0.45 and 0.4 is summarized in Table 2.

Comparison of Reply (R), RT and Reply (R)+RT: Let us consider
Table 2 and compare 3 types of graphs:

– Reply Graph (R): Users are represented by nodes and edge weight repre-
sents the reply count between two users.

– Re-tweet Graph (RT): Users are represented by nodes and edge weight
represents the RT count between two users.

– Reply and Re-tweet Graph (R+RT): Users are represented by nodes and
edge weight represents the sum of RT and reply count between two users.

For all the three graphs, we have considered edges whose weights are greater
than 2. The observation is given below:
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Table 2. Comparison of WSCAN output for the 3 types of graphs (µ = 2)

ε Type #Vertices #Hubs #Outliers #Clustered vertices #W-SCAN clusters

0.5 R 2,472,492 1,250,077 402,691 819,724 340,960

R+RT 2,596,565 1,559,828 383,581 653,156 277,340

RT 1,121,444 649,780 292,281 179,383 78,114

0.45 R 2,472,492 1,045,536 349,296 1,077,660 410,364

R+RT 2,596,565 1,371,585 341,061 883,919 347,476

RT 1,121,444 610,051 281,454 229,939 94,720

0.4 R 2,472,492 818,927 286,833 1,366,732 457,001

R+RT 2,596,565 1,149,285 289,819 1,157,461 406,682

RT 1,121,444 562,266 267,904 291,274 111,709

– Fraction of Hubs: R+RT (0.60) > RT (0.57) > R (0.50): Consider a user
U who has re-tweeted tweets of users from Cluster 1 and replied to tweets
of users from Cluster 2. So in R+RT graph, U could be marked as a hub
because of its involvement in both the groups. Whereas if we consider R and
RT graphs, this user will be a part of Cluster 1 and Cluster 2 respectively.

– Fraction of Outliers: RT (0.26) > R (0.16) > R+RT (0.14): Outliers are
those users which do not have any affiliation to any cluster. Nodes with very
few edges to any cluster are marked as outliers. As users in R+RT graph have
higher degree, the fraction of users marked as outliers are also less.

– Fraction of WSCAN output Users: R (0.33) > RT (0.16) > R+RT (0.10):
The decrease in the fraction of clustered users in R+RT graph is because of
the fact that a large fraction of them were marked as hub. This ensures that
whatever users are left have strong affiliation to the cluster.

Another disadvantage of using just R or RT Graph is that the graphs pro-
duced are very sparse. When we visualized these graphs, there were many isolated
clusters with just two nodes connected to each other. This depicts that there is a
lot of one to one communication between pairs of nodes. So we have used R+RT
Graph; R Graph to include users which are closer to each other in real-life, and
RT Graph to include users which share similar content.

4.2 Find Clusters Using WSCAN

We input the graph constructed in Subsect. 4.1 to the WSCAN approach, as
discussed in Sect. 3.2. This program produces clusters of users using weighted
structural similarity measure as given in equation (2). We have used ε = 0.45
and μ = 2 (refer to the bold text in Table 2). This is because when we consider
ε = 0.5 and μ = 2, we get very few users in clusters, as most of the users
are filtered out as hubs and outliers. This leaves very few (poor quantity), but
densely connected users (fine quality). On the other hand, when we consider
ε = 0.4 and μ = 2, we get relatively good amount of users (fine quantity) but
these users are sparsely connected (poor quality). So in order to deal with the
tradeoff between quality and quantity, we have chosen ε = 0.45 and μ = 2.
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4.3 Combine Similar Clusters

In this phase, we merge those clusters which are topically similar. For this we
extract the HashTags of all the users in a cluster and combine them to make a
document. We make document for each of the cluster produced from previous
phase. Then we use Single Pass Clustering algorithm to cluster these document
(which are basically clusters).

4.4 Expanding the Clusters (Graph Processing)

We use the output of each of the clusters produced from Subsect. 4.3 separately
as seed data for the Graph Processing phase. For a given cluster, the Graph
Processing phase basically calculates the Personalized PageRank (PPR) score
[7] of all the seeds (in that cluster) and its connected nodes. It uses the Reply
and RT features of Tweets to construct the graph, using which the PPR Score
of the seeds and their connected nodes is calculated. We use the top 3000 nodes
as per PPR Score for evaluating our result. This phase expands the nodes in a
cluster by finding its topic related nodes which increases the coverage, removes
most of the non-influential users and produces overlapping clusters.

5 Evaluation Experiments

In this section we describe the experiments conducted and their results. For
all our experiments, we have used the Japanese Twitter data for the month of
December 2015, size of which is about 1.6 TB in compressed form. From this
data, we extracted the top 3,000,000 active users (using PageRank score). We
have mostly used Hadoop, Pig, Java and Python in our implementations. The
graphs in this paper have been generated in Python using graph-tool.1

5.1 Visualizing the Process and Observing the Effects

We have generated fan clusters for four celebrities/idol groups: Arashi2, AKB3,
Hanyu4 and Yamashita5 using our approach.

Let us consider cluster Arashi. The output obtained after executing WSCAN
and Single Pass Clustering is pictorially shown in Fig. 4. Here square shaped
nodes represent the Seed nodes obtained after WSCAN and Single Pass Cluster-
ing. Different colours of the square nodes represent that they belong to different
clusters. These different coloured square nodes are combined to a single cluster
of Seed nodes (users) in the Single Pass Clustering Phase (Sect. 4.3). Figure 5
visualizes the output obtained after executing the Personalized PageRank

1 https://graph-tool.skewed.de/.
2 Arashi: A Japanese idol group.
3 AKB (AKB48): A Japanese idol girls group.
4 Hanyu (Yuzuru Hanyu): Japanese figure skater & 2014 Olympic champion.
5 Yamashita (Tomohisa Yamashita): Japanese actor, singer, and TV host.

https://graph-tool.skewed.de/
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Table 3. Impact of single pass clustering

Arashi AKB Hanyu Yamashita

Clusters merged 9 10 2 4

Seed users obtained 70 79 138 109

Fig. 4. Arashi cluster after executing
WSCAN and Single Pass Clustering.
(Color figure online)

Fig. 5. Arashi cluster after executing Per-
sonalized PageRank (Graph Processing).
(Color figure online)

(Graph Processing Phase) on the seed nodes obtained after the Single Pass Clus-
tering phase for the cluster Arashi. The yellow coloured nodes represent the seed
nodes. The green coloured nodes represent the nodes obtained after the execu-
tion of Personalized PageRank. The red coloured nodes represent the neighbours
of seed nodes which are not in the output of Graph Processing Phase. Table 3
shows the number of clusters merged by the Single Pass Clustering Phase. As
seen from the table, for Arashi, 9 clusters (shown by different coloured square
nodes in Fig. 4) were combined by the Single Pass Clustering Phase to produce
70 seed nodes. Details of other clusters can also be seen in the table.

5.2 Evaluation Design

The main problem with evaluation of the clusters is that the perfect set of users
for any of these clusters is unknown. So we use crowdsourcing for evaluating our
results. Crowdsourcing also eliminates biasing of test results.
Crowdsourcing: For Crowdsourcing, we frame the question so as to check
whether the given user is actually interested in the group or not. We have used
the topics Arashi, AKB, Hanyu and Yamashita because of the fact that these
are famous in Japan and it would be easy to do crowdsourcing. 844 people
participated in crowdsourcing. Each question was reviewed by three people. The
average of opinion of three people was taken as the answer of a question. A
sample crowdsourcing question with its options is given in Table 4.
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Table 4. Sample crowdsourcing question

Question: Is this user <https://twitter.com/twitter screen name> interested in Arashi?

1. Yes, this user is
interested

2. No, this user is not
interested

3. I don’t know 4. Cannot access the
account

We are using the output of the Graph Processing Phase for evaluation, con-
sidering the top 3000 users based on Personalized PageRank score. We are eval-
uating our approach with the following approaches:

– Normal SCAN algorithm (NS): This system uses SCAN [1]. We use the
graph constructed using Reply and RT features (same as in our approach)
of Twitter Data as input. We have used ε = 0.6 (equivalent to ε = 0.45 in
WSCAN when we consider minimum edge weight equal to 3) and μ = 2.

– RB clustering (RB): This system uses the HashTag information and its
TF-IDF as input. We extract HashTags and tokenize them to create document
for each user. So considering all the users, we have a list of documents. Then
we calculate the TF-IDF of the HashTags. This acts as the feature in RB
(Repeated Bisection) based clustering algorithm. We use Bayon6 Clustering
Tool for doing this and extract the users of concerned cluster for evaluation.

– RB Clustering followed by Personalized PageRank (RB-PR): This
system is similar as the RB system. Only difference is that, using the nodes
in the cluster (obtained from RB clustering) as seeds, we expand the cluster,
calculating the PPR Score for the seed nodes and their connected nodes (this
step finds more nodes related to the seeds). We then consider the top 3000
nodes using the PPR Score.

– Normal SCAN followed by content clustering (NS-C): This system is
a combination of Normal SCAN (NS) and Content Clustering. Here, we use
output of the NS system (described above) and perform Single Pass Clustering
technique (except that the input is SCAN clusters and not WSCAN clusters).

5.3 Evaluation Metrics

User Influence Weighted Discounted Cumulative Gain: Discounted cum-
ulative gain (DCG) is a measure of the quality of ranking of information items
such as documents and used to evaluate the ranking effectiveness of, for example,
the search engines [6]. We extended this in order that the measure takes user’s
“influenceability” into consideration because influential users are more important
in our task. We defined User Influence Weighted DCG (UIWDCG) score to
calculate the influence and topical relevance of users in our results. For this, we
have used top 3000 users obtained after Graph Processing phase for four topics.
UIWDCG score for a list of top n users is defined as:

6 https://code.google.com/archive/p/bayon/.

https://code.google.com/archive/p/bayon/
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UIWDCG(n) = g1 · log(IL(v1) + 1) +
n∑

i=2

gi · log(IL(vi) + 1)
log(i)

(3)

where gi ∈ [0, 1, 2, 3], IL(v) is the number of in-links to the vertex v representing
a Twitter user. gi is the evaluation score for vertex v at rank i, representing the
number of workers out of three who marked this user as relevant to the considered
topic, as per crowdsourcing results.

Table 5. Precision (correct seed nodes/total seed nodes) of seed nodes

Arashi AKB Hanyu Yamashita

Our approach 0.89(62/70) 0.82(65/79) 0.75(103/138) 0.86(94/109)

RB 0.75(758/1013) 0.45(36/80) 0.62(205/331) 0.90(101/111)

5.4 Results and Discussions

Figure 6 shows the average UIWDCG score of all the approaches. X-axis shows
the Number of Users considered from top while calculating UIWDCG score. Y-
axis shows the Average UIWDCG score. We have used 3 matrices to calculated
the UIDWCG score, Favorite Count, Mention Count and Reply+RT count. The
value of IL(v) varies depending upon the matrix selected. It is clear from the
graph that when we consider top 3000 users, our approach gives more influential
users than other approaches. Table 6 shows the UIWDCG score of top 100, 500,
1000 and 3000 users of each cluster for various systems considered for evaluation.
We observed the following points:

– Pure graph based approach, such as NS, is very weak, and even the least
performing one. It failed to output more than 1000 users for any topic.

– Pure content based approach RB is also inadequate and it is not comparable
with our system.

– The WSCAN step proves to be crucial one as it removes the users who either
do not belong to any topic group or the ones who belong to many groups.

– As seen in Fig. 6, although RB-PR is better in the beginning, our approach
outperforms after rank 300, finally 18.3% gain is observed at rank 3000.

– The quality of seed nodes produced is very good in our approach (ref Table 5).
– Figure 6 shows that RB has better performance than RB-PR. We conclude

that good quality seeds are imperative for the good performance of Person-
alized Pagerank. The seeds obtained from Hashtag frequency in RB-PR were
mediocre and hence, deteriorated the performance of Pagrerank. On the other
hand, seeds obtained from WSCAN were superior and hence enabled Pagerank
to perform effectively.



Scalable Twitter User Clustering Approach Boosted by PPR 483

Fig. 6. Average UIWDCG (of Arashi, AKB48, Hanyu, Yamashita) vs #Users

Table 6. UIWDCG score of the four clusters that we considered.

Technique Top 100 Top 500 Top 1000 Top 3000

Arashi

Our approach (G+C+G) 575 1832 3092 6865

RB-PR (C+G) 639 1658 2545 6006 -

NS-C (G+C) 274 413(194)a - -

RB (C) 628 1532 2214 -

NS (G) 318 787 - -

AKB

Our approach (G+C+G) 473 1564 2554 5981

RB-PR (C+G) 654 1619 2439 5333

NS-C (G+C) 193(52)a - - -

RB (C) 129(80)a - - -

NS (G) 46(15)a - - -

Hanyu

Our approach (G+C+G) 605 1807 2983 6160

RB-PR (C+G) 612 1455 2451 5223

NS-C (G+C) 238(34)a - - -

RB (C) 543 - - -

NS (G) 272(83)a - - -

Yamashita

Our approach (G+C+G) 578 1556 2282 4283

RB-PR (C+G) 575 1263 1635 3121

NS-C (G+C) 420 444(118)a - -

RB (C) 518 - - -

NS (G) 192(24)a - - -
aSince 100/500 nodes are unavailable, number of nodes given inside () are
used for calculation.
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6 Conclusions

We have proposed a scalable method to cluster Twitter Users based on their
interest looking at both the structure as well as the contents. According to
our empirical experiments using large Twitter Data, both pure structural and
content-based clustering approaches failed to gather thoroughly, the users with
certain topical interests. We have introduced the notion of constructing the graph
using Reply and RT features. We have modified SCAN [1] to incorporate Reply
and RT count as edge weights (WSCAN), the benefits of which were explained
in Sect. 3.2. The parameters of WSCAN were chosen so as to obtain few, but
influential seed data, as seen in Table 5. In order to deal with isolated clus-
ters having similar contents, we have used content-based merging using Textual
Similarity. We have illustrated the effects of this step by visualizing the graph
data (Figs. 4 and 5). The superiority of the proposed process to merge clusters
obtained by WSCAN algorithm is observed in Table 3. The Graph Processing
phase improved the coverage of our system and enabled us to obtain influential
users related to the seed data. We carried out evaluations for topical relevance of
clustered Twitter users by Crowdsourcing and observed significant improvement
over state-of-the-art approaches on both precision-recall curves and UIWDCG
measures. Our system outperforms the best performing baseline system,
RB-PR, with 18.3% gain in Average UIWDCG Score for Top 3000 Users, as
seen in Fig. 6. Possible future work includes looking into the contents in more
detail to improve the results. Also, Topic Recognition approach needs to be
improved for much better results.
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Abstract. Community mining is a vital problem for complex network
analysis. Markov chains based algorithms are known as its easy-to-
implement and have provided promising solutions for community mining.
Existing Markov clustering algorithms have been optimized from the
aspects of parallelization and penalty strategy. However, the dynamic
process for enlarging the inhomogeneity attracts little attention. As the
key mechanism of Markov chains based algorithms, such process affects
the qualities of divisions and computational cost directly. This paper pro-
poses a hybrid algorithm based on Physarum, a kind of slime. The new
algorithm enhances the dynamic process of Markov clustering algorithm
by embedding the Physarum-inspired feedback system. Specifically, flows
between vertexes can enhance the corresponding transition probability
in Markov clustering algorithms, and vice versa. Some networks with
known and unknown community structures are used to estimate the per-
formance of our proposed algorithms. Extensive experiments show that
the proposed algorithm has higher NMI, Q values and lower computa-
tional cost than that of the typical algorithms.

1 Introduction

Most real-world networks such as social, biological, and protein networks are
organized and represented well in communities [1]. In each network with a com-
munity structure, the intra-community edges are more than the inter-community
edges. Community mining seeks relevant clusters at different granular levels in
a network that could affect or explain the global behavior of a whole complex
system. Due to its importance for understanding potential functional and dynam-
ical characteristics of a network, ranging from biology and engineering to social
science and medicine, community mining has drawn widespread attention [2].

Although many algorithms have been proposed for mining community struc-
tures, Markov chain-based algorithms are widely used in the field of bioinformat-
ics due to their light-weight and easy implementation in addition to the robust-
ness of the effects of the topological noises [1,3]. And for releasing the potential
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 486–498, 2017.
DOI: 10.1007/978-3-319-57454-7 38
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of Markov clustering algorithms further, researches have optimized them from
many aspects, such as parallelization [4] and penalty strategy [5]. However, the
key mechanism (i.e., the Markov chain-based dynamic process) plays an impor-
tant role in the detected divisions and computational cost of community mining,
which attracts little attention based on our survey in this field. During the
Markov chain-based dynamic process, the flow simulation transfers in a network
based on the expanding and contracting process alternately [3]. With transition
going on, the flow within a community will flow together. In this paper, we aim
to optimize the dynamic process of MCL algorithms based on a novel biological
finding.

Biological studies have recently demonstrated the intelligence of a slime,
Physarum, which shows an ability to solve maze problems and design networks
without a central organ [6,7]. Physarum foraging behavior consists of two simul-
taneous self-organized processes: expansion and contraction [8]. Based on the
feedback system of such processes, a Physarum-inspired mathematical model
(denoted as PM) has been proposed [9], which shows an ability to accelerate the
rate of convergence and improve the searching ability of algorithms [10].

Due to the observations we show above, we find that PM and MCL have sim-
ilar flow simulations, both of which include expansion and contraction processes.
However, the contraction process of MCL is based on mapping the flow to itself.
In contrast, the contraction process of PM is implemented based on a feedback
flow between the pseudopodia and the protoplasmic fluxes. Therefore, we are
wondering can we optimize the dynamic process of MCL based on the mature
feedback system in PM.

The remaining of this paper is organized as follows. Section 2 introduces the
feature and basic steps of Markov clustering algorithm. Section 3 formulates our
proposed Physarum-inspired model in which a new feedback flow is designed.
Section 4 implements some experiments in order to demonstrate that our pro-
posed algorithm could improve the qualities of detected divisions and reduce the
computational cost of presentational MCL algorithms. Finally, Sect. 5 concludes
this paper.

2 Related Works

According to the universal definition, a Markov chain is a sequence of a random
variable X, which satisfies the Markov property. The Markov property holds that
the future state of a variable depends only on its present state and is independent
from its past states. Equation (1) describes a formulation of the Markov prop-
erty. The time-homogeneous hypothesis, which holds that the state transition
probabilities are independent from the time step ts, is a common assumption
of Markov chains. A formal description of the time homogeneous hypothesis is
shown in Eq. (2). Moreover, all possible values of X form a countable set of
“state spaces” in the Markov chain. The probabilities of state transition are
called transition probabilities.

P (Xts+1 = x|X1, ...,Xts) = P (Xts+1 = x|Xts) (1)
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P (Xts+1 = xj |Xts = xi) = P (Xts = xj |Xts−1 = xi) (2)

Following the Markov property and time-homogeneous hypothesis, Markov
chains can be reviewed as random walks on graphs, where vertices represent
the state space and edges stand for the transition probabilities. The matrices
P and M represent the transition probabilities and distribution of variables,
respectively. And a random walk with l time steps can be implemented based on
Eq. (3). An element pli,j in the matrix P l indicates the transition probability from
vi to vj with l time steps, and an element mts

i,j of mts indicates the probability
of variable i falling into status j at time step ts.

M ts+l = M ts ×
l∏

i=1

P (3)

The flow simulation of the Markov clustering algorithm is implemented by
embedding a dynamic process in such a random walk [11], in which fluxes of
vertices within a community will flow together with iteration going. Researches
have optimized Markov clustering from many aspects, such as the parallelization
and penalty strategy [4,5]. However, the Markov chain-based dynamic process,
which directly affects the qualities of detected divisions and computational cost
of MCL algorithms, attracts little attention of researchers. In this paper, we
aim to optimize the dynamic process of the Markov clustering algorithm and
maximize its potential based on the Physarum mathematical model.

3 Physarum-Inspired Markov Clustering Algorithm

3.1 Formulation of Community Mining Based on MCL

A basic assumption of MCL is a flow diffusion in a network. There are two main
processes of MCL: expanding and contracting processes, which are implemented
alternately based on two matrices (i.e., the flow distribution and canonical transi-
tion matrices) and three operators (i.e., expansion, inflation, and pruning opera-
tors) [3]. More specifically, the distribution of fluxes and the transition quantities
of the fluxes are denoted as M and T , respectively. And mi,j and ti,j represent
the flux flowing from vj to vi and the quantity of flux flowing from vi to vj in
an iteration step. The initial M and T are derived from the adjacency matrix A
of a network, i.e., M0

i,j = T 0
i,j = Ai,j/

∑
k Ak,j .

Based on the matrices M and T , a typical Markov clustering algorithm (i.e.,
R-MCL) is used to introduced the expansion, inflation, and pruning operators
of MCL. First, the expansion operator is used to spread fluxes in a network. It
is implemented by multiplying the matrix by the canonical transition matrix T ,
as shown in Eq. (4). Then, the inflation operator is used to enlarge the inhomo-
geneity and prevent M from converging to the principal eigenvector of T . Such
an operator raises every entry in M to the power of r and then normalizes the
columns as shown in Eq. (5). As all of the entries in M are less than or equal to 1,
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the inhomogeneity in each column is enlarged. In other words, this operator aims
to strengthen the strong flows and weaken the weak flows. Finally, the pruning
operator accelerates the rate of convergence and reduces non-zero entries to save
memory by removing entries under a pre-established threshold. Such thresholds
are based on the average and maximum values within columns [3].

Mst+1 = Mst × T (4)

M ts+1 =
[M ts+1

i,j ]r
∑

k[M
ts+1
k,j ]r

(5)

In each iteration of R-MCL, the expansion, inflation, and pruning operators
are executed alternately. With the iteration going on, most of the vertices will
find an attractor, to which all of their fluxes flow. Each column of M has only
one positive value when M converges. The row indexes of those positive values
are community labels of the corresponding vertices of each column. The vertices,
whose fluxes flow to the same attractor, are clustered to a community.

3.2 Phyasrum-Inspired Feedback System

Physarum is a unicellular and multi-headed slime, which has drawn more atten-
tion due to its exhibited ability to build a self-adaptive and highly effective
network for foraging [6,7]. The key mechanism of such intelligent behavior is
modeled by a mathematical feedback system (named as PM) [7,9]. This PM is
introduced as follows.

– The basic assumption of PM is an approximate Poiseuille flow of cytoplasmic
fluxes from a source (denoted as s) to a destination (denoted as d) [7]. In the
Physarum network, Li,j indicates the distance between vertices i and j. With
Di,j standing for the conductivity of ei,j and pi representing the pressure of
vi, the flux PQi,j can be expressed as shown in Eq. (6) based on the Poiseuille
law. Assuming that the capacity of all vertices is zero, the flux at each vertex
can be expressed as Eq. (7) by considering the conservation law.

PQts
i,j =

Dts
i,j

Li,j
|ptsi − ptsj | (6)

∑
i
PQts

i,j =

⎧
⎨

⎩

I0, j == s
−I0, j == d

0, others
(7)

– There is a feedback between conductivities and fluxes in PM. Bio-experiments
shows that the conductivities of tubes with lager fluxes are reinforced and that
those with smaller fluxes degenerate. Such a feedback mechanism indicates
that Di,j changes over time according to the flux PQi,j , which is expressed in
Eq. (8), with a parameter u controlling the feedback [9]. In order to provide a
clearer formulation and easier operation, we discretize Eqs. (8) to (9).
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d

dt
Di,j = |PQi,j |u − Di,j (8)

Dts+1
i,j − Dts

i,j

�ts
= |PQts

i,j |u − Dts
i,j (9)

As the total flux is kept constant (i.e., I0), there is a competition among the
edges. With the iteration going on, the crucial tubes survive while the others
disappear. Based on the preceding steps, a highly efficient feedback system is
constructed. Inspired by such feedback system, we build a novel feedback system
in MCL by simulating the interaction between the fluxes and conductivities in
PM.

3.3 Physarum-Inspired Markov Clustering Algorithm

Typical MCL is based on a flow simulation with the expansion and contraction
processes, which is similar to the Physarum intelligent behavior. In this paper,
we aim to improve the qualities of divisions and reduce the computational cost of
MCL by building a feedback system based on the biological studies of Physarum.
Specifically, the dynamic process of MCL is optimized in terms of three aspects:
(1) the Physarum-inspired inflation operator, (2) the multi-step expansion oper-
ator, and (3) the terminal condition. The following sections introduce these mod-
ifications and then demonstrate an overview of P-MCL.

– The Physarum-inspired inflation operator: In this Physarum-inspired infla-
tion operator, we add a feedback step in the wake of the original inflation
mechanism (i.e., Eq. (5)). Regarding the flow distribution matrix M and
canonical transition matrix T as fluxes and conductivities in Physarum net-
works, a new feedback interaction emerges between the distribution and tran-
sition matrices as follows. To differ the notation of canonical transition matrix
T , the Physarum-based transition matrix is denoted as PT . And inspired by
Eq. (8) in PM, the flow distribution matrix M has an effect on PT based
on Eq. (10). We further discretize the Eqs. (10) to (11) for simplifying calcu-
lation, where λ stands for the time step of discretization and u is inherited
from Eq. (8) in PM. And such two parameters collectively control the effect
of M on PT . Because the sum of each column should still be equal to 1 for a
transition matrix. After the feedback step, a normalized step is implemented
based on Eq. (12). Then PT feeds back to M based on Eq. (4) in the next
iteration step.

d

dt
PTi,j = |Mi,j |u − PTi,j (10)

PT ts+1
i,j = (1 − λ) · [M ts

i,j ]
u + λ · PT ts

i,j (11)

PT st+1
i,j =

PT st+1
i,j∑

k PT st+1
k,j

(12)
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– The multi-step expansion operator: To solve the problem of the excessive
partition of MCL [3], P-MCL also considers the effects of the flow length in
each iteration step. Based on the properties of Markov chains, a l-length flow
can be expressed as shown in Eq. (13). In general, a larger network requires
a larger l to control the number of communities.

Mst+1 = Mst ×
l∏

i=1

PT (13)

– The terminal condition: As mentioned previously, the MCL algorithms will
continue looping until the convergence of M . The maximal value of changes
among all of the entries in M can be used to estimate the change of the
whole M as well as the convergence situation. Therefore, Energy is defined
in Eq. (14). The terminal condition is that Energy drops to a predetermined
threshold.

Energyts = Max{|M ts
i,j − M ts−1

i,j | |∀j, i} (14)

– The overview of P-MCL: Fig. 1 shows an illustration of P-MCL. First,
Fig. 1(a) and (b) illustrate and contrast the similarities and differences
between PM and MCL based on their flow simulation and working mech-
anisms. Based on those similarities, Fig. 1(c) reports how to build a feedback
system in MCL based on the Physarum model.

With an interaction between the flow distribution matrix M and Physarum-
based transition matrix PT , a new feedback flow is constructed, which helps to
improve the qualities of detected divisions. In addition to the qualities of detected
divisions, computational cost is another important property of the community

Fig. 1. (a) and (b) compare and contrast the similarities and differences between PM
and MCL based on their flow simulation and working mechanisms. (c) reports how to
build a feedback relationship between expansion operator and inflation operator in the
MCL based on the feedback system between PQ and D during the foraging process of
Physarum.
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mining algorithm. And the cost of such feedback flow is the computational cost
in expansion and inflation operators. However, it could also reduce the maximal
iteration step (i.e., MI). In the next section, the computational cost of P-MCL
is discussed by both theoretical and comparison analyses for verifying the supe-
riority of P-MCL on computational cost. Comparison analyses are evaluated by
(1) the convergence rate measured based on the maximal iteration step (i.e.,
MI) and (2) the running time measured in seconds.

The pseudo-code of P-MCL is represented in Algorithm 1. As a multilevel
framework for obtaining large gains in speed is proposed in [3], we also adopt
such framework for P-MCL, denoted as MLP-MCL. More detailed information
about the multilevel framework can be found in [3].

Algorithm 1. P-MCL
Input: A network adjacent matrix A.
Output: A division result.
Step 1: A=A+I. Here, I is a unit matrix.
Step 2: Initializing M and PT .
Step 3: Implementing flows based on Eq. (13).
Step 4: Computing M ts+1 based on Eq. (5).
Step 5: Updating the PT ts+1 based on Eqs. (11) and (12).
Step 6: Deleting the elements in M ts, which is smaller than

the threshold obtained based on the pruning scheme.
Step 7: If the terminal condition is satisfied, go to Step 8.

Else go to Step 3.
Step 8: Outputting the division result.

4 Experiments

4.1 Datasets and Measurements

We use 12 real-world networks collected by Newman1, Batagelj and Mrvar2 to
evaluate the proposed P-MCL. The basic topological features of these datasets
are shown in Table 1. In this section, the comparisons conducted in networks with
known community structures are based on NMI, and the other comparisons are
based on Q. Moreover, we compare the typical MCL algorithms and some rep-
resentational algorithms (i.e., the stochastic-model-based algorithm (shortened
as Karrer [12]), page-rank-based algorithm (shortened as PPC [13]), and some
novel algorithms (e.g., Combo [15])) to evaluate the efficiency of our proposed
algorithm. In the comparison, if the compared algorithm is stochastic, the results
are based on 10 times repeated experiments.

1 http://www-personal.umich.edu/∼mejn/netdata/.
2 http://vlado.fmf.uni-lj.si/vlado/vladonet.htm.

http://www-personal.umich.edu/~mejn/netdata/
http://vlado.fmf.uni-lj.si/vlado/vladonet.htm
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Table 1. The basic topological features of the real-world networks. No represents the
used notations of those networks. k and C stand for the average degree and clustering
coefficient, respectively. #C indicates the number of communities based on ground
truth, in which N means the community structures are unknown.

No Name Vertex Edges k C #C No Name Vertex Edges k C #C

G1 Karate 34 78 4.588 0.588 2 G7 Lesmis 77 254 6.597 0.056 N

G2 Dolphins 62 160 5.129 0.303 2 G8 Adjnoun 112 425 7.589 0.190 N

G3 PolBooks 105 441 8.400 0.488 3 G9 Celegans 297 1540 9.656 0.326 N

G4 Football 115 613 10.660 0.403 12 G10 Roget 674 613 1.819 0 N

G5 PolBlogs 1490 19025 22.438 0.360 2 G11 Netscience 1589 2742 3.451 0.878 N

G6 YeastL 2361 7182 5.856 0.200 13 G12 Power 4941 6594 2.669 0.107 N

4.2 Evaluation in Network with Known and Unknown Community
Structures

NMI is used to evaluate the similarities between the divisions returned by algo-
rithms and known community structures. The more similar to the known com-
munity structure the division is, the higher NMI value the division has. And
little difference on divisions will lead to a big difference on NMI. When all the
algorithms cannot find a division with NMI = 1, the difference of NMI just
reflects part of division performances. Taking the dolphins network as an exam-
ple, Fig. 2 illustrates that the division returned by P-MCL is more close to the
known community structures, compared with R-MCL. In details, the communi-
ties divided by P-MCL are almost coincident with the known community struc-
tures. Meanwhile, R-MCL mixes the vertices belonging to different communities
together and splits the vertices of a community into several parts. Measured by
NMI, the NMIP−MCL value is 0.8888, and the NMIR−MCL value is 0.6470.

In addition, the football network is also a famous network for community
mining. As shown in Fig. 3, P-MCL can find the basic structures of the known

(b) R-MCL(a) P-MCL

Fig. 2. Division results of (a) P-MCL and (b) R-MCL in the dolphins network. The
shapes of the vertices represent the known community structures, and the colors indi-
cate the division results of the algorithms. The circle emphasizes the main difference
in the results returned by R-MCL and P-MCL. P-MCL is more accurate than R-MCL,
where the NMIP−MCL value is 0.8888, and the corresponding NMIR−MCL value is
0.6470. (Color figure online)
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(b) R-MCL(a) P-MCL

Fig. 3. Division results of (a) P-MCL and (b) R-MCL in the football network. The
positions of the vertices represent information about the known community structures,
and the colors of the vertices represent the division results generated by P-MCL and R-
MCL. According to the description of NMI, the NMIP−MCL value is equal to 0.9283,
and the NMIR−MCL value is equal to 0.8099. (Color figure online)

communities and R-MCL mixes some of the communities together, as shown
in Fig. 3(b). Moreover, the NMIP−MCL value shows an 12.83% improvement
compared with the NMIR−MCL value.

To further estimate the performance of P-MCL, a comparison among our
algorithm and others is reported in Table 2, based on NMI. The results indi-
cate that P-MCL and MLP-MCL have the highest NMI values among the
algorithms. Those results indicate that divisions returned by P-MCL and MLP-
MCL are more close to the known community structures. And due to the inherent
structures of some datasets (e.g., G3 and G5), all the algorithms cannot find the
division with higher NMI. However, the proposed P-MCL and MLP-MCL still
have the highest NMI values on those datasets.

Table 2. Comparison of community mining in networks with known community struc-
tures in terms of NMI. The results show that MLP-MCL and P-MCL have better
NMI values and exhibit a significant improvement compared with MLR-MCL and
R-MCL.

NET ALG

Combo Karre PPC R-MCL MLR-MCL P-MCL MLP-MCL

G1 68.73 83.72 70.71 83.65 83.65 100 100

G2 57.15 88.88 57.92 64.70 64.70 88.88 88.88

G3 56.03 54.20 57.30 52.50 52.50 59.23 56.86

G4 89.03 87.06 85.61 80.99 80.99 92.83 92.42

G5 39.37 46.66 39.39 38.52 38.41 39.58 38.58

G6 14.60 6.43 16.54 23.34 17.58 35.18 32.5



An Enhanced Markov Clustering Algorithm Based on Physarum 495

Table 3. Comparison results in networks with unknown community structures in
terms of Q. The greater the modularity Q is, the better the community structure
obtained. The results show that P-MCL and MLP-MCL have better modularity values
and exhibit a significant improvement compared with R-MCL and MLR-MCL.

NET ALG

Combo Karre PPC R-MCL MLR-MCL P-MCL MLP-MCL

G7 0.560 0.457 0.454 0.465 0.465 0.615 0.654

G8 0.302 −0.104 0.255 −0.112 −0.112 0.376 0.367

G9 0.555 0.249 0.374 0.128 0.128 0.496 0.555

G10 0.936 0.008 0.933 0.924 0.946 0.956 0.952

G11 0.959 0.640 0.779 0.962 0.880 0.971 0.966

G12 0.939 0.179 0.930 0.814 0.773 0.913 0.902

As not all real-world datasets have known community structures, for the
datasets with unknown communities, the modularity Q is widely used to evaluate
the qualities of hard division results [14]. The modularity values of the division
results are listed in Table 3. As shown in the table, P-MCL and MLP-MCL have
the higher Q values in all of the networks and the highest Q values in five of
eight datasets. In general, these results verify that the proposed algorithm could
improve the qualities of divisions returned by Markov clustering algorithms, in
term of Q.

4.3 Computational Cost

The analysis of computational cost in this paper includes two parts: (1) theoret-
ical analysis, denoted by big-O notation, and (2) comparison analysis, including
running time in seconds and a coverage rate measured by the maximal iteration
step (i.e., MI) defined in the over view of P-MCL.

The whole time complexity of P-MCL consists of three parts used to imple-
ment expansion, inflation, and pruning operators. The time complexity of the
expansion operator, including the matrix multiplication, is O(

∑n
i=1 d2i ). Using k

to indicate the average degree of vertexes, it can be expressed as O(nk2). And
generally speaking, k is much smaller than n. Moreover, the time complexities
of the inflation and pruning operators are both O(m). As m < n2, the total
worst time complexity of P-MCL is presented as O(MI × (nk2 + m + m)) =
O(MI × n(k2 + n)), where MI is the maximal iteration step. The expression of
complexity of P-MCL is similar to those of other Markov clustering algorithms,
such as R-MCL. The key factor in the complexities of the Markov clustering
algorithms is MI. However, it is difficult to estimate MI universally. A compar-
ison of MI between R-MCL and P-MCL is reported in the following discussions
to demonstrate that the proposed feedback system can reduce MI significantly.

Besides theoretical analysis, two kinds of numerical comparisons are imple-
mented to analyze time complexity. First, the comparison on MI is shown in
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(a) (b)

Fig. 4. Dynamic Energies of P-MCL and R-MCL in (a) G5 and (b) G11 networks. As
shown in (a) and (b), EnergyP−MCL has a higher descent rate and a smaller fluctuation
than EnergyR−MCL, which results in a lower maximal iteration step.

Fig. 4, which reports the dynamic Energies of R-MCL and P-MCL in increments
of iteration steps. As shown in Fig. 4(a) and (b), the EnergiesP−MCL drop faster
in the G5 and G11 networks and satisfy the terminal condition within fewer iter-
ation steps, compared with R-MCL. Those results demonstrate the proposed
feedback flow has an ability of reducing the maximal iteration step. However,
the computational cost of MCL is based on the time cost of operators and the
maximal iteration step comprehensively. Thereby, we further compare the run-
ning time of R-MCL and P-MCl in Table 4, which shows the computation cost
comprehensively and directly. According to this table, P-MCL has lower com-
putational cost in seven datasets. Because our proposed algorithm increases the
computational cost in each iteration step, but reduces the MI from a whole per-
spective. Therefore, the gaps between the running time of R-MCL and P-MCL
are not notable in the small networks. But, with the increment of network scales,
P-MCL shows a significant superiority.

Table 4. Running time of R-MCL, P-MCL in twelve real-world networks with different
scales in seconds. In most datasets, P-MCL has a lower running time than that of
R-MCL. The boldface indicates better results.

ALG NET

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

R-MCL 0.01 0.02 0.12 0.05 0.12 1195.60 0.03 0.31 0.24 2.43 12.83 888.25

P-MCL 0.04 0.03 0.12 0.09 0.10 221.42 0.07 0.20 0.53 1.62 3.77 366.53
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5 Conclusion

Markov clustering algorithm is an effective method for us to detect the com-
munity structure of a network. By mapping the flow distribution and transition
matrices in a MCL to the cytoplasmic fluxes and conductivities of tubes in the
Physarum network respectively, this paper proposes an enhanced Markov clus-
tering algorithm, denoted as P-MCL. The new algorithm aims to optimize the
dynamic process of MCL through constructing a feedback between the expan-
sion and inflation operator in MCL. Some experiments have shown that our
proposed algorithm can improve the qualities of detected divisions in terms of
Q and NMI, and reduce the computational cost.
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Abstract. Social coding sites (SCSs) such as GitHub and BitBucket
are collaborative platforms where developers from different background
(e.g., culture, language, location, skills) form a team to contribute to a
shared project collaboratively. One essential task of such collaborative
development is how to form a optimal team where each member makes
his/her greatest contribution, which may have a great effect on the effi-
ciency of collaboration. To the best of knowledge, all existing related
works model the team formation problem as minimizing the commu-
nication cost among developers or taking the workload of individuals
into account, ignoring the impact of geographical location of each devel-
oper. In this paper, we aims to exploit the geographical proximity factor
to improve the performance of team formation in social coding sites.
Specifically, we incorporate the communication cost and geographical
proximity into a unified objective function and propose a genetic algo-
rithm to optimize it. Comprehensive experiments on a real-world dataset
(e.g., GitHub) demonstrate the performance of the proposed model with
the comparison of some state-of-the-art ones.

Keywords: Team formation · Geographical location · Social coding
sites · Genetic algorithm

1 Introduction

With the prevalence of social networks in the world, social coding sites (SCSs)
such as GitHub1 and BitBucket2 are changing software development toward
a more collaborative manner by the way of integrating social media function-
ality and distributed version control tools. In SCSs, developers with different
background (e.g., culture, language, location, skills) form a team and work col-
laboratively to contribute to a project, dramatically enhancing the efficiency of
1 https://github.com.
2 https://bitbucket.org.
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Fig. 1. Schema of developers’ profiles and their corresponding skills in GitHub. The left
part represents the geographical information of developers; the middle part represents
a heterogeneous network among users and skills which can be constructed based on
the collaborative development records of developers; the right part represents that each
skill of developers can be extracted from his/her contributed projects in GitHub.

development when compared with individual development. One essential task of
collaborative development is how to form a optimal team where each member
makes his/her greatest contribution, which may have a great effect on the effi-
ciency of collaboration. We called this kind of task as team formation problem.

There have been several related works [2,7,10,11,13] that try to address
the team formation problem from different perspectives. In [10,13], the authors
define several kinds of communication cost among teams and try to minimize the
cost function. For example, the communication cost can be defined as the longest
shortest path between any experts in team, the weight cost of the minimum
spanning tree for subgraph, and the sum of all shortest paths between any two
experts in team. This line of work optimize the team form the perspective of
network structure of team. On the other hand, several works [2,7,11] take other
factors such as the skill level, workload of individuals into account. The authors
in these works aim to balance the workload of performing the tasks among people
in the fairest possible way, on the condition that the required skills are covered.
To the best of our knowledge, no existing work consider the geographical factor to
boost the team formation performance especially in social coding sites. Where
some works [17,18] demonstrate the importance of geographical proximity in
some specific domain such as knowledge production and technological innovation.
We believe that the geographical proximity may also affect the collaboration
between developers in collaborative software development, and it is desirable to
exploit the geographical proximity factor to improve the performance of team
formation in social coding sites.

Based on this intuition, our paper proposes to integrate the conventional com-
munication cost and geographical proximity for team formation in social coding
sites such as GitHub. The challenges of our paper lies in two fold. (a) How to
encode the geographical information of developers into our model. In our GitHub
scenario, the developer declares his/her location attribute via a string. It is chal-
lengable to determine the impact of geographical information for team formation
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and then encode it mathematically (e.g., via calculating distance according to
latitude and longitude or encoding it into time zone). (b) How to incorporate
the geographical information and communication cost into a unified objective
function and solve the optimization problem. The optimization problem in team
formation issue has been proven to be NP-hard, it is challengable to devise a
heuristic approach to solve the optimization problem.

To achieve this goal, in this paper, we firstly define the team formation task as
finding a team of developers that cover the required skills while minimizing both
the communication cost and geographical proximity, given a collaboration net-
work and a task with a set of required skills where each skill is associated with a
specific number of developers. Then, we incorporate the communication cost and
geographical proximity into a unified objective function and propose a genetic
algorithm to optimize it. Furthermore, we conduct comprehensive experiments
on a real-world dataset to verify the effectiveness of our proposed model. Figure 1
gives an overview of developers’ profile with geographical information and their
corresponding skills which can be extracted from their contributed projects in
GitHub. We can also note that a heterogeneous network among users and skills
can be constructed based on the collaboration between users (see Sect. 3).

The main contributions of this paper are summarized as follows:

– To the best of our knowledge, this work is the first attempt to improve the
performance of team formation in social coding sites by taking both commu-
nication cost and geographical proximity into consideration.

– We incorporate the communication cost and geographical location cost into a
unified objective function and propose a genetic algorithm to optimize it.

– We crawl 36,701 users and 3,532,453 projects from GitHub as a real-world
dataset to evaluate the performance our approach. Comprehensive experi-
ments show the effectiveness of our model with the comparison of other base-
line models

Organization. The remainder of this paper is organized as follows. In Sect. 2,
we survey some works related to this paper. Section 3 shows some preliminaries.
Section 4 presents details of our proposed geographical location aware model for
team formation in social coding sites. Section 5 describes the real-world dataset
(e.g., GitHub) we use in our experiments. Experimental results and analysis
are shown in Sect. 6. Finally, we conclude this paper and propose some future
directions in Sect. 7.

2 Related Work

Team Formation. The team formation problem is majorly studied in the field
of collaborative social networks since it has an effect on the efficiency of col-
laboration. Lappas et al. [13] are the first to address the issue of social team
formation by considering the communication costs for organizing a team. They
also prove the team formation problem is NP-hard. Based on the perspective
of communication cost, some variants have been derived. In [10], Kargar et al.
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improve the communication cost function based on the sum of distances and
leader distance. Ashenagar et al. [3] devise a new method to determine the
distance between pairs of experts. Besides considering the communication cost
between users, some other factors such as the cost of individuals [11,12] and the
workload balance of team are also considered [1,2]. Majumder et al. [15] account
for capacity constraints in the team formation problem so that no user is over-
loaded by the assignment. Farhadi et al. [7,8] suggest a skill-grading method
to measure for the skill level of experts. Yang and Hu [19] propose a new cost
model to solve team formation with limited time. Bhowmik et al. [4] take the
Submodularity method to find a team of experts by relaxing the requirement
of skill. Li and Shan [14] generalize the team formation problem by associating
each required skill with a designated number of experts. Although many other
factors have been considered, the geographical location of developers in social
coding sites is not been considered yet.

Geographical Location. Another line of research which are related to our
paper is on exploiting the geographical location. Lots of literature suggest
that geographical proximity is playing an increasing important role in many
domains in spite of rapid development in telecommunications technology. In
[17], the authors demonstrate that the geographical proximity in the creation of
economically-useful knowledge appeared to be becoming even more important.
Soon and Storper [18] analyze patent citations and found that in contemporary
knowledge production and innovation the role for geographical proximity was
increasing. Ponds et al. [16] analyze the role of geographical proximity for col-
laborative scientific research and confirmed its significance. Brocco and Woerndl
[5] propose two different ways to integrate location using spatial operations and
utilize the location-based solution to support team composition in different com-
puter gaming scenarios.

3 Preliminaries

We present the social coding network as an undirected graph G = (V,E,w).
Each vertex in V denotes an expert and the weight of each edge in E represents
the communication cost between a pair of experts. We assume that (u, v) is an
edge if developers u and v have participated in common projects before, and
the weight of the edge is related to the fraction of projects they have worked on
together, which is calculated by

w(u, v) = 1 − |Nu ∩ Nv|
|Nu ∪ Nv| (1)

where Nu and Nv is the set of projects in which u and v are listed as contributors
respectively. The communication cost is the sum of weights on the shortest path
between two developers in G. The lower the communication cost is, the more
easily they can collaborate with each other. If two experts are not connected in
G(directly or indirectly), the communication cost between them is ∞. Consider
the social coding network in Fig. 1, the communication costs between a and b,
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a and c are 0.2, 0.4, respectively. In the social coding network, each developer
possesses some skills such as programming languages. And each skill is related
to some projects.

The geographical proximity is the distance between two regions, such as
cities, countries and so on. It is related to the differences in culture, work habits
of developers and so on. In order to quantify the geographical proximity between
two developers, we extract the country of every developer, and define the geo-
graphical proximity between them as follows:

gp(u, v) =

{
0, If u and v in he same country
1. Otherwise

(2)

For example, in Fig. 1, the geographical proximity between a and b, a and e are
0, 1 respectively.

Definition 1 (Team of Developers). Given a social coding site and a project
P with some requirement of skills (e.g. programming languages), a team of devel-
opers for P is a set of developers who can meet the requirement of P .

4 Location-Aware Model for Team Formation

In this section, we will model communication cost and geographical proximity,
and then state the team formation problem followed by introducing the genetic
algorithm based approach for solving the problem.

4.1 Model the Communication Cost

To evaluate the communication cost among the developers in a team T , we take
the sum of communication costs among the selected developers of a team defined
as follows, which is the same as [10].

Definition 2 (Sum of Communication Costs). Given a social coding net-
work G whose edges are weighted by the communication cost between two devel-
opers and a team T of developers from G, the sum of communication cost of T
is defined as

SCC(T ) =
n∑

i=1

n∑
j=i+1

cc(ei, ej) (3)

where cc(ei, ej) is the communication cost of developer ei and ej (as defined
earlier).

4.2 Model the Geographical Location

Based on the perspective of sum of communication cost, to measure the geo-
graphical proximity of the team of experts, we define the sum of geographical
proximity of a team as follows:
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Definition 3 (Sum of Geographical Proximity). Given a team T of expe-
rts, where each having a location code, the sum of geographical proximity of T is
defined as

SGP (T ) =
n∑

i=1

n∑
j=i+1

gp(ei, ej) (4)

where gp(ei, ej) is the geographical proximity between expert ei and ej which as
defined above.

4.3 Objective Function

For finding a team of developers from a social coding network that minimize
the sum of communication cost as well as the sum of geographical proximity, we
combine the two objective functions into a single one to convert the bi-objective
optimization problem into a single objective problem and define a new combined
cost function as follows which is based on the linear combination of the sum of
communication cost and sum of geographical proximity.

Definition 4 (Combined Cost Function). Given a collaboration network
and a trade-off λ between the sum of communication cost and sum of geographical
proximity, we define the combined cost of the team T as

ComCost(T ) = (1 − λ) × SCC(T ) + λ × SGP (T ) (5)

The parameter λ varying from 0 to 1 indicates the tradeoff between sum of
communication and sum of geographical proximity.

Given the combined cost function, we now formally define the team formation
problem in social coding networks as follows:

Team Formation by Minimizing the Combined Cost. Given a social cod-
ing network G(V,E,w) where the developers are associated with specified skills,
a project P with requirements of skills, the aim of team formation by minimizing
the combined cost is to find a team T ⊆ V so that each skill in P will be cov-
ered by the specified number of developers, each developer will cover and only
cover one skill, and the combined cost ComCost(T ) defined in 4 among selected
experts are as minimum as possible.

4.4 GA-based Optimization

Since the team formation by minimizing the combined cost is an NP-hard prob-
lem, we employ an genetic algorithm to find an optimal solution for the team
formation problem in the context of social coding networks. The details of GA-
based model are presented in the following subsections.

Encoding. We consider each candidate team as a chromosome and each devel-
oper in the team as a gene. So each candidate team is a linear vector and com-
poses of several partitions where each one represents a skill. An example of
candidate team with four required skills is represented in Fig. 2.
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Fig. 2. An example of representation of the candidate team with four required skills

Initialization. The random method to generating the initial population ensures
a good level of genetic diversity in the population and thus prevents the pre-
mature convergence of the algorithm [6,9]. So we take the random method to
randomly generate the initial candidate teams fulfilling the requirement posed
by the projects.

Genetic Operators. Crossover, mutation and selection are the three main
types of genetic operators. They must work in conjunction with one another to
ensure the success of the algorithm.

– Crossover. The crossover operator aims to preserve and combines the best
characteristics of the parents to evolve better solutions [6,9]. We have applied a
two-point crossover here with the probability Pc to generate two new offspring
solutions.

– Mutation. This operator is applied to the encoded solutions with the prob-
ability Pm to introduce genetic diversity into the population. In this paper,
we have applied two types of mutation operators - substitution mutation and
swap mutation. The substitution mutation operator involves the selection of
a developer in a team with skill sm, and replacing him with a developer at
random from support set of sm. Swap mutation operator randomly selects a
developer from the team and swaps him with one in the team who covers the
skill in his skill set at current.

– Selection. The new population at generation k +1 is generated by the appli-
cation of genetic operators at generation of k. We combine elitism and tourna-
ment to complete the selection, which means that the best teams in generation
k are automatically transferred to the population of generation k +1, and the
rest teams will be chosen as the parents by the tournament method to generate
new teams.

Sometimes, crossover and mutation operators may produce infeasible solu-
tions. The reparation strategy is designed to ensure the new team is feasible.

Evaluation. We apply the opposite number of combined cost as the fitness
function to simultaneously optimize the sum of communication cost and sum of
geographical proximity.

5 Dataset

In our paper, we conduct experiments on a real-word dataset from GitHub, which
is one of the most popular social coding sites and has gained much popularity
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(a) Top 10 countries (b) Location diversity distribution

Fig. 3. An overview of geographical location distribution of GitHub developers. (a)
Top 10 countries with the largest number of developers. (b) Distribution of location
diversity distribution, considering the composition of teams.

among a large number of software developers around the world. In GitHub,
users are encouraged to contribute to a share project collaboratively, which is
coincided with our scenario of team formation.

GitHub publicizes its data via APIs. Crawling GitHub website by its API, we
get 28,362,019 projects, 15,647,255 users and make out the relationships between
them. We then filter out users who provide the geographical location information
and obtain 36,701 users and 3,532,453 their contributed projects. Constructing
the network by the way described in Sect. 3, we get 1,610,072 edges. Considering
the programming languages of project as required skills, we obtain 273 distinct
skills.

Figure 3 presents an overview of geographical location distribution of GitHub
developers. Figure 3(a) lists the top 10 countries with the largest number of
developers. From this figure, we observe that more than a third of developers are
from the USA, accounting for the largest part. The following parts are developers
from UK and China, which are also within our expectation. Figure 3(b) shows the
distribution of location diversity distribution in terms of the number of countries
the developers come from in composing a team. In this figure, we observe in most
teams (nearly 55%), the developers come from no more than one or two countries.
And the situation that members are from many different countries is uncommon.
This phenomenon just verifies our intuition.

6 Experiments

6.1 Experimental Setup

For all experiments, we set the number of skill k = 2 and λ = 0.5. For GA
algorithm, we set the population size as 200, the number of generation as 100,
the crossover probability as 0.2 and runs for 10 iterations for each experiment.
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Evaluation Metrics. For evaluation, three evaluation metrics which are com-
monly adopted in conventional studies are used in this paper. The three evalu-
ation metric are listed as follows:

– Sum of Geographical Proximity. This metric measures the geographical
proximity of the team. It reveals how closely the developers of the team in
terms of geographical location.

– Sum of Communication Cost. This metric measures the communication
cost of the team. It reveals the efficiency of the communication between devel-
opers. It is also taken as an evaluation metric in some previous works.

– Combined Cost. This metric is the combination of sum communication cost
and sum of geographical proximity.

Performance Comparison. By following [11], we compare our proposed model
against the following three baselines.

– Random Algorithm. Random algorithm randomly creates 1,000 teams and
selects the one with the minimal combined cost for the required set of skills
as the optimal team.

– Approximation Rare Algorithm. Approximation rare algorithm selects
the skill with least supporters as the initial skill. Firstly, an expert with the
initial skill is selected as a seed expert followed by an expert added with the
minimum communication cost to the seed expert with each of other required
skills into the team. Then, the team with the minimum costs is selected among
the entire candidate teams.

– Minimum Cost Contribution Rare Algorithm. MCC-rare algorithm
chooses an expert with the skill who has rarest supporters as the initial mem-
ber of candidate team, and then adds a new team member by considering its
communication cost in comparison to all current team members.

All the experiments in this paper are implemented with Python 2.7, and run
on a computer with an 2.2 GHz Intel Core i7 CPU and 64 GB 1600 MHz DDR3
RAM, running Debian 7.0.

6.2 Experimental Results

Figure 4 shows the performance of different models on different metrics. From
this figure, we have the following observations:

– On the sum of geographical proximity evaluation metric, the proposed GA-
based model achieves better performance, random algorithm gets the worst.
This is because the GA-based model considers the sum of geographical prox-
imity during the process of finding a optimal team. Other three algorithms do
not consider the geographical proximity factor.

– On the sum of communication cost evaluation metric, the proposed GA-based
model also achieves better performance and random algorithm worst. This is
because GA-based model has a larger search space while MCC-Rare algorithm
and approximation rare algorithm has a smaller one. The random algorithm
do not consider the sum of communication cost factor.
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Fig. 4. Performance comparison. Fig. 5. Convergence of GA.

(a) SGP (b) SCC (c) ComCost

Fig. 6. Impact of number of skills.

– On the combined cost evaluation metric, the proposed GA-based model
also achieves better performance. This is because GA-based algorithm con-
sider both the sum of graphical proximity and sum of communication cost.
MCC-Rare algorithm and approximation rare algorithm consider communica-
tion cost only. The random algorithm only covers the basic requirements of
projects, including neither geographical proximity nor communication cost.

6.3 Parameter Analysis

Impact of Number of Skills. In our model, the number of skills controls the
team size. To study the impact of skills number on the performance, we set skills
number k ⊆ {2, 4, 6, 8, 10}. And for each k, we generate 10 random projects to
take the average result. The experimental results are show in Fig. 6. Figure 6(a)
shows that all algorithms will get high sum of geographical proximity with the
increasing of task number. But proposed GA-based model can always achieve
better performance on sum of geographical proximity. The similar are Fig. 6(b)
and Fig. 6(c), where all algorithms will get high sum of communication cost and
combined cost with the increasing of skills number. Our proposed GA-based
model always achieve better performance.
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Impact of Iterations. In our model, the iterations is directly affect the search
result. To study the impact of iterations, we set the task number to 2 and gen-
erate 10 random projects to track the convergence of the algorithm. The exper-
imental results are show in Fig. 5. As we can see from the result, the proposed
GA-based model can converge after 20 iterations when the task number is 2.

7 Conclusion and Future Work

In this paper, we exploit the geographical location of developers to boost the
performance of team formation in social coding sites. We incorporate the com-
munication cost and geographical proximity into a unified objective function and
propose a genetic algorithm to optimize it. Experiments on a real-world dataset
(e.g., GitHub) illustrate the effectiveness of our proposed approach.

In our future work, we plan to investigate the impact of social media on
the performance of team formation. For example, we can also take the social
network of developers in social media (e.g., Twitter) into consideration to boost
the performance of team formation. Furthermore, we will exploit the interaction
patterns for the accurate interpretation of link strength between developers.
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Abstract. The study of small collaborations or teams is an important
endeavor both in industry and academia. The social phenomena respon-
sible for formation or evolution of such small groups is quite different
from those for dyadic relations like friendship or large size guilds (or
communities). In small groups when social actors collaborate for various
tasks over time, the actors common across collaborations act as bridges
which connect groups into a network of groups. Evolution of groups is
affected by this network structure. Building appropriate models for this
network is an important problem in the study of group evolution. This
work focuses on the problem of group recurrence prediction. In order
to overcome the shortcomings of two traditional group network model-
ing approaches: hypergraph and simplicial complex, we propose a hybrid
approach: Weighted Simplicial Complex (WSC). We develop a Hasse dia-
gram based framework to study WSCs and build several predictive mod-
els for group recurrence based on this approach. Our results demonstrate
the effectiveness of our approach.

1 Introduction

With the advent of high-speed internet, collaborations are no longer restricted
by physical proximity. A group of individuals, irrespective of their demographics
or location, can perform a task online. This task might be writing software code
(or a Wikipedia article or a Google Doc) by a group of coders (or editors), or can
be a business meeting involving video chat with colleagues. Understanding the
dynamics of such small (social) groups is of increasing research interest in various
sub-disciplines in the social sciences [8], and is of interest to applications that
require high efficiency and robustness in the performance of human groups [5].

This paper addresses the problem of group evolution, with specific focus on
understanding the causal factors driving the evolution. The overall objective is
to build a model that can predict how a group will evolve in the future, based
on its history. One aspect of special interest is group recurrence, which can be
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 511–523, 2017.
DOI: 10.1007/978-3-319-57454-7 40
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stated thus: Which group(s) (or its subgroup(s)) among the groups observed so
far, will continue to function as a group, i.e. perform some task again in the
near future?

Prior studies have demonstrated the significance of recurrence in network
structure (see [15] and references therein). Most work on group evolution in social
networks focuses on the evolution of arbitrary size communities or groups [7].
The sizes of these groups are usually large and the boundaries of the community
depends on the definition of membership used. In this paper we study well-
defined small groups which typically have size ≤20. A key difference between
large groups and small groups is that membership in the former is largely based
on identity, i.e. a member identifying himself with the group. In contrast, a
small group is defined principally by the (regular) interaction between group
members, often driven by some purpose, professional or personal. The focus of
this paper is to study the evolution of small groups and, in contrast to classical
social science literature, the objective is to build models that can predict future
behavior, with the final goal of identifying potential causal mechanisms for small
group evolution.

In contrast to prior work, we highlight the distinct nature of small groups
and develop models inspired from social science theories of small groups [8]. A
group can be formed depending on the requirement (fiat teams) or a set of actors
can make an autonomous decision to work together (self assembly [3]). In either
case, individuals find it easier to work with familiar actors [5], making frequency
of activity by a group an important metric. Also, over time, actors build new
relationships while working in different groups. A shared collaboration history
is therefore created, where the same individuals are part of multiple groups,
acting as bridges between groups, and resulting in a network of groups (NOG)
(Fig. 1). This is the network perspective of small groups [6] where the network
of groups plays a central role in the group formation process. Moreover, group
formation motives and group communication processes, which are task centered,
are very different from those involved in building friendship ties in a friendship
network or joining a community, e.g., joining a news interest group, being part of
a Facebook community, subscribing to a Youtube channel, or publishing within
a particular research discipline. Recently, some attempts have been made to
model networks as higher order relational structures such as simplicial complexes
[9] and hypergraphs [10]. A hypergraph is a generalized graph where edges,
now called hyperedge, instead of representing a relationship between a pair of
vertices, represent a relationship between a set of vertices. If the relationship
holds for every subset of the hyperedge, the hypergraph is called a simplicial
complex. Although hypergraphs are more general, if the problem or the data
has a special structure then simplicial complexes are more appropriate. For the
group recurrence problem, we need to predict recurrence of not just observed
groups but also the subgroups. Thus, simplicial complexes are more applicable
to our problem.

For the group recurrence problem we also want our model to capture any prior
knowledge associated with each group or subgroup that might indicate cohesion
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among group members, or the context associated with the group. We use the
concept of a weighted simplicial complex, which is a simplicial complex where
each simplex has a prior weight associated with it. We develop several schemes
to generate these prior weights, modeling different prior knowledge scenarios.

We observe that a simplicial complex, from a frequent pattern mining per-
spective [1], is the trivial set of all the frequent patterns of frequency equal to
one, mined from the transactions database of hyperedges. This motivates the use
of a Hasse diagram (Fig. 1) [11] (similar to enumeration trees in pattern mining)
as a graph representation for the simplicial complex. If we associate a weight
with each node (representing simplicies) of the Hasse diagram it represents a
weighted simplicial complex. We hypothesize that the topology of these groups
plays a critical role in how past occurrences influence future occurrences of other
(sub)groups.

Using the Hasse diagram, we apply a modification of the HyperPrior algo-
rithm [12], for generating label diffusion-based machine learning models, as
well as develop hierarchical label spreading algorithms for recurrence predic-
tion. These algorithms make use of the weighted simplicial complex topology
while exchanging the occurrence information between the subgroup nodes in
the Hasse diagram. Our experimental analysis, conducted using the DBLP and
EverQuest II datasets, shows the efficacy of the techniques developed. The main
contributions of this study are:

– We present machine learning models to predict recurrence of already observed
groups, which takes into account the higher order topology.

– We present a Hasse diagram-based framework to study simplicial complexes,
hypergraphs, and frequent pattern mining in a unified manner.

– We show that frequent patterns can be considered as topological entities, with
relationships between them guided by higher-order topological properties. To
the best of our knowledge this has not been done before.

The rest of the paper is structured as follows. In Sect. 2 we describe the
models of network of groups and the problem statement. Methods proposed are
illustrated in Sects. 3 and 4 has experimental analysis.

2 Problem Statement and Preliminaries

2.1 Models for Network of Groups

We have a set of n actors V = {v1, v2, ..., vn}. A subset of these actors can form
a group. We have a collection of m such groups observed in the past, denoted
by G = {g1, g2, ..., gm} where gi ⊆ V represents the ith group. The cardinality
ci = |gi| of a group is the number of actors in it. We let R(g) denote the number
of times group g ∈ G has occurred. The network of groups can be modeled as a
hypergraph [2] H = (V,G) where the observed groups G are the hyperedges over
the vertex set V of actors. We denote by Si = {sik,∀k ∈ {1, 2, ..., 2|gi|−2}} the set
of all proper subsets of each group gi ∈ G. If we consider the union of all subsets
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Fig. 1. Example illustrating a network of groups hypergraph (left) as a simplicial com-
plex (right) and as a Hasse diagram (middle) corresponding to the simplicial complex,
for a scenario where the actors {1,2,3,4,5} have collaborated in the past as groups:
g1 = {1, 2}, g2 = {1, 2, 3, 4} and g3 = {3, 4, 5}.

of the sets in G along with G itself, i.e., C = {G ∪ (
⋃m

i=1 Si)}, then we have
a (abstract) simplicial complex C and each element c ∈ C is a simplex which
represents a group or subgroup. If we also associate a weight W (c) ∈ R,∀c ∈ C,
then we attain a weighted simplicial complex ♦ = (C,W ). For convenience we
also define the set containing the subgroups in C that were never observed in the
past, i.e., Cs = {c|(c ∈ C) ∧ (c 	∈ G)} = (C − G). Each c ∈ Cs also has a set of
groups Q(c) ⊆ G, of which it is a subgroup of, i.e., Q(c) = {x|(x ∈ G)∧(c ⊂ x)}.
We define an occurrence function O which gives the occurrence count to all the
groups in C as follows:

O(c) =

⎧
⎪⎪⎨

⎪⎪⎩

R(c) +

( ∑
x∈Q(c)

R(x)

)
when c ∈ G

∑
x∈Q(c)

R(x) when c ∈ Cs

(1)

In words, for an observed group we simply take the number of times it has
occurred, R(c), and also add the counts of the groups it has been a subset of.
In the case of subgroups (those groups that haven’t occurred in the past) we
simply add the counts of the groups it has been a subset of. For a simplex (or
(sub)group) α ∈ C we define its dimension as dim(α) = |α| − 1. If Kmax is
the maximum cardinality of any simplex in C then (Kmax − 1) is the maximum
dimension of any simplex in C or simply the dimension of C.

The set of simplices of cardinality k within the simplicial complex C are
defined by the set: πk = {σ|σ ∈ C ∧ |σ| = k},∀k ∈ {1, ...,Kmax}. For the
example in Fig. 1, C = {C1, ...., C19}, G = {g1, g2, g3} = {C6, C19, C18} and
Cs = (C − G).

We also define a Hasse diagram, T , for the simplicial complex C. The level in
the diagram (Fig. 1) determines the poset relation. We use the undirected graph
derived from the Hasse diagram T over the vertex set V (T ) = C and with a set of
undirected edges E(T ) = {(x, y)∪(y, x)|(x, y ∈ V (T ))∧(y ⊂ x)∧(|y| = |x|−1)}.
In the case of a weighted simplicial complex ♦ = (C,W ), we associate with each
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vertex the weight of the corresponding simplex it represents, i.e., W (v),∀v ∈
V (T ). Note, we can also associate a weight with the edges but in this study we
assume all edges have a unit weight. We denote A to be the adjacency matrix
of size (|C| × |C|) associated with the graph T .

2.2 Problem Statement

We are interested in prediction of groups formed by two processes: group recur-
rence and subgroup recurrence. In group recurrence, a group gi ∈ G, called a
recurring group, observed in the past can again occur in the future. Our first
problem is to predict a score for each of the groups in G. This score reflects the
possibility of the given group occurring again in the future. In subgroup recur-
rence, a group ci ∈ Cs which has never been observed as a group in the past,
might occur in the future. We refer to such groups as recurring subgroups. Our
second problem is to predict a score for each of the groups in Cs, which reflects
its possibility to be formed in future. We restrict ourselves to the prediction of
only the recurring groups and subgroups and not groups composed of entirely
new actors.

3 Methods

In this section, we first enumerate several ways of assigning prior weights. We
then describe three different methods (along with several variants) to solve the
problems described in the previous section. Each method models the tendency
of a given group to be formed in the near future by assigning a score S(c) to
each group in c ∈ C, returning a final vector of scores S. The first method uses
a simple group count-based approach and the next two methods consider the
hierarchical structure of the higher order topology within the Hasse diagram.

3.1 Schemes for Assigning Initial Weights

Several studies on small groups have shown that social actors tend to collaborate
with actors with whom they have already developed strong working relationships
[5] and that repeated ties within a group positively affect its performance [3].
There are a number of ways to assign a prior weight to represent the strength
of the relationships between group members. Kapoor et al. [4] defined several
weights for the problem of node centrality, of which we utilize two. The first,
shown in (2), corresponds to a frequency-based definition and simply counts
the number of times a group has performed some task together. The second,
shown in (3), enforces that the average attachment of any two individuals (or
the attention span of a member towards each other member) in a group decreases
in proportion to the size of the group.

W(c) = O(c), ∀c ∈ C (2) W(c) =
log(O(c)) + 1

|c| , ∀c ∈ C (3)
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The weights in (2) and (3) initialize all groups (observed) as well as subgroups
(unobserved), i.e., all the simplices. We, therefore, also design slightly different
variants where we only initialize the observed groups, which emphasizes the
hypergraph model of the network:

W(c) =

{
O(c) if c ∈ G

0 if c ∈ Cs

(4) W(c) =

⎧⎨
⎩

log(O(c)) + 1

|c| if c ∈ G

0 if c ∈ Cs

(5)

In the following sections we will define several algorithms which will use these
four initialization schemes. We will use the suffixes: Simp-C, Simp-W, Hyp-C,
and Hyp-W to refer to the initializations in (2)–(5), respectively.

3.2 Count Based Scores (CBS)

We build the first set of scores using only the occurrence information available.
For this we simply take the score vector S as the weight defined in (2) and (3),
denoted the CBS-C score and CBS-W score, respectively. The CBS-C score,
gives each group a value which is determined by the number of times the group
members have worked together in past. Whereas, CBS-W assigns score based
upon the cohesion among the group members.

3.3 Hasse Diagram Based Models

CBS scores utilize counts of group recurrences, wherein each group was con-
sidered in isolation but do not consider the network of groups. This network
encodes information about the observed groups, the unobserved groups, and the
topological relations between them. Occurrences of a group affect the probabil-
ity of other groups in the network to collaborate in the future. We develop two
approaches applied to a Hasse diagram representation of a weighted simplicial
complex to capture the local and global relational information.

Algorithm 1. GetHDSScores (T,y,Kmax, α)
f ← y, C ← V (T ) {Get the simplicial complex corresponding to the Hasse diagram}
for k = Kmax − 1 to 1 do

for all c ∈ πk do

f(c) ← f(c) + α

( ∑
x∈(Q(c)∩πk+1)

y(x)

)

return f

Hasse Diagram Spread-Based Scores (HDS Scores). This class of meth-
ods is based upon the intuition that observed groups in the Hasse diagram
influence the subgroups below it in the hierarchy. Influence spread can happen
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in a variety of ways. There are several possible counter-intuitive group phe-
nomena. We model these in a holistic fashion by spreading scores over the
Hasse diagram. We propose that if we observe a node gi in the Hasse dia-
gram then it spreads its score (si) down the hierarchy. It can send the same,
more, or less of its score to its children. In general, it can send αsi (α ≥ 0)
score to its children. These children update their scores and spread the score
down the hierarchy recursively. This is shown in Algorithm1. We initialize
the algorithm using the vectors (y = W) in Eqs. (2)–(5) to get four different
scores, S = GetHDSScores(T,y,Kmax, α), which we denote as HDSSimp-C,
HDSSimp-W, HDSHyp-C and HDSHyp-W, respectively.

Hasse Diagram Diffusion-Based Scores: The spread-based scores are local
in the sense that the final score of a node is only determined by its initial score
and the scores of its parent(s). But, in general, the nodes representing groups
in the network are connected by many pathways. Therefore, it is reasonable
to assume that a potential group may be affected by occurrence of non-parent
groups in the network. In order to take into account this structure of the entire
Hasse diagram, we apply a modification of the graph label propagation algorithm
HyperPrior [12].

Each vertex (group) is initialized with a label, which encodes prior infor-
mation about the recurring tendency of that node. These labels (information)
then diffuse (exchange information) via random-walks through the Hasse dia-
gram network structure. After the random-walks stabilize, the final label for
each vertex is the score indicating its recurrence possibility. The final label at a
given vertex represents the chances that a random walk originating from other
nodes ends at this vertex. Hence, this score is a combination of both the group’s
initial tendency to occur plus an adjustment based on the knowledge from other
groups in the network, i.e., the random walk outcomes. This adjustment models
a network guided similarity between the vertex and the other nodes. Vertices
that are near in the network should end up receiving similar labels/scores.

More formally, let y be the vector of initial labels for the vertices in the Hasse
diagram T with incidence matrix A. Vector y is initialized by any of the weights
in (2)–(5). As in a graph-based learning task, we learn the final label (score)
vector f by taking into account the competing aims of similar labels for vertices
connected by an edge in the Hasse diagram and of similar labels between the
initial and final vectors. We capture these competing aims in the following cost
minimization objective:

min
f

fTLf + β‖f − y‖2 (6)

where, L = I − D−1/2
v AD−1/2

v is the normalized graph Laplacian [14] and Dv

is a diagonal matrix consisting of the vertex degrees. The first term in (6) is a
smoothing term which ensures that vertices (groups) sharing an edge (having
common group members) have similar scores. This term therefore, enforces the
Hasse diagram structure while learning the labels. The second term measures the
difference between the given initial labels and the final vertex scores. It can be
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shown [14] that the solution to (6) is equivalent to the solution of the following
linear system:

f∗ = (1 − μ)(I − μθ)−1y, (7)

where μ = 1/(1 + β), θ = D−1/2
v AD−1/2

v , and f∗ is the vector of final labels
of the group nodes. Note that, f∗(c) is the aggregate tendency S(c) of a group
c ∈ C to reoccur. Therefore, we have: S = f∗.

Similar to spread-based scores, we denote the scores here by HDDSimp-C,
HDDSimp-W, HDDHyp-C, and HDDHyp-W when intialized using (2)–
(5). Our aim is to predict a score for the recurring groups (i.e., g ∈ G) and
recurring subgroups (i.e., c ∈ Cs). For each of the methods above, we get a
final vector that contains the scores for all the groups. We partition the vector
S into two vectors Srg and Srs of sizes |G| and |Cs|, respectively, such that
Srg(c) = S(c),∀c ∈ G and Srs(c) = S(c),∀c ∈ Cs. In summary, we obtain three
score vectors Srs, Srg and S for each of the above methods.

4 Experimental Analysis

4.1 Dataset and Statistics

Datasets: The first dataset we apply our methods to is a massive multi-
player online role-playing game (MMORPG) dataset obtained from the Sony’s
EverQuest II (EQ II) game (www.everquest2.com). The game provides an online
environment where multiple players can log in and collaborate in groups to per-
form various quests and missions. The server logs from this game, provided by
Sony, were used to extract group interactions. Here, we treat a set of players
performing a task or mission as a group in the EQ II network. The EQ II data
contains logs for 21 weeks of data for training and testing. We divide them into
seven training/testing splits, each of which has a two-week long training period
followed by a one-week testing period.

The second dataset is the DBLP dataset (obtained from www.aminer.org)
containing computer science publications from 1930–2015. The set of co-authors
on a paper form a group in the DBLP network. Note that in both EQII and
DBLP networks, the groups can perform multiple game tasks or co-author multi-
ple papers. We make eleven train-test splits as follows: (1992−95/96−98), (1993−
95/96−98), (1993−95/96−99), (1991−97/98−10), (1997−00/01−03), (1998−
00/01−03), (1998−00/01−04), (2002−05/06−08), (2003−05/06−08), (2003−
05/06 − 09) and (2001 − 07/08 − 10); following the format: (train period start
year−train period end year/test period start year−test period end year). These
splits were designed to observe the effect of varying training and testing period
lengths as well as varying the entire train/test evaluation period. We have evalu-
ated other variations of period lengths and other decades in the DBLP data, but
in this paper we limit our discussion to the train/test periods we just described.

Statistics: Recall that we have two kinds of groups: (1) recurring groups that are
observed in training and observed again in testing and (2) recurring subgroups

www.everquest2.com
www.aminer.org
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Table 1. Recurrence statistics of the various train/test periods
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EQ II 3051 2215 81.67 18.33 1775 1219 67.92 32.08 88.93 11.07
Avg. 84.06 15.94 74.01 25.99 90.51 9.49

DBLP 677K 640K 40 60 549K 433K 12.06 87.94 84.53 15.47
Avg. 34.73 65.27 11.65 88.35 81.17 18.83

Table 2. Different dimension face recurrence statistics
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EQ II Splits DBLP Splits

Simplex
Dimension

RG+RS
(Exact)

RG+RS
(New Vertices)

RG+RS
(Exact)

RG+RS
(New Vertices)

≥ 1 15.57 21.25 15.70 21.43 4.63 3.09 6.28 4.20
≥ 2 8.97 12.72 9.02 12.80 2.78 1.79 3.41 2.19

RS (Exact) RS (New Vertices) RS (Exact) RS (New Vertices)

≥ 1 0.70 0.71 0.76 0.77 1.70 0.89 3.08 1.61
≥ 2 0.20 0.23 0.25 0.29 0.76 0.38 1.24 0.63

RG (Exact) RG (New Vertices) RG (Exact) RG (New Vertices)

≥ 1 57.18 20.55 57.50 20.66 14.89 2.21 17.53 2.60
≥ 2 45.68 12.49 45.77 12.51 10.02 1.41 11.17 1.57

that are observed in testing but are only observed as a subgroup of some group
that occurred in training. We shall refer to the former set as RG, the latter set
as RS, and the combined set as (RG+RS). Table 1 contains several statistics for
(RG+RS). However, due to space constraints, we only show statistics for the
last split from each dataset, as well as the average statistics across the splits. In
Table 1, an actor in the testing phase is considered “old” if it was observed in
the training period, otherwise it is considered “new”. Note that for any group
with new actors in the testing phase, we can only test whether the subgroup
with old actors is a recurring group or subgroup from the training period. These
statistics are based on the distinct groups from the testing and training periods,
so as to avoid any bias from the multiplicity of certain group interactions. We
observe that on an average around 90% of the EQ II network groups and around
81% of the DBLP network groups formed in the test period contain at least
one old actor. Only within these groups can we possibly search for recurring
groups or subgroups. Note, 74% of the EQ II groups and around 12% of DBLP
groups in testing period are exact recurrences and included in the set RG. This
demonstrates that the recurring group process is more common in the EQ II
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network, whereas the recurring subgroup process is the more common feature in
the DBLP network.

In Table 2, we record the statistics of the groups in training that recur in
testing and of the groups in testing that are recurring groups or subgroups. We
only consider groups of size ≤6 (i.e., faces of dimension ≤5) and also omit vertex
recurrences since those are reported in Table 1.

For dimensions ≥1, the set RG+RS accounts for 20% of the testing groups
in the EQ II network and 3–4% in the DBLP network. For dimensions ≥2,
the set RG+RS accounts for approximately 12% of the testing groups in the
EQ II network and only 2% in the DBLP network. These subtle observations
indicate that GR and SR processes are responsible for a significant portion of
future formed groups. Therefore, modeling these processes is an important step
towards higher order link prediction.

4.2 Evaluation Methodology and Experimental Setup

We evaluate the performance of these methods as classifiers using the area under
the curve (AUC) statistic of the receiver operating characteristics (ROC) [13].
Using the three score vectors as the model output we calculated AUC scores for
two sets of prediction test scenarios. The first set includes the exact occurrences
found in the testing period (referred to as “(Exact)”) and the other set includes
occurrences found with new vertices in the testing period (referred to as “(New
Vertices)”). The following six scenarios are considered for each set:

1. RG+RS(v): Predicting both recurring groups and subgroups that are dyadic
edges or other higher order faces. Note that for any group with new actors in
the testing phase, we can only test whether the subgroup with old actors is
a recurring group or subgroup from the training period.

2. RG+RS(v+e): Predicting both recurring groups and subgroups that are
only triangles or other higher order faces. We only consider groups of size ≤6
and also omit vertex recurrences since those are reported in Table 1.

3. RS(v): Predicting only recurring subgroups that are edges or other higher
order faces.

4. RS(v+e): Predicting only recurring subgroups that are triangles or other
higher order faces.

5. RG(v): Predicting only recurring groups that are edges or other higher order
faces.

6. RG(v+e): Predicting only recurring groups that are triangles or other higher
order faces.

The optimal parameters were chosen for each split separately via grid search
on the following parameter space: α = {0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1, 2, 5, 10, 20}
and μ = {10−7, 10−6, 10−5, 10−4, 10−3, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99}. All the
Hasse diagrams considered in the above methods have un-weighted edges.
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Table 3. AUC scores for EQ II and DBLP

EQ II

Exact New Vertices

Method RG+RS
(v)

RG+RS
(v+e)

RS (v) RS
(v+e)

RG (v) RG
(v+e)

RG+RS
(v)

RG+RS
(v+e)

RS (v) RS
(v+e)

RG (v) RG
(v+e)

HDDHyp-W 0.96 0.98 0.67 0.87 0.79 0.83 0.96 0.97 0.68 0.86 0.79 0.83

HDDHyp-C 0.96 0.98 0.63 0.78 0.83 0.87 0.96 0.98 0.64 0.78 0.82 0.86

HDDSimp-W 0.83 0.81 0.63 0.67 0.78 0.81 0.83 0.81 0.62 0.64 0.78 0.81

HDDSimp-C 0.78 0.75 0.52 0.6 0.83 0.86 0.78 0.75 0.52 0.59 0.83 0.85

CBS-W 0.77 0.68 0.6 0.54 0.78 0.81 0.76 0.68 0.59 0.5 0.78 0.81

CBS-C 0.76 0.72 0.5 0.49 0.82 0.85 0.76 0.72 0.5 0.47 0.82 0.85

HDSHyp-W 0.96 0.97 0.65 0.71 0.79 0.82 0.96 0.97 0.65 0.7 0.79 0.82

HDSSimp-W 0.7 0.59 0.58 0.52 0.76 0.8 0.7 0.59 0.58 0.48 0.76 0.8

HDSHyp-C 0.95 0.97 0.58 0.63 0.83 0.86 0.95 0.97 0.59 0.63 0.82 0.86

HDSSimp-C 0.68 0.61 0.49 0.48 0.82 0.85 0.67 0.6 0.48 0.44 0.82 0.85

DBLP

HDDHyp-W 0.9 0.89 0.8 0.78 0.69 0.68 0.82 0.85 0.73 0.72 0.7 0.68

HDDHyp-C 0.89 0.89 0.79 0.78 0.69 0.68 0.82 0.85 0.73 0.72 0.69 0.68

HDDSimp-W 0.77 0.79 0.73 0.73 0.7 0.69 0.77 0.77 0.74 0.71 0.71 0.69

HDDSimp-C 0.75 0.76 0.71 0.72 0.71 0.7 0.74 0.74 0.73 0.7 0.72 0.7

CBS-W 0.67 0.64 0.65 0.61 0.69 0.66 0.69 0.64 0.7 0.63 0.7 0.66

CBS-C 0.65 0.63 0.59 0.58 0.64 0.62 0.65 0.62 0.63 0.59 0.65 0.62

HDSHyp-W 0.89 0.88 0.75 0.73 0.69 0.66 0.82 0.84 0.73 0.7 0.7 0.66

HDSSimp-W 0.59 0.53 0.6 0.54 0.69 0.66 0.63 0.55 0.67 0.57 0.7 0.66

HDSHyp-C 0.88 0.87 0.72 0.71 0.64 0.62 0.8 0.83 0.68 0.67 0.65 0.62

HDSSimp-C 0.49 0.43 0.5 0.47 0.64 0.61 0.54 0.46 0.57 0.51 0.65 0.62

4.3 Results and Discussion

We compare the twelve different AUC scores, described in the prior section, for
the ten methods developed in this paper. Results are reported in Table 3 for the
EQ II and DBLP data. We have three different kinds of scores: CBS (Sect. 3.2),
HDS (Sect. 3.3) and HDD (Sect. 3.3). Both the CBS-W and CBS-C scores
are only count based and don’t take into account any topological relationship
between groups. On the other hand, the HDS and HDD methods take into
account topology by exchanging information locally and globally, respectively.
One of our main hypotheses is that topological structure affects the group recur-
rence behavior. We are also unaware of any methods for small group recur-
rence and therefore chose CBS-W and CBS-C scores as our baseline. Note, as
described in Sect. 3.1, all the three genre of methods can be either count based
(referred using suffix -C), or cohesion metric based (denoted by suffix -W). The
count based variants do not take into account the cardinality of the (sub)groups
whereas the cohesion metrics are cardinality based.

Effect of Topology: We observe from Table 3 (the best scores are highlighted
in bold) that the Hasse diagram-based methods consistently outperform the
count-based methods. This supports our hypothesis that Hasse diagram-based
methods, which take into account topology, indeed, are more informative about
the group recurrence process.

We also compare the methods against four criteria: (a) How do the prediction
methods fare for recurring subgroups as compared to recurring groups?; (b) How
well do the methods predict at dimensions of dyadic edges and above, i.e., the -(v)
cases, compared with how well they predict at dimensions of triadic groups and
above, i.e., the -(v+e) cases?; (c) How well do the methods predict the “Exact”
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occurrences versus the “New Vertices” occurrences?; and (d) How do the count-
based “-C” methods compare with the cohesion-based “-W” methods?

We observe that in order to predict recurring subgroups, HDDHyp-W out-
performs all other methods whether the subgroup was an “exact” occurrence or a
“new vertices” occurrence in testing. This suggests that exchange of information
from the groups observed in the past to the groups not observed in the past via
the Hasse diagram topology and the global-based label diffusion process is more
crucial for influencing the appearance of subgroups not observed in the past. In
fact, the poor accuracy of the HDDSimp methods indicates that weights placed
on (possibly unobserved) subgroups of observed groups used as prior information
cause bias and hurt the predictive power of the model. Given that HDDHyp-
W is initialized using the cohesion weights in (4), the normalization of counts
only on the prior observed group occurrences in the diagram is important for
recurring subgroup prediction. Moreover, the performance of predicting triangles
or higher order groups (RS(v+e)) is higher for the EQ II data and comparable
for the DBLP data to that of predicting dyadic edges or higher (RS(v)) across
all HDD methods, implying the important role played by the Hasse diagram
structure for higher order group prediction.

On the other hand for recurring group prediction the count-based methods
HDDHyp-C and HDDSimp-C performed best, suggesting that the likeli-
hood of recurrence of already-observed groups is determined more by the simple
counts of past concurrences. The count-based HDS methods also give results
comparable with that of the HDD methods. This implies that even the local
spread of count information is sufficient for recurring group predictions. These
-Simp-based methods using (1), which take into account the subgroup counts of
the groups that occurred in training, provide good results, suggesting that the
unobserved subgroups have an important influence on the potential of groups to
re-occur.

Finally, we note that across both the datasets and across all the twelve exper-
iments, the HDD methods generally perform better than or as good as HDS
methods. Further results and details shall be made available in a future technical
report.

5 Conclusions

We consider the problem of predicting small group evolution and focus on the
sub-problem on group and subgroup recurrence. We highlight two important
group recurrence processes and capture them using weighted simplicial com-
plexes. We use a Hasse diagram corresponding to the simplicial complex as a
graph whose nodes correspond to subgroups in the complex. We then build semi-
supervised models on top of this graph for group recurrence prediction. We have
shown that frequent patterns like small groups can be considered as topologi-
cal entities, with relationships between them guided by higher order topological
properties.
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Abstract. Neural network models have been demonstrated to be capa-
ble of achieving remarkable performance in sentiment classification. Con-
volutional neural network (CNN) and recurrent neural network (RNN)
are two mainstream architectures for such modelling task. In this work,
a novel model based on long short-term memory recurrent neural net-
work (LSTM) called P-LSTM is proposed for sentiment classification. In
P-LSTM, three-words phrase embedding is used instead of single word
embedding as is often done. Besides, P-LSTM introduces the phrase fac-
tor mechanism which combines the feature vectors of the phrase embed-
ding layer and the LSTM hidden layer to extract more exact information
from the text. The experimental results show that the P-LSTM achieves
excellent performance on the sentiment classification tasks.

Keywords: LSTM · Phrase-embedding · Phrase factor mechanism

1 Introduction

Text classification is an important task in many areas of nature language process-
ing (NLP). Many different methods have been proposed for sentiment classifi-
cation, such as using Support Vector Machines (SVM) with rule-based features,
combining SVM with Naive Bayes (NB) [17], and building dependency trees
with Conditional Random Fields (Tree-CRF) [10]. Other methods such as Max-
imum entropy [1] and Hidden Markov Models [13] are also widely used. Deep
learning models have achieved remarkable results in NLP areas in these years.
There are also many deep learning models in sentiment classification, includ-
ing convolutional neural network (CNN) [5,6] and recurrent neural network
(RNN) [7].

Being able to handle sequences of any length and capture long-term depen-
dencies, RNN has great power to extract high-level information of a text, and it
is widely used in NLP, especially in Neural Machine Translation (NMT). Work
[7] has shown that RNN can also do a good job in sentiment classification and
text classification task. RNN has many variants. In this work, we choose long
short-term memory recurrent neural network (LSTM) [4] as the basic frame of
the proposed P-LSTM. LSTM can solve long term dependency problem easily
and can remember more information than traditional RNN.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 524–533, 2017.
DOI: 10.1007/978-3-319-57454-7 41
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It has been noted that many of neural network models focus on isolate word-
embedding representation instead of the context phrase. However, texts espe-
cially short texts usually appear in sequence, therefore using information from
the phrase context of the word may improve the classification accuracy. To bene-
fit from the information of context, P-LSTM sets the context of a given word by
combining the previous and the later word of the given word itself, thus a three-
words phrase embedding vector is used as the basic input unit of the model,
which performs well in our experiments.

In traditional RNN-based models, once the feature vectors of the high-level
layer are extracted, the feature vectors of the low-level embedding layer are
abandoned. P-LSTM thinks the features of low-level layer is useful too. To take
advantage of both the features of low-level layer and high-level layer, P-LSTM
introduces the phrase factor mechanism. The phrase factor mechanism calculates
the phrase factor between low-level embedding layer and the high-level LSTM
hidden layer. Then the phrase factor will be fed back into the model again to
accomplish the classification task.

In this work, word vectors are initialled by the publicly available word2vec
vectors that trained on 100 billion words of Google News using continuous bag-of-
words architecture [9], and these vectors still need to be trained during training
procedure. Previous work [6] has shown that the initialization with pre-trained
word vectors can get better result than that with random word vectors. Indeed,
it is obvious in our experiment that the convergence speed and the precision of
model with initialized word vectors are improved.

The contributions of our work include:

– We use three-words phrase embedding instead of the isolate word embedding
as the basic input unit of our model.

– To the best of our knowledge, we are the first work to introduce the phrase
factor mechanism to the standard LSTM to extract richer and more exact
informations from the text.

2 Related Work

Traditional methods with rule-based features models such as Naive Bayes and
Support Vector Machine [17] has achieved remarkable results on sentiment clas-
sification task. However, the performance of these models depends heavily on
artificial feature selection, which makes these models hard to be applied to dif-
ferent datasets.

Deep learning based neural network models avoid complicated feature selec-
tion and they have been widely used in many NLP tasks. Many recent works
using deep learning methods have been proposed for sentiment classification.
Among them, convolutional neural network (CNN) and recurrent neural network
(RNN) are two popular ones. Work [5,6] proposed models based on CNN with
litter hyperparameters on sentiment classification task. Owing to the CNN’s
capacity to capture high-level local correlations of the sentence, these works
achieved good results on multiple benchmarks. Meanwhile as a sequence model,



526 C. Lu et al.

RNN is able to deal with variable-length input sequences and discover long-term
dependencies. And with the ability of explicitly modeling time-series data, RNNs
are being increasingly applied to sentence modeling. Work [7,16] used a variant
of RNN called Long Short Term Memory (LSTM) [4] to produce sentence repre-
sentation from word presentation. Then the sentence representation will be used
in its corresponding classifier to finish the sentiment classification tasks.

In this paper, we propose a model named P-LSTM which combines the slide
window input mechanism in CNN model and the capacity to extract sequen-
tial text information in RNN model. What’s more, motivated by the attention
mechanism in NMT model [2] which calculates the attention factor between the
encoder and the decoder layer, our model introduces the phrase factor mecha-
nism to extract richer and more exact informations from the low-level embedding
layer and the high-level LSTM hidden layer.

3 Model

The architecture of the P-LSTM model is shown in Fig. 1. Phrase embedding and
phrase factor mechanism are introduced to a standard LSTM, which composes
the main architecture of P-LSTM. P-LSTM has a range of repeated modules for
each time step while processing sequential data.

Let Xi ∈ R
k be the k-dimensional word vector corresponding to the i-th

word in the text. The text of length n can be represented as

X1:n = X1 ⊕ X2 ⊕ X3 ⊕ ... ⊕ Xn. (1)

Fig. 1. The architecture of P-LSTM.
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The ⊕ is the concatenation operation. Let Xi:i+j be the concatenation of words
XiXi+1...Xi+j . In this model, the phrase embedding vector is the concatenation
of three words embedding in a row, which is the basic input unit of the P-
LSTM. Given a word vector Xt, we choose the three-words phrase embedding
vector Pt = Xt−1:t+1 as the t-th input vector. For a given sentence with the
length of n, the previous word vector of the first word X1 in the text is set to
the vector of Xn, similarly the later word vector of the last word Xn in the text
is set to the vector of X1. At each time step, for the t-th phrase embedding
vector Pt in the text, P-LSTM takes Pt ∈ R

3k, ht−1 ∈ R
3k, ct−1 ∈ R

3k as
input and produces ht, ct based on the following formulas:

it = σ(WiPt + Uiht−1 + bi). (2)

c̃t = tanh(WcPt + Ucht−1 + bc). (3)

ft = σ(WfPt + Ufht−1 + bf ). (4)

ct = it ◦ c̃t + ft ◦ ct−1. (5)

ot = σ(WoPt + Uoht−1 + bo). (6)

ht = ot ◦ tanh(ct). (7)

Here Um ∈ R
3k×3k and Wm ∈ R

3k×3k are all weight matrices, bm ∈ R
3k

are bias vectors, for m ∈ {i, f, c, o}. The symbols σ(·) and tanh(·) are LSTM
activate functions which refer to the sigmoid and hyperbolic tangent functions.
The symbol ◦ is an operation which means the element-wise multiplication. h0

and c0 are initialized by all zero vectors with dimension of 3k.
After getting feature vector ht ∈ R

3k, the phrase mechanism calculates the
phrase factor αt by the following formula:

z′
t = tanh(Pt ◦ ht). (8)

zt = Vαz′
t. (9)

αt = sum(zt). (10)

Here Vα ∈ R
3k×3k is the weight matrix. And sum(·) operation means add

up all numbers of the vector. αt is the phrase factor of the feature vector ht,
which is a real number. Once we get the phrase factor αt, we can get the input
vector h′

t ∈ R
3k of the pooling layer by:

h′
t = αtht. (11)

The pooling layer takes the average of all the vector h′
t, for t ∈ (1, n) (where

n is the length of the text). It can be denoted as:

S =
1
n

n
∑

t=1

h′
t (12)

Here the feature vector S ∈ R
3k will be passed to a fully connected softmax

layer whose output y is the probability distribution over the set of l classes:

y = softmax(WsS + bs). (13)

where Ws ∈ R
l×3k is the weight matrix, bs ∈ R

l is bias vector.
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4 Datasets and Experimental Setting

4.1 Datasets

We evaluate our model on sentiment classification task using the following
datasets. Summary statistics of these datasets are in Table 1.

IMDB: A benchmark dataset for sentiment classification [8]. It is a large movie
review dataset with full-length reviews; The task is to determine if the movie
reviews are positive or negative. Both the training and test set have 25K reviews.
RT-2k: The standard 2000 full-length movie review dataset [11]. Classification
involves detecting positive/negative reviews.
RT-s: Movie reviews with one sentence per reviews [12]. Classification involves
detecting positive/negative reviews.
Subj: The subjectivity dataset consists of subjective reviews and objective plot
summaries [11]. The task of subjectivity dataset is to classify the text as being
subjective or objective.

Table 1. Summary statistics for the datasets. (N+, N−): number of positive and neg-
ative examples. l: Average number of words per example. |V |: Vocabulary size. Test:
Test size (CV means there was no standard train/test split and 10-fold cross-validation
was used)

Dataset (N+, N−) l |V | Test

IMDB (25k,25k) 231 392k 25000

RT-2k (1000,1000) 787 51k CV

RT-s (5331,5331) 21 21k CV

Subj (5000,5000) 24 24k CV

4.2 Pre-trained Word Vectors

The dataset that has previously been preprocessed, and text is splitted into
separate words. For each dataset, We use 20K words that appeared most fre-
quently and make it as the vocabulary table of its dataset. For a given text
of the a dataset, words in the vocabulary table will be initialed by word2vec
vectors that are trained on 100 billion words from Google News. Each of these
vectors has dimensionality of 300. Words not in the vocabulary table will be set
all zero vector with the dimensionality of 300. The phrase embedding vector is
the concatenation of three words, apparently it has the dimensionality of 900.

4.3 Hyper-parameters and Training

The model is trained to minimize the negative log-likelihood of predicting the
correct label of the datasets, using batch gradient descent with the Adadelta
update rule [19]. At each gradient descent step, weight matrices, bias vectors,
and word vectors are updated. Early stopping is used on the validation set with
a patience of 10 epoch.
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4.4 Regulation

For regulation, we employ dropout with the rate p = 0.5 on the penultimate
layer. Dropout prevents co-adaption of hidden units by randomly dropping out
a proportion p of the hidden units during forward-backpropagation. That is,
given the penultimate layer S, for output unit y in softmax layer, dropout uses:

y = softmax(Ws (S ◦ r) + bs). (14)

where ◦ is the element-wise multiplication operator and r ∈ R
3k is a ‘masking’

vector of Bernoulli random variables with probability p of being 1. Gradients are
backpropagated only through the unmasked units.

4.5 Model Variations

For comparison, we experiment with several variants of P-LSTM. Except for the
differences of models mentioned below, tuning hyper-parameters and training
procedure are kept all the same among different variants.

standard LSTM: Our baseline model where isolate word embedding is used
on a standard LSTM [4] without phrase factor mechanism.
non-factor P-LSTM: The non-factor P-LSTM keeps everything exactly the
same as P-LSTM except that non-factor P-LSTM has no phrase factor mecha-
nism.
word-based P-LSTM: The word-based P-LSTM keeps everything exactly the
same as P-LSTM except that word-based P-LSTM takes isolate word embedding
as its input instead of phrase embedding.

5 Result and Discussion

Table 2 shows the result of our model on all four datasets against other methods.
Our baseline model (standard LSTM) does not perform well on its own. P-
LSTM achieves the best results comparing to other three model variations, which
satisfies our expectation. The word-based P-LSTM and the non-factor P-LSTM
also perform well, and we are surprised at the magnitude of the gains. Besides,
we also compared our P-LSTM with several methods proposed in other papers
on these four same datasets. As is shown in Table 2, our P-LSTM model achieves
the best results on three of the four datasets, which is competitive against other
deep learning methods (bow-CNN, seq-CNN) or the traditional feature based
methods (SVM with uni-bigram, MNB with uni-bigram).

5.1 P-LSTM vs. Word-Based P-LSTM

According to the results shown in Table 2, P-LSTM outperforms the word-based
P-LSTM, which is consistent with our expectations. That is to say, the phrase
embedding is useful comparing to isolate word embedding.
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Table 2. Results of our P-LSTM model against other methods. SVM, MNB,
NBSVM: SVM, Multinomial Naive Bayes and Naive Bayes SVM with uni-bigram [17].
G-Dropout, F-Dropout: Gaussian Dropout and Fast Dropout [18]. RAE: Recursive
Autoencoders [15]. MV-RNN: Matrix-Vector Recursive Neural Network with parse
trees [14]. bow-CNN, seq-CNN: bag-of-words CNN and sequence CNN [5]. Tree-
CRF: Dependency tree with Conditional Random Fields [10]. BoF-noDic, BoF-
w/Rev: BoF-noDic, BoF-w/Rev [10]. BoWSVM: SVM with bag-of-words features
[11]. WRRMB: Word Representation Restricted Boltzmann Machine [3].

Model IMDB RT-2k RT-s Subj

Standard LSTM 90.084 83.45 77.89 91.7

Non-factor P-LSTM 90.28 85.25 78.35 91.93

Word-based P-LSTM 90.28 86.8 79.232 92.3

P-LSTM 91.45 89.25 80.17 93.77

SVM 89.16 87.40 77.7 91.74

MNB 86.59 85.85 79.0 93.6

NBSVM 91.22 89.45 79.4 93.2

G-Dropout 91.2 89.7 79.0 93.4

F-Dropout 91.1 89.5 79.1 93.6

RAE - - 76.8 -

MV-RNN - - 79.0 -

bow-CNN 91.03 - - -

seq-CNN 91.26 - - -

Tree-CRF - - 77.3 -

Bof-noDic - - 75.7 -

Bof-w/Rev - - 76.4 -

BoWSVM - 87.15 - 90

WRRBM 87.42 - - -

Table 3 could lead us to know why the phrase embedding works. Two sen-
tences in Table 3 have very similar format while they have opposite meaning.
Both of the two sentences have the positive word “interesting”. However, the
word “interesting” has different phrase context in each sentence which can truly
decide the label of the sentence. As is shown in Table 3, P-LSTM can judge the
labels of the two sentences correctly while the word-based P-LSTM made a mis-
take on one of them. Apparently the word-based P-LSTM puts more emphasis
on the isolate word “interesting” while ignoring the context “far from being”
when judging the category of the second sentence in Table 3. However, the P-
LSTM takes the three-words phrase embedding as its input, and the context of
the word “interesting” is taken into consideration when judging the category of
each sentence in Table 3, which is more accurate.
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Table 3. Classification task on two sentences by P-LSTM and word-based P-LSTM
trained on RT-s dataset. Positive sentence is labelled as 1 and negative sentence is
labelled as 0.

Sentence True label P-LSTM Word-based P-LSTM

“The movie is very interesting.” 1 1 1

“The movie is far from being interesting.” 0 0 1

5.2 P-LSTM vs. Non-factor P-LSTM

Results from all the four datasets have shown that the performance of the non-
factor P-LSTM is worse than P-LSTM, which means the phrase factor mecha-
nism works well.

According to Eqs. (10), (11), (12) and (13). We can get:

y = softmax(
1
n

n
∑

t=1

yt). (15)

for the dataset with l classes (l = 2 in the example below), yt ∈ R
l in P-LSTM

is:
yt = αtWsht + bs. (16)

and yt in non-factor P-LSTM is:

yt = Wsht + bs. (17)

For the first sentence in Table 3, we calculated the yt for t ∈ [1, 6] (6 is the
length of the sentence) on both the P-LSTM and the non-factor P-LSTM that
are trained on the RT-s dataset, and the results are shown in Table 4. The true
probability distribution y of the sentence is [0, 1], which means the sentence is
positive.

Table 4. The results of yt (t ∈ [1, 6]) calculated on both the P-LSTM and the non-
factor P-LSTM that are trained on the RT-s dataset when performing a classification
task on the sentence “the movie is very interesting.” t: sequence number of the input
phrase. t-th phrase: the t-th input phrase of the model.

t t-th phrase yt

P-LSTM Non-factor P-LSTM

1 . the movie [2.09,−2.10] [0.30,−0.31]

2 the movie is [−19.5, 19.5] [0.06,−0.06]

3 movie is very [3.98,−3.99] [−0.74, 0.73]

4 is very interesting [−39.9, 40.1] [−0.23, 0.22]

5 very interesting [−33.5, 33.5] [1.34,−1.33]

6 interesting . the [5.32,−5.31] [2.21,−2.20]
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According to Eq. (15) and the results in Table 4, it is clear that y4 and y5
in P-LSTM have the greatest impact on the softmax classification layer and
the impact is positive. Similarly, y5 and y6 in non-factor P-LSTM have greatest
impact on the softmax classification layer, but the impact is negative. Here
the positive/negative impact means that the impact is positive/negative for the
classifier to make the right classification decision.

On the other hand, from an intuitive point of view, for the sentence “the
movie is very interesting.”, apparently the 4-th phrase and the 5-th phrase have
the most decisive effect on the true label of the sentence. It is worth to note
that the 4-th phrase and the 5-th phrase are the corresponding phrases of y4
and y5 in P-LSTM, and y4 and y5 in P-LSTM have the greatest positive impact
on the softmax classification layer. That is to say, the phrase factor mechanism
in P-LSTM makes the classifier focus on those phrases with the most decisive
effect by influencing the yt, which improves the accuracy of the classifier greatly
in comparison to the non-factor P-LSTM.

6 Conclusion and Future Work

We have described a novel model called P-LSTM. In P-LSTM, three-words
phrase embedding is used instead of isolate word embedding. Besides, P-LSTM
combines the feature vectors of phrase embedding layer and LSTM hidden layer
by the phrase factor mechanism, which achieves satisfactory results on several
sentiment classification tasks.

We would explore in the future the ways to replace the basic LSTM frame
with bidirectional LSTM frame to extract the forward and the backward features
of the text. We believe the bidirectional LSTM will get better result.
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Abstract. In the field of exploratory data mining, local structure in
data can be described by patterns and discovered by mining algorithms.
Although many solutions have been proposed to address the redundancy
problems in pattern mining, most of them either provide succinct pat-
tern sets or take the interests of the user into account—but not both.
Consequently, the analyst has to invest substantial effort in identifying
those patterns that are relevant to her specific interests and goals.

To address this problem, we propose a novel approach that combines
pattern sampling with interactive data mining. In particular, we introduce
the LetSIP algorithm, which builds upon recent advances in (1) weighted
sampling in SAT and (2) learning to rank in interactive pattern mining.
Specifically, it exploits user feedback to directly learn the parameters of the
sampling distribution that represents the user’s interests.

We compare the performance of the proposed algorithm to the state-
of-the-art in interactive pattern mining by emulating the interests of a
user. The resulting system allows efficient and interleaved learning and
sampling, thus user-specific anytime data exploration. Finally, LetSIP
demonstrates favourable trade-offs concerning both quality–diversity and
exploitation–exploration when compared to existing methods.

1 Introduction

Imagine a data analyst who has access to a medical database containing infor-
mation about patients, diagnoses, and treatments. Her goal is to identify novel
connections between patient characteristics and treatment effects. For example,
one treatment may be more effective than another for patients of a certain age
and occupation, even though the latter is more effective at large. Here, age and
occupation are latent factors that explain the difference in treatment effect.

In the field of exploratory data mining, such hypotheses are represented by
patterns [1] and discovered by mining algorithms. Informally, a pattern is a state-
ment in a formal language that concisely describes the structure of a subset of
the data. Unfortunately, in any realistic database the interesting and/or relevant
patterns tend to get lost among a humongous number of patterns.

The solutions that have been proposed to address this so-called pattern explo-
sion, caused by enumerating all patterns satisfying given constraints, can be
c© Springer International Publishing AG 2017
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roughly clustered into four categories: (1) condensed representations [9], (2) pat-
tern set mining [8], (3) pattern sampling [5], (4) and—most recently—interactive
pattern mining [18]. As expected, each of these categories has its own strengths
and weaknesses and there is no ultimate solution as of yet.

That is, condensed representations, e.g., closed itemsets, can be lossless but
usually still yield large result sets; pattern set mining and pattern sampling
can provide succinct pattern sets but do not take the analyst into account; and
existing interactive approaches take the user into account but do not adequately
address the pattern explosion. Consequently, the analyst has to invest substantial
effort in identifying those patterns that are relevant to her specific interests and
goals, which often requires extensive data mining expertise.

Aims and Contributions. Our overarching aim is to enable analysts—such
as the one described in the medical scenario above—to discover small sets of
patterns from data that they consider interesting. This translates to the following
three specific requirements. First, we require our approach to yield concise and
diverse result sets, effectively avoiding the pattern explosion. Second, our method
should take the user’s interests into account and ensure that the results are
relevant. Third, it should achieve this with limited effort on behalf of the user.

To satisfy these requirements, we propose an approach that combines pattern
sampling with interactive data mining techniques. In particular, we introduce the
LetSIP algorithm, for Learn to Sample Interesting Patterns, which follows the
Mine, Interact, Learn, Repeat framework [12]. It samples a small set of patterns,
receives feedback from the user, exploits the feedback to learn new parameters
for the sampling distribution, and repeats these steps. As a result, the user may
utilize a compact diverse set of interesting patterns at any moment, blurring the
boundaries between learning and discovery modes.

We satisfy the first requirement by using a sampling technique that samples
high quality patterns with high probability. While sampling does not guarantee
diversity per se, we demonstrate that it gives concise yet diverse results in prac-
tice. Moreover, sampling has the advantage that it is anytime, i.e., the result set
can grow by user’s request. LetSIP’s sampling component is based on recent
advances in sampling in SAT [11] and their extension to pattern sampling [14].

The second requirement is satisfied by learning what matters to the user, i.e.,
by interactively learning the distribution patterns are sampled from. This allows
the user to steer the sampler towards subjectively interesting regions. We build
upon recent work [6,12] that uses preference learning to learn to rank patterns.

Although user effort can partially be quantified by the total amount of input
that needs to be given during the analysis, the third requirement also concerns
the time that is needed to find the first interesting results. For this it is of par-
ticular interest to study the trade-off between exploitation and exploration. As
mentioned, one of the benefits of interactive pattern sampling is that the bound-
aries between learning and discovery are blurred, meaning that the system keeps
learning while it continuously aims to discover potentially interesting patterns.

We evaluate the performance of the proposed algorithm and compare it to the
state-of-the-art in interactive pattern mining by emulating the interests of a user.
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The results confirm that the proposed algorithm has the capacity to learn what
matters based on little feedback from the user. More importantly, the LetSIP
algorithm demonstrates favourable trade-offs concerning both quality–diversity
and exploitation–exploration when compared to existing methods.

2 Interactive Pattern Mining: Problem Definition

Recall the medical analyst example. We assume that after inspecting patterns,
she can judge their interestingness, e.g., by comparing two patterns. Then the
primary task of interactive pattern mining consists in learning a formal model of
her interests. The second task involves using this model to mine novel patterns
that are subjectively interesting to the user (according to the learned model).

Formally, let D denote a dataset, L a pattern language, C a (possibly empty)
set of constraints on patterns, and � the unknown subjective pattern preference
relation of the current user over L, i.e., p1 � p2 implies that the user considers
pattern p1 subjectively more interesting than pattern p2:

Problem 1 (Learning). Given D, L, and C, dynamically collect feedback U with
respect to patterns in L and use U to learn a (subjective) pattern interestingness
function h : L → R such that h (p1) > h (p1) ⇔ p1 � p2.

The mining task should account for the potential diversity of user’s interests.
For example, the analyst may (unwittingly) be interested in several unrelated
treatments with disparate latent factors. An algorithm should be able to identify
and mine patterns that are representative of these diverse hypotheses.

Problem 2 (Mining). Given D, L, C, and h, mine a set of patterns Ph that
maximizes a combination of interestingness h and diversity of patterns.

The interestingness of P can be quantified by the average quality of its members,
i.e.,

∑
p∈P h (p) | /|P| . Diversity measures quantify how different patterns in a

set are from each other. Joint entropy is a common diversity measure [21].

3 Related Work

In this paper, we focus on two classes of related work aimed at alleviating the pat-
tern explosion, namely (1) pattern sampling and (2) interactive pattern mining.

Pattern Sampling. First pattern samplers are based on Markov Chain Monte
Carlo (MCMC) random walks over the pattern lattice [4,5,16]. Their main
advantage is that they support “black box” distributions, i.e., they do not require
any prior knowledge about the target distribution, a property essential for inter-
active exploration. However, they often converge only slowly to the desired target
distribution and require the selection of the “right” proposal distributions.

Samplers that are based on alternative approaches include direct two-step
samplers and XOR samplers. Two-step samplers [7], while provably accurate and
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efficient, only support a limited number of distributions and thus cannot be easily
extended to interactive settings. Flexics [14] is a recently proposed pattern
sampler based on the latest advances in weighted constrained sampling in SAT
[11]. It supports black-box target distributions, provides guarantees with respect
to sampling accuracy and efficiency, and has been shown to be competitive with
the state-of-the-art methods described above.

Interactive Pattern Mining. Most recent approaches to interactive pat-
tern mining are based on learning to rank patterns. They first appeared in
Xin et al. [22] and Rueping [19] and were independently extended by Boley
et al. [6] and Dzyuba et al. [12]. The central idea behind these algorithms is to
alternate between mining and learning. Priime [3] focuses on advanced feature
construction for interactive mining of structured data, e.g., sequences or graphs.

To the best of our knowledge, IPM [2] is the only existing approach to
interactive itemset sampling. It uses binary feedback (“likes” and “dislikes”) to
update weights of individual items. Itemsets are sampled proportional to the
product of weights of constituent items. Thus, the model of user interests in
IPM is fairly restricted; moreover, it potentially suffers from convergence issues
typical for MCMC. We empirically compare LetSIP with IPM in Sect. 6.

4 Preliminaries

Pattern Mining and Sampling. We focus on itemset mining, i.e., pattern
mining for binary data. Let I = {1 . . . M} denote a set of items. Then, a dataset
D is a bag of transactions over I, where each transaction t is a subset of I, i.e.,
t ⊆ I; T = {1 . . . N} is a set of transaction indices. The pattern language L also
consists of sets of items, i.e., L = 2I . An itemset p occurs in a transaction t, iff
p ⊆ t. The frequency of p is the proportion of transactions in which it occurs,
i.e., freq (p) = |{t ∈ D | p ⊆ t}|/N . In labeled datasets, each transaction t has a
label from {−,+}; freq−,+ are defined accordingly.

The choice of constraints and a quality measure allows a user to express
her analysis requirements. The most common constraint is minimal frequency
freq (p) ≥ θ. In contrast to hard constraints, quality measures are used to
describe soft preferences that allow to rank patterns; see Sect. 6 for examples.

While common mining algorithms return the top-k patterns w.r.t. a measure
ϕ : L → R

+, pattern sampling is a randomized procedure that ‘mines’ a pattern
with probability proportional to its quality, i.e., Pϕ(p is sampled) = ϕ(p)/Zϕ,
if p ∈ L satisfies C, and 0 otherwise, where Zϕ is the (unknown) normalization
constant. This is an instance of weighted constrained sampling.

Weighted Constrained Sampling. This problem has been extensively studied
in the context of sampling solutions of a SAT problem. WeightGen [11] is
a recent algorithm for approximate weighted sampling in SAT. The core idea
consists of partitioning the solution space into a number of “cells” and sampling
a solution from a random cell. Partitioning with desired properties is obtained via
augmenting the SAT problem with uniformly random XOR constraints (XORs).
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Algorithm 1. LetSIP
Input: Dataset D, minimal frequency threshold θ
Parameters: Query size k, query retention l, range A, cell sampling strategy ς

SCD: regularisation parameter λ, iterations T ; Flexics: error tolerance κ
� Initialization

1: Ranking function h0 = Logistic(0, A) � Zero weights lead to uniform sampling
2: Feedback U ← ∅, Q∗

0 ← ∅
� Mine, Interact, Learn, Repeat loop

3: for t = 1, 2, . . . do
4: R = TakeFirst(Q∗

t−1, l) � Retain top patterns from the previous iteration
5: Query Qt ← R ∪ SamplePatterns(ht−1) × (k − |R|) times
6: Q∗

t = Order(Qt), U ← U ∪ Q∗
t � Ask user to order patterns in Qt

7: ht ← Logistic( LearnWeights (U ; λ, T ), A)

8: function SamplePatterns(Sampling weight function w : L → [A, 1])
9: C = FlexicsRandomCell(D, freq (·) ≥ θ, w; κ)

10: if ς = Top(m) then return m highest-weighted patterns
11: else if ς = Random then return PerfectSample(C, w)

To sample a solution, WeightGen dynamically estimates the number of
XORs required to obtain a suitable cell, generates random XORs, stores the
solutions of the augmented problem (i.e., a random cell), and returns a per-
fect weighted sample from the cell. Owing to the properties of partition-
ing with uniformly random XORs, WeightGen provides theoretical perfor-
mance guarantees regarding quality of samples and efficiency of the sampling
procedure.

For implementation purposes, WeightGen only requires an efficient ora-
cle that enumerates solutions. Moreover, it treats the target sampling distri-
bution as a black box: it requires neither a compact description thereof, nor
the knowledge of the normalization constant. Both features are crucial in pat-
tern sampling settings. Flexics [14], a recently proposed pattern sampler based
on WeightGen, has been shown to be accurate and efficient. Due to the
page limit, we postpone further details to the extended version of this paper
[13, Appendix A].

Preference Learning. The problem of learning ranking functions is known
as object ranking. A common solving technique involves minimizing pairwise
loss, e.g., the number of discordant pairs. For example, user feedback U =
{p1 � p3 � p2, p4 � p2} is seen as {(p1 � p3) , (p1 � p2) , (p3 � p2) , (p4 � p2)}.
Given feature representations of objects pi, object ranking is equivalent to
positive-only classification of difference vectors, i.e., a ranked pair example
pi � pj corresponds to a classification example (pi − pj ,+). All pairs com-
prise a training dataset for a scoring classifier. Then, the predicted ranking of
any set of objects can be obtained by sorting these objects by classifier score
descending. For example, this formulation is adopted by SvmRank [17].
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5 Algorithm

Key questions concerning instantiations of the Mine, interact, learn, repeat
framework include (1) the feedback format, (2) learning quality measures from
feedback, (3) mining with learned measures, and crucially, (4) selecting the pat-
terns to show to the user. As pattern sampling has been shown to be effective
in mining and learning, we present LetSIP, a sampling-based instantiation of
the framework which employs Flexics. The sequel describes the mining and
learning components of LetSIP. Algorithm 1 shows its pseudocode.

Mining Patterns by Sampling. Recall that the main goal is to discover pat-
terns that are subjectively interesting to a particular user. We use parameterised
logistic functions to measure the interestingness/quality of a given pattern p:

ϕlogistic (p;w,A) = A +
1 − A

1 + e−w·p

where p is the vector of pattern features for p, w are feature weights, and
A is a parameter that controls the range of the interestingness measure, i.e.
ϕlogistic ∈ (A, 1). Examples of pattern features include Length (p) = |p|/|I|,
Frequency (p) = freq (p) /|D|, Items (i, p) = [i ∈ p]; and Transactions (t, p) =
[p ⊆ t], where [·] denotes the Iverson bracket. Weights reflect feature contribu-
tions to pattern interestingness, e.g., a user might be interested in combinations
of particular items or disinterested in particular transactions. The set of features
would typically be chosen by the mining system designer rather than by the user
herself. We empirically evaluate several feature combinations in Sect. 6.

Specifying feature weights manually is tedious and opaque, if at all possible.
Below we present an algorithm that learns the weights based on easy-to-provide
feedback with respect to patterns. This motivates our choice of logistic functions:
they enable efficient learning. Furthermore, their bounded range [A, 1] yields
distributions that allow efficient sampling directly proportional to ϕlogistic with
Flexics. Parameter A essentially controls the tilt of the distribution [14].

User Interaction and Learning from Feedback. Following previous research
[12], we use ordered feedback, where a user is asked to provide a total order over
a (small) number of patterns according to their subjective interestingness; see
Fig. 1 for an example. We assume that there exists an unknown, user-specific
target ranking R∗, i.e., a total order over L. The inductive bias is that there
exists w∗ such that p � q ⇒ ϕlogistic (p,w∗) > ϕlogistic (q,w∗). We apply the
reduction of object ranking to binary classification of difference vectors (see
Sect. 4). Following Boley et al. [6], we use Stochastic Coordinate Descent (SCD)
[20] for minimizing L1-regularized logistic loss. However, unlike Boley et al., we
directly use the learned functions for sampling.

SCD is an anytime convex optimization algorithm, which makes it suitable
for the interactive setting. Its runtime scales linearly with the number of training
pairs and the dimensionality of feature vectors. It has two parameters: (1) the
number of weight updates (per iteration of LetSIP) T and (2) the regularization
parameter λ. However, direct learning of ϕlogistic is infeasible, as it results in a
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non-convex loss function. We therefore use SCD to optimize the standard logistic
loss, which is convex, and use the learned weights w in ϕlogistic.

Selecting Patterns to Show to the User. An interactive system seeks to
ensure faster learning of accurate models by targeted selection of patterns to
show to the user; this is known as active learning or query selection. Random-
ized methods have been successfully applied to this task [12]. Furthermore, in
large pattern spaces the probability that two redundant patterns are sampled in
one (small) batch is typically low. Therefore, a sampler, which produces inde-
pendent samples, typically ensures diversity within batches and thus sufficient
exploration. We directly show k patterns sampled by Flexics proportional to
ϕlogistic to the user, for which she has to provide a total order as feedback.

We propose two modifications to Flexics, which aim at emphasising
exploitation, i.e., biasing sampling towards higher-quality patterns. First, we
employ alternative cell sampling strategies. Normally Flexics draws a perfect
weighted random sample, once it obtains a suitable cell. We denote this strat-
egy as ς = Random. We propose an alternative strategy ς = Top(m), which
picks the m highest-quality patterns from a cell (Line 10 in Algorithm1). We
hypothesize that, owing to the properties of random XOR constraints, patterns
in a cell as well as in consecutive cells are expected to be sufficiently diverse and
thus the modified cell sampling does not disrupt exploration.

Rigorous analysis of (unweighted) uniform sampling by Chakraborty et al.
shows that re-using samples from a cell still ensures broad coverage of the solu-
tion space, i.e., diversity of samples [10]. Although as a downside, consecutive
samples are not i.i.d., the effects are bounded in theory and inconsequential in
practice. We use these results to take license to modify the theoretically moti-
vated cell sampling procedure. Although we do not present a similar theoretical
analysis of our modifications, we evaluate them empirically.

Second, we propose to retain the top l patterns from the previous query and
only sample k − l new patterns (Lines 4–5). This should help users to relate the
queries to each other and possibly exploit the structure in the pattern space.

6 Experiments

The experimental evaluation focuses on (1) the accuracy of the learned user
models and (2) the effectiveness of learning and sampling. Evaluating inter-
active algorithms is challenging, for domain experts are scarce and it is hard
to gather enough experimental data to draw reliable conclusions. In order to
perform extensive evaluation, we emulate users using (hidden) interest models,
which the algorithm is supposed to learn from ordered feedback only.

We follow a protocol also used in previous work [12]: we assume that R∗ is
derived from a quality measure ϕ, i.e., p � q ⇔ ϕ (p) > ϕ (q). Thus, the task is to
learn to sample frequent patterns proportional to ϕ from (short) sample rankings.
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Iteration 1 Iteration 2 . . . Iteration 30
p1,1 p1,2 p1,3 p1,3 p2,2 p2,3 p29,1 p30,2 p30,3

freq, |p|, . . . 52, 6 49, 7 48, 9 48, 9 53, 7 54, 9 73, 8 60, 8 54, 8
Feedback U p1,3�p1,1�p1,2 p1,3�p2,2�p2,3 p29,1�p30,2�p30,3

ϕ = surp 0.12 0.04 0.20 0.20 0.11 0.10 0.28 0.26 0.12
(pct.rank) 0.51 0.13 0.84 0.84 0.46 0.41 0.99 0.97 0.51

Regret: Max.ϕ 1 − 0.84 = 0.16 0.16 0.01

True
quality

ϕ

Learned quality ϕlogistic

Fig. 1. We emulate user feedback U using a hidden quality measure ϕ (here surp;
the boxplot shows the distribution of ϕ in the given dataset). The rows above the bar
show the properties of the sampled patterns that would be inspected by a user, e.g.,
frequency or length, and the emulated feedback. The scatter plots show the relation
between ϕ and the learned model of user interests ϕlogistic after 1 and 29 iterations of
feedback and learning. The performance of the learned model improves considerably
as evidenced by higher values of ϕ of the sampled patterns (squares) and lower regret.

As ϕ, we use frequency freq, surprisingness surp, and discriminativity in labeled
data as measured by χ2, where surp (p) = max{freq (p) −

∏

i∈p

freq ({i}), 0} and

χ2 (p) =
∑

c∈{−,+}

(freq (p) (freqc (p) − |Dc|))2
freq (p) |Dc| +

(freq (p) (freqc (p) − |Dc|))2
(|D| − freq (p))|Dc|

Table 1. Dataset properties.

|I| |D| θ Frequent
patterns

anneal 93 812 660 149 331

australian 125 653 300 141 551

german 112 1000 300 161 858

heart 95 296 115 153 214

hepatitis 68 137 48 148 289

lymph 68 148 48 146 969

primary 31 336 16 162 296

soybean 50 630 28 143 519

vote 48 435 25 142 095

zoo 36 101 10 151 806

We investigate the performance of the
algorithm on ten datasets1. For each
dataset, we set the minimal support thresh-
old such that there are approximately
140 000 frequent patterns. Table 1 shows
dataset statistics. Each experiment involves
30 iterations (queries). We use the default
values suggested by the authors of SCD
and Flexics for the auxiliary parameters of
LetSIP: λ = 0.001, T = 1000, and κ = 0.9.

We evaluate performance using cumula-
tive regret, which is the difference between
the ideal value of a certain measure M and its observed value, summed over itera-
tions. We use the maximal and average quality ϕ in a query and joint entropy HJ

1 Source: https://dtai.cs.kuleuven.be/CP4IM/datasets/.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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as performance measures. To allow comparison across datasets and measures, we
use percentile ranks by ϕ as a non-parametric measure of ranking performance.
We also divide joint entropy by k: thus, the ideal value of each measure is 1
(e.g., the highest possible ϕ over all frequent patterns has the percentile rank
of 1), and the regret is defined as

∑
1 − M (Q∗

i ), where M ∈ {ϕavg, ϕmax,HJ}.
We repeat each experiment ten times with different random seeds and report
average regret.

A Characteristic Experiment in Detail. Figure 1 illustrates the workings
of LetSIP and the experimental setup. It uses the lymph dataset, the target
quality measure ϕ = surp, features = Items, k = 3, A = 0.1, l = 1, ς =
Random.

LetSIP starts by sampling patterns uniformly. A human user would inspect
the patterns (items not shown) and their properties, e.g., frequency or length, or
visualizations thereof, and rank the patterns by their subjective interestingness;
in these experiments, we order them according to their values of ϕ. The algorithm
uses the feedback to update ϕlogistic. At the next iteration, the patterns are
sampled from an updated distribution. As l = 1, the top-ranked pattern from the
previous iteration (p1,3) is retained. After a number of iterations, the accuracy of
the approximation increases considerably, while the regret decreases. On average,
one iteration takes 0.5 s on a desktop computer.

Evaluating Components of LetSIP. We investigate the effects of the choice
of features and parameter values on the performance of LetSIP, in partic-
ular query size k, query retention l, range A, and cell sampling strategy ς.
We use the following feature combinations (‖ denotes concatenation): Items
(I); Items‖Length‖Frequency (ILF); and Items‖Length‖Frequency‖Transactions
(ILFT). Values for other parameters and aggregated results are shown in Table 2.

Increasing the query size decreases the maximal quality regret more than
twofold, which indicates that the proposed learning technique is able to identify
the properties of target measures from ordered lists of patterns. However, as
larger queries also increase the user effort, further we use a more reasonable
query size of k = 5. Similarly, additional features provide valuable information
to the learner. Changing the range A does not affect the performance.

The choice of values for query retention l and the cell sampling strategy
allows influencing the exploration-exploitation trade-off. Interestingly, retain-
ing one highest-ranked pattern results in the lowest regret with respect to the
maximal quality. Fully random queries (l = 0) do not enable sufficient exploita-
tion, whereas higher retention (l ≥ 2)—while ensuring higher average quality—
prevents exploration necessary for learning accurate weights.

The cell sampling strategy is the only parameter that clearly affects joint
entropy, with purely random cell sampling yielding the lowest regret. However,
it also results in the highest quality regrets, which negates the gains in diversity.
Taking the best pattern according to ϕlogistic ensures the lowest quality regrets
and joint entropy equivalent to other strategies. Based on these findings, we use
the following parameters in the remaining experiments: k = 5, features = ILFT,
A = 0.5, l = 1, ς = Top(1).
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Table 2. Effect of LetSIP’s parameters on regret w.r.t. three performance measures.
Results are aggregated over datasets, quality measures, and other parameters.

Regret: avg.ϕ Regret: max.ϕ Regret: HJ

Query size k 5 6.35 ± 1.04 1.13 ± 0.52 13.28 ± 0.89

10 5.91 ± 0.59 0.47 ± 0.18 17.44 ± 0.45

All results below are for query size of k = 5

Features I 8.17 ± 0.96 1.35 ± 0.56 13.64 ± 0.90

ILF 6.30 ± 1.36 1.16 ± 0.59 13.15 ± 0.96

ILFT 4.60 ± 0.78 0.87 ± 0.40 13.06 ± 0.81

Range A 0.5 6.43 ± 1.06 1.15 ± 0.52 13.20 ± 0.86

0.1 6.26 ± 1.01 1.11 ± 0.51 13.36 ± 0.91

Query retention l 0 8.19 ± 1.21 2.53 ± 0.72 13.38 ± 0.69

1 6.78 ± 0.99 0.53 ± 0.34 13.06 ± 0.72

2 5.61 ± 0.94 0.61 ± 0.42 13.56 ± 1.05

3 4.80 ± 1.00 0.80 ± 0.57 13.33 ± 1.22

Cell sampling ς Random 10.60 ± 0.71 1.89 ± 0.64 12.15 ± 0.59

Top(1) 5.14 ± 1.13 0.81 ± 0.45 13.70 ± 1.00

Top(2) 5.45 ± 1.06 0.87 ± 0.47 13.60 ± 0.98

Top(3) 5.95 ± 1.20 0.95 ± 0.50 13.57 ± 0.96

The largest proportion of LetSIP’s runtime costs is associated with sampling
(costs of weight learning are low due to a relatively low number of examples).
The most important factor is the number of items |I|: the average runtime per
iteration ranges from 0.8 s for lymph to 5.8 s for australian, which is suitable
for online data exploration.

Comparing with Alternatives. We compare LetSIP with APLe [12],
another approach based on active preference learning, and IPM [2], an MCMC-
based interactive sampling framework. For the former, we use query size k and
feature representation identical to LetSIP, query selector MMR (α = 0.3,
λ = 0.7), CRankSVM = 0.005, and 1000 frequent patterns sampled uniformly
at random and sorted by freq as the source ranking. To compute regret, we use
the top-5 frequent patterns according to the learned ranking function.

To emulate binary feedback for IPM based on ϕ, we use a technique similar
to the one used by the authors: we designate a number of items as “interesting”
and “like” an itemset, if more than half of its items are “interesting”. To select
the items, we sort frequent patterns by ϕ descending and add items from the
top-ranked patterns until 15% of all patterns are considered “liked”.

As we were not able to obtain the code for IPM, we implemented its sampling
component by materializing all frequent patterns and generating perfect samples
according to the learned multiplicative distribution. Note that this approach
favors IPM, as it eliminates the issues of MCMC convergence. We request 300
samples (the amount of training data roughly equivalent to that of LetSIP),



544 V. Dzyuba and M. van Leeuwen

partition them into 30 groups of 10 patterns each, and use the tail 5 patterns in
each group for regret calculations. Following the authors’ recommendations, we
set the learning parameter to b = 1.75. For the sampling-based methods LetSIP
and IPM, we also report the diversity regret as measured by joint entropy.

Table 3 shows the results. The regret of LetSIP is substantially lower than
that of either of the alternatives. The advantage over IPM is due to a more
powerful learning mechanism and feature representation. IPM’s multiplicative
weights are biased towards longer itemsets and items seen at early iterations,
which may prevent sufficient exploration, as evidenced by higher joint entropy
regret. Non-sampling method APLe performs the best for ϕ = freq, which can
be represented as a linear function of the features and learned by RankSVM
with the linear kernel. It performs substantially worse in other settings and has
the highest variance, which reveals the importance of informed source rankings
and the cons of pool-based active learning. These results validate the design
choices made in LetSIP.

Table 3. LetSIP has considerably lower regrets than alternatives w.r.t. quality and,
for samplers, diversity as quantified by joint entropy. (For ϕ = surp (marked by *),
IPM fails for 7 out of 10 datasets due to double overflow of multiplicative weights.)

Regret: avg.ϕ Regret: joint entropy HJ

freq χ2 surp freq χ2 surp

LetSIP 2.4 ± 0.5 2.4 ± 0.1 4.5 ± 1.4 11.7 ± 0.6 11.7 ± 0.5 15.9 ± 1.1

IPM 15.5 ± 1.8 12.8 ± 2.3 15.5 ± 1.8* 15.7 ± 1.9 15.4 ± 1.9 19.8 ± 2.1*

APLe 0.0 ± 0.0 4.5 ± 3.8 5.3 ± 3.9 – – –

7 Conclusion

We presented LetSIP, a sampling-based instantiation of the Mine, interact,
learn, repeat interactive pattern mining framework. The user is asked to rank
small sets of patterns according to their (subjective) interestingness. The learning
component uses this feedback to build a model of user interests via active pref-
erence learning. The model directly defines the sampling distribution, which
assigns higher probabilities to more interesting patterns. The sampling compo-
nent uses the recently proposed Flexics sampler, which we modify to facilitate
control over the exploration-exploitation balance in active learning.

We empirically demonstrate that LetSIP satisfies the key requirements to an
interactive mining system. We apply it to itemset mining, using a well-principled
method to emulate a user. The results demonstrate that LetSIP learns to sample
diverse sets of interesting patterns. Furthermore, it outperforms two state-of-
the-art interactive methods. This confirms that it has the capacity to tackle the
pattern explosion while taking user interests into account.

Directions for future work include extending LetSIP to other pattern lan-
guages, e.g., association rules, investigating the effect of noisy user feedback on
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the performance, and formal analysis, e.g., with multi-armed bandits [15]. A user
study is necessary to evaluate the practical aspects of the proposed approach.
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Abstract. Unsupervised NRL (Network Representation Learning)
methods only consider the network structure information, which makes
their learned node representations less discriminative. To utilize the label
information of the partially labeled network, several semi-supervised
NRL methods are proposed. The key idea of these methods is to merge
the representation learning step and the classifier training step together.
However, it is not flexible enough and their parameters are often hard to
tune. In this paper, we provide a new point of view for semi-supervised
NRL and present a novel model named Predictive Network Embedding
(PNE). Briefly, we embed nodes and labels into the same latent space
instead of training a classifier in the representation learning process. Thus
the discriminability of node representations is enhanced by incorporating
the label information. We conduct node classification task on four real
world datasets. The experimental results demonstrate that our model
significantly outperforms the state-of-the-art baselines.

Keywords: Network embedding · Node classification · Semi-supervised
learning

1 Introduction

Social network analysis is an important research field which has a long history.
Mining social network is crucial for many data mining applications, such as node
classification [8], information diffusion [2], and link predication [23]. When we
want to analyze a network, the first core problem to consider is how to represent
the network. Adjacency matrix is the most basic and traditional network rep-
resentation, but it often suffers from the serious data sparsity problem. And we
can’t feed the adjacency matrix to most statistical machine learning algorithms
directly.
c© Springer International Publishing AG 2017
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Nowadays, embedding, also known as representation learning, has become
a promising and powerful tool in the network analysis area. The primary goal
of NRL task is to map the nodes of a network to meaningful low-dimensional
vectors. Several representative approaches, such as DeepWalk [14], LINE [19]
and GraRep [3], learn unsupervised node representations which are not tuned for
specific task by only utilizing the network structure information. In reality, nodes
in network are usually associated with the label information. For instance, age,
gender and other demographics of social media users. These labels are usually the
targets of predictions in node classification tasks. It is necessary to take the label
information into consideration to enhance the quality of node representations,
especially for classification.

Semi-supervised NRL models are proposed to learn discriminative node fea-
tures for node classification task. Instead of training a classifier after the node
representations is learned, these methods combine the representation learning
step and the classifier training step together. Their objective loss functions are
usually a linear combination of a first term that preserves the network struc-
ture information and second term which is a classification loss on the labeled
nodes. For instance, LSHM [7] uses a regularization smoothing term to pre-
serve the structure information and trains a liner max-margin classifier. More
recently, Tu et al. [20] present MMDW (Max-Margin DeepWalk), whose loss
function is a linear combination of the matrix factorization style DeepWalk and
a support vector machine with Biased Gradient. However, the performance of
these semi-supervised NRL models are heavily depend on their chosen classifiers.
Our experiments also show that the implementation of MMDW provided by the
author has a very large memory requirements.

Is there any other way to incorporate the label information except training
a classifier in the representation learning process? The answer is yes. Since we
can learn representations for nodes, we also can learn representations for labels.
More specifically, we assign two roles to each node, one representing itself and
the other is a context. Thus we can convert a partially labeled network to two
bipartite networks, i.e., a node-context network and a label-context network.
Then by embedding these two networks simultaneously, the label information
are directly encoded into the node representations. This method is named as
PNE. In summary, we have the following contributions:

1. We present a new semi-supervised NRL framework, PNE, which can map
nodes and labels into the same hidden space. As far as we know, we are
among the first to learn label representations for semi-supervised NRL tasks.
This idea is intuitive and can be applied to many previous unsupervised NRL
models.

2. We propose to use the average of context vectors of the neighbouring nodes of
a node to represent this node. Node classification experiments are conducted
on four real network datasets respectively. Comparing with several state-of-
the-art unsupervised and semi-supervised NRL models, we discover that our
model outperforms baselines remarkably.
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The rest of this paper is organized as follows. Section 2 gives a discussion of
the related work. Section 3 formally defines our research problem. Section 4 intro-
duces our proposed model and its implementation in details. Section 5 presents
the experimental results of node classification and parameter tuning. Finally we
conclude in Sect. 6.

2 Related Work

In this section, we will give a brief review to the history of NRL research. Spectral
methods, such as Locally Linear Embedding [16] and Laplacian Eigenmaps [1],
are proposed to reduces the dimensionality of undirected networks. Directed
Graph Embedding [4] extends Laplacian Eigenmaps to handle directed networks.
However, the computational complexity of these spectral methods are too high
to handle large networks.

In recent years, distributed representation learning techniques have been
adopted to NRL problem. The basic assumption of distributed NRL is that
the representations of nodes should be closer if they share similar contexts. We
introduce several representative unsupervised NRL models here. DeepWalk [14]
samples node sequences and feeds them to a Skip-Gram based Word2Vec [12]
model to train node representations. Walklets [15] is an extension of DeepWalk,
which takes the offsets between nodes observed in the node sequence into con-
sideration to learn a series of representations for each node. LINE [19] consider
the first-order proximity and second-order proximity between nodes to learn
node representations for large scale networks. Cao et al. present GraRep [3],
which integrates global structural information of the network into the learning
process by optimizing k-step loss functions in a matrix factorization framework.
Node2vec [6] further balances the Breadth-first Sampling and Depth-first Sam-
pling in DeepWalk. Actually, all these models are equivalent to a special neural
matrix factorization framework respectively.

Four most recent semi-supervised NRL models are LSHM, MMDW, Plane-
toid [24] and TriDNR [13]. The former two models consider both the structure
information and the label information. Planetoid and TriDNR further use the
text attributes of nodes. However, when the text information is not available,
Planetoid degrades into a combination of DeepWalk and a neural network trained
on the labled nodes, and TriDNR degrades into the fully unsupervised DeepWalk.
In this paper, we focus on the general NRL problem based on only the structure
information and the label information. And we will explore to incorporate text
features into PNE in the future.

3 Problem Formulation

We first introduce some notations that will be used in our paper. Considering a
partially labeled network G = (V,E, Y ), where V is the set of nodes, E ⊆ (V ×V )
is the set of edges, and Y is the label matrix of the labeled nodes. Note that
we treat G as a directed network, since an undirected network can be easily
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transformed into a directed network by creating two directed edges for each
undirected edge. We use {v1, . . . , vL} and {vL+1, . . . , vL+U} to represent the
labeled nodes and unlabeled nodes respectively. Here, |V | = L + U . For an edge
eij ∈ E, wij is its weight. If there is no edge pointed from vi to vj , we set wij = 0.
We use T = {l1, . . . , lM} to represent the sets of labels, where M is the number
of labels. Y is a L by M matrix whose ith row is the label vector of node vi. If
vi is associated with label lm, we set ym

i = 1, otherwise ym
i = −1.

The goal of NRL or network embedding is to map each node vi to a con-
tinuous vector zi ∈ R

d, where d � |V |. For unsupervised NRL methods, only
the network structure information should be preserved in the learned node rep-
resentations. Thus, to predict labels of the unlabeled nodes, unsupervised NRL
methods also need a classifier training step. A classifier such as a support vec-
tor machine or even a more complicated neural network can be trained on the
labeled nodes and applied on the labeled nodes. However, the discriminative
power of the node representations are tightly restricted since they are learned in
a fully unsupervised setting without considering the label information.

To utilize the label information, a class of semi-supervised approaches has
been proposed, such as LSHM and MMDW. The commonality between them
is that they learn representations in a transductive manner, which means that
the representation learning step and the classifier training step are integrated
together. As far as we know, all previous semi-supervised NRL methods incor-
porate label information by training a classifier. Nonetheless, it is often difficult
to guarantee the performance of the classifier.

Here, we explore another new direction to utilize the label information. Since
we can learn node representations, why not learn label representations simulta-
neously? Note that, most recent unsupervised NRL methods, such as DeepWalk
and LINE, assign two roles and two vectors for a node vi. The first role is the
node itself which is associated with the vector zi. The second role is a context
ci which is used to describe other nodes. We use a set C = {c1, . . . , c|V |} to
represent the context roles of nodes. Likewise, ci is associated with a context
vector z′

i ∈ R
d. The basic motivation of node representation learning adopted in

DeepWalk and LINE is that the representations of nodes should be closer if they
have similar contexts. In a similar way, we build direct relationships between
labels and contexts. Thus we can learn a vector hi ∈ R

d for each label li. We
hope that the discriminative power of node representations can be improved by
modeling the interactions between labels and contexts in the node representa-
tion learning process. As a result, the learned node representations can be feed
to any classifiers or used in other data mining tasks. We will introduce how to
build relationships between labels and contexts later.

4 Our Model

4.1 Network Decomposition

To directly incorporate the label information into the node representation learn-
ing process, we decompose the partially labeled network G into two bipartite
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networks, Gvc and Glc. As shown in Fig. 1, we provide a toy example to make
the conversion process easier to understand.

Fig. 1. Illustration of converting a partially labeled network to two bipartite networks.
The left side is a partially labeled network which have six nodes, in which labeled nodes
are colored red and unlabeled nodes are colored blue. Each node has two roles, one
represents itself and the other one is a context (neighbour) of other nodes. Thus we
decompose this network into two bipartite networks, i.e., a node-context network and a
label-context network. The node-context network encodes the unsupervised structure
information. The label-context network encodes the supervised information, capturing
the label-level node co-occurrences. (Color figure online)

Gvc = {V ∪C,Evc} is the node-context bipartite network, which encodes the
unsupervised structure information. If there is an directed edge eij in G, we just
copy this edge to Gvc to connect vi and ci and the weight of eij is unchanged.

Glc = {T ∪C,Elc} is the label-context network, which encodes the supervised
label information. Simply put, if a node vk is associated with a label li, we
will link li and the contexts of vk. For a label li and a context cj , we use an
edge eij ∈ Elc to express the relationship between them. The weight of eij is
defined as:

fij =
L∑

k=1

I(yi
k = 1)wkj , (1)

where I(x) is an indicator function. Note that the contexts are shared between
Gvc and Glc, we believe that node representations learned from these two net-
works can be more discriminative than only using Gvc as input.

4.2 Label-Context Network Embedding

We talk about how to learn label and context vectors from Glc in this part.
Given a label li, for a context cj , the probability that cj is observed when we
see li is defined as the following softmax function [18]:
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p(cj |li) =
exp(z′

j
T · hi)

∑|V |
k=1 exp(z′

k
T · hi)

. (2)

Then by using the information encoded in Glc, the corresponding empirical prob-
ability distribution of p can be defined as:

p̂(cj |li) =
fij∑

k∈Nl(i)
fik

, (3)

where Nl(i) is the set of contexts that are connected to li. Naturally, we hope
that the probability distributions defined in Eq. (2) approximates to the one
defined in Eq. (3). Thus by adopting Kullback-Leibler divergence [9], our goal is
to minimize the following objective function:

Olc =
∑

i∈T

λiDKL(p̂(·|li)||p(·|li)),

=
∑

i∈T

λiDKL(p̂(·|li)||p(·|li)),
(4)

where λi =
∑

k∈Nl(i)
fik is the importance of di in Glc. After removing some

constants, the above loss function can be rewritten as:

Olc = −
∑

(i,j)∈Elc

fij log p(cj |li). (5)

Note that directly optimizing the p(cj |li) term in Eq. (5) is computationally
expensive since we need to iterate through all contexts. Hence, we adopt the
effective negative sampling technique to reduce the computation complexity.
Now we have the following loss function:

Olc = −
∑

(i,j)∈Elc

fij

{
log σ(z′

j
T · hi) +

K∑

k=1

Ecn∼Pl(c)

[
log σ(−z′

n
T · hi)

]}
, (6)

where σ(x) is the sigmoid function, K is the number of negative edges and
Pl(c) ∝ (

∑M
i=1 fic)0.75 is the noise context distribution of Glc. By minimizing

Olc, the discriminative label information are encoded into the context vectors
z′
i. For an unlabeled node, we treat its neighbouring nodes as its contexts, thus

we now can use a weighted averaged context vector of these contexts to represent
this node. In this way, we can create a new representation vector for every nodes
no matter it is labeled or not.

Finally, for a node vi, we use the following definition to calculate its feature
vector:

ui =

∑
j∈Nv(i)

wijz
′
j∑

j∈Ni(c)
wij

, (7)

where Nv(i) is the set of contexts that are connected to node vi. We use ui rather
than zi because we find that ui yields better performance in node classification
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task. Another advantage of this strategy is that we can extend our model for
online network embedding easily. For a newly arrived node, we can calculate its
embedding easily if its neighbourhood information is available.

Then we can use the representation vectors of the labeled nodes to train a
classifier and apply it to the unlabeled nodes. But there is a serious potential
problem which may make the above process infeasible. As shown on the right
side of Fig. 1, the node v1 is not connected to any labeled nodes, it will not
serve as a context in Glc, which means that its context vector z′

1 will never be
updated. We still need to take the node-context network into consideration to
ensure that every context vector is well-trained.

4.3 Node-Context Network Embedding

Now we consider the node-context network, which shares a same form with the
label-context network. In order to embed this network, we can just repeat the
process introduced in Sect. 4.2 and regard the nodes as labels. It is straight
forward get the following objective loss function for Gvc:

Ovc = −
∑

(i,j)∈Evc

wij

{
log σ(z′

j
T · zi) +

K∑

k=1

Ecn∼Pv(c)

[
log σ(−z′

n
T · zi)

]}
,

(8)
where Pv(c) ∝ (

∑|V |
i=1 wic)0.75 is the noise context distribution of Gvc. Note that

Pv(c) and Pl(c) are two different noise context distributions determined by Gvc

and Glc respectively.

4.4 Predictive Network Embedding

To learn the embeddings of the original partially labeled network G, we use a
linear combination of Olc and Ovc to formulate our objective loss function of the
PNE model:

OPNE = Olc + Ovc. (9)

We adopt the asynchronous stochastic gradient descent (ASGD) algorithm to
optimize the Eq. (9). The PNE model is trained with the unlabeled node-context
network and the labeled label-context network simultaneously. The joint training
strategy of PNE is summarized in Algorithm 1.

To improve the effectiveness of sampling operations, we use the alias method
[21] to reduce the time complexity of sampling an edge to O(1). When the
number of edge samples T is large enough, the embeddings will converge.

5 Experiments

5.1 Dataset

Four real network datasets are used in our node classification experiments,
including Citeseer [11], Wiki [17], Cora [10] and DBLP [8]. Citeseer is a paper
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Algorithm 1. Joint training for PNE
Input: Gvc, Glc, number of samples T , number of negative samples K
Output: node feature vectors u, node embeddings z, context embeddings z′, label

embeddings h
1: initialize all embeddings randomly from the uniform distribution [-1,1]
2: while iter ≤ T do
3: sample an edge from Elc and draw K negative edges, and update the label

embeddings and the context embeddings
4: sample an edge from Evc and draw K negative edges, and update the node

embeddings and the context embeddings
5: end while
6: calculate the node feature vector for each node according to the Eq. (7)

citation network, in which papers are categorized into 6 classes. Wiki is made
up of some web pages from 17 categories and links between them. Cora is also a
paper citation network, in which papers are categorized into 10 classes. DBLP
is a coauthor network, in which authors are categorized into 4 classes.

Every node in Citeseer, Wiki and Cora only has one class label but authors in
DBLP can have multiple labels. The weight of every edge in Citeseer, Wiki and
Cora is 1 since these networks are unweighted. In contrast, the weight of an edge
between two authors is the number of papers they coauthored. We follow the
setting of the previous works [20,22] and treat Citeseer, Wiki, Cora as undirected
networks. The statistics of the datasets are listed in Table 1.

Table 1. Statistics of our datasets.

Name Citeseer Wiki Cora DBLP

Type Unweighted Unweighted Unweighted Weighted

#Nodes 3,324 2,405 2,708 27,199

#Edges 4,732 17,981 5,429 66,832

#Labels per node 1 1 1 1.15

5.2 Compared Algorithms

– DeepWalk [14]. DeepWalk is an unsupervised NRL method. The parameters
of DeepWalk are set as follows, the sliding window size is 10, the length of
each node sequence is 40, the number of node sequences for per node is 80.

– LINE [19]. LINE is an unsupervised NRL method. We use LINE(1st) and
LINE(2st) to represent LINE with first order proximity and second-order prox-
imity respectively. The number of edge samples T is set to 2 million for Citeseer
and Wiki. In the case of DBLP, we set T = 20 million.

– LSHM [7]. A semi-supervised NRL method, which trains a linear max-margin
classifier in the representation learning process.
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– MMDW [20]. A state-of-the-art semi-supervised NRL method based on matrix
decomposition. MMDW trains a max-margin SVM as its classifier.

– PNE. We set K = 5 for all four datasets. For Citeseer, Wiki and Cora, we set
T = 1 million. For DBLP, we set T = 5 million. We use PNE to represent the
full version PNE(Glc + Gvc + avg) which takes Glc and Gvc as input. We use
PNE(Glc+Gvc+ori) to represent the variation of PNE which uses the original
node embeddings z as node feature vector. We also use PNE(Glc + avg) and
PNE(Gvc + avg) to represent the submodels of PNE which only takes Glc or
Gvc as input.

5.3 Node Classification

We employ node classification task to quantitatively evaluate the quality of node
feature vectors learned by different algorithms. Note that the state-of-the-art
MMDW model trains linear SVM as its classifier, for a fair comparison, we
adopt the one-vs-the-rest linear SVM implemented in Liblinear package [5] as
classifier for DeepWalk, LINE and PNE. For all models, we set the length of node
representations d = 200, which is the same setting used in [20]. For Citeseer, Wiki
and Cora, we use Accuracy as the evaluation metric. In the case of DBLP, we
adopt the Micro-F1 and Macro-F1 as the evaluation metrics.

Table 2. Accuracy (%) of node classification on Citeseer.

% Labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 52.99 55.78 57.20 59.16 58.33 60.41 58.16 58.96 58.41

LINE(1st) 45.70 51.22 54.55 56.28 57.02 58.05 58.94 59.77 59.37

LINE(2nd) 46.68 51.23 53.36 55.41 57.55 58.14 58.37 59.00 59.04

PNE(Gvc + avg) 52.31 54.35 55.70 56.66 57.59 57.96 58.69 58.74 59.08

LSHM 53.67 57.73 60.10 61.61 62.69 63.43 64.09 65.51 66.02

MMDW 54.72 59.64 62.60 64.10 65.83 68.96 69.56 69.58 69.16

PNE(Glc + avg) 51.03 58.14 62.40 64.88 67.64 69.93 71.32 72.57 73.76

PNE(Glc + Gvc + ori) 54.10 60.05 63.40 65.75 68.53 70.42 71.76 72.79 74.93

PNE 54.79 60.87 64.67 66.95 68.59 70.00 72.06 73.41 74.76

In practical terms, a certain proportion of nodes is sampled from the network
as labeled data to train the classifier, the remaining nodes are used for evalua-
tion. We repeat the trial 20 times and report the averaged results. As shown in
Tables 2, 3, 4 and 5, we report the performance of different models under increas-
ing training ratios. From these tables, we mainly have the following observations
and analysis:

(1) We observe that the proposed method PNE always significantly outperform
other baselines. Compared with MMDW, PNE achieves nearly 2.85%, 1.99%,
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Table 3. Accuracy (%) of node classification on Wiki.

% Labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 58.78 63.11 65.72 66.90 67.65 68.04 69.30 69.75 68.46

LINE(1st) 54.92 61.98 64.76 66.30 67.66 68.01 68.86 67.92 69.42

LINE(2nd) 57.09 59.90 62.30 62.86 63.82 64.74 64.60 65.18 65.10

PNE(Gvc + avg) 57.36 60.75 62.01 63.30 64.06 64.57 65.31 65.65 65.33

LSHM 55.56 54.73 61.81 61.62 64.86 65.22 67.15 66.83 68.58

MMDW 57.25 62.01 65.04 66.67 66.89 68.23 69.22 70.18 72.61

PNE(Glc + avg) 54.10 62.16 64.66 66.37 67.89 68.83 69.71 70.28 71.14

PNE(Glc + Gvc + ori) 58.98 63.76 65.78 67.80 69.20 69.23 70.77 70.70 71.53

PNE 58.93 64.28 66.79 68.66 69.44 70.18 70.79 70.83 72.78

Table 4. Accuracy (%) of node classification on Cora.

% Labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 75.95 78.66 79.90 80.81 81.58 81.96 82.10 82.66 82.67

LINE(1st) 68.13 75.93 79.16 80.91 81.73 82.83 82.69 82.30 83.33

LINE(2nd) 75.02 78.55 80.17 81.11 81.75 82.76 82.88 83.12 82.61

PNE(Gvc + avg) 75.34 77.98 79.21 79.94 80.11 80.53 81.60 81.22 81.71

LSHM 76.80 79.29 80.34 82.34 83.12 83.81 84.75 85.18 86.68

MMDW 73.61 79.95 82.08 82.73 83.25 84.64 86.35 86.66 87.21

PNE(Glc + avg) 74.10 78.99 81.61 83.54 84.71 85.12 85.93 86.10 86.54

PNE(Glc + Gvc + ori) 76.15 79.66 82.02 83.09 84.18 84.89 86.05 86.30 86.82

PNE 77.58 81.22 82.94 84.54 84.73 85.55 86.15 86.39 87.76

Table 5. Micro-F1 (%) of node classification on DBLP.

% Labeled nodes 10% 20% 30% 40% 50% 60% 70% 80% 90%

DeepWalk 66.85 68.03 68.57 68.79 68.85 68.95 69.10 69.31 69.50

LINE(1st) 64.06 65.73 66.39 66.77 66.67 66.89 66.81 66.96 67.20

LINE(2nd) 65.87 66.83 67.24 67.37 67.68 67.59 67.63 67.61 67.49

PNE(Gvc + avg) 63.80 64.49 64.72 65.03 64.25 65.13 65.41 65.24 65.68

LSHM 70.09 73.36 76.53 78.84 81.13 84.87 85.40 87.58 87.73

MMDW - - - - - - - - -

PNE(Glc + avg) 72.25 78.43 83.09 85.28 87.65 88.79 89.34 91.01 92.10

PNE(Glc + Gvc + ori) 73.47 79.58 82.91 85.31 87.05 88.16 89.04 89.48 88.67

PNE 73.98 79.22 81.38 85.15 87.28 88.64 89.85 90.01 91.40
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1.81% improvement on Citeseer, Wiki and Cora respectively in the measure
of Accuracy when the training ratio is 0.4. This demonstrates that incorpo-
rating the label information by label embedding may be a better strategy
than training a classifier in the representation learning process.

(2) We find that MMDW encounters out-of-memory errors to handle DBLP on
our Linux server which has 64G memory. But PNE only need no more than
1.2G memory on the same server to process this large network.

(3) Semi-supervised methods benefit from more labeled training samples. Com-
pared with LINE, the relative improvement of PNE is around 8% on DBLP
when the training ratio is 0.1. But it reaches up to 24% when the training
ratio is 0.9.

(4) The label-context network is truly useful to improve the predictive power of
the nodes. PNE always outperforms PNE(Gvc + avg) by a large margin.

(5) For most case, PNE outperforms PNE(Glc + Gvc + ori). This demonstrates
that using the average of the context vectors of the neighbouring nodes of
a node to represent a node is a better and potential strategy for the node
classification task.

5.4 Parameter and Convergence Sensitivity

The time and memory requirements of PNE are highly relevant to d, K and T .
We test the changes in performance of PNE and LINE(2nd) on Citeseer, Wiki
and DBLP when the training ratio is 0.4. When one parameter is under test,
other parameters are set to their default values.
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As shown in Fig. 2, we find that when d ∈ [20, 1280], the performance of
PNE is very stable. For example, to get the best prediction performance on
DBLP, PNE just need d = 20, but LINE need d = 640. This demonstrates that
PNE is memory efficient by incorporating the label information into the node
representations.

As shown in Fig. 3, the performance of PNE is much less sensitive to the num-
ber of negative edges K than LINE. Overall, when K ∈ [3, 8], PNE is relatively
stable. This makes it easier to select an appropriate value for K in PNE.
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As shown in Fig. 4, the convergence of PNE is far faster than LINE. For
example, when the number of edge samples reaches 2 million, PNE has converged
already on DBLP. Meanwhile, LINE needs 15 million samples to get its best
performance.
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6 Conclusion and Future Work

In this paper, we present PNE, an effective semi-supervised feature learning
framework for the partially labeled networks. By learning label representations
and node representations simultaneously, the discriminative node feature vec-
tors can be obtained. The results of node classification experiments conducted
on four datasets show that PNE outperforms several state-of-the-art baselines
significantly.

We now consider two directions for future work. Nodes in real-world network
often have abundant text information. We hope to extend PNE to further uti-
lize rich text attributes of nodes. It is also necessary to adapt PNE model to
handle heterogeneous networks, which are common but have complex structure
information.
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Abstract. Temporal record linkage is the process of identifying groups
of records that are collected over a period of time, such as in census
or voter registration databases, where records in the same group repre-
sent the same real-world entity. Such databases often contain temporal
information, such as the time when a record was created or when it was
modified. Unlike traditional record linkage, which considers differences
between records from the same entity as errors or variations, temporal
record linkage aims to capture records from entities where the attribute
values are known to change over time. In this paper we propose a novel
approach that extends an existing temporal approach called decay model,
to categorically calculate probabilities of change for each attribute. Our
novel method uses a regression-based machine learning model to predict
decays for sets of attributes. Each such set of attributes has a principle
attribute and support attributes, where values of the support attributes
can affect the decay of the principle attribute. Our experimental results
on a real US voter database show that our proposed approach results in
better linkage quality compared to the decay model approach.

Keywords: Data matching · Temporal data · Decay · Attribute
weighting · Entity resolution

1 Introduction

Record linkage (also known as data matching, entity resolution, and duplicate
detection) identifies records that refer to the same real-world entity [5]. Record
linkage is being used in many application domains, such as linking patient data
for disease outbreak detection or clinical trails in the health industry [5], credit
checking and fraud detection in the finance industry [6], and constructing pop-
ulation databases for social science research [11]. Challenges in record linkage
are caused by the lack of unique identifiers (such as national identifier num-
bers), dirty data (such as misspellings and missing values), legitimate updates
over time (such as changes in last name or address), and the lack of informative
attributes (i.e. a dataset might not contain gender and/or date of birth).
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Record linkage generally involves the following steps [5]: data preprocessing,
blocking, comparison and classification, and evaluation. This paper focuses on
record pair comparison and classification, especially the task of calculating a
similarity value with greater effectiveness at distinguishing between matches and
non-matches for temporal data compared to previous temporal and non-temporal
linkage techniques. While record linkage has been studied for several decades,
until recently most works in this field did not use any temporal information
available in datasets [13]. However, records of the same entity can be collected
over a long period of time (years or even decades), such as census data that in
many countries are collected every five or ten years. During such periods, certain
attribute values of an entity are likely to change, such as a person’s job position,
living address, and potentially their last name (if somebody gets married).

Traditional record linkage methods assume that highly similar records are
most likely to belong to the same entity [5]. These techniques do not perform
well on temporal data, because entities might change some of their attribute
values over time. For example, when a person changes his or her last name or
address, their new record is not linked to earlier records because the attribute
values do not match, or their earlier records are linked by mistake to records of
a different person who has the same last name and/or address [6].

Temporal record linkage aims to address the above issues by using temporal
information, such as the time-stamp when a record was created or modified.
These time-stamps can be used to sort records by time and calculate temporal
distances between records. They therefore provide opportunities for new record
linkage approaches (examples will be discussed in Sect. 2). A dataset needs to
contain temporal information for each record to be used in temporal record
linkage, such as the date when being entered (for medical records), the date when
being published (for publication records), or the date when being collected (for
datasets collected by taking snapshots of databases at different points in time).

Table 1. An example of a temporal datasets.

RecID EntID FName MName LName Address Sex Age EntryDate

r1 e2 Elsa Clark 161 Castlereagh
St, Sydney

F 24 2011-09-11

r2 e1 Ella Rose Taylor 456 Kent
Street, Sydney

F 23 2011-10-12

r3 e1 Ella Louise Taylor 456 Kent
Street, Sydney

F 23 2012-02-20

r4 e1 Ella Louise Clark 299 Elizabeth
St, Sydney

F 24 2012-06-30

r5 e2 Elsa Taylor 201 Kent
Street, Sydney

F 26 2013-08-05
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Example: Given five records of two entities as in Table 1, if we do not consider
the temporal information EntryDate, records r2 and r5 will have a high similarity
and will therefore be matched incorrectly, whereas records r2 and r4 will have a
low similarity and this true match will be missed. Temporal record linkage aims
to correctly link r1 to r5, and link r2, r3 and r4 together using the temporal
information in the EntryDate attribute.

This paper extends an existing temporal linkage approach called decay model
[13], which learns the probability for an attribute to change over time (disagree-
ment decay) and the probability for an attribute to share the same value among
different entities over time (agreement decay). It then uses these decays to adjust
the weight given to each attribute, where the sum of adjusted attribute weights
is used to calculate the similarity between a pair of records and decide if they
are a match or non-match based on a similarity threshold [5]. The decay model
assumes the probability for an attribute to change its value over a certain time
period is the same for every entity, and this assumption is not always true. For
example, young people are more likely to change their address than seniors, and
young females are more likely to change their last name than senior males.

Contributions: We integrate a linear regression model into the decay
model [13]. Our model uses support attributes to calculate the decay of a prin-
ciple attribute whose decay is affected by the values of those support attributes.
The calculated decays are therefore more specific to each entity. For example,
a person’s gender can affect the likelihood of changes in their last name, and
when we calculate a decay for last name with gender as a support attribute we
can learn a gender sensitive decay model for last name. Our intuition is that the
probability for an attribute to change over time can be predicted more accu-
rately with the help of other attributes upon which it depends. We also propose
a method to adjust the impact of decay models, and evaluate our approach on
four subsets of a real US voter dataset. The experimental results show that our
approach improves the linkage quality compared to two baseline approaches.

2 Related Work

We discuss related work in the two areas of record linkage that are non-temporal
and temporal models. The common objective of both types of models is to decide
if a pair of records is a match, or if a record belongs to a cluster of records
where all records refer to the same entity. Temporal models consider temporal
information in addition to attribute similarities as used in non-temporal models.

Fellegi and Sunter [7] proposed a statistical non-temporal linkage model. This
model weights each attribute according to two types of probabilities: (1) the
probability for a pair of records that agree on an attribute to be a match; and
(2) the probability for a pair of records that agree on an attribute to be a non-
match. The weights of attributes are summed to calculate the matching score
for each pair of records. These probabilities can be learned from training data
or estimated using the Estimation-Maximization algorithm [9].
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Li et al. [13] were the first to propose a temporal model which considers the
probability for an attribute’s value to change over time, where this probability is
learned from training data. The model calculates a disagreement decay (the like-
lihood for an attribute to change within a certain time period) and an agreement
decay (the likelihood for an entity’s attribute value to be the same as another
entity’s within a time period). The two types of decays are used to adjust the
weight of each attribute as used in the similarity calculations.

More recently, Li et al. [12] proposed a temporal model which learns the
probability for each attribute value to change to some commonly occurring value
over time. However, this approach requires a temporal dataset to have attributes
whose values change to some commonly occurring values, such as job positions
(for example, the position ‘technician’ can change to ‘manager’).

Christen and Gayler [6] modified the approach proposed by Li et al. [13] to
iteratively train a temporal model using a stream of time-stamped records. Every
time a certain number of records are matched, the approach uses the matching
results to retrain the temporal model. The difference between this approach and
the original temporal model [13] is that the latter only learns the temporal model
from training data once, whereas the former continuously trains the temporal
model using linkage results produced by itself.

Chiang et al. [3] proposed an algorithm which learns the probability for an
attribute’s value to recur within different time periods. For each value of an
attribute, the algorithm constructs a transition history and uses this history to
calculate the probability for a value to recur. These probabilities are used to
adjust the original similarity of a pair of records.

All these existing works do not address dependencies between attributes
when calculating the probability for an attribute to change over time. Although
Li et al. [13] introduced a decay model, their model only calculates the proba-
bility for attribute values to change independently. We believe the decay model
can be improved and made more effective to improve the linkage quality by
considering dependencies between attributes.

3 Problem Statement

We now define the notation as well as the problem we aim to tackle in this paper.
Let R be a set of records and E be a set of entities. Each record r ∈ R has a
list of attribute values [a1, a2, . . . , ak] and a time-stamp r.t, where each value ai

(1 ≤ i ≤ k) is associated with an attribute A, and we use r.A to denote the value
ai of A in r. Every record r ∈ R must belong to exactly one entity e ∈ E. The
entity to which a record r belongs to is denoted as e(r).

Attribute values of an entity e can change over time, where each change
(update) is represented by a new record ri with a time-stamp ri.t and attribute
value(s) that is/are different from the previous record. For example, let r1, r2 be
two records belonging to e (in another word, e(r1) = e(r2)). If r1.t < r2.t and
∃A ∈ A : r1.A �= r2.A, then we say that the value of attribute A of entity e has
changed between the two time-stamps r1.t and r2.t.
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Given a training dataset C in the form of a set of clusters of records. Each
cluster C ∈ C contains a set of records {r1, r2, . . .}. All records in a cluster C
represent the same entity, and records in different clusters represent different
entities.

The temporal record linkage problem is to link all ra, rb ∈ R, where e(ra) =
e(rb), ∃A ∈ A : ra.A �= rb.A. Note that it is possible to have a pair of records
where e(ra) = e(rb) and ∀A ∈ A : ra.A = rb.A, which means no temporal update
has occurred between the two records. In this case we will only keep the oldest
record of the pair during data preprocessing.

The goal of our work is to address the temporal record linkage problem using a
weighting strategy which adjusts the importance of attributes in order to improve
the quality of linkage. Our work uses a regression model to train and predict
parameters for a temporal model. Our solution is based on the assumption that
adjusting the weights of each attribute A according to its probability to change
over time can improve the quality of record linkage.

4 Temporal Record Linkage Framework

In this section we discuss the temporal record linkage framework used in our
work. Swoosh is a generic record linkage method which compares records accord-
ing to features (sets of attributes) selected by the user [1]. A pair of records is
merged into a new record when one of their features meets the matching criteria
provided by the user, and then the two original records are removed. Swoosh
treats the classifier, which decides whether a pair of records is a match, as a
blackbox. In this paper, we use a threshold-based classifier that classifies a pair
of records as a match when its similarity is greater than a user defined similarity
threshold. The objective of our proposed approach is to calculate a similarity
value for a pair of records using temporal information.

The decay model calculates the similarity of a pair of records using the sim-
ilarity of each pair of attribute values that is adjusted by weights. The weight
of each attribute is calculated according to its disagreement and agreement
decays [13]. Disagreement decay is the probability for an attribute to change
its value within a time period, and agreement decay is the probability for mul-
tiple entities to have the same attribute value within a time period [13]. A time
distance Δt refers to the difference between two time-stamps, and is measured
by a time unit defined by the user, such as days, years, or hours.

A life span l refers to the time distance of an attribute value to be used
by an entity. An attribute’s life span is full when the value has a date when
it was used first and another date when it was changed to another value. The
time distance between the first and second date is a full life span, denoted as lf .
Similarly, if the attribute’s value does not change between two time-stamps, the
time distance between the time-stamps is a partial life span, denoted as lp.

For example, assume that an entity has three different last names over five
records, with time-stamps in the form of (year-month): ‘Taylor’ (2011-10) →
‘Taylor’ (2011-12) → ‘Spire’ (2012-12) → ‘Spire’ (2013-10) → ‘Wright’ (2015-
10). The time distance between the first and the third records is one full life span
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with a length of 14 months (2011-10 to 2012-12), and the distance between the
third and the fifth records is another full life span with a length of 34 months
(2012-12 to 2015-10). Note that, in this example, month is being used as a time
unit but this is not necessary for all datasets. From this example, the time
distance between the first and the second records is a partial life span with a
length of 2 months (the time distance between 2011-10 and 2011-12), and the
time distance between the third and the fourth records (2012-12 and 2013-10) is
another partial life span with a length of 10 months.

Let L̄f denote the list of all full life spans lf of an attribute A for all entities
and let L̄p denote the list of all partial life spans lp of an attribute A for all
entities. Then the disagreement decay is formally defined as below.

Definition 1. (Disagreement decay d �=) [13]: Let Δt be a time distance, A ∈ A
be an attribute. The disagreement decay of A over Δt is the probability d �=(A,Δt)
that an entity changes its value of A within Δt:

d �=(A,Δt) = (|{l ∈ L̄f |l ≤ Δt}|)/(|L̄f | + |{l ∈ L̄p|l ≥ Δt}|) (1)

Let L̄ denote a list of both full and partial life spans of an attribute A for all
entities. For each record, if it has the same attribute value with another record
which belongs to a different entity, the time distance between the two records is
added to L̄. If no entity has the same attribute value, a life span with length ∞
is added to L̄. Then the agreement decay is formally defined as below.

Definition 2. (Agreement decay d=) [13]: Let Δt be a time distance, A ∈ A be
an attribute. The agreement decay of A over Δt is the probability d=(A,Δt) that
two different entities share the same value of A within Δt:

d=(A,Δt) = (|{l ∈ L̄|l ≤ Δt}|)/(|L̄|) (2)

The decay model uses the agreement and disagreement decay to calculate wA

(weight of attribute A), as shown in (3). The comparison function sA calculates
the similarity between a pair of attribute values. sA is defined by the user and it
returns a similarity value in the range [0, 1]. These comparison functions can be
approximate string similarity functions, such as edit-distance or Jaro-Winkler [5].

wA(sA,Δt) = 1 − sA · d=(A,Δt) − (1 − sA) · d �=(A,Δt) (3)

Weights are used to calculate the pair-wise similarity between two records,
as shown in (4). sr denotes the decay adjusted similarity between two records ra

and rb. sr is the final similarity score that is used to classify a pair of records,
which decides if it is a match or non-match. sr is in the range [0, 1].

sr(ra, rb) =
∑

A∈A wA(sA(ra.A, rb.A), |ra.t − rb.t|) · sA(ra.A, rb.A)
∑

A∈A wA(sA(ra.A, rb.A), |ra.t − rb.t|) (4)

5 Improved Decay Model

In this section we introduce an improved temporal model based on the decay
model [13] described above.
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5.1 Predicting Probability with a Regression Model

From the previous equations we can see that the agreement and disagreement
decays are calculated using only a single attribute. For example, when the dis-
agreement decay of attribute last name is calculated, the temporal model calcu-
lates the overall probability for an entity to change its last name within a given
time distance Δt. However, the probability for an entity to change its last name
is often associated with gender and age. The disagreement decay for last name,
calculated without considering the gender and age values of an entity, would be
too high for older males, and too low for younger females, because it is rare for
an older man to change his last name, but more common for a young woman to
change her last name when she gets married.

A set of support attributes is selected for principle attributes where the value
of a support attribute may affect the probability for their attribute value to
change. For example, when predicting the probability for values in attribute
address to change, attributes gender and age can be used as support attributes
to make the prediction more accurate. Support attributes are selected by the
user based on their domain knowledge for each principle attribute, and each
principle attribute can have zero to many support attributes. They can also be
selected using a feature selection strategy that is able to explore the dependency
between features [2].

To create a training dataset for each attribute, our algorithm iterates through
the records of each entity. The algorithm checks if an entity has changed its prin-
ciple attribute value within a time distance. The time distance ranges from 1
to the maximum time distance of the whole dataset. For each time distance,
a training instance is created using the time distance and values of the sup-
port attributes as features, and using the status of value change (changed or
unchanged) as class value. The training dataset is then used to train a regres-
sion model.

In this paper, we use a linear regression model, as commonly used in para-
meter estimation and prediction [10], to predict disagreement probability.

Disagreement Probability: We introduce a concept called disagreement prob-
ability d �=

prob, which has a similar definition as disagreement decay (as shown
in (1)), but is modified in order to be used with a regression model. From (5),
we can see that the difference between d �=

prob and d �= is that the divisor of d �=
prob

is fixed for each entity. With a fixed divisor, we can create training instances
for a regression model according to if l ≤ Δt. When a full life span l ∈ L̄f is
encountered, we can decide if it is lower than a certain Δt and create a training
record. These training records are used to train the regression model to predict
disagreement probability. For each Δt, a training record is created using: (1) the
value of each support attribute of A whose model is being built; (2) the current
Δt; and (3) a class value which is equal to 1 if l ≤ Δt, or 0 if l > Δt or l ∈ L̄p.

When a class value of a training record equals to 1, it means the value of A
of an entity has been changed within Δt and the life span is full, whereas a class
value 0 means the value of A has not been changed within Δt and the life span
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is partial. It needs to be noted that (5) is only relevant when we create training
records. The equation provides a conceptual insight about why we create training
records following the steps described above. The d �=

prob that is being used after
the training stage is predicted using the trained regression model, rather than
calculated using (5).

d �=
prob(A,Δt) = (|{l ∈ L̄f |l ≤ Δt}|)/(|L̄f | + |L̄p|) (5)

d �=
prob is normalized into the range [0, 1], and then it can be used as a weight

to adjust attribute-wise similarities, as shown in (6). sp denotes the similarity
between a pair of records adjusted using d �=

prob.

sp(ra, rb) =
∑

A∈A

1 − d �=
prob(A, |ra.t − rb.t|)

∑
A′∈A 1 − d �=

prob(A′, |ra.t − rb.t|)
· sA(ra.A, rb.A) (6)

Combining Disagreement Probability with Agreement Decay: Disag-
reement probability can be normalized as: d �=

nprob(A,Δt) = (d �=
prob(A,Δt))/

(max(d �=
prob(A))), where max(d �=

prob(A)) is the maximum disagreement proba-
bility over all Δt. Using (3) and (4) above, with d �= being replaced by d �=

nprob, a
different wA can be calculated, while (7) shows how to calculate wA using d �=

nprob.

wA(sA,Δt) = 1 − sA · d=(A,Δt) − (1 − sA) · d �=
nprob(A,Δt) (7)

5.2 Adjusting the Impact of Decay Models

The intuition of using decays to adjust attribute weights is that attributes that
have higher probability to change their values are less reliable than those that
change less often. However, the normalized probabilities of changing values may
not immediately represent the optimal weighting of attributes. For example, let
last name have a probability to change as 10% over 3 years, and first name
have a probability to change as 2% over the same time period. While the ratio
between the two probabilities is 5:1, it does not immediately suggest that first
name is five times more important than last name.

To control the impact of temporal models, a parameter α ∈ [0,∞] is intro-
duced during normalization, as shown in (8). When α is 0, the temporal model
has the maximum impact in adjusting similarity output. When α is very large,
the impact of the temporal model is close to none. The parameter α is chosen
by the user based on domain knowledge. In Sect. 6, we will evaluate a range of
α values.

sr(ra, rb) =
∑

A∈A(wA(sA(ra.A, rb.A), |ra.t − rb.t|) + α) · sA(ra.A, rb.A)
∑

A∈A(wA(sA(ra.A, rb.A), |ra.t − rb.t|) + α)
(8)
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Algorithm 1. Record Linkage with Regression-based Temporal Model
Input:

- A set of temporal record clusters for training: C
- A set of temporal records to be linked: R
- For each attribute A ∈ A, a set of support attributes: LA

- A similarity threshold: ts
- An impact adjustment value: α

Output:
- A set of merged records, each record represents an entity: R′

1: T = hashtable() // A hashtable of training instances for each attribute
2: for C in C do
3: for A in A do
4: Create a training instance i using LA and the approach described in Sect. 5.1.
5: T [A].append(i)

6: Ma = hashtable() // Agreement decay models
7: Md = hashtable() // Disagreement probability models
8: for A in A do // Train two models for each attribute
9: Ma[A] = decayModel(T [A])
10: Md[A] = linearModel(T [A])

11: Get pairs of records P from R using Swoosh described in Sect. 4.
12: for p in P do // For each pair of records
13: decaysAgree = hashtable() // Map A ∈ A to an agreement decay
14: probsDisagree = hashtable() // Map A ∈ A to a disagreement probability
15: for A in A do // Calculate agreement decays and disagreement probabilities
16: decaysAgree[A] = Ma[A](p)
17: probsDisagree[A] = Md[A](p)

18: sr = sim(decaysAgree, probsDisagree, α) // Calculate similarity using (8)
19: if sr >= ts then
20: R.removeRecords(p) // Remove the two records of the pair
21: r′ = merge(p) // Merge the pair of records into a new record
22: R.push(r′) // Add the new record to record set
23: Create new records pairs using r′ then push the new pairs into P

24: return R as R′ // Return the merged records that cannot be merged any further

5.3 Algorithmic Overview of Regression-Based Temporal Linkage

Algorithm 1 describes the main steps of our approach, which integrates with our
framework and produces a set of linked (merged) records from a set of temporal
records R. From lines 1 to 5, the algorithm creates a list of training instances for
each attribute. Each training instance contains a class value that indicates if the
attribute value of an entity has been changed within a time period. From lines
6 to 10, the algorithm trains an agreement decay model and a disagreement
probability model for each attribute, using the training instance sets created.
From lines 11 to 23, the algorithm compares records in pairs, merges the record
pair that is classified as a match into a new record, and compares the new record
against the remaining records.

6 Experiments

In this section we first describe the datasets, baseline methods and measures
used in our experiments. Then we present and discuss the experimental results.
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6.1 Experimental Settings

Datasets: The real temporal datasets we used in this paper are from the
North Carolina Voter Registration (NCVR) dataset collected every two months1.
The datasets have ground truth (entity identifiers) available for all records. We
selected the following attributes: first, middle, and last name, name suffix, street
address, city, gender, and age. Gender was selected as the support attribute for
last name, age was selected as the support attribute for street address, while the
remaining attributes have no support attributes. The choice of support attributes
was made according to domain knowledge. The NCVR dataset in total contains
8,336,205 entities, from which we randomly selected 5K, 10K, 50K, and 100K
entities and their temporal records to create testing datasets. In each of the four
testing datasets, 76% of the entities have one temporal record, 18.6% have two
temporal records, 4% have three temporal records, and 1.4% entities have more
than three temporal records. Each temporal record has one or more attribute
value(s) that are different from the other records.

1K and 10K entities were randomly selected from the NCVR dataset and
their temporal records are used for training. The 1K training dataset is used to
train the models when using 5K and 10K testing datasets, and the 10K training
dataset is used to train the models when using 50K and 100K testing datasets.

Measures: We used the standard quality measures of precision, recall, and F-
measure to evaluate the record linkage quality [5] (noting recent work on how the
F-measure can be misleading for record linkage when used to compare different
classifiers at the same similarity threshold by weighting precision and recall
differently [8]). Let R be a record linkage result in the form of clusters of records
that are matching, and S be the ground truth that R corresponds to, which is
also in the form of clusters of records. We calculate pair-wise precision (P ) =
(|R∩S|)/(|R|), pair-wise recall (R) = (|R∩S|)/(|S|), and F1 = 2 ∗ P ∗ R/(P+R).
We used similarity thresholds ts = [0.6, 0.65, 0.7, 0.75, 0.8], and values for α in
the range from 0 to 8 with an increment of 0.5. The highest F1 score of each
method was selected as the final result.

For string attributes, the similarity of a pair of attribute values was calculated
using the Jaro-Winkler string comparison function [5]. The similarity of a pair
of age values was calculated as: sage = 1/(|age1 − age2| + 1).

We implemented all algorithms in Python 2.7, and the experiments were con-
ducted on a server with 64-bit Intel Xeon (2.4 GHz) CPUs, 128 GB of memory
and running Ubuntu 14.04. We used the Sklearn package2 for the linear regres-
sion classification. We implemented four algorithms for the experimental study.
The first two are baselines, and the last two are the proposed approaches: (1) No
model: A baseline approach with no temporal model. Weights of attributes were
not adjusted by a temporal model. (2) Decay model (Decay): A baseline approach
using the temporal model proposed by Li et al. [13] (Sect. 4). (3) Disagreement

1 http://dl.ncsbe.gov/.
2 http://scikit-learn.org.

http://dl.ncsbe.gov/
http://scikit-learn.org
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probability regression model (Disprob): A temporal model which uses a regres-
sion model to predict the disagreement probability, and reduces the weights
of attributes when their predicted disagreement probability is high (Sect. 5.1).
(4) Disagreement probability combined with agreement decay regression model
(Mixed): With the disagreement probability being predicted in the same way as
the method above, the mixed method also calculates agreement decay from the
decay model. The disagreement probability and agreement decay are combined
to adjust the weight of each attribute (Sect. 5.1).

Table 2. Linkage results on the NCVR datasets with best results highlighted in bold.

Dataset 5K 10K 50K 100K

P R F1 P R F1 P R F1 P R F1

No model 0.99 0.93 0.96 0.99 0.90 0.94 0.94 0.90 0.92 0.91 0.91 0.90

Decay 0.96 0.95 0.96 0.95 0.93 0.92 0.97 0.87 0.92 0.96 0.88 0.91

Disprob 0.98 0.93 0.96 0.97 0.90 0.94 0.95 0.88 0.91 0.95 0.86 0.91

Mixed 0.97 0.96 0.97 0.94 0.95 0.94 0.96 0.90 0.93 0.95 0.90 0.92

Impact adjustment as discussed in Sect. 5.2 is implemented for Decay and
Disprob, as well as the proposed algorithm Mixed, to allow a fair comparison.

6.2 Experimental Results

Table 2 shows the linkage results of the four algorithms on the testing datasets
with impact adjustment. Results with the highest F1 were selected. On the
smaller testing datasets (5K and 10K), the Mixed approach achieved better
recall but lower precision than the non-temporal baseline. On the larger testing
datasets (50K and 100K), Mixed maintained similar recalls as the non-temporal
baseline while performing better at precision. The result shows that our tech-
nique performs better when a dataset is large, while it does not perform worse
than other techniques on smaller datasets. Because the 50K and 100K datasets
used a larger training set of 10K entities the improvements would be due to this
larger number of training records.

One significant difference between the smaller and the larger testing datasets
is the percentage of non-matching record pairs. Even with blocking [5], the num-
ber of non-matching pairs still grows faster than linear with respect to the size of
a dataset. A linkage algorithm will encounter non-match pairs more often when
the testing dataset is large. As a result, we can observe that the precision of the
No model approach decreases as the size of a dataset increases.

Figure 1 shows the effect of the impact adjustment parameter α (see
Sect. 5.2). The temporal models did not perform well when the impact adjust-
ment was not applied (α = 0). It implies that directly applying probabilities on
the weights can over-weight some attributes and decrease the linkage quality.



572 Y. Hu et al.

Fig. 1. The effect of different values for the impact reduction parameter (α). Without
impact reduction (α = 0), the temporal models (Decay, Mixed) performed poorly. At
a certain point, the temporal models start to outperform the non-temporal baseline
approach (No model). With the impact being reduced further (α increases), the tem-
poral models eventually performed the same as the non-temporal baseline because the
impact of the models has been reduced to the extent that is not significant anymore.

7 Conclusion and Future Work

In this paper we have developed a temporal model to improve the quality of
temporal record linkage. Our model uses a linear regression model and multiple
attribute values to predict the probability for an attribute value to change within
a certain time period, and the model adjusts the weight of the attribute used
in similarity calculations accordingly. The intuition of our approach is to use
the dependency between attributes to predict their probability to change over
time more accurately. We evaluated our approaches on four real-world datasets
derived from the NCVR database. The experimental results show that our app-
roach performed better than two baseline approaches.

In the future, we will investigate attribute dependencies for calculating the
probability for two different entities to share the same attribute value (agreement
probability), which can also be affected by other attributes. For example, two
people who have the same phone number have a high probability to have the
same address. We also aim to incorporate a frequency based weighting strategy
into our framework to see if undesired high similarities can be adjusted properly.
Another possible direction is to test the temporal models with different clustering
techniques, such as those proposed by Li et al. [13] and Chiang et al. [4].
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Abstract. Detecting communities in graph streams has attracted a
large amount of attention recently. Although many algorithms have been
developed from different perspectives, there is still a limitation to the
existing methods, that is, most of them neglect the “zombie” nodes (or
unimportant nodes) in the graph stream which may badly affect the com-
munity detection result. In this paper, we aim to deal with the zombie
nodes in networks so as to enhance the robustness of the detected commu-
nities. The key here is to design a pruning strategy to remove unimpor-
tant nodes and preserve the important nodes. We propose to recognize
the zombie nodes by a degree centrality calculated from the exponential
time-decaying edge weights, which can be efficiently updated in the graph
stream case. Based on only important and active nodes, community ker-
nels can be constructed, from which robust community structures can be
obtained. One advantage of the proposed pruning strategy is that it is
able to eliminate the effect of the aforementioned “zombie” nodes, lead-
ing to robust communities. By designing an efficient way to update the
degree centrality, the important and active nodes can be easily obtained
at each timestamp, leading to the reduction of computational complex-
ity. Experiments have been conducted to show the effectiveness of the
proposed method.

Keywords: Community detection · Graph stream · Weighting ·
Pruning

1 Introduction

With the rapid development of Internet, an enormous amount of graph streams
have been generated. These graphs (networks) represent the information of inter-
active relationships of the objects (users) over a specific period with the form of
incremental graphs. Discovering communities (groups) in graph streams enables
a better understanding of the natural and social structures in graph streams [1].
In the past few years, many graph stream community detection algorithms have
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 574–585, 2017.
DOI: 10.1007/978-3-319-57454-7 45
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been developed aiming to address varying issues from different perspectives,
such as [1–4]. For instance, for community detection in a multi-mode network,
an evolutionary multi-mode clustering was proposed by utilizing the temporal
information [5]. For addressing the issue that the social behavior of users varies
over different graph regions at different timestamps, Wang et al. [1] designed
a Local Weighted-Edge-based Pattern Summary to describe the local homoge-
neous region. For combining both linkage structure and content information, a
random walk based method was proposed in [6].

In this paper, we identify the following unaddressed issue of community detec-
tion in graph streams. In real-world social networks, the importance of various
accounts is different. There is no doubt that a huge number of accounts have little
importance in networks such as Facebook and Twitter. These accounts generally
have few interactions with others and this character leads to that they are also in
humble status in networks. Some of them are created before long, some of them
have been abandoned by their users after transient uses, and the others are just
created as “Zombie fans”, which occupy a huge proportion of those unimportant
accounts. Different from the first two cases, “Zombie fans” are artificial accounts
without authentic users, which have various functions such as being sold as fake
followers to those who need a beautiful follower list. If we give equal treatment
to the “zombie” and other real/healthy accounts, the detected communities will
be degenerated seriously.

To address this issue, inspired by [7,8], we propose a pruning-based graph
stream community detection algorithm called PruGStream. The basic idea is
to remove unimportant nodes which are recognized by the degree centrality
calculated from the exponential time-decaying edge weights in graph streams.
Then an iterative strategy is designed to construct community kernels from the
important and active nodes only. Finally, based on the community kernels, the
complete communities which take into account all the nodes will be generated
by directly assigning/updating the unimportant but active nodes to the nearest
community kernels. The first advantage of the proposed method is that, by
constructing community kernels from only important and active nodes, it is able
to eliminate the effect of the aforementioned “zombie” nodes, leading to robust
communities. By designing an efficient way to update the degree centrality, the
important and active nodes can be easily obtained at each timestamp, leading
to the reduce of computational complexity.

2 The Proposed Method

In this section, we will describe the proposed PruGStream method in detail. The
algorithm is composed of three phases, namely removing unimportant nodes,
generating community kernels and generating the complete communities.

2.1 Phase One: Removing Unimportant Nodes

Following [1], we adopt the incremental representation of undirected weighted
graph stream as the input of our algorithm, which is defined as follows.
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Definition 1 (Incremental representation of undirectedweighted graph
stream). Given an undirected weighted graph stream, the incremental represen-
tation is G0, G1, G2, · · · , Gt, · · · where Gt = (Vt, It), with Vt being the set of
newly attached nodes at the current timestamp t, and It =

{
(vi, vj , Y i,j

t )|vi, vj ∈
Vall

t = V0

⋃ V1

⋃ · · · ⋃ Vt

}
with Y i,j

t = Y j,i
t representing the number of new

interactions between nodes vi and vj occurring between timestamps t − 1 and t.

Following [1], we define the weight wi,j
t of the edge linking vi, vj at timestamp

t as

wi,j
t �

m∑
l=0

Y i,j
tl

e−λ(t−tl) (1)

where λ ≥ 0 is the decaying constant. In our experiments, following [1], we fix λ
to 0.5. In Eq. (1), it is assumed that all the interactions between nodes vi and vj

occur only at timestamp t0 < t1 < · · · < tm where t0 is the timestamp the two
nodes began to interact and tm = t is the current timestamp. By definition, it is
clear that the edge weight wi,j

t takes into account both the number of interactions
and their time-decaying properties [1].

Due to the new interactions that are generated at timestamp t, the weight
that was last updated at timestamp te is updated as follows [1],

wi,j
t ← wi,j

te e−λ(t−te) + Y i,j
t . (2)

In the real social network, there exist a large portion of unimportant users
who have little interaction with others. The number of those inactive users is very
large but they are inessential when detecting communities. As aforementioned,
some of these unimportant nodes are healthy accounts registered by human
being, while others are fake accounts. Taking into account these unimportant
nodes in community detection not only wastes a lot of time, in particular in large-
scale real-time graph streams, but also produces very little effect or even has the
risk to damage the robustness of the detected communities. Therefore, in this
paper, we divide all nodes into two opposite camps: the camp of important nodes
and the camp of unimportant node, and treat them differently. We remove those
unimportant nodes before community detection and do not put them back until
generating the ultimate community labels. In other words, we make unimportant
nodes only appear in the final result but do not participate in the process of
community detection.

It is worth noticing that similar ideas have been used in data clustering. For
instance, Ester et al. [7] proposed a DBSCAN algorithm, which for the first
time uses the idea of classifying points as core points and non-core points to
reduce the interference of noisy points. Only core points can form the kernels of
clusters together with their reachable points, while the non-core points form the
boundaries of clusters.

To divide the nodes into different sets, first of all, we need a criterion to judge
the importance of nodes. Here we use degree centrality defined in [9] as follows.
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Definition 2 (Degree centrality). The degree centrality Dc(vi)t is a criterion
to judge the importance of node vi in the graph at timestamp t,

Dc(vi)t =
deg(vi)
n − 1

=

∑n
j=1 wi,j

t

n − 1
(3)

where n = |Vall
t | denotes the number of all nodes till timestamp t.

Degree centrality is the most direct measure to depict the centrality of nodes
when analyzing networks. The higher the value of degree centrality is, the more
important the node is in the network.

To distinguish the important nodes and the unimportant nodes at timestamp
t, we set a parameter η and define them as follows.

Definition 3. If the degree centrality of a node is greater than or equal to η, we
regard the node as an important node and put it into the set V̄, otherwise the
node belongs to the unimportant node set Ṽ, i.e.

Important node sets : V̄ = {vi ∈ Vall
t |Dc(vi)t ≥ η} (4)

Unimportant node sets : Ṽ = {vi ∈ Vall
t |Dc(vi)t < η}. (5)

By definition, at each timestamp, we need to calculate the degree centrality
for all the nodes in Vall

t because the degree centrality of all nodes may change
along with the increment of Vall

t and edges, and therefore, the nodes in V̄ and Ṽ
need to update every timestamp. Directly recalculating the degree centrality by
Eq. (3) is time-consuming and unfeasible in real-time graph stream processing.
To address this issue, we expand the concept of degree centrality and design a
novel strategy to update the degree centrality, as stated in the following theorem.

Theorem 1 (Degree centrality update). The degree centrality at timestamp
t > 0 can be updated as follows,

Dc(vi)t = Dc(vi)t−1 × n − 1 − nt

n − 1
e−λ +

∑
Y i.j
t ∈It

Y i,j
t

n − 1
(6)

where n > 1 is the number of nodes in Vall
t and nt = |Vt| is the number of newly

attached nodes at timestamp t.

Proof. For proof purpose, we introduce another notation. Let V̈ denote all the
old nodes that exist before timestamp t but have new interactions at timestamp
t, i.e., V̈ =

{
vi ∈ Vall

t−1|∃vj∃Y i,j
t s.t. (vi, vj , Y i,j

t ) ∈ It

}
. Therefore, Vall

t is com-

posed of three parts: the nodes in Vt, the nodes in V̈ and the remaining nodes
{vi ∈ Vall

t |vi /∈ V̈ ⋃ Vt}. Besides, it is impossible for the nodes in Vt to appear
in Vall

t−1. Therefore, we have,
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Dc(vi)t =

∑n
j=1 wi,j

t

n − 1
(7)

=

∑
vj /∈V̈⋃Vt

wi,j
t

n − 1
+

∑
vj∈V̈ wi,j

t

n − 1
+

∑
vj∈Vt

wi,j
t

n − 1

=

∑
vj /∈V̈⋃Vt

wi,j
t−1e

−λ

n − 1
+

∑
vj∈V̈(wi,j

t−1e
−λ + Y i,j

t )
n − 1

+

∑
vj∈Vt

Y i,j
t

n − 1

=

∑
vj /∈V̈⋃Vt

wi,j
t−1 +

∑
vj∈V̈ wi,j

t−1

n − 1 − nt
× n − 1 − nt

n − 1
e−λ +

∑
vj∈V̈⋃Vt

Y i,j
t

n − 1

= Dc(vi)t−1 × n − 1 − nt

n − 1
e−λ +

∑
Y i,j
t ∈It

Y i,j
t

n − 1

In fact, when calculating the degree centrality of a node, n = 0 and n = 1 are
two trivial cases since there is no nodes in the network when n = 0 and there is
only one node in the network leading to 0 degree centrality. What’s more, for the
case of t = 0, the degree centrality is defined according to the original definition.

2.2 Phase Two: Generating Community Kernels

By Definition 3, we can divide the nodes of Vall
t into important nodes V̄ and

unimportant nodes Ṽ according to degree centrality. It’s obvious that if a node
has new interactions at timestamp t, it belongs to V̈ ⋃ Vt because ∀vi ∈ V̈ ⋃ Vt,
∃vj∃Y i,j

t , s.t. (vi, vj , Y i,j
t ) ∈ It. In accordance with this rule, at each timestamp,

we can divide all the existing nodes Vall
t into active nodes V̈ ⋃ Vt which have

new interactions at timestamp t and inactive nodes which haven’t.
To ensure the robustness of the detected communities and further enhance

the efficiency of the real-time graph stream processing, only the nodes which
are both important and active at timestamp t are considered in discovering
the kernels of communities. Denote by V̆ the nodes which are both important
and active at timestamp t, we have V̆ = V̄ ⋂

(Vt

⋃ V̈). The remaining nodes
Vall

t \V̆ will be ignored temporarily in discovering the kernels of communities.
The relationship of all the node sets we have defined is shown in Fig. 1.

The key of phase two is finding the community kernels, i.e. the most suitable
communities for the nodes in V̆. We will at first introduce the procedure for the
graph when t = 0, which we can regard as an independent static graph, and
then extend the procedure to make it applicable to all timestamps.

When t = 0, after each node in Vall
0 has been tagged as important node or

unimportant node during phase one, V̆ in phase two is equal to V̄ since all the
nodes in Vall

0 belong to V0. Also we have nt = n. Denote by C = {c1, c2, . . . , ck}
the detected community kernels at timestamp t where k the number of commu-
nities. And at timestamp t = 0, C is initialized as ∅ and k is 0 before calculat-
ing. The final community detection result is a vector L of length n storing the
detected community label for each node in network.

First of all, we calculate the similarity between the nodes in V̆ and the com-
munity kernels in C one by one and find the most suitable community for each
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V

~ -
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Fig. 1. The Venn graph of the node sets. Vall
t are all the nodes in the graph till

timestamp t. Vt are the newly attached nodes at timestamp t. V̄ and Ṽ are the impor-
tant nodes and unimportant nodes at timestamp t respectively. V̈ are all the old nodes
that exist before timestamp t but have new interactions at timestamp t. V̆ are the
nodes which are both important and active.

node. This process includes two steps for each node except the first node in V̆
when t = 0:

1. Evaluate the similarity between the node and all community kernels in C. The
larger the value of similarity between the node and the community kernel is,
the more possible the node belongs to the community.

2. Find the community kernel having the greatest similarity with the node. Then
compare the value of similarity with a parameter ξ which is defined as the
threshold to judge whether the community is qualified for the node. If the
similarity is greater than or equal to ξ, we regard this community as the
most suitable community to nodes, otherwise, we think there is no suitable
community kernel in the current C and create a new community kernel ck+1

for the node, which is added to C.

If the node is the first node in V̆ when t = 0, since the set C is ∅, we make
the node belong to the first generated community kernel c1.

In the paper, we judge the similarity between one node and one community
kernel using the widely used weighted Jaccard similarity. The definition of the
weighted Jaccard similarity is as follows [10].

Definition 4 (Jaccard similarity). Given two weighted vectors a = {a1, a2,
. . . , ad} and b = {b1, b2, . . . , bd}, with ai, bi > 0, the weighted Jaccard similar-
ity is

J(a, b) =
∑d

i=1 min(ai, bi)∑d
i=1 max(ai, bi)

(8)

We can define the similarity between two nodes vx, vy at timestamp t as the
weighted Jaccard similarity between their edge weight vectors (associated with
all nodes) using Eq. (8)

J(vx, vy)t =

∑n
j=1 min(wx,j

t , wy,j
t )

∑n
j=1 max(wx,j

t , wy,j
t )

(9)



580 Y. Ding et al.

Therefore, we define the similarity between a node vi and each community
kernel ch,∀h = 1, . . . , k which contains nc

h nodes at timestamp t as the average
value of the weighted Jaccard similarity between node vi and all nodes in ch

where ch = {v1
c , v2

c , . . . , v
nc
h

c }.

J(vi, ch)t =
1
nc

h

×
nc
h∑

l=1

J(vi, vl
c) =

1
nc

h

×
nc
h∑

l=1

∑n
j=1 min(wi,j

t , w
vl
c,j

t )
∑n

j=1 max(wi,j
t , w

vl
c,j

t )
(10)

After the first traversal of all nodes in V̆, we can get some preliminary com-
munity kernels. However, for each node in V̆, the community it belongs to is
assigned by considering only the similarity before assigning the node and as the
update of the community kernels, the similarity between the nodes and their
associated community kernels would change, which implies that the weighted
Jaccard similarity may be smaller than ξ again. In this case, the assigned com-
munity kernels should also be changed accordingly. To solve this problem, we
design an iterative “Check and Repair” strategy as follows.

Firstly, we clear the set V̆, and for each node in V̆ we check whether the
similarity between the node and the community kernel it stays is still no less than
ξ. If the similarity is still no less than ξ, the community kernel is still qualified
to the node, otherwise it is unqualified. We pick up all the nodes which are in
unqualified community kernels and put them into V̆, then repeat the procedure of
generating community kernels until all nodes in V̆ find their qualified community
kernels and V̆ = ∅.

The community kernel generation procedure is similar at other timestamps.
When t �= 0, the community kernel set C �= ∅ anymore and V̆ = V̄ ⋂

(Vt

⋃ V̈)
rather than V̆ = V̄. Thus, in the step of finding the preliminary community
kernels at timestamp t, we just update the community kernels by considering
only V̆ rather than reconstruct the community kernels from scratch, which is
able to make a balance between the accuracy and efficiency.

2.3 Phase Three: Generating the Complete Communities

In phase two, we just construct the community kernels using the important
nodes. That means we ignore the nodes which belong to unimportant nodes Ṽ.
Although these unimportant nodes have little influence on generating communi-
ties, we still need to find community labels for them. Therefore, in this phase, we
want to directly label the nodes in Ṽ but ignore their influence to the commu-
nities. In this way, we can concentrate more on important nodes and eliminate
interference of marginal and unimportant nodes. Among all unimportant nodes,
at timestamp t, the nodes belonging to Ṽ ⋂ Vt i.e. the newly attached unimpor-
tant nodes with no community labels should be considered in this phase. Besides,
due to the newly occurred interactions between timestamps t − 1 and t, nodes
belonging to Ṽ ⋂ V̈ have more possibility to change their community labels than
other inactive and unimportant nodes. Therefore, we only update the nodes in
Ṽ ⋂

(V̈ ⋃ Vt) in this phase.
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Accordingly, at timestamp t, for each node in Ṽ ⋂
(V̈ ⋃ Vt), we assign it to

the community with the maximal Jaccard similarity. However, the assignment of
the nodes in Ṽ ⋂

(V̈ ⋃ Vt) should not change the community kernels obtained in
phase two, because the community kernels would be used at the next timestamp.
So in this phase, we use a vector L of length n to store the community labels of
all the nodes Vall

t . What’s more, if some of the previous important nodes become
unimportant at the current timestamp due to the time-decaying strategy, they
will be removed from the community kernels C so as to not only reflect the
evolving of communities but also reduce the computational complexity.

3 Experiments

In this section, extensive experiments are conducted to confirm the effective-
ness of our method. Firstly, parameter analysis is conducted to show how the
parameters affect the community detection performance of our method on two
static networks. Then, comparison experiments are conducted to compare our
algorithm with 4 state-of-the-art community detection algorithms on 7 different
datasets including both static networks and graph streams.

3.1 Datasets and Evaluation Metrics

Datasets. In our experiments, both static networks and graph streams are used.

1. Static networks:
(a) Zachary karate club network: It contains the friendships between 34

members of a karate club at a US university, as described by Wayne
Zachary in 1977 [11]. The members in the network could be divided into
two communities: administrators and instructors.

(b) American college football network: It is a labeled network of Amer-
ican football games between Division IA colleges, which is collected by
M. Girvan and M. Newman [12]. There are 115 vertices indicating teams
and 613 edges representing regular-season games between the two vertices
in the graph. The labels of nodes indicate one of the 12 conferences to
which those football teams belong.

(c) Books about US politics: The dataset, also called polbooks, collected
by V. Krebs, contains 105 nodes representing books sold on Amazon and
441 edges representing the frequency of co-purchasing of books by the
same buyers. The labels indicate the political tendency of the books.

(d) LFR: LFR benchmark network [13] is one of the most widely used bench-
mark networks in the study of community detection. Compared with the
real networks, the LFR networks are more standardized and flexible. Here
we use two LFR networks with different sizes, which are LFR-1000 with
1000 nodes/15484 edges and LFR-3000 with 3000 nodes/153380 edges
respectively.
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2. Dynamic graph streams:
(a) LFR graph stream: The LFR graph stream is extended from the LFR

static graph. To gain the dynamic network, we separate the nodes into 10
sections evenly, and at each timestamp we append the network with some
part of nodes as well as the associated edges to simulate the expansion
of dynamic network. Here, two graph streams, namely LFR-1000 graph
stream and LFR-3000 graph stream, are used in our experiments.

Evaluation Metrics. Two popular evaluation metrics are used in our exper-
iments, which are Normalized Mutual Information (NMI) [14] and Rand Index
(RI) [15]. All the metrics are used to evaluate the similarity between the detected
community labels and the ground truth community labels, where higher value
indicates better community detection results.

3.2 Parameter Analysis

In this subsection, parameter analysis is conducted to show the effect of the
two parameters ξ and η on the performance of the proposed method on two
evaluation metrics, namely NMI and RI. Both ξ and η vary from 0 to 1.

Analysis on ξ. The parameter ξ determines whether a node will be put into
the existing community kernels. If the weighted Jaccard similarity between the
node and the closest community kernel is not less than ξ, then the node will
belong to the community kernel temporarily.

Figure 2(a) and (b) show the performance of our algorithm in terms of NMI
and RI versus different ξ. The parameter η is set as 0.1 on Karate and 0.09 on
Football. From the results, it is clear that, the proposed algorithm exhibits a
stable performance in the testing range. In particular, on the Football dataset,
very stable but high community detection results in terms of both NMI and RI
can be obtained.

Analysis on η. η is used to judge whether a vertice belongs to V̄ or not.
Figure 2(c) and (d) show the performance of our algorithm in terms of NMI

and RI as a function of η, on the karate club network when ξ = 0.1 and on
American football network when ξ = 0.22. The optimum value of η is related
to the degree distribution of the network. Similar to ξ, it is not suitable for η
to be too large, but it can be zero when all the active nodes are in V̄. However,
compared with choosing η as 0, using a suitable η can enhance the performance
of the algorithm, in particular, on the Karate dataset. On the Football dataset,
it is clear that relative stable community results in terms of both NMI and RI
can be obtained in the range of [0 0.09].
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Fig. 2. Analysis of the effect of ξ and η on the community detection performance on
different real static networks. On each dataset, the values of NMI or ARI are plotted
as a function of ξ respectively.

3.3 Comparison Experiments

In this subsection, we conduct experiments to compare the performance of the
proposed approach with the existing algorithms on both static networks and
graph streams. The compared algorithms are summarized as follows.

1. Comparison algorithms in static networks
(a) Modularity [16] is the most well-known community detection algorithm

based on modularity.
(b) Ncut [17], as one kind of spectral clustering, detects communities by

optimizing the normalized cut criterion.
(c) Alink-Jaccard [18] is a kind of hierarchical clustering method, which

uses the jaccard similarity as the distance between nodes.
2. Comparison algorithms in dynamic networks

(a) Facetnet [2] is a classical framework for analyzing communities and evo-
lutions in dynamic networks.

In what follows, we will report the comparison results on five different static
networks and two dynamic networks in Table 1 and Fig. 3 respectively.

Table 1. The performance of different community detection algorithms on the five
static networks. The best results are marked in bold.

Algorithms Karate Football Poolbooks LFR-1000 LFR-3000

NMI RI NMI RI NMI RI NMI RI NMI RI

PruGStream 0.836 0.941 0.837 0.975 0.601 0.834 0.945 0.989 0.930 0.990

alinkjaccard 0.477 0.631 0.508 0.877 0.450 0.741 0.840 0.938 0.748 0.892

Ncut 0.836 0.941 0.503 0.896 0.574 0.843 0.921 0.963 0.861 0.924

Modularity 0.454 0.700 0.511 0.893 0.559 0.801 0.880 0.943 0.833 0.958

1. Performance on static networks
The comparison results are reported in Table 1. Overall, the results show
that our method achieves the best performance compared with the exist-
ing methods on almost all the testing datasets. As for the performance on
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Karate, we find both the proposed PruGStream algorithm and the existing
Ncut method have obtained the best results on both metrics and show obvious
advantage compared with the other two algorithms. Through further analy-
sis of experimental results, we discover that the clustering results generated
by PruGStream and Ncut are completely consistent. They classify all nodes
correct except a noisy node “10”, which has one connection to one member
of both clusters separately. This indicates that PruGStream can perform well
in lightweight datasets and even execute error-free judgments. From the per-
formance on other networks, it can be seen that the proposed PruGStream
approach still generates better clustering results than the compared methods
in terms of NMI on all networks. Besides, the secondary winner is Ncut, of
which the performance is slightly behind PruGStream. As for PruGStream,
this superiority can be due to the proposed pruning strategy, which is able to
construct robust community kernels. To sum up with comparison results, we
can conclude that our PruGStream performs well and stably in community
detection on static networks.

2. Performance on graph streams
Figure 3 show the values of NMI and RI obtained by PurGStream and
Facetnet on the two graph streams, namely LFR-1000 graph stream and LRF-
3000 graph stream. From the figure, it is clear that the proposed PurGStream
method generates better results than Facetnet in all experiments. Although
the two algorithms have similar trends on the performance, our method are
more stable and performs better. The comparison results have confirmed the
effectiveness of our method on community detection on graph streams.
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Fig. 3. Comparison results on the graph streams in terms of both NMI and RI as a
function of timestamps.

4 Conclusions

In this paper, we have purposed a novel community detection algorithm in graph
streams termed PruGStream to address the issue of “zombie” nodes. The basic
idea is to develop an efficient pruning strategy to construct community kernels
from only important and active nodes at each timestamp. Based on the commu-
nity kernels, robust community structure can be obtained. The proposed method
can not only discover robust community structure that is insensitive to the “zom-
bie” nodes but also dramatically reduce computational complexity. Experiments
have been conducted to confirm the effectiveness of the proposed method.
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Abstract. In this paper, we propose to complement the context vectors
used in bilingual lexicon extraction from comparable corpora with con-
cept vectors, that aim at capturing all the words related to the concepts
associated with a given word. This allows one to rely on a representation
that is less sparse, especially in specialized domains where the use of a
general bilingual lexicon leaves many words untranslated. The concept
vectors we are considering are based on closed concepts mining devel-
oped in Formal Concept Analysis (FCA). The obtained results on two
different comparable corpora show that enriching context vectors with
concept vectors leads to lexicons of higher quality, especially in special-
ized domains.

1 Introduction

Bilingual lexicon extraction using parallel1 and comparable2 corpora has been
the subject of many studies. However, the scarcity of multilingual parallel cor-
pora, particularly for specialized areas, has led researches in bilingual lexicon
extraction to use comparable corpora [15]. The exploitation of comparable cor-
pora marked a turning point in the task of bilingual lexicon extraction, and
raises a constant interest thanks to the abundance, the continuous growth and
the availability of such corpora [4,7,12,13].

Most state-of-the-art approaches using comparable corpora to extract bilin-
gual lexicons are based on the assumption that a word and its translations tend
to appear in similar contexts across languages [4]. The context of a given word,
which we will refer to as the base word, is usually represented by words sur-
rounding it, i.e., words co-occurring within a contextual window [4,7], or words
related through syntactic dependency relations [13]. Furthermore, each word in

1 A parallel corpus is a collection of texts that are translation of one another.
2 A comparable corpus is a collection of multilingual documents dealing with the same

topics and generally produced at the same time. They are not necessarily translation
of each other.
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the context of a base word can be weighted according to the strength of its
association with the base word. Recently, context vectors are extracted using
word embedding techniques [16] using the word2vec toolkit3. This tool induces
vector based word representations by two ways [11]: by using the current word
to predict the surrounding window of context words or by trying to predict a
target word from the words surrounding it within a neural network architecture.
In the rest of the paper and in our work, context vectors denote word embedding
based context vectors.

One thus obtains, for each source and target word in the comparable corpus,
a context vector that provides an implicit semantic representation of the word.
From these context vectors, the standard approach of bilingual lexicon extraction
from comparable corpora proceeds by translating all the elements of the context
vector of each target word into the source language4, using an existing bilingual
dictionary, usually a general one as specialized ones are more difficult to obtain.
Candidate translations of a given source word are then those target words for
which their translated context vectors are the closest to the one of the source
word.

If this approach has proven successful in many different studies, it neverthe-
less suffers from the fact that the context vectors, once translated, are sparse,
especially in specialized domains where the use of a generic bilingual dictionary
is not appropriate. We thus conjecture here that one can gain by relying on an
enriched representation of the word. In particular, if a word appears in the con-
text vector of a base word, then it is likely that all the words that belong to the
same concept should appear as well. However, as only one word representing a
concept is usually present in a given context (bearing in mind that the contexts
are generally limited to few words around the base word), context vectors fail to
integrate all the words related to a given concept.

We thus propose here to rely on Formal Concept Analysis (FCA) [5] to extract
concept vectors that capture all the words related to closed formal concepts
associated with the base word. Such concept vectors can then be used to enrich
the word embedding based context vectors and improve the standard approach
to bilingual lexicon extraction from comparable corpora.

The remainder of the paper is organized as follows: Sect. 2 presents the related
work on bilingual lexicon extraction from comparable corpora. Section 3 details
our FCA based approach to enhance bilingual lexicon extraction through the
construction of concept vectors. An experimental study illustrating the gain
given by concept vectors is then presented in Sect. 4. Lastly, Sect. 5 concludes
the paper and provides some perspectives to this work.

3 https://code.google.com/p/word2vec/.
4 One can also translate each element of the source context vectors into the target

language.

https://code.google.com/p/word2vec/
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2 Related Work

Most studies addressing the task of bilingual lexicon extraction from comparable
corpora are based on the standard approach, that was developed at the end of
the 1990s [4]. They can be classified in three families of approaches, as follows:

1. Statical approaches: They are based on contextual windows centered around
the base word. The relation between a base word and its context is thus
mainly a co-occurrence relation, within a relatively short window. In [15],
authors discuss how the window size can be set, whereas several approaches
have tried to improve over the standard approach, either by incorporating a
third language as pivot language [9] or considering different types of corpora
(specialized or general corpora) and different corpora sizes (balanced and
unbalanced corpora) [12]. Recently, context vectors are extracted using word
embedding techniques. These latter represent each word as a d-dimensional
vector of real numbers, and vectors that are close to each other are shown
to be semantically related. In particular, in [11], authors proposed an effi-
cient embedding algorithm that provides state-of-the-art results on various
linguistic tasks. It was popularized via word2vec, a toolkit for creating word
embeddings vectors, as used in [6] to extract context vectors.

2. Syntactic approaches: In these approaches, the context is formed by the words
with which the base word is syntactically related [13]. The main motivation
is to rely on less noisy context. However, the restriction to syntactic depen-
dencies worsens the sparsity problem mentioned above and such approaches
can only be deployed on very large corpora.

3. Hybrid approaches: Such approaches aim at a trade-off between the preced-
ing approaches. In [1], authors proposed a combinatorial approach between a
co-occurrence and a syntactic contextual representation. It combines four sta-
tistical models and compares the lexical dependencies to identify candidates
translations. We notice that such approaches again suffer from the same spar-
sity problem.

Our approach can be seen as a kind of hybrid approach, since it aims at com-
plementing word embedding based context vectors with additional knowledge
represented as closed formal concepts of terms. Unlike to syntactic approaches,
that rely on a syntactic analysis to extract this additional information, our app-
roach is based on formal concept analysis that neither necessitates syntactic
parsers (not readily available for many languages) nor very large corpora.

In the next section, we detail the extraction and use of concept vectors.

3 An FCA-Based Approach for Bilingual Lexicon
Extraction

In the remainder, Ccomp = Cs ∪ Ct will denote a comparable corpus, usually
unbalanced in the amount of source (Cs) and target (Ct) texts. More generally,
the notation C will be used to refer to any monolingual corpus, of source or
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target language. As aforementioned, we propose here to rely on concept vectors
in addition to context vectors, for bilingual lexicon extraction from comparable
corpora. Our proposed method is based on the following steps:

1. Context vector extraction: We use the word2vec toolkit in order to extract
context vectors, by learning 300-dimensional representations of words with
The Skip-Gram model introduced by Mikolov et al. in [11]. This latter induces
vector based word representations by using the current word to predict the
surrounding window of context words with a neural network. We have relied
in this study on standard parameter settings, without trying to optimize para-
meter values: the size of the contextual window is equal to 5 [7] and the sub-
sampling option to 1e-05; additionally, the negative sampling method is used
to estimate the probability of a target word. Note that a word not occurring
in the context of a base word receives a weight of 0. One finally obtains, for
each word t, a vector as follows:

−→
V t(t∈C) = (w1, . . . , w|C|)T , where T denotes

the transpose, |C| the number of words in C and wi the weight of the associa-
tion of the ith word with t, measured here by the cosine between the learned
word representations. Examples of French, English and Italian context vec-
tors computed from the comparable corpus SDA95 french, GlasgowHerald95
and SDA95 italian (CLEF’2003) are given in Table 1.

2. Concept vector extraction: This step, which is be described in detail in
Sect. 3.2, consists in mining formal closed concepts from comparable corpora,
from which concept vectors are built.

3. Similarity calculation: Once the source context and concept vectors are
translated, dimension by dimension, the weights being preserved, to the target
language, we make use of a combined cosine similarity between context and
concept vectors in order to compute translation candidates for each source
word.

Table 1. Examples of English, French and Italian context vectors, extracted
from the comparable corpora SDA95 french, GlasgowHerald95 and SDA95 italian
(CLEF’2003)

French context vectors

économie = {mondiale, nationale, marché, croissance, crise, . . . }
politique = {classe, internationale, relations, vie, européenne, . . . }
English context vectors

economy = {problems, global, crisis, difficulty, stability, . . . }
politic = {international, european, social, finance, strategy, . . . }
Italian context vectors

economia = {crescita, stabilita, indicatore, difficoltà, competitivita, . . . }
politica = {internazionale, sociale, orientamento, problametica, europeo, . . . }
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We now address the problem of extracting concept vectors from texts. To do
so, we first adapt the fundamental elements of Formal Concept Analysis (FCA)
presented in [5] to our setting.

3.1 Key FCA Elements

First, we formalize an extraction context made up of documents and index terms,
called textual context.

Definition 1. A textual context is a triplet M := (C, T , I) where:

– C := {d1, d2, . . . , dn} is a finite set of n documents.
– T := {t1, t2, . . . , tm} is a finite set of m distinct words in the corpus. The set

T comprises the words of the different documents in C.
– I ⊆ C × T is a binary (incidence) relation. Each couple (d, t) ∈ I indicates

that document d ∈ C contains term t ∈ T .

In the following, we recall basic definitions of the Galois lattice-based para-
digm in FCA [5] and its applications to closed concepts mining.

Definition 2. A concept C = (T,D) is defined by two sets, a set of terms
T and a set of documents D, respectively called “intension” and “extension” of
the concept, and such that all terms in T co-occur in all documents of D. The
support of C in M is equal to the number of documents in C containing all the
term of T . The support is formally defined as follows(5):

Supp(C) = |{d|d ∈ C ∧ ∀ t ∈ T : (d, t) ∈ I}| (1)

A concept is said frequent (aka large or covering) if its terms co-occur in
the corpus a number of times greater than or equal to a user-defined support
threshold, denoted minsupp. Otherwise, it is said unfrequent (aka rare).

Definition 3. Galois Closure Operator Let C = (D,T ) be a concept. Two
functions are defined in order to map sets of documents to sets of terms and vice
versa:

Ψ : P(T ) → P(C) and Ψ(T ) := {d|d ∈ C ∧ ∀ t ∈ T : (d, t) ∈ I} (2)

Φ : P(C) → P(T ) and Φ(D) := {t|t ∈ T ∧ ∀ d ∈ D : (d, t) ∈ I} (3)

where P(X) denotes the power set of X. Both functions Ψ and Φ constitute Galois
operators. Ψ(T ) is equal to the set of documents containing all the word of T .
Its cardinality is then equal to Supp(T ). On the other hand, Φ(D) is equal to the
set of words appearing in all the documents of D. Consequently, the compound
operator Ω := Φ ◦ Ψ is a Galois closure operator which associates to a set of
words T the set of words which appear in all the documents in which the words
of T co-occur.
5 In this paper, we denote by |X| the cardinality of the set X.
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Thus, according to the Galois closure operator, a closed concept is defined as
follows:

Definition 4. A concept C = (D,T ) is said to be closed if Ω(C) = C. A closed
concept is then the maximal set of common words to a given set of documents. A
closed concept is said to be frequent w.r.t. the minsupp threshold if Supp(C) =
|Ψ(T )| ≥ minsupp [14]. Hereafter, we denote by Cc a closed concept.

It is worth noting that in our work, each closed concept represents a class
of documents grouped by a set of representative terms. So, a closed concept
represents a maximal terms group sharing the same documents and includes the
most specific expression describing the associated documents.

3.2 Concept Vector Extraction from Comparable Corpora

In order to extract the most representative terms, a linguistic preprocessing is
performed on the document collections by using a morpho-syntactic tagger such
as TreeTagger6. In this work, we focus only on the common nouns, the proper
nouns and adjectives. The rationale for this focus is that nouns and adjectives
are the most informative grammatical categories and are most likely to represent
the content of documents [2].

The set T is thus the set of all the nouns and adjectives selected from each
corpus. In order to extract closed concepts, we adapted the Charm-L algorithm
[18] to our textual context M, which generates all the frequent closed concepts
greater than or equal to a minimal threshold of the support. This latter which
allows eliminating marginal terms occurring in few documents, is a user-tuned
parameter that can be set according to the word distributions in the considered
corpus (e.g. by selection from the Zipfian word distribution). At the end of
this step, all source and target closed concepts whose support is greater than
or equal to minsupp are extracted. Examples of such closed concepts obtained
from the comparable corpus SDA95 french, GlasgowHerald95 and SDA95 italian
(CLEF’2003) are given in Table 2.

Let #(Cc) denote the number of closed concepts in C. For any term t and
any closed concept Cc in C, we propose to associate a weight μ(t, Cc) reflecting
the importance of t in Cc. We rely here on the weight proposed in [3] and that
is based on the weighting schema tf × idf [17].

The concept vector for t is then definedby:
−→
Vct = (μ(t, Cc1), .., μ(t, Cc#(Cc)))T .

As μ is null when the term does not co-occur with all the terms in the intension of
a closed concept, only the closed concepts containing t are taken into account. The
extracted concept vectors are then combined with context vectors. We propose in
this paper two possible combinations, which will enable us to weigh the impact of
each vector type on the final result. We rely here on [12]:

6 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/.

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
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Table 2. Examples of English, French and Italian closed concepts extracted from the
comparable corpus SDA95French, GlasgowHerald95 and SDA95Italian (CLEF’2003)

French Closed Concepts

{ économie, chômage, dépenses, initiative, croissance , . . .}, {125, . . . , 39002}
{politique, famille, politicien, résponsabilité, financement, . . . }, {20, . . . , 45910}
English Closed Concepts

{economy, european, development, sanctions, unemployment, . . .}, {44, . . . , 55411}
{politic, corruption, political, funding, class, . . .}, {50, . . . , 54409}
Italian Closed Concepts

{economia, europeo, disoccupazione, finanziario, migratorio, . . .}, {10, . . . , 52411}
{politica, corruzione, politico, finanziamento, internazionale, . . .}, {28, . . . , 56409}

1. Direct combination: For each base word, a single vector of dimension C +
#(Cc) is build from its concept and context vectors, denoted in the follow-
ing as the combined vector. It contains both local co-occurrences information
provided by the context vector, and global information provided by the con-
cept vector. Once the source combined vectors have been translated, they
are compared to target combined vectors via the standard cosine similarity
measure;

2. Weighted combination: Context and concept vectors are treated as distinct
vectors, which are translated separately and which are then compared via
a weighted linear combination. Thus, similarity between two words t (from
the source corpus) and t′ (from the target corpus) is assessed as follows:
SIM(t, t′) = λcos(

−→
Vtrans

t ,
−→
V t′)+(1−λ)cos(

−→
Vctrans

t ,
−→
Vct′), where λ ∈ [0; 1] is

a parameter weighing the relative importance of context and concept vectors,
which can be learned by e.g. cross-validation (see Sect. 4); “trans” denotes
here that the vector has been translated, meaning that the weight of a source
word is transferred to its translation(s), as provided by a bilingual dictionary.

4 Experiments and Results

We evaluate our bilingual lexicon extraction approach on two different corpora:

1. CLEF’2003, which is a subset of the multilingual collection used in the Cross-
Language Evaluation Forum CLEF’20037. We rely here on the news articles
(from newspapers of news agencies) SDA95 in French (42,615 documents),
GlasgowHerald95 in English (56,472 documents), and SDA95 in Italian (48
980 documents). This corpus is an unspecialized comparable corpus;

2. The Breast Cancer corpus, which is a specialized, unbalanced corpus com-
posed of documents collected from the Elsevier website8. The documents

7 http://www.clef-campaign.org/.
8 www.elsevier.com.

http://www.clef-campaign.org/
www.elsevier.com


Bilingual Lexicon Extraction from Comparable Corpora 593

were retrieved from the medical domain, within the sub-domain of “breast
cancer”. We use the same corpus as in [12]. The corpus involves 130 French
documents (about 530,000 words) and 1,640 English documents (about 7.4
million words).

Each corpus has been preprocessed with TreeTagger, only nouns and
adjectives are used for building the concept vectors. Table 3 summarizes the
main statistics of each corpus. As bilingual dictionary, we used the general
French-English bilingual dictionary of [8] that contains 74921 entries. The num-
ber of dictionary entries that are present in CLEF’2003 is 20432, whereas it is
of 6861 for Breast Cancer. We used also an Italian-English bilingual dictionary
that contains 28744 entries, the number of dictionary entries that are present
in CLEF’2003 is 7011. Lastly, by selection from the Zipfian word distribution;
we set minsupp for concept vector extraction to 30 for CLEF’2003, and 20 for
Breast Cancer to focus on informative closed concepts (as low values of minsupp
tend to yield non-informative concepts).

Table 3. Statistical features of the comparable corpora CLEF’2003 and Breast Can-
cer after preprocessing

Corpora Features English French Italian

CLEF’ 2003 Number of documents 56472 42615 48980

Vocabulary size 227301 105010 123259

Breast cancer Number of documents 1640 130 -

Vocabulary size 93653 12411 -

4.1 Evaluation

It is difficult to compare the results of different state of the art works in bilingual
lexicon extraction from comparable corpora, due to differences between the used
corpora or the linguistic resources such as bilingual dictionaries [15]. Nowadays,
no dataset that can serve as a reference has been set up. For this reason, we use
the results of the standard approach based context vectors, as a reference, and
we evaluate the performance of our approach using precision (P ), recall (R), F1
score and Mean Average Precision (MAP) as defined in [12] at the top N terms
of the ranked candidates translations list. We will compare our achieved results
on the Breast Cancer corpus to those of [12].

The precision assesses the proportion of lists containing the correct transla-
tion, whereas the recall gives the proportion of translations that are recovered
in the candidate list. The F1 score is the harmonic mean between precision and
recall. In case of multiple translations, a list is deemed to contain the correct
translation as soon as one of the possible translations is present [8]. The MAP
defined in [10], is used to show the ability of the algorithm to precisely rank the
selected candidate translations. Assuming the total number of English words in
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the reference list is m, let ri be the rank of the first correct translation in the
candidate translation list for the ith term in the evaluation set. The MAP is
then defined by: MAP(m) = 1

m

m∑

i=1

1
ri

, with the convention that if the correct

translation does not appear in the top N candidates, 1
ri

is set to 0. The MAP is
our primary measure to compare proposed methods.

To evaluate the quality of the lexicons extracted, we used 10-fold cross-
validation for CLEF’2003 and the reference list of 169 French/English single
words used in [12] for Breast Cancer. We divided the bilingual dictionaries into
3 parts, namely: 10% of the source words together with their translations were
randomly chosen and used as the test set, 10% of the source words together with
their translations were randomly chosen and used as the validation set for learn-
ing the parameter λ for weighting the combined model and the rest is devoted
to the training corpus on which the context and concept vectors are extracted.

We notice that source words not present in source context/concept vectors
or with no translation in target context/concept vectors are excluded from the
evaluation and validation set. The value of λ obtained through cross-validation
on CLEF’2003 is 0.7 for SDA95 French and GlasgowHerald95 (FR-EN) and 0.6
for SDA95 Italian and GlasgowHerald95 (IT-EN). For Breast Cancer the value
of λ is 0.6. We make use of this values in all our experiments. Table 4 shows
the evolution of different evaluation measures (precision, recall, F1 score and
MAP) for N equal to 200 according to different values of λ for the two corpora
(the evaluation is computed on the test set for CLEF’2003). We notice that, the
values obtained through cross-validation fall within the range ([0, 6; 0, 8]) of the
best possible values on each corpus as shown by the values in bold in Table 4.

Table 4. Evolution of performance acc. to λ on CLEF’2003 and Breast Cancer

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CLEF’2003 corpus (FR-EN)

Precision 0.190 0.254 0.312 0.380 0.387 0.393 0.396 0.397 0.395 0.394 0.391

Recall 0.112 0.146 0.195 0.237 0.239 0.244 0.245 0.249 0.251 0.252 0.226

F1 score 0.140 0.185 0.240 0.273 0.295 0.301 0.302 0.306 0.306 0.304 0.286

MAP 0.106 0.125 0.146 0.162 0.163 0.170 0.170 0.172 0.168 0.166 0.155

Breast cancer corpus (FR-EN)

Precision 0.389 0.462 0.501 0.526 0.530 0.532 0.537 0.534 0.533 0.531 0.531

Recall 0.311 0.366 0.403 0.422 0.424 0.425 0.426 0.426 0.434 0.431 0.430

F1 score 0.357 0.408 0.446 0.470 0.469 0.472 0.475 0.473 0.478 0.475 0.475

MAP 0.227 0.263 0.300 0.317 0.320 0.326 0.328 0.327 0.324 0.322 0.321

CLEF’2003 corpus (IT-EN)

Precision 0.239 0.331 0.384 0.448 0.464 0.471 0.476 0.476 0.472 0.470 0.466

Recall 0.121 0.169 0.221 0.232 0.237 0.241 0.243 0.244 0.242 0.238 0.230

F1 score 0.160 0.223 0.280 0.305 0.313 0.319 0.322 0.321 0.320 0.316 0.308

MAP 0.148 0.171 0.189 0.201 0.204 0.208 0.210 0.209 0.207 0.201 0.194
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Fig. 1. Results (precision) of the standard approach, direct and weighted combinations
using the best value of λ for CLEF’2003 (FR-EN) (left), Breast Cancer (FR-EN) (right)
and CLEF’2003 (IT-EN)(down)

4.2 Results and Discussion

Figure 1 highlights the different precision values obtained with respectively the
standard approach, the weighted combination and the direct combination, using
the best value of λ for the two comparable corpora. We consider different
lengths N of the candidates list, varying from 20 to 500. We can see that the
weighted combination approach significantly outperforms the direct combination
approach. Indeed, the overall precision of the weighted combination approach
increases, especially for medium and large lengths of candidates list as N = 100,
300 and 500. The method seems to become effective in the case where the length
of the candidate list grows, this can be explained by the fact that the probability
of obtaining correct translations increases with the candidate list growth. More-
over, we notice that the direct combination is more sensitive to noise that can
be caused by further information compared to the weighted combination. This
is due to the fact that the direct combination directly modifies the context vec-
tors, whereas the weighted combination allows one to better control the impact
of concept vectors.

Table 5 displays the results obtained in terms of MAP. From these results,
we notice that the overall MAP is improved by the concept vectors on the two
comparable corpora (+8.6% for CLEF’2003 (FR-EN), +8.9% for CLEF’2003
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Table 5. MAP improvement achieved with the direct and weighted combinations using
the best value of λ for CLEF’2003 and Breast Cancer

Corpora Measure Standard
approach

Weighted
combination

Direct com-
bination

CLEF’2003 MAP 0.161 0.175 0.164

(FR-EN) Gain - +8.6 % +1.9 %

Breast cancer MAP 0.383 0.424 0.389

(FR-EN) Gain - +10.7 % +1.5%

CLEF’2003 MAP 0.201 0.218 0.202

(IT-EN) Gain - +8.9 % +0.4 %

Table 6. Improvement of vector average size achieved after translation of context
vector and context vector combined with concept vector for CLEF’2003 and the Breast
Cancer corpora

Corpora Translated
context vector

Translated context
and concept vector

CLEF’2003 (FR-EN) 28 41

Breast cancer (FR-EN) 19 36

CLEF’2003 (IT-EN) 30 44

(IT-EN) and +10.7% for Breast Cancer (FR-EN)). This demonstrates that the
information in concept vectors is relevant to represent words in a bilingual lex-
icon extraction setting: the quality of the extracted bilingual lexicons improves
with the integration of concept vectors. Moreover, experiments show that the
Breast Cancer corpus yields better results than CLEF’2003 corpus, which can
be explained by the fact that the vocabulary used in the breast cancer field is
more specific and less ambiguous than the one used in journalistic corpora. For
Breast Cancer, the obtained results (0.424% for the weighted combination) are
comparable to the ones reported in [12] (0.423% is the best MAP assessed on
the unbalanced version of the corpus). It is worth noting here that we do not
use the same bilingual dictionary and that the two approaches are different and
could efficiently complement each other.

As we conjectured earlier, our approach allows to obtain a representation of
vectors that is less sparse than the one obtained with context vectors. Indeed, as
shown in Table 6, the average size of vectors for CLEF’2003 has increased from
28 to 41 words (FR-EN) and from 30 to 44 (IT-EN) when considering concept
vectors, whereas it has increased from 19 to 36 words for Breast Cancer. This
increase is important and shows that the similarity between a base word and its
candidate translations relies on more information. This information is valuable
as illustrated in the results discussed above.
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5 Conclusion

In this paper, we proposed a new approach for bilingual lexicon extraction based
on formal closed concepts. The extracted concepts are then used to build concept
vectors that complement the embedding based context vectors used in bilingual
lexicon extraction from comparable corpora. The experimental study, conducted
on two comparable corpora (a specialized one from the medical domain and a
general one made of news articles), showed that the concept vectors retained
provide a partial solution to the sparsity problem encountered with context
vectors. Furthermore, the quality of the lexicons extracted with both concept
and context vectors is higher than the quality of the lexicons extracted with
only context vectors. In the future, we plan to investigate the combination of
concept vectors and context vectors also obtained from a syntactic analysis.
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Abstract. Inferring the physical locations of social network users is one
of the core tasks in many online services, such as targeted advertise-
ment, recommending local events, and urban computing. In this paper,
we introduce the Collective Geographical Embedding (CGE) algorithm
to embed multiple information sources into a low dimensional space, such
that the distance in the embedding space reflects the physical distance
in the real world. To achieve this, we introduced an embedding method
with a location affinity matrix as a constraint for heterogeneous user
network. The experiments demonstrate that the proposed algorithm not
only outperforms traditional user geolocation prediction algorithms by
collectively extracting relations hidden in the heterogeneous user net-
work, but also outperforms state-of-the-art embedding algorithms by
appropriately casting geographical information of check-in.

Keywords: Geolocation · Geometrical embedding · Geometric
regularization

1 Introduction

Urban computing has attracted many research attentions [22]. Cross-domain
data can be fused together to aid this task [19,21]. One of the core tasks towards
these services is to infer the physical location of participants, as it not only
advances the recognition of individual behavioural patterns but also facilitates
the analysis of the crowd mobility and communication.

Intuitively, friendships between users provide a valuable hint since people
tend to live close to their friends. As a partial observation of users’ social rela-
tions, online social networks (OSNs) shed a light on the problem of geolocating
individuals [9,14]. Another useful information is the online footprints shared
in OSNs, which can be observed through the geotagged contents generated by
users. Unfortunately, most of existing approaches only focus on one single data
source, either the social network of the online friendships [7,8] or the content
of the online footprints [1,4]. There are several crucial challenges that hinder
the performance of the existing methods: (1) Data Sparsity: Due to privacy

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 599–611, 2017.
DOI: 10.1007/978-3-319-57454-7 47
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concern, not many users choose to reveal their location information. Research
in Twitter suggest that only 16% of users registered city level locations in their
profiles [12], and the percentage of tweets with geographical coordinates was
merely 1% [18]. (2) Noisy Signals: The signals retrieved from OSNs may
not conform the assumption that the friends and footprints of a user will be
close to the user’s physical location. Reasons lead to noisy signals include global
online friendships, frequent relocation, and posting geotagged contents during
travel, etc. Such sparse and noisy data constitute a major challenge for label
propagation based methods [7,8] and probability estimation based methods [2].
(3) Scalability: Since OSNs often contain millions nodes and links, how to han-
dle such a large scale data poses another challenge. In particular, most methods
that involve sophisticated NLP techniques [1] require a huge amount of compu-
tational resources and may not be applicable to large-scale datasets.

locationuser social link user-location link location distance

Heterogeneous user network

San Jose

Geographical embedding space

San Francisco

Collective Geographical Embedding (CGE)

Social network User-location network Location affinity network

Fremont

Fig. 1. Example of learning the geographical embedding space from heterogeneous
networks.

Recently, network embedding techniques [5,16,17] are introduced to embed
network data into a low dimensional space while preserving the neighborhood
closeness of the network data. Through embedding all objects into a common
low dimensional space, it is possible to calculate the similarity between each pair
of objects to mitigate the sparsity problem in network data. Although several
studies [5,17] have been proposed to model multiple networks concurrently, these
methods do not differentiate each type of the objects involved. Furthermore, the
embeddings learned by the existing methods do not have any physical meanings.

Since each tagged location is associated with a geographic coordinate (e.g.,
latitude and longitude), the distance between the embeddings of any pair of loca-
tions should be able to reflect the geographical distance. In this paper, we propose
a Collective Geometrical Embedding (CGE) algorithm that can effectively infer
the geolocation of social network users, by jointly learning the embeddings of
users and check-ins with respect to the real-world geometrical space. In other
words, the real geometrical distance between any pair of objects (i.e., users or
locations) is resembled by euclidean distance of two vectors in the low dimen-
sional space. Figure (1) illustrates the main concept of the geometrical embed-
ding learning, where the left figure shows an example of a heterogeneous user
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network, the right figure depicts a snapshot of the geographical embedding space
learned through the proposed algorithm. The heterogeneous user network shown
includes a user network, a user-location network, and a location affinity network.
By collectively embedding the heterogeneous network into a common subspace
while preserving the geometrical distances between users and locations, the goal
of inferring users’ geolocations can be achieved without difficulty.

The main contributions of this paper can be summarized as follows:

1. We directly leverage multiple information sources by embedding a heteroge-
neous network, which alleviates the problem of sparse and noisy data.

2. We propose a collective geometrical embedding (CGE) method that integrates
the geometrical regularization into the process of network embedding, which
makes the learned embeddings preserving not only the neighborhood closeness
of network data but also the geometrical closeness of locations. To the best
of our knowledge, this work is the first to learn an embedding space that can
reflect the real-world geolocation characteristics.

3. Through the extensive empirical studies on real-world datasets, we demon-
strate that the proposed CGE method significantly outperforms other state-
of-the-art algorithms in addressing the problem of geolocating individuals.

2 Preliminaries

In this section, we first introduce the definition of each source for the heteroge-
neous network and present the problem statement of this study.

Definition 1. Social Network A social network can be represented by Guu =
(U , Euu), where U = {u1, u2, ...uN} denotes the set of users, and Euu denotes the
set of edges. Each eij ∈ Euu is a social link between user i and user j.

Next, we present the definition of user-location network, in which the fre-
quency of visit was used to set the weight of edges between users and locations.

Definition 2. User-Location Network A user-location network is repre-
sented by Gup = (U ∪ P, Eup), where U = {u1, u2, . . . , uN} denotes the set of
users, P = {p1, p2, . . . , pM} denotes the set of locations, and the weight wik on
the edge eik ∈ Eup is the number of times that the user ui visited the location pk.

Definition 3. Location Affinity Network A location affinity network can
be represented by Gpp = (P, Epp), where P = {p1, p2, . . . , pM} denotes the set
of locations, and the weight wij on the edge eij ∈ Epp indicates the location
closeness between the locations pi and pj.

Definition 4. Heterogeneous User Network A heterogeneous user network
can be represented by Gu = Guu∪Gup∪Gpp, which consists of the social network
Guu, the user-location network Gup and the location affinity network Gpp. The
same sets of users and locations are shared in Gu.

Definition 5. Geolocating Social Network Users Given a heterogeneous
user network Gu, estimate a location p̂ui

for each user ui in U such that the
estimated location p̂ui

close to ui’s physical location pui
.
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3 Methodology

In this section, we introduce the proposed method that learns the geographi-
cal embeddings of users and locations through the heterogeneous user network
w.r.t. the real-world geometrical space. Since the heterogeneous user network
consists of multiple bipartite networks, we first present how to learn the network
embedding from a single bipartite network.

3.1 Bipartite Network Embedding

Given a bipartite network G = (VA∪VB , E), the goal of network embedding is to
embed each vertex vi ∈ VA∪VB into a low dimensional vector v i ∈ R

d, where d is
the dimension of the embedding vector. Inspired by [17], we consider to learn the
embeddings by preserving the second-order proximity, which means two nodes
are similar to each other if they have similar neighbors. In the following, we take
the user-location network Gup = (U ∪ P, Eup) as an example to illustrate the
learning process of embeddings. To begin with, we use a softmax function to
define the conditional probability of a user ui ∈ U visits a location pj ∈ P:

P (pj |ui) =
ep

T
j ui

∑M
k=1 ep

T
k ui

(1)

To preserve the weight wui on edge eui, we make the conditional distribu-
tion P (·|ui) close to its empirical distribution P̂ (·|ui), which can be defined
as P̂ (pj |ui) = wij

oi
, where oi =

∑
pk∈N(ui)

wik is the out-degree of ui, and N(ui)
is the set of the ui’s neighbors, i.e., the locations that ui have visited.

By minimizing the Kullback-Keibler (KL) divergence between two distri-
butions P (·|ui) and P̂ (·|ui) and omitting some constants, we can obtain the
objective function for embedding the bipartite graph Gup as follows:

Jup = −
∑

eij∈Eup

wij log P (pj |ui) (2)

Since a homogeneous network can be easily converted to a bipartite network,
we can derive similar objective for embedding social network Guu as follows:

Juu = −
∑

eij∈Euu

wij log P (uj |ui) (3)

By jointly learning {u i}i=1,...,N and {pj}j=1,...,M that minimize the objec-
tives Eqs. (2) and (3), we are able to represent social network users and locations
in low dimensional vectors. By far, the embeddings are learned only from the
network structure. Next, we introduce the collective geometrical embedding algo-
rithm to preserve the geometric structure w.r.t. the physical closeness in between
different objects.
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3.2 Collective Geometrical Embedding

According to the local invariance assumption [3], if two samples pi, pj are close
in the intrinsic geometric with regard to the data distribution, then their embed-
dings pi and pj should also be close. In this work, we consider to preserve the
geometric structure of locations by incorporating the following geometric regu-
larization in the learning process:

R(P) =
M∑

i,j=1

wij(pi − pj)
2 (4)

where the wij represents the geometric closeness between locations pi and pj ,
which can be obtained with the RBF kernel.

To ease the subsequent derivation, we rewrite Eq. (4) in trace form. Let
matrix U and matrix P denote the user embedding matrix and the location
embedding matrix, respectively, where each row within U and P is the embed-
ding vector of a user and a location. Using the weight matrix W whose element
wij is the weight between two locations and the diagonal matrix D whose ele-
ments dii =

∑M
j=1 wij , the Laplacian matrix L is defined as L = D − W. Then

R(P) can be reduced into the trace form:

R(P) =
1
2

M∑

i,j=1

wij(pi − pj)
2 =

1
2
Tr(PT (D − S)P) =

1
2
Tr(PTLP) (5)

To learn the geometrical embeddings from the heterogeneous user network,
we minimize overall objective function as follows:

min
U,P

J = Juu + Jup + λR(P) (6)

where λ is the regularization parameter that controls the importance of the
geometric regularization.

Since the edges in different networks have different meanings and the weights
are not comparable to each other, we alternatively minimize the objective of each
network independently to optimize Eq. (6). The same strategy has also been
applied in literature [17], while the geometrical regularization is not considered
in previous works. For the objective term of each network, taking Jup as an
example, it is time-consuming to directly evaluate as it requires to sum over
the entire set of edges when calculating the conditional probability P (·|ui). We
adopt the techniques of negative sampling [13] to approximate the evaluation,
where multiple negative edges are sampled from some noisy distribution. More
specifically, it specifies the following objective function for each edge eij :

log σ(pT
j · u i) +

k∑

u=1

Epn∼Pn(p)[log σ(−pT
n · u i)] (7)
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Algorithm 1. Collective Geographical Embedding Algorithm
Input: Heterogeneous user network Gu = Guu ∪ Gup ∪ Gpp, parameter λ, the

embedding dimension d, the maximum number of iterations iter;
Output: Geographical embedding matrix U and P.
Initialization: user embedding u , location embedding p;
while j ≤ iter do

Sample an edge from Euu, draw k negative edges and update user
embeddings;

Sample an edge from Eup, draw k negative edges and update user
embeddings and location embeddings;

Sample a location pi from P, update the location embedding pi using the
partial derivative in Eq. 8.

end

where σ(x) = 1
1+exp(−x) is the sigmoid function, and k is the number of negative

edges. The first term shows that if there is a link between vertices ui and pj ,
then force two vectors close to each other. The second term shows after sampling
negative links from whole sets of vertices, force two vectors u i and pn far away
from each other if there is no link between ui and pn. We set the sampling
distribution Pn(p) ∝ o

3/4
i as proposed in [13], where oi is the out-degree of

vertex ui. For the detailed optimization process, readers can refer to [16]. We
can minimize the objective term of the social network, Juu, in a similar way.

As for minimizing the geometrical regularization, R(P), it is to enforce the
embedding of each location to be as similar to the locations close to it as pos-
sible. Thus, we can sample a location pi ∈ P at each iteration and update its
embedding pi by gradient descent. The gradient of R(P) w.r.t. pi can be derived
as follows:

∂R(P)
∂pi

=
∑

j

wij(pi−pj)=(
∑

j

wij−wii)pi−
∑

j �=i

wijpj =[(D−W)P]i∗ = [LP]i∗,

(8)
where [·]i∗ means the i-th row of the given matrix.

The detailed process of the proposed algorithm is summarized in Algorithm1.
After obtaining the geometric embeddings of users and locations, we can train
any classifier (e.g., SVM or logistic regression) by feeding the embeddings as
feature vectors and the associated geographic regions at the desired scale (such
as city-scale or state-scale) as the labels.

4 Experiments

4.1 Experiment Setup

To evaluate the performance of the proposed CGE algorithm, we conduct
extensive experiments on the following two datasets. The statistics of each
dataset is summarized in Table 1. For both datasets, the social network is
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(a) Foursquare (b) Twitter

Fig. 2. Distribution of users’ locations in Foursquare and Twitter networks.

constructed from bi-directional friendships between social network users, user-
location network is constructed by the users’ check-in logs, and users’ physical
locations reported in their profiles are used as ground truth. We aim to predict
users’ home location to the city level, since many users only report city-level
addresses. City-level location information in text format is converted into city-
level coordinates according to geolocators1. Note that such coordinates are being
canonicalized with each city district corresponding to exactly the same coordi-
nate. Distribution of users’ home locations in two datasets is shown in Fig. 2.
Instead of only focusing on users lived in the US, we are tackling users globally,
which creates more challenge for the learning task.

Table 1. Datasets

Dataset Users Locations Social links User-location links

Foursquare 15,799 141,444 38,197 212,588

Twitter 25,355 403,770 156,060 564,298

We compared the proposed approach with three state-of-the-art user geolo-
cation prediction algorithms and two network embedding algorithms.

1. FIND [2] selects the location that maximizes the probability of friendships
given the distance between the location candidates and the friends’ home
locations.

2. LP [7] selects the most popular location among the given user’s friends’ home
locations by a simple majority voting algorithm, while the user’s friends net-
work were rebuilt via the depth-first search algorithm.

3. SLP [8] refers to Spatial Label Propagation. It spatially propagates location
labels through the social network, using a small number of initial locations,
which is an extension of the idea of label propagation.

4. LINE [16] embeds a homogeneous network into a low dimensional space.
5. PTE [17] learns the embeddings of a heterogeneous network by joint learning

the embeddings of each sub-network.
6. CGE is the proposed method in this paper.
1 https://github.com/networkdynamics/geoinference.

https://github.com/networkdynamics/geoinference
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To evaluate the performance of the different approaches, we randomly sample
50% of user instances as the training set and use the other 50% of user instances
as the testing set. This random sampling experiment is repeated 10 times. For
the FIND algorithm, three coefficients are set the same as in paper [2]. For the
LP algorithm, the minimal number of friends is set to 1, the maximum number
of friends is set to 10000, and the minimal location votes is set to 2. For the SLP
algorithm, the number of iterations is set to 5 and the other parameters’ settings
follow paper [8]. For all the embedding algorithms (LINE, PTE, and CGE), the
embedding dimensionality is set to 100. We tried dimensionalities in the range
[50, 200] and found that 100 generally gives the best results. To simplify the
comparison, we simply set the regularization parameter λ in CGE to 1. For the
other parameters in the network embedding algorithms, we follow the setting in
the paper [17]. The learned embeddings are used as feature vectors to train an
SVM classifier with the RBF kernel.

(a) Accuracy@k on Foursquare (b) Accuracy@k on Twitter

Fig. 3. Performance comparison on Foursquare and Twitter datasets

To study the contribution of different sources, different combinations of
sub-networks in the heterogeneous user network are fed into the algorithms as
denoted in the following manner. For CGE taking three networks as inputs, we
denote this setting as CGE(CFV), where C (check-in) stands for user-location
network, F (friend) denotes friendship network, and V (venue) represents loca-
tion affinity network. If only one or two networks were taken as inputs, we denote
them as (C) or (CV), etc.

Three metrics are used to evaluate the performance of the compared methods.
The first metric is Accuracy@k, which measures the percentage of predictions
that are within k miles of the true location. We report multiple values of k to
compare different approaches in a comprehensive manner. The second metric
is Average Error Distance (AED), where a smaller value of which indicates
better performance. The third metric is Area Under Curve (AUC) under a
cumulative distribution function F (x) = P (distance ≤ x), where F (x) shows
the percentage of inferences having an error distance less than x miles away
from the true location [9]. Higher AUC scores indicate better performance.
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4.2 Quantitative Results

Figure 3 shows the performance of user geolocation algorithms on two datasets.
From the comparison results with regard to Accuracy@k, we make three obser-
vations as follows. Firstly, embedding-based algorithms consistently outperform
non-embedding based benchmarks. For instance, if we consider Accuracy@30,
in Fig. 3a, CGE(CFV) correctly predicts 66.5% of users, while the best perfor-
mance of non-embedding based algorithms SLP only predicts 49.1% of users.
Because embedding-based algorithms can fully explore the network structure of
the given information, which alleviates the issues of sparse and noisy signals,
embedding-based methods (LINE, PTE and CGE) outperform non-embedding
based methods. Secondly, among embedding-based algorithms, algorithms such
as PTE and CGE which are capable of handling heterogeneous networks perform
better than LINE which is only applicable to homogeneous networks. Thirdly,
we can observe that CGE consistently achieves the best performance in both
datasets, as shown in Fig. 3a and 3b. With exactly the same amount of informa-
tion, the proposed CGE always outperforms PTE for a variety of error distance
k. For example, in Fig. 3a, with user-location network and location affinity net-
work, CGE(CV) correctly predicts 61% of users’ home locations within 10 miles,
while PTE(CV) correctly predicts 56% of users’ home locations within the same
distance. These results indicate the robustness of the proposed CGE algorithm.

Table 2. The classification performance “mean ± standard deviation” on user geolo-
cation prediction task. “↑” indicates the larger the value the better the performance.
“↓” indicates the smaller the value the better the performance.

Foursquare Twitter

AED ↓ AUC ↑ AED ↓ AUC ↑
LP 2526.21 ± 34.05 45.52% ± 0.37% 4924.64 ± 18.24 19.30% ± 0.12%

SLP 1673.31 ±0.73 61.21% ± 0.03% 2172.99 ±2.40 53.21% ± 0.04%

FIND 1805.88 ± 28.25 57.41% ± 0.39% 2647.07 ± 16.84 42.53% ± 0.20%

LINE(C) 2018.94 ± 30.15 58.60% ± 0.28% 2759.46 ± 20.62 41.92% ± 0.03%

LINE(F) 1308.49 ± 19.04 63.83% ± 0.47% 2474.04 ± 15.23 44.36% ± 0.19%

PTE(CF) 1006.31 ± 21.41 68.80% ± 0.32% 1634.34 ± 16.48 54.30% ± 0.29%

PTE(CV) 1065.06 ± 24.30 71.56% ± 0.20% 1192.38 ± 133.4 63.80% ± 1.22%

PTE(CFV) 935.17± 11.50 72.35% ± 0.19% 1247.78 ±4.79 61.26% ± 0.11%

CGE(CV) 779.94± 29.15 75.93% ± 0.35% 991.22 ± 17.77 65.27% ± 0.26%

CGE(CFV) 773.31 ± 20.55 77.13% ± 0.17% 1000.47 ±8.97 64.24% ± 0.07%

Table 2 shows the AED and AUC scores of various algorithms on two datasets.
Similar observations can be made as above. CGE(CFV) algorithm achieves the
smallesterrordistanceandthehighestAUCscores for theFoursquaredataset,while
CGE(CV) achieves the best performance for the Twitter dataset. This is primarily
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due to the fact that Twitter relationships mixes friendship relationships with other
kinds of unbalanced, asymmetrical relationships [7]. More importantly, when using
the same data sources, CGE always performs better than PTE. This shows that the
proposed graph regularization is more suitable for modeling geographical informa-
tion in user geolocation problem.

To evaluate the contribution of different sub-networks, we compare the results
using partial information with the results using complete information. The com-
parisons are performed using CGE algorithm on both datasets. As can be seen in
Fig. 4a, without user-location network (green line), the performance deteriorates
the most (around 19%). Without location affinity network (purple line), perfor-
mance drops around 13%. Without friend network information, the algorithm
drops the least compared with other cases (around 3%). Note that, without
friend network information, CGE achieves slightly higher accuracy on Twitter
dataset, as shown in Fig. 4b, because Twitter relationships contain heavy noise.
It can be concluded that: (1) Compared with friend information and location
affinity network, user-location network plays the most important role in user
geolocation prediction. (2) Considering the geometrical information in location
affinity network can significantly improve the prediction performance. (3) Friend
network can also be a valuable complementary source.
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Fig. 4. Performance contribution of sub-networks. “w/o” means without certain sub-
network.

The robustness of the proposed algorithm is also tested by varying the size of
the training users. Note that, when decreasing the size of the training users, we
use locations’ embedding vectors as additional training data to balance training
samples across different settings. As can be seen in Fig. 5, when the size of the
training users decreases from 50% to 20%, accuracy@k only drops around 5%.
The evaluation results on the size of training set indicate that CGE(CFV) is
capable of producing high-quality embedding vectors of users and locations.

Visualization of users’ embedding vectors learned by different algorithms are
shown in Fig. 6. Due to limited space, only the results of Foursquare dataset
are shown. We pick users who reside in three different countries as three differ-
ent classes. Users’ embedding vectors (in 100-dimensional space) are further
mapped to two-dimensional space with Isomap. Compared with other algo-
rithms, CGE(CFV) generates the most meaningful layout, as shown in Fig. 6e,
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Fig. 5. Performance comparison with varied training size.

in the sense that it naturally forms three clusters and pulls the centers of the
different clusters far away from each other. This indicates that the proposed
CGE algorithm leveraged different source information effectively. Running time
of various algorithms are shown in Fig. 6f. The run time of CGE algorithms are
modestly longer compared with other embedding methods, but provides the best
prediction performance.

(a) PTE(CF) (b) PTE(CV) (c) PTE(CFV)

(d) CGE(CV) (e) CGE(CFV)
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(f) Running time

Fig. 6. Visualization of users reside in three different countries (Blue: US, Green: Brazil,
Red: Malaysia) in Foursquare. Running time comparison (f). (Color figure online)

5 Related Work

Location Prediction: Works on identifying users’ home locations [20] can be
roughly divided into two categories based on the information used. One category
of related works focus on extracting text information [1,4] from tweets. The gen-
eral idea is to extract location-related text information (words, phrase, topic)
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through language model or probabilistic model. Another category of works focus
on social graphs [2,7,8], where they rely on the assumption that tie strength
is a strong indicator of users’ home locations. [2] aims to predict the loca-
tion of an individual by leveraging geographic and social relationships in the
Facebook network. [9] reviews most recent network-based approaches, and pro-
poses two new metrics on comparison of different approaches. [14] studies the
problem of using publicly available attributes (mayorship, tips, and likes) and
geographic information of locatable friends to infer home location in three net-
works respectively, Twitter, Foursquare, and Google+. Other works [10,11,15]
consider text and network information simultaneously. [11] propose an algo-
rithm derived from a generative model. [10,15] provide two ways of combining
the results from network-based approaches and text-based algorithms. However,
most of the above-mentioned algorithms were either inefficient or based on simple
combination of different source information.

Network Embedding: Recently, network embedding technique ([5,6,16,17])
drew lots of attention due to the merit of distributed representation learning.
Embedding objects into a mutually related common space can mitigate the spar-
sity problem to a large extent. Moreover, by jointly modeling multiple networks,
it is able to capture complex interaction among heterogeneous objects in the
connected networks. Different from existing network embedding algorithms, this
paper treats the guidance information (locations’ geographical information) dis-
criminately as a geometric regularization term to smoothly encode the local
geometrical structure into the embedding space.

6 Conclusion

This paper proposed a collective geometrical embedding (CGE) algorithm to
tackle the problem of geolocating users. Multiple heterogeneous networks are
embedded into a low dimensional space through two strategies: the first is to
embed the social network and the user-location network by preserving local
structures; while the other is to incorporate the geographical information as the
guidance through graph regularization. Evaluation on two different real-world
datasets demonstrated the effectiveness of the proposed approach. For future
work, multiple types of social links and multiple types of user-location relations
can be included in the proposed framework. Besides, the proposed embedding
method can be further extend for location recommendation.
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Abstract. Differential privacy has recently emerged in private statis-
tical aggregate analysis as one of the strongest privacy guarantees. A
limitation of the model is that it provides the same privacy protection
for all individuals in the database. However, it is common that data own-
ers may have different privacy preferences for their data. Consequently, a
global differential privacy parameter may provide excessive privacy pro-
tection for some users, while insufficient for others. In this paper, we
propose two partitioning-based mechanisms, privacy-aware and utility-
based partitioning, to handle personalized differential privacy parameters
for each individual in a dataset while maximizing utility of the differen-
tially private computation. The privacy-aware partitioning is to minimize
the privacy budget waste, while utility-based partitioning is to maximize
the utility for a given aggregate analysis. We also develop a t-round par-
titioning to take full advantage of remaining privacy budgets. Extensive
experiments using real datasets show the effectiveness of our partitioning
mechanisms.

1 Introduction

Differential privacy [6] is one of the strongest privacy guarantees for aggregate
data analysis. A statistical aggregation or computation satisfies differential pri-
vacy (DP) if the outcome is formally indistinguishable when run with and with-
out any particular record in the dataset. One common mechanism for achieving
differential privacy is to inject random noise, that is calibrated by the sensitivity
of the computation (i.e. the maximum influence of any record on the outcome)
and a global privacy parameter or budget ε. A lower privacy parameter requires
larger noise to be added and provides a higher level of privacy.

One important limitation of DP is that it provides the same level of privacy
protection for all data subjects in a database. This approach ignores the reality
that different individuals may have very different privacy requirements for their
personal data, as shown in Fig. 1. In the medical domain, some patients may
openly consent their data for studies or have a low privacy restriction while others
may have a high privacy restriction of their medical records. The privacy setting
where users in a dataset could set their own privacy preferences is considered as
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 615–627, 2017.
DOI: 10.1007/978-3-319-57454-7 48
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“personalized differential privacy” (PDP) [10]. One possible approach to achieve
PDP is to use the minimal privacy budget among all records, called minimum
mechanism [10]. But this may introduce an unacceptable amount of noise into
the outputs because of under-utilized (wasted) privacy budget for most users,
resulting in poor utility. Another possible approach, called threshold mechanism
[10], is to set a privacy threshold and select records with privacy budgets no less
than the threshold as a subset, which is then used for a target DP aggregate
computation. However the threshold is difficult to choose due to the tradeoff
between the perturbation error and the sampling error. A higher privacy budget
threshold will result in less perturbation error but at the cost of fewer number
of records and a potentially higher sampling error, and vice versa.

Fig. 1. Dataset with personalized privacy parameters

Our Contributions. This paper investigates two novel partitioning mecha-
nisms for achieving PDP while fully utilizing the privacy budgets of different
individuals and maximizing the utility of the target DP computation: privacy-
aware and utility-based partitioning. Given any DP aggregate computation M ,
our partitioning mechanisms group records with various privacy budgets into k
partitions, apply M on each partition using its minimum privacy budget, then
bag perturbed results from k partitions to compute the final output. To maxi-
mally utilize all leftover privacy budgets, we also develop a t-round partitioning
and prove its convergence theoretically. The privacy-aware mechanism consid-
ers all privacy budgets as a histogram and groups histogram bins with similar
values to minimize privacy waste. The utility-based mechanism partitions all pri-
vacy parameters with the goal of maximizing the utility of target computation
M . In particular, we find that the utility-based mechanism has superior perfor-
mance for many important DP aggregate analysis, such as count queries, logistic
regression and support vector machine. This is because it considers both privacy
budget waste and the number of records in each partition, which significantly
impact the utility of target DP aggregate mechanisms. Extensive experiments
demonstrate the general applicability and superior performance of our methods.

2 Related Work

Differential privacy has attracted increasing attention in recent years as one of
the strongest privacy guarantees for statistical data analysis [6]. Alaggan et al.
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[1] proposed heterogeneous differential privacy, which to our knowledge is the
first work to consider various privacy preferences of data subjects. They pro-
posed a “stretching” mechanism, based on the Laplace mechanism by rescaling
the input values due to corresponding privacy parameters. But it cannot be
applied to many commonly used functions (e.g. median, min/max ), and count-
ing queries which count the number of non-zero values in a dataset. Jorgensen et
al. [10] proposed two PDP mechanisms. The first one, sampling mechanism, sam-
ples a subset of original dataset by assigning each record a weight determined
by its own privacy budget and a predefined threshold, then uses the sampled
subset for DP aggregate mechanisms. The second one, PDP-exponential mecha-
nism, is based on the exponential mechanism [14], and develops a special utility
function for a given aggregate analysis to satisfy PDP particularly. While the
PDP-exponential mechanism provides better utility for simple count queries, it
is not easily applicable to remove for complex aggregate computations (e.g. logis-
tic regression). In our experiments, we compare our methods with the sampling
mechanism [10].

3 Preliminaries

Personalized Differential Privacy. A mechanism is differentially private if
its outcome is not significantly affected by the removal or addition of a single
user. An adversary thus learns approximately the same information about any
individual, irrespective of his/her presence or absence in the original dataset.
We give formal definition of differential privacy as below:

Definition 1 (ε-differential privacy [5]). A randomized mechanism A gives
ε-differential privacy if for any dataset D and D′ differing in at most one record,
and for an arbitrary set of possible outputs of A, we have Pr[A(D) ∈ O] ≤
eεPr[A(D′) ∈ O].

The privacy parameter ε, also called the privacy budget, specifies the privacy
protection level. A common mechanism to achieve differential privacy is the
Laplace mechanism [5] that injects a small amount of independent noise to the
output of a numeric function f to fulfill ε-differential privacy. The noise is drawn
from Lap(b) with pdf Pr[η = x] = 1

2be
− |x|

b , and b = Δf/ε, where Δf is the
sensitivity defined as the maximal L1-norm distance between the outputs of f
over D and D′. A lower value of ε requires a larger perturbation noise with less
accuracy, and vice versa.

Personalized differential privacy allows each individual in a database to set
their own privacy parameter ε of their data. We assume in this paper that the
personalized privacy parameters are public and not correlated with any sensitive
information. For example, in Fig. 1, a sensitive attribute Salary is not correlated
with the privacy budget. We give formal definition of PDP as below:

Definition 2 (Personalized Differential Privacy [10]). For a privacy pref-
erence φ = (ε1, . . . , εn) of a set of users U , a randomized mechanism A gives
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φ-PDP if for any dataset D and D′ differing in at most one arbitrary user u,
and for an arbitrary set of possible outputs of A, we have Pr[A(D) ∈ O] ≤
eφu

Pr[A(D′) ∈ O], where φu is the privacy preference corresponding to user
u ∈ U .

Sampling Mechanism. The sampling mechanism [10] for PDP first samples
a subset D′ due to privacy preference vector, then applies DP aggregate compu-
tations on D′. Consider a function f : D → R, a dataset D with n records of n
individual data owners, and a privacy preference vector φ = (ε1, . . . , εn). Given
εT (εmin ≤ εT ≤ εmax), the sampling mechanism selects each record xj ∈ D
(1 ≤ j ≤ n) with probability pj = 1 if εj ≥ εT , and samples other records i.i.d.
with probability pj = eεj −1

eεT −1 if εj < εT .

4 Partitioning Mechanisms

In this section, we propose two partitioning mechanisms to fully utilize the pri-
vacy budget of individuals and maximizing the utility of target DP computations.
The general partitioning mechanism includes: (1) partition records of D hori-
zontally into k groups (D1, . . . , Dk) due to various privacy budgets; (2) compute
noisy output qi of target aggregate mechanism M for each Di with εi-differential
privacy, and (3) ensemble (q1, . . . , qk) to compute q. We define the general par-
titioning mechanism as below:

Definition 3 (The General Partitioning Mechanism). For an aggregate
function f : D → R, a dataset D with n records of n individual users, and a
privacy preference φ = (ε1, . . . , εn) (ε1 ≤ . . . ≤ εn). Let Partition(D,φ, k) be a
procedure that partitions the original dataset D into k partitions (D1, . . . , Dk).
The partitioning mechanism is defined as PM = B(DP f

ε1(D1), . . . , DP f
εk

(Dk))
where DP f

εi
is any target εi-differentially private aggregate mechanism for f , B

is an ensemble algorithm.

The partitioning mechanisms have no privacy risk because it is computed directly
from public information, privacy budget of each record. The target aggregate
mechanism guarantees εi-DP for each partition, with εi as the minimum privacy
parameter value of the records in that partition.

4.1 Privacy-Aware Partitioning Mechanism

We develop privacy-aware partitioning mechanism with the goal of grouping
records with similar privacy budgets, such that the amount of wasted budget is
minimized. Formally, we formulate the privacy budget waste of a partition Di as
Wi = W (εi,1, . . . , εi,ni

) =
∑ni

j=1(εi,j −min(εi,j))2, where ni is number of records
in Di, εi,j is the privacy budget of jth-record of Di, and min(εi,j) ensures εi-DP
for Di. We define privacy-aware partitioning algorithm as follows:
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Definition 4 (Privacy-aware partitioning). In a sorted privacy budget vec-
tor φ = (ε1, . . . , εn), where ε1 ≤ ε2 ≤ . . . ≤ εn, we want to split φ into k partitions
such that W (φ) =

∑k
i=1 Wi is minimized, where Wi =

∑ni

j=1(εi,j − min(εi,j))2.

With a predefined k, we find the optimal k-partitioning using dynamic program-
ming and present the privacy-aware partitioning algorithm in Algorithm1.

Algorithm 1. Privacy-aware partitioning mechanism W∗ of finding the optimal
k-partition of (ε1, . . . , εn) for a given definition of the function W

Require: Sorted φ = (ε1, . . . , εn) and k
Ensure: k partitions of original dataset

1. if k = 0 then return 0
2. minW = inf
3. foreach j ∈ {k − 1, . . . , n} do

currentW = W ∗((ε1, . . . , εj), k − 1) + W (εj+1, . . . , εn)
if currentW < minW then

minW = currentW
partitions[k − 1] = (εj+1, . . . , εn)

4. return minW and indexes of k partitions

Before running Algorithm 1, we first sort all privacy budgets in ascend-
ing order. Sorting records in the descending order of privacy budgets gener-
ates the same partition. When we sort privacy budgets, the sequence of cor-
responding data records follows the order of privacy budgets. Therefore, we
know which records are included in which partition. To simplify the algorithm,
we do not include representation of data records. In step 3, we use dynamic
programming to find the optimal partition for a given definition of the func-
tion W . The goal is to minimize the waste of privacy budgets in each partition
by computing the distance between individual budget and the minimum bud-
get of the current partition. Note that we represent Algorithm1 as W ∗, and
currentW = W ∗((ε1, . . . , εj), k−1)+W (εj+1, . . . , εn) means that we recursively
use Algorithm 1 to compute k − 1 partitions.

Optimal Number of Partitions. Algorithm 1 finds an optimal k-partitioning
given a predefined k. To choose an optimal k, let us consider two extreme cases:
(i) we can have n partitions where each record is its own partition and no pri-
vacy budget is wasted, or (ii) all data records can be grouped as one partition
to maximize the number of records in the partition. The amount of generated
noise could be significant in the previous case, while large amount of privacy
budget waste may be incurred in the latter case. We need to consider the trade-
off between n and ε to find the optimal k by building the following objective
function:

min
k

k∑

i=1

[
1
ni

ni∑

j=1

(εi,j − min(εi,j))2] (1)
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Equation (1) implies a tradeoff between the partition size and privacy budget
waste. Due to Eq. (1), neither extreme case (i) nor (ii) can lead to optimal value
of Eq. (1). If we set a minimum threshold T of partition size ni for the target dif-
ferentially private mechanism, we can search different number of partitions from
1 to n

T , and find the optimal partition number. The minimum number of records
ni required in one partition is reasonable because many aggregate mechanisms
(e.g. logistic regression, support vector machine) require a minimum training
data size to ensure acceptable performance, due to machine learning theory. For
example, Shalev-Shwartz and Srebro [16] show that for a given classifier with
expected loss defined on a differentiable loss function, the excess loss of the
classifier will be upper bounded if training data size is larger than a threshold.

Complexity. Sorting all privacy budgets takes O(n log n). Computing optimal
k takes O(n), since we need to scan privacy vector at most m = n

T times ( n
T is

constant here since we control T to make n
T constant for complexity reduction).

The privacy-aware partitioning takes O(mnlogn) complexity using dynamic pro-
gramming with intermediate results saved and optimization tricks. The overall
complexity is O(mnlogn).

4.2 Utility-Based Partitioning Mechanism

The privacy-aware partitioning mechanism aims to fully utilize the privacy bud-
get of individual users which will indirectly optimize the utility of the target DP
computation. In this section, we present a utility-based partitioning mechanism
explicitly optimized for target DP computations. The utility-based partitioning
is inspired by an observation that many DP machine learning algorithms (e.g.
[5,7,9,19]) have their performance related with n, ε for a dataset of n records
with ε-DP. We give definition of utility-based partitioning below.

Definition 5 (Utility-based partitioning). In a sorted privacy budget vec-
tor φ = (ε1, . . . , εn), where ε1 ≤ ε2 ≤ . . . ≤ εn, and let ni denote the
number of records in Di, we want to split φ into k partitions to maximize∑ni

j=1 U(ni,min(εi,j)), where U(ni,min(εi,j)) is a utility function of target DP
computation, which is related with ni and min(εi,j).

Algorithm 2 presents the utility-based partitioning. We observe that U(n, ε) can
be considered as a general utility form in a series of existing state-of-the-art
DP algorithms (e.g. [3,4,8,11–13,15,17,18,20]). (i) Count query In the Laplace
mechanism, the noisy result of a function f can be represented as f(D) + ν,
where ν follows Lap(Δf

ε ), and Δf is the sensitivity related to number of records
n. If we normalize f(D) by n, Δf would become Δf

n . Thus, the variance of
Laplace distribution can be considered as the utility function U(n, ε) = 2(Δf

nε )2.
Maximizing nε will lead to best utility with a high probability. (ii) Empirical
risk minimization. We take for example the DP empirical risk minimization
mechanism (DPERM) proposed by Chaudhuri and Sarwate [11]. The reason is
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Algorithm 2. Utility-based partitioning mechanism U∗ of finding the optimal
k-partition of (ε1, . . . , εn) for a given definition of utility function U

Require: (ε1, . . . , εn) and k
Ensure: k partitions of original data records

1. if k = 0 then return U(n, εmin)
2. maxUtility = 0
3. foreach j ∈ {k − 1, . . . , n} do

currentUtility = U∗((ε1, . . . , εj), k − 1) + U(min(εj+1, . . . , εn), n − j)
if currentUtlity > maxUtility then

maxUtility = currentUtility, partitions[k − 1] = (εj+1, . . . , εn)
4. return maxUtility

that DPERM can be easily generalized to important machine learning tasks,
such as logistic regression and support vector machine, which have a convex loss
function as the optimization objective. Our utility function form can be extended
to a class of DP machine learning mechanisms.

Assume that n records in a dataset D are drawn i.i.d. from a fixed distri-
bution F (X, y). Given F , the performance of privacy preserving empirical risk
minimization algorithms in [11] can be measured by the expected loss L(f) for a
classifier f , defined as L(f) = E(X,y) F [l(fT x, y)], where the loss function l is dif-
ferentiable and continuous, the derivative l′ is c-Lipschitz. By [11], the expected
loss of the private classifier fp can be bounded as below

L(fp) ≤ L(f0) + 16||f0||4d2 log2(d/σ)(c+eg/||f0||2)
n2e2

gε2 + O(||f0||2 log(1/σ)
neg

) + eg

2 (2)

where L(f0) is the expected loss of the true classifier f0, ε is the privacy budget,
eg is the generalization error, and d is the number of dimensions of input data.
If we consider the second part of Eq. (2), we can build a utility function as
U(n, ε) = 16||f0||4d2 log2(d/σ)(c+eg/||f0||2)

n2e2
gε2 + ||f0||2 log(1/σ)

neg
+ eg

2 , where only n and ε

are variables.

Optimal Number of Partitions. Akin to privacy-aware partitioning mecha-
nism, we need to select an optimal value for k, in order to maximize the sum of
utility function value over all partitions.

max
k

k∑

i=1

U(ni, min
1≤j≤ni

(εi,j)) (3)

Here, a minimum threshold T of each partition size is also required for a differ-
entially private task. Theoretically, we can search different number of partitions
from 1 to n

T to find the optimal number of partitions with the maximum value
of objective function (3).
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Complexity. Sorting all privacy budgets is O(n log n). Finding the optimal
partitioning takes O(n), due to complexity of Algorithm1. The utility-based
partitioning takes O(n). The overall complexity of Algorithm2 is O(n log n).

4.3 T -Round Partitioning

After the first round of partitioning, we may still have records with remaining
budgets. Extra rounds of partitioning can be applied iteratively on the remaining
records with leftover privacy budgets. In this part, we prove by iteratively apply
our algorithm to the leftover budget from previous iterations, the leftover budget
will decrease exponentially, which means all input budgets will be used up soon.

Here we define a T -round partitioning as iteratively grouping n records into
k partitions according to the objective function in Definition 3, then consume
the smallest budget in each group and update the leftover budget. The leftover
budget for the l-th record in the t-th round is denoted as εt

l .

Theorem:
∑n

l=1(ε
T
l )2 ≤

(
n

n−1+k2

)T ∑n
l=1(εl)2, which means the leftover pri-

vacy budget converges to 0 exponentially.

Proof. Without loss of generality, we assume εn is the largest among all input
privacy budgets, and select the partition that partitions the interval [0, εn]
into k intervals with equal length εn/k. In this case, for the leftover budget
ε1∗
l we have ε1∗

l ≤ εn/k, ε1∗
n = εn/k for all 1 ≤ l ≤ n. Thus

∑n
l=1(ε

1∗
l )2 ≤∑n

l=1(εn/k)2 = n(εn/k)2. Furthermore, since we have εl ≥ ε1∗
l , there is∑n

l=1(εl)2 −∑n
l=1(ε

1∗
l )2 ≥ ∑n

l=1[(εl)2 − (ε1∗
l )2] ≥ (εn)2 − (ε1∗

n )2 = (εn)2
(
1 − 1

k2

)
.

Combining them together, we conclude
∑n

l=1(εl)
2

∑n
l=1(ε

1∗
l )2

=
∑n

l=1(εl)
2−∑n

l=1(ε
1∗
l )2

∑n
l=1(ε

1∗
l )2

+ 1 ≥
(εn)2(1− 1

k2 )
n(εn/k)2 + 1 = k2−1

n + 1
∑n

l=1(ε
1∗
l )2

∑n
l=1(εl)2

≤ n
k2−1+n . Since the optimal partition

must have smaller
∑n

l=1(ε
1
l )

2 than this very naive partition, there must be
∑n

l=1(ε
1
l )

2
∑n

l=1(εl)2
≤ n

k2−1+n . Similarly, if we take ε1l as input to the next round, we

can get
∑n

l=1(ε
2
l )

2
∑n

l=1(ε
1
l )

2 ≤ n
k2−1+n , etc. When we multiply these inequalities together,

we conclude
∑n

l=1(ε
T
l )2 ≤

(
n

n−1+k2

)T ∑n
l=1(εl)2.

4.4 Ensemble

Once we have partitions, we run DP mechanism on each partition, and then use
ensemble methods to aggregate the result from each partition. Due to conclusions
of [2], our ensemble rule is that the private output of partition with equal number
of records but smaller privacy budgets than other partitions would be dropped
out. We also consider types of learning problems. For numerical situation, like
bagging multiple linear regression or count queries, we aggregate all private pre-
dicted values from all partitions. The weights will depend on O(ni, εi). Assume
the numerical task is P , the aggregated result would be Ỹ =

∑k
i=1 wiP (Di). For

classification tasks, we use majority voting.
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5 Experiment

In this section, we experimentally evaluate partitioning-based mechanisms and
compare it with the sampling mechanism in [10]. Partitioning-based mechanisms
are implemented in MATLAB R2010b and Java, and all experiments were per-
formed on a PC with 2.8 GHz CPU and 8 G RAM.

5.1 Experiment Setup

Datasets. We use two datasets from the Integrated Public Use Microdata
Series1, US and Brazil, with 370K and 190K census records collected in the
US and Brazil, respectively. There are 13 attributes in each dataset, namely,
Age, Gender, Martial Status, Education, Disability, Nativity, Working Hours
per Week, Number of Years Residing in the Current Location, Ownership of
Dwelling, Family Size, Number of Children, Number of Automobiles, and Annual
Income. Among these attributes, Marital status is the only categorical attribute
with 3 values. We categorize Marital Status into two binary attributes. With
this transformation, both of our datasets become 14 dimensions.

Privacy Specification. For personalized differential privacy, we generate the
privacy budgets for all records randomly from uniform distribution and normal
distribution. We set the range of privacy budget value ε from 0.01 to 1.0, with
ε = 0.01 being users with high privacy concern, and sample i.i.d. privacy budgets
from Uniform(0.01, 0.1) and Normal(0.1, 1).

Comparison. We evaluate the utility of our mechanisms using random range-
count queries, support vector machine, and logistic regression, and compare it
with the sampling mechanism [10] and baseline Minimum.

Metrics. For count query evaluation, we generated random range-count
queries with random query predicates covering all attributes defined as “Select
COUNT(*) from D Where A1 ∈ I1 and A2 ∈ I2 and . . . and Am ∈ Im”. For
each attribute Ai, Ii is a random interval generated from the domain of Ai.

We measure the count query accuracy by the relative frequency error
RFE(q) = (A(q) − A′(q))/n, where for a query q, A(q) is the true answer.
A′(q) is the noisy answer, n is number of records in the original dataset. Here we
use relative frequency error to scale query errors based on n, because sampling
mechanism generates a partial number of records from original datasets.

For the support vector machine, we use the area under the curve (AUC), and
higher AUC value means better discrimination. For logistic regression, annual
income is converted into a binary attribute: values higher than mean are mapped
to 1, and 0 otherwise. To be consistent with [10], we measure the accuracy

1 Minnesota Population Center. Integrated public use microdata series-international:
Version 5.0. 2009. https://international.ipums.org.

https://international.ipums.org
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of logistic regression with misclassification rate, the fraction of tuples that are
incorrectly classified. For space limitation, we only show experiment results of
support vector machine, and the performance of logistic regression has the same
trend with count query.

5.2 Experimental Results

Partitioning-Based Mechanisms for Count Query. Figures 2 and 3 investi-
gate the relative frequency error between partitioning mechanisms and the sam-
pling mechanism under normal and uniform distribution of privacy preferences.
We vary the privacy budget thresholds of the sampling mechanism. The errors
of the partitioning mechanisms remain at a horizontal line since it does not need
to set privacy budget threshold. The accuracy of sampling mechanism reaches
optimal when the budget threshold attains the mean of all privacy budget val-
ues, which is consistent with the experimental conclusion in [10]. We can observe
that the accuracy of sampling mechanism deteriorates sharply when threshold
value is smaller than the mean privacy budget. This is because when the number
of records is sufficiently large, the privacy budget dominates the performance.
Our partitioning mechanisms remain stable and perform almost the same with
the optimal performance of sampling mechanism. Utility-based partitioning has
slightly better performance in the experiments, since it considers both privacy
and utility of the target DP computation. The baseline Minimum performs sim-
ilarly with the privacy budget threshold being the smallest. This is because
when the threshold becomes the smallest value, sampling mechanism is equal to
Minimum. This conclusion remains the same for the following experiments.

(a) Normal privacy preferences (b) Uniform privacy preferences

Fig. 2. Relative frequency error for the count task (US)
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(a) Normal privacy preferences
(b) Uniform privacy preferences

Fig. 3. Relative frequency error for the count task (Brazil)

Partitioning-Based Mechanisms for Support Vector Machine (SVM).
Figures 4 and 5 illustrate the performances of different mechanisms for SVM
classification. There is no obvious pattern for sampling mechanism on which
privacy budget threshold has the optimal utility, and it is difficult to choose
the threshold for an optimal utility. However, our partitioning mechanisms have
superior performance than sampling mechanism. The performance of sampling
mechanism under uniform privacy budgets fluctuates, because the number of
records in the experiment is small for SVM, and as a result, it is difficult to
select an optimal threshold before running private SVM. The performance of
sampling mechanism under normal privacy budgets arrives the best when the
threshold value is around 0.5, which approximates the average of all privacy
budgets.

(a) Normal privacy preferences
(b) Uniform privacy preferences

Fig. 4. AUC for support vector machine (US)
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(c) Normal privacy preferences (d) Uniform privacy preferences

Fig. 5. AUC for support vector machine (Brazil)

6 Conclusions

In this paper, we developed two partitioning-based mechanisms for PDP that
aims to fully utilize the privacy budgets of different individuals and maximize
the utility of target DP computations. Privacy-aware partitioning minimizes pri-
vacy budget waste, and utility-based partitioning maximizes a utility function
of target mechanism. For future work, it will be useful to evaluate the utility of
partitioning mechanisms for different aggregations or analytical tasks. It will also
be of interest to extend notions of personalized differential privacy to social net-
works, where the individuals are nodes, and edges represent connections between
pairs.
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Abstract. Privacy-preserving record linkage (PPRL) is the process of
identifying records that represent the same entity across databases held
by different organizations without revealing any sensitive information
about these entities. A popular technique used in PPRL is Bloom filter
encoding, which has shown to be an efficient and effective way to encode
sensitive information into bit vectors while still enabling approximate
matching of attribute values. However, the encoded values in Bloom fil-
ters are vulnerable to cryptanalysis attacks. Under specific conditions,
these attacks are successful in that some frequent sensitive attribute val-
ues can be re-identified. In this paper we propose and evaluate on real
databases a novel efficient attack on Bloom filters. Our approach is based
on the construction principle of Bloom filters of hashing elements of sets
into bit positions. The attack is independent of the encoding function
and its parameters used, it can correctly re-identify sensitive attribute
values even when various recently proposed hardening techniques have
been applied, and it runs in a few seconds instead of hours.

Keywords: Privacy · Re-identification · Frequency analysis · Data
linkage · Entity resolution · Data matching

1 Introduction

Integrating data from different sources with the aim to remove duplicates, enrich
data, and correct errors and inconsistencies is a crucial data pre-processing
task for many data mining and analytics applications [4]. Example applications
include healthcare, business analytics, national censuses, population informatics,
fraud detection, government services, and national security.
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However, growing concerns about privacy and confidentiality increasingly
preclude the exchange or sharing of personal identifying attributes, such as
names, dates of birth, and addresses, which are generally required for linking
databases due to the non-existence of common unique entity identifiers [4,18].
Work in privacy-preserving record linkage (PPRL) aims to develop techniques for
identifying records that correspond to the same entity across several databases
while not compromising the privacy and confidentiality of the entities [18].

PPRL is achieved by conducting linkage on the encoded (masked) values of
the identifying attributes of records across two or more databases. Several data
encoding techniques for PPRL have been developed. These can be categorized
into cryptographic secure multi-party computation (SMC) and perturbation-
based techniques [18]. The former are accurate and provably secure, but they
incur expensive computation and communication costs. Most PPRL techniques
are therefore based on perturbation-based techniques that provide adequate pri-
vacy protection while achieving acceptable linkage quality [11,18].

Bloom filter (BF) encoding is one such perturbation-based technique that
has successfully been used in several recent practical PPRL applications [2,12].
A BF is a binary vector with bits initially set to 0. A value can be encoded into
a BF using a set of hash functions by setting corresponding bits to 1 [13], and
the approximate similarity between two BFs can be calculated by counting the
number of positions where both BFs have 1-bits in common.

As we discuss in detail in the next section, BFs can be susceptible to crypt-
analysis attacks that aim to re-identify the encoded sensitive attribute values [7–
10]. Using frequency counts and patterns in a set of BFs, these attacks iteratively
map bit patterns to known attribute values. These existing attacks are however
not practical as they require knowledge of certain parameters used during the
BF encoding phase, and they have high computational costs.

Our contribution in this paper is an efficient frequency-based approach for
attacking BFs that exploits the fundamental property of how the elements of sets
are hashed into BFs, as we describe in Sect. 3. In contrast to existing attack meth-
ods, our novel approach does not require any assumption on the BF parameters
used when sensitive attribute values were encoded. It is also significantly faster,
making it a viable attack on large sets of BFs to evaluate whether they provide
adequate privacy protection. We experimentally evaluate our attack method on
two real-world data sets, showing its efficiency and effectiveness.

Given BF encoding is now being employed in real-world PPRL applica-
tions [2,12], it is crucial to study possible attacks on BFs to ensure their security
and to make users of such systems aware of the weaknesses of BF encoding. Our
novel attack method allows data custodians to identify such weaknesses of BF
encoding that otherwise could be exploited by an attacker.

2 Prior Attacks on Bloom Filter Based PPRL

Schnell et al. [13] were the first to introduce an approximate matching approach
for PPRL using Bloom filters (BFs), as we describe in detail in Sect. 3. A recent
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study by Randall et al. [12] has shown that PPRL based on BF encoding can
achieve similar linkage quality as can be achieved with traditional linkage meth-
ods on the unencoded attribute values. As a result, BF encoding has been the
PPRL technique of choice in several recent practical PPRL applications [2,12].
However, BFs are prone to different attacks [7–10]. Therefore, a comprehensive
analysis of the weaknesses of BFs in the PPRL context is required. We now
describe the few studies that have been conducted on attacks on BFs.

Kuzu et al. [8] formulated a cryptanalysis attack on BFs as a constraint
satisfaction problem (CSP). CSP is characterized by a set of variables and a set
of constraints on these variables. The aim of this attack is to identify a set of
values from a given domain that can be assigned to each variable such that the
constraints are satisfied. This is achieved by a frequency analysis of the sensitive
attribute values and the BF encodings of the records in a database. However,
this attack requires that the attacker has access to a global database where the
encoded records are drawn from. This is unlikely in practical applications.

In 2013, Kuzu et al. [9] investigated the accuracy of their CSP attack with
two real-world databases. The authors tried to re-identify the personal details
of patients in an encoded medical database by using a frequency analysis of BF
encodings of a public voter registration database that has a different frequency
distribution to the medical database. Their results indicated that although the
CSP attack might be feasible in such situations, it is less likely to be accu-
rate in identifying original attribute values and it requires more computational
resources. The attack re-identified four out of 20 frequent names correctly.

Niedermeyer et al. [10] more recently proposed an attack on BFs built from
German surnames. The attack was based on the frequencies of sub-strings of
length 2 extracted from frequent surnames. Of 7, 580 surnames, the authors re-
identified the 934 most frequent ones (about 12%) before stopping the attack. In
contrast to the approach in [9], this attack only depends on the availability of a
list of the most common surnames. This work was extended by Kroll and Stein-
metzer [7] into a cryptanalysis on BF encodings of several attributes, which was
able to re-identify 44% of all attribute values correctly. However, both attacks
are based on the specific double hashing scheme used by Schnell et al. [13].

Existing cryptanalysis attacks are feasible only for certain settings and
assumptions used in the BF encoding phase. They also require excessive compu-
tational resources making them not practical in real settings. Our novel attack
method, described next, improves on both these drawbacks of existing methods.

3 Overview and Preliminaries

We now provide an overview of our attack on BFs, as illustrated in Fig. 1. As with
other attacks on BFs [7–10], our approach exploits the frequency distribution of
a set of BFs that were generated from a large database. As for notation, we use
bold letters for sets (with upper-case bold letters for lists or sets of sets) and
italics type letters for integer or string values. We denote sets with curly and
lists with square brackets, where lists have an order while sets do not.
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Fig. 1. Outline of the proposed cryptanalysis attack, which is based on a set of BFs
and a set attribute values, both sorted according to their frequencies. In steps (1a)
and (1b), the attack exploits the bit patterns in BFs to identify the sets of q-grams
that are possible, c+[p], and not possible, c−[p], respectively, for each bit position p.
In step (2), the re-identification of a set of (sensitive) attribute values, G, is conducted
by intersecting the q-gram sets of values in G with the sets c (illustrated using �).

We assume the attacker has access to a set of encoded BFs, B, and their
frequencies, but he does not know anything about the parameters used in the
encoding process (such as the number of hash functions used, or the actual
hashing mechanism). We assume these BFs represent a set of records that encode
sensitive values from one or a few attributes. Based on the frequency distribution
of the Hamming weights (number of 1-bits) in B, the attacker can guess which
attribute(s) have been encoded, because different attributes (such as first name,
surname, city name, or postcode) have distinctive distributions of Hamming
weights. The distribution of Hamming weights is independent of the (unknown)
secret key. Therefore, an attacker can sample attribute values from a publicly
available population database (such as a telephone directory) and select a set of
frequent values, V, from an attribute that has a frequency distribution that is
similar to the distribution of the BF set to be attacked.

In step (1), we first align BFs and attribute values according to their frequen-
cies, and consider the set of most frequent values in both. For each bit position
p in the BFs, for all corresponding attribute values that have this bit set to 1 we
add their q-grams (sub-strings of length q generated from attribute values) to
the set c+[p] of possible q-grams for that position. The reasoning is that a 1-bit
means at least one q-gram of an attribute value was hashed to this position. For
all attribute values with a value of 0 at bit position p we add their q-grams to
the set c−[p] of not possible q-grams for that position, because a 0-bit means no
q-gram of an attribute value could have been mapped to this position.

At the end of step (1), for each position p we obtain the set c[p] = c+[p]\c−[p]
of q-grams that potentially could have been hashed to position p. Based on the
list C = [c[1], . . . , c[l]], where l is the length of the BFs, and a set G of attribute
values we aim to re-identify (i.e. learn which BF possibly encodes which value in
G), in step (2) we analyze each BF in B and remove those attribute values from
G that are not possible matches according to C because they do not contain
any q-grams that would have been hashed to a certain 1-bit.
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Fig. 2. An example Dice coefficient similarity calculation of the two first names ‘peter’
and ‘pete’ encoded in BFs, as described in Sect. 3. The dark bit shows a hash collision.

For example, in Fig. 1, for the most frequent BF1, ‘kate’ is not a possible
value because in order to obtain a 1-bit in position p1, it would have to contain
either the q-gram ‘en’ or ‘ry’; while ‘mary’ is also not possible because it would
need to contain one of the q-grams ‘ka’, ‘en’, ‘at’, or ‘te’ in position p3.

Before we formalize and present our approach in detail in Sect. 4, we first
describe BF encoding, as well as some recent approaches to harden them.

Bloom Filter Encoding: Proposed by Bloom [1] in 1970 for the space and
time efficient representation of sets, a BF b is a bit vector of length l where all
bits are initially set to 0. k independent hash functions, h1, . . . , hk, each with
range 1, . . . , l, are used to map the elements s in a set s into the BF by setting
the bit positions b[hj(s)] = 1, with 1 ≤ j ≤ k.

For PPRL, the set s of q-grams generated from string values [13], or neigh-
boring values for numerical values [17], can be hash-mapped into a BF. These
BFs are then either sent to a linkage unit (LU, an external party that conducts
the linkage) to calculate the similarity between BFs in order to classify them as
matches or non-matches [13], or they are partially exchanged among the data-
base owners to distributively calculate the similarities between BFs [16].

The Dice coefficient has been used for comparing BFs since it is insensitive
to many matching zeros in long BFs [13]. For two BFs, b1 and b2, the Dice
coefficient similarity is: simD(b1,b2) = 2c/(x1 + x2), where c is the number of
bit positions that are set to 1 in both BFs (common 1-bits), and x1 and x2 are
the number of bit positions set to 1 in b1 and b2, respectively. Figure 2 shows
the encoding of bigrams (q = 2) of two string values into l = 14 bits long BFs
using k = 2 hash functions, and their Dice coefficient similarity calculation.

Different encoding methods have been proposed for BFs. Hashing several
attributes of a record into one BF is a method known as cryptographic long
term key (CLK). It is used to improve privacy [14]. Another record-level BF
encoding (RBF) was proposed to improve linkage quality [5]. In RBF, attribute
values are first hashed into different BFs and then bits are selected from each
attribute-level BF into a RBF according to attribute weights.

The initial proposal of BFs for PPRL used a double hashing scheme [13],
where the k individual bit positions for an element s to be hashed are determined
by the sum of the integer representation of two independent hash functions that
are mapped into the range 1− l. Random hashing has recently been proposed as
an improvement over double hashing to prevent against cryptanalysis attacks,
where k random numbers are drawn for every element s to be hashed [10,15].
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Bloom Filter Hardening: Several BF hardening methods have been studied in
recent times to reduce the vulnerability of BFs against cryptanalysis attacks [15].
Compared to attribute-level BFs, record-level BF encodings such as CLK and
RBF reduce the risk of re-identification by such attacks [8,10].

Exploiting the fact that data sets with (near) uniform Hamming weight dis-
tribution of BFs are more difficult to attack (with existing attack methods) than
data sets with non-uniform distributions, balancing BFs with constant Hamming
weight has been proposed [15]. Balanced BFs can be constructed by concatenat-
ing a BF of length l with its negated copy (all bits flipped) and then permuting
the 2l bits. Another proposed approach to harden BFs is XOR-folding, where
a BF of length l is split into two halves of length l/2 each, and then bit-wise
exclusive OR is applied to combine the two shorter BFs [15].

While balancing and XOR-folding are easy and data independent hardening
techniques, salting with record-specific values has been suggested as an alter-
native hardening method where an additional (record-specific) value is concate-
nated with attribute values before being hashed into the BF [10]. A cryptanaly-
sis attack is unlikely to be successful without knowing the salting key, however
attributes suitable for salting might not be available in a database. Other, more
experimental hardening techniques, include random bits and fake record injec-
tion [5,18], as well as BLIP (BLoom-and-flIP) which flips bits (noise addition)
in a BF according to a differential privacy model [15]. Many of these hardening
techniques improve security against attacks at the cost of a reduction in linkage
quality [15]. In the experiments in Sect. 5 we will investigate if balancing and
XOR-folding make BFs more resistant to our proposed attack.

4 Frequency-Based Bloom Filter Cryptanalysis

We now describe our frequency-based attack on BFs in detail. As shown in Fig. 1,
the attack consists of two main steps. First, for each BF position we find its set
of possible and not possible q-grams (steps (1a) and (1b) in Fig. 1). Next, we
re-identify for each BF the set of attribute values that possibly were hashed into
this BF (step (2) in Fig. 1). Algorithms 1 and 2 show the details of steps (1a)
and (1b), and (2), respectively, which we describe in the next two sub-sections.
We then provide an analysis of our attack and discuss its limitations.

4.1 Candidate Q-Gram Set Generation

For our attack we require as input a set of BFs, B, that we assume to come from a
sensitive database (the one from which we aim to re-identify its sensitive values),
and a set of attribute values, V, assumed to come from a public database. Each
BF bi ∈ B and each attribute value vi ∈ V has a frequency attached to it,
denoted with bi.f and vi.f , respectively. Unlike previous attacks on BFs [8–10],
we do not require any other information about how the BFs were encoded.

Algorithm 1 starts by initializing two empty sets for each BF position p:
c+[p] of possible q-grams at that position, and c−[p] of not possible q-grams
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Algorithm 1: Candidate q-gram set generation – Steps (1a) and (1b)
Input:
- V: Set of attribute values and their frequencies from a public database
- B: Set of BFs and their frequencies from the sensitive database
- l: Length of Bloom filters
- q: Length of sub-strings to extract from attribute values
- m: Minimum frequency for BFs and attribute values

Output:
- C: List of possible q-grams for each BF position

1: c+[p] = {}, c−[p] = {}, 1 ≤ p ≤ l // Initialize list of candidate q-gram sets
2: VF = {v ∈ V : v.f ≥ m} // Attribute values with frequency of at least m
3: BF = {b ∈ B : b.f ≥ m} // BFs with frequency of at least m
4: revSort(BF ), revSort(VF ) // Sort according to frequencies, highest first
5: A = [(bi, vi) : bi ∈ BF , vi ∈ VF : bi.f > bj .f ∧ vi.f > vj .f : 1 ≤ i < j ≤ min(|VF |, |BF |)]

// Align VF and BF as long as their frequencies are unique
6: for (bi, vi) ∈ A do: // Step (1a): Get candidate sets of q-grams
7: qi = genQGramSet(vi, q) // Convert attribute value into its q-gram set
8: for 1 ≤ p ≤ l do: // Loop over all BF positions
9: if bi[p] == 1 then: // Bit at position p is 1
10: c+[p] = c+[p] ∪ qi // Add to set of possible q-grams
11: else: // Bit at position p is 0

12: c−[p] = c−[p] ∪ qi // Add to set of not possible q-grams
13: C = [ ] // Step (1b): Initialize empty list of q-gram sets
14: for 1 ≤ p ≤ l do: // Loop over all BF positions to combine q-gram sets
15: C.append(c+[p] \ c−[p]) // Remove not possible from possible q-grams
16: return C

at that position. Next, in lines 2 and 3, we find all BFs and attribute values
that occur at least m times. In line 4 we sort both the BFs and attribute values
according to their frequencies in reverse order (most frequent first), and then we
align a BF bi and an attribute value vi into the sorted list A of pairs (bi, vi).
We do this as long as both the ith BF bi and ith attribute value vi have a
unique frequency compared to the next, less frequent, BF or attribute value,
respectively. This stopping criterion ensures that we do not have a BF that
could correspond to two or more attribute values, and vice versa, as this would
lead to more uncertainty in the mapping of q-grams into BF positions.

Step (1a) of our approach starts in line 6 and loops over pairs of aligned BFs
and attribute values, (bi, vi) ∈ A. First, we convert vi into its set of q-grams,
qi, in line 7. Then we loop over all BF positions, 1 ≤ p ≤ l, in line 8, and if the
bit at position p in BF is 1 (i.e., bi[p] = 1), we add the q-gram set qi to the set
c+[p] of possible q-grams at that position (line 10) because a 1-bit means any
q-gram from qi could have been hashed to that position. Conversely, if the BF
bit at position p is 0, then no q-gram from qi could have been hashed to that
position and so we add the q-grams in qi to c−[p] (line 12).

In step (1b), line 13 onwards in Algorithm 1, we get the final set of q-grams
for each BF position p as the set of possible q-grams (c+[p]) minus the set of
not possible q-grams (c−[p]), and add these sets to the list C in line 15.

4.2 Attribute Value Re-identification

The re-identification step, shown in Algorithm 2, has as input the same set of
BFs, B, as used in the first step, as well as the list of candidate q-grams sets, C,
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Algorithm 2: Attribute value re-identification – Step (2)
Input:
- B: Set of BFs from the sensitive database (same as in Algorithm 1)
- C: List of possible q-grams for each BF position (from Algorithm 1)
- G: Set of attribute values we aim to re-identify in the set of BFs B

Output:
- R: List of possible attribute values re-identified for each BF in B

1: R = [ ] // Initialize empty list of re-identified attribute values
2: for bi ∈ B do: // Loop over all BFs
3: gi = G // Initialize set of candidate attribute values as all possible values
4: for 1 ≤ p ≤ l do: // Loop over all BF positions
5: if bi[p] == 1 then: // Bit at position p is 1
6: c = C[p] // Set of possible q-grams at this bit position
7: for vj ∈ gi do: // Check all candidate attribute values
8: if (∀q ∈ c : q /∈ vj) then: // Check if no q-gram from c in attribute value
9: gi = gi \ vj // Value could not have been hashed into this BF
10: R.append(gi) // Append possible attribute values for this BF
11: return R

generated in Algorithm 1. A set of frequent attribute values, G, also needs to
be provided. These are the values we aim to re-identify (guess) in B using C (as
shown in Fig. 1). The output of the algorithm is a set of one or more re-identified
attribute value(s), gi ⊂ G, for each BF bi ∈ B, collected in the result list R.

The algorithm loops over all BFs bi in B (line 2 onwards), and for each bi it
initializes the set of possible candidate attribute values gi (that potentially have
been hashed into this BF) as all values in G (line 3). Next we loop over all BF
positions p (line 4), and for any position that has a 1-bit (bi[p] = 1) we retrieve
the set of possible q-grams c = C[p] at that position (line 6).

Using c, we now check for each attribute value vj in gi if at least one of the
q-grams in c occurs in that value (lines 7 and 8). If vj does not contain at least
one q-gram from c, it could not have generated the 1-bit at position p. If this is
the case, in line 9 we remove vj from the set of candidates gi. At the end of this
loop (line 10), the set gi will contain all attribute values from G that possibly
have generated the BF bi, and we append this set to the results list R. Note
that positions with 0-bits do not help us to remove values vj ∈ gi because any
q-gram in a value vj is potentially hashed into other positions.

4.3 Analysis and Limitations

We now discuss the complexity and limitations of our cryptanalysis attack.

Complexity: We assume N = |B| is the number of BFs coming from the
sensitive database, Q is the average number of q-grams per value in the set of
attribute values V from the public database, k is the number of hash functions
used to hash q-grams into BFs, and l is the length of a BF.

In step (1) of our attack, we first find all frequent BFs and attribute values
that occur at least m times. This requires a linear scan through B and V, respec-
tively, which has a complexity of O(N) and O(|V|). In line 4 of Algorithm 1, the
sorting function used on values in BF and VF has a complexity of O(M · logM),
where M = min(|BF |, |VF |). In step (1a), each attribute value in A is converted
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into its set of q-grams which are then added to the sets c+[p] and c−[p] for all BF
bit positions 1 ≤ b ≤ l. This step has a computational complexity of O(M ·Q · l).
In step (1b), the sets of possible q-grams are added to list C by performing a
set difference operation between c+[p] and c−[p]. Assuming Q is the set of all
unique q-grams generated from all values vi ∈ V, then on average t = |Q| · k/l
q-grams are hashed into each bit position. Therefore each set difference is of
O(t), and so step (1b) has an overall complexity of O(t · l) for l bit positions.

In step (2) of our attack, Algorithm 2 iterates through each BF bi ∈ B to
re-identify the possible attribute values gi ∈ G that map to bi. For each bit
position p that is set to 1, we check if any q-gram in C[p] occurs in a value
vj ∈ gi. This leads to a total complexity of O(N · |G| · l · t), assuming the average
size of a C[p] is t. Finally, the worst case space complexity of the list R returned
by Algorithm 2 is O(N · |G|) if every value in G is mapped to each bi ∈ B.

Limitations: Our frequency-based cryptanalysis attack on BFs depends on sev-
eral assumptions. First, we assume the attacker has access to a publicly available
population database from where the set V of attribute values and their frequen-
cies can be extracted. We also assume that B does contain a sub-set of BFs
that occur several times, and that the frequency distribution of BFs in B is
similar to the frequency distribution of a single or a sub-set of attribute values
in V. Without such frequency information, that can be aligned, our attack (like
previous cryptanalysis attacks on BFs [7–10]) would not be possible.

5 Experiments and Results

We conducted our experimental study using real data sets from two domains.
The first are a pair of North Carolina Voter Registration (NCVR) data sets
(ftp://alt.ncsbe.gov/data/) collected in June 2014 (the database to be attacked)
and October 2016 (the public database). These data sets contain over five million
records of voters including their first names, surnames, and addresses. We present
results of our attack individually on the first name attribute, as well as on the
concatenation of the first name and surname attributes.

The second are a pair of census data sets (named UKCD) collected from the
years 1851 and 1901 (used as the sensitive and public databases, respectively)
for the town of Rawtenstall in England [6]. These data sets contain around
50,000 records with personal details of individuals. We again use the first name
attribute, and the concatenation of the first name and surname attributes.

The parameter settings we use in our experiments are q = [2, 3, 4] (length of
sub-strings used in BF encoding), BF length l = [250, 500, 1000, 2000], and either
the double or random hashing method [15] as described in Sect. 3. We calculate
the number of hash functions k based on l and q such that the false positive
rate is minimized [16]. We also apply the BF hardening techniques balancing
and XOR-folding [15]. We use different numbers for the most frequent attribute
values (ranked by their frequencies) to be re-identified: |G| = [10, 20, 50, 100].

We evaluate the accuracy of our attack by calculating (1) the percentage
of correct guesses with 1-to-1 matching, (2) the percentage of correct guesses

ftp://alt.ncsbe.gov/data/
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Fig. 3. Results for the NCVR data sets with first name (top) and combination of
first and surname (bottom) for different BF lengths (left), different hashing methods
(middle), and different values of q (right). No BF hardening was applied.

with 1-to-m (many) matching, (3) the percentage of wrong guesses, and (4) the
percentage of no guesses, where these four percentages sum to 100. These four
categories are labeled as ‘1-1 corr’, ‘1-m corr’, ‘Wrong’, and ‘No’ in the plots,
respectively. We evaluate the efficiency of our attack using run time.

We implemented our attack using Python 2.7 and ran all experiments on a
server with 64-bit Intel Xeon 2.4 GHz CPUs, 128 GB of memory and running
Ubuntu 14.04. The programs and data sets are available from the authors.

Discussion: In Fig. 3 we show the results for the NCVR data sets. As can be
seen, when the BF length l increases (left column) the percentage of correct re-
identifications mostly increases, as with larger l the number of q-grams mapped
to a certain bit position decreases. All values can be correctly re-identified for
individual attributes when the number of frequent values is 10. Around half of
all values can still be re-identified even when values from two attributes are
combined. The middle column shows that random hashing (which supposedly
improves privacy on BFs compared to double hashing [7,10]) does not provide
improved protection against our attack, as a similar percentage of values can be
correctly re-identified for both hashing approaches. As for using different values
of q (right column) the accuracy of an attack somewhat improves when q is
increased because larger values of q result in more unique q-grams.

The accuracy results for the UKCD data sets are shown in Fig. 4 for the
same attributes as for the NCVR data sets. Similar re-identification patterns as
with the NCVR data sets can be seen for different BF lengths (left) and hashing
methods (middle). We also study how different BF hardening methods affect the
re-identification accuracy, as shown in the right column plots in Fig. 4. For the
single attribute case (top right), neither of the hardening techniques is capable
of reducing the re-identification accuracy, however for the combined attribute
case both hardening techniques improve the privacy of BF encoding.
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Fig. 4. Results for the UKCD data sets with first name (top) and combination of
first and surname (bottom) for different BF lengths (left), different hashing methods
(middle), and different BF hardening methods (right).

Table 1. Comparison of re-identification results with existing BF attack methods.

Publication Data set Num BFs 1-1 corr Run time

Kuzu et al. [8] NCVR first names 3,500 400 1,000 s

Kuzu et al. [9] Patient names 20 4 Few seconds

” ” 42 0 > week

Niedermeyer et al. [10] German surnames 7,580 934 > days

Kroll and Steinmetzer [7] German names and locations 100K 44K > days

Our approach NCVR first names 10–100 7–10 0.73–0.75 s

” NCVR first and surnames 10–100 3–6 1.5–1.9 s

In Table 1 we compare our attack method with existing approaches in terms
of accuracy and efficiency (with results taken from the corresponding papers). As
can be seen, our method is both more efficient and effective in re-identification,
having both higher accuracy and reduced computational requirements.

These results show the vulnerability of basic BF encoding to our novel attack.
They highlight the need for improved hardening techniques to overcome such
attacks. Our attack provides data custodians with an efficient method to evaluate
the privacy of their BF encoded databases before using them for PPRL.

Recommendations: As a set of guidelines for the practical application of BF
based PPRL systems, to limit the vulnerability of such systems to known attack
methods we recommend to use record-level BF encoding (CLK or RBF), apply
advanced BF hardening methods [15], and reduce the frequency of bit patterns
(for example, by salting) to prevent any frequency analysis.
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6 Conclusions and Future Work

We have presented a novel efficient frequency-based attack on Bloom filters (BFs)
that contain encoded sensitive attribute values intended for privacy-preserving
record linkage (PPRL). Unlike earlier attacks on BFs for PPRL, our approach
only requires an attacker to have access to a public database of attribute values,
but no information about the BF encoding used. Our approach is faster than
earlier attacks, making it feasible for database owners to efficiently validate the
security of their encoded sensitive databases before they are being sent to other
parties for conducting PPRL. We believe our attack is an important component
to making PPRL more secure for practical applications.

As future work we will study how our approach can be modified for attack-
ing composite and record-level BFs. We also plan to investigate the risk of re-
identification when advanced hardening techniques, such as BLIP or BF salting,
have been applied. Finally, our attack can be accelerated by further analyzing
the re-identified attribute values, while correlations between 1-bits and q-gram
sets across BFs could be identified using association rule mining techniques [3].
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Abstract. Automated detection of abnormal events in video surveil-
lance is an important task in research and practical applications. This
is, however, a challenging problem due to the growing collection of data
without the knowledge of what to be defined as “abnormal”, and the
expensive feature engineering procedure. In this paper we introduce a
unified framework for anomaly detection in video based on the restricted
Boltzmann machine (RBM), a recent powerful method for unsupervised
learning and representation learning. Our proposed system works directly
on the image pixels rather than hand-crafted features, it learns new rep-
resentations for data in a completely unsupervised manner without the
need for labels, and then reconstructs the data to recognize the locations
of abnormal events based on the reconstruction errors. More importantly,
our approach can be deployed in both offline and streaming settings, in
which trained parameters of the model are fixed in offline setting whilst
are updated incrementally with video data arriving in a stream. Exper-
iments on three publicly benchmark video datasets show that our pro-
posed method can detect and localize the abnormalities at pixel level
with better accuracy than those of baselines, and achieve competitive
performance compared with state-of-the-art approaches. Moreover, as
RBM belongs to a wider class of deep generative models, our frame-
work lays the groundwork towards a more powerful deep unsupervised
abnormality detection framework.

1 Introduction

Developing intelligent video surveillance systems has been attracting research and
application interest in computer vision community [11,15]. One of the most impor-
tant surveillance problems is to automatically detect and analyze the abnormal
events in video streams. The anomalous events are commonly assumed to be rare,
irregular or significantly different from the others [15]. Examples include accesses

This work was partially supported by the Australian Research Council under the
Discovery Project DP150100031 and the DST Group.

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 641–653, 2017.
DOI: 10.1007/978-3-319-57454-7 50



642 H. Vu et al.

to restricted area, leaving strange packages, movements in wrong direction, which
can be captured by the camera monitoring systems in airports, car parks, stations
and public spaces in general. Identifying the anomaly behaviors allows early inter-
vention and in-time support to reduce the consequent cost.

The existing literature of anomaly detection on video data offers two
approaches: supervised learning and unsupervised learning. Typical supervised
methods include support vector data description [17], mixture of dynamic texture
models [7] and supervised sparse coding [8], that use data labeled as normal to
learn the model parameters and then judge the testing data as abnormal based on
their probabilities or distances to the model. The methods in this approach, how-
ever, require the training data annotated with labels which are labor-intensive
for large-scale data, rendering them inapplicable to the video streaming from sur-
veillance systems where the amount of data grows super-abundantly. Moreover,
it is also infeasible to model the diversity of normal event types in practice.

The unsupervised learning approach overcomes this issue by modeling the
data without the need for labels. Typical methods include principle compo-
nent analysis (PCA) [13], one-class support vector machines (OC-SVM) [1,16],
Gaussian mixture models (GMM) [2,9], dynamic sparse coding [18], Bayesian
non-parametric factor analysis (BNF) [10] and scan statistics [6]. The PCA
learns a linear transformation to a lower dimensional linear space called “resid-
ual subspace”, and then detect the anomalies using the residual signals of the
projection of this data onto the residual subspace. The OC-SVM learns a hyper-
plane that achieves maximum separation between the normal data points and
the origin, and then use the distance from a data point to this hyperplane to
determine the abnormality. Alternatively, the GMM is a probabilistic method
that models the data distribution, and use the posterior as the signal for anom-
aly detection. Other methods, such as sparse coding [18], compute the anomaly
signal as the error of reconstructing data from a learned dictionary. Meanwhile,
the BNF detects anomaly events using rareness scores that are based on the
contributions of latent factors to reconstruct the scene. Scan statistics [6] mea-
sures the difference between statistical information inside and outside a region
to discover anomalous objects. These methods, however, critically depend on
the hand-crafted, low-level features extracted for video and image, such as his-
tograms of oriented gradients (HOG) [18], optical flow features [6,9,13,16,17]
and histograms of optical flow (HOF) [18]. The hand-crafted features rely on
the design of preprocessing pipeline and data transformation, which is labor-
intensive and normally requires exhaustive prior knowledge.

Recently there have been several studies that use deep learning techniques to
automatically learn high-level representations for data to avoid the requirement
of domain experts in designing features. When applying to anomaly detection
for video data, the common approach is to extract features at the first stage
(cf. autoencoders in [12,16]), and then use a separate classifier (e.g., OC-SVM)
for detection at the second stage. An alternative method is to use the convolu-
tional autoencoder (ConvAE) [4] to optimize the error when reconstructing the
training data, and then use the reconstruction errors to recognize the abnormal-
ities in testing data. Training these methods, however, is non-trivial due to their
complicated architectures with multiple models or multiple layers.
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In this paper, we propose a unified framework for anomaly detection in video
based on the restricted Boltzmann machine (RBM) [3,5], a recent powerful
energy-based method for unsupervised learning and representation learning. Our
proposed system employs RBMs as core modules to model the complex distrib-
ution of data, capture the data regularity and variations, as a result effectively
reconstruct the normal events that occur frequently in the data. The idea is to use
the errors of reconstructed data to recognize the abnormal objects or behaviors
that deviate significantly from the common. This is similar to the idea of using
ConvAE. However, the key difference between our method and that approach
is the ConvAE is a deterministic method that faces difficulty in modeling data
which follow a set of probabilistic distributions, whilst ours is based on RBM,
is probabilistic energy-based method that directly models the data distribution
and captures data regularity.

Our framework is trained in a completely unsupervised manner that does
not involve any explicit labels or implicit knowledge of what to be defined as
abnormal. In addition, it can work directly on raw pixels without the need for
expensive feature engineering procedure. Another advantage of our method is
the capability of detecting the exact boundary of local abnormality in the video
frame. To handle the video data coming in a stream, we further extend our
method to incrementally update parameters without retraining the models from
scratch. Our solution can be easily deployed in arbitrary surveillance streaming
setting without the expensive calibration requirement.

We qualitatively and quantitatively evaluate the performance of our anom-
aly detection framework through comprehensive experiments on three real-world
datasets. Our primary target is to investigate the capabilities of capturing data
regularity, reconstructing the data and detecting local abnormalities of our sys-
tem. The experimental results show that our proposed method can effectively
reconstruct the data regularity, and thus detect and localize the abnormalities
at pixel level with better accuracies than those of baselines, and competitive
performance compared with state-of-the-art approaches.

In short, our contributions are: (i) a novel unified RBM-based framework that
can act as a completely unsupervised model on raw pixels; thus there is no need
to extract hand-crafted features; (ii) an incremental version of our system that
can efficiently work in a streaming setting; and (iii) a comprehensive evaluation
of the effectiveness of our method on real-world video surveillance application.

2 Framework

We now describe our energy-based framework to detect abnormal events in video
surveillance data. First we briefly review restricted Boltzmann machines that are
the key components in our proposed system. We then present our framework and
the extension for streaming video data.

2.1 Restricted Boltzmann Machine

A restricted Boltzmann machine (RBM) [3,14] is a bipartite undirected graphical
model wherein the bottom layer contains observed variables called visible units
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and the top layer consists of latent representational variables, known as hidden
units. Two layers are fully connected but there is no connection within layers.

Model Representation. More formally, assume a binary RBM with M visi-
ble units and K hidden units, let x denote the set of visible variables: x =
[x1, x2, . . . , xM ]� ∈ {0, 1}M and h indicate the set of hidden ones: h =
[h1, h2, . . . , hK ]� ∈ {0, 1}K . The RBM assigns an energy function for a joint con-
figuration over the state (x ,h) as:

E (x ,h ;ψ) = −
(
a�x + b�h + x�Wh

)
(1)

where ψ = {a , b,W } is the set of parameters. a = [am]M ∈ R
M , b =

[bk]K ∈ R
K are the biases of hidden and visible units respectively, and W =

[wmk]M×K ∈ R
M×K represents the weights connecting the hidden and visible

units. The model admits a Boltzmann distribution (also known as Gibbs distri-
bution) as follows:

p (x ,h ;ψ) =
1

Z (ψ)
exp {−E (x ,h ;ψ)} (2)

where Z (ψ) =
∑

x ,h exp {−E (x ,h ;ψ)} is the normalization constant, also
called partition function. This guarantees that the p (x ,h ;ψ) is a proper density
function.

Since the network has no intra-layer connections, units in one layer become
conditionally independent given the other layer. Thus the conditional distribu-
tions over visible and hidden units are factorized as:

p (h | x ;ψ) =
K∏

k=1

p (hk | x ;ψ) (3) p (x | h ;ψ) =
M∏

m=1

p (xm | h ;ψ) (4)

Parameter Estimation. As an energy-based model, the learning goal of RBM
is to minimize the energy in Eq. (1) of the observed data. As the visible probabil-
ity is inversely proportional to the energy as shown in Eq. (2), it is equivalent to
maximize the following log-likelihood of data: log p (x ;ψ) = log

∑
h p (x ,h ;ψ).

The parameters are updated in a gradient ascent fashion as follows:

ψ ← ψ + η
(
Ep(x ,h;ψ) [∇ψE (x ,h ;ψ)] − Ep(h|x ;ψ) [∇ψE (x ,h ;ψ)]

)

for a learning rate η > 0. Here Ep(x ,h;ψ) denotes the expectation with respect
to the full model distribution and Ep(h|x ;ψ) the data expectation with respect
to the conditional distribution given the observed x . Whilst Ep(h|x ;ψ) can be
computed efficiently, Ep(x ,h;ψ) is generally intractable. Thus we must resort to
approximate methods, and in this paper, we choose contrastive divergence (CD)
[5] as it proves to be fast and accurate.

Data Reconstruction. Once the model parameters ψ has been learned, the
RBM can project an input data x onto the hidden space to obtain the new
representation h̃ = [h̃1, h̃2, . . . , h̃K ]� where h̃k is shorthand for the posterior



Energy-Based Localized Anomaly Detection in Video Surveillance 645

h̃k = p (hk = 1 | x ) = σ (bk +
∑

m wmkxm), in which σ (x) is the sigmoid func-
tion σ (x) = (1 + e−x)−1. This hidden posterior vector is then mapped back into
the input space to form the reconstructed data x̃ = [x̃1, x̃2, . . . , x̃M ]� where
x̃m = p

(
xm = 1 | h̃ ;ψ

)
= σ

(
am +

∑
k wmkh̃k

)
, similarly to the hidden poste-

rior. These projection and mapping are very efficient due to the nice factoriza-
tions in Eqs. (3, 4).

2.2 Anomaly Detection Using RBM

We now describe our proposed framework that is based on the RBM to detect
anomaly events for each frame in video data. In general, our system is a two-phase
pipeline: training phase and detecting phase. Particularly in the training phase,
our model: (i) takes a series of video frames in the training data as a collection
of images, (ii) divides each image into patches, (iii) gathers similar patches into
clusters, and (iv) learns separate RBM for each cluster using the image patches.
The detecting phase consists of three steps: (i) collecting image patches in the
testing video for each cluster, and then using the learned RBM to reconstruct the
data for the corresponding cluster of patches, (ii) proposing the regions that are
potential to be abnormal by applying a predefined threshold to reconstruction
errors, and then finding connected components of these candidates and filtering
out those too small, and (iii) updating the model incrementally for the data
stream. The overview of our framework is illustrated in Fig. 1. In what follows,
we describe training and detecting phases in more details.

Training Phase. Assume that the training data consists of N video frames with
the size of H × W pixels, let denote D = {x t ∈ R

H×W }N
t=1. In real-life video

surveillance data, H×W is usually very large (e.g., hundreds of thousand pixels),
hence it is often infeasible for a single RBM to handle such high-dimensional
image. This is because the high-dimensional input requires a more complex model
with an extremely large number of parameters (i.e., millions). This makes the
parameter learning more difficult and less robust since it is hard to control
the bounding of hidden activation values. Thus the hidden posteriors are easily
collapsed into either zeros or ones, and no more learning occurs.

To tackle this issue, one can reduce the data dimension using dimensionality
reduction techniques or by subsampling the image to smaller size. This solution,
however, is computational demanding and may lose much information of the
original data. In this work we choose to apply RBMs directly to raw imaginary
pixels whilst try to preserve information. To that end, we train our model on
h × w patches where we divide each image x t into a grid of Nh × Nw patches:
x t = {x i,j

t | 1 ≤ i ≤ Nh, 1 ≤ j ≤ Nw}. This approach greatly reduces the data
dimensionality and hence requires smaller models. One way is to learn indepen-
dent RBMs on patches at each location (i, j). However, this would result in an
excessive number of models, for example, 400 RBMs to work on the 240 × 360
image resolution and 12×18 patch size, hence leading to very high computational
complexity and memory demand.
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Fig. 1. The overview of our proposed framework.

Our solution is to reduce the number of models by grouping all similar patches
from different locations for learning a single model. We observe that it is redun-
dant to train a separate model for each location of patches since most adja-
cent patches such as pathways, walls and nature strips in surveillance scenes
have similar appearance and texture. Thus we first train a RBM with a small
number of hidden units (K = 4) on all patches {x i,j

t } of all video frames. We
then compute the hidden posterior h̃ for each image patch x i,j

t and binarize it
to obtain the binary vector: h̃ =

[
I

(
h̃1 > 0.5

)
, . . . , I

(
h̃K > 0.5

)]
where I (•)

is the indicator function. Next this binary vector is converted to an integer
value in decimal system, e.g., 0101 converted to 5, which we use as the pseudo-
label λi,j

t of the cluster of the image patch x i,j
t . The cluster label ci,j for all

patches at location (i, j) is chosen by voting the pseudo-labels over all N frames:
λi,j
1 , λi,j

2 , . . . , λi,j
N . Let C denote the number of unique cluster labels in the set

{ci,j | 1 ≤ i ≤ Nh, 1 ≤ j ≤ Nw}, we finally train C independent RBMs with
a larger number of hidden units (K = 100), each with parameter set ψc for all
patches with the same cluster label c.

Detecting Phase. Once all RBMs have been learned using the training data,
they are used to reveal the irregular events in the testing data. The pseudocode
of this phase is given in Algorithm1. Overall, there are three main steps: recon-
structing the data, detecting local abnormal objects and updating models incre-
mentally. In particular, the stream of video data is first split into chunks of L
non-overlapping frames, each denoted by {x t}L

t=1. Each patch x i,j
t is then recon-

structed to obtain the reconstruction x̃ i,j
t using the learned RBM with parame-

ters ψci,j , and all together form the reconstructed data x̃ t of the frame x t. The
reconstruction error et = [e i,j

t ] ∈ R
H×W is then computed as: e i,j

t = |x i,j
t −x̃ i,j

t |.
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To detect anomal pixels, one can compare the reconstruction error et with a
given threshold. This approach, however, may produce many false alarms when
normal pixels are reconstructed with high errors, and may fail to cover the entire
anomaly objects in such a case that they are fragmented into isolated high error
parts. Our solution is to work on the average error ēi,j

t = ||e i,j
t ||2/ (h × w) over

patches rather than individual pixels. These errors are then compared with a
predefined threshold β. All pixels in x i,j

t are considered abnormal if ēi,j
t ≥ β.

Algorithm 1. RBM anomaly detection
Input: Video chunk {x t}L

t=1, models

{ψc}C
c=1, thresholds β and γ

Output: Detection Z , score
{
ēi,jt

}

1: for t ← 1, . . . , L do
2: for xi,j

t ∈ xt do
3: x̃ i,j

t ←reconstruct(x i,j
t ,ψci,j )

4: ei,j
t ← |x i,j

t − x̃ i,j
t |

5: ēi,jt ← 1
h×w

∥
∥ei,j

t

∥
∥
2

6: if ēi,jt ≥ β then
7: for p ∈ xi,j

t do
8: Z (p) ← 1
9: end for

10: else
11: for p ∈ xi,j

t do
12: Z (p) ← 0
13: end for
14: end if
15: end for
16: for c ← 1, . . . , C do
17: Xc

t ← {xi,j
t | ci,j = c

}

18: ψc ← updateRBM(Xc
t , ψc)

19: end for
20: end for
21: Z ←remove small components(Z ,γ)

Applying the above procedure and
then concatenating L frames, we
obtain a binary 3D rectangle Z ∈
{0, 1}L×H×W wherein zi,j,k = 1
indicates the abnormal voxel whilst
zi,j,k = 0 the normal one. Throughout
the experiments, we observe that most
of abnormal voxels in Z are detected
correctly, but there still exist several
small groups of voxels are incorrect.
We further filter out these false pos-
itive voxels by connecting all their
related neighbors. More specifically,
we first build a sparse graph whose
nodes are abnormal voxels zi,j,k = 1
and edges are the connections of these
voxels with their abnormal neigh-
bors zi+u,j+v,k+t = 1 where u, v, t ∈
{−1, 0, 1} and |u| + |v| + |t| > 0. We
then find all connected components in
this graph, and discard small compo-
nents spanning less than γ contiguous
frames. The average error ēi,j

t after
this component filtering step can be
used as final anomaly score.

In the scenario of streaming videos, the scene frequently changes over time
and it could be significantly different from those are used to train RBMs. To
tackle this issue, we extend our proposed framework to enable the RBMs to adapt
themselves to the new video frames. For every incoming frame t, we extract the
image patches and update the parameters ψ1:C of C RBMs in our framework
following the procedure in the training phase. Recall that the RBM parameters
are updated iteratively using gradient ascent, thus here we use several epochs to
ensure the information of new data are sufficiently captured by the models.

One problem is the anomalous objects can be presented in different sizes in
the video. To deal with this issue, we apply our framework to the video data at
different scales whilst keeping the same patch size h × w. This would help the
patch partially or entirely cover objects at certain scales. To that end, we rescale
the original video into different resolutions, then employ the same procedure
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above to compute the average reconstruction error map ēt and 3D rectangular
indicators Z . The average error maps are then aggregated into one matrix using
max operation. Likewise, indicator tensors are merged into one before finding the
connected components. We also use overlapping patches to localize anomalous
objects more accurately. Pixels in the overlapping regions are averaged when
combining patches into the whole map.

3 Experiment

In this section, we empirically evaluate the performance of our anomaly detection
framework both qualitatively and quantitatively. Our aim is to investigate the
capabilities of capturing data regularity, reconstructing the data and detecting
local abnormalities of our system. For quantitative analysis, we compare our
proposed method with several up-to-date baselines.

We use 3 public datasets: UCSD Ped 1, Ped 2 [7] and Avenue [8]. Under
the unsupervised setting, we disregard labels in the training videos and train all
methods on these videos. The learned models are then evaluated on the testing
videos by computing 2 measures: area under ROC curve (AUC) and equal error
rate (EER) at frame-level (no anomaly object localization evaluation) and pixel-
level (40% of ground-truth anomaly pixels are covered by detection), following
the evaluation protocol used in [7] and at dual-pixel level (pixel-level constraint
above and at least α percent of detection is true anomaly pixels) in [12]. Note
that pixel-level is a special case of dual-pixel where α = 0. Since the videos are
provided at different resolution, we first resize all into the same size of 240×360.

For our framework, we duplicate and rescale video frames to multiscale copies
with the ratios of 1.0, 0.5 and 0.25, and then use 12×18 image patches with 50%
overlapping between two adjacent patches. Each RBM now consists of 216 visible
units and 4 hidden units for clustering step whilst 100 hidden units for training
and detecting phases. All RBMs are trained using CD1 with learning rate η =
0.1. To simulate the streaming setting, we split testing videos in non-overlapping
chunks of L = 20 contiguous frames and use 20 epochs to incrementally update
parameters of RBMs. The thresholds β and γ to determine anomaly are set to
0.003 and 10 respectively. Those hyperparameters have been tuned to reduce
false alarms and to achieve the best balanced AUC and EER scores.

3.1 Region Clustering

In the first experiment, we examine the clustering performance of RBM. Figure 2
shows the cluster maps discovered by RBM on three datasets. Using 4 hidden
units, the RBM can produce a maximum of 16 clusters, but in fact, the model
returns less and varied number of clusters for different datasets at different scales.
For example, (6, 7, 10) similar regions at scales (1.0, 0.5, 0.25) are found for Ped
1 dataset, whilst these numbers for Ped 2 and Avenue dataset are (9, 9, 8) and
(6, 9, 9) respectively. This suggests the capability of automatically selecting the
appropriate number of clusters of RBM.
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Fig. 2. Clustering result on some surveillance scenes at the first scale: (first column)
example frames; (second) cluster maps produced by RBM; (third) filters learned by
RBM; and (fourth) cluster maps produced by k-means.

For comparison, we run k-means algorithm with k = 8 clusters, the average
number of clusters of RBM. It can be seen from Fig. 2 that the k-means fails
to connect large regions which are fragmented by the surrounding and dynamic
objects, for example, the shadow of tree on the footpath (Case 1), pedestrians
walking at the upper side of the footpath (Case 2). It also assigns several wrong
labels to small patches inside a larger area as shown in Case 3. By contrast,
the RBM is more robust to the influence of environmental factors and dynamic
foreground objects, and thus produces more accurate clustering results. Taking
a closer look at the filters learned by RBM at the third column in the figure, we
can agree that the RBM learns the basic features such as homogeneous regions,
vertical, horizontal, diagonal edges and corners, which then can be combined to
construct the entire scene.

3.2 Data Reconstruction

We next demonstrate the capability of our framework on the data reconstruction.
Figure 3 shows an example of reconstructing the video frame in Avenue dataset.
Here the abnormal object is a girl walking toward the camera. It can be seen that
our model can correctly locate this outlier behavior based on the reconstruction
errors shown in Figure 3(c) and (d). This is because the RBM can capture the
data regularity, thus produces low reconstruction errors for regular objects and
high errors for irregular or anomalous ones as shown in Figure 3(b) and (c).

To examine the change of reconstruction errors in a stream of video frames,
we visualize the maximum average reconstruction error in a frame as a function
of frame index as shown in Fig. 4. The test video #1 in UCSD Ped 1 dataset con-
tains some normal frames of walking on a footpath, followed by the appearance of
a cyclist moving towards the camera. Our system could not detect the emergence
of the cyclist since the object is too small and cluttered by many surrounding
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(c) Reconstruc on error(a) Detec on result (d) Average error(b) Reconstructed frame

Fig. 3. Data reconstruction of our method on Avenue dataset: (a) the original frame
with detected o2utlier female (yellow region) and ground-truth (red rectangle), (b)
reconstructed frame, (c) reconstruction error image, (d) average reconstruction errors
of patches. (Color figure online)
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Fig. 4. Average reconstruction error per frame in test video #1 of UCSD Ped 1 dataset.
The shaded green region illustrates anomalous frames in the ground truth, while the
yellow anomalous frames detected by our method. The blue line shows the threshold.
(Color figure online)

pedestrians. However, after several frames, the cyclist is properly spotted by our
system with the reconstruction errors far higher than the threshold.

3.3 Anomaly Detection Performance

In the last investigation, we compare our offline RBM framework and its stream-
ing version (called S-RBM) with the unsupervised methods for anomaly detec-
tion in the literature. We use 4 baselines for comparison: principal component
analysis (PCA), one-class support vector machine (OC-SVM) [1], gaussian mix-
ture models (GMM), and convolutional autoencoder (ConvAE) [4]. We use the
variant of PCA with optical flow features from [13], and adopt the results of Con-
vAE from the original work [4]. The results of ConvAE are already compared
with recent state-of-the-art baselines including supervised methods.

We follow similar procedures to what of our proposed framework for OC-
SVM and GMM, but apply these baselines on image patches clustered by k-
means. The kernel width and lower bound of the fraction of support vectors
of OC-SVM are set to 0.1 and 10−4 respectively. In GMM model, the number
of Gaussian components is set to 20 and the anomaly threshold is −50. These
hyperparameters are also tuned to obtain the best cross-validation results. It is
noteworthy that it is not straightforward to implement the incremental versions
of the baselines, thus we do not include them here.
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Fig. 5. Comparison ROC curves on UCSD Ped 2. Three figures share the same legend.
Higher curves indicate better performance. It is notable that, unlike frame and pixel-
level evaluations, dual-pixel level curves may end at any points lower than (1,1).

The ROC curves are shown in Fig. 5 whilst AUC and EER scores are reported
in Table 1. Both RBM and S-RBM outperform the PCA, OC-SVM, GMM with
higher AUC and lower EER scores. Specially, our methods can produce higher
AUC scores at dual pixel-level which shows better quality in localizing anom-
aly regions. Additionally, S-RBM achieves fairly comparable results with the
ConvAE. It is noteworthy that the ConvAE is a 12-layer deep architecture con-
sisting of sophisticated connections between its convolutional and pooling layers.
On the other hand, our RBM anomaly detector has only two layers, but obtains a
respectable performance. We believe that our proposed framework is a promising
system to detect abnormalities in video surveillance applications.

Table 1. Anomaly detection results (AUC and EER) at frame-level, pixel-level and
dual pixel-level (α = 5%) on 3 datasets. Higher AUC and lower EER indicate better
performance. Meanwhile, high dual-pixel values point out more accurate localization.
We do not report EER for dual-pixel level because this number do not always exist.
Best scores are in bold. Note that the frame-level results of ConvAE are taken from
[4], but the pixel-level and dual-pixel level results are not available.

Ped1 Ped2 Avenue

Frame Pixel Dual Frame Pixel Dual Frame Pixel Dual

AUC EER AUC EER AUC AUC EER AUC EER AUC AUC EER AUC EER AUC

PCA 60.28 43.18 25.39 39.56 8.76 73.98 29.20 55.83 24.88 44.24 74.64 30.04 52.90 37.73 43.74

OC-SVM 59.06 42.97 21.78 37.47 11.72 61.01 44.43 26.27 26.47 19.23 71.66 33.87 33.16 47.55 33.15

GMM 60.33 38.88 36.64 35.07 13.60 75.20 30.95 51.93 18.46 40.33 67.27 35.84 43.06 43.13 41.64

ConvAE 81.00 27.90 90.00 21.70 70.20 25.10

RBM 64.83 37.94 41.87 36.54 16.06 76.70 28.56 59.95 19.75 46.13 74.88 32.49 43.72 43.83 41.57

S-RBM 70.25 35.40 48.87 33.31 22.07 86.43 16.47 72.05 15.32 66.14 78.76 27.21 56.08 34.40 53.40
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4 Conclusion

We have presented a unified energy-based framework for video anomaly detec-
tion. Our method is based on RBMs to capture data regularity, and hence can
distinguish and localize the irregular events. Our system is trained directly on
the image pixels in a completely unsupervised manner. For video streaming,
we further introduce a streaming version of our method that can incrementally
update the parameters when new video frames arrive. Experimental results on
several benchmark datasets show that the proposed method outperforms typi-
cal unsupervised baselines and achieves competitive performance compared with
state-of-the-art method for anomaly detection.

Finally we note that our proposed approach is designed so that multiple
RBMs are trained to capture different image statistics localized at different
regions. Thus it is immediately amendable to a distributed and parallel imple-
mentation for a scalable system. Furthermore, as RBM belongs to a wider class of
deep generative models, our framework is readily generalized to a more powerful
deep unsupervised abnormality detection framework.
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Abstract. The use of intelligent technologies in clinical decision making
have started playing a vital role in improving the quality of patients’ life
and helping in reduce cost and workload involved in their daily health-
care. In this paper, a novel fast Fourier transform-coupled machine learn-
ing based ensemble model is adopted for advising patients concerning
whether they need to take the body test today or not based on the
analysis of their medical data during the past a few days. The weighted-
vote based ensemble attempts to predict the patients condition one day
in advance by analyzing medical measurements of patient for the past k
days. A combination of three algorithms namely neural networks, sup-
port vector machine and Naive Bayes are utilized to make an ensemble
framework. A time series telehealth data recorded from patients is used
for experimentations, evaluation and validation. The Tunstall dataset
were collected from May to October 2012, from industry collaborator
Tunstall. The experimental evaluation shows that the proposed model
yields satisfactory recommendation accuracy, offers a promising way for
reducing the risk of incorrect recommendations and also saving the work-
load for patients to conduct body tests every day. The proposed method
is, therefore, a promising tool for analysis of time series data and provid-
ing appropriate recommendations to patients suffering chronic diseases
with improved prediction accuracy.
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1 Introduction

The chronical diseases such as heart disease have become the main public health
issue worldwide which accounting for 50% of global mortality burden [1]. Due to
lack of chronical diseases prediction tools, most of the populations around the
world may be suffering from chronical diseases [2]. Recently, the survival rates
have been noticeably increased due to technological improvements in diseases
prediction models.

One of the important problems in medical science is accurate prediction of
disease based on analysing historical data of patients. The data mining tech-
niques and statistical analysis have been extensively used to provide major assis-
tance to experts in disease prediction [27].

Recommendation systems can be defined as computer applications that assist
and support medical practitioners in improved decision-making recommenda-
tion [3,28,29]. Those systems can help in minimizing medical errors and provid-
ing more detailed data analysis in shorter time [4].

In the recent years, the ensemble methods have been very robust for the
blend of various predictive models. The major purpose of ensemble model is
to improve the overall accuracy of prediction model. An ensemble is a set of
base learners that use to enhance the prediction performance of low-quality
data [5]. Bagging is an ensemble algorithm that was proposed by Breiman in
mid-1990’s [6]. Empirical results showed that both regression and classification
problem ensemble are often more accurate than individual classifier that make
them up [5]. Therefore, much research efforts have been invested using machine
learning ensemble for chronical diseases prediction.

Least square-support vector machine (LS-SVMs) are a relatively new kind of
machine learning techniques that was proposed by [17]. They have been recently
used in the field of disease prediction. There are several studies in disease pre-
diction filed where LS-SVMs are used. LS-SVM has been used by [18] for heart
disease prediction. Muscle fatigue prediction in electromyogram (sEMG) signal
is implemented using LS-SVM that proposed by [19]. Finally, LS-SVM has also
been successfully applied by [20] to predict breast cancer.

Due to the ensemble outperforms individual classifiers, several such ensemble
approaches have been proposed recently. A combination of different data min-
ing techniques have been applied on different datasets. An ensemble framework
based on different classifiers has been used by Das et al. and Helmy et al. [7,8]
to generate high prediction accuracy for heart disease patients. The results show
that heterogeneous ensemble has better results as compared to individual clas-
sifiers. A novel ensemble has been proposed by Bashir et al. [9] to improve the
classification and heart disease prediction. The proposed ensemble used a bag-
ging algorithm with a multi-objective optimized weighted voting that contacted
on heart disease datasets. Verma et al. [10] developed a novel hybrid model using
data mining methods. In their model, the proposed ensemble was used to predict
coronary artery disease cases using non-invasive clinical data of patients.

Fast Fourier transform, an efficient technique to compute the discrete and
the inverse, is an emerging tool for prediction. It has recently been applied
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to: analyze and predict electricity consumption in buildings [11,12], to fore-
cast water demand [13,14], to detect epileptic seizure in electroencephalography
(EEG) [15,16].

Since the importance of the prediction in medical domain as well as the
urgency of demanding more powerful analytic tools in this regard, further efforts
are definitely needed to enhance evidence-based decisions quality. In this work,
we propose a novel fast Fourier transform-coupled a machine learning ensem-
ble to predict and assess the short-term risk of disease and provide patients
with appropriate recommendations for necessity of taking a medical test in the
incoming day.

The remainder of this paper is organised as follows. Section 2 explains the
details of fast Fourier transformation and machine learning classifiers that con-
structing the proposed ensemble model. Section 3 briefly defines the proposed
methodology including predictive model development and describes the used
data set. Section 4 discussed in details the experimental evaluation results.
Finally we conclude the paper and highlight the future work in Sect. 5.

2 Theoretical Background

2.1 Bootstrap Aggregation (Bagging)

An ensemble method is one of the combination approaches used to overcome the
limited generalization performance of individual models and to generate more
accurate predictions than single models. Bagging is a machine learning ensem-
ble used to solve problems by combining the decisions of multiple classifiers [21].
During a bootstrap method, in a bagging method, classifiers are trained inde-
pendently and then aggregated by an appropriate combination strategy. The
proposed ensemble model can be divided into two phases. At the first phase,
bagging uses bootstrap sampling to generate a number of training sets. At the
second phase, training the base classifiers is performed using bootstrap train-
ing sets generated during the first step. The generic flowchart of bagging algo-
rithm is shown in Fig. 1. In this study, the training set was divided into multiple
datasets using bootstrap aggregation approach, and then individually classifiers
are applied on these datasets to generate the final prediction. We argue that
each individual classifier in the weighted-bagging approach should has a differ-
ent individual performance level. We proposed, therefore, to assign a weight for
each classifier’s vote based on how well the classifier performed. The classifier’s
wight is calculated based on it’s error rate so that the classifier that has the lower
error rate is more accurate, and therefore, it should be assigned the higher weight
for that classifier. The weight of classifier Ci’s vote is calculated as follows [22]:

log
1 − error(Ci)

error(Ci)
(1)

The proposed weighted-bagging ensemble can be easily understood by the
following example:
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1. Suppose that the classifier training is performed for training data and error
rate is calculated.

2. Neural Networks (NN), Support Vector Machine (SVM) and Naive Bayes
(NB) are used as individual classifiers. Following error rate results are gener-
ated for each classifier: NN = 0.25, SVM = 0.14, NB = 0.30.

3. Now, according to the formula given in Eq. (6), the resultant weights are as
follows: NN = 0.47, SVM = 0.78, NB = 0.36.

4. Suppose, the algorithms have predicted the following classes for a test day:
NN = 0, SVM = 1, NB = 0. (0: no test required; 1: test needed).

5. Based ensemble classifier, the weighted vote will be generated the following
prediction results:
Class 0: NN + NB −→ 0.47 + 0.36 −→ 0.83,
Class 1: SV M −→ 0.78.

6. Finally, according to weighted vote, the class 0 has higher value as compared
to class 1. Therefore, the ensemble classifier for this test day will be classified
as Class 0.

Fig. 1. The generic flowchart of bagging algorithm

2.2 Fast Fourier Transform-Coupled Machine Learning Based
Ensemble (FFT-MLE) Model

The major purpose of this study was to demonstrate the effectiveness of fast
Fourier transform-coupled machine learning based ensemble model for advising
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patients concerning whether they need to take the body test today or not based
on analysis of their medical data during the past a few days. After develop-
ing a ensemble model that consists from three predictive models, Fast Fourier
transformation algorithm, which is a data-preprocessing tool for non-stationary
singles, is proposed. A fast Fourier transform (FFT) is an efficient algorithm to
calculate the discrete Fourier transform (DFT) and the inverse. DFT decom-
poses the input sequence values to extract the frequency information in order to
predict the next day. The discrete-time Fourier transform of a time series x(t)
can be defined as:

X(cjw) =
∞∑

t=−∞
x(t)c−jwt (2)

where t is the time index of discrete, and w refers to the frequency. There are T
input time series x(t), so the transform pair of DFT can be defined as:

X(P ) =
T−1∑

t=0

x(t)W tp
T ⇔ x(t) =

1
T

T−1∑

p=0

X(P )W−tp
T , where W = c−j2Π/T (3)

Furthermore, the DFT can be presented as discrete-time Fourier transform
of a cyclic signal with period T.

x =

⎡

⎢⎢⎢⎣

x(0)
x(1)

...
x(T − 1)

⎤

⎥⎥⎥⎦ , X =

⎡

⎢⎢⎢⎣

X(0)
X(1)

...
X(T − 1)

⎤

⎥⎥⎥⎦ (4)

W = [W pt
T ] =

⎡

⎢⎢⎢⎣

1 1 . . . 1
1 WT . . . WT−1

T
...

...
...

...
1 WT−1

T . . . W
(T−1)(T−1)
T

⎤

⎥⎥⎥⎦ (5)

and the following equation presents the relationship between x and X as follows:

X = Wx ⇔ x =
1
T

WHX (6)

According to the above equations, the DFT matrix W requires T 2 com-
plex multiplications for the implementation of a time series input signal x(t)
with length T. Therefore, a required implementation cost for factorizing the fast
Fourier transform W into a matrix is lower than the direct DFT. For each stage
of fast Fourier transform requires T/2 multiplications and T additions [23].

In practical sense, the input time series data segments into set of slide win-
dows with a length of k (the size of the sliding window used in time series data
analysis). The input time series are decomposed using fast Fourier transform to
extract the frequency information included in the input data in order to predict
the following medical test day.
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3 Methodology

3.1 Predictive Model Development

The predictive models are developed in MATALB environment on a desktop
computer with the configurations of a 3.40 GHz Intel core i7 CPU processor
with 8.00 GB RAM. The major purpose of this study was to investigate the
performance of the fast Fourier transform-coupled machine learning ensemble
to predict the short-term risk of disease and provide patients with appropriate
recommendations for necessity of taking a medical test in the incoming day. The
training data is used to train the classifiers that construct the ensemble and
testing data to evaluate the performance of predictive model. In this study, the
time series medical data were partitioned into about 75% as training data and
25% as testing data.

Figure 2 illustrates the different stages of the fast Fourier transform coupled-
ensemble model. Basically, the input time series data was segmented into a set of
sub-segments with overlapping of m based on a predefined value of k to identify
the window size of sub-segment. Let X = {y1, y2, y3, . . . , yn} is a time series of
n test measurements. The main idea is to separate X into a number of over-
lapping sub-segments. The overlapping value m is set to be a test measurement
of one day. Then, each sub-segment is passed through fast Fourier transform in
order to obtain the desired information. A resulting set of fast Fourier transform
coefficients of 28 levels is tested to figure out the desired FFT level. Differ-
ent combinations of statistical features from each level are tested and analysed
the performance of the proposed model with different FFT characteristics. The
purpose of using FFT in this paper is to study the properties of time series in fre-
quency domain which could be difficult to obtain in time domain. The basic idea
of frequency analysis is to re-express the original time series as a new sequence
which determine the important of each frequency components. The fast Fourier
transform was used to decompose each time series slide window to acquire five
(α, β, γ, δ, and θ) frequency bands Fig. 2. Based on the literature, the high fre-
quency band could be able to capture the desired information, therefore, the high
frequency band was divided into 8 sub-frequency bands. In addition, the original
time series slide window was also added, as a reference, to the feature extraction
test. As a result, the total number of frequency bands sets is (5 + 8 + 1 = 14) for
each slide window. Furthermore, the power of the FFT coefficients was calcu-
lated for all the 14 sets of frequency bands. It allows to compute the square of
the absolute value of the Fourier coefficients. These frequencies were grouped
together and used as input to the proposed ensemble. As a result, the features
were extracted from 28 set of frequency bands (14 + 14 = 28). All the bands
features were tested and analysed to figure out best combination of features.
Figure 3 shows an example of decomposing a slide window of time series into 28
bands.

Two sets of statistical features were extracted from each band to find out the
best combination of features to present the data. Two and four statistical fea-
tures were extracted from each band. The mentioned 28 bands were tested and
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Fig. 2. The stages of developing a Fast Fourier Transform-Coupled Machine Learning
based Ensemble (FFT-MLE) model

Fig. 3. The generic decomposition of slide window time series into 28 bands

analysed with those features sets at each stage, and the results were recorded.
However, it was observed that using four statistical features yield better results,
in term of accuracy, compared with using two features. The extracted features
from all the 28 bands were used as key features to training the ensemble’s clas-
sifiers in order to predict the following day.

The two features sets were included (max and min), while the four features
sets were included (max, min, standard deviation, and median). The features
were denoted (Xmin,Xmax,Xstd,Xmed). The short explanations of statistical
features are provided in Table 1. To test the relationship between the features
and the risk prediction, extensive experiments were conducted. As a result, two
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vectors of 2X28 and 4X28 were extracted and used to identify whether the patient
requires to take a test today or not.

The features were tested separately by testing each band and by using all
features of bands as a one vector. Our findings showed that the 4 features set
gives a better results than those of two features set. The extracted features from
each band, four feature set, were grouped in one vector and used as the features
set to predict the next day. All the detailed are discussed in simulation and
experiment results section.

In the experiments, we use a statistical approach to extract the statistical
features from each band, and then put all the features from one segment in a
vector to present the window. It was found that some of time series data are
symmetric distribution and other skewed distribution. The min and max are
considered appropriate measures for a time series with symmetric distribution,
whilst, for a skewed distribution, mean and standard division are used to measure
the center and spread of dataset [24,25].

Table 1. Short explanations of statistical features

Feature name Formula Description

Maximum value Xmax = Max[xn] Where xn = 1, 2, 3, . . . , n is a
time series, N is the size of slide
window, AM is the mean of
slide window

Minimum value Xmin = Min[xn]

Mean Xmean =
1

n

n∑

1

xi

Standard division XSD =

√√√√
N∑

n=1

(xn −AM)
2

n− 1

3.2 Evaluation Design

In this section, we offer details concerning the strategy of our experimental eval-
uation including datasets, performance metrics and the experimental platform.

As the predictive performance of the FFT-MLE model is quite important,
assessment of potential predictions is critically dependent on the quality of the
used dataset. For this reason, telehealth data from Tunstall dataset will be con-
ducted in this work. We use a real-life dataset obtained from our industry collab-
orator Tunstall to test the practical applicability of the FFF-MLE model. A Tun-
stall dataset obtained from a pilot study has been conducted on a group of heart
failure patients and the resulting data were collected for their day-to-day med-
ical readings of different measurements in a tele-health care environment. The
Tunstall database employed in the development of the algorithm consists of data
from six patients with a total of 7,147 different time series records. Data were
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acquired between May and January 2012, using a remote telehealth collaborator.
The dataset is by nature in a time series and contains a set of measurements
taken from the patients on different days. Each record in the dataset consists of a
few different meta-data attributes about the patients such as patient-id, visit-id,
measurement type, measurement unit, measurement value, measurement ques-
tion, date and date-received. The characteristics of the features of the dataset
are shown in Table 2.

Table 2. Characteristic features of the dataset

Feature name Feature type

id Numeric

id-patient Numeric

hcn Numeric

visit-id Numeric

measurement type Nominal

measurement unit Nominal

measurement value Numeric

measurement question Nominal

date Numeric

date-received Numeric

In addition, each record contains a few medical attributes including Ankles,
Chest Pain, and Heart Rate, Diastolic Blood Pressure (DBP), Mean Arterial
Pressure (MAP), Systolic Blood Pressure (SBP), Oxygen Saturation (SO2),
Blood Glucose, and Weight. Ethical clearance was obtained from the University
of Southern Queensland (USQ) Human Research Ethics Committee (HREC)
prior to the onset of the study. This dataset is used as the ground truth result
to test the performance of our recommendation system. The recommendations
produced by our system will be compared with the actual readings of the mea-
surement in question recorded in the dataset to see how accurate our recommen-
dations are.

Due to the patient’s historical medical data has often class-imbalanced prob-
lem (i.e. the number of normal data is much more than that of abnormal data),
we are carefully dealt with the class-imbalanced problem for classifier building.
The over-sampling and under-sampling have been proposed as a good means
to address this problem. The predictive accuracy is usually used to evaluate
the performance of machine learning algorithms. However, this measure is not
appropriate when the used data is imbalanced [26].

The performance of individual classifiers as well as the proposed ensemble
is evaluated by calculating the accuracy, workload saving, and risk. Accuracy
refers to the percentage of correctly recommended days against the total num-
ber of days that recommendations are provided; workload saving refers to the
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percentage of the total number of days when recommendations are provided
against the total number of days in the dataset, while risk refers to the percent-
age of incorrectly recommended days that recommendations are no test needed.
Mathematically, Accuracy, workload saving and risk are defined as follows:

Accuracy =
NN

NN + NA
× 100% (7)

Saving =
NN + NA

|D| × 100% (8)

Risk =
NR

|D| × 100% (9)

Where NN denotes the number of days with correct recommendations, NA
denotes the number of days with incorrect recommendations, NR denotes the
number of days with incorrect days that recommendations are no test needed,
and |D| refers to the total number of days in the dataset. Here, a correct rec-
ommendation means that the model produces the recommendation of “no test
required” for the following day and the actual reading for that day in the dataset
is normal. If this is a case, the recommendation is considered accurate.

4 Result Analysis

The using of the fast Fourier transform-coupled machine learning based ensem-
ble (FFT-MLE) model aims at short-term risk assessment in patients based on
analytic of a patient’s historical medical data using fast Fourier transform. As
mentioned above, the time series slide windows were decomposed by using the
FFT. Then, the suitable features were selected as input for the ensemble model.
The new time series selected were employed as input of the ensemble’s classifiers
instead of the original time series data. Different sets of statistical features, as
mentioned above, were used to determine the best number of features for each
slide window. The detailed results are discussed in the following sub sections:

4.1 Prediction Accuracy with Different Number of Features

To evaluate the relationship between the number of the extracted features and
the prediction accuracy, several experiments were conducted using different sets
of features. Based on the experiment results, When the number of the statistical
features is increased, the predictive accuracy of the proposed model is more sig-
nificant. The three classifiers of the FFT-MLE model, neural networks (NN),
least square-support vector machine (LS-SVM) and naive Bayes (NB), were
trained with different sets of features.

Typically, an ensemble model is a supervised learning technique for combining
multiple weak learners or models to produce a strong model [9]. Based on our
findings, a group of classifiers is likely to make better decisions compared to
individuals. The experimental results showed that the proposed method using
an ensemble classifier gives a satisfactory recommendation accuracy compared
to a single classifier.
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Table 3. Prediction accuracy of Ensemble model based on the first 5 frequencies bands
with two features.

Tunstall dataset (%)

Measurement Ensembles Accuracy (%) Saving (%) Risk (%)

Heart rate Neural network 70.64 54.33 09.92

LS-SVM 75.37 62.34 07.21

Naive Bayes 71.87 53.54 09.78

Ensemble model 85.38 60.60 5.90

DBP Neural network 71.30 58.18 09.76

LS-SVM 78.45 64.75 07.44

Naive Bayes 72.11 57.66 09.78

Ensemble model 86.27 65.57 5.88

MAP Neural network 69.70 50.33 09.92

LS-SVM 77.98 64.34 07.21

Naive Bayes 70.17 56.54 12.78

Ensemble model 83.33 62.60 06.45

SO2 Neural network 70.30 54.33 09.98

LS-SVM 74.39 65.34 07.95

Naive Bayes 68.78 50.54 12.78

Ensemble model 84.38 66.47 5.90

Two-Features Set. In this experiment, first, the first main frequencies bands
(α, β, γ, δ, and θ) were selected from each slide window and then the two features
of (Xmin and Xmax) for each band were utilized to evaluate the performance of
the proposed model. Through this process, each slide window was converted to
a vector of 10 extracted features. The extracted features were randomly divided
into training and testing sets. Each classifier is trained on whole training set.
Then, we individually apply the basic bagging algorithm on each day in test set
by assigning a weighted vote for each classifier based on it’s performance in the
training stage. The classifier that has the lower error rate is more accurate, and
therefore, it should be assigned the higher weight for that classifier. The final
prediction of each day in test set is calculated based on the sum of weights for
each class. As a result, the class that has the highest weight will be selected as
class label for that day. Each day in test set is classified into “need test” or “no
test needed” labels. Table 3 presents the comparison of accuracy, workload saving
and risk results of ensemble model with individual classifier techniques for the
four measurements. It is compared with different classifiers such as Neural net-
work (NN), Least square- Support Vector Machine (LS-SVM) and Naive Bayes
(NB).

From the obtained results in this table, although the proposed FFT-MLE
model is achieved noticeably significant results using five frequencies bands.
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Table 4. Prediction accuracy of Ensemble model based on 28 frequencies bands with
two features

Tunstall dataset (%)

Measurement Ensembles Accuracy (%) Saving (%) Risk (%)

Heart rate Neural network 74.13 50.38 07.80

LS-SVM 80.37 60.14 05.21

Naive Bayes 75.20 50.55 06.10

Ensemble model 90.20 60.30 4.20

DBP Neural network 75.74 55.11 07.75

LS-SVM 82.88 60.24 05.65

Naive Bayes 77.74 55.74 06.95

Ensemble model 91.40 65.57 4.10

MAP Neural network 75.45 56.20 07.95

LS-SVM 81.93 67.22 05.77

Naive Bayes 76.28 53.13 07.30

Ensemble model 91.85 65.20 04.00

SO2 Neural network 73.25 51.50 07.95

LS-SVM 80.55 60.38 05.10

Naive Bayes 74.11 54.36 07.82

Ensemble model 90.50 60.25 4.15

However, the five bands were not enough to represent the slide windows because
they did not appear the appropriate characteristics of slide windows. Therefore,
all of 28 bands instead of the first five bands were considered to represent each
slide window. In this case, 28 × 2 = 56 statistical features for each slide window
were extracted and then used in the training of ensemble model.

From a observation the results in Table 4, it can be noticeably seen that the
performance of the proposed FFT-MLE model, for all measurements, is improved
compared with the previous results. This is because that the accuracies have
significantly increased using all frequencies bands instead of the top five bands.
According to the results in Table 4, the prediction accuracy of the proposed FFT-
MLE model is increased by more than 5% compared to the obtained results in
Table 3.

Four-Features Set. To improve the predictive performance of the FFT-MLE
model, a four-features set of (Xmin,Xmax,Xstd,Xmed) was selected, tested to
analyse the time series medical data. For each slide window, 5 × 4 statistical
features were extracted and then used to evaluate the performance of the pro-
posed FFT-MLE model, where 5 refers to the main bands of FFT that including:
α, β, γ, δ, and θ, and the 4 indicates the number of selected features. The obtained
results were showed that using four features set can be improved the prediction
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Table 5. Prediction accuracy of Ensemble model based on the first 5 frequencies bands
with a four-features set.

Tunstall dataset (%)

Measurement Ensembles Accuracy (%) Saving (%) Risk (%)

Heart rate Neural network 74.30 49.33 07.60

LS-SVM 78.39 60.34 07.40

Naive Bayes 74.73 52.42 07.50

Ensemble model 88.75 60.20 4.80

DBP Neural network 75.30 50.13 07.76

LS-SVM 81.62 61.25 06.30

Naive Bayes 74.45 57.30 07.82

Ensemble model 89.41 62.54 4.50

MAP Neural network 73.62 53.33 07.95

LS-SVM 82.98 60.40 06.21

Naive Bayes 75.33 51.40 07.50

Ensemble model 90.20 60.10 04.10

SO2 Neural network 76.20 56.55 07.70

LS-SVM 82.50 63.64 06.30

Naive Bayes 74.60 55.50 07.5

Ensemble model 90.33 62.48 4.00

accuracy of the proposed FFT-MLE model. As a result, an accuracy of 94%, for
all measurements, was attained. Table 5 shows the prediction accuracies results
and risk assessment using a four-features set with the five selected bands for
all measurements. According to the obtained results in Table 5, the prediction
accuracies for all measurements were noticeably improved using a four-features
set. The obtained results proved that the four selected features have significantly
improved the predictive performance of the proposed FFT-MLE model. The pre-
diction accuracy of all measurements was increased by more than 6% compared
with the two-features set results.

However, in order to further increase the prediction accuracy of the proposed
model, all of 28 bands instead of the five bands were also selected, used to
represent each slide window. The 28 × 4 = 112 statistical features for each
slide window were extracted and then used in the training of ensemble model.
From the obtained results in Table 6, it can be noticed that the performance
of the proposed FFT-MLE model significantly improved for all measurements
after having increased the number of selected bands with more features. Figure 4
shows the averaged accuracies using both of 5 and 28 bands with 2 and 4 features
sets for all measurements.
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Table 6. Prediction accuracy of Ensemble model based on 28 frequencies bands with
a four-features set

Tunstall dataset (%)

Measurement Ensembles Accuracy (%) Saving (%) Risk (%)

Heart rate Neural network 79.57 53.88 06.90

LS-SVM 86.50 64.75 04.95

Naive Bayes 78.40 54.54 07.05

Ensemble model 94.15 63.25 3.30

DBP Neural network 78.35 56.14 07.10

LS-SVM 90.50 64.50 04.10

Naive Bayes 77.44 59.30 07.75

Ensemble model 95.30 64.13 2.85

MAP Neural network 80.30 55.50 06.65

LS-SVM 89.50 63.40 05.50

Naive Bayes 78.60 52.30 07.20

Ensemble model 94.50 64.30 03.00

SO2 Neural network 79.25 54.60 06.95

LS-SVM 89.40 64.50 05.25

Naive Bayes 78.55 56.25 07.30

Ensemble model 95.20 63.13 02.95

Fig. 4. The obtained results of two and four features sets after applying 5 and 28 FFT
decomposition for all measurements

4.2 Prediction Time

In this experiment, the prediction time including training time and execution
time of classifiers was proposed. Figure 5 shows the prediction time for each clas-
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sifier and the proposed ensemble as well. From the results in Fig. 5, we observed
that although the proposed model took more time compared with individual clas-
sifiers, it provided more accurate recommendation to patients suffering chronic
diseases. On other hand, the least square-support vector machine (LS-SVM) was
recorded the lowest prediction time compared with other individual classifiers.

Fig. 5. Comparison of the prediction time between classifiers and the proposed
ensemble

5 Conclusions and Future Work

In this work, a pilot study has been performed to evaluate the ability of a fast
Fourier transform-coupled machine learning based ensemble model to predicts
and assesses the short-term disease risk for patients suffering from chronical
diseases such as heart disease. This study is considered one of the vital stud-
ies to use medical measurements of patient in the assessment and prediction
of the short-term disease risk. This research presents a machine learning based
ensemble model which incorporates fast Fourier transformation algorithm for
pre-processing of input time series data. This ensemble is based on three hetero-
geneous learners named neural networks, least square support vector machine
and naive Bayes in order to generate appropriate recommendations. The pre-
diction model is developed aiming at improving the quality of clinical evidence-
based decisions and helping reduce financial and timing cost taken by patients.
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The experimental results showed that the four-features set yields a better pre-
dictive performance for all measurements compared to the two-features set. In
addition, it is also mentioned that using the all of 28 bands give reasonable
prediction accuracies under all measurements.

Future research directions include application of the proposed model on dif-
ferent datasets for more validations. We also plan to incorporate wavelet trans-
formation with fast Fourier translation in order to pre-prossing the time series
data.
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24. Şen, B., Peker, M., Çavuşoğlu, A., Çelebi, F.V.: A comparative study on classifica-
tion of sleep stage based on EEG signals using feature selection and classification
algorithms. J. Med. Syst. 38(3), 1–21 (2014)

25. Diykh, M., Li, Y.: Complex networks approach for EEG signal sleep stages classi-
fication. Expert Syst. Appl. 63, 241–248 (2016)
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Abstract. Cardiovascular disease (CVD) is the leading cause of death
around the world. Researches on assessing patients death risk from Elec-
trocardiographic (ECG) data has attracted increasing attention recently.
In this paper, we summarize long-term overwhelming ECG data using
morphological concern of overall evolution. And then assessing patients
death risk from high value density ECG summarization instead of raw
data. Our method is totally unsupervised without the help of expert
knowledge. Moreover, it can assist in clinical practice without any addi-
tional burden like buy new devices or add more caregivers. Comprehen-
sive results show effectiveness of our method.

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death around the world. In
2012, an estimated 17.5 million people died from CVD, a number that is expected
to grow to more than 23.6 million by 2030. CVD deaths represented about 3 of
every 10 deaths of all global death. In 2011, the age-standardized death rate
attributable to all CVD was 229.6 per 100 000 [1]. New research looking at the
costs of cardiovascular disease in six EU member states (France, Germany, Spain,
Italy, Sweden and the United Kingdom) concludes that the financial burden will
rise to 122.6 billion by 2020, up from 102.1 billion in 2014 [2].

Physicians use a variety of measurements to assess patients risk and to take
proper treatment. Blood tests including Cholesterol test, C-reactive protein,
Lipoprotein (a), Natriuretic peptides aim to determine biochemical states [3].
Magnetic Resonance Imaging (MRI) to measure cardiac volumes and derive
ejection fraction (EF) [4]. Analytics based on these clinical data is very limited.
First, clinical data is inadequate. It has to be recorded by caregivers. Second,
it can only reflect a snapshot of patient without continuous pathology evolution
recording. Last, these measurements are invasive that leading to vessels insertion,
radiation and allergy.

c© Springer International Publishing AG 2017
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Electrocardiographic (ECG) data is an interpretation of the electrical activity
of the heart, it can reflect the overall evolution of the patients pathophysiology
over time. Moreover, ECG data is easy to acquire and it is a non-invasive record-
ing procedure. Bedside monitors and portable ECG machine can help with data
recording both in hospital and out of hospital. Decision making with the help of
ECG data has attracted increasing attention recently.

However, discovering pathology under ECG data, we faced up with following
challenges:

– Overwhelming data: Common 1-lead 125 Hz ECG monitors generate over
10 million data points per day of one patient. Not to speak of 12-lead or 500 Hz
high resolution ECG monitors. Such overwhelming data poses problem both
on limited device storage and procession capacity.

– Low value density: On the one hand, we have to discard current data after
procession because of storage shortage. On the other hand, useful information
like critical shifts or morphology variation appear rarely on long term ECG
data. Therefore, precisely extracting and effectively keeping useful information
from fragment of low value density ECG data are of great concern.

– Expert knowledge: A large majority of ECG analysis methods require iden-
tify P, Q, R, S, T, U segments at first. Identification methods usually have
high error rate. In practice, only expert physician can mark these segments
correctly and efficiently. But it is still a huge burden of man power which is
unrealistic on overwhelming ECG data.

– Morphological concern: Recent work on ECG analysis has shown the asso-
ciation between morphology and patient condition stages [5]. It reveals that
pathology is determined by the values in a certain period represented as a
wave. Methods focus on Duration (Q to S, Q to T, etc.), Amplitude (QRS,
QT, etc.) and Slope (RS, ST, etc.) cant capture overall evolution. Moreover,
identify P, Q, R, S, T, U waves is also a challenge which is posed above.

In this paper, we summarize long-term overwhelming ECG data using mor-
phological concern of overall evolution. And then assessing patients risk from
high value density ECG summarization instead of raw data. Our method is
totally unsupervised without the help of expert knowledge. Moreover, it can
assist in clinical practice without any additional burden like buy new devices or
add more caregivers.

We first using pattern growth graph (PGG) to summarize trend, morphology
variation and critical shifts of original data. PGG is capable of reducing the
storage size of patterns to about 0.3% with less than 5% relative error. Next,
we propose ConverGence Index (CGI) to measure convergence of graph. Then,
we extract biomarkers including CGI from PGG summarization to assess death
risk of patients with CVD. Finally, we conduct thorough experiments on ICU
clinical data, results show effectiveness of our method.
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2 Background

2.1 ECG Diagram

Electrocardiogram (ECG) is a non-invasive representation of the heart’s car-
diac cellular electrical activity recorded from electrodes on the body surface.
It provides wealth of information related to the electrical patterns proper, the
geometry of heart tissue and the metabolic state of the heart. The diagram of
healthy sinus ECG waves is shown as Fig. 1.

The ECG is a pseudo periodical time series with x-axis representing stan-
dard time and y-axis representing voltage measures. Following wave segments are
basic features of the ECG. The P wave segment (P) is associated with sequential
depolarization of the right and left atria. The QRS complex (QRS) is associated
with right and left ventricular depolarization. The ST wave segment (ST) is asso-
ciated with ventricular repolarization. The U wave segment (U) is an electrical-
mechanical event at beginning of diastole. Some typical features of ECG are also
illustrated in the figure.

Fig. 1. Normal sinus ECG diagram

2.2 CVD Evolutionary

Healthy people with normal ECG is composed by repeated normal sinus rhythm.
Cardiovascular diseases, especially chronic heart diseases, are often related to
long-term variation of duration, interval and morphology [6]. Large volume ECG
data is required for analysis by variation accumulation. In clinical practice, subtle
variations of snapshot ECG data can only be interpreted by expert physicians
[7]—not for patient’s self diagnosis. It is a big loss for early CVD detection.
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3 Summarizing ECG Streams

In this section, we first split original ECG streams into short segments with
the help of QRS complex. Then we use patterns to represent the outline of
segments and reduce their storage cost. Finally, we organize patterns together
by generating pattern growth graph.

3.1 Wave Splitting

Given ECG time series X = {X(t) : t = 1, 2, ..., N} composed by N data points
for a certain patient. We first split point series into consecutive waves. A special
digital bandpass filter is required to reduces false detections caused by the various
types of interference present in ECG signals while detect QRS complex correctly.
An open source QRS detection [8] is used to achieve this task. We then split in
the end of peak point.

Finally, we get M wave of short time series linked together to a long time
series. Formally representing as

X = {S1, S2, ..., SM} (1)

Where Si = {Si(t) : t = 1, 2, ...}.

3.2 Pattern Representation

After the waves in the ECG streams are obtained, concise representation of these
waves are required since waves contains large amount of data points. It is not
realistic to store all the details of a wave, but summary data points to smaller
patterns with acceptable error bound can save space and reduce computational
cost. There are some existing methods for represent ECG data, like PAA [9], SAX
[10], Zigzag [11]. Piecewise Linear Representation (PLR) is the most effective
method without losing important morphological variation [12].

Intuitively, given a series of data points Si(t), PLR produce the best linear
representation (defined as pattern) such that the maximum error for any wave
does not exceed the user specified threshold. There existing two ways to generate
the pattern of a wave: (1) Sliding Window: It processes along the timeline, a
new line segment created when the sum of residual error exceeds the predefined
threshold. (2) Bottom Up: It creates all finest possible approximation of a wave.
Then merge pairs of lowest error cost iteratively when the sum of residual error
below the predefined threshold. In [13], the author proposed a new mixed method
Sliding Window And Bottom-up (SWAB), which take advantages of both sliding
window (high efficiency) and bottom up (high quality). An example of PLR result
on a single ECG wave is shown in Fig. 2.

3.3 Constructing Pattern Growth Graph

Our goal is to summarize ECG stream using pattern growth graph (PGG). Next,
we will construct PGG from individual pattern obtained by PLR.
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Fig. 2. PLR represent of a ECG wave

Definition 1. PGG: PGG is a directed graph PGG = (V,E). Vertices V rep-
resent line segments in PLR representation, linked with directed edges E in time
order.

Definition 2. Segment Match: Given error threshold ε, ECG subsequence
L = {(x1, t1), (x2, t2), ..., (xm, tm)}, line segment Seg = {(X(t), t),X(t) = kt +
b}. Defining that subsequence L matches line segment Seg if : (length(L) −
length(Seg))/length(Seg) < ε and

∑m
i=1 |(xi − kti − b)/xi| < ε, where length()

the time duration of a sequence or line segment.

Growth means add vertices or directed edges to existing PGG when new
pattern P coming. There are three possible cases:

1. Un-matched: No segments in P matches segments in PGG. It will grow PGG
with P .

2. Partially matched: Not all segments in P matches segments in PGG. The
matched segments will be reused and new segments grow from matched
segments.

3. Totally matched: All segments in P matches segments in PGG. Thus, no
segments are generated, means no changes on PGG.

Finally we get summarization of ECG stream using PGG. A simple example
is presented in Fig. 3.

3.4 Characteristics of PGG

Some important characteristics of PGG include:

– Convergence: Our experiments show that the number of un-matched patterns
and partially matched patterns are decreased along with time.

– Graph scale: PGG shows excellent compression effects. In our experiment, it
consumes about 0.3 % storage space with less than 5% relative error.

– Retrospection: If we also store the patterns occurrence timestamps. PGG can
retrospect full time ECG evolution by reconstructing an approximate stream
view.
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Fig. 3. PLR represented ECG waves (above) and constructed PGG (below). Each node
in PGG is one segment in ECG waves, nodes linked by one edge in PGG represents
two consecutive segments in ECG waves.

4 PGG Convergence

In this section, we will define a new measurement of a graph—Convergence
Index (CGI). We will use CGI to assess death risk of CVD patients. Result are
illustrated in section experiments.

4.1 Convergence Index

The CGI is computed on a directed graph. Here are some useful definitions.

Definition 3. Independent Set of Directed Graph: A subset S of the ver-
tices V of a directed graph G = (V,E) is independent if no edge in the graph has
both startpoint and endpoint in S.

Definition 4. Entropy of Vertex Set: Let X be a subset of vertex set V of
a directed graph G = (V,E). Defining

H(X) =
n∑

i=1

pilog
1
pi

(2)

as the entropy of vertex set X in G, where
∑n

i=1 pi = 1. Each pi represent the
possibility of one possible vertex choice. So that n is the number of all possible
vertex choice in a given X.

Normally, for all i, pi are equal. So H(X) = log(n).
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Definition 5. Mutual Information of Two Vertex Set: Let I(X ∧ Y ) be
mutual information between two vertex set X and Y of a directed graph G =
(V,E). Where I(X ∧ Y ) = H(X) − H(X|Y ).

Finally, given a graph PGG, define the CGI of PGG

CGI = minX,Y I(X ∧ Y ) (3)

where the minimum is taken over all pairs of random variables X, Y such that:
X is a uniformly random vertex in PGG. Y is an independent set containing X.

Intuitively, for node X and subset Y in PGG, X is chosen with maximal
stochasticity (uniform distribution), and Y is the set of distinguishable nodes.
If they have an edge, they are not distinguishable. That’s why Y is an inde-
pendent set. What CGI do is trying to quantify the stochasticity of graph for
such an arbitrary Y . Low stochasticity of Y indicates low CGI index while high
stochasticity of Y indicates high CGI index.

Why use CGI to evaluate the death risk of CVD patients? The reason is that
CVD patients usually have high abnormal probability of their heart’s cardiac
cellular electrical activity, which can be directly reflected by ECG records. PGG
summarizes long term ECG evolution and CGI measures the convergence index
of PGG. Briefly, CGI quantifies the pathology of CVD patients.

4.2 Properties of CGI

Here are two useful properties and we illustrate them without proof:

– Subadditivity: G1 = (V,E1) and G2 = (V,E2), construct G1 = (V,E1 ∪ E2).
Then, CGI(G) ≤ CGI(G1) + CGI(G2)

– Monotonicity: G1 = (V,E) and G2 = (V,E′), E ⊂ E′. Then, CGI(G1) ≤
CGI(G2)

Considering two special graph. The one is no edge graph: G = (V,E), |V | = n
and |E| = 0. Then if X is a uniformly random vertex, and Y is fixed to be
the vertex set V so that it can contain all possible X. We get CGI ≤ I(X ∧
Y ) = 0. But CGI ≥ 0, so that CGI = 0. The other one is complete graph:
G = (V,E), |V | = n and |E| = n(n − 1)/2. Then the only independent set Y
containing a given vertex X has to be Y = X. So that H(X|Y ) = 0. Thus
CGI = minX,Y I(X ∧ Y ) = log(n) − 0 = log(n).

Since CGI is monotonic, we can also conclude that the range of CGI is
[0, log(n)] where n is the number of vertices in PGG.

5 Experiments

In this section, we depict the experimental settings and ICU data to test the
proposed method. In addition, we report our experimental results using different
performance measures.
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5.1 Experimental Setup

MIMIC (Medical Information Mart for Intensive Care) is an open-access data-
base includes Clinical Databases (contain electronic medical records) and Wave-
form Databases (contain biomedical streams) for over 58,000 ICU patients at
the Beth Israel Deaconess Medical Center (BIDMC) from June 2001 to October
2012 [14]. We use subset of databases among 1022 CVD patients that contain all
Waveform Database records that have been associated with Clinical Database
records.

We view each patient as an instance, and extract useful features from both
Clinical Databases and Waveform Databases. Three categories of biomarkers are
taken into account in our experiments: General demographics—Gender, Age,
BMI, Systolic Blood Pressure (SBP); expertise of clinical staff—Glasgow Coma
Scale (GCS); computational measurements from ECG—Heart Rate Variation
(HRV), Respiration Rate Variation (RRV); and our CGI. Meanwhile, five out-
comes are also taken into consideration: hospital expire (HE), within 30 days
to death (DTD30), 30 to 90 days to death (DTD90), 90 to 365 days to death
(DTD365), days to death (DTD). The details of the these biomarkers can be
referred to the related work section.

5.2 Correlations Between Biomarkers and Outcomes

We first study the correlations among all related biomarkers and outcomes. We
conduct Pearson Correlation Coefficient as correlation measurement. Since not
all of the patients have record of death date, we only use partial of the entire
data. The result is shown in Fig. 4. The correlation heatmap is generated by
a symmetric matrix, means that the column name order is identical with row
name order. We see that correlations are strong within biomarkers. Particular
in BMI, SBP and GCS, the reason is that high BMI people with hypertension
co-morbidity are considered high danger patients by caregivers. In the last row
of heatmap, we also find that CGI has the most correlation coefficients with
DTD30, DTD90 and DTD365 than other biomarkers. Since these outcomes can
reflect patients death risk directly, the result shows that CGI best fit the CVD
patients death risk.
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5.3 CGI Performance

Now we are going to further investigate CGI performance on assessing patients
death risk. We divide patients into four groups by days to death. Apart from
formal introduced DTD30, DTD90, DTD365, we also regard days out of 1000
as Alive. Note that some records have missing field on days to death. These
incomplete records should be excluded because we are not sure whether the
patients are dead or alive. Apparently, patients in group DTD30 have the highest
death risk, and patients in group Alive have the lowest death risk. Result of CGI
distribution on different groups are illustrated with boxplot in Fig. 5. The black
bold lines in middle of the rectangle are average CGIs of groups. We can see that
average CGIs are decreased from DTD30 to Alive. Besides, the 75% quantile of
CGI in DTD30 group is higher than 25% quantile of CGI in Alive group, which
shows a good separation. These results are accord with actual death risk of
patients. There are some other interesting discovers. For example, DTD30 group
have the highest CGI value than other groups, but it also have the lowest CGI
variance. A possible explaination is that CGI is computed using log function,
leading to smaller variation when value increased.

2

4

6

DTD30 DTD90 DTD365 Alive
Group

C
G
I

Group

DTD30

DTD90

DTD365

Alive

Fig. 5. Distribution of CGI in different patient groups

Furthermore, we employ Kaplan-Meier survival analysis to compare the risk
degree evaluation. This is done by calculating the hazard ratio (HR) and p-values
for each biomarkers between DTD30 and Alive. Since Kaplan-Meier survival
analysis can handle with patients whose death dates are not recorded, we used
all avaliable patient data. We compare CGI to three categories of risk assessing
methods comprehensively. Details are introduced in related work section. It can
be seen from Table 1 that SBP, GCS, HRV and CGI are correlated with the death
risk, with a high statistical significance (p ≤ 0.05). Yet, CGI clearly outperforms
the others, it has the lowest p-value and the highest hazard ratio. The result
shows that CGI best quantifies the pathology of CVD patients.
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Table 1. Association between different measurements and death risk

Category Biomarkers Hazard ratio P value

Demographic Age > 65 1.82 0.062

Female 1.68 0.092

BMI 1.21 0.130

SBP 2.66 0.044

Expert GCS 2.47 0.035

Computational HRV 2.53 0.024

RRV 1.48 0.082

Proposed CGI 3.41 0.012

6 Related Work

Generally, our work can be seen as extracting biomarkers (feature engineering on
ECG streams) from long term ECG streams. Related techniques can be loosely
divided into three categories.

A number of researches focus on wave segments feature extraction [15–17].
They extract duration, amplitude or interval of P, Q, R, S, T, U wave segments.
These features varied when the outline of waves changes, in order to classify
normal wave and abnormal wave.

Another category of work concern on overall ECG streams. [18] compare Con-
secutive Beats Similarity (CBS) and accumulate them all through. [19] obtain
R?R intervals to get heart rate (HRV) and analysis correlation between HR
variation and death risk.

The third category of works are based on expertise of clinical staff, includ-
ing the Acute Physiology and Chronic Health Evaluation (APACHE) [20], the
Simplified Acute Physiology Score (SAPS) [21], and the Glasgow Coma Scale
(GCS) [22]. Particularly, GCS score provides the best performance [23,24]. But
all of them require an expert clinical panel to select variables and denote levels
of severity for each.

7 Conclusion

In this paper, we summarize long-term overwhelming ECG data and assessing
death risk of patients with cardiovascular disease. Our major innovative work
include:

– We summarize ECG stream using morphological concern of overall evolu-
tion. And assessing patients risk from high value density ECG summarization
instead of raw data.

– Our method is totally unsupervised without the help of expert knowledge.
It can assist in clinical practice without any additional burden like buy new
devices or add more caregivers.
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– We conduct comprehensive experiments on real ICU datasets. Experiments
demonstrate the effectiveness of the proposed method.

In the future, we will further consider more effective biomarkers on PGG, and
extend our work on Electroencephalography (EEG) to assessing Parkinsons
Disease.

Acknowledgement. This work was supported by Natural Science Foundation of
China (No. 61170003).
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Abstract. In most practical problems of classifier learning, the train-
ing data suffers from label noise. Most theoretical results on robust-
ness to label noise involve either estimation of noise rates or non-convex
optimization. Further, none of these results are applicable to standard
decision tree learning algorithms. This paper presents some theoreti-
cal analysis to show that, under some assumptions, many popular deci-
sion tree learning algorithms are inherently robust to label noise. We
also present some sample complexity results which provide some bounds
on the sample size for the robustness to hold with a high probability.
Through extensive simulations we illustrate this robustness.

Keywords: Robust learning · Decision trees · Label noise

1 Introduction

For supervised learning of a classifier, we make use of labeled training data.
When the class labels in the training data may be incorrect, it is referred to
as label noise. Subjectivity and other errors in human labeling, measurement
errors, insufficient feature space are some of the main reasons behind label noise.
In many large data problems, labeled samples are often obtained through crowd
sourcing and the unreliability of such labels is another reason for label noise.
Learning from positive and unlabeled samples can also be cast as a problem of
learning under label noise [5]. Thus, learning classifiers in the presence of label
noise is an important problem [6].

Decision tree is among the most widely used machine learning approaches
[19]. However, not many results are known about the robustness of decision tree
learning in presence of label noise. It is observed that label noise in the training
data increases size of the learnt tree; detecting and removing noisy examples
improves the learnt tree [3]. Through an extensive empirical study it is observed
that decision tree learning is fairly robust to label noise [13]. In this paper, we
present a theoretical study of robustness of decision tree learning.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 685–697, 2017.
DOI: 10.1007/978-3-319-57454-7 53
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Most theoretical analyses of learning classifiers under label noise are in the
context of risk minimization. The robustness of risk minimization depends on
the loss function used. It is proved that any convex potential loss is not robust
to uniform or symmetric label noise [9]. While most standard convex loss func-
tions are not robust to symmetric label noise, the 0–1 loss is [11]. A general
sufficient condition on the loss function for risk minimization to be robust is
derived in [7]. The 0–1 loss, sigmoid loss and ramp loss are shown to satisfy
this condition while convex losses such as hinge loss and the logistic loss do not
satisfy this condition. Interestingly, we can have a convex loss (which is not a
convex potential) that satisfies this sufficient condition and the corresponding
risk minimization essentially amounts to a highly regularized SVM [18]. Robust
risk minimization strategies under the so called class-conditional (or asymmet-
ric) label noise are also proposed [12,17]. None of these results are applicable
for the popular decision tree learning algorithms because they cannot be cast as
risk minimization.

In this paper, we analyze learning of decision trees under label noise. We
consider some of the popular impurity function based methods for learning of
decision trees. We show, in the large sample limit, that under symmetric or
uniform label noise the split rule that optimizes the objective function under
noisy data is the same as that under noise-free data. We explain how this results
in the learning algorithm being robust to label noise (under the large sample
limit). We also derive some sample complexity bounds to indicate how large a
sample we need at a node. We explain how these results indicate robustness
of random forest also. We present empirical results to illustrate this robustness
of decision trees and random forests. For comparison we also present results
obtained with SVM algorithm.

2 Label Noise and Decision Tree Robustness

In this paper, we only consider binary decision trees for binary classification. We
use the same notion of noise tolerance as in [11,18].

2.1 Label Noise

Let X ⊂ Rd be the feature space and let Y = {1,−1} be the class labels. Let
S = {(x1, yx1), . . . , (xN , yxN

)} ∈ (X × Y)N be the ideal noise-free data drawn
iid from a fixed but unknown distribution D over X ×Y. The learning algorithm
does not have access to this data. The noisy training data given to the algorithm
is Sη = {(xi, ỹxi

), i = 1, · · · , N}, where ỹxi
= yxi

with probability (1 − ηxi
) and

ỹxi
= −yxi

with probability ηxi
. As a notation, for any x, yx denotes its ‘true’

label while ỹx denotes the noisy label. Thus, ηx = Pr[yx �= ỹx | x]. We use Dη

to denote the joint probability distribution of x and ỹx.
We say that the noise is uniform or symmetric if ηx = η, ∀x. Note that,

under symmetric noise, a sample having wrong label is independent of the feature
vector and the ‘true’ class of the sample. Noise is said to be class conditional or
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asymmetric if ηx = η+, for all patterns of class +1 and ηx = η−, for all patterns
of class −1. When noise rate ηx is a general function of x, it is termed as non-
uniform noise. Note that the value of η is unknown to the learning algorithm.

2.2 Criteria for Learning Split Rule at a Node of Decision Trees

Most decision tree learning algorithms grow the tree in top down fashion starting
with all training data at the root node. At any node, the algorithm selects a split
rule to optimize a criterion and uses that split rule to split the data into the left
and right children of this node; then the same process is recursively applied to
the children nodes till the node satisfies the criterion to become a leaf. Let F
denote a set of split rules. Suppose, a split rule f ∈ F at a node v, sends a
fraction a of the samples at v to the left child vl and the remaining fraction
(1 − a) to the right child vr. Then many algorithms select a f ∈ F to maximize

C(f) = G(v) − (aG(vl) + (1 − a)G(vr)) (1)

where G(·) is a so called impurity measure. There are many such impurity mea-
sures. Of the samples at any node v, suppose a fraction p are of positive class and
a fraction q = (1− p) are of negative class. Then the Gini impurity is defined by
GGini = 2pq [1]; entropy based impurity is defined as GEntropy = −p log p−q log q
[16]; and misclassification impurity is defined as GMC = min{p, q}. Often the cri-
terion C is called the gain. Hence, we also use gainGini(f) to refer to C(f) when
G is GGini and similarly for others.

A split criterion different from impurity is twoing rule [1]. Let p, q, a be as
above and let pl (pr), ql (qr) be the corresponding fractions at the left (right)
child vl (vr) under split rule f . Then twoing rule selects f ∈ F which maximizes
GTwoing(f) = a(1 − a)[|pl − pr| + |ql − qr|]2/4.

2.3 Noise Tolerance of Decision Tree

We want the decision tree learnt with noisy labels to have the same error on
noise-free test set as that of the tree learnt using noise-free data. Since label
noise is random, on any specific noisey training data, the tree learnt would also
be random. Hence, we say the learning method is robust if, in the limit as training
set size goes to infinity, the above holds. We now formalize this notion.

Definition 1. A split criterion C is said to be noise-tolerant if

arg min
f∈F

C(f) = arg min
f∈F

Cη(f)

where C(f) is the value of the split criterion C for a split rule f ∈ F on noise
free data and Cη(f) is the value of the criterion function for f on noisy data, in
the limit as the data size goes to infinity.

Let the decision tree learnt from training sample S be represented as
LearnTree(S) and let the classification of any x by this tree be represented
as LearnTree(S)(x).
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Definition 2. A decision tree learning algorithm LearnTree is said to be noise-
tolerant if

PD(LearnTree(S)(x) �= yx) = PD(LearnTree(Sη)(x) �= yx)

Note that for the above to hold it is sufficient if LearnTree(S) is same as
LearnTree(Sη). That is, if the tree learnt with noisy samples is same as that
learnt with noise-free samples.1

3 Theoretical Results

Robustness of decision tree learning requires the robustness of the split criterion
at each non-leaf node and robustness of the labeling rule at each leaf node.

3.1 Robustness of Split Rules

We are interested in comparing, for any specific split rule f , the value of C(f)
with its value (in the large sample limit) when there is symmetric label noise.

Let the noise-free samples at a node v be {(xi, yi), i = 1, · · · , n}. Under label
noise, the samples at this node would become {(xi, ỹi), i = 1, · · · , n}. Suppose
in the noise-free case a split rule f sends nl of these n samples to the left child,
vl, and nr = n − nl to right child, vr. Since the split rule depends only on the
feature vector x and not the labels, the points that go to vl and vr would be the
same for the noisy samples also. However, what changes with label noise are the
class labels and hence the number of examples of different classes at a node.

Let n+ and n− = n−n+ be the number of samples of the two classes at node
v in the noise-free case. Let these numbers for vl and vr be n+

l , n−
l and n+

r , n−
r .

Let these quantities in the noisy case be denoted by ñ+, ñ−, ñ+
l , ñ−

l etc. Define
binary random variables, Zi, i = 1, · · · , n, by Zi = 1 iff ỹi �= yi. By definition of
symmetric label noise, Zi are iid Bernoulli random variables with expectation η.

Let p = n+/n, q = n−/n = (1 − p). Let pl, ql and pr, qr be these fractions for
vl and vr. Let the corresponding quantities for the noisy case be p̃, q̃, p̃l, q̃l etc.
Let pη, qη, pη

l etc. be the values of p̃, q̃, p̃l in the large sample limit. We have

p̃ =
ñ+

n
=

1
n

⎛
⎝ ∑

i:ỹi=+1

1

⎞
⎠ =

1
n

⎛
⎝ ∑

i:yi=+1

(1 − Zi) +
∑

i:yi=−1

Zi

⎞
⎠ (2)

p̃l =
ñ+

l

nl
=

1
nl

⎛
⎝ ∑

i:xi∈vl,ỹi=+1

1

⎞
⎠ =

1
nl

⎛
⎝ ∑

i:xi∈vl,yi=+1

(1 − Zi) +
∑

i:xi∈vl,yi=−1

Zi

⎞
⎠

1 For simplicity, we do not consider pruning of the tree.
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All the above expressions involve sums of independent random variables.
Hence, by law of large numbers, in the large sample limit we get

pη = p(1 − η) + qη = p(1 − 2η) + η; pη
l = pl(1 − η) + qlη = pl(1 − 2η) + η(3)

Note that, under symmetric label noise, Pr[Zi = 1] = Pr[Zi = 1|yi] =
Pr[Zi = 1|xi ∈ B, yi] = η, for any subset B of the feature space and this
fact is used in deriving Eq. (3).

To find the large sample limit of criterion C(f) under label noise, we need
values of the impurity function which in turn needs pη, qη, pη

l etc. which are as
given above. For example, the Gini impurity is given by G(v) = 2pq for the noise
free case. For the noisy sample, its value can be written as G̃(v) = 2p̃q̃. Its value
in the large sample limit would be Gη(v) = 2pηqη. Using the above we can now
prove the following theorem about robustness of split criteria.

Theorem 1. Splitting criterion based on Gini impurity, mis-classification rate
and twoing rule are noise-tolerant to symmetric label noise given η �= 0.5.

Proof. We prove robustness of Gini impurity here. Robustness under other cri-
teria can similarly be proved.

Let p and q be the fractions of the two classes at a node v and let a be the
fraction of points (under a split rule) at the left child, vl. Recall that the fraction
a is same for noisy and noise-free data. The Gini impurity is GGini(v) = 2pq.
Under symmetric label noise, Gini impurity (under large sample limit) becomes
(using Eq. (3)),

Gη
Gini(v) = 2pηqη = 2[((1 − 2η)p + η)((1 − 2η)q + η)]

= 2pq(1 − 2η)2 + (η − η2) = GGini(v)(1 − 2η)2 + (η − η2)

Similar expressions hold for Gη
Gini(vl) and Gη

Gini(vr). The (large sample) value
of criterion or impurity gain of f under label noise can be written as

gainη
Gini(f) = Gη

Gini(v) − [a Gη
Gini(vl) + (1 − a)Gη

Gini(vr)]

= (1 − 2η)2[GGini(v) − a GGini(vl) − (1 − a)Gini(vr)] = (1 − 2η)2gainGini(f)

Thus for any η �= 0.5, if gainGini(f1) > gainGini(f2), then gainη
Gini(f

1) >
gainη

Gini(f
2). Which means that a maximizer of impurity gain based on Gini

index under noise-free samples will be also a maximizer of gain under symmetric
label noise, under large sample limit.

Remark: Another popular criterion is impurity gain based on entropy which
is not considered in the above theorem. The impurity gain based on entropy
is not noise-tolerant as can be shown by a counterexample. Consider a case
where a node has n samples (n is large). Suppose, under split rule f1(f2) we get
nl = 0.5n(0.3n), n+

l = 0.05n(0.003n) and n+
r = 0.25n(0.297n). Then it can be

easily shown that the best split under no-noise (f2) does not remain best under
40% noise. However, such counter examples may not be generic and entropy
based method may also be robust to label noise in practice.
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3.2 Robustness of Labeling Rule at Leaf Nodes

We next consider the robustness of criterion to assign a class label to a leaf node.
A popular approach is to take majority vote at the leaf node. We prove that,
majority voting is robust to symmetric label noise. We also show that it can be
robust to non-uniform noise also under a restrictive condition.

Theorem 2. Let ηx < 0.5,∀x. (a). Then, majority voting at a leaf node is
robust to symmetric label noise. (b). It is also robust to nonuniform label noise
if all the points at the leaf node belong to one class in the noise free data.

Proof. Let p and q = 1 − p be the fraction of positive and negative samples at
leaf node v.

(a) Under symmetric label noise, the relevant fractions are pη = (1−η)p+ηq and
qη = (1− η)q + ηp. Thus, pη − qη = (1− 2η)(p− q). Since η < 0.5, (pη − qη)
will have the same sign as (p−q), proving robustness of the majority voting.

(b) Let v contain all the points from the positive class. Thus, p = 1, q = 0. Let
x1, · · · ,xn be the samples at v. Under non-uniform noise (with ηx < 0.5,∀x),

pη =
1
n

n∑
i=1

(1 − ηxi
) >

0.5
n

n∑
i=1

1 = 0.5 (4)

Thus, the majority vote will assign positive label to the leaf node v. This proves
the second part of the theorem.

3.3 Robustness of Decision Tree Learning Under Symmetric Label
Noise: Large Sample Analysis

We have shown that the split rule that maximizes the criterion function under
symmetric label noise is same as the one which maximizes it under noise-free
case (under large sample limit). This means, under large sample assumption, the
same split rule would be learnt at any node irrespective of whether the labels
come from noise-free data or noisy data. (Here we assume for simplicity that
there is a unique maximizer of the criterion at each node. Otherwise we need
some prefixed rule to break ties. We are assuming that the xi at a node are
same in the noisy and noise-free cases. These are same at the root. If we learn
the same split at the root, then at both its children the samples would be same
in the two cases and so on).

Our result for leaf node labeling implies that, under large sample assumption,
with majority rule, a leaf node would get the same label under noisy or noise-free
data. To conclude that we learn the same tree, we need to examine the rule for
deciding when a node becomes a leaf. If this is determined by the depth of the
node or number of samples at the node then it is easy to see that the same tree
would be learnt with noisy and noise-free data. In many algorithms one makes a
node as leaf if no split rule gives positive value to the gain. This will also lead to
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learning of the same tree with noisy samples as with noise-free samples, because
we showed that the gain under noisy case is a linear function of the gain under
noise-free case.

Robustness Against General Noise: In our analysis, we have only considered
symmetric label noise. In the case of class-conditional noise, noise rate is same
for all feature vectors of a class though it may be different for different classes.
In the risk minimization framework, class conditional noise can be handled when
the noise rates are known (or can be estimated) [7,12,14,17]. We can extend the
analysis presented in Sect. 3.1 to relate expected fraction of examples of a class
in the noisy and noise-free cases using the two noise rates. Thus, if the noise
rates are assumed known (or can be reliably estimated) it should be possible to
extend the analysis here to the case of class-conditional noise. In the general case
when noise rates are not known (and cannot be reliably estimated), it appears
difficult to establish robustness of impurity based split criteria.

3.4 Sample Complexity Under Noise

We established robustness of decision tree learning algorithms under large sample
limit. Hence an interesting question is that of how large the sample size should be
for our assertions about robustness to hold with a large probability. We provide
some sample complexity bounds in this subsection. (Due to space constraint, we
provide proof sketch in Appendix).

Lemma 1. Let leaf node v have n samples. Under symmetric label noise with
η < 0.5, majority voting will not fail with probability at least 1 − δ when n ≥

2
ρ2(1−2η)2 ln(1δ ), where ρ is the difference between fraction of positive and negative
samples in the noise-free case.

The sample size needed increases with increasing noise (η) and decreasing ρ
(which can be viewed as ‘margin of majority’), which is intuitively clear.

Lemma 2. Let there be n samples at a non-leaf node v. Given two splits f1 and
f2, suppose gain (Gini, misclassification, twoing rule) for f1 is higher than that
for f2. Under symmetric label noise with η �= 0.5, gain from f1 will be higher
with probability 1−δ when n ≥ O( 1

ρ2(1−2η)2 ln(1δ )), where ρ denotes the difference
between gain of the two splits in the noise-free case.

While these results shed some lights on sample complexity, we emphasize
that these bounds are loose and are obtained using concentration inequalities.
In experimental section, we provide results on how many training samples are
needed for robust learning of decision trees on a synthetic dataset.

3.5 Noise Robustness in Random Forest

A random forest [2] is a collection of randomized tree classifiers. We represent
the set of trees as gn = {gn(x, π1), · · · , gn(x, πm)}. Here π1, · · · , πm are iid
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random variables, conditioned on data, which are used for partitioning the nodes.
Finally, majority vote is taken among the random tree classifiers for prediction.
We denote this classifier as ḡn.

In a purely random forest classifier , partitioning does not depend on the
class labels. At each step, a node is chosen randomly and a feature is selected
randomly for the split. A split threshold is chosen uniformly randomly from the
interval of the selected feature. This procedure is done k times. In a greedily
grown random forest classifier each tree is grown greedily by improving
impurity with some randomization. At each node, a random subset of features
are chosen. Tree is grown by computing the best split among those random
features only. Breiman’s random forest classifier uses Gini impurity gain [2].

A purely random forest classifier/greedily grown random forest, ḡn, is robust
to symmetric label noise with η < 0.5 under large sample assumption. In purely
random forest, randomization is on the partitions and the partitions do not
depend on class labels (which may be noisy). We proved robustness of majority
vote at leaf nodes under symmetric label noise. Thus, for a purely random forest,
the classifier learnt with noisy labels would be same as that learnt with noise-
free samples. Similarly for a greedily grown trees with Gini impurity measure,
we showed that each tree is robust because of both split rule robustness and
majority voting robustness. Thus when large sample assumption holds, greedily
grown random forest will also be robust to symmetric label noise. The sample
complexity for random forests should be less than that for single decision tree
because the ensemble classifier results in some variance reduction. Empirically
we observe that, often random forest has better robustness than a single decision
tree in finite sample cases.

4 Empirical Illustration

In this section, we illustrate our robustness results for learning of decision trees
and random forest. We also present results with SVM whose sensitivity towards
noise widely varies [9,11,13,18].

4.1 Dataset Description

We used four 2D synthetic datasets. Details are given below. (Here n denotes
total number of samples, p+, p− represent the class conditional densities, and
U(A) denotes uniform distribution over set A).

– Dataset 1: Checker board 2 × 2 Pattern: Data uniform over [0, 2] × [0, 2] and
one class region being ([0, 1] × [0, 1]) ∪ ([1, 2] × [1, 2]) and n = 30000.

– Dataset 2: Checker board 4 × 4: Extension of the above to a 4 × 4 grid.
– Dataset 3: Imbalance Linear Data. p+ = U([0, 0.5]× [0, 1]) and p− = U([0.5, 1]

× [0, 1]). Prior probabilities of classes are 0.9 & 0.1, and n = 40000.
– Dataset 4: Imbalance and Asymmetric Linear Data. p+ = U([0, 0.5] × [0, 1]) and

p− = U([0.5, 0.7]× [0.4, 0.6]). Prior probabilities are 0.8 & 0.2, and n = 40000.

We also present results for 6 UCI datasets [8].
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4.2 Experimental Setup

We used decision tree/random forest (RF) implementation in scikit learn library
[15]. We present results only with Gini impurity based decision tree classifier.
Number of trees in random forest was set to 100. For SVM we used libsvm
package [4]. For the results presented in Sect. 4.4, the following setup is used.
Minimum leaf size is the only user-chosen parameter in random forest and deci-
sion trees. For synthetic datasets, minimum samples in leaf node was restricted
to 250. For UCI datasets, it was restricted to 50. For SVM, we used linear kernel
(l) for Synthetic Datasets 3, 4 and quadratic kernel (p) for Checker board 2 × 2
data. In all other datasets we used gaussian kernel (g). For SVM, we selected
hyper-parameters using validation data. (Validation range for C is 0.01–500 and
for γ in the Gaussian kernel it is 0.001–10). We used 20% data for testing and
20% for validation. Noise rate was varied from 0%–40%. As synthetic datasets
are separable, we also experimented with class conditional noise with the two
noise rates for the two classes being 40% and 20%. In all experiments, noise was
introduced only on training and validation data. Test set was noise free.

4.3 Effect of Sample Size on Robustness of Learning

Here we present experimental results on the test accuracy for different sample
sizes using the 2 × 2 checker board data. We choose a leaf sample size and learn
decision tree and random forest with different noise levels. (The training set size
is fixed at 20000). We do this for a number of choices for leaf sample size. The
test accuracies in all these cases are shown in Fig. 1(a). As can be seen from
the figure, even when training data size is huge, we do not get robustness if leaf
sample size is small. This is in accordance with our analysis (as in Lemma 1)
because minimum sample size is needed for the majority rule to be correct with
a large probability. A leaf sample size of 50 seems sufficient to take care of even
30% noise.

Fig. 1. For 2×2 Checker board data variation of accuracy with (a) Minimum leaf size,
(b) Training data size, for different noise levels for DT
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Next we experiment with varying the (noisy) training data size. The results
are shown in Fig. 1(b). It can be seen that with 400/4000 sample size decision
tree learnt has good test accuracy (95%) at 20%/40% noise (the sample ratio is
close to (1−2×0.4)2

(1−2×0.2)2 = 1/9 as provided in Lemma 1). We need larger sample size
for higher level of noise. This is also as expected from our analysis.

4.4 Comparison of Accuracies of Learnt Classifiers

The average test accuracy and standard deviation (over 10 runs) on different data
sets under different levels of noise are shown in Table 1 for synthetic datasets and
in Table 2 for UCI datasets. In Table 2 we also indicate the dimension of feature
vector (d), the number of positive and negative samples in the data (n+, n−).

For synthetic datasets, the sample sizes are large and hence we expect good
robustness. As can be seen from Table 1, for noise-free data, all classifiers (deci-
sion tree, random forest and SVM) perform equally. However, with 30% or 40%
noise, the accuracies of SVM are much poorer than those of decision tree and
random forest. For example, for synthetic datasets 3 and 4, the average accu-
racies of decision tree and random forest classifiers continue to be 99% even at
40% noise while those of SVM drop to about 90% and 80% respectively. Note
that even with very large sample sizes, we do not get robustness in SVM. It
can be seen that decision tree and random forest classifiers are robust to class
conditional noise also, even without knowledge about noise rate (as indicated by
last column in the table). Our current analysis does not prove this robustness;
this is one possible extension of the theoretical analysis presented here.

Table 1. Comparison of accuracies on synthetic datasets

Data Method η = 0% η = 10% η = 20% η = 30% η = 40% η+ = 40%

η− = 20%

2 × 2

CB

Gini 99.95 ± 0.05 99.9 ± 0.06 99.91 ± 0.1 99.82 ± 0.16 98.97 ± 0.83 99.45 ± 0.83

RF 99.99 ± 0.02 99.96 ± 0.02 99.91 ± 0.05 99.87 ± 0.06 99.16 ± 0.18 99.11 ± 0.45

SVM (p) 99.83 ± 0.12 97.38 ±1.21 91.88 ± 2.65 87.96 ± 5.52 76.42 ± 4.43 68.78 ± 0.97

4 × 4

CB

Gini 99.76 ± 0.18 99.72 ± 0.16 99.46 ± 0.18 98.71 ± 0.32 95.21 ± 1.08 97.36 ± 1.23

RF 99.94 ± 0.02 99.9 ± 0.02 99.78 ± 0.04 99.35 ± 0.15 96.23 ± 0.91 95.41 ± 0.53

SVM (g) 99.6 ± 0.05 98.58 ± 0.23 97.81 ± 0.24 96.83 ± 0.46 92.22 ± 2.5 91.24 ± 0.85

Dataset

3

Gini 100.0 ± 0.01 100.0 ± 0.01 99.99 ± 0.01 99.99 ± 0.02 99.92 ± 0.07 99.92 ± 0.18

RF 100.0 ± 0.01 100.0 ± 0.01 99.99 ± 0.01 99.98 ± 0.02 99.86 ± 0.12 99.9 ± 0.13

SVM (l) 99.89 ± 0.04 96.65 ± 0.26 90.02 ± 0.3 90.02 ± 0.3 90.02 ± 0.3 90.1 ± 0.31

Dataset

4

Gini 100.0 ± 0.0 99.99 ± 0.01 99.99 ± 0.01 99.98 ± 0.03 99.73 ± 0.54 99.88 ± 0.26

RF 100.0 ± 0.0 99.99 ± 0.01 99.99 ± 0.01 99.93 ± 0.09 99.91 ± 0.11 99.7 ± 0.31

SVM (l) 99.86 ± 0.03 99.21 ± 0.24 96.55 ± 4.05 79.96 ± 0.34 79.96 ± 0.34 79.96 ± 0.34

Similar performance is seen on UCI datasets also as shown in Table 2. For
breast cancer dataset, there is a small drop in the average accuracy of decision
tree with increasing noise rate while for random forest the drop is significantly
less. This is also expected because the total sample size here is less. Although
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SVM has significantly higher average accuracy than decision tree in 0% noise,
at 40% noise its average accuracy drops more than that of decision tree. In all
other data sets also, decision tree and random forest are more robust than SVM
as can be seen from the table.

Table 2. Comparison of accuracies on UCI datasets

Data (d, n+, n−) Method η = 0% η = 10% η = 20% η = 30% η = 40%

Breast cancer

(10, 239, 444)

Gini 92.04 ± 3.0 90.36 ± 3.02 90.0 ± 2.24 90.22 ± 2.38 87.23 ± 7.72

RF 96.64 ± 0.93 96.79 ± 1.23 96.64 ± 1.82 95.91 ± 1.47 96.13 ± 1.39

SVM 96.79 ± 1.67 96.06 ± 1.91 95.91 ± 2.27 93.72 ± 4.55 92.48 ± 3.62

German

(24, 300, 700)

Gini 71.2 ± 3.47 71.7 ± 2.5 71.25 ± 3.16 70.25 ± 2.75 64.65 ± 6.29

RF 70.75 ± 2.71 70.8 ± 2.94 70.9 ± 2.84 71.05 ± 2.44 69.35 ± 3.41

SVM 75.25 ± 5.45 74.45 ± 3.68 72.1 ± 2.37 69.45 ± 3.06 64.55 ± 7.18

Splice

(60, 1648, 1527)

Gini 91.26 ± 1.65 91.23 ± 1.61 90.22 ± 1.53 86.22 ± 4.11 74.38 ± 5.54

RF 94.76 ± 0.68 93.94 ± 0.76 93.87 ± 1.39 91.97 ± 1.82 82.69 ± 3.05

SVM 91.1 ± 0.77 88.83 ± 1.08 87.67 ± 1.09 83.04 ± 1.36 70.47 ± 6.58

Spam

(57, 1813, 2788)

Gini 89.74 ± 1.15 89.01 ± 1.86 87.61 ± 2.05 84.57 ± 1.83 80.8 ± 3.0

RF 92.07 ± 1.1 92.2 ± 0.91 92.06 ± 1.15 91.04 ± 1.95 88.81 ± 1.5

SVM 89.2 ± 1.02 86.41 ± 0.88 82.55 ± 1.72 76.64 ± 2.28 68.02 ± 3.95

Wine (white)

(11, 3258, 1640)

Gini 75.36 ± 0.76 74.72 ± 1.69 73.56 ± 1.34 73.08 ± 1.94 69.4 ± 5.72

RF 76.4 ± 1.38 76.74 ± 1.22 76.45 ± 1.18 74.74 ± 3.27 72.89 ± 1.89

SVM 75.34 ± 0.76 72.43 ± 1.73 71.08 ± 2.0 68.07 ± 2.18 65.24 ± 2.71

Magic

(10, 12332, 6688)

Gini 83.75 ± 0.42 83.58 ± 0.49 82.33 ± 0.56 81.36 ± 1.08 78.0 ± 1.74

RF 85.24 ± 0.58 85.37 ± 0.61 85.3 ± 0.58 84.83 ± 0.71 82.37 ± 1.34

SVM 82.7 ± 0.43 82.24 ± 0.45 81.0 ± 0.34 79.16 ± 0.43 69.5 ± 3.33

5 Conclusion

In this paper, we investigated the robustness of decision tree learning under label
noise. We proved that decision tree algorithms based on Gini or misclassification
impurity and the twoing rule algorithm are all robust to symmetric label noise.
We also provided some sample complexity results for the robustness. Through
empirical investigations we illustrated the robust learning of decision tree and
random forest. Decision tree approach is very popular in many practical appli-
cations. Hence, the robustness results presented in this paper are interesting.
Though we considered only impurity based methods, there are other algorithms
for learning decision trees (e.g., [10]). Extending such robustness results to other
decision tree learning algorithms is an interesting problem. All the results we
proved are for symmetric noise. Extending these results to class conditional and
non-uniform noise is another important direction for future research.

A Proof Sketch of Lemmas 1, 2

Let n+(ñ+) and n−(ñ−) denote the positive and negative samples at the node
under noise-free case (noisy case). Taking positive class as majority, we note
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ρ = (n+ − n−)/n. Using Hoeffding bound it is easy to show Pr[ñ+ − ñ− < 0] ≤
exp

(
−ρ2n(1−2η)2

2

)
. This gives bound for samples needed as n > 2

ρ2(1−2η)2 ln(1δ ),
completing proof of Lemma 1.

Let n, nl, nr be the number of samples at v, vl, vr and recall nl = an and
nr = (1 − a)n. Recall that p̃, p̃l, p̃r are fraction of positive samples at v, vl, vr

and pη, pη
l , pη

r are their large sample values. Then, using Hoeffding bounds we
get (with ε1 = ε, ε2 = ε/

√
a and ε3 = ε/

√
1 − a),

Pr
[(|p̃ − pη| ≥ ε1

) ∪ (|p̃l − pη
l | ≥ ε2

) ∪ (|p̃r − pη
r | ≥ ε3

)] ≤ 6e−2nε2 (5)

When this event happens, with some algebraic manipulation, one can show for
Gini impurity, | ˆgain

η

Gini(f) − gainη
Gini(f)| ≤ 6(1 − 2η)ε where ˆgain

η

Gini is the
random Gini-gain under noise with sample size n and gainη

Gini is its large sample
limit. This gives us the bound as needed in Lemma2. We can prove the lemma
for other criteria also similarly.
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Abstract. The class imbalance problem is a key issue that has received
much attention. This attention has been mostly focused on two-classes
problems. Fewer solutions exist for the multi-classes imbalance problem.
From an evaluation point of view, the class imbalance problem is chal-
lenging because a non-uniform importance is assigned to the classes.
In this paper, we propose a relevance-based evaluation framework that
incorporates user preferences by allowing the assignment of differenti-
ated importance values to each class. The presented solution is able to
overcome difficulties detected in existing measures and increases discrim-
ination capability. The proposed framework requires the assignment of a
relevance score to the problem classes. To deal with cases where the user
is not able to specify each class relevance, we describe three mechanisms
to incorporate the existing domain knowledge into the relevance frame-
work. These mechanisms differ in the amount of information available
and assumptions made regarding the domain. They also allow the use of
our framework in common settings of multi-class imbalanced problems
with different levels of information available.

1 Introduction

The class imbalance problem is a relevant problem with extensive research lit-
erature. It occurs in many application domains like medical, financial, meteo-
rological, and others. Assessing performance in these contexts has been studied
and several metrics were proposed. However, most proposals for this type of
problems are only applicable to binary classification problems [7]. Recently, the
multi-class imbalance problem has received increased attention.

In this paper, we address the key issue of performance assessment for multi-
class imbalanced domains. These domains require special purpose evaluation
metrics that are able to adequately reflect the preference biases of the users
concerning prediction errors. In imbalanced domains, the user is typically more
interested in the minority class(es) while the majority class(es) are usually less
relevant. Therefore, traditionally used measures, such as Accuracy, are not suit-
able for this type of problems due to their inability of taking into account the
user preferences. For multi-class imbalanced domains the few solutions that exist
are essentially extensions of metrics used for the binary case.
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 698–710, 2017.
DOI: 10.1007/978-3-319-57454-7 54
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There is a direct connection between imbalanced domains and cost-sensitive
learning. However, when we face a cost-sensitive problem we have a cost matrix
defined for the task at hand that is used to assess the models performance. The
model with minimum cost (or maximum benefit) is the best. The tasks we are
addressing in this paper are different because there is a class imbalance but no
cost matrix is available. This is the usual setting when dealing with imbalanced
classes. Typically, the only information available regarding the user preferences
is informal and can be expressed as: “the minority class(es) is(are) the most
important one(s)”. This is an important class of applications as it is well known
that cost/benefit information is frequently hard to obtain or simply not available.

When the user preference bias is not uniform across the domain of the target
variable it is important to transfer this information to the evaluation metrics.
We propose a new evaluation framework that incorporates this information. The
proposed measures are based on the existence of different relevance/importance
scores for the problem classes and try to mirror the user preference bias in the
evaluation of the predictions of a model. This means that the same errors made in
two different classes with different importance scores can have different weights in
the final evaluation score. We also propose three mechanisms for estimating the
expected domain preferences in a typical imbalanced multi-class setting. These
mechanisms can be used when the user is not able to precisely specify each
class relevance. The proposed mechanisms differ in the assumptions regarding
the domain and amount of information that the user is able to provide.

The main contributions of this work are: (i) highlight that existing metrics for
handling multi-class imbalanced domains are not always adequate; (ii) propose a
new evaluation framework that accounts for user preferences in multi-class imbal-
anced domains; (iii) propose three mechanisms for estimating the preference bias
in typical multi-class imbalance settings; and (iv) compare the discrimination
capability of existing and new proposed metrics for this problem. This paper
is organized as follows. Section 2 describes existing metrics for handling multi-
class imbalance domains. Section 3 explains why these metrics are unsuitable
for this problem providing three examples where those metrics show unreliable
results. Section 4 presents our framework for performance assessment on multi-
class imbalance problems, and mechanisms to deal with different information
levels. Section 5 evaluates our framework regarding performance and discrimina-
tion capability under different scenarios. Section 6 concludes the paper.

2 Evaluation Metrics for Multi-class Imbalanced Learning

Several metrics have been proposed to evaluate the performance within the prob-
lem of class imbalance for two classes. However, only a few have been successfully
adapted to address the more difficult problem of multi-class imbalanced domains.

Let C represent the total number of classes of a problem. Consider a C × C
confusion matrix, mat, for which matk,l represents the examples of the true class
k that were predicted as class l. For a class i, tpi represents the true positives
for class i; tni are the true negatives for class i, i.e., all the examples that were
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correctly predicted and are not from class i; fpi is the number of false positive for
class i, i.e. all the examples incorrectly predicted as class i, and fni are the false
negatives for class i. We use ti and pi for the total number of true and predicted
examples for class i respectively, i.e., ti = tpi + fni and pi = tpi + fpi. The
indexes M and μ represent respectively a Macro and Micro averaging strategy for
a metric, where the first strategy averages the metric results over all classes while
the second uses the pooled results. With this notation, we define the following
metrics for a class i:

recalli = tpi

ti
(1)

precisioni = tpi

pi
(2)

Fβi = (1+β2)precisioni·recalli
β2·precisioni+recalli

(3)

where β sets the relative importance of recalli in comparison with precisioni.
Table 1 presents a description of the existing metrics for multi-class imbalance

tasks. For a more comprehensive overview, we also include some multi-class
measures which were not specifically developed for imbalanced domains. The
Area Under the ROC Curve (AUC) is not considered in this paper. Although
some attempts have been made to also adapt AUC to a multi-class context [9]
we opted not to include it here for two reasons. The first reason is related to the
demonstrated incoherence of AUC metric [8]. The second reason concerns the
nonexistence of a well-developed ROC analysis for multi-class problems [14].

The metrics described in Table 1 can be clustered into recall-based (MAvG,
RecM , Recμ), precision-based (PrecM , Precμ) or general metrics (AvAcc, FβM

Fβμ, AvFβ , CBA, MCC, RCI and CEN) depending on the information used.
Thus, each type of metric presents a different evaluation perspective. While
recall-based metrics are focused on the true class labels, precision-based met-
rics consider the predicted class labels and the general metrics aggregate both
perspectives into a single value providing a global performance overview. An
alternative solution to Table 1 metrics consist of not aggregating the precisioni,
recalli and Fβi measures. However, this has the disadvantage of generating a
large number of results increasing the complexity of the analysis of the results.

The metrics in Table 1 present differences in both the range of values they
may take and the representation of the best performing classifier. For a straight-
forward comparison we present the metric value and a normalized value. This
normalized value corresponds to the metric value in a percentage, where 0%
matches the worst possible performance and 100% the best.

3 Unsuitability of the Existing Evaluation Metrics

The so-called “imbalanced problems” are based on the assumption that the user
has a differentiated interest in the problem classes. In two-class problems the
user preference bias is, usually, towards the minority class. This also happens in
the multi-class context.
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Table 1. Performance assessment metrics for imbalanced domains with C classes.

Metric Description Definition

AvAcc Classes average accuracy. 1
C

∑C
i=1

tpi+tni
tpi+tni+fpi+fni

MAvG Geometric average of

recall in each class [15].

C
√∏C

i=1 recalli

RecM Arithmetic

macro-average of recall in

each class.

1

C

∑C
i=1 recalli

PrecM Arithmetic

macro-average of

precision in each class.

1

C

∑C
i=1 precisioni

Recμ Arithmetic micro-average

of recall in each class.

∑C
i=1 tpi/

∑C
i=1 ti

Precμ Arithmetic micro-average

of precision in each class.

∑C
i=1 tpi/

∑C
i=1 pi

FβM Mean Fβ measure

evaluated with

macro-averaged precision

and recall [14].

(1 + β2) · PrecM · RecM

β2 · PrecM + RecM

Fβμ Mean Fβ measure

evaluated with

micro-averaged precision

and recall [14].

(1 + β2) · Precμ · Recμ

β2 · Precμ + Recμ

AvFβ Extension for any value

of β of the definition for

F1 measure to multi-class

[4].

1

C

C∑

i=1

(1 + β2) · precisioni · recalli

β2 · precisioni + recalli

CBA Class balance accuracy

[12].

∑C
i=1

mati,i

max
(∑C

j=1 mati,j ,
∑C

j=1 matj,i

)

C

MCC

Matthews correlation

coefficient introduced for

two-class problems and

extended to multi-class

[6,11].

X
Y Z , where X =

∑C
k,l,m=1 (matk,kmatm,l − matl,kmatk,m)

Y =

√
∑C

k=1

(∑C
l=1 matl,k

)
(
∑C

f,g=1
f �=k

matg,f

)

Z =

√
∑C

k=1

(∑C
l=1 matk,l

)
(
∑C

f,g=1
f �=k

matf,g

)

RCI Relative classifier

information [13]

Hd−Ho
Hd

, whereHd = −∑C
i=1

(∑C
l=1 mati,l

C log

∑C
l=1 mati,l

C

)

Ho =
∑C

j=1

(∑C
k=1 matk,j

C Hoj

)

and

Hoj = −∑C
i=1

(
mati,j

∑C
k=1 matk,j

log
mati,j

∑C
k=1 matk,j

)

CEN Confusion entropy [16].

∑C
j=1 (PjCENj) , wherePj =

∑C
k=1 matj,k+matk,j

2∗∑C
k,l=1 matk,l

,

CENj = −
C∑

k=1
k �=j

(P j
j,k

log2(C−1)(P
j
j,k

) + P j
k,j

log2(C−1)(P
j
k,j

))

P i
i,i = 0, P i

i,j = mati,j/
(∑C

k=1(mati,k + matk,i)
)

, i �= j
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Several metrics have been proposed (cf. Table 1) to assess the performance in
multi-class imbalanced domains. We claim that these solutions are not adequate
for these domains because they fail to reflect the user preferences in several
situations and therefore can be misleading. To demonstrate this, we use the
three cases described below. The user can also follow the strategy of observing
each class precision, recall and Fβ . To show this perspective, we also include the
evaluation provided by these measures for each class in the next examples.

Multi-class imbalance problems can be grouped into: multi-minority, multi-
majority and complete. In a multi-minority scenario one class has significantly
more examples than the mean number of examples of all classes, i.e., tmaj >> t̄,
where t̄ =

∑C
i=1 ti/C is the mean number of examples of all classes. On a multi-

majority case a single class is significantly less frequent than the others, i.e.,
tmin << t̄. In the complete case, several classes can have a significantly larger
size than other classes which have a significantly smaller size relatively to t̄.

The cases described below exemplify the depicted scenarios. They illustrate
the unsuitability of the existing metrics and show the need of a more adequate
framework for this context. We assume that the most relevant classes are the
less populated. Tables 2 and 3 describe these cases.

Table 2. Cases 1 to 3 confusion matrix (top) and preci, reci and F1i (bottom).

2esaC1esaC Case 3
preds preds preds

t
r
u
e
s

c1 c2 c3

t
r
u
e
s

c1 c2 c3

t
r
u
e
s

c1 c2 c3 c4
c1 5 0 0 c1 1 0 3 c1 1 3 0 0
c2 0 10 0 c2 0 100 0 c2 9 1 0 0
c3 0 300 0 c3 0 0 200 c3 0 0 100 0

c4 0 0 0 200
Class reci preci F1i Class reci preci F1i Class reci preci F1i

c1 1 1 1 c1 0.25 1 0.4 c1 0.25 0.1 0.14
c2 1 0.032 0.063 c2 1 1 1 c2 0.1 0.25 0.14
c3 0 n. def. n. def. c3 1 0.985 0.993 c3 1 1 1

c4 1 1 1

Case 1: Multi-minority Example - In this case, the two minority classes are
correctly predicted and the majority class is completely mispredicted.
Case 2: Multi-majority Example - In this case both majority classes are
correctly predicted and the minority class is nearly always mispredicted.
Case 3: Complete Example - In this case two majority classes are correctly
predicted while the two minority classes are almost always mispredicted.

Table 3 includes a summary of the misleading metrics for the cases presented.
Generally, we observe that the metrics fail to correctly represent the user prefer-
ences. Either by providing an over- or under-estimated value, the metrics are not
able to correctly incorporate the domain knowledge, and therefore, the results
obtained are not reliable. In more detail, for case 1, MAvG, provides a result
of zero which is clearly not adequate given that both minority classes have a
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Table 3. Performance assessment metrics in Case 1, 2 and 3. N.Val: normalized value;
Ac.: Accordance with user preferences (misleading: ×, suitable: �).

Metric Case 1 Case 2 Case 3

N.Val.(%) Value Ac. N.Val.(%) Value Ac. N.Val.(%) Value Ac.

AvAcc 36.5 0.365 × 99.3 0.993 × 98.1 0.981 ×
MAvG 0.0 0.000 × 63.0 0.630 � 39.8 0.398 �
RecM 66.7 0.667 � 75.0 0.750 × 58.8 0.588 ×
PrecM Not defined × 99.5 0.995 � 58.8 0.588 ×
Recμ 4.8 0.048 × 99.0 0.990 × 96.2 0.962 ×
Precμ 4.8 0.048 × 99.0 0.990 � 96.2 0.962 ×
F1M Not defined × 85.5 0.855 × 58.8 0.588 ×
F1μ 4.8 0.048 × 99.0 0.990 × 96.2 0.962 ×
AvF1 Not defined × 79.8 0.798 × 57.1 0.571 ×
CBA 34.4 0.344 × 74.5 0.745 � 55.0 0.550 ×
MCC 65.1 0.301 � 98.9 0.978 × 96.2 0.923 ×
RCI 36.8 0.368 × 92.6 0.926 × 97.9 0.979 ×
CEN 97.8 0.022 � 98.1 0.019 × 98.5 0.015 ×

perfect score regarding the recall metric, a problem also observed by [12]. The
remaining metrics marked in Table 3 for case 1 are misleading because they
present a normalized value approximately below 45%. In case 2, the minority
and most important class was almost always incorrectly predicted. However, all
metrics, with exception of MAvG, CBA, PrecM and Precμ, over-estimate the
value of the confusion matrix which can be misleading. In case 3 the metrics are
unable to show that both minority and important classes were almost always
incorrectly predicted. Although big mistakes occur on all minority classes, most
metrics normalized value is high or moderate which is misleading.

The cases described show that no metric provides reliable results in all situa-
tions. When the classes have a distinct relevance to the user it is unavoidable to
consider this relevance in the evaluation. Thus, a new framework is required for
embedding the relevance into the existing metrics. This framework should also
be usable when the user has a more informal information. So, mechanisms for
embedding different levels of information provided by the user are necessary.

4 A Framework for Relevance-Based Evaluation

4.1 Relevance-Based Metrics for Multi-class Imbalance Learning

Our proposal is based on the assumption that classes have different relevance for
the user. A certain number of classes may be extremely important while the per-
formance on other classes may be negligible. The key idea is to use the relevance
values as weights for the classes when evaluating the models performance.
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The use of weights is a well-known strategy. However, only two metrics were
proposed using this notion. A weighted macro-averaging recall [2] was proposed
for multi-class although it was only used in binary classification. Moreover, no
guidelines for defining/choosing the weights were provided. A weighted AUC for
multi-class was presented [10], with weights determined by the classes prevalence.

Our relevance-based metrics proposal assumes that the user assigns an impor-
tance score to each problem class. Let us suppose that this domain information
is converted into a function φ() that maps each class into a relevance score in the
interval [0, 1]. The value 0 is assigned to a class with zero relevance, and the value
1 is assigned to a class with maximum relevance to the user. For instance, a rel-
evance function for a four-class problem can be define as: φ(c1) = 0.2, φ(c2) = 0,
φ(c3) = 0.9 and φ(c4) = 1. From this illustrative φ() function, class c1 has a very
low relevance, class c2 is irrelevant, and classes c3 and c4 are very relevant.

Our proposal incorporates the user preference bias, expressed by the defin-
ition of a relevance function, in the metrics definition in the form of weights.
This means that, if a class is very important to the user, then the performance
on that class will also have a large weight in the evaluation. On the other hand,
misclassification errors of less relevant classes have a reduced impact on the final
evaluation. Eqs. 4 to 8 present an adaptation of recall, precision, Fβ − measure
and CBA to incorporate relevance.

Recφ = 1
C∑

i=1
φ(i)

C∑

i=1

φ(i) · recalli (4)

Precφ = 1
C∑

i=1
φ(i)

C∑

i=1

φ(i) · precisioni (5)

Fφ
β = (1+β2)·Precφ·Recφ

(β2·Precφ)+Recφ (6)

AvFφ
β = 1

C∑

i=1
φ(i)

C∑

i=1

φ(i)·(1+β2)·precisioni·recalli
(β2·precisioni)+recalli

= 1
C∑

i=1
φ(i)

C∑

i=1

φ(i)·(1+β2)·tpi

β2·ti+pi (7)

CBAφ =
C∑

i=1

φ(i) · mati,i

max

(
C∑

j=1
mati,j ,

C∑

j=1
matj,i

) (8)

where φ(i) is the relevance of class i; ti and pi are the total number of true and
predicted examples for class i; and tpi is the number of true positives for class i.

With this framework we obtain the three evaluation perspectives: recall-
based, precision-based and general measures. These metrics were selected
because they cover all perspectives under a simple formulation.

4.2 Mechanisms for Relevance Estimation

The above evaluation framework depends on the availability of domain informa-
tion regarding the classes relevance. However, this information may exist with
different levels of detail. We will consider 4 types of information:
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– Informal: characterized by completely informal domain knowledge. This is
typical in imbalanced domains where no quantification regarding the impor-
tance of each class exists. Frequently, it is only stated that “the minority
classes are the most important”. This creates serious problems to the perfor-
mance evaluation because the user does not specify the classes non-uniform
importance.

– Intermediate informal: more information available although very limited.
We assume the user provides a partial order of the classes by their importance.

– Intermediate formal: more complete information available. We consider
that the user is able to provide a total order of the classes.

– Formal: the user provides a full specification of the relevance function.
Although being the ideal setting, this is not so common in real world domains.

We will present mechanisms to estimate the relevance function from these
different levels of available information. If the user fully specifies the relevance
function (formal level) no mechanism is needed. To denote this situation we will
add φ to the metrics name. The proposed mechanisms are pertinent because for
most imbalance domains the full relevance function is unknown. Our goal is to
incorporate the available domain knowledge in the evaluation framework.

Informal Level - Using Classes Prevalence (PREV)
When no preferences regarding the domain are provided, it is possible to use the
observed frequency of the classes to obtain valid relevance scores. Our proposal
sets the relevance of a class to be inversely proportional to its observed frequency
in the available data:

φ̂(i) = 1/ti∑C
i=1 1/ti

(9)

where ti is class i total number of examples. Using the estimated relevance we
may obtain any of the proposed relevance-based metrics. We stress that the use
of this method is not mandatory for applying our framework, provided that the
user gives more domain information or specifies a relevance function.

Intermediate Informal Level - Using Classes Partial Order (PO)
A partial order specifies a binary relation which may hold between some pairs of
classes. This relation is denoted as c1 < c2 and is read as “c1 precedes c2”. In the
context of relevance-based metrics, the relation c1 < c2 represents that c1 has a
lower relevance value than c2, i.e. c1 is less important than c2. The relation is
named partial because it does not provide a full relation between all the classes,
i.e., there are pairs of classes named incomparable because the relation between
both was not specified. More details regarding partially ordered sets can be
obtained in [3]. Figure 1 shows on the left side an example of a partial order
on a problem with 7 classes. Several studies have been conducted to estimate
rankings from a partial order (e.g. [1]). However, as far as we known, no attempt
has been made to use the partial order of classes to estimate their relevance. The
main advantage of this method is that it is less demanding for the user when
compared to a full specification of the relevance function. Moreover, to use a
partial order of classes is preferable to not having any information at all.
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Fig. 1. An example of a partially ordered set (left hand side) and the construction of
a LPOM for class E (right hand side).

To estimate the classes relevance using a partial order we will apply the US-
model [1]. This method builds a Local Partial Order Model (LPOM) for each
class. A LPOM for a class node X represents all the successor (S), predecessor
(P) and incomparable (U) nodes in relation to X. Then, the estimated average
rank of node X is defined as Rank(X) = (|S|+1)+(|S|+1+|U |)

2 = |S| + 1 + |U |
2 .

Figure 1 (on the right) shows the LPOM for node E. In this example node E
has 2 successors (nodes A and C), 1 predecessor (node D) and 3 incomparable
nodes (B, F and G). Node E ranking, according to the proposed US-model, is
Rank(E) = 4.5. Our proposal, uses the classes ranks derived from the partial
order provided by the user and estimates the relevance of each class i as follows:

φ̂(i) = Rank(i)
max∀i∈C Rank(i) (10)

Intermediate Formal Level - Using Classes Total Order (TO)
This mechanism is similar to the previous one, but now the user is required to
provide a total order of the problem classes. This is a more demanding task
for the user because no pair of classes can remain incomparable. Still, it is less
demanding than fully specifying the relevance function. Given a total order,
only the magnitude of the classes relevance remains unspecified. We use the US-
model [1] previously used in PO mechanism. For a node X, Rank(X) = |S| + 1
because X has no incomparable nodes. The relevance is estimated with Eq. 10.
The φ() function values are equidistant and range from 1

C to 1, where C is the
number of classes. The metrics obtained by each described mechanism, have
respectively PREV , PO and TO appended to their name.

4.3 Implementation Issues

To maximize the number of valid results supplied by the metrics, we exclude
from the calculations of precision and recall-based metrics, all classes i for which
recalli or precisioni are not defined and use the AvFφ

1 extension presented in
Eq. 7. This way, we can always obtain Recφ, Precφ and Fφ

1 and maximize the
number of obtained results for AvFφ

1 . With the extension proposed in [5] AvFφ
1

is only undefined when class i has neither true values nor predictions. To allow
a fairer comparison we also applied these strategies to existing metrics.
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5 Experimental Evaluation

5.1 Agreement with User Preferences

We will now present the performance of the proposed metrics in the cases
described in Sect. 3. Table 4 provides the user-defined relevance and also the rele-
vance inferred from a simulation of incomplete user information using the mech-
anisms defined in Sect. 4.2. The performance results are shown in Table 5. Gener-
ally, we observe that the metrics considering the proposed evaluation framework
are able to overcome the difficulties detected on the other existing metrics. The
new metrics are capable of reflecting the user preferences independently of the
level of information considered. It is noteworthy that for the most informal levels
of information (PREV and PO) the results obtained for all the cases are prefer-
able to those of the other existing metrics. Moreover, the results become more
adjusted to the user preferences with the increase of the information level. In
summary, all the proposed mechanisms show results that are more in accordance
with the user preferences than the previous existing metrics.

Table 4. Case 1, 2 and 3 information for each mechanism.

Case 1 Case 2 Case 3

φ(c1) φ(c2) φ(c3) Order φ(c1) φ(c2) φ(c3) Order φ(c1) φ(c2) φ(c3) φ(c4) Order

PREV 0.66 0.33 0.01 0.94 0.04 0.02 0.64 0.32 0.03 0.02

PO 1 1 0.4 c3 < c1 1 0.5 0.5 c3 < c1 1 0.86 0.57 0.42 c3 < c1
c4 < c1

c3 < c2 c2 < c1 c4 < c2

TO 1 0.67 0.33 c3 < c2 < c1 1 0.67 0.33 c3 < c2 < c1 1 0.75 0.5 0.25 c4 < c3 <

c2 < c1

φ 1 0.9 0.1 1 0.2 0.1 1 0.9 0.2 0.1

We also tested the proposed metrics on 16 real world data sets1. Although we
observe differences in the metrics results, it is not possible to assess the agreement
with the user preferences because, in this case, we lack a ground truth.

5.2 Discrimination Capability

In this section we assess how well the metrics recognize different situations
expressed in the confusion matrix. We consider problems with 3 or 4 classes
and determine the percentage of different scores obtained by each metric in all
possible confusion matrices for a problem.

We tested the multi-minority, multi-majority and complete scenarios, with
problems with 3, 3 and 4 classes respectively. A problem with 3 classes with i,
j, and k examples is denoted by i − j − k. For instance, problem 2-4-15 has 2, 4

1 The experimental framework, code and results of this evaluation is available in
https://github.com/paobranco/Relevance-basedMulticlassImbalanceMetrics.

https://github.com/paobranco/Relevance-basedMulticlassImbalanceMetrics
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Table 5. Performance assessment metrics normalized value for Cases 1, 2 and 3 (in
bold: values in accordance with user preferences).

Metric
Case

Metric
Case

Metric
Case

1 2 3 1 2 3 1 2 3

AvAcc 36.5 99.3 98.1 RecP REV 98.9 29.2 24 RecT O 83.3 62.5 43

MAvG 0 63 39.8 PrecP REV 67.7 100 17.8 PrecT O 61.3 99.8 41.5

RecM 66.7 75 58.8 FP REV
1 80.4 45.3 20.4 FT O

1 70.6 76.9 42.2

PrecM 34.4 a 99.5 58.8 AvFP REV
1 68 43.4 17.8 AvFT O

1 52.1 69.9 40

Recμ 4.8 99 96.2 CBAP REV 67 29.2 13.7 CBAT O 51.1 62.3 37

Precμ 4.8 99 96.2 RecP O 83.3 62.5 46.7 Recφ 95 42.3 29.1

F1M 45.4 a 85.5 58.8 PrecP O 51.6 99.6 46 Precφ 54.2 99.9 28.4

F1μ 4.8 99 96.2 FP O
1 63.7 76.8 46.4 Fφ

1 69 59.4 28.7

AvF1 35.4 a 79.8 57.1 AvFP O
1 44.3 69.8 44.3 AvFφ

1 52.8 53.8 26

CBA 34.4 74.5 55 CBAP O 43 62.1 41.5 CBAφ 51.5 42.2 22.3
MCC 65.1 98.9 96.2
RCI 36.8 92.6 97.9
CEN 97.8 98.1 98.5
a Evaluated using the strategies described in Section 4.3

and 15 examples of classes c1, c2 and c3. We tested multi-minority (i−j−k) and
multi-majority (i − k − l) problems with i ∈ {2, 3}, j ∈ {4, 5}, k ∈ {15, 16} and
l ∈ {17, 18}. We only analysed problems 2-3-9-10 and 2-3-9-11 on the complete
scenario due to the exponential number of confusion matrices generated.
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Fig. 2. Differences in the percentage of discrimination achieved between existing and
corresponding proposed metrics in each scenario.

Figure 2 shows the difference between the discrimination percentage of pairs
of metrics (a relevance-based metric and an existing metric). Relevance-based
metrics achieve a higher discrimination capability when compared to their corre-
sponding initial proposals. Only metrics based on recall and CBA present some
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difficulty in improving the discrimination capability where we obtain differences
of zero or negative in 5% and 2% of the results respectively. The results show
that the proposed evaluation framework is able to better discriminate different
setups in multi-class imbalanced problems. In summary, our experiments show
that our proposal provides an enhanced discrimination capability and results
more in accordance with the user preferences.

6 Conclusions

Class imbalance is a problem appearing in many relevant application domains.
Performance assessment under this situation is a key issue that has been
addressed, mainly, for the two-classes case. For the multi-class imbalance prob-
lem, only a few solutions exist. We have shown that existing metrics for
multi-class imbalance domains are not adequate in certain cases. We propose
a new relevance-based evaluation framework that integrates the notion of a
non-uniform importance across the target variable domain through a relevance
function.

The evaluation of imbalanced domains is still an open issue in two-classes
and multi-class problems. Relevance-based metrics are suitable for evaluating
predictive tasks on imbalanced domains because they are able to reflect the user
preferences. Such metrics easily adapt to different types of domain knowledge.
We provide three mechanisms to facilitate the users task of embedding domain
knowledge into the proposed relevance framework for performance assessment.
This integration boosts the capability of correctly reflecting the performance of
cases that other measures are not able to capture. We also show that these met-
rics present an enhanced discrimination capability. For reproducibility purposes,
all the code used in this paper is available in https://github.com/paobranco/
Relevance-basedMulticlassImbalanceMetrics.
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Abstract. Based on the growing popularity of smart mobile devices,
location-aware services become indispensable in human daily life. Loca-
tion prediction makes these services more intelligent and attractive. How-
ever, due to the limited energy of mobile devices and privacy issues, the
captured mobility data is typically sparse. This inherent challenge dete-
riorates significant principles in mobility modeling, i.e. temporal regu-
larity and sequential dependency. To tackle these challenges, by utilizing
temporal regularity and sequential dependency, we present a location
prediction model with a two-stage fashion. Firstly, it extracts predictive
features to effectively target the better performer from sequential and
temporal models. Secondly, according to the inferred activity, it adopts
non-parametric Kernel Density Estimation for posterior location predic-
tion. Extensive experiments on two public check-in datasets demonstrate
that the proposed model outperforms state-of-the-art baselines by 10.1%
for activity prediction and 12.9% for location prediction.

Keywords: Location prediction · Activity prediction · Mobility mod-
eling · Context-Aware Hybrid approach · Kernel Density Estimation

1 Introduction

With the ubiquity of smart mobile devices and the development of position-
ing technology, an overwhelming number of location-aware services have gained
increasing popularity in recent years. These services have offered an unprece-
dented opportunity for both academia and industry to study human mobility
behavior with access to various kinds of data, such as GPS trajectories, WiFi
records, cellular phone logs, smart card transactions and social network check-
ins, etc. They also shed light on a myriad of potential applications like user
profiling, location understanding, urban planning and mobility modeling [11,19].

Among them, location prediction plays a key role. Generally, scholars handle
this task with two-broad-category approaches, sequential modeling and tempo-
ral regularity modeling. Viewing that user activity serves as mobility motiva-
tion, activity prediction [5,8,9,16,17] is introduced as auxiliary to reduce vast
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location candidate space (million magnitude from population level and thou-
sand magnitude from individual level). Unfortunately, many unresolved difficul-
ties remain tough in location prediction: (1) Sensitive to sequential dependency,
sequential models [1,3,7,16] deteriorate when the timespan of consecutive mobil-
ity records being far like days or even months [3,15]. This is often the case due
to device energy limitation and user privacy concern. (2) Temporal model per-
forms poorly at night or during weekends [13] owing to decayed regularity; (3)
Even for the same activity purpose, people still conceive different preferences
under different contexts. E.g., at midnight, Alice would buy snacks from 7-Eleven
near home, instead of Stop&Shop where she usually visits in the daytime. One
thing worth noting is that these three problems are non-trivial. Simply take the
last example for illustration. Because of data sparsity, directly estimating the
user location preference for the specific time is obsessed with under-fitting. In
addition, “contexts” are highly diversified and even only for the time context,
modeling “location open hour”, “user rest period”, etc. simultaneously can be
overwhelming.

In this paper, we tackle above challenges by decomposing location predic-
tion into two subtasks [5,8,16], user activity inference and location inference
based on activity. For activity inference, sequential and temporal models can
fit respectively. However, as previously indicated, both are ineffective in cer-
tain circumstances. Here we design a Context-Aware Hybrid (CAH) module to
integrate temporal regularity and sequential dependency models dynamically.
More specifically, a set of elaborate evaluation features (e.g. density of recent
records, regularity strength of user historical activities) are extracted as context
features and based on that, a supervised classifier is applied to select the bet-
ter performer between sequential and temporal models. For location inference,
we adopt a time-aware approach for posterior location distribution calculation.
Technically, instead of employing parameterized models which usually fall into a
training dilemma, Kernel Density Estimation is applied to capture the visit time
distribution at specific locations. Last but not the least, we summarize these two
phases to leverage final location prediction.

Our main contributions are summarized as follows:

1. With a set of features assessing the performance of sequential and temporal
models, we develop a Context-Aware Hybrid approach to combine them for
user activity prediction.

2. We introduce Kernel Density Estimation to model the time variation of loca-
tion preference for a given user, and construct a two-stage model to predict
future locations based on the inferred activity.

3. The experimental results on two public datasets validate that our model sig-
nificantly outperforms state-of-the-art baselines in terms of both activity pre-
diction accuracy and locations prediction accuracy.

The rest of paper is structured as follows: Sect. 2 reviews related mobility
prediction works. Section 3 formulates the prediction problem and introduces
the notations. Our proposed model is presented in Sect. 4. Experimental results
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based on two real world public datasets are presented in Sect. 5. Finally, the
conclusion, limitation and future work outlook are offered in Sect. 6.

2 Related Work

2.1 Mobility Pattern Model

We categorize relevant mobility prediction models into sequential model, tem-
poral model and hybrid model.

Sequential Model. Song et al. [12] found that Order-2 Markov with fall-
back had the best performance on the location prediction. Applied in mobil-
ity prediction by Cheng et al. [1], Factorizing Personalized Markov Chain
extended the Markov Chain via factorization of transition matrix. Zhang
et al. [18] extracted users’ mobility sequential pattern from historical check-
ins as a Location-Location Transition Graph. The problem of sequential models
lies in that when adjacent mobility records gap for a long time like several days
or even months, the performance becomes undesirable [1,3].

Temporal Model. Cho et al. [2] proposed a time-aware Gaussian Mixture
model combining periodic short-range movements and sporadic long-distance
travels. Wang et al. [13] provided a Regularity Conformity Heterogeneous (RCH)
model to predict user location at specific time, considering both the regular-
ity and conformity. Yang et al. [15] employed a Tensor Factorization model to
capture the user temporal activity preference. However, these methods depend
heavily on temporal regularity and data with decayed mobility regularity (e.g.
at night or during weekends) leads to low accuracy [13].

Hybrid Model. Lian et al. [6] incorporated Markov model and temporal
regularity model into the hidden Markov framework to predict user regular
locations. This method suffered the same drawback as sequential model. Feng
et al. [3] developed Personalized Ranking Metric Embedding (PRME) method to
balance sequential dependency and user preference, by a threshold of transition
timespan. PRME ignored the temporal regularity and a fix threshold cannot sat-
isfy all the scenarios. In contrast to these methods, the proposed CAH approach
combine temporal and sequential models flexibly depending on mobility context.

2.2 Location Prediction with Activity Information

Some researchers exploited activity information to improve the location pre-
dictability [5,8,9,16,17]. Noulas et al. [9] captured factors driving user move-
ments, including the activity preference and activity transition. Yuan et al. [17]
came up with a unified model W 4 (who, when, where, what) to discover individ-
ual mobility behaviors from spatial, temporal and activity aspects. Ye et al. [16],
Li et al. [5] and Liu et al. [8] modeled activity sequential pattern, and predicted
locations based on above activity. However, none of them absorb temporal and
sequential model simultaneously to infer user activity preference.
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In addition, given the activity distribution, Yuan et al. [17] and Li et al.
[5] assumed the user location preference followed multinomial distribution. Ye
et al. [16] ranked locations based on check-in frequency. Liu et al. [8] applied
Matrix Factorization to predict user preference of specific locations. However,
these methods fail to capture the time variation of user location preference.
Instead, we adopt a generative approach to model the time variation pattern.

3 Problem Formulation

Let V = {v1, v2, . . . , v|V|} and C = {c1, c2, . . . , c|C|} represent locations and cate-
gories. Each location belongs to a certain category indicating the activity purpose
of users. Given a set of users U , each mobility record can be defined as a quadru-
ple r = (u, v, c, t), representing that user u visits location v at time t for activity
c. Here, for the ease of calculation, t is discretized from continuity to discrete by
24 h. Our goal is to predict user u’s next location v̂, given the next visit time t̂
and the recent visit sequence before t̂, τu

t̂
.

4 Methodology

4.1 Overview

We construct a two-stage model to predict activities and locations. The overall
framework of the proposed model is presented in Fig. 1(a). It consists of two
stages for activity and location prediction respectively and each stage incorpo-
rates offline model training and online prediction. In the first stage, Context-
Aware Hybrid (CAH) approach is adopted to dynamically select the better per-
former from sequential and temporal models for activity prediction, i.e. inferring
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Pu(c|τu
t̂
, t̂). In second stage, based on inferred user activity, Kernel Density Esti-

mation is exploited to approximate Pu(v|c, τu
t̂
, t̂). Finally, location prediction is

achieved by v̂ = arg max
v

Pu(v|τu
t̂
, t̂), where

Pu(v|τu
t̂
, t̂) =

∑

cj

Pu(v|cj , τ
u
t̂
, t̂)Pu(cj |τu

t̂
, t̂) = Pu(v|cv, t̂)Pu(cv|τu

t̂
, t̂) (1)

Note that during the second phrase, we ignore the sequential pattern of loca-
tion by simplifying Pu(v|cv, τu

t̂
, t̂) to Pu(v|cv, t̂). The reason is that the sequential

dependency of the user mobility has been captured in the first stage. Although
the geo-distance may influence user location preference, introducing distance
does not significantly improve the prediction performance [6], due to the highly
uncertain timespans between adjacent records and the convenient transportation
in the modern world.

Figure 1(b) shows specific details of Context-Aware Hybrid module. We par-
tition the training data into training set 1 and training set 2. The former is
utilized for learning sequential and temporal models, and the latter is employed
to evaluate the performances of them. In this work, we assign Tensor Factor-
ization as temporal model and smoothed Order-1 Markov Chain as sequential
model. With features of user contextual and historical factors and labels of the
better performer between sequential and temporal models, we build a binary
classifier for online prediction.

4.2 User Activity Prediction

Sequential Model. Markov model has been proved effective in mobility pre-
diction [12]. Due to the data sparsity, we filter the transitions with timespans
larger than threshold ε, and merely consider Order-1 Markov Chain. The tran-
sition probability is estimated by Kneser-Ney smoothing technique [6]. In par-
ticular, let nu

ε (ci, cj) indicate the times of user u transferring from activity ci to
cj within ε. The transition probability is derived as:

Pu(cj |ci) =
max{nu

ε (ci, cj) − δ, 0}∑
k nu

ε (ci, ck)
+

δ
∑

k I{nu
ε (ci, ck) > 0} · ∑

k I{nu
ε (ck, cj) > 0}∑

k nu
ε (ci, ck) · ∑

k

∑
l I{nu

ε (cl, ck) > 0}
where I{·} is an indicator function and δ is the discount parameter. The basic
intuition of this equation is to discount the observed times of transition from ci

to cj , and turn them over to low frequency transitions.

Temporal Model. We adopt the non-negative Tensor Factorization (TF)
method for inferring the activity preference at specific time [15]. A user-time-
activity tensor T ∈ R

|U|×24×|C| is built, in which the element Tu,h,c equals to
the frequency of activity c at hour of day (HOD) h by user u. Using Canoni-
cal decomposition model [4], T is decomposed into three matrices, user feature
matrix Û ∈ R

|U|×L, time feature matrix T̂ ∈ R
24×L, and activity feature matrix
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Â ∈ R
|C|×L (L is the latent space dimension). User u’s preference of activity c

at h could be described as: Prefu,h,c =
∑L

i=1

∑L
j=1

∑L
k=1 Ûu,i · T̂h,j · Âc,k. For

user u, the probability of activity c given time t is formulated as follows, where
th is HOD of t.

Pu(c|t) =
Prefu,th,c∑

c′∈C Prefu,th,c′
(2)

Context-Aware Features Extraction. Given the Markov and TF models,
we extract several kinds of features determining the accuracies of these two
models, including temporal contextual features, sequential contextual features
and historical features.

Temporal Contextual Features: This group of features refer to factors severely
affecting temporal model at next visit HOD h, i.e. temporal regularity
strength and data density at h. (1) Temporal regularity strength determines
the limit of predictability, measured by entropy [11], defined as: H(Z) =
−∑

i P (zi) log P (zi) over random variable Z. We introduce random variable
Au

h, activity at h of user u, whose entropy H(Au
h) can be calculated based on

u’s history records Γu. Moreover, the number of distinct activities at h in Γu,
correlating with H(Au

h), is also considered here, signified by Nu
a (h). (2) Data

density is represented by Nu
r (h), the number of history records at h of user u. In

summary, H(Au
h), Nu

a (h) and Nu
r (h) constitute temporal contextual features.

Sequential Contextual Features: The accuracy of sequential model depends on
contexts of user recent records, i.e. the timespan and recent record frequency.
(1) Timespan feature: As the sequence dependency decays over time, Du

1 (t̂), the
interval between t̂ and nearest record time of user u, is introduced to model
it. (2) Recent record frequency features: Data sparsity means missing latest
activities and reduced performance of sequential model. Thus we propose two
features: the length of Su

t̂
, the longest mobility sequence ending by t̂, satisfying

that timespans between any adjacent records is less than ε; Du
2 (t̂), the timespan

between t̂ and the earliest record time in Su
t̂
. In summary, we use Du

1 (t̂), Du
2 (t̂),

|Su
t̂
| as sequential contextual features.

Historical Features: From the whole mobility historical sequences, we consider
user specific features (independent of context) of temporal regularity, sequential
dependency and activity regularity strengths. (1) User specific temporal regular-
ity strength is defined by Eh(Nu

a (h)) and Eh(H(Au
h)), where Nu

a (h) and H(Au
h)

are defined above, and Eh(Y ) =
∑24

i=1 Pu(hi)Y (hi). (2) User specific sequential
dependency strength is captured by Ec(Mu

a (c)) and Ec(H(Au
c )), where Mu

a (c)
is the number of distinct activities of u after activity c, Au

c is a random variable
of the activity for user u after activity c, and Ec(Y ) =

∑
i Pu(ci)Y (ci). (3) User

specific activity regularity strength is measured by the number of distinct activ-
ities Nu and the activity entropy H(Au) in history records Γu, where Au is a
random variable of the activity for user u. In summary, the historical features
include Eh(Nu

a (h)), Eh(H(Au
h)), Ec(H(Au

c )), Ec(Mu
a (c)), Nu and H(Au).
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Context-Aware Hybrid. Given the user u, the visit sequence τu
t̂

and the next
activity time t̂, feature vector X is calculated as mentioned before. We build a
binary classifier to target at the better performer between TF and Markov mod-
els, taking feature vector X as input. Let positive class represent that Markov
model is more effective, then Pu(ci|τu

t̂
, t̂) is estimated as follows, where cn is the

latest activity in τu
t̂

and y is the output of classifier:

Pu(ci|τu
t̂
, t̂) =

{
Pu(ci|cn), if y = 1
Pu(ci|t̂), if y = −1

(3)

We split user u’s history records Γu into two parts, Γ
(1)
u for training Markov

and TF models, and Γ
(2)
u for training the classifier. For the record r : (u, tr, cr, vr)

in Γ
(2)
u , let Rankm(cr) represent the probability rank of actual activity cr gener-

ated by Markov model, and Rankt(cr) is the probability rank generated by
TF model. Then the record can be labeled as positive or negative depend-
ing on the sign of Rankt(cr) − Rankm(cr). However, apart from contextual
and historical features, the capacity of these two models may also be slightly
affected by some random factors, such as the stochastic error. When the Markov
and TF models perform similarly on the activity prediction, these random
errors lead to wrong labeling. Therefore, we only take the records satisfying
|Rankt(cr)−Rankm(cr)| > ξ as training examples of the classifier. ξ is called fil-
tering parameter. At last, considering that the numbers of positive and negative
examples may be unbalanced, we set the negative-rate of training examples as
the weight of positive class and the positive-rate as the weight of negative class.

4.3 User Location Prediction

As we have discussed in Sect. 1, the user preference of specific location changes
over time. Without sufficient training data, directly estimating the probability
Pu(v|t, cv) leads to the under fitting problem. The generative approach is more
effective to address this missing data situation than the discriminative approach.
If the time variation pattern of the user location preference could be modeled as
probability distribution Pu(th|v), we can approximate the probability of location
v to be visited at time t as follows, where th is the HOD of t:

Pu(v|t, cv) =
Pu(th|v)Pu(v)∑

v′∈cv
Pu(th|v′)Pu(v′)

(4)

However, the time variation pattern varies from location to location. For exam-
ple, some restaurants have three peak periods in a day including breakfast time,
lunch time and dinner time, while some other restaurants only focus on dinner
time. Due to this case, we perform non-parametric Kernel Density Estimation
to reckon Pu(th|v), which is widely used to estimate the shape of unknown prob-
ability density. The density of location v at th is formulated by

Pu(th|v) =
1

nhd

n∑

i=1

K

(
Δ(th, hi)

d

)
(5)
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where Δ(th, hi) = min(|th − hi|, 24 − |th − hi|) is the interval between HOD th
and hi, K(·) is the kernel function, d is the bandwidth, and nh is the number of
distinct record hours on this location.

5 Experiments

5.1 Datasets

We evaluate our model on public check-in datasets in two big cities (New York
and Tokyo), collected by Yang et al. [15]. In these two datasets, check-in records
last from Apr 2012 to Feb 2013, and locations are classified into 251 categories.
The statistics description is shown in Table 1. We do not study other public
datasets due to the lack of activity information, such as the Gowalla dataset [2].

Table 1. Datasets statistic

#User #Location #Check-in #Location
per user

#Category
per user

NYC 1,083 38,333 227,420 84.04 40.22

TKY 2,293 61,858 573,703 92.43 32.40

5.2 Experiment Setting

Evaluation Plan. In the following experiments, we set the proportion of train-
ing set Γ

(1)
u , Γ

(2)
u and test dataset as 7:2:1. For more convincing results, we repeat

each experiment 10 times and take the average of metrics into comparison.

Parameter Setting. We set the timespan threshold ε as 6 h following the
empirical rule [1,3], and the discount parameter as empirical formula δ = n1

n1+2n2
(n1 and n2 are the number of one-time transitions and two-times transitions)[6].
The latent space dimension L of TF model is recommended as 64 on these
datasets by Yang et al. [15]. We select the standard normal kernel function and
rule-of-thumb bandwidth d = (4σ̂/3n)

1
5 ≈ 1.06σ̂− 1

5 for KDE [10]. We study the
effect of filtering parameter ξ in Sect. 5.3 and set it as 60.

5.3 Activity Prediction Evaluation

Effect of Features and Parameters. Firstly, we study the performance of
binary classifier with different features. After attempting several methods such
as logistic regression, decision tree and SVM, we apply the one with high perfor-
mance and low training cost: Classification and Regression Tree (CART). The
classification performance is measured by accuracy Acc and weighted average
F-score F , following [14].

The classification performance evaluation based on different feature groups
is shown in Table 2, where Seq, Tem and His are the abbreviation of sequential
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Table 2. Features evaluation

Seq Tem His His+Seq Tem+His Tem+Seq All

Acc of NYC 0.7154 0.7440 0.7511 0.7587 0.7534 0.7570 0.7593

F of NYC 0.7362 0.7677 0.7794 0.7701 0.7747 0.7666 0.7803

Acc of TKY 0.6822 0.7040 0.6998 0.7044 0.7054 0.7062 0.7158

F of TKY 0.6719 0.7022 0.6719 0.7074 0.7019 0.7029 0.7150

contextual features, temporal contextual features and historical features. We can
observe that every paired feature groups combination outperforms the individual
one, and combining all the features gets the best performance, implying that all
three feature groups are effective and necessary.

Figure 2(a) describes the importance of features. Sequential contextual fea-
tures and the sequential entropy take a larger proportion in TKY dataset. One
possible reason is that the sequence regularities of users are stronger in TKY
dataset, which makes sequential model more important in CAH approach.

feature

Overall act.
Act. entropy
Act. per hour
Tem. entropy
Avg. next act.
Seq. entropy
Freq. of hour
Act. of hour

Entropy of hour
Time interval 1
Time interval 2
Record density TKY

NYC

0.00 0.05 0.10 0.15 0.20

(a) Feature Importance (b) Effect of ξ

Fig. 2. Feature importance and parameter effect

Besides, Fig. 2(b) reports the effect of filtering parameter ξ. As ξ increases,
the labels of training examples become more credible. Thus the performance
gets better when ξ varies from 0 to 60. However, there is a negative correlation
between ξ and the number of classifier training examples. Owing to the insuffi-
ciency of training examples, the classification accuracy will fall back when ξ is
bigger than 60.

Activity Prediction. After training the classifier, we apply the most frequently
used metric of mobility prediction performance, Acc@topk, to contrasting the
performance of proposed CAH approach with following 5 baselines:

1. Most Frequent: This method assigns the most frequent activity of user u at
time t as the result of prediction.

2. Fallback Markov: Order-2 Markov with fallback has been utilized widely in
mobility prediction on GPS trajectories and WiFi network [12].
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3. Smooth Markov and Tensor Factorization: The sequential and temporal mod-
els we used, which have been introduced in Sect. 4.2.

4. HMM of CEPR: This model integrates temporal regularity and Markov mod-
els into a hidden Markov framework [6].

(a) NYC dataset (b) TKY dataset

Fig. 3. Acc@topk of activity prediction

Figure 3 shows the top-k (k = 1, 2, 3, 4, 5) accuracy of activity prediction.
It can be observed that (1) the proposed Context-Aware Hybrid (CAH) app-
roach achieves the highest accuracy for all k values, and outperforms Smooth
Markov and Tensor Factorization models by a large margin. In particular, when
we choose the activity with the maximum probability as the prediction result,
the CAH approach shows at least 10.1% and 15.7% improvement over any
other method on NYC dataset and TKY dataset; (2) As the prediction list
size k increases, the performance gaps between CAH and some baselines become
smaller, such as HMM and TF. This result is not surprising since a user usually
prefer about 30–40 activities according to Table 1. In addition, it is clear that a
large prediction list size k is meaningless for practical applications, thus getting
higher accuracy with a small k is much more valuable.

5.4 Location Prediction Evaluation

For location prediction evaluation, we use the same metric as activity prediction
(i.e. Acc@topk) and study following methods for comparison:

1. Most Frequent: Returning the most frequent locations of user as result.
2. KDE: Predicting locations only with generative method of the second stage,

without the first stage.
3. PRME: This method [3] constructs a metric embedding model to balance

sequential information and individual preference.
4. HMM of CEPR: We provide two versions of this approach. HMM represents

the original approach of [6], predicting locations without activity information.
HMM&KDE uses the hidden Markov framework of [6] to predict activities
and the proposed generative approach to predict locations.
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5. CAH&Rank/CAH&MFT: We apply other two methods to predict user
future location based on CAH’s results. CAH&Rank ranks locations by over-
all frequency [16]. CAH&MFT(Most Frequent of Time) directly estimates
Pu(v|t, cv) based on frequency of location v at time t by user u.

6. CAH&KDE: The integrity version of the proposed model in this article.

top k
10 20 30 40 50

MF
PRME
KDE

HMM
HMM+KDE
CAH+MFT

CAH+Rank
CAH+KDE

0.0

0.1

0.2

0.3

0.4

0.5

Accuracy

(a) NYC dataset

top k
10 20 30 40 50

MF
PRME
KDE

HMM
HMM+KDE
CAH+MFT

CAH+Rank
CAH+KDE

0.0

0.1

0.2

0.3

0.4

0.5

Accuracy

(b) TKY dataset

Fig. 4. Acc@topk of Location Prediction

Figure 4 depicts the Acc@topk (k = 10, 20, 30, 40, 50) of above methods. We
can learn from that: (1) the integrity version of the proposed model (CAH&KDE)
gets the best results for all the k values. Specifically, it shows 12.9% and 14.4%
improvement over HMM of CEPR and 28.7% and 20.1% improvement over
PRME, when k = 10; (2) the proposed generative approach (CAH&KDE)
outperforms any other location prediction method based on CAH’s results(i.e.
CAH&Rank/CAH&MFT). Note that CAH&MFT gets the worst result, which is
in line with the discussion in Sect. 4.2; (3) the performances of CAH&KDE and
HMM&KDE are obviously better than KDE and HMM, implying that exploiting
activity information facilitates location prediction. In addition, it also proves, to
some extent, our two-stage framework is suitable for other activity prediction
approaches; (4) the comparison of CAH&KDE and HMM&KDE indicates that
improving activity prediction accuracy is beneficial to location prediction.

6 Conclusion

In this article, we propose a two-stage method to predict locations. In the first
stage, we study the contextual and historical features that impact the prediction
accuracy of sequential and temporal models, then we adopt a binary classifier
to switch between these two models depending on predicting context. In the
second stage, Kernel Density Estimation is performed to capture the time vari-
ation of the user location preference. Based on the evaluation results, our model
significantly outperforms existing approaches.
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Several interesting future directions exist for further exploration. For exam-
ple, the sequential dependency and temporal regularity of user activities may
affect each other, which makes it possible to improve the predictability.
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Abstract. The “rich get richer” effect is well-known in recommendation
system. Popular items are recommended more, then purchased more,
resulting in becoming even more popular over time. For example, we
observe in Netflix data that awarded movies are more popular than non-
awarded movies. Unlike other work focusing on making fair/neutralized
recommendation, in this paper, we target on modeling the effect of
awards on the viewership of movies. The main challenge of building such
a model is that the effect on popularity changes over time with different
intensity from movie to movie. Our proposed approach explicitly models
the award effects for each movie and enables the recommendation system
to provide a better ranked list of recommended movies. The results of
an extensive empirical validation on Netflix and MovieLens data demon-
strate the effectiveness of our model.

Keywords: Awards effect estimation · Popularity bias · Recommender
systems

1 Introduction

Recommendation systems have been widely used in e-commerce to assist users
in finding their potentially interested products [10], e.g., in Amazon, Ebay, Net-
Flix, LinkedIn, YouTube, and IMDB. The ranked list of products suggested
by recommendation systems can be based on the overall popularity (number of
views/ratings/downloads) for the product, or based on the overall average rating,
or based on user purchase history. Often, the ranked list of items in recommen-
dation system is dominated by the most popular items [11] due to the “rich get
richer” effect. Popular items are recommended more, thence purchased more,
resulting in becoming even more popular over time. Though “rich get richer” is
a well-known phenomenon, there has been little attention paid in studying the
temporal behavior of such effects in popularity.

In this work, we model the varying effect of awards on the popularity of
items over time in the context of movies domain1. The most popular awards for
1 The same framework can be applied to study award effect in other domains like songs

(Grammy awards), scientific papers (best paper award), books (best seller book) and
others.

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 724–736, 2017.
DOI: 10.1007/978-3-319-57454-7 56



Modeling Temporal Behavior of Awards Effect on Viewership of Movies 725

movies include Oscar Award, Golden Globe Award, Bafta Award and Satellite
Award. In general awards are considered a way to acknowledge the contribu-
tion of extraordinary movies to the industry. However many critics question the
integrity of the award’s mechanism and consider them as boosting mechanisms
for movies to find lucrative marketing re-birth or launch actors and actresses to
super-stardom. For instance in case of Oscar award, millions of dollars are spent
on efforts to promote nominees to members of the Academy2. Considering such
skepticism about different movie awards, it is very important to estimate the
boosting effects of awards over the popularity of different movies.

In the past few years, there is a growing recognition of popularity bias in
recommendation systems [1,3,5,6]. Different techniques have been proposed to
penalize the discrimination of popularity on user ratings in recommendation
systems [4,8,11]. They target on making neutralized recommendation. However,
none of these work explicitly models the popularity and the influence of the “rich
get richer” effect, e.g., contributed by movies awards.

Estimating the awards effect on popularity of items over time is important
for several reasons. It can help in predicting revenues, future earnings, ranking
on recommender systems of awarded items, e.g., airlines, hotels, movies, songs,
scientific papers, etc. Our proposed framework models the popularity of items
by two aspects, the base merit and the awards’ effects, both of which vary with
time due to the variation of subscribed users to movie system and the decrease of
attractiveness of movies to users over time. The award effect model D explicitly
estimates the extra viewership of awarded movies, while the base merit model M
is learned for predicting movie popularity without award effect. The two models
are shown to be effective for predicting the popularity of movies during March
to Sept 2005 in Netflix (Jan-2006 to Dec-2008 in MovieLens), after trained on
Netflix data from earlier stage: Dec-1999 to Feb-2005 (MovieLens data from Jan-
1996 to Dec-2005). In addition, the model D is used to analyze how award effect
varies on movies with different genres. Moreover, model M is applied to produce
a ranked list of recommended movies without award effect. Through checking
the ratings of recommended movies in IMDB and NetFlix, we show that our
recommended movies without award effect have higher average rating than the
recommended movies with award effect.

The remaining part of this paper is organized as follows. Section 2 discusses
related work. Section 3 introduces the proposed model. Section 4 presents exper-
imental evaluation. Section 5 concludes the paper.

2 Related Work

Work related to this study falls into two categories. From the application perspec-
tive, this study aligns with the popularity bias in recommendation systems [1,3–
6,11] and from the problem setting perspective, it is connected to uplift model-
ing [7,9].
2 http://www.politicalcampaigningtips.com/oscar-campaigning-the-politics-of-the-ac

ademy-awards/.

http://www.politicalcampaigningtips.com/oscar-campaigning-the-politics-of-the-academy-awards/
http://www.politicalcampaigningtips.com/oscar-campaigning-the-politics-of-the-academy-awards/
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Kamishima et al. [4] propose to design an information neutral recommenda-
tion system, making the recommendations neutral from a specific view point, i.e.,
a specific feature of user (e.g., gender) or item (e.g., brand or popularity). They
propose a penalty term to address the filter bubble problem of personalized rec-
ommendation systems. Their proposed penalty term ensures the statistical inde-
pendence between the considered neutrality view point and preference scores. In
this paper, we do not restrict our study to personalized recommendations and
quantify the effects of different awards over the popularity of movies.

While it is clear that collaborative filtering algorithms outperform popularity-
based recommendations in terms of accuracy and sales diversity, it has been
pointed out that they still suffer from bias. Zhao et al. study a similar subject of
popularity bias in recommendation system [11]. They mainly follow an opinion-
based weighting function. If popular items are similarly rated by two neighboring
users, these popular items are given the weight as the inverse log of the popular-
ity. Otherwise (e.g., two users have different opinions), popular items are given
the weights as log of the popularity. For less popular items, the assigned weight
is 1. Their purpose is to improve diversity and accuracy in recommendation.
However, our goal is to estimate the effect of awards on the popularity of items
over time. Our work differentiates the user response and popularity of movies
with and without awards.

In uplift modeling [7,9], two data sets (with and without action) are formed.
The task is to model the effect of a particular action for a given instance and
to identify the instances for which it is worth to do the action. The primary
difference in our settings is that our uplift event is not revocable (i.e., awards
are perpetual) and in practice it also becomes hard to have two exact movies with
and without certain awards. In addition, we study the temporal effect of awards
on the popularity of items over time, rather than only considering popularity
with or without award.

3 Modeling the Award Effect on Popularity of Items

3.1 Problem Setting

Suppose we have a set of items (e.g., movies) where each item is viewed or rated
at a given time t. Each item i can be described by a vector X(i) with non-
temporal attributes (e.g. movie genre), and additionally a temporal attribute
vector Zt(i) that records time related attributes (e.g., average rating of a movie
per week) at a certain time t. The popularity of an item (i.e., views or sales
count) varies with time, and attains an artificial increase after the occurrence of
an award event s, which is also a time varying attribute,

st(i) = 0 when there was no boosting event for item i at t;
st(i) = 1 when there was a boosting event for item i at t.

The popularity of each item i can be defined by grouping the rating counts
into n identically sized time bins, where each time bin represents an instance of
the calendar, e.g., day, week, and month. Denoting the popularity of an item i
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Fig. 1. A model of award affected popularity.

in time bin t by yit, we define the item instance eit to be an instance of an
item i in time bin t, described as:

eit = {X(i), Zt(i), st(i), yit} (1)

The goal is to model the popularity score yit of an item i at time t (e.g., how
many viewers a movie will attract in a given week) given Xi, Zt

i , and st(i).

3.2 Award Effect Modeling

Our proposed model is shown in Fig. 1. The observed popularity is a result of
the base merit (depending on X and Z) and the awards effect (introduced by s
and affected by X and Z). The observed popularities are modeled as:

y = M + sD, s ∈ {0, 1}, (2)

where M is the model learned on non-awarded data that predicts base merit of
a movie, D is the model for estimating the award nomination effect or award
winning effect. The intuition behind this model is as follows. When the items
are not yet awarded/never awarded (s = 0), the observed popularity originates
from the base merit model (M) only. When the award event occurs (s = 1),
the observed popularity comes from two terms: the base merit model (M) and
the award effect term D. Both models M and D can be learned by a regression
algorithm, e.g., Support Vector Regression. We focus on designing the learning
procedure of using different training data with their corresponding targets. Note
that we will consider award nomination and award winning differently. Model
Dnom and Dwin are learned and applied to nominated items and awarded items,
respectively, but following the same learning procedure. Thus we only use sub-
scriptions nom and win when necessary.

For learning M, Dnom and Dwin, we divide training data into three subsets:

– set A contains instances of the movies that were neither nominated nor
awarded (s = 0), or movie instances not yet nominated at time t < tnom.

– set B contains all the award nominated movie instances after nominations were
announced t ≥ tnom, and instances of award winning movies before winning
award but after nomination at time tnom ≤ t < twin.

– set C contains the instances of award winning movies after winning award(s)
at time t ≥ twin.
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The learning strategy is generally as follows: Model M is learned on data
A and its corresponding observed popularity y(A). The award nomination effect
model Dnom is learned on data B and its corresponding effect d(B) = y(B) − ŷ(B),
where y(B) is the observed popularity and ŷ(B) is the predicted popularity when
applying the above learned M on B. Similarly, the award winning effect model
Dwin is learned on data C and its corresponding effect d(C) = y(C) − ŷ(C), where
y(C) is the observed popularity and ŷ(C) is the predicted popularity when applying
the above learned M on C. As Model M is free from award nomination/winning
effect, ŷ(B) and ŷ(C) are the non-awarded predictions of popularity for instances
in B and C, respectively. The observed values y(B) are affected due to the award
nomination and y(C) are influenced due to award winning. Taking d(B) and d(C)

as the regression targets, the learned Dnom and Dwin thus model the award nom-
ination and award winning effect in B and C, respectively.

With different forms of award effect, we study three different models given
in the following text:

(1) Modeling Constant Effect of Awards (D(0)) assumes that the effect
introduced by the awards is constant for each item instance for all the
time, i.e., an award introduces a fixed amount of publicity to viewers who
want to see the winning movie independently of its content all the time.

The constant effect can be defined as the mean of d, D(0) =
∑

i∈B d
(B)
i

|B| for

nomination instances, and D(0) =
∑

i∈C d
(C)
i

|C| for awarded instances.
(2) Modeling Awards Effect Based on X (D(X)) assumes that the awards

effect depends on the movie non-temporal attributes X, but is independent
from temporal attributes, e.g., additional viewers watch the award winning
movie because of the genre of this movie. The effect of the awards can be
modeled as a function of item non-temporal attributes, D(X) = f(X |s = 1).

(3) Modeling Awards Effect Based on X and Z (D(XZ)) assumes that
the awards effect depends on the movie non-temporal attributes X as well
as temporal attributes Zt. We consider it as the most realistic assump-
tion about the real data. For award nominated or award winning movies,
additional viewership will depend on the time since the movie was released
and the content of the movie. For instance, if a movie was released eleven
months before the award ceremony, maybe most of the people have already
seen it anyway or consider it to be an old movie and do not want to see
it regardless of the award. The item and time related award effect can be
modeled as a function of item and time attributes, D(XZ) = f(X,Zt |s = 1).

3.3 Temporal Behavior Award Effect Modeling

We propose Temporal behavior Award Effect Modeling (TAEM) algorithm to
solve the learning problem in Eq. (2). Algorithm 1 gives the pseudo code for
the learning of M, Dnom and Dwin as discussed in Sect. 3.2, and the prediction
after learning. Note that Algorithm 1 applies to the learning of D(0), D(X) and
D(XZ), which only differ on the usage of selected feature sets.
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Algorithm 1. Temporal Behavior Award Effect Modeling (TAEM)
1 begin Model learning

Input: Data sets TrainA, TrainB, TrainC
Output: Base merit model M,

Award effect models Dnom and Dwin

2 Learn M on training set A:
M : eit �→ yit, {eit, yit} ∈ TrainA;

3 Make predictions on training set B using model M:

ŷit
(B) = M(eit), eit ∈ TrainB;

4 Make predictions on training set C using model M:

ŷit
(C) = M(eit), eit ∈ TrainC;

5 Calculate the residuals d
(B)
it = y

(B)
it − ŷit

(B);

6 Calculate the residuals d
(C)
it = y

(C)
it − ŷit

(C);

7 Construct a new set B′ with d
(B)
it as new targets;

8 Construct a new set C′ with d
(C)
it as new targets;

9 Learn the award nomination effect estimation model Dnom on set B′:

Dnom : e
(B)
it �→ d

(B)
it ;

10 Learn the award winning effect estimation model Dwin on set C′:

Dwin : e
(C)
it �→ d

(C)
it ;

11 begin Evaluation and Recommendation
Input: Data sets TestA, TestB and TestC ,

Award event attribute snom, swin

Output: Estimated y, ranking of test data sets

12 yit = M + sitD;
13 Rank testing data by yit in each time bin t

According to the application need, our proposed algorithmic solution can be
applied in fashion of offline, online and adaptive settings.

Offline Learning: In this setting, we learn models M, Dnom and Dwin from
a given training data that include instances collected until time t (line 1–10 in
Algorithm 1). Predictions are made for the items from week t+1 on-wards (line
11–13 in Algorithm 1). The learned models M, Dnom and Dwin are fixed without
updating. This setting is a realistic scenario when there are enough data to learn
accurate models and the relation between models and targets is fixed and will
not change over time.

Online Learning: In this setting, models M, Dnom and Dwin are updated
over time as more data arrive. The initial model is learned on all data up to
time t inclusive. Predictions are made for time t + 1. At time t + 1, the
models are updated or relearned using all the available data up until time t + 1
inclusive (run again line 1–10 in Algorithm 1). The new models are used to make
predictions for time t + 2. This process is repeated for all coming weeks. This
scenario is useful when there are not enough training data to learn an accurate
initial model. More accurate models are learned as more data arrive.
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Adaptive Learning: This scenario is useful when the underlying concept is
changing over time, thus the relation between the inputs and the target needs
to be updated. Before making prediction for t + 1, we re-learn the models
from data in the last h (a fixed window size) weeks. These most up-to-date data
enable the model to capture the dynamic, usually hidden, and important factors
affecting the popularity.

4 Experimental Evaluation

4.1 Data Sets and Experimental Setting

We use two real world data sets Netflix [2] and MovieLens 10 million ratings
data set3. The movies selected for our experiments are released from Dec-1999 to
Sep-2005 in Netflix and from Jan-1996 to Dec-2008 in MovieLens when ratings
are available for analysis. From Netflix (MovieLens), 134 (99) award winning
movies, 53 (98) award nominated movies and 178 (102) movies that were never
nominated nor awarded are selected. As described in Sect. 3.2, instances of these
movies then define three sets A, B and C.

Each movie instance is described by 47 non-temporal attributes (forming a
vector X) and 14 time related attributes (forming a vector Z). The attributes
of X extracted from IMDB 〈www.imdb.com〉, Rotten Tomatoes 〈http://www.
rottentomatoes.com〉 and Box Office Mojo 〈http://www.boxofficemojo.com〉
contain 9 numerical attributes: budget, languages released count, run time, over-
all average rating, opening gross, total gross, opening theaters count, total the-
aters count, box office ranking in release year, and 38 binary attributes, which
include an attribute of is Adult (i.e., is this movie only for adults), and is Sequel
Or Adaptation, nine binary attributes showing the genre of a movie, ten binary
attributes for showing the studio in which movie is released, five binary attributes
for showing the release year of movie, twelve binary attributes to show release
month of movie. The Z includes 14 numerical attributes: movie age, DVD release
age, weekly average rating, popularity of previous week, popularity of second last
week, popularity of third last week, popularity of fourth last week, average popu-
larity of last two weeks, average popularity of last three weeks, number of ratings
since release, total number of views (of all movies in the previous week), users
joined the system in given week, total users in the system till this week, and Net-
flix subscribers growth. We have eventually 58,059 instances from Netflix binned
by week, and 33,138 instances from MovieLens binned by month.

In Netflix data sets A, B and C, we use instances from the first 275 weeks
(Dec-1999 to Feb-2005) for training and instances of the last 32 weeks (March
to Sept 2005) for testing. The selection is for the purpose of evaluating the
predictive power of our models. In MovieLens data set, instances of first 120
months (Jan-1996 to Dec-2005) are used for training and the last 36 months (Jan-
2006 to Dec-2008) are used for testing. We report only the results obtained on

3 at https://grouplens.org/datasets/movielens/10m/.

www.imdb.com
http://www.rottentomatoes.com
http://www.rottentomatoes.com
http://www.boxofficemojo.com
https://grouplens.org/datasets/movielens/10m/
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NetFlix data set here due to the space limitation. Similar results and observations
are found in MovieLens data set.

In all the experiments, we use Mean Absolute Error (MAE) as an evaluation
measure. It measures how close the predicted values are from the observed ones.

4.2 Award Effect Quantification

In this section, we show the temporal award effect estimation capacity of our
proposed method at individual instance level in Figs. 2, 3, and 4, where x-axis is
the index of test instances (ordered by their actual popularity) and y-axis is the
popularity. The model D for award effect quantification here is the one D(XZ)

(learned from both feature X and Z), as D(XZ) performs better than D(X) and
D(0) (see the comparison in next section).
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Actual popularity of Test C
Predicted popularity of Test C
MAE: 302.36

(c) y(C)
it = MC

Fig. 2. Prediction in increasing order of popularity of three models learned from train-
ing sets of A, B, and C separately. (Color figure online)
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Actual popularity of Test B
Predicted popularity of Test B
MAE: 127.66

(b) y(B)
it = MA + Dnom

Fig. 3. Prediction of TAEM for award nominated instances in set B, estimation without
award nomination effect (a) and with individual award nomination effect (b).
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Actual popularity of Test C
Predicted popularity of Test C
MAE: 296.41

(b) y(C)
it = MA + Dwin

Fig. 4. Prediction of TAEM for awarded winning instances in set C, estimation without
award winning effect (a) and with individual award winning effect (b).

Figure 2(a–c) show the predictions (red stars) of three specialized models,
MA,MB and MC , (based on Random Forest Regression) learned over the train-
ing sets A, B, and C and tested over the test sets A, B, and C, respectively. The
actual target values (blue crosses) are also shown for a better comparison with
predicted values. These models are considered as special cases where enough
data in data sets A, B and C are available to learn a specialized model for each
category of instances. We can see that the predictions of these models closely
follow the actual targets. We expect that such models would be the best per-
forming ones over their respective data sets. Note that our test set is from the
later period when subscribers and the number of online movies have increased.
Such a growth thus brings difficulties in prediction. Hence, high MAE scores are
intuitive and acceptable.

Figure 3(a) shows the performance of our proposed TAEM over test set B but
ignoring the nomination award effect, i.e., predicting by MA only. As expected,
such predictions are lower than the actually observed popularity that includes
different amount of award effect for different instances. Figure 3(b) shows the
prediction of MA + Dnom, which includes the estimated award effect. We see
that our proposed method quantifies accurately the award effect in the popularity
of inflated instances due to award nomination’s boosting effect. When we add this
calculated award effect to the non-awarded prediction in Fig. 3(a), it becomes
very close in Fig. 3(b) to the predictions of specialized but award effect estimation
model learned over the award nomination affected popularity data set B (shown
in Fig. 2(b)).

Figure 4(a–b) shows the award effect quantification of award winning movies
(set C) by TAEM. Similar to Fig. 3, it can be seen that the predictions with
ignorance of awards are lower than the award affected popularity observation.
Moreover, the award effect due to winning is greater than that due to nomina-
tion. When adding the estimated award effect to the non-awarded prediction in
Fig. 4(a), as shown in Fig. 4(b), the scores are close to the predictions made by
specialized model in Fig. 2(c). We can conclude from Figs. 3 and 4 that TAEM
well quantifies the award effect in the popularity of each individual instance.
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4.3 Comparison of Different Award Effect Estimation Models

We now compare different award effect models presented in Sect. 3.2 and three
TAEM learning settings in Sect. 3.3. We evaluate the performance of these mod-
els by their predictive power measured in MAE.

1. Single model: prediction is made by a single model learned from the com-
bination of all training sets A, B, and C.

2. TAEM with constant award effect (TAEM with D(0)).
3. TAEM with award effect learned from feature X only (TAEM with D(X)).
4. TAEM with award effect learned from feature X and Z (TAEM with

D(XZ)).
5. Three models, which is built in an ideal scenario where enough data are

available to build three separate models: MA,MB, and MC from the training
sets A, B, and C, respectively. These three models are expected to achieve
the highest accuracy when each of them is applied only to instances in its
own set, as shown in Fig. 2. However, they failed to quantify and correct the
award effect.

Figure 5 compares the MAE (y-axis) of different award effect models (x-axis)
tested over the aggregation of test A, B and C in offline, online and adap-
tive settings. Generally, TAEM with different award effect estimation settings
performs better than the single model. The advanced TAEM with award effect
learned from feature X and Z (TAEM with D(XZ)) performs as good as the
ideal three-models. Importantly, our method has the capability to estimate the
award effect for each privileged item (as already shown in Sect. 4.2). In addition,
we see that the online and adaptive settings (h= 100) have better performance
than the offline setting.
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4.4 Award Effect on Different Movie Genres

Since we are able to estimate the award effect by D, it is interesting to study
how the award effect varies on movies with different genres. Figure 6 shows the
average effect of award nomination and award winning over all the test weeks, for
movies with different genres. Generally, we can see that award winning has higher
influence than award nomination on movie popularity, especially for Family,
Adventure, Action and Science Fiction movies. This conforms with the behavior
of movie viewers. Movies in these genres can be accepted by a large population of
viewers. Award winnings usually cause people’s interest and curiosity to watch
the awarded movies.

4.5 Recommendation of Top-k Based on Model M
Given the task of generating top-k movies for recommendation, in this section,
we validate the usefulness of our model by comparing the quality of top-k movies
recommended according to the observed popularity (with award effect) and the
predicted popularity based on model M (base merit of movies, without award
effects). In other words, we apply model M on all movies for evaluating their
base popularity by excluding the extra viewership introduced by awards. It is
interesting to see whether our selection based on popularity estimated by M
without award effect is better than the selection based on observed popularity
with award effect. To evaluate if the ranked top-k movies are good, we check
their actual ratings given by users not only in NetFlix (1–5 scale), but also in
IMDB (1–10 scale) for checking the ratings given by users in a different system,
IMDB. High ratings indicate good movies.

Figure 7 shows the average rating of top 20 movies in the ranking list pro-
duced by our model estimation (Award Effect Treated Ranking) and observed
popularity (Observed Ranking). Two independent movie rating systems (IMBD
and NetFlix) consistently verify the better quality of movies in award effect
treated ranking, which has significantly higher average rating than observed
ranking in all test weeks.
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Fig. 7. Average rating of the top-20 movies ranked by observed popularity (with award
effect) and by the award effect treated popularity in each test week.
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To study if better movies are always ranked higher in different settings of k,
we take average rating of the top-k movies in all test weeks for each setting of
k, and show the results in Fig. 8. The x-axis represents the varying k, while the
y-axis is the average ratings of the top-k movies over all 32 test weeks. We see
consistently in IMBD and NetFlix that award effect treated ranking generates
movies list with better quality than observed ranking. Thus, our proposed model
serves well the purpose of recommendation based true merit of items.
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Fig. 8. Average rating of top-k movies when varying the value of k.

5 Conclusion and Future Work

In this paper, we study the temporal effects of award nomination and award
winning as popularity boosting events, and propose a framework for modeling
the movie popularity in terms of base merit and the award effect. To model the
popularity at individual movie level, we collected 47 non-temporal attributes and
14 time-related attributes for each movie. The experimental evaluation confirms
the effectiveness of our proposed model on learning the temporal effect of award
nomination and award winning. Also, the model can be used for producing a list
of top-k recommended movies in better quality.

In this paper, we have assumed a simplified scenario that our task is to deter-
mine the award context-aware list of the best items at certain time for a group
of users. In future, we plan to extend our methodology to personalized award
context-aware recommendations and study the influence of multiple boosting
events occurring at the same time.
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Abstract. Community mining is a powerful tool for discovering the
knowledge of networks and has a wide application. The modularity is
one of very popular measurements for evaluating the efficiency of commu-
nity divisions. However, the modularity maximization is a NP-complete
problem. As an effective optimization algorithm for solving NP-complete
problems, ant colony based community detection algorithm has been
proposed to deal with such task. However the low accuracy and prema-
ture still limit its performance. Aiming to overcome those shortcomings,
this paper proposes a novel nature-inspired optimization for the commu-
nity mining based on the Physarum, a kind of slime molds cells. In the
proposed strategy, the Physarum-inspired model optimizes the heuristic
factor of ant colony algorithm by endowing edges with weights. With
the information of weights provided by the Physarum-inspired model,
the optimized heuristic factor can improve the searching abilities of ant
colony algorithms. Four real-world networks and two typical kinds of
ant colony optimization algorithms are used for estimating the efficiency
of proposed strategy. Experiments show that the optimized ant colony
optimization algorithms can achieve a better performance in terms of
robustness and accuracy with a lower computational cost.

Keywords: Community mining · Ant colony algorithm · Physarum

1 Introduction

Community mining is associated with the graph clustering that is a powerful tool
for knowledge discovering in many real-world complex systems [1]. Identifying
the structural characteristics of a network has a wide application in knowledge
discovery, such as the function prediction in the protein-protein networks [2], the
real-time recommendation systems construction [3], and the information diffu-
sion analysis [4].
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 737–749, 2017.
DOI: 10.1007/978-3-319-57454-7 57
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Many algorithms have been proposed for mining such structures in networks,
such as optimization-based algorithms [5] and stochastic model based algorithms
[6]. Currently, a modularity measure Q has been proposed and widely used for
estimating the qualities of community divisions [7]. Specifically, the modularity
maximization is a NP-complete problem, which is intractable for traditional
optimization algorithms, such as mathematical programming [8]. In the field of
heuristics algorithms, ant colony optimization (ACO) algorithm is popular in
dealing with the NP-complete problems [9]. But low accuracy and robustness
limit its performance and application.

Recently, a kind of slime molds cell, Physarum, has shown an intelligence of
network designing and path finding in biological experiments [10,11]. Moreover,
for uncovering the key mechanism of the intelligent behavior of Physarum, a
mathematical model has been proposed by Tero et al. [12]. This Physarum-
inspired model has been used for optimizing the heuristic algorithms [13]. Based
on the characters of Physarum-inspired model, we wonder can the Physarum
model optimize the ant colony optimization algorithm for community mining?

Based on the above motivation, the main contributions of this paper are as
follows. Taking advantages of Physarum-inspired model, which could recognize
the inter-community edges coarsely, a novel nature-inspired optimization algo-
rithm has been proposed based on ant colony optimization. In the new algorithm,
the heuristics factor of traditional ACO is optimized based on the recognition of
Physarum-inspired model, which could instruct the ants to find better solutions
and improve the efficiency of algorithms. Meanwhile, four real-world networks
and two representative kinds of ant colony algorithms are used to demonstrate
the efficiency of the proposed nature-inspired optimization algorithm, in terms
of accuracy and robustness.

The remaining of this paper is organized as follows. Section 2 formulates
the community mining and introduces the ant colony optimization for commu-
nity mining. And then, the nature-inspired optimization is proposed based on
Physarum-inspired model in Sect. 3. Section 4 reports the experiments on four
real-world networks and two typical kinds of ant colony clustering algorithms.
Finally, Sect. 5 concludes this paper.

2 Related Work

2.1 Formulation of Community Detection

Community mining is to divide the vertexes in a network into communities,
where vertexes across communities are sparsely connected, and vertexes within
a community are relatively densely connected. Based on inherent structural fea-
tures, a modularity measure, denoted as Q, is proposed to evaluate the qualities
of community divisions [1]. Therefore, the community mining problem can be
formulated to an optimization problem, which is to maximize the modularity
value. The formulation of community mining is shown as follows.
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Considering a network G(V,E), where V and E stand for the sets of vertexes
and edges respectively. And a community is a subset of V , where vertexes have
a common certain feature. With NC indicating the number of communities, a
community division is a set of communities, C = {C1, C2, . . . , CNC}, in which
Ci �= ∅, Ci �= Cj , and Ci ∩ Cj = ∅, for all i and j. After that, the mission of
community mining can be represented as Eq. (1).

C∗ = arg max
C

Q(G,C) (1)

The modularity Q is computed based on the topological structure of a net-
work and its divisions, which is defined as Eq. (2). Specifically, δ(i, j) indicates
the community relationship between vertexes i and j, while A and di stand for
the adjacent matrix of a network and degree of vertex i, respectively. Ai,j is
equal to 1, if there is an edge connecting vertexes i and j. Otherwise, Ai,j is
equal to 0. Moreover, the degree of vertex i can be expressed as di =

∑
j Ai,j .

In details, δ(i, j) is equal to 1, if and only if vertexes i and j belong to the same
community. Otherwise, δ(i, j) is equal to 0.

Q =
1

2|E| (Aij − didj

2|E| )δ(i, j) (2)

2.2 Ant Colony Algorithms for Community Mining

Ant colony optimization is under a general category of nature-inspired algo-
rithm, which is inspired by the collective behaviors of ants. In the ant colony
optimization algorithm, each ant finds a community division based on a prob-
ability directed by the pheromone matrix and the heuristic factor. The most
important parts of a ant colony algorithm are searching, mutating and updating
pheromone matrix. Here, we take a typical ant colony optimization for cluster-
ing, denoted as ACOC, as an example to introduce the basic parts of an ant
colony algorithm for community mining [14].

Searching Strategy: In each iteration, every ant finds a community division
based on a probability matrix, which is as shown in Eq. (3). Pi,cj indicates the
probability of vertex i belonging to community Cj . And cj stands for the label
of community Cj .

Pi,cj =
(ηi,cj )

β(Taui,cj )
α

NC∑

k=1

(ηi,ck)β(Taui,ck)α

(3)

In Eq. (3), ηi,cj is the heuristic factor, which helps improve the search ability
of ants based on the adjacent matrix of networks. For example, the heuristic
factor in ACOC indicates the number of edges connecting the vertexes in com-
munity Cj from vertex i. Based on the character of community structure, the
more edges connecting vertexes in community Cj vertex i joints, the larger prob-
ability of vertex i belonging to community Cj is. And the expression of ηi,cj is
shown in Eq. (4), in which ni,cj indicates the number of edges connecting ver-
tex i and vertexes in community Cj . Here, Cj is based on the best community
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division found by algorithm. And Tau stands for the pheromone matrix, which
is updated by the ants in each iteration based on the qualities of solutions.

ηi,cj =
ni,cj

NC∑

k=1

ni,ck

(4)

Based on the P matrix, the details in ACOC of assigning a community label to
a vertex is introduced as follows. Taking the vertex i as an example, the community
label cj with maximal P value (i.e., arg maxcjPi,cj ) is assigned to vertex i with a
probability p0. Meanwhile, the community label of vertex i is assigned based on the
roulette way, with a probability 1 − p0. As shown in Fig. 1, assigning community
labels for all the vertexes in such way, a community division emerges.

Node
Label

Node
Label

Assign a community label to each node 
based on P,  which is shown as fellows.

Decode

Fig. 1. The formulation of community division based on ACOC. Each community
division is coded as a string of integers, which represents the community label of cor-
responding vertex.

Mutation Strategy: Mutation operator is a kind of random searching process,
which aims to improve the diversity of solutions and protect ant colony clustering
algorithms from premature. In the adopted mutation strategy of ACOC, each
vertex is reassigned by a random community label with a probability Pm. And
the mutation of a solution is accepted, if and only if the reassigning improves
the modularity value of corresponding community division. Figure 2 shows an
simple example of such mutation strategy.

Pheromone Matrix Updating Strategy: There are two phases for updating
the pheromone matrix Tau. The first phase is implemented when an ant finishes
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Node
Label

Mutation: Reassign a
community label randomly

Label

Label

Accept

Deny

The mutation is accepted, if and only if the 
Reassignment improve the quality of solution.

Q=0.36

Q=0.10

Q=0.21

Fig. 2. An example of the mutation strategy in ACOC. Each mutated vertex is reas-
signed by a random community label. And the mutation is accepted, if and only if the
reassigning improves the modularity value of corresponding community division.

its searching in an iteration. In this phase, every ant updates the pheromone
matrix based on Eq. (5). Specifically, ρ is the volatile coefficient of pheromone,
and Q indicates the quality of community division that the ant finds. The sec-
ond phase executes after all the ants finish their local searching. Based on the
community divisions with the top Q values in the current iteration, Eq. (6) is
implemented for enhancing the effects of better community divisions. In Eq. (6),
φ(i, cj) equals to 1, if and only if vertex i within community Cj based on the
corresponding community division. Otherwise, φ(i, cj) equals to 0.

Taui,cj = (1 − ρ) · Taui,cj + 2ρ · Q · φ(i, cj) (5)

Taui,cj = (1 − ρ) · Taui,cj + Qtop · φ(i, cj) (6)

With the local searching and updating for Tau, ants will aggregate to certain
community divisions with higher Q values. And the solution with the highest Q
value will be outputted as the optimal community division.

3 A Novel Nature-Inspired Optimization Algorithm
for Community Mining

3.1 Edges Endowed with Weights Based on the Physarum Model

Physarum is a kind of slime with the abilities of designing networks and solving
maze [10,11]. Moreover, inspired by the bio-experiments of Physarum, a math-
ematical model is proposed and used for optimizing the heuristic algorithms
[13]. In this paper, the Physarum model (PM) is modified to endow edges with
weights, which could be used to recognize the intra-community edges in a net-
work.

PQt
i,j =

Dt−1
i,j

Li,j
|pt

i − pt
j | (7)

The basic hypothesis of PM is a Poiseuille flow in a network. And the core
mechanism of PM is the feedback system between the cytoplasmic fluxes and
conductivities of tubes in the Poiseuille’s flow. This feedback system has two
main processes. First, PQt

i,j , Dt
i,j , Li,j and pt

i denote the flux, the conductiv-
ity, the length of ei,j , and the pressure of vi at time step t, respectively. Then,
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the relationship among the flux, conductivity, length, and pressure can be rep-
resented as Eq. (7). According to the Kirchhoff’s law, which is represented in
Eq. (8), the pressures and fluxes can be obtained, by solving such equations at
each iteration step. And then, PQt

i,j feeds back to Dt
i,j based on Eq. (9). After

that, an iteration step finishes. With such feedback going on, a highly efficient
network is generated.

∑

i

PQt−1
i,j =

⎧
⎨

⎩

I0, if vj is an inlet
−I0, if vj is an oulet
0, others

(8)

Dt
i,j =

PQt
i,j + Dt−1

i,j

k
(9)

The major modification of PM is the scheme of choosing inlets/outlets in
each iteration. In such model, when a vertex is chosen as an inlet, the others
are chosen as outlets. More specifically, Eq. (8) is modified as Eq. (10), in which
D and L are known. With a certain inlet and outlet, we can construct a set
of equations based on Eq. (10). By solving such equations, pi can be obtained.
And, in each iteration step of PM, every vertex is chosen as the inlet once.
When vl is chosen as the inlet, a local conductivity matrix, denoted as Dt(vl), is
calculated based on the feedback system (i.e., Eqs. (7), (8) and (9)). Finally, after
all the local conductivity matrixes are obtained, the global conductivity matrix
is updated by the average of local conductivity matrixes based on Eq. (11). A
detailed description of PM is represented in Algorithm1.

∑

i

Dt−1(vl)i,j

Li,j
|pt

i − pt
j | =

{
I0, if vj is an inlet

−I0
|V |−1 , others

(10)

Dt =
1

|V |
|V |∑

l=1

Dt(vl) (11)

With such modifications, the conductivities computed by Physarum model
contain the information about inter-community edges recognition. Physarum
model tends to endow inter-community edges with larger conductivities, vice
versa. Figure 3 shows the edges with the top 20 percent conductivities in two
networks based on such Physarum model. As it reported, the most of the edges
with 20 percent conductivities connect vertexes in different communities. And
there is almost no edge within the communities.

3.2 Nature-Inspired Optimization for Community Mining

Utilizing the character of conductivities computed by Physarum model, a novel
ant colony optimization algorithm is proposed in this section, which aims to
overcome the shortcomings of the low accuracy and premature. Through endow-
ing edges with weights based on the Physarum model, the heuristic factor of
proposed ant colony algorithm is optimized for improving the computational
efficiency.
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(b) Football(a) Polbooks

Fig. 3. Edges with top 20 percent conductivities in two networks based on the
Physarum model. The different colors are used to label communities.

Algorithm 1. Physarum network mathematical model for community mining
Input: An adjacent matrix A
Output: A conductivity matrix D
1. Initializing D0 and the maximal iteration step T
2. For t from 1 to T
3. For all vertexes in V
4. Choosing vl as the inlet
5. Calculating pti, ∀i, based on Eq. (10)
6. Calculating PQt

i,j , ∀i, j, based on Eq. (7)
7. Updating Dt(vl) based on Eq. (9)
8. End for
9. Updating Dt based on Eq. (11)
10.End for
11.Outputting DT

η∗
i,cj =

n∗
i,cj

NC∑

k=1

n∗
i,ck

=

∑

h∈Cj

1/wi,h

NC∑

k=1

∑

h∈Ck

1/wi,h

(12)

Taking the advantages of Physarum model, the intra-community edges tend
to have larger weights. In contrast, the inter-community edges tend to have a
small ones. Based on such character, we can optimize the heuristic factor of
ant colony clustering algorithms in order to improve the search ability of such
algorithms during the process of community detection. Takeing ACOC as an
example, we can optimize heuristic factor based on Eq. (12), in which wi,k indi-
cates the conductivity of ei,k and n∗

i,cj =
∑

h∈Cj

1
wi,h

. With such expression,
η∗

i,cj has a larger value when there are the same intra-community edges con-
necting vertex i and vertexes in community Cj , compared with the original ηi,cj ,
vice versa. Such nature-inspired optimization exaggerates the inhomogeneity of
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Initializing pheromone matrix

Initialization

Solution construction

Mutation

Probability matrix 
updating

Results

Input

Calculating the Pearson correlation 
between vertices based on 
conductivity matrix (D)

Calculating the heuristic factors
based on Pearson correlation 

Calculating the probability matrix 
based on heuristic factors and 

pheromone matrix

Building the initial divisions
based on pheromone matrix

Choosing the best community
division at current iteration

Calculating the heuristic factors based 
on the chosen community division and 

conductivity matrix (D)

Calculating the probability matrix
 based on the pheromone matrix and 

heuristic factors 

Updating the pheromone matrix

(a) (b) (c)

The probability matrix updating in ACOCThe initialization of IACO-Net

Fig. 4. Optimizing the heuristic factor in ACOC and IACO-Net based on the con-
ductivity matrix D returned by Physarum model. (a) A basic framework of ant colony
algorithm. (b) The optimized initialization of IACO-Net. (c) The optimized probability
matrix updating process of ACOC.

original heuristic factor, and offers a more obvious information to ants, which
leads to a higher accuracy and better robustness.

Although the heuristic factor is common and important in ant colony algo-
rithms for community mining, the heuristic factor is used in different way in var-
ious ant colony algorithms. However, the Physarum based optimization strategy
adapts various of ant colony algorithms easily. Here we employ two representative
ant colony algorithms (i.e., ACOC [14] and IACO-Net [15]) to show the flexibil-
ity of our proposed method. Figure 4 illustrates the flowchart of optimizing the
heuristic factors in ACOC and IACO.

4 Experiments

4.1 Datasets

Four real-world networks collected by Newman1 and two ant colony clustering
algorithms (i.e., ACOC [14] and IACO-Net [15]) are used to estimate the pro-
posed algorithm. The basic topological features of those networks are shown in
Table 1. For a clear expression, a prefix (i.e., P−) adds to the name of algorithm
with the proposed strategy. And all the experiments are implemented in the
same environment, which means that comparing algorithms have a same para-
meter setting and running environment. Moreover, the results are based on 20
repeated experiments to eliminate the fluctuation and evaluate the robustness.
1 http://www-personal.umich.edu/∼mejn/netdata/.

http://www-personal.umich.edu/~mejn/netdata/
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Table 1. The basic topological features of the real-world networks. N and E denote
the number of vertexes and edges in a network. k and C stand for the average degree
and clustering coefficient of networks, respectively. NC indicates the number of com-
munities in networks based on the background.

Name N E k C NC

Krateclub 34 78 4.588 0.588 2

Dolphins 62 160 5.129 0.303 2

Football 115 613 10.660 0.403 12

Polbooks 105 441 8.400 0.488 3

4.2 Experiment Results

Table 2 shows the box charts of modularity values returned by ACOC, IACO-
Net, and their optimized algorithms on four real-world networks, which reports
the distributions of results based on 20 repeated experiments. Due to the ran-
domness of maximum and minimum, the comparison of those algorithms focuses
on the first and third quartiles, and average. As is shown in such figure, the
P-ACOC and P-IACO-Net have a higher average on all the four networks. And
the first and third quartiles of optimized algorithms are also higher than that of
original algorithms on all of four networks. Meanwhile, the distribution ranges of
optimized algorithms are smaller, compared with that of original ones. It means
the proposed strategy can enhance the robustness of ant colony algorithms.

Table 2. Results returned by ACOC, IACO-Net and their optimized algorithms on
four networks in term of Q based on 20 repeated experiments. Q1 and Q3 indicate the
first and third quartiles, respectively. And AV E stands for the average of those results
on four networks.

Metrics Algorithm Karate Dolphins Football Polbooks

Q1 ACOC 0.2907 0.3031 0.1613 0.4060

P-ACOC 0.3286 0.3350 0.1943 0.4275

ACO-Net 0.4198 0.5078 0.5769 0.5086

P-IACO-Net 0.4198 0.5154 0.5866 0.5094

Q3 ACOC 0.3386 0.3751 0.2294 0.4363

P-ACOC 0.3718 0.3778 0.2508 0.4475

ACO-Net 0.4198 0.5170 0.5893 0.5169

P-IACO-Net 0.4198 0.5195 0.5945 0.5168

AV E ACOC 0.3149 0.3363 0.1947 0.4218

P-ACOC 0.3512 0.3564 0.2261 0.4401

ACO-Net 0.4196 0.5122 0.5824 0.5112

P-IACO-Net 0.4197 0.5176 0.5903 0.5133
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(b) Dolphins(a) Karate (c) Football (d) Polbook

Iterations Iterations Iterations Iterations

Iterations Iterations Iterations Iterations

Q Q Q Q

Q Q Q Q

Fig. 5. The dynamic averages of Q with the increment of iteration in four networks. The
results show that the proposed optimized strategy can obviously improve the search
abilities of ACOs.

For further estimating the efficiency of proposed strategy, Fig. 5 reports the
dynamic changes of average modularity values with the increments of iterations.
As is shown in such figure, at the initial phase, the Q values of the optimized
algorithms are close to those of original algorithms. However, the algorithms with
the proposed strategy have a higher growth rate, compared with the original ant
colony algorithms. With the growing of iterations, the difference between original
and optimized algorithms emerges. There is a distinct gap between the lines of
original and optimized algorithms at the end of iterations.

Other optimization and heuristic algorithms are also used to evaluate the effi-
ciency of proposed algorithms for community mining. The compared algorithms
include the evolution algorithm (i.e., GA-Net [16]), swarm intelligence algorithm
(i.e., RWACO [17]), hierarchical clustering algorithm (i.e., FN [18]), and label
propagation based algorithms (i.e., LPA [19]). Table 3 reports the modularity
values returned by those algorithms. As shown in such table, P-IACO-Net has
the highest Q values on three of four networks. Meanwhile, the Q values of
P-ACOC have significant improvements, compared with that of ACOC.

The cost of such Physarum-inspired optimized strategy is the computational
cost. And the time complexity of Physarum model is analyzed as follows. For
Physarum model, at each iterative step, every vertex should be chosen as the
inlet once. When a vertex is chosen, a corresponding system of equations needs
to be solved. In other words, there are N equations to solve in each iteration step.
The worst computation complexity of solving a system of equations is O(N3).
With an empirical setting (i.e., T = 1), the total computation complexity of
Physarum-inspired optimized strategy is O(N4). For a NP-complete problem,
this computation complexity is acceptable. Moreover, Table 4 shows the running
time of ACOC, IACOC-Net and their optimized algorithms in seconds, which
also verifies that the proposed Physarum-inspired optimized strategy does not
increase the computational complexity noticeably.
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Table 3. Comparison the proposed algorithms with other optimization and heuristic
algorithms. The community divisions are evaluated by modularity value Q.

Alg. Net.

KarateClub Dolphins Football Polbooks

ACOC 0.314 0.336 0.194 0.421

P-ACOC 0.350 0.365 0.226 0.440

IACO-Net 0.419 0.512 0.582 0.511

P-IACO-Net 0.419 0.517 0.590 0.512

FN 0.252 0.371 0.454 0.502

LPA 0.370 0.480 0.588 0.504

GA-Net 0.406 0.467 0.598 0.490

RWACO 0.371 0.377 0.601 0.456

Table 4. The running time of optimization-based algorithms in seconds. From this
table, we can conclude that our proposed computational framework does not bring
more computational burden for original algorithms.

Alg. Net.

Karate Dolphins Polbooks Football

P-ACOC 2.2814 4.3298 8.5971 9.9121

ACOC 2.1862 4.2678 8.4494 9.8882

P-IACO-Net 1.1906 2.4156 7.5031 15.4844

IACO-Net 1.0875 2.2906 7.2562 14.8844

5 Conclusion

Inspired by the Physarum-inspired model, a novel nature-inspired optimization
algorithm for community mining is proposed in this paper based on the optimized
ant colony optimization. In the proposed novel algorithm, the heuristic factor is
optimized by a Physarum-inspired strategy. The proposed strategy integrates the
knowledge of Physarum-inspired model into the heuristic factor for exaggerating
the inhomogeneity of original ones and offering more extra knowledge for ants.
Experiments on four real-world networks and two typical kinds of ant colony
algorithms show the improvements of optimized algorithm in terms of accuracy
and robustness. Moreover, the time complexity analysis shows that the proposed
strategy does not increase the computational complexity of ant colony clustering
algorithm noticeably.
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Abstract. We are interested in the relationship between the team com-
position and the outcome in the filmmaking process. We studied the
“diversity” of the group of actors and directors and how it is related to
the movie rank given by the audience. The “diversity” is considered as
the representation of the degree of variety based on the possibilities of
collaborations among its actors and directors. Their collaboration net-
work for the movie was first generated from the “background” network
of the collaborations from other works. Then a shortest-path method
together with the Adamic/Adar method are used to form indirect links.
Finally the “complete” collaboration network can be generated and the
“diversity” measures are thus defined accordingly. We experimented on
the France and Germany datasets and identified consistent patterns: the
lower the “diversity” is, the lower the movie rank will be. We also demon-
strated that a subset of our diversity measures were effective in the binary
classification task for movie ranks, while the advantages are prone to
Precision/Recall depending on the specific dataset. This further shows
that the “diversity” measure is feasible and effective in distinguishing
movie ranks.

Keywords: Collaboration network · Network analysis

1 Introduction

Movie collaboration networks are one of the earliest types of collaboration net-
works which have been studied [1]. However, due to the ambiguity of their link
formation which is partially caused by involuntary collaborations among actors,
this type of neworks is less studied in depth compared to other collaboration
networks.

We are interested in the relationship between the team composition and the
outcome in the filmmaking process. Therefore, in this research we studied the
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 750–761, 2017.
DOI: 10.1007/978-3-319-57454-7 58
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“diversity” defined on the movie collaboration network composed of actors and
directors. By diversity we basically mean the variety among the group of people
- whether they have never co-operated, or are even not likely to co-operate.
We added directors into the conventionally studied movie actors networks, with
an aim to more effectively capture the nature of the collaboration. We also
introduced the concept of indirect links (in contrast to the direct links which
already exist between the network node pairs) to the collaboration network of a
movie to compensate for the lack of information caused by the sparsity of direct
links.

The movie collaboration networks we studied are weighted, undirected, and
heterogeneous (different types of links and nodes). Thus the following challenges
are imposed:

– How to deal with the complexity of link types induced by adding the director
nodes?

– How to define indirect links?

We have used a shortest-path method along with the Adamic/Adar method
[2] adapted from the link prediction techniques for the formation of indirect links
and modify them to make them fit for our problems. After the collaboration
network of a movie is fully generated, we used diversity measures adapted from
common metrics in network analysis, and studied their relationships with movie
ranks given by the audience.

The main contributions of our study are as follows:

1. We have proposed applicable diversity measures for weighted and heteroge-
neous collaboration networks.

2. We can observe a consistent pattern: the lower the diversity is, the lower
the movie’s rank will be. We have found a subset of our diversity measures
indicative for the movie ranks.

The rest of the paper is structured as follows: In Sect. 2 we describe the gener-
ation of the networks. In Sect. 2 we introduce the movie collaboration network,
the formation of indirect links, and the diversity measures. Section 4 reports the
experimental results. Related work is presented in Sect. 5, and finally Sect. 6
concludes the paper and explores future work.

2 Preliminaries

2.1 Datasets and Network Generation

We extracted the original data from IMDb1. We then pre-processed them and
divided them into several datasets by countries and regions where the movies
were filmed. After this, we chose the France and Germany datasets due to the
relatively mature film industry in both countries and the relative abundance of
data.
1 www.imdb.com/interfaces.

www.imdb.com/interfaces
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In the data preprocessing stage we removed duplicate titles (this happened
in the circumstance of TV series), and we also discarded those movies with
incomplete information.

According to the means of each attribute, we chose the movies in the France
dataset released after 1981, which have ranks higher than 6.3 and votes in IMDb
more than average. We chose the movies in the Germany dataset released after
1988, which have ranks higher than 6.4 and votes more than average. As for the
choice of the time window, we’ll present the feasibility later in this section.

From these movies we generated a list of directors and actors/actresses. This
list includes anyone who worked in one of these chosen movies. For simplicity
actresses and actors are all referred as actors in the rest of this paper.

For both France and Germany datasets we then generated various kinds of
links which form the corresponding sub-graphs. The links have the following
semantic meanings:

1. Actor-actor with the weight value w being n: Two actors have co-acted in n
movies.

2. Actor-director with the weight value w being n: The actor has co-operated
with n directors.

3. Director-director with the weight value w being n: Two directors have both
co-operated with n actors.

An illustration of these links is presented in Fig. 1a.
Then we generated the subgraphs of the networks based on a subset of actors

where we excluded the actors who worked in too few or too many movies. We
chose those actors whose number of works among the selected movies is between
10% and 85% among all the previously selected actors. Namely, for the France
dataset we chose the actors having the number of movies between 10 and 100
while for Germany dataset the number is between 12 and 120.

Among these actors, the mean length of the active periods is 66 years for
the France dataset and 58 years for the Germany dataset, which easily cover the
time windows we selected for the movies. Thus these actors can be considered to
be contemporary with each other. Thus the feasibility of the choice of the time
window is shown.

The experiments and analysis are all performed on the above-generated sub-
graphs. Overall, the summaries of the France and Germany networks are pre-
sented in Table 1 (the “Movies” actually include some TV series).

Note that the Director-Director networks are extremely dense. However, since
the links are weighted (the number of actors that two directors have both co-
operated with), they can still bring some variance to the result.

3 Diversity in Movie Collaboration Networks

3.1 Movie Collaboration Networks

In this research, we focus on two types of relationships in a collaboration network:
actor-actor and actor-director.
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Table 1. The statistics of the France and Germany networks

Item count Network density

France Movies 711 Actor-Actor Network 0.036

Actors 7,874 Director-Director Network 0.541

Directors 884 Actor-Director Network 0.016

Germany Movies 394 Actor-Actor Network 0.098

Actors 5,431 Director-Director Network 0.499

Directors 440 Actor-Director Network 0.054

We consider that node pairs in the network can be either directly or indirectly
connected. Direct links mean that the links already exist in the network. As
for the indirect links, we basically assign a predictor for the formation of the
connection between two nodes which are not directly linked in the network. We
will get into the details of the indirect link predictor and discuss its applicability
in Sect. 3.2.

For the actors/directors of a particular movie, we first generate the “back-
ground” network for their collaboration network. Let M = {m1,m2, ...,mp} be
the movie set, and G be the whole network. For each movie mi ∈ M we generate
a sub-network Gi whose nodes are Ai = {a1

i , a
2
i , ..., a

pi

i }, Di = {d1i , d
2
i , ..., d

qi

i },
where pi and qi are the numbers of actors and directors in movie mi, respectively.
Then the “background” collaboration network Gi of mi is the sub-graph of G
with links in Gi whose weights are reduced by 1. Thus the collaboration weight
matrix for Gi is Wi. An illustration of the “background” network generation is
presented in Fig. 1b.

We then generate the direct and indirect links of the actors and directors
in the movie from its “background” network to form a complete collaboration
network.

3.2 Indirect Link Generation

Small World Test. Movie actor network is a well-known small world network
since it has been studied in the primary work of “small-world-phenomenon” [1].
Small world network is by its name a network where there exist short paths
for virtually every pair of nodes. This feature could be detrimental to the per-
formance of potential connection searching - since the meaning of the potential
connection will become trivial if all nodes are closely connected. Bearing this
in mind, we preliminarily performed a small world test on the networks to be
studied. The result has shown that for both France and Germany datasets the
links manage to form a small world network, with node pairs getting reached
from each other within about 4 hops (for the Germany network, this number
is actually 3). Thus we believe that the searching for indirect links should be
better kept within 1-2 hops.
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director-director: co-operated with a
same actor

actor-actor: co-acted

actor-director: co-operated

ACTORS

DIRECTORS

(a)

(With this movie’s 
linkage removed)

‘BACKGROUND’ NETWORK

A movie collaboration network embedded
in the whole actors-directors network

Actor/Director

Director

Actor

(b)

Fig. 1. (a) Actor-actor, actor-director, director-director links’ semantic meanings and
their formation. (b) A given movie’s collaboration network embedded in the actors-
directors network, and its “background” network (actors are represented by yellow
nodes, and directors are blue nodes.) (Color figure online)

Indirect Link Formation. Using notations defined in Sect. 3.1, we can describe
our link predictors for the problem of the indirect link formation. For demonstra-
tion, we will focus on a collaboration network for a single movie i, Gi (represented
as G for simplicity thereafter). Correspondingly, the “background” collaboration
network is Gi (represented as G thereafter), the weight matrix for the movie is Wi

(represented as W thereafter). In our study, we use indirect links to compensate
for the sparsity of links in movie collaboration networks.

Weighted Adamic/Adar in Heterogenous Networks. The simple Adamic/Adar
[2] measure is originally used in link prediction tasks. Link prediction uses a
predictor p that assigns a connection weight score to a pair of nodes < x, y >.
Without loss of generality, we consider the link prediction task as predicting
or discovering latent linkages. From this perspective link prediction could be
smoothly adapted to our indirect link generation task.

The Adamic/Adar measure has proved to perform consistently well on collab-
oration networks [3] with appropriate modification. The original Adamic/Adar
measure is only used on unweighted, homogenous networks [3]. In previous stud-
ies some researchers have managed to extend it to weighted [4] and heterogeneous
networks [5].

Adding some modification to the measure proposed in [4] and [5], we can
define a measure considering link weights meanwhile fit for the collaboration
networks composed of several types of nodes and relationships (as shown in
Fig. 2a):

AA(node1, node2) =
∑

n∈Nnode1
∩Nnode2

2·Wnode1,n·Wn,node2

Wnode1,n+Wn,node2
·

1
log(
∑

n′∈Nn,σ(n,n′)=t1
Wn,n′+

∑
n′∈Nn,σ(n,n′)=t2

Wn,n′ )
,

(1)
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node1 node2

       t1       t2

...

  ...
       t1

       t2

actor-actor actor-directorThe general notation
       t1   =  t2        t1   =  t2

(a common neighbor)

Director Actor

(a)

node1

node2

       t1

       t2

Director ActorThe general notation

(connector)

(b)

Fig. 2. Link types (t1, t2) in (a) Adamic/Adar and (b) One-hop shortest path measure
for heterogenous movie collaboration network

where σ(n′, n) means the type of link (n′, n), Nn means the neighborhood of
n in the “background” network G, Wm,n is the weight of link m − n in the
“background” collaboration network G.

Simple One-hop Shortest Path. We also manually defined a simple graph-
distance style measure which we term “one-hop shortest path”, where distance
is the inverse of link weight, as in the tradition of collaboration networks [6].
Namely, for a node pair (m,n) if there exists a link whose weight is 3, the distance
along the link will be 1/3. If there is a path with multiple nodes (a1, a2, a3, ...) on
it, the path length will be the sum of all the distances between any two adjacent
nodes.

Similar to the situation when we adapt heterogeneous links in the
Adamic/Adar measure, for “one-hop shortest path” we consider indirect links
under occasions in Fig. 2b.

The distance of a direct link is set to a global minimum value universally.
The distances between pairs having no one-hop connection is set to a very large
number (say 10000), and we will not include them in later computation. As for
indirect links in Fig. 2b, we use the strategies as follows:

1. For node pairs which do not have direct links, if there exist multiple indirect
links of any type, select the one with the shortest distance within each type.

2. Following the notations in Fig. 2b, we set the distance for the indirect con-
nection node1 −node2 as the harmonic mean of the distance of the two types
of links t1 and t2. Thus we define dist(node1, node2) for indirectly connected
nodes pair (node1, node2) as follows:

dist(node1, node2) =
2 · dist(t1) · dist(t2)
dist(t1) + dist(t2)

, (2)

where dist(t1) and dist(t2) are the distances of the indirect links t1 and t2.
Suppose that the corresponding connectors on t1 and t2 are connector1 and
connector2, dist(t1) and dist(t2) are then as follows:

dist(t1) = 1/Wnode1,connector1 + 1/W connector1,node2 ,
dist(t2) = 1/Wnode1,connector2 + 1/W connector2,node2 ,

(3)
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Since w ≥ 1,∀w ∈ W , W is the link weight matrix of “background” network
G. Considering Formula (3) we have:

dist(t1) ≤ 2, dist(t2) ≤ 2 (4)

And consider when there is only one type of indirect links. Asserting that
“Two nodes having different types of connections have stronger connections
than those having only one single type of connections”. Considering the fact
that the global largest possible number for dist(t1) and dist(t2) is 2, we can
assert dist(node1, node2) under these occasions:

2 · dist(tn) · d

dist(tn) + d
= dist(node1, node2), ∀d ≤ 2, (5)

where there is only link tn, n ∈ {1, 2}.

Indirect Link Formation. We use different strategies to form indirect links
with weighted Adamic/Adar and one-hop shortest path:

1. For the weighted Adamic/Adar measure for heterogeneous relationships, the
score of the Adamic/Adar measure is not on the same scale with the existing
link weight which is in terms of the co-operation times between members.
Thus we only decide whether the indirect link could be formed. By setting
cutoff values from their score distribution, potential indirect links having score
beyond the cutoff value could be formally formed.

2. For the one-hop shortest path measure, for each type of indirect links consid-
ered (as described in Fig. 2b) every potential indirect link is formally formed,
with different distances assigned according to Eq. (2).

3.3 Diversity Measure: The D− Family

D− is essentially the inverse representation of a movie collaboration network’s
diversity. As links are segmented into the actor-actor and the actor-director,
D−s are thus computed separately on the subgraphs and the final D− is the
harmonic mean of the two. On each subgraph, the D− is essentially defined as
follows:

Using Adamic/Adar: The scores achieved from the Adamic/Adar measure can
only be used to decide whether or not a potential link exists. We consider two
types of D−, namely, D−

cov and D−
cc.

D−
cov is similar to the density measure used in network analysis. It merely

consider the link coverage in all the possible links within the collaboration net-
work of a movie. Use parameters to decide whether indirect links are added in
and link weight considered.

D−
cc is the average clustering coefficient [1] of the movie collaboration network,

using parameters to decide whether indirect links are added in and link weight
considered. For the actor-director subgraph, we only consider the local cluster
coefficients of the director nodes.
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Using One-hop Shortest Path: Different from the weighted Adamic/Adar mea-
sure, by definition, the weights computed for indirect links using “one-hop short-
est path” is on the same scale with existing link weights. We also give two types
of measures, namely, D−

aver dist and D−
w cc, as detailed below. They can be seen

as the distance-style modification of D−
cov and D−

cc, respectively.
D−

aver dist considers the average link weight in the network (with or with-
out indirect links added), while normalized by a “direct link coverage” multi-
plier to eliminate the bias. Use parameters to decide whether indirect links are
added in.

D−
w cc here is the weighted average clustering coefficient using a similar def-

inition in [7] of a movie collaboration network G, using parameters to decide
whether indirect links are added in. For the actor-director subgraph, we only
consider the local cluster coefficients of the director nodes.

It is noted that we did not normalize the link weight 1/dist(n′, n) (we did not
extract the link weight from W because a formed indirect link does not naturally
have its weight in W ) by the maximum weight in the network as in [7]. Because
we were calculating the weighted average clustering coefficient for all the movie
collaboration networks, and normalizing link weights by the maximum within
each network will cause inconsistency in the result.

4 Experiments

4.1 The ROC Test of D− Used as a Predictor in Binary
Classification on Movie Rank, Using Incremental Cut-off Values

To see if our D− measure can be used to predict whether a movie’s rank is
beyond a certain cutoff value, we use the ROC test for this challenge as ROC is
commonly used in machine learning to evaluate features in binary classification.
We directly extract the value from the CDF (Cumulative Distribution Function)
of D− as d− used in the ROC test. The larger the value of AUC (area-under-
curve) is, the more discriminative the predictor will be. The confusion matrix of
our ROC test is presented in Table 2.

Table 2. The confusion matrix for ROC analysis of binary ranking and D−

Predicted Observed

D− > d−, rank < cutoff D− > d−, rank > cutoff

D− > d−, rank < cutoff TP FP

D− > d−, rank > cutoff FN TN

The movie rank distributions in both France and Germany datasets are
skewed as shown in Fig. 3, as we only select movies beyond the average rank
in each dataset (see Sect. 2.1). We set the cutoff values of movie rank (cutoff )
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from 7 to 8.5 with the incremental step 0.1, since there are few movies whose
ranks are beyond 8.5, and whatever result given by ROC for these movies is not
convincing.

There are other details in the processing that are worth noting:

1. For the indirect link generation using the Adamic/Adar measure, we have
experimented with the cutoff values from 0.3 to 0.8 of the score’s distribution
with the incremental step of 0.1. We found that at 0.6 the methods achieved
consistently best performance in terms of the ROC analysis.

2. During the experiments, we only considered connected movie collaboration
networks.

Compare with the Monte Carlo Simulation. We present the ROC analy-
sis result in Fig. 3. We produced the heatmap (in Fig. 3) of the result obtained
by Monte Carlo simulation on random scenarios(randomly shuffling the target
movie rank list), upon which the real experimental result is plotted for com-
parison. Each cell in the heatmap of Monte Carlo has a value between (0, 1),
indicating for each cutoff value the probability of the AUC data point falling in
the cell. We performed the Monte Carlo simulation for 1, 000 trials of random
tests.

A valid predictor should perform significantly better on real world data than
on random data, which means the AUC line of the real world result should be
significant away from the random area (in Fig. 3 it is the area with darker color
in the palette) and it should go towards the cells which the probability of random
points falling in is less than 0.1 (those light yellow color cells).

4.2 Analysis

Given the evaluation standard above, we can see that the only consistently effec-
tive predictor for the France dataset and the Germany dataset is D−

w cc (with
indirect links). For the France dataset there are another four D−s which are
indicative when the cutoff value is beyond 7.8: D−

cc (weighted, with indirect
links), D−

cc (weighted, without indirect links), D−
cov (weighted, with indirect links)

and D−
cov (weighted, without indirect links). Overall, we can observe a consistent

pattern: the less diversity in a movie collaboration, the lower the movie rank will
be. Our D− is defined as the inverse of a movie collaboration network’s diversity.
Here “diversity” means the variety among the group of people based on their
collaborations.

Diversity Measure Used in a Classification Task. We further applied our
diversity measure D−s to a movie rank binary classification task using cutoffs.

Due to the biased distribution of movie ranks, instead of computing the
mean Accuracy, we only focused on the Precision/Recall of the predictions
on ranks beyond the cutoff values. We used several classical machine learning
classification algorithms [8] (Logistic Regression, Naive Bayes, SVC, Random
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Fig. 3. AUCs for using D−s as predictors of movie rank beyond cutoff values (France
above and Germany below) (Color figure online)

Forest, Adaboost, and Nearst Neighbors) to perform a binary classification of
movie ranks with the cutoff value ranging from 7 to 9. Among these models
SVC and Logistic Regression tend to give high Recall and low Precision values,
whereas Naive Bayes tends to give moderate Precision and Recall values.

There was little quantitative research on the factors affecting movie ranks,
thus we empirically chose some of the possible factors in the preprocessing.
Specifically, we set the “strong empirical” factors as {“average movie rank of the
directors”}, and “moderate empirical” factors as {“genre”, “count of the direc-
tors”}. These empirical factors are to be compared with the “selected”:{D−

w cc

(with indirect links)}, which is consistently effective on both dataset in the ROC
test in Sect. 4.

Thus the experiments are performed on the datasets for 100 trials each with
the datasets randomly separated (70/30) as training and test data. We then
calculated the average Precision and Recall values on each cutoff value, ranging
from 7 to 9 for all experiments.

The average Precision/Recall of all the classification models we used is pre-
sented in Fig. 4. Due to the “class imbalance” problem caused by the biased
distribution of the movie ranks, when the cutoff value is beyond 7.3, the
Precision/Recalls are not satisfactory (all below 0.5). Thus we only present
results where the cutoff values are below 7.4 in Fig. 4.

The above results show that for the France dataset, the selected D− has
achieved highest average Recall value when the cutoff values are between 7.0 and
7.2, however it achieved only slightly higher Precison value than the random
result. On the Germany dataset, the selected D− has achieved average Precision
value slightly less than the strong empirical factors, yet the average Recall value
is lower than the random result. Overall, the selected D− is enough for good
predictions of movie ranks, however its advantage prones to different aspects of
Precision/Recall for both datasets.
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random
strong empirical
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Fig. 4. Average Precision/Recall of the movie ranks binary classification using sets
of features (France and Germany)

5 Related Work

Our study falls into the domain of collaboration networks. The movie actors
network is less thoroughly studied due to its complex nature, even though some
research has given a general profile of its structure [9–11]. Among the research on
outcome aware collaboration networks [12,13], Kameshwaran et al. [12] studied
the movie actors collaboration network. They used a modified eigenvector rank-
ing method to describe how a collaboration outcome has influenced the intial
nodes ranking in the network, however they assumed that the nodes did not
determine the outcome directly.

6 Conclusions and Future Work

In this research we studied the diversity in movie collaboration networks, and its
relationship with movie ranks. Experiments were performed on the movie collab-
oration networks composed of actors and directors, which are generated from the
France and Germany datasets from IMDb. For indirect link generation we used
adpted Adamic/Adar and “one-hop shortest path”. We have observed consistent
results in the France and Germany datasets: The less diversity in movie’s collabo-
ration network, the lower the movie rank will be. We also performed experiments
on the selected diversity measures D−s along with some empirically selected fea-
tures in a movie ranks binary classification task and achieved satisfactory result
on cutoff values below 7.3. Overall, we have proved the “diversity” measure is
feasible enough in distinguishing movie ranks.

Our study serves as a first step towards further reasearch on the potential
of using diversity measures for mining movie collaboration networks. The next
step would include looking into the temporal evolving behavior of the network
and relating it to the movie ranks.
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Abstract. Anomaly detection for temporal data has received much
attention by many real-world applications. Most existing unsupervised
methods dealing with this task are based on a sequential two-way app-
roach (clustering and detection). Because of this, the clustering is less
robust to anomalous series in data which distorts the detection step.
Thus, to overcome this problem, we propose an embedded technique
simultaneously dealing with both methods. We reformulate the task of
anomaly detection as a local-weighting-instance clustering problem. The
anomalous series are detected locally in each cluster as well as globally
in the data, as a whole. Extensive experiments on benchmark datasets
are carried out to validate our approach and compare it with other state-
of-the-art methods of detection.

1 Introduction

In the last decade, the anomaly detection for temporal data has received much
attention by the data mining community [8]. In fact, the rapid development of
data acquisition tools has increased the accumulation of temporal data in several
industries, such as financial time series, health care, astronomy, flight safety,
traffic analysis, biology, environmental and industrial sensor data. In this work,
we are interested in the global unsupervised anomaly detection for continuous
time series data, i.e. univariate real-value time series (ti is an ordered set of n
real values, ti = {ti1, ti2, . . . , tin}). Given a set of time series T = {t1, t2, . . . , tn},
we would like to detect the most anomalous time series in this set. In this task,
it is assumed that most of the time series in the dataset are normal while a few
are anomalous.

Similar to traditional anomaly detection, the usual recipe for solving such
problems is to first learn a model based on all the time series sequences in the
database, and then compute an anomaly score for each sequence with respect
to the model. The model could be supervised or unsupervised depending on the
availability of training data. Unsupervised global detection of an anomalous time
series can be achieved by discriminative approaches based on a k-NN schema or
by the two-way approach, which includes: clustering the time series and then
computing the anomaly score of each time series as the distance to the cen-
troid(medoid) of the closest cluster [3]. On the other hand, some parametric
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 762–772, 2017.
DOI: 10.1007/978-3-319-57454-7 59
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approaches can be applied, for which anomalous series are not specified, and a
summary model is constructed on the base data. A time series is then marked
anomalous if the probability of generation of the sequence from the model is very
low [7]. However, all these approaches deal with symbolic series (sequences) and
applying them for continuous time series requires a discretization mechanism
that could result in a loss of information. In contrast to the above methods,
we propose an unsupervised approach which learns the anomaly score of time
series by an embedded strategy where clustering and detection are performed
simultaneously. In fact, we reformulate the task of anomaly detection as a local
weighting-instance clustering problem based on dynamic time wrapping.

The remainder of this paper is organized as follows: In Sect. 2, we will review
some related works on similarity measures for time series data and (weighted)
clustering. We will describe our proposed algorithm in Sect. 3. Finally, in Sect. 4
we provide the experimental results for validating our proposal on some known
benchmarks for time series data.

2 Related Works

Unsupervised direct detection of an anomalous time series can be achieved by
a clustering mechanism. Once a similarity function between each pair of time
series is defined, one can cluster them in different groups using this function. The
anomaly score is then computed for each time series based on its distance to its
closest centroid (or medoid). The main difference between these approaches is
the choice of the similarity measure and the clustering process [3]. Time series
data present challenges and opportunities for data mining, especially in cluster-
ing and representation learning. Such data exhibit noises, different lengths, and
irregular sampling [1]. One can apply a discretization mechanism to transform
time series to discrete sequences and then use some popular measures such as
the simple match count based sequence similarity [12] or the normalized length
of the longest common subsequence (LCS) [2]. A main concern is the loss of
information resulting from the discretization mechanism. Other works transform
the data into a more regular representation to which the simple Euclidian dis-
tance can be applied. However, it has only been recently shown in the functional
data analysis literature that deformation-based metrics can be more robust to
the curse of dimensionality than simple Euclidean distance [6]. For time series,
Dynamic Time Warping (DTW) is a popular technique for measuring the dis-
tance between two time series with temporal deformations [19]. Unlike Euclidian
distance, DTW can be used to compare time series, with different lengths, based
on shape and permits distortions (e.g., shifting and stretching) along the tempo-
ral axis. This measure is known by its ability to return the best warping align-
ment between two time series despite its computational complexity in quadratic
time using dynamic programming. Several variants are proposed to speed up this
measure [17]. Given the distance metric, one can use k-means algorithm directly
[15], or construct an affinity matrix and apply spectral clustering, or compute a
dissimilarity matrix and build a taxonomy by a hierarchical clustering based on a
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linkage strategy [9]. Weighting-based clustering has been an important research
topic in data analysis [10,13]. For example, the authors in [10,11] proposed the
wk-means and ewk-means clustering algorithms that can automatically com-
pute feature weights in the k-means clustering process. These algorithms extend
the standard k-means algorithm with one additional step to compute feature
weights at each iteration of the clustering process. As such, noise features can
be identified and their affects on the clustering result are significantly reduced.
These algorithms and their variants handle high-dimensional data and concern
the weighting of features which is different than our work that considers time
series (instance) weighting and especially anomaly detection.

3 Proposed Approach: L2GAD

In this section we present notations and definitions that we will use in the rest of
the paper. Then, we describe in detail the theoretical aspects of our algorithm.
We summarize the mathematical formulations in Algorithm1 and discuss the
convergence and the complexity of the proposed approach.

3.1 Notations and Definitions

In the paper, we use T = {t1, t2, . . . , tn} to denote the set of n time series where
each ti is an ordered set of real values. The length of ti is represented by N , which
is equal or different to the lengths of other time series. The pairwise distance
can be computed between each pair (ti, tj) by the DTW measure. DTW is
a well-known technique to find an optimal alignment between two time series
ti = (ti1 , ti2 , . . . , tiN

) of length N and tj = (tj1 , tj2 , . . . , tjM
) of length M . To

compare two time points from ti and tj respectively, one needs a local cost
measure, sometimes also referred to as local distance measure d. The goal is to
find an alignment between ti and tj having minimal overall cost. The following
definitions formalize the notion of an alignment.

Definition 1. An (N,M)-warping path is a sequence s = (s1, . . . , sC) with
sc = (ic, jc) ∈ [1 : N ] × [1 : M ] for c ∈ [1 : C] satisfying the following three
conditions.

– Boundary condition: s1 = (1, 1) and sC = (N,M)
– Monotonicity condition: i1 ≤ . . . ≤ iC and j1 ≤ . . . ≤ jC

– Step size condition: sc+1 − sc ∈ {(1, 0); (0, 1); (1, 1)} for c ∈ [1 : C − 1]

Definition 2. DTW is the warping path having minimal total cost among all
possible warping paths. dtw(ti, tj) = min{ds(ti, tj)|s is an (N,M)-warping
path}; where ds(ti, tj) =

∑C
c=1 d(tic

, tjc
).
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3.2 L2GAD Algorithm

In this section, we present our algorithm which detects a set of anomalous time
series in an unsupervised way. We propose a local-to-global unsupervised anom-
aly detection approach for time series, named L2GAD, in short. The algorithm is
an embedded technique dealing with clustering and detection, simultaneously. It
detects the anomalous time series for each cluster (local detection step) and then
aggregates their weights for the whole set of time series (global detection step).
In doing this, we reformulate the task of anomaly detection as a local-weighting-
instance clustering problem. For each cluster, we detect its anomalous time series
by assigning smaller weights to the time series that increase its within-cluster
distances. In fact, we believe that the weight of time series in some cluster rep-
resents the score of contribution of that time series in forming the cluster and
computing its medoid.

Thus, such time series are considered anomalous for this cluster. By doing so,
each time series would have as much weight as the number of clusters that repre-
sents its degree of abnormality within each cluster. Finally, the global detection
step is done by assigning an global anomaly score to each time series by aggre-
gating its weights with its distances to each medoid. The higher the score, the
more anomalous the series.

In the following, we propose a new objective function, to be minimized,
described in Eq. (1).

min
A,M,W

Φ(A,M,W ) =
k∑

l=1

n∑

i=1

ailw
α
ildtw(ti,ml) (1)

subject to the following constraints:

⎧
⎨

⎩

∑k
l=1 ail = 1; 1 ≤ i ≤ n

ail ∈ {0, 1}; 1 ≤ i ≤ n; 1 ≤ l ≤ k
∑k

l=1

∑n
i=1 wil = 1; 0 ≤ wi ≤ 1

Where

– A is n×k partition matrix and ail is a binary variable such as ail = 1 indicates
that the time series ti is assigned to cluster l;

– M = {m1,m2, . . . ,mk} is a set of k time series representing the medoids of
the k clusters;

– W is n × k weights matrix such that each time series has a k weights corre-
sponding to the k clusters.

– α is parameter for weighting. Note that this parameter can neither be equal to
zero nor to one. Indeed, if α = 0, the weighting is removed and the detection
cannot be performed. If α = 1, w would disappear because of the bellow
derivatives for solving the problem.

Minimization of Φ in Eq. (1) with the constraints forms a class of constrained
nonlinear optimization problems whose solutions are unknown. Indeed, it is dif-
ficult to optimize three variables simultaneously. Thus, we adopt an alternating
optimization to solve this problem, which works well for a number of practical
optimization problems. To do this, we have to minimize the objective function
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with unknown variables A,M and W by iteratively solving the following three
reduced minimization problems:

– Problem1: Minimizing Eq. (1) by fixing M and W for finding the solution
for A. The optimization leads to:

ail =
{

1 if dtw(ti,ml) ≤ dtw(ti,mv); 1 ≤ v ≤ k
0 Otherwise

(2)

– Problem2: Minimizing Eq. (1) by fixing A and W for finding the solution
of M . The medoid ml is a representative time series of the cluster l whose
distance to all time series in the same cluster is minimal.

ml = min
tj

∑

i|i�=j, gil=gjl=1

wα
ildtw(ti, tj). (3)

– Problem3: Minimizing Eq. (1) by fixing A and M for finding weights of time
series W . The optimization leads to (see proof ):

wil =

(
k∑

l=1

n∑

s=1

( aildtw(ti,ml)
asldtw(ts,ml)

) 1
α−1

)−1

(4)

Then, we compute the global anomaly score si of each time series ti as the
scalar product of the weights vector w(i,:) = [wi1, . . . , wik] and the distance
vector d(i,:) = [dtw(ti,m1), . . . ,dtw(ti,mk)]

si = 〈w(i,:), d(i,:)〉 = [wi1, . . . , wik][dtw(ti,m1), . . . , dtw(ti,mk)]� (5)

Proof (Eq. (4)). We minimize the function by the Lagrangian multiplier. Let μ
be the multiplier and Θ (W,μ) be the Lagrangian.

Θ (W,μ) =
k∑

l=1

n∑

i=1

wα
ilaildtw(ti,ml) − μ

(
k∑

l=1

n∑

i=1

wil − 1

)

(6)

To minimize Θ (W,μ), the gradient of Θ on both W and μ must be equal to
zero. Thus, we would have

∂Θ (W,μ)
∂wil

= (α)w(α−1)
il (aildtw(ti,ml)) − μ = 0; 1 ≤ i ≤ n (7)

and
∂Θ (W,μ)

∂μ
=

k∑

l=1

n∑

i=1

wil − 1 = 0 (8)

From (7) we obtain:

wil =

(
μ

(α)aildtw(ti,ml)

) 1
1−α

(9)



Local-to-Global Unsupervised Anomaly Detection from Temporal Data 767

Substituting (9) in (8) we have:

k∑

l=1

n∑

i=1

(
μ

(α)aildtw(ti,ml)

) 1
1−α

= 1 (10)

From 10 we derive:

μ
1

1−α =

(
k∑

l=1

n∑

i=1

( 1
(α)aildtw(ti,ml)

) 1
1−α

)−1

(11)

Substituting (11) in (9):

wil =

(
∑k

l=1

∑n
s=1

(
aslαdtw(ts,ml)

−1
) 1

1−α

)−1

(

ailαdtw(ti,ml)
) 1

1−α

(12)

From (12) we obtain the final formula of weights:

wil =

(
k∑

l=1

n∑

s=1

( aildtw(ti,ml)
asldtw(ts,ml)

) 1
α−1

)−1

(13)

�

Subsequently, we can summarize all the above mathematical developments
in Algorithm 1.

Algorithm 1. L2GAD
1: Input: Set of time series T = {t1, t2, . . . , tn}, parameters k and α.
2: Output: Ranked time series
3: Initialize:
4: Randomly choose initial k time series from T as medoids {m1, m2, . . . , mk}
5: Randomly generate n × k weights of time series w.r.t

∑k
l=1

∑n
i=1 wil = 1

6: repeat
7: calculate the cluster-memberships using Eq. (2)
8: update the cluster-medoids by Eq. (3)
9: compute the weights using Eq. (4)
10: until Convergence (no alteration in the weights)
11: Compute the global anomaly score si of each time series ti using Eq. (5)
12: Rank the time series according to their anomaly score in descending order.

Lemma 1 (Convergence).
L2GAD converges to a local minimum solution in a finite number of iterations.
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Proof (Lemma 1). Assume that Mp1 = Mp2 where p1 �= p2. Given Mp, we can
compute the minimizer Ap, which is independent of W p as shown in Eq. (2).
For Mp1 and Mp2 , we have the minimizers Ap1 and Ap2 , respectively. It is clear
that Ap1 = Ap2 since Mp1 = Mp2 . Using Mp1 and Ap1 , Mp2 and Ap2 , we can
compute the minimizers W p1 and W p2 , respectively according to Eq. (4). Again,
it is clear that W p1 = W p2 . Thus, we get:

Φ(Ap1 ,Mp1 ,W p1) = Φ(Ap2 ,Mp2 ,W p2).

Note that the sequence Φ(A,M,W ) generated by L2GAD is strictly decreasing,
so the algorithm converges in a finite number of iterations. �
Lemma 2 (Complexity).
L2GAD algorithm is computed O((n(n − 1)/2)L2)+O(n×max(log(n), pk)) oper-
ations, where p is the number of iterations.

Proof (Lemma 2). Let L be the length of the longest time series in the whole
dataset T . Computing the distance between two time series ti and tj using
DTW, requires O(max(|ti|, |tj |))2) in general. Thus,computing the pairwise dis-
tance between each pair of time series, we need at most O(L2(n(n−1)

2 )) oper-
ations. Step 7 calculates the cluster-memberships values by O(nk) operations.
Step 8 also updates the medods by O(nk) operations and the Step 9 provides the
time series weights after O(n × 2k) operations. The two last steps compute the
anomaly score of all time series in O(n × 2k) operations and rank them accord-
ing to this score with n log(n) operations. Subsequently, L2GAD is computed
in O((n(n − 1)/2)L2) + O(n × max(log(n), pk)) where p is the total number of
iterations. �

4 Experiments

In this section, we present the used datasets and the compared algorithms, as
well as the experimental setting used to conduct the empirical study. The results
of the experiments are provided in Table 1.

4.1 Datasets and Methods

To evaluate the performance of L2GAD, we compare it with four anomaly detec-
tion algorithms: DTW+SPECTRAL [14], DTW+KMEDOID [2], DTW+HC
[16] and FD-OCSVM [18]. The three first are two-way approaches based on clus-
tering process, whereas DF-OCSVM computes a feature space by a frequency
domain (FD) coding and then applies One-class SVM for anomaly detection in
a set of time series [18]. The clustering based methods cluster the time series
on k clusters based on the DTW measure. Then, they assign an anomaly score
to a time series according to the distance with its closest (center or medoids).
To assess the efficiency of our algorithm, an empirical study was carried out on
35 datasets to test different cases (length of series (shorter, longer), number of
series, different number of classes). Theses datasets are available at the UCR
Time Series Classification Archive [4]. The characteristics of these dataset are
described in Table 1 (see the Datasets description columns).
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4.2 Experimental Setting

For each dataset, experimental results are averaged over 20 runs. However, all
these datasets are devoted to classification purpose and not for anomaly detec-
tion task. So, we propose to perturb 10% of time series in each dataset, randomly
and consider them as anomalous. This perturbation is done by two parameters:
segment and snr. The segment parameter represents the percentage of the val-
ues to perturb in a time series and the snr parameter represents the signal-noise-
ratio to be added at each perturbed value in the time series. For the clustering
based algorithms, the number of clusters k is set to the one indicated in Table 1
(The # classes column) and they will start with the same vector m = m1, . . . ,mk

that we generate randomly at each run. For L2GAD algorithm, the parameter
α is taken randomly at each run such that α ∈ ]1, 1000].

The performance is assessed via precision at top β which is the fraction of
anomalous time series in the whole data. The β is known since we fix it in the
perturbation process (corresponding to the #anomalous column in Table 1). For
each algorithm we rank the set of all time series according to their anomaly scores
(5) and we count the number of the true anomalous ones (trueAnomalous) in
the top β portion. The detection accuracy is then computed as following:

DetectionAccuracy =
trueAnomalous

β
(14)

4.3 Results

For each dataset, the accuracies of detection of each algorithm are averaged
over 20 runs and the results are reported in Table 1 (see the Anomaly Detec-
tion Algorithm columns). In order to better assess these results, we adopt the
methodology proposed by [5] for comparison of several algorithms over multiple
data sets. In this methodology, the nonparametric Friedman test is first used to
evaluate the rejection of the hypothesis that all the algorithms perform equally
well for a given risk level. It ranks the algorithms for each dataset separately,
with the best performing algorithm obtaining the rank of 1, the second best rank
2, etc. In case of ties, it assigns average ranks. Then, the Friedman test compares
the average ranks of the algorithms and calculates the Friedman statistic. If a
statistically significant difference in performance is detected, we proceed with a
post hoc test.

The Nemenyi test is used to compare all the algorithms with each other.
In this procedure, the performance of two algorithms is significantly different if
their average ranks differ more than some critical distance (CD). The critical
distance depends on the number of algorithms, the number of data sets and
the critical value (for a given significance level p-value) which is based on the
studentized range statistic (see [5] for further details).

In this study, based on the values in Table 1, the Friedman test reveals statis-
tically significant differences (p-value <0.05) between all compared algorithms.
Furthermore, we present the result from the Nemenyi post hoc test with aver-
age rank diagrams as suggested by [5]. These are given in Fig. 1. The ranks are
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depicted on the axis, in such manner that the best ranking algorithms are to the
right side of the diagram. Algorithms that do not differ significantly (at p-value
= 0.05) are connected with a line. The critical distance CD is shown above the
graph (here, CD = 1.0311). As can be seen, L2GAD tops the ranking, with no
connections to other algorithms, meaning that it does statistically differ from
others.

Fig. 1. Average ranks diagram comparing the anomalous time series detection algo-
rithms in terms of accuracy Eq. (14).

5 Conclusion

In this paper, we proposed an unsupervised approach for anomaly detection from
time series data. We presented L2GAD, a new algorithm that first detects anom-
alous series in each cluster and then in whole set of series. Unlike to the most
existing methods, L2GAD deals with this task by doing clustering and detec-
tion simultaneously. Experiments on several datasets demonstrated superiority
of L2GAD in comparison with state-of-the-art anomaly detection approaches.
For future works, it would be interesting to extend L2GAD to deal with metric
learning in which the alignment between time series could be learned instead of
using DTW as a fixed measure. Another avenue would be to extend our app-
roach to deal with semi-supervised learning on which the set of time series could
be partially labeled.
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Abstract. In this paper, we explore a new mining paradigm, called
Temporal Fluctuating Patterns (abbreviated as TFP), to discover poten-
tially fluctuating and useful feature sets from temporal data. These fea-
ture sets have some properties which are variant through time series.
Once TFPs are discovered, we can find the turning points of patterns,
which enables anomaly detection and transformation discovery over time.
For example, the discovery of TFPs can possibly figure out the phenom-
enon of virus variation during the epidemic outbreak, further providing
the government the clue for the epidemic control. However, previous work
on mining temporal data computes frequent sets iteratively for different
time periods, which is time-consuming. We, therefore, develop a union-
based mining structure to speed up the mining process and dynamically
compute the fluctuations of patterns through time series. As shown in
our experimental studies, the proposed framework can efficiently dis-
cover TFPs on a real epidemic disease dataset, showing its prominent
advantages to be utilized in real applications.

1 Introduction

In many applications, data are generated over time, such as location-based ser-
vices, stock trading application, and disease reporting services, thus forming
so-called temporal databases. Typically, temporal data consist of a sequence of
data elements ordered by time. It is believed in the literature that temporal
data usually behave with time-variant characteristics, leading to an interest in
identifying hidden and evolving knowledge as time advances [6].

The observation on the fluctuation phenomenon is crucial to many applica-
tions. Analysis of fluctuation [11] is a required and practical strategy to catch up
interesting trends of discovered patterns through time. The fluctuation, in this
paper, refers to the difference between the recent property and the past prop-
erty of a pattern. For example, as illustrated in Fig. 1, the support of pattern
p2 retrieved from an influenza dataset obviously changes temporally. Since the
symptom behaves with dynamic fluctuation, it becomes a reliable indicator to
sensitively detect the evolving events, such as virus variation. To the best of our
knowledge, such phenomenon of pattern fluctuation is left unexplored thus far.

Traditionally, previous work usually attempt to capture the temporal-based
frequent patterns [1,12], but the fluctuating factor of frequent patterns is not

c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 773–785, 2017.
DOI: 10.1007/978-3-319-57454-7 60
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Fig. 1. An illustrative example of two symptom patterns.

seriously considered by these studies. The observation on the fluctuating factor
of patterns enables us to discover the turning points of patterns. In this paper,
we study a hospital-based dataset recording the physical symptom of patients
during the influenza outbreak, attempting to timely capture the virus evolution
and helping the government to deploy the intervention strategies, such as school
closure or large-scale vaccination campaigns, based on the evolving evidence. We
use Fig. 1 as an example to illustrate two symptom patterns p1 = {headaches
(s1), muscle aches (s3)} and p2 = {runny nose (s2), high fever (s4)} from the
example influenza data. The pattern p2 has two significant fluctuations on May
and September. It is reported to be likely to belong as the RNA virus variation,
further affecting the first-revealed symptoms of patients. On the other hand,
pattern p1 has no significant fluctuations, which indicates that it includes stable
features, headache and muscle aches, for disease implication. These applications
of pattern fluctuations inspire us to consider the fluctuating factor into frequent
pattern mining.

Specifically, we explore in this paper a practically interesting task, called min-
ing temporal fluctuating patterns (abbreviated as TFPs), to identify frequent
patterns which have significant or insignificant fluctuations in temporal data-
bases. For example, the more significant TFP is p2 = {runny nose (s2), high
fever (s4)} in Fig. 1. Alternatively, p1 = {headaches (s1), muscle aches (s3)}
is the more insignificant TFP. The discovery of these TFPs enables anomaly
detection and transformation discovery over time.

In fact, the framework to discover TFPs is highly challenging due to two
major bottlenecks. First, the fluctuation can be variant, which cannot be repre-
sented by a static linear function. The adaptive fluctuation function in different
cases should be designed. Second, the traditional frequent pattern mining algo-
rithms applied on TFPs will lead to the inefficient situation. These algorithms
cause multiple mining tasks to compute frequent sets iteratively for different
time periods. Therefore, how to improve the time efficiency of this work is the
most important issue. In this paper, we propose a weight based fluctuation func-
tion which would be dynamically changed by different fluctuations, and an Unik
algorithm is devised with an union-based mining structure. As validated in real
data, the performance and quality are comprehensively demonstrated the prac-
ticability of the proposed framework.
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The remainder of this paper is organized as follows. In Sect. 2, we will give
the problem definitions. We introduce our system framework in Sect. 3. The
experimental results are conducted in Sect. 4. Sections 5 and 6 give the related
works and conclusions.

2 Problem Definition

Before formally introducing our framework, we give the necessary definitions as
follows.

Definition 1 (A Temporal Event). A temporal event ei is denoted by the
3-tuple (ui, si, Ai), where si denotes the dispatch time when the temporal event
appears, ui stands for a user ui, and Ai represents a set of user features
{a1, a2, . . . , aj}, such as gender, age, and so on.

For example, a temporal event ei in a disease dataset can be (u1, 30-08-2015
08:12:00, {male, 20, high fever, vomiting, headaches}). In this paper, we call
temporal events as events for short.

Definition 2 (A Temporal Event Set). Given a user defined unit r, the
total data length of time T can be divided into different periods {t1, t2, . . . , tn}.
Events took place in the j-th period form a temporal event set E(tj) =
{e

(tj)
1 , e

(tj)
2 , . . . , e

(tj)
m }.

This user defined unit r can be hours, days, weeks, months and years. For
example, given a dataset which is collected starting from July and a user defined
unit r=‘week’, the temporal event set E(t1) includes the events appearing during
the first week of July. By applying data mining algorithms, patterns can be
retrieved from each temporal event set E(tj), which can be defined as below.

Definition 3 (A Feature Pattern). A feature pattern p
(tj)
i is defined as the

form of user features {a
(tj)
i,1 , a

(tj)
i,2 , . . . , a

(tj)
i,n }, and is retrieved from temporal event

set E(tj) by using the proposed method mentioned in Sect. 3.2.

For example, a feature pattern p
(t1)
1 discovered from the temporal event set

E(t1) in a disease dataset can be {male, 20, high fever}. In this paper, we call
feature patterns as patterns for short. In addition, the support value of a pattern
p
(tj)
i is the proportion of occurrence count of this pattern pi in period tj . A top-k

pattern set K(tj), denoted by {p
(tj)
1 , p

(tj)
2 , . . . , p

(tj)
k }, consists of k patterns which

have top-k support values during the j-th period. In this paper, we state the
top-k pattern set as k-set.

Every pattern pi has its support value set Qi = {q
(t1)
i , q

(t2)
i . . . , q

(tj)
i } which

equals to the proportion of occurrence count in event sets during different peri-
ods. With these temporal support values, we give the definition of temporal
fluctuation.
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Fig. 2. The temporal fluctuation of different patterns.

Definition 4 (Temporal Fluctuation). The fluctuation f
(tj)
i of pattern pi

between the j-th period and the (j − 1)-th period is the difference of the support
values q

(tj)
i and q

(tj−1)
i . The fluctuation set F (pi) of pattern pi can be defined as

F (pi) = {f
(tj)
i |f(tj)

i = |q(tj)
i − q

(tj−1)
i |, 2 ≤ j ≤ n}. (1)

The temporal fluctuation Fpi
of pattern pi can be defined as 1

n−1

∑n
j=2 f

(tj)
i ,

which is the average fluctuation of fluctuation set F (pi).
As shown in Fig. 2(a), the pattern p2 has two huge peaks which are produced

by significant fluctuations as illustrated as the red dash line. Such peaks should
be highlighted since they do not appear as frequently as others. Therefore, we
use the standard deviation σF (pi) of the fluctuation set F (pi) to define the weight
of different fluctuations.

σF (pi) =

√
√
√
√

1

n − 1

n∑

j=2

(f
(tj)
i − μF (pi))

2, μF (pi) =
1

n − 1

n∑

j=2

f
(tj)
i . (2)

However, for both the patterns p1 and p2 shown in Fig. 2(b), their temporal
fluctuations have no obvious peaks. It is obvious that the temporal fluctuation
of pattern p2 is bigger than pattern p1, but deviation σF (pi) cannot draw such
difference.

Lemma 1. Suppose that all fluctuations of p2 are the fluctuations of p1 plus a
difference Δx, the standard deviation σF (p2) of pattern p2 is the same as the one
σF (p1) of pattern p1.

Proof. The standard deviation σF (p2) of pattern p2 is

σF (p2) = σF (p1,Δx) =

√
√
√
√

1

n − 1

n∑

j=2

((f
(tj)
i + Δx) − (μF (pi) + Δx))2

=

√
√
√
√

1

n − 1

n∑

j=2

(f
(tj)
i − μF (pi))

2 = σF (p1).

(3)
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To deal with this problem, we need to make the function of temporal fluc-
tuation strengthen the effect of huge fluctuations. Therefore, we redefine the
temporal fluctuation Fpi

of pattern pi as

Fpi
=

1

n − 1

n∑

j=2

w
(tj)
i × f

(tj)
i , where w

(tj)
i =

f
(tj)
i

√

1
n−1

n∑

j=2
(f

(tj)
i − μF (pi))

2

. (4)

Problem Formulation (Significant and Insignificant Temporal Fluctu-
ating Patterns Discovery): Suppose that a significant/insignificant temporal
fluctuating pattern (abbreviated as TFP in the sequel) is defined as the form
pi = {ai,1, ai,2, . . . , ai,j}. Given a database D, desired number k, unit of time
r, and the thresholds of temporal fluctuation, δa for significant one, and δb for
insignificant one, the goal of our framework is to discover patterns which have
significant/insignificant temporal fluctuation in the k-sets K(tj), 1 ≤ j ≤ n,
where n is the number of periods. The discovery of significant and insignifi-
cant temporal fluctuating patterns over database D returns the result sets Ra

and Rb:
⎧

⎪⎪⎨

⎪⎪⎩

Ra(D) = {pi|Fpi
≥ δa ∧ pi ∈

n⋃

j=1
K(tj)}.

Rb(D) = {pi|Fpi
≤ δb ∧ pi ∈

n⋃

j=1
K(tj)}.

(5)

3 Proposed Method

In this section, a naive generation (NG) is introduced as a straightforward way
to discover TFPs. Then, the Unik approach is proposed as an improved solution
to effectively and efficiently retrieve the significant and insignificant TFPs.

3.1 Naive Generation (NG)

The NG solution is devised based on the Apriori algorithm [2] to separately
retrieve different k-sets from temporal event sets {E(t1), E(t2), . . . , E(tn)}. After
multiple mining tasks are executed, the obtained k-sets {K(t1),K(t2), . . . ,K(tn)}
are used to construct a union set U =

⋃n
j=1 K(tj), and the temporal fluctuation

Fpi
of each pattern pi ∈ U is computed. However, the multiple mining tasks to

compute k-sets iteratively for different time periods is time consuming. In addi-
tion, to independently retrieve different k-sets from temporal event sets causes
a major problem: the algorithm cannot decide which generated pattern pi can
be discarded in the mining process. Since the algorithm cannot make sure if a
pattern pi ∈ K(tj) may appear in another k-set K(tz), where z �= j, it needs
to memorize all the generated patterns and the support of these patterns. To
efficiently discover the TFPs, we propose the Unik generation.
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3.2 Unik Generation

In this paper, the proposed Unik generation tries to produce n-item set of pattern
candidates from the Union set Un−1 including (n-1)-items xi in the k-set K(tj)

on the (n − 1)-th iteration. This algorithm includes three major steps:

Step 1 (Generate): Unik generates n-item set Xn from the union set Un−1

produced on the (n − 1)-th iteration, where

Xn = {xa ∪ xb|xa, xb ∈ Un−1 ∧ |xa|, |xb| = n − 1} − {xc|{xd ⊆ xc ∧ |xd| = n − 1} � Un−1},

(6)

and computes the support value set Qi = {q
(t1)
i , q

(t2)
i . . . , q

(tj)
i } of n-items

xi ∈ Xn.

Step 2 (Update): Unik updates all K(tj) (for each tj ∈ T ) which include 1-
items to (n − 1)-items. If each n-item xi ∈ Xn can be inserted into these k-sets
K(tj) is independently checked in the algorithm.

K
(tj)

=

⎧

⎨

⎩

(K(tj) ∪ xi) − xz, if q
(tj)
xi

> q
(tj)
xz ∧ xz = argmin

xm

q
(tj)
xm , xm ∈ K(tj).

K(tj), otherwise.

(7)

Step 3 (Union): Finally, Unik unions the items in k-set K(tj) on the n-th
iteration of different periods {t1, . . . , tm} to form a new union set Un.

Un =
m⋃

j=1

K
(tj)

. (8)

The Unik generation iteratively executes these three steps until Xn = ∅. How-
ever, to apply the Unik generation, we need to prove that the patterns in k-sets
can be derived from the union sets {U1, . . . , Un} on each iteration.

Fig. 3. Illustrative examples of support computation and insertion updating.

Lemma 2. If an n-item x belongs to k-set K(tj), it can be generated from the
union set Un−1 on the (n − 1)-th iteration and can be inserted into the k-set
K(tj) on the n-th iteration.

Proof. Let x = {a
(tj)
i,1 , . . . a

(tj)
i,2 . . . , a

(tj)
i,n } and x′ ∈ x is an (n−1)-item. Given x ∈

K(tj) = {p
(tj)
1 , p

(tj)
2 , . . . , p

(tj)
k }, we have q

(tj)
x ≥ q

(tj)
pk and q

(tj)
x′ ≥ q

(tj)
pk . Therefore,

x′ ∈ K(tj) ∈ Un−1. Similarly, given two (n − 1)-items x′, x′′ ∈ x, we have x′,
x′′ ∈ K(tj) ∈ Un−1, so x ∈ Xn. Finally, as we know q

(tj)
x ≥ q

(tj)
pk , x ∈ K(tj).
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As proved in Lemma 2, it is applicable to retrieve the n-items xi ∈ K(tj) from
the union set Un on the n-th iteration.

Support Computation Using Bit Vectors: In order to speed up the support
computation of the generated n-items xi ∈ Xn, we use a bit vector I

(tj)
xi associ-

ated with event IDs of the item candidate xi in the j-th period. The length of
I
(tj)
xi is |E(tj)|, and the l-th bit of Ixi

is 1 if and only if the event e
(tj)
l consists of

the item candidate xi. Finally, the support value q
(tj)
xi of an n-item xi generated

by two (n − 1)-items, xa and xb, can be computed as

q
(tj)
xi

= (

|I(tj)
xa |
∑

l=1

(il AND 1))/|I(tj)
xa |, ij ∈ (I

(tj)
xa AND I

(tj)
xb

), (9)

where AND is the operation of bitwise AND.
However, the intersection vector In = (I(tj)

xa AND I
(tj)
xb ) is actually sparse,

and should be designed for running in time proportional to the number of 1 bits.
Therefore, a mystical operator (In AND (In − 1)) is used to iteratively set the
rightmost 1 bit in In to 0, which is shown in Fig. 3(a), and the support value
q
(tj)
xi of an n-item xi is rewritten as

q
(tj)
xi

= (

In=0
∑

In=(In AND (In−1))

1)/|In|. (10)

Insertion Updating of k-sets: Given a sorted k-set K(tj) = {x1, x2 . . . , xk}
storing k items with high support values, the insertion updating only needs to
check the support value q

(tj)
xi of n-item xi ∈ Xn against min q

(tj)
xz , 1 ≤ z ≤ k in

each iteration. If support value q
(tj)
xi is smaller than min q

(tj)
xz , n-item xi can be

discarded. Conversely, the insertion updating finds the correct order of n-item
xi within the sorted k-set K(tj), discards arg min q

(tj)
xz , and then k-set K(tj) is

updated. An illustrative example is shown in Fig. 3(b). In this way, each n-item
compares at least 1 time and at most k times, and count ci of comparison for l
n-items is (l × 1) ≤ ∑l

i=1 ci ≤ (l × k). Without the insertion updating on k-set,
each n-item compares at least k times and at most l times, and the times of
comparison would be (l × k) ≤ ∑l

i=1 ci ≤ (l × (l − 1)), where (0 ≤ k � l).

3.3 TFPs Discovery

To discover significant and insignificant TFPs, our method retrieves the temporal
fluctuations Fpi

of patterns pi ∈ Un as defined in Definition 4, and returns the
patterns with Fpi

≥ δa or Fpi
≤ δb. The computation of temporal fluctuation is

straightforward. However, as can be expected, temporal data are continuously
generated from applications in the future, and so that the temporal fluctuation
of each pattern is not static. Therefore, it is not efficient to recompute new
temporal fluctuations of patterns every time when new data come into the queue.
Given m patterns and n time periods, the time complexity to update temporal
fluctuations of patterns is O(n2). Therefore, in this section we derive how to
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efficiently update the old temporal fluctuation Fpi
of pattern pi with added

fluctuation f
(tn+1)
i . We start the derivation with the updating of the average

μ
F (pi,f

(tn+1)
i )

, which can be derived as

μ
F (pi,f

(tn+1)
i

)
=

1

(n + 1) − 1

n+1
∑

j=2

f
(tj)
i =

1

n
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The equation of standard deviation σF (pi) can be simplified as
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and so that the new standard deviation σF (pi,fn+1) can be derived as
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Finally, the temporal fluctuation F(pi,fn+1) can be written as
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Therefore, the time complexity to update the temporal fluctuation of all patterns
is reduced to O(n), instead of O(n2).

4 Experimental Results

This section presents experimental studies. Our system framework is imple-
mented in Python. All of the experiments are executed on a 3.40 GHz Core i7
machine with 4 GB of main memory, running on Windows 7 operating system.

4.1 Experimental Setup

Dataset Description: We exploit real data, which records the physical symp-
toms of all patients seeking for the medical cure during the epidemic outbreak.
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Fig. 4. The execution time analysis (when k is varied from 50 to 250).

Fig. 5. The memory usage analysis (when k is varied from 50 to 250).

Specifically, the detailed information includes the home location (with the loose
precision), age, gender, symptoms and onset time. More than 20000 patients are
reported to be infected during five months (from July 2015 to Nov. 2015) in the
urban area.

Other Methods: In our Unik algorithm, we use union (u) based generation, bit
vector (bv) based support computation, and insertion updating (iu) of k-sets. In
our experiment, we compare the effect of these three techniques with Unik by
removing each of them from Unik, where these comparing methods are named
U-u, U-bv, and U-iu, respectively.

4.2 Experiments on Real Dataset

In this section, the proposed Unik, U-u, U-bv, and U-iu methods are applied on
real data recording physical symptoms of patients.

4.2.1 Effect of k: We first evaluate the execution time of different methods by
the effect of parameter k of k-sets. We fix the number of events to 100,000 and
500,000, set the number of features to 40, and vary the number of k from 50 to
250. The results on the execution time of TFPs discovery are shown in Fig. 4.
These figures are plotted in the log scale. As can be seen, trends of execution time
all consistently increase when the number of k grows. Moreover, the efficiency
ranking of these methods is Unik, U-iu, U-bv, U-u, and NG in sequence. The
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execution time of Unik is 1–2 orders of magnitude faster than that of U-u/NG.
Finally, when the number of events is changed from 100,000 to 500,000, the time
difference of Unik and U-u/NG will significantly increase from minutes to hours,
which shows the stability of Unik.

Fig. 6. The execution time analysis (when |D| is varied from 100, 000 to 500, 000).

In this experiment, we also analyze the memory usage of these methods,
which is shown in Fig. 5. The efficiency ranking is Unik, U-iu, U-bv, NG, and
U-u in sequence. Since U-u uses the same generation process as NG, and applies
bit vectors to save its execution time, its memory usage is more than that of NG.
On the other hand, we can also observe that the memory usage of all methods
is not affected by the number of events at all.

4.2.2 Effect of Event Quantity: We also evaluate the execution time of dif-
ferent methods by the effect of event quantity. We fix the number of k to 50 and
250, set the number of features to 40, and vary the number of events from 100,000
to 500,000. The results are shown in Fig. 6. Obviously, all trends of execution
time increase when the number of events grows. Similar to the previous exper-
iment, Unik is still the most efficient method, and it can significantly improve
the execution time. However, the efficiency order of U-u and U-bv exchanges as
k equals 50 and 250, which indicates that U-u is dramatically affected by factor
k. Finally, though the efficiency of Unik and U-iu is close in the log scale, they
differ from each other as the k is set as 250. In this experiment, the memory
usage of TFPs generation is not analyzed, since it cannot be affected by the
number of events as aforementioned.

4.2.3 Effect of Feature Quantity: In the epidemic disease dataset, four fea-
ture sets, symptoms (P1), locations (P2), age ranges (P3), and gender (P4), are
obtained. Therefore, in this experiment, we evaluate the execution time and
memory usage of different methods by the effect of feature quantity. We fix the
number of k to 150 and 250, set the number of events to 500,000. The results are
shown in Figs. 7 and 8. It is obvious that Unik algorithm is still the most efficient
and saves lots of memory, comparing to other methods. All trends of execution
time and memory increase when the number of features grows. Therefore, these
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Fig. 7. The execution time analysis (when using different feature sets).

Fig. 8. The memory usage analysis (when using different feature sets).

experiments show that the Unik algorithm saves a huge amount of time and
memory, which is more proper in our work.

4.2.4 Results of TFPs Mining: We aim to discuss different kinds of patterns
from the real dataset. As shown in Table 1, we demonstrate the top-5 2-feature
patterns for frequent patterns, significant TFPs, and insignificant TFPs. Obvi-
ously, the frequent patterns are usually not the most significant/insignificant
TFPs, and so that it is necessary to develop a novel system to discover TFPs.

Firstly, let’s take a look at the results of significant TFPs. From these pat-
terns, we can observe that locations appear frequently on significant TFPs in

Fig. 9. The distribution of symptoms through time series and the spread situation of
epidemic disease.
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Table 1. Top-5 2-feature patterns in epidemic disease dataset.

Frequent patterns Significant TFPs Insignificant TFPs

1 {High fever, Female} {Male, Area no.31} {Muscle pain, Male}
2 {High fever, Male} {High fever, Area no.31} {Muscle pain, Female}
3 {High fever, Area no.34} {High fever, Area no.33} {High fever, Male}
4 {High fever, Muscle pain} {Female, Area no.31} {High fever, Age [11,20]}
5 {High fever, Headaches} {High fever, Area no.37} {High fever, Age [41,50]}

epidemic disease dataset. The reason comes from the dramatic expansion of this
epidemic disease from area no.34 to areas no.31, 33, and 37, which is shown in
Fig. 9(b). As regards to the results of insignificant TFPs, symptoms (e.g., muscle
ache), and age (e.g., age [11,20], age [41,50]) are the stable features in epidemic
disease events. Finally, the feature ‘High fever’ appears on many retrieved pat-
terns, which is caused by the high frequency of this feature in our disease dataset,
which is shown in Fig. 9(a). Overall, if we only focus on frequent patterns, we
would miss the significant/insignificant fluctuating features.

5 Related Work

In this section, we review the literature related to the changes of patterns and
then review the existing pattern discovery approaches.

At the beginning of patterns discovery, most researches try to extract fre-
quent patterns on spatio-temporal data [7], streaming data [15], and non-identity
data [3]. Currently, fluctuation becomes an important characteristic in temporal
datasets. There exist many approaches for mining three kinds of fluctuating pat-
terns. First of all, some work [4,5] focus on exploring interesting trend patterns.
Their goal is to discover the most significant fluctuations in multidimensional
spaces, so that the fluctuations in their paper are the gradient between two
temporal series. Secondly, a few studies [9,13] discussed the fluctuating rules.
They extracted specific rules of pattern changes over data streams. In these
studies, structural changes are highlighted to provide better rules to develop-
ers. Finally, many researchers [8,10,14] pay attention to the sequential pattern
changes mining. These researchers tried to detect the change by incremental
mining of sequential patterns in a stream sliding window. Therefore, the fluc-
tuations in these papers are represented as the difference between the current
mining results and cumulative mining results.

However, none of these studies considers the changes of a single pattern
between different time instants and takes the fluctuation factor into frequent
pattern mining. These studies are orthogonal to our work.
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6 Conclusions

In this paper, we propose a novel Temporal Fluctuating Patterns (TFPs) dis-
covery on temporal databases and devise a system framework to retrieve the
significant and insignificant TFPs. The union-based mining process, namely the
Unik algorithm, bit vector based support computation, and insertion updating
of k-sets, are proposed to improve the efficiency of our system framework. More-
over, we implement our method for the case studies on real disease datasets. The
experimental results show some particular phenomenon and demonstrate that
the proposed system framework is efficient and practical.

Ackowledgement. This paper was supported in part by Ministry of Science and
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Abstract. We are now witnessing the increasing availability of event
stream data, i.e., a sequence of events with each event typically being
denoted by the time it occurs and its mark information (e.g., event type).
A fundamental problem is to model and predict such kind of marked tem-
poral dynamics, i.e., when the next event will take place and what its
mark will be. Existing methods either predict only the mark or the time
of the next event, or predict both of them, yet separately. Indeed, in
marked temporal dynamics, the time and the mark of the next event are
highly dependent on each other, requiring a method that could simul-
taneously predict both of them. To tackle this problem, in this paper,
we propose to model marked temporal dynamics by using a mark-specific
intensity function to explicitly capture the dependency between the mark
and the time of the next event. Experiments on two datasets demonstrate
that the proposed method outperforms the state-of-the-art methods at
predicting marked temporal dynamics.

Keywords: Marked temporal dynamics · Recurrent neural network ·
Event stream data

1 Introduction

There is an increasing amount of event stream data, i.e. a sequence of events
with each event being denoted by the time it occurs and its mark information
(e.g. event type). Marked temporal dynamics offers us a way to describe this data
and potentially predict events. For example, in microblogging platforms, marked
temporal dynamics could be used to characterize a user’s sequence of tweets
containing the posting time and the topic as mark [9]; in location based social
networks, the trajectory of a user gives rise to a marked temporal dynamics,
reflecting the time and the location of each check-in [15]; in stock market, marked
temporal dynamics corresponds to a sequence of investors’ trading behaviors,
i.e., bidding or asking orders, with the type of trading as mark [4]; An ability
to predict marked temporal dynamics, i.e., predicting when the next event will
take place and what its mark will be, is not only fundamental to understanding
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 786–798, 2017.
DOI: 10.1007/978-3-319-57454-7 61
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the regularity or patterns of these underlying complex systems, but also has
important implications in a wide range of applications, from viral marketing
and traffic control to risk management and policy making.

Existing methods for this problem fall into three main paradigms, each with
different assumptions and limitations. The first category of methods focuses on
predicting the mark of the next event, formulating the problem as a discrete-
time or continuous-time sequence prediction task [12,25]. These methods gained
success at modeling the transition probability across marks of events. However,
they lack the power at predicting when the next event will occur.

The second category of methods, on contrary, aims to predict when the next
event will occur [10]. These methods either exploit temporal correlations for
prediction [20,22] or conduct prediction by modeling the temporal dynamics
using certain temporal process, such as self-exciting Hawkes process [2,6], various
Poisson process [9,21], and other auto-regressive processes [8,16]. These meth-
ods have been successfully used in modeling and predicting temporal dynamics.
However, these models are unable to predict the mark.

In recent years, researchers attempt to directly model the marked temporal
dynamics [11]. A recent work [7] used recurrent neural network to automatically
learn history embedding, and then predict both, yet separately, the time and
the mark of the next event. This work assumes that time and mark are indepen-
dent on each other given the historical information. Yet, such assumption fails
to capture the dependency between the time and the mark of the next event.
For example, when you have lunch is affected by your choice on restaurants,
since different restaurants imply difference in geographic distance and quality of
service. The separated prediction by maximizing the probability on mark and
time does not imply the most likely event. In sum, we still lack a model that
could capture the interdependency of mark and time when predicting the next
event.

In this paper, we propose a novel model based on recurrent neural network
(RNN), named RNN-TD, to capture the dependence between the mark of an
event and its occurring time. The key idea is to use a mark-specific intensity
function to model the occurring time for events with different marks. The benefits
of our proposed model are three-fold: (1) It models the mark and the time of
the next event simultaneously; (2) The mark-specific intensity function explicitly
captures the dependency between the occurring time and the mark of an event;
(3) The involvement of RNN simplifies the modeling of dependency on historical
events.

We evaluate the proposed model by extensive experiments on large-scale
real world datasets from Memetracker1 and Dianping2. Compared with several
state-of-the-art methods, RNN-TD outperforms them at prediction of marks and
times. We also conduct case study to explore the capability of event prediction
in RNN-TD. The experimental results indicate that it can better model marked
temporal dynamics.

1 http://www.memetracker.org.
2 http://www.dianping.com.

http://www.memetracker.org
http://www.dianping.com
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2 Model

In this paper, we focus on the problem of modeling marked temporal dynamics.
Before diving into the details of the proposed model, we first clarify two main
motivations underlying our model.

2.1 Motivation

In real scenarios, mark and time of next event are highly dependent on each
other. We use a case from Dianing to illustrate this phenomenon. We extract the
trajectories starting from the same location (mark #6) and examine if the time
interval between two consecutive events are discriminative to each other with
respect to different marks. The distribution of time interval with different target
marks are represented in Fig. 1(a). We can observe that large variance exists in
the distributions when consumers make different choices. This motivates us to
model mark-specific temporal dynamics.

Second, existing works [12] attempted to formulate marked temporal dynam-
ics by Markov random processes with varying orders. However, the generation
of next event requires strong prior knowledge on dependency of history. Besides,
long dependency on history causes state-space explosion problem in practice.
Therefore, we propose a RNN-based model which learns the dependency by deep
structure. It embeds history information into vectorized representation when
modeling sequences. The generation of next event is only dependent on history
embedding.

Fig. 1. (a) High variance existed in time interval distribution when targeting to
different marks. (b) The architecture of RNN-TD. Given the event sequence S =
{(ti, ei)}i=1, the i-th event (ti, ei) is mapped through function φ(t) and ϕ(e) into vec-
tor spaces as inputs in RNN. Then the inputs φ(ti) and ϕ(ei) associated with the last
embedding hi−1 are fed into hidden units in order to update hi. Dependent on embed-
ding hi, RNN-TD outputs the next event type ei+1 and correspondent time ti+1.
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2.2 Problem Formulation

An event sequence S = {(ti, ei)} is a set of events in ascending order of time.
The tuple (ti, ei) records the i-th event in the sequence S, and the variables
ti ∈ T and ei ∈ E denote the time and the mark respectively, where E is a
countable state space including all possible marks and T ∈ R

+ is the time
space in which observed marks take place. We could have various instantiation
in different applications.

The likelihood of an observed sequence S can be written as

P (S) =
|S|∏

i=1

p(ti, ei|Hti),

where Hti = {(tl, el)|tl < ti, el ∈ E} refers to all the historical events occurring
before ti. In practice, the joint probability of a pair of mark and time can be
written by Bayesian rule as follows

p(ti, ei|Hti) = r(ei|Hti)s(ti|ei,Hti), (1)

where r(ei|Hti) refers to the probability that the mark of next event is ei and
s(ti|ei,Hti) is the probability distribution function of time given a specific mark.

Next we propose a general model to parameterize r(ei|Hti) and s(ti|ei,Hti)
in marked temporal dynamics modeling, named RNN-TD. Recurrent neural net-
work (RNN) is a feed-forward neural network for modeling sequential data. In
RNN, the current inputs are fed into hidden units by nonlinear transformation,
jointly with the outputs from the previous hidden units. The feed-forward archi-
tecture is replicative in both inputs and outputs so that the representation of
hidden units is dependent on not only current inputs but also encoded historicial
information. The adaptive size of hidden units and nonlinear activation function
(e.g., sigmoid, tangent hyperbolic or rectifier function) make neural network
capable of approximating arbitrary complex function [3].

The architecture of RNN-TD is depicted in Fig. 1(b). The inputs of an event
(ti, ei) is vectorized by mapping function φ(·) and ϕ(·). Then the i-th inputs asso-
ciated with the last embedding hi−1 are fed into hidden units in order to update
hi. Given the i-th event (ti, ei), the embedding hi−1 and mapping function φ and
ϕ, the representation of hidden units in RNN-TD can be calculated as

hi = σ
(
Whtφ(ti) + Wheϕ(ei) + Whhhi−1

)
, (2)

where σ is the activation function, and Wht, Whe and Whh are weight matrices in
neural network. The procedure is iteratively executed until the end of sequence.
Thus, the embedding hi encodes the i-th inputs and the historical context hi−1.

Based on the history embedding hi, we can derive the probability of the
(i + 1)-th event in an approximative way,

p(ti+1, ei+1|Hti+1) ≈ p(ti+1, ei+1|hi) = r(ei+1|hi)s(ti+1|ei+1, hi). (3)
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Firstly we formalize the conditional transition probability r(ei+1|hi). The
conditional transition probability can be derived by a softmax function which
is commonly used in neural network for parameterizing categorical distribution,
that is,

r(ei+1|hi) =
exp

(
Wαh

k hi

)
∑K

j=1 exp
(
Wαh

j hi

) , (4)

where row vector Wαh
k is k-th row of weight matrix indexed by the mark ei+1.

Then we consider the probability distribution function s(ti+1|ei+1, hi). The
probability distribution function describes the observation that nothing but mark
ei+1 occurred until time ti+1 since the last event. We define a random variable Te

as the occuring time of next event with mark e, and the probability distribution
function s(ti+1|ei+1, hi) can be formalized as

s(ti+1|ei+1, hi) = P (Tei+1 = ti+1|ei+1, hi)
∏

e∈E\ei+1

P (Te > ti+1|ei+1, hi), (5)

where the probability P (Te > ti+1|ei+1, hi) depicts that the occuring time of
event with mark e is out of the range [0, ti+1], and P (Tei+1 = ti+1|ei+1, hi) is
the conditional probability density function representing the fact that mark ei+1

occurs at ti+1.
To formalize the Eq. (5), we define mark-specific conditional intensity

function [1]

λe(ti+1) =
fe(ti+1|ei+1, hi)

1 − Fe(ti+1|ei+1, hi)
, (6)

where Fe(ti+1|ei+1, hi) is the cumulative distribution function of fe(ti+1|ei+1,
hi), referring to the probability that mark ei+1 will happen in [0, ti+1]. According
to Eq. (6), we can derive the cumulative distribution function

Fe(ti+1|ei+1, hi) = 1 − exp(−
∫ ti+1

ti

λe(τ)dτ). (7)

Thus, we have P (Te > ti+1|ei+1, hi) = 1 − Fe(ti+1|ei+1, hi). Then we can derive
the mark-specific conditional probability density function by Eq. (7) as

P (Te = ti+1|ei+1, hi) = fe(ti+1|ei+1, hi) = λe(ti+1) exp(−
∫ ti+1

ti

λe(t)dt). (8)

Substituting Eqs. (7) and (8) into the likelihood of Eq. (5), we can get

s(ti+1|ei+1, hi) = λei+1(ti+1) exp(−
∫ ti+1

ti

λ(t)dt), (9)

where λ(τ) =
∑

e∈E λe(τ) is the summation of all conditional intensity function.
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The key to specify probability distribution function s(ti+1|ei+1, hi) is para-
meterization of mark-specific conditional intensity function λe. We parameterize
λe conditioned on hi as follows,

λe(t) = νe · τ(t; ti) = exp
(
W νh

k hi

)
τ(t; ti), (10)

where row vector W νh
k denotes to the k-th row of weight matrix corresponding

to mark e. In Eq. (10), the mark-specific conditional intensity function is splited
into two parts: νe = exp(W νh

j′ hi) is a nonnegative scalar as the constant part
with respect to time t, and τ(t; ti) ≥ 0 refers to an arbitrary time shaping
function [10]. For simplicity, we consider two well-known parametric models for
time shaping function: exponential and constant, i.e., exp(wt) and c.

Given a collection of event sequences C = {Sm}N
m=1, we suppose that each

event sequence Sm is independent on each other. As a result, the logarithmic
likelihood of a set of event sequences is the sum of the logarithmic likelihood
of the individual sequence. Given the source of event sequence, the negative
logarithmic likelihood of the set of event sequences C can be estimated as,

L (C) = −
N∑

m=1

|Sm|−1∑

i=1

[
W αh

k hi − log
K∑

j=1

exp
(
W αh

j hi

)

+ W νh
k hi + log τ(t; ti) −

∑

e∈E
exp
(
W νh

j′ hi

)∫ ti+1

ti

τ(t; ti)dt

]
.

In addition, we want to induce sparse structure in vector ν in order that not all
event types are available to be activated based on hi. For this purpose, we intro-
duce lasso regularization on ν, i.e., ‖ν‖1 [23]. Overall, we can learn parameters
of RNN-TD by minimizing the negative logarithmic likelihood

arg min
W

L(C) + γ‖ν‖1, (11)

where γ is the trade-off parameter.
Finally, we estimate the next most likely events in two steps by RNN-TD:

(1) estimate the time of each mark by expectation ti+1 =
∫ ∞

ti
t · s(t|ei+1, hi)dt;

(2) calculate the likelihood of events according to the mark-specific expectation
time, and then rank events in descending order of likelihood.

3 Optimization

In this section, we introduce the learning process of RNN-TD. We apply back-
propagation through time (BPTT) [5] for parameter estimation. With BPTT
method, we need to unfold the neural network in consideration of sequence size
|Sm| and update the parameters once after the completed forward process in
sequence. We employ Adam [13], an efficient stochastic optimization algorithm,
with mini-batch techniques to iteratively update all parameters. We also apply
early stopping method to prevent overfitting in RNN-TD. The stopping crite-
rion is achieved when the performance has no more improvement in validation
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set. The mapping function of φ(t) is defined by temporal features associated
with t, e.g., logarithm time interval log(ti − ti−1) and discretization of numeri-
cal attributes on year, month, day, week, hour, mininute, and second. Besides,
we employ orthogonal initialization method for RNN-TD in order to speed up
convergence in training process. The embedding learned by word2vec [18,19] is
used to initialize the parameter of mapping function ϕ(e). The good initialization
provided by the embedding can speed up convergence for RNN [17].

4 Experiments

Firstly, we introduce baselines, evaluation metrics and datasets of our experi-
ments. Then we conduct experiments on real data to validate the performance
of RNN-TD in comparison with baselines.

4.1 Baselines

Both mark prediction and time prediction are evaluated, and the following mod-
els are chosen for comparisons in the two prediction tasks.

(1) Mark sequence modeling.
– MC: The markov chain model is a classic sequence modeling method.

We compare with markov chain with order varying from one to three,
denoted as MC1, MC2 and MC3.

– RNN: RNN is a state-of-the-art model for discrete time sequence, suc-
cessfully applied in language model. To fairly justify the performance
between RNN and our proposed method, we use the same inputs in both
RNN and RNN-TD.

(2) Temporal dynamics modeling. We choose point processes and mark-specific
point processes with different characterizations as baselines.
– PP-poisson: The intensity function related to mark is parameterized by

a constant, depicting the leaving rate from last event.
– PP-hawkes: The intensity function related to mark e is parameterzied

by

λ(t; e) = λ(0; e) + α
∑

ti<t

exp
(

− t − ti
σ

)
, (12)

where σ = 1 and λ(0; e) is a intrinsic rate defined on mark e when t = 0.
– MSPP-poisson: We define the mark-specific intensity function by a

parametric matrix, depicting the rate from one mark to another.
– MSPP-hawkes: The mark-specific intensity function is parameterized

by Eq. (12) where the constant rate is specialized according to mark pairs
in parametric matrix.
We also compare with the model that has the ability to generate both
mark and temporal sequences.

– RMTPP: Recurrent marked temporal point process (RMTPP) [7] is a
method which independently models both mark and time information
based on RNN.
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4.2 Evaluation Metrics

Serveral evaluation metrics are used when measuring the performance in mark
prediction and time prediction tasks. We regard the mark prediction task as a
ranking problem with respect to transition probability. The prediction perfor-
mance is evaluated by Accuracy on top k (Acc@k) and Mean Reciprocal Rank
(MRR) [24]. On time prediction task, we define tolerance θ over the predic-
tion error between estimated time and practical occuring time. The prediction
accuracy on time prediction with respect to tolerance θ is formulated as,

Acc@θ =
∑N

m=1

∑|Sm|−1
i=1 δ (|E(t; ei+1, hi) − ti+1| < θ)

∑N
m=1(|Sm| − 1)

,

where δ is an indicator function. Larger scores in Acc@k, MRR and Acc@θ
indicate better predictions.

4.3 Datasets

We conduct experiments on two real datasets from two different scenarios to
evaluate the performance of different methods:

Table 1. Performance of mark prediction on two datasets

MRR Acc@1 Acc@3 Acc@5 Acc@10 Acc@20

Memetracker MC1 0.4634 0.2948 0.4595 0.6659 0.8253 0.9209

MC2 0.4788 0.3155 0.4706 0.6773 0.8301 0.9186

MC3 0.4670 0.3149 0.4583 0.6550 0.7891 0.8619

RNN 0.4780 0.3202 0.4746 0.6825 0.8315 0.9201

RMTPP 0.4833 0.3241 0.4834 0.6926 0.8386 0.9267

RNN-TD(c) 0.4820 0.3220 0.4790 0.6895 0.8393 0.9270

RNN-TD(exp) 0.4849 0.3266 0.4835 0.6929 0.8400 0.9273

RNN-TD*(c) 0.4820 0.3220 0.4790 0.6895 0.8393 0.9270

RNN-TD*(exp) 0.4851 0.3266 0.4844 0.6937 0.8407 0.9274

Dianping MC1 0.6174 0.5231 0.6157 0.7212 0.7963 0.8787

MC2 0.6260 0.5280 0.6396 0.7393 0.8007 0.8513

MC3 0.5208 0.4462 0.5395 0.6035 0.6332 0.6569

RNN 0.6355 0.5123 0.6135 0.7153 0.7905 0.8656

RMTPP 0.6620 0.5482 0.6554 0.7578 0.8271 0.8935

RNN-TD(c) 0.6663 0.5524 0.6601 0.7628 0.8346 0.8999

RNN-TD(exp) 0.6635 0.5448 0.6560 0.7638 0.8345 0.8988

RNN-TD*(c) 0.6663 0.5524 0.6602 0.7628 0.8346 0.8999

RNN-TD*(exp) 0.6635 0.5452 0.6566 0.7641 0.8351 0.8990

p.s. the experimental results from * are dependent with given time.
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– Memetracker [14]: Memetracker corpus contains articles from mainstream
media and blogs from August 1 to October 31, 2008 with about 1 million doc-
uments per day. Contents in the corpus are organized according to topics by
the proposed method in [14]. We use top 165 frequent topics and organize the
posting sequence about posted blogs and post-time by users. The whole post-
ing sequence of each user is splited into parts as follows, (1) get the statistics
of time intervals between two consecutive posted blogs, (2) empirically esti-
mate the period of user’s posting behavior, (3) and divide the whole sequence
into several parts according to the estimated period. We do not consider
the sequences whose length are less than 3. The obtained dataset contains
1,481,491 posting sequences, and the time interval between two consecutive
blogs is ranged from 2.77 × 10−4 to 99.68 h.

– Dianping: Dianping provides an online restaurant rating service in China,
including coupon sales, bill payment, and reservation. We extract transaction
coupon sales from top 256 popular stores located in Xidan bussiness district
of Beijing from year 2011 to 2015. The consumption sequences of users are
divided into segments as the same steps done in memetracker. Because of
the existence of sparse shopping records in users, we also limit that time
interval between two consecutive consumptions is two months. The processed
dataset contains 221,893 event sequences, and the time interval between two
consecutive consumptions is ranged from 2.77 × 10−4 to 1440 h.

On both datasets, we randomly pick up 80% of completed sequences in
datasets as training, and the rest sequences are divided into two parts equally
as validation set and test set respectively.

4.4 Performance of Mark Prediction

The performance of mark prediction is evaluated using metrics Acc@k and MRR.
The experimental results are shown in Table 1. Comparing with MC1, MC2, MC3
and RNN, RNN-TD(c) and RNN-TD(exp) achieve significant improvements
over all metrics in both datasets. In Memetracker, RNN-TD(exp) outperforms
RMTPP in MRR at significance level of 0.1, and achieve a little improvements
than RMTPP in Acc@1,3,5,10 and 20. However, the performance of RNN-TD(c)
is worse than RMTPP. In Dianping, RNN-TD(c) achieves improvements than
RMTPP in metrics of MRR and Acc@5 at significance level of 0.1 and met-
rics of Acc@10 and Acc@20 at significance level of 0.01. Besides, RNN-TD(exp)
achieves improvements than RMTPP in metrics of Acc@20 at significance level
of 0.1 and metrics of Acc@5 and Acc@10 at significance level of 0.01. The exper-
imental results indicate that RNN-TD can better learn the mark generation by
jointly optimizing mark-specific conditional intensity function with respect to
different time shaping function applied in tasks.

We also conduct experiments according to event likelihood on RNN-TD with
the given time, marked as RNN-TD*. The results of RNN-TD*(exp) performs
little better than RNN-TD(exp) over all metrics in both datasets, However, the
performance of RNN-TD*(c) is almost the same as RNN-TD(c). It demonstrates
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(a) Experiments on Memetracker (b) Experiments on Dianping

Fig. 2. Performance of timing prediction on two datasets.

the robustness of RNN-TD on mark prediction whether or not given the occuring
time. Besides, RNN-TD with exponential form of time shaping function has
larger effects on given time than the constant form.

4.5 Performance of Time Prediction

We evaluate the performance of time prediction by Acc@θ. The predictions of
RNN-TD and MSPP are based on true marks. Fig. 2(a) and (b) show the exper-
imental results of RNN-TD and baselines on memetracker and dianping. As
shown in Fig. 2, without considering any mark information, PP-poisson and PP-
hawkes are unable to handle the temporal dynamics well on both Memetracker
and Dianping. MPP can discriminate mark-specific time-cost, leading to better
performance than PPs. In memetracker dataset, although RMTPP has better
performance than PP, it does not overbeat MSPP-poisson and MSPP-hawkes.
In dianping dataset, RMTPP(c) and RMTPP(exp) achieve better performance
than MSPP-hawkes when tolerance θ ≤ 65 h, and also achieve better perfor-
mance than MPP-poisson when tolerance θ ≤ 15 h. It is seen that RNN-TD(c)
and RNN-TD(exp) achieve the best performance than all the baselines in the
most cases on two datasets. The improvements achieved by RNN-TD indicate
that our proposed method can well model marked temporal dynamics by learn-
ing mark-specific intensity functions, while RMTPP share the same intensity
function for all the marks. Note that the variance of time distribution is quite
larger in Dianping than Memetracker. Thus we need to give a smaller α in Dian-
ping when training PP-hawkes and MSPP-hawkes model, leading to the similar
performance than PP-poisson and MSPP-poisson shown in Fig. 2(b).

4.6 Case Study on Event Prediction

To explore the capability of event prediction of RNN-TD, we randomly choose
one specific event sequence from memetracker and dianping respectively, and
estimate the next events in the sequence. In RNN-TD, we select top 3 events in
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Table 2. Case study on event prediction

(a) One specific event sequence prediction on memetraker

i-th event: mark,time (mins) 1th 2nd 3rd

RMTPP c#1 Europe debt, 22.32 Europe debt, 12.29 Europe debt, 60.31

c#2 LinkedIn IPO, 22.32 Dominique Strauss, 12.29 Amy Winehouse, 60.31

c#3 Amy Winehouse, 22.32 LinkedIn IPO, 12.29 Dominique Strauss, 60.31

RNN-TD c#1 Europe debt, 1.07 Dominique Strauss, 1.34 Dominique Strauss, 3.63

c#2 Dominique Strauss, 0.45 Europe debt, 1.29 Europe debt, 3.12

c#3 LinkedIn IPO, 0.44 LinkedIn IPO, 0.56 attack, 2.93

Ground truth Dominique Strauss, 6.37 attack, 83.78 attack, 18.18

(b) One specific event sequence prediction on dianping

i-th event: mark,time (days) 1th 2nd 3rd

RMTPP c#1 bibimbap, 2.34 bibimbap, 2.90 Sichuan cuisine, 3.02

c#2 tea restaurnt, 2.34 cookies, 2.90 cookies, 3.02

c#3 Yunnan cuisine, 2.34 Sushi, 2.90 tea restaurnt, 3.02

RNN-TD c#1 bibimbap, 2.93 barbecue, 0.65 barbecue, 0.96

c#2 Yunnan cuisine, 0.88 bibimbap, 0.85 Sichuan cuisine, 0.81

c#3 bread, 0.92 Vietnamese cuisine, 0.51 bread, 0.48

Ground truth barbecue,0.14 Sichuan cuisine,1.03 barbecue,1.06

descending order of event likelihood as candidates of next event, called c#1, c#2
and c#3. In RMTPP, we choose the most probable mark and expectation time
independently and combine them as the candidates of next event. Table 2 lists
the performance of RMTPP and RNN-TD. We can see that the predicted marks
on RNN-TD are more accurate and relevant to ground truth than compared
methods on both cases. Then, we categorize most relevant marks by empirical
knowledge to evaluate the estimated time on mark-specific methods when marks
are mismatched in all 3 candidates. For example, we consider bibimbap and
barbecue belong to same regional cuisine, and Dominique Strauss is related
to Europe debt. In this way, the average error of time prediction to ground
truth for RNN-TD is 34.55 min, and the average error is up to 43.19 min for
RMTPP in the case of Memetrack. In the case of Dianping, the average error
of time prediction to ground truth for RNN-TD is 1.13 days, and the average
error is nearly doubled to 2.04 days for RMTPP. Indeed, RNN-TD can provide
more options according to possible event predictions which has more general
applications, e.g., recommendation systems.

5 Conclusions

In this paper, we proposed a general model for marked temporal dynamics mod-
eling. Based on RNN framework, the representation of hidden layer in RNN-TD
learns the history embedding through a deep structure. The generation of marks
and times is dependent on history embedding so that we can avoid strong prior
knowledge on dependency of history. We observe that the generation processes
of next event are significant different with respect to marks. To capture the
dependence between marks and times, we unfolded the joint probability of mark
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and time and parameterized the mark transition probability and mark-specific
conditional intensity function based on history embedding. We evaluate the effec-
tiveness of our proposed model on two real-world datasets from memetracker and
dianping. Experimental results demonstrate that our model consistently outper-
forms existing methods at mark prediction and time prediction tasks. Moreover,
we conduct case study on event prediction demonstrating that our proposed
model is well applicable in marked temporal dynamics modeling.
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Abstract. Following the advent of location-based social networks
(LBSNs), location-aware services have attracted considerable atten-
tion among researchers. Research has shown that the social network
is regarded as one of the strongest influences shaping individual atti-
tudes and behaviors. This paper targets the mining of location-based
social influences hidden in LBSNs. In other words, we sought to deter-
mine whether an individual’s check-in behavior is influenced by friends’
check-ins. Check-in data includes positional information; therefore, we
refer to this type of influence as spatiotemporal social influences. This
study proposes a framework for spatiotemporal social influence mining
(ST-SIM ) to identify users with the greatest influence on individuals
(i.e., close friends and travel experts) from an LBSN and estimate the
strength of these social connections. Explicitly, the proposed framework
is able to infer a list of influential users of an individual under given
conditions based on travel distance, visiting time or POI categories. We
developed a diffusion-based mechanism for modeling the propagation of
influence over time. Our experiment results demonstrate that the ST-
SIM framework outperforms state-of-the-art methods in terms of accu-
racy and reliability, and is applicable in domains ranging from marketing
to intelligence analysis.

Keywords: Influence propagation · Location-based social network

1 Introduction

Location-based social networks (LBSNs) enable users can share location-based
information with their friends. Numerous studies have been conducted on the
use of LBSNs for the discovery of popular attractions, travel planing and tour
recommendations [2,4,6,12]. However, most of these studies have focused on
mining movement patterns from crowds in LBSNs, and largely disregarding the
potential impact of social influence hidden in LBSN. Social influence refers to
situations in which a group of people influence individuals within the group in
their decision making based on their interdependence or cohesion with the group.

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-57454-7 62
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Online social networks offer a rich forum for observing social interactions. Social
influence analysis has considerable potential in fields such as marketing and
recommendation system.

According to the Trust In Advertising report in 2015 from Nielsen1, Recom-
mendations from people I know have the greatest influence on consumers, with
83 percent of global average. In other words, recommendations from specific
individuals, such as idols or friends with similar hobbies, may attract individ-
uals to locations that are largely ignored by the general public. For example,
many stores and restaurants now provide discounts to people who “like” them
or check in on Yelp or Facebook. Also, when searching for travel tips, the opin-
ion from a friend may be more convincing than rankings on an official website.
However, recognizing members with the greatest influence on an individual can
be a challenging problem for those users with a large friend base.

Many researchers have adopted social factors (the similarity of visited POIs
between individuals and their friends) as weighted factors in recommendation sys-
tems [1,2,6,10,11]. They concluded that the social factors have far less impact
than other factors such as geographic distance and user interest. In contrast, the
researchers in [9] considered social influence from the viewpoint of the “users”
rather than the “POIs”, and found that (1) social relationships may differ in the
degree of influence with regard to an individual’s decisions; and (2) the influence is
not necessarily generated directly by friends but may originate with the friends of
friends. This is referred to as the directionality and transition of social influence.

This study developed an innovative framework for social influence mining on
location-based social networks. We consider the fact that a person is influenced
by her friends in her choices of where to visit, and weight the factors affecting this
influence in term of space, time and POI categories. Using the information avail-
able through LBSNs, the proposed framework, ST-SIM, is used to mine the top-k
influential users based on a user’s query related to a specific geospatial region.

In summary, the contributions of this paper are four-fold:

– We propose a novel Spatio-temporal Social Influence Mining framework (ST-
SIM ) to identify influential users in an LBSN. The model captures the inter-
action among the social network, physical location and the effects of time to
quantify the influence among user pairs.

– We define the spatio-temporal social follow relationship to formulate the
spatio-temporal social influence on user behavior. Building on our empiri-
cal findings, ST-SIM use spatial and temporal features in order to quantify
each connection between user pairs according to the probability of one user
following the other’s lead. We model the social influence over the network in
terms of information propagation based on heat diffusion model.

– Considering the diversity of an individual’s location interest as well as the
impact of social effect, a dynamic weight tuning method is presented. Social
effect and self effect are used in the computation of unified followship proba-
bility scores for top-k user recommendation.

1 http://www.nielsen.com/.

http://www.nielsen.com/
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– We conducted empirical experiments on real-world LBSN datasets to evaluate
the effectiveness of ST-SIM framework.

2 Problem Formulation

Location-based social networks provide a platform on which the location of a
particular user and the time of activities are recorded and shared. This means
that a user is able to use online social network website/application to share her
real-world mobility.

Fig. 1. An example of a heterogeneous graph, that captures user-user virtual commu-
nity, user-POI mobility activities and time effects in an LBSN.

A location-based social network can be structured as a heterogeneous graph
(HG) with multiple types of nodes, edges, static attributes and dynamic, inter-
connected activities (see Fig. 1). We characterize LBSNs according to three
aspects: (1) a social layer S comprising nodes representing the members u ∈ U
of the service and edges showing their friendship links, (2) a location layer L
containing all the POIs p ∈ P that have been visited and (3) a set of check-in
activities C which connects the social layer and the location layer; a check-in
activity c(u, p, t) represents a user u visits a location p at time t.

Definition 1. Spatio-temporal social influence: Social influence refers to
the effect of implicit recommendations obtained on social network. The closer
the relationship between two users is, the more effective the recommendation is
in influencing the user. This study focused on the spatio-temporal social influence
of LBSNs; i.e., if user ui is influenced socially by uj , then ui will tend to visit
a POI in accordance with the recommendation obtained from uj . This reveals
a relationship in which ui checks in to the same POI after uj shares her own
check-in.

Definition 2. Spatio-temporal social follow relationship: A spatio-
temporal social follow relationship, hereafter denoted as followship, represents
a directed link from user ui to her friend uj iff ui visits a location that previ-
ously visited by uj .
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Formally, a followship exists under the following conditions:

followship(c(ui, l, t), uj , δ)

=

{
true ∃t′ : c(uj , l, t

′)
∧

δ = t − t′ > 0
false otherwise.

(1)

where δ represents a valid time period. We can also define ui as a follower and
uj as influencer.

Definition 3. ST-social strength: ST-social strength is defined as the quanti-
tative measure of the influence of check-in histories, which is directed and varies
with distance and time. The ST-social strength of how user uj influence user ui is
abbreviated as sij . Note that friendship fij is undirected and ST-social strength
sij is directed; and the members of the two sets are not necessarily equivalent.

Problem Definition. Spatial-temporal Social Influence Mining: Using
heterogeneous graph HG, the problem of social influence mining on LBSN with
spatial and temporal factors (ST-SIM ) involves inferring ST-social strength sij

for any two users ui and uj according to the characteristics of their movements,
i.e., whether they exhibit a followship.

Based on the inference, the k users with the greatest influence on each user ui

are identified. The result cam be personalized using optional queries associated
with geospatial region or user preference.

3 Spatio-Temporal Social Follow Relationship and User
Mobility

Since social influence has been verified in [9], in this section, we characterize the
spatio-temporal social follow relationship by examining the influence of spatial
and temporal features on user mobility.

3.1 Dataset Description

This study used the four real-world LBSN datasets listed in Table 1. The FB
dataset is collected by the Facebook API2. We used the Facebook accounts of
96 volunteers as seeds (most of the users live in Taiwan). Once a user allows us
to use the private information, we obtained details related to the location of all
of the user’s friends via check-ins and geo-tagged photos for the period of Jan.
2012 - Dec. 2014. For example, one user may have 300 friends. Then from this
user we can create 301 user nodes and all the related locations as POI nodes.
The GWL dataset [3]3, FS [5,8] and FS-CA [12] are check-in datasets within
an undirected friendship network. Note that GWL and FS are larger but lack
information related to POI categories.
2 Facebook Developers. https://developers.facebook.com/.
3 Stanford Network Analysis Project. http://snap.stanford.edu/.

https://developers.facebook.com/
http://snap.stanford.edu/
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Table 1. Details of the Heterogeneous Social Networks

Property Network

FB GWL FS FS-CA

#records check-in 869,317 6,442,890 2,201,511 483,813

#nodes user 29,512 196,591 2,133,749 4,163

POI 225,077 1,280,969 1,143,122 121,142

#edge friend 39,513 950,327 27,098,472 32,512

3.2 Effects of Spatial and Temporal Features

We then sought to identify the factors that determine how much influence each
followship has on the selected users. A number of assumptions were made prior
to observation:

Assumption 1: The check-in behavior of users at times closer to the target
time are more relevant, and thus more important with regard to their effective-
ness as recommendations [12].

Assumption 2: Users tend to visit their nearby POIs [10].

Assumption 3: POI characteristics should be taken into consideration. Hot
spots, such as train stations and shopping malls, are very popular and therefore
more likely to result in followship [7].

To deal with Assumption 1, we measured the length of time that individuals
maintain followships. Figure 2(a) plots the number of followships as a function
of time for FB, GWL, FS and FS-CA. It was observed that the distribution
corresponds to a power law with periodic peaks for each week. The distribution
decays faster after the first week. Another interesting observation is that the
larger the dataset (GWL > FS > FB > FS-CA), the flatter the distribution.
Nonetheless, the periodic peaks are similar in all datasets.

Travel distance is considered to be the distance between the hometown of
user and the target location (Assumption 2). One’s hometown information is not
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explicitly given; therefore, we infer this as the location associated with the most
frequent check-in events [3]. As shown in Fig. 2(b), we calculated the distribution
of distances between the hometown of friends and where the followship events
took place. However, the distribution was shown to vary greatly between the
datasets, due differences in population cluster size among countries. We can find
that the probability of FB approaches zero when the distance over 104 km, while
the distance of other three datasets are farther (105 km).

Figure 2(c) illustrates the frequency of followship events by ratio and the
entropy using the user frequency of POI categories, respectively. For example,
the type of “restaurant” was shown to have the highest frequency, representing
that the visiting activities at restaurants are socially influential. However, the
“airport” category also has high followship frequency but with high user entropy.
We deduce that the location is popular and the followship events may happen
by coincidence.

Finally, we can make the following observed conclusions:

Observation 1: Individuals are more likely to visit the same place after friends
with whom they have recent followships. This trend decays exponentially with
time.

Observation 2: Most users tend to visit nearby POIs; however, in cases where
an individual follows another user of a POI located at a long distance, then the
leader may have stronger social influence.

Observation 3: POIs with high user entropy are considered hot spots. In other
words, followship events associated with hot spots are considered less influential.

These three observations conclude three weighting features of the importance
of each followship event, spatial, temporal and POI entropy factors, which will
be applied in the computation of ST-social strength in our ST-SIM framework.

4 ST-SIM Model

This section describes the process of quantifying the social influence on LBSNs
in terms of the ST-SIM model. A heterogeneous graph HG = (S,C,L) was built
using raw LBSN records in order to extract the interactions between user nodes
and location nodes; i.e., followship events. In Sect. 4.1, we began by utilizing
followship events as the main contribution to ST-social strength. To measure
the importance of followship events, we modeled the background features into
two classes: (1) personal background in the view of each individual user for
different locations, and (2) global background in the view of all the users that
has visited each locations. Moreover, we have already observed that the impor-
tance decays over time and may propagate from strangers. Thus, in Sect. 4.2, we
developed a diffusion-based model to simulate the propagation of influence.
Finally, the measure of ST-social strength is based on the interaction between
the two users (inter factor) and the similarity of individual’s preference on POI
category (intra factor).
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4.1 Background Featurization

Personal Background. The personal background models the individual’s pref-
erence to be influenced. Users tend to frequent some locations more than others
based on the specific meaning they have for the user. Thus, it is important to
look into this user’s location history in order to determine how different locations
affect the followship of users. Using the observation in Sect. 3, we extracted two
factors for the modeling of personal background.

The temporal feature considers the time difference Δt of the followship
event, which decays exponentially over time (Observation 1). ft = exp(−Δt).

The spatial feature considers the distance from user’s hometown to the
location, and the probability of followship within the distance (Observation 2).
fs = 1

d(lu,l) × Pd(d(lu, l)), where d(lu, l) represents the distance from user u’s
hometown lu to location l, and Pd is the probability of distance distribution as
shown in Fig. 2(b).

Global Background. It was also noted that the aggregation of location histo-
ries obtained from all of the users exhibited different characteristics. The global
background captures the popularity of specific locations, as inferred from all of
the users. Followship events in popular locations such as train stations are often
less indicative of the strength of mobility relationship. Conversely, two individ-
uals could be expected to have a strong relationship in less popular locations
(Observation 3).

To model the popularity of a place, POI entropy is given by Shannon
entropy, as follows: Hl = −∑

u,Pu,l �=0 Pu,llog(Pu,l), where Pu,l is the probability
that user u has visited location l. A high value for POI entropy indicates that a
location is visited by many different users.

4.2 Diffusion-Based Influence Model

The process of exerting social influence can be seen as a specific type of infor-
mation diffusion. By illustrating the physical diffusion of heat, a member in a
social network can be seen to act as a heat source diffusing influence to friends
via shared activities such as check-in events. Through these friends, the influence
gradually propagates. At a certain time point, influence is diffused to the margin
of the social network, whereupon complete strangers may be affected.

Spatio-Temporal Social Influence Propagation. As mentioned previously,
this study focused on followship events rather than simple friendships. Simple
social network is insufficient to capture the effects of social influence or its propa-
gation among users. We have defined a novel followship graph GF to represent
the possibility that an individual may visit a location because she is influenced
by her friends. GF = (U,EF ), where V is the set of users and EF is the set of
spatio-temporal follow relationships among users in U .

Via the followships in EF , social influence may propagate among the users
within GF . Formally, we define pij = nij√

ni
√

nj
as the probability of influence
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moving from ui to uj ; where nij denotes the followship from ui to uj and ni

denotes the total number of locations ui has visited. Let us assume that user
ui ∈ V is only influenced by herself initially, whereupon influence propagates to
others in GF .

The influence-based diffusion model two key parameters: (1) initial state
probability for each followship event; (2) state transition probability from the
influencer to the follower. During the process of propagation, users receive stim-
ulation from their neighbors. Let vector s(t) denote the proportion of the social
influence score of users in V at time t. The change at ui between time t + Δt
can be defined by applying the following equation to the diffusion model:

s(t + Δt) − s(t)
Δt

= αInfs(t) (2)

where α is the propagation coefficient and Inf is a NGF
× NGF

matrix used to
define the one-hop process of information diffusion (Fig. 3).

Infij =

⎧⎪⎨
⎪⎩

pij (ui, uj) ∈ EF

−τi i = j

0 otherwise.

(3)

where τi denotes the amount of influence diffused from ui via external links, such
that τi = 0 if ui does not have any neighbors, otherwise, τi =

∑
(ui,uj)∈EF ,i �=j pij .

Using Eq. 2, we obtain the following differential equation when Δt → 0:

ds(t)
dt

= αInfs(t), s(t) = eαtIs(0) (4)

4.3 Spatio-Temporal Social Strength

Let sij denote the spatio-temporal social strength (ST-social strength) of user
uj for query user ui in region r; i.e., the likelihood of ui maintaining a followship

(a) Social Graph (b) Followship Graph (c) Influence propagation from t = 0 to
t = 2 with three followship events.

Fig. 3. An example of valid influence propagation among four users. The nodes with
frame indicate the occurrence of spatio-temporal social follow relationships and the
number in nodes indicate the followship weight.



Mining of Location-Based Social Networks 807

with uj proportional to the value of sij . We intuitively take sij as the sum of
the influences of others and one’s own interests (influenced by herself), which
are denoted as sinter and sintra respectively. sinter and sintra are two weighting
parameters (0 ≤ sinter + sintra ≤ 1). Here sinter = 1 refers to the case where sij

depends entirely on the prediction based on the social effect of uj , while sintra =
1 refers to the case where sij is based only on user interests. If we want to
combine these two measures to produce an overall value for ST-social strength,
it is necessary to determine the relative importance of each component-measure
to ST-social strength.

Applying the above diffusion process to the follow graph, we obtain results
that can be utilized in a dynamic weighting mechanism. sij represents the like-
lihood of a followship event by uj to ui, which fits the characteristic of social
effect. In the case of user ui, as the inter factor from any user uj , j �= i represents
the tendency of how ui follows uj , while the intra factor represents ui’s own
interests, in other words, how ui follows herself.

Further, while the sintra represents ui’s own interests, intra factor should
increase when uj and ui have similar preferences. The similarity is simply defined
as the cosine similarity to weight the intra factor for different user pairs.

The unified geo-social strength can be revised as follows:

sij =

{
sinter + sintra × (

∑m
p wp

ij) i �= j

0 i = j
(5)

In the proposed ST-SIM framework, we consider followship events as new
sources of influence in the follow graph. For each followship < (ui, l, t), uj ,Δt >,
sij(0) is initialized to the followship weight based on the background features
mentioned in Sect. 4.1, which jointly cover the three features:

sij(0) = Hl × fs × ft

= −
∑

u,Pu,l �=0

Pu,llog(Pu,l) × 1
d(li, l)

× Pd(d(li, l)) × exp(−Δt) (6)

where time period Δt = current timestamp − t.

5 Experimental Evaluation

In this section, we were particularly interested in the predictive performance of
the ST-SIM framework; i.e., we sought to predict the set of users with the great-
est influence on the travel behavior of an individual as accurately as possible.

5.1 Settings and Evaluation Methods

Experimental Setup. We employed the real-world FS-CA dataset described in
Sect. 3.1. The data was ordered according to the creation time and then divided
into two subsets, a training set and an evaluation set. The training set contained
the first 70% of the check-in activities, whereas the evaluation set contained the
remaining 30% of the data.
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Performance Metrics. We use two popular measures to evaluate the perfor-
mance of our techniques: average precision in overall results and MAP (Mean
Average Precision) for ranked results. The definitions of the metrics are given
as follows.

Precision@k is the fraction of the top-k users with influence over other users.

Precision@k =
# influential users in top-k results

k

MAP stands for the mean of the AP values of all queries. AP is defined as
the average of the precision values for all relevant results of a single query.

AP =
∑k

i=1 (Precision@i × rel(i))
# influential users in top-k results

where Precision@i is the precision at cut-off i in the list, rel(i) is an indicator
function equal to 1 if the item at rank i is a relevant ranking and otherwise zero.

5.2 Comparison Methods

In addition to ST-SIM, the recommendation approaches under evaluation are
listed below.

Baseline1 - Order by public frequency: this approach represents the public’s
trend by considering the top-k users with the most visiting counts in the query
region.

Baseline2 - Order by following counts: this approach directly rates the
users by the number of geo-social following relations. The result is confined to
the friend circle.

Entropy-Based Model for Co-occurrence (EBM): this is one of the state-
of-the-art model to infer social connection from LBSN [7]. EBM quantifies the
strength of each social connection by considering the co-occurrences in the con-
text of locations.

Only consider social effect (Inter): this is a special case of ST-SIM by
setting the intra factor as zeros. In other words, only social effect from others is
considered for recommendation.

Only consider self effect (Intra): this is also a special case of ST-SIM with
the inter factor set to zeros. Only the user’s interests are considered in the
recommendation.

5.3 Performance Evaluation

Tuning Propagation Coefficient. Although the self-tuning technique of ST-
SIM properly assigns the parameters for weighting inter factor and intra factor,
the diffusion model of ST-SIM uses two parameters: α and t. Parameter α
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Fig. 4. Ranking results for different α value.

controls the diffusion rate of our model and time t varies from 0 to 1.0. As time
t = 0, the influence score is centralized in query user vertex. When t increases,
more and more people are influenced by their neighbors. Similarly, the magnitude
of α represents how fast the influence diffuse. In this set of experiments, we
want to examine how the propagation coefficient α controls the rate of influence
diffusion and find the optimal value for α for the dataset.

We set t = 1.0 in all our experiments and Fig. 4 (a) and (b) shows the results
of the query users with top-200 check-in counts and top-200 followship counts.
Note that the value change has small influence on the final order when αt ≤ 5.0.
But when αt increases more, the performance decreases because of most of the
influence scores diffuse out and muti-degree friends may have similar scores to
first-degree friends. Finally, we choose α = 1.0 in the following experiments.

Goodness of Prediction with Baseline Heuristics. Our goal in this exper-
iment is to evaluate how well the geo-social strength from training set fits the
observed strength from evaluation set (ground truth).

Figure 5 depict the MAP and average of Precision@k results of the different
recommendation methods at k = 3, 10, 30 under the following scenario: with
the recommendation systems build from training set and given a member in
LBSN, who we should choose as the top-k influential candidates and what is the
performance according to the ground truth (stimulated by the individual’s future
behaviors in testing set). Each figure corresponds to an approach. Generally, ST-
SIM and Inter performs the best in terms of all metrics, and EBM performs
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better than the two baseline methods. These all perform better than Intra.
Specify that Intra has the worst hit value might reflect that social influence is
more influential than individual’s own preference.

6 Conclusion and Future Work

This paper presents a recommendation framework based on social influence (ST-
SIM ) to facilitate the identification of influential users in a location-based social
network. We first built a heterogeneous graph to model the interaction between
user-user pairs as well as user-category pairs. A diffusion-based influence model
was also developed for the extraction of interactive features for user ranking. A
dynamic weight tuning mechanism is included in the model to provide personal-
ized recommendations for each user. We evaluated ST-SIM using real datasets of
LBSN check-in logs. According to the experiment results, the proposed method
provides recommendations that are more effective than many existing recom-
mendation strategies.

Ackowledgement. Wen-Chih Peng was partially support by the TAIWAN MOST
(104-2221-E-009 -138 -MY2 and 105-2634-E-009 -002) and Academic Sinica Theme
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Abstract. The pervasion of location acquisition technology has strongly
propelled the popularity of geo-tagged user-generated content (UGC),
which also raises new computational possibility for investigating geo-
graphical topics and users’ spatial behaviors. This paper proposes a
novel method for geographical topic modeling by combining text con-
tent with user information and spatial knowledge. Topics are estimated
as the interests of users and features of locations. The joint modeling of
the three heterogeneous sources (1) leads to high accuracy in predict-
ing visit behaviors driven by personal interests, (2) discovers coherent
topic representations for topic modeling, (3) enables the recommender
system to suggest interpretable locations. Our framework is flexible to
incorporate new dimensions of data such as temporal information with-
out substantially changing the model structure. We also experimentally
demonstrate the limitations of the traditional assumption that a topic is
selected considerably dependent on the location. In many cases, the pub-
lished topics are mainly affected by the user’s interests rather than the
current location. Our model discriminates these two scenarios. Through
employing hierarchical Dirichlet process, we also need not predefine the
number of topics like other mixture models. Experiments on three differ-
ent datasets show that our model is effective in discovering spatial topics
and significantly outperforms the state of the art.

Keywords: Hierarchical Dirichlet Process · Geographical topic
modeling

1 Introduction

The pervasion of location acquisition technologies has strongly propelled the pop-
ularity of geo-tagged user-generated content (UGC), which offers great inspira-
tion to the new research field, geographical topic modeling. Probabilistic graph-
ical models [11,24,25] have been widely used in previous work, and proven
promising in modeling such data. Usually, two latent variables, namely topic
and region, are introduced to model the underlying semantics of the observed
texts and locations. The conditional dependencies between all pairs of variables
are comprehensively considered so that the algorithm is expressive enough to
model the multi-dimensional data. However, the intricate variable dependencies
c© Springer International Publishing AG 2017
J. Kim et al. (Eds.): PAKDD 2017, Part I, LNAI 10234, pp. 811–823, 2017.
DOI: 10.1007/978-3-319-57454-7 63
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also lead to the complexity of modeling and difficulty in learning, which is the
main reason that hinders the practice. Furthermore, when we try to incorporate
a new dimension of data such as temporal information, both the model structure
and learning algorithm have to make substantial changes.

To address these problems, we propose a flexible topic model, called Multi-
perspective Hierarchical Dirichlet Process (MHDP). In our model, the text con-
tent is modeled from two perspectives, each of which corresponds to one kind
of tag, namely the user id and location record. From the user perspective, his-
torical postings of an individual are aggregated so that the per-document topic
distribution tells the user’s interests. From the location perspective, contents
published at the same location are aggregated, thus the discovered topics rep-
resent the locations’ features. Since the documents in the two perspectives are
both reconstituted from the original corpus, the latent topics are assumed to be
shared. This design decouples the complicate dependencies between variables,
and makes our model extremely flexible. As depicted in Fig. 2(b), removing or
adding a new dimension of data has very little impact on the model structure.
Because different perspectives are inferred iteratively, the heterogeneous sources
tightly interact with each other.

Fig. 1. The two latent categories of locations (distracted locations with few topics &
concentrated locations with diverse topics) on two datasets, GEOText and LA

Two Categories of Locations: Previous work [1,7,12,26] regards the location
as a vital factor affecting the generation of topics, and treats all locations the
same. However, let’s consider two kinds of places: one is locations like university
or plaza, and the other is places like restaurant or bar. People at the first kind
always publish diverse topics which present very little geographical relevancy. For
example, a common user in a university may tweet about daily work, travelogues
or even sudden feelings. The factor that affects the selection of topics is the user
himself rather than the location. Conversely, users in a restaurant or bar mostly
publish something about food or wine, therefore the location determines what
he publishes. This property leads to the observation that topics at the first kind
are diverse, and at the second kind are concentrated. In this paper, we distin-
guish the two scenarios, and define them as distracted locations and concentrated
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locations respectively. According to the definition of Dirichlet process [3,8,21],
the expected number of clusters m for n observations is E(m) � α log(1 + n

α ),
which means that the number of topics (word clusters) can be approximated as
the logarithm of word count. Thus we can plot Fig. 1 to estimate the statistics
between location and topic on two different datasets, GEOText and LA, only
observing the published words. The details of the datasets will be described in
Sect. 3. Intuitively, it should follow a power law on each dataset, and present
as a straight line. However, we observe an obvious cutoff around which there is
an interesting kink. At both sides, there is a standard power law distribution.
This observation verifies that locations can be inherently divided into two latent
categories which are distinguished by the x-index of the kink (i.e., a threshold
of topic count). We utilize this property to improve the modeling of topics from
the location perspective.

The experimental evaluations are conducted on three different datasets. The
results demonstrate both the preponderance of our model in discovering spatial
topics and the capability in improving topic quality. The main contributions
of this paper are as follows: (1) It proposes a flexible and modularized model
MHDP (Multi-perspective Hierarchical Dirichlet Process) to model geo-tagged
UGC. It is capable to incorporate new data dimensions without substantially
modifying the model structure. (2) It proposes to classify locations into two
categories, which are distracted places with diversity topics and concentrated
ones with few topics. Experiments show that this hypothesis is more faithful
to the underlying semantics of data. (3) It regards the latent topics as the
intermediary between different perspectives, which enables our model to suggest
interpretable locations for users.

Fig. 2. Plate notations of HDP (Left) and MHDP (Right) model
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2 The Proposed MHDP Model

In this section, we assume the reader is familiar with the mechanism of Dirichlet
Process (DP), and give no introduction of its basic theories. For more details,
you can refer to [16,20,22].

2.1 Hierarchical Dirichlet Process

One of the prototypical ingredients for nonparametric topic modeling is the
Hierarchical Dirichlet Process (HDP) which is obtained by coupling draws from
a Dirichlet process, and having the reference measure itself arise from another
Dirichlet process. As depicted in Fig. 2(a), we have

G0 ∼ DP (γ,H)
Gj ∼ DP (α,G0)

where γ and α are the concentration parameters, and H is the base distribution.
This means that we first draw atoms from H to obtain G0 which is used as the
reference measure to obtain the set of measures Gj . All Gj ’s are discrete, and
share atoms via G0. In topic model, G0 can be regarded as the global topic-word
distribution shared by all documents. Each Gj corresponds to a document dj ,
and the topic assignments of words in dj are sampled from Gj . In our model,
we generalize this structure, and let G0 shared by all perspectives instead of
documents.

2.2 Multi-perspective Hierarchical Dirichlet Process

In most cases, a piece of geo-tagged UGC consists of three parts, namely words,
user id, and a geographical record. Formally, let M denote the number of docu-
ments, and each document d has Nd words {w1, w2, . . . , wNd

}. The user id and
geographical record are denoted as ud and ld = (latd, lond) respectively. Here
the symbols lat and lon denote the latitude and longitude of the location. If we
investigate the dataset from the user perspective, we aggregate the documents
published by a specific user u as duser

u . The original corpus can be reconstituted
as Duser = {duser

1 , duser
2 , . . . , duser

U } where U is the number of unique users in
the dataset. From the location perspective, we aggregate documents in the same
location l as dloc

l , and create another corpus Dloc = {dloc
1 , dloc

2 , . . . , dloc
L } of size

L = |Dloc|. Here L denotes the number of locations.
If we treat the whole corpus as a singe document, the word co-occurrences

in Duser and Dloc are the same. Thus it is reasonable to assume that the two
perspectives share the same collection of latent topics, which can be achieved by
sharing the global measure G0. In other words, the latent topics are treated as
the intermediary, which is affected by both perspectives, and also affects both
perspectives. The basic prototype of our probabilistic model is illustrated as
follows
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G0|γ,H ∼ DP (γ,H)
Guser

u |η,G0 ∼ DP (η,G0), u ∈ [1, U ]

Gloc
l |α,G0 ∼ DP (α,G0), l ∈ [1, L]

From the user perspective, the random measures Guser
u are conditionally inde-

pendent given G0 with distributions given by a Dirichlet process whose base
probability measure is G0. The same goes for Gloc

l . The distribution G0 varies
around the prior H with the amount of variability governed by γ. In our model,
we set H a multinomial which denotes the topic-word distribution. Clearly, our
model has a very flexible structure. By adding a new set of random measures
G

′
n which shares G0 with other perspectives, we can easily incorporate a new

dimension of data. Here we have

G
′
n|σ,G0 ∼ DP (σ,G0), n ∈ [1, N ]

which is depicted as the dashed part in Fig. 2(b). Taking temporal data as an
example, the temporal perspective would capture the variation of topics in differ-
ent intervals of a day. The shared global measure G0 makes the three perspectives
tightly affect each other.

2.3 Chinese Restaurant Franchises Metaphor

In this section, we give the details of a Chinese Restaurant Franchises (CRFs)
representation for the MHDP model. This metaphor provides a concrete rep-
resentation of draws from the MHDP, and it provides insights into the sharing
of atoms across multiple perspectives. A CRFs representation is composed of
five elements: a customer, a table, a dish, a restaurant and a franchise. The cus-
tomer denotes a word in a document, the table denotes a latent variable, the dish
denotes a topic, and the restaurant denotes a document. The franchise denotes
a perspective.

In the Chinese Restaurant Process (CRP) metaphor [22] for Dirichlet process,
each observed item is considered as a customer in a restaurant which has an
infinite number of tables. Initially all tables are empty. A customer picks existing
tables in proportion to their popularity, which is well known as “rich-get-richer”
process. The probability for a customer i choosing a table t is

P (ti = t) =

⎧
⎪⎨

⎪⎩

nj

n· + α
for an existing table

α

n· + α
for a new table

where ti denotes the table chosen by customer i. nj denotes the current number
of customers sitting at table j, and n· is the total number of customers so far.
The dish chosen at table j is drawn i.i.d. from the base measure H. Specifically,
we can map the notations in this metaphor perfectly to the variables in topic
models. A dish chosen by a customer actually denotes the topic assigned to a
word. Therefore, the posterior distribution of the dishes is the estimated topic
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distribution of the documents. In HDP, the Chinese restaurant is extended to a
Chinese franchise which has M restaurants. The process defines a set of random
probability measures Gj (one for each restaurant) and a global random probabil-
ity measure G0. The global measure G0 is also distributed as a Dirichlet process,
and shared by all Gj as the base probability measure. Since G0 is discrete, the
dishes in Gj would be repetitive. The shared measure G0 is regarded as the
corpus-level topic-word distribution.

In MHDP model, the one franchise is further extended to multiple fran-
chises. In other words, the collection of documents in each perspective forms a
new corpus, and is denoted as a franchise here. Gloc

l (or Guser
u ) denotes the set of

random probability measures from the perspective of location (or user), where
the superscript (loc or user) indicates the franchise type. The global base prob-
ability measure G0 is shared by not only restaurants but also franchises, which
means that the topic-word distribution is a global variable shared by all perspec-
tives. Based on this framework, we incorporate the two categories of locations,
namely distracted and concentrated locations.

Location Perspective. In this setting, a restaurant l corresponds to a doc-
ument dloc

l with a document-level probability measure Gloc
l at location l. tli

denotes the table that customer θli chooses. Now we need a notation for counts.
Let nlt be the number of customers at table t at location l.

Distracted Category : Topics in such places tend to be diverse, and present very
little geographical relevancy. Inspired by Pitman-Yor process [17] which encour-
ages the model to have higher probability in choosing new tables, we alter the
probability for a customer θli to choose a table t as

P (tli = t) =
ml∑

t=1

nlt − ε

nl. + α
δt +

α + mlε

nl. + α
G0

where ml is the number of tables already at location l, and nl· is the total number
of customers at all tables. ε ∈ [0, 1) is a discount parameter which encourages a
customer to have higher probability to choose a new table and thereby sample a
new dish from G0. δt is a point mass centered at t. In other words, we encourage
such locations to have more topics. When ε = 0, it reduces to a DP.

Concentrated Category : The probability equation is defined as

P (tli = t) =
ml∑

t=1

nlt

nl. + α
δt +

α

nl. + α
G0

Since CRP well models Zipf’s law, we keep this equation the same formula as
CRP in choosing tables.

User Perspective. In this part, we define the notations similar to those in
the previous section, and simply change the superscript of variables from loc
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to user. Since the locations’ categories do not affect the user perspective in
sampling tables, we define the probability equation as

P (tui = t) =
mu∑

t=1

nut

nu· + η
δt +

η

nu· + η
G0

where nut denotes the total number of customers choosing dish k with respect
to the user u.

2.4 Classifying Locations

In this section, we give the details of how to calculate τ which plays as a threshold
of topic count to classify locations. In our model, locations with less than τ topics
are regarded as concentrated places, and those with more than τ topics are viewed
as distracted ones. As depicted in Fig. 1, the power law distributions of the two
categories present very different slopes, which is the major feature utilized by
us. Here we maximize the difference between the two slopes by applying linear
regression on both sides. In a two dimensional coordinate system, Least-Squares
Regression is employed to calculate the slope degree. We first sort the numbers
of topics at all locations as {k1, . . . , kn} (k1 < k1 < . . . < kn), and count the
numbers of locations with different topic counts as {ck1 , . . . , ckn

}. Specifically,
ck1 denotes the number of locations with k1 topics. Now τ can be computed by
applying Algorithm1 .

Algorithm 1. Calculating threshold τ

Data:
The sorted topic counts: k = (k1, . . . , kn)
The corresponding location counts: c = (ck1 , . . . , ckn)

Logarithm of each element in the vector:
k′ ← log(k), c′ ← log(c)
max ← 0 τ ← 0
for i = 1 → n do

slop left=LeastSquares({k
′
1, . . . , k

′
i}, {c

′
k1 , . . . , c

′
ki

})

slop right=LeastSquares({k
′
i , . . . , k

′
n}, {c

′
ki

, . . . , c
′
kn

})
if |slope left − slope right| > max then

max ← |slope left − slope right|
τ ← i

return Threshold τ

2.5 Learning and Inference

In the study of topic models, Gibbs sampling is a standard way to obtain a
Markov chain over latent variables. It is used to produce a sample from a joint
distribution when only conditional distributions of each variable can be efficiently
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computed. The framework of CRFs is also adapted to yielding a Gibbs sampling
scheme for posterior sampling. In our model, we set the base measure H of G0

having density h(·) which is a multinomial distribution with a Dirichlet prior
parameterized by β. Let xji denote the i-th word in document j. The posterior
probability of word xji under topic k given all data items except xij is

f
−xji

k (xji) =
n

−xji

k,xji
+ β

∑V
v′=1(n

−xji

k,v′ + β)

where n
−xji

k,xji
denotes the number of times that word xji appears in topic k at

global level. Different from LDA [2], the state space consists of two variables,
namely the table t and topic k in the CRFs metaphor. Thus we need to sample
them sequentially.

Sampling Topic k: Let mk denote the number of tables assigned to the topic
k, and m· denote the total number of tables so far. m

−xji

k represents the number
of tables under the topic k when removing the word xji. m

−xji

k changes only if
the word xji’s corresponding table contains no words after removing xji. The
conditional probability that a table t chooses a topic k is

p(kt = k) ∝
{

m
−xji

k f
−xji

k (xji) for an existing topic

γf
−xji

knew (xji) for a new topic

where f
−xji

knew (xji) equals to 1/V , because the observation of word count
n

−xji

knew,xji
= 0. V is number of terms in the vocabulary. Note that the count

of tables is the summation from both user and location perspectives.

Sampling Table t: When sampling an existing table, we can easily multiply
the prior probability to the conditional density fk(·) of topic k that the table
serves. Since there are several branches discussed in the previous section, we do
not repeat them. Here we only detail the probability from which a new table is
sampled. Since a new table t can choose an existing topic or a totally new one,
the probability should be calculated by integrating all the possible values:

P (tji = tnew) =
K∑

k=1

m
−xji

k

m
−xji· + γ

f
−xji

k (xji) +
γ

m
−xji· + γ

f
−xji

knew (xji).

Note that after each iteration, we update the parameter τ , and apply the new τ
in the next iteration.

3 Experiments

In this section, we present both quantity and quality evaluations for our proposed
model with some state-of-the-art baselines from two aspects: topic modeling and
spatial topic comparison. Topic modeling evaluates the model’s performance in
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extracting semantic coherent topics. Many efforts [5,6,18] have been devoted in
this field. By incorporating geographical information, we expect the topic quality
to achieve a significant improvement. Another important advantage of our model
is its ability in bridging the geographical information with semantic topics. We
evaluate this with Geographical topic comparison, which reveals the topic-specific
distinctions at different locations. Four typical baselines are compared in the
experiments:

– Geofolk: It is a geographical topic model proposed in [19]. It assumes that
each topic corresponds to a latent region. It reports great performance in
discovering location related topics for recommendation.

– LGTA: Latent Geographical Topic Analysis (LGTA) is proposed in [24] which
incorporates both the spatial information and textual content. It is powerful
in reducing the location and text perplexity.

– LDA: LDA [2] is the basic knowledge-free unsupervised topic model. It is
impressive in discovering semantic coherent topics.

– HDP: Hierarchical Dirichlet Process [22] is a nonparametric Bayesian app-
roach. It solves the intractable problem in LDA that the number of topics
must be predefined.

Datasets: We apply our model on three public datasets: GEOText [7] and two
check-in datasets [23] from Foursquare. GEOText contains geo-tagged microblog
messages within the United States. The Foursquare dataset consists of the check-
in data in New York City and Los Angeles, thus we briefly denote them as NYC
and LA respectively. The texts in LA and NYC are tips commented by common
users at different locations.

Fig. 3. Topic Coherence and Jaccard Coefficient of each model with different numbers
of topics
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Table 1. Three example topics of different models (Good words are marked in red and
bold)

MHDP LDA Geofolk LGTA

Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3 Topic 1 Topic 2 Topic 3

chicken wildlife game cheese watch good case lol game de trail taco

cheese bird earn sweet check eat chicken yea win swag green de

delicious plant team fries inside stuff drink kool kobe nom de swag

sandwich nature stadium potato game cheap sweet aid play drink dog pee

burge bald soccer sauce west ball cheese nature team taco roll kobe

salad mammal sport mac bear cafe hot punk fan burge lantern nom

good eagle football side bird beat juice bird laker game nature career

fries watch rugby onion video quick king office basketball partner cent clip

(a) bar (b) travel (c) wildlife (d) sports

Fig. 4. Check-in heat map of four typical topics

3.1 Topic Modeling

Topic quality is an important metric in evaluating the performance of topic mod-
els. One of the most common ways is to compute the perplexity, which is alge-
braically equivalent to the inverse of the geometric mean per-word likelihood.
However, researchers have pointed out that human judgments are sometimes
contrary to the perplexity measure [4,6]. A lower perplexity score only indicates
better generalization performance, but we expect to discover coherent and inter-
pretable topics from the massive data. Thus we apply another widely used metric
Topic Coherence [9,10,15]. Good topic models would generate coherent topics
with accurate semantic clustering, and higher coherence scores indicate higher
quality of topics. Another important metric for topic models is topic distinctive-
ness. Diversity topics are expected to offer more information beneath the texts.
Here we apply Jaccard Coefficient to measure the similarity between all pairs of
topics, and a lower score indicates better distinctiveness.

Figure 3 illustrates the comparison of different models on the three datasets.
MHDP consistently obtains the highest topic coherence scores. LDA and Geo-
Folk get very close results, which indicates that GeoFolk does not remarkably
benefit from the incorporated geographical information. HDP outperforms LDA
and GeoFork with a very small margin. We also find that though LGTA obtains
competitive topic coherent scores, most generated topics are less interpretable,
and only contain some meaningless frequent words. Table 1 visually gives three
corresponding example topics produced by MHDP, LDA, GeoFolk and LGTA.
We can obviously find that our model generates topics with very accurate
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semantic clustering. LDA and GeoFolk produce some accurate topics such as
topic 1 in LDA and topic 3 in GeoFolk. LGTA performs the worst, and we
actually can not find better topic representations.

3.2 Spatial Topic Comparison

Another important purpose of geographical topic modeling is to discover the vari-
ation of topics at different regions, which is different from early work [13,14] that
only focuses on modeling the spatial information. Figure 4 depicts a heat map
which illustrates four typical topics appearing at different states of America. We
can obviously distinguish the differences. The topic of wildlife is more popular in
the midwestern with darker color, while sports gains its popularity all over the
country. The travel topic covers all the states that have tourist attractions, such
as beaches or mountains. This feature enables us to implement some interest-
ing applications, such as the travel recommender system. If a user want to take
photos of the wildlife, we would recommend him the popular states related to
the wildlife topic. Meanwhile, we may also focus on another kind of applications
which need fine-grained geographical topics. Our model divides places into two
kinds: distracted and concentrated locations. The first kind always exists as pub-
lic places such as universities or airports, while the second kind always provides
some specific services such as restaurants or bars. From the Foursquare dataset,
we extract the most frequent words appearing in the venues’ names of the two
categories, and show them in Table 2. The results are strongly consistent with
our assumption. A point-of-interest (POI) recommender system employing our
model can give higher weight to the locations which are labeled as concentrated
to meet users’ specific demands.

Table 2. The most frequent words appearing in the names of locations

Category The most frequent words

Distracted locations house, park, center, lounge, airport, school, university,
museum, company, library, subway

Concentrated locations cafe, restaurant, pizza, bar, grill, starbucks, club, salon,
mexican, bakery, spa, home, hotel, mcdonald’s, sephora

Table 3 lists some location-aware topics which are discovered by our model,
but do not exist in the other four baselines. Our model clearly distinguishes
the topic noshery and restaurant. Though LDA generates a very similar topic
(Topic 1 in Table 1), it mixes them together. The topic airport is classified into
the distracted category by MHDP. We find that the words in the topic airport
are very diverse but strongly related to the services in a airport, which makes it
easy to be distinguished from others. Thus it is reasonable to believe that our
two categories assumption conforms to the underline semantics of geographical
data, and makes the model perform better.
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Table 3. Location-aware topics

Location Topic words

Bar beer, drink, bar, happy, music, party, night, sunday, open, enjoy

Restaurant wine, food, menu, steak, brunch, delicious, cocktail, dinner, lobster

Noshery chicken, cheese, sandwich, burger, salad, sauce, soup, fries, cream

Airport line, wait, parking, card, coffee, airport, check, cash, flight, security

Planetarium power, space, planetarium, NASA, science, energy, exhibit, air, solar

4 Conclusions

This paper proposes a novel geographical topic model MHDP which exploits
the geo-tagged user-generated content from user and location perspectives. The
flexible structure of MHDP makes it easy to incorporate new dimensions of data
such as temporal information. We also classify locations into two categories, and
experimentally demonstrate its reasonability on three public datasets. Exper-
iments show that MHDP outperforms the baselines with significant improve-
ments. With increasing studies focusing on location-based social networks, we
believe that our proposed model is promising to advance the researches in this
field.
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Abstract. Discovering association rules from transaction databases is
a well studied data mining task. Many effective techniques have been
proposed over the years. However, due to the huge size of the output,
many works have tackled the problem of mining a smaller and relevant
set of rules. In this paper, we address the problem of enumerating the
minimal non-redundant association rules, widely considered as one of the
most relevant variant. We first provide its encoding as a propositional
formula whose models correspond to the minimal non redundant rules.
Then we show that the set of minimal generators used for extracting non-
redundant rules can also be encoded in this framework. Experiments on
many datasets show that our approach achieves better performance with
respect to the state-of-the-art specialized techniques.

1 Introduction

Extracting association rules from transactional databases have received intensive
research since its introduction by Rakesh Agrawal et al. in [1]. Initially referring
to data analysis, several new application domains have been identified, including
among others, bioinformatics, medical diagnosis, networks intrusion detection,
web mining, documents analysis, and scientific data analysis. This broad spec-
trum of applications enabled association analysis to be applied to a variety of
datasets, including sequential, spatial, and graph-based data. Interestingly, asso-
ciation patterns are now considered as a building block of several other learning
problems such as classification, regression, and clustering.

Most approaches have mentioned that the classical association rules mining
task produces too many rules [2,5,6,14,18]. The huge size of such set of rules does
not help the user to easily retrieve relevant informations. Such observation leads
to various definitions of redundancy in order to limit the number of association
rules. Thenceforth, many research have focused on eliminating redundant rules
while maintaining the set of relevant ones called (minimal) non-redundant asso-
ciation rules. Different kinds of non-redundant rules have been introduced such
as the Generic Basis [2], the Informative Basis [2], the Informative and Generic
Basis [6], Minimum Condition Maximum Consequent Rules (MMR) [14] and the
set of representative association rules [13] that cover all the association rules.
To prune out redundant rules, almost approaches share the two following steps:

c© Springer International Publishing AG 2017
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(1) find the set of minimal generators and closed itemsets, and (2) generate
confident rules by considering the two sets already mined in step one.

Recently, declarative approaches have been proposed to tackle several data
mining tasks through constraint programming (CP) and propositional satisfia-
bility (SAT) [7,8,11,12,15]. In [3], the authors proposed a new framework for
mining association rules in one step using propositional satisfiability leading
to a competitive approach compared to specialized techniques. Encouraged by
these results, we propose in this paper to extend this framework for extract-
ing the minimal non-redundant rules. The redundancy is eliminated elegantly
using new constraints combined to some others listed in [3]. We show that two
kinds of non-redundant rules can be addressed. Furthermore, a restriction of our
encoding can be used to extract the minimal generators.

2 Preliminaries

2.1 Propositional Logic and SAT Problem

We here define the syntax and the semantics of propositional logic. Let Prop be
a countably set of propositional variables. We use the letters p, q, r, etc. to range
over Prop. The set of propositional formulas, denoted Form, is defined inductively
started from Prop, the constant ⊥ denoting false, the constant � denoting true,
and using the logical connectives ¬, ∧, ∨, →. We use V ar(φ) to denote the set of
propositional variables appearing in the formula φ. The equivalence connective
↔ is defined by φ ↔ ψ ≡ (φ → ψ) ∧ (ψ → φ).

A formula φ in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals. A literal is a positive (p) or negated
(¬p) propositional variable. The two literals p and ¬p are called complementary.
A CNF formula can also be seen as a set of clauses, and a clause as a set of
literals.

An interpretation I of a propositional formula φ is a function which associates
a value I(p) ∈ {0, 1} (0 corresponds to false and 1 to true) to the variables
p ∈ V ar(φ). A model or an implicant of a formula Φ is an interpretation I that
satisfies the formula in the usual truth-functional way. SAT problem consists in
deciding if a given CNF formula admits a model or not.

2.2 Association Rules

Let Ω be a finite non empty set of symbols, called items. From now on, we
assume that this set is fixed. We use the letters a, b, c, etc. to range over the
elements of Ω. An itemset I over Ω is defined as a subset of Ω, i.e., I ⊆ Ω. We
use 2Ω to denote the set of itemsets over Ω and we use the capital letters I, J ,
K, etc. to range over the elements of 2Ω .

A transaction is an ordered pair (i, I) where i is a natural number, called
transaction identifier, and I an itemset, i.e., (i, I) ∈ N × 2Ω . A transaction
database D is defined as a finite non empty set of transactions (D ⊆ N × 2Ω)
where each transaction identifier refers to a unique itemset.
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Given a transaction database D and an itemset I, the cover of I in D, denoted
C(I,D), is defined as {i ∈ N | (i, J) ∈ D and I ⊆ J}. The support of I in D,
denoted Supp(I,D), corresponds to the cardinality of C(I,D), i.e., Supp(I,D) =
|C(I,D)|. An itemset I ⊆ Ω such that Supp(I,D) � 1 is a closed itemset if, for
all itemsets J with I ⊂ J , Supp(J,D) < Supp(I,D).

Example 1. For instance, let us consider the transaction database D depicted
in Table 1. We have C({c, d},D) = {1, 2, 3, 4, 5} and Supp({c, d},D) = 5 while
Supp({f},D) = 3. The itemset {c, d} is closed, while {f} is not since Supp({f},
D) = Supp({c, d, f},D).

Table 1. A transaction database D

tid Transactions

1 c d e f g

2 c d e f g

3 a b c d

4 a b c d f

5 a b c d

6 c e

Table 2. Some association rules

Name Asso. rules Support Confidence

r1 {a} → {b} 3/6 1

r2 {a} → {b, c, d} 3/6 1

r3 {c} → {d} 5/6 5/6

r4 {c, d} → {e, f, g} 2/6 2/5

In this work, we are interested in the problem of mining association rules
(MAR). An association rule is a pattern of the form X → Y where X (called the
antecedent) and Y (called the consequent) are two disjoint itemsets. In MAR,
the interestingness predicate is defined using the notions of support and con-
fidence. The support of an association rule X → Y in a transaction database
D, defined as Supp(X → Y,D) = Supp(X∪Y,D)

|D| , determines how often a rule
is applicable to a given dataset, i.e., the occurrence frequency of the rule. The
confidence of X → Y in D, defined as Conf(X → Y,D) = Supp(X∪Y,D)

Supp(X,D) , pro-
vides an estimate of the conditional probability of Y given X. When there is no
ambiguity, we omit to mention the transaction database D, and we simply note
Supp(X → Y ) and Conf(X → Y ).

A valid association rule is an association rule with support and confidence
greater than or equal to the minimum support threshold (minsupp) and mini-
mum confidence threshold (minconf) respectively. More precisely, given a trans-
action database D, a minimum support threshold minsupp and a minimum con-
fidence threshold minconf, the problem of mining association rules consists in
computing MAR(D,minsupp,minconf) = {X → Y | X,Y ⊆ Ω, Supp(X →
Y,D) � minsupp, Conf(X → Y,D) � minconf}.

Table 2 illustrates some association rules with their corresponding supports
and confidences. For instance, Supp({a} → {b}) = 3

6 and Conf({a} → {b}) = 1.
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3 SAT-Based Association Rules Mining

In this section, we briefly review the recent approach proposed in [3] for mining
association rules through Boolean satisfiability. The basic idea consists in mod-
eling such mining task as a propositional formula whose models corresponds to
the required association rules. In this encoding, two sets of Boolean variables
are used to represent the items of an association rules X → Y and the transac-
tions. Then, the support and the confidence of an association rule are captured
through 0/1 linear inequalities over the Boolean variables associated to transac-
tions. In order to define the SAT-based encoding, we fix, without loss of general-
ity, a set Ω of n items, a transaction database D = {(1, I1), . . . , (m, Im)} where
∀i ∈ {1,m}, Ii ⊆ Ω, a minimum support threshold minsupp and a minimum
confidence threshold minconf .

In order to capture the two part of each association rule, we associate two
Boolean variables to each item a, denoted xa and ya. The variables of the form
xa (resp. ya) are used to represent the antecedent (resp. consequent) of each
candidate rule. Then, to represent the cover of X and X ∪ Y , each transaction
identifier i ∈ {1,m} is associated with two propositional variables pi and qi. The
variables of the form pi (resp. qi) are used to represent the cover of X (resp.
X ∪ Y ). More precisely, given a Boolean interpretation B, the corresponding
association rule, denoted rI , is X = {a ∈ Ω | I(xa) = 1} → Y = {b ∈ Ω |
I(yb) = 1}, the cover of X is {i ∈ {1,m} | I(pi) = 1}, and the cover of X ∪ Y is
{i ∈ {1,m} | I(qi) = 1}. The SAT-based encoding of the problem of enumerating
association rules consists in a set of constraints defined as follows.

(
∨

a∈Ω

xa) ∧ (
∨

a∈Ω

ya) (1)

∧

a∈Ω

(¬xa ∨ ¬ya) (2)

∧

i∈1..m

¬pi ↔
∨

a∈Ω\Ii

xa (3)

∧

i∈1..m

¬qi ↔ ¬pi ∨ (
∨

a∈Ω\Ii

ya) (4)

∑

i∈1..m

qi � m × minsupp (5)

∑
i∈1..m qi∑
i∈1..m pi

� minconf (6)

The two clauses of formula (1) express that X and Y are not empty sets.
Formula (2) allows to express X ∩ Y = ∅. It is simply defined by imposing that
xa and ya are not both true for every item a. The third constraint is used to
represent the cover of the itemset corresponding to the left part of the candidate
association rule. Given an itemset X, we know that the transaction identifier i
does not belong to C(X,D) if and only if there exists an item a ∈ X such that
a /∈ Ii. This property is represented by constraint (3) expressing that pi is false
if and only if X contains an item that does not belong to the transaction i. In
the same way, the formula (4) allows to capture the cover of X ∪ Y .
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To specify that the support of the candidate rule has to be greater than
or equal to the fixed threshold minsupp (in percentage), and the confidence is
greater than or equal to minconf , we use the constraints (5) and (6) expressed
by 0/1 linear inequalities.

To extend the mining task to the closed association rules, the following con-
straint is added to express that X ∪ Y is a closed itemset [9]:

∧

a∈Ω

((
∧

i∈1..m

qi → a ∈ Ii) → xa ∨ ya) (7)

This formula means that, for all item a ∈ Ω, if we have C(X ∪ Y,D) = C(X ∪
Y ∪ {a},D), which is encoded with the formula

∧
i∈{1,m} qi → a ∈ Ii, then we

get a ∈ X ∪ Y , which is encoded with xa ∨ ya.

4 Minimal Non-redundant Association Rules

In this section, we present our encoding of the problem of extracting non-
redundant rules into propositional satisfiability. First, we focus on the interesting
representation that corresponds to the minimal non-redundant association rules
(MNRs in short) [2,14].

Definition 1. An association rule r : X → Y is a minimal non-redundant rule
iff there is no association rule r′ : X ′ → Y ′ different from r s.t. (i) Supp(r) =
Supp(r′), (ii) Conf(r) = Conf(r′) and (iii) X ′ ⊆ X and Y ⊆ Y ′.

Example 2. Consider again the association rules given in Table 2. In this set of
rules, r2 : {a} → {b, c, d} is a minimal non-redundant rule while r1 : {a} → {b}
is not.

In the following proposition, we point out that all the minimal non-redundant
association rules are closed.

Proposition 1. If r : X → Y is a minimal non-redundant association rule in
a transaction database D then X ∪ Y is a closed itemset D.

Proof. Assume that X ∪ Y is not a closed itemset. Then, there exists an item
a /∈ X ∪ Y s.t. Supp(X ∪ Y,D) = Supp(X ∪ Y ∪ {a},D). Consider now the rule
r′ : X → Y ∪ {a}. Clearly, we get Supp(r) = Supp(r′) and Conf(r) = Conf(r′)
since Supp(X ∪ Y,D) = Supp(X ∪ Y ∪ {a},D). Thus, r is not a minimal non-
redundant association rule and we get a contradiction.

In other words, the minimal non-redundant association rules are the closed
rules in which the antecedents are minimal w.r.t. set inclusion. Using this prop-
erty, the authors of [2] provided a characterization of the antecedents of the
minimal non-redundant rules, called minimal generators.

Definition 2 (Minimal Generator). Given a closed itemset X in a transac-
tion database D, an itemset X ′ ⊆ X is a minimal generator of X iff Supp(X ′,
D) = Supp(X,D) and there is no X ′′ ⊆ X s.t. X ′′ ⊂ X ′ and Supp(X ′′,D) =
Supp(X,D).
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Usual algorithms use the set of frequent closed itemsets together with min-
imal generators to extract the set of minimal non-redundant association rules.
Then, most existing approaches to mine minimal association rules proceed in two
steps. In our approach, we propose to extend the SAT-based encoding proposed
in [3] to retrieve the minimal non-redundant association rules in one step.

In order to define a SAT-based encoding of the problem of generating the
minimal non-redundant association rules, we only need to extend the encoding
described in Sect. 3 with a formula that forces each antecedent to be a mini-
mal generator. To this end, we use a formula that represents the fact that if
Supp(X → Y,D) = Supp(X \ {a} → Y,D), then a has to be excluded from
X, i.e., a /∈ X. However, we write the contraposition of this property. Indeed,
the following formula expresses that, for all item a, if a belongs to X then the
support of X is smaller than the support of X \ {a}:

(
∧

a∈Ω

xa →
∨

(i∈1..m, a�∈Ii)

(
∧

b/∈Ii∪{a}
¬xb)) ∨ (

∑

b∈Ω

xb = 1) (8)

We use EMNR(D,minsupp,minconf) to denote the encoding (1) ∧ (2) ∧ (3)
∧ (4) ∧ (5) ∧ (6) ∧ (7) ∧ (8).

The soundness of EMNR(D,minsupp,minconf) comes directly from the fol-
lowing proposition:

Proposition 2. The association rule r : X → Y is a minimal non-redundant
rule iff r is a closed association rule, and |X| = 1 or, for all item a ∈ X,
Supp(X,D) > Supp(X \ {a},D).

Proof.
Part ⇒. Using Proposition 1, we know that r is a closed association rule. Assume
now that there exists an item a ∈ X s.t. Supp(X,D) = Supp(X \ {a},D). Then,
r′ : X \ {a} → Y ∪ {a} is a closed association rule s.t. Supp(r,D) = Supp(r′,D)
and Conf(r,D) = Conf(r′,D). Thus, we get a contradiction since r is a minimal
non-redundant association rule.

Part ⇐. Using the fact that r is a closed association rule, we know that there
is no association rule r′ : X ′ → Y ′ s.t. X ∪ Y ⊂ X ′ ∪ Y ′ and Supp(r,D) =
Supp(r′,D). Moreover, knowing that Supp(X,D) > Supp(X \ {a},D) for every
a ∈ X, we get Conf(X \ {a} → Y ∪ {a},D) < Conf(r,D) for every a ∈ X. As
a consequence, r is a minimal non-redundant association rule.

The soundness of our encoding means that a Boolean interpretation I is a
model of EMNR(D,minsupp,minconf) if and only if X = {a ∈ Ω | I(xa) =
1} → Y = {b ∈ Ω | I(yb) = 1} is a minimal non-redundant association rule.

Proposition 3. The encoding EMNR(D,minsupp,minconf) is sound.

Proof. It come from the soundness of the encoding (1) ∧ (2) ∧ (3) ∧ (4) ∧ (5) ∧
(6) ∧ (7) w.r.t. the problem of generating closed association rules, Proposition 2
and the fact that (8) expresses that Supp(X,D) > Supp(X \ {a},D) for every
a ∈ X.
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Let us note that the constraint (8) is not a CNF formula. In order to avoid
the blow up in terms of the number of clauses resulting from the transformation
of (8) into CNF, new additional variables can be added to present the subfor-
mulas of the form

∧
b/∈Ii∪{a} ¬xb i.e., zi ↔ ∧

b/∈Ii∪{a} ¬xb. Nonetheless, using
this transformation, the number of resulting clauses from constraint (8) is in
O(m × |Ω|2) which may make the model enumeration much more harder. To
limit the number of clauses, we propose the following transformation which is
equivalent to the property captured by (8).

(
∧

a∈Ω

(xa →
∨

(i∈1..m, a �∈Ii)

¬zi)) ∧ (
∧

i∈1..m

(¬zi →
∑

b/∈Ii

xb ≤ 1)) ∨ (
∑

b∈Ω

xb = 1) (9)

In fact, this transformation comes from the fact that (
∧

b/∈Ii∪{a} ¬xb) is equiv-
alent to (

∑
b/∈Ii

xb ≤ 1) in the case where Ii does not contain a. As a consequence,
(9) expresses exactly the requirements of (8). The additional variables zi allow
to obtain an efficient encoding.

Note that (9) can be encoded in O(m × |Ω|) rather than O(m × |Ω|2) of the
previous formulation. A linear constraint of the form

∑n
i=1 xi ≤ 1, commonly

called AtMostOne constraint, can be encoded in a linear way [16] using additional
variables as follows.

(¬x1 ∨ s1) ∧ (¬xn ∨ ¬sn−1) ∧
∧

1<i<n

(¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (¬xi ∨ ¬si−1) (10)

Thus, the constraint (¬y → ∑n
i=1 xi ≤ 1) can be obtained by adding y to

each clause of (10). However, this can slow down the unit propagation process.
In fact, when more than one xi is assigned to true, y is not deduced to be true
directly by unit propagation. To increase the power of unit propagation, one
need to add y only on negatives binary clauses of (10) as shown in (11).

(¬x1 ∨ s1) ∧ (y ∨ ¬xn ∨ ¬sn−1) ∧
∧

1<i<n

(¬xi ∨ si) ∧ (¬si−1 ∨ si) ∧ (y ∨ ¬xi ∨ ¬si−1) (11)

It is worth noting that one can use some of the constraints above to enumerate
all the minimal generators. As mentioned before, the minimal generators are the
antecedents of the minimal non-redundant rules. As a consequence, the encoding
(3) ∧ (5) ∧ (9) (restricted to X) allows us to get all the minimal generators.

Another notion of non-redundant rules has been defined in the work of Zaki
[18]. It is slightly different from representative rules defined in [13]. It consists in
mining association rules, called the most general rules (MGR in short), that have
the shortest antecedent and consequent (in terms of inclusion) in an equivalent
class of rules (with the same confidence and support).

Definition 3. [18] An association rule r : X → Y is a non-redundant rule iff
there is no association rule r′ : X ′ → Y ′ different from r s.t. (i) Supp(r) =
Supp(r′), (ii) Conf(r) = Conf(r′) and (iii) X ′ ⊆ X and Y ′ ⊆ Y .

Unlike the non-redundant notion in Definition 1, the closure constraint on
X ∪ Y in Zaki’s notion is obviously omitted.
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Example 3. Considering again the association rules of Table 2. The rule r1 :
{a} → {b} is non-redundant while r2 : {a} → {b, c, d} is not.

Proposition 4 provides a characterization of Zaki’s non-redundant association
rules.

Proposition 4. Given an association rule r : X → Y in a transaction database
D, r is a non-redundant rule iff (i) |X| = 1 or ∀a ∈ X, Supp(X \ {a},D) >
Supp(X,D); and (ii) |Y | = 1 or ∀b ∈ Y , Supp(X ∪ Y ) < Supp(X ∪ Y \ {b}).

Proof.
Part ⇒. Assume that |X| > 1 and there exists a ∈ X such that Supp(X \
{a},D) = Supp(X,D). Then, Supp(X \ {a} → Y,D) = Supp(r,D) holds.
Moreover, we have Supp(X ∪ Y \ {a},D) = Supp(X ∪ Y,D). Thus, we have
Conf(X \ {a} → Y,D) = Conf(r,D). As a consequence, we get a contradiction
since r is non-redundant rule, and we obtain the property (i).

Assume now that there exists b ∈ Y such that |Y | > 1 and Supp(X ∪ Y \
{b},D) = Supp(X ∪ Y,D). Then, Conf(X → Y \ {b},D) = Conf(X → Y,D)
holds. Moreover, we have Supp(X → Y \ {b},D) = Supp(X → Y,D). Thus,
using the fact that r is a non-redundant rule, we get a contradiction, and then
we obtain the property (ii).

Part ⇐. Assume that r is a redundant rule. Then, there exists a ∈ X ∪ Y
s.t. Supp(X \ {a} → Y,D) = Supp(r,D) if a ∈ x, and Conf(X → Y \ {a},D) =
conf(r,D) otherwise. Thus, we get Supp(X \ {a},D) = Supp(X,D) if a ∈ X,
and Supp(X ∪ Y ) = Supp(X ∪ Y \ {b}) otherwise. As a consequence, using the
properties (i) and (ii) we get a contradiction. Therefore, r is non-redundant.

Using the characterization provided in Proposition 4, we only need to add
to the encoding EMNR(D,minsupp,minconf) without the closeness constraint
a new constraint representing the property (ii) to get an encoding for mining
Zaki’s non-redundant rules. Our definition of such constraint is as follows:

∧

a∈Ω

ya → (
∨

(i∈1..m, a�∈Ii)

(pi ∧
∧

b/∈Ii∪{a}
¬yb)) ∨ (

∑

b∈Ω

yb = 1) (12)

It is worth noting that the constraint (12) is very similar to (8). Indeed, the
difference is in the fact that we use the variables pi to reason about the cover of
X ∪Y and not only Y . Furthermore, one can easily see that (12) can be encoded
into a CNF formula in the same way as (8).

5 Experiments

In this section, we present a comparative experimental evaluation of our proposed
approach with specialized association rules mining algorithms. We consider the
minimal non redundant (MNR) association rules mining task.

To enumerate the set of models of the resulting CNF formula, we follow the
approach of [3]. The proposed model enumeration algorithm is based on a back-
track search DPLL-like procedure. In our experiments, the variables ordering
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heuristic, focus in priority on the variables of respectively X and Y to select the
one to assign next. The main power of this approach consists in using watched
literals structure to perform accurately the unit propagation. Let us also note
that the constraint (5) and (6) dedicated to frequency and confidence are man-
aged without translation into CNF form, leading to an hybrid SAT-CSP model
enumeration algorithm. Indeed, the linear inequalities (5) and (6) are managed
and propagated on the fly as usually done in constraint programming. Each
model of the propositional formula encoding the association rules mining task,
corresponds to an association rule obtained by considering the truth values of
the propositional variables encoding the antecedent (X) and the consequent (Y )
of this rule.

In the experiments, SAT4MNR indicates our SAT based solver for mining the
minimal non redundant association rules. In addition we consider SAT4MNR-D
that partition the search as in [10]. This is done as follows: Let Ω = {a1, . . . , an},
we transform the problem into n mining problem where each one encodes rules
X → Y s.t. {a1 . . . , ai−1} �⊂ X and ai ∈ X. Moreover, we denote by SAT4MGR
our SAT based solver for mining most general rules (Definition 3).

To assess the performance of our constraint based encoding for minimal non-
redundant rules, we compare our solver to two specialized association rules min-
ing solvers namely CORON 1 and SPMF 2 [4]. CORON and SPMF are two
multi-purpose data mining toolkits, implemented in Java, and which incorporate
a rich collection of data mining algorithms. For minimal non redundant associ-
ation rules, we compare our approach to the ZART algorithm implemented in
CORON and SPMF toolkits, which is one of the recent and the most efficient
state-of-the-art algorithms for enumerating minimal non redundant association
rules [17]. Let us recall that ZART finds the minimal non redundant associations
rules in two steps. Firstly, the set of all frequent closed itemsets and the mini-
mal generators are extracted rapidly. Second, the identification of non-redundant
rules is then performed. This two steps-based procedure is more time consuming.

To compare the performances of our proposed approach, for each data we
proceed by varying the support from 5% to 100% with an interval of size of
5%. The confidence is varied in the same way. Then, for each data, a set of 400
configurations is generated. All the experiments were done on Intel Xeon quad-
core machines with 32 GB of RAM running at 2.66 Ghz. For each instance, we
fix the timeout to 15 min of CPU time.

Results: Table 3 describes our comparative results. We report in column 1 the
name of the data and its characteristics in parenthesis: number of items (#items),
number of transactions (#trans) and density. For each algorithm, we report the
number of solved configurations (#S), and the average solving time (avg.time
in seconds). For each unsolved configuration, the time is set to 900 s (time out).
In the last row of Table 3, we provide the total number of solved configurations
and the global average CPU time in seconds.

1 Coron: http://coron.loria.fr/site/system.php.
2 SPMF: http://www.philippe-fournier-viger.com/spmf/.

http://coron.loria.fr/site/system.php
http://www.philippe-fournier-viger.com/spmf/
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Table 3. Non-redundant associations rules: SAT4MNR vs CORON vs SPMF

data (#items, #trans, density) SAT4MNR-D SAT4MNR CORON SPMF SAT4MGR

#S avg.
time (s)

#S avg.
time (s)

#S avg.
time (s)

#S avg.
time (s)

#S avg.
time (s)

Audiology (148, 216, 45%) 21 854,82 21 854.87 20 855.01 20 855.00 20 855.00

Zoo-1 (36, 101, 44%) 400 0.23 400 0.27 400 1.35 373 108.60 400 0.71

Tic-tac-toe (27, 958, 33%) 400 0.34 400 0.14 400 0.24 400 0.20 400 0.61

Anneal (93, 812, 45%) 279 337.25 248 405.82 160 591.39 80 724.46 221 461.05

Australian-c (125, 653, 41%) 298 265.74 278 309.32 251 352.01 220 417.94 263 358.40

German-c (112, 1000, 34%) 354 149.03 328 212.58 321 206.34 278 294.45 304 272.88

H-cleveland (95, 296, 47%) 331 200.28 317 235.79 271 307.57 240 368.21 286 289.28

Hepatitis (68, 137, 50%) 360 140.69 343 170.89 286 284.09 260 331.57 315 228.13

Hypothyroid (88, 3247, 49%) 150 615.13 126 649.22 104 681.52 80 751.23 109 676.03

kr-vs-kp (73, 3196, 49%) 198 504.62 172 556.85 168 552.04 140 627.64 158 583.25

Lymph (68, 148, 40%) 400 6.78 400 19.21 357 131.07 280 316.78 395 37.15

Mushroom (119, 8124, 18%) 400 146.87 389 77.02 400 3.81 360 97.25 354 181.89

P-tumor (31, 336, 48%) 400 2.08 400 4.61 400 4.15 379 87.66 400 8.11

Soybean (50, 650, 32%) 400 0.36 400 0.20 400 0.61 380 48.51 400 2.26

Vote (48, 435, 33%) 400 5.43 400 30.46 364 87.56 380 84.82 372 111.06

Total 4790 215.31 4622 235.15 4302 270.58 3870 340.94 4397 271.05

According to such results, SAT4MNR outperforms the two specialized solvers
CORON and SPMF. It solves 488 configurations more than CORON and 920
more than SPMF. SAT4MNR-D is the best on all the data in terms of the
number of solved configurations and average CPU time, Except for mushroom
data where CORON is better in term of time but SAT4MNR-D solves all the
configurations. Let us remark that for mushroom data, the number of minimal
non redundant association rules is very limited. This explains why SAT4MNR
is worse than CORON on this data. For instance, on anneal data, SAT4MNR
is remarkably efficient. It solves about 100 configurations more than CORON
and about 200 configurations more than SPMF. We can also remark that for
Lymph data SAT4MNR-D solves all the configurations in an average time of 7 s
where CORON and SPMF cannot solve all the configurations and they take a
lot of time compared to SAT4MNR-D. More generally, the higher the density of
the data, the better are the performances of SAT4MNR. Interestingly enough,
partitioning the mining, allows to push further the performances of SAT4MNR.
In fact, SAT4MNR-D allows us to obtain better performances i.e., 168 more
solved instances and the average time solving is improved from 235.15 to 215.31.
Unsurprisingly, SAT4MGR, solves less configurations than SAT4MNR. In fact,
the set of minimal non-redundant rules is known to be reduced related to most
general non-redundant ones.

Figure 1 depicts the behavior of the considered association rules mining app-
roach on two representative data, Anneal and kr-vs-kp. The results are obtained
by varying one parameter, while maintaining the others fixed. When the mini-
mum support decreases, the time needed to find all the rules increases. Let us
remark that for CORON and SPMF the time increases rapidly compared to
SAT4MNR-D. For anneal data SPMF (resp. CORON) is not able to provide all
non redundant rules when the minimum support is lower than 85%(resp. 65%).
In contrast, with SAT4MNR and SAT4MNR-D it is possible to obtain all rules
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Fig. 1. Results highlights: Anneal and kr-vs-kp

for all values in the minimum support range. For kr-vs-kp it is important to note
that the time needed to extract rules increases drastically for SPMF and CORON
even if the confidence is higher. For instance, when the minimum support goes
from 100% to 80% the time is multiplied by at least 10. Such increasing is very
limited for SAT4MNR and SAT4MNR-D.

Finally, in Table 4, we provide the variation of the ratio between the number
of classical (pure) rules, closed, generalized non redundant rules, and the minimal
non-redundant rules for kr-vs-kp data. As we can observe, the number of minimal
non-redundant association rules is smaller than those of generalized ones. The
latter is smaller than closed association rules that is itself smaller than pure ones
especially. For instance, when minimum support is equal to 40, the minimal non-
redundant association rules presents 2.85% from all the classical association rules
where the generalized ones is about 3.90%.

Table 4. kr-vs-kp : Pure vs Closed vs MNR vs MGR

Minimum support (%) 40 45 50 55 60 65 70

#Pures/#Closed 7.67 5.68 3.64 2.99 2.46 1.95 1.67

#Closed/#MGR 2.40 2.16 1.95 1.78 1.61 1.46 1.35

#MGR/#MNR 1.94 1.83 1.73 1.63 1.54 1.45 1.38
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6 Conclusion and Perspectives

In this paper we proposed a novel approach for discovering non-redundant asso-
ciation rules. We show that non-redundant rules with minimum antecedent and
maximum consequences can be captured by modeling this problem into proposi-
tional satisfiability. We demonstrated that our approach is highly declarative and
flexible. Indeed, we have shown that minimal generators can be extracted using
similar kind of constraints. We have also shown how to catch the non-redundant
rules with minimum antecedent and minimum consequences. The experimental
evaluation shows that our proposed approach achieves better performance than
specialized mining techniques.

As a future work, we plan to address the question of mining most general rules
having adjacent itemsets [18] using satisfiability to have a compact representation
of the set of most general non-redundant rules.
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