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5.1  Pathological Definition of DCIS

Ductal in situ carcinoma (DCIS) or intraductal carcinoma refers to a group of 
lesions characterized by a neoplastic proliferation confined to the mammary duct. 
They are composed of epithelial cells with different grade of cytological and archi-
tectural atypia, surrounded by a layer of myoepithelial cells and by an intact base-
ment membrane. This pathological definition excludes the invasion of the mammary 
stroma by cancer cells [1].

5.2  Histological Classification

In standard histologic sections, DCIS is confined within duct and lobules, and patholo-
gists must identify myoepithelial cells around these neoplastic structures. The lack of 
myoepithelium is a marker of invasiveness. Several antibodies have been proposed to 
detect myoepithelial cells, such as p63, smooth muscle actin, calponin, CD10, cytoch-
eratin 5/6, and, more recently, p40 [2]. In general, expression of more than one marker 
is tested based on cytoplasmic or nuclear staining; several recommendations suggested 
performing routinely both nuclear and cytoplasmic antibodies on the same samples [3].

Due to the current understanding of DCIS as a heterogeneous group of cancers, 
with different morphology, immunophenotype, and molecular biology, there is no 
agreement on their classification.
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Over the past 25 years, a number of histological and cytological criteria have 
been proposed to subdivide these lesions in groups with different prognosis.

Traditionally, DCIS was classified based on architectural growth pattern of the 
epithelial proliferation, into comedo, solid, cribriform, papillary, micropapillary, 
clinging, apocrine, and mixed subtypes [4].

However, due to: (1) the low reproducibility of these diagnoses, (2) the high rate 
of mixed lesions, and (3) the low predictive value of local recurrences, this classifi-
cation was then replaced by a modern systems based on cyto-nuclear atypia [5]. In 
particular several international Consensus Conferences recommended that the clas-
sification of DCIS should be based primarily on nuclear grade and encouraged 
pathologists to secondarily include in their diagnoses additional information on 
necrosis, cell polarization, and architectural differentiation [5, 6].

Depending on the degree of nuclear atypia, DCIS is generally classified in low 
(small, monomorphic, well-polarized cells, with uniform size and regular chromatin 
pattern and rare mitotic figures, Fig. 5.1), intermediate (similar to those of low grade 
but with occasional nucleoli, mitotic figures, and coarse chromatin, Fig. 5.2), or 
high nuclear grade (large size, pleomorphic, and poorly polarized nuclei, with 
prominent nucleoli, numerous mitotic cells, and presence of necrosis, Fig. 5.3) [7].

Fig. 5.1 Low nuclear grade DCIS with small, monomorphic cells, with uniform size; generally 
cribriform proliferation is the most common phenotype
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Fig. 5.2 Intermediate nuclear grade DCIS with moderate variation in nuclear size and nuclear 
pleomorfism. Necrosis may be present

Fig. 5.3 High nuclear grade DCIS with cytological atypia, prominent nucleoli, presence of 
 comedo-necrosis and mitotic cells 
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5.3  DCIS Carcinogenesis and Progression

In recent years, molecular studies suggested that the assessment of nuclear grade, as 
proposed by WHO, not only could better correlate with prognosis [8, 9], but it may 
highlight distinct genetic alternations [10] and distinct evolutionary pathways [11].

In fact, low-grade DCIS tends to be estrogen receptor (ER)/progesterone receptor 
(PR) positive (Fig. 5.4 a, b) and HER2 negative, and it is frequently characterized 
by the concurrent presence of deletion of 16q and gains of 1q and 16p. Otherwise, 
high-grade DCIS tends to be ER/PR negative and HER2 positive (Fig. 5.5 a, b), and 
it has complex karyotypes [12, 13], including frequent events in 1q+, 5p+, 8p−, 
8q+, 11q−, 13−, 14q−, and 17q+ and focal amplifications on 6q22, 8q22, 11q13, 
17q12, 17q22–24, and 20q13 [10, 14–16]. Thus, low- and high-grade DCIS may 
represent two distinct disorders, which may evolve in two distinct forms of invasive 
cancers (with low and high aggressiveness). In particular, genomic studies of syn-
chronous and metachronous DCIS-invasive carcinoma have shown that there is a 
molecular continuum between low-grade DCIS and low-grade, well-differentiated 
invasive carcinoma (such as tubular carcinoma), as well as between high-grade 
DCIS and high-grade invasive carcinoma. The “low-grade arm” has similar gene 
expression profile, characterized by ER activation. On the contrary “high-grade 
arm” lacks ER in favor of the expression of genes related to cell proliferation and 
promoting  invasive growth pattern [17].

Although the mechanisms underlying the progression from DCIS to invasive 
ductal carcinoma of the breast are yet to be fully elucidated, recent gene expression 
profile studies demonstrated that, inside specific molecular subtypes, DCIS and 
invasive carcinoma cells share similar genes and that the largest part of molecular 
changes occurs from normal epithelium to in situ carcinoma cells [18–21]. These 
mutations may include TP53 [22], PTEN [23], likewise amplifications of chromo-
some 20, 11, and 17 [24, 25]. In line with these findings, experimental data con-
firmed that precursor cells with ability to invade the stroma and with metastatic 
potential may be present in DCIS lesion and that treating breast cancer before it can 
become invasive may prevent the progression to infiltrating carcinoma [26]. Another 
important gene involved in the process of DCIS growth and progression is CDH1 
(E-cadherin) that is expressed in normal and DCIS epithelial cells. CDH1 is a cell–
cell adhesion protein with a role in epithelial differentiation. It has been shown that 
a partial or total loss of its expression may occur in the transition from DCIS to 
invasive breast cancer and in metastatic behavior and poor prognosis [27–29].

It is well established that the evolution of DCIS to invasive breast cancer is not 
only determined by molecular changes in epithelial cells, but may also strongly 
depend on stroma, cell-mediated immune mechanisms, and myoepithelial cells [20, 
30–32]. In particular, myoepithelial cells seem to act as a tumor suppressor in DCIS 
[32], and several studies demonstrated that many of the genes that are specific for 
normal myoepithelial cells, such as CTK14, CTK17, and EGFR, are absent or 
downregulated in the myoepithelial cells of DCIS lesions. Hence, these changes 
may lead to breakdown of the ducts and release of the tumor epithelial cells into the 
surrounding stroma [32, 33]. Other genes involved in extracellular matrix 
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Fig. 5.4 Low nuclear grade DCIS (a) that shows uniform immunostain for estrogen receptor (b) 
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Fig. 5.5 High grade DCIS (a) with HER2 overexpression in immunohistochemistry (b) 
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 remodeling, such as matrix metalloproteinase 2 (MMP2), are closely related to 
DCIS progression in invasive cancer. It has been shown that MMP2 overexpression 
can lead to a degradation of the basement membrane, a barrier that inhibits the 
migration of cells in the surrounding stroma [34].

5.4  The Concept of “DIN”

Due to these emerging genetic data and to the difficulties in distinguishing between 
low-grade DCIS and other proliferative intraductal lesions such as atypical ductal 
hyperplasia (ADH), a new classification system was proposed by Tavassoli et al. in 
2003 (WHO. 2003) [35]. They suggested to replace the term DCIS in favor of duc-
tal intraepithelial neoplasia (DIN), reserving the term “carcinoma” only for the 
invasive neoplasia. The subgroup of lesions classified as “DIN 1” encompassed a 
series of low-grade intraductal proliferations, such as flat epithelial atypia (DIN1a), 
ADH (DIN 1b), and low-grade DCIS (DIN1c), not only with similar morphologi-
cal features but also with similar genetic alterations, typical of low-grade neopla-
sia. DIN 2 represented intermediate-grade DCIS with intermediate level of 
differentiation between low- and high-grade DCIS. This latter group was finally 
classified as DIN 3 lesions, with atypical and pleomorphic cells and genetic fea-
tures typically observed in high-grade arm. Although several studies supported the 
DIN classification [36, 37], this terminology did not gain widespread acceptance, 
in part because it includes entities, such as DIN1a, in which neoplastic nature is not 
fully demonstrated, partly because, in specific subgroups, such as DIN 1B and DIN 
1C, the morphological distinction remains subjective [38]. Thus the latest WHO 
classification in 2012 [39] abounded the term DIN in favor of the previous classi-
fications based on the nuclear grade. However, this topic remains a matter of dis-
cussion, even for the psychological impact on patients. In fact, some works 
suggested that the term “DIN” may eliminate the anxiety produced by the term 
“carcinoma,” contributing to reduced adverse psychological reactions and 
decreased confusion in healthcare settings [37, 40].

5.5  Pathological Prognostic Markers

Traditionally, size of lesion, nuclear grade, type and extension of comedo-necrosis, 
hormone receptor expression, and margin status have been described as prognostic 
markers [39, 41, 42].

Thus, when DCIS is diagnosed on surgical specimens, all of these variables 
should be cited in the pathological report. To reach this aim, the use of large histo-
logical tissue sections could help pathologists to better describe DCIS in terms of 
extension, heterogeneity and margin status.

Among prognostic factors, some studies have reported nuclear grade to be the 
most significant predictor of local recurrence on both univariate and multivariate 
analysis [43, 44].
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Otherwise, the presence of comedo-necrosis, generally associated with high- 
nuclear- grade DCIS, is closely related to the risk of ipsilateral recurrences follow-
ing lumpectomy, and a meta-analysis [44], based on 44 articles, confirmed these 
data, showing a risk of recurrences for DCIS with comedo-necrosis ranging from 
1.3 to 5.0 [45–51].

The prognostic impact of histotype is still debated, mainly due to the low repro-
ducibility of these diagnoses and to the presence of high rate of mixed lesions. 
Several studies reported that the “cribriform” growth pattern is related to indolent 
lesions with a low risk of subsequent invasive carcinoma, whereas solid DCIS are 
generally an aggressive neoplasia, especially if associated with comedo-necrosis 
[45, 52, 53].

In regards to micropapillary growth patterns, some studies suggested that low-
grade micropapillary DCIS may be treated with excision without additional irradia-
tion, for an exceptionally low risk of recurrences of these entities [52]. Otherwise, 
others reported that this phenotype is often multicentric [54, 55] and larger than 
other subtypes [56] and that it may remain clinically and radiologically silent, even 
if it is found to be extensive and of high grade [57]. In addition two studies reported 
that the micropapillary growth pattern is an independent high-risk factor for local 
recurrences [58, 59].

Traditionally, both ER and PR are frequently tested in DCIS; however, ER is the 
only one validated for routine clinical practice in DCIS (WHO 2012) [39]. National 
Comprehensive Cancer Network (NCCN) guidelines include its determination as 
part of the workup of DCIS [60].

The majority (80%) of DCIS cases are ER positive [20]; its expression is gener-
ally related to low- to intermediate-nuclear-grade DCIS cases. On the other hand, 
the predictive value of this marker remains a matter of discussion, and there are not 
enough data to make general recommendations for the use of ER in DCIS to decide 
about antihormonal treatment [61].

Very few data are available on PR, and there is disagreement regarding its routine 
determination (WHO 2012, 40) on DCIS samples. Among other immunohisto-
chemical markers that are currently under investigation, HER2 is one of the most 
studied. Its role in DCIS is unclear. It is overexpressed/amplificated in 50% to 60% 
of DCIS cases, and its detection is generally associated with high-nuclear-grade 
DCIS with comedo-necrosis and presence of stroma microinvasion [62–64]. Several 
studies have suggested that HER2 may play a critical role in the progression to 
invasive carcinoma [65, 66] and its expression has been linked to recurrence after 
surgical excision, mainly in patients without radiation therapy [67, 68].

The identification of HER2 expression in DCIS may be useful even for a bet-
ter radiological surveillance program: in a prospective observational study com-
paring mammography to magnetic resonance, the latter was more sensitive and 
specific in diagnosing high-grade DCIS [69]. Although several studies have been 
proposed with trastuzumab [70] or with lapatinib [71, 72] in HER2-positive 
DCIS patients, to date, there is no evidence of the clinical effect of anti-HER2 
treatment. However, a first prospective, randomized phase III multi-institution 
clinical trial—National Surgical Adjuvant Breast Project (NSABP) B-43— is 
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currently ongoing. It compares whole breast irradiation alone with WBI given 
concurrently with trastuzumab in women with HER2-positive DCIS treated by 
lumpectomy [73].

The expression of ER, PR, and HER2 together with the rate of Ki67 may allow 
to classify DCIS, using “surrogate molecular subtypes,” in Luminal A, B, HER2, 
and triple negative DCIS. However, the prognostic impact of molecular subtypes in 
DCIS, following St. Gallen surrogate definition (St. Gallen Consensus Conference—
[74–76]), is yet to be clarified.

Lazzeroni et al. [77] found that immunohistochemically defined molecular sub-
types in DCIS may be an indicator of prognosis, mainly due to the assessment of 
Ki67. Zhou et al. [78] demonstrated that combination of molecular markers ER−/
HER2+ was statistically significantly associated with a high risk for a recurrence 
being in situ and that ER+/HER2−/EGFR− tumors were strongly associated with a 
subsequent recurrence being invasive. Otherwise, one study failed to demonstrate a 
prognostic value for the surrogate molecular subtyping of DCIS up to 10 years after 
diagnosis. However, it was shown that triple-negative DCIS had an elevated risk of 
recurrence [79].

Other immunohistochemical markers such as TP53, Bcl2, and androgen receptor 
have been investigated as potential prognostic markers. Presence of TP53 mutation 
together with an increased level of Ki67 in DCIS lesions are associated with high 
risk of recurrence [80].

In particular, mutations of TP53 occur more frequently in HG-DCIS and in 
HER2-positive tumors than in ER/PR-positive low-grade DCIS [81]. The expres-
sion of Bcl-2 that is present in the continuum of breast lesions from ADH to well- 
differentiated DCIS gradually decreases as lesions become more aggressive [82].

On the other hand, the role of AR expression in DCIS is not fully understood, and 
different results are present in literature [83, 84].

Very recently, to better stratify patients by prognosis, a multigene reverse tran-
scriptase (RT)-PCR assay was recently proposed by Genomic Health. The test, 
called Oncotype DX Breast Cancer Assay for DCIS, is based on 12 genes from the 
Oncotype DX Invasive Recurrence Score (Genomic Health, Redwood City, CA, 
USA). The algorithm uses seven cancer-related genes (Ki67, STK15, Survivin, 
CCNB1, MYBL2, PR, and GSTM1) and five reference genes to create a score, 
designed to quantify the 10-year risk of local recurrence, both in situ and invasive, 
in patients with DCIS treated with breast-conserving surgery without radiation.

The results are reported as a numerical score called “DCIS Score,” which classi-
fies DCIS patients into low-, intermediate-, and high-risk groups with overall local 
recurrence rates of 10.6, 26.7, and 29.5%, respectively, at 10 years. Invasive recur-
rence rates are 3.7%, 12.3%, and 19.2% for these groups, respectively [85].

The application of this test, together with clinical, pathological, and immunohis-
tochemical analyses, may result in a better definition of the risk profile of DCIS 
patients, allowed to avoid radiotherapy in low-risk categories. However, the 
Oncotype DX Breast Cancer Assay for DCIS is applicable only to patients with 
low-intermediate-grade DCIS with resection margins of at least 3  mm and to 
patients with high-grade DCIS with lesion of 1 cm or less in size [85].
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In addition, a recent study suggested that incorporating the DCIS Score in rou-
tine clinical practice is cost-effective, even if DCIS Score lowered the proportion of 
women undergoing RT [86].

5.6  Molecular Assessment of DCIS and Future Approaches

In recent years, a number of studies have been proposed to assess the molecular and 
genetic features of DCIS cells, with the aim to discover biological features involved 
in growth and progression of these lesions. In particular, microRNA (miRNA) is a 
class of small RNA molecules that, through the control of mRNA expression, may 
regulate cellular processes such as stem cell division, cell growth, apoptosis, and 
carcinogenesis [87–90].

It has recently been discovered that some miRNAs are under- or overexpressed 
in DCIS in comparison with normal histological breast tissue [91]. For example, 
miR-132, which is frequently downregulated in DCIS, acts as inhibitor of cell pro-
liferation [92]. The most significant miRNA deregulations seem to occur during the 
transition from normal to ADH, to DCIS epithelium, such as the loss of the tumor 
suppressor miR-125b and the gain of miR-182, miR-183, and miR-21 [91, 93]. 
Furthermore, although most miRNA changes in invasive carcinoma were already 
apparent in DCIS [94], nine-microRNA signature was identified as invasive carci-
noma that progressed from in situ carcinoma, such as miR-210 and miR-221 that 
were downregulated in the in situ and upregulated in the transition to invasive lesion 
[95]. In the same study, authors reported that crucial genes in cancer development, 
such as BRCA1, FANCD, FANCF, PARP1, E-cadherin, and Rb1, are inversely 
related profiles to miR-210: they were all activated in the in situ and downregulated 
in invasive carcinoma. Another study found a consistent increase in the expression 
of miR-21 along with its targets (PTEN, PCCD4, and TMI) in breast cancer pro-
gression [96]. Together these findings underline the relevance for studying miRNAs 
as markers of risk of DCIS growth and progression.

Several molecular DCIS studies aimed to better define the role of DNA methyla-
tion in breast cancer differentiation and progression. In line with the above chapters, 
it has been shown that the number of methylated genes increased from normal 
breast to DCIS, whereas IDC did not differ from DCIS [20, 97–99]. Thus, DNA 
methylation seems not to play a role in the development of invasion, but it is very 
important in early breast carcinogenesis. Finally, a recent work [100] studying the 
molecular landscape of DCIS at the mutational, transcriptomic, and epigenetic lev-
els, using DNA and RNA-Seq analysis, showed that important and complex epigen-
etic changes present in the invasive form are already operating at the in situ stage. 
In addition, they demonstrated that a subgroup of HG-DCIS lesions can be identi-
fied displaying more aggressive molecular profiles and that most high-grade DCIS 
lesions demonstrated profiles indistinguishable from invasive cancers.

Further studies of the genomic landscape of DCIS are needed to clarify the 
genomic and genetic alterations involved in DCIS progression and to discern the 
more aggressive phenotypes. Genomic technologies such as next-generation 
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sequencing (NGS) modalities, which are just beginning to be applied to DCIS [101], 
may offer in the future a depth molecular analysis of these lesions, revealing muta-
tions, alternative splice variants, novel potential therapeutic targets, and promising 
biomarkers.
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