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Abstract An incremental version of the ELMVIS+ method is proposed in this

paper. It iteratively selects a few best fitting data samples from a large pool, and

adds them to the model. The method keeps high speed of ELMVIS+ while allow-

ing for much larger possible sample pools due to lower memory requirements. The

extension is useful for reaching a better local optimum with greedy optimization of

ELMVIS, and the data structure can be specified in semi-supervised optimization.

The major new application of incremental ELMVIS is not to visualization, but to

a general dataset processing. The method is capable of learning dependencies from

non-organized unsupervised data—either reconstructing a shuffled dataset, or learn-

ing dependencies in complex high-dimensional space. The results are interesting and

promising, although there is space for improvements.
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1 Introduction

The ELMVIS method [1] is an interesting Machine Learning method that optimize

a cost function by changing assignment between two sets of samples, or by changing

the order of samples in one set which is the same. The cost function is learned by

an Extreme Learning Machine (ELM) [2–4], a fast method for training feed-forward

neural networks with convenient mathematical properties [5, 6]. Such optimization

problem is found in various applications like open-loop Traveling Salesman prob-

lem [7] or clustering [8] (mapping between samples and clusters), but not in Neural

Networks. ELMVIS is unique in a sense that it combines the optimal assignment

task with neural network optimization problem; the latter is optimized at each step

of ELMVIS.

A recent advance in ELMVIS+ method [9] set its runtime speed comparable or

faster than other state-of-the-art methods in visualization application. However there

are unresolved problems like a greedy optimization leading to a local optimum. Also

ELMVIS+ can be applied to a much wider range of problems than a simple visual-

ization or a visualization accounting for the class information [10], which have not

been tested or reported yet. This paper addresses the aforementioned drawbacks, and

presents the most recent research advances in the family of ELMVIS methods.

The proposed incremental ELMVIS allows for iterative growth of dataset size and

model complexity. Incremental ELMVIS learns an approximate global data structure

with a few data samples and a simple ELM model, because at a very small scale

global and local optimums are similar or the same. Then more data samples are

added to the model, choosing the ones that better fit an existing ELM. After adding

a batch of new samples, the current model is refined by ELMVIS+ method. This

refinement keeps the global optimum due to the greedy optimization and only small

changes. More neurons are added to ELM as the dataset size grows, to better separate

the data.

Iterative ELMVIS is useful for semi-supervised learning, starting from the data

with known outputs and adding more data with unknown outputs, simultaneously

updating the model. It can even apply to completely unsupervised datasets, where

it finds an input-output dependency, learns it with ELM model, and then simulta-

neously expands the supervised part of a dataset and updates an ELM model that

encodes the input-output dependency.

The experiments have shown the ability of iterative ELMVIS to improve global

optimum, successfully perform semi-supervised and unsupervised learning with

complex tasks. Current version of the method is found limited to good separation

between only two classes in data (which it learns first), ignoring samples of the addi-

tional classes until the first two ones are exhausted, and poorly fitting the additional

classes into the learned two-class model. Solution to this problem will be considered

in further works on the topic.
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2 Methodology

An iterative extension of ELMVIS+ methodology is rather straight-forward, as

explained below. ELMVIS methods start with a list of (visualization) samples and

an unordered set of data samples; and it finds an optimal order of data samples in the

set by a greedy search with changing positions of many samples at once (ELMVIS)

or only two samples at once (ELMVIS+).

Iterative ELMVIS splits data samples into fixed, candidate and available ones.

Fixed samples have their order fixed and cannot be moved by an iterative ELMVIS.

Candidate samples are a small number of samples which are chosen from candi-

date+available ones to maximize the cost function. This cost function takes into

account fixed and current candidate samples, but ignores the available samples. Once

current candidate samples are chosen optimally, they are added to the fixed ones, and

the method is repeated with a few more candidate samples—until the available data

samples are exhausted.

2.1 Extreme Learning Machine

Extreme Learning Machine is a way of training feedforward neural networks [11]

with a single hidden layer that features randomly assigned input weights [12], explicit

non-iterative solution for output weights and an extreme computation speed and scal-

ability [13]. This model is used as a non-linear cost function in all ELMVIS methods.

This short summary introduces the notations to the reader.

The goal of ELM model is to approximate the projection function 𝐲̂i ≈ f (𝐱i) using

a representative training dataset. As ELM is a deterministic model, the function f ()
is assumed to be deterministic, and a noise 𝜖 is added to cover the deviation of true

outputs 𝐲 from the predictions by a deterministic function f ()

𝐲 = f (𝐱) + 𝜖 (1)

The Extreme Learning Machine [2] (ELM) is a neural network with d input, L
hidden and c output neurons. The hidden layer weights 𝐖d×L and biases bias1×L are

initialized randomly and are fixed. The hidden layer neurons apply a transformation

function 𝜙 to their outputs that is usually a non-linear transformation function with

bounded output like sigmoid or hyperbolic tangent.

The output of the hidden layer is denoted by 𝐡 with an expression

𝐡i = 𝜙(𝐱i𝐖 + bias) (2)

where the function 𝜙() is applied element-wise, and can also be gathered in a matrix

𝐇N×L for convenience.
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The output layer of ELM poses a linear problem 𝐇𝜷 = 𝐘 with unknown output

weights 𝜷L×c. The solution is derived from the minimization of the sum of squared

residuals 𝐫2 = (𝐲 − 𝐲̂)2, that gives the ordinary least squares solution 𝜷 = 𝐇†𝐘,

where 𝐇†
is a Moore-Penrose pseudoinverse [14] of the matrix 𝐇.

2.2 ELMVIS+ Method

ELMVIS+ method [15] approximates a relation between visualization (or input)

space  and data space  by an ELM model. The task has N representative sam-

ples 𝐯 ∈  and 𝐱 ∈  , but their order is unknown. The method assumes fixed order

of samples 𝐯 joined in matrix 𝐕, and finds a suitable order of samples 𝐱 joined in

matrix 𝐗 by exchanging pairs of rows in 𝐗. Contrary to a common use of ELM,

data samples 𝐱 are the outputs of ELM and visualization coordinates 𝐯 are the inputs

(thus ELM predicts original data 𝐱̂). Visualization coordinates𝐕 are chosen arbitrary

and fixed—they can be distributed randomly with normal or uniform distribution, or

initialized on a regular grid.

The optimization criterion is a cosine similarity between 𝐗 and ̂𝐗 predicted by

ELM. A low error means that its possible to reconstruct data from the given visu-

alization points, thus the visualization points keep information about the data. The

reconstruction is approximated by the ELM model in ELMVIS.

There is an explicit formula for a change of error (negative cosine similarity) for

swapping two rows in 𝐗 and re-training ELM with this new dataset. The readers can

refer to the original paper [15] for the full formula. It is based on the expression for

the change on error 𝛥E in case a row 𝐱a in 𝐗 is changed by 𝛿 ∈  amount:

𝛥E =
d∑

j=1

(
𝐀a,a𝛿

2
j + 2𝐱̂a,j𝛿j

)
(3)

̂𝐗 ← ̂𝐗 − 𝐀∶,a × 𝛿 (4)

𝐗∶,a ← 𝐗∶,a + 𝛿 (5)

2.3 Incremental ELMVIS

Incremental ELMVIS splits all data samples in three groups: fixed, candidate and

available samples. The separation is maintained with two indexes: iA is the number

of fixed samples, and iB is the number of fixed+candidate ones.

Incremental ELMVIS works similar to ELMVIS+. First, the initial numbers of

fixed and candidate samples are given by iA and iB. Then swap indexes a ∈ [iA, iB]
and b ∈ [iB + 1,N] are selected randomly to replace one candidate sample with an
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available one. The change of error 𝛥E is computed by the formula (3) for the change

in the candidate row of the data matrix 𝐗. Compared to ELMVIS+, the change in the

available sample is ignored. Then for the negative 𝛥E, an update step is performed

for sample 𝐱a as in Eq. (4) and for both 𝐱a and 𝐱b as in Eq. (5).

If there is no improvement during a large number of swaps, the current candidate

samples are added to the fixed ones (iA ← iB), and k more samples are added as candi-

dates (iB ← iB + k). Candidate samples are already initialized with the data samples

at indexes 𝐱iA ,… , 𝐱iB . The method then repeats for another iteration. Iterations stop

when no available samples are left.

In the original ELMVIS+, matrix 𝐀 took the most space and limited the max-

imum amount of processed samples (its memory size is (N2)). In incremental

ELMVIS, only a 𝐀iB×iB part of the whole matrix 𝐀 is needed. That relaxed memory

requirements of the method, and allows to use a very large pool of available sam-

ples. The memory constraints of incremental ELMVIS apply only to the number of

optimized data samples.

3 Experimental Results

Incremental ELMVIS method is developed for two main applications. The first one is

achieving a better global optimum in ELMVIS+. The original EMLVIS+ is a good

visualization method, however it has an unwanted feature: with a large number of

neurons in ELM it fragments clusters in the visualized data. This happens with large

amount of data and a complex ELM model. An iterative ELMVIS that starts with

small amount of data and a simple model keeps all similar data together; then more

data samples are gradually added while the total picture changes little due to local

minimum in ELMVIS+ optimization.

The second application is finding unknown relations in datasets. This is an unsu-

pervised learning field relevant to the current Big Data trends, when a large amount

of interesting data is available—but there pre-processing like manual labeling or

classification. It is possible to extract relations inside data automatically by itera-

tively growing an ELMVIS+ model between two sets of data samples (they don’t

have to be related to visualization). Results for both applications are presented below.

3.1 Better Optimum with ELMVIS

ELMVIS+ method is fast and works with large datasets, but it has a greedy opti-

mization approach that leads to local optimality of the solution. Such local optimum

is close to a global one for small datasets and simple ELM models, but with a large

dataset and many neurons in ELM model the visualization data is split into multiple

small clusters with local optimality, non-representative of a global picture.
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Fig. 1 Visualization of 300 (left) and 900 (right) MNIST digits on a two-dimensional space with

incremental ELMVIS. The visualization is initialized with 5 digits shown in larger font. Digit sym-
bols and colors are for the presentation purpose only; ELMVIS method does not have access to

them and works with raw pixel data

A better global optimality is achievable with an incremental ELMVIS. This exper-

iment uses MNIST digits [16] with their original 28 × 28 features (grayscale pixels),

with 500 digits for each of the classes 0–4. It starts by seeding several cluster as

shown on Fig. 1 by bold samples, and a simple ELM model. Then gradually added

data fits into the existing model (Fig. 1, left). An ELM learns an easy separation

between two clusters, and an incremental ELMVIS prefers to add samples of these

clusters until they are available (Fig. 1, right).

The incremental ELMVIS learns a good model that separated between two dif-

ferent kinds of data. Then there is no data samples of these two types left, it begins

adding more types, starting at the boundary (Fig. 2, left). These additional classes are

mapped to a single area, although they go over the two previously learned cluster as

there is no space left on the visualization (Fig. 2, right). The ELMVIS still ignores

the last available class (digits 4) because it is not represented on the visualization

space.

3.2 Better Optimum with Semi-supervised ELMVIS

In the previous experiment, there were no sharp borders between clusters because

ELMVIS used all the visualization space to show only two clusters, and then has to

map additional data clusters other them. Sharper borders can be obtained by running

the original ELMVIS+ on the fixed set of data points after each iteration of the

incremental ELMVIS. That will make space for more clusters by compacting the

existing ones; while still preserving the global structure as ELMVIS+ optimization

goes to the local optimum only.

In addition, a semi-supervised approach is tested where the clusters are initialized

with a larger number of samples. This experiment uses 5 classes of digits with 1000
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Fig. 2 Visualization of 1500 (left) and 2500 (right) MNIST digits on a two-dimensional space

with incremental ELMVIS. There is only 500 samples of each class; ELMVIS has to add more

classes then it exhausted zeros and ones in the available set. Digit symbols and colors are for the

presentation purpose only; ELMVIS method does not have access to them and works with raw pixel

data

Fig. 3 Semi-supervised incremental ELMVIS initialized with 20 samples per class (left). An ELM

learns all the clusters from a larger initialization set, and add new samples for all of them instead of

just two (right, 1000 samples mapped). Classes of samples are used for initialization, but ELMVIS

method does not have access to them and works with raw pixel data

samples per class, initialized with 20 samples per class as shown on Fig. 3 (left). A

large initialization set forces ELM to learn all the classes, and add samples from all

of them instead of only two (Fig. 3, right).

When the method need space to map more samples from a particular class, an

additional ELMVIS+ step moves existing clusters to give that space while keeping

sharp boundaries between the classes. The effect is shown on Fig. 4 where all clusters

are moved to give more space for digits 2. The global structure is well preserved, with

large clusters keeping their place.

The added ELMVIS+ step refines the candidate samples placement within the

fixed ones, that is necessary towards the end of visualization when there may be no

samples of the desired class left, or no spaces left within the desired class area. An

improvement of ELMVIS+ step fitting the candidate samples is presented on Fig. 5.
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Fig. 4 An additional ELMVIS+ step moves existing clusters if more space is needed for the

remaining data, without disturbing the global data structure. Here 2000 samples visualized on the

left with under-represented class 2; 5000 samples visualized on the right with other clusters moved

to fit class 2 without overlap

Fig. 5 The last step on an incremental ELMVIS (left), further refined by ELMVIS+ (right). Can-

didate samples of class 0 that are mis-placed due to the lack of space inside class 0 are correctly

fitted by ELMVIS+

3.3 Data Structure Discovery with Unsupervised ELMVIS

The inputs to ELMVIS are not limited to visualization coordinates; they can be arbi-

trary data. Thus ELMVIS is a feasible method for finding structure in the data in

an unsupervised manner. This experiments takes a number of MNIST digits in ran-

dom (undefined) order, and maps them to the same number of classes (in zero/one

encoding), or to the same number of different MNIST digits of the same classes.

First dataset has zero-one classes as inputs, and MNIST digits as outputs. How-

ever it cannot be used to train a supervised model because it is unknown which input

corresponds to which output—a common situation in the analysis of large automati-

cally acquired data corpora that has not been manually labeled. The goal of an incre-

mental ELMVIS is to reconstruct the correct input-output pairing. The experiment

uses 100 samples per class with 2 or 5 classes of digits. Note that the best pairing

across all permutations of classes is reported, as in the unsupervised setup with equal
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Fig. 6 Binary class to MNIST digit mapping with two or five classes, confusion matrices present

correct percentages. The best mapping across all permutation of classes is shown, because it is not

possible to specify matching of particular classes in an unsupervised method

amount of samples there is no way to tell ELMVIS which class should go to which

digit.

The resulting confusion matrices are shown on Fig. 6. An incremental ELMVIS

successfully paired classes with pictures of MNIST digits. The method mapped

classes arbitrary (i.e. class [1, 0, 0, 0, 0] is mapped to digit 4), but this is to be expected

from a purely unsupervised method.

Another experiment is performed in a similar setup, but instead of binary class

representations the incremental ELMVIS tried to map MNIST digits to other MNIST

digits (of the same classes, Fig. 7). The mapping is successful with two classes. With

more than two classes the same feature always appears: two random classes are sep-

arated well while other classes are randomly mixed with them. This outcome is in

line with the results observed in Sect. 3.1 where two classes are clearly separated at

the beginning, followed by other classes mapped over them.

4 Conclusions

An iterative extension to the original ELMVIS+ method is proposed in this paper. It

iteratively selects a small number of best fitting samples from all the available ones,

and adds them to the model. It allows for a much larger set of potential samples than

ELMVIS+ by limiting memory requirements to already fitted samples rather than to

all available ones, keeping the high speed of the ELMVIS+ at the same time.

The method improves global structure of ELMVIS+ visualization by starting with

a small dataset, and gradually adding more data or increasing the complexity of the

model. It preserves the global structure, sharp boundaries between classes, and has
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Fig. 7 MNIST digits to MNIST digits mapping, using different digits from the same 2 or 5 classes.

Two classes are separated clearly, while any additional number of classes are mixed with them

a possible semi-supervised extension where the samples are mapped to the specified

places on the visualization space.

The proposed method is capable of unsupervised data structure detection. It excels

in reconstructing a randomly shuffled dataset with unknown pairing between inputs

and outputs. It is also capable of finding a mapping between two complex data spaces

as shown on MNIST digits example.

The methodology needs further investigation and improvement to counter the

observed drawbacks, specifically the tendency of learning an easy model first leading

to problems in incorporating more complex parts to the global picture.
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