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Earthen Archaeological Site Monitoring
Data Analysis Using Kernel-based ELM
and Non-uniform Sampling TFR

Yue Qi, Mingzhe Zhu, Xinliang Zhang and Fei Fu

Abstract Known as an ancient civilization, there exists a large amount of earthen
archaeological sites in China. Various types of environment monitoring data have
been accumulated waiting to be analyzed for the aim of future protection. In this
paper, a non-stationary data processing strategy is proposed for the better under-
standing of such monitoring data. The kernel-based extreme learning machine
(ELM) is utilized to preprocess the original data and restore the missing parts. Then
a new non-uniform sampling time-frequency representation (TFR) is proposed to
analyze the non-stationary characteristic of restored data from a signal processing
perspective. The test data is the real environment monitoring data of the burial pit at
the Yang Mausoleum of the Han dynasty. The experimental result shows that the
proposed scheme can extract different information from the original data.

Keywords Data prediction ⋅ Monitoring data analysis ⋅ Extreme learning
machine ⋅ Time-frequency representation

1 Introduction

Electronic-based earthen archaeological sites protection is a multidisciplinary
research field and the studies of it are full of opportunities and challenges. The
preliminary work has been carried out for many years. For example, the environ-
ment monitoring data series of the burial pit at the Yang Mausoleum of the Han
dynasty, known as the first enclosed earthen site museum in China, have been
accumulated more than 7 million. However, the systemic analysis of such data is
rare because of the complicated characteristics and the relatively poor quality of the
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data. The monitoring data is usually time series with non-uniform interval, which
makes it difficult to be analyzed by traditional time-varying processing methods. As
a result, some powerful TFRs can’t be directly used such as the short-time Fourier
transform (STFT) [1], wavelet transform (WT) [2] and the S-transform (ST) [3].
Moreover, there are a lot of interrupt parts and abrupt changes in the data which
may degrade the subsequent processing. Therefore, a high performance prepro-
cessing is desired to restore the original data before the characteristic analysis.

Extreme learning machine (ELM) is a kind of single hidden layer feedforward
networks (SLFNs), which is suitable for various applications including forecast,
regression, classification and so on [4–6]. Compared with another two of the most
popular methods, i.e., back propagation neural networks (BPNN) [7] and support
vector machine (SVM) [8], ELM achieve the faster learning speed owning to the
random generation of the hidden layer parameters [9]. In our work, the kernel-based
ELM is employed for preprocessing because of its better performance compared to
the traditional ELM [10]. After data restoration, a new time-frequency represen-
tation (TFR) is proposed to deal with the non-uniform sampling problem. Com-
bining the kernel-based ELM with non-uniform sampling TFR, we could extract
non-stationary information form monitoring data in the view of signal processing
other than only data mining.

2 Data Preprocessing Using Kernel ELM Algorithm

In this part, kernel ELM is employed to predict and restore the original monitoring
data. The ELM and kernel ELM are briefly introduced here. Then the restoration
performance is demonstrated by the real monitoring data of the burial pit at the
Yang Mausoleum of the Han dynasty (BPYMHD). After the preprocessing, the
non-stationary data information will be extracted with less error.

Given N arbitrary samples ðX, tÞ, where X= ½x1, x2, . . . , xN �T represents the
feature vector, and t= ½t1, t2, . . . , tN �T is target data vector. The output weight vector
β= ½β1, β2, . . . , βN �T is from the hidden nodes to the output layer and gðxÞ is the
activation function. The standard SLFN output with M hidden layer nodes neural
networks is defined as follows:

∑
M

i=1
βigðwi ⋅ xj + biÞ = yðxjÞ, j = 1, 2, . . . ,N ð1Þ

which can be rewritten as:

Hβ= y ð2Þ

where β = ½β1, β2, . . . , βN �T .

2 Y. Qi et al.



To find the least square solution by using Moore-Penrose generalized inverse:

β̂= ðHTHÞ− 1HTy ð3Þ

Aiming at a better performance, the classical ELM can be improved by the
kernel ELM. In a newly developed kernel ELM, the output function of ELM can be
written as:

fðxÞ = hðxÞHTðI
λ
+ HHTÞ− 1y ð4Þ

where λ is a coefficient used to revise the diagonal matrix HHT in order to value the
weight vector β. The advanced kernel ELM makes the learning system more stable.
The kernel matrix for ELM is defined as:

Ωkernel = HHTΩkernelði, jÞ = h(xiÞh(xjÞ = Kðxi, xjÞ ð5Þ

f(x)
K(x, x1Þ

⋮
K(x, xNÞ

2
4

3
5
T

ðI
λ
+ ΩkernelÞ− 1y ð6Þ

The hidden layer feature using kernel function h(x) here the Gaussian kernel is:

Kðu, vÞ = e− γ u− vk k2
ð7Þ

The test data is real monitoring environment data offered by BPYMHD museum.
We choose multi-features including time moment, temperature and frost point
information as inputs for testing and predicting. Continuous data of ten days are
used for experiment and randomly sampling points are used for testing. The weight
function and results are showed in Fig. 1. The mean square error is 0.0321, which
meets the requirement for predicting.

The weight parameters learned by kernel ELM then can be used in prediction.
The result is showed in Fig. 2. Red points represent the reality data, blue points
represent prediction results. The mean square error of the prediction is 0.0838.
According to the prediction curve, the day model trend can be learned well by
kernel ELM algorithm.

3 Non-stationary Information Analysis
by ST-LS Based TFR

In our previous research, it was found that both the interrupt parts and abrupt
changes could lead spectrum spread in TF plane. The former is often caused by
hardware problem and network congestion such as sensor faults, power failure,

Earthen Archaeological Site Monitoring Data Analysis … 3
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network, delay and so on, which may have the less significance for protection
scheme decision. But the later often indicates environment change which may be
harmful to the earthen archaeological site. After ELM-based preprocessing, the
effect of missing data is suppressed. But the restored data is a kind of time series
with non-uniform interval. It means that the traditional TFRs can’t be directly used.
In this part, the relationship between discrete Fourier transform (DFT) and least
squares (LS) is discussed. Then a new short-time-LS (ST-LS) based TFR is pro-
posed to solve the non-uniform sampling TF analysis problem.

3.1 Comparison of DFT and LS

The definition of DFT of N-points signal x(n) can be written as

xðkÞ= ∑
N − 1

n=0
xðnÞe− j2πnk ̸N ð8Þ

And the M-points inverse DFT of XðkÞ is formed as bellow:

xðnÞ= 1
M

∑
M − 1

k=0
XðkÞej2πnk ̸M

ð9Þ

which the matrix representation is:

1
M

expðj2π 1
M

0 0 ⋯ ⋯ 0
0 1 M − 1
⋮ nk ⋮
⋮ ⋱ ⋮
0 N − 1 ⋯ ⋯ ðN − 1ÞðM − 1Þ

2
66664

3
77775Þ ⋅X= x ð10Þ

From the perspective of solving linear equations, if N =M, the X has unique
solution. In the situation that M <N, the Eq. (10) is overdetermined. The Fourier
coefficient X can be obtained using the Least squares (LS) method. The LS provides
a criterion of overdetermined equations:

Φθ=y ð11Þ

By minimize the error function (12), the estimation of θ can be confirm by (14).

JðθÞ= 1
2

Φθ− yk k ð12Þ

Earthen Archaeological Site Monitoring Data Analysis … 5



∇θJðθÞ= ð∂JðθÞ
θ1

. . .
∂JðθÞ
θend

ÞT =ΦTΦθ−ΦTy ð13Þ

θ ̂ = (ΦTΦÞ− 1ΦTy ð14Þ

where ðΦTΦÞ− 1ΦT is the generalized inverse of coefficient matrix Φ. The DFT
interlinked with LS method.

3.2 ST-LS and Non-stationary Information Analysis

The STFT is a useful tool for non-stationary signal analyzing, which is formed by:

STFTðm, kÞ = ∑
N − 1

n=0
xðnÞwðn − mÞe− j2πnk ̸N ð15Þ

If the analyzing signal is unequal interval sampled, the traditional DFT-based
TFR algorithms are disabled. The ST-LS is proposed using the Fourier basis LS to
determine replace the DFT is the normal STFT. The Fourier basis function is set as
bellow:

ϕðt, pÞ=
1, p=0

sinð2π ⋅ pfs ̸M ⋅ tÞ, p=2r − 1, r=1, 2, 3, . . . ,M ̸2
cosð2π ⋅ pfs ̸M ⋅ tÞ, p=2r, r=1, 2, 3, . . . ,M ̸2

8<
: ð16Þ

where the t is a vector that represent time of each signal point. The basis function
ϕðt, pÞ ensures the feasibility of unequal interval sampled signal. The ST-LS can be
established by (17):

STLSðm, kÞ = ∑
N − 1

n=0
xðnÞwðn − mÞLsðm, kÞ ð17Þ

where Lsðn, kÞ is the Fourier Spectrum Coefficient generated by LS through
(18)–(20).

ϕðt, 0Þ
ϕðt, 1Þ

⋮
ϕðt, 2MÞ

2
6664

3
7775θm =

xð0Þwð0−mÞ
xð1Þwð1−mÞ

⋮
xðN − 1ÞwðN − 1−mÞ

2
6664

3
7775 ð18Þ
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θm̂ = ð
ϕðt, 0Þ
ϕðt, 1Þ

⋮
ϕðt, 2MÞ

2
664

3
775

ϕðt, 0Þ
ϕðt, 1Þ

⋮
ϕðt, 2MÞ

2
664

3
775
T

Þ− 1

ϕðt, 0Þ
ϕðt, 1Þ

⋮
ϕðt, 2MÞ

2
664

3
775

xð0Þwð0−mÞ
xð1Þwð1−mÞ

⋮
xðN − 1ÞwðN − 1−mÞ

2
664

3
775 ð19Þ

Lsðm, kÞ=
θ ̂mð0Þ, k=0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

θ2̂mð2k− 1Þ+ θ2̂mð2kÞ
q

, k=1, 2, . . . ,M

(
ð20Þ

Experiment chooses 110116th pit data and using the same feature that as in part
2 for humidity restore. The analysis range is from 01-01-2011 till now. By tabbing
every day from the start, this experiment chooses 1600th–1800th days for analysis.
The humidity is recovered by kernel ELM method.

The monitoring data of humidity is illustrated in Fig. 3. The data missing is
around the 388th day. The sample time interval is about 30 min randomly with
sudden data point missing. The time-frequency spectrum generated by ST-LS
method is presented in Fig. 4, which the window width is equal to 10 days. The
high spectrum amplitude appeared when the missing data segment begin enter into
and shift out of the analyzing window. The spectrum information is covered by the
data missing.

Using the restored data, to ensure data appear in every 30–40 min. The restore
data is shown in Fig. 5, and the time-frequency spectrum is given in Fig. 6. The
time varying information of humidity is clearly illustrate in time-frequency spec-
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Fig. 3 Monitoring data of humidity
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trum. By interference elimination, the spectrum caused by sudden environ-
ment changes spreads from the carrier frequency to the whole spectrum. The
mark of such part is essential for preventive conservation and protection scheme
decision.
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Fig. 4 Time-frequency spectrum of monitoring data
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4 Conclusion

In this paper, we try to analyze monitoring data of earthen archaeological site in the
view of non-stationary signal processing. Combining with kernel-based ELM and
non-uniform sampling TFR, we are able to extract non-stationary information
hidden in original records. The real data from BPYMHD museum verifies the
validity of proposed method.
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A Multi-valued Neuron ELM
with Complex-Valued Inputs for System
Identification Using FRA

Francesco Grasso, Antonio Luchetta and Stefano Manetti

Abstract In the paper a new kind of ELM network is presented, which uses a
MVN (multivalued neuron) with complex weights and complex inputs and that
seems to be particularly suitable for fault diagnosis and identification in the fre-
quency domain with very simple structures, given their high generalization per-
formance. The presented network has high potentiality with a very low number of
neurons. The ELM architecture is then designed with general approach, following
the philosophy of this class of neural techniques, and then applied to some specific
example.

Keywords Extreme learning machines ⋅ Multi-valued neuron ⋅ Frequency
response analysis (FRA) ⋅ Fault diagnosis ⋅ Lumped model identification

1 Introduction

A complex-valued neural network (CVNN) is naturally predisposed to the proper
elaboration of the complete information contained in a frequency response (module
and, mainly, phase). A summary of techniques and applications in the CVNN area
is included in [1]. CVNNs have been used in approaching and solving many
real-world problems. Among them can be recalled the landmine detection [2], the
forecasting of wind profiles [3], and medical image analysis [4].

In the present work, a particular kind of complex-valued neural network, the
Multi-Layer Multi-Valued Neuron Networks MLMVNN, is integrated in an ELM
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architecture, with a further modification to make it able to treat complex input
coming from Frequency Response Analysis FRA. This approach can be extremely
useful in all those cases when frequency response can be elaborated to the aim of
circuital model identification or of parametric fault diagnosis. In this work we will
focus over lumped model identification, but all the proposed structure can be easily
adapted, with minimal changes, to parametric fault diagnosis issues.

Researchers who operate in this area well know that in many operative situations
related to naturally distributed system, the identification of the lumped model still
constitutes an important challenge that can help the designer in many tasks. The
motivation can be of various nature: approximation of microwave filters to lumped
models, extraction or parasitic parameters of analog circuit sensitive to parasitic
effects, design centering, parametric analysis. The goal can be difficult to be
reached, due to many problems: (i) the huge number of parameters, (ii) the non-
linear nature of the system to solve (nonlinear expressions appear for linear systems
either), (iii) the location of the most adequate parameters to be extracted, dealing
with the testability concept, “solvability” and sensitivity of them. On the other
hand, this scenery can be present in several application areas, as, for instance, the
study of the time response, the evaluation of the EM compatibility, the estimate of
the harmonic content, the detection and localization of faults, the complete
description of a more complex structure. In the last few years, soft computing
techniques have been applied in some case in order to solve this problem. We
should mention artificial neural networks (ANNs) [5], genetic algorithms (GAs) [6],
and particle swarm optimizers (PSOs) [7, 8]. However, it should be underlined that
most of these techniques do not take direct advantage of the complex domain of the
frequency response data and do not take into full consideration testability, ambi-
guity groups, and/or sensitivity of the model to be identified.

In this paper, a very lean neural structure with great performance is proposed for
face this family of applications that comes from the convergence of MLMVNN [9,
10] and ELM [11] and that will be called CMVN-ELM (Complex MultiValued
Neuron-ELM) from now on. Moreover, the multi-valued neuron is modified to
receive arbitrary complex valued inputs. The kind of neuron used in this work
appears to be particularly useful in that kind of problems where input data are
directly represented by the frequency response of the device or system under exam,
that is a number intrinsically formed by a module and a phase, or a real and an
imaginary part. In fact, in the solution of system identification it is an important
advantage that no conversion or normalization of the input data is needed and a low
number of network parameters (of neurons) is usually enough to achieve an
excellent performance.

The proposed technique uses a set of simulations or measurements made on the
device/system, evaluated over different values of electrical parameters and at dif-
ferent frequencies, to train a CMVN-ELM, in order to estimate the electrical
parameters of the lumped model, or in other words to “invert” the circuital model.
This operation requires a preliminary evaluation of the testability of the circuit
which is modeled, in order to determine the solvability degree with respect to the
circuit parameters, following the classic definition given in [12].

12 F. Grasso et al.



In this work then CMVN paradigm has been included in an ELM architecture,
because of some considerations which has been proved by experiments; the com-
bination increases the tendency to a good generalization, which can be an important
advantage in a modeling/inversion problem; moreover a particular version of
CMVN algorithm is naturally predisposed to be inserted in a ELM, for the reasons
that will be exposed in the next Section. Then, it is easy to enhance the common
aspects and harmonize the complementary ones, as demonstrated by the good
results.

2 The Techniques

2.1 Extreme Learning Machine

ELM is formalized in [12]. The network is trained over a dataset of N distinct
samples (xi, di), where xi is a n × 1 input vector xi = (xi,1, xi,2,…, xi,n) and di is the
desired output, and the ELM output is given by:

oj = ∑
M

i=1
βiψ iðxjÞ= ∑

M

i=1
βiψðwi ⋅ xj +w0iÞ; j=1, . . . ,N ð1Þ

where M is the number of neurons in the hidden layer, βi is the output weight of the
ith hidden node, wi ⋅ xj is the inner product of the weight vector wi and xj and w0i is
the threshold of the ith hidden node. In the original version of the network [12] the
output nodes are linear. The equations in (1) can be written in the compact form:

O=Hβ ð2Þ

where

H=
ψðw1 ⋅ x1 +w01Þ ⋯ ψðwM ⋅ x1 +w0MÞ

⋮ ⋯ ⋮
ψðw1 ⋅ xN +w01Þ ⋯ ψðwM ⋅ xN +w0MÞ

2
4

3
5 ð3Þ

is the output matrix of the hidden layer and includes the activation functions
ψ(wi ⋅ xj + bi) of the ith hidden neuron, for any jth sample of the training dataset
and O = [o1, o2, …, oN]

T.
While the values of the input weights wi are kept fixed, the N samples are

approximated by training an ELM to find a solution to the equation:

Min O−Dj jj j2
� �

=Min Hβ−Dj jj j2
� �

ð4Þ
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where D = [d1, d2, …, dN]
T is the vector of training target (desired output). The

output weights βi are the only parameters to be determined, finding the optimal
solution of

β* =H†D ð5Þ

where H† is the Moore-Penrose generalized inverse of the matrix H. Several
approaches have been proposed to estimate them [13].

2.2 Multi-valued Neuron

The multi-valued neuron MVN is a neurocomputing paradigm operating in com-
plex domain algebra, formalized for both discrete and continuous data. The con-
tinuous version, used in this work, was introduced in [10]. The mapping between
n inputs and the output is described by a multi-valued function of n variables
f x1, . . . , xnð Þ:ℂO →ℂn

O where ℂO is a set of points eiφ located on the unit circle of
the complex number field. The continuous MVN activation function is:

PðzÞ= eiargz = z ̸ zj j ð6Þ

where z = w0 + w1x1 + … wnxn is the weighted sum of the inputs, and arg(z) is the
main value of the argument (phase) of the complex number z. The output is then,
for the continuous MVN, the projection of the weighted sum on the unit circle,
determined by (6) and shown in Fig. 1. MVNs are comprehensively reviewed in
[14]. In a Neural Network based on the MVN, the learning algorithm is given by an
error-correction rule, rather than a minimization iterative algorithm. In general, the
rule for the adjustment of weights is something like:

Wr+1 =Wr +
Cr

ðn+1Þ zrj j δX
̄ ð7Þ

Fig. 1 Geometrical
interpretation of the
continuous MVN activation
function
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where δ is the error, X ̄ is the complex-conjugated vector of the input, r is the index
of the learning epoch, n is the number of neuron inputs, Wr and Wr+1 are the
weighting vectors before and after correction, respectively, Cr is the learning rate.

In a multilayer neural network based on this kind of neuron, with a feedforward
topology, the neurons are integrated into layers, and the output of each neuron from
the current layer is connected to the corresponding inputs of neurons from the
following layer. The use of MVN as a basic neuron determines important dis-
tinctions and advantages of this kind of network with respect to a classical multi-
layer perceptron MLP, that are described in detail in [14]. The canonical learning
algorithm for this network uses the same error-correction learning rule as the one of
a single MVN, backpropagated to the hidden layers as described in [14]. Assuming,
for instance, that network is formed by M neurons in the hidden layer, and the
error is:

δ*k =Dk − Yk ð8Þ

where Dk and Yk are, respectively, the target output and the calculated output of the
network. To train the input layer neurons, the local error is used:

δk =
1
M

δ*k ð9Þ

backpropagated by means of the algebraic complex rule:

w̃k
i =wk

i +
Cr

ðNin +1Þ zkj j δkY ĩ; i=1, . . . ,Nin ð10Þ

where w̃k
i is a corrected weight, Nin is the number of input lines, Cr is the learning

rate, Yi is the actual output of the ith neuron of the hidden layer (corrected when the
∼ superscript is used and conjugated when the “bar” superscript is used). The
convergence of the learning process based on the learning rule (7) is again proven
in [14].

In a two layers network with a single output, with inputs and output in the real
domain, the real inputs are converted into complex inputs using (1). Finally, the
value given by the output neuron is converted to a real value using the arg()
function.

The most severe limitation of MVN based networks is to be “slow” in the
learning time with respect to the real value NN [15], and to reach same or better
performance they require a very high number of epochs. This problem has been
completely overcome by a modification in the algorithm introduced in [16]. The
core of this modification consists in using a least squares solution for the weights of
the output neuron. In this case, the use of a least squares solution is possible also
without resorting to a linear output neuron, because the hidden layer output matrix
is of the form:
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H=
w1 ⋅ x1 +w01 ⋯ wM ⋅ x1 +w0M

⋮ ⋯ ⋮
w1 ⋅ xN +w01Þ ⋯ wM ⋅ xN +w0M

2
4

3
5 ð11Þ

where xi, bi and wi ∈ ℂ.
The complex output of the network is of the form:

oj = ∑
M

i=1
βiðxjÞ= ∑

M

i=1
βiðwi ⋅ xj +w0iÞ; j=1, . . . ,N ð12Þ

that is a linear combination in the complex domain of the outputs of the first layer.

2.3 CMVN-ELM

It is worth to point out that the learning technique exposed in the previous para-
graph, as regards the adjustment of the output neuron weights, follows, substan-
tially, the same procedure used by ELM. For the MVN based network, the output
complex weights βi are determined, calculating the optimal solution of

β* =H†D ð13Þ

in the complex domain.
In order to exploit the acclaimed advantages of both recalled paradigms, and to

apply it to FRA problems aimed to model identification or fault diagnosis, as
described in the introduction, the authors have implemented a new architecture that
can be summarized in the following steps:

1. Create a network with n multi-valued complex neurons in the hidden layer;
these neurons are extension of the canonical MVN, because their inputs are
constituted by complex (and not real) values;

2. Connect the output lines of the hidden layer neurons to the neurons of output
layer (the number of output neurons is determined by the nature of the process to
model); these neurons have a linear activation function in the real or complex
domain;

3. Initialize to random values the weights of the hidden layer;
4. Submit to the network the set of the examples to learn;
5. Initiate the procedure to solve the Eq. (13), using QR decomposition method.

The minimum number of needed neurons in the hidden layer suitable for a given
application can be obtained repeating the steps 3–5 for different numbers of hidden
neurons.
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The extension introduced in the point 1 requires just a slight change in the
error-correction learning rule, which is explained and demonstrated to be mathe-
matically consistent in [17].

The initialization of the weights required at point 3 is done following some
consideration on the complex-valued nature of the network. The random complex
weights are located in a ±0.5 band around the unitary circle of the complex plane.
From initialization area is excluded a slide around the discontinuity point ±π, that
can be empirically set in a range π/2.

It is noteworthy to consider that one of the benefit of this new architecture is the
possibility to keeping low the number of neurons in the hidden layer, much lower in
general of a real values network and of a complex (MVN) network with complex
weights but with real inputs. This aspect furtherly improves the quality of gener-
alization, as verified in the tests, and generalization is an important point of an
inversion problem (both if aimed to identification and to fault diagnosis), where the
valued to be associated to the correct response often are not present in the training
dataset, or very far from them.

3 CMVN-ELM for Parameter Extraction

This developed architecture is able to directly elaborate a set of frequency response
values of the circuit, given in a complex form (magnitude and phase, or real and
imaginary parts), using a minimal amount of hidden neurons and a very fast con-
vergence, just training the output layer. Then, this particular ELM can be a great
tool to use in any system that requires a complex-valued input evaluation.

3.1 Testability

The first step in any system designed to parameter extraction starts from the net-
work function of the lumped model, where p = [p1, p2,…..pR]

t is the vector of the
circuit parameters, (ai are the coefficients of numerator terms and bj are the coef-
ficients of denominator terms):

Hðp,ωÞ=Hðp, sÞjs= jω =
Nðp, sÞ
Dðp, sÞ

����
s= jω

=
∑
n

i=0

aiðpÞ
bmðpÞ ⋅ s

i

sm + ∑
m− 1

j=0

bjðpÞ
bmðpÞ ⋅ s

j

���������
s= jω

ð14Þ

The circuit parameter values can be determined from the knowledge of a set of
network function values measured, in phase and magnitude, at selected frequencies.
The system of nonlinear equations to solve to do that is obtained from (14), where
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the model parameters p = [p1, p2,…..pR]
t are the unknowns [18]. If a unique

solution does not exist for the unknowns, testability gives a measure of how many
parameters cannot be identified with the set of chosen measurements. The testability
T is equal to the rank of a matrix B, whose elements are the derivatives of the
coefficients of the network function with respect to the circuit parameters [19], as
reported in (15).

B=

∂
a0
bm
∂p1

∂
a0
bm
∂p2

. . .
∂
a0
bm

∂pR
. . . . . . . . .
∂
an
bm
∂p1

∂
an
bm
∂p2

∂
an
bm

∂pR
. . . . . . . . .

2
6664

3
7775 ð15Þ

If T = rank(B) is equal to the number of unknown parameters R, their values can
be uniquely calculated. However, if T < R, a locally unique solution cannot be
determined, unless R − T parameters are assumed to be known (or fixed). Seen that
each column of B is associated to a specific circuit parameter, then each set of
linearly dependent columns of B localizes an ambiguity group constituted by the
circuit parameters corresponding to these columns [20]. This is a group of
parameters where it is not possible to uniquely identify the value of each of them
starting from the measurement data. In general, both testability value and ambiguity
groups do not depend on component values [18], so they can be evaluated by
assigning some random values to the parameters (to avoid algebraic varieties). In a
problem of model identification, the testability provides the solvability degree that
can be obtained with the considered network function, i.e. the number of parameters
which must be fixed a priori and the number of parameters to consider as the
unknowns. Furthermore, the knowledge of testability and ambiguity groups allows
to determine the parameters that can be considered as unknowns. In [21], a further
algorithm development avoids the problem of pole/zero cancellations in network
functions.

3.2 Parameter Extraction Procedure

The CMVN-ELM introduced in this work is used to associate measurement or
simulations to an equivalent lumped circuit of the structure to identify. The block
diagram is shown in Fig. 2.

After that architecture is chosen, the measured network function and the
unknown parameters are fixed, based on testability evaluation, and the unknown
parameters become the CMVN-ELM outputs. The network function is in fact used
for determining testability and ambiguity groups, suitable to identify the unknown
parameters giving a unique solution when inverted by the CMVN-ELM.

The parameter identification process can be outlined as follows:
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1. choose the lumped model equivalent circuit of the structure;
2. based on testability and ambiguity groups evaluation, determine which

parameters should be assumed as unknowns;
3. generate an adequate number of samples to be used in the training phase;
4. train the CMVN-ELM part of the neural identification system (see Fig. 2);
5. extract the parameters, as the output of the CMVN-ELM part of the whole

system;
6. evaluate the quality of identification, by comparing the measured or simulated

frequency response with the one calculated with extracted parameters.

The lumped model equivalent circuit is designed matching the collected data
(measured or simulated) representing the relation H(p,ω). The number of samples
used in the training phase depends on the problem under exam.

4 Applications

In this section, two examples are given of the application of method to specific
configuration. Anyway, it should be taken into account that the proposed approach
is very general, just in the spirit of ELM systems, and not restricted to any particular
form of the model to be identified.

4.1 Antenna Balun

As a first example, let us use the balun module of a Schwarzbeck half-wave dipole
antenna shown in Fig. 3 [22]. An equivalent lumped circuit of the balun is obtained
by physical/electrical considerations, together with imposing symmetry between the
two conductors.

Fig. 2 General scheme of the neural system CMVN-ELM
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The reference values are taken to be the initial values of the components and are
obtained using an empirical approach over the physical model. The CMVN-ELM is
therefore used to extract and tune the component values, which give a frequency
response as close as possible to the measured one. To do that, the following steps
are made:

(i) the testability of the circuit is evaluated, seen that its value is maximum and
equal to 7, that means that all the elements can be potentially extracted;

(ii) a set of 2000 samples is generated; to do that the circuit simulator SapWin
[23, 24] is used, where the component values are varying in a random range
of ±10% with respect to their nominal values;

(iii) a CMVN-ELM is trained over the set of generated samples, using a part of
that (1400 samples) for the training, and the other portion of 600 samples for
the validation.

(iv) the measurements are finally used for extracting the identified components of
the model and to test the quality of the global approximation (as reported in
the Fig. 4).
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Fig. 3 Balun construction details (a) and equivalent circuit (b)
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Relating to (i), seen that testability reaches a maximum, no ambiguity groups
appear there. Because of that, all the components should be simultaneously varied
in order to “cover” all the possible behaviors of the circuit response. On the other
hand, to avoid to make the inversion procedure too huge and seen that this is an
identification (and not a fault diagnosis) problem, some parameters are kept to their
nominal values, following a pre-elaboration based on sensitivity considerations.
Seen that response is much less sensitive to the resistive components of the model,
only the reactive parameters are adjusted in the circuit via CMVN-ELM. The
calculated results are reported in Table 1.
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Fig. 4 Frequency response amplitude and phase of the Balun circuit simulated by lumped
parameter model (dashed curve) compared with the measured ones (solid curve)

Table 1 Values of the circuit model parameters of balun as obtained from the CMVN-ELM
extraction procedure

Lk (μH) M (nH) Rp (kΩ) Rs (mΩ) Ls (nH) Cp (pF) Co (pF)

0.869 83.45 1.90 30.0 14.2 3.758 4.585
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Figure 4 provides the comparison for the scattering parameter s31 (relevant to
Magnitude and Phase); the values calculated with the lumped equivalent circuit and
the measured values. The corresponding curves are almost perfectly overlapped,
with a final mean error under 1%.

In order to give a better interpretation of advantage obtained with the proposed
solution, (CMVN-ELM), in the Table 2 it is compared with the ones gotten using
classical MLP and standard MLMVNN, with no extended complex inputs, no
QR-modified learning rule, neither ELM approach. The results are shown in
Table 2. The comparison is given in the number of required learning epochs to
reach the minimum error, in the RMSE averaged over all variable components, and
RMSE calculated over the frequency response of the corresponding set of values in
the given frequency range.

As we see, CMVN-ELM introduced in this paper shows its superiority when
compared to the traditional techniques. The error reduction with respect to the
MLMVNN is not of huge entity, but the other advantages of this new paradigm
should be taken into account to evaluate it. A great advantage of CMVN-ELM is its
ability to directly elaborate the complex-valued frequency response. This fact has
an impact on the number of hidden neurons necessary to obtain the same result.
Moreover, CMVN-ELM being an ELM, requires for the learning just the inversion
of a matrix and the necessary learning epoch number is substantially zeroed.
Finally, it is interesting to note that has been in many cases demonstrated that ELM
systems have a greater generalization capability [25]. This is not a fundamental
advantage in an identification problem, but becomes very important in the soft fault
diagnosis applications, which can faced with very similar approaches, but where the
recognition of anomalous configurations (in fact, the faults), never seen before by
the neural network, become an essential feature.

4.2 Coaxial Cable

As a further example, the circuit identification of the equivalent circuit of a coaxial
cable is shown. It is well known that a coaxial cable is can be described with a
lumped model based on the geometrical characteristics of the cable. The section
representation of the coaxial cable and its electric scheme drawn in Fig. 5. The
corresponding transfer function can be represented in the form of a low pass filter:

Table 2 Comparison of extraction results of balun parameters between the CMVN-ELM and
others two networks

N° of
neur

N° of
epochs

RMSE over
comp. value

RMSE over freq.
resp.

CMVN-ELM 20 – 0.00389 0.0440
MLPNN 40 324 0.0570 0.1462

MLMVNN 30 2038 0.00526 0.0545
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Also in this case a CMVN-ELM is used to extract and tune the component
values, which give a frequency response as close as possible to the measured one.
To do that, the following steps are made:

(i) the testability T of the circuit is evaluated, using the Eq. (16); in this case T is
not maximum, but it is equal to 3. Anyway, the two reactive parameters L
and C, sensitive to the geometric features of the case do not belong to the
same ambiguity group (then they belong to a testable group) and they can be
independently identified.

(ii) In order to obtain a significant dataset, a number of simulation examples is
constituted with SPICE, generated from 36 different (and realistic) combi-
nations of the two geometric parameters internal and external radii of the
coaxial cable. For every combination of these parameters the low pass curve
is sampled with 200 frequency points in the range 10 MHz–1 GHz.

(iii) a CMVN-ELM is trained over the set of only 200 generated examples, using
a part of that (150 samples) for the training, and the other portion of 50
samples for the validation.

(iv) the measurements are finally used for extracting the identified components of
the model and to test the quality of the global approximation.

The same comparison of the results done with the previous example is shown in
Table 3 for the coaxial cable.

Also in this case, CMVN-ELM shows a superior performance when compared to
the other techniques.

Fig. 5 Section representation of the coaxial cable and electric scheme

Table 3 Comparison of extraction results of coaxial cable parameters between the CMVN-ELM
and others two networks

N° of
neur

N° of
epochs

RMSE over
comp. value

RMSE over freq.
resp.

CMVN-ELM 12 – 7.8 × 10−5 0.0026
MLPNN 40 650 0.00570 0.0354
MLMVNN 30 540 8.5 × 10−4 0.0155
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5 Conclusions

A new paradigm is presented in this work, able to perform a very accurate iden-
tification of any distributed structure into a lumped circuit. Given the simple
architecture, the low number of parameters in the network and the no-prop nature of
the ELM, which furtherly simplify the learning algorithm the systems is very
“low-energy” and presents excellent results when compared with other already
tested neurocomputing methods, also by virtue of the modification introduced to
directly accept input in complex form associated with the frequency response. The
natural extension of this approach will be to the “soft” fault diagnosis of the analog
circuit, seen the obvious similitude between the problems and the naturally good
behavior of this kind of networks to face the generalization issue.
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Quaternion Extreme Learning Machine

Hui Lv and Huisheng Zhang

Abstract Quaternion signal processing has been an increasing popular research

topic for its application in a wide range of fields, and extreme learning machine

(ELM) is an emerging training strategy for the generalized single hidden layer feed-

forward neural networks. However, extreme learning machine could not fully explore

its potentials in quaternion signal processing. To this end, this paper propose an

quaternion ELM model, which retain the essential characters of the ELM such as

the fast learning and universal approximation capability, while enjoying advantages

originated from the quaternion algebra. Two simulation examples are provided to

support our analysis and to exhibit the enhanced performance of the proposed model

over ELM when dealing with the 3D and 4D signal processing problems.

Keywords Quaternion extreme learning machine ⋅ Quaternion signal processing ⋅
Generalized Moore-Penrose inverse ⋅ Chaotic time series

1 Introduction

The popularity of quaternion signal processing has increased in recent years due to

its applications in image processing [1–3], computer graphics [4], modeling of wind

profile [5], processing of polarized waves [6], etc. As one of the natural models for

quaternion signal processing, quaternion multilayer perceptrons has been proposed

and their universal approximation capability has been proved [7]. Recently, many

new or improved models for quaternion neural networks (QNNs) have also been

established, such as the quaternion adaptive neural filters [8], quaternion Kalman

filtering [9], quaternion echo state networks [10], and quaternion ICA [11]. Owing
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to the power of quaternion algebra, QNNs usually exhibited enhanced performance

over vector-based neural models [12, 13].

Training algorithms for the above quaternion neural models are basically gradient-

based. However, quaternion gradient method suffers from the drawbacks of slow

convergence and easily trapping into local minimum. Moreover, the generalized

Cauchy-Riemann condition [14] admits only linear functions and constants as glob-

ally analytic quaternion-valued functions, which makes a great restriction on using

gradient training method for quaternion neural networks.

Extreme learning machine has become a popular training strategy for single hid-

den layer neural network [15, 16]. The essence of ELM is that the input layer weights

are randomly determined and then the hidden layer weights can be simply calculated

by least squares optimization. This approach avoids the iterative computing process

and has excellent learning accuracy/speed in various application. In order to process

complex-valued signals, complex-valued extreme learning machine (CELM) has

been proposed by extending ELM to complex domain [17]. However, ELM model

for quaternion signal processing is still lacking. To this end, the aim of this paper

is to propose a quaternion extreme learning machine (QELM) model for quaternion

signal processing. This model retains the inherent properties of the original ELM

such as the fast learning and universal approximation capability, meanwhile gain-

ing advantages from the quaternion algebra. Simulations in the prediction setting on

both the 3D and 4D time series support our analysis.

The rest of this paper is organized as follows. A brief introduction of the quater-

nion algebra is provided in the next section. The quaternion ELM model is derived in

the third section. In Sect. 4 two simulation examples are given. Section 5 concludes

this paper.

2 Quaternion Algebra

The quaternion was introduced by Hamilton in 1843 to expand the complex num-

bers from two-dimensional space to four-dimensional space. Though the quaternion

domain is a noncommutative extension of the complex domain, it provides a natural

framework for the processing of three and four dimensional signals [18].

A quaternion variable q ∈ ℍ comprises a real part ℜ(q) = qr and a vector part,

also known as a pure quaternion ℑ(q) = qii + qjj + qkk. In this way, a quaternion can

be expressed as

q = qr + qii + qjj + qkk,

where qr, qi, qj, qk ∈ ℝ. When qr = 0, qi = qj = 0, or qi = qj = qk = 0, a quaternion

is reduced to a pure quaternion, complex number or real number, respectively.

The properties of the orthogonal unit vectors i, j, k describing the three vector

dimensions of a quaternion are listed as follows
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i2 = j2 = k2 = ijk = −1,
ij = −ji = k, jk = −kj = i, ki = −ik = j.

Given two quaternions a, b ∈ ℍ, the quaternion addition and subtraction are com-

puted as

a ± b = (ar ± br) + (ai ± bi)i + (aj ± bj)j + (ak ± bk)k,
ab = (arbr − aibi − ajbj − akbk) + (arbi + aibj + ajbk − akbj)i

+ (arbj − aibk + ajbr + akbi)j + (arbk + aibj − ajbi + akbr)k.

As show in the above rules, the multiplication of quaternions is non-commutative.

The conjugate of a quaternion is defined by q∗ = qr − qi − qj − qk, and the mod-

ulus ‖q‖ =
√
qq∗ =

√
q2r + q2i + q2j + q2k .

3 Quaternion Extreme Learning Machine

Given a series of quaternion-valued training samples {(𝐱s, 𝐭s)}Ss=1, we train a quater-

nion single hidden layer feedforward network (QSHLFN) which is mathematically

modeled by

M∑

m=1
𝜷mgq(𝐰m ⋅ 𝐱s + bm) = 𝐨s, s = 1, 2,… , S, (1)

where 𝐱s ∈ ℍL is the input vector, 𝐭s ∈ ℍN is the corresponding target output vector,

𝐰m ∈ ℍL is the input weight vector connecting the input layer neurons to the mth

hidden neuron, bm ∈ ℍ is the quaternion bias of the mth hidden neuron, 𝜷m ∈ ℍN

is the quaternion output weight vector connecting the mth hidden neuron and the

output neurons, 𝐨s is the network output for an input vector 𝐱s, 𝐰m ⋅ 𝐱s denotes the

inner product of vectors 𝐰m and 𝐱s, gq(⋅) is a quaternion-valued activation function.

As a QSHLFN can be used to approximate any quaternion-valued continuous

function [7], we try to find the appropriate network weights to satisfy

M∑

m=1
𝜷mgq(𝐰m ⋅ 𝐱s + bm) = 𝐭s, s = 1, 2,… , S. (2)

The above S equations can be written in a compact form

𝐇𝜷 = 𝐓, (3)
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where

𝐇(𝐰1,𝐰2,… ,𝐰M , 𝐱1, 𝐱2,… , 𝐱S, b1, b2,… , bS)

=
⎡
⎢
⎢
⎣

gq(𝐰1 ⋅ 𝐱1 + b1) … gq(𝐰M ⋅ 𝐱1 + bM)
⋮ … ⋮

gq(𝐰1 ⋅ 𝐱S + b1) … gq(𝐰M ⋅ 𝐱S + bM)

⎤
⎥
⎥
⎦S×M

,

𝜷 =
⎡
⎢
⎢
⎣

𝜷T
1

⋮
𝜷T
M

⎤
⎥
⎥
⎦M×m

, and 𝐓 =
⎡
⎢
⎢
⎣

𝐭T1
⋮
𝐭TM

⎤
⎥
⎥
⎦M×m

.

Similar to the theoretical analysis of ELM [16, 17], we can easily prove that the input

weights 𝐰m and hidden layer biases bm are in fact not necessarily tuned and can be

randomly chosen based on some continuous distribution probability. Thus we only

need to determine the weight matrix 𝜷. If the hidden layer output matrix 𝐇 is invert-

ible, then 𝜷 can be directly obtained as 𝐇−1𝐓. However, in practical applications the

number of hidden neurons M is usually less than the number of samples S. In this

case one can not expect the exact solution of (3). Instead, we devote to solving the

least-squares problem min
𝜷

‖𝐇𝜷 − 𝐓‖, and obtain the explicit solution

̂𝜷 = 𝐇†𝐓, (4)

where the quaternion matrix 𝐇† is the Moore-Penrose generalized inverse of 𝐇 [19].

Now, QELM algorithm can be summarized as follows:

Algorithm QELM
Given a training set X = {(𝐱s, 𝐭s)|𝐱s ∈ ℍL

, 𝐭s ∈ ℍM
, s = 1, 2,… , S}, quaternion acti-

vation function gq(⋅) and hidden neuron number M:

Step 1 Randomly choose the quaternion input weight 𝐰m and the quaternion

bias bk;
Step 2 Calculate the quaternion hidden layer output matrix 𝐇;

Step 3 Calculate the quaternion output weight 𝜷, where

̂𝜷 = 𝐇†Y .

Remark 1 As the only analytic quaternion function is a linear quaternion function

(Sudbery 1979), it is very difficult for the fully quaternion neural networks trained by

traditional gradient algorithms to choose an eligible activation function. However,

for QELM, there is no need to do the gradient operation, which allows almost all the

activation functions used for real-valued neural networks or complex-valued neural

networks to be still qualified as activation functions of QELM.
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Remark 2 As shown in the appendix, Moore-Penrose generalized inverse of a quater-

nion matrix is defined and computed in a same way as the real or complex domain.

Remark 3 Similar to the original ELM, by choosing the number of hidden neurons

M bo be equal to the number of samples S, we can prove with probability one equa-

tion (3) has an accurate solution.

4 Simulation Results and Discussion

In this section two simulation examples are presented. The first example is the Lorenz

attractor and the second one is the Saito’s chaotic circuit, which are benchmark 3D

and 4D signal processing problems respectively. In both examples, the times series

are predicted by QELM and ELM separately, and the corresponding performances

comparison is conducted. The root mean square error (RMSE) is used to characterize

the accuracy of prediction:

RMSE =

√
√
√
√1

S

S∑

s=1
(𝐨s − 𝐭s)H(𝐨s − 𝐭s),

where 𝐨s indicates the sth sample of actual output, 𝐭s indicates the sth sample of the

forecast output, and S is the number of samples.

4.1 Lorenz Chaotic Time Series

The Lorenz attractor is used originally to model atmospheric turbulence, but also

to model lasers, dynamos, and the motion of waterwheel [20]. Mathematically, the

Lorenz system is a three-dimensional nonlinear system and can be expressed as a

system of coupled differential equations:

⎧
⎪
⎨
⎪
⎩

ẋ = 𝜎(y − x)
ẏ = (𝜌 − z)x − y
ż = xy − 𝛾z

where 𝜎, 𝛾, 𝜌 > 0. Taking 𝜌 = 10, 𝛾 = 8∕3, 𝜌 = 28, x(0) = 1, y(0) = 0, and z(0) = 1,

the fourth-order Runge-Kutta method is used to generate the tripartite time series,

and 250 samples are obtained. For the convenience of processing using QELM, we

represent Lorenz attractor as a pure quaternion: xi + yj + zk.

The parameter setting is as follows: the activation functions of QELM and ELM

algorithm are chosen as the tan and atan functions respectively, and the number of

hidden nodes is 70. In this simulation, we conduct one step ahead prediction using
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Fig. 1 The estimated and actual time series for QELM(3D)
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Fig. 2 Prediction error curves for QELM(3D) and ELM

100 training samples, that is to say, {x(t), y(t), z(t)}n+100t=n+1 series are used together to

predict x(t + 𝜂), where 𝜂 = 1, and n = 0, 1,… , 150.
Figure 1 shows the prediction curves based on the proposed QELM, and it can

be seen from Fig. 1 that the predicted curve and the actual curve are matched

well. Figure 2 compares the prediction error curves for QELM and ELM. It can be

observed that, the QELM generates smaller prediction errors than the traditional

ELM in real domain.
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4.2 Q-Improper Four-Dimensional Saitos Circuit

The Saito’s chaotic circuit is governed by four state variables and five parameters,

these variables comprise full quaternion. The equations are as follows [21, 22]

[
𝜕x1∕𝜕t
𝜕y1∕𝜕t

]

=
[
−1 1
−𝛼1 −𝛼1𝛽1

]

=
[ x1 − 𝜂𝜌1h(z)
y1 − 𝜂

𝜌1
𝛽1
h(z)

]

,

[
𝜕x2∕𝜕t
𝜕y2∕𝜕t

]

=
[
−1 1
−𝛼2 −𝛼2𝛽2

]

=
[ x2 − 𝜂𝜌2h(z)
y2 − 𝜂

𝜌2
𝛽2
h(z)

]

,

where t is the time constant of the chaotic circuit and h(z) is the normalized hysteresis

value which is given by [22]

h(z) =
{

1 z ≥ −1,
−1 z ≤ 1.

The variables z, 𝜌1, 𝜌2 are given as

z = x1 + x2,

𝜌1 =
𝛽1

1 − 𝛽1
,

𝜌2 =
𝛽2

1 − 𝛽2
.

In this example, Saito’s chaotic signal is initialized with the following standard

parameters:

𝜂 = 1.3, 𝛼1 = 7.5, 𝛼2 = 15, 𝛽1 = 0.16, 𝛽2 = 0.097.

The fourth-order Runge-Kutta method is used to generate the quadrupled time series,

and 600 samples are obtained.

The activation functions for both QELM and ELM algorithm are chosen as tan

and the number of hidden nodes is 10. Similar to the former example, we conduct one

step ahead prediction using 100 training samples, that is to say, {x(t), y(t), z(t)}n+100t=n+1
series are used together to predict x(t + 𝜂), where 𝜂 = 1,and n = 0, 1,… , 500.

Figure 3 shows the prediction curves based on the proposed QELM. It can be

seen from Fig. 3 that the predicted curve and the actual curve are so identical that it

is difficult to distinguish. Figure 4 plots the prediction error curves for both QELM

and ELM, and it can be observed that, the QELM again generates smaller prediction

errors than the traditional real-valued ELM.



34 H. Lv and H. Zhang

0 100 200 300 400 500 600
−1

−0.95

R
ea

l Actual
Estimated

0 100 200 300 400 500 600
1.1

1.2

1.3
X

0 100 200 300 400 500 600
−0.04

−0.02

0

Y

0 100 200 300 400 500 600

−2.64

−2.62Z

Fig. 3 The estimated and actual series for QELM(4D)

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3 x 10−3

t

RM
SE

QELM
RELM

Fig. 4 Prediction error curves for QELM(4D) and ELM

5 Conclusions

Quaternion signal processing has become an increasingly popular research topic in

recent years. In this paper we have proposed a quaternion extreme learning machine

(QELM) model to cater for the needs of quaternion signal processing. The merits of

this model is to retain the welcoming properties of ELM like the fast learning and

universal approximation capability, while gaining the new advantages originated for

quaternion algebra. Moreover, QELM releases the restrictions on the quaternion acti-

vation functions for the traditional gradient-based quaternion learning algorithms.



Quaternion Extreme Learning Machine 35

Two simulation examples have been provided to exhibit the enhanced performance

of the proposed model in dealing with the 3D and 4D signal processing problems

over the extreme learning machine in real domain.

Appendix: Moore-Penrose Generalized Inverse

Definition [19, 23]: Let quaternion matrix A ∈ ℍm×n and G ∈ ℍm×n. If G meets the

following conditions:

(1)AGA = A,
(2)GAG = G,
(3) (AG)∗ = AG,
(4) (GA)∗ = GA,

then G is the Moore-Penrose generalized inverse of quaternion matrix A.
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Robotic Grasp Stability Analysis Using
Extreme Learning Machine

Peng Bai, Huaping Liu, Fuchun Sun and Meng Gao

Abstract Recently, autonomous grasping of unknown objects is a fundamental
requirement for robots performing manipulation tasks in real world environments. It
is still considered as a challenging problem no matter how process we have made. It
is significant that how the robot to judge the stability of grabbing object. In this
paper, we analyze the data through process of grabbing 3 objects whether is suc-
cessful or failed by constructing Global Alignment kernel with Extreme Learning
Machine and Support Vector Machine. For comparative analysis, the Barrett hand’s
finger angles and robot joint angles are also recorded. By processing obtained data
in different ways, we have comparative results in various modes. Experiments
denote the tactile results achieve better performance than the finger angle’s and
robot joint angle’s.

Keywords Grasp stability ⋅ Extreme learning machine ⋅ Tactile data

1 Introduction

Recently, autonomous grasping of unknown objects is a fundamental requirement
for robots performing manipulation tasks in real world environments. Even though
there has been a lot of progress in the area of grasping, it is still considered as an
open challenging and even the state-of-the-art grasping methods may result in
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failures [1]. A reliable prediction of grasp stability helps to avoid such failures and
provides an option to re-grasp the object safely. Since the majority of grasping
failures happen at the contact points, which are occluded for vision systems, tactile
feedback plays a major role for predicting grasp stability.

When an object is grasped, there are two constraints from the task, the object and
the hand. Within these constraints, Cutkosky [2] defined various analytical mea-
sures used to describe a grasp as stability, compliance, connectivity, isotropy, etc.
Besides, he also classified shapes of manufacturing grasps. He believes if the
overall stiffness matrix is positively definite that the grasp is stable at low speeds
and at higher speeds dynamic stability must be considered. When being disturbed
by external forces and moments, the grasp stability shows it maintain balance and
without slipping form robot hand. Because the stability is the ability which is able
to resist from disturbance, and gives many effects to the grasp relationship between
robot and object, many researchers have interest and advanced researches regarding
a stability with various methods [3]. Funahashi et al. [4] analyzed to consider the
curvatures of both hand and object at contact points by using potential energy, and
showed that the grasp using round fingers was more stable than using sharp fingers.
Jenmalm et al. [5] verified grasp stability change with different surface curvatures
by tests. Howard and Kumar [6] classified the categories of equilibrium grasps and
established a general framework for the determination of the stability of grasps by
using stiffness matrix. Yamada et al. [7] analyzed the stability of 3D grasps by using
potential energy of a three-dimensional spring model by a multi-fingered hand.
Yamada et al. [8] analyzed stability of simultaneous grasps of two objects in two
dimensions by using potential energy method. Sudsang and Phoka [9] proposed a
method of testing whether three contact points form a three-fingered force-closure
grasp in two dimensions.

In brief, many studies have analyzed grasp stability by using potential energy
and stiffness matrix. However, potential energy and stiffness matrix methods
requested experiences about the work and have a weak point of complex calculation
because these methods have to know active force and moved displacement after
grasp [3]. In our work, we just need to analyze the data which collected in grasping
process and then send them into machine learning such as ELM, SVM, and neural
networks. In computational intelligence techniques, SVM and neural networks have
been dominant roles. However, it is known that both them have some challenging
issues such as: (1) slow learning speed (2) trivial human intervene (3) poor com-
putational scalability [10], on the contrary, ELM which has better generalization
performance at a much faster learning speed and with least human intervene
compared with those traditional computational intelligence techniques has attracted
the attention from more and more researchers. This work has not yet found the
relevant application.

In this work, we use the tactile data, finger angles and robot joint angles to
analyze the stability of grasped object with Global Alignment kernel-ELM. In order
to compare, we also use SVM. The main contributions are listed as follows:
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(1) We use Global Alignment kernel to process the tactile data, finger angles and
robot joint angles which is better than dynamic time warping kernel.

(2) In this work, we prefer to choose ELM to be a classifier.
(3) We have extensive comparative experimental results.

The rest of the paper is organized as follows: In Sect. 2 we give a description of
the problem. A brief introduction about ELM classification and tactile modeling is
described in Sect. 3. Section 4 presents the experimental results and the conclu-
sions are given in Sect. 5.

2 Problem Formulation

How to judge the stability of an object? Suppose a robot hand approaching and
grasping the object using the force grip controller, the robot picks the object up and
performs a range of extensive shaking motions in all directions to ensure that the
grasp is stable. In this process, we will obtain various data like tactile data, finger
angle, and robot joint angle. Through analyzing these data, and sending them into
different machine learning to classify. The stability of grasping problem is trans-
formed into a classification problem using ELM and SVM as showed in Fig. 1.

3 ELM Classification

3.1 Tactile Modeling

The method of stable classification mentioned in our paper can be analyzed by
Global Alignment kernel. In kernel methods, both large and small similarities
matter, since they all contribute to the Gram matrix. Global Alignment (GA) ker-
nels, which are positive definite, seem to do a better job of quantifying all simi-
larities coherently, because they consider all possible alignments. Triangular
Global Alignment (TGA) kernels consider a smaller subset of such alignments.
They are faster to compute and positive definite, and can be seen as trade-off

Fig. 1 Work flow
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between the full GA kernel (accurate, versatile but slow) and a Gaussian kernel (fast
but limited) as discussed below.

Suppose we have two time series Si and Sj, of the length Ti and Tj, we define Si
and Sj as follows:

Si = ½Si, 1, Si, 2, . . . , Si,Ti �, ð1Þ

Sj = ½Sj, 1, Sj, 2, . . . , Sj,Tj �, ð2Þ

Global Alignment kernels compare two time-series using the Kernel band-
width and Triangular parameter, When Triangular is set to 0, the routine returns
the original GA kernel, defined as follows:

kðx, yÞ= ∑
π ∈Aðn,mÞ

∏
πj j

i=1
kðxπ1ðiÞ, yπ2ðiÞÞ, ð3Þ

where Aðn,mÞ is the set of all possible alignments between two series of
length n and m. In this new implementation we do not use the Gaussian kernel for
kðx, yÞ and consider instead as:

kðx, yÞ= e−ϕσðx, yÞ, ð4Þ

ϕσðx, yÞ=
1
2σ2

x − yk k2 + logð2− e−
x− yk k2
2σ2 Þ. ð5Þ

When Triangular is bigger than 1 the routine only considers alignments for which
− T < π1ðiÞ− π2ðiÞ< T for all indices of the alignment. When this parameter is set
to 1, the kernel becomes the kernel as:

KT =1 = ðx, yÞ= δð xj j= yj jÞ ∏
xj j

i=1
e−ϕσ ðxi, yiÞ, ð6Þ

between time series, which is non-zero for series of the same length only. It is a
slightly modified Gaussian kernel between vectors which does not take into account
the temporal structure of time series. When T →∞ the Triangular kernel’s values
converge to that of the usual Global Alignment kernel. The smaller T the shorter
runtime for each iteration of logGAK.

3.2 Introduction About ELM

ELM was proposed in Huang et al [10]. Suppose we are training SLFNs with K
hidden neurons and activation function g(x) to learn N distinct samples
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fX, Tg= fXj, tjgNj = 1 where xj ∈Rn and tj ∈Rn. In ELM, the input weights and
hidden biases are randomly generated instead of tuned. By doing so, the nonlinear
system has been converted to a linear system (Fig. 2).

Yj = ∑
L

i=1
βigiðxjÞ= ∑

L

i=1
βigðwT

i xj + biÞ= tj, j=1, 2, . . .N, ð7Þ

where Yj ∈Rm is the output vector of the j-th training sample, Wi ∈Rn is the input
weight vector connecting the input nodes to the i-th hidden node, bi denotes the bias
of the i-th hidden neuron;βi = ðβi1, βi2, . . . βimÞT denotes the weight vector con-
necting the i-th hidden neuron and output neurons; gð ⋅ Þ denotes hidden nodes
nonlinear piecewise continuous activation functions. The above N equations can be
written compactly as:

Hβ= T , ð8Þ

where the matrix T is target matrix,

H =
gðwT

1 x1 + b1Þ . . . gðwT
Lx1 + bLÞ

⋮ ⋱ ⋮
gðwT

1 xN + b1Þ ⋯ gðwT
LxN + bLÞ

0
@

1
A ð9Þ

β=
βT1
⋮
βTL

2
4

3
5, T =

tT1
⋮
tTN

2
4

3
5. ð10Þ

Fig. 2 Model of basic ELM
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The essence of ELM is that the hidden nodes of SLFNs can be randomly generated.
They can be independent of the training data. The output weight β can be obtained
in different ways [11, 12, 13]. For example, a simple way is to obtain the following
smallest norm least-squares solution [12]

β ̂=H†T , ð11Þ

where H† is the Moore-Penrose generalized inverse of matrix H. As analyzed by
Huang et al [10], ELM using such MP inverse method tends to obtain good gen-
eralization performance with dramatically increased learning speed.

When the hidden nodes are unknown, kernels satisfying Mercer’s conditions
could be used:

ΩELM =HHT :ΩELMðxi, xjÞ= hðxiÞhðxjÞT =Kðxi, xjÞ, ð12Þ

where ΩELM is called ELM kernel matrix. Then the output function of ELM can be
written as:

f ðxÞ= hðxÞHTð1
λ
+HHTÞ− 1T =

Kðx, x1Þ
⋮

Kðx, xNÞ

2
4

3
5
T

1
λ
+ΩELM

� �− 1

T . ð13Þ

In this specific kernel implementation of ELM, the hidden layer feature mapping
hðxÞ need not be known to users, instead its corresponding kernel Kðu, vÞ is given to
users.

4 Experimental Results

4.1 Data Description

In this paper, we analyze grasping stability through obtained data by the sensors
installed on the robot hand. The human-inspired Biomimetic Tactile sensor (Bio-
Tac) [14] is equipped with a 19-electrode array and a hydro-acoustic sensor sur-
rounded by silicon skin inflated with incompressible and conductive liquid. This
design provides rich tactile feedback similar to the slowly-adapting and
fast-adapting afferents present in the human skin [15]. Latest developments in
classification algorithms [16] allow us to explore the potential of large amounts of
data from these sensors. Meanwhile, the BioTac is consisted with three comple-
mentary sensory modalities: force, pressure, and temperature. When the skin is in
contact with an object, the liquid is displaced, resulting in distributed impedance
changes in the electrode array on the surface of the rigid core. The impedance of
each electrode tends to be dominated by the thickness of the liquid between the
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electrode and the immediately overlying skin. Slip-related micro-vibrations in the
skin propagate through the fluid and are detected as AC signals by the
hydro-acoustic pressure sensor. Temperature and heat flow are transduced by a
thermistor near the surface of the rigid core (Fig 3).

For the cylindrical object, there are 1000 grasps, out of which 46% resulted in
failures and 54% succeeded. For the box object, there are 500 grasps, out of which
we had 31% successes and 69% failures. For the ball, there are 500 grasps—52.6%
successes, 47.4% failures. In each experiment, as Fig. 4 showed, the bowl is used to
bring the object up right if it falls out of the gripper during the extensive shaking
motions that are performed later in the experiment. The Biotac sensor will obtain
the force, pressure and temperature, then we use the electrode values which is a 57
dimension matrix and meanwhile the finger angles is a 3 dimension matrix, the
robot joint angles is a 7 dimension matrix to analyze the stability of the object. In
our work, we define bandwidth as 1, 3, 5, 7, 9, 10, 11, 13, 15 and Triangular as 0.

Fig. 3 Biomimetic tactile sensor [17]

Fig. 4 Grasping process using Barrett hand with Biotac, if the object falls, then label the data as a
failure (0), otherwise label it as a success (1) [18]
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In Fig. 5, we show the provided time series begin with the moment the fingers
start closing around the object and end 2 s after starting picking up the object.
Meanwhile, finger angles data is presented in Fig. 6. Robot joint angles data is
showed in Fig. 7.

4.2 Experimental Results

Tactile Results.

We use the Global Alignment to process the electrode values to structure the GA
kernels. In each object we random divide into train samples and test samples. Then
the 3 object are regarded as a new object we call hybrid to divide the dataset. As
showed in Fig. 8, ball’s accuracy with different C in kernel-ELM and SVM in
tactile data.

Fig. 5 Obtained data is described as PAC, PDC, TAC, TDC, Electrode (19 * 3 dimension) from
top to bottom. P represent pressure while T represent temperature. We only use the electrode as
tactile in this paper

Fig. 6 Processed finger data. We remain data from 0 until the curve is nearly smooth
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Figures 9, 10 and 11 respectively shows the accuracy of box, cylinder and
hybrid. With the increased of sigma the trend becomes smooth in ELM.

As presented in Fig. 12, we compare the best accuracy in different sigma with
different object. It is showed each object’s best results. Ball-95.92%, box-89.8%,
cylinder-91%, hybrid-96.48%. We can clearly see that in three object, ball has the
best performance no matter how sigma is, but the hybrid’s play better than any
object. All results are above 90%. Otherwise in SVM the result has great fluctua-
tion, they are not as well as ELM.

In Fig. 13 we can clearly see that the ELM have better performance than SVM,
but SVM is generally smooth.

Fig. 7 Processed robot joint angles (shoulder flexion extension, shoulder abduction adduction,
humeral roll, elbow flexion extension, wrist roll, wrist flexion extension, wrist abduction
adduction). we only remain the data when it begin to change until the last moment

Fig. 8 Accuracy in different sigma (bandwidth) with different C in GA kernel-ELM (left) and
SVM (right)

Fig. 9 Accuracy of box in different sigma (bandwidth) with different C in GA kernel-ELM (left)
and SVM (right)
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Fig. 10 Accuracy of cylinder in different sigma (bandwidth) with different C in GA kernel-ELM
(left) and SVM (right)

Fig. 11 Accuracy of hybrid in different sigma (bandwidth) with different C in GA kernel-ELM
(left) and SVM (right)

Fig. 12 Best accuracy with different sigma in ELM (left) and SVM (right)

Fig. 13 Comparison
between ELM and SVM
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Finger Angle Results

We use 2 methods to process finger angles data. The first one, as mentioned in
Fig. 6, is we intercept a part of the data as time series, then combine the 3 finger’s
data together to form a new data. The second one is we only take the final value.

Fig. 14 4 object’s accuracy in ELM and SVM (The first line is ELM, the second is SVM. From
left to right is ball, box, cylinder, hybrid)

Fig. 15 Best accuracy with different sigma in ELM (left) and SVM (right)

Fig. 16 Comparison
between ELM and SVM
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Figures 14 and 15 respectively showed the accuracy of the first processing method
in ELM and SVM.

The first method.
The second method.
Compared from Figs. 14, 15, 16, 17, 18 and 19, we can clearly see that the first

process is much better than we take final value. In the first method, each object’s

Fig. 17 4 object’s accuracy in ELM and SVM (The first line is ELM, the second is SVM. From
left to right is ball, box, cylinder, hybrid)

Fig. 18 Best accuracy with different sigma in ELM (left) and SVM (right)

Fig. 19 Comparison
between ELM and SVM
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best results: Ball-77.55%, box-79.59%, cylinder-84%, hybrid-96.97%. It is obvi-
ously seen that in three object, cylinder has the best performance no matter how
sigma is, but the hybrid’s play better than any object. All results are above 90%.
Besides, ELM has better results than SVM. But in the second method, cylinder has
the best results while ELM and SVM results are not much different. It is clearly
indicated that the first processing is better.

Compared the tactile results, only the hybrid’s performance is better than using
tactile information. The overall situation of the tactile experiments have better
performance than finger angles.

Robot Joint Angle Results

As mentioned in Fig. 7, we deal with robot joint angles as time series to send into
ELM and SVM. The results are as followed.

From Figs. 20, 21 and 22, we can see clearly that it is as much excellent as the
result using tactile information in hybrid, but the 3 object’s performance is worse
than it. On the other hand, the hybrid’s result is better than finger angle’s, but the 3
object has the almost same results. Besides, ELM has a better result than SVM.

Fig. 20 4 object’s accuracy in ELM and SVM (The first line is ELM, the second is SVM. From
left to right is ball, box, cylinder, hybrid)

Fig. 21 Best accuracy with different sigma in ELM (left) and SVM (right)
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5 Conclusions

The database which obtained by BioTac form ball, box and cylinder in this work
include force, pressure and temperature. In our work we process the electrode
values as tactile time series to construct Global Alignment kernel. Meanwhile, the
robot data (finger angles and robot joint angles) are respectively processed. Thus
these kinds of data are sent into kernel-ELM and SVM separately.

The results denote the accuracy in different handling ways. In general, tactile has
the best performance. All the results are very excellent. Besides, the hybrid’s
performance is much better than ball, box and cylinder in the majority of cases. It is
worth noting that we usually think the final value of the finger angle is the most
useful, because in a grasping process it has no effect. On the contrary, the whole
process has a better result than only the final moment. In our future work, this
algorithm is expected to fuse various data to achieve discrimination of grasping
stability.
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Extreme Learning Machine for Intent
Classification of Web Data

Yogesh Parth and Wang Zhaoxia

Abstract Web search engines return a large amount of results for a user search

query. Understanding the intent of these search queries can help us to narrow down

the search results based on the type of information needed. In the research reported

in this paper, we implemented machine learning algorithms to validate the accuracy

of the classification of user search query. Broad categories of web query data are

used from two different sources. Feature sets extracted solely from the web query

are used to train the machine learning classifier. Classification results reveal that the

performance of extreme learning machine (ELM) is much better when classifying

user query intent than other machine learning classifiers.

Keywords Extreme learning machine ⋅ Web search engines ⋅ Web query ⋅ Intent

classification

1 Introduction

Web search engines are the most widely used tools for access to the Internet. Accord-

ing to [1], more than 70% of the people use search engines for web access, and these

search engines process billions of search results to user per week in response to their

queries. The highly dynamic, diverse, and abruptness of web queries (usually about

two or three terms) make categorization of queries difficult. Understanding inten-

tions behind the queries can potentially improve the relevance and effectiveness of

search engines.

Intent classification mainly aims to classify queries based on their intent. Broder’s

taxonomy method [2] classifies queries according to their intent into three main

categories i.e., navigational, informational, and transactional. Informational search
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Table 1 Category for web query intent classification

User intent Purpose Example

Request Recipient is asked to perform

some activity

Do you have any data on
intent classification?

Proposal Recipient and sender are

committed to perform some

activity

There is meeting at 6 o’clock
on big data analysis. Hope to
see you there!

Navigational To look for a specific URL to

reach a particular website

Tumblr, Facebook

Informational To look to obtain data or

information available on the

web

how to do scuba diving?

Transactional To look for interaction with

site

Buying air asia ticket to
malaysia

queries have intent of finding information about a particular topic, navigational

search queries look for a specific website or webpage, and transactional search

queries are intended towards making a purchase or transaction. The findings of Jasen

and Booth research [1] revealed that more than 80% of web queries are informational

in nature, with about 10% each being navigational and transactional. We have defined

intent primarily for categories of request, proposal, navigational, informational, and

transactional based on ontology of sentences as per Table 1. The query logs, the

anchor text, and the results returned from the search engines have not been used to

extract features to represent a query.

Extreme learning machine (ELM) is a feedforward neural network with a single-

hidden layer, in which hidden layer nodes parameters are randomly assigned. The

output weights between the hidden nodes and the output of network are determined

using simple generalized inverse operation of the hidden layer output matrices. ELM

tends to learn thousand of times faster with a better generalized performance com-

pared to other gradient-based networks trained using backpropagation [3]. Sentiment

classification based on ELM has been successfully implemented in various research

such as [4–8]. However, to our knowledge, almost none of the research incorporates

the use of ELM for intent classification.

The main contribution of this work is to study the classification accuracy of differ-

ent machine learning methods such as ELM, Support Vector Machine(SVM), Max-

imum Entropy, and Naïve Bayes for intent classification of query leveraging on the

feature extraction method. The experimental results reveal that the ELM performs

much better than the other machine learning classifiers.

The rest of the paper is structured as follows. Section 2 introduces the rele-

vant work done in the field followed by the implementation of such methods for

Intent Classifications in Sect. 3. Performance evaluation by using different datasets

is depicted in Sect. 4. Section 5 concludes this paper.
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2 Relevant Work

Understanding intent behind user’s query can help us to improve the relevant search

results, which in turn reduce search time and improve users satisfaction. According

to Hu et al. [9], intent representation, domain coverage, and semantic interpretation

are three major challenges to intent classification. Instead of using machine learning

based classifier, they have proposed a graph based methodology to overcome these

challenges. There are three main categories of queries classification [10]. Category I

augments the queries with query return search results for intent classification. Cate-

gory II helps to improve the accuracy of supervised learning by leveraging on unla-

beled query data. The last category, category III, adaptively trains itself using the

training data via a self-training-like approach and then automatically labels queries

data. Purohit et al. [11] employ pattern-set creation from a variety of knowledge

sources to overcome ambiguity and sparsity challenge. They have done intent clas-

sification of tweets using knowledge-guided patterns for top-down processing along

with bag-of-tokens model for bottom-up processing. Jansen and Booth [12] took

more than 20,000 web query data categorized by topics and proposed an approach to

automatically classify other queries based on existing queries. Their approach was to

code a set of queries with attributes and then leverage the enriched data set to classify

other web queries. Some of the researches include multi-faceted approach to query

intent classification. Carlo et al. [13], proposed a hypothesis that the performance of

single-faceted classification of queries can be improved by introducing information

of multi-faceted training samples into the learning process. Their results show that

the combination of correlated facets can improve the quality of classification results.

3 Implementation of ELM and Approach Towards
Intent Classification

ELM, as proposed in Huang et al. [14] is a tuning free feedforward neural network

with a single layer of hidden nodes in which the hidden nodes parameters are ran-

domly assigned. For a feedforward neural network (single hidden layer) having n
input nodes, o output nodes, and m̃ neurons in the hidden layer, the output function

can be written as

f (x) =
m̃∑

i=1
𝛽ig(wk.x) (1)

where wk are the weights of input (x) nodes which are randomly assigned, g(.) is

an activation function, e.g.,multiquadratic, sigmoid, etc. and 𝛽i are the output layer
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weights which can be determined after finding the least-squares solution to the matrix

equation,
̂

𝛽 = G†T ,where Gik = (wk.xi) (2)

where G† is the moore-penrose pseudoinverse [15] of the output matrix G.

For a dataset of N distinct samples, with x input belonging to c number of distinct

classes, we define T as the matrix of output targets such that Tik = 1 if and only

if the sample belongs to a particular class c, otherwise its value is 0. ELM can be

tuned with respect to the activation function and number of nodes to obtain a higher

classification accuracy.

In order to train the machine learning methods, pre-processing steps are required

for extraction of feature words. The collected corpus is pre-processed through a

cleaning process which includes the removal of usernames (“@username”), punctu-

ations, whitespaces, and hashtags. The cleaned data is tokenized [16] and stemmed

[17] to convert them into structured text. Structured texts are further tokenized with

labels to create word features lists. Using frequency distribution methods such as

chi-square, the word features are assigned a score and based on the score, feature

words are extracted. The so obtained feature words are used for training the ELM

and other machine learning classifiers.

4 Experiment and Results

4.1 Data Collection

For testing our approach, the data were collected from two independent sources.

The first source consisted of the email datasets that were taken from the “Enron

database1”, which contains labeled training and test data for email intent machine

learning. We used a subset of email query of around 3657 cases for training and 992

cases as test data from the datasets.

In the second case, the data were extracted through the perl2 wrapper around the

Twitter API by using the different keywords such as,“citibank”, “business”, “buy”,

etc. over the region of Singapore. The collected tweets were annotated manually into

informational, navigational, and transactional query in accordance with Broder’s tax-

onomy to obtain a gold standard data to be used in machine learning based methods.

The same dataset was also annotated automatically after training the machine learn-

ing classifiers.

1https://www.cs.cmu.edu/./enron/.
2https://metacpan.org/release/MMIMS/Net-Twitter-4.00003.

https://www.cs.cmu.edu/./enron/
https://metacpan.org/release/MMIMS/Net-Twitter-4.00003
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4.2 Performance Metric

Machine learning classifiers such as, SVM, ELM, Naïve Bayes, and Maximum

Entropy were trained and tested using the training and test datasets respectively. The

main performance metric which we use is accuracy.

The accuracy of the classification can be considered as one of the key metric as

it provides the degree to which the obtained results is close to the correct value or

a standard. However, by looking into the other performance metrics like precision,

recall, and F-measure, we make sure that accuracy paradox would never arise in the

evaluation.

Accuracy can be calculated using the following formula:

Accuracy = Samples correctly classified∕Total number of sample cases. (3)

4.3 Results

Table 2, presents the results of the accuracy of the classifiers for the email corpus.

During the experiments, we applied our pre-processing and feature selection method

on training dataset to select the best 130 feature vectors that were good discrimina-

tors between categories. Machine learning classifiers were trained on these feature

vectors, and the accuracy of the test dataset was obtained.

In Table 3, we present the results of manual classification of twitter datasets. Two

annotators were employed to label the corpora. The annotators, after labeling, cross-

verified each other’s labels. Those queries for which both the annotators had given

the same label were taken into account.

In our classification process we used four machine learning algorithms namely

ELM, SVM, Maximum Entropy, and Naïve Bayes. We have implemented the multi-

quadratic function as activation function in the case of ELM and sequential minimal

optimization algorithm for training a support vector classifier with linear kernel in

the case of dual classification, and PolyKernel in the case of multi class classifica-

Table 2 Comparison of machine-learning algorithms for classifying the email intent

Datasets Number of

feature

ELM SVM Maximum

entropy

Naïve bayes

Email 130 82.50% 79.03% 70.76% 67.54

Table 3 Manual classification of twitter queries by user intent

Datasets Informational query Navigational query Transactional query

Twitter 56.0%(140) 22.4%(56) 21.60%(54)
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Table 4 Accuracy of the automatic classification of twitter query data

Datasets Naïve Bayes

Informational Transactional Navigational

Twitter data 87.76% 81.48% 87.71%

Table 5 Accuracy of the automatic classification of twitter query data

Datasets Maximum entropy

Informational Transcational Navigational

Twitter data 87.76% 72.22% 92.10%

Table 6 Accuracy of the automatic classification of twitter query data

Datasets Support vector machine

Informational Transcational Navigational

Twitter data 89.21% 70.37% 84.21%

Table 7 Accuracy of the automatic classification of twitter query data

Datasets Extreme learning machine

Informational Transcational Navigational

Twitter data 96.4% 87.75% 94.7%

tion. We have used accuracy to evaluate the performance of the algorithms for intent

classification.

Tables 4, 5, 6 and 7 shows the accuracy of the automatic classification of twitter

datasets by user intents. The collected user queries through twitter were used to train

and test the machine learning classifier and dataset respectively.

4.4 Discussions

The results in Tables 2 and 7 clearly prove that the overall performance of ELM

is much better as compared to traditional machine learning methods. The accuracy

of ELM in all the three query categories are much better as compared to that of

Naïve Bayes, SVM, and Maximum Entropy. The Naïve Bayes method obtained bet-

ter results on transactional query as compared to SVM and Maximum Entropy while

SVM and Maximum Entropy were better for informational and navigational query

data respectively. While manually classifying query data, we noticed that there is a

very thin line between categorization of navigational and informational data. While

selecting features, just an entity recognition of URL, website, or webpage is not
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enough to isolate navigational queries from informational queries as most of the

informational queries also contain website or webpage references for information.

Therefore, we have used bigram to clearly differentiate between these two catego-

rization, thus improving the overall classification results.

5 Conclusions

In this paper, we have presented an approach to classify intent of social media

text(twitter), as well as web data (email) with semantic feature based on bigram. Our

experiment on two event datasets statistically prove the significant gain in accuracy

of machine learning classifier. The results also reveal that in the case of dual as well

as multi-class classifications, the performance in terms of accuracy is much better

for ELM. We compared the feature words per class obtained from manual classifica-

tion with the feature words per class extracted by automatic classification of different

machine learning classifiers, and we found the similarity index close to 0.93 or 93%

for ELM. We conclude that the overall performance or classification accuracy of

ELM is significantly better (with less training time) and the feature words obtained

just from queries content word can give better classification results when selection

of features are done wisely.

In our current experiment, the second dataset, i.e. twitter data is quite a small

dataset. We are working on obtaining larger datasets confirmed by more annotators

for our future work.
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Reinforcement Extreme Learning
Machine for Mobile Robot Navigation

Hongjie Geng, Huaping Liu, Bowen Wang and Fuchun Sun

Abstract Obstacle avoidance is a very important problem for autonomous navi-
gation of mobile robot. However, most of existing work regards the obstacle
detection and control as separate problem. In this paper, we solve the joint learning
problem of perception and control using the reinforcement learning framework. To
address this problem, we propose an effective Reinforcement Extreme Learning
Machine architecture, while maintaining ELM’s advantages of training efficiency.
In this structure, the Extreme Learning Machine (ELM) is used as supervised
laserscan classier for specified action. And then, the reward function we designed
will give a reward to mobile robot according to the results of navigation. The
Reinforcement Extreme Learning Machine is then conducted for updating the
expected output weights for the final decision.

Keywords Q-learning ⋅ Navigation ⋅ Reinforcement extreme learning
machine ⋅ Obstacle avoidance

1 Introduction

Navigation is an important field in the research of mobile robot [1]. The traditional
obstacle avoidance methods, such as the visual map method [2, 3], the grid method
[4] and the free space method, can deal with the obstacle avoidance [5] problem
when the environmental information is known [6]. Although such methods which
are proved to be highly robust have great performance on mobile robot navigation,
they all work on the assumption that a map of the scenario is accurate as well as
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available beforehand. Normally, such a map is obtained by labor operation or
autonomous search [7]. This can however be very hard to complete in many cir-
cumstances: rescue or harmful operations are just few examples where teleoperating
a mobile robot could be remarkably time-consuming or even impossible [8, 9].
When the obstacle information is unknown, the traditional navigation methods will
not be able to avoid obstacles.

In the vast majority of the actual case, the robot’s environment are dynamic [10],
changeable and unknown. To solve the above problem, it introduces the artificial
intelligence algorithms. Also thanks to the development of processor calculation
ability and sensor technology, some complex arithmetic operations on the mobile
robot platform has become easier, resulting in a series of intelligent obstacle
avoidance method [11], algorithms such as neural network algorithm, genetic
algorithm and fuzzy algorithm are very topical.

Though some learning algorithms based on gradient descent method (such as
SVM and BP Neural network) have been extensively used in the training of mul-
tilayer feed-forward neural network [12], these traditional learning algorithms get
stuck in a local minima easily, and the learning process are fairly slow [13, 14].
Furthermore, the activation functions used in these tuning algorithms based on
gradient descent method should be differentiable.

In order to improve the inadequacy of these traditional learning algorithms based
on gradient descent method, Huang, et al. proposed an efficient training algorithm
for single-hidden layer feed forward neural network (SLFN) [15, 16] called
Extreme Learning Machine (ELM). ELM randomly generating input weights and
hidden biases which exert considerable influence on increasing the learning speed,
and the output weights are solved by calculating Moore-Penrose (MP) generalized
inverse. Compared with the traditional gradient-based learning algorithms, ELM
not only learns much faster but also has higher generalization performance. In
addition, ELM get out of troubles brought by learning algorithms based on gradient
descent which include stopping criteria, learning rate and local minima [17].

Reinforcement learning [18] is very closely similar to the theory of classical
optimal control and is generally a difficult problem and many of its challenges are
particularly apparent in the robotics setting. A wide variety of methods of
value-function-based reinforcement learning algorithms have been developed and
can be divided mainly into three classes: methods with dynamic programming-
based optimal control approaches such as policy iteration or value iteration,
methods with rollout-based Monte Carlo methods and methods with temporal
difference methods such as TD (Temporal Difference learning), Q-learning [19],
and SARSA (State-Action-Reward-State-Action). Here, we choose the Q-learning
method because it is a model-free reinforcement learning technique and it can be
used to find an optimal action-selection policy for any given Markov decision
process (MDP).

We address the problem of performing mobile robot navigation tasks relying
upon reinforcement learning [20] which is widely researched in many aspects.
Reinforcement learning is a continuous process of decision-making, the essence of
mathematics is a Markov decision process. The ultimate objective is to get the
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optimal expectation of return function overall decision-making process. A suc-
cessful achievement has made in locating active object with deep reinforcement
learning proposed by Girshick et al. [21], which combined CNN features and
reinforcement learning.

In this paper, Extreme Learning Machines (ELM) [22–24], used as a classifier
[15, 16, 25], and Reinforcement Learning will be combined to train the navigation
model on mobile robot. This algorithm just need to be set up the number of hidden
neuron layer node, and it does not have to adjust the input weights and the bias of
hidden neuron in executive process. The output of ELM has only one optimal
solution, ELM has a fast learning speed and good generalization performance.
What’s more, more and more deep ELM learning algorithms have been proposed
[26, 27]. Recently, a new biologically inspired ELM framework was proposed in
[28] called ELM-LRF, which was implemented by introducing the local receptive
field concept in neuroscience [29, 30]. Thus, in this mobile robot navigation work,
we adopt the ELM-RL method. The contributions of this work are summarized as
follows:

1. We propose to use reinforcement learning to solve mobile robot active obstacle
avoidance. Mobile robot strengthen the navigation learning strategies through
trial and error interactions.

2. We use an architecture ELM-RL framework, to learn representations from the
input laser data for the navigation. The important merit of such a method is that
the label prediction accuracy is improved and the training time is greatly
shortened.

3. We evaluate our proposed navigation system on the ROS simulate platform. The
obtained results show that the proposed method obtains rather promising results
on mobile robot navigation.

The remainder of this paper is organized as follows: Sect. 2 introduces the
Reinforcement Extreme Learning Machine system for Mobile Robot Navigation;
Sect. 3 describes the process of the algorithm including the fundamental concepts
and theories of ELM-RL structure and Q-ELM process; Sect. 4 present some
experimental results of the proposed structure; while Sect. 5 concludes this paper.

2 Architecture

For navigation problems, there is such a solution. We design a reward function, if
agent learning (Mobile Robot) move forward one step and get closer to the goal, we
give the agent a positive reward. On the contrary, if agent move back and get farther
away from goal position, the agent will receive a negative reward. Now we can
evaluation for each step and get the sum of corresponding rewards, it would be easy
to find a return value maximum path which is the best path (Fig. 1).

Reinforcement Extreme Learning Machine … 63



Our architecture, which is depicted in Fig. 2, employs the ELM and Rein-
forcement Learning as the learning unit to learn navigation. The Reinforcement
Extreme Learning Machine for Mobile Robot Navigation is structurally divided
into three phases: generating action, retrieving reward by collecting laser data and
updating output weights of ELM.

Three simple kinds of action beforehand, including going straight, turning left
and turning right, should be provided to mobile robot to chose. Now the mobile
robot should determine which action to take next step according to its state in the
environment. Here we use ELM as a classifier to classify the laser data, input is the
laserscan, the output is the action, so mobile robot is able to take action next step in
terms of laserscan.

We expect a class-specific active navigation model that is able to avoid obstacles
detected by the laser data. Mobile robot navigation not only travel from one
position to the goal, but also go round obstacles, just as water flows round an
obstruction. Obstacles avoidance is an important part of robot’s path planning.
Figure 3 illustrates some steps of the dynamic decision process to bypass obstacle
ideally. The sequence of obstacle avoidance is decided by the agent that detect the
locations of obstacle by distance sensor. Agent should keep both obstacles and goal
in mind when considering how to move.

Fig. 1 Reinforcement
learning architecture

Pose Ac on

LaserScan

Reinforcement 
Learning

Reward Q_ELM

Fig. 2 The proposed
reinforcement extreme
learning machine architecture
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3 ELM Q-learning

3.1 Breif Review for ELM

Extreme learning machine which was a single-hidden layer feed forward neural
network (SLFN) learning algorithm was proposed in Huang, et al. Suppose we are
training SLFN with K hidden neurons and activation function gðxÞ to learn N

distinct samples X,Tf g= Xj, tj
� �N

j=1, where xj ∈Rm and tj ∈Rm. In ELM, the input

weights and hidden biases are randomly generated instead of tuned. By doing so,
then onlinear system has been converted to a linear system (Fig. 4).

Yj = ∑L
i=1 βigi xj

� �
= ∑L

i=1 βigi w
T
i xj + bi

� �
= tj, j=1, 2, . . . ,N, ð1Þ

where Yj ∈Rm is the output vector of the j-th training sample, Wi ∈Rn is the input
weight vector connecting the input nodes to the i-th hidden node, bi denotes the bias

of the i-th hidden neuron; βj = βi1, βi2, . . . , βimð ÞT denotes the weight vector

t 1 t i t i+1 t n-1 t n

States

Actions

Steps

... ...

... ...

Fig. 3 A sequence of actions taken by the proposed algorithm to avoid obstacle ideally

Fig. 4 The model of basic
ELM

Reinforcement Extreme Learning Machine … 65



connecting the i-th hidden neuron and output neurons; gi wT
i xj + bi

� �
denotes hidden

nodes nonlinear piecewise continuous activation functions. The above N equations
can be written compactly as:

Hβ= T , ð2Þ

where the matrix T is target matrix,

H =
g wT

1 x1 + b1
� �

⋯ g wT
Lx1 + bL

� �
⋮ ⋱ ⋯

g wT
1 xN + b1

� �
⋯ g wT

LxN + bL
� �

2
4

3
5, ð3Þ

β=
βT1
⋮
βTL

2
4

3
5, T =

tT1
⋮
tTN

2
4

3
5. ð4Þ

Thus, the determination of the output weights (linking the hidden layer to the
output layer) is as simple as finding the least-square solution to the given linear
system. The minimum norm least-square (LS) solution to the linear system (1) is

bβ=H + T , ð5Þ

where H + is the MP generalized inverse of matrix H. As analyzed by Huang et al.,
ELM using such MP inverse method tends to have good generalization perfor-
mance with learn fast enormously.

3.2 Q-Elm

We cast the problem of mobile robot navigation as a Markov decision process
(MDP) since this setting provides a formal framework to model an agent that makes
a sequence of decisions. The agent has a state transition with information of the
currently laserscan and past actions, and receives positive and negative rewards for
every decision in the training.

Formally, the MDP has actions A, states S, and a reward function R beforehand.
This section presents details of these three components and Reinforcement Extreme
Learning Machine for Mobile Robot navigation algorithm which combines Rein-
forcement Learning and ELM.

Three actions including go straight, turn left and turn right are prepared previ-
ously to be chosen by agent. The velocity of the mobile robot represented by
angular velocity and the linear velocity: αa and αl. And the actions could be rep-
resented by αa and αl, as shown in Table 1, α is a parameter which could be
adjusted as we want. When mobile robot is going straight line, the angular velocity
should be set zero. Angular velocity and linear velocity must be coordinated when
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turning. Perhaps these kinds of action could not meet the requirements of obstacle
avoidance perfectly in some environment, in the future work we will increase the
types of action.

S is the laser data provided by distance sensor on mobile robot. If agent bump
into obstacles, we give the agent a negative reward. On the contrary, we give
mobile robot a positive reward after arriving at the target according to agent’s
present state.

We use the ELM to train the orientation of mobile robot in previous work. The
input is laser data, and output is the orientation of mobile robot, which can be
attributed as a regression problem. The results are not very good, robot encounter
obstacles frequently after making heading angle regression. The reason is that the
accuracy obtained by ELM regression is not good enough, floating deviation reach
about 10°, while the orientation’s maximum is 180°. So the robot hardly avoid
obstacle in terms of ELM regression.

In order to solve this problem, we apply reinforcement learning to mobile robot’s
navigation on the basis of ELM, and we use the reward to correct the output of
ELM, the correct process is as follows:

Yt = rt + γmaxbQ St+1, at+1;bβ
� �

, ð6Þ

where the matrix bβ is output weights last moment, bQð.Þ is ELM’s classification
process corresponding to bβ, and γ is a constant parameter.

Here is the algorithm process. At first, mobile robot will make a choice in the
preset actions randomly. After finishing this action, we record the reward, the action
and the laser data which represent agent’s state, we take three things mentioned
above and the next time state as a set of data, one set of data will be put into buffer
D after one step. Wait until the data set is full, now ELM’s input and Label are
there, training could be carried out. At the beginning of training, mobile robot often
encounter obstacles, so agent will get a negative reward (e.g. −1), after that, robot
go back to the starting position and initialize state. A new epoch will begin, thus
learning the ability of obstacle avoidance. In each epoch, agent will update the
buffer D including the current state, reward, action, next moment state. In addition,
agent also update the output weights applied in ELM, the output weights is updated
by

β=H +Yt. ð7Þ

Table 1 Angular velocity
and linear velocity of mobile
robot

Velocity Go straight Turn right Turn left

αl αl ×α αl × α αl × α

αa 0 − αa × α αa × α
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Combining Eqs. 6 and 7, we get

β=H + ðrt + γmaxbQðSt+1, at+1;bβÞÞ. ð8Þ

In the algorithm, the input weights of ELM and the hidden biases which are
unchanged throughout are generated randomly. This algorithm inherits the
advantages of fast calculating speed. Moreover, we use the reward obtained from
reinforcement learning to correct and update the output weights of ELM. This
improves the accuracy of the original ELM algorithm. Algorithm can be concluded
as follow:

Algorithm: reinforcement extreme learning machine for robot navigation. 
Generate the input weights , hidden bias and output weights randomly
For epoch = 1 ~ M do              

Initialize position of mobile robot      
For t = 1 ~ T do              

Get original Laser Data
With probability ε select a random positive action 
otherwise select
Execute action and observe reward and LaserScan 
Store transition ( ) in Buffer D
Sample random minibatch of transition ( ) from D 
Set the target
Perform a generalized inverse on to update
Every C steps reset  
If action  is trigger, break the loop

End For
End For

4 Experimental Results

4.1 Data Set

Simulation experiments base on ROS simulation platform. In ROS, a node is a
process that performs an operation task. The nodes communicate by sending
messages. The robot can be released from the node to make the robot move. Laser,
as a separate node, will publish a topic whose name is laserscan. This algorithm is
used as a separate node training robot’s navigation by subscribing laserscan topic.
In simulation, the distance sensor is installed on the mobile robot, and sensor and
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robot are almost coincident, so the distance information collected by distance sensor
is able to represent the state of the robot. The distance data of the robot is divided
into two kinds: one is the pointcloud from Kinect, the other is laserscan from the
laser. We convert pointcloud data to Laserscan data which could be used as the
input data of ELM-RL. The parameters of the laser data are as follows, Angular
rang and resolution: 180° and 1°. So every group of laser data is 180 dimensional.

Among the distance information obtained from the laser, if some data are
approximately zero, we believe that the robot encounters obstacles. Each experi-
ment includes 100 epochs. In one epoch, when the data group number reach twenty

Fig. 5 Laser data visualization

Fig. 6 Performance
comparison between our
method, SVM and random
policies

Reinforcement Extreme Learning Machine … 69



(a) A wall

(b) A corner

(c) A desk in living room

Fig. 7 The sequence of actions chosen by the proposed method on different scenes
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in buffer D, ELM-RF algorithm to start updating output weights. The data of the
laser is shown in Fig. 5. The upper level of the graph is the original data, the middle
layer show the distance of the obstacles at each angle, the lower layer represents the
ideal feasible pathways.

4.2 Navigation Results

The results contain two main tasks, the SVM and the ELM-RL task. And the
navigation success rate of the proposed method was evaluated by comparing it with
the two alternative policies, that is, SVM and random, which shows in Fig. 6. This
performance is averaged over the entire set of laser data in all epochs. The random
policy selects a random action with uniform probability, while the SVM is used to
classify the laser radar data by regarding the action as the category label. Figure 6
shows that compared with sequential and random policies, our method is able to
avoid obstacle efficiently and improve the navigation success rate greatly. What’s
more, the navigation success rate of our proposed system is higher than that of the
SVM.

In order to better understand our proposed architecture, we visualize the con-
secutive actions in navigation. Figure 7 shows the sequence of actions chosen by
the proposed method on different scenes. The red line is laser data, robot’s
odometry will record the walking route of the robot and display it. For example,
when obstructed by a wall or obstacle, mobile robot find the right way after many
tries. Robot keep moving on after avoiding obstacles. It means that the training
model we obtained could be used to do similar navigation.

5 Conclusions

In this paper, we proposed a algorithm for mobile robot navigation based on
Reinforcement Extreme Learning Machine, which takes full advantage of the local
receptive field to learn distance information of the input laser. Maybe three kinds of
action could not avoid some obstacles which are of odd shape in actual environ-
ment. To address this problem, we will increase more kinds of action in next work.
By introducing this architecture at the early stage in the system and employing
ELM to the Q-learning process, the proposed approach outperforms sequential and
random action selection policies.
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Detection of Cellular Spikes
and Classification of Cells from Raw
Nanoscale Biosensor Data

Muhammad Rizwan, Abdul Hafeez, Ali R. Butt and Samir M. Iqbal

Abstract Nanoscale devices have provided promising endeavors for detecting

crucial biomarkers such as DNA, proteins, and human cells at a finer scale. These

biomarkers can improve prognosis by detecting dreadful disease such as cancer at

an early stage than the current approaches. Analyzing raw data from these nanoscale

devices for disease detection is tedious as the raw data suffers from noise. Further-

more, disease detection decisions are made based on manual or semi-automated

analysis—which are time-consuming, monotonous and error-prone process. Recent

trends show an unprecedented growth in the advancement of nanotechnology for

medical diagnosis. These devices generate huge amount of raw data and analyzing

raw data in order to classify biomarkers in a fully automated and robust way is a

challenge. In this paper, we present an algorithm for identifying cellular spikes, we

have adapted extreme learning machines and dynamic time warping for the classifi-

cation of cancer in raw data collected from nanoscale biosensors, such as solid-state

micropores. Our approach can classify cancer cells with an accuracy of 95.6%, and

with a precision and recall of 85.7% and 80.0%, respectively.
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1 Introduction

Diseases such as cancer can be completely cured, if detected and diagnosed at early

stages. Conventional techniques like magnetic resonance imaging (MRI) and cytol-

ogy are intrusive and are done as part of screening of cancer. However, such tech-

niques suffer from the limitation of decoding the type of cancer whether it’s a live or a

brain tumor. The advent of nanoscale biosensing devices such as solid-state microp-

ores and nanopores can detect cancer at an early stage by enabling the translocation

of biological targets such as human cells, proteins and DNA in a biological assay

at a finer granularity. Nanopore exhibits patterns in the output current upon single

molecule arrivals and enables segregation of individual polymers. Nonetheless, these

devices suffer from the inherit noise and baseline wanders in the output current, short

transit time of the molecule, pore clogging and poor biomarkers selectivity.

Computational techniques have been utilized for the analysis of data collected

from nanoscale devices [1–3]. Recent work shows the applications of supervised

machine-learning algorithms [4–8] in the classification of important patterns in gene

expression data [9–12]. Furthermore, a simple threshold based on peak-detection

algorithms detect useful patterns in raw data emerging from ECG and mass spec-

troscopy [13–15]. Parameter for such a threshold can be local minimum/maximum,

mean, standard deviation, energy or entropy [16–18]. These strategies inspire the

design and development of machine learning methods for the effective detection and

classification of biomarkers in the said data collected from nanoscale biosensors.

The sensors in this paper are minuscule channels made in thin silicon membranes

and their output is an electrical current signal that is measured in micro and nanoam-

peres. Research shows that the cancer cells are softer and deform more readily than

their healthy counterparts because of their elastic nature [19]. Such behavior of dis-

eased and healthy cells is recorded as distinguishing patterns, i.e., pulse spikes in

the output signal stemming from the extent to which they block the pore [20]. The

pulses occur at different scales and magnitudes, which stem from the varying size

and biophysical properties of cells, i.e., stiffness and viscosity. Nevertheless, the data

collected from such sensors suffer from a large amount of raw data coupled with

sensor noise and baseline wanders. Moreover, the translocation of a characteristic

biological assay—0.5 milliliter of a blood sample through a micropore, results in

10 GB of raw data. The commercial software tools used to analyze the raw data are

limited to trivial datasets and even a well-trained technician has to consume a lot of

time to process and analyze the data from a typical biological assay.

In order to unlock the potential use of nanosale biosensors in a clinical setup,

innovative solutions based on machine learning approach are required, which will

leverage new computing models for the disease detection and high-quality decision

making. In-situ, we propose a novel cellular spike detection algorithm to identify
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cellular spike locations in the raw data and use extreme learning machines and

dynamic time warping based methods to classify cancer cells. Our method is very

robust and can be readily used to infer useful information for disease diagnosis.

2 Related Work

2.1 Pattern Detection Techniques

Recent trends in medical research and modern clinical setups show an increase in

recording important physiological signals, which substantially involves the detection

of patterns (peaks/troughs) in the target signals. Numerous pattern-detection algo-

rithms have been developed [13, 21–24], however, these are domain specific. Efforts

have been made to build a generalized mathematical model [25] for peak detection

algorithms. Nonetheless, such model suffers from a large number of false alarms

and cannot be used in a particular domain, unless properly tailored and tuned. Our

approach has the ability to adapt to the changing characteristics of the noisy microp-

ore data and can efficiently search and identify pulses, followed by an accurate clas-

sification into benign and malignant types. Furthermore, our approach is amenable

for online monitoring in a clinical setup because of its speed and accuracy.

2.2 Solid-State Micropores

These are tiny orifices in 200 nm thin silicon-based membranes used to measure the

passage of human cells through them in the form of electrical pulses [26]. Cells

passing through block the micropore and result in translocation events in the output

current. The strength of the event is determined from the degree to which the pore

is blocked by a target cell. These events are registered as pulses and their features

depict patterns specific to the human cell type [1, 27]. Biomechanical properties of

the diseased cells such as tumor cells, are known to be different than the normal

cells [27–30]. Furthermore, the malignant cells are more elastic than benign and

healthy cells. [19, 31–33] and the recorded pulses remarkably differ in the case of

tumor cells [27, 34, 35].

The downside of these devices is that the detection and analysis is subjective.

Therefore, it is indispensable to automate the identification and classification of dif-

ferent biological targets in high-throughput raw data generated by micropores. Such

automation can replace manual analysis with automated analysis in which case the

detection in 10 GB of data collected from a biological assay can be accomplished in

few minutes rather than innumerable hours spent by a well-trained technician [34].

Nonetheless, the time taken by a micropore for the translocation of a biological assay

is critical. For instance, a micropore calibrated at 2 MB/s can translocate an entire
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biological assay in about 83 minutes, resulting in 10 billion samples of current val-

ues. Our work can further benefit from improvements in the translocation speed and

reduction in the noise in the output current of a micropore and nanopore technology,

as delineated in [1, 35].

3 Extreme Learning Machines

Extreme learning machines (ELMs) use supervised learning approach for training

single hidden layer feed-forward neural network (SLFNs) [36–39]. Recent research

have shown the efficiency and effectiveness of ELMs for multi-class classification

problems and its versatility in a gamut of applications such as classification of med-

ical signals, prediction of protein-protein interactions, accurate forecasting of pho-

tovoltaic power for grid management, hyperspectral image classification, for the

prediction of atrial fibrillation in electrocardiogram (ECG) and intracardiac electro-

gram (IEGM) [40–44]. The intrinsic nature of ELMs is that the learning parameters

including input weights and biases of the hidden nodes are randomly assigned and are

tuned until and unless output weights are analytically determined by simple general-

ized inverse operation. The weights between hidden nodes and output are learned in a

single step. Such random assignment of learning parameters makes ELMs extremely

faster at learning, achieve better generalized performance and with lesser subjectiv-

ity compared to traditional SLFNs [37–39]. Given an observation dataset with N

nodes in the hidden layer and the excitation function G, extreme learning machines

are given by Eq. 1:

f (x) =
N∑

i=1
𝛽iG(ai, bi, xi) = 𝛽.h(x) (1)

where 𝛽i is the output weight of ith hidden node and the corresponding output neuron,

ai is the input weight of the input neuron and ith hidden layer node. bi is the offset

of ith hidden layer node.

4 Dynamic Time Warping

Dynamic time warping (DTW) is a technique for measuring dissimilarity between

temporal sequences. Temporal sequences are widely used in various applications

such as health monitoring, climatology, geology, astronomy, etc.

Dissimilarity comparison is a common step in most of the time series data analysis

and despite of numerous alternatives available, there is an increasing evidence that

DTW has proven itself as the best candidate for similarity mesaure in majority of

domains such as medicine, music/speech processing, climatology, aviation, mining
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of historical manuscripts, geology, astronomy, space exploration, wildlife monitor-

ing, robotics, and cryptanalysis [45, 46].

It computes an optimal match between two given sequences, e.g., time series with

certain restrictions. The sequences under observation are warped non-linearly in time

dimension to determine their similarity independent of certain non-linear variations

in the time dimension. Such technique is frequently used in time series classification.

The DTW distance between any two time series sequences, A and B with sam-

ples s1, s2,… , sm and t1, t2,… , tn is D(m, n)—typically computed using a dynamic

programming approach as shown in Eq. 2:

D(i, j) = min (D(i, j − 1),D(i − 1, j),D(i − 1, j − 1)) + d(xi, ji) (2)

The two sequences are placed along x-axis and y-axis of a DTW grid. In each step

of D(i, j), the minimum among the three neighboring distances is computed, this

ensures smooth warping, e.g., no samples left without warping, called local continu-

ity constraint. Once all the possible paths within a warping window are computed,

then the final step is to backtrack the best path through the grid, starting from (m, n),
yielding the DTW warping path.

In order to constraint the number of paths between two sequences, warping win-

dow constraint is employed. This makes sure that the number of possible paths

should be within a window width of r, i.e., j − r <= i <= j + r. Sakoe-Chiba band

constraint [47] ensures that the DTW path is in proximity to the diagonal of DTW

grid which contains the D(i, j). This eliminates pathological warping which aligns a

short span of one sequence to a large span of another sequence. For further details

on the types of continuity constraints, interested readers are referred to [34].

5 Method

In our method, we pre-process the raw data using moving average filter, followed

by cellular spike detection algorithm, and use ELM and DTW based classification

method to make decision regarding cancer cells. The overall block diagram is shown

in Fig. 1.

Pre-processing Cellular Spike Detection 
(CSD)

Dynamic Time Warping
(DTW)

Min 
Distance

Extreme Learning Machine
(ELM)

Decision 
RuleRaw Data

Fig. 1 Block diagram
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5.1 Pre-processing

The raw data collected from a micropore is pre-processed by normalizing it to zero

mean. Normalized data is passed through 3-point moving average filter to reduce ran-

dom noise present in the raw data. The information that distinguishes different cell

types lies in cellular spikes. These spikes result from the cell passage through micro-

pore, which results in successive current values to fall abruptly in the output current

level and reverts quickly back to the original baseline current forming a valley. Typ-

ical spikes of cancer cells, white blood cells (WBCs), and red blood cells (RBCs)

after pre-processing are shown in Figs. 2, 3, and 4 respectively. The distinguishing

information we get is very sparse as there are only a small number of cellular spike

samples out of millions samples that we get in pre-processed raw data. In general,

classification algorithms are computationally expensive. In order to mitigate the bot-

tleneck arising from the sparsity in the data, identifying cellular spike samples prior

to classification in the pre-processed data make the overall process efficient. This

helps classification algorithm to process only the useful spike samples (smaller in

number) instead of processing all samples in raw data (million in number).

Fig. 2 A typical cancer cell

spike in a pre-processed data
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Fig. 3 A typical WBC spike

in a pre-processed data
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Fig. 4 A typical RBC spike

in a pre-processed data
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5.2 Cellular Spike Detection (CSD) Algorithm

The cellular spike detection algorithm identifies the location of cellular spike sam-

ples in the raw pre-processed data (see Algorihm 1). The main steps are as follows:

1. Calculate threshold from pre-process raw data based on standard deviation (𝜎).

2. Identify samples in pre-process raw data whose amplitude is below the threshold.

3. Compute the longest consecutive sequence of data samples whose amplitude

value is below the threshold.

The longest sequence of data samples whose amplitude value is below the thresh-

old identify a cellular spike. All other data samples with amplitude value below the

threshold are mainly due to the short burst of noise. The value of threshold used in

our experiment is −1.5𝜎 and is learned by trial and error based approach. We picked

50 samples from the center of identified cellular spike samples. The reason for pick-

ing 50 samples from center is that it contains more distinguishing information as

compared with the samples at the boundaries. Figures 5, 6, and 7 shows the ensem-

ble cellular spikes of cancer cells, white blood cells, and red blood cells respectively.

Fig. 5 An ensemble

(average) of typical cancer

pulses
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Fig. 6 An ensemble of

characteristic WBC pulses
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Fig. 7 An ensemble of

characteristic RBC pulses
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From these figures, it is clearly evident that the most idiosyncratic information is in

the central part of the spike waveforms. In case, when the length of identified cellular

spike samples is less than 50, we zero pad these in a symmetric way at both ends.

Algorithm 1 Cellular Spike Detection Algorithm

1: procedure CELLULAR SPIKE DETECTION(X) ⊳ X: Data samples in

cellular spike

2: Xmean ← mean(X) ⊳ Calculating statistics of data

3: Xdev ← dev(X)
4: XTH ← 1.5 ⋅ Xdev

5: for i 1 → n do
6: if X(i) ≤ X

TH
then

7: IDX
TH

← i

8: end if
9: end for

10: TEMP = [0 CUMSUM(DIFF(IDXTH) ≠ 1)]
11: IDXCELLS = IDXTH (TEMP = MODE(TEMP))
12: XCELLS = X(IDXCELLS) ⊳ Detected cellular spike waveform

13: end procedure
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Table 1 Decision rule

ELM based classification DTW based classification Decision

Cancer cell spike Cancer cell spike Cancer

Cancer cell spike RBC/WBC spike Non-cancer

RBC/WBC spike Cancer cell spike Non-cancer

RBC/WBC spike RBC/WBC spike Non-cancer

5.3 Cellular Spike Classification

For cellular spike classification, we used ELMs and DTW. In case of ELMs, we

used central 50 samples of cellular spike samples of cancer cells, WBCs, and RBCs

from the training data. We varied the number of hidden neurons from 10 to 20 and

used sigmoid as an activation function. The best ELM model comprises of x neurons

and is learned on the validation data. As of DTW based approach, we used cellular

spikes in our training and validation data as a reference data for distance comparison.

The reference data comprises all the samples of cancer cells, WBCs, and RBCs.

For an unknown cellular spike from the test data, it computes Euclidean distance

with all the cellular spikes (cancer cells, WBCs, and RBCs) in our reference data

using dynamic programing. The DTW based approach computes output class of the

unknown cellular spike based on the minimum distance.

5.4 Decision Rule

We combined classification results from ELM and DTW based classifier to make a

decision about cancer and non-cancer. The decision rule is based on logical “AND”

that decides for cancer only when output of the ELM and DTW classifies cellular

spike as cancer. For all other cases, it will decide as non-cancer as shown in Table 1.

This results in a greater confidence regarding our decision for cancer.

6 Experiment

6.1 Dataset

The biological raw datasets are collected from a characteristic tumor sample by

translocating through a micropore. The assay comprises of cancer cells, WBCs, and

RBCs. The collected dataset contain characteristic profiles of the translocated cells.

Typical profile of cells contains 4 million samples recorded over a sampling interval
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of 2.2 µs. Each sample has a resolution of 2 bytes and can measure from 0 to 65, 535
nanoamperes. Overall, the data collected from a typical assay consists of 90 profiles,

resulting in 360 million samples, which is equivalent to 10 GB of raw data.

6.2 Micropore Assembly

Micropore with a radius of 12µm made in 200 nm thin membrane is used to translo-

cate the biological assay and thus, generate the raw dataset. The calibration of sam-

pling frequency needed to operate the micropore is an important factor in achieving

the maximum throughput of the pore. Decreasing sampling frequency results in a

stable baseline with less noise, but lacks the ability to capture the useful transloca-

tion events at a finer granularity. Contrariwise, higher sampling frequency results in

noisy data which can suppress some of the useful translocation events. The optimal

sampling frequency used was 0.4 MHz.

6.3 Cellular Spike Detection and Classification

The raw data obtained after passing through micropore is normalized as discussed

in Sect. 5.1. The cellular spike detection algorithm identifies the location of cellular

spikes in the pre-processed data. The central 50 samples from the identified cellular

spike location is fed to ELMs and DTW based classification methods. The results of

the ELMs and DTW based classifier is combined and decision is made regarding the

cancer or non-cancer based on the decision rule as mentioned in Sect. 5.4. Figure 8

summarizes the result for cancer cell classification based on our method.

Fig. 8 Extreme learning

machines and dynamic time

warping based cancer cell

classification
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6.4 Comparison of Results

In [34], they used threshold based framework for cancer cell classification. The raw

data was pre-processed using moving average filter and threshold was calculated

using statistics of the pre-processed data. They used width and amplitude of the

cellular spikes as features. They obtained a classification accuracy of 63%. In [35],

they used average of mean and standard deviation for each cellular spike in addition

to the spike width and amplitude. They used k-nearest neighbor as a classifier and

obtained a classification accuracy of 70%.

7 Conclusion

We have developed a robust and automated approach for identification of cancer and

non-cancer patients from the raw data collected from the translocation of a biolog-

ical assay through a solid-state micropore. Our novel cellular spike detection algo-

rithm identifies the location of cellular spike samples in the raw data which contains

key information about cancer. These cellular spike samples are later passed through

extreme learning machines and dynamic time warping based classification methods

for cancer and non-cancer decisions. Using above approach, we got a classification

accuracy of 95.6% with a precision and recall of 85.7% and 80.0 respectively. Our

approach can be used in clinical settings where data can be collected from multi-

ple micropores and can be processed quickly for instantaneous responses to help

physicians make diagnostic decisions. This can help in early disease detection and

prognosis for patients suffering from cancer. In the future work we are investigating

on signal enhancement and noise reduction techniques to overcome high variability

in cellular spike data.
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Hot News Click Rate Prediction Based
on Extreme Learning Machine and
Grey Verhulst Model

Xu Jingting, Feng Jun, Sun Xia, Zhang Lei and Liu Xiaoning

Abstract Click rate prediction of hot topics contributes to get event tendency,
especially for sensitive news. However, click rate prediction is challenge due to
inherent features of short-time series such as randomness, uncertainty, volatility and
insufficiency of training samples. In this paper, a new hybrid click rate prediction
method called Grey Verhulst—Extreme Learning Machine (GVELM) is proposed.
Specifically, the raw short-time series data are filled into GV models to acquire
stably initial prediction which have incorporated regular pattern of the historic data
without noise. Then ELM is employed for prediction refinement for nonlinear space
mapping. The experimental results show that the proposed method achieves better
prediction accuracy compared with other five state-of-art algorithms.
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1 Introduction

The Internet provides more free communication platforms for users to discuss all
kinds of news with each other. Nowadays, hot news on the Internet can easily
attracts the public attentions, which may spreads very fast. However, propagation of
some kinds of news such as purported and sensitive topics are detrimental to the
society. Media study shows that click rates reflect the hot news topics tendency and
guide public opinion in some way. In the other hand, click rates can also help news
service providers put the hot news into the most conspicuous place. Therefore,
accurate and efficient click rates prediction has vital practical significance for both
media servers and governments.

Click rate prediction can be considered as short-term time series analysis due to
the characteristics of a short-lived cycle of the hot news from beginning, evolution
to termination. Hot news click rate data are generally with the features of ran-
domness, uncertainty and volatility, which are typical non-linear problem that
makes traditional short-term time series prediction algorithms failed. In this paper,
we propose a novel click rate prediction algorithm for hot news based on the
combination of Extreme Learning Machine (ELM) [1] and Grey Verhulst model
(GV) [2].

Recently, the research on short-term prediction model mainly cast to statistical or
machine learning framework. Autoregressive Integrated Moving Average
(ARIMA) [3] is one of the typical methods of statistical model, which has been
proven especially useful within time series analysis. It provides an effects of
dependency from the data series and allows valid statistical testing, but its com-
putational time is very high. Grey Verhulst model (GV [2]) can present short-term
time series samples more simply. Wang et al. [4] applies GV model to predict news
click rates, however, the prediction rates are very poor. Actually, GV is intrinsically
a linear model, which is hard to extend to the nonlinear mapping underlying the
dynamic process.

Meanwhile, the framework of machine learning has drawn more attention due to
the ability to recognize nonlinear series. Some learning algorithms such as Back
Propagation neural network (BP), Elman Recurrent neural network (ER) and
Mixture Density neural network (MD) have been applied to short-term time series
prediction learning [5–7]. In order to obtain the optimum structure of neural net-
work, many different adjustable parameters should be examined which is a time
consuming and boring task. More importantly, major criticism lies in the fact that it
requires a great deal of training data and relatively long training period for robust
generalization. Besides, Support Vector Machine (SVM) can be mentioned as
outstanding learning models for click rates prediction [8]. However, it trends to
suboptimal values [9].

In 2006, Huang [1] presented Extreme Learning Machines (ELM) which has
broad capability on approximation of non-linear function. Since ELM requires only
a single-pass training stage without any iteration for weights adjustment, learning
process is very fast. The number of ELM hidden neurons can be easily determined
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based on dimensions of input and output vectors. Later, Liang et al. [10] proposed
an online sequential ELM (OS-ELM) algorithm for time series prediction. How-
ever, this is liable to be trapped in matrix singularity and illposedness, which is not
suitable for short-time series analysis.

This paper proposes a new hybrid click rate prediction method called Grey
Verhulst—Extreme learning machine (GVELM). In our method, GV is employed
to create the initial prediction outputs with n historic data. Then, both the historical
data and initial prediction outputs from GV are combined for ELM training. The
experimental results show that the proposed method achieves better prediction
accuracy compared with other five state-of-art algorithms. Furthermore, the exe-
cution time of the proposed method is very low because ELM as a powerful
regression tool has extremely fast learning speed without local minimal issues. To
the best of our knowledge, it is the first attempt to combine Grey Verhulst with
Extreme Learning Machine, and furthermore, for solving short-term time series
prediction problem.

2 Click Rate Prediction Based on GVELM

In this section, we describe our click rate prediction solution based on the proposed
GVELM model in detail. Since the short-time series of click rates are equal-length,
we suppose each click rate time series sample contains m historic data fxigmi=1 and
n−m prediction data fxigni=m+1.

From GV model, the next time point dxk +1 can be roughly predicted by [11].

dxk+1 =
ax1

bx1 + ða− bx1Þeak , k=2, 3, . . . , n ð1Þ

where x1 is the first time point, a is the awaiting identification parameter and b is
grey actuating quantity. In GV model, all of the prior knowledge of historic data
has been incorporated into parameter a and b. Suppose variable ba is ba= a, b½ �T ,
which can be calculated by

ba= ðBTBÞ− 1BTY ð2Þ

B=

− zð2Þ z2ð2Þ
− zð3Þ z2ð3Þ
⋮ ⋮

− zðmÞ z2ðmÞ

0
BB@

1
CCA ð3Þ

zðkÞ=0.5xðkÞ+0.5xðk− 1Þ ð4Þ
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Y =

xð2Þ
xð3Þ
⋮

xð4Þ

2
664

3
775 ð5Þ

According to Eq. (1), we can get all of prediction values of fbxigni=1. Although
the prediction value of bx may has deviation from the historical data x, i.e. the true
click rate data, bx does inherit the inherent laws of the historical data based on
GV model, and successfully gets rid of the random noise which is very fre-
quently occured in short-time series.

After got the prediction values of x, ELM is employed as the regression core for
prediction. In essence, we tactfully utilize ELM to improve the prediction accuracy
by its robust nonlinear mapping capability. Specifically, ELM regression training
phase, k time-point interval prediction values as input and k + 1 historic data as
output are filled into ELM for model training. The structure of GVELM model is
depicted in Fig. 1.

Furthermore, we describe the algorithm of GVELM based click rate prediction.

Step1: Historic click rate data x as GV model input.
Step2: For GV model prediction phase, i=1:m; return a and b which are calculated
by Eqs. (2)–(5).
Step3: Get GV predicted values fbxigni=1 using Eq. (1).
Step4: In ELM training phase, GV’s predicted value fbxi, dxi+1, dxi+2g,
i=1, 2, . . . , m− 3 are inputs and historic click rate data fxi+3g is output.
Step5: In ELM test phase, fbxi, dxi+1, dxi+2g, i=m− 2, m− 1, . . . ,m− 3+ n are

inputs and fxi+3
ELM g is predicted output.

Fig. 1 The pipeline of GVELM
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3 Experimental Results

In order to verify the accuracy and robust of the proposed algorithm, several
experiments of hot news click rate prediction are conducted compared with GV [4],
ES, ARIMA, Verhulst-BP [12] and Verhulst-SVM [13].

We use state-of-art open datasets from [8]. Eight topics are tested, and their titles
are listed as following:

(1) “North Korea launches a satellite” (NKLS),
(2) “US. Fiscal Cliff Solutions” (USFCS),
(3) “Messi gets the Golden Globe” (MGG),
(4) “Zimbabwe’s President Blasting the US and the UK” (ZPB),
(5) “US government shutdown” (USGS),
(6) “Cultural Relics stolen by US army to be Return to South Korea” (CRRSK),
(7) “A Robber Wounded by his Gun off accidentally in Peru (RWGP)”,
(8) “University Dormitory Attacked in Nigerian (UDAN)”.

In our experiments, the click rates during 6 h are recorded. Table 1 shows a
segmentation of time points of these eight topics. In the following experiments,
n=18, m=14. After trail-and-error, k is set to 3.

In this paper, three indicators are applied to evaluate prediction Accuracy, i.e.
mean squared error (MSE), mean absolute percentage error (MAPE) and mean
absolute error (MAE). These measures are defined as follows. Thus εð1Þ is said to be

the residual error series, satisfied that εðkÞ= dxðkÞ− xðkÞ, k=1, 2, . . . , n. The rel-

ative residual error or Relative Error (RE) satisfies that Δk =
εð1ÞðkÞ
xð1ÞðkÞ

��� ���, k=1, 2, . . . , n.

So,

• MAPE= 1
n ∑

n

k=1
Δk, MAE= 1

n ∑
n

k=1
εð1ÞðkÞ, MSE= 1

n ∑
n

k=1
ðεð1ÞðkÞÞ2.

We compare our GVELM with five state-of-art algorithms: Grey Verhulst
(GV) [4], Exponential Smoothing (ES), ARIMA, Verhulst-BP [12], and
Verhulst-SVM [13]. Tables 2, 3, 4, 5, 6, 7, 8 and 9 list the comparison results of 8
news topics. It should be noted that optimal value of ES and ARIMA is showed in
expert model.

From Tables 2, 3, 4, 5, 6, 7, 8 and 9, we can find that the proposed model
achieves better prediction accuracy than other models. It is also worth to notice that
the range of the prediction error by Verhulst—BP is worse due to BP always need a
large number of training data, however hot topic is the nature of the short life cycle
with sparse samples. Verhulst—SVM is not so good because it is likely to fall into
suboptimal values. At the same time, as the linear processing Verhulst cannot
represent the time-varying nonlinear dynamics underlying hotness prediction pre-
cisely. From the above experiments, we can conclude that proposed algorithm can
better represent dynamics short-time series characterized by nonlinearity and
short-term time series samples.
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Table 1 Original data of 8 topics

Time
series

NKLS USFCS MGG ZPB USGS CRRSK RWGP UDAN

1 310,296 6669 9481 564 1652 208 725 17,861
2 1001,373 13,733 26,621 854 3419 319 1254 36,438
3 1665,051 18,385 63,793 2157 6416 654 1997 58,546
4 1744,956 25,813 116,006 5649 10,263 1256 2854 85,424
5 1875,550 30,509 157,578 10,503 15,880 2072 3795 125,713
6 1920,620 33,736 178,157 22,952 23,535 3219 4574 182,665
7 1965,291 34,579 185,985 45,247 33,271 4518 5659 250,164
8 1971,032 35,913 188,658 70,245 41,069 5524 6420 316,510
9 2016,361 36,289 189,535 96,789 46,867 6256 6905 367,556
10 2084,417 36,683 189,820 105,614 49,597 6785 7344 403,874

11 2126,428 36,819 189,912 115,423 51,761 7121 7675 448,563
12 2132,204 37,072 189,942 122,548 53,792 7302 7835 468,257
13 2159,912 37,127 189,951 128,245 54,514 7569 8031 476,552
14 2195,116 37,289 189,954 131,598 55,246 7643 8198 481,276
15 2218,435 37,359 189,955 134,672 55,895 7701 8235 487,764
16 2222,316 37,397 189,955 134,964 56,386 7756 8307 496,725
17 2224,009 37,412 189,956 135,447 56,774 7798 8384 499,141
18 2225,109 37,498 189,956 135,910 60,183 7825 8421 512,766

Table 2 MAPE, MAE and MSE in NKLS news compared with 5 state-of-art algorithms
(Superscript represents the ranking)

Topic 1—NKLS MAPE
(%)

MAE
(104%)

MSE
(106%)

Model 1 Grey Verhulst 6.67(5) 14.81(5) 21952.08(5)

Model 2 and Model 3’s
optimal value

Expert model
(ES\ARIMA)

2.72(2) 6.04(2) 5003.58(2)

Model 3 Verhulst—BP 4.60(4) 10.21(4) 10539.53(4)

Model 4 Verhulst—SVM 3.99(3) 8.86(3) 7965.75(3)

Model 5 GVELM 2.71(1) 5.99(1) 3733.85(1)

Table 3 MAPE, MAE and MSE in USFCS news compared with 5 state-of-art algorithms

Topic 2—USFCS MAPE MAE MSE

Model 1 Grey Verhulst 1.26(4) 0.05(4) 0.23(4)

Model 2 and Model 3’s
optimal value

Expert model
(ES\ARIMA)

0.70(2) 0.02(2) 0.08(2)

Model 3 Verhulst—BP 1.57(5) 0.06(5) 0.35(5)

Model 4 Verhulst—SVM 0.89(3) 0.03(3) 0.1(3)

Model 5 GVELM 0.27(1) 0.01(1) 0.02(1)
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Table 4 MAPE, MAE and MSE in MGG news compared with 5 state-of-art algorithms

Topic 3—MGG MAPE MAE MSE

Model 1 Grey Verhulst 1.66(5) 0.32(5) 10.29(5)

Model 2 and Model 3’s
optimal value

Expert model
(ES\ARIMA)

0.09(2) 0.02(2) 0.032(2)

Model 3 Verhulst—BP 0.12(3) 0.02(3) 0.59(3)

Model 4 Verhulst—SVM 0.71(4) 0.14(4) 1.88(4)

Model 5 GVELM 0.06(1) 0.01(1) 0.02(1)

Table 5 MAPE, MAE and MSE in ZPB news compared with 5 state-of-art algorithms

Topic 4—ZPB MAPE MAE MSE

Model 1 Grey Verhulst 4.15(5) 0.56(4) 31.57(4)

Model 2 and Model 3’s
optimal value

Expert model
(ES\ARIMA)

3.49(4) 0.47(3) 33.15(5)

Model 3 Verhulst—BP 2.34(2) 0.32(2) 13.77(2)

Model 4 Verhulst—SVM 2.78(3) 0.38(3) 14.35(3)

Model 5 GVELM 0.72(1) 0.09(1) 0.99(1)

Table 6 MAPE, MAE and MSE in USGS news compared with 5 state-of-art algorithms

Topic 5—USGS MAPE MAE MSE

Model 1 Grey Verhulst 1.74(4) 0.05(4) 0.23(4)

Model 2 and Model 3’s
optimal value

Expert model
(ES\ARIMA)

0.87(3) 0.02(3) 0.08(3)

Model 3 Verhulst—BP 3.559(5) 0.0976(5) 0.96(5)

Model 4 Verhulst—SVM 0.36(1) 0.01(1) 0.01(1)

Model 5 GVELM 0.37(2) 0.01(1) 0.02(2)

Table 7 MAPE, MAE and MSE in CRRSK news compared with 5 state-of-art algorithms

Topic 6—CRRSK MAPE MAE MSE

Model 1 Grey Verhulst 2.15(3) 0.017(3) 0.029(3)

Model 2 and Model 3’s
optimal value

Expert model
(ES\ARIMA)

5.41(5) 0.042(5) 0.238(5)

Model 3 Verhulst—BP 4.63(4) 0.035(4) 0.125(4)

Model 4 Verhulst—SVM 1.81(2) 0.014(2) 0.021(2)

Model 5 GVELM 1.54(1) 0.011(1) 0.017(1)
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4 Conclusion

Specific to hot news click rate short-term time series prediction, this paper proposes
GVELM model. In the first step, GV model is employed to create the initial
prediction outputs with n historic data. The predicted values are considered as prior
knowledge that inherit the inherent laws of the historical data based on GV model,
and successfully gets rid of the random noise which is very frequently occured in
short-time series. The next step is tactfully utilizes ELM to further minimize the
prediction error. Besides, a novel combined strategy is also a research highlight that
it is the first attempt to combine GV model with ELM.
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Model 1 Grey Verhulst 1.70(3) 0.86(3) 118.76(3)

Model 2 and Model 3’s
optimal value

Expert model
(ES\ARIMA)

1.19(2) 0.60(2) 52.84(2)

Model 3 Verhulst—BP 5.68(5) 2.52(5) 710.63(5)

Model 4 Verhulst—SVM 3.74(4) 1.88(4) 435.36(4)

Model 5 GVELM 1.07(1) 0.56(1) 35.66(1)
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Multiple Shadows Layered Cooperative
Velocity Updating Particle Swarm
Optimization

Hongbo Wang, Kezhen Wang and Xuyan Tu

Abstract In real-time high dimensions optimization problem, how to quickly find
the optimal solution and give timely response or decisive adjustment is very
important. Inspired by space projection behavior, this paper suggests a new PSO
variant, Multiple-shadows Layered Cooperative Velocity Updating Particle Swarm
Optimization (ML-CVUPSO) that involves visual instructive projections among
multiple shadows. According to several different views, the original problem can be
divided into different relevant characteristic sub-problems after feature extraction.
The ML-CVUPSO provides a flexible and feasible decomposed mechanism to
simplify the high dimensions problem into a series of tractable sub-problems. The
proposed variant is examined on several widely used benchmark functions, and the
experimental results show that the proposed ML-CVUPSO algorithm improves
the existing performance of other algorithms when dealing with the high dimension
and multimodal problems.

Keywords PSO ⋅ Multiple-shadows layered ⋅ Decomposable mechanism

1 Introduction

Particle swarm optimization (PSO) is a relatively new heuristic algorithm which
was originally proposed by Kennedy and Eberhart in the mid-1990s [1]. It is one
kind of evolutionary algorithm and inspired by the concerted actions of flocks
among birds for food in a cooperative way. As an important branch of swarm
intelligence, PSO has attracted public attention from many research areas or

H. Wang (✉) ⋅ K. Wang ⋅ X. Tu
Department of Computer Science and Technology, School of Computer and Communication
Engineering, University of Science and Technology Beijing, Beijing,
People’s Republic of China
e-mail: foreverwhb@ustb.edu.cn; foreverwhb@126.com

© Springer International Publishing AG 2018
J. Cao et al. (eds.), Proceedings of ELM-2016, Proceedings in Adaptation,
Learning and Optimization 9, DOI 10.1007/978-3-319-57421-9_9

99



communities, and it has been implemented in various scientific and engineering
applications, such as web marketing content [2], traveling salesman problem [3],
evaluating the collective user feedback [4], designing large-scale passive harmonic
filters [5]. In recent years many variants of PSO have been proposed and can
be attributed to two directions: (1) expanding the searching scope [6, 7] and
(2) reducing the computational complexity [8, 14–23].

The remainder of this paper is organized in the following. Section 2 systemat-
ically sets forth the novel ML-CVUPSO variant from multiple perspectives. Sec-
tion 3 makes comparative experiments on some well-known benchmark functions
in CEC2015 and analyzes the related experimental results. Conclusions are made in
Sect. 4.

2 Multiple Shadows Layered CVUPSO

Multiple Shadows Layered Cooperative Velocity Updating Particle Swarm Opti-
mization algorithm (ML-CVUPSO), which provides a layered mechanism to sim-
plify the high dimensions and divided the problem into several low dimensions
sub-problems to decrease the number of operation iterations and save the operating
time. It uses Cooperative Velocity Updating Particle Swarm Optimization [9],
which is an improved PSO variant and good at solving complex problems.

2.1 The Shadows Layered Mechanism

Assuming a target is a D dimensions problem, the optimization function is f ðxÞ,
where x= ½x1, x2, x3 . . . xD� indicates it’s all the possible solutions. The progress of
finding the optimal feasible solution x* can be also described as choosing one
position which makes the value of the function f smallest or biggest in the space
RD. As to all the PSO variants, it is hard to find the best solution x*, what we get is
always an acceptable result, especially to the high dimensions problems. For the
actual optimal problem, different variables affect the final results with different
weight and the all variables can be shadowed into different view-planes. Usually the
number of the planes should be in a range and the detail value of G is shown in
Formula (1). If the G is too big, the complexity may be increased and vice versa, if
the G is too small, the effect will be not evident.

3≤G≤ ⌊logD2 ⌋ ð1Þ

When G equals to 3, the original optimal result x will be divided to three
shadows in Formula (2), namely.
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xA = ½x1, x2, . . . , xA�,
xB = ½xA+1, xA+2, . . . , xB�,
xC = ½xB+1, xB+2, . . . , xD� ,
x= xA + xB + xc

ð2Þ

To explore the optimum equals to pursue of respectively. In the process of
iterations, whether the results are better or not should be judged by the optimal
function, which involves some inherent questions with a D dimensions solution
space. xA, xB, xC are assumed as three projection vectors, when the function f is
observed from plane xA, fA is a reflection of f and xsubA = ½x1, x2, . . . , xB, 0, 0, . . . 0�
becomes the related subset of x. Also if f is observed from plane xB or xC,
xsubB = ½0, 0, . . . , xA+1, xA+2, . . . , xC, 0, 0, . . . 0� or
xsubC = ½0, 0, . . . , xB+1, xB+2, . . . , xD� will be related subsets of x, its fitness function
becomes fB and fC, respectively. The process is shown as Fig. 1.

The original problem has three projections (shadows) plane xA, xB, xC, one
original is divided into three characteristic sub-problems after feature extraction, the
relationship between the original problem and its sub-problems is shown in

Fig. 1 High dimensional function projection diagram
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Formula (3), α, β, γ are numerical (or vector) constant coefficients. There are two
kinds of situations:

Situation 1: if these sub-problems are independent, the original problem is equal
to the sum of sub-problems, the value of the α, β, γ would be set to 1.0. The layered
mechanism makes it easily to handle the problem of high dimension and
multi-attribute complex data.

Situation 2: if the sub-problems are not independent, the original problem is not
equal to the sum of sub-problems; however, if the optimum of sub-problem for
example fA is appropriated between the dimensions 1 and A of problem f , so the
combination of sub-problems is also a reflection of the original problem, especially
the subgroup is divided by the weight of every dimension. The value of the α, β, γ
will be generated by the s-shaped functiorespectively.

f ðxÞ≈ αfA + β fB + γ fC

fAðxAÞ= f ðxsubA Þ
fBðxBÞ= f ðxsubB Þ
fCðxCÞ= f ðxsubC Þ

ð3Þ

2.2 Cooperative Velocity Updating Algorithm

Cooperative Velocity Updating Particle Swarm Optimization is a developed algo-
rithm (CVUPSO) [9], which records four special positions ðpbest, lbest,
gbest, lworstÞ to describe or remember where it is along with its own evolutionary
process. Considering a swarm with m sub-swarms, personal best position ðpbestÞ
represents the current particle’s best position, the best position which is found in this
sub-swarm is called local best position ðlbestÞ, the best position which is found in the
whole swarm is called global best position ðgbestÞ and local worst position ðlworstÞ is
the position of the particle with the worst performance. In the early stage of evolution,
the particles know little about the population, they get progress through their own
experiences and the direction of local best, but in the later stage, all sub-swarm come
closer, the global best will become stabilized gradually, the particles tend to learn
more information from the gbest rather than lbest. Using such four positions, a
cooperative velocity updating strategy is developed. Compared with SPSO [1], the
updating approach of velocity has been changed, for each particle in the population;
the velocity updating strategy is given by formula (4):

Vk+1
i =w×Vk

i + c1 × random1 × ðpbesti −Xk
i Þ+ c2 × random2 × ð1− k

itermax
Þðlbest −Xk

i Þ

+ c2 × random3 ×
k

itermax
× ðgbest−Xk

i Þ

ð4Þ
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where Vk
i is the current velocity of particle i at iteration k, w is the iteration weight,

c1 and c2 are the acceleration coefficients, random1 and random2 are between 0 and
1 at random. Xk

i denotes the current position of particle i at iteration k,pbesti is the
best value of particle i, lbesti is the best evaluation among j− th sub-swarm, gbest
representatives the best value among the whole swarm, lbest is the worst. The
updating strategy of inertia weight is between 0 and 1 at random.

2.3 The Procedures of ML-CVUPSO

In ML-CVUPSO, the main steps are the decomposing and combining operation,
how to divide lot of attributes of the problem into suitable groups is a heart of the
matter, the basic process of the ML-CVUPSO is shown below Table 1.

Table 1 Pseudo code of the ML-CVUPSO

1 Begin
2 Set Parameters D, size of the swarm S and w, r1, r2, c1, c2
3 Ini alize the posi on P(S,D), the velocity V(S,D)
4 Decide the value of the group number G
5 Divide the original problem into G shadow sub-problems
6 Define the func on of the sub-problems FA,FB,…FG

7 For problem Fi from FA to FG

8 Redefine the posi on Pi and velocity Vi

9 Set the sub-par cle swarms nn
10 Set the best par cle pbest, gbest, lbest equals Infinity
11 For i=1:max integra ons
12 Calculate the Fitness Fiti

13 For each sub-par cle swarm 1:nn
14 For each par cle 1:S/nn
15 If fitness is b er than pbest
16 Update the pbest
17 End 
18 Find the best par cle PP in sub-par cle swarm
19 IF PP is be er than the lbest
20 Update lbest
21 End
22 Find the min Fit and the corresponding par cle PPP
23 If PPP is good than gbest
24 Update gbest
25 Find the max Fit and the corresponding worst QQQ
26 Throw QQQ
27 Random generate a new par cle
28 Velocity_update()
29 Posi on_update()
30 End
31 Record the results of the sub-problem 
32 End
33 Combine all the sub-problems results: 
34 Get the final posi on GBA p...ppp +++=
35 Calculate the final fitness F(P)
36 End
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In Table 1, N dimension is divided into three shadows. The Variable X is the
position of particle, Variable V denotes its velocity, Variable G representatives the
amount of integration, Variable n is the amount of particles used in sub-problems
and Variable nn is the number of sub-swarms. In entire operation process,
orthogonal projection resolution method is used by three shadows. In addition,
some concise results are obtained by the three injection vectors (planex planey and
planez) on the subspace, the final optimal solution comes out.

3 Experimentation

A set of 10 well-known benchmark functions has been selected for performance
verification of the ML-CVUPSO. The layered mechanism is based on the weight of
the different dimension, there are some adjustments to the test functions, giving top
10 dimensions a same weight of 100, intermediate 10 dimensions a same weight of
0.01, and final 10 dimensions a same weight of 10e-6. Then the test function can be
divided into three stages: 1–10 dimensions (weighted planex), 11–20 dimensions
(normal weighted planey) and 21–30 dimensions (less weighted planez). The CPU
time consumed by the variant execution is used to measure its complexity. The
following relevant experiments are described briefly, in which the proposed
ML-CVUPSO variant is compared with the UPSO [10], SPSO, CLPSO [11],
MCPSO [12] and AFPSO [13].

3.1 Experimental Setting and Parameterization

Experimental environment configuration: (1) Operating system: Windows 7;
(2) Minimum memory: 1G; (3) Processor Type: Intel Core; (4) Development
toolkits: Matlab 7.1. There are some parameters for each particle swarm variant,
(1) Population size S: the number of particles of all particle swarm algorithm is set
to 80; (2) The number and scale of sub-swarm: For multiple-swarm variants
(MCPSO, CVUPSO-E, CVUPSO-R), the number of sub-swarm is unified set to 10,
which contains 8 particles in each subgroup; (3) Accelerator coefficient: c1 =
c2 = 2.05, c3 = 10; (4) Maximum speed: Set to half of the search range;
(5) Maximum iterations are determined by the complexity of the problem; (6) ex-
periments: 30 times.

3.2 Computational Results and Discussion

In each test function, the difference between the theoretical and the actual optimal
value is recorded, at the same time the CPU running also is taken down.
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Table 2 describes the mean difference in ten test functions by using SPSO,
ML-CVUPSO, UPSO, AFPSO, CLPSO and MCPSO variants, in order to distin-
guish the quality of various methods, there are a summary of the data and highlight
the better performance with bold and underline, which shows that ML-CVUPSO
performances well in 80% of the test functions, the layered mechanism is available
to get the same accuracy. It is also helpful to get good scores in some test functions,
such as F1, F7, F8 and F9.

Table 3 describes the mean CPU time in ten test functions by using SPSO,
ML-CVUPSO, UPSO, AFPSO, CLPSO and MCPSO variants, in order to distin-
guish the quality of various methods, and it makes a summary of the data and
highlight the better performance with bold and underline. Figure 2 shows that
ML-CVUPSO can save the CPU time in most of the test functions, especially in
F4–F9. From the peak characteristics of the test functions, if the test problem is
relative puzzle, the improvement is more obvious for F10.

To determine whether the ML-CVUPSO is more effective than the others, a
statistical method need detect the results of CPU time, namely paired T-test, paired
F-test and Wilcoxon matched-pairs signed-ranks test. T-test is used to compare
group means, F-test is used to determine whether the 30 independent experiments’
results are typical, Wilcoxon matched-pairs signed-ranks test is a non-parametric
test employed in hypothetical testing situation involving two samples, it is a
pair-wise test that can be used to detect significantly differences between the
behavior of ML-CVUPSO and UPSO, CLPSO, AFPSO, CVUPSO, usually there is
a level of significance α=0.05, if the data in T-test and F-test is less than α, a cell
will mark it with ‘+’, on the contrary, the cell will mark it with ‘−’. The percent of
the ‘+’ during all the results is the effectiveness of the ML-CVUPSO in handing the
test problems, for example, as to the test problem 1, only one values (numbers of
minus ‘−’) greater than 0.05, 9 (numbers of plus ‘+’) are less than 0.05, which
shows the effectiveness of the ML-CVUPSO method in handling Sphere problem is
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Fig. 2 The convergence
curve of F10 test functions
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9/10, equivalent to about 90%. The result of T-test, F-test and Wilcoxon matched-
pairs signed ranks test on ML-CVUPSO is shown in Table 4. All the percent is
over 50%, which means the experiments are reliable and universal, the
ML-CVUPSO really has good performance in reducing the computational com-
plexity and running time.

Table 4 T-test, F-test and Wilcoxon-test

#/Rate
(%)

Test SPSO UPSO AFPSO CLPSO MCPSO

F1/
90

T 1.34866E-06 0.080224783 2.87622E-16 1.2332E-05 0.00023887
F 1.76837E-28 5.42422E-06 3.9174E-125 2.34217E-08 7.4543E-166
T/F +/+ −/+ +/+ +/+ +/+

F2/
80

T 0.000745423 2.12505E-16 1.97108E-17 0.297768395 7.76308E-07
F 0.008705642 4.47317E-06 3.97266E-08 0.225238214 0.038799576
T/F +/+ +/+ +/+ −/− +/+

F3/
70

T 0.057563588 1.01642E-11 1.15304E-22 0.05743728 2.20472E-19
F 5.2298E-100 0.109692599 4.13469E-07 0 0.004298327
T/F −/+ +/− +/+ −/+ +/+

F4/
80

T 0.012597979 3.34647E-07 3.22774E-21 6.91582E-20 0.023828248

F 0.108272489 0.648845764 0.209814828 2.39754E-11 0.01528636
T/F −/− +/− +/− −/+ +/+

F5/
50

T 0.012597979 3.34647E-07 3.22774E-21 6.91582E-20 0.023828248
F 0.108272489 0.648845764 0.209814828 2.39754E-11 0.01528636
T/F −/− +/− +/− −/+ +/+

F6/
80

T 1.69648E-09 0.161656977 6.91346E-13 0.440754994 3.8839E-08
F 2.77967E-09 9.11746E-09 8.279E-113 6.34169E-25 1.6258E-128
T/F +/+ −/+ +/+ −/+ +/+

F7/
70

T 0.4731499 0.107302255 1.04091E-06 0.296344179 1.56013E-06
F 1.9493E-08 2.59279E-14 1.0067E-105 7.33827E-12 1.53852E-79
T/F −/+ −/+ +/+ −/+ +/+

F8/
60

T 0.016657919 1.11031E-05 0.001568662 1.46045E-23 0.080557893
F 1.5045E-43 0.434801791 0 0.414002901 6.9597E-272
T/F +/− +/− +/+ +/− −/+

F9/
70

T 0.051543305 3.96349E-32 2.86293E-31 2.49576E-21 1.94659E-17
F 0.11428693 0.000441478 2.20224E-05 4.69588E-08 0.468893773
T/F −/− +/+ +/+ +/+ +/−

F10/
60

T 0.163498263 0.162329238 2.18093E-19 0.162790994 6.01318E-08
F 1.80545E-75 1.67005E-66 2.58358E-94 1 5.98595E-41
T/F −/+ −/+ +/+ −/− +/+
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4 Application

Car or Vehicle Routing Problem (CVRP) is a kind of flow optimization in the
process of logistics distribution. There are 8 customers, one distribution centers, and
two vehicles (8 ton-loaded). The distance between customers and the demand of
each customer is shown in Table 5. The total iteration number is 30, and the final
result is 67.5. The corresponding transport model is shown in Fig. 3. This is
consistent with the known results, proving that the real encoding ML-CVUPSO is
effective in solving the CVRP problem.

In order to demonstrate the superiority of ML-CVUPSO in solving CRVP
problem, we also apply other variants with the same encoding mechanism into
CRVP. The specific algorithms are SPSO, UPSO, CLPSO, AFPSO and CVUPSO.
All variants will be used to solve the benchmark instances of Augerat. According to
the different dimensions of benchmark instances, the population size and the

Table 5 Distance between customers and the demand

Customer# 0 1 2 3 4 5 6 7 8

0 0 4 6 7.5 9 20 10 16 8
1 4 0 6.5 4 10 5 7.5 11 10
2 6 6.5 0 7.5 10 10 7.5 7.5 7.5
3 7.5 4 7.5 0 10 5 9 9 15
4 9 10 10 10 0 10 7.5 7.5 10
5 20 5 10 5 10 0 7 9 7.5
6 10 7.5 7.5 9 7.5 7 0 7 10
7 16 11 7.5 9 7.5 9 7 0 10
8 8 10 7.5 15 10 7.5 10 10 0
Demand(tons) 0 1 2 1 2 1 4 2 2

Fig. 3 Small scale CVRP of eight customers transport route model
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number of iterations will be adjusted accordingly. All experiments are conducted
under the unified test environment: windows7 32 bit system, Matlab7.1.

In the Augerat benchmark instances (6/class A, 4/class B, 30 independent
experiments), the best vehicle path and the distance needed for each experiment are
recorded. Table 6 shows the average value of the thirty tests, which shows that the
ML-CVUPSO is better than the other existing PSO variants in solving the CVRP
application problem.

5 Conclusion

Particle swarm optimization is a global meta-heuristic that has shown its good
performance in optimizing a wide range of problems. However, in real-time high
dimensions environment, how to quickly find the optimal solution and give timely
response or decisive adjustment is very important. Inspired by space projection
behavior, in order to accelerate the speed of convergence and get timely satisfying
solution, a Multiple-shadows Layered Cooperative Velocity Updating PSO
(ML-CVUPSO) is proposed in this paper. The ML-CVUPSO provides a shadows
layered projection mechanism to evaluate the weight of each dimension and divide
them into some independent groups according to the different views (plane
xA, xB, xc . . .), then the original high dimension problem turns to serval relevant
characteristic sub-problems by feature extraction. The results solved by CVUPSO
compose the final result. The proposed ML-CVUPSO is examined on ten widely
used benchmark functions and it displays a good performance. The proposed
algorithm appears to be especially efficient in decreasing the operation time for the
high dimension and multimodal problems.
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Short Term Prediction of Continuous Time
Series Based on Extreme Learning Machine

Hongbo Wang, Peng Song, Chengyao Wang and Xuyan Tu

Abstract Extreme Learning Machine (ELM) is a popular tool of machine learning,

which has been used in many fields. Time series prediction is usually a complex

problem without related parameters or features. In this paper, a prediction method

for continuous time series based on the theory of extreme learning machines is pro-

posed, which focus on short term prediction of continuous time series. Firstly, the

ST-ELMpredicting model is constructed. Then the ways of training and predicting

is analyzed. ST-ELM uses time series and predicted value to adjust itself. Mackey-

Glass and Lorenz time series have been used as example for demonstration. It is

showed this method can predict continuous time series timely and accurately with-

out related parameters or features of time series.

Keywords Extreme learning machine (ELM) ⋅ Time series prediction ⋅ Machine

learning

1 Introduction

Time series prediction is a common problem, and has a lot of application areas like

signal processing, pattern recognition, econometrics, mathematical finance, weather

forecasting [1]. But time series analysis is a complex problem which makes linear

prediction methods useless. Hence, some nonlinear prediction methods have been
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proposed including ARMA model [2], stationary process [3] and so on. Neural net-

work [4] has been used in the area of time series prediction successfully. Neural

network use descent method to get solution by adjusting network weights. It needs

training a lot to update weights according to the errors. But the neural network has

its disadvantages, for example, the multiple local minima problem, the over fitting

etc., which make it difficult for some practical application.

The researchers also use support vector machine [5, 6] regression to solve the

problem of time series prediction, which also achieved some results.

ELM trains easily when we have inputs and outputs, we can test its accuracy with

train data and test data. And it is worth mentioning that we don’t need to adjusting

its parameters while training and predicting. In this paper, we use ELM in short term

time series prediction, which is timely, effective and simple.

2 Methodology

2.1 Time Series

Recording the process of the development of random events according to the order

of time, which constitutes a time series. Time series analysis comprises methods for

analyzing time series data in order to extract meaningful statistics and other charac-

teristics of the data. Time series forecasting is the use of a model to predict future

values based on previously observed values.

From a mathematical point of view, the time series can be expressed as:

{xt, t = 1, 2,… ,N} (1)

Here t represents a moment or a time, xt represents the value of t time (moment).

The time series prediction is mainly based on the principle of continuity. The con-

tinuity principle means that the development of objective things has a regular con-

tinuity, and the development of objective things has a regular continuity, and the

development of things is based on the inherent law of it. As long as the law depends

on the conditions of the time series do not have qualitative change, then the basic

development trend of things in the future will continue to go on. A basic method is

arithmetic mean method, which is predicting next value based on the simple arith-

metic mean of the history data. It can be computed as follows:

xn+1 =
1
n

n∑

i=1
. (2)
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2.2 Extreme Learning Machine

Extreme Learning Machine (ELM) is a simple and effective algorithm for training

the single-hidden layer feed-forward neural networks (SLFN) proposed by Huang

et al. in 2004 [7]. ELM randomly generated input layer weights and hidden layer

node bias, calculating the weights of the output layer. Huang proved that ELM has

uniform approximation ability as SLFN [8].

There are P group samples, each with a N column input, expressed as:

xt = {xi1, xi2,… , xiN , i = 1, 2,… ,P} (3)

M column target output, expressed as:

ti = {ti1, ti2,… , tiM , i = 1, 2,… ,P} (4)

The number of nodes in the input layer and the number of nodes in the output

layer are determined by the training samples. The hidden layer node number L is

given by manmade, generally L ≤ P, activation function is set to g(x). Its network

structure is shown in the following figure (Fig. 1).

In fact, in the ELM algorithm, the input layer to the hidden layer is a random

mapping, which maps the training set of samples from the original space to a feature

space. The dimension of feature space is determined by the number of hidden layer

nodes. In general, the dimension of the feature space is higher than that of the original

space. Compared with other SLFN training algorithms, the advantage of ELM does

not need to adjust the weight parameters and has a very fast learning speed and a

very good generalization ability.

Fig. 1 Extreme Learning Machine Networks. wij indicates the connection weights of the i input

layer nodes to the j hidden layer nodes, the matrix W is the input weight matrix, which is initialized

random. 𝛽jk indicates the connection weights of the j hidden layer nodes to the node of the k output

layer, and the matrix B is the output weight matrix, which is obtained in the training process. For

each hidden layer node, there is a corresponding threshold value bj, which is initialized random



116 H. Wang et al.

The training model can be expressed as:

tl =
L∑

j=1
𝛽jgj(wjx + bj), l = 1, 2… ,P (5)

These p equations can be expressed as a form of matrix multiplication: The training

model can be expressed as:

HB = T (6)

H =
⎡
⎢
⎢⎣

g(w1x1 + b1) … g(wLx1 + bL)
⋮ ⋱ ⋮

g(w1xp + b1) … g(wLxP + bL)

⎤
⎥
⎥⎦P×L

,B =
⎡
⎢
⎢⎣

𝛽

T
1
⋮
𝛽

T
L

⎤
⎥
⎥⎦L×M

,T =
⎡
⎢
⎢⎣

tT1
⋮
tTP

⎤
⎥
⎥⎦P×M

H represents the hidden layer output matrix of ELM. Huang proves that if the acti-

vation function is infinite differentiable, the W and B do not need to be adjusted. We

only need to solve the output weight matrix B, which can meet the target output with

a minimum error approximation. The solution of B generally expressed as:

B = H†T (7)

H†
is the pseudo inverse (Moore-Penrose) of the hidden layer output matrix H. Thus,

ELM can be summarized as follows:

Given a training set (xt, ti), which (i = 1,… ,P), xi = [xi1,… , xiN] ∈ Rn
,

ti = [ti1,… , tiM] ∈ Rm
, activation function g(x), input nodes number N, output nodes

number M, hidden nodes number L(L ≤ P).

∙ Step1: Assign arbitrary input weight matrix W, and bias matrix B.

∙ Step2: Calculate the hidden layer output matrix H.

∙ Step3: Calculate the output weight matrix B.

3 ELM for Short Term Prediction of Continuous Time
Series(ST-ELM)

3.1 Problem Description

A continuous time series is an array of values, which samples usually comes from

a dynamic systems output. It is assumed that neither of state of dynamic system is

measurable nor the equation describing is known. If the dynamic system is determin-

istic, we can try to predict the time series based on ELM. The purpose is to predict

values only use time series itself.
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Fig. 2 A Continuous time series

We assume that we have a time series, which sampled every T and we do not

know its features, expressed as x(T), x2(T),… , xNT . Then we already know N data,

and we need predict {x(N+1)T ,… , x(N+Q)T}. Like formula (2), there are many one-

step prediction methods. However, it provides insufficient information. Thus we use

ELM to get Q steps to obtain {x(N+1)T , x(N+Q)T}.

For example, Fig. 2 is a continuous times series, which shows we already know

2000 values. The object is to predict next 500 values using these 2000 values.

And, a time series is usually continuous, which means it generates data all the

time. In some applications the prediction results are only useful in a short time, for

we can obtain the real data timely. So we need to determine predicted length Q,

history values for learning in order to obtain predicted values.

3.2 ST-ELM Model for Time Series Prediction

Consider a given set of N data P = {xt, t = 1, 2,… ,N}, predicted length Q, input

length L. Split P to build inputs and outputs of ELM in order to train, PH =
{x1, x2,… xN−L}, length N − L, and PL = {xN−L+1, xN−L+2,… , xN}, length L. Then

we set the training set as:

PI =
⎡
⎢
⎢⎣

x1 … xL
⋮ ⋱ ⋮

xN−L … xN

⎤
⎥
⎥⎦(N−L)×L

(8)
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And:

H =
⎡
⎢
⎢⎣

g(w1x1 + b1) … g(wLx1 + bL)
⋮ ⋱ ⋮

g(w1xN−L + b1) … g(wLxN−L + bL)

⎤
⎥
⎥⎦(N−L)×L

,PL =
⎡
⎢
⎢⎣

xN−L+1
⋮
xN

⎤
⎥
⎥⎦L×1

Thus, for ELM, we have PI as (N − L) inputs from PH. Because it is one dimensional

time series. The actual output of ST-ELM is one. Here is how ST-ELM works:

∙ Step 1: Use PI as inputs, use PL as outputs to train, get H and calculate B.

∙ Step 2: Use PL as inputs, get PreH, then calculate xn+1 = PreH ∗ B.

∙ Step 3: Use PI2 as inputs, use PL2 as outputs to train, get H2 and calculate B2.

Which H2, PI2, PL2 are as follows:

H2 =
⎡
⎢
⎢⎣

g(w1x1 + b1) … g(wLx1 + bL)
⋮ ⋱ ⋮

g(w1xN−L+1 + b1) … g(wLxN−L+1 + bL)

⎤
⎥
⎥⎦(N−L+1)×L

,

PL2 =
⎡
⎢
⎢⎣

xN−L+1
⋮

xN+1

⎤
⎥
⎥⎦(L+1)×1

,PI2 =
⎡
⎢
⎢⎣

x1 … xL+1
⋮ ⋱ ⋮

xN−L+1 … xN+1

⎤
⎥
⎥⎦(N−L+1)×L

∙ Step 4: Use PL2 as inputs, get PreH2, then calculate xn+2 = PreH2 ∗ B2.

∙ . . .

∙ Step 2 * Q: Use PLQ as inputs, get PreHQ, then calculate xn+Q = PreHQ ∗ BQ.

Then, we get a predicted series:

{xt, t = N + 1,N + 2,… ,N + Q}. (9)

3.3 ST-ELM Model Optimization

Since ST-ELM use predicted values as inputs, so it is less useful when Q becomes

longer. Thus the method is useful for a short term prediction. As mentioned in

Sect. 3.1, we can obtain the real data in a short time. Then we can replace the pre-

dicted values with real values to make it more accurate. We can see that with the data

set getting larger, we need larger quantity calculation. So we can set learning length

(History Length) as HL. After once or several predictions, especially when we get

real values of the predicted values. We can abandon the beginning data.

For example, when we know {xt, t = N + 1,N + 2,… ,N + Q}then we replaced

the predicted data with it, and abandon {xt, t = 1, 2,… ,Q}. Thus, we set HL = N.

In continuous time series, ST-ELM can keep running other than becoming slower

and less effective.
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4 Experimental Results and Discussions

4.1 For Mackey-Glass Time Series

In this section, we use data sets generated by the Mackey-Glass showing the effec-

tiveness of using ST-ELM for time series prediction. We generate data by numeri-

cally integrating the Mackey-Glass time delay differential equation [9].

dx(t)
dt

= −hx(t) +
gx(t − 𝜏)

1 + x10(t − 𝜏)
(10)

When 𝜏 < 17, Eq. (10) generate a chaotic time series prediction. We use parame-

ter g = 0.2, h = 0.1, 𝜏 = 18 and initial condition y = 0.72.The values are shown in

Fig. 3.

Now we use N = 1000,L = 15,Q = 100, hidden layers=20, g(x) uses Sigmoid.

The predicted, desired values, RMSE of Mackey-Glass series as follows in Figs. 4

and 5.

4.2 Optimized ST-ELM

In continuous time series, usually we can obtain data instantly. In this section, we

update the predicted value with real value to train ST-ELM.

For Mackey-Glass time series above with same parameters. For example, when

we predicting 1002th value, we use real 1001th value instead of predicted 1001th

value. The predicted, desired values, RMSE as follows in Figs. 6 and 7:

Fig. 3 Mackey-glass time series 𝜏 =18
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Fig. 4 The predicted and desired values. It shows ST-ELM performs well at the beginning. when

predicted length gets longer, the predicted trend moves away from desired values gradually. It is

because we use predicted values as inputs, which lends additional uncertainly

Fig. 5 RMSE,which appearances the same when RMSE getting larger. RMSE remains a low value

before about fiftieth predicted value

From Figs. 6 and 7, we can see that it is more accurate than Figs. 4 and 5. Predic-

tion does not appear move away and RMSE remains a small value.

Then, we use data sets generated by the Lorenz equation [10] showing the effec-

tiveness of using ST-ELM for time series prediction.We generate data by equation:

⎧
⎪
⎨
⎪⎩

dx
dt

= 𝜎(y − x)
dy
dt

= x(𝜌 − z) − y
dz
dt
= xy − 𝛽z

(11)
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Fig. 6 The predicted and desired values of Mackey-Glass

Fig. 7 RMSE of Mackey-Glass

When 𝜌 = 28, Eq. (11) generate a chaotic time series prediction. We use common

parameter 𝛽 = 8∕3, 𝜌 = 28, 𝜎 = 10 and initial condition x0 = y0 = z0 = 0.1. Figure 2

of Sect. 3.1 shows x component of Lorenz times series.

Now we use its x component,N = 2000,L = 2,Q = 500, hidden layers= 20, g(x)
uses Sigmoid. the predicted, desired values and RMSE of Lorenz time series as fol-

lows in Fig. 8.

Figures 8 and 9 shows that ST-ELM is also useful for Lorenz time series with

high accuracy.

Since the Mackey-Glass time series and Lorenz time series is nonlinear and

chaotic, which has no clearly period and will not diverge or converge. So the predic-

tion of these series is a benchmark problem.
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Fig. 8 The predicted and desired values of Lorenz

Fig. 9 RMSE of Lorenz

4.3 For Signal Generated by sinc

In this section, we use data sets generated by function sinc. We generate data by

equation:

sinc(x) = sin(x)
x

(12)

It is similar with sample1 presented by Huang, and we use the same values as the

sample, but we only use the outputs (time series of sinc) to predict next values. In

sample1, we have 5000 values of sinc, now we use Optimized ST-ELM to predict

the signal.
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Fig. 10 The predicted and desired values of signal

Fig. 11 RMSE of signal

Now we use N = 1000,L = 15,Q = 1500, hidden layers= 20, g(x) uses Sigmoid,

the predicted, desired values, RMSE of Signal (sinc) as follows in Figs. 10 and 11.

5 Application of Traffic Flow Prediction in Metro

Traffic flow prediction is a fundamental problem in transportation modeling and

management. In this section we use ST-ELM to predict traffic flow in Beijing Metro.

we use data of the website of Beijing subway from 2013 to 2015, which consists
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Fig. 12 Part of daily passenger volume of Beijing subway

Fig. 13 The predicted and

desired values of line 1

of daily passenger volume. Figure 12 shows part of the daily passenger volume of

Beijing subway. We use the ST-ELM to predict last 90 days’s passenger volume.

Figures 13, 14, 15 and 16 show the predicted and desired values of each line,

Fig. 17 shows the RMSE of each prediction. We can see that the accuracy is obtain-

able.
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Fig. 14 The predicted and

desired values of line 2

Fig. 15 The predicted and

desired values of line 5

Fig. 16 The predicted and

desired values of line 6



126 H. Wang et al.

Fig. 17 RMSE of line 1, 2,

5, 6

6 Conclusions

In this paper, ST-ELM is used for continuous time series prediction. The Lorenz

and Mackey-Glass time series has been used as examples for demonstration. The

results show that the prediction method using ST-ELM is suitable for a short term

prediction. And if updates the history values with desired values, it is more accurate.

ST-ELM is quite accurate and do not need to know models or other information of

time series, and input weight matrix W, bias matrix B are assigned arbitrarily. In this

paper we use random values in [−1, 1]. Hidden layers is set to 20, input number L is

15 in Mackey-Glass time series and 2 in Lorenz time series. Although the number

of hidden layers and inputs do lead to different accuracy for different time series. We

believed that the ST-ELM can be used to other continuous especially chaotic time

series.At last we applied into traffic flow prediction in Metro and have some results.

Acknowledgements The Project Supported by the National Natural Science Foundation of China
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Learning Flow Characteristics Distributions
with ELM for Distributed Denial of Service
Detection and Mitigation

Aapo Kalliola, Yoan Miche, Ian Oliver, Silke Holtmanns, Buse Atli,
Amaury Lendasse, Kaj-Mikael Bjork, Anton Akusok and Tuomas Aura

Abstract We present a methodology for modeling the distributions of network flow

statistics for the specific purpose of network anomaly detection, in the form of Dis-

tributed Denial of Service attacks. The proposed methodology offers to model (using

Extreme Learning Machines, ELM), at the IP subnetwork level (or all the way down

to the single IP level, if computations allow), the usual distributions of certain net-

work flow characteristics (or statistics), and then to use a One-Class classifier in the

detection of abnormal joint flow statistics. The methodology makes use of the orig-

inal ELM for its good performance to computational time ratio, but also because

of the needs in this methodology to have simple update rules for making the model

evolve in time, as new traffic and hosts come in.

1 Introduction

Distributed denial-of-service (DDoS) attacks are a present and increasing threat [1]

to the availability of networks and internet services. Solutions such as global scale

distribution of a service can be effective in mitigating large DDoS attacks, but there

are many use cases, such as the telco cloud, where a network or service needs

to be protected on a local scale. Defences against DDoS attacks are commonly

largely based on signature based detection and mitigation. While this can be effec-

tive against known attack patterns, it is vastly preferable for the defence mechanism

to autonomously learn to differentiate between normal and attack traffic patterns for

the purpose of attack-time traffic filtering.
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In this paper, we propose to model the traffic entering a network as distribu-

tions of traffic features tied to traffic source addresses or subnetworks. While exist-

ing research [2] has demonstrated the feasibility of simple source-based hierarchi-

cal clustering for DDoS mitigation, a more comprehensive analysis methodology is

likely to provide further insight against a wider range of DDoS attacks patterns and

decrease the potential for false positives.

Our mitigation mechanism is designed for the protection of Cloud infrastructure,

including Telco Cloud, against possible DDoS attacks from remote hosts while main-

taining low levels of false negatives and false positives in malicious traffic detection

and filtering.

In order to fulfil the scenario requirements the traffic analytics needs to output

a means of traffic filtering which is directly applicable for line-rate traffic filtering,

preferably on existing network elements. For this purpose we aggregate the traffic

patterns to sub-networks, which effectively enables easily deployable traffic control

on software defined networking hardware with limited flow entry budgets.

In the following, we first describe the problem of network traffic analysis, han-

dling and filtering, for protecting said networks, in Sect. 2. We then move on to the

description of the proposed methodology in Sect. 3, building upon the strategies

in [2] to create models of the typical traffic for several key indicators. In Sect. 4,

we explicitly detail how the model is used, and precisely what computations are

required, when the model is actually used for prediction, while the following Sect. 5

is about techniques enabling partial re-training of the model, and update mechanisms

with the lowest possible computational cost, and therefore minimal model use dis-

ruption. We finally propose a brief state of the art analysis in the related work Sect. 6.

2 Network Traffic

Data traffic in networks comprises of data packets transmitted between communi-

cations endpoints. These transmissions form network traffic flows. The extraction

of features from these data packets and flows is the first step in our detection and

mitigation mechanism. While the available traffic network traffic features have been

previously surveyed [3], we herein highlight some element which are potentially

useful for our network traffic analysis.

As previously mentioned, from the analysis perspective network traffic falls into

two categories: data packets and traffic flows. The core difference is that packet analy-

sis deals with the raw data of a data packet, while flow analysis uses data which has

been somehow aggregated as input. Both packet and flow analysis can also be per-

formed on input which is not complete, but rather sampled from the live network

traffic.

Individual IP data packets have multiple relevant features in their headers which

need to be considered. Source and destination addresses, when not forged, identify

the communications endpoints, TTL conveys information about the length of the

path the packet has traversed and protocol identifier gives some constraints on what
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kind of a packet sequence is natural for this type of communication. Depending on the

protocol, protocol headers may also provide further insight into the communication.

In addition to header values, a sequence of packets also provides indirect features

such as packet inter-arrival times and packet fragmentation levels.

A network traffic flow is a unidirectional sequence of data packets with a set of

common features, such as IP source and destination address and port number. In

modern flow export definitions, e.g. in IPFIX [4], the selection of these features is

very flexible and can also contain information beyond the content of the data packet,

for instance next-hop IP addresses or physical network port indexes.

The main difference between packet and flow analysis is in the level of available

data. With packet analysis we have potential access to the complete communications

content, while flow records provide metadata of communications. Commonly mon-

itored statistics include e.g. endpoint addresses, flow duration, traffic packet count,

flow duration and traffic protocol.

Deep packet inspection (DPI) and application layer analysis of network traf-

fic is commonly done by firewalls and intrusion detection systems (IDSs). These

approaches have benefits in detecting certain attacks, for instance non-bandwidth-

intensive attacks [5] such as Slowloris.

However, volumetric DDoS attacks still form the vast majority of DDoS attacks

on the internet [1]. Thus, analysing and mitigating volumetric attacks will be our

target scenario within the scope of this paper. This type of an attack aims to exhaust

the target’s capacity to handle incoming traffic by either overloading the serving

endpoint or by congesting the capacity of network links connecting the endpoint to

the wider network.

In order to achieve meaningful differentiation between normal and anomalous

traffic, these traffic classes must have some differentiating features. In real world

some attack types, e.g. SYN floods, can be relatively easy to separate from real traffic,

while others, such as heavily distributed HTTP valid request floods, can be more

difficult to identify.

We base our work in this paper on the realistic assumption that normal traffic and
attack traffic are not in all aspects identical. Since an attacker does not typically have

detailed knowledge of the normal traffic pattern of the target, it is a near certainty that

there are distinguishing features between normal and attack traffic. In our approach

we do not manually predefine any features as more or less significant than others,

but rather build distributions of all monitored features and use the differences in the

distributions over time as the basis for attack detection and mitigation.

Attack detection and traffic analysis do not automatically provide useful informa-

tion for attack mitigation. In our work we have considered the available set of traffic

forwarding capabilities provided by routing hardware, and use the lowest common

denominator, i.e. subnet based rules, as the vehicle for deploying our mitigation

on network devices. This approach has the benefit of being widely applicable and

extremely lightweight in terms of traffic forwarding performance impact.
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3 Methodology

3.1 Initial Training and Construction of the Model

In this initial training of the model components, we take a certain time window and

keep it fixed during the training. In this sense, the model obtained at the end of this

construction phase, reflects the behavior of the IP addresses and sub networks for

this very specific time frame (Fig. 1).

In Sect. 5, we propose mechanisms that allow new information to be included in

the model, without the need to recompute all the model components.

Let us denote by T1;N =
[
t1; tN

]
the time period spanning from t1 to tN , sampled

uniformly at the time intervals
{

ti
}
1≤i≤N .

Let us then assume that we have built, over this period of time T1;N , the Hierar-

chical tree holding the structure of the IP addresses present in the data file D used

for the training. This data D is, e.g. a pcap file that was recorded on a network while

there were no suspected attacks or misbehaviour. An example depiction of that tree

is proposed on Fig. 2. Note that on this illustration, the leaves of the tree are not nec-

essarily single IP addresses, but more likely, whole ranges/subnetworks. This can be

decided and controlled to avoid obtaining a tree that would be too large to handle,

computationally.

Fig. 1 High level description of the methodology: The training data is first analyzed and processed

into the IP/subnetwork tree it contains; each of the vertex in this tree/graph holds the time series

for each flow statistic that is recorded; the probability distributions of these flow statistics are then

modeled, and a final model (for each graph vertex) learns the “normal” situation in terms of the

several probability distributions of the flow statistics

Fig. 2 Example of a hierarchical tree holding the IP structure encountered so far in the training

data. The dashed lines illustrate the tree nodes continuing, but not depicted here for clarity. Note

that the leaves of the tree do not have to be single IP addresses, but can be whole subnetworks/IP

ranges
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We denote by

G
(
T1;N

)
=
(
V
(
T1;N

)
,E

(
T1;N

))
, (1)

the temporal graph holding this tree structure devised on the data file D. And we

note K the number of vertices present in this graph (K is of course also dependent

on T1;N , but we omit the notation for clarity).

Note that once the following training procedure is finished, new incoming data

might alter this graph (by adding new nodes to it, e.g.). We discuss this in Sect. 5.1

later, and for now consider the graph “static” over the considered time period.

Assuming that we record d flow statistics (TTL, average packet size, packet tim-

ings. . . ) at a certain time t, denoted as

{
s j

i (t)
}

1≤j≤d
(2)

at each vertex Vi of the graph (thus representing either a single IP or a whole subnet

of them), we then have that the structure V
(
T1;N

)
holding the data related to all

vertices, is a tensor

𝐕
(
T1;N

)
=
⎡
⎢
⎢
⎣

𝐕1
1
(
T1;N

)
⋯ 𝐕d

1
(
T1;N

)

⋮ ⋮ ⋮
𝐕1

K

(
T1;N

)
⋯ 𝐕d

K

(
T1;N

)

⎤
⎥
⎥
⎦
, (3)

with 𝐕j
i

(
T1;N

)
∈ ℝN

the vector holding the values for flow statistic j at vertex (i.e.

node/IP subnet) i.
With N large enough (meaning we have a sufficient number of flow statistics val-

ues evolving over time), we can form

f𝐕j
i
(x), (4)

the distribution of the values of Vj
i over the time period T1;N , that is, the distribution

of the values of flow statistic j at vertex i.
We then model this distribution using a Universal Function Approximator [6],

in this case the Extreme Learning Machine [7]. This allows to have a model of the

distribution with a small computational time spent on the training, from which we

can extract probabilities of occurrence of unseen flow statistics events.

Thus, we create the approximation function ̃f𝐕j
i
(x) to the real distribution as

̃f𝐕j
i
(x) = ELM

(
f𝐕j

i

)
(x), (5)

where the ELM(⋅) notation means that the distribution is learned by the means of an

ELM [7]. We do not mention the normalization of the distribution ̃f𝐕j
i
by the normal-

ization factor, here, but it is performed so as to make sure that the values predicted
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by ̃f𝐕j
i
are in fact probabilities. In effect, ̃f𝐕j

i
(x) is approximating the probability of the

value x to happen for the statistic j, at vertex i.
We can then form the matrix of functions 𝐕

̃f as

𝐕
̃f =

⎡
⎢
⎢
⎣

̃fV1
1
⋯ ̃fVd

1
⋮ ⋮
̃fV1

K
⋯ ̃fVd

K

⎤
⎥
⎥
⎦
, (6)

which is in effect a matrix of functions.

More importantly, we can define, for a specific vertex i, the matrix of values

̃𝐕i =
⎡
⎢
⎢
⎣

̃fV1
i
(s1i (t1)) ⋯ ̃fVd

i
(s d

i (t1))
⋮ ⋮

̃fV1
i
(s1i (tN)) ⋯ ̃fVd

i
(s d

i (tN))

⎤
⎥
⎥
⎦
, (7)

which holds the estimates of the probabilities of the statistics s j
i for a specific

vertex i.
For each vertex i, i.e. subnetwork, we want to have a model that is capable of

recognising the “normality”; that is to say, a model that learns that the probabilities

values from ̃𝐕i are the normal situation for vertex i.
We thus propose to learn, using a One Class classifier (the OC-ELM [8], in this

work, further presented in the following Sect. 3.3), the normal situation as that rep-

resented in ̃𝐕i. We then have, for vertex i, a model i(𝐱) that takes as argument 𝐱,

the probabilities of the different statistics it has been trained on, and returns whether

the given probabilities taken together, represent a normal situation, or an outlier.

3.2 About Extreme Learning Machines

In this work, we propose to use Extreme Learning Machines (ELM) [7, 9] as the

learning tool to create a model of the distributions f𝐕j
i
(x). There are three main

reasons for using this specific Machine Learning technique. First, it is among the

techniques with the best performance/computational time ratio, as the model is math-

ematically simple and involves a minimal amount of computations. Second, we need

a model that can create a model of the distributions in reasonable time from large

amounts of data, if such a need arises (such as in the cases of real-time processing

and modeling). Third, the theory behind ELM (and behind single layer feed-forward

neural networks in general) states that it is a universal function approximator (per the

universal approximation theorem [6]), and can therefore fit any continuous function,

to a 𝜀 > 0.

The Extreme Learning Machine algorithm was originally proposed by Guang-Bin

Huang et al. in [9] (and further developed, e.g. in [10–12] and analysed in [13]). It
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uses the structure of a Single Layer Feed-forward Neural Network (SLFN). The main

concept behind ELM is the replacement of a computationally costly procedure of

training the hidden layer, by its random initialisation. Then an output weights matrix

between the hidden representation of inputs and the outputs remains to be found. The

ELM is proven to be a universal approximator given enough hidden neurons [9]. It

works as following:

Consider a set of N distinct samples (𝐱i, 𝐲i) with 𝐱i ∈ ℝd
and 𝐲i ∈ ℝc

. Then a

SLFN with n hidden neurons is modelled as
∑n

j=1 𝛽j𝜙(𝐰j𝐱i + bj), i ∈ [1,N], with

𝜙 ∶ ℝ → ℝ being the activation function, 𝐰j the input weights, bj the biases and 𝛽j
the output weights.

In case the SLFN would perfectly approximate the data, the errors between the

estimated outputs �̂�i and the actual outputs 𝐲i are zero, and the relation between

inputs, weights and outputs is then
∑n

j=1 𝛽j𝜙(𝐰j𝐱i + bj) = 𝐲i, i ∈ [1,N] which can

be written compactly as 𝐇𝜷 = 𝐘, with 𝜷 = (𝛽T
1 … 𝛽

T
n )

T
, 𝐘 = (𝐲T

1 … 𝐲T
N)

T
.

Solving the output weights 𝜷 from the hidden layer representation of inputs 𝐇
and true outputs 𝐘 is achieved using the Moore-Penrose generalised inverse of the

matrix 𝐇, denoted as 𝐇†
[14]. The training of ELM requires no iterations, and the

most computationally costly part is the calculation of a pseudo-inverse of the matrix

𝐇, which makes ELM an extremely fast Machine Learning method.

Therefore, using ELM, we propose to learn the f𝐕j
i
(x), in order to build a (hopefully

only interpolated) model of the real underlying distribution.

3.3 About the OC-ELM

The main idea behind the One-Class ELM (OC-ELM), as proposed in [8], is to use

the distance between the predicted one-class output of a classical (although regu-

larised) ELM, and the real output. In this method, we are thus effectively checking

whether a sample lies within a ball of a certain radius 𝜃 centred on the real output

value (which is unique for all samples, as we are working with a one-class assump-

tion.

In effect, given the same notations as in Sect. 3.2 for the ELM, we here have the

extra information that 𝐲i = y = 1,∀i (the actual value used for the 𝐲i is not important,

but choosing 1 makes computations simpler and normalisation implicit). We then

have to define the distance

d
ELM

(𝐱i) = ||||𝐇(𝐱i)𝜷 − y|||| , (8)

where the notation 𝐇(𝐱i) conveniently denotes the output of the hidden layer of the

ELM for the specific sample 𝐱i.

A key point of the OC-ELM in [8] is then to determine the optimum radius 𝜃 of

the ball around y to achieve the best classification rate, while avoiding the trivial case

where 𝜃 is too large (and therefore does not generalise well). The authors propose
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to reject a portion of the data, considered somewhat as “outliers” by the OC-ELM

model, so as to obtain the most compact ball possible. Future samples outside of this

ball are then considered as not belonging to the one class.

The decision function for the OC-ELM is then straightforward to derive once 𝜃

has been determined, and the authors define


ELM

(𝐳) = sign
(
𝜃 − d

ELM
(𝐳)

)

=
{

+1 𝐳 belongs to the one class.

−1 𝐳 is an outlier.

, (9)

for a new sample 𝐳. For a thorough exploration of the proper determination of the

key parameter 𝜃 for the OC-ELM, we refer the reader to the original paper [8].

4 Using the Methodology on Test Data

Using the devised methodology on test data is actually trivial, but can be separated

in two distinct cases: (i) The test data is a single moment t in time, i.e. we want to

know whether the network behaviour is normal for a specific moment in time, as

described in Sect. 4.1. (ii) The test data is a time window T1;N (which can in effect

be a rolling window) over which we want to know about the network behaviour, as

described in Sect. 4.2.

4.1 Testing the Model on a Single Moment

In this case, we assume that we are collecting the statistics for a certain vertex i, at a

moment t in time. Testing the model on such data then requires the following steps:

1. Gather all statistics 𝐬i(t) =
(
s1i (t),… , sd

i (t)
)

for vertex i;
2. Use the functions in 𝐕

̃f to predict the probabilities 𝐱i(t) of the statistics values

𝐬i(t);
3. Calculate i(𝐱i(t)) to estimate whether the statistics are considered anomalous

by the model, based on their probabilities;

4. Act based on the output of the modeli: if the statistics are considered abnormal

by the model, there is anomalous behaviour at vertex i, and the host should, e.g.

be blocked or restricted.

Testing the model on a single time instant, here, poses some questions. First, the

computational load, even if the computations only involve using ELM models on

a very limited set of values (for a given vertex), is large: This test potentially has

to be run over the whole set of vertices of the graph, which may become large as

time grows. More hosts end up connecting to the monitored cloud, and the graph

holding the IP addresses structure G, grows large. To address this issue, we discuss
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current research ideas, in Sect. 5.4 about forgetting factors and globally scaling this

methodology to large amounts of connecting hosts.

In practice, the approach of testing on a single time instant makes the method-

ology prone to false positives, as the combination of probabilities of the statistics

for this specific instant, is likely to contain small anomalies—which would be better

“ironed out” by a sliding time window.

4.2 Testing the Model on a Time Window

In this case, we consider that we collect the same statistics for the same vertex i, but

over a certain time period Tk;l = (tk,… , tl) (as before, uniformly sampled over this

time period).

To keep things simple, we propose in this paper, to simply compute the average

of each single statistic s j
i over the time period. This case then reduces to the previous

one.

The advantage in using a time window is twofold: First, the averaging ensures,

as mentioned before, that single traffic anomalies get averaged out in the process,

thus lowering false positives in practice; Second, this process avoids running the

testing too often and therefore lowers the computational complexity, in testing many

vertices for anomalies.

As with any model trained on a specific time window, though, there comes the

problem of obsolescence of the model, after a certain amount of time has passed:

new hosts are contacting the cloud, for which we have no previous data to predict

behavior, and it is also very possible that former hosts have different traffic patterns

over time (some subnetworks/hosts are more active during certain periods of the

day, e.g.). For this purpose, we detail in the next Sect. 5, how to perform continuous

learning of the model, first by adding new data to existing vertices of the graph—i.e.

continuing to learn the possibly changing behaviour of some known hosts—, and

second, by adding new vertices to the whole graph.

5 Continuous Learning of the Model

In this section, we detail two cases which use essentially the same principles to make

the graph, and the model underlying it, evolve with new data. First, by adding new

data to existing vertices, and then by adding new vertices to the graph. Since the

computational costs of this whole methodology are a concern for close to real-time

usage of the model, we want to have these update mechanisms as low cost as possible,

and thus propose to update the model, to avoid heavy re-computations.
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5.1 Adding Data to Existing Vertices

In this case, the new data to be added to an existing vertex Vi is coming in the form

of new statistics values

{
s j

i (t)
}

1≤j≤d
, for various values of t. For the sake of covering

real-life cases, we would like to consider two cases regarding the t values, here: First

in Sect. 5.1.1, the expected case in which the time instants at which the statistics

are gathered are all the same and are uniformly sampled over a certain time period;

Second in Sect. 5.1.2, the real-life case in which some statistics are actually collected

at slightly different time instants and for which some might actually lack a value

(because of data collection errors, e.g.).

5.1.1 New Data over Uniformly Sampled Time Instants

This case is rather trivial, thanks to the existing OS-ELM [15]. Here we assume that

new incoming data for a vertex Vi is essentially dense and uniformly sampled. In

this sense, we basically have new statistics

{
s j

i (t)
}

1≤j≤d
for t over a time window

Tk;l =
(
tk,… , tl

)
. The problem then reduces to that of extending the training data

used in the ELM for the construction of ̃f𝐕j
i
(x), which can in effect be solved by

using the Online-Sequential ELM [15] (OS-ELM, more details given in Sect. 5.3)

algorithm approaches. The OS-ELM algorithm allows to add new data to the train-

ing set without full retraining of the formerly calculated distribution ̃f𝐕j
i
(x). We then

need to also update the One-Class classifier model i(𝐱) accordingly. Interestingly,

while the OC-ELM differs slightly from the original ELM, the update equations and

approaches of the OS-ELM can be applied directly to it, thus allowing to update at

low cost the One-Class classifier used. One could argue that the determination of

an updated 𝜃 value that is optimal for the whole data (former and new together), is

required. But in practice, if the amounts of new data are not very large, and if the

new data behaves in previously know ways, the update of 𝜃 is not critically required

for every update. It might be required after a certain amounts of updates, though, or

if the amount of detected outliers by the OC-ELM starts to grow large.

5.1.2 New Data with Non-uniform Sampling

This case deals with the possibility of getting new data that is not uniformly sampled

over time, for the various statistics that are collected. In effect, this means that the

tensor 𝐕(T1;N + Tk;l) (where the notation T1;N + Tk;l means concatenating these two

time windows together), is potentially sparse (as well as not uniformly sampled), with

no values in some places. Since all the computations performed in this methodology

are assuming dense matrices, we propose to fall back from this case to the previous

one (of dense tensor) by drawing the missing statistic values from the estimated
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distributions. In effect, we fill the tensor𝐕(T1;N + Tk;l) in a missing statistic value sj
i(t)

(for a time t for which we do not have that statistic), by drawing from the associated

estimated probability distribution ̃f𝐕j
i
(x). The previously sparse tensor is then brought

to a full tensor, and we are in the same case as in the previous Sect. 5.1.1, and can

use the OS-ELM to update the models.

5.2 Adding a New Vertex to the Graph

Adding a new vertex to the graph is straightforward, in terms of the computations

to be made (assuming the parent vertices of this new vertex are updated using the

aforementioned processes from Sect. 5.1), as this is essentially what is initially done

for all the vertices in the training stage.

The steps for this process come down to:

1. Add the row corresponding to the new vertex V
new

data in 𝐕 (note that the time

window for the new row will be different from the initial T1;N one used for the

initial training, but this will only cause the tensor 𝐕 to be sparse and has no other

drawback);

2. Compute (as in the training phase) the estimated functions ̃fVj
new

(x),∀j ∈ �1, d�;

3. Use an OC-ELM to build the One-Class classifier 
new

(𝐱) for this new vertex.

Thus, we can add new IP sub-networks to the graph, without disrupting the entire

structure with re-computations. This process can effectively be done “in parallel”

and then added to the full model.

5.3 About the OS-ELM

In [15], a sequential learning modification of the original ELM is proposed, to

be able to update the ELM model without complete re-computation. Taking the

same notations as in Sect. 3.2, i.e. given a training set comprised of N0
samples

𝐗0 =
(
𝐱01,… , 𝐱0N0

)T
∈ ℝN0×d

and targets𝐘0 =
(
𝐲01,… , 𝐲0N0

)
∈ ℝN0×c

, and an ELM

model trained on this data, with of n neurons, we have (assuming that 𝐇0
, the hid-

den layer output matrix, is full rank) the matrix 𝜷0 =
(
𝐇0T𝐇0)−1 𝐇0T𝐘0

holding the

output weights of the current model. Now, given a new chunk of data 𝐗1
,𝐘1

, with

N1
number of samples in it (which will be concatenated to the end of 𝐗0

and 𝐘0
),

we now need to find the new 𝜷 such that

|||||

|||||

[
𝐇0

𝐇1

]
𝜷 −

[
𝐘0

𝐘1

]|||||

|||||
(10)
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is minimized. Omitting most of the derivations (which can be found in the original

paper [15]), we can get the updated output weights 𝜷1
directly as

𝜷1 = 𝜷0 +
(
𝐇0T𝐇0 +𝐇1T𝐇1)−1 𝐇1T (𝐘1 −𝐇1𝜷0)

. (11)

Note that most of the elements in this equation are already calculated (or have

very low computational cost). It is of course possible to derive the general recursive

formula for the general case, and we refer the reader to the original paper for it.

In this work, the OS-ELM is also potentially used for the special case of adding

only one sample to the training set (the case where N1 = 1), which happens to have

a special form (using the Sherman-Morrison formula [16]). Again, please see the

original paper for the derivation of this special case.

5.4 Future Work: Scaling and Forgetting Factor
for Continuous Learning

From the design of the graph tree holding the IP sub-networks, it is easily seen that

this approach cannot scale to large amounts of IP addresses and retain all the infor-

mation it has ever seen. The tree would rather quickly become too large and saturate

the memory. For this reason, we talk of sub-networks in this paper, instead of sin-

gle IP addresses, as the leaves of the tree. We thus limit ourselves to aggregated IP

networks so as to keep the size of the tree reasonable to handle.

Future work on this very specific problem will be centred around incorporating a

forgetting factor in the computations.

A forgetting factor in this context would have two major advantages: limit the size

of the tree by forgetting sub-networks that have not contacted the currently monitored

host for a long time; and make sure that the density estimates only take into account

the most recent data. Or at least, make sure that the most recent data is taken as

the most relevant data for the estimations: sub-networks that have been encountered

recently are most likely to connect again in the near future.

Our goal is to implement a variable forgetting factor (not a constant or linear one)

which takes possibly into account the variability over time of some sub-networks

connecting to the monitored host. This is likely to include some sort of seasonality-

like behaviour.

Finally, while a preliminary evaluation of this method is performed internally,

on private data, an extended version of this work will feature testing on publicly

available data, such as the ISCX IDS dataset [17].



Learning Flow Characteristics Distributions with ELM . . . 141

6 Related Work

Network traffic flows and the characteristics of anomalies in network traffic have

been a subject of extensive previous research, e.g. Barford and Plonka [18] have

performed time series analysis to flow data. IP source address based clustering and

subnetwork based filtering has been shown to be a viable approach to DDoS mitiga-

tion by Kalliola et al. [2]. Compared to previous work, the method proposed in our

paper is expected to more extensively capture differentiating traffic features, lead-

ing to lower false positives and negatives in detection and in traffic priorization and

filtering.

Machine learning in the context of DDoS detection and filtering has been explored

e.g. by Seufert and O’Brien [19], wherein the authors use an artificial neural net-

work (ANN) with traffic features from different layers for anomaly detection. Berral

et al. [20] have proposed a distributed mechanism for mitigating flooding DDoS

attacks. In their mechanism many elements in the network share traffic views for

the purpose of detecting and filtering attack traffic before it reached the destination

network.

More recently, ELM based approaches specifically have been used for Intrusion

Detection testing, as for example in [21], where the authors propose to use the ELM

(both in binary classification—normal versus abnormal traffic, and multi-class clas-

sification aimed at detecting the type of attack). In [22], the authors also propose to

use a variation of the ELM (Weighted ELM) to perform multi-class classification on

existing data sets (NSL-KDD, e.g.). Similarly, in [23], a modification of the ELM in

the form of a Kernel ELM, with Multiple Kernel Boosting and Ensemble approach,

is applied to the NSL-KDD cup data set (among many others), and the authors note

the excellent performance of such model, with the low computational cost of the

ELM associated to it.

The major difference between this existing body of work, and the approach pro-

posed in this paper is that we offer here a methodology tailored to the problem of

learning, in time, what the traffic is like, in terms of the measured statistics of it;

while the existing literature mostly concentrates on improving the performances of a

model over a certain data set, we also propose in this paper, the detailed creation of

said data set, by transforming the network flow data into the statistics that are used

to build the tree model.

7 Conclusion

In this paper we have detailed a method for modelling network traffic as traffic fea-

ture distributions relating to a hierarchical network tree. By gathering traffic feature

statistics over certain periods of time, the proposed methodology enables the cre-

ation of probability distribution of these statistics. One-class classification is then

used to learn what is considered as the normal behaviour of the network, in terms
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of the probability values of the various statistics. Major deviations, probabilistically

speaking, from this learned “normality”, will trigger the detection of an anomaly.

While a detailed evaluation of the method is still in progress, our proposed

approach shows promise in capturing essential characteristics of network traffic for

normal versus attack traffic differentiation, and for providing a useful output from

this differentiation for traffic filtering deployment on real-life network elements. In

addition, the method takes into account the crucial timeliness of the network data,

by summarising the input data values (in the form of the observed network statistics)

into modelled distributions of values. In future work, the time aspect of this analysis

will be more prevalent, by using forgetting factors to achieve a complex weighting

scheme for the statistics distributions, in time.
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Discovering Emergence and Bidding
Behaviour in Competitive Electricity
Market Using Agent-Based Simulation

Ly-Fie Sugianto and Zhigang Liao

Abstract The aim of this paper is to explore the implication of multi agent
interaction, learning and competing in a repetitive trading environment. Using the
complex systems paradigm, the study attempts to observe the behavior of the agents
and the emergence phenomena resulting from the multi agent interaction. Using
Q-learning, generator agents can rapidly learn the market mechanism and auction
rules as they seek to maximize their revenue by modifying their bidding strategies.
In this paper, we experiment with different pricing rule to observe its impact on
agents’ behavior. The paper also describes the types of agents in each domain,
together with the properties, relationships, processes and events associated with the
agents. Emergence from this study includes collusion and capacity withholding to
inflate price. The emergence is evidence that we can gain new knowledge from the
Sciences of the Artificial.

Keywords Agent-based model ⋅ Artificial intelligence ⋅ Complex systems ⋅
Q-learning

1 Introduction

Introducing competition in the electricity trading implies the importance of market
mechanism to ensure a contestable market for new entrants and incumbents. Fac-
tors, such as demand, transmission constraints, types of power stations, regional
settings and policy governing the market, are influencing the complex interactions
among market participants. For generators, simply bidding at the marginal cost may
not recover its fixed or stranded asset costs. Thus, there is a need for more
sophisticated bidding strategy for generators to compete in the market environment.
A heuristic technique for optimal bidding requires an assessment of market power
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and how each player exercises its market power in order to maximize its profit. The
optimum bid corresponding to maximum profit depends on market conditions, such
as the market power and the generation cost. In practice, the formulation must also
account for complex factors, such as load forecast, network congestion, gaming
strategies of competitors, generation cost and physical constraints of generators.

Given that the complexity of the relationship among many variables cannot be
modeled accurately, a computerized simulation platform is deemed suitable to study
the dynamics of a competitive market. The simulation platform also provides an
empirical method to observe electricity price fluctuation. Running the simulation
over a considerable time horizon allows us to answer important questions: Does the
electricity price fall to the marginal cost level? Does the electricity price hit the
price cap? If so, under what circumstances would such price spike occur? Which
pricing rule leads to the most economical electricity price for the consumer? What is
the role of the short-run repetitive trading of electricity in establishing a sustainable
supply in this sector?

This paper presents an agent based simulation to analyze the impact of different
pricing rules on the electricity price. The proposed simulation is aimed to assist
strategic and operational challenges in the electricity supply industry, namely
making strategic bids based on available generation capacity to ensure positive
earning. In the longer term, generator companies can utilize the simulation as a
decision support tool to make strategic investment to start a new plant.

The remainder of this paper has been structured as follows. Section 2 provides
literature reviews on the pricing rules and the use of computer simulation and
specifically the agent-based model, in studying the electricity market model. Sec-
tion 3 presents the agent-based model, highlighting Q-learning as the learning
mechanism to build the agents’ intelligence for strategic bidding. This section
extends our previous work on the use of agent-based simulation reported in [1]. The
main distinction of the simulation scenarios presented in this paper is that we enrich
the comparison of not only Uniform and Vickrey pricing rules, but also includes the
Pay-as-bid pricing rule. Section 4 presents case examples to compare the impact of
different pricing rules on the agents’ bidding behavior when maximum capacity bid
is enforced as well as when variable bidding quantity is allowed. Lastly, the paper
provides analysis on the results, including on the agent’s learning mechanism, and
ends with a concluding remark.

2 Literature Review

2.1 Pricing Rule

Research in the Economics discipline reported that there is no significant difference
in market performance between the Uniform and Pay-as-Bid pricing rule. The
theory underpinning the research in [2, 3] is the Revenue Equivalence
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Theorem (RET). The theorem, as cited in [4] stated that “Suppose bidders have
independent and identically distributed valuations and are risk neutral. Then any
symmetric and increasing equilibrium of a direct revelation auction that assigns the
item to the highest bidder such that the expected payment of bidder with value zero
is zero, yields the same expected revenue.” However, RET only applies where a
single unit of an indivisible good is being auctioned, in a single-period setting. In
contrast, in a deregulated electricity market, auctions are normally happened
between asymmetric bidders where multi-unit, multi-period bidding occurs. In
order to apply the RET to a deregulated electricity market, it is necessary to assume
that all generators bid with identical strategies and are risk neutral. This assumption
is unrealistic considering that in electricity market, market power and price
volatility are inevitable. In a deregulated electricity market, instead of being risk
neutral and bidding identically, generator behaves differently to maximize its
expected profit according to its understanding of the market environment [5–7].

Study in [8] stated that the Uniform pricing rule, which has been widely
employed in many electricity markets around the world, causes poor performance in
terms of market price, generator’s revenue and total dispatch cost. It was recom-
mended that the Pay-as-Bid rule should be introduced to replace Uniform pricing
rule [9]. However, other contradictory results have also been reported by in the
literature in terms of the impact of pricing rules on generator’s revenue, market
price and price volatility brought by these two pricing rules, such as [10–13]. While
the argument over comparing these two pricing rules has lasted decades in the
electricity market establishment process, little attention has been paid to the Vickrey
pricing rule [14], despite being perceived to be highly favorable by economists [2].

Another commonly used assumption in previous studies is that, generators were
often assumed to submit bid quantity at their maximum capacity and such bid
quantity was either accepted completely or not at all. This assumption is inaccurate
because generators can actually supply its bid quantity based on its own interest and
such bid quantity can be partial accepted. Therefore, in this paper, partial accepted
bid quantity has been modelled in the design of the simulated market in our study.

2.2 Computer Simulation

There have been a number of studies on competitive electricity markets employing
agent-based models, as reported in [15–18]. Generator agents reported in these
studies can adapt their bidding strategies, based on the success or failure experience
of previous trading.

A popular learning algorithm called Q-Learning is employed as the learning
method for the agents. Q-learning is a Reinforcement Learning technique that
works by learning an action-value function that gives the expected utility of taking a
given action in a given state and following a fixed policy thereafter. The entities
modeled with Q-Learning can behave in such a way that they are able to use their
past experience to improve their behavior [19]. It was proposed by Watkins [20]
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for solving the Markovian Decision problems with incomplete information. The
main advantage of Q-Learning algorithm is that it is model-free and can be used
on-line to find an optimal result based on the direct interaction with the environ-
ment. This feature makes it suitable for decision making problems in repeated
games with unknown component [21].

3 Agent-Based Model for a Competitive Electricity
Market

Figure 1 illustrates the proposed electricity market model with Q-Learning based
generator. In our study, we employed four generator agents that bid into the market.
Each generator agent is characterized by the ramp rate of the power plant and cost
function characterizing the type of power plant.

In a competitive electricity market, generators are required to submit their bids
for every trading period. The bid price that a generator can offer is between its
marginal cost and the predefined price cap. The bid quantity that a generator can
offer is between its minimum stable load and its max capacity. These settings can be
described as:

mcg ≤Pg ≤Pcap ð1Þ

minQg ≤Qg ≤maxQg ð2Þ

where mcg is the marginal cost of a competing generator; Pg and Qg are the bid
price and bid quantity submitted by a competing generator; Pcap is the predefined
price cap; maxQg is the maximum quantity that can be offered by a competing
generator.

Fig. 1 Electricity market model with Q-Learning based generator agents
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Once the bids are collected, the ISO schedules the actual dispatch starting from
the generator offering the lowest bid price. If the demand is not fulfilled, the ISO
then schedule the dispatch from the generator offering the second lowest bid price.
This process is terminated until all the demand is fulfilled:

∑g
1 Qg =Demand ð3Þ

Generators competing for dispatch adopt a profit maximizing strategy. When the
Uniform pricing rule is employed, the single market clearing price is the last bid
price. Hence, the generator’s profit is:

Profitg = ðMCP−mcgÞ×Dispatchg ð4Þ

where MCP is the market clearing price; Dispatchg is the actual dispatch of a
competing generator. When Vickrey pricing rule is employed, the generator will be
paid based on the opportunity cost its presence introduces to all the other genera-
tors. Therefore, the generator’s profit is calculated as:

Utotal = ∑g
1 Pg*Dispatchg ð5Þ

Utotal0 = ∑g′

1 Pg*Dispatchg ð6Þ

Uother =Utotal −Pg*Dispatchg ð7Þ

U′

other =Utotal′ ð8Þ

Rg =U′

other −Uother ð9Þ

Profitg =Rg −mcg*Dispatchg ð10Þ

where Utotal is the total utility received by all the generators when generator g is
competing for dispatch; Uother is the total utility received by all the other generators
when generator g is competing for dispatch; Utotal0 (or U′

other) is the total utility
received by all the generators when generator g is excluded from competition; Rg is
the revenue received by generator g.

The state describes the current situation of each generator. In this paper, it is
defined as the bid price and quantity pair each generator submitted in previous
trading period. For each generator, there are (N − 1) main intervals within each
interval there are (M − 1) sub-intervals defined. (N − 1) is the number of quantity
selections that can be chosen by a generator with each selection represents a bid
quantity range; (M − 1) is the number of price selections that can be chosen by a
generator with each selection represents a bid price range. N and M is calculated as
follow:
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N =maxQg −minQg ð11Þ

M =Pcap − 0 ð12Þ

The increments for both main interval and sub-interval in each main interval are
set to 1. Therefore, there are (N − 1) times (M − 1) sub-intervals in total with each
representing a selected bid price and quantity pair.

The definition of action is similar to the definition of state except that the
calculation of M and N are modified as follow:

N =maxQg −minQg. ð13Þ

M =Pcap −mcg ð14Þ

Hence, taking an action is to locate the corresponding interval according to
generator’s bid price and quantity pair.

In Q-Learning algorithm, determining the action based on Q-values is referred to
as an exploitation. Determining the action without sufficient information is an
exploration. In this paper, the Simulated Annealing (SA)-Q-Learning algorithm
[22] is adopted as the action selection policy for generator agent:

(1) Randomly select an action ar, where ar ∈ A.
(2) Adopt greedy approach: select action ap, where ap ∈ A.
(3) Generate a random number rand between 0 and 1.
(4) Select the final action based on the following calculation:

a= ap, rand≥ exp½Q s, arð Þ−Q s, apð Þ
temperature �

ar, otherwise

(
ð15Þ

(5) Update the temperature parameter based on pre-defined temperature dropping
function.

Assume Tn is the temperature in the nth iteration, then Tn = β Tn− 1, where n is
natural number and β is a constant number close to 1 to ensure a slow decay of the
temperature in the algorithm.

In the beginning of the simulation process, generator agents will undertake
exploratory actions. As the iteration procedure progresses, the Q-values will be
updated accordingly. These updates decrease the tendency of exploratory action and
increase the chances of taking exploitative actions. In this paper, T1 is set to 100000
and β is defined as 0.999. This is decided by using trial-and-error to ensure that the
temperature variable is not dropping too fast so that the generators can have suf-
ficient exploration actions to understand the market more comprehensively.

The bid quantity of each generator in each trading period is constrained by its
ramp rate, which is:
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Qg ≤Q′

g +Rg ð16Þ

Qg ≥Q′

g −Rg ð17Þ

where Qg and Q′

g are the bid quantity in current and previous trading period
accordingly, Rg is the ramp rate of the generator.

For each trading period, there are four successive stages: (1) agents submit bids,
select action and next state; (2) ISO receive bids and determine economic dispatch
schedule; (3) agents receive their profit based on pricing rule; (4) agents update their
knowledge (Q-table) based on their recent trading experience following:

Q s, að Þ←ð1− αÞQ s, að Þ+ α½r+ γmaxQ s′, a′
� ��where s←s′ ð18Þ

In the Q-Learning algorithm, α is the learning rate with value between 0 and 1; γ
is the preference for employing immediate reward. The learning rate in this paper is
designed to be state action dependent as in [19, 21], which is inversely proportional
to the visited number of a particular state-action pair up to the present trading
period. The learning rate for a particular state-action pair will be smaller as the
number of visits of such state-action pair increase. So the learning rate α for a
state-action pair k is calculated as αk =1 ̸Nk, where Nk is the number of times that
this pair k have been taken by a generator.

The discount factor γ in this paper is assigned with the value of 0.1. This value
leads to a short reaction time for the generator agents to respond to the change in the
market due to their recent-reward pursuing which makes their behavior easier to be
captured and analyzed.

4 Case Examples

Three case studies are presented in this paper. Each case includes four competing
generator agents with similar attributes, namely the same minimum stable load,
ramp rate and production cost. The aggregated supply capacity of the four gener-
ators is fixed. In the three scenarios, the maximum generating capacity of generator
agent 1 is set to: 25% of aggregated supply capacity in case 1, 50% in case 2, and
75% in case 3. The total demand is set to approximately 60% of aggregated supply
capacity. These three scenarios are setup to emulate situations where (1) generator
agent 1 has no dominant position, (2) generator agent 1 has a dominant position but
its generating capacity cannot fulfill the demand, and (3) generator agent 1 has such
a dominant position that it can fulfill the demand using its generating capacity. An
additional backup generator with extremely large capacity and high price (reserve
capacity price) is set for each case to ensure the demand can still be fulfilled even if
the total supplied quantity is less than the demand. However, the involvement of
this backup generator will lead to extremely high market price. In each case,
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two scenarios are tested. In the first scenario, the agent must submit bid that offers
the maximum generating capacity; while in the second scenario, generator agent
can submit bid quantity following their profit maximizing strategy. In addition,
these scenarios are tested for different pricing rule, namely economic dispatch based
on (1) Uniform pricing, (2) Pay-as-bid pricing, and (3) Vickrey pricing.

During each simulation process, the total dispatch cost is calculated by taking the
average of the total dispatch costs in the last 2000 trading periods when the gen-
erator agents have learnt sufficiently. The total dispatch cost under Uniform pricing
rule in Case 1, Scenario 1 is used to normalized the other total dispatch cost by a
factor k for comparison and analysis. Thus, the value for the total dispatch cost
under Uniform pricing rule is 1. Our intent is that through these case studies, the
effect of different pricing rules and supply quantity variation on total dispatch cost
can be examined.

4.1 Discussion of Case 1

As can be seen in Table 1, in Scenario 1, the total dispatch costs are similar under
all pricing rules. This is because, all the generators have the same attributes and
only one variable which is the bid price. Therefore, the chance of exhibiting similar
bidding behavior among all four generators is relatively high. This situation
somewhat satisfies the requirements over which the Revenue Equivalent Theo-
rem (RET) [2, 3] holds supporting the same total dispatch cost. In short, RET holds
in Scenario 1.

In Scenario 2, bid quantity has been added as another variable in the simulation.
The approach for each generator to develop their bidding strategy becomes
somewhat unpredictable. This indicates a reduced possibility of exhibiting similar
bidding strategies among generators. As a result, the degree of satisfaction of the
requirements over which the RET holds is weakened. Under this circumstance, it is
observed that the Vickrey pricing rule produces a slightly higher dispatch cost.

In comparing Scenario 1 and 2, it is noted that allowing variable bid quantity
leads to an increase in the total dispatch cost. With variable quantity bidding, there
are more occurrence of balanced supply-to-demand since all the generators are

Table 1 Simulation results

Total dispatch
cost

Scenario 1:
Maximum capacity

Scenario 2:
Variable quantity

Uniform Pay-as-bid Vickrey Uniform Pay-as-bid Vickrey

Case 1 1 1 1.1 1.65 1.58 2.28
Case 2 6.05 2.19 2.69 9.84 1.24 2.85
Case 3 6.05 5.01 6.58 11.01 4.50 7.06
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allowed to supply bid quantity at their own preference. However, since all the
generators have similar market share and there is no dominating player in the
market, the near-free competition existing in the market leads to a merely small
increase in the total cost.

4.2 Discussion of Case 2

In Case 2 when bidding at maximum capacity is required, it is observed that the
total cost under Uniform pricing rule is much higher than under the Pay-as-bid and
the Vickrey pricing rules. This is because the supply capacity is on a par with the
aggregated supply capacity of the other three competing generators. This cooper-
ative behavior among the generator agents is unfavorable to the first generator
agent. As a result, in order to get higher profit, it is observed that the first generator
has to bid at a much higher price to recover its loss in dispatch. This high price,
which becomes the single market clearing price, leads to a high total dispatch cost.

Under Pay-as-bid pricing rule, the profit of a generator agent relies only on its
own bid price and dispatch quantity. The bidding behavior of any generator agent
does not affect its competitors. The bidding behavior of the generator agents is
somewhat dissociated from the market dynamics; hence, providing minimal feed-
back to the learning process. It is also observed that the time required for a gen-
erator agent to complete its learning process has significantly increased. Two
distinctive characteristics notable with this market setting are: (1) generator agents
tend to bid with risk averse; and (2) the low volatility in bid price leads to low
volatility in generators’ profit.

Under Vickrey pricing rule, due to the large generating capacity of generator
agent 1, even if it submits the highest bid price among all the competing generators,
at least 10% supply will need to be dispatched from its capacity. When its revenue
is calculated by excluding generator agent 1, such supply shortage will have to be
fulfilled by the backup generator. This may still lead to large revenue as calculated
by (9) due to the extremely high reserve capacity price. Generator 1 may bid at a
relatively high price without worrying about sufficient dispatch quantity. However,
the small generator has to ensure enough dispatch quantity so that the Uother does
not equal to Utotal which otherwise leads to a zero revenue. This requirement can
only be reached by reducing the bid price since neither of the small generators can
incur a supply shortage due to its small capacity. Hence, it is observed that all the
three small generators’ bid prices are close to their production cost. As a result, only
a small amount of dispatch will be paid at a very high price which dramatically
lowers the total dispatch cost comparing to it under Uniform pricing rule.

In Scenario 2, when bid quantity can vary, under Uniform pricing rule, the large
generator can strategically limit its maximum supply quantity comparable to the
other three small generators. The difference in the bidding behavior of the large
generator and the three small generators’ is marginal, which results in a highly
reduced profit difference when compared with Scenario 1. The large generator
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behaves as if it were a small generator in an attempt to break the collusion, causing
a supply capacity withholding. This leads to extremely high market clearing price
and total dispatch cost.

Under Pay-as-bid and Vickrey pricing rules, allowing variable bid quantity also
increases the chance of supply capacity withholding phenomenon. However, unlike
Uniform pricing, only the generator agent 1 has been observed to withhold supply
capacity. For a reason similar to Scenario 1, only a small portion of dispatch is paid
at a high price which therefore retains a comparatively low total dispatch cost
comparing to it under Uniform pricing rule.

4.3 Discussion of Case 3

The last case study depicts a situation where a large generator has a clearly dom-
inant position in the market. All the other three agents have very limited supply
capacity to fulfill the market demand. In such situation, generator agent 1 can easily
overcome the unfavorable collusion among the three small generators and gain the
highest revenue. More importantly, its dominant position makes it the market price
setter controlling the clearing price as the cap price in scenario 1 and the reserved
capacity price in Scenario 2. Accordingly, the total dispatch costs under these two
scenarios are both very high; and the total cost is even higher when bid quantity can
vary.

Under Pay-as-bid and Vickrey pricing rules, the situation is similar as in Case 2.
However, due to the increased size of generator agent 1, more shortage needs to be
fulfilled if generator agent 1 is excluded. As a result, revenue gained by generator 1
increases substantially. Likewise, total dispatch cost increases significantly.

A notable observation from Case 3 compared to Case 2 for variable quantity
bidding scenario (Scenario 2) is that the total dispatch cost under Uniform pricing
rule is higher than the other pricing rules. When maximum capacity is supplied,
under Uniform pricing rule, the price resolves to the cap price. However, when
Vickrey pricing is adopted, the shortage caused by excluding the large generator
from the competition will need to be fulfilled by the backup generator. This, dra-
matically increases the total dispatch cost.

5 Analysis

5.1 Electricity Market as a Complex System

The Cynefin framework [23] is a useful typology to describe problems and
life phenomena. The model introduces four domains in which every contextual
problem may be best approached using different practices: (1) in simple domain,
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the approach is to sense, categorize and respond—leading to best practice; (2) in
complicated domain, the approach is to sense, analyze and respond—leading
to good practice; (3) in complex domain, the approach is to probe, sense and
respond—leading to emergence; (4) in chaotic domain, the approach is to act, sense
and respond—leading to novelty.

Although there is no consensus in formalizing the problem definition in the
complex domain, typically complex problems can be characterized by four attri-
butes: (1) interaction, interconnection, heterogeneity and tension. We submit that
the competitive electricity market exhibits these attributes. First, the high level of
interaction is evident in the repetitive nature of trading in the electricity market. In
the Australian market, there are 48 trading intervals every day. Second, the inter-
connection is evident as the spot price and the electricity dispatch and schedule of
each generator depends on each other’s quantity-price bids. Third, the heterogeneity
in the context of this problem is inherent in nature, as generators are distinctive in
its capacity and in its mode of operation. There is a diverse range of power plants
generated using coal, gas, hydro and many others—leading to different operational
costs, thus may be bidding differently when competing in the market. Fourth, the
tension in this problem exists among the profit maximizing objective of each
competing generators and operational boundaries (or limitations) that govern the
trading, may it be internal in nature, such as operating characteristics of the power
plants, or external in nature, such as trading policy and price cap.

Complexity in the electricity market is a result of the highly dynamic and
inherent non-linearity in the market environment. It is also a result of intercon-
nected components (coupling) with high level of interactions among these com-
ponents. With the increase in the number of interactions, it becomes more difficult
for us to understand the system as a whole. And with the increase in the number
interconnected components, it becomes more difficult for us to identify and isolate
causal relationships in the system.

In terms of identifying emergence as findings of our studies, we noted four
phenomena in agents’ bidding behavior, namely capacity withholding, collusion,
risk taking and risk averse biddings.

5.2 Agents’ Learning

In our study, we employed Q-learning as the mechanism for generator agents to
learn from repetitive trading experience in order for them to bid strategically to
maximize their profit. In the mathematical model, the three parameters that influ-
ence the learning process are the immediate reward rt, learning rate α and discount
factor γ.

In theory, Q-learning algorithm for a single agent will lead to a convergence [24,
25]. In a more dynamic environment with multi-agent settings, a stable optimal
state may not exist. Under this circumstances, it is crucial to find the appropriate
learning rate α and discount factor γ.
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The agents’ learning in our study is tightly coupled with the pricing rule
employed in the competitive market environment. Specifically, the immediate
reward rt has been defined as the profit the generator agent receives in the dispatch
interval t. Given that the purpose of the Q-learning algorithm is to obtain the
maximum overall reward, the purpose of the Q-learning based generator agent in
this platform is to discover the best action at each state so as to maximize its overall
profit.

As for the learning rate for the generator agents, in our study, we defined the
learning rate to be state and action dependent following [26]. In other words, the
learning rate is inversely proportional to the visited number of a particular
state-action pair up to the present state. In effect, the agent will learn more if it is
performing a new situation and rarely taken any action. When a particular action of
a state has been undertaken several times, implying that the agent has gained some
experience to deal with that particular state, there are fewer new information that an
agent ought to learn in that particular state. To implement this, we keep a copy of
the Q-table for each generator agent and populate the Q-table with the number visits
of each state-action pair.

In Q-learning algorithm, a discount factor models the relevance of recent vs past
reward. Setting the discount factor to 0 implies that an agent considers only the
recent reward while setting it to 1 highlights the importance of long-term reward. In
the highly interdependent and dynamic electricity market, the concept of long-term
becomes elusive, as there is neither single convergence state that a generator agent
can reach nor a terminating point in a repetitive trading of the electricity market. In
other words, the learning process of a generator agent is never ending and con-
tinuous. In addition to this elusive long-term concept, the dispatch information is
updated and overridden every trading day so as the generator agent can compete
effectively.

6 Conclusion

Using agent based model in our studies gives us significant advantages over other
traditional methods. In particular, by using an agent-based model, we can create
hypothetical situations with more potency than existing ones. As a result, we are
able to examine a wide range of scenarios. This approach enables a more systematic
and imaginative thinking rather than constraining us with limited scenarios.
Agent-based model allows us a relatively rapid development and testing of alter-
natives in a cost effective manner. Likewise, this method provides us with a con-
trolled environment for experimentation. However, to effectively develop and use
agent based systems, two complementary skills are required, namely modeling and
interpreting (to discover emergence). Likewise, we found the complex systems
paradigm as a useful framework guiding us to focus our observation and guide us in
understanding our findings in a meaningful way.
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Multi-kernel Transfer Extreme Learning
Classification

Xiaodong Li, Weijie Mao, Wei Jiang and Ye Yao

Abstract In this paper, a novel transfer extreme learning machine (TELM)
algorithm based on multi-kernel (MK) framework has been proposed for classifi-
cation. In this case, the problem is transformed into a semi-supervised learning
problem, which allows multi-kernel extreme learning machine (MK-TELM) clas-
sifiers to be trained for the data categorization. Compared with many popular
algorithms, the proposed method, named as MK-TELM, shows its satisfactorily
experimental results on the variety of data sets, which highlights the robustness and
effectiveness for classification applications.

Keywords Extreme learning machine ⋅ Transfer learning (TL) ⋅ Multiple kernel
learning

1 Introduction

In the past couple of decades, neural networks (NN), as powerful intelligence tools,
have been extensively studied and successfully applied to deal with various prob-
lems [1]. The famous error back-propagation (EBP) adopts gradient methods to
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optimize the weights in the network [2]. Due to SVMs’ simplicity and relatively
stable generalization performance, it has been widely applied to various domains
[3]. Recently, a new learning algorithm, i.e., extreme learning machine (ELM) was
proposed by Huang et al. [4]. Compared with EBP neural network and SVM, the
ELM only update the output weights between the hidden layer and the output layer,
while the parameters, i.e., the input weights and biases of the hidden layer, are
randomly generated, and has better generalization performance at a much faster
learning speed.

Moreover, ELMs provide a universal model which include but not limit to neural
network, SVM, and regularized network. Kim et al. [5] introduced a variable
projection method to lower the dimension of the parameter space. Wang et al. [6]
made a proper selection of the input weights and bias of ELM in order to improve
the performance of ELM. Li et al. [7] proposed a structure-adjustable online ELM
learning method, which can adjust the number of hidden layer RBF nodes.
A pruned ELM (PELM) was proposed by Rong et al. [8] for classification problem.
Zong et al. [9] put forward the weighted extreme learning machine for imbalance
learning. The kernel trick applied to ELM was introduced in previous work. Liu
et al. [10] designed sparse, non-sparse, and radius-incorporated MK-ELM algo-
rithms. Li et al. [11] proposed the issue of multiple kernel learning for ELM by
formulating it as a semi-infinite linear programming (SILP). Zeng et al. [12] studied
and analyzed from the optimization point of view. Peng et al. [13] proposed a
discriminative graph regularized Extreme Learning Machine (GELM), in which the
constraint imposed on output weights enforces the output of samples from the same
class to be similar.

Though conventional ELMs have become popular in a broad range of domains,
they are mainly applied in supervised learning such as classification and regression
problem that greatly restricts their applicability. Transfer learning is contributed to
sharing and transferring knowledge between related domains, especially under such
conditions as different distributions and feature representation. According to the
relationship between the source and target domains, classified transfer learning into
three kinds of knowledge transfer: parameter-based transfer, feature-based transfer
and transfer instance-based knowledge [14–16]. Pan et al. [17] proposed a
Q learning system for continuous spaces which is constructed as a regression
problem for an ELM. Scardapane et al. [18] extend Extreme Learning Machine
(ELM) theory to the transductive circumstance, known as the transductive ELM
(TELM). Huang et al. [19] showed the general architecture of local receptive fields
based ELM (ELM-LRF) and the proposed algorithm lowers the error rate compared
with conventional deep learning solutions.
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2 MK-TELM

2.1 Minimum Norm Least-Squares (LS) Solution of SLFNs

In kernel ELM algorithm, the input weights wi and the hidden layer biases bi not
necessarily tuned and the hidden layer output matrix H can really remain
unchanged once random values have been assigned to these parameters in the
beginning of learning. For fixed input weights wi and the hidden layer biases bi,
seen from Eq. (1), to train an SLFN is simply equivalent to finding a least-squares
solution β of the linear system Hβ=T:

Hðŵ1, . . . , ŵN ̃, b1̂, . . . , bN̂ ̃Þβ−T
�
�

�
�

= min
wi , bi, β

Hðw1, . . . ,wN ̃, b1̂, . . . , bN̂ ̃Þβ−T
�
�

�
�

ð1Þ

Hðw1, . . . ,wN ̃, b1, . . . , bN ̃Þβ−T
�
�

�
�

= min
β

Hðw1, . . . ,wN ̃, b1, . . . , bN ̃Þβ−T
�
�

�
�. ð2Þ

The smallest norm least squares solution of the above linear system is

β̂=H†T, ð3Þ

where H† is the Moore-Penrose generalized inverse of matrix H.
We will simply introduce the MK-ELM algorithm as follows [19].
In MK-ELM, the kernel Kðx, x′Þ is actually an approximate convex linear

combination of other single ELM kernels:

max
α, t

−
1
2
t+ αTy−

1
2C

αTα

s.t. t≥ αTKiα, i=1, . . . , p,

αT1n =0.

ð4Þ

max
θ, u

u

s.t. θj ≥ 0, j=1, . . . , p+1

∑
p+1

j=1
θ2j ≤ 1,

1
2

∑
p+1

j=1
θ jfjðβqÞ−

1
2
∑
k

q=1
βTq Y

− 1
q 1q ≥ u, ∀βq, q=1, . . . , k

fjðβqÞ= ∑
k

q=1
ð1
2
βTqKjβqÞ, j=1, . . . , p+1, q=1, . . . , k

ð5Þ
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2.2 Framework of MK-TELM

Let D= x1, . . . , xl+ uf g define the entire data set. Without loss of generality, we
assume the first l samples are labeled ðxi, yiÞf gli=1 where
yi ∈ f− 1, + 1g, i=1, . . . , l and followed by u unlabeled samples xif gl+ u

i= l+1. The
unknown labels are binary entries of the vector yu = yl+1, . . . , xl+ u½ �T . A collection
of l kernel functions K = fκj: χ × χ→ℝ, j=1, . . . , lg.

2.2.1 Problem Setting

The aim of semi-supervised ELM is to learn an ELM that exploits the information
conveyed by the unlabeled data [20]. The general picture is to determine a decision
function able to classify the labeled data and to correctly predict the class of
unlabeled samples while maximizing the margin. Generally speaking,
Semi-Supervised ELM algorithms rely on the optimization of the following generic
objective function:

Ωðf Þ+C ∑
l

i=1
VðyigðxiÞÞ+C* ∑

l+ u

i= l+1
UðgðxiÞÞ, ð6Þ

where the decision function is defined as gðxÞ= f ðxÞ= hðxÞβ with f . The first term
in (6) represents the regularization term which aims at controlling the complexity of
f . The two last terms are respectively the fitting errors for the labeled and unlabeled
samples which are evaluated through the margin loss function V (labeled data) and
U (unlabeled data). The regularization parameters C and C* balance the importance
of those errors in the optimization process.

Indeed, problem (4) can be seen equivalently as

min
f , b

1
2

fk k2H +C ∑
l

i=1
VðyigðxiÞÞ+C* ∑

l+ u

i= l+1
UðjgðxiÞjÞ ð7Þ

Given a set of m kernels κK , these methods aim at learning a linear combination
of the kernels i.e. κðxi, xjÞ= ∑

k
dkκkðxi, xjÞ with dk ≥ 0. Those kernels can be defined

according to some a priori knowledge. Based on Eq. (7), the following formal setup
for MK-TELM problem:
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min
fk , b, d≥ 0

1
2
∑
m

k=1

ak
dk

fkk k2Hk
+C ∑

l

i=1
VðyigðxiÞÞ+C* ∑

l+ u

i= l+1
UðjgðxiÞjÞ

s.t. dk k1 ≤ 1,
1
u

∑
l+ u

i= l+1
gðxiÞ= 1

l
∑
l

i=1
yi

ð8Þ

where ak is a normalization term, usually set as the trace of the kernel matrix κk
induced by κk .

2.3 Stochastic MK-TELM Algorithms

The idea of a stochastic MK-TELM approach is that we could try to avoid
unnecessary costs of training classifiers with some kernels that have relatively poor
classification performance for the classification task. To this purpose, we define a
variable StðjÞ as the kernel sampling probability, which indicates how likely a
kernel κj will be sampled at the t-th trial. At the beginning of the MK-TELM
algorithm, all S1ðjÞ values are set to 1, which means that all M kernels will be
definitely selected at the first trial.

For each trial, we choose a subset of kernels according to the kernel sampling
probability St. The proposed MK-TELM algorithm will train classifiers only for
those selected kernels. At the end of each trial, we update the kernel sampling
probability according to its classification performance:

Stð jÞβε
j
t → St+1ðjÞ ð9Þ

where β∈ ð0, 1Þ is a constant parameter introduced as a sampling decay factor for
updating the kernel sampling probability, and ε jt is the misclassification rate of the
kernel classifier with a selected kernel κj. The above formulation indicates the larger
the misclassification rate, the more decay penalty will be applied to the kernel to
reduce the chance of being sampled in the next trial. Finally, at the end of a trial, we
normalize to ensure all kernel sampling weights which are in [0, 1]. This normal-
ized step could affect the sampling weights of those kernels that are not selected.

Algorithm 1:
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In the above algorithm, at each trial, we simply choose the best classifier among
the l kernel classifiers as the classifier and simply abandon the other l− 1 classifiers
which may make complementary contribution in improving the performance in
some cases. Thus, we introduce another way to build the classifier by combining all
these l classifiers, each of which is assigned with a weight.

3 Empirical Results Performance Evaluation
of MK-TELM

3.1 Data Sets

In this section, in order to evaluate the properties of our framework, we perform the
experiments on one none-text data set from the UCI machine learning repository and
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text data sets 20-Newsgroups repository (Table 1). The 20-NewsGroups data set
contains 20,000 documents distributed evenly in 20 different newsgroups (Table 2).

3.2 Classification Performance Assessment

For the 20-NewsGroups categorization data, in each case the goal is to correctly
discriminate between articles at the top level, e.g. “comp” articles versus “rec”
articles, using different sets of sub-categories within each top-category for training
and testing. For the UCI categorization data, the different attribute is to classify
between dataset. The parameter C is chosen from the range {0.001, 0.01, 0.05, 0.1,
0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 500, 1 000, 2 000, 4 000, 8 000}. Because of the
less training sample in target domain, the 12 different values of the parameter Ct are
{0.0001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 100}. However, Tr-AdaBoost
(Tr-SVM) parameter set according to [11].

Table 1 UCI data sets used in the experiments

Data set Dimensionality Sample size

Banana 2 4900
Titanic 3 2200
Waveform 21 5000
Image 18 2310
Heart 13 270
Diabetis 8 768
Flare Solar 9 1066
Splice 60 3175

Table 2 Top class and sub-class on the 20-Newsgroups dataset

Top class Subclass number Subclass Sample size

Comp 1 comp.sys.ibm.pc.hardware 968
2 comp.windows.x 978
3 comp.sys.mac.hardware 956

Rec 4 rec.motorcycles 975
5 rec.sport.baseball 982
6 rec.sport.hockey 973

Sci 7 sci.electronics 976
8 sci.med 985
9 sci.space 987

Talk 10 talk.politics.guns 907
11 talk.politics.misc 992
12 talk.religion.misc 778

Multi-kernel Transfer Extreme Learning Classification 165



For each dataset, we create a set of 18 base kernels, i.e.,

• Gaussian kernels with 15 different widths (2−7, 2−6, … , 27) on all features.
• Polynomial kernels of degree 1 to 3 on all features.

For the implementation of our MK-TELM algorithms, by default, we set the
total number of trials T to 100, the sampling ratio to 0.1, and the sampling decay
factor β to 2−6 for stochastic MK-TELM algorithms. To avoid unstable results for
stochastic MK-TELM algorithms, we run 8 times under each setting and report
average performances. Finally, we give both classification accuracy and time cost
for performance evaluation.

We compare the performance of MK-TELM with Tr-AdaBoost (Tr-SVM),
ELM. As shown in Table 3, the MK-TELM method delivers more stable results
across all the datasets and is highly competitive in most of the datasets. It obtains
the best classification accuracy more than any other method. Hence, as discussed in
the above section, MK-TELM possesses overall Tr-AdaBoost (Tr-SVM) advan-
tages over other methods in the sense of classification accuracy.

From Table 4, MK-TELM is obviously superior than Tr-AdaBoost (Tr-SVM) in
classification accuracy for almost all these datasets. The MK-TELM obtains the
good performance compared with the traditional ELM, MK-ELM.

3.3 Parameter Evaluation

3.3.1 Assessment of Parameter

The first set of experiments is to verify the influence of the total number of trials T
for the MK-TELM algorithms. In this set of experiments, we examine the experi-
mental results by varying the parameter T from 20 to 200. Figure 1 shows the

Table 3 Different algorithms’ performance on the UCI dataset

Dataset Dataset Accuracy (%)
Source sample
(Positive class vs.
negative class)

Target sample
(Positive class vs.
negative class)

Tr-AdaBoost
(Tr-SVM)

ELM Our
method

Banana 460 versus 1700 390 versus 1700 81.52 82.72 87.41
Titanic 250 versus 683 250 versus 684 92.31 93.78 96.88
Waveform 520 versus 6535 520 versus 6534 90.93 92.62 96.95
Image 260 versus 722 260 versus 722 96.31 96.40 97.92
Heart 30 versus 85 30 versus 85 93.76 94.67 96.52
Diabetis 86 versus 241 86 versus 242 87.25 91.09 97.24
Flare
Solar

120 versus 333 120 versus 333 89.69 89.91 93.82

Splice 368 versus 974 368 versus 975 87.78 90.42 96.54

166 X. Li et al.



evaluation results for the impact of the parameter T on the classification accuracy
and learning time cost, respectively.

The empirical observations as above indicate that choosing a proper parameter T
is essentially a weigh between classification accuracy and efficiency performances.
However, it is not difficult to make a choice a proper T value that usually falls in
between 20 and 200, which sometimes also relies on the empirical experience of
efficiency and accuracy in an effective application.

3.3.2 Assessment of Sampling Ratio

Another parameter that may affect the MK-TELM algorithms is the sampling ratio,
which depends on the proportion of training data examples sampled from the whole
collection of training data at each trial. Figure 2 shows the evaluations of accuracy
performance with respect to the sampling ratio by varying its value from 0.05
to 0.5.

Table 4 Different algorithms’ performance on the 20-Newsgroups datasets

Task Datset Accuracy (%)
Source sample (Target
sample)

Tr-AdaBoost
(Tr-SVM)

ELM MK-ELM Our
method

1 1 versus 5 (3 vs. 6) 88.65 96.35 96.85 97.48
2 1 versus 7 (3 vs. 8) 93.21 94.31 95.71 96.33
3 1 versus 11 (3 vs. 12) 86.74 88.29 89.32 90.60
4 5 versus 7 (6 vs. 8) 83.21 87.12 88.41 89.39
5 5 versus 6 (11 vs. 12) 79.62 86.27 86.61 89.81
6 7 versus 11 (8 vs. 12) 88.15 89.67 90.84 91.67
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Fig. 1 Assessment of classification accuracy with respect to parameter T
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From the experimental results, we found that the MK-TELM algorithms with a
large sampling ratio value usually produced better classification accuracy perfor-
mance. This is especially more evident when the sampling ratio is small. On the
other hand, employing a too large sampling ratio may lead to sample too many
training data examples for some large dataset, which may be somewhat redundant
for building the basic classifiers at the boosting trials.

3.3.3 Assessment of the Sampling Decay Factor

The last set of experiments is to examine the effect of the sampling decay factor β
for the two stochastic MK-TELM algorithms (S1 and S2). Figure 3 show that
MK-TELM-S1 usually likes larger β, while MK-TELM-S2 prefers smaller β.
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4 Conclusions and Future Research

We address the issue of transfer learning based on MK-ELM for classification in
this paper. The results show that the proposed method using MK-TELM can
effectively improve the classification by learning cross-domain knowledge and is
robust to different sizes of training data.
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Chinese Text Sentiment Classification Based
on Extreme Learning Machine

Fangye Lin and Yuanlong Yu

Abstract With the rapid growth of the Web text data, mining and analyzing these

text data, especially the online review data posted by the users, can greatly help better

understand the usersconsuming habits and public opinions, it also plays an important

role in decision-making for the enterprises and the government. But in the process

of vectoring text, many current Chinese text sentiment classifications treat words

as atomic units, there is no notion of similarity between words. In order to solve

this problem, this paper imports word embedding to capturing both the semantic

and syntactic information of words from a large unlabeled corpus. In the section of

experiment, we toke the noun, verb, and adjectives as candidate set, used 𝜒
2

statistic

to reduce the number of dimensions. We mainly compared one-hot representation

and word embedding as the expression of word to certain tasks, we also proposed

the pooling method with word embedding to standardizing the vector, the ELM with

kernels was adopted to analyze the text emotion tendentiousness. Finally the paper

summarizes the current status, remaining challenges, and future directions in the

field of sentiment classification.

Keywords Sentiment classification ⋅Word embedding ⋅Extreme learning machine

1 Introduction

With the rapid increase usage of the Internet, there are more and more subjective

information appearing at the social medium, such as forum, community, blog and

shopping websites. Both individual and organization became strongly relying on the

review information obtained from the Internet to make their own decisions. How-

ever, due to the huge amount of information available on the Internet, one has to
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search, check and judge each review one by one before the person or organization

can make the final decision. In this situation, it will be very useful to first sum-

marize the relevant huge amount of information, this summary will be valuable

for both the customer and manufacturer. This kind of work is called opinion-based

multi-document summarization. Furthermore, it will greatly enhance the customers

efficiency to obtain the information if there is an automatic analysis of the origi-

nal information, for example, which is positive attitude, which is negative attitude,

and to what extent. This is called sentiment classification, which is a very important

research topic in the field of natural language processing. While sentiment classifi-

cation for English text has made a great progress, current research work on senti-

ment classification for Chinese text is still in its infancy. Due to the huge difference

between English and Chinese in syntax, semantics and pragmatics etc., we face more

problems in the processing of Chinese text.

In recent years, domestic scholars have done the relevant research according to the

characteristics of emotion classification problem. Xu jun [1] used Naive Bayes and

Maximum Entropy classification for the sentiment classification of Chinese news

and reviews, the experimental results show that the methods they employed perform

well. Moreover, they found that selecting the words with polarity as features, nega-

tion tagging and representing test documents as feature presence vectors can improve

the performance of sentiment classification. ZHOU Jie [2] summarized the charac-

teristics of netnews comments firstly, and selected different sets of feature, different

feature dimensions, different feature-weight methods and parts of speech to con-

struct classifiers, then made the comparison and analysis to the experimental results.

The results of comparison showed that the features combining sentiment words and

argument words perform well to those only employing sentiment words.

In this paper, sentiment classification for Chinese text will be seen as two classi-

fication problems, namely positive and negative tendencies. We selected 2607 neg-

ative reviews and 5149 positive reviews as the experimental data, and the rate of

training sample and testing sample is 2:1. Finally the model of ELM with kernels

learned the training sample set, and gave out the result of sentiment classification

on the testing sample set. Section 2 will describe some basic models used in senti-

ment classification and some novel technologies which are proposed in recent years.

Section 3 will be detailedly introduce the data processing and feature extraction, we

will show the comparison of experimental results. The last section we will have the

conclusion of the present stage of the work.

2 System Architecture

The proposed method consists of two modules as shown in Fig. 1: training and test-

ing.

In the part of training phase to need to training the sentiment lexicons from train-

ing set, the training set which consists of positive samples and negative samples. We

also need to training the word embedding from corpus. In the stage of testing, the
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Fig. 1 Architecture of the proposed sentiment classification

testing samples are mapped to the sentiment lexicons after preprocess, all the data

set are expressed as middle-level feature and put them into ELM for classifying.

2.1 Preprocess

Denoising: In the stage of experiment the tendency of the reviews should not be

equivocal, so we check the whole corpus and delete some ambiguous content and

repeated content.

Segmentation: In this paper, we use the Institute of Computing Technology, Chi-

nese Lexical Analysis System (ICTCLAS) [3] as word segmentation tool. After this

part we get a stream of words which bring the part-of-speech tagging (POS), we

saved all these information by using hashmaps for the next step of study.

Filtering the Stop-Word: After comparison we choose the baidu stop-list to remove

some words which have little contribution but occur frequently to the sentimental

classification processing.

2.2 Low-Level Feature

Vector space model is an algebraic model for representing text documents (and

any objects, in general) as vectors of identifiers. Each dimension corresponds to a
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separate term. If a term occurs in the document, its value in the vector is non-zero.

forms are as follows:

D =
(
Wterm1,Wterm2, ...,Wtermn

)
(1)

Each dimension in the vector means the weights of the term in this document,

and it describes the influence of the words in the document, several different ways

of computing these values, also known as (term) weights, have been developed. One

of the best known schemes is term frequency-inverse document frequency (TF-IDF)

weighting.

Wik =
tfik ∗ idfk√

t∑

k=1
(tfik)2

(
idfk

)2
(2)

tfik =
nik
n∑

i=1
nik

(3)

idfk = log |D|

m + |||
{
k ∶ ti ∈ dk

}|||

(4)

The |D| is the total number of documents in the document set; the |{k ∶ ti ∈ dk}|
is the number of documents containing the term ti. If the term is not appeared in

this document, the divisor is zero. tfik means the frequency of the term appear in this

document set and idfk means the words on the distribution of the documents in the

collection of quantitative.

Considering the traditional vector space model needs more time expense as its

vector dimension turns greater, we use the 𝜒
2

statistic (CHI) [4] as feature selection

method to reduce the number of dimensions. The 𝜒
2

statistic measures the lack of

independence between t and c and can be compared to the 𝜒
2

statistic distribution

with one degree of freedom to judge extremeness. Using the two-way contingency

table of a term t and a category c, where A is the number of times t and c co-occur,

B is the number of time the t occurs without c, C is the number of times c occurs

without t, D is the number of times neither c nor t occurs, and N is the total number

of documents, the term-goodness measure is defined to be:

𝜒
2 (t, c) = N × (AD − CB)2

(A + C) × (B + D) × (A + B) × (C + D)
(5)
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2.3 Middle-Level Feature

Many current natural language processing (NLP) systems and techniques treat words

as atomic units, there is no notion of similarity between words. The most common

expression of word is one-hot representation, in this method every word is expressed

as a long vector, the dimension of this vector is the vocabulary size, only one dimen-

sion of the value is 1 and others value is 0, this dimension expresses current word

and we use sparse coding to storage it, this choice has several good reasons like sim-

plicity, robustness and the observation that simple models trained on huge amounts

of data outperform complex systems trained on less data.

However, the simple techniques have some drawbacks in many tasks. For exam-

ple, the amount of relevant in-domain data for automatic speech recognition is lim-

ited, the performance is usually dominated by the size of high quality transcribed

speech data. In machine translation, the existing corpora for many languages con-

tain only a few billions of words or less. Thus, there are situations where simple

scaling up of the basic techniques will not result in any significant progress, and we

have to focus on more advanced techniques.

With progress of machine learning techniques in recent years, it has become pos-

sible to train more complex models on much larger data set, and they typically out-

perform the simple models. Probably the most successful concept is to use distrib-

uted representations of words [5] -word embedding. It can capture both the semantic

and syntactic information of words from a large unlabeled corpus and has attracted

considerable attention from many researchers.

Mikolov [6] and his team proposed two novel model architectures for comput-

ing continuous vector representations of words from very large data sets. The two

architectures are continuous bag-of-words (CBOW) model and skip-gram model. the

models are shown in Fig. 2. We choose the Skip-gram model to train word embed-

ding, it tries to maximize classification of a word based on another word in the same

sentence. More precisely, we use each current word as an input to a log-linear classi-

fier with continuous projection layer, and predict words within a certain range before

and after the current word. The training complexity of this architecture is propor-

tional to:

Q = C × (D + D × log2(V)) (6)

where C is the maximum distance of the words. Thus, if we choose C = 5, for each

training word we will select randomly a number R in range < 1;C >, and then use

R words from history and R words from the future of the current word as correct

labels. This will require us to do R × 2 word classifications, with the current word as

input, and each of the R + R words as output. In the following experiments, we use

C = 5.
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Fig. 2 The CBOW architecture predicts the current word based on the context, and the Skip-gram

predicts surrounding words given the current word

2.4 Extreme Learning Machine

In the field of machine learning, a series of traditional machine learning algorithms

were improved in order to satisfy the higher data processing needs. For instance,

the model of Naive Bayes, Maximum entropy, Support vector machines (SVMs) [7]

and so on which reduced the difficulty of solving a certain task. However, there are

still some problems with those algorithms: (1) the speed of solution is slower than

required for large data; (2) the model related to SVMs need to manual adjustment

parameters (C, 𝛾) frequently, they also repeat training in order to obtain the optimal

solution with tedious time-consuming process and poor generalization ability.

Under the circumstances, extreme learning machine provides a new way to solve

these problems. Extreme Learning Machine was first proposed by Huang [8] in

2006, ELM is generalized single-hidden layer feedforward networks (as illustrated in

Fig. 3). ‘Extreme’ means it breaks limitations of traditional artificial learning meth-

ods and aims to work like the brain. Compare to the SVM algorithm, ELM may get

better or similar predictive accuracy with less time.

The output function of ELM for generalized SLFNs (take one output node case

as an example) is:

f (x) =
L∑

i=1
𝛽iG(ai, bi

, x) = 𝛽 ⋅ h(x) (7)

ELM can guarantee the regression prediction accuracy by minimizing the output

error:
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Fig. 3 Feedforward neural

network with single hidden

layer

lim
L→∞

(f (x) − fo(x)) = lim
L→∞

(
L∑

i=1
𝛽ihi(x) − fo(x)) = 0 (8)

where L is the number of hidden neurons hi and fo(x) is the goal of the forecast

function value.

At the same time, ELM is guaranteeing the generalization ability of the network

by minimizing the output weights. In general, 𝛽 is calculating with the least squares,

the formula is:

𝛽 = H†O = HT (HHT)−1 O = HT ( 1
C

+ HHT )−1O (9)

where H is the hidden-layer output matrix and H†
is the Moore-Penrose general-

ized inverse of matrix H. It can add a constant to get a better generalization ability

according to ridge regression.

As for ELM with kernels, it obtains a better regression and classification accuracy

by introducing kernel.

f (x) = h(x)𝛽 =
⎛
⎜
⎜
⎝

K(x, x1)
...

K(x, xN)

⎞
⎟
⎟
⎠

( 1
C

+𝛺ELM

)−1
O (10)

𝛺(i,j) = exp(−𝛾(xi − xj)2) (11)

where 𝛺ELM is the kernel function and N is the dimension of input.
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3 Experiments

In the experimental part, we choose the hotel BBS reviews information which was

collected by song-bo tan as our original corpus. After filtering some ambiguous con-

tent and repeated content. finally we select 2607 negative reviews and 5149 positive

reviews as the experimental data, and the rate of training sample and testing sample

is shown in Fig. 4.

In this part,we compare different parts of speech to build the suitable sentiment

lexicon. Intuitively, we would think that the adjective directly determines the emo-

tion of the text but we find only the adjective can not completely express the seman-

tic information of the review.the result is shown in Table 1. If we only choose the

adjective as candidate set, althrough the accuracy is 82.63% we only get 799 terms

from training sample, too much information is lost. Considering there are not enough

adverbs are trained in the word embedding,finally we choose the noun, verb, adjec-

tive to build the sentiment lexicon.

Meanwhile, we compare the different dimension of the vector and we find feature

dimension has less influence on the accuracy of classification, The result is shown in

Table 2. So we decide to choose the 3000 as the feature dimension, after this section

every text is represented as a vector.

Fig. 4 The rate of training sample and testing sample

Table 1 Comparison between different parts of speech

Parts of speech Accuracy (%) TrainingTime (s) TestingTime (s)

Noun 73.00 2.9317 1.6657
Noun, verb 75.42 3.3108 1.7063
Noun, verb, adjective 80.81 3.1306 1.9216
Noun, verb, adjective, adverb 80.97 2.8238 1.4792
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Table 2 Comparison between different dimensions of vector

Dimension of vector Accuracy (%) TrainingTime (s) TestingTime (s)

2000 80.78 2.3067 1.0994
3000 80.81 3.1306 1.9216
4000 80.70 3.1515 1.9125

Word embedding models capture useful information from unlabeled corpora, so

we try to use word embeddings as the feature to improve the performance of certain

tasks. The first task is the sentiment classification in which the word embedding is

the only feature, the second task we use word embedding as an additional feature to

achieve the sentiment classification.

According to experiment of Siwei Lai [9] which proves the simplest model, Skip-

gram, is the best choice when using a 10M- or 100M- token corpus. We use the

Skip-gram model to train the word embedding and the dimension of every term is

100, the word embeddings are used as feature to classify.

3.1 Pooling

In the section we use word embedding as feature, we meet a problem that we find

it is hard to standardizing the vector, we hope to use the word embedding to reduce

the dimension of vector and we can also remain the semantic information of every

review at the same time. However, after preprocess every text are divided as diverse

words and the number of words is different. At the first time we simply add the every

word embedding which occurs in the text together Unfortunately we find the result is

not good enough, the method of simple addition which loses the connection between

words, so we propose the pooling method to standardizing the vector, we split the

3000 index of words into 10 parts and we add every word embedding which occurs

in same part, if there is no words in this part, we use a zero vector of 100 dimension

to express this part, finally we connect the vector according to the sequential order

as the final expression of text. After comparison we find pooling method performs

much better than simple addition method, the result is shown in Table 3.

Table 3 Comparison between pooling and no pooling

Method Accuracy (%) TrainingTime (s) TestingTime (s)

Word embedding 78.51 1.5723 0.3145
Word embedding (pooling) 79.54 2.0491 0.7345



180 F. Lin and Y. Yu

Table 4 Comparison between SVM and ELM with kernels

Classifier Accuracy (%) TrainingTime (s) TestingTime (s)

SVM 79.5391 103.8211 69.9009

ELM with kernels 80.81 3.1306 1.9216

3.2 Classification Result

In this section we firstly compare SVM and ELM with kernels as the sentiment clas-

sifier in one-hot representation, the simulations for SVM and ELM with kernels algo-

rithms are carried out in MATLAB environment running in a Core i7-4770, 3.40GHz

CPU, 32G RAM. In Table 4. we find ELM with kernels performs better than SVM

both in accuracy and saving times.

Then we compare the one-hot representation and word embedding with pooling,

we try to connect the one-hot representation and word embedding as combined fea-

ture, it works but the promotion of accuracy is very tiny. The final result is shown

in Table 5. The curve of training accuracy versus the kernel parameters is shown in

Fig. 5.

Table 5 Comparison between one-hot representation and word embedding

Accuracy (%) TrainingTime (s) TestingTime (s)

One-hot Representation 80.68 6.1624 3.8013
Word embedding (pooling) 79.86 3.4444 1.1522
One-hot + Word embedding (pooling) 80.89 5.5068 2.9478

Fig. 5 The curve of testing accuracy versus the Kernel Parameters
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4 Conclusion

This paper thought the analysis of the emotional polarity of text as two-classification

problems. We used the VSM model to represents a document, and compared one-hot

representation and word embedding in expressing words, ELM with kernel gave out

the result of classification. Our main operation to the data set was cleaning, word

segmentation, removing stop words, feature selection and classification. We found

word embedding with pooling method has more advantages than one-hot represen-

tation in reducing the dimension of text vectoring, simultaneously it also captured

both the semantic and syntactic information of words. In the part of classifier we

found it took less time for ELM to training and testing the same data set than SVM.

The further research we think is to design a better corpus for getting better word

embeddings, we hope the word embedding can help to improve some certain tasks

of sentiment classification.
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Abstract An incremental version of the ELMVIS+ method is proposed in this

paper. It iteratively selects a few best fitting data samples from a large pool, and

adds them to the model. The method keeps high speed of ELMVIS+ while allow-

ing for much larger possible sample pools due to lower memory requirements. The

extension is useful for reaching a better local optimum with greedy optimization of

ELMVIS, and the data structure can be specified in semi-supervised optimization.

The major new application of incremental ELMVIS is not to visualization, but to

a general dataset processing. The method is capable of learning dependencies from

non-organized unsupervised data—either reconstructing a shuffled dataset, or learn-

ing dependencies in complex high-dimensional space. The results are interesting and

promising, although there is space for improvements.
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1 Introduction

The ELMVIS method [1] is an interesting Machine Learning method that optimize

a cost function by changing assignment between two sets of samples, or by changing

the order of samples in one set which is the same. The cost function is learned by

an Extreme Learning Machine (ELM) [2–4], a fast method for training feed-forward

neural networks with convenient mathematical properties [5, 6]. Such optimization

problem is found in various applications like open-loop Traveling Salesman prob-

lem [7] or clustering [8] (mapping between samples and clusters), but not in Neural

Networks. ELMVIS is unique in a sense that it combines the optimal assignment

task with neural network optimization problem; the latter is optimized at each step

of ELMVIS.

A recent advance in ELMVIS+ method [9] set its runtime speed comparable or

faster than other state-of-the-art methods in visualization application. However there

are unresolved problems like a greedy optimization leading to a local optimum. Also

ELMVIS+ can be applied to a much wider range of problems than a simple visual-

ization or a visualization accounting for the class information [10], which have not

been tested or reported yet. This paper addresses the aforementioned drawbacks, and

presents the most recent research advances in the family of ELMVIS methods.

The proposed incremental ELMVIS allows for iterative growth of dataset size and

model complexity. Incremental ELMVIS learns an approximate global data structure

with a few data samples and a simple ELM model, because at a very small scale

global and local optimums are similar or the same. Then more data samples are

added to the model, choosing the ones that better fit an existing ELM. After adding

a batch of new samples, the current model is refined by ELMVIS+ method. This

refinement keeps the global optimum due to the greedy optimization and only small

changes. More neurons are added to ELM as the dataset size grows, to better separate

the data.

Iterative ELMVIS is useful for semi-supervised learning, starting from the data

with known outputs and adding more data with unknown outputs, simultaneously

updating the model. It can even apply to completely unsupervised datasets, where

it finds an input-output dependency, learns it with ELM model, and then simulta-

neously expands the supervised part of a dataset and updates an ELM model that

encodes the input-output dependency.

The experiments have shown the ability of iterative ELMVIS to improve global

optimum, successfully perform semi-supervised and unsupervised learning with

complex tasks. Current version of the method is found limited to good separation

between only two classes in data (which it learns first), ignoring samples of the addi-

tional classes until the first two ones are exhausted, and poorly fitting the additional

classes into the learned two-class model. Solution to this problem will be considered

in further works on the topic.
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2 Methodology

An iterative extension of ELMVIS+ methodology is rather straight-forward, as

explained below. ELMVIS methods start with a list of (visualization) samples and

an unordered set of data samples; and it finds an optimal order of data samples in the

set by a greedy search with changing positions of many samples at once (ELMVIS)

or only two samples at once (ELMVIS+).

Iterative ELMVIS splits data samples into fixed, candidate and available ones.

Fixed samples have their order fixed and cannot be moved by an iterative ELMVIS.

Candidate samples are a small number of samples which are chosen from candi-

date+available ones to maximize the cost function. This cost function takes into

account fixed and current candidate samples, but ignores the available samples. Once

current candidate samples are chosen optimally, they are added to the fixed ones, and

the method is repeated with a few more candidate samples—until the available data

samples are exhausted.

2.1 Extreme Learning Machine

Extreme Learning Machine is a way of training feedforward neural networks [11]

with a single hidden layer that features randomly assigned input weights [12], explicit

non-iterative solution for output weights and an extreme computation speed and scal-

ability [13]. This model is used as a non-linear cost function in all ELMVIS methods.

This short summary introduces the notations to the reader.

The goal of ELM model is to approximate the projection function �̂�i ≈ f (𝐱i) using

a representative training dataset. As ELM is a deterministic model, the function f ()
is assumed to be deterministic, and a noise 𝜖 is added to cover the deviation of true

outputs 𝐲 from the predictions by a deterministic function f ()

𝐲 = f (𝐱) + 𝜖 (1)

The Extreme Learning Machine [2] (ELM) is a neural network with d input, L
hidden and c output neurons. The hidden layer weights 𝐖d×L and biases bias1×L are

initialized randomly and are fixed. The hidden layer neurons apply a transformation

function 𝜙 to their outputs that is usually a non-linear transformation function with

bounded output like sigmoid or hyperbolic tangent.

The output of the hidden layer is denoted by 𝐡 with an expression

𝐡i = 𝜙(𝐱i𝐖 + bias) (2)

where the function 𝜙() is applied element-wise, and can also be gathered in a matrix

𝐇N×L for convenience.
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The output layer of ELM poses a linear problem 𝐇𝜷 = 𝐘 with unknown output

weights 𝜷L×c. The solution is derived from the minimization of the sum of squared

residuals 𝐫2 = (𝐲 − �̂�)2, that gives the ordinary least squares solution 𝜷 = 𝐇†𝐘,

where 𝐇†
is a Moore-Penrose pseudoinverse [14] of the matrix 𝐇.

2.2 ELMVIS+ Method

ELMVIS+ method [15] approximates a relation between visualization (or input)

space  and data space  by an ELM model. The task has N representative sam-

ples 𝐯 ∈  and 𝐱 ∈  , but their order is unknown. The method assumes fixed order

of samples 𝐯 joined in matrix 𝐕, and finds a suitable order of samples 𝐱 joined in

matrix 𝐗 by exchanging pairs of rows in 𝐗. Contrary to a common use of ELM,

data samples 𝐱 are the outputs of ELM and visualization coordinates 𝐯 are the inputs

(thus ELM predicts original data �̂�). Visualization coordinates𝐕 are chosen arbitrary

and fixed—they can be distributed randomly with normal or uniform distribution, or

initialized on a regular grid.

The optimization criterion is a cosine similarity between 𝐗 and ̂𝐗 predicted by

ELM. A low error means that its possible to reconstruct data from the given visu-

alization points, thus the visualization points keep information about the data. The

reconstruction is approximated by the ELM model in ELMVIS.

There is an explicit formula for a change of error (negative cosine similarity) for

swapping two rows in 𝐗 and re-training ELM with this new dataset. The readers can

refer to the original paper [15] for the full formula. It is based on the expression for

the change on error 𝛥E in case a row 𝐱a in 𝐗 is changed by 𝛿 ∈  amount:

𝛥E =
d∑

j=1

(
𝐀a,a𝛿

2
j + 2�̂�a,j𝛿j

)
(3)

̂𝐗 ← ̂𝐗 − 𝐀∶,a × 𝛿 (4)

𝐗∶,a ← 𝐗∶,a + 𝛿 (5)

2.3 Incremental ELMVIS

Incremental ELMVIS splits all data samples in three groups: fixed, candidate and

available samples. The separation is maintained with two indexes: iA is the number

of fixed samples, and iB is the number of fixed+candidate ones.

Incremental ELMVIS works similar to ELMVIS+. First, the initial numbers of

fixed and candidate samples are given by iA and iB. Then swap indexes a ∈ [iA, iB]
and b ∈ [iB + 1,N] are selected randomly to replace one candidate sample with an
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available one. The change of error 𝛥E is computed by the formula (3) for the change

in the candidate row of the data matrix 𝐗. Compared to ELMVIS+, the change in the

available sample is ignored. Then for the negative 𝛥E, an update step is performed

for sample 𝐱a as in Eq. (4) and for both 𝐱a and 𝐱b as in Eq. (5).

If there is no improvement during a large number of swaps, the current candidate

samples are added to the fixed ones (iA ← iB), and k more samples are added as candi-

dates (iB ← iB + k). Candidate samples are already initialized with the data samples

at indexes 𝐱iA ,… , 𝐱iB . The method then repeats for another iteration. Iterations stop

when no available samples are left.

In the original ELMVIS+, matrix 𝐀 took the most space and limited the max-

imum amount of processed samples (its memory size is (N2)). In incremental

ELMVIS, only a 𝐀iB×iB part of the whole matrix 𝐀 is needed. That relaxed memory

requirements of the method, and allows to use a very large pool of available sam-

ples. The memory constraints of incremental ELMVIS apply only to the number of

optimized data samples.

3 Experimental Results

Incremental ELMVIS method is developed for two main applications. The first one is

achieving a better global optimum in ELMVIS+. The original EMLVIS+ is a good

visualization method, however it has an unwanted feature: with a large number of

neurons in ELM it fragments clusters in the visualized data. This happens with large

amount of data and a complex ELM model. An iterative ELMVIS that starts with

small amount of data and a simple model keeps all similar data together; then more

data samples are gradually added while the total picture changes little due to local

minimum in ELMVIS+ optimization.

The second application is finding unknown relations in datasets. This is an unsu-

pervised learning field relevant to the current Big Data trends, when a large amount

of interesting data is available—but there pre-processing like manual labeling or

classification. It is possible to extract relations inside data automatically by itera-

tively growing an ELMVIS+ model between two sets of data samples (they don’t

have to be related to visualization). Results for both applications are presented below.

3.1 Better Optimum with ELMVIS

ELMVIS+ method is fast and works with large datasets, but it has a greedy opti-

mization approach that leads to local optimality of the solution. Such local optimum

is close to a global one for small datasets and simple ELM models, but with a large

dataset and many neurons in ELM model the visualization data is split into multiple

small clusters with local optimality, non-representative of a global picture.
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Fig. 1 Visualization of 300 (left) and 900 (right) MNIST digits on a two-dimensional space with

incremental ELMVIS. The visualization is initialized with 5 digits shown in larger font. Digit sym-
bols and colors are for the presentation purpose only; ELMVIS method does not have access to

them and works with raw pixel data

A better global optimality is achievable with an incremental ELMVIS. This exper-

iment uses MNIST digits [16] with their original 28 × 28 features (grayscale pixels),

with 500 digits for each of the classes 0–4. It starts by seeding several cluster as

shown on Fig. 1 by bold samples, and a simple ELM model. Then gradually added

data fits into the existing model (Fig. 1, left). An ELM learns an easy separation

between two clusters, and an incremental ELMVIS prefers to add samples of these

clusters until they are available (Fig. 1, right).

The incremental ELMVIS learns a good model that separated between two dif-

ferent kinds of data. Then there is no data samples of these two types left, it begins

adding more types, starting at the boundary (Fig. 2, left). These additional classes are

mapped to a single area, although they go over the two previously learned cluster as

there is no space left on the visualization (Fig. 2, right). The ELMVIS still ignores

the last available class (digits 4) because it is not represented on the visualization

space.

3.2 Better Optimum with Semi-supervised ELMVIS

In the previous experiment, there were no sharp borders between clusters because

ELMVIS used all the visualization space to show only two clusters, and then has to

map additional data clusters other them. Sharper borders can be obtained by running

the original ELMVIS+ on the fixed set of data points after each iteration of the

incremental ELMVIS. That will make space for more clusters by compacting the

existing ones; while still preserving the global structure as ELMVIS+ optimization

goes to the local optimum only.

In addition, a semi-supervised approach is tested where the clusters are initialized

with a larger number of samples. This experiment uses 5 classes of digits with 1000
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Fig. 2 Visualization of 1500 (left) and 2500 (right) MNIST digits on a two-dimensional space

with incremental ELMVIS. There is only 500 samples of each class; ELMVIS has to add more

classes then it exhausted zeros and ones in the available set. Digit symbols and colors are for the

presentation purpose only; ELMVIS method does not have access to them and works with raw pixel

data

Fig. 3 Semi-supervised incremental ELMVIS initialized with 20 samples per class (left). An ELM

learns all the clusters from a larger initialization set, and add new samples for all of them instead of

just two (right, 1000 samples mapped). Classes of samples are used for initialization, but ELMVIS

method does not have access to them and works with raw pixel data

samples per class, initialized with 20 samples per class as shown on Fig. 3 (left). A

large initialization set forces ELM to learn all the classes, and add samples from all

of them instead of only two (Fig. 3, right).

When the method need space to map more samples from a particular class, an

additional ELMVIS+ step moves existing clusters to give that space while keeping

sharp boundaries between the classes. The effect is shown on Fig. 4 where all clusters

are moved to give more space for digits 2. The global structure is well preserved, with

large clusters keeping their place.

The added ELMVIS+ step refines the candidate samples placement within the

fixed ones, that is necessary towards the end of visualization when there may be no

samples of the desired class left, or no spaces left within the desired class area. An

improvement of ELMVIS+ step fitting the candidate samples is presented on Fig. 5.
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Fig. 4 An additional ELMVIS+ step moves existing clusters if more space is needed for the

remaining data, without disturbing the global data structure. Here 2000 samples visualized on the

left with under-represented class 2; 5000 samples visualized on the right with other clusters moved

to fit class 2 without overlap

Fig. 5 The last step on an incremental ELMVIS (left), further refined by ELMVIS+ (right). Can-

didate samples of class 0 that are mis-placed due to the lack of space inside class 0 are correctly

fitted by ELMVIS+

3.3 Data Structure Discovery with Unsupervised ELMVIS

The inputs to ELMVIS are not limited to visualization coordinates; they can be arbi-

trary data. Thus ELMVIS is a feasible method for finding structure in the data in

an unsupervised manner. This experiments takes a number of MNIST digits in ran-

dom (undefined) order, and maps them to the same number of classes (in zero/one

encoding), or to the same number of different MNIST digits of the same classes.

First dataset has zero-one classes as inputs, and MNIST digits as outputs. How-

ever it cannot be used to train a supervised model because it is unknown which input

corresponds to which output—a common situation in the analysis of large automati-

cally acquired data corpora that has not been manually labeled. The goal of an incre-

mental ELMVIS is to reconstruct the correct input-output pairing. The experiment

uses 100 samples per class with 2 or 5 classes of digits. Note that the best pairing

across all permutations of classes is reported, as in the unsupervised setup with equal
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Fig. 6 Binary class to MNIST digit mapping with two or five classes, confusion matrices present

correct percentages. The best mapping across all permutation of classes is shown, because it is not

possible to specify matching of particular classes in an unsupervised method

amount of samples there is no way to tell ELMVIS which class should go to which

digit.

The resulting confusion matrices are shown on Fig. 6. An incremental ELMVIS

successfully paired classes with pictures of MNIST digits. The method mapped

classes arbitrary (i.e. class [1, 0, 0, 0, 0] is mapped to digit 4), but this is to be expected

from a purely unsupervised method.

Another experiment is performed in a similar setup, but instead of binary class

representations the incremental ELMVIS tried to map MNIST digits to other MNIST

digits (of the same classes, Fig. 7). The mapping is successful with two classes. With

more than two classes the same feature always appears: two random classes are sep-

arated well while other classes are randomly mixed with them. This outcome is in

line with the results observed in Sect. 3.1 where two classes are clearly separated at

the beginning, followed by other classes mapped over them.

4 Conclusions

An iterative extension to the original ELMVIS+ method is proposed in this paper. It

iteratively selects a small number of best fitting samples from all the available ones,

and adds them to the model. It allows for a much larger set of potential samples than

ELMVIS+ by limiting memory requirements to already fitted samples rather than to

all available ones, keeping the high speed of the ELMVIS+ at the same time.

The method improves global structure of ELMVIS+ visualization by starting with

a small dataset, and gradually adding more data or increasing the complexity of the

model. It preserves the global structure, sharp boundaries between classes, and has
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Fig. 7 MNIST digits to MNIST digits mapping, using different digits from the same 2 or 5 classes.

Two classes are separated clearly, while any additional number of classes are mixed with them

a possible semi-supervised extension where the samples are mapped to the specified

places on the visualization space.

The proposed method is capable of unsupervised data structure detection. It excels

in reconstructing a randomly shuffled dataset with unknown pairing between inputs

and outputs. It is also capable of finding a mapping between two complex data spaces

as shown on MNIST digits example.

The methodology needs further investigation and improvement to counter the

observed drawbacks, specifically the tendency of learning an easy model first leading

to problems in incorporating more complex parts to the global picture.
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Predicting Huntington’s Disease: Extreme
Learning Machine with Missing Values

Emil Eirola, Anton Akusok, Kaj-Mikael Björk, Hans Johnson
and Amaury Lendasse

Abstract Problems with incomplete data and missing values are common and

important in real-world machine learning scenarios, yet often underrepresented in

the research field. Particularly data related to healthcare tends to feature missing val-

ues which must be handled properly, and ignoring any incomplete samples is not an

acceptable solution. The Extreme Learning Machine has demonstrated excellent per-

formance in a variety of machine learning tasks, including situations with missing

values. In this paper, we present an application to predict the onset of Huntington’s

disease several years in advance based on data from MRI brain scans. Experimental

results show that such prediction is indeed realistic with reasonable accuracy, pro-

vided the missing values are handled with care. In particular, Multiple Imputation

ELM achieves exceptional prediction accuracy.

Keywords Extreme learning machine ⋅ Missing values ⋅ Multiple imputation ⋅
Huntington’s disease ⋅ Prediction

1 Introduction

The prevalence of machine learning has been steadily increasing in the current infor-

mation age. Engineering advances in processor performance and storage capacities

have provided an opportunity to make practical use of computational statistics on

a large scale. Simultaneously, the research community has contributed by devising
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new clever algorithms to maximize the amount of relevant information that can be

extracted from data. While data sets are large at times, the more common situation

is that the number of samples is limited by practical issues, meaning that all of the

available data must be used as efficiently as possible in order to achieve the desired

results.

One pertinent issue is incomplete data sets, where some samples have missing

information [1]. Most methods in machine learning are based on the assumption that

data is available as a fixed set of measurements for each sample. However, this is not

always true in practice, as several samples may have incomplete records for any of

a number of reasons. These could include measurement error, device malfunction,

operator failure, non-response in a survey, etc. Simply discarding the samples or

variables which have missing components often means throwing out a large part of

data that could be useful for the model. It is relevant to look for better ways of dealing

with missing values in such cases.

If the fraction of missing data is sufficiently small, a common pre-processing step

is to perform imputation to fill in the missing values and proceed with conventional

methods for further processing. Any errors introduced by inaccurate imputation may

be considered insignificant in terms of the entire processing chain. With a larger pro-

portion of measurements being missing, errors caused by the imputation are increas-

ingly relevant as errors propagate in non-obvious ways, and the missing value impu-

tation cannot be considered a separate step. Instead, the task should be seen from

a holistic perspective, and the statistical properties of the missing data should be

considered more carefully [2].

A particularly important area where incomplete data is commonplace is in health-

care, where varying procedures and equipment affect which data is available. Studies

generally include a limited number of subjects, and often requires expensive equip-

ment and highly trained professionals, meaning that discarding data samples with a

few unknown values would not be cost-effective, and all the data must be used to its

maximal potential.

Recently, significant results in machine learning have been achieved with methods

based on the Extreme Learning Machine (ELM) [3]. Several modified approaches

have been published with the goal of using datasets with missing values [4–8]. In this

paper, we describe an application of ELM with multiple imputation [5] to predict the

onset of Huntington’s disease from early brain scans.

The structure of this paper is as follows: Sect. 2 describes the application sce-

nario and data used. The modelling procedure is detailed in Sect. 3, and results are

presented in Sect. 4.

2 Application: Predicting Onset of Huntington’s Disease

Huntington’s disease (HD) is an inherited condition caused by a genetic disorder. It

affects muscle coordination and leads to mental decline and behavioral symptoms,

and ultimately death. All patients with a sufficiently severe form of the disorder will
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eventually get the disease. Physical symptoms can begin at any age, but usually begin

between 35 and 44 years of age. No cure is known, but therapy can considerably

mitigate symptoms, especially if started at an early stage

While identifying the disease can be achieved early by testing for the genetic dis-

order, it is more difficult to predict how quickly symptoms will manifest, as the pro-

gression of the disease is not fully understood in detail [9–12]. It has been observed

that subtle changes in brain structure can be identified several years before diagnosis

[9]. The main research question here is to study how well MRI data allows to predict

when symptoms will appear, up to 10 years in advance.

The data consists of a number of measurements related to the patients. Each sam-

ple corresponds to one session with a patient. For many patients, measurements (ses-

sions) are available before and after they have been diagnosed with the disease, and

this is crucial for studying the progression in detail. As most patients attended sev-

eral sessions, it is important to consider that several samples are associated to the

same patient. The sessions were planned to be conducted approximately once every

2 years, but in reality the data is available at very irregular intervals, differing for

each patient.

There are a total of 3729 sessions and 1370 patients. There is a control group of

288 patients, which do not have the genetic disorder, and as such do not contract the

disease.

The measurements (variables) consist of key metrics derived from an MRI scan,

e.g., volume or length of specific structures. There are 561 variables in total. In addi-

tion, the data contains a target variable representing whether the physician diagnosed

the patient with Huntington’s disease or not.

The data has been collected at several different locations, by different people,

on a variety of equipment. The varying procedures and equipment mean that many

values are missing for a large number of patients. For each session, the number of

available measurements varies from 95 to 561, and only 10% of sessions have no

missing values. No measurement available for all sessions. Overall, 45% of values

are missing in the data.

3 Model

The goal of the model is to predict the progression of the disease several years in

advance. However, the data directly includes only the diagnosis at the time of the

measurement session. Fortunately, the majority of the patients return for follow-up

sessions, meaning that some information about the progression can be inferred.

Ideally, the output variable Y should contain the state of the patient up to 10 years

in the future, but this information is not fully available. For example, consider the

sample related to a visit in 2001, at which the patient does not show symptoms. Say

the other available sessions for this patient are as follows:
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Yi = [0 0 0 0 0 ? ? 1 1 1 1]

Fig. 1 Constructing the output as a prediction trajectory for a sample patient with data from three

future sessions available. Filled points represent available data, and non-filled points inferred infor-

mation. The state at 5 and 6 years remains unknown

∙ 2005 (not diagnosed)

∙ 2008 (diagnosed)

∙ 2009 (diagnosed)

By assuming the progression is monotonic (i.e., once diagnosed, a patient will never

return to a non-diagnosed state), we can conclude that for the years 2001–2005 (0–

4 years in the future) the patient should be considered as not diagnosed, and 2008 →
(7+ years in the future) should be considered diagnosed. Information for 5–6 years is

however still not available. We construct a prediction trajectory, such that the output

is 0 for years with no diagnosis, 1 for years with diagnosis, and missing values when

the state is unknown (see Fig. 1).

As such, the output is an 11-dimensional vector, and there are missing values in

both input and output variables of the data. Note that several other types of particular

situations occur in the data:

Diagnosed at current visit Yi = [ 1 1 1 1 1 1 1 1 1 1 1 ]
Infrequent visits Yi = [ 0 ? ? ? ? ? ? 1 1 1 1 ]
Single visit, not diagnosed Yi = [ 0 ? ? ? ? ? ? ? ? ? ? ]
Not diagnosed after several visits Yi = [ 0 0 0 0 0 ? ? ? ? ? ? ]
Control group subject Yi = [ 0 0 0 0 0 0 0 0 0 0 0 ]

3.1 Extreme Learning Machine

The prediction model is realised using the Extreme Learning Machine (ELM) [3],

which is a single hidden-layer feed-forward neural network where only the output

weights 𝛽k are optimised, and all the weights wkj between the input and hidden layer

are assigned randomly. With input vectors xi and the targets collected as a vector y,

it can be written as
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𝐇𝜷 = y where Hik = h
(
wT
k xi

)
. (1)

Here h(⋅) is a non-linear activation function applied elementwise. Training this model

is simple, as the optimal output weights 𝛽k can be calculated by ordinary least

squares. The method relies on the idea of random projection: mapping the data ran-

domly into a sufficiently high-dimensional space means that a linear model is likely

to be relatively accurate. As such, the number of hidden-layer neurons needed for

achieving equivalent accuracy is often much higher than in a multilayer perceptron

trained by back-propagation, but the computational burden for training the model is

still considerably lower.

The optimal weights 𝜷 can be calculated as the least squares solution to Eq. (1),

or formulated by using the Moore–Penrose pseudoinvorse as follows:

𝜷 = 𝐇+y (2)

A high number of neurons in the hidden layer introduces concerns of overfitting, and

regularised versions of the ELM have been developed to remedy this issue. These

include the optimally pruned ELM (OP-ELM) [13], and its Tikhonov-regularised

variant TROP-ELM [14]. In the current case, Tikhonov regularisation is applied

when solving the least square problem in Eq. (1). The value of the regularisation

parameter is selected by minimising the leave-one-out error (efficiently calculated

via the PRESS statistic [14]) by a MATLAB minimisation procedure.
1

3.2 Multiple Imputation ELM for Incomplete Data

To handle the missing value problem, Multiple Imputation ELM (MI ELM) [5] is

used. The method is based on the established procedure of multiple imputation [15],

which is a principled approach to modelling incomplete data sets while avoiding any

additional bias.

For ELM, the multiple imputation procedure is as follows. First generate a set of

M imputations of the data X, denote these as Xk, for 1 ≤ k ≤ M. The imputations

should be randomly drawn from a distribution representing the data. In this case, we

fit a Gaussian distribution to the data set by using the EM algorithm [16, 17]. Having

the distribution allows us to generate imputed versions of the data by drawing random

samples from the conditional distribution of each missing value.

For each imputed version of the data, calculate the corresponding hidden layer

representation 𝐇k = h
(
𝐖TXk

)
, using the same set of hidden layer weights 𝐖. Then

solve for the output weights 𝜷k = 𝐇+
k y.

When applying the model to a new set of (testing) dataXt, in principle each trained

ELM is used to generate a separate prediction ŷk = 𝜷k𝐇t, where 𝐇t = h
(
𝐖TXt

)
, and

these are then averaged to produce the final result:

1fminsearch: https://www.mathworks.com/help/matlab/ref/fminsearch.html.

https://www.mathworks.com/help/matlab/ref/fminsearch.html
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ŷ = 1
M

∑

k
ŷk (3)

However, the equivalent result can be obtained more efficiently by first averaging

the weights as

𝜷 = 1
M

∑

k
𝜷k (4)

and then applying the model

ŷ = 𝜷𝐇t (5)

In particular, the average weight in Eq. (4) can be calculated during the training

phase, without having access to the testing data. The trained model consists only of

the random weight matrix 𝐖 and the (average) output layer weight vector 𝜷, just

as in the conventional ELM. The multiple imputation approach is only used in the

training phase to more accurately find 𝜷 in the presence of missing values. The num-

ber of multiple imputations can be dynamically chosen in accordance with available

resources, the guiding principle being that a larger number of imputations leads to a

more accurate model.

If the data in the test set also have missing values, as in the current case, these can

also be handled by multiple imputation. That is, generate several imputed copies,

calculate predictions for each copy, and average the results. Note that the multiple

imputation procedure for training and testing can be conducted entirely separately

from each other, and the number of imputations need not be the same.

3.3 Variable Selection

As the data is high-dimensional, and contains redundant information, a variable

selection procedure is applied to condense the problem. First, variables which are

highly correlated (correlation coefficient with other variables above 0.99) are dis-

carded. However, this only reduces the dimensionality from 561 to 483, and further

reductions are needed.

While many methods for variable selection have been developed, only a few of

them can be applied when the data contains missing values. One which is applicable

is the Delta test [18, 19], which only requires identifying the nearest neighbor of each

sample. This can be accomplished by first estimating distances with another method,

filling in missing values and accounting for the uncertainty [2]. By again applying

the previously calculated Gaussian distribution of the data, the conditional mean and

variance can be calculated for each missing value. Replacing each missing value by

its conditional mean produces an imputed version of the data, denoted by X̃. Let

the conditional variance for each missing sample be notated as 𝜎2
i,d = Var(xi,d), with

𝜎2
i,d = 0 if xi,d is known. Then the expected (squared) distance between two samples
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xi and xj is

E
[
‖xi − xj‖2

]
= ‖x̃i − x̃j‖2 +

∑

d
𝜎2
i,d +

∑

d
𝜎2
j,d (6)

These distances can then be used to identify nearest neighbours and calculate the

Delta test. As the candidate space is too large for an exhaustive search, optimising

the Delta test is done by applying genetic algorithms [20]. The end result is a set of

29 selected variables, and these are used for the remainder of the experiments.

3.4 Entire Procedure

The complete training procedure can be summarised as follows:

1. Pre-processing

(a) Standardise input variables to zero mean and unit variance

(b) Discard too highly correlated variables

(c) Construct outputs yi for each sample (prediction trajectory)

2. Fit Gaussian distribution to the incomplete data set using the EM algorithm

3. Variable selection:

(a) Generate imputed data with uncertainties, and calculate distances

(b) Use Genetic Algorithm to select variables which minimise the Delta test

4. Multiple imputation ELM

(a) Generate weights using a fixed value of 1000 neurons

(b) Generate multiple imputed copies by drawing from the conditional Gaussian

distribution

(c) Select regularisation parameter by minimising the leave-one-out error

(d) For each copy, train ELM using selected variables

(e) Average the weights to get one model.

4 Experiments

Five methods are compared in the accuracy of predicting the diagnosis 0–10 years

ahead:

∙ ELM with multiple imputation

∙ ELM with missing values imputed with the conditional mean (using the Gaussian

distribution)

∙ ELM using only samples for which all variables are known

∙ Support Vectors Machines (SVM) [21] using only samples for which all variables

are known
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∙ Nearest neighbor classifier (1-NN) with imputation

Each method evaluated on a test set of 30% of the patients, while the remaining data

is used for training the models. The experiment is repeated 250 times to obtain more

reliable measures of expected performance. Since the output also contains missing

values, the training and testing for each prediction horizon is conducted only on those

samples where the output is known.

4.1 Results

Overall classification accuracy for 0–10 years from the date of the session is pre-

sented in Fig. 2. The imputation-based ELM variants both consistently achieve accu-

racies above 90%, whereas the other models have poorer performance. However,

with unbalanced classes and different costs for false positives and false negatives,

it is crucial to study precision and recall separately, and these are shown in Fig. 3.

Alternatively, models can be compared by their F-score, which gives a more bal-

anced assessment of the performance than the overall classification accuracy [22].

The F-score, or F1 measure, can be defined through the precision and recall as

F1 = 2 ⋅
precision ⋅ recall
precision + recall

(7)
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Fig. 2 Results in terms of average classification accuracy for each method for 0–10 years ahead
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Fig. 3 Results in terms of average precision and recall for each method for 0–10 years ahead

0 1 2 3 4 5 6 7 8 9 10
Years

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F1

MI ELM
ELM with imputation
ELM ignore missing
SVM ignore missing
1-NN

Fig. 4 Results in terms of average F-score for each method for 0–10 years ahead

The results as measured by the F-score are shown in Fig. 4. The same values are pre-

sented in Table 1, along with standard deviations. A statistical significance analysis is

also done to determine which differences in accuracy can be considered significant.

It can be seen that the Multiple Imputation ELM procedure gives the best results

for 1–9 years ahead, and notably is significantly better than ELM with (single) impu-

tation. For 0 and 10 years ahead, the accuracies between the two methods are not sta-

tistically distinguishable. In all cases, the two methods perform clearly better than the

other three methods (1-NN, SVM, and ELM when ignoring samples with missing

values).
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Table 1 The mean and standard deviation of the F-score for each method for 0–10 years ahead.

The best result for each prediction horizon is in bold font, as well as any values not statistically

significant (in a paired t-test at significance level 0.05)

Years MI ELM ELM with

imputation

ELM ignore

missing

SVM ignore

missing

1-NN with

imputation

0 0.6814
±0.0455

0.6834
±0.0462

0.2656

±0.0297

0.4701

±0.0815

0.3909

±0.0474

1 0.8020
±0.0352

0.7938

±0.0354

0.3728

±0.0365

0.5483

±0.1012

0.5249

±0.0478

2 0.7971
±0.0275

0.7882

±0.0262

0.4762

±0.0363

0.6245

±0.0770

0.5435

±0.0420

3 0.8565
±0.0226

0.8459

±0.0241

0.5778

±0.0387

0.6577

±0.0618

0.6323

±0.0398

4 0.8536
±0.0243

0.8452

±0.0237

0.6312

±0.0408

0.6112

±0.0727

0.6349

±0.0405

5 0.8896
±0.0231

0.8868

±0.0225

0.6902

±0.0416

0.4875

±0.0438

0.7087

±0.0354

6 0.8997
±0.0209

0.8960

±0.0217

0.7044

±0.0390

0.4998

±0.0372

0.7310

±0.0340

7 0.9256
±0.0179

0.9228

±0.0182

0.7149

±0.0479

0.5358

±0.0385

0.7951

±0.0289

8 0.9404
±0.0160

0.9362

±0.0160

0.7206

±0.0489

0.5573

±0.0396

0.8189

±0.0272

9 0.9647
±0.0110

0.9616

±0.0122

0.7282

±0.0503

0.5772

±0.0363

0.8783

±0.0233

10 0.9801
±0.0075

0.9796
±0.0085

0.7349

±0.0493

0.5882

±0.0405

0.9246

±0.0163

5 Conclusions

In this paper we study how well variants of the Extreme Learning Machine can be

used to predict the diagnosis of Huntington’s disease from early MRI scans. The

results clearly show that informative predictions are possible with satisfactory accu-

racy, and predicting onset of symptoms 10 years in advance is realistic.

The Extreme Learning Machine is able to model the scenario accurately. The

best results are achieved by applying the principled multiple imputation procedure.

Indeed, properly accounting for the missing values is crucial for the machine learning

task to perform reliably.

Further investigation is still required to more precisely analyse which variables (or

combinations of variables) are the most informative in enabling the early prediction,

and whether further refinements to the modelling procedure could lead to even more

accurate predictions.
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Deep-Learned and Hand-Crafted Features
Fusion Network for Pedestrian Gender
Recognition

Lei Cai, Jianqing Zhu, Huanqiang Zeng, Jing Chen and Canhui Cai

Abstract In this paper, we propose an effective deep-learned and hand-crafted

features fusion network (DHFFN) for pedestrian gender recognition. In the proposed

DHFFN, the deep-learned and hand-crafted (i.e., HOG) features are extracted for

the input image, followed by the feature fusion process that is to combine these two

features together for fully exploring the merits from both deep-learned and HOG

features. Extensive experiments on multiple public datasets have demonstrated that

the proposed DHFFN method is superior to the state-of-the-art pedestrian gender

recognition methods.

Keywords Pedestrian gender recognition ⋅ Convolutional neural network ⋅
Deep-learned feature ⋅ Hand-crafted feature

1 Introduction

In recent years, digital video surveillance systems have been widely deployed in

various areas for public safety, such as shopping mall, train station, airport, and so

on. For the increasing huge amount of video data, video analytic tools, such as face

recognition [1], pedestrian re-identification [2], etc., have been developed as effective

and essential solutions for identifying the various attributes of pedestrian in quick

and accurate manner. Among them, gender is an important attribute of pedestrian in

many applications, for example, human-computer interaction, identity recognition,

video surveillance, population statistics and multimedia retrieval system [3]. Since

the appearance of a pedestrian often changes a lot with the viewpoint, lighting, dress,

occlusion etc., pedestrian gender recognition is a challenging task in the computer

vision field.
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To address the pedestrian gender recognition problem, there are some methods

that can be found in the literature. Usually, these methods performed gender recog-

nition task by using the silhouette of the pedestrian, since it is not easy to obtain the

clear pedestrian appearance (e.g., face) under the condition of long distance or across

views. However, the silhouette of the pedestrian will inevitably be disturbed due to

the interference of illumination, image blur, occlusion, and so on. In order to enhance

the description ability of pedestrian silhouette, some hand-crafted features, which are

original proposed for other object recognition problems, are applied on pedestrian

gender recognition. For example, many authors have found that the histogram of
oriented gradient (HOG) feature [4] is suitable for gender recognition. Cao et al. [5]

made the first attempt to employ the HOG feature and Adaboost classifier for exploit-

ing silhouette information and obtained 76% average pedestrian gender recognition

rate on MIT dataset. Furthermore, Collins et al. [6] presented an improved HOG

feature called PixelHOG, and achieved a higher recognition rate (i.e., 80%) on the

VIPeR dataset.

Moreover, with the rapid development of machine learning in recent years, super-

vised learning regards the deep convolutional neural network (CNN) as the first-

choice method for image classification problems [1, 7, 8]. CNN [9] has been widely

applied and demonstrated its superiority in many computer vision domains [10–14].

However, only a few works adopt deep learning on pedestrian gender recognition

problem. Ng et al. [15] trained a CNN for gender recognition on the MIT dataset and

achieved 80% recognition rate. Antipov et al. [16] trained a CNN model called Mini-

CNN and obtained 80% average precision rate. Moreover, they also fine-tuned a pre-

trained CNN designed by Krizhevsky et al. [8] and improved the average precision

rate to be 85% on the PETA collection of dataset. In addition, there is another popu-

lar machine learning algorithm, named Extreme Learning Machine (ELM) [17, 18].

Due to its fast learning speed and good generalization ability, ELM and its variants

are widely applied in various areas, such as image classification, landmark recogni-

tion, vehicle detection [19–24]. To our best knowledge, there is no existing method

to apply ELM for pedestrian gender recognition.

In this paper, we propose an effective pedestrian gender recognition method

based on a specially designed deep-learned and hand-crafted features fusion net-

work, called DHFFN. The superior performance of the proposed method is due to

that it can make full use of the merits from both hand-crafted and deep-learned fea-

tures. More specifically, the proposed DHFFN simultaneously extracts deep-learned

and hand-crafted features on the input images, which are fused together to train a

two-class classifier by using the specifically designed features fusion network. Exten-

sive experiments on multiple public datasets have shown that the proposed DHFFN

method outperforms the state-of-the-art pedestrian gender recognition methods.

The rest of this paper is organized as follows. Section 2 introduces the proposed

pedestrian gender recognition method, DHFFN, in detail. Section 3 presents the

experimental results and comparisons. Section 4 concludes this paper.
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2 Proposed Deep-Learned and Hand-Crafted Features
Fusion Network (DHFFN) for Pedestrian Gender
Recognition

2.1 Architecture of Proposed DHFFN

Figure 1 shows the architecture of proposed deep-learned and hand-crafted fea-

tures Fusion Network (DHFFN) for Pedestrian Gender Recognition. The proposed

DHFFN consists of two feature extraction parts: (1) deep-learned feature extraction:

this part mainly copes with the processing of the convolution, max-pooling and acti-

vation for the input images; (2) hand-crated feature extraction: this part extracts the

HOG feature and performs the HOG feature dimension reduction. These two fea-

ture extraction parts are finally connected together to produce a more discriminative

fused feature in Concatenate layer (i.e., Fusion layer in Fig. 1). The details of pro-

posed DHFFN will be introduced in the following sub-sections.

2.2 Feature Extraction

Deep-Learned Feature The deep-learned feature is extracted as shown in the upper

part of Fig. 1. The input images used in our experiments are with the size of 48× 128

and three input channels (i.e., RGB) for color images. In the designed CNN, layer C1

contains 32 filters with the size of 5× 5, and the learned feature maps are 44× 124

C1
[32@44×124] S2

[32@22×62]

C3
[32@18×58] S4

[32@9×29]

C5
[32@7×27] S6

[32@3×13]

F7
[128 D]

Deep-Learned 
Feature

Extraction

Input
[3@48×128]

Hand-Crafted Feature Extraction

PCA compressed 
HOG Feature

Original 
Image

[128 D]

F8
Softmax

Buffer Layer

Fusion Layer
[256 D]

Deep-Learned
Feature XCNN

Concatenate

Hand-Crafted 
Feature XHOG

Fig. 1 The architecture of proposed DHFFN
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after the first convolution. Maximum-pooling is used behind the first convolution

layer C1, resulting in 22× 62 feature maps in layer S2. Layer C3 contains 32 fea-

ture maps with the size of 18× 58 resulted from 5× 5 filters. After the operation of

downsample using 2× 2 max pooling, each feature map in layer S4 is 9× 29. Layer

C5 also has 32 feature maps. Unlike the Layers C1 and C3, the size of filters are

3× 3. Hence, the size of resulted feature maps in layer C5 are 7× 27. Meanwhile,

different from layers S2 and S4, layer S6 uses the filters with the size of 3× 3 and

produces 3× 13 feature maps.

Hand-Crafted Feature The HOG has been demonstrated to be successful for gen-

der recognition [5, 6]. For simplicity, we directly exploit HOG [4] as the hand-

crafted feature in this work. The HOG feature is extracted as shown in the lower

part of Fig. 1. Firstly, the basic processing unit of HOG is 16× 16 block, which is

further divided into 4 square cell 8× 8 to compute the histogram of gradient with 9

bins. Hence, the feature dimension for each 16× 16 block is 36. For the input image

(48× 128), with the stride 8 pixels, we can obtain the HOG feature with the dimen-

sion 36× 5× 15 = 2700. To be consistent to the dimension of deep-learned feature,

the traditional Principal Component Analysis [25] is further performed to reduce the

HOG feature dimension as 128.

2.3 Feature Fusion

In this work, the feature fusion aims to make the deep-learned feature be complemen-

tary to HOG feature for further improving the classification accuracy. To conduct the

feature fusion, the obtained deep-learned feature (i.e., Layer S6) and 128-dimension

HOG feature are fully connected to each 128 neuron units in layer F7 in the first

stage, respectively. Then, a Concatenate layer (i.e., Fusion layer) is designed to com-

bine these two kinds of features with the goal of producing a more robust image

descriptor (i.e., fused feature). Moreover, the Local Response Normalization (LRN)

layer behind the fully connected layer F7 is to normalize the input of fusion layer.

This is essential for the proposed DHFFN, as LRN deals with the gap between deep-

learned and HOG features, and thus guarantees their effective combination and com-

plementary to each other. Finally, the output of fusion layer is regarded as the fused

feature with 256 dimension. After that, the fusion layer is further fully connected to

the prediction layer F8 with 2 neurons units corresponding to 2 classes (i.e., Male

or Female in this work), where Softmax loss function is adopted as the objective

function to compute the loss. Note that in the proposed DHFFN, rectified linear unit

(ReLU) activations are used in all the convolution layers and layer F7, while Batch

Normalization [26] is utilized before ReLU activations in all the convolution layers

to accelerate the network training and improve the performance of recognition.

In the proposed DHFFN, the corresponding parameters could adaptively adjust by

using back propagation to achieve self-adaptation on pedestrian gender recognition
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problem. Let the input of Fusion layer be xCNN and xHOG. Then, the output of the

fusion layer (i.e., fused feature) can be written as:

xFusion = [xCNN , xHOG]. (1)

According to the forward propagation algorithm, the prediction score output by the

layer F8 can be computed as:

S(xFusion) = WTxFusion + b, (2)

where W and b denote the weights and bias term, respectively. As shown in Eq. (2),

W and b are used to project the fused feature xFusion into the prediction score. With the

proposed method, the xHOG part of xFusion is fixed in the optimization of the proposed

network, the xCNN part is automatically adjusted to work with xHOG to improve the

performance.

3 Experimental Results and Discussions

3.1 Dataset and Evaluation Criteria

To evaluate the performance, the proposed DHFFN method is tested and then com-

pared with the state-of-the-art gender recognition method on multiple widely-used

and challenging datasets, including CUHK, PRID, GRID, MIT, and VIPeR. Figure 2

shows some samples drawn from these datasets [27]. One can see that appearances

of pedestrian greatly change due to the different camera angles and environments.

Following [16], we also filter out some images that consist of the same person or

unidentified target or are with very low resolution. Finally, there are 8404 images

used in our experiments. Table 1 shows the training and testing images from each

dataset.

In our experiments, the proposed DHFFN and DFN are implemented using caffe

deep learning framework [28]. Moreover, a preprocessing is performed to resize all

Fig. 2 Samples from each

dataset

CUHK PRID GRID MIT VIPeR
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Table 1 Training and testing images from each dataset

Dataset Training size (♂ + ♀) Testing size (♂ + ♀)

CUHK 3844 = (2715 + 1129) 379 = (190 + 189)

PRID 947 = (458 + 489) 101 = (50 + 51)

GRID 928 = (531 + 397) 100 = (50 + 50)

MIT 788 = (538 + 250) 84 = (42 + 42)

VIPeR 1113 = (546 + 567) 120 = (60 + 60)

Total 7620 784

the images to 48× 128 and subtract their mean values. And the mirrored copies of

the training images are also used to augment the training data. Furthermore, the

commonly-used criteria, i.e., Mean Average Precision (MAP), Area Under ROC

Curve (AUC) [29], are used to evaluate the performance.

3.2 Results and Discussions

The performance evaluation of the proposed DHFFN and the state-of-the-art method

(i.e., [16]) is compared. Moreover, the proposed method is also compared with the

Hierarchical ELM directly applied in pedestrian gender recognition [18]. And the

results are shown in the Table 2. Note that the proposed DHFFN method can be

viewed as an enhanced version of the deep-learned feature network (DFN) by fur-

ther fusing the HOG feature. Therefore, the performance resulted from DFN is also

evaluated to show how much of the contribution coming from this part, besides the

performance evaluation of the proposed DHFFN method (i.e., the enhanced DFN

version with HOG feature incorporated).

It can be clearly observed from Table 2 that the proposed DFN can achieve 0.93

MAP and 0.93 AUC while the proposed DHFFN yields 0.95 MAP and 0.95 AUC.

Hence, compared with DFN, the proposed DHFFN is able to yield better perfor-

mance. The same observation can also be obtained from the receiver operating char-

acteristic (ROC) curves of the proposed DFN and DHFFN as shown in Fig. 3. This

Table 2 Performance comparison

Features MAP AUC

HOG [16] 0.72 0.84

Mini-CNN [16] 0.80 0.88

AlexNet-CNN [16] 0.85 0.91

Hierarchical ELM [18] 0.92 0.92

Proposed DFN 0.93 0.93
Proposed DHFFN 0.95 0.95
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Fig. 3 ROC curves
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study shows that the hand-crafted feature (i.e., HOG) plays an effective complemen-

tary role to the DFN. Furthermore, the proposed DHFFN method consistently out-

performs the state-of-the art method [16], and hierarchial ELM [18] in terms of both

MAP and AUC. This result further demonstrates that the fused feature is more rep-

resentative and discriminative in the task of pedestrian gender recognition.

4 Conclusion

In this paper, a novel deep-learned and hand-crafted features fusion network

(DHFFN) method is proposed for pedestrian gender recognition. By designing a spe-

cial features fusion network, the deep-learned and HOG features are extracted for the

input image. Then, these two kinds of features are combined and fused together to

improve the recognition rate. Moreover, we investigate and demonstrate the comple-

mentary behaviors of the HOG feature to the deep-learned feature. Experiments on

multiple challenging datasets show that the proposed DHFFN method outperforms

the state-of-the-art pedestrian gender recognition method.

Acknowledgements This work was supported in part by the National Natural Science Foundation

of China under the Grants 61401167, 61372107 and 61602191, in part by the Natural Science

Foundation of Fujian Province under the Grant 2016J01308, in part by the Opening Project of State

Key Laboratory of Digital Publishing Technology under the grant FZDP2015-B-001, in part by the

Zhejiang Open Foundation of the Most Important Subjects, in part by the High-Level Talent Project

Foundation of Huaqiao University under the Grants 14BS201, 14BS204 and 16BS108, and in part

by the Graduate Student Scientific Research Innovation Project Foundation of Huaqiao University.



214 L. Cai et al.

References

1. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-level perfor-

mance in face verification. In: IEEE Conference on Computer Vision and Pattern Recognition,

pp. 1701–1708. IEEE Press, USA (2014)

2. Wu, S., Chen, Y.C., Li, X., Wu, A.C., You, J.J., Zheng, W.S.: An enhanced deep feature rep-

resentation for person re-identification. In: 2016 IEEE Winter Conference on Applications of

Computer Vision (WACV), pp. 1–8. IEEE Press, USA (2016)

3. Ng, C.B., Tay, Y.H., Goi, B.M.: Vision-based human gender recognition: A survey (2012).

arXiv:1204.1611

4. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In CVPR, USA

(2005)

5. Cao, L., Dikmen, M., Fu, Y., Huang, T.S.: Gender recognition from body. In: 16th ACM Inter-

national Conference on Multimedia, pp. 725–728. ACM Press, USA (2008)

6. Collins, M., Zhang, J., Miller, P., Wang, H.: Full body image feature representations for gender

profiling. In: 12th IEEE International Conference on Computer Vision Workshops, pp. 1235–

1242. IEEE Press, Japan (2009)

7. Goodfellow, I.K., Bulatov, Y., Ibarz, J., Arnoud, S.: Multi-digit number recognition from street

view imagery using deep convolutional neural networks (2013). arXiv:1312.6082

8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional

neural networks. In: 25th NIPS Advances in Neural Information Processing Systems, pp. 1097–

1105. NIPS Press, USA (2012)

9. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series. Handbook

Brain Theor. Neural Netw. 3361(10) (1995)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document

recognition. Proc. IEEE 86(11), 2278C–2324 (1998)

11. Lawrence, S., Giles, C.L., Tsoi, A.C., Back, A.D.: Face recognition: a convolutional neural-

network approach. IEEE Trans. Neural Netw./ A Publ. IEEE Neural Net. Council 8(1), 98C–

113 (1997)

12. Osadchy, M., Cun, Y., Miller, M.: Synergistic face detection and pose estimation with energy-

based models. J. Mach. Learn. Res. 8, 1197C–1215 (2007)

13. Ciresan, D., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic

sign classification. In: The 2011 International Joint Conference on Neural Networks (IJCNN),

vol. 1(1), pp. 1918C–1921. IEEE press, USA (2011)

14. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recogni-

tion. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221C–231 (2013)

15. Ng, C.B., Tay, Y.H., Goi, B.M.: A convolutional neural network for pedestrian gender recog-

nition. In: 10th International Symposium on Neural Networks, pp. 558–564. Springer, Heidel-

berg press, China (2013)

16. Antipov, G., Berrani, S.A., Ruchaud, N., Dugelay, J.L.: Learned vs. hand-crafted features for

pedestrian gender recognition. In: 23th ACM International conference on Multimedia, pp.

1263–1266. ACM Press, USA (2015)

17. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feed-

forward neural networks. In: 2004 IEEE International Joint Conference on Neural Networks,

pp.985–990. IEEE Press, Hungary (2004)

18. Zhu, W., Miao, J., Qing, L., Huang, G.B.: Hierarchical extreme learning machine for unsuper-

vised representation learning. In: 2015 International Joint Conference on Neural Networks, pp.

1–8. IEEE Press, Ireland (2015)

19. Cao, J., Wang, W., Wang, J., Wang, R.: Excavation equipment recognition based on novel

acoustic statistical features. IEEE Trans. Cybern. (2016)

20. Cao, J., Hao, J., Lai, X., Vong, C.M., Luo, M.: Ensemble extreme learning machine and sparse

representation classification. J. Franklin Inst. (2016)

21. Cao, J., Zhang, K., Luo, M., Yin, C., Lai, X.: Extreme learning machine and adaptive sparse

representation for image classification. Neural Netw. 81, 91–102 (2016)

http://arxiv.org/abs/1204.1611
http://arxiv.org/abs/1312.6082


Deep-Learned and Hand-Crafted Features Fusion Network . . . 215

22. Cao, J., Chen, T., Fan, J.: Landmark recognition with compact BoW histogram and ensemble

ELM. Multimed. Tools Appl. 75(5), 2839–2857 (2016)

23. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE

Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)

24. Zhu, W., Miao, J., Hu, J., Qing, L.: Vehicle detection in driving simulation using extreme

learning machine. Neurocomputing 128, 160–165 (2014)

25. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat.

2(4), 433–459 (2010)

26. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing

internal covariate shift (2015). arXiv:1502.03167

27. Deng, Y., Luo, P., Loy, C.C., Tang, X.: Pedestrian attribute recognition at far distance. In: 22th

ACM International Conference on Multimedia, pp. 789–792. ACM Press, USA (2014)

28. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al.: Caffe: convo-

lutional architecture for fast feature embedding. In: 22th ACM International Conference on

Multimedia, pp. 675–678. ACM Press, USA (2014)

29. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating char-

acteristic (ROC) curve. Radiology 143, 29–36 (1982)

http://arxiv.org/abs/1502.03167


Facial Landmark Detection via ELM Feature
Selection and Improved SDM

Peng Bian, Yi Jin and Jiuwen Cao

Abstract Model initialization and feature extraction are crucial in supervised

landmark detection. Mismatching caused by detector error and discrepant initial-

ization is very common in these existing methods. To solve this problem, we have

proposed a new method based on ELM feature selection and Improved Supervised

Descent Method (ELMFS-iSDM), which also includes an automatic initialization

model, for the robust facial landmark localization. In our new method, firstly, a

fast detection will be processed to locate the eyes and mouth, and the initialization

model will adapt to the real location according to fast facial points detection. Sec-

ondly, ELM based feature selection is adopted on our Improved Supervised Descent

Method model to achieve a better performance. For each task, multiple features will

be jointly learned by ELM feature selection and their weights will be calculated

during training process. Experiments on four benchmark databases show that our

method achieves state-of-the-art performance.

Keywords Facial landmark detection ⋅ Self-adapted model ⋅ Extreme learning

machines (ELM) ⋅ Feature selection ⋅ Supervised descent method
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1 Introduction

Facial landmark detection, which is an essential prerequisite step for most face under-

standing tasks, has drawn more and more attention in human face recognition area

for its convenience in location alignment [1]. Locating fiducial face landmarks such

as eyes corners, nose tip, and mouth corners even face contours can make face under-

standing tasks, such as, face recognition, facial expression recognition, face tracking

et al., much simpler and more accurate. Existing Facial landmark detection meth-

ods have exploited the structure information, which benefits from the strong joint

constrain of all the landmark points, and built their own models to address the prob-

lem. However, it is still a challenging problem due to the face appearance variations

caused by occlusion, illumination, pose rotation and facial expressions [1, 2].

Models that describe facial appearance and face contours are quite critical in facial

landmark detection methods. Thus, how to reduce the face appearance variations and

extract the most discriminative features become an essential issue in facial landmark

detection or face alignment tasks. Generally speaking, facial landmark detection

methods can be divided into two categories: global feature methods and local feature

methods. Global methods aim to extract and model appearance from the entire face,

and the most typical methods include Active Appearance Models (AAMs) [3]. The

models are parametric for appearance and shape, and the parameters are optimized

by efficient gradient descent. Local methods, on the contrary, model local appearance

information like color and texture from local patches around each landmark. Active

Shape Models (ASM) [4] and Constrained Local Methods (CLM) [5] are examples

of the second category methods which use local methods.

Since the face appearance and face shape can be modeled, how to find the rela-

tionship between them was the key to facial landmark annotation. Although SDM is

an efficient and accurate approach for facial landmark detection, regression perfor-

mance decreases when the initialization model is poor or the appearance difference

of the training set is too large. Thus, an intuitive way to promote the efficiency of

SDM is to improve the feature representation and the initialization model. In this

paper, we focus on the learning-based feature representation and propose the ELM

feature selection and Improved Supervised Descent Method (ELMFS-iSDM) for

Facial Landmark Detection. In the new proposed method, a Self-Adaption Model

is firstly proposed for the initialization of our algorithm. Then, we exploit the dis-

criminant and correlative image patterns using the ELM feature selection, by which

the discriminant ability is strengthened by learning feature representation from two

different feature descriptors, such as HOG and SIFT. Experimental results on four

different facial landmark detection applications demonstrate the effectiveness of our

proposed method.
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The remainder of this paper is organized as follows. Section 2 is the related work

and Sect. 3 describes the Self Adapted Model and the ELM Feature selection based

Improved SDM. Experimental results and discussion on three face annotation data-

bases are presented in Sect. 4. Section 5 draws the conclusion of this paper.

2 Related Work

2.1 Cascade Regression Methods

Previous work on facial landmark detection can be grouped to two categories:

(1) holistic feature based methods and (2) local feature methods. Recently local mod-

els with regression methods make great performance on face alignment, especially

SDM [6]. Other local methods like ASMs and CLMs aim to model face appearance

in a complicated way to fit the final face shape. Unlike these methods, regression

methods extract simple features instead of models from local face appearance and

intend to figure out the mapping function between features and face shape. But a

single regression is always too week to get the final location due to linear and non-

linear changes on face. To address this, more than one stage of regression procedure

is cascaded to approach the ground-truth step by step, and we dont need to learn a

complex function to get the final location by one step.

The idea was firstly proposed by Piotr Dollar [7] in 2010 and the Cascade Pose

Regression (CPR) model got good results at that time. The existing regression meth-

ods are mainly base on this idea. To address the occlusion problem, Xavier P. Burgos-

Artizzu proposed Robust Cascaded Pose Regression (RCPR) based on CPR. Another

remarkable work when DRMF published was Supervised Descent Method (SDM)

[6] proposed by Xuehan Xiong from Carnegie Mellon University. SDM regard the

regression as a non-linear function and intended to figure out the function. But

because of the huge matrix and complicated procedure figuring out the exact function

was almost impossible. So SDM simplified the regression and consider it as a lin-

ear regression according to Newton’s method. By doing so, figuring out the descent

gradient matrix and bias vector s can simulate the mapping function. Unlike DRMF,

SDM uses SIFT feature to describe face appearance. Regressing Local Binary Fea-

tures (LBF) also uses linear regression model like SDM, but LBF proposed a more

efficient feature called local sparse binary feature which can be learnt from random

forest [8]. The computing cost is greatly reduced by the sparse binary feature so the

method is more efficient than SDM and DRMF. A novel work [9] explores the use of

context on regression-based methods for facial landmarking and it analyse the key

methodological aspects of the performance of SDM. The work also made an effec-

tive extension of the SDM by using an optimal amount of context within the input

features.
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2.2 ELM Feature Selection

Many computer vision problems can be solved by applying Extreme Learning

Machines (ELM). ELM is recently proposed for efficiently training single-hidden-

layer feed forward neural networks (SLFNs). And ELM perform more consistently

with a much faster training speed [10]. The essence of ELM is that ELM performs

classification by projecting original data to a high dimensional vector and changes

the classification task into a multi-output functional regression problem [11, 12].

With its high learning efficiency, ELM [13] has attracted increasing attention

on a widespread type of applications, e.g. pattern classification, object recognition

and data analysis. ELM based approaches are also proposed in FR tasks, such as,

Zong and Huang [14] propose a ELM based method in multi-label FR applica-

tions. Zong et al. [15] later propose a kernelized ELM method in FR. Long et al.

[16] propose a graph regularized discriminative non-negative matrix factorization

(GDNMF), where the projection matrix is learned jointly by both the graph Lapla-

cian and supervised label information.

Feature selection is a crucial pre-processing in computer vision applications.

Nowadays, ELM has been attracting the attentions from more and more researchers

and was originally developed for feature selection and feature mapping [10, 17].

For instance, Cao et al. [18] propose a SPK-BoW approach, which is first employed

ELM based FNN combined with the SRC to extract features and construct an over

complete dictionary for landmark image feature learning. Rajendra Kumar Roul et

al. [19] propose a new clustering based feature selection using ELM, which both

chooses the most relevant features and reduces the feature size. Mangy Zhai et al.

[20] propose a ELM based feature selection algorithm which uses a feature ranking

criterion to measure the significance of each feature, which also improves the speed

of the algorithm. Motivated by this, we thus introduce the ELM feature selection

framework into our facial landmark detection method, and prove the effectiveness

and efficiency on four different datasets.

3 ELM Feature Selection Based Improved Supervised
Descent Method

In this section, we present the new method called ELM Feature Selection based

Improved Supervised Descent Method for Facial Landmark Detection. Section 3.1,

we introduce the original Supervised Descent Method (SDM). Then, we explain how

to use Self-Adaption Model to improve the performance of SDM in Sect. 3.2. Finally,

the ELM Feature Selection based Improved Supervised Descent Method is proposed

in the Sect. 3.3.
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3.1 Original SDM Models

To address the nonlinear optimization method problem, Xuehuan et al. proposed

a Supervised Descent Method [6]. The descent gradient is computed based on the

Newtons method. However, the Hessian and Jacobian matrix during the Newtons

process are 2nd ordered and the optimization can be impractical to carry on. A

sequence of update created by Newtons method can be formulated as,

x
k+1 = x

k
− H

−1 (
x

k

)
J

f

(
x

k

)
(1)

where H(x) and Jf (xk
) are Hessian and Jacobian matrix which is quadratic to conver-

gence evaluated at x
k
. So generating the H(x) and Jf (xk

) directly can be very com-

plicated. To simplify the computation, [6] turned (1) into

x
k+1 = x

k
+ Rk𝜑k

+ bk (2)

Rk is genetic descent direction, bk is bias term and is feature vector extracted around

previous landmark locations x
k
. In this way, we only need to learn the sequence of

descent direction and bias instead of Hessian and Jacobian matrix. According to this,

SDM uses l2-loss function for the learning of descent gradient and the bias vector:
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3.2 The Self-adaption Initialization Model

Supervised learning is strict about initial model since the first stage of regression can

be determinative. SDM as well as CFAN both use a Haar-like feature based detector

[21] for face detection and a mean shape model for initialization. So the detection

rate is limited to the capability of the detection method. The detector will locate

face regions of an image, then the mean shape model will adapt to the face region.

But the mean shape only adapts the size of the region, that is, it is only a scaling

procession. The initial landmarks are placed far away from the patches they should

be in, some times in the wrong side. This can cause difficulty in the following update

computation, even cause wrong direction during the whole regression.
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We proposed an improved initial model according to the mean shape model. For

the original mean shape model, the landmarks were located manually, and only the

size will be change for different initialization of different faces. Although it is conve-

nient and the robustness of SDM can confirm final results, there are still exceptions

that this mean shape model cant provide SDM an efficient initialization and result for

error alignment. We will use the inter-ocular distance to normalize the locations of

each parts of human face. We also used a detector to locate face region of the image.

After face region detection, an eye detect procedure base on Gabor Kernel method

[22] is worked to compute the distance between the two eyeballs. Then the distance

is applied to the mean shape to relocate the spread of the landmarks of parts of face.

We can formulate the whole procedure as:

x0 = y0 +M(G(I)) (5)

where G(x) is Gabor eye detector, M(x) is a points moving function, I is an original

face image, y0 is the coordinates of mean shape and x0 is the adapted coordinates.

As a result, the eye region, nose region and the mouth region will be placed in

normalized locations that close to the ground-truth.

3.3 ELM Feature Selection

In the formulation of SDM, 𝜑
k

is the feature vector extract from the patches around

landmarks. We suppose h(xk, 𝜑k) is the original SDM method that calculates land-

marks for each stage. Experiments in [6] use SIFT [23] features during learning and

testing. But during testing we found that in some cases the SIFT feature can’t get a

good result but other features can. So a feature selection is needed.

To tackle the issue of facial landmark detection method and improve the gen-

eral representation of different features, an ELM feature selection is proposed in

our model for feature representation. In our proposed ELMFS-iSDM, ELM is firstly

trained with the a fixed number of hidden nodes and the same activation function. The

hidden layer parameters of ELM are randomly initialized independently. Actually,

the ELM projects the facial data from the high-dimensional input space to the low-

dimensional hidden-layer feature space (ELM feature space), in which the improved

SDM is performed. Then, the predicted label is determined by an iterative k-means

cluster method. The ELM feature selection method utilized in the proposed recog-

nition approach can be described as follows.

Assuming that the available training feature dataset is
{(

xi, ti
)}𝐍

i=1, where xi, ti,
and 𝐍 represent the feature vector of the i-th face image, its corresponding category

index and the number of images, respectively, the SLFN with K nodes in the hidden

layer can be expressed as
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S(x)i =
K∑

j=1
𝜽jg(aj, bj, xi), i = 1, 2,… ,𝐍 (6)

where S(x)i is the output obtained by the SLFN associated with the i-th input data,

aj ∈ ℝd
and bj ∈ ℝ (j = 1, 2,… ,K, ) are parameters of the jth hidden node, respec-

tively. The variable 𝜽j ∈ ℝm
is the link connecting the jth hidden node to the output

layer and h(⋅) is the hidden node activation function. With all training samples, (6)

can be expressed in the compact form as

S(x) = h𝜽 (7)

where 𝜽 = (𝜽1,𝜽2,… ,𝜽K) and H(x) are the output weight matrix and the network

outputs, respectively. The variable h denotes the hidden layer output matrix with the

entry hij = g(aj, bj, xi). And h can be considered as feature mapping, by which the

data from the L-dimensional input space to the K-dimensional hidden-layer ELM

feature space. The goal of ELM is to reach not only the smallest training error but

also the smallest norm of output weights [13]. Thus, the ELM classification problem

can be formulated as,

min 1
2
‖𝜽‖2 + 𝜇

1
2

N∑

i=1
e2i

s.t.∶ h(x)𝜽=ti−ei, i=1,…,N

(8)

Equation (8) can be solved based on the KKT conditions and the output functions

of ELM classifier is

S(x) = h(x)𝐡T ( 1
𝜇
+ 𝐡𝐡T )−1T (9)

where T = [t1,… , tN]T ,𝐡 = [h(x1),… , h(xN)]T .

4 Experiments

This section reports experimental results on our approach and some baselines. The

first experiment compares the SDM with our self-adapted model and SDM without

self-adapted model. In the second experiment, we are gonging to test the perfor-

mance of our ELM feature selection based iSDM approach.

4.1 Analyses on Self-adaption Model

This experiment is aim to compare the performance of the model we proposed

against the mean shape model, not only in accuracy but also in speed. The experi-



224 P. Bian et al.

Fig. 1 Comparison on

different initial models on

AFW dataset

ment is carried out on two famous in the wild databases. They are the I-bug database

[8] and AFW database [2]. We found that the faces in these databases have a wide

range of ages, including babies, teenagers, adults as well as the olds. Moreover, the

poses, expressions and lights are in different conditions. So, initial experiments on

these dataset can generate an obvious result.

There is also an export of the mean time we do the detection. The mean detection

time for each face is 0.51 s for original SDM and 0.82 s for our model.

From Fig. 1 we can see that by using our model, the performance of SDM has a

significant improve at about 0.05 mean shape error.

4.2 ELM Feature Selection Based iSDM

In this part we are going to compare the SDM with feature selection against the orig-

inal SDM and other baselines. To evaluate the efficiency of our approach, we have

used the following public databases for our experiment, i.e., LFPW [24], HELEN

[25], AFW [2] and IBUG [26]. The images of those datasets contain different con-

ditions, including illumination, rotation, gestures, expressions changes, etc. We set

our method for experiments on these datasets, and the result was shown on Fig. 2. A

four-stage regression and two features are utilized for task learning. We used each

dataset for both learning and testing. The ground truth annotations include 68 points,

but we only extract 49 points among them for our experiment.
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Fig. 2 Performance comparison with state-of-the-art methods, where a shows the comparison of

our method with SDM, DRMF, CFAN on LFPW database and b shows the comparison of different

methods on HELEN database

Table 1 The normalized mean error of each stage on AFW

Methods Datasets

AFW IBUG LFPW HELEN

SDM [6] 6.55 15.40 5.67 5.50

DRMF [27] 6.94 19.75 6.57 6.70

Zhu’s [2] 7.36 18.33 8.16 8.29

CFAN [28] – – 5.44 5.53

Our method 5.35 12.75 5.18 5.21

From Fig. 2a, b, we can see that our method is more effective than the other com-

pared methods and it achieves good performance in the compared two datasets. It

also shows that both our method and CFAN have a better performance than SDM

and DRMF. However, our method is more efficient when the mean error is less than

0.1. Additionally, we can see that our method has achieved an effective and stable

performance on much bigger datasets, such as HELEN and LFPW. The reason may

be that the faces in these datasets were more likely to be detected in the first step.

The cumulated mean errors of our method and the compared state-of-the-art

methods are given on Table 1. Table 1 displays the details of the cumulated mean

errors on the LFPW [10], HELEN [11], AFW [9] and IBUG [8] datasets. We can

see that our method outperform those previous methods on these datasets. Some of

the annotation results from four different databases are shown on Fig. 3.



226 P. Bian et al.

(a). The annotation results on LFPW dataset

(b).The annotation results on HELEN dataset

(c).The annotation results on AFW dataset

(d) .The annotation results on IBUG dataset

Fig. 3 Performance comparison with state-of-the-art methods, where a shows the comparison of

our method with SDM, DRMF, CFAN on LFPW database and b shows the comparison of different

methods on HELEN database

5 Conclusion

This paper presents novel method for facial landmark detection by using ELM based

feature selection and improved SDM. In our new method, a self-adapted model

based face detection is proposed to improve the accuracy of the initialization. Then,

an ELM feature selection based Supervised Descent Method (SDM) is applied to

improve the accuracy of the regression stage. Experimental results show that the

effectiveness and efficiency of our new model on four different face databases.
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Online Sequential Extreme Learning
Machine with Under-Sampling
and Over-Sampling for Imbalanced
Big Data Classification

Jie Du, Chi-Man Vong, Yajie Chang and Yang Jiao

Abstract In this paper, a novel method called online sequential extreme learning
machine with under-sampling and over-sampling (OSELM-UO) for imbalanced Big

data classification is proposed which combines the structures of under-sampling and

over-sampling and applies online sequential extreme learning machine as its base

model. The novel structure enables OSELM-UO performs well on both minority and

majority classes and simultaneously overcomes the issues of information loss and

overfitting. Moreover, when the dataset keeps growing, OSELM-UO can be applied

without retraining all previous data. Experiments have been conducted for OSELM-

UO and several imbalance learning methods over real-world datasets respectively

under high imbalance ratio (IR) and large amount of samples and features. Through

the analysis of the experimental results, OSELM-UO is shown to give the best results

in various aspects.

Keywords Big data ⋅ Imbalance learning ⋅ OS-ELM ⋅ Under-sampling ⋅
Over-sampling

1 Introduction

Big data problem [1] has attracted growing attentions in recent years. However, in

very large or complex data, traditional data processing methods become inadequate

for the learning and/or extraction of useful information [2]. If the data are also imbal-

anced, the problem becomes even more challenging. In imbalanced data, the criti-

cal and highly interested class (called minority) is with significantly less amount

of samples than the other one (called majority) so that the critical class is easily

misclassified or even ignored. Actually, in most Big data applications, the data are

always imbalanced [3]. Therefore, Big data learning always occur together with class

imbalance in practical applications.
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In the literature, imbalance learning methods can be divided into two categories:

cost sensitive methods [4] at algorithm level and resampling methods [5] at data

level. In fact, cost sensitive methods are unable to handle big data, because a class

weight matrix 𝐖class is employed to control the attentions on minority and majority

samples [6]. Usually, the weights associated with minority samples are larger than

the ones associated with majority samples [7], and hence more attention is focused

on minority samples. However, the size of 𝐖class is determined by the training data

size N, i.e., ‖‖𝐖class
‖
‖ is N × N [8]. It can be easily seen that the memory storage for

𝐖class is prohibitively expensive with large N, resulting to intractable computation.

Resampling methods aim to preprocess and balance the training data. These

methods include random under-sampling [5], oversampling [5] and synthetic minor-

ity over-sampling technique (SMOTE) [9]. Random under-sampling is to randomly

remove some samples from the majority class until the data becomes balanced. Obvi-

ously, significant information loss occurs, leading to low accuracy on majority class

[10]. On the other hand, over-sampling is to directly duplicate the minority sam-

ples to balance the data. However, over-sampling may cause overfitting problem [11]

because the classifier is constructed / learned under the same rule for multiple copies

of the same sample [11]. SMOTE is another over-sampling method which generates

some synthetic minority samples along the k lines between a minority sample and its

selected k nearest neighbors rather than duplication. However, the artificially syn-

thetic minority samples may be noises rather than the true minority ones [12], and

hence deteriorated accuracy. Moreover, over-sampling and SMOTE sharply increase

the training data size so that big dataset becomes even bigger. As a result, random

under-sampling without information loss is the best choice for preprocessing Big

data with class imbalance problem.

In this work, we propose a novel method which employs online sequential extreme

learning machine (OS-ELM) [13] and under-sampling to deal with the imbalanced

Big data problem. OS-ELM is an online sequential version of extreme learning

machine (ELM) [14], which includes initial and sequential learning phase. (Remark:

ELM is a very popular single layer feedforward neural network which has high

efficiency and accuracy [15]. Its input weights are randomly generated while the

output weights are to be analytically determined by least square solution [16])

In initial learning phase, the learning procedure of OS-ELM is same as ELM

where a basic model is constructed. In sequential learning phase, the basic model is

updated/learned sequentially by a recursive algorithm [13] using the new incoming

data rather than all previously arrived data. Therefore, OS-ELM can learn a model

for Big data by sequentially training multiple small clusters sampled from the origi-

nal Big data.

In this work, random under-sampling is employed in every learning phase to

sequentially sample multiple small and balanced clusters. The training procedure

is as follows:

(i) In initial learning phase, the original training data is divided into one balanced

cluster 𝐃0 generated by under-sampling and another cluster that includes the



Online Sequential Extreme Learning Machine . . . 231

remaining majority samples for future learning. Then 𝐃0 is trained to learn a

basic model.

(ii) In (k + 1) th sequential learning phase, under-sampling is re-employed to gen-

erate another balanced cluster 𝐃k+1 that includes all learned minority samples

and the similar size of untrained majority ones. Then the model is updated by

training 𝐃k+1
(iii) After all majority samples in the original Big data have been trained, the whole

training procedure is completed.

Although under-sampling is employed in every learning phase, the whole training

procedure actually is over-sampling because minority samples are retrained in every

phase. Therefore, we name this novel method as OSELM-UO (OSELM with under-

sampling and over-sampling). The main contributions of OSELM-UO are enumer-

ated as follows:

(i) Compared to cost sensitive method, OSELM-UO can be directly applied in

processing Big dataset because the training data used in each learning phase is

only one small set of the whole data.

(ii) Compared to random under-sampling method, there is no information loss in

OSELM-UO because all majority samples are learnt.

(iii) Compared to over-sampling method, there is no overfitting in OSELM-UO

because in each learning phase, the objective function (or learned rule) is differ-

ent and sequentially updated by recursive algorithm. In other words, the learned

model is constructed/learned under different rules for multiple copies of the

same sample.

(vi) If the dataset keeps growing, OSELM-UO also can be applied in such case

without retraining all data again while other discussed methods cannot.

The organization of this paper is as follows. A short review of OS-ELM is pre-

sented in Sect. 2, followed by the details of the training procedure of proposed

OSELM-UO in Sect. 3. Section 4 shows the experimental results compared with ran-

dom under-sampling, over-sampling, SMOTE and cost sensitive method. Finally, a

conclusion is drawn in Sect. 5.

2 Related Works

In this section, we briefly review online sequential extreme learning machine OS-

ELM [13], because OS-ELM is the base model of our proposed OSELM-UO.

OS-ELM is a variant of ELM that can sequentially update a learned model with

data in chunk by chunk and one by one (a special case of chunk by chunk). Two steps

are consisted in OS-ELM.

Step 1: Initial learning phase
In this step, a chunk of training data n0 =

{

xi, ti
}

i = 1,… ,N0 is necessary to

learn an initial model, where N0 is the size of initial chunk of data, xi represents
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the ith sample and ti is the label for the ith sample in the initial chunk of data.

Identical to batch ELM, the input weights and bias of the basic model are ran-

domly generated and the initial output weight 𝛽0 is calculated based on the least

square solution as follows

𝛽0=𝐏0𝐇T
0𝐓0 (1)

and

𝐏0 =
(

𝐇T
0𝐇0

)−1

where 𝐇0 is the initial hidden layer output matrix, and 𝐓0 is the label matrix of

the initial chunk of data.

In order to make the learning performance of OS-ELM identical to the batch

ELM, N0 should be more than the number of hidden nodes [13].

Step 2: Sequential learning phase
As the new set of training data arrives, the (k + 1) th chunk of data nk+1 =

{

xi, ti
}

where k ≥ 0 and Nk+1 denotes the size of (k + 1) th chunk, the partial hidden layer

output matrix 𝐇k+1 is calculated firstly. Then the output weight matrix 𝛽k+1 with

𝐓k+1 and 𝛽k is computed as follows

𝛽k+1 = 𝛽k + 𝐏k+1𝐇T
k+1

(

𝐓k+1 −𝐇k+1𝛽k
)

(2)

and

𝐏k+1 = 𝐏k − 𝐏k𝐇T
k+1

(

I +𝐇k+1𝐏k𝐇T
k+1

)−1𝐇k+1𝐏k

The above equation is similar to the recursive least squares algorithm [17] and

when there is new chunk of data arriving, the output weight is updated following

Eq. (2).

3 Proposed Method

In this section, we will detail the training procedure of proposed OSELM-UO. There

are three steps in OSELM-UO.

Step 1: Preprocess the training data
The small and balanced training clusters used in every learning phase are firstly

generated. Given a set of original training data 𝐃 =
{

𝐱i, ti
}

, i = 1,… ,N N is the

data size, ti = {−1,+1}, ti = +1 indicates that ith sample belongs to minority

class. Similarly, ti = −1 indicates majority one. We firstly divide 𝐃 into minority

class (called 𝐌𝐢) and majority class (called 𝐌𝐚), i.e.,𝐃 = 𝐌𝐢 ∪𝐌𝐚. Then 𝐌𝐚 is

randomly divided into different subsets of equal size 𝐌𝐚l, l = 0, ..., last. Every

𝐌𝐚l has the same or similar data size with 𝐌𝐢. For instance, if the size of 𝐌𝐢
is 76 and the size of 𝐌𝐚 is 450, last = ⌈450∕76⌉ − 1 = 5. Then, 𝐌𝐚 is divided
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into 6 subsets and each subset has 450 / 6 = 75 samples. Finally, the small and

balanced training clusters are 𝐃l = 𝐌𝐢 ∪𝐌𝐚l, l = 0, ..., last.
Step 2: Initial learning phase

In this step, cluster 𝐃0 is chosen as initial chunk of data to learn an initial model.

The training procedure is the same with the initial learning phase in OS-ELM

and the initial output weight 𝛽0 is calculated using Eq. (1). Therefore, the initial

output (or initial decision) of the output layer is given by

f0 = 𝐇0𝛽0 (3)

Actually, Eq. (3) is identical to the result obtained by ELM combined with random

under-sampling because only 𝐌𝐚0 is trained.

Step 3: Sequential learning phase
In this step, cluster 𝐃k+1 is chosen as (k + 1) th sequential chunk of data to be

trained and the output weight matrix 𝛽k+1 is computed using Eq. (2). Up to now,

(k + 1) subsets of majority class are trained and 𝛽k+1 has preserved the information

of all trained data. If (k + 1) == last, the whole training procedure is completed

and all majority samples are trained. Therefore, the final decision is as follows:

flast = 𝐇last𝛽last (4)

The workflow of OSELM-UO is illustrated in Fig. 1.

4 Experiments

In this section, OSELM-UO is compared with random under-sampling, over-

sampling, SMOTE and weighted ELM (W-ELM) [6]. Under-sampling and over-

sampling are chosen to verify the properties of proposed OSELM-UO. SMOTE is

chosen as a popular and effective resampling method nowadays [9]. W-ELM is a cost

sensitive version of ELM, which can effectively solve the class imbalance problem

[6]. Moreover, after preprocessed by under-sampling, over-sampling and SMOTE,

the preprocessed data are trained by ELM for a fair comparison.

The comparison is conducted over 8 real-word datasets including UCI machine

learning repository [18] and KEEL [19], as shown in Tables 1 and 2. Among these 8

datasets, 5 datasets are with high imbalance ratio (IR). IR is calculated by majority

class size/minority class size. High IR indicates the data are with highly imbalanced

class distribution. For instance, if the IR is 99, it means the dataset includes only 1%

of minority samples but 99% of majority samples. Table 1 shows the 5 datasets with

high IR but small amount of samples. Table 2 shows the 3 datasets that have large

volume of samples or features but with low IR. (Remark: the datasets in Tables 1

and 2 are chosen from KEEL and UCI respectively.) This section mainly presents:

(i) experimental setup; (ii) the results comparison of OSELM-UO with random
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Fig. 1 Workflow of OSELM-UO

under-sampling, over-sampling, SMOTE and W-ELM to verify the effectiveness in

terms of G-mean [11], minority and majority accuracy; (iii) the analysis of the prop-

erties of OSELM-UO. For all experiments, G-mean is employed as evaluation metric

because it is very popular in imbalance learning [20].
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Table 1 Properties of datasets with high IR

Datasets # Features # Instances IR

abalone19 8 4174 129.44

kddcup-rootkit-
imap_vs_back

41 2225 100.14

poker-8-9_vs_5 10 2075 82

kr-vs-k-one_vs_fifteen 6 2193 80.22

abalone-20_vs_8-9-10 8 1916 72.69

Table 2 Properties of datasets with large amount of samples or attributes

Datasets # Features # Instances IR

handwritten 649 2000 9

ijcnn1 13 91701 9.53

skin_nonskin 3 201280 27.43

4.1 Experimental Setup

In order to have a fair comparison, we run 50 times of training for every compared

method. Every time, the training data is randomly drawn. The parameters (e.g., num-

ber of hidden nodes) for each method are also optimized in a user-specified range

(e.g., {10, 20,… , 300}). The result comparison over all methods is conducted in

terms of G-mean. The detailed results such as the means of minority and majority

accuracy are also illustrated. All the experiments were conducted on MATLAB over

a PC of 3.60 GHz with 16 GB RAM. Some notes for the experiments are as follows:

(1) All the features of each dataset are linearly scaled into [−1, 1]

(2) The datasets handwritten is originally balanced and have multiple classes. In

order to test OSELM-UO, we select one class as minority and the remaining

classes as majority so that these datasets become imbalanced.

(3) The training data account for 80% of total data, while testing data account for

20%.

4.2 G-Mean

We firstly compare and evaluate the overall performance of the proposed OSELM-

UO with random under-sampling, over-sampling, SMOTE and W-ELM on all 8

datasets. For the evaluation, testing results of G-mean are reported in Table 3 and the

best results are labeled in italic and underline. OSELM-UO gives the best G-means

in all datasets, even though the data are with high IR and large size. Compared to
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Table 4 Mean of minority accuracy (%) in testing results on all compared datasets

Datasets Under-

sampling

Over-sampling SMOTE W-ELM OSELM-UO

abalone19 71.66 71.66 76.66 76.66 78.33

kddcup-rootkit-
imap_vs_back

100.0 92.50 100.0 95.00 100.0

poker-8-9_vs_5 74.00 66.00 66.00 66.00 78.00

kr-vs-k-one_vs_fifteen 100.0 100.0 100.0 100.0 100.0

abalone-20_vs_8-9-10 88.00 86.00 88.00 88.00 92.00

handwritten 97.75 97.75 98.75 97.50 100.0

ijcnn1 98.72 98.62 98.56 null 98.73

skin_nonskin 100.0 100.0 100.0 null 100.0

Average 91.27 89.07 90.99 null 93.38

Table 5 Mean of majority accuracy (%) in testing results on all compared datasets

Datasets Under-

Sampling

Over-

Sampling

SMOTE W-ELM OSELM-UO

abalone19 72.72 80.50 75.91 77.17 79.80

kddcup-rootkit-
imap_vs_back

99.90 100.0 100.0 100.0 100.0

poker-8-9_vs_5 59.07 86.12 86.14 86.09 86.58

kr-vs-k-one_vs_fifteen 99.79 100.0 100.0 100.0 100.0

abalone-20_vs_8-9-10 85.89 94.36 92.11 94.02 94.55

handwritten 93.72 96.97 96.52 99.58 98.06

ijcnn1 96.45 97.02 97.09 null 96.94

skin_nonskin 99.63 99.58 99.48 null 99.64

Average 88.39 94.31 92.81 null 94.45

random under-sampling and over-sampling, OSELM-UO can improve the perfor-

mance up to 16 and 7% (e.g., poker-8-9_vs_5), respectively. In Table 3, OSELM-UO

gets up to 7 and 8% more of G-mean (e.g., poker-8-9_vs_5) than SMOTE and W-

ELM, respectively. Due to the large data size in ijcnn1 and skin_nonskin, W-ELM

cannot run and hence no results are obtained (labeled by null in Tables 3, 4 and 5).

4.3 Minority and Majority Accuracy

Subsequently, minority and majority accuracies on all datasets are shown in Tables 4

and 5. In Table 4, OSELM-UO also gets best minority accuracy. In Table 5, com-

pared with other methods, random under-sampling gets the worst majority accuracy
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in almost all datasets, because significant majority information loss occurs. In Table 4,

compared with other methods, over-sampling gives poor minority accuracy, because

overfitting happens in training. From the observation of average accuracy shown in

Tables 4 and 5, OSELM-UO gives the best performance on both minority and major-

ity classes. In addition, random under-sampling gets good minority accuracy but

poor majority accuracy, while over-sampling does the opposite, i.e., good majority

accuracy but poor minority accuracy. These results verify that OSELM-UO success-

fully integrates the advantages of under-sampling (good performance on minority

class) and over-sampling (good performance on majority class), and also eliminates

their disadvantages (i.e., information loss and overfitting) simultaneously.

5 Conclusion

In this paper, we present a novel method called OSELM-UO that aims to effec-

tively tackle imbalanced Big data problem. In OSELM-UO, multiple small and

balanced clusters are sequentially generated by random under-sampling. Although

under-sampling is employed in every learning phase, the whole training procedure is

actually over-sampling the minority samples to be retrained in every phase. There-

fore, the structure of OSELM-UO is a combination of under-sampling and over-

sampling.

The performance of OSELM-UO is assessed through testing some typical datasets

with high IR (e.g., the IR of abalone19 is 129.44), large amount of samples (e.g.,

skin_nonskin has 201280 samples) and features (e.g., handwritten has 649 features),

respectively. The results are compared with popular imbalance learning methods

including random under-sampling, over-sampling, SMOTE and W-ELM. Experi-

mental results verify the following conclusions:

(i) OSELM-UO gives the best G-mean results in all compared datasets, which can

improve the performance up to 16%. Moreover, it also gets the best average

accuracy on both minority and majority classes.

(ii) OSELM-UO is with the advantages of both under-sampling and over-sampling

but without their disadvantages. In other words, OSELM-UO obtains good per-

formance on both minority and majority class, and does not suffer from infor-

mation loss and overfitting.

In a nutshell, OSELM-UO can efficiently produce an accurate classification

model for imbalance Big data. Therefore, OSELM-UO is suitable to many practi-

cal applications with imbalanced Big data problem.
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An Automatic Identification System
(AIS) Database for Maritime Trajectory
Prediction and Data Mining
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Abstract In recent years, maritime safety and efficiency become very important
across the world. Automatic Identification System (AIS) tracks vessel movement by
onboard transceiver and terrestrial and/or satellite base stations. The data collected
by AIS contain broadcast kinematic information and static information. Both of
them are useful for maritime anomaly detection and vessel route prediction which
are key techniques in maritime intelligence. This paper is devoted to construct a
standard AIS database for maritime trajectory learning, prediction and data mining.
A path prediction method based on Extreme Learning Machine (ELM) is tested on
this AIS database and the testing results show this database can be used as a
standardized training resource for different trajectory prediction algorithms and
other AIS data based mining applications.
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1 Introduction

In the modern globalized economy, ocean shipping becomes the most efficient
method for transporting commodities over long distance. The persistent growth of
the world economy leads to increasing demand of maritime transportation with
larger ship capacity and higher sailing speed [1]. In this circumstance, safety and
security become key issues in maritime transportation. Intelligent maritime navi-
gation system using Automatic Identification System (AIS) data improves the
maritime safety with less cost compared with conventional maritime navigation
system using human navigators. The AIS is a maritime safety and vessel traffic
system imposed by the International Maritime Organization (IMO). Autonomously
broadcasted AIS messages contain kinematic information (including ship location,
speed, heading, rate of turn, destination and estimated arrival time) and static
information (including ship name, ship MMSI ID, ship type, ship size and current
time), which can be transformed into useful information for intelligent maritime
traffic manipulations, e.g. vessel path prediction and collision avoidance, and thus
plays a central role in the future autonomous maritime navigation system. Over the
last several years, receiving AIS messages from vessels and coastal stations has
become increasingly ordinary.

Although sufficient AIS data can be obtained from many data providers, e.g.
Marinecadastre (MarineC.) [2] and Sailwx [3], to the best of our knowledge, there is
no existing standard AIS benchmark database in maritime research area, which
makes it quite inconvenient for researchers and practitioners in the field, since
collecting a usable dataset will cost a lot of time and effort. Furthermore, as the
intelligent maritime system develops rapidly, many researchers proposed anomaly
detection and motion prediction algorithms and it is quite important to have a
database that could be served as a benchmark for comparing the performance of
different methods and algorithms. For example, in 2008, Ristic et al. [4] proposed
an anomaly detection and motion prediction algorithm based on statistical analysis
of motion pattern in AIS data. In 2013, Premalatha Sampath generated vessel
trajectory from raw AIS data and analyzed the trajectory to identify the kinematic
pattern of vessel in New Zealand waterways [5]. So in this paper, a ready-to-use
standard AIS database is constructed for maritime path learning, prediction and data
mining.

The remaining parts of the paper are organized as follows: Sect. 2 describes the
AIS data type and data source. Section 3 describes the detailed process of con-
structing the AIS database. Then the structure and static information of our AIS
database are summarized and described in Sect. 4. Finally, we conduct an experi-
ment based Extreme Learning Machine (ELM) on the AIS database to show the
usefulness of it in Sect. 5.
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2 Properties of AIS Database

This section describes the attributes of AIS data and introduces some popular AIS
data providers. And AIS data have some special attributes which would lead to the
difference between maritime trajectory prediction and route prediction in other
fields.

2.1 AIS Data Attributes

AIS technology broadcast ship information and voyage information at regular time
interval. The information can be received by onboard transceiver and terrestrial
and/or satellite base station. There are some important attributes of AIS data:
longitude, latitude, speed over ground (SOG), course over ground (COG), vessel’s
maritime mobile service identity (MMSI), base date time, vessel type, vessel
dimension, rate of turn (ROT), navigation status and heading. In this paper, the
standard AIS database contains longitude, latitude, SOG, COG, MMSI and base
date time, which are the most useful attributes for maritime trajectory learning and
prediction.

2.2 AIS Data Providers

There are many existing AIS data providers e.g. Marine Traffic (Marine T) [6], VT
explorer (VT E.) [7], FleetMon [8], Marinecadastre (MarineC.) [2] and Aprs [9].
Among these providers, MarineC can be downloaded for free and have good data
quality according to data completeness and position precision. So in this paper,
MarineC is selected to collect AIS data online. MarineC contains historical records
from 2009 to 2014 in America at a minute interval. We can choose and download
AIS data files in specific month and specific interest area. We downloaded February
2009 AIS data in UTM zone ten. However, the AIS data downloaded from MarineC
contains some data missing. To solve these problem, we use the linear interpolation
and the detail will he introduced in this paper later.

3 AIS Database Construction

This section describes the data processing tool and the detail of constructing the
standard AIS database we proposed. The whole process contains four parts: raw
data pre-processing, raw data selecting, candidate data cleaning and missing data
interpolating.
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3.1 Raw Data Pre-processing

The first step of constructing an AIS database is to download the raw database file
with dbf format from http://www.marinecadastre.gov/ais/. Prior to download raw
data online, the selection of interest area is necessary. As shown in Fig. 1, zone ten
is on west coast of the United States and it contains considerable amount of ships.
And these AIS data are open-sourced. In this paper, zone ten is chosen as interested
area because it contains sufficient amount of AIS data. The shaded part in Fig. 1 is
the chosen interested area whose longitude is from −120 to −126° and latitude is
from 30 to 50°.

In order to pre-process the AIS data and pick out the useful data, an application
which can transfer raw database file with dbf format to csv (comma-separated
values) format is required since csv format file is constituted by lines of tabular data
records and is much easier to be handled by researchers. Arcmap is the most
frequent cited Geographic Information System (GIS) software and is mainly used to
view, edit, create and analyze geospatial data. Since Arcmap is selected as our data
transformation software, a tool of it named “export feature attribute to ASCII” was
used for exporting feature class coordinates and attribute values to a space, comma,
or semicolon-delimited ASCII text file. The exporting result is presented in Fig. 12
in Sect. 4.

Fig. 1 UTM zone map and data source location
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3.2 Raw Data Selecting

After raw data pre-processing, it is necessary to select the candidate data from the
raw data with Excel format. Data selection contains two steps. First, for manipu-
lation convenience in the following operations, the whole raw data are sorted in
increasing time order and then sorted again by MMSI. One MMSI represents one
single vessel. Thus in this way, the track of each single ship can be displayed in
chronological order and easier to process. The second step is to calculate route
complexity and longest duration of navigation.

• Longest duration of navigation

If the SOG value of a vessel meets the following inequality, we call this vessel is
in the navigation condition.

SOG≠ 0 ð1Þ

Therefore, the longest duration of navigation is defined as the longest continuous
nonzero SOG sequence of the AIS messages in the navigation condition. As a
standard AIS database for maritime trajectory prediction and data mining, one
single route should contain substantial information. Thus, the route with short
duration which contains not enough data for training and testing on the route
prediction and data mining algorithms. Based on our experience, the selection
requirement of this property is that the trajectory data contain more than 500 AIS
messages.

• Route complexity

For each single route, the cos θ of each ship position is calculated and the
definition of route complexity is the mean value of cos θ (Fig. 2), which can be
calculated by the following equation:

cos θi =
PiPi− 1
����!∙Pi+1Pi

����!
PiPi− 1
����!��� ��� Pi+1Pi

����!��� ��� ð2Þ

Fig. 2 Sample of route
complexity
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Where Piðxi, yiÞ is vessel position at Ti; xi is the longitude of vessel at Ti; yi is the
latitude of vessel at Ti and PiPi− 1

����!
is the vector ðxi − xi− 1, yi − yi− 1Þ. The route

complexity should be larger than 0.8 in our database since the trajectory whose
complexity is lower than 0.8 is tangled.

3.3 Candidate Data Cleaning

After candidate data were obtained, further selection based on trajectories is
required. All trajectories of candidate data are plotted by MATLAB. Among all the
trajectories, we defined three noisy trajectory types as follows. (showed from
Figs. 3 to 6 and the horizontal axis is longitude and the vertical axis is latitude), we
then removed them all:

• The discontinuous trajectory is showed in Figs. 3 and 4.
• The loose trajectory is showed in Fig. 5.
• The tangled trajectory is shown in Fig. 6.

Because these noisy trajectories have some inherent drawbacks. Routes pre-
diction and data mining algorithms cannot learn the patterns of routes. And the
shapes of noisy routes are not typical. Once the noisy trajectories are identified, they
should be removed. Finally, 200 useful trajectories which contain 403599 AIS
records are saved and used to construct the standard AIS database. Figure 7 shows
some typical trajectories in our database (The horizontal axis is longitude and the
vertical axis is latitude).

Fig. 3 Discontinuous
trajectory sample-1
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Fig. 4 Discontinuous
trajectory sample-2

Fig. 5 Loose trajectory
sample

Fig. 6 Tangled trajectory
sample
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3.4 Missing Value Interpolating

In our database, the discontinuousness caused data missing values may affect the
performance of learning algorithms and data mining quality of the database.
Besides, the raw data also contain erroneous speed data. Before performing inter-
polation, we have to detect and remove the erroneous data. Each AIS record rep-
resents position of the ship. There are 403599 ship positions in the database. The
detection of speed errors is based on SOG jump (the difference between current
SOG and previous SOG). If the jump is larger than the threshold we set in advance,
we calculate the distance between the two messages using the latest speed and test if
this distance is consistent with the actual distance between the messages given by
Haversine formula [10], i.e. the calculated distance should be close to the actual
distance within a small threshold if the speed jump is correct. If not so, the latest
speed is treated as erroneous and is set to previous speed. The Harversine formula is
showed below.d is the distance between two points with longitude and latitude
ðψ ,ϕÞ and r is the radius of Earth.

Fig. 7 Reserved trajectory sample
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d=2r sin− 1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ðϕ2 −ϕ1

2
Þ+ cosðϕ1Þ cosðϕ2Þ sin2ð

ψ2 −ψ1

2
Þ

r
Þ ð3Þ

The second row in Fig. 8 is an example of incorrect SOG jump. In order to
interpolate the missing values efficiently, all of the AIS records with speed errors
should be corrected in advance.

For path interpolation, there are three steps: detecting data missing, judging if it
needs interpolation and making linear interpolation. Data missing occurs when the
time interval period between two consecutive messages is larger than one chosen
interval. We choose 1 min as the threshold interval in this paper. Once detected,
these two row data are defined as the missing data pair. A sample of missing data
pair is shown in Fig. 9 in which there is a 5 min interval between the two con-
secutive messages. Then the missing time period is defined as the time range
between the missing data pair and the great-circle distance between missing data
pair calculated by Haversine formula [10]. The computed distance divides the SOG
(km/min) of the earlier position. The division result, that is larger than two, requires
linear interpolation. Figures 10 and 11 show a trajectory example before and after
the interpolation (From Figs. 10 to 11, the horizontal axis is longitude and the
vertical axis is latitude).

The principle of linear interpolation is that we presume that the ship is in
uniform linear motion during the missing time period and the speed is considered as
the SOG of the earlier position. The calculation and interpolation of the missing
data are based on these two assumptions.

4 Description of AIS Database

In this section, we introduce the standard AIS database we constructed in two parts:
the structure and statistical information of the database.

Fig. 9 Exmaple of missing data pair

Fig. 8 Example of erroneous SOG jump
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4.1 Structure

The whole AIS database contains 200 clean trajectories stored in 200 csv file.1 Each
file is named by the MMSI and sorted in increasing time order. Each csv file
contains latitude, longitude, SOG, COG, ROT, time and MMSI of a single
ship. Figure 12 presents part of one xlsx file as an example.

Fig. 11 After interpolation

Fig. 10 Before interpolation

1The files will be uploaded to UCI Machine Learning repository (http://archive.ics.uci.edu/ml/).
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4.2 Statistical Information

The raw data was chosen from limited area and time periods. The range of lon-
gitude is from −120 to −126° and the latitude is from 30 to 50° as we showed in
Fig. 1. The complexities of routes are larger than 0.87.

There are many ship types within this database including cargo ships, tankers,
tugs, ships engaged in military operations, etc. The detail distribution of vessel
types is shown in the Fig. 13. COG is the actual direction of a vessel and is often
affected by the weather over sea. All AIS data are divided into eight statuses
according to the COG values as we showed in Table 1 [11]. Figure 14 shows the
distribution of vessels’ direction. SOG represents the speed of vessel and is an
important parameter for us to analyze the AIS data. Five statues of SOG are defined
[11] according to AIS dynamic information and listed in Table 2. The percentage of
each SOG status is showed in Fig. 15. The length of each route is another important
property of AIS data and could help us analyze the route length. According to the
data amount of each ship, all two hundred ship routes are separated into four types:

Fig. 13 Distribution of vessel types

Fig. 12 Example of a csv file
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short route, medium route, long route and exception route as we listed in Table 3.
Figure 16 shows the proportion of each route type with different trajectory length.
After linear interpolation, the length of each trajectory has changed so we sum-
marize the distribution of interpolated trajectories in Fig. 17, from which we can see

Table 1 List of COG
statuses

Course over ground (COG) Statuses

[337.5, 360] ∪ [0, 22.5) North
[22.5, 67.5) Northeast
[67,5, 112.5) East
[112.5, 157.5) Southeast
[157.5, 202.5) South
[202.5, 247.5) Southwest
[247.5, 292.5) West
[292.5, 337.5) Northwest

Fig. 14 Distribution of COG

Table 2 List of SOG
statuses

Speed over ground (SOG) Statuses

[0, 3) Slow
[3, 14) Medium
[14, 23) High
[23, 99) Very high
Over 99 Exception

Fig. 15 Distribution of SOG
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that most of the trajectories in the processed database belong to medium and long
categories. Figure 18 is the histogram of how many positions are interpolated. (The
horizontal axis is interpolated length and the vertical axis is number of trajectories
for each interpolated length).

Table 3 List of route types Data quantity range Route types

[530, 1000) Short
[1000, 2000) Medium
[2000, 10000) Long
Over 10000 Exception

Fig. 16 Length of original
route distribution

Fig. 17 Length of
interpolated route distribution

Fig. 18 Histogram of
interpolated length
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5 Experiments

In this section, we give an experimental demonstration of the usefulness of this
database and summarize the experimental results. The experiments are conducted
for maritime trajectory learning and prediction that are aimed to predict future
motion of ship based on the current position and historic movement. Extreme
Learning Machine (ELM) is a learning algorithm for single hidden layer feedfor-
ward networks (SLFNs) with random hidden nodes [12, 13]. ELM have good
generalization performance and fast learning speed. As a preliminary experiment,
we run ELM on our AIS database to predict the vessel trajectory. In the future, we
will compare more different algorithms on our AIS database e.g. Kalman Filter,
Gaussian Process, etc.

AIS data are time series data and new data of each feature comes continuously
with potentially uneven time interval. It is a question how these machine learning
algorithms could make the utmost use of historical data to predict different future
vessel position with a dynamic prediction time. In this project, we use the following
data segmentation method, as illustrated in Fig. 19. Suppose the training set con-
tains s samples and each sample feature has length l. The prediction time is tp. We
start at current time tc, indicated by red line. The first training sample is cut at time
tick tc-tp-l with time length l and its target value is vessel position at time tc. The
second training sample is cut at time tick tc-tp-l-1 with time length l and its target
value is vessel position at time tc-1 and so on for the rest of all training samples. The
testing sample is cut backwards at tc with feature length l. This makes sure that the
latest data can be utilized for both training and testing, without any dependence to
future information.

ELM is used to make the trajectory prediction in these experiments. We analyze
the performance of the algorithm according to these testing results. In order to make
a comprehensive evaluation of ELM, predicting the same trajectory in 20 min and
40 min is performed in this experiment.

The testing results contain two parts: prediction results and error distribution
which are described and discussed accordingly in this section. The prediction
results show the original and predicted trajectory and algorithm performance in
direct way. The prediction results of 20 and 40 min interval are presented in the
Figs. 20 and 21. From these two figures, we can find the ELM performance of
20 min experiment is much better than 40 min one. Since the vessel motion is often
affected by the dynamic and unpredictable sea weather, the task of predicting the

Fig. 19 Sample
segmentation of trajectory
prediction
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route in 40 min is more challenging and complex. (From Figs. 20 to 21, the hor-
izontal axis is longitude and the vertical axis is latitude)

The error distribution helps us to analyze the algorithm performance in a
quantitative way. Error is defined as the earth surface distance between real position
and predicted position. And this distance can be calculated by Harversine formula
which has been showed in Sect. 3.4. As we showed in Fig. 22, the error is from 0 to
2.5 when the experiment is to predict the trajectory in 20 min. Most of them are
from 0 to 0.5. Figure 23 shows the error of 40 min distributing from 0 to 6 and
most of them are in the range between 0 and 1 (From Figs. 22 to 23, the horizontal
axis is average error (Nautical mile) and the vertical axis is number of predictions
for each error).

Fig. 20 Prediction results: 20 min

Fig. 21 Prediction results: 40 min
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6 Conclusions

In conclusion, in this paper we present a standard AIS database and described the
details of constructing it. The testing results on our AIS database demonstrate its
potential value of serving as a benchmark for maritime trajectory learning, pre-
diction and data mining. Our following work will be focused on conducting more
experiments on the database by including more machine learning algorithms, such
as manifold clustering algorithm [14] and semi-supervised learning algorithms [15].
In the future, this database can also be used as a benchmark database to verify the
efficiency of other novel AIS data mining algorithms and compare their
performances.

Fig. 23 Error distribution:
40 min prediction results

Fig. 22 Error distribution:
20 min prediction results
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Back Propagation Convex Extreme
Learning Machine

Weidong Zou, Fenxi Yao, Baihai Zhang and Zixiao Guan

Abstract Recently, extreme learning machine has greatly improved in training
speed and learning effectiveness of feedforward neural network which includes one
hidden layer. However, the random initialization of ELM model parameters can
bring randomness and affect generalization ability. The paper proposed back
propagation convex extreme learning machine (BP-CELM), in which the hidden
layer parameters ða, bÞ can be calculated by formulas. The convergence of
BP-CELM is proved in the paper. Simulation results show that BP-CELM has
higher training speed and better generalization performance than other randomized
neural network algorithms.

Keywords Back propagation convex extreme learning machine ⋅ Learning
effectiveness ⋅ Generalization performance ⋅ Hidden layer parameter

1 Introduction

Owing to its universal approximation performance, ELM [1, 2] has been success-
fully applied in plenty of practical application, such as clustering learning [3], data
analysis [4], automation control [5, 6] and semi-supervised learning [7]. An ELM is
composed of an input layer, a hidden layer and an output layer. For N arbitrary
distinct samples xi, tið Þf gNi=1, where xi ∈Rn and ti ∈Rm, ELM model with n addi-
tive nodes can be indicated by

fnðxÞ= ∑
L

i=1
βihðai ⋅ xj + biÞ= ∑

L

i=1
Hi ⋅ βi, j=1, . . . ,N, ai ∈Rn, βi, bi ∈R ð1Þ
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where ai, bi and βi are the parameters of ELM, and h is the mapping functions of
hidden node, ai ⋅ x indicates the inner product of vectors.

During the past ten years, various improvements have been made to primordial
ELM algorithm, such as bidirectional ELM [8], constrained ELM [9], and hessian
semi-supervised ELM [10], to obtain better learning effectiveness and faster
training speed.

However, randomly generating hidden nodes parameters (a, b) result in certain
randomness [11] and inefficient use of hidden nodes [12]. The generalization ability
of ELM is under expectation by randomly generated many hidden nodes. This will
spend much time in training process and testing process, which is useless in
practical applications.

In order to solve these problems, we proposed back propagation convex extreme
learning machine (BP-CELM) algorithm that can quickly reduce the residual error
of neural network by finding more appropriate hidden nodes parameters (a, b). The
contributions and novelty of this paper reside in the following two aspects.

(1) The learning speed of BP-CELM has higher training speed than other neural
network algorithms, such as Support Vector Machine (SVM), back propagation
neural network (BP), I-ELM, EM-ELM and so on.

(2) Different from other ELM methods, all the parameters ða, b, βÞ of ELM can be
calculated by some formulas. It can provide better generalization capability
than other methods.

2 Preliminaries

2.1 CI-ELM

According to Barron’s convex optimization method [13], Huang et al. [14] pro-
posed convex I-ELM which denotes the residual error function of fn as en = f − fn
where f ∈L2ðXÞ is the target function. For the additive hidden nodes, the mathe-
matical form of CI-ELM is

fnðxÞ= 1− βn− 1ð Þfn− 1ðxÞ+ βnhðan ⋅ x+ bnÞ ð2Þ

The following lemma has been proved by Huang et al. [14].

Lemma 2.1 ([14]) For any continuous target function f, a SLFN with additive
hidden nodes Hða ⋅ x+bÞ which are nonconstant piecewise continuous, then any
randomly generated sequence of function Hr

n(x) =H(an ⋅ x +bn) based on any
continuous sampling distribution, lim

n→∞
f − ð 1− βn− 1ð Þfn− 1 + βnH

r
nÞ

�� ��=0 holds

with probability 1 if
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βn =
⟨en− 1,Hr

n − fn− 1⟩

Hr
n − fn− 1

�� ��2 ð3Þ

where en = f − fn presents the residual error of ELM fn with n additive hidden
nodes.

2.2 ELM with Subnetwork Hidden Layer Nodes

For improving the learning speed and learning effectiveness of ELM, Yang et al.
[15] proposed ELM with subnetwork hidden layer nodes which can produce sub-
network hidden layer nodes by drawing back neural network residual error to
hidden layer. All the parameters ða, b, βÞ of ELM-based learning algorithm are got
by Lemma 2.2.

Lemma 2.2 ([15]) For N arbitrary distinct samples xi, tið Þf gNi=1, where xi ∈Rn

and ti ∈Rm, if the mapping function of hidden layer node h is sigmoidal, given
a normalized function u:R→ ð0, 1], if the mapping function of hidden layer node
h is cosine or sine, given a normalized function u:R→ [0, 1], and then any
continuous target outputs t, we have lim

n→∞
t− u− 1ðhða1̂ ⋅ x+ b1̂ÞÞ ⋅ β1 + . . . +
���

u− 1ðhðan̂ ⋅ x+ bn̂ÞÞ ⋅ βnÞk=0 holds with probability 1 if

an̂ = h− 1ðuðen− 1ÞÞ ⋅ xTðCI + xxTÞ− 1, an̂ ∈Rn×m ð4Þ

bn̂ = sumðan̂ ⋅ x − h− 1ðuðen− 1ÞÞÞ ̸N, bn̂ ∈R ð5Þ

βn =
⟨en− 1, u− 1ðhðan̂ ⋅ x+ bn̂ÞÞ⟩

u− 1ðhðan̂ ⋅ x+ bn̂ÞÞ
�� ��2 ð6Þ

where xTðCI + xxTÞ− 1 = x− 1 is the Moore-Penrose generalized inverse of training
samples, and h− 1 and u− 1 indicate its reverse function, if h is sigmoidal function,
h− 1ð ⋅ Þ= − lnð 1

ð ⋅ Þ − 1Þ, if h is sine function, h− 1ð ⋅ Þ= arcsinð ⋅ Þ.

3 Back Propagation Convex Extreme Learning Machine

The structure of BP-CELM will be indicated in Sect. 3.1. In Sect. 3.2, we prove
that BP-CELM with additive hidden layer nodes can approximate any continuous
target functions. The code of BP-CELM is given in Sect. 3.3.
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3.1 Structure of the Proposed BP-CELM

BP-CELM can quickly reduce the residual error of ELM by finding better hidden
layer nodes parameters ða, bÞ and the corrected output weights β ̂. The parameters of
hidden layer nodes ða, bÞ and the corrected output weights β ̂ are got by Theo-
rem 3.1. Figure 1 illustrates the structure of BP-CELM.

3.2 Proposed BP-CELM

Theorem 3.1 For any continuous target function f, a SLFN with additive hidden
nodes which are nonconstant piecewise continuous,randomly generated output
weight βn, and obtained output feedback function sequence Hn, n∈Z,
lim
n→∞

f − 1− β ̂n
� �

fn− 1 + β ̂nĤn anx+ bnð Þ� ��� ��=0 holds with probability 1 if

Hn = en− 1ðβnÞ− 1 ð7Þ

an = h− 1ðuðHnÞÞ ⋅ xTðCI + xxTÞ− 1, an ∈Rn×m ð8Þ

bn = sumðan ⋅ x − h− 1ðuðHnÞÞÞ ̸N, bn ∈R ð9Þ

Fig. 1 Structure of BP-CELM
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β ̂n =
⟨en− 1, Ĥn an ⋅ x+ bnð Þ− fn− 1⟩

Ĥn an ⋅ x+ bnð Þ− fn− 1
�� ��2 ð10Þ

where βn̂ is the corrected output weight, Ĥn is output function sequence, C is
regularized parameter.

Proof We first prove that the error sequence enk k is decreasing, and then we
further prove lim

n→∞
enk k=0.

If we set activation function hðxÞ, we have Hn = hðλnÞ, λn ∈R. If hðxÞ is a sigmoidal
mapping function, λn = h− 1ðuðHnÞÞ= − logð 1

uðHnÞ − 1Þ, if hðxÞ is a sine mapping

function, λn = h− 1ðuðHnÞÞ= arcsinðuðHnÞÞ.
Let λn = an̂ ⋅ x, if hðxÞ is a sine mapping function, an = h− 1ðuðHnÞÞ ⋅ x− 1 =

arcsinðuðHnÞÞ ⋅ x− 1, if hðxÞ is a sigmoidal mapping function, an = h− 1ðuðHnÞÞ ⋅
x− 1 = − logð 1

uðHnÞ − 1Þ ⋅ x− 1 , x− 1 is the Moore-Penrose generalized inverse [16]

of training samples.
In [2], we get that the least-squares solution of linear system

an̂ ⋅ x= λn = h− 1ðuðHnÞÞ is an = h− 1ðuðHnÞÞ ⋅ x− 1, meaning that the residual error is
the smallest by this least-squares solution.

an ⋅ x− λnk k=min a ̂n ⋅ x− h− 1ðuðHnÞÞ
�� ��, an ∈ − 1, 1½ � ð11Þ

We get bn = sumðan ⋅ x − h− 1ðuðHnÞÞÞ ̸N, bn ∈R.
So we have

min u− 1ðhðan̂ ⋅ xÞÞ− u− 1ðλnÞ
�� ��
= u− 1ðhðan ⋅ xÞÞ− u− 1ðλnÞ
�� ��> u− 1ðhðan ⋅ x+ bnÞÞ− u− 1ðλnÞ

�� ��= σk k ð12Þ

Let Ĥn − fn− 1 = u− 1ðhðan ⋅ x+ bnÞÞ, the residual error as

Δ= en− 1k k2 − en− 1 − Ĥn − fn− 1
� ��� ��2 = 2⟨en− 1, Ĥn − fn− 1⟩− Ĥn − fn− 1

�� ��2
= Ĥn − fn− 1
�� ��2 2⟨en− 1, Ĥn − fn− 1⟩

Ĥn − fn− 1
�� ��2 − 1

 !

ð13Þ

Let

Ĥn − fn− 1 = u− 1ðhðan ⋅ x+ bnÞÞ= en− 1±σ = en̂− 1 ð14Þ

Because en̂− 1k k≥ σk k, we have
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Δ= Ĥn − fn− 1
�� ��2 2⟨en̂− 1±σ, en̂− 1⟩

en̂− 1k k2 − 1

 !

= Ĥn − fn− 1
�� ��2 1±

σ ⋅ eT̂n− 1

�� ��
e ̂n− 1k k2

 !
≥ Ĥn − fn− 1
�� ��2 1±

σk k
e ̂n− 1k k2

 !
≥ 0

ð15Þ

According to (15), we get en− 1k k≥ en − ðĤn − fn− 1Þ
�� ��, so we can prove

en− 1k k≥ en − ðĤn − fn− 1Þ
�� ��≥ en − βnðĤn − fn− 1Þ

�� ��.
Let βn = I, we get

en− 1 − ðĤn − fn− 1Þ
�� ��= en− 1 − ðĤn − fn− 1Þ ⋅ βn

�� �� ð16Þ

Because the hidden nodes parameters ðan, bnÞ is fixed,

βn̂ =
⟨en− 1, Ĥn an ⋅ x+ bnð Þ− fn− 1⟩

Ĥn an ⋅ x+ bnð Þ− fn− 1k k2 is one of the least-square solutions of

Ĥn an ⋅ x+ bnð Þ− fn− 1
� �

⋅ βn = en− 1.
We have

Ĥn an ⋅ x+ bnð Þ− fn− 1
� �

⋅ βn − en− 1
�� ��= min

β
Ĥn an ⋅ x+ bnð Þ− fn− 1
� �

⋅ β ̂n − en− 1
�� ��

≤ Ĥn an ⋅ x+ bnð Þ− fn− 1
� �

− en− 1
�� ��

ð17Þ

Based on (15)–(17), we get en− 1k k≥ en − ðĤn an ⋅ x+ bnð Þ− fn− 1Þ
�� ��≥ k

en − βnðĤn an ⋅ x+ bnð Þ− fn− 1Þk, so the sequence enk k is decreasing.
In [2], when the following three sufficient conditions are satisfied, we can prove

lim
n→∞

enk k=0.

(1) span Ĥn an ⋅ x+bnð Þ, ðan, bnÞ∈Rd ×R
� �

is dense in L2;
(2) en⊥ðen− 1 − enÞ;
(3) Ĥ is a nonconstant piecewise continuous function.

The preconditions of Theorem 3.1 have satisfied conditions (1) and (3), in order to
prove lim

n→∞
enk k=0, we need to prove en⊥ðen− 1 − enÞ.

since enk k= en− 1 − β ̂n Ĥn an ⋅ x+ bnð Þ− fn− 1
� ��� ��, we have

⟨en, Ĥn an ⋅ x+ bnð Þ− fn− 1⟩= ⟨en− 1 − β ̂n Ĥn an ⋅ x+ bnð Þ− fn− 1
� �

, Ĥn an ⋅ x+ bnð Þ− fn− 1⟩

= ⟨en− 1, Ĥn an ⋅ x+ bnð Þ− fn− 1⟩− βn̂ Ĥn an ⋅ x+ bnð Þ− fn− 1
�� ��2 = 0

ð18Þ

According to formula (18), we further have
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⟨en, en− 1 − en⟩= ⟨en, en + β ̂n Ĥn an ⋅ x+ bnð Þ− fn− 1
� �

⟩− enk k2

= enk k2 + β ̂n⟨en, Ĥn an ⋅ x+ bnð Þ− fn− 1⟩− enk k2 = 0
ð19Þ

which means en⊥ðen− 1 − enÞ.
This completes the proof of Theorem 3.1.

3.3 Pseudo-code for BP-CELM

The pseudo-code for BP-CELM can be summarized as follows:
Algorithm BP-ELM. Given a training set xi, tið Þf gNi=1⊂R

n ×R, activation
function H, the continuous target function f and maximum number of hidden nodes
Lmax, the expected learning accuracy ε,

Table 1 Specification of 24 benchmark data sets

Datasets Type Attribution Training datasets Testing
datasets

Air quality Regression 15 5358 4000
BlogFeedback Regression 281 30021 30000
Fertility Regression 10 60 40
Energy efficiency Regression 8 408 360
NoisyOffice Regression 216 110 106
SML2010 Regression 24 2100 2037
Solar Flare Regression 10 1189 1200
UJIIndoorLoc Regression 529 11000 10048
wiki4HE Regression 53 513 400
YearPredictionMSD Regression 90 315000 200345
Student performance Regression 33 349 300
Servo Regression 4 87 80
Abalone Classification 8 2100 2077
Artificial characters Classification 7 3500 2500
Cardiotocography Classification 23 1100 1016
CNAE-9 Classification 857 580 500
Covertype Classification 54 291012 290000
Dow Jones Index Classification 16 450 300
Echocardiogram Classification 12 72 60
EEG eye state Classification 15 7980 7000
Folio Classification 20 337 300
Gisette Classification 5000 7500 6000
Libras movement Classification 91 200 160

DNA Classification 180 1046 1186
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Step Initialization: Let the number of hidden nodes L=0 and the residual error
E= t, where t= t1, . . . , tN½ �.

Step Learning step:
While L< Lmax and Ek k> ε
Increase the number of hidden nodes by 1 L: L =L +1.
Randomly assign output weight βL.
Calculate output feedback function sequence HL according to (7).
Calculate hidden node parameters (aL, bLÞ according to (8), (9), and obtain

output function sequence ĤL.
Calculate the corrected output weight β ̂L according to (10).
Calculate the residual error after adding the new hidden node L:E =E− β ̂LĤL

End while

4 Simulation Verification

For testing the generalization performance of BP-CELM, in this section, we test it
on regression applications and classification applications. The simulations are
conducted in Matlab 2010a running on Windows 7 with at 4 GB of memory and
two Dual-Core E5300 (2.60 GHZ) processors. Learning algorithms are tested with
I-ELM, CI-ELM, EI-ELM, BP, SVM, SOM, Elman and BP-CELM.

Fig. 2 Testing RMES of different algorithms with sine hidden nodes in air quality, BlogFeed-
back, fertility and energy efficiency
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4.1 Data Description

Twelve regression datasets and twelve classification datasets are selected for the
experiments and described in Table 1. The data sets are collected from the
University of California at Irvine (UCI) Machine Learning Repository. We pre-
process all datasets in the same way.

4.2 Experiments

BP-CELM, I-ELM, CI-ELM and EI-ELM are compared in eight regression
applications and eight classification applications. The number of hidden nodes is
selected from 1 to 60 by step 1. The performances of these methods with hidden
nodes of sine activation function and sigmoid activation function are illustrated in
Figs. 2, 3, 4, 5, 6, 7, 8 and 9.

As shown in Fig. 9, BP-CELM can get much better generalization capability
than other learning algorithms. More importantly, the testing RMSE of BP-CELM

Fig. 3 Testing RMES of different algorithms with sigmoidal hidden nodes in air quality,
BlogFeedback, fertility and energy efficiency
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Fig. 4 Testing RMES of different algorithms with sine hidden nodes in NoisyOffice, SML2010,
solar flare and UJIIndoorLoc

Fig. 5 Testing RMES of different algorithms with sigmoidal hidden nodes in NoisyOffice,
SML2010, solar flare and UJIIndoorLoc
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Fig. 6 Testing accuracy of different algorithms with sine hidden nodes in abalone, artificial
characters, cardiotocography and CNAE-9

Fig. 7 Testing accuracy of different algorithms with sigmoidal hidden nodes in abalone, artificial
characters, cardiotocography and CNAE-9
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Fig. 8 Testing accuracy of different algorithms with sine hidden nodes in Covertype, Dow Jones
index, EEG eye state and folio

Fig. 9 Testing accuracy of different algorithms with sigmoidal hidden nodes in Covertype, Dow
Jones index, EEG eye state and folio
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with 10 hidden nodes can reach a very small value for the regression applications.
When the number of hidden nodes is 5, the testing accuracy of BP-CELM is above
other incremental ELM algorithms all the time for classification applications. In
practical applications, the residual error of neural network reduces very slowly will
lead to neural network growing procedure stop, but BP-CELM can reach expected
learning accuracy at early learning stage.

Tables 2 and 3 particularly highlight the generation performance comparison
between BP-CELM, BP, SVM, SOM and Elman. And among the comparisons of
these algorithms, apparently, the similar results are underlined and better test results
are given in boldface.

5 Conclusion

In this paper, a new learning algorithm called back propagation convex extreme
learning machine (BP-CELM) is presented. Unlike other incremental ELM meth-
ods, All the parameters of BP-CELM are incrementally updated efficiently during

Table 2 Generation performance comparision (average testing RMSE and average training time)

Datasets BP Elman BP-CELM
(10nodes)

RMSE Time RMSE Time RMSE Time

Solar flare 0.3011 1.0563 0.2613 1.6221 0.1062 0.0291
UJIIndoorLoc 0.5175 0.7042 0.6239 0.8543 0.3642 0.0078
wiki4HE 0.1691 1.2054 0.1286 1.6847 0.0854 0.0297
YearPredictionMSD 0.7044 1.5811 0.9208 3.5142 0.2147 0.0401
Student performance 0.5071 2.3054 0.4505 3.2586 0.2213 0.0501
Servo 0.0452 0.8421 0.0326 1.1231 0.0288 0.0201

Table 3 Generation performance comparison (average testing accuracy and average training
accuracy)

Datasets SVM SOM BP-CELM
Training
accuracy
(%)

Testing
accuracy
(%)

Training
accuracy
(%)

Testing
accuracy
(%)

Training
accuracy
(%)

Testing
accuracy
(%)

Echocardiogram 78.32 77.51 91.42 90.81 92.48 92.33
EEG eye state 88.67 86.32 90.31 85.43 97.39 89.72
Folio 90.45 89.86 89.65 85.41 99.52 97.35
Gisette 99.32 97.34 80.57 78.22 100 98.21
Libras
movement

88.28 86.44 89.13 87.89 89.52 88.67

DNA 98.16 93.22 84.81 80.11 99.45 94.52
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the learning step of networks. Simulation results show that BP-CELM can greatly
enhance the learning effectiveness, reduce the number of hidden nodes.
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Data Fusion Using OPELM for Low-Cost
Sensors in AUV

Jia Guo, Bo He, Pengfei Lv, Tianhong Yan and Amaury Lendasse

Abstract With mobility, security, intelligence and other advantages, autonomous
underwater vehicle (AUV) becomes an indispensable instrument in the complex
underwater environment. Owing to the independence of external signal (such as
GPS) which is restricted or invalid in the water, inertial navigation system (INS) has
become the most suitable navigation and positioning system for Underwater
Vehicles. However, as the excessive reliance of sensor data, the precision of INS
can be affected by sensor data especially heading angle data from low-cost sensor
such as attitude and heading reference system (AHRS) and digital compass.
Therefore, how to fuse low-cost sensor information to get more accurate data
becomes the key to improve navigation accuracy. Based on the original Extreme
Learning Machine (ELM) algorithm, the Optimally Pruned Extreme Learning
Machine (OPELM) algorithm is presented as a more robust and general method-
ology in 2010, which make it possible to realize data fusion by using a more
reliable network. In this paper, we proposed a method of data fusion which using
Optimally-Pruned Extreme Learning Machine (OPELM) to improve the accuracy
of heading angle from AHRS and digital compass. Our method has already been
demonstrated by a range of real datasets, and it outperforms current available
Kalman Filtering algorithms in efficiency.
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1 Introduction

Autonomous underwater vehicle (AUV) is an indispensable instrument in the
complex underwater environment such as the exploration of seabed sediment, due
to its flexibility and autonomy. Unlike unmanned vehicles and unmanned aerial
vehicles, GPS which employs as a significant navigation data, is limited or even
unavailable in water. However, simultaneous localization and mapping (SLAM)
[1–3] can map surroundings in real time and acquire estimated position information
simultaneously. Therefore, SLAM is increasingly attracting global attention and
becoming a research hot topic in unknown environment mobile robot’s navigation
and positioning areas [4–6], which can provide feasible solutions for the realization
of autonomous navigation.

Traditionally, there is a lot of sensors installed in AUV, including the AHRS,
digital compass, pressure sensor, GPS and the doppler velocity log (DVL) which
are mainly used for navigation and positioning. As the characteristics of AHRS and
digital compass are low-cost, small and low power consumption, they are widely
used in motor vehicles and unmanned aerial vehicles. AHRS contains a plurality of
axial sensor, which can provide heading, pitch and roll information for AUV.
However, the process of surge, acceleration, deceleration and even other factors
will inevitably bring angle error. Once the angle especially heading angle is not
accurate, navigation accuracy would not be guaranteed. Even though most of
AHRS can be inputted external Global Navigation Satellite System (GNSS) signal
to correct angle error in the process of moving. Nevertheless, GPS is invalid in the
water so that the compensation of angle is ineffective. And when referred to digital
compass, it is vulnerable to interference of ferromagnetic substance. Thus, using a
single sensor data cannot meet the demand for navigation accuracy.

Data fusion is the process of integration of multiple data and knowledge rep-
resenting the same real-world object into a consistent, accurate, and useful repre-
sentation. The goal of data fusion is to combine relevant information from two or
more data sources into a single one that provides a more accurate description than
any of the individual data sources [7]. At present, there are several methods of data
fusion. The mature information fusion methods mainly include Kalman Filtering
[8], Bayesian approach [9, 10], fuzzy method [11, 12], Dempster-Shafter [13], and
Neural Network [14, 15]. Although Bayesian has the axiomatic foundation and
plain mathematical properties, the main difficulty of Bayesian is that it is hard to
establish an accurate description of probability distribution especially when the
original data is given by the low-cost sensor. Different from Bayesian, fuzzy
method not only can deal with problem which owns inexact description, but also
can merge information adaptively. However, it only applies to the circumstance
which has little and qualitative information. Data fusion based on Dempster-Shafter
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has an advantage in processing large amounts of data, while it often become invalid
for independence data. Kalman Filtering is the most successful data fusion method
in multi-sensor system by far. But low prediction accuracy, filter divergence result
from cumulative prediction error are the biggest problem existing in the Kalman
Filtering. The cumulative prediction error comes from the inaccurate state equation
of integrated navigation system [16, 17]. The application of Neural Network in
information fusion does not has a long history. Neural network which has
high-speed parallel computing power and strong adaptive learning ability can
achieve optimal signal processing, while the uncertainly of learning error limits the
application of neural networks. In 2010, Yoan Miche et al. presented the OPELM
algorithm [18]. The OPELM methodology is not only considerably faster than the
Multilayer Perception (MLP) [19] and the Least-Squares Support Vector Machine
(LS-SVM) [20], but also has excellent performance in terms of robustness and
generality. OPELM makes it possible to realize data fusion by using a more robust
and general network.

After comprehensive research of advantages and disadvantages of the above
algorithms, firstly, we used OPELM to fuse heading data from AHRS and digital
compass, then the heading angle correction model was generated. Moreover, the
new heading angle obtained by the model give a more precise direction for AUV.
At last, combined with Kalman Filtering, we can get more accurate location
information of AUV.

The remainder of the paper is organized as follows: In Sect. 2, OPELM algorithm
is reviewed. Data fusion using OPELM will be presented in Sect. 3. In Sect. 4,
experiments with different datasets will be carried out to verify the performance of
the proposed algorithm. Finally, we draw the main conclusions of this work.

2 Review of OPELM

The OPELM algorithm is presented as a more robust methodology, which is based
on the original Extreme Learning Machine (ELM) algorithm. ELM was proposed
by Huang et al. [21] and the main novelty introduced by ELM randomly chooses
the input weights and biases of the hidden nodes instead of learning these
parameters.

The output of Signal-Hidden Layer Feed-forward Neural Networks (SLFNs)
with N hidden nodes can be presented as:

fn xð Þ = ∑
n

i=1
βiG ωi, bi, xð Þ.x ∈ Rn,ωi ∈ Rn, βi ∈ Rn. ð1Þ

where G ωi, bi, xð Þ is the ith output of hidden layer neurons corresponding to the
input x. β= βi1, βi2, . . . , βim½ �T is the connecting link between the ith hidden layer
neurons and output neurons weight vector.
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For N arbitrary input sample xi, tið Þ∈Rn ×Rm, where xi = xi1, xi2, . . . , xin½ �∈Rn

and ti = ti1, ti2, . . . , tim½ � ∈ Rm, given N hidden layer neurons and activation func-
tion G ωi, bi, xð Þ, βi,ωi and bi can be found out to make SLFNs close to the N
samples with zero error.

∑
N

j=1
βjG ωj, bj, xi

� �
= ti i=1, 2, . . . ,N. ð2Þ

To simplify, the above Eq. (2) can be written equivalently as:

Hβ=T . ð3Þ

where

H ω1, . . . ,ωN , b1, . . . , bN , x1, . . . , xNð Þ=
G ω1, b1, x1ð Þ ⋯ G ωN , bN , x1ð Þ

⋮ ⋱ ⋮
G ω1, b1, xNð Þ ⋯ G ωN , bN , xNð Þ

2
64

3
75
N ×N

β= ½βT1 , . . . , βTN �TN ×mT = ½tT1 , . . . , tTN �TN ×m.

ð4Þ

In the formula (4), H is the hidden output matrix of the neural network, the ith
column of H is the ith hidden layer neurons output corresponding to input
x1, x2, . . . , xn. The training process of SLFNs is equivalent to find the least squares
solution of linear system Hβ = T. It has been proved that the global optimal output
weights can be written as:

β ̂=H*R. ð5Þ

where H* is Moore-Penrose inverse matrix of the hidden layer output matrix H.
To remove the useless neurons of the hidden layer, OPELM algorithm ranks the

best neurons by multi-response sparse regression (MRSR) algorithm. As an
extension of least angle regression (LARS), MRSR provides a ranking of the
kernels. Finally, the leave-one-out (LOO) validation method is used to select the
actual best number of neurons. The most specific details of the MRSR algorithm
and LOO algorithm can be found from two reported papers [22, 23] respectively.

The whole structure of OPELM is shown in Fig. 1.

Fig. 1 The whole structure of OPELM
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3 Data Fusion Using OPELM

3.1 The Selection of Input Data

The datasets used in this paper were collected by Sailfish AUV at Menlou Reservoir
(Yantai, China). The essential parameters of the Sailfish autonomous underwater
vehicle are in Table 1. Figure 2 displays the location of sensors in Sailfish AUV.
And the deployment figure of AUV is shown in Fig. 3.

In this system, we adopted TCM5 and AHRS 100 to measure the angle of AUV.
The TCM5 combines 3-axis of PNI Corporation’s patented Magneto-Inductive
(MI) magnetic sensors and a 3-axis MEMS accelerometer in a single module.
Despite it has small size, light weight, no error accumulation and many other
advantages, the local geomagnetic field where location TCM5 used is vulnerable to
the influences of various ferromagnetic and electromagnetic distortion. So, there is
often an error between measured angle and the actual direction. And this would
affect the accuracy of measurement. Unlike TCM5 using magnetic sensor, AHRS
100 integrates three MEMS gyroscope. Based on Coriolis effect, MEMS gyroscope
measures the angular velocity through the change of capacitance. The change of
angle is integral by the angular velocity. Therefore, either AHRS angle or AHRS
angular velocity can be chosen as input. In this paper, we chose AHRS angle for
data fusion. Among three Euler angles, the heading angle has the greatest effect on
the track, so we only fuse the heading angles from AHRS 100 and TCM5. Vari-
ables corresponding to the input-output are as follows. And according to the pro-
portion of 3:1, the dataset is typically separated into training set and testing set in
offline mode Table 2 shows input variables.

Table 1 Essential parameters of the Sailfish autonomous underwater vehicle (AUV)

Parameter Length Width Tonnage Payload Maximal speed Endurance

Value 2.3 m 210 mm 72 kg 4 kg 5knot 10 h

Fig. 2 Sailfish AUV structure diagram. (1) Shell; (2) antenna; (3) electronic control system; (4)
rudder; (5) propeller; (6) lithium battery; (7) side scan sonar; (8) navigation system; (9) DVL; (10)
charge coupled device; (11) replaceable lithium battery; (12) load dump; (13) depth gauge
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3.2 The Whole Process of Data Fusion

The whole process of Data Fusion is as follows (Fig. 4).
The key of data fusion in this system is marked with black dashed box. First, we

use OPELM to learn and fuse heading angle information form AHRS 100 and
TCM5, in order to obtain a more accurate value of the heading angle. Afterwards,

Fig. 3 Launch AUV in the sea trial

Table 2 Input variables

Input

GPS_Heading TCM_Heading AHRS_Acc_X AHRS_Heading

Fig. 4 The whole process of data fusion

278 J. Guo et al.



based on the output heading angle, the velocity from DVL and other angles and
acceleration information from AHRS 100, we take advantage of Kalman Filtering
algorithm to generate the rough track of AUV. Finally, if GPS is effective, AUV
would get accurate position information by using GPS to modify the rough track;
on the contrary, if GPS is ineffective, AUV would get position information from
Kalman Filtering.

3.3 Performance Evaluation

The performance of the Data Fusion using OPELM is measured by the root mean
square error (RMSE).

Etrack =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n=N

n=1
bYitrack − Yitrack true

� �2

N

vuut
. ð6Þ

where Etrack is the track error of the Data Fusing using OPELM. bYitrack are the output
track produced by output heading angle, while Yitrack true is the actual track. And N is
the total number of samples.

3.4 Online Data Fusion Using OPELM

Data fusion using OPELM is not only suitable for offline simulation data pro-
cessing, but also for fusing data in real-time. Firstly, through the AUV sailing in the
designated area, we will get the heading angle model which can be used to fuse
AHRS 100 and TCM5 heading angle for AUV. Then the fused heading angle and
other sensor information are sent into Kalman Filtering to get optimal position
estimation.

4 Experimental Results

The proposed method of Data Fusion has been evaluated on a range of datasets. We
compared with other algorithms. Due to heading angle fused by ELM algorithm has
poor stability and its chaotic angle data interfere the display of other data, we just
compare ELM with other algorithms in the first dataset as shown in Fig. 5.

Figure 6 shows the heading angle which gotten from four different methods
(OPELM, TCM, AHRS and GPS). Figure 7 reveals the heading angle error
between GPS and other methods, respectively. As can be seen clearly, the heading
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Fig. 5 The comparison of trial a and heading angle b by different algorithm including ELM

(a) dataset 1

(b) dataset 2

Fig. 6 The comparison of
heading angle a and b by
different algorithm except
ELM algorithm
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angle values in Fig. 6b are almost unchanged and revealed to be nearly a straight
line. Correspondingly, the heading angle error of raw sensor data which are pro-
duced by AHRS 100, TCM5 and fused data are displayed in Fig. 7. Although it
seems that AHRS 100 data has better stability than other data, the heading angle
error from AHRS 100 is almost whole above zero degrees. This indicates that there
is always a positive error existing in attitude and heading reference system, which
may bring indelible positive error. In addition to a negative heading angle error
similar to AHRS 100, TCM5 still has a larger margin of error. Compared with
AHRS 100 and TCM5, the heading angle data fused by OPELM have a relatively
stability error which also can be offset. Even if the heading angle constantly
changes as shown in Fig. 7, the heading angle which is generated by the fusion still
has good performance than others (Fig. 8).

(a) dataset 1

(b) dataset 2

Fig. 7 The heading angle
error of different methods
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As shown in Fig. 8, the trajectories are corresponding to heading angle from
different methods, respectively. No matter the heading angle is a constant or is
changing in real time, the trajectory of OPELM is more close to the true path
(GPS) than the green or blue trajectory which using a single angle data. And the
RMSE of different trajectory is explained in Fig. 9. When compared with other
trajectory, the track error of the Data Fusing using OPELM is far less than other
methods in general. It is proved by experimental data that the data fusing using
OPELM is effective.

(a) dataset 1

(b) dataset 2

Fig. 8 The comparison of
trial by different method
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5 Conclusion

In this paper, we proposed a data fusion method using OPELM to improve the
navigation accuracy for AUV. Compared to the directly using of low-cost sensors
(such as TCM5 or AHRS 100) data to execute Kalman Filtering, the proposed data
fusion exhibit better accuracy, which RMSE improved at least 53%, or even as high
as 64.7% in the complex conditions. The experimental results verify the validity and
efficiency of the proposed method for AUV.

(a) dataset 1

(b) dataset 2
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