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Abstract. In this paper we prove the correctness of a program for com-
puting vertex colorings in undirected graphs. In particular, we focus on
the approximation ratio which is proved by using a cardinality operation
for heterogeneous relations based on Y. Kawaharas characterisation.

All proofs are mechanised by using the two proof assistants Coq and
Isabelle/HOL. Our Coq formalisation builds on existing libraries provid-
ing tools for heterogeneous relation algebras and cardinalities. To for-
malise the proofs in Isabelle/HOL we have to change over to untyped
relations. Thus, we present an axiomatisation of a cardinality operation
to reason about cardinalities algebraically also in homogeneous relation
algebras and implement this new theoretical framework in Isabelle/HOL.
Furthermore, we study the advantages and disadvantages of both systems
in our context.

1 Introduction

Relation algebra (as first introduced in [19] and further studied, e.g., in [10,16])
provides an elegant way to reason about many discrete structures. For instance,
there is a direct relationship between relations and graphs via adjacency rela-
tions. Hence, computational problems on graphs can be expressed and solved by
using the relation-algebraic method as shown in [16], for example. The relation-
algebraic approach is known for many methodical advantages in contrast to the
conventional set-theoretic one. For example, it allows consice problem specifica-
tions and hence very formal calculations. Due to this, relation-algebraic reasoning
turned out to be well-suited for mechanisation.

Thus, in [2] the authors develop a relational program for computing vertex
colorings in undirected (and loop-free) graphs. The correctness proof is given by
combining the assertion-based verification method with relation-algebraic calcu-
lations. In this context the usability of an automated theorem prover and the
proof assistants Coq and Isabelle/HOL is shown and compared. However, the
approximation ratio of the underlying Greedy algorithm is not studied at all
since there were no obvious tools to tackle proofs involving cardinalities.

In the last years there has been a lot of work concerning the cardinalities of
relations, mostly based on a definition of a cardinality operation for heteroge-
neous relation algebras presented by Kawahara in [9]. For example, in [3] and
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[1], the authors present first results about the cardinalities of special relations as
points and vectors building the basis for reasoning about approximation ratios
algebraically. Furthermore, in [5], a library for Coq providing an implementation
of this cardinality operation in heterogeneous relation algebras is developed.

In the present paper the mentioned results about cardinalities of relations are
used to prove the approximation ratio of the program presented in [2]. Further-
more, we study the application of the proof assistants Coq and Isabelle/HOL in
this context. Therefore, we first use the library developed in [5] for mechanis-
ing the correctness proof in Coq. Our implementation in Isabelle/HOL builds
on a library for untyped relations (see [17]). Thus, we modify Y. Kawahara’s
definition of a cardinality operation and present a new theoretical framework
for dealing with cardinalities in homogeneous relation algebras. For this frame-
work we develop a library that is eventually applicable for the mechanisation
of the programs’ correctness proof. As in [2], we compare the advantages and
disadvantages of the usability of both tools in this context.

Our Coq proof script and Isabelle/HOL theories are available here [18].

2 Preliminaries

First, we recall the basic principles of relation algebra based on the heteroge-
neous approach of [6,15,16]. Set-theoretic relations form the standard model
of relation algebras. We assume the basic operations on set-theoretic relations,
viz. union, intersection, complementation, transposition and composition, in the
remainder denoted by R∪S, R∩S, R,RT and RS for relations R,S of appropri-
ate type. Furthermore, we consider the predicates R ⊆ S (inclusion) and R = S
(equality)and the empty, universal and identity relation denoted by O, L and I.

Those operations and constants form a (heterogeneous) relation algebra in
the sense of [15,16], with typed relations as elements. We write R : X ↔Y if R
is a relation with source X and target Y and denote the type of R by X ↔Y .
In the case of typed relations we frequently overload the symbols O, L and I, if
their type can be inferred from the context. If necessary we use indices as e.g.,
LXY for L of type X ↔Y . The axioms of a relation algebra are

(1) the axioms of a Boolean lattice for all same typed relations under the
Boolean operations ∪, ∩ and , ⊆ and L and O,

(2) the associativity of composition and that identity relations are neutral w.r.t.
composition,

(3) the Schröder rule, i.e., that for all relations Q, R and S with appropriate
types it holds QR ⊆ S ⇐⇒ QTS ⊆ R ⇐⇒ SRT ⊆ Q

(4) the Tarski rule, i.e., that for all relations R and all universal relations with
appropriate types it holds R �= O ⇐⇒ LRL = L.

In the relation-algebraic proofs of this paper we only indicate applications of (3),
(4) and consequences of the above axioms that are not obvious. Furthermore, we
assume that complementation and transposition bind stronger than composition
and composition binds stronger than union and intersection.
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In the following we define some specific classes of relations, for more details
we refer again to [15,16]. If R is homogeneous, i.e., of type X ↔X, R is called
irreflexive iff R ⊆ I and symmetric iff R = RT. A homogeneous relation R is
reflexive iff I ⊆ R, antisymmetric iff R ∩ RT ⊆ I, and transitive iff RR ⊆ R.
A reflexive, antisymmetric and transitive relation R is a order relation and if
additionally R ∪ RT = L holds, i.e., R is linear, then R is called a linear order
relation. A relation R is univalent iff RTR ⊆ I and total iff RL = L. A mapping
is a univalent and total relation.

A vector is a relation v with v = vL. For a set-theoretic relation v : X ↔Y
the equality v = vL means that v is of the form v = Z ×Y with a subset Z of X.
Then we say that v models the subset Z of X. Since for this purpose the target
of a vector is irrelevant, we use the specific singleton set 11 as target. Moreover,
a point p is a vector that is injective and surjective, i.e., ppT ⊆ I and Lp = L.

We also assume the following version of the Point Axiom of [7] holding for
set-theoretic relations, where P(v) := {p | p ⊆ v ∧ p is point} for all vectors v.

Axiom 2.1. For all objects X we have LX11 =
⋃

p∈P(LX11)
p.

Additionally we have the following lemma which states that this property can
be generalised for arbitrary vectors (see [7]).

Lemma 2.1. If v : X ↔11 is a vector, then v =
⋃

p∈P(v) p. 
�
In [9], Kawahara investigates the cardinality of set-theoretic relations. The

main result is a characterisation of the cardinalities of relations. Considering the
properties of this characterisation as axiomatic specification of the cardinality
operation | · | leads to the following definition:

Definition 2.1. For all relations R we denote its cardinality by |R|. The fol-
lowing axioms specify the meaning of the cardinality operation, where Q,R and
S are arbitrary relations with appropriate types:

(C1) If R is finite, then |R| ∈ N and |R| = 0 iff R = O.
(C2) |R| = |RT|.
(C3) If R and S are finite, then |R ∪ S| = |R| + |S| − |R ∩ S|.
(C4) If Q is univalent, then |R ∩ QTS| ≤ |QR ∩ S| and |Q ∩ SRT| ≤ |QR ∩ S|.
(C5) |I1111| = 1.

In (C1) and (C3) the occuring relations are assumed to be finite so that the
cardinality |R| can be regarded as a natural number, in (C2) and (C4) the
notation |R| = |S| (respectively |R| ≤ |S|) is equivalent to the fact that there
exists a bijection between R and S (respectively an injection from R to S) and
(C5) says that the identity relation on the set 11 contains precisely one pair. In
the present paper we assumes in case of an expression |R| the sets of R’s type
to be finite and thus |R| ∈ N.

Based on the above axioms in [9] a lot of laws for the cardinality operation
are derived in a purely algebraic manner, for instance, the monotonicity of the
cardinality operation, i.e., that R ⊆ S implies |R| ≤ |S|. Futhermore, they imply
|⋃R∈R R| =

∑
R∈R |R|, for all finite sets R of pairwise disjoint relations. Other

consequences of the axioms we use in the remainder are the following:
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Lemma 2.2.

1. If R and S are univalent, then |RS ∩ Q| =
∣
∣R ∩ QST

∣
∣.

2. If R is univalent and S is a mapping, then |RS| = |R|.
3. If R is univalent, then |RTS| ≤ |S|.
The cardinality of points and vectors of type X ↔11 can be studied by using the
above results. The next lemma states that a point contains exactly one pair.

Lemma 2.3. If p : X ↔11 is a point, then |p| = 1.

Proof. Using cardinality axioms (C2) and (C5) and Lemma 2.2 (I1111 is univalent
and pT : 11↔X is a mapping), we have the following calculation:

|p| = |pT| = |I1111pT| = |I1111| = 1. 
�
This lemma allows to show that the cardinality of a vector with target 11 is equal
to the cardinality of the set of all points it contains.

Lemma 2.4. For all v : X ↔11 we have |v| = |P(v)|.
Note that in the above lemma with |P(v)| we denote the usual cardinality of the
set P(v). For more details, in particular omitted proofs, and results concerning
the cardinality operation as well as applications we refer to [1,3,9].

3 Approximating Minimal Vertex Colorings

In [2] the authors present a relational program for computing vertex colorings in
undirected (and loop-free) graphs. The verification tasks arising by applying the
assertion-based verification method are supported by the automated theorem
prover Prover9 and the proof assistants Coq and Isabelle/HOL. By this example
the advantages and disadvantages of these tools are studied and compared.

The presented program is based on the well-known Greedy algorithm that
assigns sequentially a proper color to each vertex, i.e., a color that is not already
assigned to one of its neighbours. This procedure does not consider the fact that
one is usually interested in computing a minimal and not an arbitrary coloring
of a graph. Thus, one usually assumes the colors to be ordered so that the
algorithm chooses a minimal color for each vertex. By this approach a minimal
vertex coloring is approximated with a ratio of Δ + 1, where Δ is the maximum
degree of the given graph.

In [2] the approximation ratio is not treated at all. Thus, in the remainder
of this section we prove the ratio of the following program with the modified
choice of the color q using the results about the cardinality operation presented
in Sect. 2:

C := O;
while CL �= L do

let p = point(CL);

let q = point(CTEp ∩ M CTEp);
C := C ∪ pqT od
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The input relations of this program are an adjacency relation E : X ↔X,
modelling a given graph G with a set of vertices X, and a linear order relation
M : F ↔F on a set of colors F . The output relation of the program is C :
X ↔F representing the vertex coloring, i.e., a mapping so that in addition CC ⊆
E holds. The latter condition is called the coloring property. Furthermore, all
occuring universal relations in the program have target 11. As in [2] we assume
the deterministic operation point selecting a point to a given nonempty vector v
such that point(v) ⊆ v. For more details we refer to [2] since the only difference to
our program is the choice of the point q. In [2], q is choosen as point(CTEp), i.e.,

q is not used for one of p’s neighbours. If we choose q as point(CTEp∩M CTEp)

instead we also ensure that q is minimal since CTEp∩M CTEp is the vector of all
minimal colors w.r.t. the order relation M , see, e.g., [16] for further information.

To formally verify the correctness of the above program we apply the asser-
tion-based verification method. Thus, we first specify the programs’ pre- and
postcondition. The precondition is the conjunction of the following formulae
specifying E as an adjacency relation, i.e., an irreflexive and symmetric relation,
and M as a linear, reflexiv and antisymmetric relation (transitivity is not needed
here).

Pre(E,M) :⇐⇒ E = ET∧ E ⊆ I ∧ I ⊆ M ∧ M ∩ MT ⊆ I ∧ M ∪ MT = LFF

In the remainder we furthermore use the abbreviation Δv := max{|Ex| | x ∈
P(v)} for all vectors v and Δ := ΔL for the maximum degree of a given graph
modelled by E. If we do not specify a universal or empty relation’s type in this
section we assume its target to be 11.

The postcondition is a conjuction of three formulae stating that C is a vertex
coloring, i.e., an univalent and total relation fulfilling the coloring property, and
a formula saying that the number of used colors is at most Δ + 1:

Post(C,E) :⇐⇒ CTC ⊆ I ∧ CL = L ∧ CCT⊆ E ∧ |CTL| ≤ Δ + 1

The invariant is a conjunction of four formulae, where the first two ensure that
C is univalent and fulfills the coloring property and the latter two are essential
for proving the desired approximation ratio:

Inv(C,E,M) :⇐⇒ CTC ⊆ I ∧ CCT⊆ E ∧ CTL ⊆ M CTL ∧ |CTL| ≤ ΔCL + 1

As usual the following proof obligations have to be proved for partial correctness:

(PO1) Pre(E,M) =⇒ Inv(E,M,O)
(PO2) Inv(E,M,C) ∧ CL = L =⇒ Post(E,C)
(PO3) Pre(E,M) ∧ Inv(E,M,C) ∧ CL �= L =⇒ Inv(E,M,C ∪ pqT) (where p

and q are defined as in the given program).

Since Pre(E,M),Post(E,C) and Inv(E,M,O) are conjunctions of various
formulae the three obligations can be splitted into single statements for each
formula. In the remainder we only consider the statements involving cardinalities.
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For the omitted proofs we refer to Sects. 4 and 5 and the appendix. Here, we
start with proving the first proof obligation (PO1), i.e., the establishment of the
last formula of the invariant.

Lemma 3.1. For all relation E and M it holds Inv(E,M,O).

Proof. The last formula of the invariant is shown by using cardinality axiom
(C1) two times: |OTL| = 0 ≤ 1 ≤ ΔOL + 1. 
�
Next, we prove (PO2), i.e., that the invariant and the negation of the loop-
condition imply the postcondition. Again we concentrate on the last formula
involving cardinalities.

Lemma 3.2. Let E, C, M be relations such that E is symmetric and irreflexive,
M is reflexive, antisymmetric and linear and CL = L and Inv(E,C,M) holds.
Then Post(E,C) holds.

Proof. Using Inv(E,C,M) in the first and CL = L in the second step we have
the following inequality: |CTL| ≤ ΔCL + 1 = ΔL + 1 = Δ + 1. 
�
For proving (PO3), i.e., the maintenance of the last formula of the invariant, we
need the following auxiliary result.

Lemma 3.3. Let R be a reflexive, anstisymmetric and linear relation. Then
RT= I ∪ R holds.

Proof. Using the antisymmetry of R we have:

R ∩ RT⊆ I ⇐⇒ R ∩ RT∩ I ⊆ O ⇐⇒ RT⊆ R ∩ I ⇐⇒ RT⊆ I ∪ R.

By the linearity and reflexivity of R we show:

R ∪ RT= L ⇐⇒ R ∪ RT⊆ O ⇐⇒ R ∩ RT⊆ O ⇐⇒ R ⊆ RT=⇒ I ∪ R ⊆ RT. 
�
Using the latter Lemma we show the maintenance of the invariants’ last formula:

Lemma 3.4. Let E, C and M be relations so that Pre(E,M) and Inv(E,M,C)

hold and p, q points with p ⊆ CL, q ⊆ CTEp ∩ M CTEp. Then |(C ∪ pqT)TL| ≤
Δ(C∪pqT)L + 1 holds.

Proof. Since p and q are points it holds qpTL = q and thus |(C ∪ pqT)TL| = |CTL∪
q|. For the same reasons we have pqTL = p which implies Δ(C∪pqT)L = ΔCL∪p

Hence we have to show |CTL ∪ q| ≤ ΔCL∪p + 1.
Using (C3) and Lemma 2.3 we have the following equality:

|CTL ∪ q| = |CTL| + |q| − |CTL ∩ q| = |CTL| + 1 − |CTL ∩ q|.
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If q ⊆ CTL it holds |CTL∩q| = |q| = 1. In this case the claim follows immediately
with the assumption Inv(C,E,M), in particular the last formula of it, and the
fact that ΔCL ≤ Δ(C∪pqT)L.
Hence, we consider the case that q ⊆ CTL. Then CTL∩q = O and it follows|CTL∪
q| = |CTL|+1. Thus, it is sufficient to show that |CTL|+1 ≤ ΔCL∪p +1 holds.So
we show that |CTL| ≤ ΔCL∪p, and therefor, |CTL| ≤ |Ep|.

Because of q ⊆ CL and the third formula of Inv(E,M,C) we have

q ∪ Mq ⊆ CTL ∪ M CTL ⊆ CTL

and thus
CTL ⊆ q ∩ Mq. (1)

Next, we prove
q ∩ Mq ⊆ CTEp (2)

by the following calculation:

q ⊆ M CTEp ⇐⇒ M CTEp ⊆ q

⇐⇒ MTq ⊆ CTEp Schröder rule

⇐⇒ I ∪ Mq ⊆ CTEp Lemma 3.3

⇐⇒ (I ∪ M)q ⊆ CTEp q point

⇐⇒ q ∪ Mq ⊆ CTEp

⇐⇒ q ∩ Mq ⊆ CTEp.

Using (1), (2) and Lemma 2.2.1 (C is univalent because of Inv(E,M,C)) as well
as the monotonicity of the cardinality operation we obtain the desired inequality:

|CTL| ≤ |q ∩ Mq| ≤ |CTEp| ≤ |Ep|.

�

4 Cardinalities in Coq

In [2] the proofs of the according obligations (PO1)–(PO3) presented in Sect. 3
are mechanised amongst others with the proof assistant Coq using the library
RelationAlgebra which provides a model for heterogeneous relation algebra and
many other related algebraic structures. The library is available via [13], and
presented in [14]. For more general information about Coq we refer to [4,20].

In [5] the authors extend the mentioned library so that a reasoning about
cardinalities is possible. RelationAlgebra is enriched by the module relalg con-
taining the most important definitions of special classes of relations, e.g., those
introduced in Sect. 2. For the tools concerning cardinalities a standalone library
was developed. To preserve the modularity of RelationAlgebra this library pro-
vides a separate module for each algebraic structure we defined in Sect. 2. The
hierarchy of the modules is illustrated in Fig. 1.
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Fig. 1. Hierarchy of the Coq library

To simplify rewriting, the definitions are realized by using classes, for
instance, being univalent is defined as follows:

Class is_univalent n m (x: X n m) := univalent: xT ∗ x <== 1.

Here, the variables n and m specify the type of the relation x and X provides
the notions and operations of a relation algebra. The symbols T,∗ and <==
denote transposition, composition and inclusion. The type of the identity relation
denoted by 1 is inferred automatically. In points the Point Axiom is assumed
and several resulting facts are proved, especially those presented in Sect. 2. The
definition of the cardinality operation is given in cardinal and follows the one
presented in Sect. 2. A detailed description of each module and the notations
can be found in [5].

In cardinal the proofs of all lemmata of Sect. 2 (and many more) are mech-
anised, for instance, Lemma 2.3 as follows:

Lemma card_point X (R: C X unit): is_point R → card R = 1.
Proof. rewrite ←cardcnv, ←dot1x. rewrite card_unimap. apply card1. Qed.

Here, is point specifies the relation R as a point and card denotes the cardinal-
ity operation. The Coq proof follows exactly the one of Sect. 2 where cardcnv,
card unimap and card1 correspond to (C2), Lemma 2.2 and (C5).

With the extended library all proofs of Sect. 3 can be done within Coq. In
the following we show the formulations of the Lemmata 3.1, 3.4 and 3.2 where
inv is the definition of the invariant as given in Sect. 3 (the adjacency and order
relation are introduced at the beginning of our Coq module once and for all) and
minimal elements M v the vector of the minimal elements of a vector v w.r.t. a
linear order relation M:
Lemma PO1: inv (zer n f).

Lemma PO2 (F: X n f) : inv F ∧ F∗(top’ f unit) == top → post (F ∪ p∗qT).
Lemma PO3 (F: X n f) (p: X n unit) (q: X f unit):

is_point p → p <== !(F∗top) →
is_point q → q <== minimal_elements M (!(FT∗E∗p)) →
inv F → inv (F ∪ p∗qT).

Mainly, the proofs have to be done step by step. At some points we benefit at
the one hand from the smart implementation of the specific relations that makes
rewriting less difficult and on the other hand from the decision tactics provided
by RelationAlgebra. A detailed description of those tactics can be found in [14].
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5 Cardinalities in Isabelle/HOL

In this section we show how the proof assistant Isabelle/HOL can be used to
prove the correctness of the program of Sect. 3. In particular, we develop the
required theoretical framework for it.

Compared to the one of Coq the type system of Isabelle/HOL is less powerful.
In the end the usage of multi-parameter classes is not possible whereby there is
no trivial way to define heterogeneous relation algebras. Thus, our Isabelle/HOL
theories built on an existing library, Relation Algebra, for homogeneous relation
algebras only, available via the Archive of Formal Proofs, see [17]. More general
information about Isabelle/HOL can be found, for example, in [8,12].

This limitation makes it impossible to transfer the approach realised in Coq
to Isabelle/HOL. Namely, if we consider points of type X ↔11, for instance, it
was essential for the proofs of Sect. 3 that they have cardinality 1. This fact is
mainly based on the cardinality axiom (C5) and the specific type X ↔11. When
using the Relation Algebra library we are not only restricted to homogeneous
relation algebras, but to untyped relations.

Due to this, we have to modify the definition of the cardinality operation of
Sect. 2. The first four axioms (C1)–(C4) can be adapted to untyped relations,
but (C5) involves the special singleton set 11. Thus, we assume the following
fifth axiom instead saying that the cardinality of the identity relation equals the
number of points (in the relation algebra):

(C5’) |I| = |P(L)|.
Note that there are equivalent formulations of (C5’), e.g., |L| = |I|2, but for us,
the given one is the most intuitive compared to (C5).

In the remainder we also assume a version of the Point Axiom for untyped
relations. The only difference to Axiom 2.1 is that the occuring universal relation
is untyped.

Axiom 5.1. (Point Axiom). It holds L =
⋃

p∈P(L) p.

One can easily check that we get the following corresponding consequences as in
Sect. 2.

Lemma 5.1.

1. For all vectors v we have v =
⋃

p∈P(v) p.
2. We have I =

⋃
p∈P(L) ppT.

Furthermore, the Lemma 2.2 also holds in the case of untyped relations. The
first important result which is significantly different, due to (C5’), is stated in
the following lemma and gives us the cardinality of (untyped) points.

Lemma 5.2. If p is a point, then |p| = |I|.
Proof. Using cardinality axioms (C2) and (C5’) and Lemma2.2 (I is univalent
and pT is a mapping) we have |p| = |pT| = |IpT| = |I|. 
�
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Obviously, because of the above lemma, points and vectors are no longer suitable
for modelling sets if their cardinalities are essential in the context. Thus, in the
following and in particular for the formalisation is Isabelle/HOL we use partial
identities, i.e., relations R with R ⊆ I, instead of vectors to represent sets. In
place of points we consider atoms, i.e., nonempty relations a with aLaT ⊆ I. We
show that the cardinalities of those special relations correspond to the ones of
vectors and points. Therefore, we start with a lemma about the cardinality of
(untyped) vectors.

Lemma 5.3. If v is a vector, then |v| = |P(v)| · |I|.
Proof. Because of Lemma 5.1, cardinality axioms (C3) and (C1) (the points in
P(v) are pairwise disjoint) and Lemma 5.2 we obtain the claim by

|v| =
∣
∣
∣

⋃

p∈P(v)

p
∣
∣
∣ =

∑

p∈P(v)

|p| =
∑

p∈P(v)

|I| = |P(v)| · |I|. 
�
Note that the above result holds in particular for v = L since L is a vector. This
gives us |L| = |I|2 because of (C5’).

To prove that every atom has cardinality 1 we need the following technical
lemma whose proof we omit due to the lack of space. It states that every atom
is the composition of a point and a points’ transposed (and vice versa), and that
the universal relation can be written as the union of all atoms it contains. Here,
we denote the set of all atoms (containted in L) as A(L).

Lemma 5.4.

1. It holds A(L) =
{
p; qT|p, q ∈ P(L)

}
.

2. It holds L =
⋃

a∈A(L) a.

From this we get the desired result about the cardinalities of atoms.

Lemma 5.5. If a is an atom, then |a| = 1.

Proof. For all atoms a it holds a �= O and thus |a| ≥ 1 with cardinality axiom
(C1). We prove |a| = 1, for all atoms a, by contradiction. Thus, we assume that
there exists an atom b with |b| > 1. Combining Lemmas 5.3 and 5.4.2 (for v = L)
we have A(L) = |I|2. Due to this and again Lemmas 5.3 and 5.4.2 we have

|I|2 = |L| = |
⋃

a∈A(L)

a| =
∑

a∈A(L)

|a| = |b| +
∑

a∈A(L)\{b}
|a|

> 1 +
∑

a∈A(L)\{b}
1 = 1 + |A(L) \ {b} | = 1 + |I|2 − 1,

which is a contradiction. 
�
From this we get that partial points have cardinality 1 which makes them suitable
for modelling single elements of sets.
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Lemma 5.6. If p is a partial point, then |p| = 1.

Proof. By definition, p is an atom, thus the claim follows immediately with
Lemma 5.5. 
�

We omit the corresponding proofs of the correctness of the program of Sect. 3,
but refer to the Isabelle/HOL formalisation we describe in the remainder of this
section and available via the web, see [18].

So far, the library Relation Algebra provides several facts holding in untyped
relation algebras as well as theories about functions and vectors with related
facts, so that most of the specific relations mentioned in Sect. 2 are already
defined. For instance, for vectors this is done in the following way

definition is vector :: ” ′a ⇒ bool”
where ”is vector x ≡ x = x; 1”

In the library the symbols +, ·, −, ; and � are used for union, intersection,
complement, composition and transposition and 1, 0 and 1′ for the universal,
empty and identity relation. For our purpose we import additional theory, e.g.,
about natural numbers, so that we use �, 
, and , for the first three operations
and top, bot and 1′ for the constants L,O and I. As in the case of Coq neither
the Tarski rule nor the Point Axiom is provided by the library so far. Follow
the approach in Coq we develop a separate theory for each structure we define.
The dependencies of the main theories are illustrated in Fig. 2.

Fig. 2. Hierarchy of the Isabelle/HOL library

First, we extend the class relation algebra by the Tarski rule using a class:

class relation algebra tarski = relation algebra +
assumes tarski: ”x 	= bot ←→ top; x; top = top”

This is done in the theory Relation Algebra Tarski where we derive some fun-
dametal properties of points, for instance the following one:

lemma points surj: ”is point p −→ is sur p”

The theory Relation Algebra Points is an extension of the latter providing the
Axiom 5.1 and that the number of points is finite:
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class relation algebra fin points = relation algebra tarski +
assumes finiteness: ”finite {x. is point x}”
and pointaxiom [simp]:”

⊔ {x. is point x} = top”

Here,
⊔ {x. is point x} is a notation for

⋃
p∈P(L) p in Isabelle/HOL. In the theory

Relation Algebra Sums we proved a several properties of these finite unions, e.g.,
monotonicity.

Finally, we have a theory called Relation Algebra Cardinalities where the
cardinality operation is defined in the following way:

class cardinal =
fixes cd :: ”′a ⇒ nat” (”| |” [30] 999)

class relation algebra card = cardinal + relation algebra fin points +
assumes card0 : ”|x| = (0 :: nat) ←→ x = bot”
and cardcnv [simp] : ”|x�| = |x|”
and cardcup : ”|x 
 y| = |x| + |y| − |x � y)|”
and cardded : ”is p fun x −→ |y � (x�; z)| ≤ |(x; y) � z|”
and cardded’ : ”is p fun x −→ |x � (z; y�)| ≤ |(x; y) � z|”
and cardone : ”|1′| = card {x. is point x}”

Here, card is the built-in operation for the cardinality of sets. With the given
definition we are able to prove the mentioned results about cardinalities, for
instance:
lemma cardunifun : assumes ”is p fun x” and ”is fun y” shows ”|x; y| = |x|”
lemma cardpoint : assumes ”is point x” shows ”|x| = |1′|”

The proofs of these lemmata are found automatically by Sledgehammer. From
this we get immediately that the cardinality of a point equals the cardinality of
the identity relation. In the same way we formalise all lemmata of this section and
many more where most of the proofs are heavily supported by Sledgehammer.

For the verification of the program of Sect. 3 we do not only use the above
mentioned theories about relation algebra and cardinalities, but also a library
for Hoare Logic in Isabelle/HOL, see [11]. This library provides the opportunity
to write, for instance, while-programs as theorems as well as tactics generating
the proof obligations for partial correctness automatically. Thus we can encode
the program as follows.

theorem correctness: ”VARS e m c p q
{ pre e m}
c := bot;
WHILE c • top 	= top

INV { inv e m c }
DO p := point((c • top)c);

q := point((c� • e • p)c � (mc • (c� • e • p)c)c);
c := c 
 p • q�

OD

{ post e c }”
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Unfortunately, we have to switch to another symbol for composition here since;
is already defined in the theory for Hoare logic. Thus, we use • in this context.
The pre- and postconditions and the invariant slightly differ from the ones pre-
sented in Sect. 3 since we have to use partial points and identities for proving
the approximation bound.

definition ”pre e m ←→ is irrefl e ∧ is symm e ∧ is lin order m”
definition ”post e c ←→ is fun c ∧ has color prop e c ∧ |c�• top � 1′| ≤ Δtop + 1”
definition ”inv e m c ←→ pre e m ∧ is p fun c ∧ has color prop e c

∧ c� • top 
 (mc • (c� • top)c)c ∧ |c� • top � 1′| ≤ Δc•top + 1”

One of the big advantages of using the theory for Hoare Logic is that its pro-
vides tactis for verification condition generation. In the case of our program or
theorem, respectively, we can apply the rule vcg simp. With this rule the three
proof obligations w.r.t. the given pre- and postconditions and the loop-invariant
are generated as subgoals automatically. In the following we see the resulting
subgoals after applying vcg simp.

The three statements are shown stepwise by using the theories mentioned in this
section. The proofs that are not found by Sledgehammer automatically are given
as structured Isar proofs, see [18], so that the reader can follow the basic ideas.

Besides the results presented in this section our library contains over 150
lemmata about finite unions of relations, points and vectors, atoms, and cardi-
nalities of relations. Furthermore, in Relation Algebra Orders we defined order
related relations and proved several facts about them.

6 Comparison of the Implementations

In Sects. 4 and 5 we show how the proof assistants Coq and Isabelle/HOL can
be used for formal program verfication and reasoning about relation algebras in
general. In this section we want to summarise our experiences with both systems
and highlight their advantages and disadvantages from our point of view.

For Coq, we used an existing library that already implements tools for prov-
ing results regarding cardinalities. One advantage of the library is that it extends
a library including a model for heterogeneous relation algebras and related
structures. Here, the implementation of typed relations is possible because of
Coq’s expressive type system based on the predicative calculus of inductive con-
structions. Such an expressive type system has many common advantages, for
instance, it ensures that all expressions and formulae are well-typed. Thus, the
Coq proofs mostly correspond to the handwritten ones we gave in this paper.
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Coq, and in particular the used library, provides several automated theorem
proving tactics and decision procedures, but most of them were not very helpful
in our context. Thus, the proofs have mostly to be done step by step using Coqs
standard tactics. Unfortunately, a direct link to automated theorem provers is
still missing. Furthermore, the formalisation of the proof obligations of the pre-
sented program has to be done by hand since there are no tools for an automated
generation. For non-experts the Coq code is quite hard to read without using an
IDE illustrating proof steps and subgoals.

By contrast, Isabelle/HOL bridges the gap between interactive and auto-
mated theorem proving because of its integrated tool Sledgehammer. Due to
the limited type system of Isabelle/HOL there is only an existing library for
homogeneous relation algebras. For this reason an extension by the cardinality
operation, as in the case of Coq, was not possible directly. Thus, we modified the
axiomatisation of the operation to make it applicable for homogeneous relations
in the first place. We formalised it in Isabelle/HOL and proved the correctness
of the relational program heaviliy supported by Sledgehammer. Unlike Coq,
Isabelle/HOL provides a library for Hoare Logic including tactics for generating
proof obligations automatically. In our context we were able to avoid typed rela-
tions by adapting the cardinality operation. In general, reasoning about typed
relations can be managed by using, for instance, predicates specifying the source
and target of a relation. Such an approach often results in more complicated and
longish proofs. In the future, one can benefit from our library containing most
of the basic facts that are necessary when dealing with cardinalities. Certainly,
invoking Sledgehammer does not always complete proofs successfully. As in Coq,
one has to do steps by hand, but Isabelle/HOL supports the proof language Isar.
Its intuitive syntax allows to write proofs structured and comprehensible for
non-experts.

7 Concluding Remarks

We presented a correctness proof of a relational program for approximating
vertex colorings in undirected (and loop-free) graphs. The proof of the approx-
imation ratio we done by using an operation to reason algebraically about car-
dinalities in heterogeneous relation algebras.

Furthermore, all proofs were mechanised in both proof assistants Coq and
Isabelle/HOL and build on existing libraries for relation algebras. In contrast
to Coq, there were no tools to tackle cardinalities in Isabelle/HOL so far. To
reuse a library for homogeneous relation algebras we presented a new theoretical
framework for reasoning about untyped relations. In this context, we not only
proved the programs’ correctness in Isabelle/HOL, but also developed a library
providing over 150 facts about, for instance, points, atoms and cardinalities.

For the future it would be helpful to have a tool for Hoare Logic in Coq
so that the generation of a programs’ proof obligations has not to be done by
hand or external programs. A further investigation of the new axiomatisation of
the cardinality operation is also conceivable to see how exhaustive this approach
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is. In general, it would be interesting to study what is provable without the
restriction to finite relations.

Acknowledgement. I thank Walter Guttmann and Damien Pous for their help con-
cerning the use of proof assistants and Rudolf Berghammer for helpful discussions and
his support, in general. I thank the unknown referees and Michael Winter for their
comments and suggestions which helped to improve the paper.

Appendix

In this appendix we show that the third formula of the invariant Inv(E,M,C)
is maintained stated in the following lemma.

Lemma. Let E, C and M be relations so that Pre(E,M) and Inv(E,M,C)

hold and p, q points with p ⊆ CL, q ⊆ CTEp ∩ M CTEp. Then (C ∪ pqT)TL ⊆
M (C ∪ pqT)TL holds.

Proof. Since Inv(E,M,C) holds, we have CTL ⊆ M CTL and hence

M CTL ⊆ CTL. (1)

The inclusion
M CTL ⊆ q (2)

is shown by the following calculation:

CTEp ⊆ CTL ⇐⇒ CTL ⊆ CTEp

=⇒ M CTL ⊆ M CTEp

⇐⇒ M CTEp ⊆ M CTL

=⇒ q ⊆ M CTL since q ⊆ CTEp ∩ M CTEp

=⇒ M CTL ⊆ q

Furthermore, we have the following:

(C ∪ pqT)
T
L ⊆ M (C ∪ pqT)TL ⇐⇒ M (C ∪ pqT)TL ⊆ (C ∪ pqT)TL.

We now show that the inclusion above on the right-hand side is true where we
use that p, q are points and thus qpTL = q again:

M (C ∪ pqT)TL = M CTL ∪ q qpTL = q

= M (CTL ∩ q)
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⊆ M CTL ∩ Mq

⊆ M CTL

⊆ CTL ∩ q (1) and (2)

= CTL ∪ q

= (C ∪ pqT)TL. qpTL = q


�
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Steinbrüggen, R. (eds.) Proof and System-Reliability, pp. 341–367. Kluwer,
Dordrecht (2002)

12. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

13. Pous, D.: Relation Algebra and KAT in Coq. http://perso.ens-lyon.fr/damien.
pous/ra/

14. Pous, D.: Kleene algebra with tests and Coq tools for while programs. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 15

15. Schmidt, G.: Relational Mathematics, vol. 132. Cambridge University Press,
Cambridge (2011). Encyclopedia of Mathematics and Its Applications

http://dx.doi.org/10.1007/978-3-319-24704-5_17
http://dx.doi.org/10.1007/978-3-319-24704-5_17
http://dx.doi.org/10.1007/978-3-319-43144-4_29
https://isabelle.in.tum.de/
http://dx.doi.org/10.1007/11828563_17
http://dx.doi.org/10.1007/11828563_17
http://perso.ens-lyon.fr/damien.pous/ra/
http://perso.ens-lyon.fr/damien.pous/ra/
http://dx.doi.org/10.1007/978-3-642-39634-2_15


306 I. Stucke
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