
Tower Induction and Up-to Techniques
for CCS with Fixed Points

Steven Schäfer(B) and Gert Smolka

Saarland University, Saarbrücken, Germany
{schaefer,smolka}@ps.uni-saarland.de

Abstract. We present a refinement of Pous’ companion-based coinduc-
tive proof technique and apply it to CCS with general fixed points. We
construct companions based on inductive towers and thereby obtain a
powerful induction principle. Our induction principle implies a new suf-
ficient condition for soundness of up-to techniques subsuming respect-
fulness and compatibility. For bisimilarity in CCS, companions yield a
notion of relative bisimilarity. We show that relative bisimilarity is a con-
gruence, a basic result implying soundness of bisimulation up to context.
The entire development is constructively formalized in Coq.

1 Introduction

Coinductive definitions and their associated reasoning principles are one of the
basic tools for studying equivalences in programming languages and process
calculi. For process calculi, the idea has been developed by Milner [7] in the form
of bisimilarity and the bisimulation proof method. In the context of programming
languages, coinductive simulations are an important tool in the field of compiler
verification [6].

Coinductive definitions can be realized as greatest fixed points of monotone
functions on complete lattices. Tarski’s [16] construction of greatest fixed points
yields a primitive coinduction principle, which is dual to structural induction.
Unfortunately, this coinduction principle can be inconvenient in practice because
it requires the construction of an often involved invariant. In the context of
bisimilarity, these invariants are known as bisimulations and can become quite
complicated. This is especially cumbersome in the context of interactive theorem
proving. The construction of an appropriate bisimulation is often the lion’s share
of a bisimilarity proof.

Fortunately, there are several enhancements of the coinductive proof method,
which mitigate these problems.

One useful enhancement consists in changing the function underlying a coin-
ductive definition to simplify proofs by coinduction. There is significant room for
improvement here, as many different functions can have the same greatest fixed
point. These enhancements of the coinductive proof method are known as up-to
techniques [7,13]. As we will see, the gains from using up-to techniques can be
dramatic. There are simple examples (Sect. 4) of bisimilarity proofs, where the
smallest bisimulation is infinite, yet there is a finite bisimulation up-to.
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 274–289, 2017.
DOI: 10.1007/978-3-319-57418-9 17

Tower Induction and Up-to Techniques for CCS with Fixed Points 275

Recently, Hur et al. [5] have introduced another enhancement of the coinduc-
tive proof method in the form of parameterized coinduction. Parameterized coin-
duction yields both modular and incremental proof principles for coinduction. In
addition, Hur et al. show how to combine up-to techniques with parameterized
coinduction, which yields an easier way to apply up-to techniques in coinductive
proofs.

Pous [12] starts from this combination of parameterized coinduction and up-
to techniques to introduce another substantial simplification and extension of
the coinductive proof method. Pous shows that for every monotone function
there is a canonical best up-to function, its companion. Not only does the use of
companions lead to simple proof principles for up-to techniques, it also subsumes
the work of Hur et al. and allows for a smooth integration of parameterized
coinduction. In this context, up-to techniques for the companion are simply
functions below the companion.

If we apply the companion construction to bisimilarity, we obtain a notion of
relative bisimilarity. Intuitively, two processes are bisimilar relative to a relation
R if we can show that they are bisimilar under the assumption that R–related
processes are bisimilar. Up-to techniques correspond to properties of relative
bisimilarity. For example, the statement that relative bisimilarity is a congruence
implies the soundness of bisimulation up to context. In fact, the congruence
property of relative bisimilarity is a stronger result.

Despite these advances it remains difficult to show the soundness of up-to
techniques. Our aim in this paper is to introduce new proof techniques for the
companion, which simplify soundness proofs for up-to techniques. We demon-
strate our proof techniques with a non-trivial case study.

The key to our results is a novel inductive construction of companions
(Sect. 3). Our construction yields the tower induction principle for companions
(Theorem 6), which implies a complete characterization of companion-based up-
to functions (Lemma 8).

We apply our construction to strong bisimilarity for CCS with fixed points
(Sect. 4). Our main result is that relative bisimilarity extended to open terms
is a congruence. This roughly corresponds to the soundness of bisimulation up-
to context. To the best of our knowledge, this result has not appeared in the
literature before. Our proofs make extensive use of our characterization of up-to
functions for the companion.

Beyond these case studies, we combine parameterized coinduction with our
inductive construction of companions. This leads to the parameterized tower
induction principle (Sect. 5). The accumulation rule of Hur et al. appears as a
consequence of parameterized tower induction.

Finally, we report on a Coq formalization of our results (Sect. 6). The main
difference to the paper presentation is in our treatment of binders. We use a
de Bruijn representation in the form of Jf -relative monads [2] to distinguish
open and closed terms. Following [14], we establish all substitution lemmas using
the rules of a convergent rewriting system.

276 S. Schäfer and G. Smolka

Contributions. We consider the tower induction principle for companions and the
formal development of open relative bisimilarity for CCS with general recursive
definitions the two main contributions of the paper.

2 Lattice Theory Preliminaries

We recall some basic definitions and results about fixed points in complete lat-
tices [4].

A complete lattice may be defined as a triple (A,≤,
⋃

), where ≤ is a partial
order on A, such that every set M ⊆ A has a supremum

⋃
M . For every M ⊆ A

we have:
⋃

M ≤ y ⇔ ∀x ∈ M. x ≤ y

Every complete lattice has a greatest element �, as well as binary suprema x∪y.
Arbitrary infima

⋂
M can be obtained as suprema of lower bounds. In particular,

every complete lattice has a least element ⊥, along with binary infima x ∩ y.
A function f is monotone if f(x) ≤ f(y) whenever x ≤ y. For a monotone

function f : A → A we say that x is a prefixed point of f if f(x) ≤ x and a
postfixed point if x ≤ f(x). An element x is a fixed point of f if f(x) = x.

By Tarski’s theorem [16], every monotone function on a complete lattice has
a complete lattice of fixed points. In particular, every monotone function has a
greatest fixed point.

Theorem 1. Let f be a monotone function on a complete lattice. The supre-
mum over all postfixed points νf :=

⋃ {x | x ≤ f(x) } is the greatest fixed point
of f .

3 Towers and Companions

Pous [12] gives a useful characterization of the greatest fixed point as νf = t(⊥)
using a function t called the companion for f . Parrow and Weber [8] give an
ordinal-based construction of the companion in classical set theory. It turns
out that the companion can be obtained in constructive type theory with an
inductive tower construction [15].

Definition 2. Let f be a function on a complete lattice. The f-tower is the
inductive predicate Tf defined by the following rules.

x ∈ Tf

f(x) ∈ Tf

M ⊆ Tf
⋂

M ∈ Tf

Using Tf we define tf , the companion of f .

tf (x) :=
⋂

{ y ∈ Tf | x ≤ y }

Tower Induction and Up-to Techniques for CCS with Fixed Points 277

We will omit the index on Tf and tf when the function f is clear from the
context.

Note that t(x) is the least element of T above x, since the tower is closed
under infima. The following are further consequences of the closure under infima.

Fact 3. t is a closure operator with image T .

a) t is monotone
b) x ≤ t(x)

c) t(t(x)) = t(x)
d) x ∈ T ↔ t(x) = x.

Additionally, since the tower is closed under f , we have:

Fact 4. f(t(x)) = t(f(t(x)))

As a consequence of our inductive construction of T , we obtain an induction
principle for t.

Definition 5. A predicate P is inf-closed if
⋂

M ∈ P whenever M ⊆ P .

Theorem 6 (Tower Induction). Let P be an inf-closed predicate such that
P (t(x)) implies P (f(t(x))) for all x. Then P (t(x)) holds for all x.

Proof. Follows from Fact 3, by induction on the derivation of tf (x) ∈ Tf . �

Standard inf-closed predicates include λx. y ≤ x for a fixed y and λx. g(x) ≤ x
for monotone g. Both instantiations yield useful statements about t.

Using the predicate λx. νf ≤ x in Theorem 6, we can reconstruct the greatest
fixed point of f in terms of t.

Lemma 7. If f is monotone, then νf = tf (⊥).

Proof. We have t(⊥) ≤ t(f(t(⊥))) = f(t(⊥)) by monotonicity of t and Fact 4.
It follows that t(⊥) ≤ νf .

In the reverse direction we show νf ≤ t(x) for all x using Theorem 6. It
suffices to show that νf ≤ x implies that νf ≤ f(x). This follows from νf =
f(νf) and the monotonicity of f .

More generally, we have t(x) = νf for all x ≤ νf , since t is monotone and
idempotent.

Using the predicate λx. g(x) ≤ x in Theorem 6, we prove a characterization
of the up-to functions for t, i.e., the monotone functions below t.

Lemma 8 (Up-to Lemma). Let g be monotone. Then the following state-
ments are equivalent.

a) g ≤ t
b) g ◦ t ≤ t
c) ∀x. g(t(x)) ≤ t(x) → g(f(t(x))) ≤ f(t(x))

278 S. Schäfer and G. Smolka

Proof. The implication from (c) to (b) follows by tower induction. From (b) to
(a) we have g ≤ g ◦ t ≤ t, by Fact 3 and the monotonicity of g. The implication
from (a) to (c) follows from Fact 4. �

In particular, this shows that f is below t.

Lemma 9. Let f be monotone. Then f(t(x)) ≤ t(x).

Proof. By Lemma 8(b) using the monotonicity of f . �

We now relate our companion construction to Pous’ construction [12].

Definition 10. A function g is compatible for f if it is monotone and g◦f ≤ f◦g.

Lemma 11. For monotone f , we have tf =
⋃ {g | g is compatible forf}.

Proof. Let g be compatible for f . We have g(f(t(x))) ≤ f(g(t(x))) by com-
patibility, and by Lemma8 this implies g ≤ t. Additionally, the companion is
compatible for f , since it is monotone by Fact 3 and t ◦ f ≤ t ◦ f ◦ t = f ◦ t by
Facts 3 and 4. �

In light of Lemma11, we can see most results in this section as rederivations
of results from [12]. The exceptions are Theorem 6 and Lemma 8, which are new
results for the companion. In the sequel, we will make extensive use of the new
results to show soundness of up-to functions.

4 CCS with Recursive Processes

In this section we apply the companion construction to strong bisimilarity in
CCS [7] with fixed point expressions. Using the companion we obtain proof prin-
ciples analogous to bisimulation up-to context for the extension of bisimilarity to
open terms. Our proofs are similar to Milner’s proof [7] that strong bisimilarity
is a congruence for CCS, yet our results are strictly stronger. We illustrate this
by giving a straightforward proof of the well-known fact that weakly guarded
equations have unique solutions modulo strong bisimilarity.

The syntax of CCS processes and actions is given by the following grammar.

P,Q ::= 0 | α.P | P ‖ Q | P + Q | (νa)P | X | μX.P

α, β ::= a | a | τ

For the paper presentation we assume that there is some countably infinite type
of variables X,Y,Z. The fixed point expression μX.P binds the variable X
in P . We use the standard notions of free and bound variables. We adopt the
Barendregt convention and consider processes up to renaming of bound variables.

A substitution σ is a mapping from variables to processes. We can instantiate
a process P under a substitution σ by replacing all free variables according to
σ, while keeping the bound variables fixed. We write P [σ] for the process P

Tower Induction and Up-to Techniques for CCS with Fixed Points 279

α.P
α� P

P
α� P ′

P ‖ Q
α� P ′ ‖ Q

Q
α� Q′

P ‖ Q
α� P ‖ Q′

P
a� P ′ Q

a� Q′

P ‖ Q
τ� P ′ ‖ Q′

P
a� P ′ Q

a� Q′

P ‖ Q
τ� P ′ ‖ Q′

P
α� P ′

P + Q
α� P ′

Q
α� Q′

P + Q
α� Q′

P
α� P ′ α �= a, a

(νa)P
α� (νa)P ′

P [X �→ μX. P]
α� Q

μX. P
α� Q

Fig. 1. Labeled transition system for CCS.

instantiated under σ. The expression X �→ P denotes the substitution that
replaces the variable X by P . We combine substitutions by juxtaposition.

A process is closed if it does not contain any free variables.
The semantics of CCS is given by a labeled transition system (LTS), i.e., an

indexed relation between closed processes P
α�Q. Intuitively, the relation P

α�Q
means that process P can reduce to Q and perform the action α in a single
step. The labeled transition system for CCS is defined inductively by the rules
in Fig. 1.

Fixed point expressions allow us to specify arbitrary recursive processes. For
instance, replication can be expressed as !P := μX. X ‖ P , where X is not free
in P . Under this encoding, we have !P α� Q whenever !P ‖ P

α� Q. Note that
this yields an infinitely branching LTS for, e.g., !a.0.

We define strong bisimilarity as the greatest fixed point of a function b map-
ping binary relations into binary relations. First, let s be the function expressing
one step of simulation.

s(R) := λPQ. ∀αP ′. P
α� P ′ → ∃Q′. Q α� Q′ ∧ R P ′ Q′

The function b is just simulation in both directions. More precisely, it is the
greatest symmetric function below s, where a function between relations is sym-
metric if it maps symmetric relations to symmetric relations.

b(R) := λR. s(R) ∧ s(R†)†

R† := λPQ. R(Q,P)

Bisimilarity is the greatest fixed point of b. We write t for the companion of b.
Bisimilarity between processes P,Q is denoted by P ∼ Q.

We are trying to develop effective proof techniques for bisimilarity. Before
we consider how to show bisimilarity using the companion, let us recall the
classical bisimulation proof method. Following the literature, the postfixed points
of b are called bisimulations. Bisimilarity is the union of all bisimulations by
Theorem 1. In order to show that P ∼ Q holds, it suffices to find a bisimulation
R containing the pair (P,Q). The problem with this proof technique is that R
can be arbitrarily complicated and has to be explicitly constructed.

280 S. Schäfer and G. Smolka

Consider two processes A,B such that

A ∼ (a.B) ‖ (a.!A)
B ∼ (a.!B) ‖ (a.A)

The processes A and B are obviously bisimilar, as parallel composition is commu-
tative and the only difference beyond this is a simple renaming. Yet the smallest
bisimulation containing the pair (A,B) is infinite.

Instead of using the definition of bisimilarity, we can use the companion and
tower induction. The companion gives us a notion of relative bisimilarity, or
R-bisimilarity, which we write as P ∼R Q. Intuitively, processes are bisimilar
relative to R, if we can show that they are bisimilar, assuming that all R-related
processes are bisimilar. In coinductive proofs, we can frequently assume that
some processes are bisimilar after a step of reduction. We can express this in
terms of relative bisimilarity, by introducing guarded assumptions ◦R. Given a
relation R, we define ◦R := b(t(R)).

P ∼ Q := (P,Q) ∈ νb bisimilarity
P ∼R Q := (P,Q) ∈ t(R) relative bisimilarity

P ∼◦R Q = (P,Q) ∈ t(b(t(R))) guarded relative bisimilarity

The different notions of bisimilarity are related by the following laws, which
instantiate lemmas from Sect. 3.

Fact 12. ∼⊥ = ∼ ⊆ ∼◦R = ◦R ⊆ ∼R ⊇ R

Tower induction gives us a proof principle for showing bisimilarity in terms of
relative bisimilarity.

Lemma 13. If P ∼R Q implies P ∼◦R Q for all R, then P ∼ Q.

Proof. By Fact 12 together with tower induction using the inf-closed predicate
λR. (P,Q) ∈ R. �

Lemma 13 corresponds to the statement that bisimulation up-to the companion
is sound. To show that two processes are bisimilar, it suffices to show that they
are bisimilar relative to an assumption which states that they are bisimilar after
unfolding at least one reduction step.

Phrased in our vocabulary, Pous [12] has shown that relative bisimilarity is a
congruence for CCS with replication. This simplifies the proof of the bisimilarity
A ∼ B. By Lemma 13, it suffices to show A ∼◦R B, assuming that A ∼R B. We
have

A ∼ (a.B) ‖ (a.!A) ∼ (a.!A) ‖ (a.B)
B ∼ (a.!B) ‖ (a.A)

Since ∼ ⊆ ∼◦R, and ∼◦R is transitive, it thus suffices to show that

(a.!A) ‖ (a.B) ∼◦R (a.!B) ‖ (a.A)

Tower Induction and Up-to Techniques for CCS with Fixed Points 281

Since ∼◦R is a congruence, this follows from a.!A ∼◦R a.!B and a.B ∼◦R a.A.
Unfolding the definition of b, we have to show !A∼R!B and B ∼R A. The former
follows by compatibility with replication, the latter follows from the symmetry
of ∼R. We conclude that A ∼ B.

In this case, we can further simplify the proof to avoid unfolding the definition
of b. We simply strengthen the compatibility with action prefixes to P ∼R Q →
α.P ∼◦R α.Q since action prefixes can perform a step of reduction.

As defined, relative bisimilarity is not a congruence for CCS with recursive
processes, since it is only defined for closed terms. In order to proceed, we lift
relative bisimilarity to open terms.

Two processes P,Q are in open bisimilarity P ∼̇Q if they are bisimilar under
all closing substitutions, i.e., substitutions which replace all free variables by
closed processes. We write θ for closing substitutions. As before, we also consider
the relative variant of open bisimilarity. To distinguish open bisimilarity from
ordinary bisimilarity, we will refer to the latter as closed bisimilarity.

P ∼̇ Q := ∀θ. P [θ] ∼ Q[θ] open bisimilarity
P ∼̇R Q := ∀θ. P [θ] ∼R Q[θ] open relative bisimilarity

Open and closed (relative) bisimilarity coincide for closed processes.
Even though open bisimilarity is not defined coinductively, we obtain a rea-

soning principle analogous to Lemma13 using tower induction.

Lemma 14. If P ∼̇R Q implies P ∼̇◦R Q for all R, then P ∼̇ Q.

Proof. Tower induction with P (R) = ∀θ. (P [θ], Q[θ]) ∈ R. �

In the remainder of this section we show that relative open bisimilarity is a
congruence.

Lemma 15. Relative open bisimilarity is an equivalence relation.

Proof. By the definition of relative open bisimilarity, it suffices to show that
relative bisimilarity is an equivalence relation. This follows by tower induction.
The intersection of a family of equivalence relations is an equivalence relation
and it is easy to see that b(R) is an equivalence relation if R is. �

For the compatibility with the various connectives of CCS, we define local context
operators as follows:

c·(R) := { (α.P, α.Q) | R(P,Q) }
c‖(R) := { (P1 ‖ Q1, P2 ‖ Q2) | R(P1, P2), R(Q1, Q2) }
c+(R) := { (P1 + Q1, P2 + Q2) | R(P1, P2), R(Q1, Q2) }
cν(R) := { ((νa)P, (νa)Q) | R(P,Q) }

Compatibility under all contexts not containing fixed point expressions corre-
sponds to the statements c(∼R) ⊆ ∼R for all local context operators. These

282 S. Schäfer and G. Smolka

results have already been shown in [12] using a second order companion con-
struction. We give alternative proofs using the up-to lemma (Lemma 8).

As in [12] we encapsulate some of the symmetries in the problem using the
following lemma.

Fact 16 [12]. Let g be symmetric and g(b(R)) ≤ s(R). Then g(b(R)) ≤ b(R).

For compatibility with action prefixes we show a slightly stronger statement.

Lemma 17. If P ∼̇R Q, then α.P ∼̇◦R α.Q and α.P ∼̇R α.Q.

Proof. We have c· ≤ b, by unfolding the definitions. The statement follows
using Fact 12, since c·(t(R)) ⊆ b(t(R)) ⊆ ∼R. �

All remaining proofs follow the same pattern. After applying Lemma8 and
Fact 16 (which allows us to focus on establishing the simulation condition), our
work boils down to a simple case analysis. We illustrate only the case of parallel
composition in detail.

Lemma 18. P1 ∼̇R P2 → Q1 ∼̇R Q2 → P1 ‖ Q1 ∼̇R P2 ‖ Q2

Proof. We show c‖(∼R) ⊆ ∼R using Lemma 8. Assume that the statement holds
for a relation R and all P1, P2, Q1, Q2. We will refer to this as the coinductive
hypothesis.

We have to show that P1 ∼◦R P2 and Q1 ∼◦R Q2 imply P1 ‖ Q1 ∼◦R P2 ‖ Q2.
By Fact 16 it suffices to show this for one step of simulation. Let P1 ‖ Q1

α� U ,
we have to find a process V such that P2 ‖ Q2

α� V and U ∼R V .
We proceed by case analysis on P1 ‖ Q1

α� U . Formally, there are four cases
to consider of which two follow by symmetry.

– Communication between P1 and Q1. We have P1
a� P ′

1, Q1
a� Q′

1, α = τ , and
U = P ′

1 ‖ Q′
1. By the assumptions P1 ∼◦R P2 and Q1 ∼◦R Q2 there are P ′

2, Q
′
2

such that P2
a�P ′

2, Q2
a�Q′

2, P ′
1 ∼R P ′

2 and Q′
1 ∼R Q′

2. We pick V = P ′
2 ‖ Q′

2,
as P2 ‖ Q2

τ� P ′
2 ‖ Q2. The statement P ′

1 ‖ Q′
1 ∼R P ′

2 ‖ Q′
2 follows from the

coinductive hypothesis.
– Reduction in P1. We have P1

α�P ′
1 and U = P ′

1 ‖ Q1. By assumption, P2
α�P ′

2

and P ′
1 ∼R P ′

2. We pick V = P ′
2 ‖ Q2, as P2 ‖ Q2

α� P ′
2 ‖ Q2. The statement

P ′
1 ‖ Q1 ∼R P ′

2 ‖ Q2 follows from the coinductive hypothesis if we can show
Q1 ∼R Q2. This follows from the assumption that Q1 ∼◦R Q2 and Fact 12. �

Finally, we have to show that bisimilarity is compatible with fixed point expres-
sions. Schematically, the proof remains similar to the proof of Lemma18, except
that we replace the case analysis on the reduction relation by a nested induction.

Substitutions add an additional complication, however, since reducing a fixed
point expression instantiates a variable. Intuitively, this means that we have to
show that open bisimilarity is compatible with fixed points and instantiation at
the same time.

Tower Induction and Up-to Techniques for CCS with Fixed Points 283

First, let us consider the following context operators on closed relative bisim-
ilarity.

cμ(R) := { (μX.P, μX.Q) |
∀S closed. R(P [X �→ S], Q[X �→ S]) }

c[](R) := { (P [θ1], P [θ2]) | ∀x. R(θ1(x), θ2(x)) }
If cμ(R) ⊆ R, then we can show that two fixed points μX. P , μX. Q are related
if they are related whenever we substitute the same closed process for X in both
P and Q. We are implicitly assuming that X is the only free variable in P,Q.

If c[](R) ⊆ R, then R is compatible under related closing substitutions.
Specifically, if P is an open process and θ1, θ2 are two pointwise related closing
substitutions, we can show that P [θ1] and P [θ2] are related.

One half of the relationship between cμ and c[] is captured by the following
lemma.

Lemma 19. If cμ(∼R) ⊆ ∼R, and θ1(x) ∼R θ2(x) for all x, then P [θ1] ∼R P [θ2]
for all P .

Proof. By induction on P . The cases for action prefixes, choice, parallel com-
position and restriction follow from the compatibility of ∼R with the structure
of P . The case for variables follows from the assumption on θ1 and θ2.

Finally, let P = μX. Q. By compatibility with μ it suffices to show that
Q[θ1,X �→ S] ∼R Q[θ2,X �→ S]. This follows by induction, since the extended
substitutions are related by reflexivity of ∼R. �

In fact, we do have cμ(∼R) ⊆ ∼R, and the first assumption in the previous
lemma is vacuously true.

Lemma 20. If P [X �→ S] ∼R Q[X �→ S] holds for all R and closed S, where X
is the only free variable in P,Q, then μX.P ∼R μX.Q.

Proof. We show cμ(∼R) ⊆ ∼R by Lemma 8. We can assume that the statement
holds for a relation R and have to show that it holds for ◦R.

It suffices to show that Q[X �→ μX.P] ∼◦R Q[X �→ μX.Q]. The statement
then follows from μX.P ∼ P [X �→ μX.P] and transitivity:

μX. P ∼ P [X �→ μX. P] ∼◦R Q[X �→ μX. P] ∼◦R Q[X �→ μX. Q] ∼ μX. Q

where in the second step, we have used the assumption that P and Q are ◦R-
related under the same closing substitution.

What is left to show is almost compatibility under instantiation with related
substitutions. We show that Q0[X �→ μX. P] ∼◦R Q0[X �→ μX. Q] for all Q0.
By Fact 16, it suffices to show this statement for one step of simulation. Let
Q0[X �→ μX. P] α�Q′. We have to find Q′′ such that Q0[X �→ μX. Q] α�Q′′ and
Q′ ∼R Q′′.

We proceed by induction on the derivation of Q0[X �→ μX. P] α� Q′. There
are nine cases to consider in total. We illustrate three representative cases.

284 S. Schäfer and G. Smolka

– Q0 = S ‖ T and S[X �→ μX. P] α� S′. By the inductive hypothesis, there is
an S′′ such that S[X �→ μX. Q] α� S′′ and S′ ∼R S′′. It suffices to show that
S′ ‖ T [X �→ μX. P] ∼R S′′ ‖ T [X �→ μX. Q].
This follows from compatibility with parallel composition and instantiation
(Lemma 19). We have S′ ∼R S′′ by assumption and μX.P ∼R μX.Q follows
from the coinductive hypothesis.

– Q0 = μY. S and S[Y �→ μY. S][X �→ μX.P] α�S′. By the inductive hypothesis,
there is an S′′ such that S[Y �→ μY. S][X �→ μX.Q] α�S′′ and S′∼RS′′, which
is what we needed to show.

– Q0 = X and P [X �→ μX.P] α�P ′. By the inductive hypothesis, there is a P ′′

such that P [X �→ μX. Q] α� P ′′ and P ′ ∼R P ′′.
By the assumption on P and Q there is a Q′ such that Q[X �→ μX. Q] α� Q′

and P ′′ ∼R Q′. We have P ′ ∼R Q′ by transitivity of ∼R and the statement
follows. �

At this point we have all we need to prove that open relative bisimilarity is a
congruence.

Theorem 21. Open relative bisimilarity is a congruence.

Proof. Congruence under action prefixes, choice, parallel composition and
restrictions follows from the corresponding statements for relative bisimilarity,
and the fact that instantiation is homomorphic in the process structure.

For fixed points, we have to show that P ∼̇R Q implies μX.P ∼̇R μX.Q.
Unfolding the definitions, we have to show that (μX.P)[θ] ∼R (μX.Q)[θ]. Note
that θ leaves X invariant, since X is bound.

By Lemma 20, it suffices to show P [θ,X �→ S] ∼R Q[θ,X �→ S] for all closed
processes S. This follows from P ∼̇R Q, with an extended closing substitution. �

Furthermore, we can use Lemma 19 to show that ∼̇R is compatible with
instantiation.

Theorem 22. Let σ1, σ2 be substitutions such that σ1(x) ∼̇R σ2(x) for all x. If
P ∼̇R Q, then P [σ1] ∼̇R Q[σ2].

Proof. By the definition of P ∼̇R Q, we have P [σ1] ∼̇R Q[σ1].The statement
follows from Lemma 19, Lemma 20 and transitivity. �

As a small additional application, we use Theorem21 to show that weakly
guarded equations have unique solutions in CCS.

A context C is a process with holes.

C ::= [] | P | α.C | C + C | C ‖ C | (νa)C | μX.C

A context is weakly guarded if every hole appears under an action prefix, where
the action in question may be τ . A context C can be filled with a process P
resulting in a process C[P], by replacing every hole in C with P . For example,
the context C = α.[] ‖ τ.[] is weakly guarded and we have C[X] = α.X ‖ τ.X.

Tower Induction and Up-to Techniques for CCS with Fixed Points 285

Weakly guarded equations are bisimilarities of the form P ∼C[P], for weakly
guarded contexts C. By a result of Milner [7], such equations have unique solu-
tions. Intuitively, this is because reduction must take a step before reaching a
hole. We can formalize this intuition in terms of relative bisimilarities, which
leads to a simple proof.

Lemma 23. If C is weakly guarded and P ∼R Q, then C[P] ∼◦R C[Q].

Proof. By induction on C, using Theorem 21 and in particular using Lemma17
to move from guarded relative bisimilarity to relative bisimilarity. �
Lemma 24 (Unique Solutions). If C is weakly guarded, and P,Q are two
processes such that P ∼ C[P], and Q ∼ C[Q] then P ∼ Q.

Proof. By Lemma 13, it suffices to show P ∼◦R Q, assuming that P ∼R Q. Using
Lemma 23, we have C[P] ∼◦R C[Q] and the statement follows by transitivity, as
P ∼ C[P] ∼◦R C[Q] ∼ Q. �

5 Parameterized Tower Induction

We return to the abstract setting and establish an induction principle similar in
spirit to Hur et al.’s parameterized coinduction [5].

Lemma 25 (Parameterized Tower Induction). Let u be an element of a
complete lattice A, f a monotone endofunction, and P an inf-closed predicate.
We have P (t(u)) and P (f(t(u))), whenever

∀x. u ≤ t(x) → P (t(x)) → P (f(t(x))).

Proof. The statement P (f(t(u))) follows from P (t(u)) and the assumption
together with Fact 3.

To show P (t(u)), we generalize the statement to ∀x. Q(t(x)) for the inf-closed
predicate Q(x) = u ≤ x → P (x). By tower induction, it suffices to show that
P (f(t(x))) follows from u ≤ t(x) → P (t(x)) and u ≤ f(t(x)). From Lemma 9
we know that u ≤ f(t(x)) ≤ t(x). Thus P (t(x)) holds and P (f(t(x))) follows by
assumption. �
Hur et al. [5] implement parameterized coinduction with an accumulation rule
for parameterized fixed points. Pous shows that the same accumulation rule is
applicable to the companion. We present a different proof of the accumulation
rule by instantiating Lemma25 with the predicate λx. y ≤ x.

Lemma 26. For monotone f we have x ≤ f(t(x ∪ y)) ↔ x ≤ f(t(y)).

Proof. The right-to-left direction follows from y ≤ x ∪ y together with the
monotonicity of t and f . In the left-to-right direction we use Lemma 25. It suffices
to show that

∀z. y ≤ t(z) → x ≤ t(z) → x ≤ f(t(z)).

Combining the two assumptions, we have x ∪ y ≤ t(z). Using Fact 3, this is
equivalent to t(x ∪ y) ≤ t(z). The statement follows from x ≤ f(t(x ∪ y)) and
the monotonicity of f . �

286 S. Schäfer and G. Smolka

Together with Lemma 7, Lemma 26 implies a sound and complete coinduction
principle.

Fact 27. If f is monotone, then x ≤ f(t(x)) ↔ x ≤ νf .

Proof. We have νf = f(νf) = f(t(⊥)). �

Pous observed that every function below the companion is a sound up-to func-
tion [13] for f . This is a consequence of Fact 27.

Definition 28. g is a sound up-to function for f , if x ≤ νf whenever x ≤
f(g(x)).

Lemma 29. If g ≤ tf , then g is a sound up-to function for f .

Proof. This follows from Fact 27: x ≤ f(g(x)) ≤ f(t(x)). �

6 Coq Formalization

All results in this paper have been formalized in Coq. We make use of the Ssreflect
plugin and library, for its improved tactic language and the formalization of finite
types (for Jf -relative monads). To avoid working with pre-lattices, we assume
propositional and functional extensionality. The development is available at:
www.ps.uni-saarland.de/extras/companions.

The main divergence of the formalization from the paper is our treatment of
variable binding in CCS with fixed points. We represent variable binding using
a de Bruijn representation. Since we often have to distinguish between open and
closed terms we index our term language with an upper bound on the number of
free variables. This technique was first used by Adams [1], and later thoroughly
explained by Alternkirch et al. in the framework of relative monads [2]. Using
the terminology of Altenkirch et al., we formalize terms as Jf -relative monads.

In addition to the laws of a Jf -relative monad, we show all equations
from [14]. This allows us to show all substitution lemmas by rewriting.

7 Related Work

Coinduction. Hur et al. [5] introduce parameterized coinduction as an incremen-
tal proof technique for coinduction. For a monotone function f on a complete
lattice, they construct the function Gf (x) = ν(λy. f(x ∪ y)). They show that
Gf can be used for modular and incremental coinductive reasoning and describe
several examples and extensions.

One extension of parameterized coinduction incorporates up-to techniques.
Specifically, Hur et al. consider respectful up-to functions. Respectfulness is
another sufficient criterion for soundness of up-to functions. They use the fact
that the set of respectful up-to functions is closed under union to construct the
greatest respectful up-to function t. The parameterized fixed point Gf◦t turned

http://www.ps.uni-saarland.de/extras/companions/

Tower Induction and Up-to Techniques for CCS with Fixed Points 287

out to obey an “unfolding” lemma, which allowed them to freely use any respect-
ful up-to technique in a coinductive proof.

Recently, Pous [12] noticed that the greatest compatible up-to function
already admits the parameterized coinduction principle. It turns out that the
greatest compatible and the greatest respectful up-to function coincide. More-
over we have f ◦ t = Gf◦t. This means that the function t is everything we
require for incremental and modular coinductive proofs compatible with up-to
techniques.

Pous dubbed the greatest compatible up-to function the companion.
At the same time, Parrow and Weber [8] considered the greatest respectful

function for strong bisimilarity in the context of classical set theory. Their con-
struction avoids the quantification over respectful functions by using the theory
of ordinals in set theory. They use that bisimilarity may be defined by transfinite
iteration to construct the companion for bisimilarity.

Formally, the idea is that if κ is an ordinal larger than the cardinality of the
underlying lattice, then fκ(�) is the greatest fixed point of f . This can be used
to construct the companion as tf (x) =

⋂ { fα(�) | x ≤ fα(�), α ordinal }.
The tower construction [15] may be seen as the type theoretic analogue

of transfinite iteration in set theory. Under this view, we define the set of
points reachable from � by transfinite f -iteration as an inductive predicate
T ≈ { fα(�) | α ordinal }.

Up-To Techniques. The study of up-to techniques for bisimilarity originates
with Milner [7]. Milner considers bisimulation up-to bisimilarity to keep proofs of
bisimilarity manageable. Practical applications usually require combining several
different up-to functions. Even our toy example in Sect. 4 requires bisimulation
up-to context and bisimilarity to mimic the proof using the companion.

One problem with using only sound up-to functions in the sense of Defini-
tion 28 is that sound up-to functions do not compose. This drawback led San-
giorgi [13] to propose the notion of respectful up-to functions. Respectful up-to
functions are sound and closed under composition and union.

Sangiorgi [13] studies bisimilarity, but notes that the same definition of
respectfulness makes sense in the more general context of greatest fixed points
in complete lattices.

Pous [11] extends and simplifies the work of Sangiorgi by abstracting it to the
setting of complete lattices and by introducing the notion of compatibility. This
abstraction yields concrete gains, as the set of compatible maps forms another
complete lattice. In particular, this implies that we can use up-to techniques
to establish soundness of up-to techniques. Pous refers to this as “second order
techniques”.

Recently, Pous [12] adapted this development to the companion. For every
companion t, there exists a second-order companion, classifying the compati-
ble up-to functions. Pous uses the second-order companion extensively to show
soundness of bisimulation up-to context for CCS with replication and other case
studies.

288 S. Schäfer and G. Smolka

8 Conclusions and Future Work

We have presented a tower based construction of the companion of a monotone
function on a complete lattice. The new tower induction principle derived from
this construction allows us to show a number of improved results for companions.
We instantiate the abstract lattice theoretic development with strong bisimilarity
in CCS with general recursive processes. This instantiation yields a particularly
simple proof system for bisimilarity and we show the admissibility of reasoning
up-to context about bisimilarity. Our results imply the classical soundness result
for bisimulation up-to context in CCS with replication.

There are several avenues for future work.
All case studies in this paper consider up-to techniques for strong bisimilarity

in CCS. It is well known [10] that the case of weak bisimilarity is much more
subtle. If we try to adapt the development in Sect. 4 to weak bisimilarity, we
find that relative weak bisimilarity is not transitive and not compatible with
choice. This mirrors the failure of soundness of weak bisimulation up-to weak
bisimilarity and the fact that weak bisimilarity is not compatible with choice.

Despite these problems, there are useful up-to techniques for weak bisimi-
larity. Pous [10] developed weak bisimulation up-to elaboration, which combines
weak bisimulations with a limited form of unfolding under a termination hypoth-
esis. At this point it is not clear whether these techniques yield corresponding
reasoning principles for relative weak bisimilarity.

There are also open questions concerning the companion construction itself.
Assuming the axiom of excluded middle, it can be shown [15] that T is

well-ordered. In particular, in classical type theory, we can use this to expand
the tower induction principle to all predicates which are closed under infima of
well-ordered subsets. However, this principle is not provable in constructive type
theory [3].

It might yet be possible to show a slightly weaker statement constructively.
Pataraia [9] gives a constructive proof of Tarski’s theorem for least-fixed points
on directed complete partial orders. We conjecture that a similar construction
can be used to extend the tower induction principle to predicates which are
closed under infima of lower directed subsets.

References

1. Adams, R.: Formalized metatheory with terms represented by an indexed family
of types. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004.
LNCS, vol. 3839, pp. 1–16. Springer, Heidelberg (2006). doi:10.1007/11617990 1

2. Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. In:
Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 297–311. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12032-9 21

3. Bauer, A., Lumsdaine, P.L.: On the Bourbaki-Witt principle in toposes. In: Math-
ematical Proceedings of the Cambridge Philosophical Society, vol. 155, pp. 87–99.
Cambridge University Press (2013)

http://dx.doi.org/10.1007/11617990_1
http://dx.doi.org/10.1007/978-3-642-12032-9_21

Tower Induction and Up-to Techniques for CCS with Fixed Points 289

4. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (2002)

5. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: The 40th Annual ACM SIGPLAN- SIGACT Symposium on
Principles of Programming Languages, POPL 2013, Rome, Italy, 23–25 January
2013, pp. 193–206 (2013)

6. Xavier, L.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

7. Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall, Upper Saddle
River (1989)

8. Parrow, J., Weber, T.: The largest respectful function. Log. Methods Comput. Sci.
12(2) (2016)

9. Pataraia, D.: A constructive proof of Tarski’s fixed-point theorem for dcpo’s. Pre-
sented in the 65th Peripatetic Seminar on Sheaves and Logic, Aarhus, Denmark,
November 1997

10. Pous, D.: Weak bisimulation up to elaboration. In: Baier, C., Hermanns, H. (eds.)
CONCUR 2006. LNCS, vol. 4137, pp. 390–405. Springer, Heidelberg (2006). doi:10.
1007/11817949 26

11. Pous, D.: Complete lattices and up-to techniques. In: Shao, Z. (ed.) APLAS
2007. LNCS, vol. 4807, pp. 351–366. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76637-7 24

12. Pous, D.: Coinduction all the way up. In: Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, pp. 307–316.
ACM, New York (2016)

13. Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comput. Sci. 8(5),
447–479 (1998)

14. Schäfer, S., Smolka, G., Tebbi, T.: Completeness and decidability of de Bruijn
substitution algebra in Coq. In: Proceedings of the Conference on Certified Pro-
grams and Proofs, CPP 2015, Mumbai, India, 15–17 January 2015, pp. 67–73.
ACM (2015)

15. Smolka, G., Schäfer, S., Doczkal, C.: Transfinite constructions in classical type
theory. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 391–404.
Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 26

16. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

http://dx.doi.org/10.1007/11817949_26
http://dx.doi.org/10.1007/11817949_26
http://dx.doi.org/10.1007/978-3-540-76637-7_24
http://dx.doi.org/10.1007/978-3-540-76637-7_24
http://dx.doi.org/10.1007/978-3-319-22102-1_26

	Tower Induction and Up-to Techniques for CCS with Fixed Points
	1 Introduction
	2 Lattice Theory Preliminaries
	3 Towers and Companions
	4 CCS with Recursive Processes
	5 Parameterized Tower Induction
	6 Coq Formalization
	7 Related Work
	8 Conclusions and Future Work
	References

