
Peter Höfner · Damien Pous
Georg Struth (Eds.)

 123

LN
CS

 1
02

26

16th International Conference, RAMiCS 2017
Lyon, France, May 15–18, 2017
Proceedings

Relational and
Algebraic Methods
in Computer Science

Lecture Notes in Computer Science 10226

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Peter Höfner • Damien Pous
Georg Struth (Eds.)

Relational and
Algebraic Methods
in Computer Science
16th International Conference, RAMiCS 2017
Lyon, France, May 15–18, 2017
Proceedings

123

Editors
Peter Höfner
Data61, CSIRO
Sydney, NSW
Australia

Damien Pous
CNRS
Lyon
France

Georg Struth
University of Sheffield
Sheffield
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-57417-2 ISBN 978-3-319-57418-9 (eBook)
DOI 10.1007/978-3-319-57418-9

Library of Congress Control Number: 2017938136

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the proceedings of the 16th International Conference on Rela-
tional and Algebraic Methods in Computer Science (RAMiCS 2017), which was held
at ENS Lyon, France, during May 15–18, 2017.

The RAMiCS conferences aim to bring a community of researchers together to
advance the development and dissemination of relation algebras, Kleene algebras, and
similar algebraic formalisms. Topics covered range from mathematical foundations to
applications as conceptual and methodological tools in computer science and beyond.
More than 25 years after its foundation in 1991 in Warsaw, Poland—initially as
“Relational Methods in Computer Science”—RAMiCS remains a main venue in this
field. The series merged with the workshops on Applications of Kleene Algebra in 2003
and adopted its current name in 2009. Previous events were organized in Dagstuhl,
Germany (1994), Paraty, Brazil (1995), Hammamet, Tunisia (1997), Warsaw, Poland
(1998), Québec, Canada (2000), Oisterwijk, The Netherlands (2001), Malente,
Germany (2003), St. Catharines, Canada (2005), Manchester, UK (2006), Frauenwörth,
Germany (2008), Doha, Qatar (2009), Rotterdam, The Netherlands (2011), Cambridge,
UK (2012), Marienstatt, Germany (2014), and Braga, Portugal (2015).

RAMiCS 2017 attracted 32 submissions, of which 17 were selected for presentation
by the Program Committee. Each submission was evaluated according to high aca-
demic standards by at least three independent reviewers, and scrutinized further during
two weeks of intense electronic discussion. The organizers are very grateful to all
Program Committee members for this hard work, including the lively and constructive
debates, to the external reviewers for their generous help and expert judgments, and
especially to Wolfram Kahl, Martin E. Müller, and Michael Winter for shepherding
three submissions towards acceptance. Without this dedication we could not have
assembled such a high-quality program; we hope that all authors have benefitted from
these efforts.

Apart from the submitted articles, this volume features the contributions of three
invited speakers. The article on an “Algebra for Quantitative Information Flow” by
Annabelle McIver and her co-authors presents a new model for reasoning about con-
fidentiality in security applications. Jean-Éric Pin’s paper on the “Dual Space of a
Lattice as the Completion of a Pervin Space” introduces Pervin spaces as useful tools
for computing dual spaces of lattices, with applications in language theory. Alexandra
Silva has contributed an abstract of her talk on “A (Co)Algebraic Theory of Succinct
Acceptors.” We are delighted that all three invited speakers accepted our invitation to
present their work at the conference.

Last, but not least, we would like to thank the members of the RAMiCS Steering
Committee for their support and advice. We gratefully acknowledge financial support
by the Laboratoire de l’Informatique du Parallélisme (LIP), the Ecole Normale
Supérieure de Lyon (ENS de Lyon), and the Laboratoire d’excellence en mathématique
et informatique fondamentale (Labex MILYON) of the University of Lyon; and

Catherine Desplanches, Enric Cosme-Llópez, Anupam Das, Christian Doczkal, and
Valeria Vignudelli for their help with organizing this conference. We also appreciate
the excellent facilities offered by the EasyChair conference administration system, and
Alfred Hofmann and Anna Kramer’s help in publishing this volume with Springer.
Finally, we are indebted to all authors and participants for supporting this conference.

May 2017 Peter Höfner
Damien Pous
Georg Struth

VI Preface

Organization

Organizing Committee

Damien Pous (Conference Chair) CNRS, France
Peter Höfner (PC Chair) Data61, CSIRO, Australia
Georg Struth (PC Chair) University of Sheffield, UK

Program Committee

Luca Aceto Reykjavik University, Iceland
Rudolf Berghammer Kiel University, Germany
Filippo Bonchi CNRS, France
Jules Desharnais Laval University, Canada
Hitoshi Furusawa Kagoshima University, Japan
Tim Griffin University of Cambridge, UK
Walter Guttmann University of Canterbury, New Zealand
Robin Hirsch University College London, UK
Peter Höfner Data61, CSIRO, Australia
Marcel Jackson La Trobe University, Australia
Jean-Baptiste Jeannin Samsung Research America, USA
Peter Jipsen Chapman University, USA
Christian Johansen University of Oslo, Norway
Wolfram Kahl McMaster University, Canada
Dexter Kozen Cornell University, USA
Szabolcs Mikulas Birkbeck University of London, UK
Bernhard Möller University of Augsburg, Germany
José N. Oliveira University of Minho, Portugal
Damien Pous CNRS, France
Georg Struth University of Sheffield, UK
Pascal Weil CNRS, France
Michael Winter Brock University, Canada

Steering Committee

Rudolf Berghammer Kiel University, Germany
Jules Desharnais Laval University, Canada
Ali Jaoua Qatar University, Qatar
Peter Jipsen Chapman University, USA
Bernhard Möller University of Augsburg, Germany
José N. Oliveira University of Minho, Portugal
Ewa Stella Orlowska National Institute of Telecommunications, Poland
Gunther Schmidt Bundeswehr University of Munich, Germany
Michael Winter Brock University, Canada

Additional Reviewers

Alasdair Armstrong
Roland Glück
Ian Hayes
Tom Hirschowitz
Simon Huber
Barbara König
Dietrich Kuske
Jérôme Lang
Kamal Lodaya

Martin E. Müller
Koki Nishizawa
Jean-Éric Pin
Jurriaan Rot
Gunther Schmidt
Insa Stucke
Harrie De Swart
Norihiro Tsumagari

Sponsors

Laboratoire de l’Informatique du Parallélisme (LIP)
École Normale Supérieure de Lyon (ENS de Lyon)
Labex MILYON/ANR-10-LABX-0070

Local Organizers

Catherine Desplanches
Enric Cosme-Llópez
Christian Doczkal
Damien Pous
Anupam Das
Valeria Vignudelli

VIII Organization

Abstracts of Invited Talks

A (Co)Algebraic Theory of Succinct Acceptors

Alexandra Silva

Department of Computer Science, University College London, London, UK

Abstract. The classical subset construction connects deterministic and
non-deterministic automata that accept the same language. This construction can
be interpreted in a more general setting in which non-determinism is replaced by
other side-effects captured by a monad. The more general construction has
interesting algorithmic aspects, having led, for example, Bonchi and Pous to
devise a very efficient algorithm to check for language equivalence of
non-deterministic automata. At the core of their algorithm is the fact that both the
state space of the determinized automaton and its semantics— languages over an
alphabet— have an algebraic structure: they are Eilenberg-Moore algebras for the
monad. Not unexpectedly, in the case of the powerset monad, Eilenberg-Moore
algebras are join-semilattices. In this talk, we will start by reviewing the general
powerset construction and several applications thereof. We will then show that the
dual question to determinization also has interesting algorithmic aspects. In par-
ticular, we will look at succinct acceptors of (generalized) languages based on
different algebraic structures of their state space. For instance, for classical regular
languages the construction will yield a non-deterministic automaton where the
states represent the join-irreducibles of the language accepted by a (potentially)
larger deterministic automaton. Other examples include weighted and nominal
languages. Some of the material in the talk is based on the article ‘Fuzzy machines
in a category’ (Arbib and Manes, 1975).

Algebra for Quantitative Information Flow

A.K. McIver1, C.C. Morgan2, and T. Rabehaja1

1 Department of Computing, Macquarie University, Sydney, Australia
annabelle.mciver@mq.edu.au

2 School of Computer Science and Engineering,
UNSW and Data61, Sydney, Australia

Abstract. A core property of program semantics is that local reasoning about
program fragments remains sound even when the fragments are executed within
a larger system. Mathematically this property corresponds to monotonicity of
refinement: if A refines B then CðAÞ refines CðBÞ for any (valid) context defined
by Cð�Þ.

In other work we have studied a refines order for information flow in pro-
grams where the comparison defined by the order preserves both functional and
confidentiality properties of secrets. However the semantic domain used in that
work is only sufficient for scenarios where either the secrets are static (i.e. once
initialised they never change), or where contexts Cð�Þ never introduce fresh
secrets.

In this paper we show how to extend those ideas to obtain a model of
information flow which supports local reasoning about confidentiality. We use
our model to explore some algebraic properties of programs which contain
secrets that can be updated, and which are valid in arbitrary contexts made up of
possibly freshly declared secrets.

Contents

Invited Papers

Algebra for Quantitative Information Flow . 3
A.K. McIver, C.C. Morgan, and T. Rabehaja

Dual Space of a Lattice as the Completion of a Pervin Space:
Extended Abstract . 24

Jean-Éric Pin

Contributed Papers

Relations as Images. 43
Mathieu Alain and Jules Desharnais

Tool-Based Relational Investigation of Closure-Interior Relatives
for Finite Topological Spaces . 60

Rudolf Berghammer

Varieties of Cubical Sets . 77
Ulrik Buchholtz and Edward Morehouse

Non-associative Kleene Algebra and Temporal Logics 93
Jules Desharnais and Bernhard Möller

Algebraic Investigation of Connected Components 109
Roland Glück

Stone Relation Algebras. 127
Walter Guttmann

Relation Algebras, Idempotent Semirings and Generalized Bunched
Implication Algebras . 144

Peter Jipsen

Parsing and Printing of and with Triples . 159
Sebastiaan J.C. Joosten

Software Development in Relation Algebra with Ampersand 177
Stef Joosten

Allegories and Collagories for Transformation of Graph Structures
Considered as Coalgebras. 193

Wolfram Kahl

http://dx.doi.org/10.1007/978-3-319-57418-9_1
http://dx.doi.org/10.1007/978-3-319-57418-9_2
http://dx.doi.org/10.1007/978-3-319-57418-9_2
http://dx.doi.org/10.1007/978-3-319-57418-9_3
http://dx.doi.org/10.1007/978-3-319-57418-9_4
http://dx.doi.org/10.1007/978-3-319-57418-9_4
http://dx.doi.org/10.1007/978-3-319-57418-9_5
http://dx.doi.org/10.1007/978-3-319-57418-9_6
http://dx.doi.org/10.1007/978-3-319-57418-9_7
http://dx.doi.org/10.1007/978-3-319-57418-9_8
http://dx.doi.org/10.1007/978-3-319-57418-9_9
http://dx.doi.org/10.1007/978-3-319-57418-9_9
http://dx.doi.org/10.1007/978-3-319-57418-9_10
http://dx.doi.org/10.1007/978-3-319-57418-9_11
http://dx.doi.org/10.1007/978-3-319-57418-9_12
http://dx.doi.org/10.1007/978-3-319-57418-9_12

Aggregation of Votes with Multiple Positions on Each Issue 209
Lefteris Kirousis, Phokion G. Kolaitis, and John Livieratos

Complete Solution of an Optimization Problem in Tropical Semifield 226
Nikolai Krivulin

Concurrency-Preserving Minimal Process Representation 242
Adrián Puerto

Embeddability into Relational Lattices Is Undecidable 258
Luigi Santocanale

Tower Induction and Up-to Techniques for CCS with Fixed Points 274
Steven Schäfer and Gert Smolka

Reasoning About Cardinalities of Relations with Applications Supported
by Proof Assistants . 290

Insa Stucke

Type-n Arrow Categories . 307
Michael Winter

Author Index . 323

XIV Contents

http://dx.doi.org/10.1007/978-3-319-57418-9_13
http://dx.doi.org/10.1007/978-3-319-57418-9_14
http://dx.doi.org/10.1007/978-3-319-57418-9_15
http://dx.doi.org/10.1007/978-3-319-57418-9_16
http://dx.doi.org/10.1007/978-3-319-57418-9_17
http://dx.doi.org/10.1007/978-3-319-57418-9_18
http://dx.doi.org/10.1007/978-3-319-57418-9_18
http://dx.doi.org/10.1007/978-3-319-57418-9_19

Invited Papers

Algebra for Quantitative Information Flow

A.K. McIver1(B), C.C. Morgan2, and T. Rabehaja1

1 Department of Computing, Macquarie University, Sydney, Australia
annabelle.mciver@mq.edu.au

2 School of Computer Science and Engineering, UNSW and Data61, Sydney,

Australia

Abstract. A core property of program semantics is that local reason-
ing about program fragments remains sound even when the fragments
are executed within a larger system. Mathematically this property cor-
responds to monotonicity of refinement : if A refines B then C(A) refines
C(B) for any (valid) context defined by C(·).

In other work we have studied a refines order for information flow
in programs where the comparison defined by the order preserves both
functional and confidentiality properties of secrets. However the seman-
tic domain used in that work is only sufficient for scenarios where either
the secrets are static (i.e. once initialised they never change), or where
contexts C(·) never introduce fresh secrets.

In this paper we show how to extend those ideas to obtain a model
of information flow which supports local reasoning about confidential-
ity. We use our model to explore some algebraic properties of programs
which contain secrets that can be updated, and which are valid in arbi-
trary contexts made up of possibly freshly declared secrets.

Keywords: Refinement · Information flow · Security · Monotonicity ·
Probabilistic semantics · Compositional reasoning · Dalenius desideratum

1 Introduction

Algebras are powerful tools for describing and reasoning about complex behav-
iours of programs and algorithms. The effectiveness of algebraic reasoning is
founded on the principle that equalities between expressions mean that those
expressions are interchangeable: if P and Q are algebraic expressions represent-
ing programs that are considered to have “the same” behaviours, then C(P)
and C(Q) must also exhibit “the same” behaviours for any program context
C(·) represented in the algebra. In theories of non-interference security this prin-
ciple poses a surprising challenge in models describing properties of programs
containing secrets which can both be updated during program execution, and

T. Rabehaja—We acknowledge the support of the Australian Research Council
Grant DP140101119. This work was carried out while visiting the Security Insti-
tute at ETH Zürich.

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 3–23, 2017.
DOI: 10.1007/978-3-319-57418-9 1

4 A.K. McIver et al.

which can be partially observed by a passive but curious adversary. Although
there are many semantic models for reasoning about information flow, they typ-
ically support only a subset of these behaviours. For example [1,4,24] assume
that the secrets once set never change. Our more recent work [13,16] does allow
updates to secrets, however it also assumes a “closed system model” for program
execution, where there is a single global secret type which must be declared at
the outset.

In this paper we show how to extend the applicability of algebraic reasoning
for all contexts and behaviours, in particular we remove the assumption of a
closed system model of operation. On a technical level this requires generalising
our earlier model [13,16] based on Hidden Markov Models (HMM ’s) to include
not only information flow about some declared secret, but also information flow
that can potentially have an impact on third-party secrets – undeclared in a given
program fragment – but introduced later as part of a context C(·). In terms of
practical verification this theoretical extension is crucial: it means that local
reasoning about program fragments remains sound even when those program
fragments are executed in contexts which could contain arbitrary secrets.

The surprise here is that our extension of standard HMM ’s is related to an
old problem in privacy in “read-only” statistical databases, first articulated by
Dalenius [6] and later developed by Dwork [7]. It says that third-party infor-
mation flow is possible if a database’s contents are known to be correlated with
data not in the databases; in this case, information revealed by a query could
also lead to information leaked through the correlation.

Our approach rests fundamentally on Goguen and Meseguer’s original model
for qualitative non-interference [9] and on more recent work in quantitative infor-
mation flow of communication channels [24, and its citations]; we combine them
into a denotational program-semantics in the style of [21, for qualitative] and
[13, for quantitative].

In [9] the program state is divided into high- and low-security portions, and
a program is said to be “non-interfering” if the low variables’ final values cannot
be affected by the high variables’ initial values. Note that this is a qualitative
judgement: a program either suffers from interference or it doesn’t. Here instead
we follow others in quantifying the interference in a program [24], since it has
been recognised for some time that absolute noninterference is in practice too
strong: even a failed password guess leaks what the password is not. Then a more
personal choice is that we address leaks wrt. the high variables’ final values, not
their initial ones; we explain below why we believe this view is important for
refinement.

We embed both of the above features in a denotational semantics based on
HMM ’s supporting a refinement relation in the style of [3,12,20]: our programs
here are probabilistic, without demonic choice, and include a special statement
leak that passes information directly to an adversary. A result is that the appar-
ently “exotic” problems we highlighted above become surprisingly mundane. For
example, the program state is entirely secret (all of it is “high”), and leaks are not
through “low variables” but rather are explicit via the special leak statements.

Algebra for Quantitative Information Flow 5

Furthermore, conventional refinement – the tradition on which we draw – com-
pares programs’ final states, not their initial ones: and thus so do we here. Finally,
the “Dalenius” problem, of our potential effect on third parties unknown to us,
is merely the issue of preserving refinement when extra variables are declared
that were not mentioned in our original program.

We make the following contributions.

(a) We note that the Dalenius issue is simply that security of data can be affected
by programs that do not refer to it, and we illustrate it by example;

(b) We review Hidden Markov Models and explain how they can be used as the
basis for an abstract model of programs that model information flows to
secrets that can be updated;

(c) We show, by considering HMM ’s as transformers of correlations, that they
can also model information flows of possibly correlated secrets;

(d) We define a partial order on abstract HMM ’s based on the information
order defined elsewhere [1,2,18] and show that it is general in the sense that
equality is maintained in arbitrary contexts.

We begin in Sect. 2 with an example addressing (a) just above. In Sect. 3 we
show how to model program fragments as HMM ’s and, in doing so, we show that
to address the issue at (a) it is sufficient to model only the correlation between
initial and final states of secrets in local reasoning in order to predict general
information flows about arbitrary secrets in arbitrary contexts. In Sect. 4 we show
how to define a partial order on HMM ’s as correlation transformers resulting
in a general law of equivalence (Theorem 1). Finally in Sect. 5 we prove some
general algebraic laws valid for abstract HMM ’s as correlation transformers.

2 Getting Real: Updating Secrets and Third-Party
“Collateral” Damage in Everyday Programs

Figure 1 illustrates the difference between running a program in isolation versus
in a system where there are multiple possibly correlated secrets. We adopt the
working assumption of a passive, but curious adversary, by which we mean an
adversary who is trying to guess secrets. She does so by observing the program
as it executes and matching observations to (possible) values of the secret. The
adversary is able to do this because we assume that she has a copy of the program
code. The adversary is not actively malicious, however: she cannot change data
nor affect normal program operation.

In both scenarios in Fig. 1 there is a loop which is subject to a timing attack
and, for simplicity, we assume that it can be performed by counting how many
times the guard is executed. We use an explicit statement leak as a signal
that our passive adversary can observe when the loop body is executed, even
though she cannot observe the exact value of the secret X. When leak (X>1) is
executed, the adversary learns whether the current value of X is strictly greater
than 1 or not. She cannot deduce anything else about X, but by accumulating

6 A.K. McIver et al.

Fig. 1. Timing attacks in isolation and in context

all her observations, and her knowledge of the program code, over time she can
deduce many facts about the initial and final states of X.

First of all, since the adversary knows the program code, without even exe-
cuting it, she deduces that the final value of X will be either 0 or 1. To learn
something about the initial state, she must observe the program as it runs: if
she observes that (X > 1) was true three times in total then the initial value of
X must have been either 6 or 7; if it was true only twice, then the initial value of
X must have been either 4 or 5.

What can the adversary do with this analysis?
Suppose that the adversary also knows that there are no other secrets, i.e.

even if the loop is part of a larger piece of code, the only secret variable referred
to in that code is X. This means that her knowledge about the initial state of
X is not useful because X is no longer equal to its initial state (unless it was 0
or 1). Thus the information leak about the initial value of X is not useful to the
adversary who tries to guess the current value of X.

On the other hand, suppose that in a different scenario there is a second
secret Z and it is initially correlated with X, as in the program at the right in
Fig. 1. Now the fact that X was initially 6 or 7 is highly significant because it
tells the adversary that the current value of Z is either 6 or 7. And the adversary
might actually be more interested in Z than in X. This is the Dalenius problem
referred to above: the impact of some information leaks become manifest only
when programs are executed in some context with fresh secrets.

In sequential program semantics, it is usual to focus on the final state because
the aim is to establish some goal by updating the variables, and so when we inte-
grate security we still need to consider final values. Indeed it is the concentration
on final values that allows small state-modifying programs, whether secure or
not, to be sequentially composed to make larger ones [13,15,16]. But here we have
demonstrated by example that this is not enough if we want a semantics which
is compositional when contexts introduce new secrets, because if the semantics
only captures the uncertainty about the final states, we have potentially lost the

Algebra for Quantitative Information Flow 7

Dalenius effect i.e. how much uncertainty remains about the correlated secrets.
For example, if we only consider scenarios where there is a single secret X, then we
would only need to consider the remaining uncertainty of final states. We could
then confidently argue that the loop on the left at Fig. 1 is equivalent to the pro-
gram X := X mod 2. However, consider context C(P) defined by Z := X;P , where
Z is a secret (and P is some program fragment). We must now consider confi-
dentiality properties of both Z and X, and for monotonicity of refinement since
C(X := X mod 2) leaks less than C(leak(X > 1); X := X mod 2), then our seman-
tics must distinguish between (X := X mod 2) and leak (X > 1); X := X mod 2,
even though all their properties concerning the final state of X are the same.

In the remainder of the paper we describe a semantics which combines infor-
mation flow and state updates in which refinement between program fragments
can be determined by local reasoning alone (i.e. only about X when the program
fragments only refer to X). Crucially the refinement relation satisfies monotonic-
ity when contexts can include fresh secrets (as in C(·) above).

3 A Denotational Model for Quantitative Information
Flow

3.1 Review of the Probability Monad and Hyper-Distributions

We model secrets as probability distributions reflecting the uncertainty about
their values (if indeed they are secret). Our semantics for programs computing
with secrets is based on the “probability monad”, which we now review; and in
Sect. 3.2 we explain how it can be used to define a model for information flow.

Given a state space X we write DX for the set of probability distributions
over X , which we assume here to be finite so that we consider only discrete
distributions that assign a probability to every individual element in X . For
some distribution δ in DX we write δx, between 0 and 1, for the probability that
δ assigns to x in particular.1

The probability monad [8] is based on D as a “type constructor” that obeys a
small collection of laws shared by other, similar constructors like say the powerset
operator P. Each monad has two polymorphic functions η for “unit”, and μ for
“multiply”, that interact with each other in elegant ways. For example in P, unit
η has type X→PX , generically in X , and η(x) is the singleton set {x}; in D the
unit has type X→DX and η(x) is [x], the point-distribution on x.2

For multiply, in P it is distributed union, taking a set of sets to the one
set that is the union of them all, having thus the type P

2X→PX . In D we can
construct D(DX) or D

2X which is the set of “distributions of distributions”

1 Mostly we use the conventional f(x) for application of function f to argument x.
Exceptions include δx for δ applied to x and Df for functor D applied to f and f.x.y
for function f(x), or f.x, applied to argument y, and [[H]].π, when H is an HMM
inside semantic brackets [[·]].

2 The point distribution on x assigns probability 1 to x alone, and probability 0 to
everything else; we write it [x].

8 A.K. McIver et al.

(just as P
2 was sets of sets), equivalently distributions over DX . We call these

“hyper-distributions”, and use them below to model information flow; we nor-
mally use capital Greeks like Δ for hyper-distributions. In D, the multiply has
type D

2X→DX — it “squashes” distributions of distributions back to a single
one, and is defined μ(Δ)x:=

∑
δ:DX Δδ×δx, giving the probability assigned to x

as the sum of the inner probabilites (of x), each scaled by their corresponding
outers. We also write avg for the μ of DX .3

Monadic type-constructors like P and D are functors, meaning they can be
applied to functions as well as to objects: thus for f in X→Y the function Pf
is of type PX→PY so that for X in PX we have Pf(X) = {f(x) | x∈X} in
PY. In D instead we get the push forward of f , so that for π in DX we have
(Df)(π)y =

∑
f(x)=y πx.

We shall write X and Z for secret types and Y for the type of observations
used to enable us to model information flow. Given a joint distribution J in
D(X×Y) we define hyper-distributions of secrets by abstracting from the values
of observations as follows: we retain only the probabilities that an observation
occurs, together with the residual uncertainty in X related to those observations.

The probability of observation y is computed from
⇀

J the marginal on Y (relative

to the joint distribution J in D(X×Y)), so that
⇀

J y:=
∑

x:X Jxy. Next, for each
observation y, we can compute Jy:DX , the conditional probability distribution

over x given this y. It is Jy
x :=Jxy/

⇀

J y. This conditional probability distribution
represents the residual uncertainty of x by taking the observation y into account.
We now write [J]:D2X so that δ is in the support of [J] provided that there is

some y:Y such that δ = Jy. Finally [J]δ is equal to the sum
∑

δ=Jy

⇀

J y.

3.2 Review of “Traditional” vs. More Recent Quantitative
Information Flow Semantics for (Non-)interference

Goguen and Meguer’s treatment of non-interference separated program vari-
ables into high- and low-security, and defined “non-interference” of high inputs
with low outputs: that a change in a high input-value should never cause a
consequential change in a low output-value [9]. A hostile observer of final low
values in that case could never learn anything about initial high values. Sub-
sequent elaborations of this allowed more nuanced measurements, determining
“how much” information was revealed by low variables about the initial values
of high variables. The measurements can be of many different kinds: Shannon
Entropy was until recently the default choice, but that has now been significantly
generalised [2].

3 We are aware that in D(DX) the outer D is not acting over a finite type: indeed
DX is non-denumerable even when X is finite, so a fully general treatment would
use proper measures as we have done elsewhere [14,16]. Here however we use the
fact that, for programs, the only members of D2X we encounter have finite support
(i.e. finitely many DX ’s within them), and constructions like

∑
δ:DX Δδδx remain

meaningful.

Algebra for Quantitative Information Flow 9

In the traditional style, the side channel attack of Fig. 1 would be modelled
by an explicit assignment to some low-security variable L say, actually in the
program text; and the program’s security would be assessed in terms of how
much final observations of L could tell you about the original secret value X. In
particular, the program’s action on X and L together would be described as a
joint distribution, and standard Bayesian reasoning would be used to ask (and
answer) questions like “Given this particular final value of L, how do we change
our prior belief of the distribution on X to an a-posteriori distribution on X?”

Our more recent style here is instead to make the whole of the program’s
state-space hidden, and to model information flow to the hostile observer via an
explicit leak statement. Execution of a statement leak E, for some expression
E in the program variables (here just X), models the emission of E’s value at
that moment directly to an observer: from it, she makes deductions about X’s
possible values at that point. Usually E will not be injective (since otherwise she
would learn X exactly); but, unless E is constant, she will still learn something.
But how much? Assume in the following program that X is initially one of 0, 1, 2
with equal probability:

X:= X + 1; leak (Xmod2); X:= 2 ∗ X.

Informal reasoning would say that after the first statement X is uniformly dis-
tributed over 1–3; after the second statement it would (via Bayesian reasoning)
either be uniform over 1,3 (if a 1 was leaked) or it would certainly be 2 (if a
zero was leaked) — and the first case would occur with probability 2/3, the sec-
ond with probability 1/3. After the third statement, then, our observer would
2/3 of the time believe X to be uniform over 2, 6 and 1/3 of the time know that
X was 4. A key feature of this point of view is that her final “belief state” can
be summarised in a hyper-distribution introduced above. In this case we would
have the distribution “uniformly either 2 or 6” itself with probability 2/3, and
the distribution “certainly 4” itself with probability 1/3.

Hyper-distributions (objects of type D
2X), or hypers for short, explicitly

structure the relationship between a-posteriori distributions (“2 or 6” and
“certainly 4” above) and the probabilities with which those “posteriors” occur
(2/3 and 1/3 resp.) — we call the a-posteriori, or posterior distributions “inners”
of the hyper; and we call the distribution over them the “outer”. In our model
for security programs we use this two-layered feature to provide a clean structure
for information flow. It is based on our general conviction that the value of an
observation itself is not important; what matters is how much change that obser-
vation induces in the probability distribution of a secret value [18]. Therefore the
observations’ values do not need to participate in the semantics of information
flow, and its formalisation becomes much simpler.

That semantic simplification also enables a calculus of information flow,
explored in other work [13], and allows the use of monads, a very general semantic
tool for rigorous reasoning about computations [19] and even the implementation
of analysis tools [23].

10 A.K. McIver et al.

Definition 1 [16]. Given a state space X of hidden (i.e. high-security) variables,
a denotational model of quantitative non-interference secure-sensitive programs
consists of functions from prior (input) distributions on the state space to hyper
(output) distributions on the same space — the domain is DX→D

2X .
Given two abstract programs h1, h2:DX→D

2X we define their composition
as h1;h2:= avg ◦ Dh2 ◦ h1, which is also of type DX→D

2X .4

In other work we have shown that Definition 1 is an abstraction of HMM ’s
and works well in closed systems where there is exactly one secret X and that
the composition defined using the Giry constructors correspond exactly to com-
position of HMM ’s. However, as illustrated by Fig. 1, modelling only the residual
uncertainty of the final state does not enable us to draw conclusions about behav-
iour of the program fragment running in the larger context in which fresh secrets
participate in some larger computation. It turns out however that we are able
to predict the behaviour of a program fragment in such larger contexts by pre-
serving the uncertainty with respect to the correlation between initial and final
states. We do this by viewing HMM ’s as correlation transformers and we show
that this is sufficient to obtain a compositional model suitable for open systems
where contexts of execution can contain arbitrary fresh secrets.

3.3 HMM ’s as Correlation Transformers

The basic step of an HMM consists of a secret type X , and two stochastic
matrices5, one to describe the updates to the secret (called a Markov matrix) and
the other to describe the information flowing about the secret (called a Channel
matrix). A Markov matrix M (over X×X) defines Mxx′ to be the transition
probability for an initial value of the secret x updated to x′. A Channel matrix
C (over X×Y) defines Cxy to be the probability that y is observed given that
the secret is currently x, where recall that we use Y for the type of observations.
A Hidden Markov Model step is also a stochastic matrix, and is determined
by first a Channel step followed by a Markov step, denoted here by (C:M).
The execution of the Markov step is independent of the observation, and so
(C:M)xyx′ := Cxy×Mxx′ (where “×” here means multiplication). In general we
write A�B for the type of stochastic matrix over A×B, so that rows are labelled
by type A. Thus M :X � X , C: X � Y and (C:M): X � Y×X .

We can compose HMM steps to obtain the result of executing several leak-
update steps one after another. Let H1: X � Y1×X and H2: X � Y2×X . We
define their composition H1;H2: X � (Y1×Y2)×X , which now has observation
type Y1×Y2 so that information leaks accumulate.

(H1;H2)x(y1,y2)x′ :=
∑

x′′:X
H1

xy1x′′×H2
x′′y2x′ . (1)

4 This is the standard method of composing functions defined by a monad.
5 A matrix is stochastic if its rows sum to 1.

Algebra for Quantitative Information Flow 11

We use the term HMM to mean both an HMM step, and more generally
some composition of steps. In the latter case, the observation type Y will actu-
ally consist of a product of observation types arising from the observations of
the component steps. Given an HMM H: X � Y×X and an initial distribu-
tion π:DX we write (π〉H) for the joint distribution D(X×Y×X) defined by
(π〉H)xyx′ := πx×Hxyx′ . It is the probability that the initial state was x, that the
final state is now x′ and that the adversary observed y. Similarly, as special cases,
we write (π〉C) and (π〉M) for the result of applying a prior π to respectively a
pure Channel and a pure Markov.

In the next sections (Sects. 3.2 and 4) we describe a modification of
Definition 1 based on HMM ’s; it focusses on tracking correlations between initial
and final states. We begin by illustrating how the loop body of Fig. 1 can be rep-
resented as an HMM -style matrix. Recall its definition as a program fragment:

leak (X > 1); X := X − 2. (2)

The first statement of (2) –leak (X > 1)– corresponds to a channel matrix
in X�Y, where the observation type Y consists of two values, one for when the
secret is strictly greater than 1 and one where the secret is no more than 1.

C:

⎛

⎜
⎜
⎝

◦G ◦L
0 0 1
1 0 1
2 1 0
3 1 0

⎞

⎟
⎟
⎠

The labels ◦G, ◦L denote the observations that
X is strictly greater than 1, or no more than 1
respectively. Cxy is the chance that y will be
observed given that the secret is x. Observe
that this is a deterministic channel.

If π:DX is a prior distribution over X we create a joint distribution in
D(X×Y) defined by (π〉C). In our example, we take π to the uniform distribu-
tion over {0, 1, 2, 3}; for each observation, we learn something about this initial
value of X — if ◦G is observed, then we can use Bayesian reasoning to compute
the residual uncertainty of the secret. It is the conditional distribution over X of
(π〉C) given the observation ◦G; we call this posterior (π〉C)◦G. If ◦L is observed
instead we can similarly define the posterior (π〉C)◦L as the conditional distri-
bution over X of (π〉C) given the observation ◦L. Notice that both posteriors
occur with probability 1/2.

The second statement of (2) is only executed in a context when X > 1 and
therefore is equivalent to if (X>1) then X:= X-2. It corresponds to a Markov
matrix X�X :

M :

⎛

⎜
⎜
⎝

0 1 2 3

0 1 0 0 0
1 0 1 0 0
2 1 0 0 0
3 0 1 0 0

⎞

⎟
⎟
⎠

Each entry of the Markov matrix
Mxx′ provides the probability that
the final state will be x′ given that
it is x initially. Note that it is impos-
sible for x′ to be either 2 or 3.

The combination of the two statements yields an HMM to form the compo-
sition (C:M): X � Y×X , where recall that (C:M)xyx′ := Cxy×Mxx′ (where “×”

12 A.K. McIver et al.

here means multiplication). For our example y is one of the observations ◦G or
◦L. The combination as an HMM matrix becomes:

(C:M):

⎛

⎜
⎜
⎝

◦G
︷ ︸︸ ︷

0 1 2 3

◦L
︷ ︸︸ ︷

0 1 2 3

0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0
2 1 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0

⎞

⎟
⎟
⎠

The labels ◦G and ◦L
denote the observations cor-
responding to those from
C, and the other column
labels come from the col-
umn labels in M . Thus each
column is labelled by a pair
in {◦G, ◦L}×X .

Notice that the rows are not identical, because M updates the state in a way
dependent on its incoming value.

Consider now the initial (uniform) prior π:DX combined with the matrix
(C:M) above. The combination is a joint distribution (π〉(C:M)) of type
D(X×Y×X). We can now take the conditional probability with respect to an
observation y:Y to obtain the corresponding residual uncertainty over the corre-
lation in D(X 2) between the initial and final state of X. For example, given that
◦G was observed, the probability that the initial value of the secret was 2 and
the final value is 0 is 1/4 ÷ 1/2 = 1/2. The probability that the initial value of
the secret was 3 and its final value is 0 is 0.

We summarise all the posterior distributions by forming the hyper-
distribution [π〉(C:M)]:D2X 2. The outers in our example are both 1/2, because
each observation occurs with the same probability; the corresponding inners
are distributions of correlations modelling the adversary’s residual uncertainty.
These correlations retain just enough detail about the relationship between ini-
tial and final states to explain the behaviour of (2) in arbitrary contexts. In
particular δ:DX 2 is in the support of [π〉(C:M)] means that for some observa-
tion, the adversary can deduce the likelihood between the initial and final states
of the secret, and from that the likelihood of its initial value, and the likelihood
of its current value.

The hyper-distribution over correlations for our example at (2) is as follows.

[π〉(C:M)] : 1/2 1/2

0
1
2
3

0 0
0 0
1/2 0
0 1/2

1/2 0
0 1/2
0 0
0 0

0 1 0 1

The labels along the outside of the
boxes represent the possible initial states
(0,1,2,3 on the left column), and the pos-
sible final states (0,1 twice along the bot-
tom). The large boxes represent the two dis-
tinct posterior distributions (one for each
observation in {◦G, ◦L}), and the small
boxes (1/2 each) are the marginal probabil-
ities for each observation.

Notice that we no longer need labels of type Y, in fact they have been replaced
by outers (the small boxes containing 1/2 each). By comparing with (C:M)
above, we also see now that only the relevant effect of the observations has been

Algebra for Quantitative Information Flow 13

preserved in [π〉(C:M)] – for example there are no columns only containing zeros
because they represent events that cannot occur. Only the relevant posteriors
are retained, together with the chance that they are observed. For example with
probability 1/2 the observer can now deduce when the initial state was in the
set {0, 0} or in the set {2, 3}.

Next we show that [π〉(C:M)] is all that is required for computing the behav-
iour when we introduce a correlated fresh secret Z, as in this program fragment:

Z := X; leak (X > 1); X := X − 2. (3)

Take the HMM (C:M) above representing the program fragment at (2), but
now consider executing it with extra secret Z as at (3). The initialisation of Z
creates an interesting correlation between X and Z given by Π∗:D(Z×X) which
is defined to be Π∗

zx:= πx if and only if x = z, where recall π is the uniform
initialisation of X. We now compute the final joint distribution (Π∗〉(C:M)) of
type D(Z×Y×X); in this case because of the definition of Π∗, it is

(Π∗〉(C:M))zyx′ := Πzz × (C:M)zyx′ ,

with corresponding hyper-distribution in D
2(Z×X) given as follows:

[Π∗〉(C:M)] : 1/2 1/2

(0,0)
(1,1)
(2,0)
(3,1)

0
0
1/2
1/2

1/2
1/2
0
0

The labels along the outside of the
boxes now represent the final posteriors in
D(Z×X). Notice that the posteriors can
be computed directly from (π〉(C:M)) as
explained above. In fact, as we describe
below, it can also be computed directly from
the abstraction [π〉(C:M)].

More generally we can study the behaviour of an HMM H: X � Y×X when
it is executed in the context of some arbitrary correlation Π: Z×X . The joint
distribution Π〉H is computed explicitly as

(Π〉H)zyx′ :=
∑

x:X
Πzx×Hxyx′ . (4)

Just as in the special case above, we can calculate the associated hyper-
distribution from H’s posterior correlations on the initial and final value of

the secret type X . We first define a matrix Z: Z � X as Zzx:= Πzx/
⇀

Πx, and
⇀

Π∗:DX 2 as:
Π∗

xx′ :=
⇀

Πx if and only if x = x′.

With these in place we have that Π = Z ·Π∗, where we are using (Z·) as matrix
product, as in (Z ·Υ)zx′ :=

∑
x:X Zzx×Υxx′ . We can now express (4) equivalently

as an equation between hyper-distributions:

[Π〉H] = D(Z·)[
⇀

Π〉H]. (5)

14 A.K. McIver et al.

Notice that we have applied D to the function (Z·), since it must act on the

inners of the hyper-distribution [
⇀

Π〉H] to re-install correlations of type D(Z×X).

But [
⇀

Π〉H] is the special case of H applied to a prior in DX , which models the
hyper-distribution of the correlation between the initial and final value of the
secret (type X). This allows us to define a family of liftings of HMM ’s which,

by construction, can be computed from hyper-distributions of the form [
⇀

Π〉H].

Definition 2. Given an HMM H: X � Y×X . We say that X is its mutable
type; for fresh secret type Z called the correlation type define [[H]]Z :D(Z×X) →
D

2(Z×X) as
[[H]]Z .Π := D(Z·)[⇀

Π〉H],

where Z is defined relative to Π as at (5).

Definition 2 divides the secrets up into a mutable part X and correlated
part Z, where the former can have information leaked about it, and then sub-
sequently be updated by H, whilst the latter cannot be changed (by H), but
can have information about its value leaked through a correlation with X . Our
next definition, modifies Definition 1 to describe an abstract semantics taking
the correlated part into account, consistent with the way a concrete HMM leaks
information about correlated secrets. Our abstraction enforces the behaviour of
the correlated secret to be determined by the behaviour of the mutable state as
in Definition 2, via the commuting diagram summarised in Fig. 2.

Definition 3. Given a state space X of hidden (i.e. high-security) variables,
a context-aware denotational model of quantitative non-interference is a family
of functions from prior (input) distribution correlations on D(Z×X) to (out-
put) hyper-distributions on the same space, where Z is any correlated type, and
X is the mutable type. For a given correlated type Z, function hZ has type
D(Z×X)→D

2(Z×X). Moreover hX and hZ must satisfy the commuting dia-
gram in Fig. 2.

We define the composition of hZ
1 , hZ

2 to be hZ
1 ;hZ

2 = avg ◦ DhZ
2 ◦ hZ

1 .

Figure 2 describes the commuting diagram which captures exactly the effect
on collateral secrets as described by the concrete situation of HMM ’s at (5). The
function hX can preserve the correlation between the initial and final values of
the mutable variables, after which the correlated variable can be reinstalled by
applying D(Z·) to the hyper-distribution D

2X 2.
The next lemma shows that the standard Giry composition also satisfies the

healthiness condition of Fig. 2.

Lemma 1. Let hZ
1,2:D(Z×X) → D

2(Z×X) satisfy the commuting diagram in
Fig. 2. Then hZ

1 ;hZ
2 also satisfies it.

Algebra for Quantitative Information Flow 15

At left: Given a correlation Π:D(Z×X) define a matrix Z: Z×X and X -prior π:DX to be
such that Πz,x = Zz,xπx. This is arranged so that Π = Z·π∗ where π∗:DX 2 with π∗

x′x = πx

iff x = x′.

At right (in grey): For an initial/final
distribution δ:D(X×X ′), the left-
multiplication Z·δ produces a dis-
tribution in D(Z×X ′), just as ma-
trix multiplication would (with
δ as a matrix of probabilities).
At right (in black): The D-lifting

(push forward) of the multiplica-
tion (Z·) thus takes an initial-final
hyper in D

2(X×X ′) to a hyper in
D

2(Z×X ′).

D(X×X)
hX

�
D(

︷ ︸︸ ︷

D(X×X ′))

Z·
Z·

D(Z·)

D(Z×X)
hZ

�

D(Z×X ′)

D(D(Z×X ′))

Summary: A collateral Z is linked to our state X by joint distribution Π:D(Z×X).
This Π can be decomposed into its right marginal π: X on our state space, and a
“collateral stochastic channel matrix” Z: Z X between it and Z, i.e a right conditional
of Π. For each x the matrix Z gives the conditional distribution over Z, as in “the
probability that Z is some value, given that X is x”. The original joint distribution Π is
restored from π and Z by matrix multiplication. Since π is not presented as a matrix,
but Z is, we use the notation Z 〈π to reconstruct Π from the components. (Note that
right-conditionals are not necessarily unique; but the variation on x’s where π.x=0 does
not affect D(Z·) at right.)

Fig. 2. Healthiness condition for h: general collateral correlation Π:D(Z×X) can be
computed from the effect of h on initial and final states.

Proof. Let Π:D(Z×X) and Z, π∗ be defined as in Fig. 2 so that Π = Z ·π∗. We
now reason:

(hZ
1 ;hZ

2).Π
= avg ◦ DhZ

2 ◦ hZ
1 .Π “Definition 3”

= avg ◦ DhZ
2 ◦ D(Z·) ◦ hX

1 .π∗ “Figure 2 for h1: hZ
1 .Π = D(Z·) ◦ hX

1 .π∗”
= avg ◦ D(hZ

2 ◦ (Z·)) ◦ hX
1 .π∗ “Function composition: D(f ◦ g) = Df ◦ Dg”

= avg ◦ D(D(Z·) ◦ hX
2) ◦ hX

1 .π∗ “Figure 2 for h2: hZ
2 ◦ (Z·) = D(Z·) ◦ hX

2 ”

= avg ◦ D
2(Z·) ◦ DhX

2 ◦ hX
1 .π∗ “Function composition”

= D(Z·) ◦ avg ◦ DhX
2 ◦ hX

1 .π∗ “Monad law: avg ◦ D
2f = Df ◦ avg”

= D(Z·) ◦ (hX
2 ;hX

1).π∗. “Definition 3”

By construction, the action of HMM ’s defined above at Definition 2 satisfy
the commuting diagram of Fig. 2, because for π∗ defined in Fig. 2 we have

[[H]]X .π∗ = [
⇀

π∗〉H]. (6)

Finally we note that HMM composition given above at (1) is consistent with
the abstract semantics.

Lemma 2. Let H1,2: X � Y×X be HMM’s, with mutable type X ; further let Z
be any collateral type. Then [[H1;H2]]Z = [[H1]]Z ; [[H2]]Z , where composition of

16 A.K. McIver et al.

HMM’s (inside [[·]]) is defined at (1), and composition in the semantics (outside
[[·]]) is defined at Definition 3.

Proof. This follows from [16][Theorem 12] for HMM’s generally where we set
the secret type explicitly to be Z×X (rather than just X).

In this section we have shown how to describe an abstract semantics for pro-
grams based on viewing HMM ’s as correlation transformers, generalising our
previous work [16]. We have identified in Fig. 2 how the behaviour of the corre-
lation transformer hX determines the behaviour of hZ when X is the mutable
type and Z is the correlation type. This provides a general abstract account of
how programs modelled as HMM ’s update and leak information about secrets.

So far we have not defined a refinement order on abstract HMM ’s which
takes information flow into account. We do that next.

4 Generalising Entropy: Secure Refinement

We quantify our ignorance of hidden variables’ unknown exact value using uncer-
tainty measures over their (known) distribution, a generalisation of (e.g.) Shan-
non entropy and others [1,2,13,18,24]. These measures are continuous, concave
functions in DX→R [16]. With them, programs’ security behaviours can be com-
pared wrt. the average uncertainty of their final (probabilistic) state when run
from the same prior distribution; and for programs that don’t update their state
(e.g. the information channels of Shannon, intensively studied in current security
research), the amount of information flowing due to a single program’s execution
can be measured by looking for a change in uncertainty, i.e. by comparing the
program’s prior uncertainty with its average posterior uncertainty. Such com-
parisons between uncertainties are used to define secure refinement.

It is assumed that the adversary knows the program text (and for us this usu-
ally means some HMM), and that he observes the values emitted by (for exam-
ple) leak statements as described above. Given a hyper-distribution produced
by some program, each inner is a posterior distribution having some uncertainty;
and the (outer) probability of that inner represents the probability with which
that uncertainty occurs.

For general S, a distribution σ:DS and a real-valued (measurable) function
f : S→R, we write Eσ(f) for the expected value of f over σ. Typical cases are
when S=X and f : X→R is over the initial state, and when S=DX and we are
taking expected values of some f :DX→R over an output hyper in D

2X : in that
case EΔ(se) would e.g. be the conditional Shannon Entropy of a hyper Δ, where
se.π = −∑

x:X πx log(πx).
An important class of uncertainty measures, more appropriate for security

applications than Shannon entropy alone, are the “loss functions” [16].

Definition 4. A loss function 	 is of type I→X→R for some index set I, with
the intuitive meaning that 	.i.x is the cost to the adversary of using “attack
strategy” i when the hidden value turns out actually to be x. Her expected cost

Algebra for Quantitative Information Flow 17

for an attack planned but not yet carried out is then Eδ(.i) if δ is the distribution
in DX she knows to be governing x currently.6

From such an 	 we define an uncertainty measure U�(ρ):= infi: I Eρ(.i).
When I is finite, the inf can be replaced by min.

The inf represents a rational strategy where the adversary minimises her cost or
risk under the ignorance expressed by her knowing only the distribution ρ and
not an exact value: she will choose the strategy i whose expected cost Eρ(.i) is
the least. If ρ is the prior δ, then U�(δ) is her expected cost if attacking without
running the program, i.e. she attacks the input. If she does run the program,
producing output hyper Δ=[[P]].δ, then her expected cost is EΔ(U�); here she
attacks the program’s output, taking advantage of the observations she made as
the program ran.

For example, consider the following loss function for which the index set I
is the same as X , and the adversary is trying to guess the secret. If she chooses
some i which turns out to be the same as the secret, then her losses are 0,
otherwise if her guess is wrong, then she loses $1. Formalised, this becomes:

	.i.x:= (0 if i=x else 1). (7)

In Fig. 1 if the prior π:DX is uniform over X then U�(π) = 3/4, since
whichever i is picked there is only 1/4 chance that it is equal to the value
of the variable. After executing the program however, the hyper-distribution Δ
on X alone has a single posterior which assigns equal probability to 0 or 1, thus
EΔ(U�) = 1/2, showing that the adversary is better able to guess the secret after
executing the program than she was before.

Loss functions have been studied extensively elsewhere [2], where they have
been shown to describe more accurately than Shannon entropy the adversary’s
intentions and losses versus benefits involved in attacks [24]. The crucial prop-
erty of the derived uncertainty measures is that they are concave functions of
distributions — this feature embodies the idea that when information is leaked
then the losses to the attacker will be reduced. Thus if C is Channel matrix, and
I is the identity Markov matrix then we always obtain the inequality:

E[[(C:I)]]Z .ΠU� ≤ U�(Π) (8)

where the expression on the left gives the adversary’s losses relative to the release
of information through C and loss function 	, and on the right are the losses
without any release of information.

In other work [13,16,18] we have shown that loss functions (equivalently
their dual “gain functions”) are sufficient to determine hyper-distributions, that
is (remarkably) that if we know EΔ(U�) for all 	 then we know Δ itself.7 They
therefore define a “secure refinement” relation between programs (Definition 5
below), based on their output hyper-distributions. Any program that, for all loss
functions, can only cost more for the adversary, never less, is regarded as being
more secure:
6 Here �.i is the function �(i) of type X→R — we are using Currying.
7 This was called the Coriaceous Conjecture in [2].

18 A.K. McIver et al.

Definition 5. [13] Let H1,2 be programs represented by HMM’s in X � Y×X
so that X is the mutable type. We say that H1�H2 just when, for any correlated
type Z we have E[[H1]]Z .Π(U�) ≤ E[[H2]]Z .Π(U�) for all priors Π:D(Z×X) and loss
functions 	 on Z×X .

Notice that Definition 5 captures both functional and information flow prop-
erties: when the loss function is derived from a single choice, it behaves like a
standard “probabilistic predicate” and the refinement relation for this subset of
loss functions reduces to the well known functional refinement of probabilistic
programs [12].

In order to determine when H1 � H2 it might seem as though all con-
texts need to be considered. Fortunately the healthiness condition summarised
in Lemma 2 means that general refinement in all correlation contexts can follow
from local reasoning relative to [[H]]X . Context-aware refinement is defined with
respect only to correlations between initial and final states.

Definition 6. Let H1,2 be two HMM’s both with mutable type X . We say that
H1�̃H2, whenever E[[H1]]X .δ(U�) ≤ E[[H2]]X .δ(U�) for all δ:DX 2 and 	: I→X 2→R.

Our principal monotonicity result concerns state extension: it shows that
context-aware refinement is preserved within any context — even if fresh vari-
ables have been declared.

Theorem 1. Let H1,2 be HMM’s with mutable type X . Then

H1�̃H2 iff H1 � H2.

Proof. If H1 � H2 holds then it is clear that H1�̃H2.
Alternatively, we observe that from Fig. 2 we deduce that D(Z·) ◦ [[H]]X .π∗ =

[[H]]Z .Π, where Z, π∗ are determined by Π. This means that for any δ:D(Z×X)
in the support of [[H]]Z .Π, there is a corresponding δ∗:DX 2 in the support of
D(Z·) ◦ [[H]]X .π∗ such that δ = Z · δ∗.

Now given 	: I → Z×X → R we calculate:
∑

x′,z 	.i.z.x′ × δzx′

=
∑

x′,z 	.i.z.x′ × ∑
x Zzx × δ∗

xx′ “δ = Z · δ∗”
=

∑
x′,x,z 	.i.z.x′ × Zzx × δ∗

xx′ “Rearrange”

=
∑

x′,x
∑

z(.i.z.x′ × Zzx) × δ∗
xx′ “Rearrange”

=
∑

x′,x 	∗.i.x.x′ × δ∗
xx′ . “Define �∗.i.x.x′:=

∑
z �.i.z.x′×Zzx”

We see now that E[[H]]X .π∗(U�∗) = E[[H]]Z .Π(U�), where on the left we have an
expression that only involves the mutable type. Thus if H1 	� H2 we can find
some 	 and some Z such that E[[H1]]Z .Π(U�) > E[[H2]]Z .Π(U�) which, by the above,
means that E[[H1]]X .π∗(U�∗) > E[[H2]]X .π∗(U�∗) implying that H1 	�̃H2.

Theorem 1 now restores the crucial monotonicity result for reasoning about
information flow for sequential programs modelled as HMM ’s. In particular it
removes the quantification over all priors in D(Z×X), replacing it with a quan-
tification over all priors in DX 2. We comment on how this applies to practical
program analysis in Sect. 6.

Algebra for Quantitative Information Flow 19

5 Some Algebraic Inequalities

In this section we illustrate some useful algebraic laws for security-aware
programs modelled as abstract HMM ’s denoted by Definition 2, and equality
determined by the partial order at Definition 5.

Given δ1, δ2:DS we define convex summation for distributions by δ1 p+ δ2,
also in DS, as (δ1 p + δ2)s:= δ1s×p + δ2s×(1−p), where 0 ≤ p ≤ 1. Similarly,
given Δ1,Δ2:D2S we define convex summation between hyper-distributions as
Δ1

p⊕ Δ2, also in D
2S, as (Δ1

p⊕ Δ2)δ:= Δ1
δ×p + Δ2

δ×(1−p).

5.1 Basic Laws for Information Flow

We write h:D(Z×X) → D
2(Z×X), where X is the mutable type and Z is

some correlated type. The laws in Theorem 2 describe some basic monotonicity
relationships between HMM ’s. (1) says that if there is more information available
in the prior, then there will be more information flow. Similarly (2) says that if
all the observations are suppressed, then less information flows: recall that avg
applied to a hyper-distribution averages the inners (in our case the posteriors)
and therefore summarises the state updates only. (3–4) say that refinement is
preserved by sequential composition. Finally (5) says that if both h1, h2 simply
release information but don’t update the state, then the order in which that
information is released is irrelevant.

Theorem 2. Let h, h1, h2 be instances of HMM’s respectively [[H]]Z , [[H1]]Z ,
[[H2]]Z with mutable type X and correlated type Z. Further, let Π:D(Z×X),
and 0 ≤ p ≤ 1. The following refinements hold.

1. h.Π p⊕ h.Π ′ � h.(Π p+ Π ′)
2. h � η ◦ avg ◦ h
3. h1 � h2 implies h;h1 � h;h2

4. h1 � h2 implies h1;h � h2;h
5. If h1, h2 correspond to channels, then h1;h2 = h2;h1.

Proof. (1–4) have appeared elsewhere for an HMM model without collateral vari-
ables (see [13,16] for example), and the proof here is similar for each possible
correlated state, and relies on the concavity of loss functions. (5) also follows
directly from the definition of channels.

5.2 Information Flows Concerning the Collateral State

In some circumstances we can summarise simply the behaviour of a complex
HMM matrix formed by sequentially composing some number of leak-update
steps. We look at two cases here, and both result in summarising the overall
effect as a single step of an HMM, i.e. as a leak of information concerning the
mutable type, followed by a Markov update.

20 A.K. McIver et al.

Let H be an HMM matrix with mutable type X , and recall dup: X → X 2 is
defined by dup.x = (x, x). Now define chn.[[H]]X :D(X 2) → D

2X 2

chn.[[H]]X := D
2(dup) ◦ D(

↼·) ◦ [[H]]X , (9)

which ignores the update of the final state, and records the information flow
concerning the initial state only [17].

Similarly we can define the overall Markov state change mkv.[[H]]X :D(X 2) →
D

2X 2, which simply ignores the information flow. Its output is therefore a point
distribution in D

2X :

mkv.[[H]]X := η ◦ avg ◦ [[H]]X . (10)

If the effect of an HMM can be summarised as its associated chan-
nel followed by its associated Markov update then it can be written in the
form chn.[[H]]X ;mkv.[[H]]X . Next we illustrate two circumstances when this can
(almost) happen.

We say that chn.[[H]]X is standard if it does not leak information proba-
bilistically. For example the leak statement in Fig. 1 is standard — informally
this means any information it does leak is not “noisy” and corresponds to the
adversary deducing exactly some predicate. We can express standard leaks equa-
tionally by saying that if we leak the information (about the initial state) first,
and then run the program, we learn nothing more — this is not true if the
information released is noisy because each time a noisy channel is executed, a
little more information is released. Thus non-probabilistic leaks have associated
channel satisfying the following:

chn.[[H]]X ; [[H]]X = [[H]]X . (11)

Similarly we say that mkv.[[H]]X is standard if the relation between the initial
and final values for all inners in [[H]]X is functional, which can be expressed
equationally as:

mkv.[[H]]X ◦ D(dup) ◦ (
↼·).δ = η(δ), (12)

for any δ in the support of [[H]]X ◦ Ddup.π.
Theorem 3 says that if either chn.[[H]]X or mkv.[[H]]X is standard then H is

refined by a leak step followed by a Markov update. In the latter case where
mkv.[[H]]X is standard the refinement goes both ways.

Theorem 3. Let H be an HMM with mutable type X .

1. If mkv.[[H]]X is standard, then
[[H]]X ◦ Ddup = (chn.[[H]]X ;mkv.[[H]]X) ◦ Ddup

2. If chn.[[H]]X is standard, then
[[H]]X ◦ Ddup �̃ (chn.[[H]]X ;mkv.[[H]]X) ◦ Ddup8

8 We overload �̃ defined on HMM ’s directly to be defined similarly for the abstract
semantics: h1�̃h2 of type DX 2 → D

2X 2 if Eh1(δ)(U�) ≤ Eh2(δ)(U�) for all �.

Algebra for Quantitative Information Flow 21

Proof. Suppose that mkv.[[H]]X is standard. We reason as follows:

(chn.[[H]]X ;mkv.[[H]]X) ◦ D(dup)
= avg ◦ D(mkv.[[H]]X) ◦ D

2(dup) ◦ D(
↼·) ◦ [[H]]X ◦ D(dup) “Definition 3 and (9)”

=
avg ◦ D(mkv.[[H]]X ◦ D(dup) ◦ (

↼·)) ◦ [[H]]X ◦ D(dup)
“Function composition: D(f ◦ g) = Df ◦ Dg”

= avg ◦ D(η) ◦ [[H]]X ◦ D(dup) “(12)”

= [[H]]X ◦ D(dup). “Monad law: avg ◦ D(η) is the identity”

Now suppose that chn.[[H]]X is standard. We reason as follows

[[H]]X

= chn.[[H]]X ; [[H]]X “(11)”

�̃ chn.[[H]]X ;mkv.[[H]]X . “Theorem2(2), (10) and (3)”

Recall our program in Fig. 2 — since the change to X is functional, it means
that overall the HMM model for the loop is standard in its Markov component.
Thus by Theorem 3 (2) we can summarise its behaviour as a single HMM -style
step, which we can also write as

leak(X ÷ 2); X := X−(Xmod 2). (13)

The inclusion of the leak statement now ensures that the possible impact
on third-parties is now accurately recorded.

6 Related Work and Discussion

In this paper we have studied an abstract semantic model suitable for reasoning
about information flow in a general sequential programming framework. A par-
ticular innovation is to use hyper-distributions over correlations of initial and
final states. Hyper-distributions summarise the basic idea in quantitative infor-
mation flow that the value of the observation is not important, but only the
effect it induces on change of uncertainty wrt. the secret. An important aspect
is that our context-aware refinement order means that local reasoning is now
sufficient to deduce that the behaviours of leak (X); X:=0 are not the same
as those of X:=0: even though all confidentiality properties concerning only the
final value of X are the same in both program fragments. This is because they
leak differing kinds of information about he initial state, and this could become
significant when the program fragments are executed within contexts containing
fresh secrets correlated with X.

We have illustrated the model by proving some algebraic properties; further
work is required to develop the equational theory, and to apply it to a semantics
for a general programming language.

Classical analyses of quantitative information flow assume that the secret
does not change, and early approaches to measuring insecurities in programs are
based on determining a “change in uncertainty” of some “prior” value of the

22 A.K. McIver et al.

secret — although how to measure the uncertainty differs in each approach. For
example Clark et al. [4] use Shannon entropy to estimate the number of bits being
leaked; and Clarkson et al. [5] model a change in belief. Smith [24] demonstrated
the importance of using measures that have some operational significance, and
the idea was developed further [2] by introducing the notion of g-leakage to
express such significance in a very general way. The partial order used here on
programs is the same as the g-leakage order introduced by Alvim et al. [2],
but it appeared also in even earlier work [13]. Its properties have been studied
extensively [1].

Others have investigated information flow for dynamic secrets, for exam-
ple Marzdiel et al. [11] use probabilistic automata. Our recent work similarly
explored dynamic secrets, but allows only a single secret type X [13,16].

The abstract treatment of probabilistic systems with the introduction of a
“refinement order” was originally due to the probabilistic powerdomain of Jones
and Plotkin [10]; and those ideas were extended to include demonic nondeter-
minism (as well as probability) by us [22]. In both cases the order (on programs)
corresponds to an order determined by averaging over “probabilistic predicates”
which are random variables over the state space. The compositional refinement
order for information flow appeared in [13] for security programs expressed in a
simple programming language and in [1] for a channel model.

Our work here is essentially the Dalenius scenario presented in a
programming-language context where X is the statistical database and the corre-
lation with Z is “auxiliary information” [7] except that, unlike in the traditional
presentation, ours allows the “database” (the password) to be updated. This
model can be thought of as a basis for developing a full semantics for context-
aware refinement for a programming language with the aim of reasoning about
and developing information flow analysis which is valid generally for all operating
scenarios.

References

1. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C.,
Smith, G.: Additive and multiplicative notions of leakage, and their capacities.
In: IEEE 27th Computer Security Foundations Symposium, CSF 2014, Vienna,
Austria, 19–22 July 2014, pp. 308–322. IEEE (2014)

2. Alvim, M.S., Chatzikokolakis, K., Palamidessi, C., Smith, G.: Measuring informa-
tion leakage using generalized gain functions. In: Proceedings of the 25th IEEE
Computer Security Foundations Symposium (CSF 2012), pp. 265–279, June 2012

3. Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, Heidelberg (1998)

4. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confi-
dential data. Electr. Notes Theor. Comput. Sci. 59(3), 238–251 (2001)

5. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: 18th
IEEE Computer Security Foundations Workshop, (CSFW-18 2005), 20–22 June
2005, Aix-en-Provence, France, pp. 31–45 (2005)

6. Dalenius, T.: Towards a methodology for statistical disclosure control. Statistik
Tidskrift 15, 429–444 (1977)

Algebra for Quantitative Information Flow 23

7. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg
(2006). doi:10.1007/11787006 1

8. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1981). doi:10.1007/BFb0092872

9. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: Proceedings of
IEEE Symposium on Security and Privacy, pp. 75–86. IEEE Computer Society
(1984)

10. Jones, C., Plotkin, G.: A probabilistic powerdomain of evaluations. In: Proceedings
of the IEEE 4th Annual Symposium on Logic in Computer Science, Los Alamitos,
California, pp. 186–195. Computer Society Press (1989)

11. Mardziel, P., Alvim, M.S., Hicks, M.W., Clarkson, M.R.: Quantifying information
flow for dynamic secrets. In: 2014 IEEE Symposium on Security and Privacy, SP
2014, Berkeley, CA, USA, 18–21 May 2014, pp. 540–555 (2014)

12. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic
Systems. Monographs in Computer Science. Springer, New York (2005)

13. McIver, A., Meinicke, L., Morgan, C.: Compositional closure for bayes risk in prob-
abilistic noninterference. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 223–235.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1 19

14. McIver, A., Meinicke, L., Morgan, C.: A Kantorovich-monadic powerdomain for
information hiding, with probability and nondeterminism. In: Proceedings of LiCS
2012 (2012)

15. McIver, A., Meinicke, L., Morgan, C.: Hidden-Markov program algebra with iter-
ation. Mathematical Structures in Computer Science (2014)

16. McIver, A., Morgan, C., Rabehaja, T.: Abstract hidden Markov models: a monadic
account of quantitative information flow. In: Proceedings of LiCS 2015 (2015)

17. McIver, A., Morgan, C., Rabehaja, T., Bordenabe, N.: Reasoning about distributed
secrets. Submitted to FORTE 2017

18. McIver, A., Morgan, C., Smith, G., Espinoza, B., Meinicke, L.: Abstract channels
and their robust information-leakage ordering. In: Abadi, M., Kremer, S. (eds.)
POST 2014. LNCS, vol. 8414, pp. 83–102. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54792-8 5

19. Moggi, E.: Computational lambda-calculus and monads. In: Proceedings of 4th
Symposium on LiCS, pp. 14–23 (1989)

20. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall, Upper
Saddle River (1994). web.comlab.ox.ac.uk/oucl/publications/books/PfS/

21. Morgan, C.C.: The Shadow Knows: refinement of ignorance in sequential pro-
grams. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 359–378. Springer,
Heidelberg (2006). doi:10.1007/11783596 21

22. Morgan, C.C., McIver, A.K., Seidel, K.: Probabilistic predicate trans-
formers. ACM Trans. Program. Lang. Syst. 18(3), 325–353 (1996).
doi.acm.org/10.1145/229542.229547

23. Schrijvers, T., Morgan, C.: Hypers.hs Haskell code implementing quantitative
non-interference monadic security semantics (2015). http://www.cse.unsw.edu.au/
∼carrollm/Hypers.pdf

24. Smith, G.: On the foundations of quantitative information flow. In: Alfaro, L. (ed.)
FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00596-1 21

http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/BFb0092872
http://dx.doi.org/10.1007/978-3-642-14162-1_19
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://dx.doi.org/10.1007/978-3-642-54792-8_5
http://www.cs.ox.ac.uk/publications/books/PfS/
http://dx.doi.org/10.1007/11783596_21
http://dl.acm.org/citation.cfm?doid=229542.229547
http://www.cse.unsw.edu.au/~carrollm/Hypers.pdf
http://www.cse.unsw.edu.au/~carrollm/Hypers.pdf
http://dx.doi.org/10.1007/978-3-642-00596-1_21
http://dx.doi.org/10.1007/978-3-642-00596-1_21

Dual Space of a Lattice as the Completion
of a Pervin Space

Extended Abstract

Jean-Éric Pin(B)

IRIF, University Paris-Diderot and CNRS, Paris, France
Jean-Eric.Pin@irif.fr

We assume the reader is familiar with basic topology on the one hand and
finite automata theory on the other hand. No proofs are given in this extended
abstract.

1 Introduction

The original motivation of this paper, as presented in [15], was to compute the
dual space of a lattice of subsets of some free monoid A∗. According to Stone-
Priestley duality, the dual space of a lattice can be identified with the set of its
prime filters, but it is not always the simplest way to describe it. Consider for
instance the Boolean algebra generated by the sets of the form uA∗, where u is
a word. Its dual space is equal to the completion of A∗ for the prefix metric and
it can be easily identified with the set of finite or infinite words on A, a more
intuitive description than prime filters.

Elaborating on this idea, one may wonder whether the dual space of a given
lattice of subsets of a space can always be viewed as a completion of some sort.
The answer to this question is positive and known for a long time: for Boolean
algebras, the solution is detailed as an exercise in Bourbaki [7, Exercise 12, p.
211]. In the lattice case, the appropriate setting for this question is a very special
type of spaces, the so-called Pervin spaces, which form the topic of this paper.

A Pervin space is a set X equipped with a set of subsets, called the blocks of
the Pervin space. Blocks are closed under finite intersections and finite unions
and hence form a lattice of subsets of X. Pervin spaces are thus easier to define
than topological spaces or (quasi)-uniform spaces. As a consequence, most of the
standard topological notions, like convergence and cluster points, specialisation
order, filters and Cauchy filters, complete spaces and completion are much easier
to define for Pervin spaces.

The second motivation of this paper, also stemming from language theory,
is the characterisation of classes of languages by inequations, which is briefly
reviewed in Sect. 2. For regular languages on A∗, these inequations are of the
form u � v where u and v are elements of the free profinite monoid ̂A∗. The

J. Pin—Funded by the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme (grant agreement No.
670624) and by the DeLTA project (ANR-16-CE40-0007).

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 24–40, 2017.
DOI: 10.1007/978-3-319-57418-9 2

Dual Space of a Lattice 25

main result of [14] states that any lattice of regular languages can be defined
by a set (in general infinite) of such inequalities. The more general result of [15]
states any lattice of languages (not necessarily regular) can be defined by a set
of inequations of the form u � v, where u and v are now elements of βA∗, the
Stone-Čech compactification of A∗.

It turns out that it is possible to give a simple proof of these two results
using Pervin spaces. Let L be the set of blocks of a Pervin space X. Then the
completion of X can be defined as the set of valuations on L. A valuation on L
is simply a lattice morphism from L to the two-element Boolean algebra {0, 1}.
In particular, if L is the lattice of regular languages on A∗, then the completion
of A∗ is ̂A∗. If L is the lattice of all languages on A∗, then the completion of A∗

is βA∗.
Of course, valuations and prime ideals are just the same thing, but we prefer

to use valuations, because they come with a very natural order relation: v � w
if and only if v(L) � w(L) for all L ∈ L. It is also natural to say that a set of
blocks K satisfies the inequation v � w if, for every K ∈ K, v(K) � w(K). Now,
the characterisation of lattices by inequations takes the following form:

A set of blocks is a sublattice of L if and only if it can be defined by a set
of inequations.

Taking for L the lattice of regular languages on A∗, one recovers the result of
[14] and taking for L the lattice of all languages on A∗, one finds again the main
result of [15]. Another result is worth mentioning. Let L be a lattice of subsets
of X and let K be a sublattice of L. Then the following property holds:

The Pervin space (X,L) is a subspace of the Pervin space (X,K) and the
completion of (X,K) is a quotient of the completion of (X,L).

Although this result looks like a contravariant property of duality theory, one
has to be careful when defining a quotient space. This is fully discussed in Sect. 7.

2 Formal Languages

In this section, we briefly review the results on languages that motivated this
paper. A lattice of languages is a set L of languages of A∗ containing ∅ and
A∗ and closed under finite unions and finite intersections. It is closed under
quotients1 if, for each L ∈ L and u ∈ A∗, the languages u−1L and Lu−1 are also
in L. A lattice of languages is a Boolean algebra if it is closed under complement.

An important object in this theory is the free profinite monoid ̂A∗. It admits
several equivalent descriptions, but we will only describe two of them. The reader
is referred to [4,5,29] for more details.

1 Recall that u−1L = {x ∈ A∗ | ux ∈ L} and Lu−1 = {x ∈ A∗ | xu ∈ L}.

26 J.-É. Pin

The Free Profinite Monoid as the Completion of a Metric Space.
A monoid M separates two words u and v of A∗ if there exists a monoid mor-
phism ϕ : A∗ → M such that ϕ(u) �= ϕ(v). One can show that two distinct
words can always be separated by a finite monoid.

Given two words u, v ∈ A∗, we set

r(u, v) = min {|M | | M is a monoid that separates u and v}
d(u, v) = 2−r(u,v)

with the usual conventions min ∅ = +∞ and 2−∞ = 0. Then d is an ultrametric,
that is, satisfies the following properties, for all u, v, w ∈ A∗,

(1) d(u, v) = d(v, u),
(2) d(uw, vw) � d(u, v) and d(wu,wv) � d(u, v),
(3) d(u,w) � max{d(u, v), d(v, w)}.

Thus (A∗, d) is a metric space. Its completion, denoted by ̂A∗, is called the free
profinite monoid on A and its elements are called profinite words. The term
“monoid” needs to be justified. In fact, the multiplication on A∗ (the concate-
nation product) is uniformly continuous and hence can be extended in a unique
way to a uniformly continuous operation on ̂A∗. This operation makes ̂A∗ a
compact topological monoid. Recall that a topological monoid is a monoid M
equipped with a topology on M such that the multiplication (x, y) → xy is a
continuous map from M × M → M .

It is not so easy to give examples of profinite words which are not words, but
here is one. In a compact monoid, the smallest closed subsemigroup containing a
given element x has a unique idempotent, denoted xω. This is true in particular
in a finite monoid and in the free profinite monoid. Thus if x is a (profinite)
word, so is xω. Alternatively, one can define xω as the limit of the converging
sequence xn!. More details can be found in [3,23].

The Free Profinite Monoid as a Projective Limit.
Given a monoid morphism f : A∗ → M , we denote by ∼f the kernel congruence
of f , defined on A∗ by u ∼f v if and only if f(u) = f(v). For each pair of
surjective morphisms f : A∗ → M and g : A∗ → N such that ∼f ⊆ ∼g, there is
a unique surjective morphism πf,g : M → N such that g = πf,g ◦ f . Moreover
πf,h = πg,h ◦ πf,g and πf,f = IdM .

A∗

M N R

f
g h

πf,g πg,h

πf,h

Dual Space of a Lattice 27

The monoid ̂A∗ can be defined as the projective limit of the directed sys-
tem formed by the surjective morphisms between finite A-generated monoids.
A possible construction is to consider the compact monoid

P =
∏

f :A∗→Mf

Mf

where the product runs over all monoid morphisms f from A∗ to some finite
monoid Mf , equipped with the discrete topology. An element (sf)f :A∗→M of
P is compatible if πf,g(sf) = sg. The set of compatible elements is a closed
submonoid of P , which is equal to ̂A∗.

We now come to profinite inequations. Let u, v ∈ ̂A∗. A regular language L
of A∗ satisfies the inequation u � v if the condition u ∈ L implies v ∈ L, where
L denotes the closure of L in ̂A∗. Here is the main result of [14]:

Proposition 2.1. Any lattice of regular languages can be defined by a set (in
general infinite) of profinite inequalities.

This result is useful to analyse the expressive power of various fragments
of monadic second order logic interpreted on finite words. It is of particular
interest for lattices of regular languages closed under quotients. In this case the
inequations can be directly interpreted in the ordered syntactic monoid. This
notion was first introduced by Schützenberger in 1956 [25], but thereafter, he
apparently only used the syntactic monoid.

Let L be a language of A∗. The syntactic preorder of L is the relation �L

defined on A∗ by u �L v if and only if, for every x, y ∈ A∗,

xuy ∈ L =⇒ xvy ∈ L.

The syntactic congruence of L is the associated equivalence relation ∼L, defined
by u ∼L v if and only if u �L v and v �L u.

The syntactic monoid of L is the quotient M(L) of A∗ by ∼L and the natural
morphism ηL : A∗ → A∗/∼L is called the syntactic morphism of L. The syn-
tactic preorder �L induces an order on the quotient monoid M(L). The result-
ing ordered monoid is called the syntactic ordered monoid of L. The syntactic
morphism admits a unique continuous extension η̂ : ̂A∗ → M . For instance, if
η(u) = x, then η̂(uω) = xω, where xω is the unique idempotent power of x in M .

For instance, if L is the language {a, aba}, its syntactic monoid is the monoid
M = {1, a, b, ab, ba, aba, 0} presented by the relations a2 = b2 = bab = 0. Its
syntactic order is 0 < ab < 1, 0 < ba < 1, 0 < aba < a, 0 < b.

Let L be a lattice of regular languages closed under quotients. One can show
that L satisfies the profinite inequation u � v if and only if, for each L ∈ L,
ηL(u) � ηL(v). This allows one to characterise the languages of L by a property
of their ordered syntactic monoid. Here are three examples of such results, but
many more can be found in the literature [23,24].

(1) A regular language is finite if and only if its ordered syntactic monoid satisfies
the inequations yxω = xω = xωy and xω � y for all profinite words x ∈
̂A∗ − {1} and y ∈ ̂A∗.

28 J.-É. Pin

(2) A famous result of Schützenberger [26] states that a regular language is star-
free if and only if its syntactic monoid satisfies the equations xxω = xω for
all profinite words x ∈ ̂A∗.

(3) Our third example is related to Boolean circuits. Recall that AC0 is the set of
unbounded fan-in, polynomial size, constant-depth Boolean circuits. One can
show [6,27,28] that a regular language is recognised by a circuit in AC0 if and
only if its syntactic monoid satisfies the equations (xω−1y)ω = (xω−1y)ω+1

for all words x and y of the same length.

It is also possible to give an inequational characterisation of lattices of languages
that are not regular [15]. The price to pay is to replace the profinite monoid by an
even larger space, the Stone-Čech compactification of A∗, usually denoted βA∗.
One can define βA∗ as the set of ultrafilters on the discrete space A∗. A second
way to define it is to take the closure of the image of A∗ in the product space

∏

K
where the product runs over all maps from A∗ into a compact Hausdorff space
K whose underlying set is P(P(A∗)). Both spaces ̂A∗ and βA∗ are compact, but
only ̂A∗ is a compact monoid.

Let u, v ∈ βA∗. We say that L satisfies the ultrafilter inequality u → v if
u ∈ L implies v ∈ L, where L now denotes the closure of L in βA∗. The main
result of [15] can be stated as follows:

Proposition 2.2. Any lattice of languages can be defined by a set (in general
infinite) of ultrafilter inequalities.

In Sect. 8, we will recover Propositions 2.1 and 2.2 as a special case of
Theorem 8.3. See also [13] for a duality point of view of these results.

3 Pervin Spaces

It is time to introduce the main topic of this article. Let X be a set. A lattice
of subsets of X is a subset of P(X) containing ∅ and X and closed under finite
intersections and finite unions. A Boolean algebra of subsets of X is a lattice of
subsets of X closed under complement.

Given a lattice L of subsets of X, we denote by Ls the Boolean algebra
generated by L. There is a simple description of Ls using the set

D(L) = {L1 − L0 | L0, L1 ∈ L}.

of differences of members of L. Indeed, Hausdorff [16] has shown that the Boolean
algebra Ls consists of the finite unions of elements of D(L).

3.1 The Category of Pervin Spaces

A Pervin structure on a set X is a lattice L of subsets of X. The elements of
L are called the blocks of the Pervin structure. A Pervin space is a set endowed
with a Pervin structure. More formally, a Pervin space is a pair (X,L) where L

Dual Space of a Lattice 29

is a lattice of subsets of X. A Boolean Pervin space is a Pervin space in which
L is a Boolean algebra.

Let (X,K) and (Y,L) be two Pervin spaces. A map ϕ : X → Y is said to be
morphism if, for each L ∈ L, ϕ−1(L) ∈ K. In other words, a map is a morphism
if the preimage of a block is a block. It is readily seen that the composition
of two morphisms is again a morphism and that the identity function on X is
a morphism. Pervin spaces together with their morphisms form the category
Pervin of Pervin spaces.

Two Pervin spaces, both defined on the two-element set {0, 1}, play an impor-
tant role in this theory. The first one, the Boolean space B, is defined by the
lattice of all subsets of {0, 1}. The second one, the Sierpiński space S, is defined
by the lattice {∅, {1}, {0, 1}}. Note that the identity on {0, 1} is a morphism
from B to S but it is not a morphism from S to B. More examples of Pervin
spaces are given in Sect. 5.

3.2 Pervin Spaces as Preordered Sets

A Pervin space (X,L) is naturally equipped with a preorder �L on X defined
by x �L y if, for each L ∈ L,

x ∈ L =⇒ y ∈ L.

The associated equivalence relation ∼L is defined on X by x ∼L y if, for each
L ∈ L,

x ∈ L ⇐⇒ y ∈ L.

When the lattice L is understood, we will drop the index L and simply denote
by � and ∼ the preorder on (X,L) and its associated equivalence relation. For
instance, in the Boolean space, the preorder is the equality relation and in the
Sierpiński space, the preorder is 0 � 1.

It is easy to see that any morphism of Pervin spaces is order-preserving.

3.3 Pervin Spaces as Topological Spaces

There are two topologies of interest on a Pervin space (X,L). The first one,
simply called the topology of (X,L), is the topology based on the blocks of
L. The second one, called the symmetrical topology of (X,L), is the topology
based on the blocks of Ls. In view of Hausdorff’s result, these definitions can be
summarized as follows:

Definition 3.1. The blocks of a Pervin space form a base of its topology. The
differences of two blocks form a base of clopen sets of its symmetrical topology.

It follows immediately from the definition of the topology that the blocks con-
taining a point x form a basis of the filter N (x) of neighbourhoods of x and
that

N (x) ∩ L = {L ∈ L | x ∈ L} (1)

30 J.-É. Pin

The specialisation preorder, defined on any topological space X, is the relation
� defined on X by x � y if and only if {x} ⊆ {y} or, equivalently, if and only if
x ∈ {y}. It turns out that in a Pervin space (X,L), the specialisation preorder
coincides with the preorder �L.

Recall that a topological space X is a Kolmogorov space (or T0-space) if for
any two distinct points of X, there is an open set which contains one of these
points and not the other. Kolmogorov Pervin spaces are easy to describe:

Proposition 3.2. Let (X,L) be a Pervin space. The following conditions are
equivalent:

(1) The preorder � is a partial order,
(2) The relation ∼ is the equality relation,
(3) The space (X,L) is Kolmogorov,
(4) The space (X,Ls) is Hausdorff.

Being Kolmogorov is a very desirable property for a Pervin space. Fortunately, it
is easy to make a Pervin space Kolmogorov by taking its quotient by the relation
∼. That is, one considers the quotient space X/∼ and one defines the blocks of
X/∼ to be the sets of the form L/∼, for L ∈ L. Slightly abusing notation, we set

L/∼ = {L/∼ | L ∈ L}

The Pervin space (X/∼,L/∼) is called the Kolmogorov quotient of X. Note that
the natural map from X to X/∼ is a morphism of Pervin spaces which induces
a lattice isomorphism from L to L/∼.

Compact Pervin spaces have some further interesting properties. First of all,
blocks and compact open subsets are closely related. Note however that since
our spaces are not necessarily Hausdorff, compact subsets are not necessarily
closed.

Theorem 3.3. A compact open subset of a compact Pervin space is a block. If a
Pervin space is compact for the symmetrical topology, then every block is compact
open (for the usual topology). In particular, a subset of a compact Boolean Pervin
space is a block if and only if it is compact open.

When X is Kolmogorov and compact for the symmetrical topology, a few
more characterisations of its blocks are available.

Theorem 3.4. Let (X,L) be a Kolmogorov Pervin space that is compact for the
symmetrical topology and let L be a subset of X. Then the following conditions
are equivalent:

(1) L is a block of L,
(2) L is compact open in (X,L),
(3) L is an upset in (X,L) and is clopen in (X,Ls),
(4) L is an upset in (X,L) and a block in (X,Ls).

Dual Space of a Lattice 31

4 Complete Pervin Spaces

We have already seen that several topological definitions become much simpler
in the case of a Pervin space. This is again the case for the notions studied in
this section: Cauchy filters, complete spaces and completion.

Definition 4.1. A filter F on a Pervin space X is Cauchy if and only if, for
every block L, either L ∈ F or Lc ∈ F .

One can show that it makes no difference to consider the symmetrical Pervin
structure. More precisely, if (X,L) is a Pervin space, then a filter on X is Cauchy
on (X,L) if and only if it is Cauchy on (X,Ls). One can show, as in the case of
a metric space, that a cluster point of a Cauchy filter is a limit point.

Definition 4.2. A Pervin space is complete if every Cauchy filter converges in
the symmetrical topology.

Complete Pervin spaces admit the following characterisations.

Theorem 4.3. Let (X,L) be a Pervin space. The following conditions are
equivalent:

(1) (X,L) is complete,
(2) (X,Ls) is complete,
(3) (X,Ls) is compact.

If these conditions are satisfied, then (X,L) is compact.

Note however that a compact Pervin space need not be complete as shown in
Example 5.2. Just like in the case of a metric space, it is easy to describe the
complete subspaces of a complete Pervin space.

Proposition 4.4. Every subspace of a complete Pervin space that is closed in
the symmetrical topology is complete. A complete subspace of a Kolmogorov Per-
vin space is closed in the symmetrical topology.

We now come to the formal definition of the completion of a Pervin space.

Definition 4.5. A completion of a Pervin space X is a complete Kolmogorov
Pervin space ̂X together with a morphism ı : X → ̂X satisfying the following
universal property: for each morphism ϕ : X → Y , where Y is a complete
Kolmogorov Pervin space, there exists a unique morphism ϕ̂ : ̂X → Y such that
ϕ̂ ◦ ı = ϕ.

X X

Y

ı

ϕ ϕ

By standard categorical arguments, these conditions imply the unicity of the
completion (up to isomorphism). The actual construction of the completion relies
on the notion of valuation on a lattice.

32 J.-É. Pin

Definition 4.6. A valuation on a lattice L is a lattice morphism from L into
the Boolean lattice {0, 1}.

In other words, a valuation is a function v from L into {0, 1} satisfying the
following properties, for all L,L′ ∈ L:

(1) v(∅) = 0 and v(X) = 1,
(2) v(L ∪ L′) = v(L) + v(L′),
(3) v(L ∩ L′) = v(L)v(L′),

where the addition and the product denote the Boolean operations. Valuations
are naturally ordered by setting v � v′ if and only if v(L) � v′(L) for all L ∈ L.

The completion of a Pervin space can now be constructed as follows. For
each block L, let

̂L = {v | v is a valuation on L such that v(L) = 1}.

In particular, ̂X is the set of all valuations on L and one can show that the
map L → ̂L defines a lattice morphism from L to the lattice of subsets of ̂X.
Consequently, the set

̂L = {̂L | L ∈ L}

is a lattice and (̂X, ̂L) is a Pervin space. We now have a candidate for the
completion, but we still need a candidate for the map ı : X → ̂X. For each
x ∈ X, we define ı(x) as the valuation on L such that ı(x)(L) = 1 if and only if
x ∈ L.

Theorem 4.7. The Pervin space (̂X, ̂L) is Kolmogorov and complete and the
pair (ı, (̂X, ̂L)) is the completion of (X,L).

A Pervin space and its Kolmogorov quotient have isomorphic completions. Fur-
thermore, completion and symmetrization are two commuting operations. More
precisely, the symmetrical completion (̂X, (̂L)s) of (X,L) can also be obtained
as the completion of (X,Ls).

A nice feature of completions is that they extend to morphisms.

Theorem 4.8. Let (X,LX) and (Y,LY) be two Pervin spaces and let ϕ : X →
Y be a morphism.

(1) There exists a unique morphism ϕ̂ from (̂X, ̂LX) to (̂Y , ̂LY) such that ıY ◦
ϕ = ϕ̂ ◦ ıX .

X

X

Y

Y

ıX ıY

ϕ

ϕ

Dual Space of a Lattice 33

(2) The following formulas hold for all v ∈ ̂X and all L ∈ LY :

ϕ̂(v)(L) = v(ϕ−1(L))

ϕ̂−1(̂L) = ϕ̂−1(L)

Note also that in the category of Pervin spaces, completions preserve surjectivity,
a property that does not hold for metric spaces. We now give a useful consequence
of Theorem 4.8.

Corollary 4.9. Let ϕ1 and ϕ2 be two morphisms from X to Y and let ϕ̂1 and
ϕ̂2 be their extensions from ̂X to ̂Y . If ϕ1 � ϕ2, then ϕ̂1 � ϕ̂2.

The previous corollary is often used under a slightly different form, analogous
to the Principle of extensions of identities of Bourbaki [7, Chapter I, Sect. 8.1,
Corollary 1].

Corollary 4.10. Let ϕ1 and ϕ2 be two morphisms from (̂X, ̂LX) to (̂Y , ̂LY). If,
for all x ∈ X, ϕ1(x) � ϕ2(x), then ϕ1 � ϕ2. In particular, if ϕ1 and ϕ2 coincide
on X, then they are necessarily equal.

5 Examples of Pervin Spaces

In this series of examples, (X,L) denotes a Pervin space.

Example 5.1 (Finite sets). Let X = N and L be the lattice formed by X and the
finite subsets of X. This space is Hausdorff but is neither compact nor complete.
Indeed, the valuation v given by v(X) = 1 and v(L) = 0 for each finite set L

defines a new element, denoted −∞. The completion of (X,L) is (̂X, ̂L), where
̂X = X ∪ {−∞} and ̂L is the lattice formed by ̂X and the finite subsets of X.
This lattice is isomorphic to L. The order on X is the equality relation, but in
̂X, the order is given by −∞ � x for each x ∈ ̂X.

Example 5.2 (Cofinite sets). Let X = N and let L be the lattice formed by
the empty set and the cofinite subsets of X. This space is Kolmogorov and
compact, but it is neither Hausdorff nor complete. Indeed, the valuation v given
by v(L) = 1 for each cofinite set L defines a new element, denoted ∞. The
completion of (X,L) is (̂X, ̂L), where ̂X = X ∪ {∞} and ̂L is the lattice formed
by the empty set and the cofinite subsets of ̂X containing ∞. This lattice is
isomorphic to L. The order on X is the equality relation, but in ̂X, the order is
given by x � ∞ for each x ∈ ̂X.

Example 5.3 (Finite or cofinite sets). Let X = N and let L be the Boolean
algebra of all finite or cofinite subsets of X. This space is Hausdorff but it is
neither compact nor complete. Indeed, the valuation v given by v(L) = 1 if L
is cofinite and v(L) = 0 if L is finite defines a new element, denoted ∞. The
completion of (X,L) is (̂X, ̂L), where ̂X = X ∪ {∞} and ̂L is the Boolean algebra
formed by the finite subsets of X and by the cofinite subsets of ̂X containing
∞. This Boolean algebra is isomorphic to L.

34 J.-É. Pin

Example 5.4 (Finite sections). Let

X =
{

1
n

| n is a positive integer
}

and L be the lattice formed by X and the subsets Ln = { 1
k | 0 < k � n},

for n � 0. This space is Kolmogorov and compact, but it is neither Hausdorff
nor complete since the Cauchy filter L − {∅} does not converge in (X,Ls). The
valuation v given by v(X) = 1 and v(Ln) = 0 for each n defines a new element,
denoted 0. The completion of (X,L) is (̂X, ̂L), where ̂X = X ∪ {0} and ̂L is the
lattice formed by the empty set, ̂X and the finite subsets of ̂X containing 0. This
lattice is isomorphic to L. The order on ̂X is the chain 0 � · · · � 1

n � · · · � 1
2 � 1.

Every filter has 1 as a converging point. Indeed, if L ∈ L and 1 ∈ L, then L = X
and X is a member of all filters.

Example 5.5. Let X = {0, 1, 2} and

L =
{

∅, {1}, {2}, {1, 2}, {0, 1, 2}
}

.

The preorder on (X,L) is given by 0 � 1 and 0 � 2. Let F = {{1, 2}, {0, 1, 2}}
be the filter generated by {1, 2}. Then F is converging to 0 but it is not Cauchy
since neither {1} nor its complement are in F .

Example 5.6. Let X = N and

L = {finite subsets of N} ∪
{

{0}c
}

.

The preorder on (X,L) is given by 0 < n for each positive integer n. Let F be
the Cauchy filter of all cofinite subsets of N. Then 0 is the unique limit point of
F in (X,L) but F has no limit point in (X,Ls).

Example 5.7. Let (X1,L1) be the Pervin space considered in Example 5.1 and
let (X2,L2) be the Pervin space considered in Example 5.4. Let ϕ : X1 → X2

be the map defined by ϕ(n) = 1
n+1 . Then ϕ is a morphism and its completion

ϕ̂ : ̂X1 → ̂X2 is given by ϕ̂(−∞) = 0.

6 Duality Results

This section presents the links between Pervin spaces and duality theory. It relies
on more advanced topological notions.

Duality theory provides three different representations of bounded distrib-
utive lattices via Priestley spaces, spectral spaces and pairwise Stone spaces
[8,10,12,17]. Is it possible to recover these results using Pervin spaces? Well, not
quite. Indeed, while duality is concerned with abstract distributive lattices, we
only consider concrete ones, already given as a lattice of subsets. However, Pervin
spaces allow one to recover these three representations for concrete distributive
lattices. Let us first recall the definitions.

Dual Space of a Lattice 35

A topological space is zero-dimensional if it has a basis consisting of clopen
subsets. It is totally disconnected if its connected components are singletons. It
is well known that a compact space is zero-dimensional if and only if it is totally
disconnected.

A Stone space is a compact totally disconnected Hausdorff space. A pair-
wise Stone space is a bitopological space (X, T1, T2) which is pairwise compact,
pairwise Hausdorff, and pairwise zero-dimensional.

A Priestley space is an ordered compact topological space (X,�) satisfying
the following separation property : if x �� y, then there exists a clopen upset U of
X such that x ∈ U and y /∈ U .

A subset S of a topological space X is irreducible if and only if, for each
finite family (Fi)i∈I of closed sets, the condition S ⊆

⋃

i∈I Fi implies that there
exists i ∈ I such that S ⊆ Fi. A topological space X is sober if every irreducible
closed subset of X is the closure of exactly one point of X.

A topological space is spectral if it is Kolmogorov and sober and the set of
its compact open subsets is closed under finite intersection and form a basis for
its topology.

The relevance of Pervin spaces to duality theory is summarized in the fol-
lowing result:

Theorem 6.1. The completion of a Pervin space (X,L) is the Stone dual of L.

To complete this result, it just remains to requalify complete Pervin spaces as
Priestley spaces, spectral spaces and pairwise Stone spaces.

Priestley Spaces. If (X,L) is a complete Pervin space, then (X,L,�L) is a
Priestley space. The proof relies on the following variation on the prime filter
theorem from order theory.

Proposition 6.2. Let K be a sublattice of a lattice L and let L be an element
of L − K. Then there exist two valuations v0 and v1 on L such that v0(L) = 0,
v1(L) = 1 and v1 � v0 on K.

By the way, this result not only gives the separation property of Priestley spaces,
but it is also of frequent use in the theory of Pervin spaces.

Spectral Spaces. A compact Kolmogorov Pervin space need not be sober.
However, if (X,L) is a Kolmogorov Pervin space and if (X,Ls) is compact, then
(X,L) is spectral. In particular, a complete Pervin space is spectral.

Pairwise Stone Spaces. Let Lc = {Lc | L ∈ L} be the set of complements of
blocks of X. Then (X,Lc) is also a Pervin space and if (X,L) is complete, then
(X,L,Lc) is a pairwise Stone space.

Let (X,L) be a Pervin space and let (̂X, ̂L) be its completion. Then ̂L is
the set of all compact open subsets of ̂X. It is also the set of upsets of ̂X that
are clopen in the symmetrical topology. Moreover, the lattices L and ̂L are
isomorphic lattices.

These isomorphisms can be given explicitly. We just describe here the Kol-
mogorov case, which is simpler. Indeed, if X is Kolmogorov, then the preorder

36 J.-É. Pin

on X is an order and ı defines an embedding from X into ̂X. We tacitly make
use of this embedding to identify X with a subset of ̂X.

Theorem 6.3. Let (X,L) be a Kolmogorov Pervin space. Then the maps L �→ ̂L

and K �→ K ∩ X are mutually inverse lattice isomorphisms between L and ̂L.

If L is a Boolean algebra, then all previous results simplify greatly. First, the
preorders on X and on ̂X are equivalence relations. Next, we have:

Proposition 6.4. Let (X,L) be a Boolean Pervin space. Then L forms a basis
of clopen sets. Furthermore, X is Kolmogorov if and only if it is Hausdorff.
Moreover, (̂X, ̂L) is a Hausdorff compact space and ̂L is the Boolean algebra of
clopen sets of ̂X.

Furthermore, Theorem6.3 can be restated as follows.

Theorem 6.5. Let (X,L) be a Hausdorff Boolean Pervin space. Then the for-
mulas ̂L = L and L ∩ X = L hold for all L ∈ L. The maps L �→ L and
K �→ K ∩ X are mutually inverse isomorphisms of Boolean algebra between L
and ̂L.

In particular, the following formulas hold for all L,L1, L2 ∈ L:

L1 ∪ L2 = L1 ∪ L2, L1 ∩ L2 = L1 ∩ L2 and Lc = L
c
.

7 Quotient Spaces

Let (X,L) be a Pervin space and let K be a sublattice of L. Denote by ̂XL the
completion of (X,L) and by ̂XK the completion of (X,K). Then the following
result holds.

Theorem 7.1. Let L be a lattice of subsets of X and let K be a sublattice of L.
Then the identity function on X is a morphism from (X,L) to (X,K) and its
completion is a quotient map from ̂XL onto ̂XK.

This theorem looks like an almost immediate consequence of Theorem 4.8 but
there is a missing bit: we did not yet define the notion of a quotient map in the
category of Pervin spaces.

A natural attempt would be to mimic the definition used for topological
spaces (and for quasi-uniform spaces): a quotient map ϕ : X → Y should be a
surjective morphism2 such that Y is equipped with the final Pervin structure
induced by ϕ. The second condition states that a subset S of Y is a block if
and only if ϕ−1(S) is a block. However, Theorem 7.1 does not work under this
definition. Indeed, we have already seen that the identity function I on {0, 1}
2 Formally, an epimorphism, but it is easy to see that in the category Pervin epimor-

phisms coincide with surjective morphisms.

Dual Space of a Lattice 37

induces a morphism from the Boolean space B to the Sierpiński space S. It is
easy to see that these two spaces are isomorphic to their completion and that
̂I = I. Consequently, I should be a quotient map from B to S. However, {0} is
a subset of S such that I−1(0) is a block of B, but it is not a block of S. Thus
our definition of a quotient map has to be improved as follows:

Definition 7.2. Let X and Y be Pervin spaces. A surjective morphism ϕ from
X to Y is a quotient map if and only if each upset U of Y such that ϕ−1(U) is
a block of X is a block of Y .

Following [1], let Prost denote the category of preordered sets, with order-
preserving maps as morphisms. In the language of category theory, we viewed
the category Pervin as a concrete category over the category Prost. That is,
the forgetful functor now maps a Pervin space (X,L) not to the set X, but to the
preordered set (X,�L). This definition can be rephrased in purely categorical
terms, in which the role of the category Prost is even more apparent.

Proposition 7.3. Let ϕ : X → Y be a surjective morphism of Pervin spaces.
The following conditions are equivalent:

(1) ϕ is a quotient map,
(2) for each Pervin space Z, any preorder-preserving map ψ : Y → Z such that

ψ ◦ ϕ is a morphism is a morphism,
(3) every preorder-preserving map ψ from Y to the Sierpiński space such that

ψ ◦ ϕ is a morphism is also a morphism.

8 Inequations

We now give a general formulation of the results [14,15]. We first need an abstract
definition of the notion of inequations.

Definition 8.1. Let (X,L) be a Pervin space, let L be a block of X and let
(v, w) be a pair of valuations on L. Then L satisfies the inequation v � w if
v(L) � w(L). More generally, a set of blocks K satisfies the inequation v � w
if, for every K ∈ K, v(K) � w(K).

Definition 8.2 can be easily extended to a set of inequalities as follows:

Definition 8.2. Given a set S of inequations, a block L satisfies S if it satisfies
all the inequations of S. Similarly, a set of blocks K satisfies S if it satisfies all
the inequations of S. Finally the set of all blocks of X satisfying S is called the
set of blocks defined by S.

Formally, an inequation is thus a pair (v, w) of valuations on L. We are now
ready to state the main result of this section.

Theorem 8.3. Let (X,L) be a Pervin space. A set of blocks of X is a sublattice
of L if and only if it can be defined by a set of inequations.

38 J.-É. Pin

Back to Languages. Let X = A∗ and let Reg(A∗) be the Boolean algebra of
all regular languages on A. Almeida [2] has proved that the dual space of this
Boolean algebra is the profinite monoid ̂A∗. In other words, ̂A∗ is the completion
of the Pervin space (A∗,Reg(A∗)). This result can be briefly explained as follows.
In one direction, each profinite word v defines a valuation on Reg(A∗) defined
by v(L) = 1 if and only if v ∈ L, where L denotes the closure of L in ̂A∗.

In the opposite direction, let M be a finite monoid, ϕ : A∗ → M be a
monoid morphism and v a valuation on Reg(A∗). Since v(A∗) = 1 and A∗ =
⋃

m∈M ϕ−1(m), one gets

1 = v(A∗) =
∑

m∈M

v(ϕ−1(m)).

Consequently, there exists an m ∈ M such that v(ϕ−1(m)) = 1. This m is unique
since if v(ϕ−1(m′)) = 1 for some m′ �= m, then, as ϕ−1(m)∩ϕ−1(m) = ∅, one gets

v(∅) = v(ϕ−1(m) ∩ ϕ−1(m)) = v(ϕ−1(m))v(ϕ−1(m′)) = 1,

a contradiction. Therefore, if v is a valuation on Reg(A∗), there exists a unique
profinite word u such that, for each monoid morphism ϕ : A∗ → M , ϕ̂(u) is the
unique element m ∈ M such that v(ϕ−1(m)) = 1.

Since ̂A∗ is the completion of the Pervin space (A∗,Reg(A∗)), a direct appli-
cation of Theorem 8.3 gives back Proposition 2.1.

To recover Proposition 2.2, let us first recall that βA∗ is the set of ultrafil-
ters of the Boolean algebra P(A∗). Since, in the Boolean case, valuations and
ultrafilters are essentially the same thing3, the completion of the Pervin space
(A∗,P(A∗)) is isomorphic to βA∗ and Theorem 8.3 gives back Proposition 2.2.

9 Bibliographic Notes

Pervin spaces were originally introduced by Pervin [22] to prove that every topo-
logical space can be derived from a quasi-uniform space. Since then, they have
been regularly used to provide examples or counterexamples on quasi-uniform
spaces but surprisingly, only two short articles seem to have been specifically
devoted to their study, one by Levine in 1969 [21] and another one by Császár
in 1993 [9]. In fact, Pervin spaces are so specific that their properties mostly
appear in the literature as corollaries of more general results on quasi-uniform
spaces. For instance, a quasi-uniform space is isomorphic to a Pervin space if
and only if it is transitive and totally bounded. The reader interested in quasi-
uniform spaces is refereed to the remarkable surveys written by Künzi [18–20].
Most notions introduced in this paper are actually adapted from the correspond-
ing notions on quasi-uniform spaces, but they often become much simpler in the
context of Pervin spaces.

Finally, the inspiring article of Erné [11], which sheds additional light on
Pervin spaces, is highly recommended.
3 Let us define the characteristic function of an ultrafilter U as the map from P(A∗)

to {0, 1} taking value 1 on U and 0 elsewhere. It is easy to see that it is a valuation
on P(A∗). Conversely, if v is a valuation on P(A∗), then v−1(1) is an ultrafilter.

Dual Space of a Lattice 39

10 Conclusion

As we explained in the introduction, our original motivation was to find a simple
way to describe the dual space of a lattice of subsets by a suitable completion.
Metric spaces did not cover our needs, even in the case of Boolean algebras,
except in the case of countable Boolean algebras. Uniform spaces did not suf-
fice when dealing with lattices. Quasi-uniform spaces, on the other hand, while
fulfilling our requirements, seemed to be too general a tool for our purpose. How-
ever, we soon realised that we only needed a very special class of quasi-uniform
spaces, the Pervin spaces. To our surprise, turning to Pervin spaces did not only
simplify a number of results and proofs, but also lead us to an other point of
view on Stone’s duality. Moreover, it led us to a notion of quotient space which
seems to be more appropriate in the ordered case.

Acknowledgements. I would like to thank Mai Gehrke and Serge Grigorieff for many
fruitful discussions on Pervin spaces. I would also like to thank Daniela Petrişan for her
critical help on categorical notions used in this paper. Encouragements from Hans-Peter
A. Künzi and Marcel Erné were greatly appreciated.

References

1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy
of cats. Repr. Theory Appl. Categ. 17, 1–507 (2006). Reprint of the 1990 original
[Wiley, New York; MR1051419]

2. Almeida, J.: Residually finite congruences and quasi-regular subsets in uniform
algebras. Portugaliæ Math. 46, 313–328 (1989)

3. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific Publishing
Co. Inc., River Edge (1994). Translated from the 1992 Portuguese original and
revised by the author

4. Almeida, J.: Profinite semigroups and applications. In: Kudryavtsev, V.B.,
Rosenberg, I.G., Goldstein, M. (eds.) Structural Theory of Automata, Semigroups
and Universal Algebra, vol. 207, pp. 1–45. Springer, Dordrecht (2005)

5. Almeida, J., Weil, P.: Relatively free profinite monoids: an introduction and exam-
ples. In: Fountain, J. (ed.) NATO Advanced Study Institute Semigroups, For-
mal Languages and Groups, vol. 466, pp. 73–117. Kluwer Academic Publishers,
Dordrecht (1995)

6. Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages
in NC1. J. Comput. System Sci. 44(3), 478–499 (1992)

7. Bourbaki, N.: General Topology. Chapters 1–4. Elements of Mathematics, vol. 18.
Springer, Berlin (1998)

8. Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge
Studies in Advanced Mathematics, vol. 57. Cambridge University Press, Cambridge
(1998)

9. Császár, A.: D-completions of Pervin-type quasi-uniformities. Acta Sci. Math.
57(1–4), 329–335 (1993)

10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn.
Cambridge University Press, Cambridge (2002)

40 J.-É. Pin

11. Erné, M.: Ideal completions and compactifications. Appl. Categ. Struct. 9(3), 217–
243 (2001)

12. Gehrke, M.: Canonical extensions, esakia spaces, and universal models. In:
Bezhanishvili, G. (ed.) Leo Esakia on Duality in Modal and Intuitionis-
tic Logics. OCL, vol. 4, pp. 9–41. Springer, Dordrecht (2014). doi:10.1007/
978-94-017-8860-1 2

13. Gehrke, M.: Stone duality, topological algebra, and recognition. J. Pure Appl.
Algebra 220(7), 2711–2747 (2016)

14. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regu-
lar languages. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 246–257.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3 21

15. Gehrke, M., Grigorieff, S., Pin, J.É.: A topological approach to recognition. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 151–162. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14162-1 13

16. Hausdorff, F.: Set Theory. Chelsea Publishing Company, New York (1957). Trans-
lated by Aumann, J.R., et al.

17. Johnstone, P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol.
3. Cambridge University Press, Cambridge (1986). Reprint of the 1982 edition

18. Künzi, H.-P.A.: Quasi-uniform spaces in the year 2001. In: Recent Progress in
General Topology, II, pp. 313–344. North-Holland, Amsterdam (2002)

19. Künzi, H.-P.A.: Uniform structures in the beginning of the third millenium. Topol.
Appl. 154(14), 2745–2756 (2007)

20. Künzi, H.-P.A.: An introduction to quasi-uniform spaces. In: Beyond Topology.
Contemporary Mathematics, vol. 486, pp. 239–304. American Mathematical Soci-
ety, Providence (2009)

21. Levine, N.: On Pervin’s quasi uniformity. Math. J. Okayama Univ. 14, 97–102
(1969/70)

22. Pervin, W.J.: Quasi-uniformization of topological spaces. Math. Ann. 147, 316–317
(1962)

23. Pin, J.-É.: Profinite methods in automata theory. In: Albers, S., Marion, J.-Y.
(eds.) 26th International Symposium on Theoretical Aspects of Computer Science
(STACS 2009), pp. 31–50, Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany (2009)

24. Pin, J.É.: Equational descriptions of languages. Int. J. Found. Comput. Sci. 23,
1227–1240 (2012)

25. Schützenberger, M.-P.: Une théorie algébrique du codage. In: Séminaire Dubreil-
Pisot, année 1955–56, Exposé No. 15, 27 février 1956, 24 p. Inst. H. Poincaré, Paris
(1956). http://igm.univ-mlv.fr/berstel/Mps/Travaux/A/1956CodageSemDubreil.
pdf

26. Schützenberger, M.-P.: On finite monoids having only trivial subgroups. Inf. Con-
trol 8, 190–194 (1965)

27. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity, Progress
in Theoretical Computer Science. Birkhäuser Boston Inc., Boston (1994)

28. Straubing, H.: On Logical Descriptions of Regular Languages. In: Rajsbaum, S.
(ed.) LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002).
doi:10.1007/3-540-45995-2 46

29. Weil, P.: Profinite methods in semigroup theory. Int. J. Alg. Comput. 12, 137–178
(2002)

http://dx.doi.org/10.1007/978-94-017-8860-1_2
http://dx.doi.org/10.1007/978-94-017-8860-1_2
http://dx.doi.org/10.1007/978-3-540-70583-3_21
http://dx.doi.org/10.1007/978-3-642-14162-1_13
http://igm.univ-mlv.fr/berstel/Mps/Travaux/A/1956CodageSemDubreil.pdf
http://igm.univ-mlv.fr/berstel/Mps/Travaux/A/1956CodageSemDubreil.pdf
http://dx.doi.org/10.1007/3-540-45995-2_46

Contributed Papers

Relations as Images

Mathieu Alain and Jules Desharnais(B)

Département d’informatique et de génie logiciel,
Université Laval, Québec, QC, Canada

mathieu.alain.2@ulaval.ca, jules.desharnais@ift.ulaval.ca

Abstract. Boolean matrices constitute an immediate representation
of black and white images, with 1 and 0 representing the black and
white pixels, respectively. We give relational expressions for calculating
two morphological operations on images, namely dilation and erosion.
These operations have been implemented under RelView and we com-
pare the performance of RelView with that of Matlab and Mathematica,
which have a package for computing various morphological operations.
Heijmans et al. have defined dilation and erosion for undirected graphs
with vertices weighted by grey-level values. Graphs generalise images by
allowing irregular “grids”. We propose a definition of dilation and ero-
sion for nonweighted directed graphs (i.e., relations) along the same lines.
These operations have been implemented under RelView too.

1 Introduction

The theory of mathematical morphology has many applications, in particular for
the analysis and transformation of digital images [8,12]. Two of its basic opera-
tions are dilation and erosion. Considering that Boolean matrices constitute an
immediate representation of black and white images, with 1 and 0 representing
the black and white pixels, respectively, we give relational expressions for cal-
culating dilation and erosion on relations as images. The relational expressions
have easy generalisations to geometries other than the standard finite 2-D grid.

We have implemented dilation and erosion under RelView [18], because it
allows a direct implementation of relational formulas, so that one can quickly
visualise the results. Although we were looking more for flexibility than for per-
formance, we have compared RelView with Matlab [16] and Mathematica [17].
We were, of course, not expecting RelView to be faster than commercial soft-
ware with dedicated packages, but RelView did really well.

The initial concepts of mathematical morphology have been generalised in
the more abstract framework of lattice theory, where dilations and erosions are
simply adjoints of a Galois connection [5]. Extensions to graph theory have also
been developed [6,7,13,14]. In [6], Heijmans et al. define dilation and erosion
for undirected graphs with vertices weighted by grey-level values. We propose a
definition of dilation and erosion for nonweighted directed graphs (i.e., relations)
along the same lines. These operations were implemented under RelView too.

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 43–59, 2017.
DOI: 10.1007/978-3-319-57418-9 3

44 M. Alain and J. Desharnais

Section 2 presents the relational background. Section 3 gives some notation
for describing images in a relational way. The relational expressions for dila-
tion and erosion are given in Sect. 4, as well as their RelView programs and
the performance comparisons. Graph morphology is treated in Sect. 5, before a
conclusion in Sect. 6.

The RelView programs and the data used in this article are available [15].

2 Mathematical Background

As for instance do Gries and Schneider [4], we write quantifications in the format
(�variables | range : quantified expression), where � is the quantifier, variables is
the list of variables bound by the quantification, range is the constraint imposed
on the bound variables and quantified expression speaks for itself. The range is
omitted if there is no constraint.

For relations, we use the notation of [1]. The identity, empty and universal
relations are denoted respectively by I, O and L, respectively; these symbols are
overloaded, in the sense that they may denote constant relations of different
types. The operations on relations are union (∪), intersection (∩), composition
(;), transposition/conversion (T), complementation () and reflexive transitive
closure (∗). We also use left (/) and right (\) residual operations.

The following laws and their generalisation to arbitrary unions and intersec-
tions are used in the sequel. See [10,11] for details on them and most of the
definitions of this section.

R ; I = I ; R = R (1)
P ; (Q ∪ R) = P ; Q ∪ P ; R (Q ∪ R) ; P = Q ; P ∪ R ; P (2)

L ; L = L Q ; L ; R = Q ; L ∩ L ; R (3)
(P ; L ∩ Q) ; R = P ; L ∩ Q ; R P ; (L ; Q ∩ R) = L ; Q ∩ P ; R (4)

P ; (Q ; L ∩ R) = (L ; QT ∩ P) ; R (L ; P ∩ Q) ; R = Q ; (PT ; L ∩ R) (5)
RTT = R (Q ; R)T = RT ; QT (6)

R �= O ⇔ L ; R ; L = L (Tarski rule) (7)
P ; Q ⊆ R ⇔ P ⊆ R/Q ⇔ Q ⊆ P\R (8)

Q/R = Q ; RT Q\R = QT ; R (9)
R∗ = (

⋃
n :N |: Rn) (10)

A relation R is total iff I ⊆ R ; RT (equivalently, R ; L = L), surjective iff
I ⊆ RT;R (equivalently, L ;R = L), univalent iff RT;R ⊆ I, injective iff R ;RT ⊆ I.
A mapping is a total and univalent relation.

If P is a mapping, then PT ; Q ⊆ R ⇔ Q ⊆ P ; R,
Q ; P ⊆ R ⇔ Q ⊆ R ; PT.

(11)

Relations as Images 45

A relation v is a (column) vector iff v = v ; L. A vector v is a point iff it is
nonempty and injective.

If R is a mapping and v a point, then RT ; v is a point. (12)
If u is a vector and v a point, then u ∩ v �= O ⇔ v ⊆ u. (13)

The type of a relation R between sets S and T is stated as R : S ↔ T ; if R
is a vector, then its type is stated as R : S and sometimes as R : S ↔ {•} for
one-column vectors, since only the domain side matters.

Relational direct products are axiomatised as a pair (π1, π2) of projections
satisfying the following equations:

(a) πT
1 ; π1 = I, (b) πT

2 ; π2 = I, (c) πT
1 ; π2 = L, (d) π1 ; πT

1 ∩ π2 ; πT
2 = I.

Definition 2.1. Let (π1, π2) be a direct product. We use it to define three oper-
ations on relations R1 and R2.

1. Tupling: 〈R1, R2] = R1 ; πT
1 ∩ R2 ; πT

2.
2. Cotupling: [R1, R2〉 = π1 ; R1 ∩ π2 ; R2.
3. Parallel product: [R1, R2] = π1 ; R1 ; πT

1 ∩ π2 ; R2 ; πT
2.

We assume sharpness, which holds for concrete relations, i.e.,

〈Q1, Q2] ; [R1, R2〉 = Q1 ; R1 ∩ Q2 ; R2. (14)

Properties of Tupling, Cotupling and Parallel Product

〈Q1, Q2] ; [R1, R2] = 〈Q1 ; R1, Q2 ; R2] (15)
[Q1, Q2] ; [R1, R2] = [Q1 ; R1, Q2 ; R2] (16)
[Q1, Q2] ; [R1, R2〉 = [Q1 ; R1, Q2 ; R2〉 (17)

π1 = [I, L〉 π2 = [L, I〉 πT
1 = 〈I, L] πT

2 = 〈L, I] (18)
〈Q1, Q2]T = [QT

1, Q
T
2〉 [Q1, Q2]T = [QT

1, Q
T
2] [Q1, Q2〉T = 〈QT

1, Q
T
2] (19)

[I, I] = I 〈L, L] = L [L, L] = L [L, L〉 = L (20)
[P ∪ Q,R〉 = [P,R〉 ∪ [Q,R〉 [P,Q ∪ R〉 = [P,Q〉 ∪ [P,R〉 (21)

L ; P ∩ [Q1, Q2〉 = [L ; P ∩ Q1, Q2〉 = [Q1, L ; P ∩ Q2〉 (22)
[P ; L, Q〉 ; R = [P ; L, Q ; R〉 [P,Q ; L〉 ; R = [P ; R,Q ; L〉 (23)

The above direct products can be generalised to n-ary direct products, and
similarly for tupling, cotupling and parallel product.

Direct products can be used to transform a relation R into a vector. This is
called vectorisation. The vectorisation of a relation R is obtained by

vec(R) = [R, I〉 ; L. (24)

46 M. Alain and J. Desharnais

3 Representing an Image in the Plane by a Relation

To apply morphological operations to images (Sect. 4), we need an operation of
addition in order, for instance, to displace images along coordinate axes.

We want to define a relation A of addition that takes two arguments and
produces their sum. Assume two successor relations S1 : T1 ↔ T1 and S2 : T2 ↔
T2, two origin vectors o1 : T1 and o2 : T2, and the identity relation I1 : T1 ↔ T1.
Let (π1, π2) be a direct product typed as π1 : T1×T2 ↔ T1 and π2 : T1×T2 ↔ T2.

The relation A has type T1 × T2 ↔ T1 and is defined as A = ([S1, S
T
2]∗

[ST
1 , S2]∗) ; [I1, o2 ;L〉. In words, a sum is obtained either by decreasing the second

component until it is at an origin, while increasing the first component syn-
chronously, or by increasing the second component until it is at an origin, while
decreasing the first component synchronously. If T1 = T2 = Z, o2 = {0} and
S1 and S2 are the successor on the integers, then A adds two integers and out-
puts the result of the addition. But addition may be more general by allowing
more than one origin and arbitrary successors. On a finite interval, the addition
is “truncated”. For instance, if T1 = {0, 1, 2, 3}, T2 = {0, 1, 2}, o2 = {0} and
S1 = {(0, 1), (1, 2), (2, 3)}, S2 = {(0, 1), (1, 2)}, then

A = {((0, 0), 0), ((0, 1), 1), ((0, 2), 2), ((1, 0), 1), ((1, 1), 2),
((1, 2), 3), ((2, 0), 2), ((2, 1), 3), ((3, 0), 3)}.

In order to deal with shorter formulas, we assume that an origin has no
predecessor (like o2 in the above example) and choose

A = [S1, S
T
2]∗ ; [I1, o2 ; L〉 = {((x1, x2), x′

1) | (∃n |: x1S
n
1 x′

1 ∧ o2S
n
2 x2)} (25)

as the definition of addition1. Treating the more general case where an origin
may have predecessors poses no difficulty. This restriction means we will be
considering images in the first quadrant. But rather than use the standard con-
vention about coordinates, we use the standard convention about matrices, that
row numbering increases when going down.

The binary Boolean matrix representation of a (possibly heterogeneous) rela-
tion R is the representation of an image in the plane. We add to this two notions.

1. Homogeneous successor relations Sd and Sc for the domain (rows) and
codomain (columns) of R, respectively. The products Sd ; R and R ; Sc are
well typed. The successor relations are typically functions mapping a row
(column) to a successor row, but we leave the door open to more general
successor relations.

2. Vector origin relations od and oc that designate origins for the domain
(rows) and codomain (columns) of R, respectively. In the examples and the
RelView programs below, origins are points (there is a single origin). The

1 In these expressions, the first o2 is a vector and the second one is an origin; the
vector o2 is composed with an L of the appropriate type to ensure the compatibility
of the codomain of o2 ; L with that of I1. We write xRy for (x, y) ∈ R.

Relations as Images 47

products oTd ;R and R ;oc are well typed. We use the abbreviation O := od ;oTc .
Since od and oc are vectors,

O = od ; oTc = od ; L ; oTc = od ; L ∩ L ; oTc , (26)

where the last step follows by (3).

As an example, consider the following relations.

⎡

⎣
0 0 1 0
0 1 1 0
0 1 1 0

⎤

⎦

⎡

⎣
0 1 0
0 0 1
0 0 0

⎤

⎦

⎡

⎢
⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥
⎥
⎦

⎡

⎣
1
0
0

⎤

⎦

⎡

⎢
⎢
⎣

1
0
0
0

⎤

⎥
⎥
⎦

⎡

⎣
1 0 0 0
0 0 0 0
0 0 0 0

⎤

⎦

R Sd Sc od oc O

In this example, the relation R can be written as

R = O ; S2
c ∪ ST

d ; O ; Sc ∪ ST
d ; O ; S2

c ∪ S2T
d ; O ; Sc ∪ S2T

d ; O ; S2
c .

Thus R is the join of expressions of the form SiT
d ; O ; Sj

c .
Now suppose

od : Td ↔ {•}, Sd : Td ↔ Td, oc : Tc ↔ {•}, Sc : Tc ↔ Tc, R : Td ↔ Tc,

where Td is N or an initial interval [0, nd] of N and Tc is N or an initial interval
[0, nc] of N. Suppose in addition that

od = {(0, •)}, Sd = {(x, x + 1) | x ∈ Td},

oc = {(0, •)}, Sc = {(x, x + 1) | x ∈ Tc}, (27)

where nd + 1 may be undefined or equal to 0 (by addition modulo nd + 1) and
similarly for nc + 1. We first show that, for the case Td = Tc = N,

SiT
d ; O ; Sj

c = {(i, j)}, (28)
oTd ; Si

d ; R ; SjT
c ; oc �= O ⇔ iRj. (29)

1. Proof of (28):

SiT
d ; O ; Sj

c

= {(x, y) | x(SiT
d ; O ; Sj

c)y}
= {(x, y) | (∃u, v |: xSiT

d u ∧ uOv ∧ vSj
c y)}

= 〈O = od ; oTc = {(0, 0)}〉
{(x, y) | xSiT

d 0 ∧ 0Sj
c y}

= {(x, y) | x = i ∧ y = j}
= {(i, j)}.

48 M. Alain and J. Desharnais

2. Proof of (29):

oTd ; Si
d ; R ; SjT

c ; oc �= O ⇔ •(oTd ; Si
d ; R ; SjT

c ; oc)• ⇔ 0(Si
d ; R ; SjT

c)0
⇔ (∃u, v |: 0Si

du ∧ uRv ∧ vSjT
c 0) ⇔ (∃u, v |: u = i ∧ uRv ∧ v = j)

⇔ (∃u, v |: u = i ∧ iRj ∧ v = j) ⇔ iRj.

We now look at some of the other cases.

1. If Td = N and Tc = [0, nc] with addition modulo nc +1, then (i, j) in (28) and
(29) should be replaced by (i, j mod (nc + 1)).

2. If Td = N and Tc = [0, nc] with nc + 1 undefined, then
– {(i, j)} in (28) should be replaced by {(i, j)} if j ≤ nc and {} otherwise;
– iRj in (29) may stand as is, since od ; Si

d ; R ; ST
c
j ; oc = O and ¬(iRj) if j

exceeds the bounds of the interval.

The remaining combinations are treated similarly.
Because of (28) and the subsequent discussion about the other cases,

R = (
⋃

i, j | iRj : SiT
d ; O ; Sj

c), (30)

provided (27) holds.
Let us find the vector expression vec(R) corresponding to the expression for

R given in (30). We start by proving a more general form:

vec(P ; R ; QT) = (
⋃

i, j | iRj : [P ; SiT
d , Q ; SjT

c]) ; [od, oc〉. (31)

vec(P ; R ; QT)

= 〈(24) & (30)〉
[P ; (

⋃
i, j | iRj : SiT

d ; O ; Sj
c) ; QT, I〉 ; L

= 〈Distributivity of ; over ∪ (2) & (21)〉
(
⋃

i, j | iRj : [P ; SiT
d ; O ; Sj

c ; QT, I〉 ; L)

= 〈(26)〉
(
⋃

i, j | iRj : [P ; SiT
d ; od ; L ; oTc ; Sj

c ; QT, I〉 ; L)

= 〈(3)〉
(
⋃

i, j | iRj : [P ; SiT
d ; od ; L ∩ L ; oTc ; Sj

c ; QT, I〉 ; L)

= 〈(22)〉
(
⋃

i, j | iRj : ([P ; SiT
d ; od ; L, I〉 ∩ L ; oTc ; Sj

c ; QT) ; L)

= 〈(5) & (6) & Boolean algebra〉
(
⋃

i, j | iRj : [P ; SiT
d ; od ; L, I〉 ; Q ; SjT

c ; oc ; L)

= 〈(23) & (1)〉
(
⋃

i, j | iRj : [P ; SiT
d ; od ; L, Q ; SjT

c ; oc ; L〉)

Relations as Images 49

= 〈(17)〉
(
⋃

i, j | iRj : [P ; SiT
d , Q ; SjT

c] ; [od ; L, oc ; L〉)
= 〈od and oc are vectors & Distributivity of ; over ∪ (2)〉

(
⋃

i, j | iRj : [P ; SiT
d , Q ; SjT

c]) ; [od, oc〉
Then, using P = Id and Q = Ic in (31), we find

vec(R) = (
⋃

i, j | iRj : [SiT
d , SjT

c]) ; [od, oc〉. (32)

This is a nice form that is easily extended to n-ary relations.

4 Dilation and Erosion

The dilation R⊕P of an image R ⊆ Z×Z by a pattern P ⊆ Z×Z is often defined
as the pointwise addition (also called the Minkowski addition) of R and P :

R ⊕ P = {(xR + xP , yR + yP) | (xR, yR) ∈ R ∧ (xP , yP) ∈ P}.

Using the addition functions AX and AY , this can be expressed as

R ⊕ P = AT
X ; [R,P] ; AY , (33)

where the typing of the relations is

P : XP ↔ YP , R : XR ↔ YR, AX : XR × XP ↔ XR, AY : YR × YP ↔ YR.

If XP = YP = XR = YR = Z, then dilation is commutative and this is a good
reason for choosing a symmetric symbol like ⊕ for it. However, if the image R is
finite and of a fixed size and if, as is normally the case, the dilation of R by P
has the same size as R, then commutativity does not hold. This is why we use
the symbol � for it.

In the sequel, the general rule for forming the names and the typing of the
relations is that, for any index i,

Ri : Tdi ↔ Tci, Idi, Sdi : Tdi ↔ Tdi, odi : Tdi, Adi : Tdi × Tdj ↔ Tdi,
Ici, Sci : Tci ↔ Tci, oci : Tci, Aci : Tci × Tcj ↔ Tci,

where Tdj and Tcj are determined by the context.
The dilation of R1 by R2 is then

R1 � R2 = AT
d1 ; [R1, R2] ; Ac1. (34)

This expression for dilation can be implemented quite simply on RelView.
Computing A can take a long time, but this can be done once and then A can
be used as a global variable. However, this takes much space, due to the parallel
product [R1, R2]. We thus transform the expression.

The following derivation proves

R1 � R2 = (
⋃

i, j :N | oTd2 ; Si
d2 ; R2 ; SjT

c2 ; oc2 �= O : SiT
d1 ; R1 ; Sj

c1). (35)

50 M. Alain and J. Desharnais

R1 � R2

= 〈(34) & Definition of addition (25) & (6)〉
〈Id1, L ; oTd2] ; [ST

d1, Sd2]∗ ; [R1, R2] ; [Sc1, S
T
c2]

∗ ; [Ic1, oc2 ; L〉.
= 〈(10)〉

〈Id1, L ;oTd2] ; (
⋃

i :N |: [ST
d1, Sd2]i) ; [R1, R2] ; (

⋃
j :N |: [Sc1, S

T
c2]

j) ; [Ic1, oc2 ;L〉
= 〈Distributivity of ; over ∪ (2)〉

(
⋃

i, j :N |: 〈Id1, L ; oTd2] ; [ST
d1, Sd2]i ; [R1, R2] ; [Sc1, S

T
c2]

j ; [Ic1, oc2 ; L〉)
= 〈(16) generalised by induction to the powers i and j〉

(
⋃

i, j :N |: 〈Id1, L ; oTd2] ; [SiT
d1 ; R1 ; Sj

c1, S
i
d2 ; R2 ; SjT

c2] ; [Ic1, oc2 ; L〉)
= 〈(15) & (14) & (1)〉

(
⋃

i, j :N |: SiT
d1 ; R1 ; Sj

c1 ∩ L ; oTd2 ; Si
d2 ; R2 ; SjT

c2 ; oc2 ; L)

= 〈By (7), L ; oTd2 ; Si
d2 ; R2 ; SjT

c2 ; oc2 ; L is either L or O〉
(
⋃

i, j :N | L ; oTd2 ; Si
d2 ; R2 ; SjT

c2 ; oc2 ; L = L : SiT
d1 ; R1 ; Sj

c1)

= 〈Tarski rule (7)〉
(
⋃

i, j :N | oTd2 ; Si
d2 ; R2 ; SjT

c2 ; oc2 �= O : SiT
d1 ; R1 ; Sj

c1)

Of all the formulas of this derivation, the last one is particularly suited for
an implementation under RelView, since it involves no products and the range
expression is a relation of size 1 × 1.

By (29), if (27) holds, (35) can be written more succinctly as

R1 � R2 = (
⋃

i, j :N | iR2j : SiT
d1 ; R1 ; Sj

c1). (36)

The next step is to calculate left erosion as a left residual of dilation. We
want to find an operator �/ such that

R1 � R2 ⊆ R3 ⇔ R1 ⊆ R3 �/ R2. (37)

The left residual R3 �/ R2 is the erosion of R3 by R2. From (34), the type of
R1 � R2 is the same as that of R1, and so by (37) the type of R3 and R3 �/ R2

is that of R1 too. Thus, Td3 = Td1 and Tc3 = Tc1. We assume that there is only
one successor relation for a given type, so that

Sd3 = Sd1 and Sc3 = Sc1. (38)

R1 � R2 ⊆ R3

⇔ 〈(35)〉
(
⋃

i, j :N | oTd2 ; Si
d2 ; R2 ; SjT

c2 ; oc2 �= O : SiT
d1 ; R1 ; Sj

c1) ⊆ R3

⇔ 〈Definition of ∪〉
(∀i, j :N | oTd2 ; Si

d2 ; R2 ; SjT
c2 ; oc2 �= O : SiT

d1 ; R1 ; Sj
c1 ⊆ R3)

Relations as Images 51

⇔ 〈(8)〉
(∀i, j :N | oTd2 ; Si

d2 ; R2 ; SjT
c2 ; oc2 �= O : R1 ⊆ SiT

d1\R3/S
j
c1)

⇔ 〈Definition of ∩〉
R1 ⊆ (

⋂
i, j :N | oTd2 ; Si

d2 ; R2 ; SjT
c2 ; oc2 �= O : SiT

d1\R3/S
j
c1)

⇔ 〈(38)〉
R1 ⊆ (

⋂
i, j :N | oTd2 ; Si

d2 ; R2 ; SjT
c2 ; oc2 �= O : SiT

d3\R3/S
j
c3)

Hence, R3 �/R2 = (
⋂

i, j :N | oTd2 ;Si
d2 ;R2 ;SjT

c2 ; oc2 �= O : SiT
d3\R3/S

j
c3). Renaming

R3 yields

R1 �/ R2 = (
⋂

i, j :N | oTd2 ; Si
d2 ; R2 ; SjT

c2 ; oc2 �= O : SiT
d1\R1/S

j
c1). (39)

Now we deal with right erosion. We want to find an operator �\ such that

R1 � R2 ⊆ R3 ⇔ R2 ⊆ R1 �\ R3. (40)

The right residual R1 �\ R3 is the right erosion of R3 by R1. Since by (34) the
type of R1 � R2 is the same as that of R1, the type of R3 in (40) is the same
as that of R1. Hence, there is no information in R1 �\ R3 about the type of R2,
so it seems there is no way to get the right erosion. However, the result of a
calculation similar to the one for left erosion is

R1 �\ R3 = (
⋂

i, j :N | ¬(SiT
d1 ; R1 ; Sj

c1 ⊆ R3) : (oTd2 ; Si
d2)\O/(S

jT
c2 ; oc2)) (41)

and we see that in this equation, R1 �\ R3 depends on o2, Sd2 and Sc2, but not
on R2. This means that one can fix the geometry by providing the type of R2,
the origin o2 and the successors Sd2 and Sc2, and then it is possible to calculate
the pattern R2.

In the integer grid Z × Z, this problem does not occur, because dilation
is commutative, so that there is only one residual. In the literature, as far as
we know, the only erosion considered for images is our left erosion. This is to
be expected, since one wants to calculate the erosion of an image by a given
pattern, not a pattern. Although computing a pattern R2 from an image R1 and
a dilated image R3 possibly has no interesting application, it is something that
may deserve further investigation.

It is a simple matter to write RelView programs implementing the calcula-
tion of dilation (35) and erosion (39). The programs are given in Fig. 1. Figure 2
gives an example as captures of RelView windows. The pattern R2 consists of
four black pixels (four 1s in the matrix). The dilated image R1 � R2 consists of
the original image (because the origin of R2 is black) and three other images, one
displaced by one pixel to the right, one by one pixel to the bottom and one by
one pixel diagonally to the bottom right. Some pixels are moved out of the grid.
The erosion R1 �/R2 has black pixels where the pattern R2 can be fully included
in the image R1. The black bars at the bottom and at the right are due to border
effects that appear because the effect of the calculation of the erosion amounts

52 M. Alain and J. Desharnais

to considering that the area outside of the visible grid is filled up with black
pixels. These border effects also explain why the results of dilation and erosion
are not symmetrical although R1 and R2 are; as mentioned at the beginning of
Sect. 3, addition is “truncated”; to fully display dilation and erosion, the grid
would have to be enlarged.

Fig. 1. RelView programs for dilation and erosion

Table 1 gives the execution times for a sample of images and patterns. Times
are rounded up to the second, except to the second decimal for Matlab. The
programs were run on a Mac Pro with 64 Gb of RAM and a 3.5 GHz 6-core
Intel processor; RelView was run on an Ubuntu Linux 14.04 virtual machine

Relations as Images 53

Fig. 2. Dilation and erosion of R1 by R2

(installed inside Parallels) with 8 Gb of RAM. The times given are RelView’s
CPU time, Matlab’s timeit function time and Mathematica’s Timing function
time. The relations were randomly generated by RelView with a filling of 23%
(the default value). The same relations were used with RelView, Matlab and
Mathematica. In applications, pattern sizes of 2 × 2 and 3 × 3 are typical. We
nevertheless made tests with larger patterns (100 × 100 in the table).

Table 1. CPU times. Size of R1: n1 × n1. RelV: RelView. Matl: Matlab. Math:
Mathematica.

Size of R2: 3 × 3
Dilation Erosion

n1 RelV Matl Math RelV Matl Math

1000 2 .01 21 5 .01 20
2000 11 .02 81 25 .02 81
3000 26 .05 183 59 .05 182
4000 50 .09 327 119 .09 332
5000 85 .12 509 201 .12 509
6000 134 .20 731 315 .20 733
7000 197 .25 1007 418 .26 990
8000 246 .34 1310 545 .34 1314
9000 322 .42 1739 558 .44 1765

10000 469 .49 2180 1024 .53 2177

Size of R2: 100 × 100
Dilation Erosion

n1 RelV Matl Math RelV Matl Math

100 3 .10 6 2 .10 6
150 5 .10 8 4 .10 8
200 10 .10 10 6 .10 10
250 19 .14 13 11 .13 13
300 35 .18 16 19 .17 16
350 58 .23 19 36 .23 19
400 84 .22 23 60 .22 23
450 107 .27 26 112 .27 26
500 150 .34 30 199 .34 30
550 213 .38 34 365 .38 34

The results are quite surprising. Matlab is by far the fastest. For the small
3 × 3 pattern (the normal case for applications), RelView is faster than Math-
ematica, but it is the opposite for the large 100 × 100 pattern. For both Matlab
and Mathematica, the times for dilation and erosion are similar, while those of
RelView for erosion are worse than for dilation. The main difference between
the expression for dilation (35) and that for erosion (39) is that two compositions
become residuals. So, the implementation of residuals seem to be less efficient
than that of composition.

An advantage of RelView is that it is easy to modify the programs to
explore other geometries. For instance, choosing for the successor Sd1 one that
does modulo addition results in images wrapping around the grid horizontally,
giving a cylinder. Doing the same also for Sc1 yields a torus.

54 M. Alain and J. Desharnais

By (24), any two-dimensional black and white image can be represented by a
vector. Using an obvious generalisation of (32) with n-ary parallel products, this
is also true of n-dimensional structures. One can then calculate morphological
operations on vectors. For instance, for dilation,

vec(R1 � R2) = parsucc1(R2) ; vec(R1), (42)

where
parsucc1(P) = (

⋃
i, j | iP j : [SiT

d1, SjT
c1]). (43)

Thus the vector representation of the image, vec(R1), is transformed into the
vector representation of the dilation, vec(R1 � R2). The drawback is that the
transformer parsucc1(P) may be large, due to the parallel product of the succes-
sor relations for the image.

5 Graph Morphology

Let Q and R be relations. The notation ih(σ,Q,R) means that σ is an injective
homomorphism from Q to R, i.e.,

ih(σ,Q,R) ⇔ σ ; σT = I ∧ σT ; σ ⊆ I ∧ σT ; Q ; σ ⊆ R. (44)

Since σ is a mapping, the condition σT ;Q ;σ ⊆ R is equivalent to Q ⊆ σ ;R ;σT,
by (11).

For our purpose, a graph G is a 4-tuple (V,R, r, b), where R : V ↔ V is a
homogenous relation and r, b : V are vectors representing the roots and the buds
of G [6]. In the sequel, Gi denotes the graph (Vi, Ri, ri, bi), for any index i.

The bud-complementation and root-bud-exchange unary operations are
defined as follows:

– G− = (V,R, r, b) complements the bud vector b;
– G↔ = (V,R, b, r) exchanges the roots and the buds.

Note that in both cases the relation R stays the same.
Define a partial ordering � on graphs by

(V1, R1, r1, b1) � (V2, R2, r2, b2)
⇔ V1 = V2 ∧ R1 = R2 ∧ r1 = r2 ∧ b1 ⊆ b2.

(45)

The dilation G1 � G2 of G1 by G2 is defined by

G1 � G2 = (V1, R1, r1, (
⋃

σ | ih(σ,R2, R1) ∧ σT ; r2 ∩ b1 �= O : σT ; b2)). (46)

This definition of dilation corresponds to that of [6], restricted to the binary
case (rather than the grey level case), but generalised to directed graphs (rather
than undirected graphs). The terminology roots and buds is that of Heijmans
et al., who use it for the structuring graph (G2 in (46)). To keep things simple,
we use the same terminology for the source graph (G1 in (46)); this is possible

Relations as Images 55

because we consider only the binary case (in [6], the nodes of the source graph
are weighted by grey level values). Images are a special case of graphs: for an
image, the underlying discrete grid is a regular undirected graph, the origin is a
root and a coordinate point that belongs to the image is a bud.

Thus G1 � G2 is the same graph as G1, except for the buds. This definition
can be understood as follows: if the roots of the embedding of G2 by σ have a
nonempty intersection with the buds of G1, then the buds of the embedding of
G2 are buds of G1 � G2. We now transform this intuitive expression to a form
that will lead to an easy calculation of the residuals.

(
⋃

σ | ih(σ,R2, R1) ∧ σT ; r2 ∩ b1 �= O : σT ; b2)

= 〈Tarski rule (7) & Boolean algebra〉
(
⋃

σ | ih(σ,R2, R1) : L ; (σT ; r2 ∩ b1) ; L ∩ σT ; b2)

= 〈r2 and b1 are vectors & (4) & (3)〉
(
⋃

σ | ih(σ,R2, R1) : L ; (σT ; r2 ∩ b1) ∩ σT ; b2)

= 〈r2 is a vector & (5) & (6)〉
(
⋃

σ | ih(σ,R2, R1) : rT2 ; σ ; b1 ∩ σT ; b2)

= 〈r2 and b2 are vectors & (3)〉
(
⋃

σ | ih(σ,R2, R1) : σT ; b2 ; rT2 ; σ ; b1)

By this derivation and (46),

G1 � G2 = (V1, R1, r1, (
⋃

σ | ih(σ,R2, R1) : σT ; b2 ; rT2 ; σ ; b1)). (47)

The subexpression rT2 ;σ ;b1 is equal to O if the roots of the embedded G2 have an
empty intersection with the buds of G1; otherwise, by the Tarski rule (7) and the
fact that r2 and b1 are vectors, it is equal to L and then σT;b2 ;rT2 ;σ ;b1 = σT;b2,
so things are like with (46).

Then,

G1 � G2 � G3

⇔ 〈(47) & (45)〉
V1 = V3 ∧ R1 = R3 ∧ r1 = r3 ∧ (

⋃
σ | ih(σ,R2, R1) : σT;b2 ;rT2 ;σ ;b1) ⊆ b3.

We continue with the expression for buds only and first aim at the left residual
G3 �/ G2.

(
⋃

σ | ih(σ,R2, R1) : σT ; b2 ; rT2 ; σ ; b1) ⊆ b3

⇔ 〈Definition of ∪〉
(∀σ | ih(σ,R2, R3) : σT ; b2 ; rT2 ; σ ; b1 ⊆ b3)

⇔ 〈(8)〉

56 M. Alain and J. Desharnais

(∀σ | ih(σ,R2, R3) : b1 ⊆ (σT ; b2 ; rT2 ; σ)\b3)

⇔ 〈Definition of ∩〉
b1 ⊆ (

⋂
σ | ih(σ,R2, R3) : (σT ; b2 ; rT2 ; σ)\b3)

⇔ 〈(9) & (6)〉
b1 ⊆ (

⋂
σ | ih(σ,R2, R3) : σT ; r2 ; bT2 ; σ ; b3)

⇔ 〈Boolean algebra〉
b1 ⊆ (

⋃
σ | ih(σ,R2, R3) : σT ; r2 ; bT2 ; σ ; b3)

Since by definition G1 � G2 � G3 ⇔ G1 � G3 �/ G2, we obtain from the last two
derivations the left erosion as the left residual

G3 �/ G2 = (V3, R3, r3, (
⋃

σ | ih(σ,R2, R3) : σT ; r2 ; bT2 ; σ ; b3))
= (G−

3 � G↔
2)−,

(48)

where (47) is used for the last transformation. Note the similarity with (9).
The calculation of right erosion G2 = G1 �\ G3 yields

b2 ⊆ (
⋂

σ | ih(σ,R2, R1) : σ ; b3 ∪ L ; bT1 ; σT ; r2).

So, the situation is the same as for images, i.e., the buds b2 of G2 depend on R2

and r2. Comments like those after (41) can be made here. One can fix the geom-
etry by giving V2, R2 and r2, and then calculate the buds b2, which correspond
to the images in the previous section.

Now back to dilation (47). An algorithm for calculating dilation based on (47)
may proceed by enumerating all injective homomorphisms σ while taking the join
of the σT ; b2 ; rT2 ;σ ; b1. This is very costly, as the number of combinations grows
quickly with the size of the graphs. What follows shows that the search can be
made a bit more efficient.

Expressing the vectors b1 and r2 as the union of the points they contain, one
can rewrite the expression for the buds of G1 � G2 in (46) as follows:

(
⋃

σ | ih(σ,R2, R1) ∧ σT ; r2 ∩ b1 �= O : σT ; b2)
= (

⋃
b′
1, r

′
2 | b′

1, r
′
2 points ∧ b′

1 ⊆ b1 ∧ r′
2 ⊆ r2 :

(
⋃

σ | ih(σ,R2, R1) ∧ σT ; r′
2 ∩ b′

1 �= O : σT ; b2)).
(49)

Now consider the following derivation.

ih(σ,R2, R1) ∧ σT ; r′
2 ∩ b′

1 �= O

⇔ 〈(44)〉
σ ; σT = I ∧ σT ; σ ⊆ I ∧ σT ; R2 ; σ ⊆ R1 ∧ σT ; r′

2 ∩ b′
1 �= O

⇒ 〈(11) & σT ; r′
2 is a point by (12) & (13)〉

R2 ; σ ⊆ σ ; R1 ∧ σT ; R2 ⊆ R1 ; σT ∧ σT ; r′
2 ⊆ b′

1

Relations as Images 57

⇔ 〈(6)〉
R2 ; σ ⊆ σ ; R1 ∧ RT

2 ; σ ⊆ σ ; RT
1 ∧ r′T

2 ; σ ⊆ b′T
1

⇔ 〈(8 & Boolean algebra〉
σ ⊆ R2\(σ ; R1) ∩ RT

2\(σ ; RT
1) ∩ r′T

2 \b′T
1

Hence ih(σ,R2, R1) ∧ σT ; r′
2 ∩ b′

1 �= O implies that σ is both a forward and a
backward simulation, and that the bud b′

1 simulates the root r′
2. The largest

such simulation, which is thus a superset of all injective homomorphisms σ,
can easily be computed as the greatest fixed point of the monotonic function
f(X) := R2\(X ; R1) ∩ RT

2\(X ; RT
1) ∩ r′T

2 \b′T
1 . From this largest simulation, the

injective homomorphisms can then be extracted by looking at all possibilities
compatible with their inclusion in the simulation. This is what the RelView
algorithm that we have implemented does. Similar comments can be made for
erosion.

The execution times for computing the dilation of a sample of graphs are
given in Table 2. The size of the graphs is the number of vertices. The times
quickly increase with the size of the graphs, which is to be expected for an NP-
complete problem (finding an injective homomorphism is the same as finding an
isomorphic subgraph) [3]. It remains to be seen whether a better algorithm can
be found for RelView.

Table 2. Dilation of G1 by G2: CPU times with RelView

Size of G2 = |V2| = 3

Size of R1 = |V1| 50 100 150 200 250 300 350 400

Time 0.3 2.7 12 31 66 105 195 244

Size of G2 = |V2| = 4

Size of R1 = |V1| 10 20 30 40 50 100 110 120

Time 0.02 0.3 1.4 2.5 10 242 439 656

Size of G2 = |V2| = 5

Size of R1 = |V1| 10 20 30 35 40 45 50 55

Time 0.03 4.1 44 71 106 306 504 1085

6 Conclusion

Like other articles, for instance [1], this one shows that RelView is a nice tool
for programming functions that can be expressed with relation algebra. It also
shows that the computation times are competitive, at least when compared to
the well-known commercial environment Mathematica for the computation of
dilation and erosion.

58 M. Alain and J. Desharnais

There are many possible extensions to this work.

1. With respect to the material of Sect. 4, we intend to explore other geometries,
by using different origin and successor relations, and we plan to program more
morphological operations with RelView, like closing and opening. These are
obtained by composing dilation with erosion, but it may be possible to find
optimisations based on relational transformations.

2. The operation of right erosion deserves more investigation, both for images
and graphs.

3. The constraint of homomorphism imposed to the graph pattern G2 in Sect. 5
is very strong. On the other hand, the corresponding constraint for images is
very weak, being essentially based on a notion of proximity in a regular grid.
There are intermediate possibilities. One that comes to mind after the use
of simulations in Sect. 5 is to simply require that a simulation relation exists
between the two graphs, rather than a homomorphism.

4. The graphs of Sect. 5, with their roots and buds, are close to automata, except
for the fact that their edges are not labelled. We plan to investigate morpho-
logical operations applied to automata, with the possibility of extending them
to the corresponding languages and to Kleene algebra with tests [9] or Kleene
algebra with domain [2].

Acknowledgements. We gratefully acknowledge the input of the anonymous refer-
ees and the financial support of NSERC (Natural Sciences and Engineering Research
Council of Canada).

References

1. Berghammer, R.: Computing minimal extending sets by relation-algebraic model-
ing and development. J. Log. Algebr. Methods Program. 83, 103–119 (2014)

2. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans.
Comput. Log. (TOCL) 7(4), 798–833 (2006)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

4. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Springer,
New York (1993)

5. Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology
I. Dilations and erosions. Comput. Vis. Graph. Image Process. 50, 245–295 (1990)

6. Heijmans, H.J.A.M., Nacken, P., Toet, A., Vincent, L.: Graph morphology. J.
Visual Commun. Image Represent. 3(1), 24–38 (1992)

7. Heijmans, H.J.A.M., Vincent, L.: Graph morphology in image analysis. In:
Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 171–203.
Marcel-Dekker, New York (1992)

8. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Pic-
ture Analysis. Elsevier, Amsterdam (2004)

9. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

10. Schmidt, G.: Relational Mathematics. Encyclopedia of Mathematics and Its Appli-
cations, vol. 132. Cambridge University Press, Cambridge (2010)

Relations as Images 59

11. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer, New York (1988)
12. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London

(1982)
13. Stell, J.G.: Relations in mathematical morphology with applications to graphs and

rough sets. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT
2007. LNCS, vol. 4736, pp. 438–454. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74788-8 27

14. Stell, J.G.: Relations on hypergraphs. In: Kahl, W., Griffin, T.G. (eds.) RAMICS
2012. LNCS, vol. 7560, pp. 326–341. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33314-9 22

15. Data. http://www2.ift.ulaval.ca/∼desharnais/RAMiCS2017/RAMiCS2017.zip
16. Matlab homepage. https://www.mathworks.com/products/matlab.html
17. Mathematica homepage. https://www.wolfram.com/mathematica/
18. RelView homepage. http://www.informatik.uni-kiel.de/∼progsys/relview/

http://dx.doi.org/10.1007/978-3-540-74788-8_27
http://dx.doi.org/10.1007/978-3-540-74788-8_27
http://dx.doi.org/10.1007/978-3-642-33314-9_22
http://dx.doi.org/10.1007/978-3-642-33314-9_22
http://www2.ift.ulaval.ca/~desharnais/RAMiCS2017/RAMiCS2017.zip
https://www.mathworks.com/products/matlab.html
https://www.wolfram.com/mathematica/
http://www.informatik.uni-kiel.de/~progsys/relview/

Tool-Based Relational Investigation
of Closure-Interior Relatives for Finite

Topological Spaces

Rudolf Berghammer(B)

Institut für Informatik, Universität Kiel, 24098 Kiel, Germany
rub@informatik.uni-kiel.de

Abstract. In a topological space (X, T) at most 7 distinct sets can be
constructed from a set A ∈ 2X by successive applications of the clo-
sure and interior operation in any order. If sets so constructed are called
closure-interior relatives of A, then for each topological space (X, T) with
|X| ≥ 7 there exists a set with 7 closure-interior relatives; for |X| < 7,
however, 7 closure-interior relatives of a set cannot co-exist. Using rela-
tion algebra and the RelView tool we compute all closure-interior rela-
tives for all topological spaces with less than 7 points. From these results
we obtain that for all finite topological spaces (X, T) the maximum num-
ber of closure-interior relatives of a set is |X|, with one exception: For
the indiscrete topology T = {∅, X} on a set X with |X| = 2 there exist
two sets which possess |X| + 1 closure-interior relatives.

1 Introduction

Systematic experiments are an accepted means for doing science and they
become increasingly important as one proceeds in investigations. Meanwhile they
have also become important in formal sciences, like mathematics and theoretical
computer science. In this context tool support is indispensable. Typical applica-
tions of tools are theorem proving, (numerical or algebraic) computations, the
(random) generation of inputs for experiments, the visualisation of the computed
results and the construction of appropriate graphical displays that illustrate
decisive principles and concepts underlying a problem solution. Use is made of
general computer algebra systems, but also of systems for specific applications.

RelView (cf. [5,20]) is such a specific purpose computer algebra system for
the manipulation and visualisation of (binary) relations, relational prototyping
and relational programming. Computational tasks can be described by short
and concise programs, which frequently consist of only a few lines that present
the relation-algebraic expressions or formulae of the notions in question. Such
programs are easy to alter in case of slightly changed specifications. Combining
this with RelView’s possibilities for visualisation, animation and the random
generation of relations makes the tool very useful for systematic experiments and
scientific research. Another advantage of the tool is its very efficient implemen-
tation of relations via BDDs (binary decision diagrams). It leads to an amazing
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 60–76, 2017.
DOI: 10.1007/978-3-319-57418-9 4

Relational Investigation of Closure-Interior Relatives 61

computational power as, for example, demonstrated in [4,5,7], and allows to
experiment also with very large relations.

We have successfully combined relation algebra and RelView for many years
and in rather different areas. In this paper we continue the relational treatment
of topology, i.e., the work of [8,17,18], with a new application. Using relation
algebra and the RelView tool we compute for all topological spaces (X, T) with
less than 7 points and all sets A ∈ 2X the set CI (A) of the so-called closure-
interior relatives of A, where the latter sets are obtained by starting with A and
applying the operations of closure and interior in any order and any number
of times. The computation of the sets CI (A) is motivated by a variant of the
well-known Kuratowski closure-complement theorem (cf. [14]). This variant is
stated in [9] and says that for all topological spaces (X, T) and all sets A ∈ 2X

it holds |CI (A)| ≤ 7. A further motivation are results of [12,15] concerning this
variant. In [12] a finite topological space with 7 points is presented that allows
7 closure-interior relatives of a set and from [12,15] it follows that in case of
less than 7 points 7 closure-interior relatives of a set cannot co-exist. So, it is
natural to ask in case of less than 7 points for the maximum number of closure-
interior relatives a set can produce. The answer to this question is given by
the numerical data we will present in Sect. 2. In combination with the results of
[9,12,15] our data imply that for all finite and non-empty sets X, all topologies T
on X and all sets A ∈ 2X it holds |CI (A)| ≤ |X |, apart from one case. Precisely
for |X| = 2 and the indiscrete topology {∅,X} there exist two sets A ∈ 2X

with |CI (A)| = |X| + 1. The part of the paper following Sect. 2 consists in the
relation-algebraic preliminaries (Sect. 3), a short description of RelView and
the preparation of some basic code (Sect. 4), the development of the RelView-
program for the computation of the numerical data (Sect. 5), applications of
modifications of this program (Sect. 6) and some concluding remarks (Sect. 7).

2 Problem Background and the Numerical Results

We assume the reader to be familiar with the basic notions and facts of topology.
Otherwise we refer to [13], for example. If topological spaces are defined via open
sets, then a subset T of the powerset 2X of a non-empty set X is called an (open
sets) topology on X and (X, T) is called a topological space if ∅ ∈ T , X ∈ T , any
union

⋃
X of an arbitrary subset X of T is in T and any intersection

⋂
X of a

finite, non-empty subset X of T is in T . The sets of the topology T are called
open and a set C ∈ 2X is called closed if its complement Cc := X \ C is open.

To formulate the closure-complement theorem of [14] and the variant of [9]
(the closure-interior theorem), besides the complement Ac we need the interior
A◦ :=

⋃
{O ∈ T | O ⊆ A} and closure A− :=

⋂
{C ∈ 2X | A ⊆ C ∧ C closed} of

a set A ∈ 2X with respect to a topological space (X, T). Furthermore, we need
for a set A ∈ 2X the subset CI (A) of 2X , inductively defined by the rules (i)
A ∈ CI (A) and (ii) B− ∈ CI (A) and B◦ ∈ CI (A) for all B ∈ CI (A), and the
subset CK (A) of 2X , inductively defined by the rules (i) A ∈ CK (A) and (ii)
B− ∈ CK (A) and Bc ∈ CK (A) for all B ∈ CK (A). The sets in CI (A) are called

62 R. Berghammer

the closure-interior relatives of A and those in CK (A) are called the closure-
complement relatives of A – all with respect to (X, T). From the well-known
rules A◦◦ = A◦, A−− = A−, A◦−◦− = A◦− and A−◦−◦ = A−◦ we get

CI (A) = {A,A◦,A−,A−◦,A◦−,A◦−◦,A−◦−} (1)

and (1) shows the closure-interior theorem of [9], i.e., the following result:

Theorem 2.1 [9]. For all topological spaces (X, T) and all sets A ∈ 2X it holds
|CI (A)| ≤ 7.

Using Acc = A and the well-known rules A◦ = Ac−c, A◦c = Ac− and A−c = Ac◦,
which connect complements, closures and interiors, we, furthermore, obtain

CK (A) = CI (A) ∪ {Bc | B ∈ CI (A)} (2)

and (2) and Theorem 2.1 imply the closure-complement theorem of [14], i.e.:

Theorem 2.2 [14]. For all topological spaces (X, T) and all sets A ∈ 2X it holds
|CK (A)| ≤ 14.

The bounds of both theorems are sharp. For Theorem 2.2 this is already shown
in [14] by means of the standard topology on the set of real numbers. In [12]
a finite topology T on a set X with |X| = 7 and a 3-point subset A of X are
presented such that |CI (A)| = 7 and |CK (A)| = 14. In this paper it is also
shown that for all finite topological spaces (X, T) and all sets A ∈ 2X it holds

|X| < 7 =⇒ |CK (A)| < 14. (3)

That for all (i.e., also possibly infinite) topological spaces (X, T) and all sets
A ∈ 2X it holds

|CI (A)| = 7 ⇐⇒ |CK (A)| = 14 (4)

is mentioned in [3] and proved in [15]. After these preparations we are able to
prove the following analogon of (3) for closure-interior relatives.

Theorem 2.3. For all finite topological spaces (X, T) with |X| < 7 and all sets
A ∈ 2X it holds |CI (A)| < 7.

Proof. We use contradiction and assume to the contrary that there exist a finite
topological space (X, T) with |X| < 7 and a set A ∈ 2X with |CI (A)| ≥ 7. Then
Theorem 2.1 shows |CI (A)| = 7 such that |CK (A)| = 14 due to (4). But |X| < 7
and |CK (A)| = 14 contradict (3). ��

Property (3) and Theorem 2.3 give raise to the question how large the two sets
CK (A) and CI (A) actually may get in dependence on the number of points. For
the sets CK (A) the following answer is given in [2]: If (X, T) is a finite topological
space with |X| ≤ 7, then for all sets A ∈ 2X it holds |CK (A)| ≤ 2|X|. To answer
the question also for the sets CI (A), we have used the RelView tool and checked
for all finite topological spaces (X, T) with 1 ≤ |X| ≤ 6 whether there exists a

Relational Investigation of Closure-Interior Relatives 63

set A ∈ 2X with |CI (A)| = k , where k ranges from 1 to 7. The development of
the program (which also shows its correctness) is postponed to Sect. 5, but the
computed data are already presented in the following table. Here the entry for
|X| = m and k = n equals the number of topologies T on an m-point set X such
that – relative to the topological space (X, T) – there exists a set A ∈ 2X with
|CI (A)| = n. According to the notions used in [3,11], we call such a set A an
n-CI-set with respect to (X, T). The numbers in the column marked with k = 1
coincide with the numbers of all possible topologies on X (cf. e.g., with the data
of [10]). This follows from the fact that ∅− = ∅◦ = ∅ and X− = X◦ = X for all
topological spaces (X, T), which leads to ∅ and X as 1-CI-sets.

k = 1 2 3 4 5 6 7

|X| = 1 1 0 0 0 0 0 0

2 4 2 1 0 0 0 0

3 29 24 16 0 0 0 0

4 355 340 286 84 0 0 0

5 6 942 6 890 6 581 3 385 420 0 0

6 209 527 209 324 207 594 138 090 35 490 1 440 0

We also have computed the number of topologies on a 7-point set X such
that there exists a 7-CI-set. According to RelView, for 10 080 of the 9 535 241
topologies on X a 7-CI-set exists. With the help of the numerical data of the
table we now can prove the following analogon of the result of [2] for the sets
CI (A).

Theorem 2.4. For all topological spaces (X, T) we have (i) |CI (A)| ≤ |X| + 1
for all sets A ∈ 2X and (ii) that there exists a set A ∈ 2X with |CI (A)| = |X|+1
if and only if |X| = 2 and T is the indiscrete topology {∅,X}.

Proof. For |X| < 7 the first claim follows from the data of the above table and
for |X| ≥ 7 it follows from Theorem 2.1.

To prove the direction “⇒” of the second claim, assume that there exists a
set A ∈ 2X with |CI (A)| = |X| + 1. Then Theorem 2.1 yields |X| ≤ 6. The data
of the above table show that there exists exactly one topological space with less
than 7 points such that the assumption holds. From the boldface entry we get
|X| = 2. It is easy to check that in this case the only topology on X for which
there exists a 3-CI-set is the indiscrete topology {∅,X}. Here both singleton
sets of points produce 3 closure-interior relatives (whereas CI (∅) = {∅} and
CI (X) = {X }). From this, also direction “⇐” of the second claim follows. ��

If we call a set A ∈ 2X such that |CK (A)| = n an n-CK-set with respect to
the topological space (X, T), then (4) says that, given any topological space, for
n := 7 a set is a n-CI-set if and only if it is a 2n-CK-set. Theorem 2.4 shows that
the result does not generalise to all n from {1, . . . , 7}.

64 R. Berghammer

3 Relation-Algebraic Preliminaries

Given sets X and Y , we denote the set of all relations with source X and
target Y (the powerset 2X×Y) by [X ↔ Y] and write R : X ↔ Y instead of
R ∈ [X ↔ Y]. If the sets X and Y of the type X ↔ Y of R are finite (and
linearly ordered), we may consider R as a Boolean |X| × |Y | matrix. Such an
interpretation is also used as one of the graphical representations of relations
by RelView. Thus, in the following we often use Boolean matrix terminology
and notation. In particular, we speak of 0- and 1-entries, of rows and columns
and we write Rx,y instead of xRy or (x, y) ∈ R to express relationships. We
will employ the following five basic operations on relations: R (complement),
R ∪ S (union), R ∩S (intersection), RT (transposition) and R;S (composition).
We also will use the constants O (empty relation), L (universal relation) and I
(identity relation). Here we overload the symbols, i.e., avoid the binding of types
to them. Furthermore, we will use the tests R ⊆ S (inclusion) and R = S
(equality). We assume the reader to be familiar with these concepts; otherwise
we refer to [16]. For more details on the notions we introduce in the following,
we also refer to [16].

By syq(R,S) := RT;S ∩ RT;S the symmetric quotient of R : X ↔ Y and S :
X ↔ Z is defined. From this specification we get the typing syq(R,S) : Y ↔ Z
and, given y ∈ Y and z ∈ Z, also that syq(R,S)y,z if and only if for all x ∈ X
it holds Rx,y if and only if Sx,z. Since the latter description uses relationships
between elements, it is called an element-wise description.

Restricting the common notion of a relational vector (as used e.g., in [16])
slightly, in the present paper a vector is a relation v with the specific set 11 := {⊥}
as target. Since in a relationship vx,⊥ the second index ⊥ is irrelevant, we write
in the following vx instead of vx,⊥. In the matrix model vectors correspond to
Boolean column vectors. We say that v : X ↔ 11 models (or is the vector-model
of) the subset V of X if x ∈ V and vx are equivalent, for all x ∈ X. In such
a case inj(v) : V ↔ X denotes the embedding relation of V into X induced
by v, that is, the identity function from V to X regarded as a relation of type
V ↔ X. Using an element-wise description we, therefore, get inj(v)y,x if and
only if y = x, for all y ∈ V and x ∈ X. A (relational) point is a vector p : X ↔ 11
such that p �= O and p;pT ⊆ I (i.e., p is a non-empty and injective vector). It is
easy to see that then p models a singleton subset of X and it corresponds to a
Boolean column vector with exactly one 1-entry. If {x} is modeled by p, then we
say that p models the element x ∈ X. Hence, the point p : X ↔ 11 models the
element x ∈ X if and only if for all y ∈ X it holds py if and only if x = y. To
model subsets of powersets, we also will use membership relations M : X ↔ 2X ,
element-wisely described by Mx,Y if and only if x ∈ Y , for all x ∈ X and Y ∈ 2X .
If v : 2X ↔ 11 is the vector-model of a subset V of 2X and we define R : X ↔ V
by R := M;inj(v)T, then we get Rx,V if and only if x ∈ V , for all x ∈ X and
V ∈ V. By reason of this element-wise description, a relation R : X ↔ V is
called the membership-model of a subset V of 2X if for all x ∈ X and V ∈ V
it holds Rx,V if and only if x ∈ V . In Boolean matrix terminology this means

Relational Investigation of Closure-Interior Relatives 65

that each set of V is modeled by exactly one column of R. To go back from
the membership-model R : X ↔ V of V to the vector-model v : 2X ↔ 11 of V,
we use the symmetric quotient construction, since its element-wise description
yields v = syq(M, R);L, where L : V ↔ 11.

For each direct product of sets there exist the two projection functions which
decompose a pair u = (u1, u2) into its first component u1 and its second com-
ponent u2. When working in a relational context, it is useful to consider instead
of these functions the corresponding two projection relations π : X × Y ↔ X
and ρ : X × Y ↔ Y , element-wisely described by π(u1,u2),x if and only if u1 = x
and ρ(u1,u2),y if and only if u2 = y, for all (u1, u2) ∈ X × Y , x ∈ X and y ∈ Y .
The projection relations enable us to specify the well-known pairing operation of
functional programming in two versions. In this paper we only need one of them.
The left-pairing [[R,S] : X × Y ↔ Z of the relations R : X ↔ Z and S : Y ↔ Z
is given by [[R,S] := π;R ∩ ρ;S, where π : X × Y ↔ X and ρ : X × Y ↔ Y are
as above. Element-wisely this definition means that [[R,S](u1,u2),z

if and only if
Ru1,z and Su2,z, for all (u1, u2) ∈ X × Y and z ∈ Z. Projection relations and
left-pairing also allow us to define a Boolean algebra isomorphism

vec : [X ↔ Y] → [X × Y ↔ 11] Rel : [X × Y ↔ 11] → [X ↔ Y] (5)

between ([X ↔ Y],∪,∩,) and ([X × Y ↔ 11],∪,∩,) by vec(R) = [[R, I];L,
where I : Y ↔ Y and L : Y ↔ 11, and Rel(v) = πT;(ρ ∩ v;L), where π : X × Y ↔
X and ρ : X × Y ↔ Y are the projection relations of the direct product X × Y
and L : 11 ↔ Y . Then the element-wise description of the left-pairing operation
yields vec(R)(x,y) if and only if Rx,y, for all R : X ↔ Y , x ∈ X and y ∈ Y . For
the inverse function Rel the element-wise descriptions of the projection relations
show Rel(v)x,y if and only if v(x,y), for all v : X × Y ↔ 11, x ∈ X and y ∈ Y .

The disjoint union of sets leads to the two injection relations ı : X ↔ X � Y
and κ : Y ↔ X � Y , which allow the definition of two relational sums. In
RelView only one is implemented. It takes R : X ↔ Z and S : Y ↔ Z and
yields the relation R + S := ıT;R ∪ κT;S : X � Y ↔ Z. As the tool enumerates
a disjoint union X � Y of two (finite) sets by listing the elements of X in front
of those of Y , the Boolean matrix of R + S is obtained by putting the matrix
of R on top of the matrix of S. Hence, in case of a relation R : X ↔ Y and a
vector v : Y ↔ 11 the concatenation operation conc(R, v) := (RT + vT)T adds
the Boolean vector at the right of the last column of R. In Sect. 5 we will use
an obvious generalisation that concatenates 7 vectors to a single relation with 7
columns.

4 The RelView Tool and Some Basic Code

Continuing work at the University of the German Forces, since 1993 we develop
at Kiel University a specific purpose computer algebra system for the manipu-
lation and visualisation of relations, relational prototyping and relational pro-
gramming, called RelView. The tool is written in the C programming language,

66 R. Berghammer

uses reduced ordered BDDs for implementing relations and makes full use of a
graphical user interface. Details can be found, e.g., in [4,5,20]. Via [20] also the
newest version of the tool is available (Version 8.2, released January 2016).

The main purpose of the RelView tool is the evaluation of relation-algebraic
expressions. These are constructed from the relations of its workspace using pre-
defined operations and tests (including those presented in Sect. 3), user-defined
relational functions and user-defined relational programs.

In the programming language of RelView a relational function is defined
as it is customary in mathematics, i.e., as F (R1, . . . , Rn) = E, where F is the
function name, R1, . . . , Rn are the parameters (standing for the input relations)
and E is a relation-algebraic expression that specifies how the result is computed
from the input. E.g., the definition of the function vec : [X ↔ Y] → [X × Y ↔ 11]
of (5) immediately leads to the following relational function:

vec(R) = dom([|R,I(R ^ * R)]).

In this RelView code dom and I are pre-defined RelView operations. Assum-
ing R : X ↔ Y , a comparison of the specification vec(R) in Sect. 3 and the above
relational function vec shows that a call of dom composes the argument from
the right with a universal vector of appropriate type and a call of I computes an
identity relation with the same type as the argument. In RelView the symbol
“∗” denotes the composition operation and the symbol “^” denotes the transpo-
sition operation. So, the argument of I is the relation RT;R, which implies that
the second argument of the left-pairing of the relational function is the identity
relation of type Y ↔ Y , exactly as in the specification vec(R).

A relational program in RelView is much like a function procedure in con-
ventional programming languages, except that it uses only relations as data
type and is not able to modify the workspace (i.e., applications are free of side-
effects). It starts with a head line containing the program name and the list of
parameters, which again stand for relations. Then the declarations of the local
relational domains and functions and of the variables follow. Domain declara-
tions for direct products can be used to introduce projection relations and those
for disjoint unions can be used to introduce injection relations. The third part of
a relational program is the body, a while-program over relations. As a program
computes a value, finally, its last part consists of a return-clause, which is a
relation-algebraic expression whose value after the execution of the body is the
result.

In contrast with the definition of the function vec of (5), in the definition of
its inverse, the function Rel : [X × Y ↔ 11] → [X ↔ Y] of (5), the projection
relations π : X × Y ↔ X and ρ : X × Y ↔ Y of the direct product X × Y
are explicitly used. Therefore, a RelView-version of Rel requires the use of a
relational program in which a product domain for X×Y has to be declared. From
the latter the projection relations π and ρ may then be obtained with the help
of the pre-defined RelView operations p-1 and p-2 and two assignments that
store the results of their applications in local variables, as shown in the following
relational program Rel (where the symbol “&” denotes RelView’s intersection
operation):

Relational Investigation of Closure-Interior Relatives 67

Rel(v,S)
DECL XY = PROD(S*S^,S^*S);

pi, rho
BEG pi = p-1(XY); rho = p-2(XY)

RETURN pi^*(rho & v*L1n(S))
END.

RelView is not able to derive from the type X × Y ↔ 11 of the input v the two
sets X and Y of the direct product X ×Y . These, however, are necessary for the
declaration of the product domain XY for X × Y and have to be provided in
the form of two relations of type X ↔ X resp. Y ↔ Y . In the program Rel the
auxiliary input S : X ↔ Y allows to construct such relations as S;ST : X ↔ X
and ST;S : Y ↔ Y . With the help of S and the pre-defined RelView operation
L1n also the transposed vector L : 11 ↔ Y of the specification Rel(v) is obtained.

In view of the relational program we will develop in Sect. 5, now we develop
a specification ToRel(p) : X ↔ X, that computes for a point p : [X ↔ X] ↔ 11
the relation modeled by p. Assume R : X ↔ X to be the latter. With the help
of the membership relation M : X2 ↔ [X ↔ X] we then obtain for all x, y ∈ X:

ToRel(p)x,y ⇐⇒ Rx,y assumption
⇐⇒ M(x,y),R element-wise descr. M
⇐⇒ ∃ S ∈ [X ↔ Y] : M(x,y),S ∧ R = S

⇐⇒ ∃ S ∈ [X ↔ Y] : M(x,y),S ∧ pS p models R

⇐⇒ (M;p)(x,y)
⇐⇒ Rel(M;p)x,y element-wise descr. Rel

From this result we get the specification ToRel(p) = Rel(M;p) and a translation
into a relational program ToRel looks as follows:

ToRel(p,S)
DECL XX = PROD(S,S);

pi, M
BEG pi = p-1(XX); M = epsi(pi)

RETURN Rel(M*p,S)
END.

Here the pre-defined RelView operation epsi computes for an arbitrary relation
of type Y ↔ Z the membership relation M : Y ↔ 2Y . The second (auxiliary)
input S : X ↔ X of the program ToRel is used at two places. In the declaration of
the product domain XX for X2 it provides the carrier set X. The first projection
π of the direct product X2 then is used to obtain via its source and the operation
epsi the membership relation M : X2 ↔ [X ↔ X]. Furthermore, in the call of
the relational program Rel the input S provides the type for the result.

In Sect. 5 we will also use the following relational program clReps, where the
input R : X ↔ X is assumed to be an equivalence relation:

68 R. Berghammer

clReps(R)
DECL v
BEG v = point(dom(R));

WHILE -eq(R*v,dom(R)) DO
v = v | point(-(R*v) & dom(R)) OD

RETURN v
END.

Here the symbol “-” denotes the complement operation, the symbol “|” denotes
the union operation, the pre-defined RelView operation eq tests the equality
of relations (such that -eq tests non-equality) and the pre-defined RelView
operation point yields for a non-empty vector a point that is contained in the
vector, i.e., a point that models an element of the set modeled by the vector.
By combining relation algebra and assertion-based program verification, in [6]
it is shown that the output vector v : X ↔ 11 of clReps models a complete set
of representatives for all equivalence classes of R, i.e., a set which contains for
each equivalence class of R exactly one representative.

5 Computation of the Numerical Data via RelView

The development (including the correctness proof) of the relational program for
computing the numerical data of Sect. 2, that we will present in this section, is
based upon the membership-models for topologies. Such a modeling easily allows
to compute interiors and closures with relation-algebraic means. Given T : X ↔
T as the membership-model of a topology T on the set X and a : X ↔ 11 as the
vector-model of the set A ∈ 2X , we can calculate the equivalence

x ∈ A◦ ⇐⇒ x ∈
⋃

{O ∈ T | O ⊆ A} definition interior
⇐⇒ ∃O ∈ T : O ⊆ A ∧ x ∈ O

⇐⇒ ∃O ∈ T : x ∈ O ∧ ∀ y ∈ O : y ∈ A

⇐⇒ ∃O ∈ T : x ∈ O ∧ ∀ y ∈ X : y ∈ O ⇒ ay a models A

⇐⇒ ∃O ∈ T : Tx,O ∧ ¬∃ y ∈ X : TT
O,y ∧ ay T membership-model

⇐⇒ ∃O ∈ T : Tx,O ∧ TT;aO

⇐⇒ (T ;TT;a)x,

for all x ∈ X. As a consequence, we obtain that by

Int(T, a) := T ;TT;a : X ↔ 11 (6)

the vector-model of the interior A◦ of A is specified. From this, the well-known
rule A− = Ac◦c and the fact that the complement v of a vector v models the
complement Bc of the set B modeled by v, we obtain

Clos(T, a) := Int(T, a) = T ;TT;a : X ↔ 11 (7)

Relational Investigation of Closure-Interior Relatives 69

as specification of the vector-model of the closure A− of A. A translation of (6)
and (7) into the programming language of RelView is trivial. It leads to the
following relational functions Int and Clos:

Int(T,a) = T*-(T^*-a). Clos(T,a) = -(T*-(T^*a)).

A specific property of the right-hand sides of the specifications of Int(T, a)
and Clos(T, a) in (6) resp. (7) is that these are constructed from the parameter
a using only the Boolean operations on relations and composition from the left
with a relation-algebraic expression free of a. This implies that they are column-
wise extendible with respect to a in the sense of [7] and, hence, a replacement
of the vector a : X ↔ 11 by the membership-model M : X ↔ M of a subset
M of 2X leads to specifications Int(T,M) : X ↔ M and Clos(T,M) : X ↔ M
with the property that for all x ∈ X and sets A ∈ M the relationships Mx,A,
Int(T,M)x,A◦ and Clos(T,M)x,A− are equivalent. Using matrix terminology this
means that, if A is modeled by the nth column of M , where 1 ≤ n ≤ |M|, then
A◦ is modeled by the nth column of Int(T,M) and A− is modeled by the nth

column of Clos(T,M). Especially for M as membership relation M : X ↔ 2X

and the 6 relations I, C,E, F,G,H : X ↔ 2X defined by

I := Int(T,M) E := Int(T,C) G := Int(T, F)
C := Clos(T,M) F := Clos(T, I) H := Clos(T,E) (8)

we get for all n ∈ {1, . . . , 2|X|} and sets A ∈ 2X the following property: If the
nth column of M models the set A, then the nth column of I resp. C,E, F,G
and H models the set A◦ resp. A−, A−◦, A◦−, A◦−◦ and A−◦−. Together with
Eq. (1) this shows for all k ∈ {1, . . . , 7} that A is a k-CI-set if and only if exactly
k of the nth columns of M, I, C,E, F,G and H are pair-wise different. This is
the decisive idea behind the program we want to develop.

To give an example, we consider the two-point set X := {a, b} and the
topology T1 := {∅, {a},X} on X. We use RelView to compute the membership
relation and the 6 relations of (8). The next 7 pictures show, from left to right,
the Boolean matrix representations of the relations M, I, C,E, F,G and H, where
a black square means a 1-entry and a white square means a 0-entry.

Hence, I ⊂ E = F = G = H ⊂ C. From the first columns of these 7 Boolean
matrices we get CI (∅) = {∅}, from the second ones CI ({b}) = {∅, {b}}, from
the third ones CI ({a}) = {{a},X } and from the last ones CI (X) = {X }. If
we take the indiscrete topology T2 := {∅,X} on X, then RelView yields the
following Boolean matrices for M, I, C,E, F,G and H:

Here we have I = F = G ⊂ C = E = H. Now a column-wise comparison of
these 7 Boolean matrices shows CI (∅) = {∅}, CI ({b}) = {∅, {b},X }, CI ({a}) =

70 R. Berghammer

{∅, {a},X } and CI (X) = {X }. In particular, the singleton sets {a} and {b} lead
to 3 = |X| + 1 closure-interior relatives, as stated in the proof of Theorem2.4.

In order to apply the above mentioned idea to all possible topologies on a
given finite set X, where 1 ≤ |X| ≤ 6, we have to generate for each topol-
ogy T on X the respective membership-model T : X ↔ T . For this purpose
we use the well-known fact that (because topologies on finite sets are so-called
Alexandroff-topologies) there exists a 1-to-1 correspondence between the set PX

of all preorder relations on X and the set TX of all topologies on X; see e.g., [1].
The direction we are interested in is the translation from an arbitrary preorder
relation Q : X ↔ X to the corresponding topology TQ. Again it is known that
TQ consists of the lower sets of the preordered set (X,Q). Based on this descrip-
tion, the following calculation shows that L;(Q;M ∩ M) T : 2X ↔ 11 relation-
algebraically specifies the vector-model of TQ, where A ∈ 2X is an arbitrary set,
L : 11 ↔ X is a transposed universal vector and M : X ↔ 2X is a membership
relation:

L;(Q;M ∩ M)⊥,A ⇐⇒ ¬∃x ∈ X : L⊥,x ∧ (Q;M ∩ M)x,A

⇐⇒ ¬∃x ∈ X : (Q;M)x,A ∧ Mx,A

⇐⇒ ¬∃x ∈ X : (∃ y ∈ X : Qx,y ∧ My,A) ∧ Mx,A

⇐⇒ ¬∃x, y ∈ X : Qx,y ∧ y ∈ A ∧ x /∈ A

⇐⇒ ∀ x, y ∈ X : y ∈ A ∧ Qx,y ⇒ x ∈ A

In the fourth step the element-wise description of M is applied. With the tech-
nique of Sect. 3 the vector-model of TQ leads to the specification

ToTop(Q) := M;inj (L;(Q;M ∩ M)
T
)
T

: X ↔ TQ (9)

of the membership-model of TQ. The RelView-version of (9) looks as follows:

ToTop(Q)
DECL M
BEG M = epsi(Q)

RETURN M*inj(-(L1n(Q)*(Q*M & -M))^)^
END.

Being able to go from a preorder relation on X to the corresponding Alexandroff-
topology, the next task is to model the set PX by a vector. Here we use that

reflR := vec(I)T;M
T

: [X ↔ X] ↔ 11 (10)

specifies the vector-model of the set of all reflexive relations on X and

transR := vec(ρ;πT)T;([[M,M] ∩ [[π;πT, ρ;ρT];M)
T

: [X ↔ X] ↔ 11, (11)

specifies the vector-model of the set of all transitive relations on X, such that
reflR ∩ transR specifies the vector-model of the set PX , i.e., is the specification

Relational Investigation of Closure-Interior Relatives 71

we are looking for. Both specifications (10) and (11) use the membership relation
M : X2 ↔ [X ↔ X]. In (10) additionally I : X ↔ X is used and in (11)
additionally the projection relations π, ρ : X2 ↔ X of the direct product X2

are applied. To prove the specifications (10) and (11) as correct, we assume an
arbitrary relation R : X ↔ X. In case of (10) we then calculate as follows:

reflRR ⇐⇒ vec(I)T;M⊥,R

⇐⇒ ¬∃ u ∈ X2 : vec(I)u ∧ Mu,R

⇐⇒ ∀ u ∈ X2 : vec(I)u ⇒ Mu,R

⇐⇒ ∀ u ∈ X2 : Iu1,u2 ⇒ Ru1,u2

⇐⇒ ∀ x ∈ X : Rx,x

Here we assume u = (u1, u2) and use in the fourth step the element-wise descrip-
tions of M and vec(I). The next calculation proves the correctness of (11):

transRR ⇐⇒ vec(ρ;πT)T;([[M,M] ∩ [[π;πT, ρ;ρT];M)⊥,R

⇐⇒ ¬∃u, v ∈ X2 : vec(ρ;πT)(u,v) ∧ ([[M,M] ∩ [[π;πT, ρ;ρT];M)(u,v),R
⇐⇒ ¬∃u, v ∈ X2 :

vec(ρ;πT)(u,v) ∧ [[M,M](u,v),R ∧ ([[π;πT, ρ;ρT];M)(u,v),R

⇐⇒ ¬∃u, v ∈ X2 : (ρ;πT)u,v ∧ Mu,R ∧ Mv,R ∧
∃ w ∈ X2 : [[π;πT, ρ;ρT](u,v),w ∧ Mw,R

⇐⇒ ¬∃u, v ∈ X2 : u2 = v1 ∧ Ru1,u2 ∧ Rv1,v2 ∧
∃ w ∈ X2 : (π;πT)u,w ∧ (ρ;ρT)v,w ∧ ¬Rw1,w2

⇐⇒ ¬∃u, v, w ∈ X2 :
u2 = v1 ∧ Ru1,u2 ∧ Rv1,v2 ∧ u1 = w1 ∧ v2 = w2 ∧ ¬Rw1,w2

⇐⇒ ¬∃u, v ∈ X2 : u2 = v1 ∧ Ru1,u2 ∧ Rv1,v2 ∧ ¬Ru1,v2

⇐⇒ ∀u, v ∈ X2 : Ru1,u2 ∧ Rv1,v2 ∧ u2 = v1 ⇒ Ru1,v2

⇐⇒ ∀x, y, z ∈ X : Rx,y ∧ Ry,z ⇒ Rx,z

Here we assume u = (u1, u2), v = (v1, v2) and w = (w1, w2), use the element-
wise description of vec(ρ;πT) in the fourth step, that of left-pairings in the fourth
and fifth step, that of the membership relation M in the fifth step and that of
the projection relations π and ρ in the fifth and sixth step.

Again it is straightforward to translate (10) and (11) into RelView code. In
case of the specification (10) we obtain the following relational program reflR:

reflR(v)
DECL XX = PROD(v*v^,v*v^);

pi, M
BEG pi = p-1(XX); M = epsi(pi)

RETURN -(vec(I(v*v^))^*-M)^
END.

72 R. Berghammer

Compared with (10), the program reflR uses a parameter v : X ↔ 11 that
makes the assumed set X available. Also the next relational program transR for
implementing (11) uses this parameter for providing X:

transR(v)
DECL XX = PROD(v*v^,v*v^);

pi, rho, M
BEG pi = p-1(XX); rho = p-2(XX); M = epsi(pi)

RETURN -(vec(rho*pi^)^*([|M,M] & [|pi*pi^,rho*rho^]*-M))^
END.

Having the relational programs reflR and transR and a vector v : X ↔ 11 at hand,
a run through all points contained in the vector reflR(v) ∩ transR(v) allows to
generate the membership-models of all topologies on X. Namely, if by means of
the assignment p = point(reflR(v) ∩ transR(v)) such a point p : [X ↔ X] ↔ 11
is selected, then the call ToRel(p, v;vT) computes the preorder relation Q mod-
eled by p and, therefore, the evaluation of the expression ToTop(ToRel(p, v;vT))
returns the membership-model of the corresponding topology TQ.

After these preparations we are able to formulate the following relational
program genCI for the computation of the numerical data of Sect. 2:

genCI(v,Lk)
DECL conc(m,i,c,e,f,g,h) = (m^+i^+c^+e^+f^+g^+h^)^;

po, res, p, M, T, I, C, E, F, G, H, w, q, R
1 BEG po = reflR(v) & transR(v); res = O(po);
2 WHILE -empty(po) DO
3 p = point(po);
4 M = epsi(v); T = ToTop(ToRel(p,v*v^));
5 I = Int(T,M); C = Clos(T,M);
6 E = Int(T,C); F = Clos(T,I);
7 G = Int(T,F); H = Clos(T,E);
8 w = L1n(M)^;
9 WHILE -empty(w) DO

10 q = point(w);
11 R = conc(M*q,I*q,C*q,E*q,F*q,G*q,H*q);
12 IF cardeq(clReps(syq(R,R)),Lk) THEN res = res | p FI;
13 w = w & -q OD;
14 po = po & -p OD

RETURN res
END.

This program expects as input a vector v : X ↔ 11, that provides the set X, and
a universal vector Lk with a k-element source, that provides the number k ∈ N.
The result of genCI(v, Lk) is a vector res: [X ↔ X] ↔ 11. It models the set of all
preorder relations Q on X such that there exists a k-CI-set A ∈ 2X with respect

Relational Investigation of Closure-Interior Relatives 73

to (X, TQ) (with TQ as topology corresponding to Q). In the table of Sect. 2 we
have collected for each result of genCI(v, Lk), where 1 ≤ |X| ≤ 6 and 1 ≤ k ≤ 7,
the number of 1-entries (i.e., the cardinality of the set it models). RelView
delivers this information when it depicts a relation in its relation window.

To facilitate the subsequent explanation of the program, we have marked the
lines of its body. When executing genCI(v, Lk), first, the vector-model of the set
PX is computed and stored in the local variable po; then the result variable res
is defined as empty (line 1). After this initialisation the program runs through
all points p ⊆ po (lines 2–14) and performs successively three actions:

1. Selection of p and computation of the membership relation M : X ↔ 2X and
of the membership-model T : X ↔ T of the topology T that corresponds to
the preorder relation modeled by p (line 3–4).

2. Computation of the 6 relations I, C,E, F,G,H : X ↔ 2X of (8) for the
topology T (lines 5–7).

3. Test, whether there exists an n in {1, . . . , 2|X|} such that precisely k of the
nth columns of the relations M, I, C,E, F,G and H are pair-wise different,
and addition of the preorder relation to the result (expressed by the union of
res and p) in case of a positive answer (lines 8–13).

The test of action 3 is realised by a loop through all points q contained in
the universal vector L : 2X ↔ 11. In line 11 the columns of M, I, C,E, F,G,H
designated by q are computed as vectors M;q, I;q, C;q, E;q, F ;q, G;q, H;q : X ↔
11 and then concatenated to a single relation R with source X and 7 columns via
the technique described at the end of Sect. 3 and the local relational function
conc. So, precisely k of the 7 vectors are pair-wise different if and only if precisely
k of the 7 columns of R are pair-wise different. From the element-wise description
of the symmetric quotient it follows that syq(R,R)m,n if and only if the mth

column of R equals the nth column of R. Hence, exactly k of the 7 columns
of R are pair-wise different if and only if the number of equivalence classes of
the equivalence relation syq(R,R) is k. In line 12 the latter property is tested
by comparing the number of 1-entries of clReps(syq(R,R)) (i.e., the number of
equivalence classes of syq(R,R)) with the number of 1-entries of the universal
vector Lk (i.e., the number k) using the pre-defined RelView-operation cardeq
for testing the equality of the cardinality of relations.

Next, we present an application. We consider again the two-point set X :=
{a, b}, since already 3 points lead to matrices and vectors which are too large to
be presented here. The following RelView-pictures show, from top to bottom,
the membership relation M : X2 ↔ [X ↔ X] and then the transposed results
resTk : 11 ↔ [X ↔ X] of the calls genCI(v, Lk), where v : X ↔ 11 and k ∈ {1, 2, 3}:

74 R. Berghammer

Since each topology leads to a 1-CI-set (cf. Sect. 2), from M and resT1 it fol-
lows that there exist precisely 4 preorder relations on the set X, viz. the iden-
tity relation (column 10), corresponding to the discrete topology 2X , the rela-
tion {(a, a), (b, a), (b, b)} (column 12), corresponding to the topology {∅, {b},X},
the relation {(a, a), (a, b), (b, b)} (column 14), corresponding to the topology
{∅, {a},X}, and the universal relation (column 16), corresponding to the indis-
crete topology {∅,X}. From M and resT2 we get that exactly the second and the
third topology allow 2-CI-sets and M and resT3 show that the indiscrete topology
is the only topology on X that allows 3-CI-sets.

6 Modifications of the Program with Applications

In Sect. 1 we have mentioned that RelView-programs are easy to alter in case
of slightly changed specifications. Following, we present examples for this.

First, we insert the assignment R = (R^ + −R^)^ after line 11 of the
body of the program genCI and change the name to genCK. Because of (2),
for v : X ↔ 11 then the call genCK(v, Lk) computes a vector that models
the set of all preorder relations on X such that the corresponding topologies
lead to k-CK-sets. From (4) we obtain genCI(L7, L7) = genCK(L7, L14). Gen-
eralising this property, RelView yields genCI(Lk, Lk) = genCK(Lk, L2k) for
k ∈ {1, 4, 5, 6, 7}. Hence, apart from the cases |X| = 2 and |X| = 3 each
finite topological space (X, T) allows a |X|-CI-set if and only if it allows a
2|X|-CK-set. Concerning the first exception and assuming X := {a, b}, from
the above pictures we already know that the vector genCI(L2, L2) models the
set {{(a, a), (b, b), (a, b)}, {(a, a), (b, b), (b, a)}}. RelView computes that the set
modeled by the vector genCK(L2, L4) additionally contains the universal rela-
tion on X. When |X| = 3, we obtain from the numerical data of Sect. 2 that
the vector genCI(L3, L3) models a set of 16 preorder relations. RelView shows
genCI(L3, L3) ⊃ genCK(L3, L6) and that the vector genCK(L3, L6) models a set
with 12 preorder relations only.

In [11] a good deal of work is done in the connections of the sets of CI (A) and,
based on this, in the connections of compositions of the interior- and closure-
operation and their use in characterising the underlying topological space (X, T).
Translated into our context, e.g., one result of [11] says that (T ,∪,∩, c) is a
Boolean algebra if and only if C = E, with the relations C and E as defined
in (8). Another result of [11] says that the closure of any open set is open if
and only if F = G, again with F and G from (8). So, RelView can be used
to mechanise the characterisations of [11]. E.g., an obvious modification of the
program genCI shows that for |X| = 7 (resp. 6, 5, 4, 3, 2 and 1) exactly 877
(resp. 203, 52, 15, 5, 2 and 1) topologies on X form a Boolean algebra. Since
these numbers are exactly the numbers of equivalence relations on X (i.e., the
Bell numbers B7 to B1), we get the insight that, if (X, T) is a finite topological
space, then (T ,∪,∩, c) is a Boolean algebra if and only if the preorder relation
corresponding to T is symmetric (which, in turn, means that (X, T) is a so-called
R0-space). A formal proof of this fact uses that the topology T equals the set

Relational Investigation of Closure-Interior Relatives 75

CT of closed sets of (X, T) and that the preorder relation corresponding to the
topology CT on X is the transpose of the preorder relation corresponding to T .

7 Concluding Remarks

Although Theorem 2.4 is a novel analogon of the result of [2] with a remark-
able characterisation of indiscrete topologies on two-point sets, we do not regard
it as the main contribution of the paper. In our view more important are the
developments of the relational program genCI and of the auxiliary relational
functions and programs, especially those of reflR and transR, and the applica-
tion of genCI and its modifications. This again demonstrates the considerable
potential of relation algebra and RelView in modeling, specification and prob-
lem solving. In our opinion more important than Theorem2.4 is also the use of
the tool for computational mathematics and mathematical experiments. In [8]
experiments with RelView lead to new topological results, too, viz. that, given
a finite topological space (X, T) with ⊆-least base B∗ for T , (i) the number of
bases for T is 2|T |−|B∗|, (ii) the ∩-irreducible sets of B∗ form a ⊆-minimal sub-
base for T and (iii) this specific subbase is even the ⊆-least element of the set
of those subbases for T which are contained in the ⊆-least base B∗ for T . For
the future we plan to extend our investigations to variations of the Kuratowski
problem as, e.g., discussed in [19] by the addition of intersection and/or union.
Following the case-distinction approach of [2], we also want to prove Theorem 2.4
as usual in mathematics, i.e., without the use of the RelView tool.

References

1. Alexandroff, P.: Diskrete Räume. Mat. Sb. NS 2, 501–518 (1937)
2. Anusiak, J., Shum, K.P.: Remarks on finite topological spaces. Colloq. Math. 23,

217–223 (1971)
3. Aull, C.E.: Classification of topological speces. Bull. Acad. Polon. Sci. Ser. Math.

Astro. Phys. 15, 773–778 (1967)
4. Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relational algebra

using binary decision diagrams. In: de Swart, H.C.M. (ed.) RelMiCS 2001. LNCS,
vol. 2561, pp. 241–257. Springer, Heidelberg (2002). doi:10.1007/3-540-36280-0 17

5. Berghammer, R., Neumann, F.: RelView – an OBDD-based computer alge-
bra system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005). doi:10.1007/
11555964 4

6. Berghammer, R., Winter, M.: Embedding mappings and splittings with applica-
tions. Acta Inform. 47, 77–110 (2010)

7. Berghammer, R.: Column-wise extendible vector expressions and the relational
computation of sets of sets. In: Hinze, R., Voigtländer, J. (eds.) MPC 2015. LNCS,
vol. 9129, pp. 238–256. Springer, Cham (2015). doi:10.1007/978-3-319-19797-5 12

8. Berghammer, R., Winter, M.: Solving computational tasks on finite topologies by
means of relation algebra and the RelView tool. J. Log. Algebr. Methods Program.
88, 1–25 (2017)

http://dx.doi.org/10.1007/3-540-36280-0_17
http://dx.doi.org/10.1007/11555964_4
http://dx.doi.org/10.1007/11555964_4
http://dx.doi.org/10.1007/978-3-319-19797-5_12

76 R. Berghammer

9. Chapman, T.A.: A further note on closure and interior operations. Am. Math.
Mon. 68, 524–529 (1962)

10. Erné, M., Stege, K.: Counting finite posets and topologies. Order 8, 247–265 (1991)
11. Gardner, B.J., Jackson, M.: The Kuratowski closure-complement theorem. N. Z.

J. Math. 38, 9–44 (2008)
12. Herda, H.H., Metzler, R.C.: Closure and interior in finite topological spaces. Colloq.

Math. 15, 211–216 (1966)
13. Kelley, J.L.: General Topology. Springer, New York (1975)
14. Kuratowski, C.: Sur l’opération A de l’analysis situs. Fund. Math. 3, 182–199

(1922)
15. Langford, E.: Characterization of Kuratowski 14-sets. Am. Math. Mon. 78, 362–

367 (1971)
16. Schmidt, G.: Relational Mathematics. Cambridge University Press, Cambridge

(2010)
17. Schmidt, G., Berghammer, R.: Contact, closure, topology, and the linking of rows

and column types. J. Log. Algebr. Program. 80, 339–361 (2011)
18. Schmidt, G.: A point-free relation-algebraic approach to general topology. In:

Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol.
8428, pp. 226–241. Springer, Cham (2014). doi:10.1007/978-3-319-06251-8 14

19. Sheman, D.: Variations on Kuratowski’s 14-set theorem. Am. Math. Mon. 117,
113–123 (2010)

20. RelView-homepage: http://www.informatik.uni-kiel.de/∼progsys/relview/

http://dx.doi.org/10.1007/978-3-319-06251-8_14
http://www.informatik.uni-kiel.de/~progsys/relview/

Varieties of Cubical Sets

Ulrik Buchholtz1,2P(B) and Edward Morehouse3,4P

1 Department of Philosophy, Carnegie Mellon University, Pittsburgh,
PA 15213, USA

2 Fachbereich Mathematik, Technische Universität Darmstadt,
Schlossgartenstraße 7, 64289 Darmstadt, Germany

buchholtz@mathematik.tu-darmstadt.de
3 Carnegie Mellon School of Computer Science,
5000 Forbes Avenue, Pittsburgh, PA 15213, USA

emorehouse@wesleyan.edu
4 Department of Mathematics and Computer Science,
Wesleyan University, 265 Church Street, Middletown,

CT 06459, USA

Abstract. We define a variety of notions of cubical sets, based on sites
organized using substructural algebraic theories presenting PRO(P)s or
Lawvere theories. We prove that all our sites are test categories in the
sense of Grothendieck, meaning that the corresponding presheaf cat-
egories of cubical sets model classical homotopy theory. We delineate
exactly which ones are even strict test categories, meaning that products
of cubical sets correspond to products of homotopy types.

1 Introduction

There has been substantial interest recently in the use of cubical structure as
a basis for higher-dimensional type theories (Angiuli et al. 2017; Awodey 2016;
Bezem et al. 2014; Cohen et al. 2016). A question that quickly arises is, what
sort of cubical structure, because there are several plausible candidates to choose
from.

The suitability of a given cubical structure as a basis for a higher-dimensional
type theory is dependent on at least two considerations: its proof-theoretic char-
acteristics (e.g. completeness with respect to a given class of models, decidability
of equality of terms, existence of canonical forms) and its homotopy-theoretic
characteristics, most importantly, that the synthetic homotopy theory to which
it gives rise should agree with the standard homotopy theory for topological
spaces.

Contributions. In this paper we organize various notions of cubical sets along
several axes, using substructural algebraic theories as a guiding principle (Mauri
2005). We define a range of cube categories (or cubical sites), categories C for
which the corresponding presheaf category ̂C can be thought of as a category
of cubical sets. We then consider each of these from the perspective of test
categories (Grothendieck 1983), which relates presheaf categories and homotopy
theory. We give a full analysis of our cubical sites as test categories.
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 77–92, 2017.
DOI: 10.1007/978-3-319-57418-9 5

78 U. Buchholtz and E. Morehouse

1.1 Cube Categories

Our cube categories are presented as monoidal categories with a single generat-
ing object, X, representing an abstract dimension. To give such a presentation,
then, is to give a collection of morphism generators, f : X⊗n → X⊗m, and a col-
lection of equations between parallel morphisms. Such a presentation is known
in the literature as a “PRO”. Two closely-related notions are those of “PROP”
and of “Lawvere theory”, the difference being that a PROP assumes that the
monoidal category is symmetric, and a Lawvere theory further assumes that it is
cartesian. These additional assumptions manifest themselves in the proof theory
as the admissibility of certain structural rules: in a PROP, the structural rule of
exchange is admissible, and in a Lawvere theory weakening and contraction are
admissible as well.

The distinguishing property of a theory making it “cubical”, rather than of
some other “shape”, is the presence of two generating morphisms, d0, d1 : 1 → X
representing the face maps (where “1” is the monoidal unit). This is because
combinatorially, an n-dimensional cube has 2n many (n−1)-cube faces, namely,
two in each dimension.

1.2 Test Categories

In his epistolary research diary, Pursuing Stacks, Grothendieck set out a pro-
gram for the study of abstract homotopy. The homotopy theory of topological
spaces can be described as that of (weak) higher-dimensional groupoids. Higher-
dimensional groupoids also arise from combinatorially-presented structures, such
as simplicial or, indeed, cubical sets, which can thus be seen as alternative pre-
sentations of the classical homotopy category, Hot. That is, Hot arises either
from the category of topological spaces, or from the category of simplicial sets,
by inverting a class of morphisms (the weak equivalences).

Recall that for any small category A and any cocomplete category E , there
is an equivalence between functors i : A → E and adjunctions

(1)

where i! is the left Kan extension of i, and i∗(X)(a) = HomE(i(a),X).1 Here ̂A is
the category of functors Aop → Set, also known as the presheaf topos of A. The
category of simplicial sets is defined as the presheaf category sSet = ̂Δ, where
Δ is the category of non-empty finite totally ordered sets and order-preserving
maps.

The category of small categories, Cat, likewise presents the homotopy cate-
gory, by inverting the functors that become weak equivalences of simplicial sets
after applying the nerve functor, which is the right adjoint functor N = i∗ com-
ing from the inclusion Δ ↪→ Cat. Grothendieck realized that this allows us to
1 In this paper, all small categories are considered as strict categories, and Cat denotes

the 1-category of these.

Varieties of Cubical Sets 79

compare the presheaf category ̂A, for any small category A, with the homotopy
category in a canonical way, via the functor iA : A → Cat given by iA(a) = A/a.
The left Kan extension is in this case also denoted iA and we have iA(X) = A/X

for X in ̂A. He identified the notion of a test category, which is one for which the
homotopy category of its category of presheaves is equivalent to the homotopy
category via the right adjoint i∗A, after localization at the weak equivalences. In
other words, presheaves over a test category are models for homotopy types of
spaces/∞-groupoids. In this way, the simplex category Δ is a test category, and
the classical cube category of Serre and Kan, C(w,·) in our notation, is also a test
category.

One perceived benefit of the simplex category Δ is that the induced functor
sSet → Hot preserves products, whereas the functor Ĉ(w,·) → Hot does not.
A test category A for which the functor ̂A → Hot preserves products is called a
strict test category. We shall show that most natural cube categories are in fact
strict test categories.

2 Cube Categories

In this paper, we consider as base categories the syntactic categories for a range
of monoidal theories, all capturing some aspect of the notion of an interval. We
call the resulting categories “cube categories”, because the monoidal powers of
the interval then correspond to cubes2.

The generating morphisms for these cube categories can be classified either
as structural, natural families corresponding to structural rules of a proof theory,
or as algebraic, distinguished by the property of having coarity one. Our cube
categories vary along three dimensions: the structural rules present, the signature
of algebraic function symbols, and the equational theory.

This section is organized as follows: in Subsect. 2.1 we recall the basics of
algebraic theories in monoidal categories, and in Subsect. 2.2 we discuss how
monoidal languages are interpreted in monoidal categories. Then we introduce
in Subsect. 2.3 the monoidal languages underlying our cubical theories, so that
in Subsect. 2.4 we can introduce the standard interpretations of these and our
cubical theories. In Subsect. 2.5 we give a tour of the resulting cube categories.

2.1 Monoidal Algebraic Theories

We assume the reader is familiar with ordinary algebraic theories and their
categorical incarnations as Lawvere theories. The idea of monoidal algebraic
theories as described by Mauri (2005) is to generalize this to cases where only a
subset of the structural rules (weakening, exchange and contraction) are needed
to describe the axioms. Think for example of the theory of monoids over a
signature of a neutral element 1 and a binary operation. The axioms state that

2 Here we say “cube” for short instead of “hypercube” for an arbitrary dimensional
power of an interval. A prefix will indicate the dimension, as in 0-cube, 1-cube, etc.

80 U. Buchholtz and E. Morehouse

1x = x = x1 (in the context of one variable x) and x(yz) = (xy)z (in the context
of the variables x, y and z). Note that the terms in these equations each contain
all the variables of the context and in the same order. Thus, no structural rules
are needed to form the equations, and hence the notion of a monoid makes sense
in any monoidal category.

Let us now make this more precise. For the structural rules, we follow Mauri
(ibid.) and consider any subset of {w, e, c} (w for weakening, e for exchange, and
c for contraction), except that whenever c is present, so is e. Thus we consider
the following lattice of subsets of structural rules:

(2)

It would be possible to consider monoidal theories over operations that have any
number of incoming and outgoing edges, representing morphisms f : A1 ⊗ · · · ⊗
An → B1 ⊗ · · · ⊗ Bm in a monoidal category, where the Ai and Bj are sorts.
However, it simplifies matters considerably, and suffices for our purposes, to
consider only operations of the usual kind in algebra, with any arity of incoming
edges and exactly one outgoing edge, as in f : A1 ⊗ · · · ⊗ An → B.

Furthermore, we shall consider only single-sorted theories, defined over a
signature Σ given by a set of function symbols with arities. For a single-sorted
signature, the types can of course be identified with the natural numbers.

A (single-sorted, algebraic) monoidal language consists of a pair of a set of
structural rules together with an algebraic signature. A term t in a context of
n free variables x1, . . . , xn is built up from the function symbols in such a way
that when we list the free variables in t from left to right:

– every variables occurs unless w (weakening) is a structural rule;
– the variables occur in order unless e (exchange) is a structural rule; and
– there are no duplicated variables unless c (contraction) is a structural rule.

For the precise rules regarding term formation and the proof theory of equalities
of terms, we refer to Mauri (2005).

2.2 Interpretations

An interpretation of a monoidal language in a monoidal category (E , 1,⊗) will
consist of an object X representing the single sort, together with morphisms rep-
resenting the structural rules and morphisms representing the function symbols
(including constants).

Varieties of Cubical Sets 81

The structural rules w, e, c are interpreted respectively by morphisms

ε : X → 1
τ : X ⊗ X → X ⊗ X

δ : X → X ⊗ X

satisfying certain laws (Mauri 2005, (27–36)). These laws specify also the inter-
action between these morphisms and the morphisms corresponding to the func-
tion symbols. When E is symmetric monoidal, we interpret τ by the braiding of
E , and when E is cartesian monoidal, we interpret everything using the carte-
sian structure. A function symbol f of arity n is interpreted by a morphism
|f | : X⊗n → X. This morphism and the structural morphisms are required to
interact nicely, e.g., ε ◦ |f | = ε⊗n (cf. loc. cit.).

In a syntactic category for the empty theory (of which the syntactic cate-
gory for a non-empty theory is a quotient), every morphism factors uniquely as
a structural morphism followed by a functional one (op. cit., Proposition 5.1).
When we impose a theory, we may of course lose uniqueness, but we still have
existence.

2.3 Cubical Monoidal Languages

All of our cubical signatures will include the two endpoints of the interval as
nullary function symbols, 0 and 1. For the rest, we consider the two “connections”
∨ and ∧, as well as the reversal, indicated by a prime, ′. This gives us the following
lattice of 6 signatures:

(3)

Combined with the 6 possible combinations of structural rules, we are thus
dealing with 36 distinct languages.

Definition 1. Let L(a,b), where a is one of the six substrings of “wec” corre-
sponding to (2) and b one of the six substrings of “∨∧′” corresponding to (3),
denote the language with structural rules from a and signature obtained from
(0, 1) by expansion with the elements of b.

We shall, however, mostly consider the 18 languages with weakening present
(otherwise we are dealing with semi-cubical sets).

The third dimension of variation for our cube categories is the algebraic
theory for a given language. Here we shall mostly pick the theory of a particular
standard structure, so let us pause our discussion of cube categories to introduce
our standard structures.

82 U. Buchholtz and E. Morehouse

2.4 The Canonical Cube Categories

We consider the interval structures of the following objects in the cartesian
monoidal categories Top and Set (so all structural rules are supported, inter-
preted by the global structure):

– the standard topological interval, I = [0, 1] in Top;
– the standard 2-element set, I = 2 = {0, 1} in Set.

For the topological interval, we take x ∨ y = max{x, y}, x ∧ y = min{x, y} and
x′ = 1 − x. These formulas also apply to the 2-element set 2.

We can also consider the 3-element Kleene algebra (cf. Subsect. 2.5) 3 =
{0, u, 1} with u′ = u and the 4-element de Morgan algebra D = {0, u, v, 1} with
u′ = u and v′ = v in Set (called the diamond), as further structures. It is
interesting to note here that 3 has the same theory as [0, 1] in the full language,
namely the theory of Kleene algebras (Gehrke et al. 2003). Of course, 2 gives us
the theory of Boolean algebras, while D gives the theory of de Morgan algebras.

Definition 2. With (a, b) as in Definition 1, and T a theory in the language
L(a,b), let C(a,b)(T) denote the syntactic category of the theory T . We write
C(a,b) for short for C(a,b)(Th([0, 1])) for the syntactic category of the topological
interval with respect to the monoidal language L(a,b).

We say that C(a,b) is the canonical cube category for the language L(a,b).

Proposition 1. The canonical cube category C(a,b) is isomorphic to the
monoidal subcategory of Top generated by [0, 1] with respect to the language
L(a,b).

In fact, since the forgetful functor Top → Set is faithful, we get the same theory
in every language whether we consider the interval [0, 1] in Top or in Set, and
it generates the same monoidal subcategory in either case.

Proposition 2. If L is a cubical language strictly smaller than the maximal
language, L(wec,∨∧′), then the theory of the standard structure [0, 1] is the same
as the theory of the standard structure 2 = {0, 1} in Set. For L(wec,∨∧′) the
theory of [0, 1] equals the theory of the three-element Kleene algebra, 3, and is
in fact the theory of Kleene algebras.

Proof. If L does not have reversal, then we can find for any points a < b in [0, 1]
a homomorphism f : [0, 1] → 2 in Set with f(a) < f(b) (cut between a and b),
so [0, 1] and 2 have the same theory.

If L does not have contraction, each term is monotone in each variable.
By pushing reversals towards the variables and applying the absorption laws,
we can find for each resulting term s[x, y1, . . . yn] instantiations b1, . . . , bn ∈
2 with s[0, b1, . . . , bn] 	= s[1, b1, . . . , bn]. It follows that if two terms agree on
instantiations in 2, then they use each variable the same way: either with or
without a reversal. Hence we can ignore the reversals and use the previous case.

The last assertion is proved by Gehrke et al. (2003).
�

Varieties of Cubical Sets 83

Corollary 1. For each canonical cube category C(a,b) we have decidable equality
of terms.

Proof. This follows because equality is decidable in the theory of Kleene algebras,
as this theory is characterized by the object 3. Hence we can decide equality by
the method of “truth-tables”, however, relative to the elements of 3.
�
Of course, any algorithm for equality in the theory of Kleene algebras can be
used, including the one based on disjunctive normal forms (op. cit.).

We can in the presence of weakening quite simply give explicit axiomatiza-
tions for each of the canonical cube categories C(a,b): take the subset of axioms
in Table 1 that make sense in the language L(a,b). Without weakening, this will
not suffice, as we should need infinitely many axioms to ensure for instance that
s ∧ 0 = t ∧ 0 where s, t are terms in the same variable context.

Table 1. Cubical axioms

Axiom Lang. req. Name

x ∨ (y ∨ z) = (x ∨ y) ∨ z (·,∨) ∨-associativity

0 ∨ x = x = x ∨ 0 (·,∨) ∨-unit

1 ∨ x = 1 = x ∨ 1 (w,∨) ∨-absorption

x ∨ y = y ∨ x (e,∨) ∨-symmetry

x ∨ x = x (ec,∨) ∨-idempotence

x ∧ (y ∧ z) = (x ∧ y) ∧ z (·,∧) ∧-associativity

1 ∧ x = x = x ∧ 1 (·,∧) ∧-unit

0 ∧ x = 0 = x ∧ 0 (w,∧) ∧-absorption

x ∧ y = y ∧ x (e,∧) ∧-symmetry

x ∧ x = x (ec,∧) ∧-idempotence

x′′ = x (·, ′) ′-involution

0′ = 1 (·, ′) ′-computation

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) (ec,∨∧) Distributive law 1

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) (ec,∨∧) Distributive law 2

x = x ∨ (x ∧ y) = x ∧ (x ∨ y) (wec,∨∧) Lattice-absorption

(x ∨ y)′ = x′ ∧ y′ (·,∨∧′) de Morgan’s law

x ∧ x′ ≤ y ∨ y′ (wec,∨∧′) Kleene’s law

When we compare our canonical cube categories to the categories of Grandis
and Mauri (2003), we find I = C(w,·), J = C(w,∨∧), K = C(we,∨∧), and !K =
C(we,∨∧′).

For the full language, L(wec,∨∧′), there are two additional interesting cube cat-
egories: CdM (de Morgan algebras) and CBA (boolean algebras), where de Mor-
gan algebras satisfy all the laws of Table 1 except Kleene’s law, and boolean

84 U. Buchholtz and E. Morehouse

algebras of course satisfy additionally the law x ∨ x′ = 1. The case of de Mor-
gan algebras is noteworthy as the basis of the cubical model of type theory of
Cohen et al. (2016).

Definition 3. For each of our cube categories C, we write [n] for the object
representing a context of n variables, and we write �n for the image of [n]
under the Yoneda embedding y : C ↪→ ̂C.

2.5 A Tour of the Menagerie

Plain Cubes. In the canonical cube category for the language L(w,·) the
monoidal unit [0] is terminal and the interpretation of weakening is generated
by the unique degeneracy map ε : [1] → [0]. The points 0 and 1 are interpreted
by face maps η0, η1 : [0] → [1]. In the following we let {i, j} range over {0, 1}
with the assumption that i 	= j.

Because [0] is terminal we have the face-degeneracy laws, ε◦ηi = Id[0], which
we represent string-diagrammatically as:

This law is invisible in the algebraic notation.
In a presheaf T , the face maps give rise to reindexing functions between the

fibers, ∂i
k : T [n + 1] → T [n], where 1 ≤ k ≤ n+1. In particular, when n is 0 these

pick out the respective boundary points of an interval. Similarly, the degeneracy
map gives rise to reindexing functions between the fibers, ∗k : T [n] → T [n + 1],
where 1 ≤ k ≤ n + 1. In particular, when n is 0 this determines a degenerate
interval ∗(a) ∈ T [1] on a point a ∈ T [0], and the face-degeneracy laws tell us its
boundary points: ∂0(∗(a)) = ∂1(∗(a)) = a.

Adding the structural law of exchange to the language adds a natural isomor-
phism τ : [2] → [2] to the syntactic category. In a presheaf, this lets us permute
any adjacent pair of a cube’s dimensions by reflecting it across the correspond-
ing diagonal (hyper)plane. In particular, T (τ) reflects a square across its main
diagonal.

Cubes with Diagonals. In the canonical cube category for the language
L(wec,·) the monoidal product is cartesian and the interpretation of contraction
is generated by the diagonal map δ : [1] → [2]. In this case, the pair (δ, ε) forms
a cocommutative comonoid.

Because δ is natural we have the face-diagonal laws, δ ◦ ηi = ηi ⊗ ηi, which
we represent string-diagrammatically as:

Varieties of Cubical Sets 85

In a presheaf T , the diagonal map gives rise to reindexing functions between
the fibers, dk : T [n + 2] → T [n + 1], where 1 ≤ k ≤ n + 1. In particular, when n
is 0 this picks out the main diagonal of a square, and the face-diagonal laws tell
us its boundary points.

In the cubical semantics, the fact that ε is a comonoid counit for δ tells us
that the diagonal of a square formed by degenerating an interval is just that
interval. Likewise, the fact that δ is coassociative tells us that the main diagonal
interval of a higher-dimensional cube is well-defined.

Cubes with Reversals. In the canonical cube category for the language L(·,′)
we have an involutive reversal map ρ : [1] → [1]. A reversal acts by swapping
the face maps, giving the face-reversal laws, ρ ◦ ηi = ηj , which we represent
string-diagrammatically as:

This embodies the equations 0′ = 1 and 1′ = 0.
In a presheaf T , the reversal map gives rise to endomorphisms on the fibers,

!k : T [n + 1] → T [n + 1], where 1 ≤ k ≤ n + 1. In particular, when n is 0 this
reverses an interval, and the face-reversal laws tell us its boundary points.

If the signature contains weakening, then we have the reversal-degeneracy
law, ε ◦ ρ = ε. In the cubical interpretation, this says that a degenerate interval
is invariant under reversal. If the signature contains contraction, then we have
the reversal-diagonal law, δ ◦ρ = (ρ⊗ρ)◦δ. Cubically, this says that the reversal
of a square’s diagonal is the diagonal of the square resulting from reversing in
each dimension.

Cubes with Connections. In the canonical cube category for the language
L(w,∨∧), the connectives are interpreted by connection maps μ0, μ1 : [2] → [1].
Each pair (μi, ηi) forms a monoid. Furthermore, the unit for each monoid is an
absorbing element for the other: μj ◦ (ηi ⊗ Id) = ηi ◦ ε = μj ◦ (Id ⊗ ηi). Grandis
and Mauri (2003) call such structures “dioids”, so we refer to these as the dioid
absorption laws, and represent them string-diagrammatically as:

Equationally, these amount to the ∨- and ∧-absorption laws of Table 1.
In the cubical semantics, connections can be seen as a variant form of degen-

eracy, identifying adjacent, rather than opposite, faces of a cube. Of course in
order for this to make sense, a cube must have at least two dimensions. In a
presheaf T , the connection maps give rise to reindexing functions between the
fibers, �k, �k : T [n + 1] → T [n + 2], where 1 ≤ k ≤ n + 1. In particular, when n
is 0 these act as follows:

86 U. Buchholtz and E. Morehouse

It may help to think of the interval f as a folded paper fan, with its “hinge”
at the domain end in the case of �, and at the codomain end in the case of �.
The respective connected squares are then obtained by “opening the fan”. The
monoid unit laws give us the (generally) non-degenerate faces of a connected
square, while the dioid absorption laws give us the (necessarily) degenerate ones.
Monoid associativity says that multiply-connected higher-dimensional cubes are
well-defined.

Because [0] is terminal we also have the connection-degeneracy laws, ε ◦μi =
ε ⊗ ε, which say that a connected square arising from a degenerate interval is a
doubly-degenerate square. In the presence of exchange, we further assume that
the μi are commutative. In the cubical semantics, this implies that connected
cubes are invariant under reflection across their connected dimensions.

When adding contraction to the signature, we must give a law for rewriting
a diagonal following a connection such that the structural maps come first. This
is done by the connection-diagonal laws, δ ◦μi = (μi ⊗μi)◦ (Id⊗ τ ⊗ Id)◦ (δ ⊗δ),
which we represent string-diagrammatically as:

Algebraically, this says that two copies of a conjunction consists of a pair
of conjunctions, each on copies of the respective terms; cubically, it gives the
connected square on the diagonal interval of another square in terms of a product
of diagonals in the 4-cube resulting from connecting each dimension separately.
The whole structure, then, is a pair of bicommutative bimonoids, (δ, ε, μi, ηi)
related by the dioid absorption laws. We refer to these as linked bimonoids.

Additionally, we may impose the laws of bounded, modular, or distribu-
tive lattices, each of which implies its predecessors, and all of which imply the
diagonal-connection laws, μi ◦ δ = Id[1], known in the literature (rather generi-
cally) as “special” laws. These correspond to the ∨- and ∧-idempotence laws of
Table 1.

The Full Signature. When both reversals and connections are present, the
de Morgan laws, ρ ◦ μi = μj ◦ (ρ ⊗ ρ) permute reversals before connections:

These laws imply each other as well as their nullary versions, the face-reversal
laws.

Varieties of Cubical Sets 87

Using the algebraic characterization of order in a lattice, x ∧ y = x ⇐⇒ x ≤
y ⇐⇒ x ∨ y = y, we can express the Kleene law as μi ◦ (μi ⊗ μj) ◦ (Id ⊗ ρ ⊗ Id ⊗
ρ) ◦ (δ ⊗ δ) = μi ◦ (Id ⊗ ρ) ◦ (δ ⊗ ε):

Finally, we arrive at the structure of a boolean algebra by assuming the Hopf
laws, μi ◦ (Id ⊗ ρ) ◦ δ = ηj ◦ ε:

Cubically, these say that the anti-diagonal of a connected square is degenerate.

3 Test Categories

As mentioned in the introduction, a test category is a small category A such
that the presheaf category ̂A can model the homotopy category after a canonical
localization. Here we recall the precise definitions (cf. Maltsiniotis (2005)).

The inclusion functor i : Δ → Cat induces via (1) an adjunction i! : ̂Δ �
Cat : N where the right adjoint N is the nerve functor. This allows us to transfer
the homotopy theory of simplicial sets to the setting of (strict) small categories,
in that we define a functor f : A → B to be a weak equivalence if N(f) is a
weak equivalence of simplicial sets. A small category A is called aspheric (or
weakly contractible) if the canonical functor A → 1 is a weak equivalence. Since
any natural transformation of functors induces a homotopy, it follows that any
category with a natural transformation between the identity functor and a con-
stant endofunctor is contractible, and hence aspheric. In particular, a category
with an initial or terminal object is aspheric. It follows from Quillen’s Theo-
rem A (Quillen 1973) that a functor f : A → B is a weak equivalence, if it
is aspheric, meaning that all the slice categories A/b are aspheric, for b ∈ B.3

By duality, so is any coaspheric functor f : A → B, one for which the coslice
categories b\A, for b ∈ B, are all aspheric. Finally, we say that a presheaf X in
̂A is aspheric, if A/X is (note that A/X is the category of elements of X).

For any small category A, we can use the adjunction induced by the functor
iA : A → Cat, iA(a) = A/a (as mentioned in Subsect. 1.2) to define the class of
weak equivalences in ̂A, WA; namely, f : X → Y in ̂A is in WA if iA(f) : A/X →
A/Y is a weak equivalence of categories. Following Grothendieck, we make the
following definitions:
3 We follow Grothendieck and let the slice A/b denote the comma category (f ↓ b) of

the functors f : A → B and b : 1 → B. Similarly, the coslice b\A denotes (b ↓ f).

88 U. Buchholtz and E. Morehouse

– A is a weak test category if the induced functor iA : (WA)−1
̂A → Hot is an

equivalence of categories (the inverse is then i∗A).
– A is a local test category if all the slices A/a are weak test categories.
– A is a test category if A is both a weak and a local test category.
– A is a strict test category if A is a test category and the functor ̂A → Hot

preserves finite products.

The goal of the rest of this section is to prove that all the cube categories with
weakening are test categories, and to establish exactly which ones are strict test
categories. First we introduce Grothendieck interval objects. These allow us to
show that any cartesian cube category is a strict test category (Corollary 2) as
well as to show that all the cube categories are test categories (Corollary 3). Then
we adapt an argument of Maltsiniotis (2009) to show that any cube category with
a connection is a strict test category (Theorem 3). Finally, we adapt another
argument of his to show that the four remaining cube categories fail to be strict
test categories (Theorem 4). The end result is summarized in Table 2.

Table 2. Which canonical cube categories C(a,b) are test (t) or even strict test (st)
categories. The bottom-right corner refers to the cube categories corresponding to
de Morgan, Kleene and boolean algebras.

a�b · ′ ∨ ∧ ∨∧ ∨∧′

w t t st st st st

we t t st st st st

wec st st st st st st/st/st

In order to study test categories, Grothendieck (1983) introduced the notion
of an interval (segment in the terminology of Maltsiniotis (2005)) in a presheaf
category ̂A. This is an object I equipped with two global elements d0, d1. As
such, it is just a structure for the initial cubical language, L(·,·) in the cartesian
monoidal category ̂A, and �1 is thus canonically a Grothendieck interval in all
our categories of cubical sets, ̂C.

An interval is separated if the equalizer of d0 and d1 is the initial presheaf,
∅. For cubical sets, this is the case if and only if 0 = 1 is not derivable in the
base category, in any variable context.

The following theorem is due to Grothendieck (1983, 44(c)), cf. Theorem 2.6
of Maltsiniotis (2009). We say that A is totally aspheric if A is non-empty and all
the products y(a)×y(b) are aspheric, where y : A → ̂A is the Yoneda embedding.

Theorem 1 (Grothendieck). If A is a small category that is totally aspheric
and has a separated aspheric interval, then A is a strict test category.

Corollary 2. If C is any canonical cube category over the full set of structural
rules, C(wec,b), or the cartesian cube category of de Morgan algebras or that of
boolean algebras, then C is a strict test category.

Varieties of Cubical Sets 89

Proof. Since C has finite products it is totally aspheric, as the Yoneda embedding
preserves finite products. The Grothendieck interval corresponding to the 1-cube
is representable and hence aspheric. This interval is separated as 0 = 1 is not
derivable in any context.
�

The following theorem is from Grothendieck (1983, 44(d), Proposition on
p. 86):

Theorem 2 (Grothendieck). If A is a small aspheric category with a sepa-
rated aspheric interval (I, d0, d1) in ̂A, and i : A → Cat is a functor such that
for any a in A, i(a) has a final object, and there is a map of intervals i!(I) → 2
in Cat, then A is a test category.

In this case, i is in fact a weak test functor, meaning that i∗ : Cat → ̂A induces
an equivalence Hot → (WA)−1

̂A.

Corollary 3. Any canonical cube category C is a test category.

Proof. The conditions of the theorem hold trivially for any cube category with-
out reversal, taking i to be the canonical functor sending I to 2. If we have
reversals, then we can define i by sending I to the category with three objects,
{0}, {1}, {0, 1} and arrows {0}, {1} → {0, 1}. Since this is a Kleene algebra, this
functor is well-defined in all cases.
�
The cube categories CdM and CBA of de Morgan and boolean algebras are test
categories by Corollary 2.

We now turn to the question of which non-cartesian cube categories are
strict test categories. The following theorem was proved by Maltsiniotis (2009,
Proposition 3.3) for the case of C(w,∨). The same proof works more generally, so
we obtain:

Theorem 3. Any canonical cube category C(a,b) where b includes one of the
connections ∨, ∧ is a strict test category.

That leaves four cases: (w, ·), (w, ′), (we, ·), (we, ′). The first of these, the
“classical” cube category, is not a strict test category by the argument of
Maltsiniotis (2009, Sect. 5).

Note the unique factorizations we have for these categories: every morphism
f : [m] → [n] factors as degeneracies, followed by (possibly) symmetries, followed
by (possibly) reversals, followed by face maps. The isomorphisms are exactly the
compositions of reversals and symmetries (if any).

Next, we use variations of the argument of Maltsiniotis (loc. cit.) to show
that none of these four sites are strict test categories by analyzing the homotopy
type of the slice category C/�1×�1 in each case.

Theorem 4. The canonical cube categories C(w,·), C(w,′), C(we,·) and C(we,′) are
not strict test categories.

90 U. Buchholtz and E. Morehouse

Proof. Let C be one of these categories. We shall find a full subcategory A of
C/�1×�1 that is not aspheric, and such that the inclusion is a weak equivalence.
Hence C/�1×�1 is not aspheric, and C cannot be a strict test category.

An object of the slice category C/�1×�1 is given by a dimension and two
terms corresponding to that dimension. We can thus represent it by a variable
context x1 · · · xn (for an n-cube [n]) and two terms s, t in that context.

For the classical cube category case (w, ·), we let A contain the following
objects, cf. Maltsiniotis (2009, Proposition 5.2):

– 4 zero-dimensional objects (·, (i, j)), i, j ∈ {0, 1}.
– 5 one-dimensional objects; 4 corresponding to the sides of a square, (x, (i, x))

and (x, (x, i)) with i ∈ {0, 1}, and 1 corresponding to its diagonal, (x, (x, x)).
– 2 two-dimensional objects: (xy, (x, y)) and (xy, (y, x)) (let us call them, respec-

tively, the northern and southern hemispheres).

In the presence of the exchange rule, we do not need both of the two-
dimensional objects (so we retain, say, the northern hemisphere), and in the
presence of reversal, we need additionally the anti-diagonal, (x, (x, x′)).

Note that in each case A is a partially ordered set (there is at most one
morphism between any two objects), and we illustrate the incidence relations
between the objects in Fig. 1. The figure also illustrates how to construct functors
F : A → Top, which are cofibrant with respect to the Reedy model structure
on this functor category, where A itself is considered a directed Reedy category
relative to the obvious dimension assignment (points of dimension zero, lines of
dimension one, and the hemispheres of dimension two). We conclude that the
homotopy colimit of F (in Top) is weakly equivalent to the ordinary colimit of
F , which is seen to be equivalent to S2 ∨ S1, S2 ∨ S1 ∨ S1, S1 and S1 ∨ S1,
respectively for the cases (w, ·), (w, ′), (we, ·) and (we, ′). Since F takes values in
contractible spaces, this homotopy colimit represents in each case the homotopy
type of the nerve of A. It follows that A is not aspheric.

It remains to see that the inclusion A ↪→ C/�1×�1 is in each case a weak
equivalence. For this we use the dual of Quillen’s Theorem A, and show that
for each object (x1 · · · xn, (s, t)) (written (s, t) for short) of C/�1×�1 , the coslice
category B(s,t) = (s,t)\A has an initial object, and is hence aspheric.

As in Maltsiniotis (loc. cit.), we make case distinctions on (s, t). Note that
for the languages under consideration, a term can have at most one free variable.

– (s, t) = (x(′), y(′)) for distinct variables x, y. The initial object is a hemi-
sphere (the northern one in the presence of exchange, the southern one without
exchange and in case x, y appear in reversed order in the variable context).

– (s, t) = (x, x) or (x′, x′). The initial object is then the diagonal in A.
– (s, t) = (x, x′) or (x′, x). The initial object is here the anti-diagonal.
– (s, t) = (i, x(′)) or (x(′), i). The initial object is the corresponding side of the

square.
– (s, t) = (i, j). The initial object is then the corresponding vertex of the

square.
�

Varieties of Cubical Sets 91

Fig. 1. The partially ordered sets A = A(a,b) in their topological realizations.

We remark that this proof method fails in the presence of a connection, where
terms can now refer to multiple variables. And in the presence of contraction, the
diagonal (x, x) is incident on the northern hemisphere, which is then a maximal
element in A, and hence A is contractible. These observations explain why it is
only those four cases that can fail to give strict test categories.

4 Conclusion

We have espoused a systematic algebraic framework for describing notions of
cubical sets, and we have shown that all reasonable cubical sites are test cate-
gories. We have shown that a cubical site is a strict test category precisely when
it is cartesian monoidal or includes one of the connections.

To improve our understanding of the homotopy theory of each cubical site, we
need to investigate the induced Quillen equivalence between the corresponding
category of cubical sets ̂C with the Cisinski model structure and the category
of simplicial sets ̂Δ with the Kan model structure. For instance, we can ask
whether the fibrations are those satisfying the cubical Kan filling conditions.
Furthermore, to model type theory, one should probably require that the model
structures lift to algebraic model structures. We leave all this for future work.

Acknowledgements. We wish to thank the members of the HoTT group at Carnegie
Mellon University for many fruitful discussions, in particular Steve Awodey who has

92 U. Buchholtz and E. Morehouse

encouraged the study of cartesian cube categories since 2013 and who has been support-
ive of our work, as well as Bob Harper who has also been very supportive. Additionally,
we deeply appreciate the influence of Bas Spitters who inspired us with a seminar pre-
sentation of a different approach to showing that C(wec,·) is a strict test category.

The authors gratefully acknowledge the support of the Air Force Office of Scientific
Research through MURI grant FA9550-15-1-0053. Any opinions, findings and conclu-
sions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the AFOSR.

References

Angiuli, C., Harper, R., Wilson, T.: Computational higher-dimensional type theory. In:
POPL 2017: Proceedings of the 44th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. ACM (2017, to appear)

Awodey, S.: A cubical model of homotopy type theory (2016). arXiv:1607.06413. Lec-
ture notes from a series of lectures for the Stockholm Logic group

Bezem, M., Coquand, T., Huber, S.: A model of type theory in cubical sets. In: 19th
International Conference on Types for Proofs and Programs, LIPIcs, Leibniz Leibniz
International Proceedings in Informatics, vol. 26, pp. 107–128 (2014). doi:10.4230/
LIPIcs.TYPES.2013.107. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern

Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a constructive
interpretation of the univalence axiom. In: 21st International Conference on Types
for Proofs and Programs, LIPIcs, Leibniz International Proceedings in Informatics
(2016, to appear). Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern

Gehrke, M., Walker, C.L., Walker, E.A.: Normal forms and truth tables for fuzzy logics.
Fuzzy Sets Syst. 138(1), 25–51 (2003). doi:10.1016/S0165-0114(02)00566-3. Selected
papers from the 21st Linz Seminar on Fuzzy Set Theory (2000)

Grandis, M., Mauri, L.: Cubical sets and their site. Theory Appl. Categ. 11(8), 185–211
(2003). http://www.tac.mta.ca/tac/volumes/11/8/11-08abs.html

Grothendieck, A.: Pursuing stacks. Manuscript (1983). http://thescrivener.github.io/
PursuingStacks/

Maltsiniotis, G.: La théorie de l’homotopie de Grothendieck. Astérisque, vol. 301
(2005). https://webusers.imj-prg.fr/∼georges.maltsiniotis/ps/prstnew.pdf

Maltsiniotis, G.: La catégorie cubique avec connexions est une catégorie test stricte.
Homology Homotopy Appl. 11(2), 309–326 (2009). doi:10.4310/HHA.2009.v11.n2.
a15

Mauri, L.: Algebraic theories in monoidal categories. Unpublished preprint (2005)
Quillen, D.: Higher algebraic K-theory: I. In: Bass, H. (ed.) Higher K-Theories. LNM,

vol. 341, pp. 85–147. Springer, Berlin (1973). doi:10.1007/BFb0067053

http://arxiv.org/abs/1607.06413
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://dx.doi.org/10.1016/S0165-0114(02)00566-3
http://www.tac.mta.ca/tac/volumes/11/8/11-08abs.html
http://thescrivener.github.io/PursuingStacks/
http://thescrivener.github.io/PursuingStacks/
https://webusers.imj-prg.fr/~georges.maltsiniotis/ps/prstnew.pdf
http://dx.doi.org/10.4310/HHA.2009.v11.n2.a15
http://dx.doi.org/10.4310/HHA.2009.v11.n2.a15
http://dx.doi.org/10.1007/BFb0067053

Non-associative Kleene Algebra
and Temporal Logics

Jules Desharnais1 and Bernhard Möller2(B)

1 Université Laval, Quebec City, QC, Canada
jules.desharnais@ift.ulaval.ca

2 Institut für Informatik, Universität Augsburg, Augsburg, Germany
bernhard.moeller@informatik.uni-augsburg.de

Abstract. We introduce new variants of Kleene star and omega itera-
tion for the case where the iterated operator is neither associative nor
has a neutral element. The associated repetition algebras are used to
give closed semantic expressions for the Until and While operators of
the temporal logic CTL∗ and its sublogics CTL and LTL. Moreover, the
relation between the semantics of these logics can be expressed by homo-
morphisms between repetition algebras, which is a more systematic and
compact approach than the ones taken in earlier papers.

Keywords: Temporal logics · Semantics · Kleene algebra · Repetition
algebra

1 Introduction

The temporal logic CTL∗ and its sublogics CTL and LTL (see [7] for an excellent
survey) are prominent tools in the analysis of concurrent and reactive systems.
Although they are well understood, one still rarely finds algebraic treatments of
their semantics which provide a better understanding and yield simpler (and, at
the same time, completely formal) proofs of the semantic properties.

In the present paper we take up the approach of [15] and refine it in several
ways. First, we present a variant of Kleene algebra where the underlying multi-
plication is not assumed to be associative. Such an operator arises, e.g., in the
semantics of the until operator of CTL∗ and its relatives. Therefore we present
a general investigation of the star and omega for such operators in what we call
repetition algebras. The relation between various semantics for CTL* and CTL
can then be expressed by homomorphisms between repetition algebras; in par-
ticular, several tedious ad-hoc applications of the principle of least/greatest fixed
point fusion that occurred in [15] are now replaced by a single proof for general
repetition algebras. Another new feature is a much cleaner separation between
finite and infinite traces than in the predecessor paper. Also a number of new
results concerning the universal trace quantifier A and the globality operator G
arise. For lack of space we omit all proofs; they are found in the report [4].

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 93–108, 2017.
DOI: 10.1007/978-3-319-57418-9 6

94 J. Desharnais and B. Möller

2 Modelling CTL∗

To make the paper self-contained we recall some basic facts about CTL∗; in this
we largely follow [7]. Formulas in CTL∗ characterise sets of traces, where a trace
is a finite or infinite sequence of program states. A set Φ of atomic propositions is
used to distinguish sets of states. The syntax of the language Ψ of CTL∗ formulas
over Φ is given by the grammar

Ψ ::=⊥ | Φ | Ψ → Ψ | EΨ | XΨ | Ψ UΨ,

where ⊥ denotes falsity, → is logical implication, E is the existential quantifier
on traces, and X and U are the next-time and until operators.

We briefly recall the informal semantics. A trace is said to satisfy an atomic
formula iff its first state does. A trace σ satisfies Eϕ iff there is some trace τ that
satisfies ϕ and has the same first state as σ. The formula Xϕ holds for a trace σ
if ϕ holds for the remainder of σ after one step. A trace σ satisfies ϕUψ iff after
a finite number (including zero) of X steps within σ the remaining trace satisfies
ψ and all intermediate trace pieces for which ψ does not yet hold satisfy ϕ.

The logical connectives ¬, ∧ , ∨ ,A are defined, as usual, by ¬ϕ =df ϕ → ⊥,
� =df ¬⊥, ϕ ∧ ψ =df ¬(ϕ → ¬ψ), ϕ ∨ ψ =df ¬ϕ → ψ and Aϕ =df ¬E¬ϕ.
Moreover, the “finally” operator F and the “globally” operator G are defined by

Fψ =df �Uψ and Gψ =df ¬F¬ψ.

Informally, Fψ holds if after a finite number of steps the remainder of the trace
satisfies ψ, while Gψ holds if after every finite number of steps ψ still holds.

The sublanguages Ξ of state formulas1 that denote sets of states and Π of
trace formulas2 that denote sets of computation traces are given by

Ξ ::= ⊥ | Φ | Ξ → Ξ | EΠ,

Π ::= Ξ | Π → Π | XΠ | Π UΠ.

To motivate our algebraic semantics, we briefly recapitulate the standard CTL∗

semantics of formulas. Its basic objects are traces σ from Σω, the set of infinite
words over some set Σ of states. The i-th element of σ (indices starting with
0) is denoted σi, and σi is the trace that results from σ by removing its first i
elements. Hence σ0 = σ.

Each atomic proposition π ∈ Φ is associated with the set Σπ ⊆ Σ of states
for which π holds. The relation σ |= ϕ of satisfaction of a formula ϕ by a trace
σ is defined inductively (see e.g. [7]) by

σ 	|= ⊥, σ |= Eϕ iff ∃ τ ∈ Σω : τ0 = σ0 and τ |= ϕ,
σ |= π iff σ0 ∈ Σπ, σ |= Xϕ iff σ1 |= ϕ,
σ |= ϕ → ψ iff |= ϕ implies σ |= ψ, σ |= ϕUψ iff ∃ j ≥ 0 : σj |= ψ and

∀ k < j : σk |= ϕ.

In particular, σ |= ¬ϕ iff σ 	|= ϕ.
1 In the literature this set is usually called Σ. We avoid this, since throughout the

paper we use Σ for sets of states.
2 In the literature these are mostly called path formulas.

Non-associative Kleene Algebra and Temporal Logics 95

We quickly repeat the proof of validity of the CTL∗ axiom

¬Xϕ ↔ X¬ϕ, (1)

since this will be crucial for the algebraic representation of X in Sect. 6:

σ |= ¬Xϕ ⇔ σ 	|= Xϕ ⇔ σ1 	|= ϕ ⇔ σ1 |= ¬ϕ ⇔ σ |= X¬ϕ.

3 Semirings, Quantales and Iteration

We formulate our more abstract developments in terms of algebraic structures.
The elements of these structures may, for instance, stand for sets of traces.

Definition 3.1

1. An idempotent left semiring, briefly IL-semiring, is a structure (A,+, ·, 0, 1)
such that (A,+, 0) is a commutative monoid with idempotent addition, that
is, (A, ·, 1) is a monoid, multiplication distributes from the right over addition
and 0 is a left annihilator for multiplication, that is, 0 · a = 0 for all a ∈ A.
An IL-semiring is left-distributive if multiplication distributes over addition
also from the left.

2. Every IL-semiring can be partially ordered by setting a ≤ b ⇔df a + b = b.
Then + and · are isotone w.r.t. ≤ and 0 is the least element. Moreover, a + b
is the supremum of a, b ∈ A. An IL-semiring is bounded if it has a greatest
element �.

3. An IL-semiring is called a left quantale [12] if ≤ induces a complete lattice
and multiplication distributes over arbitrary suprema from the right. The
infimum and the supremum of a subset B ⊆ A are denoted by �B and �B,
respectively. Their binary variants are a � b and a � b (the latter coinciding
with a + b).

4. In left quantales finite and infinite iteration can be defined as least and great-
est fixed points, namely a∗ =df μx . 1+a ·x and aω =df νx . a ·x. For details
and properties see [12].

5. The IL-semiring/left quantale is Boolean if (A,≤) induces a Boolean algebra.

Quantales (or standard Kleene algebras [2]) have been used in many contexts
other than that of program semantics (cf. the general reference [16]). They have
the advantage that the general fixpoint calculus is available there. A number of
our proofs need the principle of fixpoint fusion which is a second-order principle;
in the first-order setting of conventional Kleene algebras [9] only special cases of
it, like the induction and co-induction rules, can be used as axioms.

Example 3.2. We want to use an algebra of sets of traces. We set Σ∞ =df
Σ+ ∪ Σω, where Σ+ is the set of non-empty finite traces over Σ. The operator .
denotes concatenation of traces. First we define the partial operation of the fusion
product that glues traces together at a common point, if any. For σ, τ ∈ Σ∞,

σ � τ =

⎧
⎨

⎩

σ if σ ∈ Σω,
σ′.x.τ ′ if σ ∈ Σ+, σ = σ′.x, τ = x.τ ′ for some x ∈ Σ,
undefined otherwise.

96 J. Desharnais and B. Möller

The purely infinite and purely finite parts of a set V of traces are inf V =df
V ∩ Σω and finV =df V − inf V . With this we extend � to trace sets V,W as

V � W =df inf V ∪ {s � t : s ∈ finV ∧ t ∈ W}.

This operation has the set Σ, viewed as a set of one-element traces, as its neutral
element. Moreover, V � ∅ = inf V and hence V � ∅ = ∅ iff inf V = ∅. This will
be generalised in Sect. 7.

Now we define the Boolean left quantale TRC(Σ) of sets of finite and infinite
traces by TRC(Σ) =df (P(Σ∞), ∪ ,�, ∅, Σ). This quantale has the greatest
element � = Σ∞ and is even left-distributive. A transition relation over a state
set Σ can be modelled in TRC(Σ) as a set R of words of length 2. The powers
Ri of R consist of traces of length i + 1 that are generated by R-transitions. In
particular, we instantiate R to Σ2 =df Σ.Σ, the set of all two-letter words and
hence the most general next-step transition relation. Then TRC(Σ) is generated
by Σ2 as TRC(Σ) = (Σ2)∗ ∪ (Σ2)ω. This is generalised in Sect. 8. ��

Next to an abstract representation of sets of traces we will also need one for
sets of states. This is achieved by the notion of tests [10].

Definition 3.3. A test in an IL-semiring is an element p that has a complement
¬p relative to the multiplicative unit 1, namely p+¬p = 1 and p·¬p = 0 = ¬p·p.
The set of all tests in A is denoted by test(A).

The element ¬p is uniquely determined by these axioms if it exists. In a
Boolean IL-semiring every element p ≤ 1 is a test with ¬p = p�1, where is the
general complement operator (that need not exist in non-Boolean IL-semirings).
The expressions p · a and a · p abstractly represent restriction of the traces in a
to the ones that start and end in p-states, resp.

In TRC(Σ) the multiplicative identity Σ has exactly the subsets of Σ as its
sub-objects, hence there the tests faithfully represent sets of states.

Using tests we can also define a domain operator and the modal operators
diamond and box (cf. [5]). Due to the existence of � we can use a slightly different
but equivalent axiomatisation than given there; the equivalence is established by
Lemma 9.1 of that paper.

Definition 3.4. A bounded IL-semiring A is called a domain IL-semiring if it
has a domain operator �: A → test(A) axiomatised, for a, b ∈ A, q ∈ test(A), by
the Galois connection �a ≤ q ⇔ a ≤ q · � together with the axiom of locality

�(a · b) = �(a · �b). (2)

Then we set |a〉q =df �(a · q) and |a]q =df ¬|a〉¬q.

The locality property means that the domain of a composition does not depend
on the inner structure of the second operand, but only on its starting states.

In TRC(Σ), for trace set V the domain �V consists of all starting letters of
traces in V . Moreover |V 〉P for some set P ⊆ Σ is the set of all starting states

Non-associative Kleene Algebra and Temporal Logics 97

of traces in V that end in some state in P , hence a kind of inverse image of P
under V . Dually, |V]P consists of those states x for which all traces in V starting
in x have their final states, if any, in P .

We recall a few basic properties; see [5] for more details.

Lemma 3.5. Let A be a domain IL-semiring, a, b ∈ A and p, q ∈ test(A).

1. a = �a · a and �(p · a) ≤ p.
2. �(p · �) = p.
3. p ≤ q ⇔ p · � ≤ q · �.
4. If a � b exists then p · (a � b) = p · a � b = a � p · b. Hence if b ≤ a then

p · a � b = p · b. In particular, p · � � b = p · b.
5. If A is Boolean then ¬p · � = p · �.
6. |a · b〉q = |a〉(|b〉q) and |a · b]q = |a](|b]q).
7. p · |b〉q = |p · b〉q (import/export).
8. p ≤ q · |a]p ⇒ p ≤ |a∗]q (box induction).

By these properties we can represent the set of all possible traces that start
with some state in set p by the test ideal p · �. By Part 3 the set of test ideals
is isomorphic to the set of tests.

4 General Algebraic Semantics of CTL∗

We now give our algebraic interpretation of CTL∗ over a Boolean left domain
quantale A. As a preparation we transform the semantics from Sect. 2 into a
set-based one by assigning to each formula ϕ the set [[ϕ]] =df {σ | σ |= ϕ} of
traces that satisfy it.

[[⊥]] = ∅, [[Eϕ]] = �[[ϕ]] � Σω,
[[π]] = Σπ � Σω, [[Xϕ]] = Σ2 � [[ϕ]],

[[ϕ → ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕUψ]] =
⋃

j≥0

((Σ2)j � [[ψ]] ∩ ⋂

k<j

(Σ2)k � [[ϕ]]).

Note that in Σ2 the power is taken w.r.t. the concatenation operator . whereas
j and k denote powers w.r.t. �.

As in this set-based semantics, every atomic proposition π ∈ Φ is algebraically
associated with a set Σπ ⊆ Σ of states, i.e., with an element of test(TRC(Σ)).
Therefore, to save some notation, in the algebraic semantics we simply set
Φ = test(A). Moreover, we fix an element x (where x stands for “next” and
corresponds to Σ2) that represents the transition system underlying the logic.
The precise requirements for x will be discussed in Sect. 6. Then the concrete
semantics above generalises to a function [[]] : Ψ → A, where [[ϕ]] abstractly
represents the set of traces satisfying formula ϕ.

Definition 4.1. The general algebraic semantics [[ϕ]] of CTL∗ formula ϕ is
defined inductively over the structure of ϕ. This results from the set-based

98 J. Desharnais and B. Möller

semantics by a straightforward translation of the concrete operators of TRC(Σ)
into the corresponding quantale operators:

[[⊥]] = 0, [[Eϕ]] = �[[ϕ]] · �,
[[p]] = p · �, [[Xϕ]] = x · [[ϕ]],

[[ϕ → ψ]] = [[ϕ]] + [[ψ]], [[ϕUψ]] = �
j≥0

(xj · [[ψ]]� �
k<j

xk · [[ϕ]]).

As a word of warning, the definition [[p]] = p · � does not correspond exactly
to the TRC semantics, where [[π]] = Σπ � Σω and Σω 	= �. This problem will
be taken up in Sect. 7.

Using the above definitions, it is easy to check that

[[ϕ ∨ ψ]] = [[ϕ]] + [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] � [[ψ]], [[¬ϕ]] = [[ϕ]], [[�]] = �. (3)

Then the above semantics coincides with that of Sect. 2, as far as infinite streams
are concerned. This is discussed in detail in Sects. 6 and 7.

To exemplify our semantics we state a number of properties of the trace
quantifiers. In particular, we work out a more explicit form of the A semantics.

Corollary 4.2. [[EEψ]] = [[Eψ]] and [[AAψ]] = [[Aψ]] and [[Aψ]] = ¬�[[ψ]] · �.

Moreover, for the CTL∗ axiom EX� [7] we obtain the following result.

Lemma 4.3. [[EX�]] = � ⇔ �x = 1.

In a relational setting the property �x = 1 means that x is a left-total transi-
tion relation.

5 Modified Iteration and the Semantics of Until

We now deal with the semantics of the until operator. To bring the correspond-
ing expression in Definition 4.1 into more palatable shape we introduce a bit of
notation. For elements a, b ∈ A and j ∈ N we set

a j b =df xj · b � �
k<j

xk · a, (4)

which is the expression occurring in the right hand side of the semantic equation
for [[ϕUψ]] when a = [[ϕ]] and b = [[ψ]]. It states that ϕ holds j times and then ψ
holds. The idea is now to find an inductive formulation of j driven by j. For the
induction base we calculate, using the definitions of 0 and powers, neutrality of
1 and lattice algebra, a 0 b = x0 · b � �

k<0
xk · a = b � � = b. To proceed with the

induction step we need an assumption about x that is closely related to (1), as
is discussed in detail in Sect. 6. This condition reads

∀ a, b ∈ A : x · (a � b) = x · a � x · b. (LDM)

Non-associative Kleene Algebra and Temporal Logics 99

It means that left multiplication by x distributes through binary and hence non-
empty finite meets. With that we calculate as follows. By definition, splitting
the � expression, definition of powers and neutrality of 1, commutativity of �,

index shift, (LDM), definition of j and the definition below,

a j+1 b = xj+1 · b � �
k<j+1

xk · a = xj+1 · b � x0 · a �
j�

k=1
xk · a

= a � x · xj · b �
j�

k=1
x · xk−1 · a = a � x · xj · b � �

l<j
x · xl · a

= a � x · (xj · b � �
l<j

xl · a) = a � x · (a j b) = a � (a j b),

where
c � d =df c 1 d = c � x · d. (5)

The inductive clause for j will be the basis for an inductive (or recursive) for-
mulation of the until semantics.

We can now formulate the semantics of until more compactly as

[[ϕUψ]] = �
j≥0

[[ϕ]] j [[ψ]]. (6)

Below we will relate this to a fixed point equation for U.
The operator � enjoys a number of pleasant properties, as will be seen below.

However, in general it is neither associative nor does it have a neutral element.
Nevertheless it gives rise to an analogue of the Kleene star which will even allow
us to bring the semantics of the until operator into closed form.

To do this, we abstract from the concrete definitions above.

Definition 5.1. Consider a set S and an arbitrary, possibly non-associative
operator � : S × S → S.

1. We define the iterations j of � as above by

a 0 b =df b, a j+1 b =df a � (a j b).

2. The structure (S,�) is called a repetition algebra3 if S is a complete lattice
with order ≤, least element 0 and binary supremum operator +, and � is
isotone in both arguments.

3. In a repetition algebra we define variants of the star and omega operators:

a ∗ b =df μfa,b where fa,b(x) =df a � x + b , a ω =df νx . a � x. (7)

In fact, ∗ corresponds to Kleene’s original definition of ∗ as an infix operator
in [8]. Not surprisingly, ∗ and ω enjoy properties analogous to those of ∗ and ω.
We recall that an endofunction on a complete lattice is (co-)continuous if it
preserves all joins (meets) of non-empty chains.
3 We would have preferred the term iteration algebra which, however, is already used

in [1] and follow-up papers with a different meaning.

100 J. Desharnais and B. Möller

Lemma 5.2. Consider a repetition algebra (S,�).

1. The operators ∗ and ω are isotone.
2. a i+j a = a i (a j b).
3. If � is right-strict, i.e., if a�0 = 0 for all a, and distributes through arbitrary

joins and binary meets in its right argument then fa,b from (7) is continuous
and a ∗ b = �

j≥0
a j b.

4. b ≤ a ∗ b.
5. a � b ≤ a ∗ b.
6. a ∗ (a � b) ≤ a � (a ∗ b).
7. a ∗ (a ∗ b) = a ∗ b.
8. If � is left-strict, i.e., if 0 � a = 0 for all a, then 0 ∗ b = b and 0 ω = 0.
9. If a � 0 = 0 then a ∗ 0 = 0.

10. If � is left-distributive then a ∗ (b + c) = a ∗ b + a ∗ c.
11. a ∗ a ω = a ω .
12. If S is a universally distributive complete lattice then

νfa,b = μfa,b + a ω = a ∗ b + a ω .

A main tool used in the subsequent sections is that of projections from one
repetition algebra to another.

Definition 5.3. Let (Si, �i)i=1,2 be repetition algebras. A homomorphism
between them is a function h : S1 → S2 that is continuous and strict and
preserves + and � in that h(a +1 b) = h(a) +2 h(b) and h(a �1 b) = h(a) �2 h(b)
for all a, b ∈ S1.

Lemma 5.4. Let (Si, �i)i=1,2 be repetition algebras with a homomorphism h :
S1 → S2. Then h preserves ∗ as well, i.e., h(a ∗ 1 b) = h(a) ∗ 2 h(b) for all
a, b ∈ S1. If h is co-continuous and co-strict, i.e., satisfies h(�) = �, then it
also preserves ω , i.e., h(a ω 1) = h(a) ω 2 for all a ∈ S1.

We now return to the concrete instance of � defined in (5). To make use
of Lemma 5.2 we need to ensure that � has the necessary properties. Fortu-
nately, this is achieved by stipulating besides (LDM) a second requirement on
the semantic element x, motivated by the semantics of X as follows. In TRC(Σ),
for arbitrary formula ϕ and its semantics V = [[ϕ]] we want

[[Xϕ]] = x � V = x �
⋃

v∈V

{v} =
⋃

v∈V

x � {v}.

Therefore, we require that in the abstract quantale semantics left multiplication
by x distributes through arbitrary joins.

Definition 5.5. In a left quantale A we call x ∈ A a step if left multiplication
by x distributes through arbitrary joins and binary meets. In particular, x ·0 = 0.

Now Lemma 5.2 applies and yields the following theorem that provides an
important check of the adequacy of our definitions.

Non-associative Kleene Algebra and Temporal Logics 101

Theorem 5.6. Assume a Boolean left domain quantale with a step x. Then

[[ϕUψ]] = [[ϕ]] ∗ [[ψ]].

This yields the following simpler closed representation of F from Sect. 2:

Corollary 5.7. [[Fψ]] = x∗ · [[ψ]]. In particular, [[F�]] = �.

The operator G and its relation with the ω operator are treated in Sect. 7.

6 The Next-Time Operator

We now discuss the connection between (1) and (LDM) in the algebraic setting.
To satisfy (1), we need to have for all formulas ϕ and their semantic values
a =df [[ϕ]] that x · a = [[¬Xϕ]] = [[X¬ϕ]] = x · a. This semantic property can
equivalently be characterised as follows (Parts 1 and 2 were already shown in [3]).

Lemma 6.1. Consider a Boolean IL-semiring A and x ∈ A.

1. If x is left-distributive, i.e., x · (a + b) = x · a + x · b for all a, b, and satisfies
∀ a ∈ A : x · a ≤ x · a then (LDM) and x · 0 = 0 hold.

2. If (LDM) and x · 0 = 0 hold then so does ∀ a ∈ A : x · a ≤ x · a.
3. If x is left-distributive then ∀ a ∈ A : x · a ≤ x · a ⇔ x · � = � ⇔ xω = �.
4. If x satisfies (LDM) and ∀ a : x · a = x · a then x is left-distributive.

In relation algebra, the special case x · 1 ≤ x of the property in Part 1
characterises x as a partial function and is equivalent to the full property ∀ a :
x · a ≤ x · a [17]. But in general quantales the special and the full case are
not equivalent [3]. Moreover, again from [3], we know that in quantales such as
TRC left multiplication by an element x distributes over meet iff x is prefix-free,
i.e., if no member of x is a prefix of another member. This holds in particular
if all words in x have equal length, which is the case if x models a transition
relation and hence consists only of words of length 2. The equivalent condition
∀ a : x · a � x · a = 0 was used in the computation calculus of R.M. Dijkstra [6].

But what about Lemma 6.1.3? Only rarely will a quantale be “generated” by
x in the sense that xω = �. We deal with this problem in Sects. 7 and 8.

7 Infinitary Semantics of CTL∗

Before we tackle a general algebraic solution to the problem mentioned at the
end of the previous section, let us look at the concrete quantale A = TRC(Σ).
There we definitely do not have xω = � for x = Σ2, since xω = Σω = inf A,
where the inf operator was introduced in Example 3.2.

We will show that restricting the semantics given in Sect. 4 to infinite words
remedies this problem, while at the same time faithfully reflecting the origi-
nal semantics of CTL∗, which was given in terms of infinite sequences of states
anyway.

102 J. Desharnais and B. Möller

To obtain an abstract algebraic version of this, we need some additional
notions. The key is the observation in Example 3.2 that V � ∅ = inf V and
hence V � ∅ = ∅ iff inf V = ∅.

This motivates the following definition.

Definition 7.1. Assume a bounded IL-semiring A.

1. The purely infinite part of a ∈ A is inf a =df a · 0. We call a purely infinite
or non-terminating if a = inf a. We set N =df inf �; hence N is the greatest
nonterminating element. The set of all purely infinite elements is denoted by
infel(A).

2. Dually, we call a purely finite if inf a = a · 0 ≤ 0, i.e., if its purely infinite part
is trivial. The right hand side is equivalent to a · 0 = 0.

3. If A is Boolean we can define the purely finite part of a ∈ A analogously as
in TRC(Σ) by fin a =df a − inf a.

We state some simple consequences of the definition; for more details see [12].

Lemma 7.2. Consider arbitrary a, b ∈ A.

1. If b is purely infinite then so is a · b.
2. inf (a · b) = a · inf b. In particular, inf commutes with left restriction, i.e., for

p ∈ test(A), inf (p · b) = p · inf b.
3. a · N ≤ N.
4. The operator inf is a kernel operator, i.e., it is contractive (inf a ≤ a), isotone

and idempotent (inf (inf a) = inf a). By the latter fact the functionality of the
operator can be made precise as inf : A → infel(A).

Now we can give our modified semantics for CTL∗.

Definition 7.3. The infinitary semantics [[ϕ]]i of a CTL∗ formula ϕ over a
Boolean left domain quantale is defined as follows:

– [[Eϕ]]i =df �[[ϕ]]i · N.
– For all other formulas ϕ we set [[ϕ]]i =df inf [[ϕ]].

As an auxiliary we define complementation relative to N as ¬¬i a =df N− a.
This satisfies the following properties.

Theorem 7.4. Assume a Boolean left quantale A with a step x.

1. The pair (infel(A), �i), where �i is the restriction of � to infel(A), is a repe-
tition algebra and inf is a homomorphism from (A,�) to (infel(A),�i).

2. [[¬ϕ]]i = ¬¬i [[ϕ]]i and ¬¬i ¬¬i a = inf a.
3. The semantics [[]]i propagates inductively:

[[⊥]]i = 0, [[Xϕ]]i = x · [[ϕ]]i,
[[p]]i = p · N, [[ϕUψ]]i = [[ϕ]]i ∗ i [[ψ]]i,

[[ϕ → ψ]]i = ¬¬i [[ϕ]]i + [[ψ]]i.

In addition,

[[ϕ ∨ ψ]]i = [[ϕ]]i + [[ψ]]i, [[ϕ ∧ ψ]]i = [[ϕ]]i � [[ψ]]i, [[Aϕ]]i = ¬�(¬¬i [[ϕ]]i) · N.

Non-associative Kleene Algebra and Temporal Logics 103

4. If N ≤ x · N (and hence N ≤ xω) then for all a ∈ A we have inf (x · a) =
inf x · a. In particular, [[X¬ϕ]]i = [[¬Xϕ]]i. Furthermore, for all a ∈ A we have
¬¬i (x · inf a) = x · inf a.

5. If N ≤ x · N then [[Fψ]]i = x∗ · [[ψ]]i and [[Gψ]]i = [[ψ]]ω i
i .

This means that we have now obtained a semantics which faithfully mirrors
the original CTL∗ semantics.

We combine the results of this theorem with our results on the until operator.

Corollary 7.5. Assume again N ≤ x · N and define, for formulas ϕ and ψ the
abbreviation ϕWψ ⇔df Gϕ ∨ (ϕUψ). Then [[ϕWψ]]i = νy . [[ψ]]i + ([[ϕ]]i � i y).

In the literature the operator W is known as weak until or while. It expresses
that ϕ holds forever or else ψ will eventually hold with ϕ holding all the time
before that.

8 Generated Quantales

In view of Theorem 7.4.4 we introduce a new notion.

Definition 8.1. Assume a Boolean quantale A with a step x ∈ A. Then A is
called x-generated if � = νx . 1 + x · x = x∗ + xω and xω ≤ N. If additionally
�N = 1 then A is strongly x-generated.

The definition means that all elements of A can be obtained by finite or
infinite iteration of x. The constraint xω ≤ N serves to exclude “pseudo-infinite”
iterations of x. Strong generation means that all starting states can be extended
into infinite computations.

Example 8.2. The quantale TRC(Σ) (Example 3.2) is strongly Σ2-generated,
while its reduct to finite traces is not.

The definition of generatedness has important structural consequences. For
any IL-semiring let

rtest(A) =df {p · N | p ∈ test(A)} (8)

be the set of relative test ideals of A; each of them characterises the set of infinite
traces with starting states in a state set p.

Lemma 8.3. Consider an x-generated quantale A.

1. N = xω and N � x∗ = 0. Hence xω and x∗ are complements of each other.
2. N = x · N.
3. xω = inf (xω) and hence xω · xω = xω = (xω)ω.

Consider now the concrete operator c � d =df c � x · d from (5).

4. For all a ∈ A we have a ω ≤ N.

104 J. Desharnais and B. Möller

5. x ω = 0.
6. If a ∈ A is purely infinite then a ω = �

k∈N

xk · a.

Assume now that A is strongly x-generated.

7. �x = 1.
8. The sets test(A) and rtest(A) are order-isomorphic.

We can extend Lemma 8.3.5 a bit further. Together with Lemma8.3.6 we
obtain [[Gψ]]i =�

i∈N

xi · [[ψ]]i. Hence, in a ∗-continuous quantale [9], i.e., a quantale

with a · b∗ · c = �{a · bn · c |n ∈ N} for all a, b, c, we therefore have the pleasantly
symmetric formulations [[Fψ]]i =�

i∈N

xi · [[ψ]]i and [[Gψ]]i =�
i∈N

xi · [[ψ]]i.

9 Towards CTL: The Semantics of State Formulas

In this section we show, among other properties, that the semantics of each state
formula has the special form of a test ideal and hence directly corresponds to
a test, i.e., an abstract representation of a set of states. This will be the key to
the simplified CTL semantics in Sect. 10. Throughout this section we assume an
x-generated quantale.

Theorem 9.1. Let ϕ be a state formula of CTL∗.
1. [[ϕ]] is a test ideal, and hence, by Lemma 3.5.2, [[ϕ]] = �[[ϕ]] · �.
2. [[ϕ]]i is a relative test ideal, i.e., [[ϕ]]i = �[[ϕ]] · N.
3. [[Eϕ]] = [[ϕ]].
4. [[Aϕ]] = [[ϕ]].

Parts 3 and 4 show that state formulas are closed under E and A. In addition
we have the following result.

Lemma 9.2. State formulas are closed under ¬, ∧ and ∨ .

Next, we state some properties of U and its relatives for state formulas.

Lemma 9.3. Let ϕ,ψ be state formulas of CTL∗ with [[ϕ]] = p ·� and [[ψ]] = q ·�
for suitable tests p, q.

1. [[ϕUψ]] = (p · x)∗ · q · � = ([[ϕ]] � x)∗ · [[ψ]].
2. [[Gψ]]i = (q · x)ω. Hence we have the “shunting rule” (q · x)ω = ¬¬i (x∗ · ¬q ·N).

Now we deal with EX.

Lemma 9.4. For a state formula ϕ we have [[EXϕ]] = [[EXEϕ]] and hence
[[EXϕ]]i = [[EXEϕ]]i.

We conclude this section by noting that in the infinitary semantics EX and
AX are De Morgan duals; again the proof is a straightforward calculation.

Lemma 9.5. [[AXϕ]]i = [[¬EX¬ϕ]]i.

From this and Lemma 9.4 we obtain the last result of this section.

Corollary 9.6. [[AXϕ]]i = [[AXAϕ]]i.

Non-associative Kleene Algebra and Temporal Logics 105

10 From CTL∗ to CTL

For a number of applications the sublogic CTL of CTL∗ suffices. We will see that
it can be modelled in plain Kleene algebra. Syntactically, CTL consists of the
CTL∗ state formulas that use trace formulas of the restricted form

Π ::= XΞ | Ξ UΞ. (9)

From the previous section we already know that the semantics of every CTL
formula is a test ideal t, from which, by Theorem9.1.1, we can extract the cor-
responding test (or state set) as �t. This is reflected by the simplified semantics4

[[ϕ]]d =df �([[ϕ]]i) which enables us to calculate solely with tests. Throughout
this section we assume �N = 1, so that by locality (2) �(a · N) = �a for all a.

First we state another homomorphic property.

Lemma 10.1. Over a complete Boolean semiring A the structure (test(A),�d)
with p �d q =df |p · x〉q is a repetition algebra and � : rtest(A) → test(A) is a
homomorphism from (rtest(A),�i) to (test(A),�d). Moreover, p ∗ dq = |(p·x)∗〉q.

For the Boolean connectives we obtain by disjunctivity of domain and
Lemma 3.5 together with Theorem 7.4.3 and standard domain properties,

[[ϕ ∨ ψ]]d = [[ϕ]]d + [[ψ]]d, [[ϕ ∧ ψ]]d = [[ϕ]]d · [[ψ]]d, [[¬ϕ]]d = ¬[[ϕ]]d. (10)

Next, we state some laws for A.

Lemma 10.2. For atomic proposition p ∈ test(A),
[[A⊥]]d = 0, [[A�]]d = 1,

[[A(p ∨ ϕ)]]d = p + [[Aϕ]]d, [[A(p ∧ ϕ)]]d = p · [[Aϕ]]d.

Now we can calculate [[]]d for all CTL formulas by induction on their syntactic
structure, cf. the grammar in (9). We use implication → between tests, defined
as p → q =df ¬p + q.

Theorem 10.3

(1) [[⊥]]d = 0, (2) [[p]]d = p,
(3) [[ϕ → ψ]]d = [[ϕ]]d → [[ψ]]d, (4) [[EXϕ]]d = |x〉[[ϕ]]d,
(5) [[AXϕ]]d = |x][[ϕ]]d = [[AXAϕ]]d, (6) [[E(ϕUψ)]]d = |([[ϕ]]d · x)∗〉[[ψ]]d,
(7) [[A(ϕUψ)]]d = ¬�(x∗ · [[ψ]]d · N) · |(¬[[ψ]]d · x)∗]([[ϕ]]d + [[ψ]]d).

Parts (4) and (5) mean that the existential and universal quantifiers of CTL
are semantically reflected as the existential and universal modal operators dia-
mond and box. Part (6) means that the starting states of the traces in [[E(ϕUψ)]]d
are precisely those from which after finitely many X steps through ϕ states a ψ
state can be reached. Part (7) characterises [[A(ϕUψ)]]d as the set of those states
from which eventually a ψ state must be reached and for which iteration through
non-ψ states must lead to a ϕ or a ψ state.
4 The subscript d stands for “domain”.

106 J. Desharnais and B. Möller

11 From CTL∗ to LTL

The logic LTL is the fragment of CTL∗ in which only A may occur, once and
outermost only, as trace quantifier. More precisely, LTL has no state formulas
apart from those of the form Aϕ and the trace formulas are given by

Π ::= Φ | ⊥ | Π → Π | XΠ | Π UΠ.

Over an x-generated semiring, the LTL semantics is embedded into the CTL∗ one
by assigning to ϕ ∈ Π the semantic value [[Aϕ]]i.

The reason for this is the following. An arbitrary CTL∗ formula ϕ may be
called valid if its semantics is the set of all traces, abstractly, if [[ϕ]]i = N. This
is related to the A quantifier:

Lemma 11.1. [[ϕ]]i = N ⇔ [[Aϕ]]i = N.

Although the infinitary semantics adequately reflects the standard LTL
semantics, we present another view of the concrete case A = TRC(Σ) for some
set Σ of states (cf. Example 3.2). Since we want to set up a similar connection
to modal operators as in the CTL case (Theorem 10.3), we embed the carrier
set P(Σ∞) of TRC(Σ) into the relational semiring REL(Σ∞) by encoding every
subset V ⊆ Σ∞ as the relational test h(V) =df {(σ, σ) |σ ∈ V }.

Based on this we define another semantic mapping [[]]L as

[[ϕ]]L =df h([[ϕ]]i). (11)

Next, we mimic the semantic element x relationally. In TRC(Σ) we had x =
Σ2, which was used to “glue” transitions to the front of traces. In REL(Σ∞) we
replace this by the relation N =df {(σ, σ1) |σ ∈ Σω}, where, as in Sect. 2, σ1 is
σ with its first state removed. Now for a subset V ⊆ Σ∞,

h(x � V) = |N〉h(V). (12)

This allows the construction of yet another semantic homomorphism.

Lemma 11.2. The structure (test(REL(Σ∞)), �L) with P �L Q =df P ; |N〉Q
is a repetition algebra and h from (11) is a homomorphism from (P(Aω), � i) to
(test(REL(Σ∞)), �L). Here ; denotes relational composition.

From this, Theorem 7.4 and Lemma 5.4 we obtain, with · =�, N = Aω and
P → Q = ¬P + Q (P,Q relational tests),

[[⊥]]L = ∅, [[Xϕ]]L = |N〉[[ϕ]]L,
[[p]]L = h(p · N), [[ϕUψ]]L = [[ψ]]L ∗ L [[ϕ]]L,

[[ϕ → ψ]]L = [[ϕ]]L → [[ψ]]L.

From the last equation we obtain

[[¬ϕ]]L = ¬[[ϕ]]L, [[�]]L = h(N),
[[ϕ ∨ ψ]]L = [[ϕ]]L + [[ψ]]L [[ϕ ∧ ψ]]L = [[ϕ]]L ; [[ψ]]L.

Non-associative Kleene Algebra and Temporal Logics 107

Moreover, we can simplify the U operator. Let P =df [[ϕ]]L and Q =df [[ψ]]L.
By Lemma 11.2 with Lemma 5.4, definition of diamond with the import/export
law from Lemmas 3.5.7 and 8,

P ∗ L Q = μY .Q + P ; |N〉Y = μY .Q + |P ; N〉Y = |(P ; N)∗〉Q.

From this we obtain

[[ϕUψ]]L = |([[ϕ]]L ; N)∗〉[[ψ]]L, [[Fψ]]L = |N∗〉[[ψ]]L, [[Gψ]]L = |N∗][[ψ]]L.

This shows that for LTL we can weaken the requirements on the underlying
semantic algebra even further, viz. to that of a modal Kleene algebra.

Finally we briefly resume the discussion on axiom (1) in this interpretation.

[[X¬ϕ]]L = ¬[[Xϕ]]L ⇔ |N〉¬[[ϕ]]L = ¬|N〉[[ϕ]]L ⇔ |N][[ϕ]]L = |N〉[[ϕ]]L

for all ϕ. This means that N has to be a total and deterministic relation, which
is the case if the function λx . x · x is surjective and injective, i.e., a bijection.
These properties hold for the element Σ2 that generates Σω.

Note that the condition |N] = |N〉 does not propagate to |N∗] and |N∗〉,
since these correspond to iterated conjunction and disjunction, resp.

12 Conclusion

We have provided a compact algebraic semantics for full CTL∗ in the framework
of modal quantales and shown that for the two sublogics CTL and LTL the
semantics can be mapped to closed expressions using modal operators as well as
Kleene star and ω iteration. Compared with representations of CTL∗ in the modal
μ-calculus the compactness is achieved, since in quantales the modal operators
are defined for ω-regular expressions (and even more generally), not only for
atomic actions. Moreover, we have shown that for CTL and LTL the requirements
on the semantic algebra can be relaxed to that of an omega (Sects. 9 and 10) or
even just a Kleene algebra (Sect. 11).

As a non-trivial application, the article [14] shows that the algebraic seman-
tics developed in this paper can be transferred to the setting of Concurrent
Kleene Algebras and hence allow temporal reasoning about sequential sub-
threads there.

Future research will concern use of the algebraic semantics for concrete cal-
culations in case studies as well the extension from the current propositional
case to the first-order one; for this Tarskian frames as introduced in [11] seem
promising candidates.

Acknowledgement. We are grateful to Roland Glück and to the anonymous referees
for valuable comments.

108 J. Desharnais and B. Möller

References

1. Bloom, S., Ésik, Z.: Iteration algebras. Int. J. Found. Comput. Sci. 3(3), 245–302
(1992)

2. Conway, J.: Regular Algebra and Finite Machines. Chapman & Hall, Boca Raton
(1971)

3. Desharnais, J., Möller, B.: Characterizing determinacy in Kleene algebras. Inf. Sci.
139, 253–273 (2001)

4. Desharnais, J., Möller, B.: Non-associative Kleene algebra and temporal logics.
https://www.informatik.uni-augsburg.de/de/lehrstuehle/dbis/pmi/publications/
all pmi tech-reports/tr-RAMICS16/

5. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans.
Comput. Logic 7, 798–833 (2006)

6. Dijkstra, R.M.: Computation calculus bridging a formalisation gap. Sci. Comput.
Program. 37, 3–36 (2000)

7. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook
of Theoretical Computer Science. Vol. B: Formal Models and Semantics, pp. 995–
1072. Elsevier, Amsterdam (1991)

8. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon,
C., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press,
Princeton (1956)

9. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110, 366–390 (1994)

10. Kozen, D.: Kleene algebras with tests. ACM Trans. Program. Lang. Syst. 19, 427–
443 (1997)

11. Kozen, D.: Some results in dynamic model theory. Sci. Comput. Program. 51, 3–22
(2004)

12. Möller, B.: Lazy Kleene algebra. In: Kozen, D. (ed.) MPC 2004. LNCS, vol.
3125, pp. 252–273. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27764-4 14.
Revised version in [13]

13. Möller, B.: Kleene getting lazy. Sci. Comput. Program. 65, 195–214 (2007)
14. Möller, B., Hoare, T.: Exploring an interface model for CKA. In: Hinze, R.,

Voigtländer, J. (eds.) MPC 2015. LNCS, vol. 9129, pp. 1–29. Springer, Cham
(2015). doi:10.1007/978-3-319-19797-5 1

15. Möller, B., Höfner, P., Struth, G.: Quantales and temporal logics. In: Johnson, M.,
Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 263–277. Springer, Heidelberg
(2006). doi:10.1007/11784180 21

16. Rosenthal, K.: Quantales and their applications. Pitman Research Notes in Math.
No. 234 Longman Scientific and Technical (1990)

17. Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for Com-
puter Scientists. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (1993)

https://www.informatik.uni-augsburg.de/de/lehrstuehle/dbis/pmi/publications/all_pmi_tech-reports/tr-RAMICS16/
https://www.informatik.uni-augsburg.de/de/lehrstuehle/dbis/pmi/publications/all_pmi_tech-reports/tr-RAMICS16/
http://dx.doi.org/10.1007/978-3-540-27764-4_14
http://dx.doi.org/10.1007/978-3-319-19797-5_1
http://dx.doi.org/10.1007/11784180_21

Algebraic Investigation of Connected
Components

Roland Glück(B)

Deutsches Zentrum für Luft- und Raumfahrt,
Am Technologiezentrum 4, 86159 Augsburg, Germany

roland.glueck@dlr.de

Abstract. This paper characterizes connected components of both
directed and undirected graphs as atomic fixpoints. As algebraic struc-
ture for our investigations we combine complete Boolean algebras with
the well-known theory of Kleene Algebra with domain. Using diamond
operators as an algebraic generalization of relational image and preimage
we show how connected components can be modeled as atomic fixpoints
of functions operating on tests and prove some advanced theorems con-
cerning connected components.

1 Introduction

Algebraic reasoning about relations, graphs and graph algorithms has become a
rising area of research in the past years. [BSW15,FK12] use Dedekind categories
as algebraic tool whereas [BHS15] relies on classical relation algebra. Approaches
considering also cardinality functions appear in [BDHS16,BPS16]. Another idea
which is suitable also for edge-weighted graphs are fuzzy relations which are
treated in [KF99,Kaw06]. [Kah14] uses ideas from category theory for mod-
eling graph transformations. The considered problems include bipartitions as
in [BSW15] or network flows as in [Kaw06] whereas there is no deeper examina-
tion of (stronlgy) connected components by algebraic means. Some known work
as in [SS93] characterizes strongly connected components by means of equiva-
lence relations but does not tackle algorithmic issues as in [Sha81]; a gap which
this paper aims to narrow.

The approach here combines two known structures. As first component, we
use complete distributive lattices with complement which allows us to reason
about join, meet and complement of graphs. The second ingredient of our com-
bined structure are Kleene algebras for modeling additionally composition and
iteration, corresponding to reflexive-transitive hull and reachability. This allows
the reuse of plenty already proven theorems in both areas and puts the results
in a more general context than a pure relation algebraic approach. We assume
basic knowledge of lattice theory, graph theory and relation algebra and refer
the reader to [Bir67,JR92] for lattice theory, to [Jun05] for graph theory and
to [SS93] for relation algebra.

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 109–126, 2017.
DOI: 10.1007/978-3-319-57418-9 7

110 R. Glück

A perseverative task in algebraic reasoning about graphs and relations is the
formalization of single nodes and elements. Usually, this challenge is tackled by
point relations or point axioms as in [FK12,Kaw06]. Here we use atomic tests
for this purpose which motivates the detailed investigation of atomicity.

In Sect. 2 we investigate some lattice-theoretic aspects of atomicity. Section 3
introduces the concept of graph algebras, a combination of a quantale and Kleene
algebra with domain. We use the results of these sections in Sect. 4 to develop an
algebraic characterization of connected components. The last Sect. 5 summarizes
our results and gives an outlook to future work.

2 Full Atomic Lattices

The main structure we investigate in this section will be a full atomic lattice.
As usual, a complete Boolean algebra is a structure M = (M,�,

⊔
,
�
,⊥,�, -)

where (M,�) is an ordered set with least and greatest elements ⊥ and �, resp.,⊔
and
�

are supremum and infimum with respect to �, supremum distributes
over arbitrary infima and vice versa, and - is the complement satisfying the de
Morgan’s laws

⊔
M′ =

�
{m′ |m′ ∈ M′} and

�
M′ =

⊔
{m′ |m′ ∈ M′} for all

M′ ⊆ M. � and 	 serve as abbreviations for binary supremum and infimum,
resp. We define the symbols
, �, � and � by m
 n ⇔df n � m, m � n ⇔df
m � n∧ m � n, m � n ⇔df ¬m � n and m � n ⇔df ¬m
 n. An element m ∈M
is called non-bottom if m � ⊥. In this setting we make the following definition:

Definition 2.1. LetM = (M,�,
⊔
,
�
,⊥,�, -) be a complete Boolean algebra. A

non-bottom element ma ∈ M is called atomic if for all non-bottom m ∈ M the
implication m � ma ⇒ m = ma holds. The set of all atomic elements of M is
denoted by atom(M). M is a full atomic lattice if m =

⊔
{ma ∈ atom(M) |ma �

m} holds for all m ∈M.

As a convention, we will denote atomic elements always with a superscript
a. In the sequel we list some simple but useful properties of full atomic lattices
(the proofs are omitted here for brevity but can be found under [Glüa]):

Lemma 2.2. LetM = (M,�,
⊔
,
�
,⊥,�, -) be a full atomic lattice, and consider

arbitrary atoms ma,na ∈ atom(M), arbitrary m,n ∈M and an arbitrary M′ ⊆M.
Then the following properties hold:

1. ma 	m � ⊥ ⇔ ma 	m = ma

2. ma 	 na = ⊥ ⇔ ma � na

3. ma � m ⇔ ma 	m � ⊥
4. ma �

⊔
M′ ⇔ ∃m′ ∈M′ : ma � m′

5. ma � m⇔ ma � m
6. m � n ∧ma � n⇒ ma � m ∨ma � n 	m
7. m 	 n = ⊥ ∧ na � n⇒ m � na � m
8. m � n⇒ ∃ oa ∈ atom(M) : oa � m ∧ oa � n

Algebraic Investigation of Connected Components 111

Given an undirected graph, the set-valued reachability function (mapping a
set of nodes to the set of therefrom reachable nodes) is a closure operator with
the special property that the complement of a fixpoint is a fixpoint again. This
motivates the following definition in a more general context:

Definition 2.3. A complementary strict distributive closure or csd closure is
a function f on the carrier set M of a full atomic lattice M with the following
properties:

– f (
⊔

M′) =
⊔

f (M′) for all M′ ⊂M (distributivity)
– m � f (m) for all m ∈M (extensivity)
– f (f (m)) = f (m) for all m ∈M (idempotence)
– f (f (m)) = f (m) for all m ∈M (complementary idempotence)

An elementary implication of distributivity is isotony of f , i.e., we have m �
n ⇒ f (m) � f (n), so the set fix f of fixpoints of f is also a complete sublattice
due to the Knaster-Tarski theorem (see [Tar55]). Similarly, idempotence and
complementary idempotence imply the closeness of fix f under complementation.
By lattice theory and distributivity we have f (⊥) = f (

⊔
∅) =

⊔
∅ = ⊥, so ⊥ and

� (by closeness of fix f under complementation) are fixpoints of f . Together this
means that FIX f =df (fix f ,�,

⊔
,
�
,⊥,�, -) is a complete Boolean algebra. The

following lemmata will help to show that FIX f is even a full atomic lattice.

Lemma 2.4. Let f be a csd closure on a full atomic latticeM and consider an
arbitrary ma ∈ atom(M). Then f (ma) is an atom in FIX f .

Proof. Consider an arbitrary atom ma ∈ atom(M) and assume there is a non-
bottom m ∈ fix f with m � f (ma) (note that due to idempotence we have f (ma) ∈
fix f). According to Lemma 2.2.6 there are two cases:

1. ma � m: here we have f (m) = m � f (ma) which contradicts isotony of f .
2. ma � f (ma) 	 m: in this case, f (ma) 	 m is also a fixpoint of f (remember

the closeness of fix f under infima and complementation). Moreover, we have
f (ma) 	 m � f (ma) by lattice theory. Putting this together, we obtain ma �
f (ma) 	m and f (f (ma) 	m) � f (ma) which contradicts the isotony of f . �

Together with the atomicity ofM this shows the following lemma:

Lemma 2.5. Let f be a complementary distributive closure on a full atomic
lattice M = (M,�,

⊔
,
�
,⊥,�, -) and consider an arbitrary x ∈ fix f . Then we

have the identity x =
⊔
{ f (ma) |ma ∈ atom(M) ∧ma � x}.

The next lemma asserts also the reverse direction of Lemma 2.4:

Lemma 2.6. Let f be a csd closure on a full atomic lattice M and consider
an arbitrary xa ∈ atom(FIX f). Then every atom ma ∈ atom(M) with ma � xa

fulfills f (ma) = xa.

Proof. Due to Lemma 2.5 we have f (ma) � xa, and strictness of f and atomicity
of ma yield f (ma) � ⊥. Atomicity of xa implies now f (ma) = xa. �

112 R. Glück

Atomicity and distributivity of a csd closure imply the following corollary:

Corollary 2.7. Let f be a csd closure and consider an arbitrary xa ∈
atom(FIX f). Then for every non-bottom x′ � xa we have f (x′) = xa.

Putting these results together, we obtain the following theorem:

Theorem 2.8. Let f be a csd closure on a full atomic lattice M. Then FIX f
is atomic with atom(FIX f) = f (atom(M)).

This theorem generalizes Theorem 3.13 in [GMS09] where the role of f is
played by a generalization of the image function of equivalence relations.

3 Graph Algebras

Clearly, the set of endorelations over a set forms a complete distributive lattice
with the subset relation as order, union and meet as supremum and infimum,
and the full and empty relation as top and bottom element, resp. In order to
reason about relations and graphs we need some additional ingredients. The first
one is an abstract model of relational composition:

Definition 3.1. A structure Q = (M,�,
⊔
,
�
,⊥,�, 1, ·) is called a quantale if

(M,�,
⊔
,
�
,⊥,�) is a complete distributive lattice and · : M ×M→M is an

associative function (called multiplication) which distributes from both sides over
arbitrary suprema and has 1 as both left and right neutral element. Moreover, Q
obeys the Tarski rule m � ⊥ ⇔ � ·m · � = � for all m ∈M.

This definition implies isotony of multiplication in both arguments and ⊥·m =
⊥ = m · ⊥ for all m ∈ M. For brevity we may often write mn instead of m · n.
Multiplication is sub-conjunctive, i.e., we have m ·

�
N · o �

�
{mno |n ∈ N}. The

Tarski rule is not included in the standard definition of a quantale, however, it
holds in the relational quantale which is the object of our investigations.

Quantales model the interplay between relational composition and union but
lack the possibility of reasoning about subsets of the carrier set of a relation.
This gap can be filled by tests, defined as follows (see e.g. [DMS04]):

Definition 3.2. Given a quantale Q = (M,�,
⊔
,
�
,⊥,�, 1, ·) we call an element

p ∈M a test if there is an element ¬p ∈M with p�¬p = 1 and p ·¬p = ⊥ = ¬p ·p.
The set of all tests of Q is denoted by test(Q).

In the relation lattice the set of tests equals the set of subidentities and
corresponds in an obvious way with subsets of the carrier set. On tests, multi-
plication is idempotent and coincides with infimum. Clearly, ⊥ and 1 are tests;
for further properties see again [DMS04]. [MHS06] shows that multiplication by
tests distributes even over infima, so we have p(m 	 n)q = pmq 	 pnq for arbi-
trary m,n ∈ M and p, q ∈ test(Q). We call a test pa atomic if q � pa ⇔ q = pa

holds for all non-bottom tests q and denote the set of atomic tests by att(Q). If
TESTQ =df (test(Q),�,�,	,⊥, 1,¬) is a full atomic lattice we call Q test-atomic.

Algebraic Investigation of Connected Components 113

Atomic tests serve to model single elements of the carrier set of a relation since
they correspond to singleton subsets of the identity relation. In the sequel we
denote tests by p, q, r, . . . , decorated on demand by indices, primes and similar
ornaments.

Using tests we can define the forward diamond |〉 and backward diamond
〈| as functions of the type M→ test(Q)→ test(Q) by the equivalences |m〉p �
q ⇔ ¬qmp � ⊥ ⇔ 〈m|¬q � ¬p for all m ∈ M and p, q ∈ test(Q). Furthermore,
we require modality, i.e., 〈mn|p = 〈n|〈m|p and |mn〉p = |m〉|n〉p. Both diamond
operators distribute in every argument over arbitrary suprema and are hence
strict and isotone in every argument. More details can be found e.g. in [DMS04].
In the relational lattice, forward and backward diamond correspond to preimage
and image operations, resp.

The last refinement enables us to reason about iteration, the reflexive-
transitive hull and hence reachability and connectivity (see e.g. [Koz]):

Definition 3.3. A structure GA = (M,�,
⊔
,
�
,⊥,�, ·, 1, ∗, ◦, |〉, 〈|) is called a

graph algebra if (M,�,
⊔
,
�
,⊥,�, 1, ·) is a test-atomic quantale with forward

and backward diamond operations |〉 and 〈|, and the star operation ∗ : M→M
fulfills the following properties for all m,n, o ∈M:

– 1 �mm∗ � m∗ and 1 �m∗m � m (star unfold)
– n �mo � o⇒ m∗n � o and n � om � o⇒ nm∗ � o (star induction)

The converse operator ◦ : M→M enjoys the property |m◦〉p = 〈m|p for all m ∈M
and tests p. Finally, GA fulfills the all-or-nothing property stating pamqa = ⊥ ⇔
pamqa � pa�qa for all m ∈M and atomic tests pa and qa (implying ⊥ � pa�qa).

Clearly, for all m ∈ M we have 1 � m∗ due to star unfold. Moreover, the
star operation is isotone. For further properties see again [DMS04,Koz]. The
intention of the definition of the converse operator is to model the relational
converse by swapping image and preimage. If we interpret pagqa = ⊥ as the
non-existence of an edge between the nodes corresponding to pa and qa we have
to ensure that for two algebraic graphs g1 and g2 with pag1qa � ⊥ � pag2qa

the meet pa(g1 	 g2)qa is also non-bottom. In our definition, this motivates the
introduction of the all-or-nothing property.

We refer to the elements of the carrier set of a graph algebra as algebraic
graphs. An algebraic graph g is called reflexive if 1 � g, and transitive if gg � g
holds. g is symmetric if 〈g◦|p = 〈g|p holds for all tests p. An algebraic equivalence
is a reflexive, transitive and symmetric algebraic graph. For an algebraic equiva-
lence g we have g = 1 · g � gg due to neutrality of 1 and isotony of multiplication
and hence even the equality g = gg.

From now on we will reason only about graph algebras and carry over the
namings (atomic) test and the notions of diamonds in an obvious manner. First
we list some technical lemmata which will be useful in the further course.

Lemma 3.4. Let pa be an atomic test. Then the identity pa�pa = pa holds.

114 R. Glück

Proof. Idempotence of multiplication on tests and multiplicative neutrality of 1
yield pa = pa1pa. By all-or-nothing we have either pa1pa = ⊥ or pa1pa = pa�pa,
however, the first case contradicts the atomicity of pa. �

Lemma 3.5. For atomic tests pa and qa and arbitrary m we have the equiva-
lences pa � |m〉qa ⇔ pamqa = pa�qa ⇔ qa � 〈m|pa ⇔ pamqa � ⊥.

Proof. Consider atomic tests pa and qa and an arbitrary m with pa � |m〉qa. By
Lemma 2.2.3 this is equivalent to pa 	 |m〉qa � ⊥, and because on tests multipli-
cation and infimum coincide we can rewrite this condition as pa · |m〉qa � ⊥. By
shunting we obtain |m〉qa � ¬pa which is by contraposition of the diamond’s defi-
nition the same as pamqa � ⊥. Because ⊥ is the least element this is equivalent to
pamqa � ⊥, and the all-or-nothing axiom yields the equivalence of this condition
and pamqa = pa�qa. Symmetrically we obtain the equivalence of qa � 〈m|pa and
pamqa � ⊥. The last equivalence is a consequence of all-or-nothing. �

Lemma 3.6. For all non-bottom tests p the equalities |�〉p = 1 = 〈�|p hold.

Proof. We fix an arbitrary atomic test qa and another atomic test pa � p. Then
we have qa � 〈�|pa by Lemma 3.5 and hence 1 � 〈�|pa by atomicity of test(GA)
and supremum properties. Because the diamond operation is isotone this implies
1 � 〈�|p, however, 1 is the greatest test so we even have the equality 1 = 〈�|p.
The other equality can be shown analogously. �

The next lemma deals with the interplay between converse and diamond
operators. Intuitively, it states that the preimage function of a relation is the
same as the image function of its converse.

Lemma 3.7. For all m and tests p we have the equality 〈m◦|p = |m〉p.

Proof. We reason as follows:

〈m◦|p � |m〉p⇔ { diamond property }
p ·m◦ · (¬|m〉p) � ⊥ ⇔ { diamond property }
|m◦〉(¬|m〉p) � ¬p⇐ { definition of the converse }
〈m|(¬|m〉p) � ¬p⇔ { diamond property }
(¬|m〉p) ·m · p � ⊥ ⇔ { diamond property }
|m〉p � |m〉p⇔ { reflexivity of � }
true

In an analogous manner we show |m〉p � 〈m◦|p which finishes the proof. �

This lemma and the definition of the converse imply the following lemma:

Lemma 3.8. For all g and tests p we have |(g◦)◦〉p = |g〉p and 〈(g◦)◦|p = 〈g|p.

Now we can show that the star and the converse operation commute with
each other:

Algebraic Investigation of Connected Components 115

Lemma 3.9. For all m and tests p we have the equalities |(m∗)◦〉p = |(m◦)∗〉p
and 〈(m∗)◦|p = 〈(m◦)∗|p.

Proof. Definition of the converse yields |(m∗)◦〉p = 〈m∗|p. [DMS06] shows that
〈m∗|p is the least fixpoint of the function f (p) =df p � 〈m|p which by definition
of the converse again equals g(p) =df p � |m◦〉p. Again by [DMS06] the least
fixpoint of g is |(m◦)∗〉p. The other equality follows analogously by Lemma3.7. �

Lemma 3.10. For all m and tests p and q we have the equalities pmq =⊔
{pamqa | pa, qa ∈ att(GA), pa � p, qa � q} =

⊔
{pamqa | pa, qa ∈ att(GA), pa � p, qa �

q, pamqa � ⊥}.

Proof. We reason as follows:

pmq = {atomicity of test(GA)}⊔
{pa ∈ att(GA), pa � p} ·m ·

⊔
{qa ∈ att(GA), qa � q} = { distributivity }⊔

{pamqa | pa, qa ∈ att(GA), pa � p, qa � q} = { neutrality of ⊥ wrt.
⊔
}⊔

{pamqa | pa, qa ∈ att(GA), pa � p, qa � q, pamqa � ⊥} �

Strictness of the supremum operation implies now the following corollary:

Corollary 3.11. For all m and arbitrary tests p and q we have the equivalence
pmq � ⊥ ⇔ ∃pa, qa ∈ att(GA) : pa � p ∧ qa � q ∧ pamqa � ⊥. In particular, for an
atomic test pa we have the equivalence pa ≤ 〈m|q⇔ ∃qa ∈ att(GA) : qa ≤ q ∧ pa ≤
〈m|qa.

Two relations are equal iff their image functions coincide. In our setting, this
is expressed by the following lemma:

Lemma 3.12. For all m and n we have m = n iff 〈m|p = 〈n|p holds for all tests
p.

Proof. The direction from the left to right side is trivial so we show only the
implication from the right side to the left. From the right side we conclude that
qa � 〈m|pa ⇔ qa � 〈n|pa holds for all atomic tests pa and qa. Lemma 3.5 and
all-or-nothing imply pamqa � ⊥ ⇔ panqa � ⊥, and now the claim follows from
Lemma 3.10 by setting p = q = 1. �

Using Lemma 3.6 (together with 〈�|⊥ = ⊥ by strictness of the diamond
operator), Lemmas 3.8 and 3.9 we obtain the following lemma:

Lemma 3.13. For all algebraic graphs g we have � = �◦, g◦◦ = g and (g∗)◦ =
(g◦)∗.

As in real relational life, converse distributes over infimum:

Lemma 3.14. For all algebraic graphs m and n we have (m 	 n)◦ = m◦ 	 n◦.

Proof. We show that qa � 〈(m 	 n)◦|pa ⇔ qa � 〈m◦ 	 n◦|pa holds for all atomic
tests pa and qa; the rest follows analogously to the proof of Lemma 3.12. So we
fix two arbitrary atomic tests pa and qa and reason as follows:

116 R. Glück

qa � 〈(m 	 n)◦|pa ⇔ { Lemma 3.7 }
qa � |(m 	 n)〉pa ⇔ { Lemma 3.5 }
qa(m 	 n)pa = qa�pa ⇔ { distributivity of multiplication by tests }
qampa 	 qanpa = qa�pa ⇔ { lattice theory, all-or-nothing }
qampa = qa�pa ∧ qanpa = qa�pa ⇔ { Lemma 3.5 }
qa � |m〉pa ∧ qa � |n〉pa ⇔ { Lemma 3.7 }
qa � 〈m◦|pa ∧ qa � 〈n◦|pa ⇔ { Lemma 3.5 }
pam◦qa = pa�qa ∧ pan◦qa = pa�qa ⇔ { lattice theory, all-or-nothing }
pam◦qa 	 pan◦qa = pa�qa ⇔ { distributivity of multiplication by tests }
pa(m◦ 	 n◦)qa = pa�qa ⇔ { Lemma 3.5 }
qa � 〈m◦ 	 n◦|pa �

The next lemma reflects the definition of relational composition:

Lemma 3.15. Consider arbitrary algebraic graphs m and n and atomic tests pa

and qa. Then pamnqa � ⊥ holds iff there is an atomic test ra with pamra � ⊥ �
ranqa.

Proof. “⇒”: We have pamnqa = pam1nqa = pam
⊔

att(GA)nqa by multiplicative
neutrality of 1 and atomicity of test(GA). By distributivity this transforms into⊔
{pamranqa | ra ∈ att(GA)}, and due to idempotence of multiplication on tests

this equals
⊔
{pamra · ranqa | ra ∈ att(GA)}. If for every atomic test ra at least

one of pamra = ⊥ or ranqa = ⊥ holds the last supremum evaluates to ⊥ which
contradicts the assumption.
“⇐”: First we calculate as follows (we assume tacitly that all tests with a super-
script a are atomic):

pamnqa = { Lemma 3.10, atomicity of pa and qa }⊔
{pamram | pamram � ⊥} ·

⊔
{rannqa | rannqa � ⊥} = { distributivity }⊔

{pamramr
a
nnq

a | pamram � ⊥, rannqa � ⊥} = { Lemma 2.2.2, ram 	 ran = ramr
a
n }⊔

{pamranqa | pamra � ⊥, ranqa � ⊥}

By assumption, the last set is nonempty, so together with all-or-nothing we have
pamnqa
 pa�ra�qa. Due to the Tarski rule we have �ra� = � which means
pamnqa
 pa�qa � ⊥ by all-or-nothing. �

By induction we obtain from this Lemma the following corollary:

Corollary 3.16. Consider arbitrary algebraic graphs m1,m2, . . . ,mn and atomic
tests pa and qa. Then pam1m2 . . .mnqa � ⊥ holds iff there are atomic tests
ra1, r

a
2, . . . , r

a
n−1 such that pam1ra1 � ⊥ � ran−1mnqa and rai miri+1 � ⊥ hold for all

1 ≤ i ≤ n − 2.

Lemma 3.17. Let pa be an atomic test, q an arbitrary test and consider an
algebraic graph g with pa � 〈g|q. Then there is an atomic test ra with ra � q and
pa � 〈g|ra.

Algebraic Investigation of Connected Components 117

Proof. By atomicity of test(GA) we have q =
⊔
{qa | qa ∈ att(GA), qa � q}

which yields together with distributivity of the diamond the equality 〈g|q =⊔
{〈g|qa | qa ∈ att(GA), qa � q}. Lemma 2.2.4 implies the claim.

Lemma 3.18. For arbitrary tests p, q, r and every transitive algebraic graph g
we have the implication p � 〈g|q ∧ q � 〈g|r⇒ p � 〈g|r.

Proof. First, we have p � 〈g|〈g|r by isotony of the diamond. Modality yields
p � 〈gg|r, and transitivity of g does the remaining job. �

Lemma 3.19. Let g be a symmetric and transitive algebraic graph, pa and qa

atomic tests and r an arbitrary test with pa � 〈g|qa and pa � 〈g|r. Then we have
also qa � 〈g|r.

Proof. We reason as follows:

pa � 〈g|qa ∧ pa � 〈g|r⇒ { symmetry of g }
pa � |g〉qa ∧ pa � 〈g|r⇒ { Lemma 3.5 }
qa � 〈g|pa ∧ pa � 〈g|r⇒ { Lemma 3.18 }
qa � 〈g|ra �

4 Connected Components

4.1 Innately Connected Components

The connected components of both directed and undirected graphs induce equiv-
alence relations on the nodes of the graph. For this reason we investigate first
some properties of algebraic equivalences before dealing with connectivity.

Theorem 4.1. Let g be an algebraic equivalence. Then the function
iccg(p) =df 〈g|p is a complementary strict distributive closure on TESTGA.

Proof. Distributivity of iccg is a consequence of distributivity of the backward
diamond. By reflexivity of g we have 1 � g which yields extensivity of iccg due to
〈1|p = p and isotony of the backward diamond. Moreover, we have 〈g|〈g|p = 〈gg|p
by modality, and together with the algebraic equivalence property gg = g this
implies idempotence of iccg.

For complementary idempotence we note first that 〈g|¬〈g|p
 〈1|¬〈g|p =
¬〈g|p holds due to reflexivity of g, isotony of the backward diamond and 〈1|q = q.
In order to prove the remaining inequality 〈g|¬〈g|p � ¬〈g|p we assume 〈g|¬〈g|p �
¬〈g|p. Then there is by Lemma 2.2.8 an atomic test qa with qa � 〈g|¬〈g|p and
qa � ¬〈g|p. Now we reason as follows:

qa � 〈g|¬〈g|p ∧ qa � ¬〈g|p⇒ { Lemma 2.2.5 }
qa � 〈g|¬〈g|p ∧ qa � 〈g|p⇒ { Lemma 3.17 }
∃ra ∈ att(GA) : ra � ¬〈g|p ∧ qa � 〈g|ra ∧ qa � 〈g|p⇒ { Lemma 3.19 }
∃ra ∈ att(GA) : ra � ¬〈g|p ∧ ra � 〈g|p⇒ { lattice theory }
∃ra ∈ att(GA) : ra � ¬〈g|p 	 〈g|p⇒ { lattice theory }
∃ra ∈ att(GA) : ra � ⊥

118 R. Glück

However, this means ra = ⊥ which contradicts the atomicity of ra. �

Usually, a graph or subgraph is called connected if each of its nodes is reach-
able from every other of its nodes. Lifting this to sets of nodes this is equivalent
that every subset of nodes is reachable from every nonempty subset of nodes. In
this context, connectivity means reachability in an arbitrary number of steps.
We will first investigate a more restricted version of connectivity which means
reachability in exactly one step. Clearly, the connected components of the follow-
ing definition correspond to equivalence classes, however, we chose the naming
according to our further intentions.

Definition 4.2. Given an algebraic equivalence g we call a test p innately con-
nected with respect to g or innately g-connected for short if p2 � 〈g|p1 holds
for all non-bottom tests p1, p2 � p. If p is innately g-connected and every test
q with q � p is not innately g-connected then p is called an innate connected
component of g. The set of all innate connected components of g is denoted by
icc(g).

It is easy to see that every atomic tests is innately connected so ⊥ is no
innate connected component.

Lemma 4.3. Let g be an algebraic equivalence. Then a test p is innately g-
connected iff for all atomic tests pa1, p

a
2 � p the inequality pa2 � 〈g|pa1 holds.

Proof. Clearly, the definition of innate g-connectivity implies pa2 � 〈g|pa1 for all
atomic pa1, p

a
2 � p, so assume now that pa2 � 〈g|pa1 holds for all atomic tests pa1, p

a
2 �

p. Given two arbitrary non-bottom tests p1, p2 � p we fix now an arbitrary atomic
test pa1 � p1 and reason as follows:

p2 = { atomicity of test(M) }⊔
{pa2 | pa2 ∈ atom(M) ∧ pa2 � p2} � { assumption, lattice theory }⊔
{〈g|pa1} � { pa1 � p1, isotony of diamond }
〈g|p1 �

Lemma 4.4. Let g be an algebraic equivalence and pick an arbitrary p ∈ icc(g).
Then p is contained in the set fix〈g| of fixpoints of 〈g|.

Proof. We have p � p and hence by definition p � 〈g|p (chose p1 = p2 = p in
Definition 4.2) so it remains to show that 〈g|p � p holds. Therefore we assume
that 〈g|p � p does not hold. Then we have p � 〈g|p � p, and we can fix two
arbitrary atomic tests pa1, p

a
2 � p� 〈g|p � p (recall the remark after Definition 4.2

which states p � ⊥). We distinguish four cases:

1. pa1 � p ∧ pa2 � p: then we have pa2 � 〈g|pa1 because p is innately g-connected.
2. pa1 � p ∧ pa2 � 〈g|p	¬p: by Corollary 3.11 there is an atomic test pa3 � p with

pa2 � 〈g|pa3, and due to innate g-connectivity of p we have also pa3 � 〈g|pa1, so
we can reason as follows:

Algebraic Investigation of Connected Components 119

pa2 � { see above }
〈g|pa3 � {pa3 � 〈g|pa1, isotony of diamond }
〈g|〈g|pa1 = { modality and transitivity of g }
〈g|pa1.

3. pa1 � 〈g|p	¬p ∧ pa2 � p: due to symmetry of g and the previous case we have
pa2 � 〈g|pa1.

4. pa1 � 〈g|p 	 ¬p ∧ pa2 � 〈g|p 	 ¬p: since p is non-bottom we can choose an
arbitrary atomic pa3 � p. According to the two preceding cases, we have pa2 �
〈g|pa3 and pa3 � 〈g|pa1. A calculation analogous to Case 2 yields pa2 � 〈g|pa1.

In every case we have pa2 � 〈g|pa1, so by Lemma 4.3 p� 〈g|p is g-connected which
contradicts the maximality of p with respect to innate g-connectivity. �

Lemma 4.5. Let g be an algebraic equivalence and consider an arbitrary p ∈
icc(g). Then p is an atomic fixpoint of 〈g|.

Proof. Due to Lemma 4.4, p is a fixpoint of 〈g|, so assume now there is a q ∈ fix〈g|
with 0 � q � p. Then we can chose two arbitrary atomic tests pa � p 	 ¬q and
qa � q which implies also pa � p and qa � p. Because p is innately g-connected
we have pa � 〈g|qa and due to isotony of the diamond also pa � 〈g|q. However,
q was assumed to be a fixpoint of 〈g| which leads to pa � q, contradicting the
choice of pa. �

Defining the lattice FIX〈g| =df (fix〈g|,�,
⊔
,
�
,⊥,�) (cf. Theorem 2.8) we can

show that its atoms are innately connected components:

Lemma 4.6. Let g be an algebraic equivalence and pick an arbitrary p ∈
atom(FIX〈g|). Then p is an innately connected component of g.

Proof. First we show that an arbitrary p ∈ atom(FIX〈g|) is innately g-connected
so we chose two non-bottom tests q1, q2 � p. Due to Corollary 2.7 we have p =
〈g|q1 which implies q2 � 〈g|q1 by the assumption q2 � p.

Assume now there is an innately g-connected test q with q � p. Then we have
q � 〈g|p by definition of innate connectivity, and p = 〈g|p because p is a fixpoint
of 〈g|. Together this yields q � p which contradicts the assumption q � p. �

Theorem 4.7. Let g be an algebraic equivalence. Then the set of fixpoints of
〈g| forms a complete lattice with order � and least element ⊥. Moreover, icc(g)
is exactly the set of its atomic elements.

Proof. Due to Theorem 4.1 〈g| is a csd closure on test(GA). The rest follows
from Theorem 2.8 and Lemmas 4.5 and 4.6. �

In particular, this means that the innately connected components of g are
exactly of the form 〈g|pa with atomic tests pa.

120 R. Glück

4.2 Algebraic Directed Acyclic Graphs

Given a directed graph G, the graph consisting of its strongly connected com-
ponents as nodes and an edge between two components C1 and C2 iff there is
an edge in G from some node in C1 to some node in C2 is acyclic (see e.g.
[Jun05,Sha81]). Traditionally, a graph is said to be acyclic if it does not contain
any cycles, i.e., if the meet of its transitive hull and the identity is empty. In the
language of graph algebra, this leads to the following definition:

Definition 4.8. An algebraic graph g is called an algebraic directed acyclic
graph or algebraic dag for short if it fulfills the property g+ 	 1 = ⊥.

A sink in a directed acyclic graph is a node without outgoing edges. This
motivates the following definition:

Definition 4.9. Given an algebraic graph g, a non-bottom test s is called an
algebraic sink of g if 〈g|s = ⊥ holds.

A finite directed acyclic graph contains always at least one sink. An analogous
fact holds also for algebraic graphs, as stated in the next theorem:

Theorem 4.10. Let g be an algebraic dag of a finite graph algebra GA. Then
there is an algebraic sink of g.

Proof. We will show that there is an atomic test sa with 〈g|sa = ⊥ which implies
the claim obviously. In the sequel, we denote the cardinality of att(GA) by nat.
By finiteness of GA we have g∗ =

⊔
{gn |n ≥ 0} and hence g+ =

⊔
{gn |n ≥ 1}.

Assume now that for every atomic test sa we have 〈g|sa � ⊥. Then we pick an
arbitrary atomic test sa0 and construct a sequence of atomic tests sa0, s

a
1, . . . , s

a
nat

as follows: given sai , we take an arbitrary atomic test sai+1 with sai+1 � 〈g|s
a
i (note

that this is possible due to our assumption and atomicity of test(GA)). By the
pigeonhole principle, there are two indices n1 and n2 with n1 < n2 and san1

= san2

which implies san1
� 〈gn2−n1 |san1

by (n2 − n1)-fold application of the backward dia-
mond and modality. Herefrom we conclude san1

�san1
� san1

gn2−n1san1
by Lemma 3.5

and hence san1
�san1

� g+ (remember that n1 < n2). So we can calculate:

g+ 	 1
 { isotony of 	 }
san1
�san1

	 1 = { Lemma 3.4 }
san1
	 1 = { atomicity of test(GA) }

san1
	
⊔

att(GA) = { distributivity }⊔
{san1
	 pa | pa ∈ att(GA)} = { Lemma 2.2.2, lattice theory }

san1

Due to atomicity we have san1
� ⊥, and we have the desired contradiction. �

Algebraic Investigation of Connected Components 121

4.3 Undirected Graphs

An elementary approach to deal with an undirected graph G = (V,E) is to define
a directed graph G′ = (V′,E′) by V′ = V and (v,w) ∈ E′ ⇔df {v,w} ∈ E. Clearly,
G′ is a symmetric directed graph with the same reachability properties as G.
Hence, the connected components of G and the strongly connected components
of G′ coincide. Considerations as in Subsect. 4.1 lead to the following definition:

Definition 4.11. Let g be a symmetric algebraic graph. A test p is said to be
connected with respect to g or g-connected if p2 � 〈g∗|p1 holds for all non-bottom
tests p1, p2 � p. If p is connected with respect to g and all tests q with p � q are
not connected with respect to g then p is called a connected component of g. The
set of all connected components of g is denoted by cc(g).

Theorem 4.12. Let g be a symmetric algebraic graph. Then the function
ccg =df 〈g∗| is a complementary distributive closure on test(GA).

Proof. According to Theorem 4.1 it suffices to show that g∗ is an algebraic equiv-
alence. We have 1 � g∗ and g∗g∗ = g∗ (hence g∗g∗ � g∗) by star properties and
hence reflexivity and transitivity of g∗. For an arbitrary test p we have 〈g∗|p =
〈(g◦)∗|p = 〈g∗◦|p by symmetry of g and Lemma 3.13. �

Now, according to Theorem 4.7 and the subsequent remark a connected com-
ponent of g can be described by 〈g∗|pa with an atomic test pa. Algorithmically,
this can be done by means of a BFS starting at pa. Moreover, for two connected
components c1 and c2 we have c1 	 c2 � ⊥ ⇔ c1 = c2 by atomicity and Theo-
rem 4.7.

The fact that there is no connection between two different connected com-
ponents is stated in the next theorem:

Theorem 4.13. Let g be a symmetric graph and consider two connected com-
ponents c1 and c2 of g with c1 � c2. Then we have c1gc2 = ⊥.

Proof. Assume that c1gc2 � ⊥. Then there are atomic tests pa1 � c1 and pa2 � c2
with pa1gp

a
2 � ⊥ by Corollary 3.11 and hence also pa2 � 〈g|pa1 by Lemma 3.5. Now

we can calculate:

c1 = { idempotence of supremum, c1 = 〈g∗|pa1 by Lemma 2.6 }
c1 � 〈g∗|pa1
 { g∗
 g, isotony of diamond operation }
c1 � 〈g|pa1
 { choice of pa2 }
c1 � pa2 � { c1 	 c2 = ⊥, Lemma 2.2.7 }
c1

This leads to the clear contradiction c1 � c1. �

122 R. Glück

4.4 Directed Graphs

Analogously to Subsects. 4.1 and 4.3 we make the following definition:

Definition 4.14. Let g be an arbitrary algebraic graph. A test p is said to be
strongly connected with respect to g or strongly g-connected if q2 � 〈g∗|q1 holds
for all non-bottom tests q1, q2 � p. If p is strongly connected with respect to g
and all tests q with q � p are not strongly g-connected then p is called a strongly
connected component of g. The set of all strongly connected components of g is
denoted by scc(g).

In general, g∗ is no algebraic equivalence so we cannot immediately proceed
as in Subsect. 4.3. The next lemmata serve to obtain an equivalent formulation
of Definition 4.14 to which we can apply the results of Subsect. 4.1.

Lemma 4.15. Let p be strongly g-connected. Then pg∗p = p�p holds.

Proof. By definition of strong g-connectivity we have pa2 � 〈g∗|pa1 for all atomic
tests pa1, p

a
2 � p. Due to Lemma 3.5 this is equivalent to pa1g

∗pa2 � ⊥ so we calculate:

pg∗p = { Lemma 3.10 }⊔
{pa1g

∗pa2 | pa1, p
a
2 � p, pa1g

∗pa2 � ⊥} = { all-or-nothing }⊔
{pa1�p

a
2 | pa1, p

a
2 � p} = { distributivity, twice }⊔

{pa1 | p
a
1 � p} · � ·

⊔
{pa2 | pa2 � p} = { atomicity of test(GA) }

p�p �

Lemma 4.16. Let p be strongly g-connected. Then pg∗p = p(g◦)∗p holds.

Proof. We have pg∗p = p�p = p�◦p = p(g∗)◦ = p(g◦)∗p by Lemma 4.15, twice
Lemmas 3.13 and 4.15 again. �

Theorem 4.17. For all g the function sccg =df g∗ 	 (g◦)∗ is an algebraic equiv-
alence.

Proof. By star properties we have 1 � g∗ and 1 � (g◦)∗, so we have also 1 �
g∗ 	 (g◦)∗ due to the definition of the infimum which implies reflexivity of sccg.

For transitivity we calculate as follows:

(g∗ 	 (g◦)∗) · (g∗ 	 (g◦)∗) � { sub-conjunctivity of multiplication }
g∗g∗ 	 g∗(g◦)∗ 	 (g◦)∗g∗ 	 (g◦)∗(g◦)∗ � { lattice theory }
g∗g∗ 	 (g◦)∗(g◦)∗ � { star properties }
g∗ 	 (g◦)∗

Finally, we have sccg = g∗ 	 (g◦)∗ = (g◦)∗ 	 g∗ = (g◦)∗ 	 ((g∗)◦)◦ =
(g∗)◦ 	 ((g◦)∗)◦ = (g∗ 	 (g◦)∗)◦ = sccg◦ by definition of sccg, commutativity of
	, multiple applications of Lemmas 3.13, 3.14 and definition of sccg again which
shows symmetry of sccg. �

Algebraic Investigation of Connected Components 123

This means that the strongly connected components of g have the form 〈g∗ 	
(g◦)∗|pa with pa ∈ att(GA). However, this characterization is not satisfying from
an algorithmic point of view since the computation of the reflexive-transitive
hull takes more than linear time in the general case. We will show now some
properties which are used for a linear-time algorithm proposed in [Sha81].

Theorem 4.18. Let g be an arbitrary algebraic graph. Then the component
graph scgg =df

⊔
{c1gc2 | c1, c2 ∈ scc(g), c1 � c2} is an algebraic dag.

Proof. Assume that scg+g	1 � ⊥. Then there is an atomic test pa with pascg+g p
a �

⊥ which means pa ·
⊔
{scgng |n ≥ 1} · pa � ⊥. By distributivity this implies

⊔
{pa ·

scgng ·pa |n ≥ 1} � ⊥ so there is an n ≥ 1 with pa ·scgng ·pa � ⊥, and hence there are
strongly connected components c1, c2, . . . , cn+1 with pac1gc2gc3 . . . cngcn+1pa � ⊥
(note that cigci+1cjgcj+1 � ⊥ implies ci+1 = cj due to Theorem 2.8, so we have
cigci+1cjgcj+1 = cigcjgcj+1). Applying Corollary 3.16 we conclude the existence of
atomic tests qa1, q

a
2, . . . q2n with pac1qa1 � ⊥ � qa2ncn+1pa, qa2i−1gq

a
2i � ⊥ for 1 ≤ i ≤ n

and q2i−2ciq2i−1 � ⊥ for 1 ≤ i ≤ n. Now the terms of the form qa2i−2ciq
a
2i−1 are

non-bottom iff qa2i−2 = qa2i−1 � ci holds and become in this case q2i−2. Analogously,
pac1 and cn+1pa are non-bottom iff pa � c1 and pa � cn+1 hold and become
both pa in every case. This implies the existence of atomic tests ra1, r

a
2, . . . , r

a
n+1

with ra1 = ran+1, rai � ci and rai gr
a
i+1 � ⊥. Again by Corollary 3.16 this implies

ra2g
n−1ra1 � ⊥ and hence ra2g

∗ra1 � ⊥, implying ra1g
∗◦ra2 � ⊥ by Lemma 3.5 and

definition of the converse. On the other hand, we have ra1gr
a
2 � ⊥ from which

we conclude ra1g
∗ra2 � ⊥ and hence ra1(g∗ 	 g∗◦)ra2 � ⊥ by all-or-nothing, infimum

properties and distributivity of multiplication by tests over infima. An immediate
consequence thereof is ra2 � 〈g∗ 	 g∗◦|ra1 by Lemma 3.5, and on the other hand we
have c1 = 〈g∗ 	 g∗◦|ra1 by construction and hence ra2 � c1. Therefrom we conclude
ra2 � c1 	 c2; however, by construction of scgg we have c1 � c2 and hence
c1 	 c2 = ⊥ by Theorem 2.8 which implies ra2 � ⊥, contradicting the atomicity
of ra2. �

Theorem 4.19. Let g be a finite algebraic graph and consider a sink cs of scgg
(see Theorem 4.18). Then for every atomic test pas � cs we have 〈g∗|pas = cs.

Proof. Because of cs = 〈g∗ 	 (g◦)∗|pas and g∗ 	 (g◦)∗ � g∗ we have cs � 〈g∗|pas . In
order to show 〈g∗|pas � cs we assume 〈g∗|pas � cs and fix an arbitrary atomic test
qa with qa � 〈g∗|pas and qa � cs. Analogously to the proof of Theorem4.10 there
exist an n ∈N and atomic tests ra1, r

a
2, . . ., r

a
n with ra1 = pas , r

a
n = qa and ri+1 � 〈g|ri.

Because of ra1 � cs and ran � cs there is an index j such that raj � cs and raj+1 � cs.
Then the strongly connected component c′s =df 〈g∗ 	 (g◦)∗|rj+1 fulfills cs � c′s.
However, we have rajcs = raj and raj+1c

′
s = raj+1 which leads to rajcsgc

′
sr

a
j+1 � ⊥. This

implies ⊥ � raj+1 � 〈csgc
′
s|raj � 〈csgc

′
s|cs which contradicts the fact that cs is a sink

of scgg (remember cs � c′s and the definition of scgg). �

This last theorem is the base for the correctness of an algorithm for computing
the strongly connected components of a graph G given in [Sha81]. It uses DFS in
order to find a node in a sink of the graph consisting of the strongly connected

124 R. Glück

components of G as nodes and an edge from component C1 to component C2
iff there is an edge in G from some node in C1 to some in C2. An algebraic
formulation of this algorithm, especially finding the sink node, is beyond the
scope of this paper.

5 Conclusion and Further Work

We demonstrated that connected components can be described in a one-sorted
algebraic setting. The use of atomic tests together with parts not in first order
logic are necessary to deal with graph properties concerning single nodes of
a graph. This means that our approach is suitable for automated reasoning
using proof assistants as COQ [Coq] or Isabelle [Isa] as demonstrated already
e.g. in [GSW11]. In particular, correctness proofs for algorithms computing
(strongly) connected components are a goal in near time. However, one cru-
cial point is the algebraic description of DFS. While BFS is well understood in
terms of Kleene Algebra (so e.g. in [DM11] reachability is handled basically via a
BFS approach), DFS still awaits an algebraic treatment (the functional approach
in [KL95] could serve as a first base therefore). Another natural generalization
will be the application of the proposed methods to biconnected components.

There are also open questions of theoretical interest: how do the all-or-noting
property and the Tarksi rule relate to each other? Mace4 (see [McC]) finds
a counterexample (see [Glüb]) that the Tarski rule implies the all-or-nothing
property, however, it does not find one for the other direction. Similarly, it is
still open whether the Tarski rule is necessary for our results (it is used only
once in the proof of Lemma3.15). However, till now we cannot come up with a
counterexample.

Due to the all-or-nothing property, our setting is tailored to unlabelled
graphs. In order to deal with labelled graphs one possibility is to relax the
all-or-nothing property in a way that infima of the form from the paragraph
after Definition 3.3 become ⊥ iff one of its operands equals ⊥.

Acknowledgments. The author is grateful to Bernhard Möller and the anonymous
reviewers for thorough proofreading and valuable hints and remarks which helped to
improve the paper.

References

[BDHS16] Berghammer, R., Danilenko, N., Höfner, P., Stucke, I.: Cardinality of rela-
tions with applications. Discret. Math. 339(12), 3089–3115 (2016)

[BHS15] Berghammer, R., Höfner, P., Stucke, I.: Tool-based verification of a rela-
tional vertex coloring program. In: Kahl, W., Winter, M., Oliveira, J.N.
(eds.) RAMICS 2015. LNCS, vol. 9348, pp. 275–292. Springer, Cham (2015).
doi:10.1007/978-3-319-24704-5 17

[Bir67] Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society,
Providence (1967)

http://dx.doi.org/10.1007/978-3-319-24704-5_17

Algebraic Investigation of Connected Components 125

[BPS16] Brunet, P., Pous, D., Stucke, I.: Cardinalities of finite relations in Coq. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 466–474.
Springer, Cham (2016). doi:10.1007/978-3-319-43144-4 29

[BSW15] Berghammer, R., Stucke, I., Winter, M.: Investigating and computing bipar-
titions with algebraic means. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.)
RAMICS 2015. LNCS, vol. 9348, pp. 257–274. Springer, Cham (2015).
doi:10.1007/978-3-319-24704-5 16

[Coq] The Coq proof assistant. https://coq.inria.fr/
[DM11] Dang, H.-H., Möller, B.: Simplifying pointer Kleene algebra. In: Höfner, P.,

McIver, A., Struth, G. (eds.) Proceedings of 1st Workshop on Automated
Theory Engineering, CEUR Workshop Proceedings, Wrocław, vol. 760, pp.
20–29. CEUR-WS.org (2011)

[DMS04] Desharnais, J., Möller, B., Struth, G.: Modal Kleene algebra and applica-
tions - a survey. J. Relat. Methods Comput. Sci. 1, 93–131 (2004)

[DMS06] Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM
Trans. Comput. Log. 7, 798–833 (2006)

[FK12] Furusawa, H., Kawahara, Y.: Point axioms in dedekind categories. In: Kahl,
W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp. 219–234.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-33314-9 15

[Glüa] Glück, R.: Atomic lattices. http://www.rolandglueck.de/Downloads/
Atomiclattices.pdf

[Glüb] Glück, R.: Tarksi rule vs. all-or-nothing property. http://www.rolandglueck.
de/Downloads/Tarski all or nothing.in

[GMS09] Glück, R., Möller, B., Sintzoff, M.: A semiring approach to equivalences,
bisimulations and control. In: Berghammer, R., Jaoua, A.M., Möller, B.
(eds.) RelMiCS 2009. LNCS, vol. 5827, pp. 134–149. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04639-1 10

[GSW11] Guttmann, W., Struth, G., Weber, T.: Automating algebraic methods in
isabelle. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 617–
632. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24559-6 41

[Isa] Isabelle. https://isabelle.in.tum.de/
[JR92] Jipsen, P., Rose, H.: Varieties of Lattices, 1st edn. Springer, Heidelberg

(1992)
[Jun05] Jungnickel, D.: Graphs, Networks and Algorithms, 2nd edn. Springer, Hei-

delberg (2005)
[Kah14] Kahl, W.: Graph transformation with symbolic attributes via monadic coal-

gebra homomorphisms. ECEASST 71 (2014)
[Kaw06] Kawahara, Y.: On the cardinality of relations. In: Schmidt, R.A. (ed.)

RelMiCS 2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg (2006).
doi:10.1007/11828563 17

[KF99] Kawahara, Y., Furusawa, H.: An algebraic formalization of fuzzy relations.
Fuzzy Sets Syst. 101(1), 125–135 (1999)

[KL95] King, D.J., Launchbury, J.: Structuring depth-first search algorithms in
Haskell. In: Cytron, R.K., Lee, P. (eds.) Conference Record of POPL 1995,
pp. 344–354. ACM Press (1995)

[Koz] Kozen, D.: A completeness theorem for Kleene algebras and the algebra of
regular events. Inf. Comput. 110(2), 366–390 (1994)

[McC] McCune, W.: Prover9 and Mace4. https://www.cs.unm.edu/mccune/
mace4/

http://dx.doi.org/10.1007/978-3-319-43144-4_29
http://dx.doi.org/10.1007/978-3-319-24704-5_16
https://coq.inria.fr/
http://dx.doi.org/10.1007/978-3-642-33314-9_15
http://www.rolandglueck.de/Downloads/Atomiclattices.pdf
http://www.rolandglueck.de/Downloads/Atomiclattices.pdf
http://www.rolandglueck.de/Downloads/Tarski_all_or_nothing.in
http://www.rolandglueck.de/Downloads/Tarski_all_or_nothing.in
http://dx.doi.org/10.1007/978-3-642-04639-1_10
http://dx.doi.org/10.1007/978-3-642-24559-6_41
https://isabelle.in.tum.de/
http://dx.doi.org/10.1007/11828563_17
https://www.cs.unm.edu/mccune/mace4/
https://www.cs.unm.edu/mccune/mace4/

126 R. Glück

[MHS06] Möller, B., Höfner, P., Struth, G.: Quantales and temporal logics. In: John-
son, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 263–277.
Springer, Heidelberg (2006). doi:10.1007/11784180 21

[Sha81] Sharir, M.: A strong-connectivity algorithm and its applications in data flow
analysis. Comput. Math. Appl. 7(1), 67–72 (1981)

[SS93] Schmidt, G., Ströhlein, T.: Relations and Graphs: Discrete Mathematics for
Computer Scientists. Springer, Heidelberg (1993)

[Tar55] Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac.
J. Math. 5(2), 285–309 (1955)

http://dx.doi.org/10.1007/11784180_21

Stone Relation Algebras

Walter Guttmann(B)

Department of Computer Science and Software Engineering,
University of Canterbury, Christchurch, New Zealand

walter.guttmann@canterbury.ac.nz

Abstract. We study a generalisation of relation algebras in which the
underlying Boolean algebra structure is replaced with a Stone algebra.
Many theorems of relation algebras generalise with no or small changes.
Weighted graphs represented as matrices over extended real numbers
form an instance. Relational concepts and methods can thus be applied
to weighted graphs. All results are formally verified in Isabelle/HOL.

1 Introduction

Binary relations, which are the main instance of relation algebras, are essen-
tially Boolean matrices. In graph theory they occur as the adjacency-matrix
representation of unweighted graphs. It is therefore not surprising that relation-
algebraic methods have been used to reason about graphs and to develop graph
algorithms [8,9,11,45]. In this context weighted graphs are problematic simply
because edge weights cannot be stored as entries of a Boolean matrix. Sometimes
a workaround can be used, namely to represent weighted graphs by incidence
matrices and weight functions [10]. However, keeping the direct representation of
weighted graphs as matrices over numbers has benefits: it involves only one type
of matrix, only a single matrix per graph, and only untyped (homogeneous) alge-
bras which are better supported by theorem provers. Path problems and related
algorithms have been treated successfully with this direct representation based
on semirings with pre-orders and Kleene algebras [1,6,26,33]. Other graph prob-
lems, in particular the minimum spanning tree problem, seem to require more
structure. Relation algebras provide additional structure, but need to be gener-
alised to capture weighted graphs.

In order to verify Prim’s algorithm for minimum spanning trees, we have
proposed such a generalisation, Stone relation algebras, in [29]. Edge weights
are typically numbers and form lattice and semiring structures (such as max-min
and min-plus algebras). However, they do not form a Boolean algebra because
a complement operation cannot be defined on the underlying linear order of
numbers. The idea is to generalise the Boolean algebra structure just so much
that edge weights can be represented while most of the structure is preserved.
In particular, edge weights support a pseudocomplement operation and even
form a Stone algebra. In Stone algebras, the involution property x = x and
the law of excluded middle x � x = � are missing, but the weaker x � x = �
still holds, as do De Morgan’s laws and x � x = ⊥. By forming matrices over
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 127–143, 2017.
DOI: 10.1007/978-3-319-57418-9 8

128 W. Guttmann

Stone algebras we can hope to preserve much of the structure of relations. These
matrices represent weighted graphs and we capture their algebraic properties
by Stone relation algebras. The axioms of Stone relation algebras are based on
the axioms of Tarski’s relation algebras, which are modified to account for the
weakening of the underlying lattice structure from Boolean algebras to Stone
algebras.

Our previous paper gave the basic definitions and results with a focus on
the verification of Prim’s algorithm. In this paper, we study the properties of
Stone relation algebras in more detail. Related work is discussed throughout the
present paper. Its structure and contributions are as follows:

– In Sect. 2 we study pseudocomplemented algebras in general, and Stone alge-
bras in particular. We also discuss the extended-real and matrix models of
Stone algebras. Many results in this section are known from the literature;
we contribute formally verified proofs of the algebraic properties and of the
instantiation to the models.

– In Sect. 3 we study Stone relation algebras. Our contribution is to show that
many results of relation algebras generalise to Stone relation algebras directly
or, in some cases, with small changes. This includes algebraic properties that
hold for all elements and ones that hold for specific classes of elements. Again,
we formally prove our results including the instantiation to models.

– In Sect. 4 we study the weighted-graph model of Stone relation algebras.
Our contribution is to characterise in logical terms the meaning of relation-
algebraic properties when applied to weighted graphs. Also here, our results
are formally stated and proved.

– In Sect. 5 we study Stone-Kleene relation algebras, which extend Stone relation
algebras with the Kleene star operation. We contribute a number of algebraic
properties, again formally proved.

All of our results are verified in Isabelle/HOL [42] using its integrated automated
theorem provers and SMT solvers [14,43]. We omit the proofs, which can be
found in the theory files available in the Archive of Formal Proofs [30,31] and at
http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/. The Archive cur-
rently stores the theories for Stone algebras and Stone relation algebras including
the results presented in Sects. 2–4. The theories for Stone-Kleene relation alge-
bras including the results of Sect. 5 are being prepared for it.

2 Pseudocomplemented Algebras

This section covers basic algebraic structures used in the present paper, including
lattices, pseudocomplemented lattices and Stone algebras. These structures are
further discussed in a number of textbooks [7,13,16,20,27]. Many results given
in this section can be found in these textbooks. All results given in this section
have been formally verified in Isabelle/HOL, mostly as part of a proof of Chen
and Grätzer’s construction theorem for Stone algebras [30].

http://www.csse.canterbury.ac.nz/walter.guttmann/algebra/

Stone Relation Algebras 129

Definition 1. A bounded semilattice is an algebraic structure (S,�,⊥) where
� is associative, commutative and idempotent and has unit ⊥:

x � (y � z) = (x � y) � z x � y = y � x x � x = x x � ⊥ = x

A bounded lattice is an algebraic structure (S,�,�,⊥,�) where (S,�,⊥) and
(S,�,�) are bounded semilattices and the following absorption axioms hold:

x � (x � y) = x x � (x � y) = x

A bounded distributive lattice is a bounded lattice where the following distribu-
tivity axioms hold (it is enough to postulate one of the two to obtain the other):

x � (y � z) = (x � y) � (x � z) x � (y � z) = (x � y) � (x � z)

The lattice order is given by

x ≤ y ⇔ x � y = y

A (distributive) p-algebra is an algebraic structure (S,�,�, ,⊥,�) such that
(S,�,�,⊥,�) is a bounded (distributive) lattice and the pseudocomplement
operation satisfies the equivalence

x � y = ⊥ ⇔ x ≤ y

A Stone algebra is a distributive p-algebra satisfying the equation

x � x = �

An element x ∈ S is regular if x = x and dense if x = ⊥. A Boolean algebra is
a Stone algebra whose elements are all regular.

Thus the pseudocomplement y of an element y is the ≤-greatest element whose
meet with y is ⊥. The following result gives basic properties of pseudocomple-
ments.

Theorem 2. Let S be a p-algebra and let x, y, z ∈ S. Then the operation is
≤-antitone, x � x is dense, and

1. ⊥ = �
2. � = ⊥
3. x ≤ x

4. x = x

5. x ≤ y ⇔ y ≤ x

6. x � y = ⊥ ⇔ x � y = ⊥
7. x � y ≤ z ⇔ x � y ≤ z

8. x � y ≤ z ⇔ x � z ≤ y

9. x � x = ⊥
10. x � y = x � y

11. x � y = x � y

12. x � y = x � y
13. x � y = x � y
14. x � x � y = x � y
15. x � y ≤ x � y
16. x � y ≤ x � y

130 W. Guttmann

In particular, the function λx.x is a closure operation, that is, idempotent, ≤-
increasing and ≤-isotone. The image of the operation is precisely the set of
regular elements. They are closed under the operations �, ,⊥ and �. The dense
elements of a p-algebra are precisely those mapped to � by the operation λx.x.
They are closed under the operations �, �, λx.x and �. Equational axioms
for p-algebras are obtained by adding Theorems 2.1, 2.2 and 2.14 to any set of
equational axioms for bounded lattices.

In distributive p-algebras, we also obtain the following properties. By
Theorem 3.1, every element x can be represented as the meet of a dense and
a regular element.

Theorem 3. Let S be a distributive p-algebra and let x, y ∈ S. Then

1. (x � x) � x = x
2. x � y = ⊥ ∧ x � y = � ⇒ x = y

3. x ≤ y ⇔ x ≤ y � x
4. x ≤ y ⇔ x � x ≤ y � x

In a Stone algebra we obtain one of De Morgan’s laws (the other is Theorem2.10)
and a number of weak shunting properties as the following result shows.

Theorem 4. Let S be a Stone algebra and let x, y, z ∈ S. Then

1. x � y = x � y
2. x � y = x � y
3. x � y � x � y = x
4. (x � y) � (x � y) = x

5. x�y = x�z ∧x�y = x�z ⇒ y = z
6. x ≤ y ⇔ � = x � y
7. x � y ≤ z ⇔ x ≤ z � y
8. x � y ≤ z ⇔ x ≤ z � y

The weak shunting property in Theorem4.8 does not require the element z on the
right-hand side to be regular. Another consequence is that the regular elements
of a Stone algebra S are closed under the operation �, whence they form a
Boolean subalgebra of S [27]. The dense elements of a Stone algebra form a
distributive lattice with �.

In the remainder of this section we look at instances of Stone algebras,
notably extended real numbers and matrices over Stone algebras. Our consid-
erations are motivated by weighted graphs. In this model we take edge weights
from a Stone algebra and represent graphs by matrices containing edge weights.

For edge weights we use the extended real numbers R′ = R ∪ {⊥,�} with
the operations max and min and the order ≤ extended so that ⊥ is the ≤-least
element and � is the ≤-greatest element. The resulting structure is a Stone
algebra; the following result also shows the operation λx.x in this algebra.

Theorem 5. (R′,max,min, ,⊥,�) is a Stone algebra with

x =
{� if x = ⊥

⊥ if x �= ⊥ x =
{⊥ if x = ⊥

� if x �= ⊥

and the order ≤ on R′ as the lattice order. The regular elements are ⊥ and �.
All elements except ⊥ are dense.

Stone Relation Algebras 131

The operation λx.x checks whether its argument is different from ⊥ and
returns one of the Boolean elements ⊥ or �.

Weighted graphs are represented as matrices whose entries are edge weights.
We therefore need to lift the Stone algebra structure to matrices according to
the following result. Let SA×A denote the set of square matrices with indices
from a set A and entries from a set S. Such a matrix represents a directed graph
with node set A and edge weights taken from S.

Theorem 6. Let (S,�,�, ,⊥,�) be a Stone algebra and let A be a set. Then
(SA×A,�,�, ,⊥,�) is a Stone algebra, where the operations �,�, ,⊥,� and
the lattice order ≤ are lifted componentwise.

Using pointwise liftings, the result holds more generally for the set SX of all
functions from X to S, for any set X.

It follows that the regular elements among the matrices over extended reals
are the matrices over {⊥,�}. They represent unweighted graphs: an entry
Mij = ⊥ means that there is no edge from node i to node j in graph M , while
Mij = � means that there is an edge but no information about its weight is
provided. Hence, on the matrix level the operation λx.x takes a weighted graph
and produces an unweighted graph. The result M represents the structure of the
weighted graph M after forgetting the weights. Under this interpretation, the
dense elements among the matrices correspond to complete graphs.

There are several approaches related to obtaining the structure of a weighted
graph. In [47] an operation that gives the least ‘crisp’ relation containing a fuzzy
relation is discussed. In [21] the ‘shape’ is a relation that represents a superset
of the non-zero entries of a matrix of complex numbers; an operation that gives
the non-zero entries is not considered. In [39] the ‘support’ is an operation on
matrices over natural numbers that maps 0 to 0 and each non-zero entry to 1.
In [36] weighted graphs are represented by matrices over commutative semirings
and their structure is obtained by a ‘flattening’ operation that maps each entry
x to the smallest multiplicatively idempotent element whose product with x is
x. The multiplicatively idempotent elements in R are 0 and 1.

We conclude this section with a brief comparison of Stone algebras and Heyt-
ing algebras, which are bounded lattices where all relative pseudocomplements
exist. The pseudocomplement of an element y relative to an element z is the ≤-
greatest element whose meet with y is below z. By specialising z = ⊥ it follows
that Heyting algebras form distributive p-algebras. A counterexample generated
by Nitpick [15] witnesses that, in general, Heyting algebras do not form Stone
algebras this way. A counterexample given in [24, Example 4.6] shows that rela-
tive pseudocomplements need not exist in Stone algebras.

3 Stone Relation Algebras

In this section we further discuss the algebraic structure of matrices over Stone
algebras. We have seen in Sect. 2 that such matrices form Stone algebras by lifting
the operations componentwise. Moreover, they can be used to represent weighted

132 W. Guttmann

graphs with edge weights taken from the extended reals. Finally, the subset of
regular matrices obtained as the image of the closure operation λx.x represents
unweighted graphs in this case. Because unweighted graphs correspond to rela-
tions, these observations suggest a generalisation of relation algebras to cover
weighted graphs.

Definition 7. A Stone relation algebra (S,�,�, ·, , T,⊥,�, 1) is a Stone algebra
(S,�,�, ,⊥,�) with a composition · and a converse T and a constant 1 satisfying
the following axioms (1)–(10). We abbreviate x·y as xy and let composition have
higher precedence than the operators � and �.

(xy)z = x(yz) (1)
1x = x (2)

(x � y)z = xz � yz (3)

(xy)T = yTxT (4)

(x � y)T = xT � yT (5)

xTT
= x (6)

⊥x = ⊥ (7)

xy � z ≤ x(y � xTz) (8)
xy = x y (9)

1 = 1 (10)

A relation algebra (S,�,�, ·, , T,⊥,�, 1) is a Stone relation algebra whose reduct
(S,�,�, ,⊥,�) is a Boolean algebra.

An element x ∈ S is a vector if x� = x, a co-vector if �x = x, reflexive if
1 ≤ x, co-reflexive if x ≤ 1, irreflexive if x ≤ 1, symmetric if x = xT, asymmetric
if x � xT = ⊥, antisymmetric if x � xT ≤ 1, transitive if xx ≤ x, univalent if
xTx ≤ 1, injective if xxT ≤ 1, total if 1 ≤ xxT, surjective if 1 ≤ xTx, a mapping
if x is univalent and total, bijective if x is injective and surjective, a point if x is
a bijective vector, and an atom if both x� and xT� are bijective.

Tarski’s relation algebras [46] require a Boolean algebra, axioms (1)–(6), and
Theorem 8.20 below [40]. Axioms (7)–(10) follow from these properties. Another
way to obtain relation algebras is by requiring a Boolean algebra and axioms
(1)–(8) since axioms (9) and (10) immediately follow in Boolean algebras.
There is a large body of research about Tarski’s relation algebras; recent mono-
graphs are [32,41]. See [3] for an implementation of Tarski’s relation algebras in
Isabelle/HOL.

The Dedekind formula (8) or variants of it are known from [12,23,35,45].
In particular, Dedekind categories algebraically capture fuzzy relations, which
are matrices over the real unit interval or complete distributive lattices used for
modelling fuzzy systems [25,47]. In Dedekind categories composition is required
to have a left residual and each Hom-set must be a complete distributive lat-
tice and therefore a Heyting algebra [34]. Stone relation algebras maintain the

Stone Relation Algebras 133

signature of relation algebras. Algebras of relations with a smaller signature
have been studied, for example, in [2,17]. In rough relation algebras [18] the lat-
tice structure is required to be a double Stone algebra, which involves two dual
pseudocomplement operations. A rough relation is a pair of upper and lower
approximations of a relation with respect to a fixed indiscernibility relation [44].

Regular elements are closed under composition and its unit by axioms (9)
and (10).

The following properties hold in Stone relation algebras.

Theorem 8. Let S be a Stone relation algebra and let w, x, y, z ∈ S. Then

1. T and · are ≤-isotone
2. ⊥T = ⊥
3. �T = �
4. 1T = 1
5. (x � y)T = xT � yT

6. xT = xT

7. x⊥ = ⊥
8. x1 = 1
9. x ≤ x�

10. x ≤ �x
11. �� = �
12. x ≤ xxTx
13. x�x� = x�
14. x(y � z) = xy � xz
15. x(y � z) ≤ xy � xz
16. (x � y)z ≤ xz � yz

17. x = (1 � xxT)x = x(1 � xTx)
18. yx � z ≤ (y � zxT)x
19. xy � z = (x � zyT)(y � xTz) � z
20. xTxy ≤ y
21. xy ≤ z ⇔ xTz ≤ y
22. xy ≤ z ⇔ zyT ≤ x
23. xy ≤ z ⇔ yzT ≤ xT

24. xy ≤ z ⇔ zTx ≤ yT

25. xyz ≤ w ⇔ xTwzT ≤ y
26. xy ≤ 1 ⇔ yx ≤ 1
27. xy ≤ xy

28. xy = xy
29. xy ≤ xy

30. xy = xy
31. xy � xz = x(y � z) � xz
32. xy � xz = x(y � z) � xz

Theorems 8.21–8.24 are weak versions of the Schröder equivalences of relation
algebras: the elements on the right-hand sides of both inequalities must be reg-
ular. On the other hand, the conjugation property

xy � z = ⊥ ⇔ y � xTz = ⊥ ⇔ x � zyT = ⊥

also holds in Stone relation algebras. Theorem8.32 is another example how a
property of relation algebras has been weakened, in this case by introducing
double pseudocomplements. The original version is xy � xz = x(y � z) � xz and
appears as [40, Theorem 24(xxiv)].

Counterexamples generated by Nitpick witness that neither the Schröder
equivalences of relation algebras nor [40, Theorem 24(xxiv)] hold in Stone rela-
tion algebras. Nevertheless, Theorem 8 shows that many properties of relation
algebras already hold in Stone relation algebras.

We reuse the characterisations of vectors, co-reflexivity, injectivity and other
properties known from relation algebras [45]. Consequences of these definitions
are given by the following result. Once again, it shows that many properties
generalise from relation algebras without changes.

134 W. Guttmann

Theorem 9. Let S be a Stone relation algebra and let w, x, y, z ∈ S.

1. The regular elements of S are closed under the operation T.
2. The set of vectors of S is closed under the operations �,�, ·, ,⊥ and �.
3. Every mapping, every bijective element and every atom is regular.

If w and x are vectors, then

4. (x � y)z = x � yz
5. y(z � xT) = yz � xT

6. (y � xT)z = (y � xT)(x � z)
7. (y � xT)z = y(x � z)

8. yx is a vector
9. xTx = ⊥

10. xxTxxT ≤ xxT

11. wxT = w � xT

If w and x are co-reflexive, then

12. xT = x
13. x� � y = xy
14. x� � 1 = x
15. x� � 1 = x � 1

16. xx = x
17. xy � z = xy � xz
18. w � x = wx
19. wy � xy = (w � x)y

If w is univalent and x is injective, then

20. w(y � z) = wy � wz
21. wy ≤ wy

22. (y � z)x = yx � zx
23. yx ≤ yx

If w is a mapping and x is bijective, then

24. y ≤ wz ⇔ wTy ≤ z
25. wy = wy

26. y ≤ zx ⇔ yxT ≤ z
27. yx = yx

Finally,

28. x is a vector/univalent/total ⇔ xT is a co-vector/injective/surjective
29. x is total ⇔ x� = �
30. x is surjective ⇔ �x = �
While vectors are closed under pseudocomplements in Stone relation algebras,
a counterexample generated by Nitpick witnesses that x need not be a vector if
x is a vector. In fact there are counterexamples in the weighted-graph model as
shown below.

In order to instantiate Stone relation algebras by weighted graphs we pro-
ceed in two steps. First, we show how every Stone algebra gives rise to a Stone
relation algebra by reusing some of the operations. Second, we lift the Stone
relation algebra structure to matrices; this is similar to the lifting for Dedekind
categories [47]. The following result also shows that every Stone relation algebra
has a subalgebra that is a relation algebra. As a consequence we can work with
weighted graphs in Stone relation algebras and use the full power of relation
algebras for reasoning about their structure.

Stone Relation Algebras 135

Theorem 10.

1. The regular elements of a Stone relation algebra S form a relation algebra
that is a subalgebra of S.

2. Let (S,�,�, ,⊥,�) be a Stone algebra. Then (S,�,�,�, , λx.x,⊥,�,�) is
a Stone relation algebra with meet as composition, � as its unit, and the
identity function as converse.

3. Let (S,�,�, ·, , T,⊥,�, 1) be a Stone relation algebra and let A be a finite
set. Then (SA×A,�,�, ·, , T,⊥,�, 1) is a Stone relation algebra, where the
operations ·, T and 1 are defined by

(M · N)ij =
⊔

k∈A Mik · Nkj

(MT)ij = (Mji)
T

1ij =
{

1 if i = j
⊥ if i �= j

The weighted-graph model is an instance of this construction because edge
weights are taken from the Stone algebra of extended reals. Thus for a finite
set A, the set of matrices R′A×A is a Stone relation algebra with the following
operations:

(M · N)ij = maxk∈A min{Mik, Nkj}
(MT)ij = Mji

1ij =
{� if i = j

⊥ if i �= j

The remaining operations are lifted componentwise from the underlying Stone
algebra.

Recall that the regular elements are the matrices over {⊥,�} in this case;
they represent unweighted graphs. In particular, the graphs ⊥, 1 and � are
regular. Theorem10.1 confirms that these matrices form a relation algebra.

We furthermore note that the way to obtain regular matrices (essentially
relations) from weighted matrices by taking the image of is similar to the
way co-reflexive relations are obtained from relations by taking the image of
the antidomain operation [22]. The operation λx.x corresponds to the domain
operation and, if vectors are used instead of co-reflexives, to the operation λx.x�,
which is a closure operation.

Next, we further discuss the difference between relation algebras and Stone
relation algebras. The following list shows a number of properties of relation
algebras that do not generally hold in Stone relation algebras. We give coun-
terexamples found by Nitpick in the weighted-graph model of matrices over
extended reals R′A×A. Nitpick allows the user to set independent bounds for the
size of matrices and the size of the set that approximates matrix entries in the
search.

136 W. Guttmann

1. xy ≤ z ⇔ xTz ≤ y:
This Schröder equivalence fails for A = {a} and xaa = yaa = 0 and zaa = −1.

2. xy � xz = x(y � z) � xz:
This equation is [40, Theorem 24(xxiv)] and fails for A = {a} and xaa =
zaa = 0 and yaa = �.

3. x� � 1 ≤ x for each vector x:
This fails for A = {a} and xaa = 0.

4. (x� � 1)� = x for each vector x:
This fails for A = {a} and xaa = 0.

5. x is a vector if x is a vector:
This holds for graphs with a single node but fails for A = {a, b} and xaa = 0
and xab = xbb = 1 and xba = �.

6. x � y is regular for each x �= ⊥:
This holds for graphs with a single node but fails for A = {a, b} and xba = ⊥
and yba = 1 and all other entries of x and y set to �.

Except in the last case, Nitpick indicated that the examples it found are poten-
tially spurious, which might be due to the involved matrix products. All coun-
terexamples have been verified manually.

Finally, we discuss two examples for proving properties of weighted graphs
in Stone relation algebras. First, consider a graph G on a set of nodes A and a
subset B ⊆ A of the nodes. We work in the Stone relation algebra S = R′A×A.
The graph G is represented by an element x ∈ S and the subset B of nodes is
represented by a regular vector v ∈ S. The element vvT describes the complete
unweighted graph formed by the nodes in B. The meet vvT � x restricts the
edges of G to those that start and end in B; this is a weighted subgraph. By
Theorem 9.10 we obtain

(vvT � x)(vvT � x) ≤ vvTvvT ≤ vvT

which shows that by following a sequence of two edges in the weighted subgraph
we cannot leave the set of nodes in B. The claim extends to longer sequences
of edges by using the Kleene star as in Sect. 5. Results like this are used for
reasoning about Prim’s minimum spanning tree algorithm, where in each step
the constructed tree is a subgraph of the input and a spanning tree of the nodes
that have already been visited.

Second, in the same setting let e ∈ S such that e ≤ vvT. Such an e can
represent a set of edges each of which goes from a node in B to a node outside
of B. By Theorem 9.9 we obtain

ee ≤ vvTvvT = ⊥

which shows that it is not possible to follow two such edges in sequence. In Prim’s
algorithm, the edges considered for extending the spanning tree in each step
satisfy this property. The obtained result is used for showing that the extended
tree is acyclic.

Stone Relation Algebras 137

4 Relational Properties of Weighted Graphs

In this section we study the weighted-graph model of Stone relation algebras. In
particular, we discuss how relation-algebraic properties are interpreted in this
instance. Throughout this section, a graph is an element of the Stone relation
algebra R′A×A introduced in Sect. 3.

4.1 Mappings and Related Properties

We first look at univalent, injective, total, surjective and bijective matrices and
at mappings.

Theorem 11. Let M ∈ R′A×A. Then M is

1. univalent ⇔ in every row at most one entry is not ⊥
2. injective ⇔ in every column at most one entry is not ⊥
3. total ⇔ in every row at least one entry is �
4. surjective ⇔ in every column at least one entry is �
5. a mapping ⇔ in every row exactly one entry is � and the others are ⊥
6. bijective ⇔ in every column exactly one entry is � and the others are ⊥
Moreover,

7. M� = ⊥ ⇔ in every row at least one entry is not ⊥
8. �M = ⊥ ⇔ in every column at least one entry is not ⊥
Note that univalent, injective, total and surjective matrices may have entries
which are neither ⊥ nor �. In the graph interpretation, univalent means that
every node has at most one outgoing edge. To specify at least one outgoing edge,
we can use the property in Theorem11.7, which is equivalent to M being total.
Requiring M to be total is stronger: it means that at least one edge is labelled
with �. Therefore, to specify exactly one outgoing edge per node, the conjunction
of univalent with the property in Theorem11.7 has to be used. Requiring a
mapping is more restrictive; in fact mappings are regular by Theorem9.3. Similar
remarks apply for injective, surjective and bijective matrices and the property
in Theorem 11.8 with respect to the incoming edges of each node.

4.2 Vectors and Related Properties

We next look at vectors, co-vectors, points and atoms in the weighted-graph
model of matrices over R′.

Theorem 12. Let M ∈ R′A×A. Then M is

1. a vector ⇔ in every row all entries are the same
2. a co-vector ⇔ in every column all entries are the same
3. a point ⇔ exactly one row is constant � and the others are constant ⊥
4. an atom ⇔ exactly one entry is � and the others are ⊥

138 W. Guttmann

Also vectors and co-vectors may have entries which are neither ⊥ nor �. As
in the relational case, a matrix with just one column/row is sufficient to store
the information contained in a vector/co-vector. Points and atoms are regular
by Theorem 9.3. Their interpretation for graphs is the same as in the relational
model: a point represents a node of the graph and an atom represents an edge.
Weaker properties can again be obtained by replacing surjective with the prop-
erty in Theorem 11.8 in the definitions of point and atom. In this case, all rows
in a point would be ⊥ except for one row, in which all entries would be the same,
arbitrary non-⊥ value. Similarly, an atom would have exactly one non-⊥ value.

4.3 Orders and Related Properties

Finally, we look at reflexive, co-reflexive, irreflexive, symmetric, antisymmetric,
asymmetric and transitive matrices over R′.

Theorem 13. Let M ∈ R′A×A. Then M is

1. reflexive ⇔ the diagonal is constant �
2. co-reflexive ⇔ all entries not on the diagonal are ⊥
3. irreflexive ⇔ the diagonal is constant ⊥
4. symmetric ⇔ Mij = Mji for each i, j ∈ A
5. antisymmetric ⇔ Mij = ⊥ or Mji = ⊥ for each i �= j ∈ A
6. asymmetric ⇔ Mij = ⊥ or Mji = ⊥ for each i, j ∈ A
7. transitive ⇔ Mik ≤ Mij or Mkj ≤ Mij for each i, j, k ∈ A

Co-reflexive matrices share most properties of tests [28,38] except they do not
form a Boolean algebra. Nevertheless, they form a Stone relation subalgebra
in which composition and meet coincide and composition is idempotent. For
example, the composition MN of a co-reflexive matrix M and an arbitrary
matrix N restricts the elements of N in row i to at most Mii. In particular, rows
are filtered out if Mii = ⊥ and left unchanged if Mii = �. The composition NM
has a similar effect on the columns of N .

Matrices that are reflexive, transitive and symmetric have a block-diagonal
structure (that is, the base set A can be suitably partitioned by an equivalence
relation). The entries in each block are different from ⊥ but not necessarily �.

Similarly, matrices that are reflexive, transitive and antisymmetric have the
structure of a partial order. Again the non-⊥ entries may differ from �. In
the graph interpretation, antisymmetric means that there is at most one edge
between any two different nodes. Asymmetric additionally requires that there are
no loops; the latter property amounts to being irreflexive. Symmetric matrices
can be used to represent undirected weighted graphs.

5 Stone-Kleene Relation Algebras

In this section we discuss iterated composition in Stone relation algebras. This
works analogously to adding the Kleene star operation to relation algebras. In
the graph model, this allows us to talk about reachability. We use the axioms of
the Kleene star given in [37].

Stone Relation Algebras 139

Definition 14. A Stone-Kleene relation algebra (S,�,�, ·, , T, ∗,⊥,�, 1) is a
Stone relation algebra (S,�,�, ·, , T,⊥,�, 1) with an operation ∗ satisfying the
unfold and induction axioms

1 � yy∗ ≤ y∗ z � yx ≤ x ⇒ y∗z ≤ x
1 � y∗y ≤ y∗ z � xy ≤ x ⇒ zy∗ ≤ x

and the axiom

x∗ = x
∗ (11)

An element x ∈ S is acyclic if xx∗ is irreflexive, and x is a forest if x is injective
and acyclic.

Kleene algebras are based on idempotent semirings in [37], but we do not require
more axioms than the above since all Stone relation algebras are idempotent
semirings. Regular elements are closed under the Kleene star by axiom (11).
The following properties hold in Stone-Kleene relation algebras.

Theorem 15. Let S be a Stone-Kleene relation algebra and let x, y ∈ S.

1. The regular elements of S are closed under the operation ∗.

Moreover

2. x∗T = xT∗

3. xT(xxT)∗ ≤ xT if x is a vector
4. (xxT)∗ = 1 � xxT if x is a vector
5. xTy∗ = xT((xTy∗)T(xTy∗) � y)∗ if x is a vector
6. xT∗ ≤ x if and only if x is acyclic
7. x is asymmetric if x is acyclic
8. x∗xT∗ � xTx ≤ 1 if x is a forest

As an example we discuss Theorem 15.5, which considers a graph y and a set
of nodes x represented as a vector. Then yT∗x is a vector representing the set
of nodes reachable from any node in x. The same set is represented by the left-
hand side xTy∗ as a co-vector. The right-hand side uses the same construction
except the graph y is restricted to those edges that start and end in this set
of reachable nodes. Thus Theorem 15.5 states that to reach any of these nodes
from x it suffices to take edges between these nodes. This property is used several
times for proving the correctness of Prim’s minimum spanning tree algorithm.

As another example, Theorem 15.6 has the following interpretation for an
acyclic graph x. The left-hand side describes backward reachability in x. The
inequality states that if a node q is reachable from a node p by going backward
any number of steps in x, then there must not be an edge from p to q; otherwise
we could combine it with the path from q to p to obtain a cycle in x. Moreover,
this condition is equivalent to being acyclic.

In order to instantiate Stone-Kleene relation algebras by weighted graphs we
extend the two-step process we used for Stone relation algebras in Sect. 3 by the

140 W. Guttmann

Kleene star operation. First, every Stone algebra gives rise to a Stone-Kleene
relation algebra by setting x∗ = �. This is because the underlying bounded
lattice forms a semiring where 1 = �. Second, we lift the Stone-Kleene relation
algebra structure to matrices. Note that x∗ = � does not generally hold in the
matrix algebra; only the entries on the diagonal of x∗ will be �.

Theorem 16.

1. Let (S,�,�, ,⊥,�) be a Stone algebra. Then, using the constant � func-
tion as the Kleene star, (S,�,�,�, , λx.x, λx.�,⊥,�,�) is a Stone-Kleene
relation algebra.

2. Let (S,�,�, ·, , T, ∗,⊥,�, 1) be a Stone-Kleene relation algebra and let A be a
finite set. Then (SA×A,�,�, ·, , T, ∗,⊥,�, 1) is a Stone-Kleene relation alge-
bra, where the operation ∗ on matrices is defined using Conway’s automata-
based construction described in [19].

The subalgebra of regular elements of a Stone-Kleene relation algebra is both a
relation algebra and a Kleene algebra.

The proof of Theorem16 formally verifies the correctness of Conway’s
construction for Kleene algebras. An implementation of the construction in
Isabelle/HOL that extends [4] was given in [5] without a correctness proof.

6 Conclusion

In the present paper we have studied algebras for modelling weighted graphs.
Stone relation algebras are designed to stay so close to relation algebras that rela-
tional methods and concepts can be reused, yet be general enough to capture
weighted graphs. Like relation algebras, Stone relation algebras can be com-
bined with Kleene algebras for reasoning about reachability. All of our results
about these algebraic structures have been formally verified in Isabelle/HOL;
this includes a proof that weighted graphs represented by matrices over extended
reals form an instance.

We have applied these results in two case studies. The first is a formally
verified proof of Chen and Grätzer’s construction theorem for Stone algebras
[30]. It involves extensive reasoning about algebraic structures in addition to
reasoning in algebraic structures. The second case study is a formal verification
of Prim’s minimum spanning tree algorithm [29]. It uses Hoare logic and most
of the proof can be carried out in Stone-Kleene relation algebras.

Section 4 interprets a number of relational properties for weighted graphs.
Future work will consider further graph algorithms to understand the limits of
what can be expressed algebraically in this model. The long-term goal of these
efforts is a library for algebraic reasoning about weighted graphs and graph
algorithms.

Acknowledgement. I thank Georg Struth and the anonymous referees for pointing
out related work and for other helpful comments.

Stone Relation Algebras 141

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, Reading (1974)

2. Andréka, H., Mikulás, Sz.: Axiomatizability of positive algebras of binary relations.
Algebra Universalis 66(1–2), 7–34 (2011)

3. Armstrong, A., Foster, S., Struth, G., Weber, T.: Relation algebra. Archive of
Formal Proofs (2016, first version 2014)

4. Armstrong, A., Gomes, V.B.F., Struth, G., Weber, T.: Kleene algebra. Archive of
Formal Proofs (2016, first version 2013)

5. Asplund, T.: Formalizing the Kleene star for square matrices. Bachelor thesis IT
14 002, Department of Information Technology, Uppsala Universitet (2014)

6. Backhouse, R.C., Carré, B.A.: Regular algebra applied to path-finding problems.
J. Inst. Math. Appl. 15(2), 161–186 (1975)

7. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press,
Columbia (1974)

8. Berghammer, R., Fischer, S.: Combining relation algebra and data refinement to
develop rectangle-based functional programs for reflexive-transitive closures. J.
Log. Algebr. Methods Program. 84(3), 341–358 (2015)

9. Berghammer, R., von Karger, B.: Relational semantics of functional programs
(Chap. 8). In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Meth-
ods in Computer Science, pp. 115–130. Springer, Wien (1997). doi:10.1007/
978-3-7091-6510-2 8

10. Berghammer, R., von Karger, B., Wolf, A.: Relation-algebraic derivation of span-
ning tree algorithms. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 23–43.
Springer, Heidelberg (1998). doi:10.1007/BFb0054283

11. Berghammer, R., Rusinowska, A., de Swart, H.: Computing tournament solutions
using relation algebra and RelView. Eur. J. Oper. Res. 226(3), 636–645 (2013)

12. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall, Englewood Cliffs
(1997)

13. Birkhoff, G.: Lattice Theory. Colloquium Publications, vol. XXV, 3rd edn. Amer-
ican Mathematical Society, Providence (1967)

14. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with
SMT solvers. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011.
LNCS (LNAI), vol. 6803, pp. 116–130. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 11

15. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 11

16. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer, London (2005)
17. Bredihin, D.A., Schein, B.M.: Representations of ordered semigroups and lattices

by binary relations. Colloq. Math. 39(1), 1–12 (1978)
18. Comer, S.D.: On connections between information systems, rough sets and alge-

braic logic. In: Rauszer, C. (ed.) Algebraic Methods in Logic and in Computer
Science. Banach Center Publications, vol. 28, pp. 117–124. Institute of Mathemat-
ics, Polish Academy of Sciences, Warsaw (1993)

19. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London
(1971)

http://dx.doi.org/10.1007/978-3-7091-6510-2_8
http://dx.doi.org/10.1007/978-3-7091-6510-2_8
http://dx.doi.org/10.1007/BFb0054283
http://dx.doi.org/10.1007/978-3-642-22438-6_11
http://dx.doi.org/10.1007/978-3-642-22438-6_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11

142 W. Guttmann

20. Curry, H.B.: Foundations of Mathematical Logic. Dover Publications, New York
(1977)

21. Desharnais, J., Grinenko, A., Möller, B.: Relational style laws and constructs of
linear algebra. J. Log. Algebr. Methods Program. 83(2), 154–168 (2014)

22. Desharnais, J., Struth, G.: Internal axioms for domain semirings. Sci. Comput.
Program. 76(3), 181–203 (2011)

23. Freyd, P.J., Ščedrov, A.: Categories, Allegories. North-Holland Mathematical
Library, vol. 39. Elsevier Science Publishers, Amsterdam (1990)

24. Fried, E., Hansoul, G.E., Schmidt, E.T., Varlet, J.C.: Perfect distributive lattices.
In: Eigenthaler, G., Kaiser, H.K., Müller, W.B., Nöbauer, W. (eds.) Contributions
to General Algebra, vol. 3, pp. 125–142. Hölder-Pichler-Tempsky, Wien (1985)

25. Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)
26. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Springer, New York

(2008)
27. Grätzer, G.: Lattice Theory: First Concepts and Distributive Lattices. W. H. Free-

man and Co., San Francisco (1971)
28. Guttmann, W.: Algebras for iteration and infinite computations. Acta Inf. 49(5),

343–359 (2012)
29. Guttmann, W.: Relation-algebraic verification of Prim’s minimum spanning tree

algorithm. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp.
51–68. Springer, Cham (2016). doi:10.1007/978-3-319-46750-4 4

30. Guttmann, W.: Stone algebras. Archive of Formal Proofs (2016)
31. Guttmann, W.: Stone relation algebras. Archive of Formal Proofs (2017)
32. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. Elsevier Science B.V.,

Amsterdam (2002)
33. Höfner, P., Möller, B.: Dijkstra, Floyd and Warshall meet Kleene. Form. Asp.

Comput. 24(4), 459–476 (2012)
34. Kawahara, Y., Furusawa, H.: Crispness in Dedekind categories. Bull. Inform.

Cybern. 33(1–2), 1–18 (2001)
35. Kawahara, Y., Furusawa, H., Mori, M.: Categorical representation theorems of

fuzzy relations. Inf. Sci. 119(3–4), 235–251 (1999)
36. Killingbeck, D., Teixeira, M.S., Winter, M.: Relations among matrices over a semi-

ring. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMiCS 2015. LNCS, vol.
9348, pp. 101–118. Springer, Cham (2015). doi:10.1007/978-3-319-24704-5 7

37. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

38. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

39. Macedo, H.D., Oliveira, J.N.: A linear algebra approach to OLAP. Form. Asp.
Comput. 27(2), 283–307 (2015)

40. Maddux, R.D.: Relation-algebraic semantics. Theoret. Comput. Sci. 160(1–2), 1–
85 (1996)

41. Maddux, R.D.: Relation Algebras. Elsevier B.V., Amsterdam (2006)
42. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
43. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a

practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of 8th International Workshop on the
Implementation of Logics, pp. 3–13 (2010)

44. Pawlak, Z.: Rough sets, rough relations and rough functions. Fundamenta Infor-
maticae 27(2–3), 103–108 (1996)

http://dx.doi.org/10.1007/978-3-319-46750-4_4
http://dx.doi.org/10.1007/978-3-319-24704-5_7

Stone Relation Algebras 143

45. Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer, Heidelberg (1989)
46. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)
47. Winter, M.: A new algebraic approach to L-fuzzy relations convenient to study

crispness. Inf. Sci. 139(3–4), 233–252 (2001)

Relation Algebras, Idempotent Semirings and
Generalized Bunched Implication Algebras

Peter Jipsen(B)

Chapman University, Orange, CA 92866, USA
jipsen@chapman.edu

Abstract. This paper investigates connections between algebraic struc-
tures that are common in theoretical computer science and algebraic
logic. Idempotent semirings are the basis of Kleene algebras, relation
algebras, residuated lattices and bunched implication algebras. Extend-
ing a result of Chajda and Länger, we show that involutive residuated
lattices are determined by a pair of dually isomorphic idempotent semi-
rings on the same set, and this result also applies to relation algebras.
Generalized bunched implication algebras (GBI-algebras for short) are
residuated lattices expanded with a Heyting implication. We construct
bounded cyclic involutive GBI-algebras from so-called weakening rela-
tions, and prove that the class of weakening relation algebras is not
finitely axiomatizable. These algebras play a role similar to representable
relation algebras, and we identify a finitely-based variety of cyclic involu-
tive GBI-algebras that includes all weakening relation algebras. We also
show that algebras of down-closed sets of partially-ordered groupoids are
bounded cyclic involutive GBI-algebras.

1 Introduction

Idempotent semirings, also known as dioids, play an important role in many
applications in computer science, ranging from regular languages and Kleene
algebras to shortest path algorithms using tropical semirings such as the max-
plus semiring. They are also generalizations of distributive lattices, quantales,
residuated lattices and relation algebras, each of which have been studied exten-
sively in mathematics and logic. While it has been known for a long time that
Boolean algebras, relation algebras and involutive residuated lattices have two
isomorphic semiring reducts that are connected by an anti-isomorphism, the
characterization of these algebras by coupled semirings has only recently been
formalized in a result by Di Nola and Gerla [2] for MV-algebras and by Chajda
and Länger [1] for bounded commutative integral involutive residuated lattices.
In Sect. 2 we show that a more general result holds for arbitrary involutive resid-
uated lattices, hence also for relation algebras. This leads to a shorter axioma-
tization for involutive residuated lattices using only two binary operations, two
unary operations and a constant, which is useful for working with relation alge-
bras and their generalizations in automated theorem provers and finite model
finders.
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 144–158, 2017.
DOI: 10.1007/978-3-319-57418-9 9

Relation Algebras, Idempotent Semirings and GBI Algebras 145

Residuated lattices are generalizations of relation algebras and of many
other mathematical structures, including Heyting algebras, MV-algebras, basic
logic algebras, lattice-ordered groups and quantales. They are also the algebraic
semantics of many logical systems, such as intuitionistic logic, relevance logic,
linear logic and other substructural logics. Even though they span so many alge-
braic and logical systems, residuated lattices have a simple definition and a sur-
prisingly deep and elegant algebraic theory that is shared by all the special cases.
In this paper we concentrate mostly on involutive residuated lattices expanded
with a Heyting arrow. In the bounded and commutative case these algebras
are known as bunched implication algebras, or BI-algebras, and have found sig-
nificant applications in separation logic, a Hoare logic developed by Reynolds,
O’Hearn, Pym and others for the verification of pointer data-structures, memory
management algorithms and concurrent software. Most of the algebraic prop-
erties of BI-algebras hold also in the non-commutative setting of generalized
bunched implication algebras, or GBI-algebras for short, so we take this more
general approach. By definition a GBI-algebra is a residuated lattice with a
Brouwerian algebra defined on the same lattice. In Sect. 3 we observe that rela-
tion algebras are a subvariety of bounded involutive GBI-algebras, so this pro-
vides an interesting connection between these classes of algebras. We investigate
weakening relation algebras that are intuitionistic versions of representable rela-
tion algebras, and show that they are not finitely axiomatizable. In Sect. 4 we
give partial-order semantics for these algebras and show that they are based on
groupoids, i.e. small categories in which all morphisms are isomorphisms.

2 Coupled Semirings

A semilattice is of the form (A,∨) such that ∨ is a binary operation on the
set A that is associative, commutative and idempotent (x ∨ x = x), and in
such an algebra x ≤ y ⇐⇒ x ∨ y = y defines a partial order. A monoid
(A, ·, 1) has an associative operation · such that 1x = x1 = x. An idempotent
semiring is an algebra A = (A,∨, ·, 1) where (A,∨) is a semilattice, (A, ·, 1) is
a monoid and · distributes over ∨ in both arguments (i.e., x(y ∨ z) = xy ∨ xz
and (x ∨ y)z = xz ∨ yz). A lattice (A,∧,∨) is a pair of semilattices (A,∨) and
(A,∧) linked by the absorption laws x ∧ (x ∨ y) = x = x ∨ (x ∧ y). A residuated
lattice is of the form A = (A,∧,∨, ·, 1, \, /) where (A,∧,∨) is a lattice, (A, ·, 1)
is a monoid and \, / are the left and right residuals of ·, i.e., for all x, y, z ∈ A

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y.

These equivalences imply that (A,∨, ·, 1) is an idempotent semiring since, e.g.,
x(y ∨ z) ≤ w ⇐⇒ y ∨ z ≤ x\w ⇐⇒ y, z ≤ x\w ⇐⇒ xy ∨ xz ≤ w.
A residuated lattice is bounded if it has a bottom element ⊥, integral if 1 is the
top element and commutative if the identity xy = yx holds. For an arbitrary
constant 0 in a residuated lattice define the linear negations ∼x = x\0 and
−x = 0/x. The constant 0 is involutive if ∼−x = x = −∼x for all elements x,
and an involutive residuated lattice (also called an involutive FL-algebra) is a

146 P. Jipsen

residuated lattice with an involutive 0. Such an algebra is cyclic if ∼x = −x.
Note that a commutative involutive residuated lattice satisfies x\y = y/x and
hence is always cyclic.

For example, a relation algebra (A,∧,∨,¬, ; ,� , 1) is a cyclic involutive resid-
uated lattice if one defines x\y = ¬(x�;¬y), x/y = ¬(¬x; y�) and 0 = ¬1,
and omits the operations ¬,� from the signature. The cyclic linear negation
is given by ∼x = ¬(x�) = (¬x)�. An example that is a bounded commu-
tative integral involutive residuated lattice is provided by the standard MV-
algebra ([0, 1],min,max, ·, 1, \, /) where xy = max(x+y−1, 0) and x\y = y/x =
min(1 − x + y, 1). The class of all MV-algebras is the variety generated by this
unit-interval algebra (i.e. the smallest class closed under products, subalgebras
and homomorphic images). We note that the variety of involutive residuated
lattices has a decidable equational theory [3,17] while this is not the case for
relation algebras.

In [2] Di Nola and Gerla showed that every MV-algebra is determined by a
pair of coupled commutative semirings, and Chajda and Länger [1] generalized
this construction to bounded commutative integral involutive residuated lattices.
We show here that the result is actually valid in the general setting of involutive
residuated lattices and hence includes all (reducts of) relation algebras.

For two algebras A,B with the same signature, an anti-isomorphism α : A →
B is like an isomorphism, except that for all binary operations ∗ we have

α(x ∗A y) = α(y) ∗B α(x)

(instead of α(x) ∗B α(y)).
A generalized coupled semiring is a triple ((A,∨, ·, 1), (A,∧,+, 0), α) such

that

(i) (A,∨, ·, 1) and (A,∧,+, 0) are idempotent semirings
(ii) (A,∧,∨) is a lattice (with order denoted by ≤)
(iii) α is an anti-isomorphism from (A,∨, ·, 1) to (A,∧,+, 0)
(iv) x ≤ y if and only if 1 ≤ α(x) + y

Theorem 1. Let A = (A,∧,∨, ·, 1, \, /, 0) be an involutive residuated lattice
with linear negations ∼x = x\0, −x = 0/x and define x + y = ∼((−y) · (−x)).
Then ((A,∨, ·, 1), (A,∧,+, 0),∼) is a generalized coupled semiring.

Proof. In any residuated lattice · distributes over ∨ since x(y ∨ z) ≤ w ⇐⇒
y ∨ z ≤ x\w ⇐⇒ y, z ≤ x\w ⇐⇒ xy, xz ≤ w ⇐⇒ xy ∨ xz ≤ w, and likewise
for (x∨y)z = xz∨yz. In an involutive residuated lattice the linear negations are
order-reversing bijections, hence ∼(x ∨ y) = ∼y ∧ ∼x. Replacing x, y by ∼x,∼y
in the definition of + shows that ∼(xy) = ∼y + ∼x, and ∼1 = 1\0 = 0 since
x ≤ 1\0 ⇐⇒ x = 1x ≤ 0. Therefore (iii) is satisfied, and (i) follows since
anti-isomorphisms preserve the structure of idempotent semirings. Obviously
(ii) holds, so it remains to check (iv): 1 ≤ ∼x + y ⇐⇒ 1 ≤ ∼((−y)x) ⇐⇒
(−y)x ≤ 0 ⇐⇒ x ≤ ∼ − y = y, where the middle equivalence holds because
the linear negations are order-reversing and −1 = 0.

We now show that the converse also holds.

Relation Algebras, Idempotent Semirings and GBI Algebras 147

Theorem 2. Let ((A,∨, ·, 1), (A,∧,+, 0), α) be a generalized coupled semi-
ring and define x\y = α(α−1(y) · x), x/y = α−1(y · α(x)). Then A =
(A,∧,∨, ·, 1, \, /, 0) is an involutive residuated lattice and α(x) = ∼x. If α = α−1

then A is cyclic, and if 1 is the top element of the first semiring then A is bounded
and integral.

Proof. By (i) and (ii) (A,∧,∨) is a lattice and (A, ·, 1) is a monoid, so we need
to show that \, / are residuals with 0 as involutive element. By (iv) we have

xy ≤ z ⇐⇒ 1 ≤ α(xy) + z

⇐⇒ 1 ≤ α(y) + α(x) + z

⇐⇒ y ≤ α(x) + z = α(x) + α(α−1(z)) = α(α−1(z) · x) = x\z.

To see that xy ≤ z ⇐⇒ x ≤ z/y, first observe that (iv) is equivalent to
x ≤ y ⇐⇒ 1 ≤ α(α−1(y) · x) and after replacing y by α(y) one obtains
x ≤ α(y) ⇐⇒ 1 ≤ α(y · x). From (iii) it follows that α and α−1 are order-
reversing, so we compute

xy ≤ z ⇐⇒ α(z) ≤ α(xy)
⇐⇒ 1 ≤ α(x · y · α(z))
⇐⇒ y · α(z) ≤ α(x)

⇐⇒ x ≤ α−1(y · α(z)) = z/y.

Condition (iv) also implies that α(0) = 1 since 1 ≤ 1 =⇒ 1 ≤ α(α−1(1) · 1) =
α(1 · α−1(1)) =⇒ α−1(1) ≤ α(1) = 0 =⇒ α(0) ≤ 1 and 0 ≤ 0 =⇒ 1 ≤
α(1 · 0) = α(0). The element 0 is involutive since, ∼x = x\0 = α(α−1(0) · x) =
α(1x) = α(x), and −x = 0/x = α−1(x · α(0)) = α−1(x1) = α−1(x). �

The preceding theorems show that all involutive residuated lattices are com-
pletely determined by their ∨, · structure and by an order-reversing bijection
that satisfies property (iv). It also follows that the residuals are term-definable
x\y = ∼((−y) · x) and x/y = −(y · (∼x)), though this is a well-known result [6,
p. 153].

As an application of the above result we obtain a fairly concise equa-
tional basis for the variety of involutive residuated lattices using the signature
∨, ·, 1,∼,− since the remaining operations are defined by x ∧ y = ∼(−x ∨ −y),
x\y = ∼((−y) · x), x/y = −(y · (∼x)) and 0 = ∼1.

Theorem 3. An algebra (A,∨, ·, 1,∼,−) is (term equivalent to) an involutive
residuated lattice if and only if the following 12 identities hold:

• (x ∨ y) ∨ z = x ∨ (y ∨ z), x ∨ y = y ∨ x (associativity and commutativity)
• x(y ∨ z) = xy ∨ xz, (x ∨ y)z = xz ∨ yz (distributivity of · over ∨)
• (xy)z = x(yz), x1 = x (associativity and right identity of ·)
• ∼−x = x = −∼x (involution of linear negations)

148 P. Jipsen

• ∼(−(x ∨ y) ∨ −x) = x = ∼((−x) ∨ −y) ∨ x (absorption laws)
• 1 ≤ ∼(x(∼x)), x(∼(yx)) ≤ ∼y (equivalent to x ≤ ∼y ⇐⇒ 1 ≤ ∼(yx)).

Proof. From Theorem 1 it follows that an involutive residuated lattice satisfies
the above identities, where the last two are derived from condition (iv) of coupled
semirings by ∼y ≤ ∼y ⇒ 1 ≤ ∼(y(∼y)) and

∼(yx) ≤ ∼(yx) ⇒ 1 ≤ ∼(yx(∼(yx))) = ∼(y(x∼(yx))) ⇒ x(∼(yx)) ≤ ∼y.

Conversely, assume (A,∨, ·, 1,∼,−) is an algebra that satisfies the identities,
and define x ∧ y = ∼(−y ∨ −x), x + y = ∼((−y)(−x)) and 0 = ∼1. It remains
to show that ((A,∨, ·, 1), (A,∧,+, 0),∼) is a generalized coupled semiring. The
absorption laws translate to the usual form (x ∨ y) ∧ x = x = (x ∧ y) ∨ x, and it
is easy to see that ∧ is associative and commutative. Since idempotence of ∧,∨
follow from the absorption laws, (A,∧,∨) is a lattice. The definition of ∧,+, 0
and the involution identities show that ∼ is an anti-isomorphism from (A,∨, ·, 1)
to (A,∧,+, 0). Note that condition (iv) of coupled semirings is equivalent to
x ≤ ∼y ⇐⇒ 1 ≤ ∼(yx). To see this holds we compute: x ≤ ∼y ⇒ y ≤ −x,
hence 1 ≤ ∼(y(∼y)) ≤ ∼(y(∼−x)) = ∼(yx), and by distributivity over ∨, the
operation · is order-preserving in each argument, so

1 ≤ ∼(yx) ⇒ x ≤ x(∼(yx)) ≤ ∼y.

Finally, since −y = (−y)1, we deduce 1x = x from the following equivalences:
x ≤ y ⇐⇒ 1 ≤ ∼((−y)x) = ∼((−y)1x) ⇐⇒ 1x ≤ y. Therefore (A,∨, ·, 1) is
an idempotent semiring, and the anti-isomorphism ∼ shows the same holds for
(A,∧,+, 0). �

The standard equational basis for involutive residuated lattices has 15 iden-
tities and a signature with 5 binary operations. A short equational basis can be
useful when searching for finite counterexamples or using automated theorem
provers. It is not known if the given basis is irredundant, but it is interesting to
note that it suffices to assume that 1 is a right-identity element.

It is easy to extend the preceding theorems to a categorical equivalence
between the categories of involutive residuated lattices and generalized coupled
semirings.

There is only one 2-element residuated lattice, namely the two-element lattice
2 = {0, 1} with x · y = x ∧ y. Clearly this is a bounded commutative involutive
lattice, and is in fact a Boolean algebra. There are three 3-element residuated
lattices, the 3-element Gödel algebra G3 = {⊥, a, 1} with aa = a is integral but
not involutive, the 3-element �Lukasiewicz algebra L3 = {0, a, 1} with aa = 0
which is both integral and cyclic involutive, and the Sugihara algebra S3 =
{⊥, 1,�} which is cyclic involutive but not integral.

3 Distributive Residuated Lattices and Generalized
Bunched Implication algebras

A distributive residuated lattice is a residuated lattice that satisfies the distrib-
utive law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). A typical example of a distributive

Relation Algebras, Idempotent Semirings and GBI Algebras 149

residuated lattice is given by a collection R of binary relations on a set X such
that R is closed under intersection ∩, union ∪, composition ◦, residuals \, / and
contains a relation E such that E ◦ R = R ◦ E = R for all R ∈ R. Here the
operations \, / are defined by the usual expressions for residuals on binary rela-
tions: R\S = (R� ◦ S′)′ and R/S = (R′ ◦ S�)′, where � denotes the converse
operation and ′ is the operation of complementation with respect to the total
relation X2 = X ×X. Note that we are not assuming R is closed under ′ or that
it includes X2.

A Brouwerian algebra is a residuated lattice that satisfies the identity x∧y =
xy. Residuated operations always distribute over lattice joins, hence Brouwerian
algebras satisfy the distributive law. Moreover, since x ∧ y ≤ x is equivalent to
y ≤ x\x, it follows that Brouwerian algebras have a top element, denoted by
the constant �, which is also the identity element for ∧. A Heyting algebra is
a bounded Brouwerian algebra, i.e., it also has a bottom element ⊥. The meet
operation is commutative, hence x\y = y/x and this operation is usually called a
Heyting implication and denoted x → y. We now consider algebras that combine
the signatures of residuated lattices and Brouwerian algebras.

A generalized bunched implication algebra (or GBI-algebra for short) B =
(B,∧,∨,→,�, ·, 1, \, /) is a residuated lattice with an additional binary opera-
tion → that is a Heyting implication, i.e., for all x, y, z ∈ B

x ∧ y ≤ z ⇐⇒ y ≤ x → z.

A GBI-algebra is bounded if it also contains a bottom element ⊥, and we consider
⊥ to be a constant operation of the algebra. Hence bounded GBI-algebras have
Heyting algebra reducts, while GBI-algebras have Brouwerian lattice reducts. In
a bounded GBI-algebra, the intuitionistic negation is defined by ¬x = x → ⊥.
An example of a GBI-algebra that is not bounded is given by the nonpositive
integers Z

− with the operations x∧y = min(x, y), x∨y = max(x, y), xy = x+y,
x\y = y/x = min(y − x,�), 1 = � = 0 and

x → y =

{
y if x > y

� otherwise.

An involutive GBI-algebra is a (necessarily bounded) GBI-algebra that has
an involutive constant 0, while a Boolean GBI-algebra is bounded GBI-algebra
that satisfies the double negation identity ¬¬x = x. For example, sequential
algebras [9,10] are (term-equivalent to) a subvariety of Boolean GBI-algebras
and relation algebras are (term-equivalent to) a subvariety of Boolean involutive
GBI-algebras (see Theorem 6 below). Boolean GBI-algebras are also known as
residuated Boolean monoids or rm-algebras [8,12].

A bunched implication algebra (or BI-algebra) is a bounded GBI-algebra that
satisfies the identity xy = yx. These algebras are the algebraic semantics of
separation logic, a programming logic for modeling mutable data structures and
concurrent processes [15,16]. An advantage of the varieties of GBI-algebras and
BI-algebras is that they have decidable equational theories [5,7], whereas the

150 P. Jipsen

subvarieties of Boolean GBI-algebras and Boolean BI-algebras have undecidable
equational theories [13].

In this section we study the algebraic structure of GBI-algebras and their
connections with relation algebras and residuated lattices. Table 1 summarizes
how many residuated lattices there are up to isomorphism on a set with n ele-
ments, and provides the same information for some of the subclasses introduced
above.

Table 1. Number of algebras up to isomorphism on a set with n elements

Number of elements: n = 1 2 3 4 5 6 7 8

Residuated lattices 1 1 3 20 149 1488 18554 295292

GBI-algebras 1 1 3 20 115 899 7782 80468

Bunched implication algebras 1 1 3 16 70 399 2261 14358

Involutive residuated lattices 1 1 2 9 21 101 284 1464

Cyclic involutive resid. lattices 1 1 2 9 21 101 279 1433

Involutive GBI-algebras 1 1 2 9 8 43 49 282

Cyclic involutive GBI-algebras 1 1 2 9 8 43 48 281

Involutive BI-algebras 1 1 2 9 8 42 46 263

Boolean involutive BI-algebras 1 1 0 5 0 0 0 25

Relation algebras 1 1 0 3 0 0 0 13

Since (bounded) GBI-algebras have Brouwerian algebra reducts, they also
satisfy the distributive law. A relational GBI-algebra is of the form (R,∩,∪,→,
�, ◦, E, \, /), where R is a collection of binary relations on a set X, and R
is closed under these operations. Note that ∪,∩, ◦ are the usual set-theoretic
operations on binary operations, but � need only be transitive, R ◦ E = R =
E ◦ R, and →, \, / need only satisfy

R ∩ S ⊆ T ⇐⇒ S ⊆ R → T R ◦ S ⊆ T ⇐⇒ S ⊆ R\T ⇐⇒ R ⊆ T/S

for all R,S, T ∈ R.
Natural examples of relational GBI-algebras are constructed as follows: Let

P = (P,�) be a partially ordered set, Q ⊆ P 2 an equivalence relation that
contains �, and define the set of weakening relations on P by Wk(P, Q) =
{� ◦ R ◦ � : R ⊆ Q}. Since � is transitive and reflexive, this set can also be
defined by {R ⊆ Q : � ◦ R ◦ � = R}. Theorem 5 below shows that Wk(P, Q)
is a bounded cyclic involutive relational GBI-algebra with Q as top element. If
Q = P ×P , then we write Wk(P) instead of Wk(P, Q) and call this algebra the
full weakening relation algebra.

Weakening relations are the natural analogue of binary relations when the
category Set of sets and functions is replaced by the category Pos of partially

Relation Algebras, Idempotent Semirings and GBI Algebras 151

ordered sets and order-preserving functions. Since sets can be considered as dis-
crete posets (i.e. ordered by the identity relation), Pos contains Set as a full
subcategory, which implies that weakening relations are a substantial general-
ization of binary relations. They have applications in sequent calculi, proximity
lattices/spaces, order-enriched categories, cartesian bicategories, bi-intuitionistic
modal logic, mathematical morphology and program semantics, e.g. via separa-
tion logic.

Lemma 4. Let P = (P,�) be a poset, Q an equivalence relation that contains
�, R any binary relation on P and let R′ = Q − R. Then

1. � ◦ R ◦ � = R is equivalent to � ◦ R′ ◦ � = R′, and
2. (� ◦ R ◦ �)′ is a weakening relation.

Proof. 1. Assume � ◦ R ◦ � = R and (x, y) ∈ � ◦ R′ ◦ �. Then there exist
(u, v) ∈ Q such that x � u, (u, v) /∈ R and v � y. If (x, y) ∈ R then u � x and
y � v imply (u, v) ∈ R, which is a contradiction. Hence (x, y) ∈ R′ and therefore
� ◦ R′ ◦ � = R′. The converse is proved by a dual argument.
2. Let (x, y) ∈ � ◦ (� ◦ R ◦ �)′ ◦ �. Then there exist (u, v) ∈ Q such that x ≤ u,
v ≤ y and (u, v) /∈ � ◦ R ◦ �. If (x, y) ∈ � ◦ R ◦ � then there exist (r, s) ∈ R
such that r � x and y � s. However, now transitivity implies r � u and v � s,
hence (u, v) ∈ � ◦ R ◦ �, a contradiction. Therefore (x, y) ∈ (� ◦ R ◦ �)′, and
it follows that � ◦ (� ◦ R ◦ �)′ ◦ � ⊆ (� ◦ R ◦ �)′. The reverse inclusion always
holds by reflexivity. �
Theorem 5. Let P = (P,�) be a poset, Q an equivalence relation that contains
�, and for R,S ∈ Wk(P, Q) define

• � = Q, ⊥ = ∅, 1 = �, 0 = �′,
• R → S = (� ◦ (R ∩ S′) ◦ �)′ where S′ = Q − S,
• R\S = (� ◦ R� ◦ S′ ◦ �)′ and R/S = (� ◦ R′ ◦ S� ◦ �)′.

Then Wk(P, Q) = (Wk(P, Q),∩,∪,→,�,⊥, ◦, 1, \, /, 0) is a bounded cyclic
involutive relational GBI-algebra with involutive constant 0, and the linear nega-
tion is ∼R = R\0 = 0/R = R�′ = R′�.

Proof. Note that Wk(P, Q) contains the empty set and is closed under ◦ and
under (arbitrary) meets and joins. The operation ′ is complementation with
respect to Q, but it is not an operation on Wk(P, Q). The relation � is an
identity element for weakening relations since �◦� = �. The formula for R → S
is justified by the lemma above and the following equivalences:

R ∩ S ⊆ T ⇐⇒ R ∩ T ′ ∩ S = ∅
⇐⇒ R ∩ T ′ ⊆ S′

⇐⇒ R ∩ T ′ ⊆ (� ◦ (R ∩ T ′) ◦ �) ⊆ (� ◦ S′ ◦ �) = S′

⇐⇒ S ⊆ (� ◦ (R ∩ T ′) ◦ �)′

⇐⇒ S ⊆ R → T.

152 P. Jipsen

For R\S the calculation is similar:

R ◦ S ⊆ T ⇐⇒ R� ◦ T ′ ⊆ S′ (by relation algebra)

⇐⇒ R� ◦ T ′ ⊆ (� ◦ R� ◦ T ′ ◦ �) ⊆ (� ◦ S′ ◦ �) = S′

⇐⇒ S ⊆ (� ◦ R� ◦ T ′ ◦ �)′

⇐⇒ S ⊆ R\T

and the argument for R/S is a mirror image.
Lemma 4 shows that 0 = �′ is a weakening relation and the linear negations

agree since

∼x = x\0 = (�◦x� ◦�′′ ◦�)′ = (�◦x� ◦�)′ = (�◦�′′ ◦x� ◦�)′ = 0/x = −x.

Hence ∼R = (� ◦R◦ �)�′ = R�′ = R′� for any weakening relation x, so
∼∼R = R�′�′ = R��′′ = x. �

In the previous proof we used the notation � for the converse operation on
binary relations. In an abstract relation algebra, this operation is simply an
order-preserving permutation that satisfies x�� = x and (xy)� = y�x�, and
it is definable by the composition of (cyclic) linear negation and complement:
x� = ∼¬x (where ¬x = x → ⊥). We extend this notation to bounded cyclic
involutive GBI-algebras, but note that x�� = x only holds in the Boolean case,
and adding (xy)� = y�x� gives an alternative definition of abstract relation
algebras.

Theorem 6. Boolean cyclic involutive GBI-algebras satisfy the identities
∼¬x = ¬∼x, (x ∨ y)� = x� ∨ y�, (x ∧ y)� = x� ∧ y� and x�� = x. They
are relation algebras if and only if they also satisfy the identity (xy)� = y�x�.

Proof. By definition, Boolean GBI-algebras satisfy ¬¬x = x, where ¬x = x →
⊥. The linear negations ∼,− are anti-isomorphisms of the lattice structure, and
since the complement ¬ is uniquely determined by the lattice structure, both
∼ and − preserve complementation. Therefore ∼¬x = ¬∼x and −¬x = ¬−x
hold in any Boolean involutive residuated lattice. With x� defined as ∼¬x it
follows that x�� = ∼¬∼¬x = ∼∼¬¬x = ∼∼x, and if the algebra is cyclic, then
x�� = x.

Now assume a Boolean cyclic involutive GBI-algebra satisfies the identity
(xy)� = y�x�. To see that it is a relation algebra, it suffices to show that De
Morgan’s Theorem K holds, i.e., xy ∧ z = ⊥ ⇐⇒ x�z ∧ y = ⊥. This follows
from the calculation below:

xy ∧ z = ⊥ ⇐⇒ xy ≤ ¬z ⇐⇒ x ≤ (¬z)/y = −(y · (∼¬z))

⇐⇒ x� ≤ (−(y · z�))� = −(z · y�) = ¬y/z

⇐⇒ x�z ≤ ¬y ⇐⇒ x�z ∧ y = ⊥.

The converse is obvious since relation algebras are Boolean cyclic involutive
GBI-algebras and satisfy x�� = x. �

Relation Algebras, Idempotent Semirings and GBI Algebras 153

We also note that the identities ∼¬x = ¬∼x and x�� = x both fail in
weakening relation algebras and in cyclic involutive GBI-algebras, e.g. in the
3-element �Lukasiewicz algebra.

The smallest Boolean cyclic involutive GBI-algebra that fails the converse
identity has 8 elements and was originally found in the context of residuated
lattices with a De Morgan operation [4]. This algebra has atoms 1, a, b and
satisfies aa = a, bb = a ∨ b and ab = � = ba. The involutive element 0 = a ∨ b =
¬1, and the linear negation satisfies ∼1 = 0, ∼a = 1 ∨ a and ∼b = 1 ∨ b. Hence
a� = b and b� = a, which implies that (aa)� = a� = b �= a�a� = bb = a ∨ b.

If P is a discrete poset then Wk(P) is the full representable relation algebra
on the set P , so algebras of weakening relations play a role similar to repre-
sentable relation algebras. Therefore we define the class WGBI of weakening
GBI-algebras as all algebras that are embedded in a weakening relation algebra
Wk(P, Q) for some poset P and equivalence relation Q that contains �. In fact
the variety RRA of representable relation algebras is finitely axiomatized over
WGBI.

Theorem 7. 1. WGBI is closed under subalgebras and products.
2. RRA is the subclass of algebras in WGBI that satisfy ¬¬x = x, i.e., have

Boolean algebra reducts.
3. The class WGBI is not finitely axiomatizable relative to the variety of all

bounded cyclic involutive GBI-algebras.

Proof. 1. Let {Ai : i ∈ I} be a family of algebras from WGBI. Then there exists
a family of posets {Pi : i ∈ I} and equivalence relations {Qi : i ∈ I} such that
Ai is embedded in Wk(Pi, Qi) for each i ∈ I. We can assume that the posets
are disjoint, and define P =

⋃
i∈I Pi, Q =

⋃
i∈I Qi. Then

∏
i∈I Wk(Pi, Qi) ∼=

Wk(P, Q) via the map that sends a tuple of disjoint weakening relations (Ri : i ∈
I) to

⋃
i∈I Ri. Since

∏
i∈I Ai is embedded in

∏
i∈I Wk(Pi, Qi), it follows that

WGBI is closed under products. The closure under subalgebras holds because a
composition of embeddings is again an embedding.
2. Let A be a member of WGBI that satisfies ¬¬x = x. Then A is embedded in
a weakening relation algebra Wk(P, Q), so the identity element of A maps to
the partial order � of the poset P. Assume that � is not the identity relation
on P , so there exist p �= q such that p � q. Then (q, p) ∈ �◦ � ◦�, hence it is
not a member of ¬� = � → ⊥ = Q − �◦ � ◦�. It follows that (q, p) ∈ ¬¬�,
which means that the identity ¬¬x = x fails for the identity element of A, a
contradiction. Therefore � is the identity relation, so P is a discrete poset, and
A is a subalgebra of a representable relation algebra.
3. This is an immediate consequence of 2., since if WGBI were finitely axiom-
atizable, adding one more identity would give a finite axiomatization of RRA.
However, Monk [14] proved that RRA is not finitely axiomatizable. �

Currently it has not been established whether WGBI is closed under homo-
morphic images, hence a variety, and whether it is a discriminator variety.
Another interesting problem that arises is how to define a natural finitely-based
variety that contains WGBI similar to Tarski’s variety RA of (abstract) relation

154 P. Jipsen

algebras relative to the variety RRA of all representable relation algebras. Clearly
such a basis would include the axioms of bounded cyclic involutive GBI-algebras,
but there are other simple identities that are satisfied by all weakening rela-
tions. In particular, one can define domain and range of a relation by the terms
d(x) = x�∧1 and r(x) = �x∧1. In any lattice-ordered monoid with top element
�, d(d(x)) = d(x)� ∧ 1 ≤ x�� = x� and d(x) ≤ 1, hence d(d(x)) ≤ d(x). Also
d(x) = d(x)1 ≤ d(x)�, so d(x) ≤ d(d(x), and similarly r(r(x)) = r(x).

Lemma 8. WGBI satisfies the identities d(x)x = x, xr(x) = x and �x�x� =
�x�.

Proof. It suffices to show that the identities hold in any Wk(P, Q). From d(x) ≤
1 it follows that d(x)x ≤ x. For the reverse inclusion, let (p, q) ∈ x. Since
(q, p) ∈ Q and (p, p) ∈ 1, we have (p, p) ∈ d(x), hence (p, q) ∈ d(x)x.

Clearly �x� ≤ �, so �x�x� ≤ �x� = �d(x)x� ≤ �x�x�. �
The smallest cyclic involutive GBI-algebra (or residuated lattice) where these

identities fail is the 3-element �Lukasiewicz algebra, with 0 < a < 1 and satisfying
aa = 0. Since � = 1, we have d(a) = a = r(a), but aa �= a.

4 Partially-Ordered Groupoid Semantics for Some Cyclic
Involutive GBI-Algebras

For an element a in a lattice A = (A,∧,∨) the set {x ∈ A : x < a} always has
a least upper bound, which is either a or the largest element below a. In the
latter case a is called completely join-irreducible, and a lattice is join-perfect if
every element is a join of completely join-irreducible elements. Completely meet-
irreducible elements and meet-perfect lattices are defined dually. A perfect lattice
is defined to be both meet and join-perfect. Birkhoff showed that a finite distrib-
utive lattice A is determined by its poset J(A) of completely join-irreducible
elements (with the order induced by A). The result also holds for complete per-
fect distributive lattices. Conversely, if Q = (Q,≤) is a poset, then the set of
downward closed subsets D(Q) of Q forms a complete perfect distributive lat-
tice under intersection and union. Moreover, D(Q) is a Heyting algebra, with
U → V = Q − ↑(U − V) for any U, V ∈ D(Q).

For a poset P the weakening relation algebra Wk(P) is a complete and perfect
GBI-algebra, and in this case the poset of completely join-irreducible elements
is isomorphic to Q = P × P∂ . The composition ◦ of Wk(P) is determined by
its restriction to pairs of Q, where it is a partial operation given by

(t, u) ◦ (v, w) =

{
(t, w) if u = v

undefined otherwise.

For an arbitrary complete perfect GBI-algebra A, the operation · is also deter-
mined by restricting to J(A), but in general this requires a ternary relation
to represent ◦. Here we consider the special case when the restriction of · to

Relation Algebras, Idempotent Semirings and GBI Algebras 155

J(A) gives a partial operation on J(A). The aim is to characterize the partially-
ordered partial algebras that are the result of restricting from certain complete
perfect bounded cyclic involutive GBI-algebras to their partially-ordered set of
join-irreducibles.

For comparison, we first consider the classical case of relation algebras.
A complete perfect relation algebra has a complete atomic Boolean algebra
as reduct, and the set of join-irreducibles is the set of atoms. The operation
of composition, restricted to atoms, is a partial operation precisely when the
atoms form a (Brandt) groupoid [11, Sect. 5], or equivalently a small category
with all morphism being invertible. In this case the relation algebra is in fact
representable using the Cayley representation of the groupoid.

In the more general setting of cyclic involutive GBI-algebras we have a sim-
ilar situation using partially-ordered groupoids. We first recall the definitions.
A groupoid is defined as a partial algebra G =(G, ◦,−1) such that ◦ is a par-
tial binary operation and −1 is a (total) unary operation on G that satisfy the
following axioms:

1. x ◦ y, y ◦ z ∈ G =⇒ (x ◦ y) ◦ z = x ◦ (y ◦ z),
2. x ◦ y ∈ G ⇐⇒ x−1 ◦ x = y ◦ y−1,
3. x ◦ x−1 ◦ x = x and x−1−1 = x.

These axioms imply x ◦ x−1 ∈ G, as well as x ◦ y ∈ G =⇒ x ◦ y ◦ y−1 = x and
(x◦y)−1 = y−1◦x−1. Typical examples of groupoids are disjoint unions of groups
and the pair-groupoid (X × X, ◦,�), where (x, y)� = (y, x) and (x, y) ◦ (z, w) =
(x,w) if y = z (undefined otherwise). A partially-ordered groupoid (G,≤, ◦,−1),
or po-groupoid for short, is a groupoid (G, ◦,−1) such that (G,≤) is a poset and

4. x ≤ y and x ◦ z, y ◦ z ∈ G =⇒ x ◦ z ≤ y ◦ z,
5. x ≤ y =⇒ y−1 ≤ x−1,
6. x ◦ y ≤ z ◦ z−1 =⇒ x ≤ y−1.

Note that the implication x ≤ y and z ◦ x, z ◦ y ∈ G =⇒ z ◦ x ≤ z ◦ y
follows from these axioms. If P = (P,�) a poset with dual poset P∂ = (P,�)
then P×P∂ = (P × P,≤, ◦,�) is a po-groupoid, called a po-pair-groupoid, with
(a, b) ≤ (c, d) ⇐⇒ a � c and b � d.

Theorem 9. Let G = (G,≤, ◦, −1) be a partially-ordered groupoid. Then D(G)
is a bounded cyclic involutive GBI-algebra.

Proof. The downsets of any poset form a complete perfect Heyting algebra under
intersection and union. For downsets s, t the operation · is defined by s · t =
↓{x ◦ y : x ∈ s, y ∈ t}, and it is associative by Axiom 1. The identity of D(G) is
1 = ↓{x◦x−1 : x ∈ G}, and cyclic involution is defined by ∼s = G−{x−1 : x ∈ s}.
Hence x ∈ ∼s ⇐⇒ x−1 /∈ s. Axiom 5 ensures that ∼s is again a downset, and
since x−1−1 = x, it follows that ∼∼s = s. It remains to check a version of the
coupled semirings axiom: s ⊆ ∼t ⇐⇒ t · s ⊆ 0 = ∼1. Since every downset is a
union of principal downsets, it suffices to consider s = ↓x and t = ↓y where x, y ∈
G. Now ↓x ⊆ ∼↓y ⇐⇒ x−1 /∈ ↓y ⇐⇒ x−1

� y ⇐⇒ x−1◦y−1
� z◦z−1 for all

156 P. Jipsen

z ∈ G using Axiom 6 in the forward direction, and using right-multiplication by
z−1 = y−1 in the reverse direction. This is equivalent to (y◦x)−1 /∈ 1, ↓(y◦x) ⊆ 0
and finally ↓y · ↓x ⊆ 0. �

In fact for a poset P = (P,�) the weakening relation algebra Wk(P) is
obtained from the po-pair-groupoid G = P×P∂ , and for an equivalence relation
Q ⊆ P 2, Wk(P, Q) is obtained from the sub-po-groupoid (Q,≤, ◦,�). Hence
every weakening relation algebra has po-groupoid semantics. For example, if one
takes the 2-element chain P = C2 = ({0, 1},�) with the usual order 0 � 1, then
P 2 = {(0, 0), (0, 1), (1, 0), (1, 1)} and

Wk(C2) = {∅, {(0, 1)}, {(0, 0), (0, 1)}, {(0, 1), (1, 1)}, {(0, 0), (0, 1), (1, 1)}, P 2}.

The linear negation ∼ dualizes this 6-element lattice and interchanges a, b. The
3-element chain C3 gives a 9-element po-groupoid, and Wk(C3) has 20 elements
(see Fig. 1).

Fig. 1. Weakening relation algebras Wk(C2) and Wk(C3) and their po-pair-groupoids

However, there exist po-groupoids G such that D(G) is not a weakening
relation algebra. The smallest such po-groupoid is based on the pair-groupoid
G = ({0, 1}2, ◦,�), but has only two pairs that are comparable: (0, 1) ≤ (1, 0),
so (0, 0) and (1, 1) are not comparable to any other pairs. The cyclic involutive
GBI-algebra D(G) has 12 elements, which does not agree with the cardinality
of any of the algebras Wk(P, Q).

The last result shows that the cardinality of weakening relation algebras
determined by a finite linear order is given by the central binomial series.

Theorem 10. For an n-element chain Cn the weakening relation algebra
Wk(Cn) has cardinality

(
2n
n

)
.

Proof. This follows from the observation that D(Cm × Cn) has cardinality(
m+n

n

)
. For n = 1 this is immediate, since an m-element chain has m + 1 down-

closed sets. Assuming the result holds for n, note that P = Cm × Cn+1 is the

Relation Algebras, Idempotent Semirings and GBI Algebras 157

disjoint union of Cm ×Cn and Cm, where we assume the additional m elements
are not below any of the elements of Cm×Cn. The number of downsets of P that
contain an element a from the extra chain Cm as a maximal element is given
by

(
k+n

n

)
where k is the number of elements above a. Hence the total number of

downsets of P is
∑m

k=0

(
k+n

n

)
=

(
m+n+1

n+1

)
. �

5 Conclusion

The results in this paper provide connections between idempotent semirings,
involutive residuated lattices, generalized bunched implication algebras and rela-
tion algebras. These ordered algebras have been extensively studied in algebraic
logic and theoretical computer science, and they share many common features
that allow techniques to transfer from one theory to the other. Weakening rela-
tion algebras extend representable relation algebras to nonclassical logic and are
worthy of further investigation.

References

1. Chajda, I., Länger, H.: General coupled semirings of residuated lattices. Fuzzy Sets
Syst. 303, 128–135 (2016)

2. Di Nola, A., Gerla, B.: Algebras of �Lukasiewicz’s logic and their semiring reducts.
Contemp. Math. 377, 131–144 (2005)

3. Galatos, N., Jipsen, P.: Residuated frames with applications to decidability. Trans.
AMS 365, 2019–2049 (2013)

4. Galatos, N., Jipsen, P.: Relation algebras as expanded FL-algebras. Algebra
Univers. 69(1), 1–21 (2013)

5. Galatos, N., Jipsen, P.: Distributive residuated frames and generalized bunched
implication algebras, to appear

6. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic
Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathe-
matics, vol. 151. Elsevier, Amsterdam (2007)

7. Galmiche, D., Méry, D., Pym, D.J.: The semantics of BI and resource tableaux.
Math. Struct. Comput. Sci. 15(6), 1033–1088 (2005)

8. Jipsen, P.: Computer-aided investigations of relation algebras. Dissertation, Van-
derbilt University (1992). http://www1.chapman.edu/∼jipsen/dissertation/

9. Jipsen, P.: Representable sequential algebras and observation spaces. J. Relational
Methods Comput. Sci. 1, 235–250 (2004)

10. Jipsen, P., Maddux, R.D.: Nonrepresentable sequential algebras. Logic J. IPGL
5(4), 565–574 (1997)

11. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II Am. J. Math. 74,
127–162 (1952)

12. Jónsson, B., Tsinakis, C.: Relation algebras as residuated Boolean algebras. Alge-
bra Univers. 30(4), 469–478 (1993)

13. Kurucz, Á., Németi, I., Sain, I., Simon, A.: Decidable and undecidable logics with
a binary modality. J. Logic Lang. Inf. 4(3), 191–206 (1995)

14. Monk, D.: On representable relation algebras. Mich. Math. J. 11, 207–210 (1964)

http://www1.chapman.edu/~jipsen/dissertation/

158 P. Jipsen

15. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications.
Applied Logic Series, vol. 26. Kluwer Academic Publishers, Dordrecht (2002)

16. Reynolds, J.C., Logic, S.: A logic for shared mutable data structures. In: Pro-
ceedings of 17th IEEE Symposium on Logic in Computer Science (LICS 2002),
Copenhagen, 22–25 July, pp. 55–74 (2002)

17. Wille, A.: A Gentzen system for involutive residuated lattices. Algebra Univers.
54(4), 449–463 (2005)

Parsing and Printing of and with Triples

Sebastiaan J.C. Joosten(B)

Computational Logic Group, UIBK Innsbruck, Innsbruck, Austria
Sebastiaan.Joosten@uibk.ac.at

Abstract. We introduce the tool Amperspiegel, which uses triple graphs
for parsing, printing and manipulating data. We show how to conve-
niently encode parsers, graph manipulation-rules, and printers using
several relations. As such, parsers, rules and printers are all encoded
as graphs themselves. This allows us to parse, manipulate and print
these parsers, rules and printers within the system. A parser for a con-
text free grammar is graph-encoded with only four relations. The graph
manipulation-rules turn out to be especially helpful when parsing. The
printers strongly correspond to the parsers, being described using only
five relations. The combination of parsers, rules and printers allows us
to extract Ampersand source code from ArchiMate XML documents.
Amperspiegel was originally developed to aid in the development of
Ampersand.

1 Introduction

We introduce a framework for language transformations, called Amperspiegel.
We see a language transformation as something that consists of three parts: a
parser, a series of semantic transformations, and a printer. To describe these
parts and their behaviour, we adopt the view that everything can be described
in relations.

Languages are described by encoding a Context Free Grammar in four rela-
tions. Transformations are described using a set of declarative rules in a subset
of relation algebra. The printing then occurs using the inverse of the parser.

Like the parser, also the transformation and the printer are expressed in rela-
tions. Consequently, the framework has some reflective capabilities. The name
Amperspiegel stems from the framework’s relation to Ampersand [4], while
emphasising that it has reflection.1 It is stand-alone software (http://github.
com/sjcjoosten/Amperspiegel), so it can be used in projects other than Amper-
sand as well. Code specific to this paper can be found at: http://cl-informatik.
uibk.ac.at/users/sjoosten/as/.

As an example, Sect. 7 creates a link between two tools: ArchiMate and
Ampersand. We show how to parse files that describe a software architecture
written in an ArchiMate XML file. The structure is transformed, and then

1 Adding to Amperspiegel’s reflection are the switches collect and distribute, which
are not described in this paper.

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 159–176, 2017.
DOI: 10.1007/978-3-319-57418-9 10

http://github.com/sjcjoosten/Amperspiegel
http://github.com/sjcjoosten/Amperspiegel
http://cl-informatik.uibk.ac.at/users/sjoosten/as/
http://cl-informatik.uibk.ac.at/users/sjoosten/as/

160 S.J.C. Joosten

printed as a description of the same architecture as an Ampersand ADL file.
This is done using Amperspiegel.

The focus of this paper is on the concepts behind Amperspiegel, seen as a
stand-alone tool. Section 2 gives an overview of the tool and describes its use.
We define a parser, a rule engine, Amperspiegel’s embedding of a set of rules,
and a printer, in Sects. 3, 4, 5 and 6 respectively.

Related Work. Several tools combine parsing and printing with transformations,
including meta-programming languages such as Rascal [7] and Stratego [2], or
programming language workbenches such as Spoofax [6]. Amperspiegel offers
a fundamental approach to meta-programming, offering these features with a
minimal implementation. Excluding a file that configures the initial state of
Amperspiegel, it is under a thousand lines of Haskell code.

To achieve this, Amperspiegel borrows from several best practices. Using a
Context Free Grammar for parsing and for printing is done before by Mark van
den Brand [1]. Deriving new facts with rules, as Amperspiegel does, is similar
to the declarative programming language datalog± [3]. Its restriction to triples,
in a style like Amperspiegel, is described by Edward Robertson [9]. We have
not seen a Context Free Grammar described through relations, and this allows
to combine these concepts in a novel way. This makes building source-to-source
transformations surprisingly easy and modular.

2 Overview of Amperspiegel

To transform languages, Amperspiegel can parse input, apply rules, produce
output, and assemble these components in a single execution. This overview
shows how components are assembled. Amperspiegel interprets command-line
arguments as commands. They are executed from left to right.

The most important actions are ‘apply’, ‘parse’ and ‘print’. These actions
are performed on structures that correspond to a kind of labelled graph. We refer
to these structures as ‘graph’, and explain how they can be understood as a set
of homogeneous relations. This interpretation is important, as we expect the
Amperspiegel user to think of these structures as a description through several
relations.

Initially, there are pre-defined graphs in Amperspiegel. Some of these graphs
represent parsers. Using parse, a parser is used to parse an input file, creating
another graph. Graphs can be manipulated by rules using apply, again creating
a graph. A graph can be printed to stdout by print.

We illustrate Amperspiegel’s command line interface by showing how to exe-
cute:

ds1 := parse data file1

ds2 := parse rule file2

res := apply ds2 ds1

print data res

Parsing and Printing of and with Triples 161

This example uses built-in parsers and printers to read in some data (in
file1), apply some transformation to it (given by file2) and print the result
on stdout. It uses the same internal parser as a printer, called data to both read
the data and print the result. The transformation is parsed using an internal
parser called rule. For this code, Amperspiegel’s command-line interface is used
as follows:

amperspiegel -parse data file1 ds1 -parse rule file2 ds2 \

-apply ds2 ds1 res -print data res

Since Amperspiegel is used to translate a variation of one language into
another, a graph can be used in place of the default parser too:
Amperspiegel -parse cfg path-to/parser mdp -parse mdp my-data ds1
uses the parser path-to/parser, described in CFG syntax, to parse the file
my-data in the new syntax referred to as mdp.

Amperspiegel’s graph-based notion of data is similar to that used for the
semantic web. Another way to view such a graph is as a structure interpreting
a set of binary-relation symbols.

Definition 1 (Graph). A directed labeled graph G = (L, V, E) is given by a
finite set of labels L, a set of vertices V , and a set of edges E ⊆ L× V × V.

In this paper we simply say graph when we mean a directed labeled graph. This
notion of graph is useful when thinking about the implementation of Amper-
spiegel. From the perspective of an Amperspiegel user, however, it is more
useful to think of this structure as a set of homogeneous binary relations. To
help strengthen this way of thinking, we suggestively write (v, w) ∈G r for
(r, v, w) ∈ E. Indeed, when the label r occurs in an Amperspiegel script, it
is natural to interpret it as a relation symbol. We say that a graph is finite if
and only if its set of vertices is finite.

There is no way to access the structure of nodes in Amperspiegel, except
through the edges in which they occur. Thus, the set of vertices is implicitly
equal to those vertices that occur in an edge. In the following sections, we show
how a finite graph can describe a parser, a printer and a data-transformation
(set of rules).

3 Parsing

To specify parsers, we use Context Free Grammars. While a Context Free Gram-
mar (CFG) is typically used to define a set of strings called ‘language’, we focus
on how CFGs relate to graphs. This section relates CFGs to graphs in two ways:
First, a CFG can be used to interpret a string as a parse graph. This allows
the Amperspiegel user to read graphs from a file that has a certain file format.
Second, a CFG can itself be encoded as a graph. This allows the Amperspiegel
user to specify and use its own CFGs.

Definition 2 (Context Free Grammar). A CFG g = (P,Σ, C, S) is given
by a relation C ⊆ P × (P + Σ)∗ and a start symbol S ∈ P , where P denotes the

162 S.J.C. Joosten

finite set of non-terminals, and Σ denotes the set of terminals. A pair in C is
called a production rule.

We present a CFG by listing C. The set of terminals Σ is disjoint from P , and
S = ‘S’. See for instance Example 1. Strings in (P + Σ)∗ are given by separating
elements in P + Σ with spaces.

Example 1. S �→ 0 L S S �→ ε L �→ S 1 L L �→ ε
It follows from convention that P is the two-element set containing S and L,

and that Σ contains 0 and 1.

3.1 Obtaining a Graph by Parsing a String

A CFG (P,Σ, C, S) gives rise to a parser graph G in which P are the labels, and
Σ∗×P are the vertices. This graph is infinite, as it contains all possible parses. It
is independent of the start nonterminal S. For a given string s, the parse graph
is the subgraph of G of nodes and edges reachable from the node (s, S), which is
guaranteed to be finite. We give an example before the definitions. The empty
string is written as ε (Fig. 1).

Fig. 1. The parse graph of Example 2

Example 2. For the CFG of Example 1, the parse graph of 0 1 1 0 is given by:

((0 1 1 0, S), (0, S)), ((1 1 0, L), (0, S)), ((1, L), (ε, S)), ((0, S), (ε, S)) ∈G S

((0 1 1 0, S), (1 1 0, L)), ((1 1 0, L), (1, L)), ((1, L), (ε, L)), ((0, S), (ε, L)) ∈G L

In Example 2, each edge in the parse graph is of the form ((s1, p), (s2, p′)) ∈G

p′, indicating that s1 parses as p via a production (p, · · ·p′· · ·) ∈ C, where the
substring s2 parses as p′. A parser graph captures all possible parse graphs, plus
edges to terminal symbols that help in our definition of parser graph.

Definition 3 (Parser graph). Given CFG (P,Σ, C, S), the graph G = (P,Σ∗×
P,E) is the parser graph of (P,Σ, C, S), in which E is the least set of edges such
that for each (p, p0 · · · pn) ∈ C, and for every s = s0 · · · sn ∈ Σ∗:
⎛
⎝∀i ≤ n.

⎛
⎝

(∃x, p′. ((si, pi), x) ∈G p′)
∨ ((pi, ε) ∈ C ∧ si = ε)
∨ (pi ∈ Σ ∧ si = pi)

⎞
⎠

⎞
⎠ ⇒ (∀i ≤ n. ((s, p), (si, pi)) ∈G pi)

This formula states that if each of p0 · · · pn can be parsed as a corresponding
s0 · · · sn, then p can be parsed as p0 · · · pn and corresponding edges exist in G.

Parsing and Printing of and with Triples 163

Definition 4 (Parse graph). A parse-graph for the string s and CFG (P,Σ,
C, S) is the subgraph of the parser graph G that is reachable from (s, S) via edges
in P .

A parse graph of s is finite. It contains only vertices (s′, v) in which s′ is a
substring of s and v ∈ P . There are at most n(n+1)/2+1 substrings in a string
of length n, and P is finite. Therefore every parse graph is finite.

3.2 Describing a Context Free Grammar with a Graph

This section focuses on how CFGs have been implemented in Amperspiegel. We
encode a CFG as a graph, allowing a light-weight implementation. This also
allows us to express a CFG that can parse its own description and yield the
CFG parser itself.

The CFG (P,Σ, C, S) is encoded as a graph G = (L, V, E), by making C
explicit, and using a default element for S. The label choice ∈ L describes C.
Amperspiegel does not have sums or lists as built-in types, so we reconstruct the
type of vertices from the labels of edges. The structure of elements of (P + Σ)∗

is described using three labels: recogniser, continuation and nonTerminal.
Amperspiegel uses recogniser and continuation rather than, say, head and
tail. This choice is less likely to cause name clashes when combining graphs by
taking their union, as we will do in Sect. 7. We combine the edges labelled choice
with the ones that describe structure in a single graph, so V = P +Σ+(P + Σ)∗.
In the sense of Sect. 4, vertices in P + Σ act as constant symbols while vertices
in (P + Σ)∗ act as variable symbols.

Fig. 2. The CFG of Example 1 drawn as a graph

For Example 1, the corresponding CFG is given as a graph in Fig. 2. Nodes
that encode lists in (P + Σ)∗ are drawn in grey. The lists that make up these
nodes are written in Haskell notation to emphasise difference between S ∈ P and
[S] ∈ (P + Σ)∗.

164 S.J.C. Joosten

A CFG (P,Σ, C, S) corresponds to a graph G if:

(p, v) ∈G choice ⇔ (p, l(v)) ∈ C
�∃v′. (v′, v) ∈G nonTerminal

� ⇔ v ∈ P

l(v) =

�
v1 l(v2) if (v, v1) ∈G recogniser and (v, v2) ∈G continuation

ε otherwise

To ensure l is well-defined, the labels recogniser and continuation must
describe univalent relations in G (R is univalent iff (x, y), (x, z) ∈G R implies
y = z).

Example 3. The following CFG describes the language for CFGs. It omits pro-
duction rules for non-terminals P and Σ, as Amperspiegel has those production
rules built-in. These built-in production rules are the only way to get constant
symbols as vertices in the sense of Sect. 4. We write "�→" for the terminal in Σ,
to distinguish it from syntax.

S �→ ε S �→ S P "�→" choice

nonTerminal �→ P choice �→ continuation

continuation �→ ε continuation �→ recogniser continuation

recogniser �→ Σ recogniser �→ nonTerminal

The CFG in Example 3 describes the language of CFGs as used in this paper.
It defines a parser yielding parse-graphs with the labels choice, nonTerminal,
recogniser and continuation. So if G′ is the parse graph of some string and
the CFG in Example 3, then G′ can be interpreted as a CFG in Amperspiegel.

In such G′, some vertices are being interpreted as elements of Σ, and some
are labels in the parser-graph corresponding to the CFG of G′. These are the
vertices that are drawn in black in Fig. 2. To ensure G′ uses the vertices that
were intended, Amperspiegel allows us to write rules to determine equality on
vertices in G′. Rules are explained in the next section, but for completeness, we
mention the rules necessary with Example 3 for using the graph with the CFG
here. They use � for inclusion, and 1 for the identity relation:

P � 1 Σ � 1 nonTerminal � 1

4 Rules

To manipulate graphs in Amperspiegel, the programmer specifies rules. This is
done in relation algebra to obtain a declarative, point-free language with attrac-
tive algebraic properties. Rules are evaluated with a deduction engine compa-
rable to those for Datalog [3]. To this extent, Amperspiegel maintains a graph
containing what it knows, and then makes it more specific by what it can prove.
A typical use is to interpret a parse graph as initial knowledge, which is made
specific by edges that can be deduced using the rules. This section introduces
rules and shows how they are used.

Parsing and Printing of and with Triples 165

Rules are formed over expressions. Expressions are built from relation sym-
bols L, a reserved symbol 1 which stands for the identity relation, and tuples
(sets containing exactly one pair) written as 〈a, b〉 with a and b elements in a
set of constants K. We can also use the reserved symbol ⊥, which stands for
the empty relation. These are combined with the operations � , ⨾ , and
�. The operations stand for intersection, relational composition, and relational
converse, respectively. For a graph G = (L,K + N,E), in which the vertices are
constant symbols K or variable symbols N , the semantics of an expression X ,
written as [[X]]G ⊆ (K + N) × (K + N), is as in representable relation algebra.
We assume K and N to be disjoint:

[[l]]G = {(x, y) | (x, y) ∈G l} [[1]]G = {(v, v) | v ∈ (K + N)}
[[〈a, b〉]]G = {(a, b)} [[⊥]]G = {}

[[L � R]]G = [[L]]G ∩ [[R]]G [[L�]]G = {(y, x) | (x, y) ∈ [[L]]G}
[[L ⨾ R]]G = {(x, y) | ∃z. (x, z) ∈ [[L]]G ∧ (z, y) ∈ [[R]]G}

Definition 5 (Rule). If L and R are expressions over sets of constant symbols
K and labels L, then L � R is a rule. We say that a graph G satisfies a set of
rules R, in symbols: G � R, iff for all (L � R) ∈ R we have [[L]]G ⊆ [[R]]G. We
say that a set of rules R implies a rule r0, in symbols: R � r0, iff for all graphs
G we have (G � R) ⇒ (G � {r0}).

4.1 The Rule Engine by Example

We give a flavour of Amperspiegel’s deduction engine, by showing how one can
reason to construct a non-empty graph that satisfies a set of rules. Consider the
example:

Example 4. These rules state that the label l stands for a total and self-inverse
relation:

1 � l ⨾ l� (1)
1 � l ⨾ l (2)

l ⨾ l � 1 (3)

Rule 1 states that l is total, and Rules 2 and 3 say that it is self-inverse.

Fig. 3. Applying the rules of Example 4.

166 S.J.C. Joosten

We construct a non-empty graph G that has no constant symbols, satisfying
the rules of Example 4, to illustrate Amperspiegel’s rule engine. See Fig. 3. Take
G0 = ({l}, {v0}, {}) as initial non-empty graph. We identify a rule that does not
hold on G0, and a pair that shows why it does not. Rule 1 does not hold on G0

as there must be some v1 with (v0, v1) ∈G l. We therefore add the vertex v1 to
G0, plus an edge from v0 to v1 with label l, which gives rise to G1. On G1, rule 2
states that some v2 exists with (v0, v2) ∈G l and (v2, v0) ∈G l. Changing G1 to
fix this adds two more edges and another vertex, giving G2. Now rule 3 does not
hold for (v2, v1) ∈ [[l ⨾ l]]G2 . Therefore, we identify v1 and v2 giving us G3. This
is a graph for which all rules hold.

4.2 Rule Engine Semantics

This section explains how Amperspiegel’s rule engine is defined. We begin with
some notions and notations. We overload a function f : V1 → V2 to a function
over sets: f(V) = {f(v)|v ∈ V } for V ⊆ V1, edges: f(E) = {(l, f(v1), f(v2)) |
(l, v1, v2) ∈ E}, and graphs: f((L, V, E)) = (L, f(V), f(E)).

Our rule engine gradually changes a graph. We describe these changes in
a categorical manner, inspired by Wolfram Kahl [5]. Such a change can be
described by a homomorphism, which can be understood as a vertex map that
preserves constant symbols and edge labels. This definition is used to describe
all graph transformations.

Definition 6 (Graph homomorphism). Take the graphs with shared sets of
labels and constants G1 = (L,K + N1, E1) and G2 = (L,K + N2, E2). We say
that a vertex map f : K + N1 → K + N2 is a graph homomorphism iff ∀e ∈
E1. f(e) ∈ E2, and ∀k ∈ K. f(k) = k.

If there is a graph homomorphism f : G1 → G2, we say that G2 is more specific
than G1, or in symbols: G1 ≤ G2. Graph homomorphisms between graphs with
shared sets of labels and constants form a category in which graph homomor-
phisms are the morphisms. In the following, we assume fixed but arbitrary sets
L of labels and K of constant symbols.

We use pushouts to combine two graphs. Note that due to the requirement
that homomorphisms preserve constants, if K is non-empty, then the category of
graph homomorphism does not have all colimits and not even all pushouts, since
constants cannot be identified. For the pushouts that do exist, we introduce an
abbreviating notation.

Definition 7 (Pushout along interfaces). An interfaced graph is a pair
(G, s) where s is a sequence of vertices of G called interface. Given two inter-
faced graphs (G1, s1) and (G2, s2) with interfaces of the same length n, their
pushout along their interfaces, written (G1, s1)� (G2, s2) is the interfaced graph
(G3, g1(s1)) where G1

g1=⇒ G3
g2⇐= G2 is the pushout (if existing) of the span

G1
f1⇐= G0

f2=⇒ G2 over G0 = (L,K + {x1, . . . , xn}, {}), and f1 and f2 are graph
homomorphisms defined by fi(xj) = si(j).

Parsing and Printing of and with Triples 167

We aim to construct the least specific graph G such that G � R, called a
least consequence graph. We define this to show correctness of our algorithm.

Definition 8 (Consequence graph). Given a graph G0 and a set of rules R
over the same set of labels and set of constants. We say that G is a consequence
graph of G0 and R, if G � R and G0 ≤ G. Furthermore, G is a least consequence
graph if for each consequence graph G′ of G0 and R we have G ≤ G′.

To construct a consequence graph, Amperspiegel repeatedly takes a rule that
is not satisfied by a graph, and ‘patches’ this until there is nothing to repair. For
a rule L � R with a pair in [[L]]G0 that is not in [[R]]G0 , we do a step: A patch is
created with the shape of R, which is combined into G0 with a pushout.

Definition 9 (Patch). The patch of an expression X over sets of labels L and
constants K, in symbols (G, (v1, v2)) = Δ(X), is a graph over L and a pair of
vertices in that graph, inductively defined:

Δ(1) = ((L,K + {1}, {}), (1, 1))
Δ(R � S) = Δ(R) � Δ(S)
Δ(R ⨾ S) = (G′, (v1, v4))

where (G′,) = (GR, (v2)) � (GS , (v3))
and (GR, (v1, v2)) = Δ(R) and (GS , (v3, v4)) = Δ(S)

Δ
(
R

�)
= (G′, (v2, v1)) where (G′, (v1, v2)) = Δ(R)

Δ(〈a, b〉) = ((L,K, {}), (a, b))
Δ(l) = ((L,K + {v1, v2}, {(l, v1, v2)}), (v1, v2))

As with pushouts, Δ(X) may not be defined. Also, Δ(⊥) is intentionally left
undefined.

Another example for an expression with undefined patch is 1 � 〈a, b〉, if a �= b,
since the necessary pushout would have to identify the constant symbols a and
b.

We use patches to work towards a consequence graph. This is done stepwise
through R-steps, that are given by the set of rules.

Definition 10 (R-Step). Let G be a graph. Let (L � R) be a rule, and let p
be a pair of vertices in G such that:

p ∈ [[L]]G p �∈ [[R]]G

Then G
L�R−−−→
p

G′ is a step where G′ = Δ(R) � (G, p) if defined, and G′ = �

otherwise. If R is a set of rules, then G
R−→ G′ is an R-step if there exists a rule

r ∈ R and a pair of vertices p in G such that G
L�R−−−→
p

G′. If there is no R-step
for a graph G, then we say G is in R-normal form. For notational convenience,
R−→ is an endo-relation on the disjoint union of � with graphs, where � counts

as an additional R-normal form.

168 S.J.C. Joosten

Correctness of ‘R-step’ is understood as follows: If there is a terminating
sequence G0

R−→ · · · R−→ Gn �= �, then Gn is a least consequence graph of G0.
This follows from observing that if Gi

R−→ Gi+1, then Gi ≤ Gi+1. If G is a
consequence graph of Gi and R, then G is also a consequence graph of Gi+1 and
R. This holds in particular if G is a least consequence graph. Finally, if Gn is
a graph in R-normal form, then Gn is a least consequence graph of Gn and R.
Furthermore, if G

R−→ �, then there is no consequence graph of G and R. This
shows soundness of finding a consequence graph through a normalising sequence
G0

R−→ G1 · · · R−→ Gn in which Gn is either � or a least consequence graph, which
is what Amperspiegel’s rule engine does.

Note that R−→ need not be weakly normalising or confluent, and the order in
which we apply rules can determine whether we reach a normal form. It is pos-
sible to have an infinite sequence of R-steps even though there are terminating
sequences. To make this less likely, Amperspiegel ensures fairness: A sequence
G0

R−→ G1 · · · is fair if for all pairs p there are finitely many i such that Gi
r−→
p

.

This condition is implemented by imposing a total order on the vertices, treat-
ing smallest vertices first, and making new vertices the largest elements in this
order.

Amperspiegel’s rule engine can terminate by finding the least consequence
graph, or discovering that no such graph exists by reaching �. The possibility
of non-termination makes it that it is not a decision procedure. We leave the
question whether Amperspiegel implements a semi-decision procedure as future
work. We conjecture that the problem whether no least consequence graph exists
is undecidable, yet semi-decidable, and that our procedure is a semi-decision
procedure.

5 Amperspiegel’s Embedding of the Rule Engine

This section shows how Amperspiegel uses the rule engine of the previous section
to implement more general graph transformations, including destructive rules.
We apply a rule system using the apply switch, which gets three arguments: a
graph that encodes the rules R, the name of a source graph Gs = (Ls, Vs, Es),
and the name for a target graph Gt = (Lt, Vt, Et). The label set for rules is
Ls + L′ + Lt. To ensure disjointness of these three sets of labels, pre, during
and post are used as a prefix to labels respectively. The graph of which a least
consequence graph is calculated is G0 = (Ls + L′ + Lt, Vs, E

′
s), in which E′

s

contains the appropriately relabelled edges of Es. The least consequence graph
of G0 and the rules R is then G = (Ls+L′+Lt, Vt, E). The target graph has the
edges Et = {(r, x, y) | (post r, x, y) ∈ E}, where post is the rightmost constructor
of the disjoint union Ls + L′ + Lt.

Consequently, the graph the procedure starts with only contains edges of
Gs. The target graph will be overwritten. After obtaining the consequences by
running the procedure, we only look at the edges that are in post(r) for some r
and put those in Gt. For convenience, we allow labels of the form during(r), to

Parsing and Printing of and with Triples 169

allow labels for edges that do not end up in Gt, but are also guaranteed not to
be used in Gs.

The user can use her own rules in Amperspiegel, as the rules are described
as a graph. This follows the same pattern as describing a CFG with a graph. For
an expression e, there is a pair (e, p) with p uniquely determined by e:

(e, p) ∈G conjunct ∪ compose ∪ converse ∪ pair ∪ pre ∪ during ∪ post ∪ id

such that (e, p) occurs in exactly one of the relations mentioned, say l. If l is
conjunct or compose, there are unique e1 and e2 such that (p, e1) ∈G eFst and
(p, e2) ∈G eSnd. These e1 and e2 are, in turn, expressions again. If l is pre,
during or post, p is a relation name (an unquoted string in K). For converse,
p is an expression. For pair, p is a pair of strings (quoted or unquoted) that can
be accessed through the relations pFst and pSnd. If l = id, p does not matter.
A set of rules is a relation between expressions.

To take full advantage of rules as graphs, Amperspiegel allows a graph to con-
tain both a grammar and rules, given by taking the union of the corresponding
triples. We use these two together, by a switch called -Parse (note the capital
P), that first parses and then applies the rules to the result. This makes many
syntactical extensions straightforward to achieve. Take for instance the opera-
tion dom(R), containing all pairs (x, x) for which x is in the domain of R, defined
as follows:

dom(R) = (R ⨾ (R�)) � 1

We allow the relation dom to be used without changing Amperspiegel, by adding
the following rule to the parser (for readability, we underline labels instead of
writing post):

pre dom � conjunct ⨾ (eFst ⨾ compose ⨾ (eFst � eSnd ⨾ converse) � eSnd ⨾ id)

With this, we have seen an example of using rules in order to extend the
syntax of rules. Section 7 contains another example where a syntax extention
was useful.

6 Printing

We consider printer as a reverse operation to parsing. It is not always possible
to reconstruct the original string. Consider for instance the following CFG, for
lists with at least two words:

Start �→ Word Word Start �→ Word Start

Word �→ e a t Word �→ t e a

Printing of graphs that contain only univalent relations can be done unam-
biguously if for every non-terminal, each symbol occurs at most once on the right
hand side of its production rules. We change the CFG to meet this condition,
without changing the language it accepts:

170 S.J.C. Joosten

Start �→ Word1 Word2 Start �→ Word Start e′ �→ e

Word �→ e′ a′ t′ Word �→ t e a a′ �→ a

Word1 �→ Word Word2 �→ Word t′ �→ t

When printing graphs that aren’t a parse graph, we may encounter relations
that are not univalent. For this purpose, we add the label separator to a graph
describing a CFG, in addition to the four existing labels. The type of edges with
this label can be thought of informally as (P + Σ) × Σ, although Amperspiegel
does not consider any structure on vertices.

The syntax for a printer closely follows that of a parser. The main differ-
ence is that we allow a relation to be named between square brackets, along
with an optional separator string. This means that we can largely reuse the
parser for a CFG as defined earlier. We drop the production-rule recogniser �→
nonTerminal from Example 3, and replace it with:

recogniser �→ idNonTerminal

recogniser �→ "[" recRelation "]" nonTerminal

recogniser �→ "[" recRelation "SEPBY" separator "]" nonTerminal

One can think of idNonTerminal as a typed identity relation for those instances
where we want to use the nonTerminal symbol as a label.

We recognise recRelation and separator as strings, and use the following
rules:

idNonTerminal � 1 recRelation � 1

idNonTerminal � nonTerminal

7 Using Amperspiegel to Transform ArchiMate Files into
Ampersand Code

In previous sections we discussed parsing, rules to evaluate, and printing. These
are the necessary ingredients for transforming data structures. To demonstrate
that Amperspiegel can do nontrivial work, it has been put to the test of practice.
We picked a problem that was being solved at the time of writing in a software
project in the Dutch government: to transform source code from ArchiMate [8]
to Ampersand [4].

The specifics of the tools Ampersand and ArchiMate are not important to
understand the transformation, but we give a little background: ArchiMate is
a modeling tool to get an overview of a business, similar to UML yet more
coarse grained. The tool helps users to build, visualise and modify architectures
cooperatively, but does not feature a way to turn such architectures into code.
For this purpose, we are interested in using another tool that describes archi-
tectures that does produce code, namely Ampersand. Ampersand can generate
web-applications based on architectures, but often an architecture is already
described in another language, in our case: ArchiMate.

Parsing and Printing of and with Triples 171

To understand the transformation, it suffices to know that ArchiMate files
are XML files describing ‘elements’. Between these elements there are ‘relations’.
Elements are things like actors, business components, services, and infrastruc-
ture. A relation can be ‘implements’, describing which infrastructures implement
which services.

The purpose of this section is to describe how one can create transformations
with Amperspiegel. We define an XML parser, interpret the resulting graph as
an ArchiMate model, and turn it into an Ampersand model. This section uses
verbatim Amperspiegel syntax.

In the development of the XML parser, we keep the specification of syntax
and rules in a single file. This changes the syntax for describing a CFG slightly:
Each line should end with a dot, to keep the grammar unambiguous. We form
rules, using |- as notation for �, prefixed with RULE. We use KEEP relationName
as syntax-sugar for:

RULE pre relationName |- post relationName

To achieve this, the parser for CFG’s populates the relation keep, and the set
of rules that is then applied to the result contains the rule:

RULE pre keep |- post rule;(post eFst;post pre /\ post eSnd;post post)

Similarly, [expression -> elementName] is a shorthand for the expression:

expression;<elementName,elementName>;expression~ /\ I

These short-hands are useful for the development of the XML
parser and the transformation that follows it. We used them with-
out changing Amperspiegel itself. We changed the Amperspiegel-scripts
that define the parser for Amperspiegel-scripts instead. In the parser,
"[" pointExpression "->" pointElement "]" is added in the right hand side
of a production-rule for an expression. We also add these rules:

RULE pre pointExpression |- (post conjunct;(post eFst;(post compose;(post

eFst /\ ((post eSnd;post compose);(post eSnd;post converse))))))

RULE pre pointElement |- (post conjunct;((post eFst;((((post compose;

post eSnd);post compose);post eFst);pre pair)) /\ post eSnd))

7.1 Parsing XML

Building an XML parser lies outside of the scope what Amperspiegel was
initially intended for: parsing Ampersand-like scripts. Consequently, Amper-
spiegel’s lexer is not designed for parsing XML; it ignores comments and
whitespace. Fortunately, we can get away with this by restricting ourselves
to XML without text. This means tags, including attributes, are fine, but
<tag>text like this</tag> is not. Such a tag would have to be replaced by
an attribute-value, such as: <tag value="text like this" />.

An XML parser can then be defined as follows (Start is Amperspiegel’s start
symbol for a CFG):

172 S.J.C. Joosten

Start > "<?xml" attributeList "?>" tagList.

Start > tagList.

tagList > tag tagList.

tagList > .

tag > "<" tagName attributeList ">" tagList "</" tagName ">".

tag > "<" tagName attributeList "/>".

tagName > UnquotedString .

attributeList > attribute attributeList.

attributeList > .

attribute > attributeName "=" attributeValue.

attributeValue > QuotedString.

attributeName > UnquotedString.

RULE pre UnquotedString |- I

RULE pre QuotedString |- I

RULE pre tagList |- I

RULE pre attributeList |- I

RULE (pre tagName) ~ ; pre tagName |- I -- univalence of tagName

KEEP attributeName KEEP attributeValue KEEP attribute

KEEP tagName KEEP tag

The first lines describe a CFG for XML. Note that the lines end with a
dot, in order to distinguish KEEP statements from a continuation in which KEEP
acts as recogniser. The rules for tagList and attributeList cause tag and
attribute to be relations, rather than partial functions from the head of the
list. We can forget the order-information of attributeList and tagList since
for ArchiMate this order is irrelevant.

The rule for univalence of tagName requires a closing tag to match the open-
ing tag, because the parser generates two tagName edges from the first tag rule
to different tag names, which, after the contraction of UnquotedString edges,
are string constant symbols. Parsing <openingtag></closingtag> will result in
trying to identify two constants in K and produce the message:

Rules caused "openingtag" to be equal to "closingtag"

The XML we parse is well-formed, so these errors do not occur in practice.

7.2 Transforming a Graph

We parse XML such as the following. Figure 4 shows the first two lines parsed:

<element identifier="id-1311" xsi:type="BusinessProcess">

<label xml:lang="en" value="Collect Premium"/></element>

<element identifier="id-1208" xsi:type="BusinessService">

<label xml:lang="en" value="Premium Payment Service"/></element>

<relationship identifier="id-1329" source="id-1311"

target="id-1208" xsi:type="RealisationRelationship" />

Parsing and Printing of and with Triples 173

Fig. 4. Graph from applying parser and rules of Sect. 7.1 to two lines of XML.

The corresponding Ampersand code we will transform this XML into is:

CLASSIFY BusinessProcess ISA Element

CLASSIFY BusinessService ISA Element

RELATION RealisationRelationship :: Element * Element

POPULATION [("Collect Premium" , "Premium Payment Service")]

Here are some of the rules which we use to transform the parsed XML:

RULE pre attribute;[pre attributeName -> identifier]

; pre attributeValue |- I

RULE pre tag;[pre tagName -> label] |- during lab

RULE pre attribute; [pre attributeName -> value]

; pre attributeValue |- during value

RULE during lab; during value |- post label

The first rule states that identifiers are unique to elements, allowing us to
use these as handlers. The second introduces a temporary abbreviation lab for
<label> tags. The third introduces the abbreviation value for value attributes.
The last creates the relation label from the value of pairs in lab.

To obtain all element types without duplicates, we use these rules:

RULE pre attribute; [pre attributeName -> xsi:type]

; pre attributeValue |- during dtype

RULE pre tag; [pre tagName -> element] |- during element

RULE during element; during dtype |- during X ; post type

RULE post type |- I

The first two rules create temporary shorthands: dtype and element. The third
rule looks only at the element types, and creates a tuple in type with that target
(and a fresh source). The fourth rule states that the source of that tuple should
be equal to the target, removing duplicates. Finally, we obtain all relations and
their triples:

174 S.J.C. Joosten

RULE [pre tagName -> relationship];during dtype |- post elem ~

RULE pre attribute; [pre attributeName -> source] ; pre attributeValue

|- post source

RULE pre attribute; [pre attributeName -> target] ; pre attributeValue

|- post target

RULE post elem ; post elem ~ /\ I |- post relation

Figure 5 shows the triples computed by Amperspiegel for the XML excerpt.

Fig. 5. The triples after applying the rules of Sect. 7.2

7.3 Printing a Graph

We define a printer such that there are no identifier values in the final output.
Since the relations are not necessarily well typed in ArchiMate files, we create a
type ‘Element’ to stand in for any type.

The printer is defined as follows:

Start > [I SEPBY "\n"] Statement.

Statement > "CLASSIFY" [type] UnquotedString "ISA Element".

Statement > "RELATION" [relation] UnquotedString

":: Element * Element\nPOPULATION [" [elem SEPBY "\n ,"] Pair "]".

Pair > "(" [source] Labeled "," [target] Labeled ")".

Labeled > [label] String.

The relation I is used in the first line of the printer. This determines which
statements to print, and which not. For our purpose, we print all statements, by
adding the rules:

RULE post type |- post I

RULE post relation |- post I

To summarise how we use Amperspiegel’s tool-chain:

– Parse a CFG describing an XML parser in the file xml.cfg. To the result,
apply the rules for CFGs. Put the result in the graph ‘xml’. On the comman-
dline of Amperspiegel we write: -Parse xml.cfg cfg xml.

– Parse rules to convert the XML data specific to ArchiMate, and the corre-
sponding printer specific to Ampersand. The corresponding file is archi.cfg.
To Amperspiegel we pass: -Parse archi.cfg cfg archi

Parsing and Printing of and with Triples 175

– Parse the ArchiMate xml file Archisurance.xml and apply the rules that go
with the XML parser. This uses the graph ‘xml’: -Parse Archisurance.xml
xml. Since we omit the third argument, the result is put in the graph
‘population’.

– Apply the rules in the graph ‘archi’ to population. Put the result in
population: -apply archi.

– Print the graph ‘population’ using the printer defined in ‘archi’. In Amper-
spiegel: -print archi.

We sequence the listed operations on the command line:

Amperspiegel -Parse xml.cfg cfg xml -Parse archi.cfg cfg archi \

-Parse Archisurance.xml xml -apply archi -print archi

For the example XML code of Sect. 7.2, this produces exactly the mentioned
Ampersand code. Parsing and printing a file of about 600 lines produces 209
lines in eleven seconds.

8 Discussion

Most parser implementations are a partial function from strings to finite tree
structures. We use a standard parsing algorithm, and turn the result into a
graph. Consequently, CFGs that generate infinite trees yet finite graphs remain
future work.

Applying rules is slow: Amperspiegel traverses the right hand side expressions
for every pair and applies the patch as it constructs it. Sharing work between
applications of a rule may improve performance. We plan to use Amperspiegel
to generate code out of a set of rules, hopefully boosting the performance of
Amperspiegel. Ideally, we would also use Amperspiegel to generate code out of a
CFG or a printer, making the core of Amperspiegel even simpler. As mentioned,
Amperspiegel only consists of a thousand lines of Haskell code. We hope to
further reduce this number in the process.

9 Conclusion

We introduced Amperspiegel, and used it for a source-to-source transformation,
producing Ampersand code from ArchiMate code. To do so, the Amperspiegel
syntax was extended in a convenient manner. This shows how triple graphs can
be used to describe simple programs in a flexible, modular way.

Acknowledgements. I thank Wolfram Kahl for helping me greatly improve this
paper’s clarity in an intensive process of iterative feedback. I also thank the anony-
mous reviewers and Stef Joosten for their comments on an earlier version of this paper.
Supported by the Austrian Science Fund (FWF) project Y757.

176 S.J.C. Joosten

References

1. van den Brand, M., Visser, E.: Generation of formatters for context-free languages.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 5(1), 1–41 (1996)

2. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. a
language and toolset for program transformation. Sci. Comput. Program. 72(1),
52–70 (2008)

3. Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog+/-: questions and answers. In:
Proceedings of the Fourteenth International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 682–685 (2014)

4. Joosten, S.: Software development in relation algebra with Ampersand. In: Pous,
D., Struth, G., Höfner, P. (eds.) RAMiCS 2017. LNCS, vol. 10226, pp. 177–192.
Springer, Cham (2017)

5. Kahl, W.: Algebraic graph derivations for graphical calculi. In: d’Amore, F., Fran-
ciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS, vol. 1197, pp. 224–
238. Springer, Heidelberg (1997). doi:10.1007/3-540-62559-3 19

6. Kats, L.C., Visser, E.: The Spoofax language workbench: rules for declarative spec-
ification of languages and ides. In: ACM SIGPLAN Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA 2010), vol. 45, pp.
444–463. ACM (2010)

7. Klint, P., van der Storm, T., Vinju, J.: RASCAL: a domain specific language for
source code analysis and manipulation. In: Proceedings of the 2009 9th IEEE Inter-
national Working Conference on Source Code Analysis and Manipulation, pp. 168–
177. SCAM 2009 (2009). http://dx.doi.org/10.1109/SCAM.2009.28

8. Lankhorst, M.M., Proper, H.A., Jonkers, H.: The architecture of the ArchiMate
language. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer,
P., Ukor, R. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 367–380. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-01862-6 30

9. Robertson, E.L.: Triadic Relations: An Algebra for the Semantic Web. In: Bussler,
C., Tannen, V., Fundulaki, I. (eds.) SWDB 2004. LNCS, vol. 3372, pp. 91–108.
Springer, Heidelberg (2005). doi:10.1007/978-3-540-31839-2 8

http://dx.doi.org/10.1007/3-540-62559-3_19
http://dx.doi.org/10.1109/SCAM.2009.28
http://dx.doi.org/10.1007/978-3-642-01862-6_30
http://dx.doi.org/10.1007/978-3-540-31839-2_8

Software Development in Relation
Algebra with Ampersand

Stef Joosten1,2(B)

1 Open Universiteit Nederland, Postbus 2960, 6401 DL Heerlen, The Netherlands
stef.joosten@ou.nl

2 Ordina NV, Nieuwegein, The Netherlands

Abstract. Relation Algebra can be used as a programming language
for building information systems. This paper presents a case study to
demonstrate this principle. We have developed a database-application for
legal reasoning as a case study, of which a small part is discussed in this
paper to illustrate the mechanisms of programming in Relation Algebra.
Beside being declarative, relation algebra comes with attractive promises
for developing big software. The compiler that was used for this case
study, Ampersand, is the result of an open source project. Ampersand
has been tried and tested in practice and is available as free open source
software.

Keywords: Relation algebra · Software development · Legal reasoning ·
Information systems design · Ampersand · MirrorMe · Big software

1 Introduction

This paper investigates how relation algebra can be used as a programming
language for information systems. A compiler, Ampersand [21], is used to compile
concepts, relations and rules into a working database-application. Ampersand is
a syntactically sugared version of heterogeneous relation algebra [25]. We present
a case study to demonstrate programming in relation algebra and its impact on
the software development process. The case study takes the reader by the hand in
the thinking process of a software developer who programs with relation algebra.

The use of relation algebra as a programming language is not new. It stands
in the tradition of relation algebra [19], logic programming [18], database appli-
cation programming [6], and formal specification of software. Ampersand uses
these ideas to compile relation algebra to working software, an idea which is
also found in RelView [4] by Berghammer (Univ. of Kiel). Some differences with
earlier programming languages are discussed in Sect. 6, after presenting the case
study.

The user may regard Ampersand as a programming language, especially
suited for designing the back-end of information systems. The axioms of Tarski
can be used to manipulate expressions in a way that preserves meaning [34].
This makes Ampersand a declarative language.
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 177–192, 2017.
DOI: 10.1007/978-3-319-57418-9 11

178 S. Joosten

Our case study shows an argument assistant for legal professionals, which was
built as innovation project at Ordina. The purpose of this argument assistant is
to support legal professionals in constructing a legal brief1. The challenge is to
create a program that consists of relation algebra as much as possible. In doing
so, we hope to learn more about software development in relation algebra.

Section 2 introduces Ampersand and its computational semantics. Section 3
introduces a theory of legal reasoning, which was developed for argument assis-
tance. Section 4 discusses the programming mechanism in the application, and
Sect. 5 visualizes that mechanism. Section 6 reflects on software development in
Ampersand. It also provides an overview of the use of Ampersand in practice
and an outlook to its further development.

2 Ampersand

In this section we explain the basics of Ampersand. The reader is expected
to have sufficient background in relation algebra, in order to understand the
remainder of this paper.

The core of an Ampersand-script is a tuple 〈H,R,C,T〉, which consists of a
set of rules H, relations R, concepts C, and a type function T. Ampersand-scripts
are interpreted by the compiler as an information system. The rules constitute
a theory in heterogeneous relation algebra. They constrain a body of data that
resides in a database. The Ampersand-compiler generates a database from rela-
tions in the script. A database-application2 assists users to keep rules satisfied
throughout the lifetime of the database. It is also generated by Ampersand.

A rule is an equality between two terms. Terms are built from relations.
Ampersand interprets every relation as a finite set of pairs, which are stored in
the database. The phase in which Ampersand takes a script, and turns it into
a database, is what we will refer to as compile-time. The phase in which a user
interacts with the database, is what we will refer to as run-time. At run-time,
Ampersand can decide which rules are satisfied by querying the database. The
compiler generates all software needed to maintain rules at run-time. If a rule is
not satisfied as a result of data that has changed, that change is reverted (rolled
back) to maintain a state in which all rules are satisfied. Changes to the database
are not specified by the software developer, but generated by the compiler. Rules
in Ampersand are maintained rather than executed directly.

Atoms are values that have no internal structure, meant to represent data
elements in a database. From a business perspective, atoms are used to represent
concrete items of the world, such as Peter, 1, or the king of France. By

1 A brief is a document that is meant to summarize a lawsuit for the judge and
counterparty. It provides legal reasons for claims in a lawsuit based on regulations,
precedents, and other legally acceptable sources. It shows how the reasoning applies
to facts from the case.

2 Ampersand generates an application that consists of a relational database and inter-
face components. Currently this application runs server-side on a PHP/MySQL plat-
form and on a web-browser on the client-side.

Software Development in Relation Algebra with Ampersand 179

convention throughout the remainder of this paper, variables a, b, and c are
used to represent atoms. The set of all atoms is called A. Each atom is an
instance of a concept.

Concepts (from set C) are names we use to classify atoms in a meaningful
way. For example, you might choose to classify Peter as a person, and 074238991
as a telephone number. We will use variables A, B, C, D to represent concepts.
The term IA represents the identity relation of concept A. The expression a ∈ A
means that atom a is an instance of concept A. In the syntax of Ampersand,
concepts form a separate syntactic category, allowing a parser to recognize them
as concepts. Ampersand also features specialization. Specialization is needed to
allow statements such as: “An orange is a fruit that”. Specialization is not
relevant for the remainder of this paper.

Relations (from set R) are used in information systems to store facts. A fact
is a statement that is true in a business context. Facts are stored and kept as data
in a computer. As data changes over time, so do the contents of these relations.
In this paper relations are represented by variables r, s, and d. We represent the
declaration of a relation r by nm〈A,B〉, in which nm is a name and A and B are
concepts. We call A the source concept and B the target concept of the relation.
The term V[A×B] represents the universal relation over concepts A and B.

The meaning of relations in Ampersand is defined by an interpretation func-
tion I. It maps each relation to a set of facts. Furthermore, it is a run-time
requirement that the pairs in r are contained in its type:

〈a, b〉 ∈ I(nm〈A,B〉) ⇒ a ∈ A ∧ b ∈ B (1)

Terms are used to combine relations using operators. The set of terms is
called T. It is defined by:

Definition 1 (terms).
The set of terms, T, is the smallest set that satisfies, for all r, s ∈ T, d ∈ R and
A,B ∈ C:

d ∈ T (every relation is a term) (2)
(r ∩ s) ∈ T (intersection) (3)
(r − s) ∈ T (difference) (4)

(r; s) ∈ T (composition) (5)
r� ∈ T (converse) (6)
IA ∈ T (identity) (7)

V[A×B] ∈ T (full set) (8)

Throughout the remainder of this paper, terms are represented by variables r, s,
d, and t. The type of a term r is a pair of concepts given by T(r). T is a partial
function that maps terms to types. If term r has a type, this term is called type
correct. The Ampersand compiler requires all terms to be type correct, or else it

180 S. Joosten

will not generate any code. The type function and the restrictions it suffers are
discussed in [16]. However, for the remainder of this paper this is irrelevant.

The meaning of terms in Ampersand is an extension of interpretation function
I. Let A and B be finite sets of atoms, then I maps each term to the set of pairs
for which that term stands.

Definition 2 (interpretation of terms).
For every A,B ∈ C and r, s ∈ T

I(r) = {〈a, b〉| a r b} (9)
I(r ∩ s) = {〈a, b〉| 〈a, b〉 ∈ I(r) and 〈a, b〉 ∈ I(s)} (10)
I(r − s) = {〈a, b〉| 〈a, b〉 ∈ I(r) and 〈a, b〉 /∈ I(s)} (11)
I(r; s) = {〈a, c〉| for some b, 〈a, b〉 ∈ I(r) and 〈b, c〉 ∈ I(s)} (12)
I(r�) = {〈b, a〉| 〈a, b〉 ∈ I(r)} (13)
I(IA) = {〈a, a〉| a ∈ A} (14)

I(V[A×B]) = {〈a, b〉| a ∈ A, b ∈ B} (15)

Ampersand has more operators than the ones introduced in Definition 2: the
complement (prefix unary −), Kleene closure operators (postfix + and ∗), left-
and right residuals (infix \ and/), relational addition (infix †), and product (infix
×). These are all expressible in the definitions above, so we have limited this
exposition to the operators introduced above.

The complement operator is defined by means of the binary difference oper-
ator (Eq. 4).

T(r) = 〈A,B〉 ⇒ r = V[A×B] − r (16)

This definition is elaborated in [34].
A rule is a pair of terms r, s ∈ T with T(r) = T(s), which is syntactically

recognizable as a rule.

RULE r = s

This means I(r) = I(s). In practice, many rules are written as:

RULE r ⊆ s

This is a shorthand for

RULE r ∩ s = r

We have enhanced the type function T and the interpretation function I to cover
rules as well. If T(r) = T(s) and T(s) = 〈A,B〉:

T(RULE r = s) = 〈A,B〉 (17)
T(RULE r ⊆ s) = 〈A,B〉 (18)
I(RULE r = s) = I(V[A×B] − ((s − r) ∪ (r − s))) (19)
I(RULE r ⊆ s) = I(V[A×B] − (r − s)) (20)

Software Development in Relation Algebra with Ampersand 181

We call rule r satisfied when I(RULE r = s) = I(V[A×B]). As the popula-
tion of relations used in r changes with time, the satisfaction of the rule changes
accordingly. A software developer, who conceives these rules, must consider how
to keep each one of them satisfied. We call a rule violated if it is not satisfied. The
set I((s − r) ∪ (r − s)) is called the violation set of RULE r = s. To resolve vio-
lations means to change the contents of relations such that the rule is satisfied3.
Each pair in the violation set of a rule is called a violation of that rule.

The software developer must define how to resolve violations when they
occur. She does so by inserting and/or deleting pairs in appropriately chosen
relations. Whatever choice she makes, she must ensure that her code yields data
that satisfies the rules. When we say: “rule r specifies this action” we mean that
satisfaction of rule r is the goal of any action specified by rule r.

3 Conceptual Analysis

As a case study, an argument assistance system, MirrorMe, was built. We have
chosen to implement the ideas of Toulmin [29], because his book “The uses of
Arguments” is still one of the most influential works in the area of legal argument
management4. Toulmin is regarded as the first scholar in modern history to
come up with a usable theory of argumentation. Recent work typically draws on
Toulmin, so his doctrine offers a good starting point. Toulmin’s ideas have been
implemented before, for example in a tool called ArguMed [30].

Software systems that support legal arguments have been around for many
decades. Verheij [31] distinguishes between argument assistance systems and
automated reasoning systems. Automated reasoning has never gained wide
acceptance for making legal decisions, because lawyers and judges alike feel that
human judgment should be at the core of any legal decision. Attempts to apply
mathematical logic to legal judgments have had limited impact for similar rea-
sons [23]. Legal reasoning differs from logic reasoning because of the human
judgments that are involved. The literature on legal reasoning [17] makes it
quite clear why mathematical logic alone does not suffice. Argument assistance
systems [32] have been more successful, because they respect the professional
freedom of legal professionals to construct their own line of argumentation. Such
systems offer help in many different ways. They can help by looking up legal
references, jurisdiction from the past, scholarly works etc. They can also help to
construct and validate arguments by keeping arguments and evidence organized.
They can store, disclose and share legal evidence.

In our case study we use logic to reason about the correctness of a pro-
gram. The argumentation principles of Toulmin are implemented in logic rather
than replaced by logic. The structure of MirrorMe was designed by conceptu-
ally analysing ideas of Toulmin, such as claim, warrant, argument, and rebuttal.
They appear in MirrorMe as relations. The Ampersand compiler generates a
3 To restore invariance is sometimes used as a synonym to resolving violations. Conse-
quently, a rule is sometimes called invariant.

4 Thanks to Elleke Baecke for pointing us towards this source.

182 S. Joosten

Statement
o stmtTmplText : StmtText
o resetS : Prop
o valid : Case
o false : Case
o true : Case
o stmtShowText : StmtText
o observed : Moment
o evidence : Evidence
o legalGround : LegalGround
o template : Template
o phrasing : Term
o madeBy : Actor
o arg : Term

relevant
**

Case
o created : Moment
o owner : Actor
o caseType : CaseType

true

0-1*

false

0-1

*

valid

0-1

*

Template
o tmplParsedText : StmtText
o descriptor : StmtText
o class : Concept
o warrant : LegalGround
o label : Identifier

template
0-1

*

Documentevidence
*

*

Actorclaimant
**

Argument
o reason : Statement
o supports : Statement supports

0-1
*

reason

0-1*

LegalGroundlegalGround
*

*

Claim
o object : LegalThing
o states : Statement
o case : Case

states
0-1*

ofClaim *
*

case

0-1

*

scope

*

*

IdentifiertmplPlaceholder
**

Binding
o refShowPhrase : Phrase
o phrase : Phrase
o evidence : Evidence
o scope : Case
+ placeholder : Identifier

binds
**

inStatement
*

*

substituted **

scope

0-1

*

Concept

class

*

*

Fig. 1. Conceptual data model

conceptual data model to help the software developer to oversee all relations.
Even though our case study yields a model that is a bit too large for this paper,
Fig. 1 gives a good impression of what it looks like.

To convey the flavour of software development in relation algebra, it suffices
to discuss a tiny part of the whole program. Therefore, we shall discuss the
part of the conceptual model that is used in the sequel. The context in which a
user creates arguments and reasons about them is a legal case. For this reason,
validity, falsehood and truth of statements are related to the case. A statement
is a phrase in natural language that can be either true or false. An example
is “The employee, John Brown, is entitled to 50 Euros”5. In MirrorMe,
a user can define a template, such as “The employee, [emp], is entitled
to [increase]”. The strings “[emp]” and “[increase]” are called placehold-
ers. The reason for using placeholders is that legal rules are stated in general
terms, e.g. “Every employee is entitled to an increase in salary”. The
user of MirrorMe will pick a legal text (from a source he trusts) and substitute
parts of that text by placeholders. When the facts are known, the argument can
be completed by substituting placeholders by actual phrases.

It is precisely this substitution process that we have chosen to describe in
this paper as a case study in programming with relation algebra.

4 Programming in Relation Algebra

At this point we have reached the core of this case study. We focus on the substi-
tution of placeholders when their values change. By focusing on this tiny detail,
we can discuss the mechanics “under the hood” of the application generated by
Ampersand.

5 This type of statement is typical for cases. It is valid only in the case where this
particular John Brown is known. In other cases, where John Brown is unknown, this
statement is meaningless.

Software Development in Relation Algebra with Ampersand 183

First we show how the computer solves the issue by looking at an excerpt of a
log file (Fig. 2). It shows an alternating sequence of the computer (ExecEngine)
mentioning a rule, followed by insert or delete actions to satisfy that rule. Then
we zoom in further, one rule at a time, to explain precisely what each rule looks
like and how programming is done. We then discuss the same flow of events by
means of a graph (Fig. 3) in which these rules and actions are nodes. This graph
serves as an event flow diagram to illustrate the process behind Fig. 2.

ExecEngine run started

ExecEngine satisfying rule ’signal phrase update’

InsPair(resetS,Statement,Stat623,Statement,Stat623)

ExecEngine satisfying rule ’flush substitutions’

DelPair(substituted,Binding,Bind625,Statement,Stat623)

ExecEngine satisfying rule ’reset statement text’

InsPair(stmtShowText,Statement,Stat623,StmtText,

The employee, [emp], is entitled to [increase].)

ExecEngine satisfying rule ’done initializing’

DelPair(resetS,Statement,Stat623,Statement,Stat623)

ExecEngine satisfying rule ’substitute’

InsPair(stmtShowText,Statement,Stat623,StmtText,

The employee, James, is entitled to [increase].)

InsPair(substituted,Binding,Bind625,Statement,Stat623)

ExecEngine satisfying rule ’fill shownPhrase’

InsPair(shownPhrase,Binding,Bind625,Phrase,James)

ExecEngine run completed

Fig. 2. Log file of a substitution

The log file of Fig. 2 has been taken from a computer that carries out the
procedure to satisfy all rules. The machine will only act on rules that are violated.
The first rule to be violated is “signal phrase update”, in which the computer
signals that something or someone has made a change in relation phrase. The
procedure ends by doing the necessary substitutions, ensuring that all statements
have the actual phrase of a placeholder in their text.

Let us now study the actual rules to see how these rules cause the right
actions to take place in the correct order. We will follow the log file from Fig. 2
in reverse direction, reasoning backwards from the result.

Whether a placeholder has been edited can be observed by comparing its
new phrase to the shown phrase6. The phrase of a placeholder is kept in the
relation phrase. The shown phrase is kept in the relation shownPhrase. The sole
purpose for having the relation shownPhrase is to detect a change in phrase. Let
us introduce differB to represent the bindings with an updated phrase:

6 Note that we use the notion “the phrase of a placeholder” to indicate a pair from
phrase�; placeholder .

184 S. Joosten

differB = IBinding ∩ shownPhrase; IPhrase ; phrase�

When the phrase of a placeholder changes, that phrase must be updated
in every statement in which the placeholder was used. That update action is
specified in Sect. 4.2. Section 4.1 specifies how shownPhrase is made equal to
phrase, after all necessary substitutions are done.

4.1 Rule: Fill shownPhrase

RULE (IBinding ∩ substituted/inStatement); phrase ⊆ shownPhrase

This rule says that for each binding that has been substituted in every statement
it is used in, the phrase must be equal to the shownPhrase. When violated, it is
satisfied by inserting all violations into shownPhrase.

4.2 Rule: Substitute

Let us now look into the process of substituting placeholders by phrases. The
relation tmplParsedText contains the original text, provided by a user. Place-
holders are specified by enclosing them in brackets, e.g. “The employee, [emp],
is entitled to [increase]”. The text in which a placeholder has been sub-
stituted by a phrase, e.g. “The employee, John Brown, is entitled to 50
Euros”, is kept in relation stmtShowText . Each substitution that has been done
in a statement corresponds to a binding-statement pair in the relation substi-
tuted . This relation keeps track of all substitutions. After a placeholder has been
substituted, it no longer occurs in stmtShowText . This poses a problem if we want
to substitute the new phrase in stmtShowText . For the placeholder that defines
the place in the text where to substitute, is no longer in that text. Therefore,
substitutions must be done in the original text of the statement. All placeholders
in that text must then be substituted again. So, the text in stmtShowText must
first be reset to the original text from tmplParsedText . To keep track of sub-
stitutions correctly, all corresponding binding-statement pairs must be removed
from the relation substituted . Only after resetting is done, the substitutions can
be put back in place with the new phrases filled in.

We define a relation resetS to register the statements that are being reset. In
statements that are not being reset, IStatement − resetS , substitutions can take
place. All placeholders that have a binding with a phrase can be substituted.
The following rule specifies the action of substituting placeholders.

RULE
(IBinding ∩ phrase; phrase�); inStatement ; (IStatement − resetS)

⊆
substituted

Violations of this rule are binding-statement pairs, of which the binding has a
phrase and the statement is not being reset. Hence, this rule can be satisfied by
inserting every violation into the relation substituted.

Software Development in Relation Algebra with Ampersand 185

4.3 Rule: Done Initializing

Resetting a statement is done when two conditions are met. First, every state-
ment that is (still) being reset may have no bindings in the relation substituted .
Second, the text in stmtShowText corresponds to the text in tmplParsedText . So
the rule that specifies the action is:

RULE
(resetS − inStatement�; substituted) ∩
template; tmplParsedText ; stmtShowText�

⊆
resetS

Violations of this rule are statements that are no longer being reset, but are still
in the relation resetS . The appropriate action is to remove them from resetS .

4.4 Rule: Reset Statement Text

To satisfy one condition from Sect. 4.3, the text in stmtShowText must be made
equal to the original text in the template. The action is specified by the following
rule:

RULE resetS ; template; descriptor ⊆ stmtShowText

Violations of this rule are descriptors of templates that belong to statements
that are being reset. These violations can be resolved by inserting them in
stmtShowText .

4.5 Rule: Flush Substitutions

To satisfy the other condition from Sect. 4.3, the following rule specifies the
action to be taken:

RULE V[Binding×Binding]; inStatement ; resetS ⊆ substituted

Every binding in a statement that is being reset needs to be removed from the
relation substituted . The software developer can implement this by deleting all
violations of this rule from the relation substituted .

4.6 Rule: Signal Phrase Update

When the phrase in a binding is edited and the new phrase differs from the
shown phrase, this signals that substitutions must be flushed (see Sect. 4.5),
that the statement text must be reset to the original text (see Sect. 4.4), that
the reset-state must be revoked (see Sect. 4.3), that substitution must take
place (see Sect. 4.2), and finally that the phrase detection is switched off again

186 S. Joosten

(see Sect. 4.1). The initial condition occurs if a binding has been used (sub-
stituted) in a statement, and the binding satisfies differB . The following rule
specifies the action that resetting a statement can start:

RULE IStatement ∩ inStatement�; differB ; substituted ⊆ resetS

Violations of this rule are statements of which a substitution must be re-done.
The software developer can have these violations added to resetS to satisfy this
rule. In doing so, the chain of events is triggered that ends when all rules are
satisfied.

5 Programming in the Small

Let us take a closer look at the programming process. Working in relation alge-
bra, a software developer must think about satisfying constraints. She considers
how violations arise from changing content of relations. And she thinks about
insert and delete actions to restore these violations. In our case study, we have
reasoned with the event types: Ins 〈relation〉 and Del 〈relation〉7. Table 1 shows
which event types may violate which rules. Recall Sect. 4, where the process of
substitution started by updating the value of a placeholder. This meant doing an
insert after a delete on the relation phrase, causing the updated phrase to appear
in differB . That was signaled by the rule “signal phrase update”. In general, the
software developer must decide how to resolve violations that occur as a result
of some event. This can be done by choosing among the duals of the event types
from Table 1. By systematically swapping Ins for Del and vice-versa, the table
shows by which type of events violations can be restored. To ensure progress, the
software developer will pick a different relation for restoring than the relation
that causes the violation. The software developer can draw a graph that contains
all information from Table 1 and the dual information. Figure 3 shows part of
that graph. A circle represents a rule, a rectangle represents an event type, and
the arrows connect them. The software developer can work her way through the

Table 1. By which type of events can rules be violated?

Rule Event types

signal phrase update Ins inStatement , Ins differB , Ins substituted , Del resetS

flush substitutions Ins inStatement , Ins resetS , Del substituted

reset statement text Ins resetS , Ins template, Ins descriptor , Del stmtShowText

done initializing Ins resetS , Del inStatement , Del substituted , Ins template, Ins
tmplParsedText , Ins stmtShowText

substitute Ins phrase, Ins inStatement , Del resetS , Del substituted

fill shownPhrase Ins substituted , Del inStatement , Del shownPhrase, Ins phrase

7 Ins and Del are called each others duals.

Software Development in Relation Algebra with Ampersand 187

Fig. 3. Event flow

graph, to write code to restore invariants for every event type that might cause
violations. Figure 3 shows just that part of the graph that corresponds with the
case study in this article.

6 Reflection

Ampersand is built on the belief that software development should be automated.
It uses rules to represent requirements, in the firm belief that consistent require-
ments are essential to the software development process [5]. Being fully aware of
the fate of formal methods in computer science, Ampersand is founded on the
belief that software development must be done more formally. So Ampersand is
building further on the foundations laid by formal specification methods such
as Z [26] and Alloy [14]. In contrast however with such methods, Ampersand
is equipped with a software generator that generates an information system.
Thus, specifying in Ampersand is developing software at the same time. Amper-
sand complements the RelView approach [4], which also generates software but
is stronger in specifying complex computational problems. In retrospect we see
that programming in relation algebra yields an unconventional programming
experience. This experience consists of inventing rules and choosing event types

188 S. Joosten

for resolving violations, as illustrated by the case study. To relate this experience
to programming as we know it, Sect. 6.1 makes a comparison with established
programming languages (prior art). Section 6.2 summarizes the contributions to
software development claimed by Ampersand. Section 6.3 summarizes the use of
Ampersand in practice and Sect. 6.4 gives an outlook on research that is required
in the near future.

6.1 Comparison

This section compares Ampersand with existing programming paradigms by
mentioning the most important differences and similarities.

The first to compare with is the imperative programming paradigm, known
from popular languages such as Java [8] and C++ [27]. Our case study cannot be
called imperative, because the notion of control flow in imperative languages is
very different. In imperative languages, the control flow is defined by the software
developer. In this case study, the control flow emerges as a result of changes in
relation content as illustrated by Fig. 3.

The case study also differs from the logic programming paradigm of Pro-
log [18] and of all rule engines that can be considered to be an offspring of
Prolog. A difference lies in the way rules are interpreted. In logic programming,
a program consists of Horn-clauses and a resolution-proof is constructed on run-
time. The software developer works with notions such as backtracking (backward
chaining) and unification, which are absent in Ampersand. Ampersand is not
restricted to Horn-clauses; any relation-algebraic equation over relations can be
used as a rule.

The case study also differs from functional programming, of which Haskell
and Scala are prominent representants. A core idea in functional programming
is to evaluate a program as a function from input to output [2]. A functional
program consists of function definitions, that are evaluated by a term- or graph-
rewriter, using various strategies such as lazy or eager evaluation. In contrast,
one might interpret our case study as a relaxation of the constraint that every-
thing is a function. In relation algebra, everything is a relation and a function
is a restricted form of a relation. A similarity to functional programming is
the declarative style, because substitution of equal terms without changing the
semantics is a property we see in both worlds.

A difference with database programming is found in the type of algebra that
is used. Relational databases are founded on relational algebra [6]. They are typi-
cally programmed in SQL. In contrast with database programming, Ampersand
implements heterogeneous relation algebra [25]. A software developer working
with relational algebra sees n-ary tables, while Ampersand is restricted to binary
relations. The comparison between relational algebra and relation algebra might
relate to comparing relational databases with graph databases [33], although no
literature was found to corroborate this.

In the tradition of formal specification, there are many relational approaches,
such as Z [26], CSP [24], LOTOS [10], VDM [12]. Where formal specification

Software Development in Relation Algebra with Ampersand 189

techniques typically analyse and diagnose specifications, Ampersand actually
synthesizes (generates) information systems.

If Ampersand represents a programming style at all, we might call it “a
relation-algebraic style of programming”. That style would be characterized by
a programmer who specifies constraints and a computer trying to satisfy these
constraints by resolving violations.

6.2 Contribution

Contributions of Ampersand to the software development process are:

– Ampersand has the usual benefits of a declarative language: This means that
terms can be manipulated by Tarski’s axioms without changing their seman-
tics [34]. It also means that the order in which rules are written has no conse-
quence for their semantics.

– Heterogeneous relation algebra has a straightforward interpretation in natural
language [13]. We have used that to formalize business requirements without
exposing business stakeholders to any formal notation.

– Heterogeneous relation algebra in Ampersand is statically typed [16]. There is
much evidence for significantly lower software maintenance cost due to static
typing as opposed to dynamic typing [7,22].

– Heterogeneous relation algebra is well studied. As a consequence, many tools
that are readily available in the public domain can be put to good use. For
executives of large organizations it can be reassuring that the formalism is free
of childhood diseases.

– Relation algebra facilitates composing software from reusable components,
because a program consists of rules. Since the union of sets of rules is a set
of rules, compositionality comes from the union operator. In practice, when
components are brought together in larger assemblies, hardly any adjustments
have to be made8.

Ampersand also has disadvantages. It appears to be difficult to learn for large
groups of software professionals. Research [20] shows that this is largely due to
deficits in prerequisite knowledge, especially skills in discrete mathematics. Also,
programming appears to be difficult in practice.

6.3 Ampersand in Practice

Ampersand has been used in practice both in education (Open University of
the Netherlands) and in industry (Ordina and TNO-ICT). For example, Ordina
designed a proof-of-concept in 2007 of the INDIGO-system. This design was
based on Ampersand, to obtain correct, detailed results in the least amount of
time. Today INDIGO is in use as the core information system of the Dutch
immigration authority, IND. More recently, Ampersand was used to design an
8 This is (unsubstantiated) experience collected from projects we have done with
Ampersand.

190 S. Joosten

information system called DTV for the Dutch food authority, NVWA. A pro-
totype of DTV was built in Ampersand and was used as a model to build the
actual system. TNO-ICT, a major Dutch industrial research laboratory, is using
Ampersand for research purposes. For example, TNO-ICT did a study of inter-
national standardizations efforts such as RBAC (Role Based Access Control)
in 2003 and architecture (IEEE 1471-2000) [9] in 2004. Several inconsistencies
were found in the last (draft) RBAC standard [1]. TNO-ICT has also used the
technique in conceiving several patents9. At the Open University of the Nether-
lands, Ampersand is being taught in a course called Rule Based Design [13].
In this course, students use a platform called RAP, which has been built in
Ampersand [20]. RAP has been the first Ampersand-application that has run in
production.

6.4 Further Research

Further research on this topic is required to bring relation algebra still closer
to the community of practitioners. Further use of relation algebra can be made
by incorporating a model checker, such as the Alloy analyser [14], to detect
inconsistent rules. An exciting new development is Amperspiegel [15], which
brings notational flexibility at the fingertips of the user. Developments in the
Ampersand-compiler are going towards a rule-repository (written in Amper-
sand itself). This will make collaborative information systems development in
Ampersand easier, because the repository can assist in automating the software
development process further. Other research is needed towards a comprehensive
theory of information systems. Currently, there is no theory (in the mathemati-
cal meaning of the word) for information systems. In the Ampersand project, a
sub-project called “Formal Ampersand” is being conducted to achieve this goal.

References

1. ANSI, INCITS 359: Information Technology: Role Based Access Control Docu-
ment Number: ANSI/INCITS 359–2004. InterNational Committee for Information
Technology Standards (formerly NCITS) (2004)

2. Backus, J.: Can programming be liberated from the von Neumann style?: A func-
tional style and its algebra of programs. Commun. ACM 21(8), 613–641 (1978).
doi:10.1145/359576.359579

3. Berghammer, R., Ehler, H., Zierer, H.: Towards an algebraic specification
of code generation. Sci. Comput. Program. 11(1), 45–63 (1988). doi:10.1016/
0167-6423(88)90064-0

4. Berghammer, R., Neumann, F.: RelView – an OBDD-based computer alge-
bra system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.)
CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005). doi:10.1007/
11555964 4

9 e.g. patents DE60218042D, WO2006126875, EP1727327, WO2004046848, EP15-
63361, NL1023394C, EP1420323, WO03007571, and NL1013450C.

http://dx.doi.org/10.1145/359576.359579
http://dx.doi.org/10.1016/0167-6423(88)90064-0
http://dx.doi.org/10.1016/0167-6423(88)90064-0
http://dx.doi.org/10.1007/11555964_4
http://dx.doi.org/10.1007/11555964_4

Software Development in Relation Algebra with Ampersand 191

5. Boehm, B.W.: Software Engineering Economics. Advances in Computing Science
and Technology. Prentice Hall PTR, Upper Saddle River (1981)

6. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970). http://doi.acm.org/10.1145/362384.362685

7. Hanenberg, S., Kleinschmager, S., Robbes, R., Tanter, É., Stefik, A.: An empirical
study on the impact of static typing on software maintainability. Empirical Softw.
Eng. 19(5), 1335–1382 (2014). doi:10.1007/s10664-013-9289-1

8. Harms, D., Fiske, B.C., Rice, J.C.: Web Site Programming With Java. McGraw-
Hill, New York City (1996). http://www.incunabula.com/websitejava/index.html

9. IEEE: Architecture Working Group of the Software Engineering Committee: Stan-
dard 1471–2000: Recommended Practice for Architectural Description of Software
Intensive Systems. IEEE Standards Department (2000)

10. ISO: ISO 8807: Information processing systems - open systems interconnection
- LOTOS - a formal description technique based on the temporal ordering of
observational behaviour. Standard, International Standards Organization, Geneva,
Switzerland. 1st edn. (1987)

11. Jackson, D.: A comparison of object modelling notations: Alloy, UML and Z. Tech-
nical report (1999). http://sdg.lcs.mit.edu/publications.html

12. Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall Inter-
national (UK) Ltd., Hertfordshire (1986)

13. Joosten, S., Wedemeijer, L., Michels, G.: Rule Based Design. Open Universiteit,
Heerlen (2013)

14. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

15. Joosten, S.J.C.: Parsing and printing of and with triples. In: Pous, D., Struth,
G., Höfner, P. (eds.) RAMiCS 2017. LNCS, vol. 10226, pp. 159–176. Springer
International Publishing, Berlin (2017)

16. Joosten, S.M.M., Joosten, S.J.C.: Type checking by domain analysis in ampersand.
In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMICS 2015. LNCS, vol. 9348,
pp. 225–240. Springer, Cham (2015). doi:10.1007/978-3-319-24704-5 14

17. Lind, D.: Logic and Legal Reasoning. The National Judicial College Press, Beijing
(2007)

18. Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1984)
19. Maddux, R.: Relation Algebras. Elsevier Science, Studies in Logic and the Foun-

dations of Mathematics (2006)
20. Michels, G.: Development environment for rule-based prototyping. Ph.D. thesis,

Open University of the Netherlands (2015)
21. Michels, G., Joosten, S., van der Woude, J., Joosten, S.: Ampersand. In: Swart, H.

(ed.) RAMICS 2011. LNCS, vol. 6663, pp. 280–293. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-21070-9 21

22. Petersen, P., Hanenberg, S., Robbes, R.: An empirical comparison of static and
dynamic type systems on API usage in the presence of an IDE: Java vs. groovy
with eclipse. In: Proceedings of the 22nd International Conference on Program
Comprehension, ICPC 2014, pp. 212–222. ACM, New York (2014). doi:10.1145/
2597008.2597152

23. Prakken, H.: Ai & law, logic and argument schemes. Argumentation 19(3), 303–320
(2005). doi:10.1007/s10503-005-4418-7

24. Roscoe, A.W., Hoare, C.A.R., Bird, R.: The Theory and Practice of Concurrency.
Prentice Hall PTR, Upper Saddle River (1997)

http://doi.acm.org/10.1145/362384.362685
http://dx.doi.org/10.1007/s10664-013-9289-1
http://www.incunabula.com/websitejava/index.html
http://sdg.lcs.mit.edu/publications.html
http://dx.doi.org/10.1007/978-3-319-24704-5_14
http://dx.doi.org/10.1007/978-3-642-21070-9_21
http://dx.doi.org/10.1145/2597008.2597152
http://dx.doi.org/10.1145/2597008.2597152
http://dx.doi.org/10.1007/s10503-005-4418-7

192 S. Joosten

25. Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous relation algebra. In:
Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science,
pp. 39–53. Springer, New York (1997). ISBN 3-211-82971-7

26. Spivey, J.: The Z Notation: A Reference Manual. International Series in Computer
Science, 2nd edn. Prentice Hall, New York (1992)

27. Stroustrup, B.: The C++ Programming Language, 3rd edn. Addison-Wesley Pro-
fessional, Boston (1997)

28. Swart, H., Berghammer, R., Rusinowska, A.: Computational social choice using
relation algebra and relview. In: Berghammer, R., Jaoua, A.M., Möller, B. (eds.)
RelMiCS 2009. LNCS, vol. 5827, pp. 13–28. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04639-1 2

29. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cam-
bridge (1958). http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&
path=ASIN/0521534836

30. Verheij, B.: Automated argument assistance for lawyers. In: Proceedings of the
7th International Conference on Artificial Intelligence and Law, ICAIL 1999, pp.
43–52. ACM, New York (1999). doi:10.1145/323706.323714

31. Verheij, B.: Artificial argument assistants for defeasible argumentation.
Artif. Intell. 150(1), 291–324 (2003). doi:10.1016/S0004-3702(03)00107-3.
http://www.sciencedirect.com/science/article/pii/S0004370203001073

32. Verheij, B.: Virtual Arguments. On the Design of Argument Assistants for Lawyers
and Other Arguers. T.M.C. Asser Press, The Hague (2005)

33. Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., Wilkins, D.: A comparison
of a graph database and a relational database: a data provenance perspective. In:
Proceedings of the 48th Annual Southeast Regional Conference, ACM SE 2010,
pp. 42:1–42:6. ACM, New York (2010). doi:10.1145/1900008.1900067

34. van der Woude, J., Joosten, S.: Relational heterogeneity relaxed by subtyping. In:
Swart, H. (ed.) RAMICS 2011. LNCS, vol. 6663, pp. 347–361. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21070-9 25

http://dx.doi.org/10.1007/978-3-642-04639-1_2
http://dx.doi.org/10.1007/978-3-642-04639-1_2
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521534836
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20&path=ASIN/0521534836
http://dx.doi.org/10.1145/323706.323714
http://dx.doi.org/10.1016/S0004-3702(03)00107-3
http://www.sciencedirect.com/science/article/pii/S0004370203001073
http://dx.doi.org/10.1145/1900008.1900067
http://dx.doi.org/10.1007/978-3-642-21070-9_25

Allegories and Collagories for Transformation
of Graph Structures Considered as Coalgebras

Wolfram Kahl(B)

McMaster University, Hamilton, ON, Canada
kahl@mcmaster.ca

Abstract. Although coalgebras are widely used to model dynamic sys-
tems with infinite behaviours, they are actually also a more natural tool
than algebras to model the static systems that are the main subject of
the “algebraic approach” to graph transformation and model transfor-
mation: many variants of graph structures and object webs are more
easily modelled as coalgebras than as algebras. By characterising the
kinds of coalgebras that give rise to different kinds of allegories, we make
the tools of the relation-algebraic approach and also of the category-
theoretic “adhesive” “algebraic approach” available to the transforma-
tions of coalgebras.

Keywords: Relation-algebraic approach to graph transformation ·
Allegories of coalgebras · Meet-preserving relators · Adhesive categories
of coalgebras

1 Introduction

The “algebraic approach to graph transformation” (Ehrig et al. 2006) models
graph structures as unary algebras, which have nice category-theoretic proper-
ties that algebras with non-unary function symbols do not share. As a way to
make the results of the algebraic approach available to more varied structures,
the relevant category-theoretic properties have been abstracted into “adhesive
categories” (Lack and Sobocinski 2004, 2005; Ehrig et al. 2006).

It turns out that many graph-like structures that require more-or-less ad-
hoc treatments in the context of the adhesive approach can be modelled as
coalgebras. For example, the following is a signature for directed hypergraphs
where each hyperedge has a sequence (implemented using the type constructor
List) of source nodes and a sequence of target nodes, and each node is labelled
with an element of the constant set L:

sigDHG := 〈sorts: N,E
ops: src : E→ List N

trg : E→ List N
nlab : N→ L 〉

This signature is coalgebraic: The argument type of each operation is exactly
one sort. It gives rise to a coalgebra in the product category Set ×Set (details in
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 193–208, 2017.
DOI: 10.1007/978-3-319-57418-9 12

194 W. Kahl

Sect. 6). While constant sets like L are perfectly standard as results in coalgebras,
modelling labelled graphs as algebras always has to employ the trick of declaring
the label sets as additional sorts, and then considering the subcategory that
has algebras with a fixed choice for these label sorts, and morphisms that map
them only with the identity. Similarly, list-valued source and target functions
are frequently considered for algebraic graph transformation, but with ad-hoc
definitions for morphisms and custom proofs of their properties.

There is significant attention to attributed graphs in the graph transfor-
mation literature, including symbolically attributed graphs, where node and/or
edge attributes are taken from the term algebra over some term signature Σ.
The problem the algebraic approach faces here is that usually, an individual
graph forms a complete (normally finite) algebra, but here, this algebra ends up
including the infinite term algebra. This has led to ad-hoc solutions including
partitioning of the sorts and adding attribute-carrier sorts (Löwe et al. 1993), or
partitioning the function symbols (Heckel et al. 2002). The following is a natural
signature for edge-labelled (with label set ELab) and node-attributed graphs,
with symbolic attributes taken from the set of Σ terms over variables from the
carrier set for sort V:

sigSNAGΣ := 〈sorts: N,E,V
ops: src : E→N

trg : E→N
lab : E→ELab
attr : N→ TΣ V 〉

Recognising this signature as coalgebraic solves the separation between graph
structure and attribute algebra in a much more natural way, and without addi-
tional overhead.

A first exploration of this coalgebraic approach to graph structure modelling
started in (Kahl 2014, 2015), modifying the category of coalgebras by moving into
the Kleisli category of a monad, and using this monad component for modelling
symbolically attributed graphs with morphisms that can substitute for variables
occurring in attribute terms.

In the current paper we address a different angle (and do not con-
sider monadic coalgebra homomorphisms): we investigate “relational homomor-
phisms” between coalgebras. In the case of algebras, the restriction to unary sig-
natures is required to move from allegories to distributive allegories; it turns out
that for coalgebras, no corresponding restriction is necessary, producing Kleene
collagories and distributive allegories for a large class of coalgebra signatures.

After providing necessary category-theoretic notations and background on
“relational categories and their functors”, namely different flavours of allegories,
and relators, in Sect. 2, we quickly present basic concepts of algebraic graph
transformation in Sect. 3, and background on relation-algebraic “treatment” of
pushouts and pullbacks (Sect. 4) and products and sums (Sect. 5). Then we define
coalgebras and their “relational homomorphisms” in Sect. 6, and obtain allegories
of coalgebras in Sect. 7. We proceed to add join (union) and zero morphisms in

Allegories and Collagories for Transformation of Graph Structures 195

Sect. 8, and show creation of tabulations and cotabulations in Sect. 9 making a
wide range of relation-algebraic reasoning tools available for coalgebras over a
large class of relators. In Sect. 11 we provide a more practical and accessible way
to define classes of coalgebras, using more conventional signatures, and show how
these give rise to the well-behaved relators of the previous sections. In Sect. 10
we show that direct products can only be calculated componentwise in extremely
restricted circumstances.

At the time of writing, all theorems in Sects. 6–10 have mechanically-checked
calculational proofs, quite similar in style and readability to those found in (Bird
and de Moor 1997), written in the dependently-typed language Agda (Norell
2007); these are available via http://RelMiCS.McMaster.ca/RATH-Agda/.

2 Notation and Background: Categories, Allegories,
Collagories

We assume familiarity with the basics of category theory; for notation, we write
“f : A→ B” to declare that morphism f goes from object A to object B, and
use “;” as the associative binary forward composition operator that maps two
morphisms f : A→ B and g : B →C to (f ; g) : A→ C. The identity morphism
for object A is written IA, or frequently just I where the object can be inferred
from the context.

We assign “;” higher priority than other binary operators, and assign unary
operators higher priority than all binary operators.

The category of sets and functions is denoted by Set .

A functor F from one category to another maps objects to objects and
morphisms to morphisms respecting the structure generated by →, I, and com-
position; we denote functor application by juxtaposition both for objects, F A,
and for morphisms, F f .

A bifunctor is a functor where the source is a product category. An important
example is the coproduct bifunctor + : C×C→C for a category C with a choice
of coproducts. Functors with more than two arguments can be handled similarly,
but will be considered as taking arguments from right-nested binary products.

An OCC, short for “ordered category with converse” (Kahl 2004), is a cate-
gory where each homset is partially ordered via morphism inclusion �, and that
has an involutory converse operator � that induces a contravariant identity-on-
objects endofunctor, that is, (R�)� = R and (R;S)� = S�;R�.

In an OCC, a morphism F : A→ B is called a mapping iff it is

– univalent, that is, F�;F � I, and
– total, that is, I � F ;F�.

Dually, F is called bijective iff it is

– injective, that is, F ;F� � I, and
– surjective, that is, I � F�;F .

http://RelMiCS.McMaster.ca/RATH-Agda/

196 W. Kahl

An allegory (Freyd and Scedrov 1990) is an OCC where each homset has
binary meets � with respect to inclusion �, and where the Dedekind rule holds:

Q � R ;S � (R � Q ;S�) ; (S � R
�;Q)

The allegory (or OCC, or collagory. . .) of sets and relations is denoted by Rel ,
and has Set as its subcategory of mappings.

The language of allegories where each homset is a distributive lattice, with
binary join operator �, and where composition distributes from both sides over
binary joins has just enough expressivity to define the basic gluing constructions
used for algebraic graph transformation; we therefore refer to such allegory as a
collagory, from the Greek κóλλα for glue (Kahl 2011).

With respect to the hierarchy introduced by Freyd and Scedrov (1990), col-
lagories are an intermediate structure between allegories and distributive alle-
gories, which can now be seen as collagories with zero morphisms, that is, where
each homset has a least morphism ⊥ that also acts as left- and right-zero for
composition.

A Kleene collagory (Kahl 2011) is a collagory that has a Kleene star (axioma-
tised following Kozen (1994)) on each homset of endomorphisms. (A Kleene col-
lagory is therefore not necessarily a Kleene category, or typed Kleene algebra
following Kozen (1998), since it may not have zero morphisms.)

A division allegory (Freyd and Scedrov 1990) is a distributive allegory with
left- and right residuals of composition. The two residuals are dual to each other;
we show only the definition of right residual (Q \ S) : B → C of two morphisms
Q : A→ B and S : A→ C:

X � Q \ S iff Q;X � S

A relator1 is a functor between OCCs that preserves inclusion and commutes
with converse. (Bird and de Moor (1997, Theorem 5.1) prove that, for tabu-
lar allegories, these two conditions are equivalent, but we prefer to avoid the
additional assumptions in favour of added generality.)

Lemma 2.1. Each relator R satisfies the following properties:

1. If the morphism F is univalent, respectively total, injective, or surjective,
then RF is univalent, respectively total, injective, or surjective, too. �2

2. Relators on allegories sub-distribute over meets:

R(R �1 S) �2 (R R) �2 (R S)�

If also R(R �1 S) 	2 (R R) �2 (R S), then we say that R preserves meets.

1 Originally introduced as “I-functor” by Kawahara (1973).
2 These “check marks” indicate that the associated fact has a proof in the Agda

development, with RATH-Agda theory location possibly visible in PDF readers sup-
porting “tool tips”.

http://RelMiCS.McMaster.ca/RATH-Agda/

Allegories and Collagories for Transformation of Graph Structures 197

3. Between collagories, relators super-distribute over joins:

R(R �1 S) 	2 (R R) �2 (R S)�

If also R(R �1 S) �2 (R R) �2 (R S), then we say that R preserves joins.
4. Between Kleene collagories, star sub-distributes over relators:

(R R)∗2 �2 R(R∗1)�

5. Between division allegories, relators sub-distribute over division:

R(Q \1 S) �2 (R Q) \2 (R S)�

If also R(Q \1 S) 	2 (R Q) \2 (R S), then we say that R preserves right-
residuals. ��

3 Background: Algebraic Graph Transformation

Mainly for the purpose of motivating our attention to pushouts and pullbacks, we
now quickly highlight the central concepts of the algebraic approach to graph
transformation. (However, the details of this section are only relevant for the
statement of Theorem 11.5 and the material thereafter.)

The double-pushout (DPO) approach to high-level rewriting (Ehrig et al.
2006) uses transformation rules that are spans L l� G Rr� in an appro-
priate category between the left-hand side L, gluing object G, and right-hand
side R. A direct transformation step starts from a match m to an application
object A, identifies (if possible) a host object H as pushout complement for
G l�L Am� , and then concludes by constructing the pushout for the span

H h� G Rr� , producing the result object B.

L l� G r � R

m

�

h

�

n

�
A a� H b � B

Abstracting this approach from concrete categories of graphs to general “high
level replacement (HLR) systems” started notably with Ehrig et al. (1991);
recently, Lack and Sobocinski (2004, 2005) introduced adhesive categories as
a useful abstraction for frequently studied HLR properties. The following two
definitions are taken from there:

Definition 3.1. A van Kampen square (i) is a pushout which satisfies the fol-
lowing condition: given a commutative cube (ii) of which (i) forms the bottom
face and the back faces are pullbacks (where C is considered to be in the back),
the front faces are pullbacks if and only if the top face is a pushout.

198 W. Kahl

��

Definition 3.2. A category C is said to be adhesive if

– C has pushouts along monomorphisms;
– C has pullbacks;
– pushouts along monomorphisms are van Kampen squares. ��

Two weaker variants are given as Definitions 4.9 and 4.13 by Ehrig et al. (2006):

Definition 3.3. A category C with a morphism class M is called a (weak)
adhesive HLR category if

– M is a class of monomorphisms closed under isomorphisms, composition, and
decomposition (i.e., if f ; g ∈ M and g ∈ M, then f ∈ M);

– C has pushouts and pullbacks along M-morphisms, and M-morphisms are
closed under pushouts and pullbacks;

– C has pullbacks;
– pushouts in C along M-morphisms are (weak) van Kampen squares, where

in a weak van Kampen square, the van Kampen square property holds for all
commutative cubes with M,F ∈ M or M,a, b, d ∈ M. ��

The categories of sets with functions Set and of standard graphs with graph
homomorphisms are adhesive categories, while other categories of interest are
only adhesive HLR or even only weak adhesive HLR (Ehrig et al. 2006, Theo-
rem4.6 & Sect. 4.2).

For DPO rewriting in a (weak) adhesive HLR categories (C,M), both rule
morphisms l and r are restricted to belong to M.

4 Tabulations and Cotabulations

Tabulations and cotabulations are the “relation-algebraic essence” of pullbacks
and pushouts, and the relation-algebraic approach to pullbacks and pushouts
is practically useful since it not only produces the theoretical results of the

Allegories and Collagories for Transformation of Graph Structures 199

category-theoretic universal characterisations, but also produces construction
mechanisms that are useful for implementations.

The term “tabulation” appears to have been coined by Freyd and Scedrov
(1990); we provide an equivalent characterisation here:

Definition 4.1. In an allegory A, the span B P� A Q�C is called a tabula-
tion of V : B →C if and only if the following equations hold:

P
�;Q = V

P�;P = I � V ;V �

Q�;Q = I � V �;V P ;P� � Q;Q� = IA. ��

A

P Q

B V C
If a co-span B R�D S� C of mappings is given, then, if a tabulation of R;S�

exists, it is a pullback in the category of mappings in A (Freyd and Scedrov
1990, 2.147).

Since the properties connecting joins with converse in collagories or distrib-
utive allegories are not exactly dual to those connecting meet with converse in
allegories, the original characterisation of Freyd and Scedrov (1990) does not
directly dualise to a useful characterisation of collagories, while the characteri-
sation above does dualise:

Definition 4.2. In a collagory C, the co-span B R�D S� C is called a cotab-
ulation of W : B →C iff the following equations hold:

R;S� = W
R;R� = I � W ;W�

S;S� = I � W�;W R
�;R � S

�;S = ID. ��

B W C

R S

D
If a span B P� A Q�C of mappings is given, then, if a cotabulation of the
difunctional closure of P�;Q exists, it is a pushout in the category of mappings in
C. The difunctional closure is necessary due to commutativity: The other three
conditions imply that R and S are mappings; this, together with W = R;S�,
implies that W is difunctional, whereas P�;Q is not necessarily difunctional.

For more information about cotabulations, see (Kahl 2011).

200 W. Kahl

5 Direct Products and Sums

Direct products and sums, following the nomenclature of Schmidt and Ströhlein
(1993), are the relation-algebraic characterisations of Cartesian products respec-
tively disjoint unions, and therefore correspond to category-theoretic products
and coproducts, which are (co-)limits of discrete diagrams. In relation-algebraic
settings, these discrete diagrams translate into least (respectively greatest) mor-
phisms that can serve as starting points for (co-)tabultations:

We define a direct product of objects A and B in an allegory to be a tabulation
A π� P ρ�B of a ��A,B , provided that this greatest morphism ��A,B exists.
In an allegory where all direct products exist, these are the products in the
subcategory of mappings.

Proposition 5.1. The direct product construction in an allegory with top mor-
phisms where all direct products exist induces a relator � and this relator pre-
serves meets. � ��

Dually, in a collagory, we define a direct sum of objects A and B to be a co-
tabulation of ⊥⊥A,B , if that least morphism exists. In a distributive allegory where
all direct sums exist, these are the coproducts in the subcategory of mappings.

Proposition 5.2. In a distributive allegory where all direct sums exist, the
direct sum construction induces a relator �, and this relator preserves meets. � ��

Join preservation for the direct sum relator would mean that

(R1 � S1) ⊗ (R2 � S2) � (R1 ⊗ R2) � (S1 ⊗ S2),

which is in general obviously not valid, and analogously with ⊗ for the direct
product relator. Fortunately, none of the constructions we consider requires join-
preserving relators, and we list the join preservation facts only for completeness.

6 Coalgebras in OCCs

For defining coalgebras and their relational homomorphisms, the setting of OCCs
is sufficient. Now let R be an arbitrary but fixed endo-relator on an OCC.

Definition 6.1. An R-coalgebra (T, op) consists of

– a carrier object T , and
– an operation mapping op : T →RT . ��

Definition 6.2. A relational coalgebra homomorphism from A = (TA, opA) to
(TB, opB) is a morphism ϕ : TA → TB such that the L-simulation condition of
de Roever and Engelhardt (1998) holds:

op�
A ;ϕ � Rϕ; op�

B

Allegories and Collagories for Transformation of Graph Structures 201

Since opA and opB are mappings, the L-simulation condition is equivalent to

ϕ; opB � opA;Rϕ,

and our Agda formalisation of relational coalgebra homomorphisms actually uses
the latter. (If ϕ is restricted to be a mapping, then this is further equivalent to the
equality ϕ; opB = opA;Rϕ, which is the standard definition of (“non-relational”)
coalgebra homomorphisms.)

For example, the hypergraph signature sigDHG mentioned in the introduction
induces (in a way to be made explicit in Sect. 11) the endo-relator RsigDHG on
the product allegory Rel × Rel with (let List denote the standard list relator on
Rel):

RsigDHG (N , E) = (L , ((List N) × (List N)))

A directed hypergraph (DHG), defined as a RsigDHG-coalgebra, therefore con-
sists of

– a carrier object, that is, pair of sets, (N,E), and
– an operation mapping op : (N,E)→(L , ((List N) × (List N))),

which can be reorganised into

– two carrier sets N and E, and
– three operation mappings: nlab : N → L

src : E → List N
trg : E → List N

A relational DHG homomorphism from A = (NA, EA, nlabA, srcA, trgA) to
B = (NB, EB, nlabB, srcB, trgB) then is a product allegory morphism ϕ :
(NA, EA)→(NB, EB), that is, a pair of relations (Rel -morphisms) ϕN : NA ↔ NB

and ϕE : EA ↔ EB satisfying:

– ϕN ; nlabB � nlabA
– ϕE; srcB � srcA; List ϕN

– ϕE; srcB � srcA; List ϕN

It is easy to see that R-coalgebras form an OCC �.

Definition 6.3. We let UR denote the forgetful relator � from the OCC of R-
coalgebras and relational coalgebra homomorphisms to the underlying OCC. ��

Then inclusion and converse of coalgebra homomorphisms are in fact created
by UR, that is, they are defined by inclusion and converse of the underlying
allegory.

In the following, we will state many additional properties of R-coalgebra
OCCs as “UR creates . . . ”; this category-theoretic phrase pattern essentially
means that if a “. . .” situation in the underlying OCC is mapped to by UR, then
the preimage constitutes a “. . .” situation in the OCC of R-coalgebras.

202 W. Kahl

7 Coalgebras in Allegories

For obtaining more structure than only OCCs, a precondition on the relator R
is required, and moving into the context of an underlying allegory:

Theorem 7.1. If R preserves meets, then UR creates meets. �
Therefore, if R preserves meets, then R-coalgebras form an allegory. � ��

Proposition 7.2. Constant relators and the identity relator preserve meets. �
For two meet-preserving relators R1 : A0 →A1 and R2 : A1 →A2, the com-

posed relator R1�R2 : A0 → A2 is meet-preserving, too. �
For two allegories A1 and A2, the projection relators from the product alle-

gory A1 × A2 to A1 respectively A2 are meet-preserving. �
For two meet-preserving relators R1 : A0 →A1 and R2 : A0 →A2, the

“fork” relator R1∇R2 : A0 → A1 × A2 to the product allegory A1 × A2 is meet-
preserving, too. � ��

Type and Cotype Relators

Now consider a bi-relator R on an allegory A, that is, a relator from the product
allegory A×A to A. If R has initial algebras (TR, αR), that is, for every object
X an algebra (TR X,αR,X : R(X,TR X)→ TR X) that is the initial object in the
category of R(X,)-algebras as witnessed by catamorphisms (also called “fold”
functions) (Meijer et al. 1991), then Bird and de Moor (1997, 5.5) show that
TR extends to a relator by invoking the fact that in tabular allegories, converse-
preserving functors are also monotone (inclusion-preserving). They mention that
for meet-preserving R, the type relator TR is meet-preserving again; we use this
fact to prove monotony of the relator:

Theorem 7.3. If a bi-relator R on an allegory preserves meets, then the type
relator TR is a relator and preserves meets. � ��

Changing from initial algebras to final coalgebras (CR X, γR,X : CR X
→R(X,CR X)) actually is cleanly dual for this purpose, so we also have:

Theorem 7.4. If a bi-relator R on an allegory preserves meets, then the co-type
relator CR is a relator and preserves meets. � ��

8 Coalgebras in Collagories

Moving into an underlying collagory, we observe that Lemma2.1.(3), the gen-
erally true part of the join preservation property, is the opposite inclusion as
in the case of meets, and this is sufficient for creation of joins of R-coalgebra
homomorphisms without precondition on R:

Theorem 8.1. If R is an endo-relator on a collagory, then UR creates joins. �
Therefore, if R on a collagory preserves meets, then R-coalgebras form a

collagory. � ��

Allegories and Collagories for Transformation of Graph Structures 203

Proof. For showing creation of joins, for relational coalgebra homomorphisms F
and G from A = (TA, opA) to (TB, opB), it suffices to show:

(F � G); opB
� {Distributivity of; over �; rel. hom. property of F and G}

opA;RF � opA ;RG

= {Distributivity of ; over �}
opA; (RF � RG)

� {Lemma 2.1.(3)}
opA;R (F � G) ��

Proposition 8.2. Constant relators and the identity relator on collagories pre-
serve joins. �

The projection relators for product collagories preserve joins. �
Relator composition � (Proposition 7.2) preserves join preservation. �
The “fork” relator combinator ∇ (Proposition 7.2) preserves join

preservation. � ��

Theorem 8.3. If R is an endo-relator on a distributive allegory, then UR creates
zero morphisms. �

Therefore, if R on a distributive allegory preserves meets, then R-coalgebras
form a distributive allegory. � ��

As we will see below, all polynomial functors preserve meets, so we have
collagories and distributive allegories of coalgebras for all polynomial functors.
Contrast this with the situation for algebras, where more-than-unary function
symbols break distributivity over joins (Kahl 2001, Example 4.2.3), and where
zero-ary function symbols break the zero-laws, so that we obtain distributive
allegories only for signatures where all function symbols are unary; the resulting
algebras have been coined “graph structures” by Löwe (1993).

Kleene star preserves the coalgebra homomorphism property: �

F ∗ ; op
⊆ {Kleene star commutation with Definition 6.2}

op ; (RF)∗

⊆ {Lemma 2.1.(4)}
op ;R (F ∗)

Therefore we finally have:

Theorem 8.4. If R is an endo-relator on a Kleene collagory, then UR creates
Kleene stars. �

Therefore, if R on a Kleene collagory preserves meets, then R-coalgebras
form a Kleene collagory. � ��

204 W. Kahl

In the statement of this theorem we did not refer to distributive allegories since
the presence of zero morphisms, or even of least morphisms, is not relevant to
the creation of Kleene stars.

9 Tabulations and Cotabulations of Relational Collagory
Homomorphisms

Theorem 9.1. If R is a meet-preserving endo-relator on an allegory A, then
UR creates tabulations. �

Therefore, if A has tabulations, then the allegory of R-coalgebras has tabu-
lations, too. � ��

Theorem 9.2. If R is a meet-preserving endo-relator on a collagory A, then
UR creates cotabulations. �

Therefore, if A has cotabulations, then the collagory of R-coalgebras has
cotabulations, too. � ��

In summary:

Corollary 9.3. If A is a bitabular collagory, then the collagory of R-coalgebras
is bitabular, too. ��

10 Creation of Top Morphisms and of Direct Products

Given an endo-relator R on an allegory A where each homset has a top mor-
phisms �, then UR creates top morphisms if for all coalgebras A and B, �A,B

extends to a coalgebra homomorphism, that is, �; opB � opA;R�.
For the identity relator, UIdentity creates top morphisms. However, for constant

relators, the relator UConst X in general does not.
Creation of top morphisms is sufficient for creation of direct products:

Theorem 10.1. Let a meet-preserving endo-relator R on an allegory A with
top morphisms � and direct products be given. If UR creates top morphisms,
then UR also creates direct products: for any two coalgrebras A and B, the coal-
gebra (TA ×TB, π ; opA ;Rπ� �ρ ; opB;Rρ�) is well-defined, and a direct product
for the projections π and ρ, which extend to coalgebra homomorphism. � ��

Creation of top morphisms is needed first for establishing that the operation
of the product object is total, and second for the homomorphism property of the
projections.

Since Const X � = IX , construction of counterexamples essentially only
requires an object X corresponding to a set with at least two elements.

Allegories and Collagories for Transformation of Graph Structures 205

11 Coalgebraic Graph Structure Transformation

After collecting the basic ingredients for data structure definition, we now pro-
vide the linguistic means to build graph structure collagories from descriptions
like sigDHG from the introduction. We first present the “internal syntax” side:

A type signature consists of

– a countable set of object constants, and
– for each positive arity n : N − {0} a countable set of n-ary functor symbols.

The set of types over a countable set X of type variables is defined inductively
as follows:

– Each type variable from X is a type over X .
– Each object constant is a type over X .
– For each n-ary functor symbol f and each sequence t1, . . . , tn of n types over

X , the application f(t1, . . . , tn) is a type over X .
– For each type variable x from X and each type t over X , the constructs

μ x . t (for least fixed-point) and ν x . t (for greatest fixed-point) are types
over X − {x}.

A type interpretation consists of

– an allegory A
– a object constant interpretation � �O that maps each object constant to an

object of A.
– a functor symbol interpretation � �F that maps each n-ary functor symbol f

to a meet-preserving n-ary endo-relator on A, that is, to a meet-preserving
relator �f�F : An →A from the n-ary product allegory of A to A, where An

is constructed from right-nested binary product allegory constructions.

The type semantics � � then maps each type t over an m-element (finite) sequence
of distinct type variables 〈x1, . . . xm〉 to an m-ary endo-relator �t� : Am →A,
and each sequence t1, . . . , tn of n types over an m-element sequence X of distinct
type variables to a functor �t1, . . . , tn� : Am →An as follows:

– For each type variable xi from X , �xi� = Proji, where the i-th projection
functor Proji : Am →A can be constructed from Proj1 and Proj2 according to
the nesting of Am.

– For each object constant c, we have �c� = �c�O.
– For each n-ary functor symbol f and each sequence 〈t1, . . . , tn〉 of n types

over X :
�f(t1, . . . , tn)� = �f�F �〈t1, . . . , tn〉�

– For each type variable xi from X and each type t over X :

�μ xi. t� = Tswapi ;�t� �ν xi . t� = Cswapi ;�t�

where swapi is defined from projection functors and ∇ to implement the tuple
permutation

〈xi, x1, . . . , xi−1, xi+1, . . . , xn〉 �→ 〈x1, . . . , xi−1, xi, xi+1, . . . , xn〉.

206 W. Kahl

From Proposition 7.2, Theorems 7.3, and 7.4, it is then quite straightworward to
obtain:

Theorem 11.1. For each type sequence t1, . . . , tn of n types over an m-element
sequence of distinct type variables, the relator �t1, . . . , tn� : Am →An is meet-
preserving. ��

Definition 11.2. A raw coalgebra signature Σ = (〈s1, . . . , sn〉, 〈t1, . . . , tn〉) over
a type signature Θ is a sequence 〈s1, . . . , sn〉 of sorts together with an equally-
long sequence 〈t1, . . . , tn〉 of types over 〈s1, . . . , sn〉.

We define RΣ := �〈t1, . . . , tn〉� to be the signature relator for Σ. ��

The signature relator RΣ is by definition a meet-preserving endo-relator on An.
We also enable a more readable presentation of coalgebras as follows:

Definition 11.3. A coalgebra signature Σ = (S,F) over a type signature Θ
consists of

– a sequence S = 〈 s1, . . . , sn 〉 of sorts, and
– a sequence F of function symbol signatures, where each function symbol sig-

nature is a triple (fj , ij , tj) written fj : sij → tj and consisting of a function
symbol fj , a source sort index ij ∈ {1, . . . , n}, and a type tj over S. ��

For example, consider again the signature for directed hypergraphs from Sect. 1:

sigDHG := 〈sorts: N,E ; ops: src : E→ List N
trg : E→ List N ; nlab : N→ L〉

The coalgebra functor corresponding to sigDHG is a functor between product
categories, because of the two sorts:

FsigDHG (N , E) = (L , ((List N) × (List N)))

For edges, the underlying translation into a raw coalgebra signature had to “col-
lect” the two function symbols src and trg into the single type List N × List N ,
where List N is really the initial algebra functor μ x . 1 + N × X.

Working out the details of this translation from coalgebra signatures to raw
coalgebra signature is straightforward, and we obtain:

Theorem 11.4. Let A be a distributive allegory, respectively a Kleene col-
lagory. For every coalgebra signature Σ, the coalgebras over the signature relator
RΣ form a distributive allegory, respectively a Kleene collagory.

Proof. After translating Σ into a raw coalgebra signature Σ′, the signature rela-
tor RΣ′ according to Definition 11.2 is meet-preserving according to Theorem
11.1. The statement then follows by Theorem 8.3, respectively by Theorem 8.4, ��

Since Kleene collagories are sufficient for the formalisation of the relation-
algebraic approach to graph transformation (Kahl 2001, 2010), this is immedi-
ately applicable to a wide range of coalgebras. Furthermore, we have:

Allegories and Collagories for Transformation of Graph Structures 207

Theorem 11.5. (Kahl 2011, Corollary 4.2.5) For a bi-tabular collagory A where
all monos in the subcategory M of mappings are injective in A, the mapping
category M is adhesive. ��

Together with Theorem 11.4, this yields:

Corollary 11.6. Let A be a bi-tabular Kleene collagory where all monos in the
subcategory of mappings are injective in A. For every coalgebra signature Σ, cat-
egory of coalgebras over the signature relator RΣ (obtained as the subcategory
of mappings in the Kleene collagory of Theorem 11.4) is adhesive.

For example, the directed hypergraph category DHG constructed as the map-
ping category of sigDHG-coalgebras over the bitabular Kleene collagory Rel is
exactly a node-labelled variant of the HyperGraphs category of (Ehrig et al.
2006, Fact 4.17) (where only adhesive HLR is argued, not adhesive). Whereas
there, in the setting of algebras, the src and trg lists required special ad-hoc treat-
ment, in our coalgebra setting we obtain full adhesiveness, and we obtain it as
a simple instance of a general theorem. The resulting double-pushout rewriting
concept is therefore exactly what would normally be expected for DPO rewriting
of directed hypergraphs.

12 Conclusion and Outlook

We showed that “relational homomorphisms” between coalgebras over all poly-
nomial functors, and additionally over functors constructed also using initial
algebra and final coalgebra constructors, give rise to distributive allegories and
Kleene collagories, and therewith make many relation-algebraic reasoning and
specification tools available for coalgebras. Indirectly, this also makes the the-
orems of the adhesive approach to graph transformation available—this latter
part still awaits formalisation in Agda.

However, even the theories already developed can, instantiated with appro-
priate base allegories, directly form the foundation and central parts of the imple-
mentation of an executable coalgebra-based graph transformation system, and
of its correctness proofs.

References

Bird, R.S., de Moor, O.: Algebra of Programming. International Series in Computer
Science, vol. 100. Prentice Hall, Upper Saddle River (1997)

de Roever, W.-P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods
and Their Comparison. Cambridge University Press, Cambridge (1998)

Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: From graph grammars to
high level replacement systems. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
Graph Grammars 1990. LNCS, vol. 532, pp. 269–287. Springer, Heidelberg (1991)

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-
formation. Springer, Heidelberg (2006). doi:10.1007/3-540-31188-2

Freyd, P.J., Scedrov, A.: Categories, Allegories, vol. 39. North-Holland Mathematical
Library, Amsterdam (1990)

http://dx.doi.org/10.1007/3-540-31188-2

208 W. Kahl

Heckel, R., Küster, J.M., Taentzer, G.: Confluence of typed attributed graph transfor-
mation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002). doi:10.1007/
3-540-45832-8 14

Kahl, W.: A relation-algebraic approach to graph structure transformation, 2001. Habil
thesis, Fakultät für Informatik, Univ. der Bundeswehr München, Technical report
2002–03. http://relmics.mcmaster.ca/∼kahl/Publications/RelRew/

Kahl, W.: Refactoring heterogeneous relation algebras around ordered cate-
gories and converse. J. Relational Methods Comput. Sci. 1, 277–313 (2004).
http://www.jormics.org/

Kahl, W.: Amalgamating pushout and pullback graph transformation in collagories.
In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol.
6372, pp. 362–378. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15928-2 24

Kahl, W.: Collagories: relation-algebraic reasoning for gluing constructions. J. Logic
Algebraic Programming 80(6), 297–338 (2011). doi:10.1016/j.jlap.2011.04.006

Kahl, W.: Categories of coalgebras with monadic homomorphisms. In: Bon-
sangue, M.M. (ed.) CMCS 2014. LNCS, vol. 8446, pp. 151–167. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-44124-4 9. Agda theories at
http://RelMiCS.McMaster.ca/RATH-Agda/

Kahl, W.: Graph transformation with symbolic attributes via monadic coalgebra homo-
morphisms. ECEASST 71, 5.1–5.17 (2015). doi:10.14279/tuj.eceasst.71.999

Kawahara, Y.: Notes on the universality of relational functors. Mem. Fac. Sci. Kyushu
Univ. Ser. A 27(2), 275–289 (1973)

Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366–390 (1994)

Kozen, D.: Typed Kleene algebra. Technical report 98–1669, Computer Science Depart-
ment, Cornell University (1998)

Lack, S., Sobociński, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FoSSaCS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-24727-2 20

Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO Inform. Théor.
Appl. 39(3), 511–545 (2005). doi:10.1051/ita:2005028

Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret. Com-
put. Sci. 109(1–2), 181–224 (1993). doi:10.1016/0304-3975(93)90068-5

Löwe, M., Korff, M., Wagner, A.: An algebraic framework for the transformation of
attributed graphs. In: Sleep, M., Plasmeijer, M., van Eekelen, M. (eds.) Term Graph
Rewriting: Theory and Practice, pp. 185–199. Wiley, Hoboken (1993)

Meijer, E., Fokkinga, M., Paterson, R.: Functional programming with bananas, lenses,
envelopes and barbed wire. In: Hughes, J. (ed.) FPCA 1991. LNCS, vol. 523, pp.
124–144. Springer, Heidelberg (1991). doi:10.1007/3540543961 7

Norell, U.: Towards a practical programming language based on dependent type theory.
Ph.D. thesis, Department of Computer Science and Engineering, Chalmers Univer-
sity of Technology (2007). See also http://wiki.portal.chalmers.se/agda/pmwiki.php

Schmidt, G., Ströhlein, T.: Relations and Graphs, Discrete Mathematics for Computer
Scientists. EATCS-Monographs on Theoretical Computer Science. Springer, Heidel-
berg (1993)

http://dx.doi.org/10.1007/3-540-45832-8_14
http://dx.doi.org/10.1007/3-540-45832-8_14
http://relmics.mcmaster.ca/~kahl/Publications/RelRew/
http://www.jormics.org/
http://dx.doi.org/10.1007/978-3-642-15928-2_24
http://dx.doi.org/10.1016/j.jlap.2011.04.006
http://dx.doi.org/10.1007/978-3-662-44124-4_9
http://RelMiCS.McMaster.ca/RATH-Agda/
http://dx.doi.org/10.14279/tuj.eceasst.71.999
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1007/978-3-540-24727-2_20
http://dx.doi.org/10.1051/ita:2005028
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://dx.doi.org/10.1007/3540543961_7
http://wiki.portal.chalmers.se/agda/pmwiki.php

Aggregation of Votes with Multiple
Positions on Each Issue

Lefteris Kirousis1(B), Phokion G. Kolaitis2, and John Livieratos1

1 Department of Mathematics, National and Kapodistrian University of Athens,
Athens, Greece

{lkirousis,jlivier89}@math.uoa.gr
2 Computer Science Department, UC Santa Cruz and IBM Research - Almaden,

Santa Cruz, CA, USA
kolaitis@cs.ucsc.edu

Abstract. We consider the problem of aggregating votes cast by a soci-
ety on a fixed set of issues, where each member of the society may vote for
one of several positions on each issue, but the combination of votes on the
various issues is restricted to a set of feasible voting patterns. We require
the aggregation to be supportive, i.e., for every issue, the corresponding
component of every aggregator, when applied to a tuple of votes, must
take as value one of the votes in that tuple. We prove that, in such a
set-up, non-dictatorial aggregation of votes in a society of an arbitrary
size is possible if and only if a non-dictatorial binary aggregator exists
or a non-dictatorial ternary aggregator exists such that, for each issue,
the corresponding component of the aggregator, when restricted to two-
element sets of votes, is a majority operation or a minority operation. We
then introduce a notion of a uniform non-dictatorial aggregator, which is
an aggregator such that on every issue, and when restricted to arbitrary
two-element subsets of the votes for that issue, differs from all projection
functions. We first give a characterization of sets of feasible voting pat-
terns that admit a uniform non-dictatorial aggregator. After this and by
making use of Bulatov’s dichotomy theorem for conservative constraint
satisfaction problems, we connect social choice theory with the compu-
tational complexity of constraint satisfaction by proving that if a set of
feasible voting patterns has a uniform non-dictatorial aggregator of some
arity, then the multi-sorted conservative constraint satisfaction problem
on that set (with each issue representing a different sort) is solvable in
polynomial time; otherwise, it is NP-complete.

1 Introduction

Kenneth Arrow initiated the theory of aggregation by establishing his celebrated
General Possibility Theorem (also known as Arrow’s Impossibility Theorem) [1],
which asserts that it is impossible, even under mild conditions, to aggregate in
a non-dictatorial way the preferences of a society. Wilson [16] introduced aggre-
gation on general attributes, rather than just preferences, and proved Arrow’s
result in this context. Later on, Dokow and Holzman [7] adopted a framework
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 209–225, 2017.
DOI: 10.1007/978-3-319-57418-9 13

210 L. Kirousis et al.

similar to Wilson’s in which the voters have a binary position on a number of
issues, and an individual voter’s feasible position patterns are restricted to lie in
a domain X. Dokow and Holzman discovered a necessary and sufficient condition
for X to have a non-dictatorial aggregator that involves a property called total
blockedness, which was originally introduced in [10]. Roughly speaking, a domain
X is totally blocked if “any position on any issue can be deduced from any posi-
tion on any issue” (the precise definition is given in Sect. 3). In other words, total
blockedness is a property that refers to the propagation of individuals’ positions
from one issue to another.

After this, Dokow and Holzman [8] extended their earlier work by allowing
the positions to be non-Boolean (non-binary). By generalizing the notion of a
domain being totally blocked to the non-Boolean framework, they gave a suffi-
cient (but not necessary) condition for non-dictatorial aggregation, namely, they
showed that if a domain is not totally blocked, then it is a possibility domain.
Recently, Szegedy and Xu [14] discovered necessary and sufficient conditions for
non-dictatorial aggregation. Quite remarkably, their approach relates aggrega-
tion theory with universal algebra, specifically with the structure of the space
of polymorphisms, that is, functions under which a relation is closed. It should
be noted that properties of polymorphisms have been successfully used towards
the delineation of the boundary between tractability and intractability for the
Constraint Satisfaction Problem (for an overview, see, e.g., [6]).

Szegedy and Xu [14] distinguished the supportive (also known as conserva-
tive) case, where the social position must be equal to the position of at least
one individual, from the idempotent (also known as Paretian) case, where the
social position need not agree with any individual position, unless the votes are
unanimous. In the idempotent case, they gave a necessary and sufficient condi-
tion for possibility of non-dictatorial aggregation that involves no propagation
criterion (such as the domain being totally blocked), but only refers to the pos-
sibility of non-dictatorial aggregation for societies of a fixed cardinality (as large
as the space of positions). In the supportive case, however, their necessary and
sufficient conditions still involve the notion of the domain being totally blocked.

Here, we follow Szegedy and Xu’s idea of deploying the algebraic “toolkit”
[14] and we prove that, in the supportive case, non-dictatorial aggregation is
possible for all societies of some cardinality if and only if a non-dictatorial binary
aggregator exists or a non-dictatorial ternary aggregator exists such that on every
issue j, the corresponding component fj is a majority operation, i.e., for all x
and y, it satisfies the equations

fj(x, x, y) = fj(x, y, x) = fj(y, x, x) = x

or fj is a minority operation, i.e., for all x and y, it satisfies the equations

fj(x, x, y) = fj(x, y, x) = fj(y, x, x) = y.

(For additional information about the notions of majority and minority opera-
tions, see Szendrei [15, p. 24].)

Aggregation of Votes with Multiple Positions on Each Issue 211

We also show that a domain is totally blocked if and only if it admits no
non-dictatorial binary aggregator; thus, the notion of a domain being totally
blocked is, in a precise sense, a weak form of an impossibility domain.

After this, we introduce the notion of uniform non-dictatorial aggregator,
which is an aggregator that on every issue, and when restricted to an arbi-
trary two-element subset of the votes for that issue, differs from all projection
functions. We first give a characterization of sets of feasible voting patterns
that admit uniform non-dictatorial aggregators. Then, making use of Bulatov’s
dichotomy theorem for conservative constraint satisfaction problems (see [2–4]),
we connect social choice theory with the computational complexity of constraint
satisfaction by proving that if a set of feasible voting patterns X has a uni-
form non-dictatorial aggregator of some arity, then the multi-sorted conserva-
tive constraint satisfaction problem on X, in the sense introduced by Bulatov
and Jeavons [5], with each issue representing a sort, is tractable; otherwise it is
NP-complete.

Due to space limitations, the proofs of almost all of our results were omitted.
They can be found in [9].

2 Basic Concepts and Earlier Work

2.1 Basic Concepts

In all that follows, we have a fixed set I = {1, . . . , m} of issues. Let A =
{A1, . . . , Am} be a family of finite sets, each of cardinality at least 2, represent-
ing the possible positions (voting options) on the issues 1, . . . ,m, respectively.
If every Aj has cardinality exactly 2 (i.e., if for every issue only a “yes” or “no”
vote is allowed), we say that we are in the binary or the Boolean framework;
otherwise, we say that we are in the non-binary or the non-Boolean framework.

Let X be a non-empty subset of
∏m

j=1 Aj that represents the feasible voting
patterns. We write Xj , j = 1 . . . ,m, to denote the j-th projection of X. From now
on, we assume that each Xj has cardinality at least 2 (this is a non-degeneracy
condition). Throughout the rest of the paper, unless otherwise declared, X will
denote a set of feasible voting patterns on m issues, as we just described.

Let n ≥ 2 be an integer representing the number of voters. The elements of
Xn can be viewed as n×m matrices, whose rows correspond to voters and whose
columns correspond to issues. We write xi

j to denote the entry of the matrix in
row i and column j; clearly, it stands for the vote of voter i on issue j. The row
vectors of such matrices will be denoted as x1, . . . , xn, and the column vectors
as x1, . . . , xm.

Let now f̄ = (f1, . . . , fm) be an m-tuple of n-ary functions fj : An
j �→ Aj .

An m-tuple of functions f̄ = (f1, . . . , fm) as above is called supportive
(conservative) if for all j = 1 . . . m, we have that:

if xj = (x1
j , . . . , x

n
j) ∈ An

j , then fj(xj) = fj(x1
j , . . . , x

n
j) ∈ {x1

j , . . . , x
n
j }.

212 L. Kirousis et al.

An m-tuple f̄ = (f1, . . . , fm) of (n-ary) functions as above is called an
(n-ary) aggregator for X if it is supportive and, for all j = 1, . . . ,m and for
all xj ∈ An

j , j = 1, . . . , m, we have that:

if (x1, . . . , xn) ∈ Xn, then (f1(x1), . . . , fm(xm)) ∈ X.

Note that (x1, . . . , xn) is an n × m matrix with rows x1, . . . , xn and columns
x1, . . . , xm, whereas (f1(x1), . . . , fm(xm)) is a row vector required to be in X.
The fact that aggregators are defined as m-tuples of functions An

j �→ Aj , rather
than a single function Xn �→ X, reflects the fact that the social vote is assumed
to be extracted issue-by-issue, i.e., the aggregate vote on each issue does not
depend on voting data on other issues.

An aggregator f̄ = (f1, . . . , fm) is called dictatorial on X if there is a number
d ∈ {1, . . . , n} such that (f1, . . . fm) � X = (prn

d , . . . ,prn
d) � X, i.e., (f1, . . . fm)

restricted to X is equal to (prn
d , . . . ,prn

d) restricted to X, where prn
d is the n-ary

projection on the d-th coordinate; otherwise, f̄ is called non-dictatorial on X.
We say that X has a non-dictatorial aggregator if, for some n ≥ 2, there is a
non-dictatorial n-ary aggregator on X.

A set X of feasible voting patterns is called a possibility domain if it has
a non-dictatorial aggregator. Otherwise, it is called an impossibility domain.
A possibility domain is, by definition, one where aggregation is possible for
societies of some cardinality, namely, the arity of the non-dictatorial aggregator.

Aggregators do what their name indicates, that is, they aggregate positions
on m issues, j = 1, . . . ,m, from data representing the voting patterns of n
individuals on all issues. The fact that aggregators are assumed to be supportive
(conservative) reflects the restriction of our model that the social vote for every
issue should be equal to the vote cast on this issue by at least one individual.
Finally, the requirement of non-dictatorialness for aggregators reflects the fact
that the aggregate vote should not be extracted by adopting the vote of a single
individual designated as a “dictator”.

Example 1. Suppose that X is a cartesian product X = Y × Z, where Y ⊆∏l
j=1 Aj and Z ⊆ ∏m

j=l+1 Aj , with 1 ≤ l < m. It is easy to see that X is a
possibility domain.

Indeed, for every n ≥ 2, the set X has non-dictatorial n-ary aggregators of the
form (f1, . . . , fl, fl+1, . . . , fm), where for some d and d′ with d �= d′, we have
fj = prn

d , for j = 1, . . . , l, and also fj = prn
d′ , for j = l + 1, . . . ,m. Thus, every

cartesian product of two sets of feasible patterns is a possibility domain. 	

Now, following Szendrei [15, p. 24], we define the notions of a majority oper-

ation and of a minority operation.

Definition 1. A ternary operation f : A3 �→ A on an arbitrary set A is a
majority operation if for all x and y in A,

f(x, x, y) = f(x, y, x) = f(y, x, x) = x,

and it is a minority operation if for all x and y in A,

f(x, x, y) = f(x, y, x) = f(y, x, x) = y.

Aggregation of Votes with Multiple Positions on Each Issue 213

We also define what it means for a set to admit a majority operation and a
minority operation. (Since the arity of an aggregator is the arity of its component
functions, a ternary aggregator is an aggregator with components of arity three.)

Definition 2. Let X be a set of feasible voting patterns.

– X admits a majority aggregator if it admits a ternary aggregator f̄ =
(f1, . . . , fm) such that fj is a majority operation on Xj, for all j = 1, . . . ,m.

– X admits a minority aggregator if it admits a ternary aggregator f̄ =
(f1, . . . , fm) such that fj is a minority operation on Xj, for all j = 1, . . . ,m.

Clearly, X admits a majority aggregator if and only if there is a ternary
aggregator f̄ = (f1, . . . , fm) for X such that, for all j = 1, . . . ,m and for all
two-element subsets Bj ⊆ Xj , we have that fj� Bj = maj, where

maj(x, y, z) =

{
x if x = y or x = z,

y if y = z.

Also, X admits a minority aggregator if and only if there is a ternary aggregator
f̄ = (f1, . . . , fm) for X such that, for all j = 1, . . . ,m and for all two-element
subsets Bj ⊆ Xj , we have that fj� Bj = ⊕, where

⊕(x, y, z) =

⎧
⎪⎨

⎪⎩

z if x = y,

x if y = z,

y if x = z.

It is known that in the Boolean framework (in which for all issues only “yes”
or “no” votes are allowed), a set X admits a majority aggregator if and only if X
is a bijunctive logical relation, i.e., a subset of {0, 1}m that is the set of satisfying
assignments of a 2CNF-formula. Moreover, X admits a minority aggregator if
and only if X is an affine logical relation, i.e., a subset of {0, 1}m that is the set
of solutions of linear equations over the two-element field (see Schaefer [13]).

Example 2. X = {(a, a, a), (b, b, b), (c, c, c), (a, b, b), (b, a, a), (a, a, c), (c, c, a)}
admits a majority aggregator.

To see this, let f̄ = (f, f, f), where f : {a, b, c} → {a, b, c} is as follows:

f(u, v, w) =
{

a ifu, v, and w are pairwise different;
maj(u, v, w) otherwise.

Clearly, if B is a two-element subset of {a, b, c}, then f � B = maj. So, to show
that X admits a majority aggregator, it remains to show that f̄ = (f, f, f) is an
aggregator for X. In turn, this amounts to showing that f̄ is supportive and that
X is closed under f . It is easy to check that f̄ is supportive. To show that X is
closed under f , let x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) be three ele-
ments of X. We have to show that (f(x1, y1, z1), f(x2, y2, z2), f(x3, y3, z3)) is also

214 L. Kirousis et al.

in X. The only case that needs to be considered is when x, y, and z are pairwise
distinct. Several subcases need to be considered. For instance, if x = (a, b, b),
y = (a, a, c), z = (c, c, a), then f̄(x, y, z) = (f(a, a, c), f(b, a, c), f(b, c, a)) =
(a, a, a) ∈ X; the remaining combinations are left to the reader. 	

Example 3. X = {(a, b, c), (b, a, a), (c, a, a)} admits a minority aggregator.

To see this, let f̄ = (f, f, f), where f : {a, b, c} → {a, b, c} is as follows:

f(u, v, w) =
{

a if u, v, and w are pairwise different;
⊕(u, v, w) otherwise.

Clearly, if B is a two-element subset of {a, b, c}, then f � B = ⊕. So, to show
that X admits a minority aggregator, it remains to show that f̄ = (f, f, f) is
an aggregator for X. In turn, this amounts to showing that f̄ is supportive and
that X is closed under f . It is easy to check that f̄ is supportive. To show that
X is closed under f , let x = (x1, x2, x3), y = (y1, y2, y3), z = (z1, z2, z3) be three
elements of X. We have to show that (f(x1, y1, z1), f(x2, y2, z2), f(x3, y3, z3))
is also in X. The only case that needs to be considered is when x, y, and z
are distinct, say, x = (a, b, c), y = (b, a, a), z = (c, a, a). In this case, we have
that (f(a, b, c), f(b, a, a), f(c, a, a)) = (a, b, c) ∈ X; Since f is not affected by
permutations of the input, the proof is complete. 	

So far, we have given examples of possibility domains only. Next, we give an
example of an impossibility domain in the Boolean framework.

Example 4. Let W = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the 1-in-3 relation, i.e., the
set of all Boolean tuples of length 3 in which exactly one 1 occurs.

We claim that W is an impossibility domain. It is not hard to show that
W is not affine and that it does not admit a non-dictatorial binary aggregator.
Theorem 2 in the next section implies that W is an impossibility domain. 	

Every logical relation X ⊆ {0, 1}m gives rise to a generalized satisfiability
problem in the context studied by Scheafer [13]. We point out that the property
of X being a possibility domain in the Boolean framework is not related to
the tractability of the associated generalized satisfiability problem. For example,
the set W is an impossibility domain and its associated generalized satisfiability
problem is the NP-complete problem Positive 1-in-3-Sat. As discussed earlier,
the cartesian product W × W is a possibility domain. Using the results in [13],
however, it can be verified that the generalized satisfiability problem arising from
W ×W is NP-complete. At the same time, the set {0, 1}m is trivially a possibility
domain and gives rise to a trivially tractable satisfiability problem. Thus, the
property of X being a possibility domain is not related to the tractability of the
generalized satisfiability problem arising from X.

Nonetheless, in Sect. 3 we establish the equivalence between the stronger
notion of X being a uniform possibility domain and the weaker notion of the
tractability of the multi-sorted generalized satisfiability problem arising from
X, where each issue is taken as a different sort. Actually, we establish this
equivalence not only for satisfiability problems but also for constraint satisfaction
problems whose variables range over arbitrary finite sets.

Aggregation of Votes with Multiple Positions on Each Issue 215

2.2 Earlier Work

There has been a significant body of earlier work on possibility domains. Here,
we summarize some of the results that relate the notion of a possibility domain to
the notion of a set being totally blocked, a notion originally introduced in the
context of the Boolean framework by Nehring and Puppe [10]. As stated earlier,
a set X of possible voting patterns is totally blocked if, intuitively, “any position
on any issue can be deduced from any position on any issue”; this intuition is
formalized by asserting that a certain directed graph GX associated with X is
strongly connected. The precise definition of this notion is given in Sect. 3.

In the case of the Boolean framework, Dokow and Holzman [7] obtained the
following necessary and sufficient condition for a set to be a possibility domain.

Theorem A (Dokow and Holzman [7, Theorem 2.2]). Let X ⊆ {0, 1}m be
a set of feasible voting patterns. The following statements are equivalent.

– X is a possibility domain.
– X is affine or X is not totally blocked.

For the non-Boolean framework, Dokow and Holzman [8] found the following
connection between the notions of totally blocked and possibility domain.

Theorem B (Dokow and Holzman [8, Theorem 2]). Let X be a set of
feasible voting patterns. If X is not totally blocked, then X is a possibility domain;
in fact, there is a non-dictatorial n-ary aggregator, for every n ≥ 2.

Note that, in the case of the Boolean framework, Theorem B was stated and
proved as Claim 3.6 in [7].

For the non-Boolean framework, Szegedy and Xu [14] obtained a sufficient
and necessary condition for a totally blocked set X to be a possibility domain.

Theorem C (Szegedy and Xu [14, Theorem 8]). Let X be a set of feasible
voting patterns that is totally blocked. The following statements are equivalent.

– X is a possibility domain.
– X admits a binary non-dictatorial aggregator or a ternary non-dictatorial

aggregator.

Note that, in the case of the Boolean framework, Theorem C follows from the
preceding Theorem A (Theorem 2.2 in [7]).

A binary non-dictatorial aggregator can also be viewed as a ternary one,
where one of the arguments is ignored. By considering whether or not X is totally
blocked, Theorems B and C imply the following corollary, which characterizes
possibility domains without involving the notion of total blockedness; to the
best of our knowledge, this result has not been explicitly stated previously.

Corollary 1. Let X be a set of feasible voting patterns. The following state-
ments are equivalent.

216 L. Kirousis et al.

1. X is a possibility domain.
2. X has a non-dictatorial binary aggregator or a non-dictatorial ternary

aggregator.
3. X has a non-dictatorial ternary aggregator.

3 Results

3.1 Possibility Domains

Our first result is a necessary and sufficient condition for a set of feasible voting
patterns to be a possibility domain (for the proof see [9]).

Theorem 1. Let X be a set of feasible voting patterns. The following statements
are equivalent.

1. X is a possibility domain.
2. X admits a majority aggregator or it admits a minority aggregator or it has

a non-dictatorial binary aggregator.

Theorem 1 is stronger than the preceding Corollary 1 because, unlike Corol-
lary 1, it gives explicit information about the nature of the components fj of
non-dictatorial ternary aggregators f̄ = (f1, . . . , fm), when the components are
restricted to a two-element subset Bj ⊆ Xj of the set of positions on issue j,
information that is necessary to relate results in aggregation theory with com-
plexity theoretic results (besides the three projections, there are 61 supportive
ternary functions on a two element set). Observe also that if f̄ = (f1, . . . , fm) is
a binary aggregator, then every component fj is necessarily a projection func-
tion or the function ∧ or the function ∨, when restricted to a two-element subset
Bj ⊆ Xj (identified with the set {0, 1}). So, for binary aggregators, the infor-
mation about the nature of their components is given gratis.

Only the direction 1 =⇒ 2 of Theorem 1 requires proof. Towards this goal,
we introduce a new notion, state three lemmas whose proofs can be found in [9],
and then use them to prove Theorem1.

Let X be a set of feasible voting patterns and let f̄ = (f1, . . . , fm) be an
n-ary aggregator for X.

Definition 3. We say that f̄ is locally monomorphic if for all indices i and j
with 1 ≤ i, j ≤ m, for all two-element subsets Bi ⊆ Xi and Bj ⊆ Xj, for every
bijection g : Bi �→ Bj, and for all column vectors xi = (x1

i , . . . , x
n
i) ∈ Bn

i , we
have that

fj(g(x1
i), . . . , g(xn

i)) = g(fi(x1
i , . . . , x

n
i)).

Intuitively, the above definition says that, no matter how we identify the two
elements of Bi and Bj with 0 and 1, the restrictions fi� Bi and fj� Bj are equal
as functions.

The first lemma gives a sufficient condition for all aggregators of all arities
to be locally monomorphic.

Aggregation of Votes with Multiple Positions on Each Issue 217

Lemma 1. Let X be a set of feasible voting patterns. If every binary aggregator
for X is dictatorial on X, then, for every n ≥ 2, every n-ary aggregator for X
is locally monomorphic.

Next, we state a technical lemma whose proof was inspired by a proof in
Dokow and Holzman [8, Proposition 5].

Lemma 2. Assume that for all integers n ≥ 2 and for every n-ary aggregator
f̄ = (f1, . . . , fm), there is an integer d ≤ n such that for every integer j ≤ m
and every two-element subset Bj ⊆ Xj, the restriction fj� Bj is equal to prn

d ,
the n-ary projection on the d-th coordinate. Then for all integers n ≥ 2 and for
every n-ary aggregator f̄ = (f1, . . . , fm) and for all s ≥ 2, there is an integer
d ≤ n such that for every integer j ≤ m and every subset Bj ⊆ Xj of cardinality
at most s, the restriction fj� Bj is equal to prn

d .

Next, we bring into the picture some basic concepts and results from uni-
versal algebra; we refer the reader to Szendrei’s monograph [15] for additional
information and background. A clone on a finite set A is a set C of finitary
operations on A (i.e., functions from a power of A to A) such that C contains all
projection functions and is closed under arbitrary compositions (superpositions).
The proof of the next lemma is straightforward.

Lemma 3. Let X be a set of feasible voting patterns. For every j with 1 ≤ j ≤ m
and every subset Bj ⊆ Xj, the set CBj

of the restrictions fj� Bj of the j-th
components of aggregators f̄ = (f1, . . . , fm) for X is a clone on Bj.

Post [12] classified all clones on a two-element set (for more recent expositions
of Post’s pioneering results, see, e.g., [15] or [11]). One of Post’s main findings is
that if C is a clone of conservative functions on a two-element set, then either C
contains only projection functions or C contains one of the following operations:
the binary operation ∧, the binary operation ∨, the ternary operation ⊕, the
ternary operation maj. We use this result below.

Proof (Proof of Theorem 1). As stated earlier, only the direction 1 =⇒ 2 requires
proof. In the contrapositive, we will prove that if X does not admit a majority
or a minority aggregator, and it does not admit a non-dictatorial binary aggre-
gator, then X does not have an n-ary non-dictatorial aggregator, for any n.
Towards this goal, and assuming that X is as stated, we will first show that the
hypothesis of Lemma 2 holds. Once this is established, the conclusion will follow
from Lemma 2 by taking s = max{|Xj | : 1 ≤ j ≤ m}.

Given j ≤ m and a two-element subset Bj ⊆ Xj , consider the clone CBj
.

If CBj
contained one of the binary operations ∧ or ∨ then X would have a

binary non-dictatorial aggregator, a contradiction. If, on the other hand, CBj
con-

tained the ternary operation ⊕ or the ternary operation maj, then, by Lemma1,
X would admit a minority or a majority aggregator, a contradiction as well. So,
by the aforementioned Post’s result, all elements of CBj

, no matter what their
arity is, are projection functions. By Lemma1 again, since X has no binary non-
dictatorial aggregator, we have that for every n and for every n-ary aggregator

218 L. Kirousis et al.

f̄ = (f1, . . . , fm), there exists an integer d ≤ n such that for every j ≤ m and
every two-element set Bj ⊆ Xj , the restriction fj� Bj is equal to prn

d , the n-ary
projection on the d-th coordinate. This concludes the proof of Theorem1. 	

In the case of the Boolean framework, Theorem 1 takes the stronger form of
Theorem 2 below. Although this result for the Boolean framework is implicit in
Dokow and Holzman [7], we give an independent proof in [9].

Theorem 2 (Dokow and Holzman). Let X ⊆ {0, 1}m be a set of feasible
voting patterns. The following statements are equivalent.

1. X is a possibility domain.
2. X is affine (i.e., X admits a minority aggregator) or X has a non-dictatorial

binary aggregator.

As discussed in the preceding section, much of the earlier work on possi-
bility domains used the notion of a set being totally blocked. Our next result
characterizes this notion in terms of binary aggregators and, in many respects,
“explains” the role of this notion in the earlier results about possibility domains.

We begin by giving the precise definition of what it means for a set X of
feasible voting patterns to be totally blocked. We will follow closely the notation
and terminology used by Dokow and Holzman [8].

Let X be a set of feasible voting patterns.

– Given subsets Bj ⊆ Xj , j = 1, . . . , m, the product B =
∏m

j=1 Bj is called a
sub-box. It is called a 2-sub-box if |Bj | = 2, for all j.
Elements of a box B that belong also to X will be called feasible evaluations
within B (in the sense that each issue j = 1, . . . ,m is “evaluated” within B).

– Let K be a subset of {1, . . . , m} and let x be a tuple in
∏

j∈K Bj .
We say that x is a feasible partial evaluation within B if there exists a feasible
y ∈ B that extends x, i.e. xj = yj , for all j ∈ K; otherwise, we say that x is
an infeasible partial evaluation within B.
We say that x is a B-Minimal Infeasible Partial Evaluation (B-MIPE) if x is
an infeasible partial evaluation within B and if for every j ∈ K, there is a
bj ∈ Bj such that changing the j-th coordinate of x to bj results into a feasible
partial evaluation within B.

– We define a directed graph GX as follows.
The vertices of GX are the pairs of distinct elements u, u′ in Xj , for all
j = 1, . . . m. Each such vertex is denoted by uu′

j .
Two vertices uu′

k, vv′
l with k �= l are connected by a directed edge from uu′

k to
vv′

l if there exists a 2-sub-box B =
∏m

j=1 Bj , a K ⊆ {1, . . . ,m} and a B-MIPE
x = (xj)j∈K such that k, l ∈ K and Bk = {u, u′} and Bl = {v, v′} and xk = u
and xl = v′. Each such directed edge is denoted by uu′

k −→
B,x,K

vv′
l (or just

uu′
k → vv′

l, in case B, x,K are understood from the context).
– We say that X is totally blocked if the graph GX is strongly connected, i.e.,

every two distinct vertices uu′
k, vv′

l are connected by a directed path (this
must hold even if k = l). This notion, defined in Dokow and Holzman [8],

Aggregation of Votes with Multiple Positions on Each Issue 219

is a generalization to the case where the Aj ’s are allowed to have arbitrary
cardinalities of a corresponding notion for the Boolean framework (every Aj

has cardinality 2), originally given in [10].

We are now ready to state the following result (for the proof see [9]).

Theorem 3. Let X be a set of feasible voting patterns. The following statements
are equivalent.

1. X is totally blocked.
2. X has no non-dictatorial binary aggregator.

Observe that Theorem 2 is also an immediate consequence of Theorems A
and 3. In view of Theorem B by Dokow and Holzman [8], only the direction
1 =⇒ 2 of Theorem 3 requires proof. In [9], we prove both directions of Theorem3
for completeness.

Before proceeding further, we point out that the three types of non-dictatorial
aggregators in Theorem 1 are, in a precise sense, independent of each other.

Example 5. Consider the set X = {0, 1}3 \ {(1, 1, 0)} of satisfying assignments
of the Horn clause (¬x ∨ ¬y ∨ z).

It is easy to see that X is closed under the binary operation ∧, but it is
not closed under the ternary majority operation maj or the ternary minority
operation ⊕.

Thus, X is a possibility domain admitting a non-dictatorial binary aggrega-
tor, but not a majority aggregator or a minority aggregator. 	

Example 6. Consider the set X = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} of solu-
tions of the equation x + y + z = 1 over the two-element field.

It is easy to see that X is closed under the ternary minority operation ⊕, but
it is not closed under the ternary majority operation maj. Moreover, Dokow and
Holzman [7, Example 3] pointed out that X is totally blocked, hence Theorem 3
implies that X does not admit a non-dictatorial binary aggregator.

Thus, X is a possibility domain admitting a minority aggregator, but not a
majority aggregator or a non-dictatorial binary aggregator. 	

Example 7. Consider the set X = {(0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 0, 0)}.

This set was studied in [8, Example 4]. It can be shown that X admits a
majority aggregator. To see this, consider the ternary operator f = (f1, f2, f3)
such that fj(x, y, z) is the majority of x, y, z, if at least two of the three values
are equal, or it is 0 otherwise. Notice that in the latter case the value 0 must
be one of the x, y, z, so this operator is indeed supportive. It is easy to verify
that X is closed under (f1, f2, f3). Moreover, if one of the fj ’s is restricted to a
two-element domain (i.e., to one of {0, 1}, {(1, 2)}, {0, 2}), then it must be the
majority function by its definition, so f is indeed a majority aggregator on X.

Dokow and Holzman argued that X is totally blocked, hence Theorem 3
implies that X does not admit a non-dictatorial binary aggregator.

220 L. Kirousis et al.

Next, we claim that X does not admit a minority aggregator. Towards a con-
tradiction, assume it admits the minority aggregator g = (g1, g2, g3). By applying
g to the triples (0, 1, 2), (1, 2, 0), (0, 0, 0) in X, we infer that the triple (g1(0, 1, 0),
g2(1, 2, 0), g3(2, 0, 0)) must be in X. By the assumption that this aggregator is
the minority operator on two-element domains, we have that g1(0, 1, 0) = 1 and
g3(2, 0, 0) = 2, so X contains a triple of the form (1, g2(1, 2, 0), 2); however,
X contains no triple whose first coordinate is 1 and its third coordinate is 2, so
we have arrived at a contradiction.

Thus, X is a possibility domain admitting a majority aggregator, but not a
minority aggregator or a non-dictatorial binary aggregator. 	

Observe that the possibility domains in Examples 5 and 6 are in the Boolean
framework, while the possibility domain in Example 7 is not. This is no accident,
because it turns out that, in the Boolean framework, if a set admits a majority
aggregator, then it also admits a non-dictatorial binary aggregator. This prop-
erty is shown as a Claim in the proof of Theorem 2 in [9]. Note also that this
explains why admitting a majority aggregator is not part of the characterization
of possibility domains in the Boolean framework in Theorem2.

3.2 Uniform Possibility Domains

In this Section, we connect aggregation theory with multi-sorted constraint sat-
isfaction problems. Towards this goal, we introduce the following stronger notion
of a non-dictatorial aggregator.

Definition 4. Let X be a set of feasible voting patterns.

– We say that an aggregator f = (f1, . . . , fm) for X is uniform non-dictatorial
if for every j = 1, . . . , m and every two-element subset Bj ⊆ Xj, we have that
fj� Bj is not a projection function.

– We say that X is a uniform possibility domain if X admits a uniform non-
dictatorial aggregator of some arity.

The next example shows that the notion of a uniform possibility domain is
stricter than the notion of a possibility domain.

Example 8. Let W = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the 1-in-3 relation, consid-
ered in Example 4. As seen earlier, the cartesian product W × W is a possibility
domain. We claim that W × W is not a uniform possibility domain in the sense
of Definition 4. Indeed, since W is an impossibility domain, it follows easily that
for every n, all n-ary aggregators of W × W are of the form

(prn
d , prn

d , prn
d , prn

d′ , prn
d′ , prn

d′), for d, d′ ∈ {1, . . . , n}. �

It is obvious that every set X that admits a majority aggregator or a minority
aggregator is a uniform possibility domain. The next example states that uniform
possibility domains are closed under cartesian products.

Aggregation of Votes with Multiple Positions on Each Issue 221

Example 9. If X and Y are uniform possibility domains, then so is their cartesian
product X × Y.

Assume that X ⊆ ∏l
j=1 Aj and Z ⊆ ∏m

j=l+1 Aj , where 1 ≤ l < m. Let
(f1, . . . , fl) be a uniform non-dictatorial aggregator for X and let (fl+1 . . . , fm)
be a uniform non-dictatorial aggregator for X. Then

(f1, . . . , fl, fl+1, . . . , fm)

is a uniform non-dictatorial aggregator for X × Y. 	

Let B be an arbitrary two-element set, viewed as the set {0, 1}, and consider

the binary logical operations ∧ and ∨ on B (since we will always deal with both
these logical operations concurrently, it does not matter which element of B we
take as 0 and which as 1). For notational convenience. we define two ternary
operations on B as follows:

∧(3)(x, y, z) = x ∧ y ∧ z and ∨(3) (x, y, z) = x ∨ y ∨ z.

We now state the following result (for the proof see [9]).

Theorem 4. Let X be a set of feasible voting patterns. The following statements
are equivalent.

1. X is a uniform possibility domain.
2. For every j = 1, . . . ,m and for every two-element subset Bj ⊆ Xj, there is

an aggregator f̄ = (f1, . . . , fm) (that depends on j and Bj) of some arity such
that fj� Bj is not a projection function.

3. There is a ternary aggregator f̄ = (f1, . . . , fm) such that for all j = 1, . . . ,m
and all two-element subsets Bj ⊆ Xj, we have that fj� Bj is one of the ternary
operations ∧(3), ∨(3), maj, ⊕ (to which of these four ternary operations the
restriction fj� Bj is equal to depends on j and Bj).

4. There is a ternary aggregator f̄ = (f1, . . . , fm) such that for all j = 1, . . . ,m
and all x, y ∈ Xj, we have that fj(x, y, y) = fj(y, x, y) = fj(y, y, x).

See also the related result by Bulatov on “three basic operations” [3, Proposition
3.1], [4, Proposition 2.2] (that result however considers only operations of arity
two or three). Some of the techniques employed in the proof of Theorem4 (see
[9]) had been used in the aforementioned works by Bulatov.1

To state our result that connects the property of X being a uniform possibility
domain with the property of tractability of a multi-sorted constraint satisfaction
problems, we first introduce some notions following closely [3,5].

As before, we consider a fixed set I = {1, , . . . ,m}, but this time I repre-
sents sorts. We also consider a family A = {A1, . . . , Am} of finite sets, each of
cardinality at least 2, representing the values the corresponding sorts can take.

1 This came to the attention of the authors only after the work reported here had
been essentially completed.

222 L. Kirousis et al.

– Let (i1, . . . , ik) be a list of (not necessarily distinct) indices from I. A multi-
sorted relation over A with arity k and signature (i1, . . . , ik) is a subset R
of Ai1 × · · · × Aik , together with the list (i1, . . . , ik). The signature of such a
multi-sorted language R will be denoted σ(R).

– A multi-sorted constraint language Γ over A is a set of multi-sorted relations
over A.

Definition 5 (Multi-sorted CSP). Let Γ be a multi-sorted constraint lan-
guage over a family A = {A1, . . . , Am} of finite sets. The multi-sorted constraint
satisfaction problem MCSP(Γ) is the following decision problem.

An instance of MCSP(Γ) is a quadruple (V,A, δ, C), where V is a finite set
of variables; δ is a mapping from V to I, called the sort-assignment function
(v belongs to the sort δ(v)); C is a set of constraints where each constraint C ∈ C
is a pair (s,R), such that s = (v1, . . . , vk) is a tuple of variables of length k, called
the constraint scope; R is a k-ary multi-sorted relation over A with signature
(δ(v1), . . . , δ(vk)), called the constraint relation.

The question is whether a value-assignment exists, i.e., a mapping φ : V �→⋃m
i=1 Ai, such that, for each variable v ∈ V , we have that φ(v) ∈ Aδ(v), and

for each constraint (s,R) ∈ C, with s = (v1, . . . , vk), we have that the tuple
(φ(v1), . . . , φ(vk)) belongs to R.

A multi-sorted constraint language Γ over A is called conservative if for all
sets Aj ∈ A and all subsets B ⊆ Aj , we have that B ∈ Γ (as a relation over Aj).

If X ⊆ ∏m
j=1 Aj is a set of feasible voting patterns, then X can be consid-

ered as multi-sorted relation with signature (1, . . . , m) (one sort for each issue).
We write Γ cons

X to denote the multi-sorted conservative constraint language con-
sisting of X and all subsets of every Aj , j = 1, . . . ,m, the latter considered as
relations over Aj .

If the sets Aj are equal to each other and |I| = 1, i.e., if there is no differ-
entiation between sorts, then MCSP(Γ) is denoted the constraint satisfaction
problem CSP(Γ). If the sets of votes for all issues are equal, then it is possible
to consider a feasible set of votes X as a one-sorted relation (all issues are of the
same sort). In this framework, and in case all Aj ’s are equal to {0, 1}, we have
that CSP(Γ cons

X) coincides with the problem introduced by Schaefer [13], which
he called the “generalized satisfiability problem with constants” and denoted by
SATC({X}). Note that the presence of the sets {0} and {1} in the constraint
language amounts to allowing constants, besides variables, in the constraints.

Schaefer [13] proved a prototypical dichotomy theorem for the complexity of
the generalized satisfiability problem with constants. Bulatov [3, Theorem 2.16]
proved a dichotomy theorem for conservative multi-sorted constraint languages
We now state the following dichotomy theorem.

Theorem 5. If X is a uniform possibility domain, then MCSP(Γ cons
X) is solv-

able in polynomial time; otherwise it is NP-complete.

Theorem 5 is obtained by combining Theorem4 with the aforementioned
Bulatov’s dichotomy theorem for conservative multi-sorted constraint languages

Aggregation of Votes with Multiple Positions on Each Issue 223

[3, Theorem 2.16] (an exact statement of Bulatov’s dichotomy theorem tailored
to our needs as well as a complete proof of Theorem 5 are given in [9]).

Example 10. Let Y = {0, 1}3 \ {(1, 1, 0)} be the set of satisfying assignments of
the clause (¬x ∨ ¬y ∨ z) and let Z = {(1, 1, 0), (0, 1, 1), (1, 0, 1), (0, 0, 0)} be the
set of solutions of the equation x + y + z = 0 over the two-element field.

We claim that Y and Z are uniform possibility domains, hence, by Example 9,
the cartesian product X = Y × Z is also a uniform possibility domain. From
Theorem 5, it follows that MCSP(Γ cons

X) is solvable in polynomial time. However,
the generalized satisfiability problem with constants SATC({X}) (equivalently
CSP(Γ cons

X)) is NP-complete.
Indeed, in Schaefer’s [13] terminology, the set Y is Horn (equivalently, it is

coordinate-wise closed under ∧); however, it is not dual Horn (equivalently, it is
not coordinate-wise closed under ∨), nor affine (equivalently, it does not admit a
minority aggregator) nor bijunctive (equivalently, it does not admit a majority
aggregator). Therefore, by coordinate-wise closure under ∧, we have that Y is
a uniform possibility domain. Also, Z is affine, but not Horn, nor dual Horn
neither bijunctive. So, being affine, Z is a uniform possibility domain. The NP-
completeness of SATC({X}) (equivalently, the NP-completeness of CSP(Γ cons

X))
follows from Schaefer’s dichotomy theorem [13], because X is not Horn, dual
Horn, affine, nor bijunctive. 	

4 Concluding Remarks

In this paper, we used algebraic tools to investigate the structural properties of
possibility domains, that is, domains that admit non-dictatorial aggregators. We
also established a connection between the stronger notion of a uniform possibility
domain and multi-sorted constraint satisfaction. We conclude by discussing two
algorithmic problems that underlie the notions of a possibility domain and a
uniform possibility domain.

Given a family A = {A1, . . . , Am} and a subset X ⊆ ∏m
j=1 Aj as input,

adopting a terminology used in computational complexity theory, we call meta-
problems the following two questions:

(i) Is X a possibility domain?
(ii) Is X a uniform possibility domain?

Theorem 1 (in fact, even Corollary 1) and, respectively, Theorem 4, easily
imply that the meta-problem (i) and, respectively, the meta-problem (ii), is in
NP. Indeed, we only have to guess suitable ternary or binary operations and check
for closure. However, even if the sizes of all Aj ’s are bounded by a constant (but
the number m of issues/sorts, is unbounded), it is conceivable that the problems
are not in polynomial time, as there are exponentially many ternary or binary
aggregators. The question of pinpointing the exact complexity of these two meta-
problems is the object of ongoing research. Of course, if, besides the cardinality
of all sets Aj , their number m is also bounded, then Theorem1 (in fact, even

224 L. Kirousis et al.

Corollary 1) and respectively, Theorem 4 imply that the meta-problem (i) and,
respectively, the meta-problem (ii)) is solvable in polynomial time (for the first
meta-problem, this was essentially observed by Szegedy and Xu [14]). Note that,
in the preceding considerations, it is assumed that X is given by listing explicitly
its elements. If X is given implicitly in a succinct way (e.g., as the set of satisfying
assignments of a given Boolean formula), then the upper bound for the meta-
problems is higher. The exact complexity of the aforementioned meta-problems
with X represented succinctly remains to be investigated.

Acknowledgments. We are grateful to Mario Szegedy for sharing with us an early
draft of his work on impossibility theorems and the algebraic toolkit. We are also
grateful to Andrei Bulatov for bringing to our attention his “three basic operations”
proposition [3, Proposition 3.1], [4, Proposition 2.2]. We sincerely thank the anonymous
reviewers of RAMiCS 2017 for their very helpful comments.

Part of this research was carried out while Lefteris Kirousis was visiting the Com-
puter Science Department of UC Santa Cruz during his sabbatical leave from the
National and Kapodistrian University of Athens in 2015. Part of the research and the
writing of this paper was done while Phokion G. Kolaitis was visiting the Simons Insti-
tute of Theory of Computing in the fall of 2016. Lefteris Kirousis’ participation to
RAMICS 2017 was funded by the Special Account for Research Grants of the National
and Kapodistrian University of Athens.

References

1. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)
2. Barto, L.: The dichotomy for conservative constraint satisfaction problems revis-

ited. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer
Science (LICS), pp. 301–310. IEEE (2011)

3. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM
Trans. Comput. Logic (TOCL) 12(4) (2011). Article No. 24

4. Bulatov, A.A.: Conservative constraint satisfaction re-revisited. J. Comput. Syst.
Sci. 82(2), 347–356 (2016)

5. Bulatov, A.A., Jeavons, P.: An algebraic approach to multi-sorted constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 183–198. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45193-8 13

6. Bulatov, A.A., Valeriote, M.A.: Recent results on the algebraic approach to the
CSP. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints:
An Overview of Current Research Themes. LNCS, vol. 5250, pp. 68–92. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-92800-3 4

7. Dokow, E., Holzman, R.: Aggregation of binary evaluations. J. Econ. Theory
145(2), 495–511 (2010)

8. Dokow, E., Holzman, R.: Aggregation of non-binary evaluations. Adv. Appl. Math.
45(4), 487–504 (2010)

9. Kirousis, L.M., Kolaitis, P.G., Livieratos, J.: Aggregation of votes with multiple
positions on each issue. CoRR, abs/1505.07737v2 (2016)

10. Nehring, K., Puppe, C.: Strategy-proof social choice on single-peaked domains:
possibility, impossibility and the space between (2002). University of California at
Davis. http://vwl1.ets.kit.edu/puppe.php

http://dx.doi.org/10.1007/978-3-540-45193-8_13
http://dx.doi.org/10.1007/978-3-540-92800-3_4
http://vwl1.ets.kit.edu/puppe.php

Aggregation of Votes with Multiple Positions on Each Issue 225

11. Pelletier, F.J., Martin, N.M.: Post’s functional completeness theorem. Notre Dame
J. Formal Logic 31(2), 462–475 (1990)

12. Post, E.L.: The Two-Valued Iterative Systems of Mathematical Logic. Annals of
Mathematics Studies, vol. 5. Princeton University Press, Princeton (1941)

13. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the
Tenth Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM
(1978)

14. Szegedy, M., Xu, Y.: Impossibility theorems and the universal algebraic toolkit.
CoRR, abs/1506.01315 (2015)

15. Szendrei, Á.: Clones in Universal Algebra, vol. 99. Presses de l’Université de
Montréal, Montréal (1986)

16. Wilson, R.: On the theory of aggregation. J. Econ. Theory 10(1), 89–99 (1975)

Complete Solution of an Optimization Problem
in Tropical Semifield

Nikolai Krivulin(B)

Saint Petersburg State University, Saint Petersburg 199034, Russia
nkk@math.spbu.ru

Abstract. We consider a multidimensional optimization problem that
is formulated in the framework of tropical mathematics to minimize a
function defined on vectors over a tropical semifield (a semiring with
idempotent addition and invertible multiplication). The function, given
by a matrix and calculated through a multiplicative conjugate transpo-
sition, is nonlinear in the tropical mathematics sense. We show that all
solutions of the problem satisfy a vector inequality, and then use this
inequality to establish characteristic properties of the solution set. We
examine the problem when the matrix is irreducible. We derive the min-
imum value in the problem, and find a set of solutions. The results are
then extended to the case of arbitrary matrices. Furthermore, we rep-
resent all solutions of the problem as a family of subsets, each defined
by a matrix that is obtained by using a matrix sparsification technique.
We describe a backtracking procedure that offers an economical way to
obtain all subsets in the family. Finally, the characteristic properties of
the solution set are used to provide a complete solution in a closed form.

Keywords: Tropical semifield · Tropical optimization · Matrix sparsi-
fication · Complete solution · Backtracking

1 Introduction

Tropical (idempotent) mathematics, which deals with the theory and applica-
tions of semirings with idempotent addition [2,6–8,10,11,23,24], offers a use-
ful analytical framework to solve many actual problems in operations research,
computer science and other fields. These problems can be formulated and solved
as optimization problems in the tropical mathematics setting, referred to as
the tropical optimization problems. Examples of the application areas of tropi-
cal optimization include project scheduling [1,17,18,22,25,27], location analysis
[9,14,15,26], and decision making [3–5,19,21].

Many tropical optimization problems are formulated to minimize or maximize
functions defined on vectors over idempotent semifields (semirings with multi-
plicative inverses). These problems may have functions to optimize (objective
functions), which can be linear or non-linear in the tropical mathematics sense,
and constraints, which can take the form of vector inequalities and equalities.
Some problems have direct, explicit solutions obtained under general assump-
tions. For other problems, only algorithmic solutions under restrictive conditions
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 226–241, 2017.
DOI: 10.1007/978-3-319-57418-9 14

Complete Solution of an Optimization Problem in Tropical Semifield 227

are known, which apply iterative numerical procedures to find a solution if it
exists, or to indicate infeasibility of the problem otherwise. A short overview of
tropical optimization problems and their solutions can be found in [16].

In this paper, we consider the tropical optimization problem as to

minimize (Ax)−x,

where A is a given square matrix, x is an unknown vector, and the minus sign
in the superscript serves to specify conjugate transposition of vectors.

A partial solution of the problem was obtained in [12]. The main purpose of
this paper is to continue the investigation of the problem to derive a complete
solution. We follow an approach developed in [20] and based on a characteri-
zation of the solution set. We show that all solutions of the problem satisfy a
vector inequality, and then use this inequality to establish characteristic prop-
erties of the solution set. The solutions are represented as a family of solution
subsets, each defined by a matrix that is obtained by using a matrix sparsifica-
tion technique. We describe a backtracking procedure that offers an economical
way to obtain all subsets in the family. Finally, the characteristic properties of
the solution set are applied to provide a complete solution in a closed form. The
results obtained are illustrated with illuminating numerical examples.

The rest of the paper is organized as follows. In Sect. 2, we give a brief
overview of basic definitions and preliminary results of tropical algebra. Section 3
formulates the tropical optimization problem under study, and performs a pre-
liminary analysis of the problem. The analysis includes the evaluation of the
minimum of the objective function, the derivation of a partial solution, and the
investigation of the characteristic properties of the solutions. In Sect. 4, a com-
plete solution to the problem is given as a family of subsets, and then represented
in a compact closed vector form. Finally, Sect. 5 offers concluding remarks and
suggestions for further research.

2 Preliminary Definitions and Results

We start with a brief overview of the preliminary definitions and results of trop-
ical algebra to provide an appropriate formal background for the development of
solutions for the tropical optimization problems in the subsequent sections. The
overview is mainly based on the results in [12,13,17,18,22], which offer a useful
framework to obtain solutions in a compact vector form, ready for further analy-
sis and practical implementation. Additional details on tropical mathematics at
both introductory and advanced levels can be found in many recent publications,
including [2,6–8,10,11,23,24].

2.1 Idempotent Semifield

An idempotent semifield is a system (X,0,1,⊕,⊗), where X is a nonempty set
endowed with associative and commutative operations, addition ⊕ and multipli-
cation ⊗, which have as neutral elements the zero 0 and the one 1. Addition is

228 N. Krivulin

idempotent, which implies x⊕x = x for all x ∈ X. Multiplication distributes over
addition, has 0 as absorbing element, and is invertible, which gives any nonzero
x its inverse x−1 such that x ⊗ x−1 = 1.

Idempotent addition induces on X a partial order such that x ≤ y if and only
if x ⊕ y = y. With respect to this order, both addition and multiplication are
monotone, which means that, for all x, y, z ∈ X, the inequality x ≤ y entails that
x ⊕ z ≤ y ⊕ z and x ⊗ z ≤ y ⊗ z. Furthermore, inversion is antitone to take the
inequality x ≤ y into x−1 ≥ y−1 for all nonzero x and y. Finally, the inequality
x ⊕ y ≤ z is equivalent to the pair of inequalities x ≤ z and y ≤ z. The partial
order is assumed to extend to a total order on the semifield.

The power notation with integer exponents is routinely defined to represent
iterated products for all x �= 0 and integer p ≥ 1 in the form x0 = 1, xp =
x ⊗ xp−1, x−p = (x−1)p, and 0p = 0. Moreover, the equation xp = a is assumed
to be solvable for any a, which extends the notation to rational exponents. In
what follows, the multiplication sign ⊗ is, as usual, dropped to save writing.

A typical example of the semifield is the system (R∪ {−∞},−∞, 0,max,+),
which is usually referred to as the max-plus algebra. In this semifield, the addi-
tion ⊕ is defined as max, and the multiplication ⊗ is as arithmetic addition.
The number −∞ is taken as the zero 0, and 0 is as the one 1. For each x ∈ R,
the inverse x−1 coincides with the conventional opposite number −x. For any
x, y ∈ R, the power xy corresponds to the arithmetic product xy. The order
induced by idempotent addition complies with the natural linear order on R.

2.2 Matrix and Vector Algebra

The set of matrices over X with m rows and n columns is denoted by Xm×n.
A matrix with all entries equal to 0 is the zero matrix denoted by 0. A matrix
without zero rows (columns) is called row- (column-) regular.

For any matrices A,B ∈ Xm×n and C ∈ Xn×l, and scalar x ∈ X, matrix
addition, matrix multiplication and scalar multiplication are routinely defined
by the entry-wise formulas

{A⊕B}ij = {A}ij ⊕{B}ij , {AC}ij =
n⊕

k=1

{A}ik{C}kj , {xA}ij = x{A}ij .

For any nonzero matrix A = (aij) ∈ Xm×n, the conjugate transpose is the
matrix A− = (a−

ij) ∈ Xn×m, where a−
ij = a−1

ji if aji �= 0, and a−
ij = 0 otherwise.

The properties of the scalar addition, multiplication and inversion with
respect to the order relations are extended entry-wise to the matrix operations.

Consider square matrices in the set Xn×n. A matrix is diagonal, if its off-
diagonal entries are all equal to 0. A diagonal matrix with all diagonal entries
equal to 1 is the identity matrix denoted by I. The power notation with non-
negative integer exponents serves to represent repeated multiplication as A0 = I,
Ap = AAp−1 and 0p = 0 for any non-zero matrix A and integer p ≥ 1.

If a row-regular matrix A has exactly one non-zero entry in each row, then
the inequalities A−A ≤ I and AA− ≥ I hold (corresponding, in the context of
relational algebra, to the univalent and total properties of a relation A).

Complete Solution of an Optimization Problem in Tropical Semifield 229

The trace of any matrix A = (aij) is routinely defined as

trA =
n⊕

i=1

aii,

and retains the standard properties of traces with respect to matrix addition
and to matrix and scalar multiplications.

To represent solutions proposed in the subsequent sections, we exploit the
function, which takes any matrix A ∈ Xn×n to the scalar

Tr(A) =
n⊕

m=1

trAm.

Provided that the condition Tr(A) ≤ 1 holds, the asterisk operator (also
known as the Kleene star) maps A to the matrix

A∗ =
n−1⊕

m=0

Am.

If Tr(A) ≤ 1, then the inequality Ak ≤ A∗ holds for all integer k ≥ 0.
The description of the solutions also involves the matrix A+ which is obtained

from A as follows. First, we assume that Tr(A) ≤ 1, and calculate the matrices
A∗ and AA∗ = A ⊕ · · · ⊕ An. Then, the matrix A+ is constructed by taking
those columns in the matrix AA∗ which have the diagonal entries equal to 1.

A scalar λ ∈ X is an eigenvalue and a non-zero vector x ∈ Xn is a corre-
sponding eigenvector of a square matrix A ∈ Xn×n if they satisfy the equality

Ax = λx.

Any matrix that consists of one row (column) is considered a row (column)
vector. All vectors are assumed to be column vectors, unless otherwise specified.
The set of column vectors of order n is denoted Xn. A vector with all zero
elements is the zero vector 0. A vector is regular if it has no zero elements.

For any non-zero vector x = (xj) ∈ Xn, the conjugate transpose is the row
vector x− = (x−

j), where x−
j = x−1

j if xj �= 0, and x−
j = 0 otherwise.

For any non-zero vector x, the equality x−x = 1 is obviously valid.
For any regular vectors x,y ∈ Xn, the matrix inequality xy− ≥ (x−y)−1I

holds and becomes xx− ≥ I when y = x.
A vector b is said to be linearly dependent on vectors a1, . . . ,an if the equality

b = x1a1 ⊕ · · · ⊕ xnan holds for some scalars x1, . . . , xn ∈ X. The vector b is
linearly dependent on a1, . . . ,an if an only if the condition (A(b−A)−)−b = 1
is valid, where A is the matrix with the vectors a1, . . . ,an as its columns.

A system of vectors a1, . . . ,an is linearly dependent if at least one vector is
linearly dependent on others, and linearly independent otherwise.

Suppose that the system a1, . . . ,an is linearly dependent. To construct a
maximal linearly independent system, we use a procedure that sequentially
reduces the system until it becomes linearly independent. The procedure applies
the above condition to examine the vectors one by one to remove a vector if it
is linearly dependent on others, or to leave the vector in the system otherwise.

230 N. Krivulin

2.3 Reducible and Irreducible Matrices

A matrix A ∈ Xn×n is reducible if simultaneous permutations of its rows and
columns can transform it into a block-triangular normal form, and irreducible
otherwise. The lower block-triangular normal form of the matrix A is given by

A =

⎛

⎜⎜⎜⎝

A11 0 . . . 0
A21 A22 0

...
...

. . .
As1 As2 . . . Ass

⎞

⎟⎟⎟⎠ , (1)

where, in each block row i = 1, . . . , s, the diagonal block Aii is either irreducible
or the zero matrix of order ni, the off-diagonal blocks Aij are arbitrary matrices
of size ni × nj for all j < i, and n1 + · · · + ns = n.

Any irreducible matrix A has only one eigenvalue, which is calculated as

λ =
n⊕

m=1

tr1/m(Am). (2)

From (2) it follows, in particular, that tr(Am) ≤ λm for all m = 1, . . . , n.
All eigenvectors of the irreducible matrix A are regular, and given by

x = (λ−1A)+u,

where u is any regular vector of appropriate size.
Note that every irreducible matrix is both row- and column-regular.
Let A be a matrix represented in the form (1). Denote by λi the eigenvalue

of the diagonal block Aii for i = 1, . . . , s. Then, the scalar λ = λ1 ⊕ · · · ⊕ λs is
the maximum eigenvalue of the matrix A, which is referred to as the spectral
radius of A and calculated as (2). For any irreducible matrix, the spectral radius
coincides with the unique eigenvalue of the matrix.

Without loss of generality, the normal form (1) can be assumed to order
all block rows, which have non-zero blocks on the diagonal and zero blocks
elsewhere, before the block rows with non-zero off-diagonal blocks. Moreover,
the rows, which have non-zero blocks only on the diagonal, can be arranged in
increasing order of the eigenvalues of diagonal blocks. Then, the normal form is
refined as

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 0 0 . . . 0
. . .

...
...

0 Arr 0 . . . 0
Ar+1,1 . . . Ar+1,r Ar+1,r+1 0

...
...

...
. . .

As1 . . . Asr As,r+1 . . . Ass

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where the eigenvalues of A11, . . . ,Arr satisfy the condition λ1 ≤ · · · ≤ λr, and
each row i = r + 1, . . . , s has a block Aij �= 0 for some j < i.

Complete Solution of an Optimization Problem in Tropical Semifield 231

2.4 Vector Inequalities and Equations

In this subsection, we present solutions to vector inequalities, which appear below
in the analysis of the optimization problem under study.

Suppose that, given a matrix A ∈ Xm×n and a vector d ∈ Xm, we need to
find vectors x ∈ Xn to satisfy the inequality

Ax ≤ d. (4)

A direct solution proposed in [17] can be obtained as follows.

Lemma 1. For any column-regular matrix A and regular vector d, all solutions
to inequality (4) are given by the inequality x ≤ (d−A)−.

Next, we consider the following problem: given a matrix A ∈ Xn×n, find
regular vectors x ∈ Xn to satisfy the inequality

Ax ≤ x. (5)

The following result [13,18] provides a direct solution to inequality (5).

Theorem 1. For any matrix A, the following statements hold:

1. If Tr(A) ≤ 1, then all regular solutions to inequality (5) are given by x =
A∗u, where u is any regular vector.

2. If Tr(A) > 1, then there is no regular solution.

We conclude this subsection with a solution to a vector equation. Given a
matrix A ∈ Xn×n and a vector b ∈ Xn, the problem is to find regular vectors
x ∈ Xn that solve the equation

Ax ⊕ b = x. (6)

The next statement [13] offers a solution when the matrix A is irreducible.

Theorem 2. For any irreducible matrix A and non-zero vector b, the following
statements hold:

1. If Tr(A) < 1, then equation (6) has the unique regular solution x = A∗b.
2. If Tr(A) = 1, then all regular solutions to (6) are given by x = A+u⊕A∗b,

where u is any regular vector of appropriate size.
3. If Tr(A) > 1, then there is no regular solution.

3 Tropical Optimization Problem

We are now in a position to describe the optimization problem under study, and
to provide some preliminary solution to the problem. The problem is formulated
to minimize a function defined on vectors over a general idempotent semifield.
Given a matrix A ∈ Xn×n, we need to find regular vectors x ∈ Xn that

minimize (Ax)−x. (7)

232 N. Krivulin

A partial solution to the problem for both irreducible and reducible matrices
A was given in [12]. The solutions offered below improve the previous results by
adding new characterization properties of the solution set and by extending the
partial solution given in the case of reducible matrices. The determination of the
minimum value of the objective function, the derivation of the partial solution
for irreducible matrices and the evaluation of the lower bound on the function
for reducible matrices are taken from the previous proof, and presented here for
the sake of completeness.

We start with a solution of problem (7) for an irreducible matrix.

Lemma 2. Let A be an irreducible matrix with spectral radius λ. Then, the
minimum value in problem (7) is equal to λ−1, and all regular solutions are
given by the inequality

x ≤ λ−1Ax. (8)

Specifically, any eigenvector of the matrix A, given by x = (λ−1A)+u, where
u is any regular vector of appropriate size, is a solution of the problem.

Proof. Let x0 be an eigenvector of the matrix A. Since A is irreducible, the
vector x0 is regular, and thus x0x

−
0 ≥ I. For any regular x, we obtain

(Ax)−x ≥ (Ax0x
−
0 x)−x = (x−

0 x)−1(Ax0)−x = λ−1(x−
0 x)−1x−

0 x = λ−1,

which means that λ−1 is a lower bound for the objective function.
As the substitution x = x0 yields (Ax)−x = (Ax0)−x0 = λ−1x−

0 x0 = λ−1,
the lower bound λ−1 is strict, and thus presents the minimum in problem (7).

All regular vectors x that solve the problem are determined by the equation
(Ax)−x = λ−1. Since λ−1 is the minimum, we can replace this equation by
the inequality (Ax)−x ≤ λ−1, where the matrix A is irreducible and thus row-
regular. Considering that (Ax)− is then a column-regular matrix, we solve the
last inequality by applying Lemma 1 in the form of (8).
�
Example 1. Let us examine problem (7), given in terms of the semifield Rmax,+

by the irreducible matrix

A =
(

1 −1
3 −2

)
.

First, we evaluate the minimum in the problem. We successively calculate

trA = 1, A2 =
(

2 0
4 2

)
, trA2 = 2.

Since λ = trA ⊕ tr1/2(A2) = 1, we have the minimum λ−1 = −1.
Furthermore, we obtain the eigenvectors of the matrix A, which present a

solution to the problem. We define B = λ−1A and calculate matrices

B =
(

0 −2
2 −3

)
, B∗ = BB∗ = B+ =

(
0 −2
2 0

)
.

Complete Solution of an Optimization Problem in Tropical Semifield 233

Considering that both columns in the matrix B are collinear, we can take
one of them to represent a solution to the problem in the form

x =
(−2

0

)
u, u ∈ R.

We now extend this result to arbitrary matrices, and then obtain two use-
ful consequences. For simplicity, we concentrate on the matrices in the block-
triangular form (3), which have no zero rows. The case of matrices with zero
rows follows the same arguments with minor technical modifications.

Theorem 3. Let A be a matrix in the refined block-triangular normal form (3),
where the diagonal blocks Aii for all i = 1, . . . , r have eigenvalues λi > 0.

Then, the minimum value in problem (7) is equal to λ−1
1 , and all regular

solutions are characterized by the inequality

x ≤ λ−1
1 Ax. (9)

Specifically, any block vector x = (xT
1 , . . . ,xT

s)T with the blocks xi defined
successively for each i = 1, . . . , s by the conditions

xi =

⎧
⎪⎪⎨

⎪⎪⎩

(λ−1
i Aii)+ui, if λi ≥ λ1;

λ−1
1 (λ−1

1 Aii)∗
i−1⊕

j=1

Aijxj , if λi < λ1;

where ui are regular vectors of appropriate size, is a solution of the problem.

Proof. Considering the refined block-triangular form of the matrix A with s
rows, where all blocks above the diagonal are zero matrices, we write

(Ax)−x =
s⊕

i=1

⎛

⎝
i⊕

j=1

Aijxj

⎞

⎠
−

xi =
r⊕

i=1

(Aiixi)−xi ⊕
s⊕

i=r+1

⎛

⎝
i⊕

j=1

Aijxj

⎞

⎠
−

xi.

An application of Lemma 2 and the condition that λ−1
i ≤ λ−1

1 for i ≤ r yield

(Ax)−x ≥
r⊕

i=1

(Aiixi)−xi ≥
r⊕

i=1

λ−1
i = λ−1

1 ,

which means that λ−1
1 is a lower bound for the objective function in the problem.

To verify that the bound λ−1
1 is strict, and hence is the minimum value of

the objective function, we need to present a vector x that produces this bound.
We have to solve the inequality (Ax)−x ≤ λ−1

1 , which, due to the block-
triangular form of A, is equivalent to the system of inequalities

⎛

⎝
i⊕

j=1

Aijxj

⎞

⎠
−

xi ≤ λ−1
1 , i = 1, . . . , s.

234 N. Krivulin

We successively define a sequence of vectors xi for i = 1, . . . , s. If λi ≥ λ1 we
take xi to be an eigenvector of Aii, given by the equation λ−1

i Aiixi = xi, which
is solved as xi = (λ−1

i Aii)+ui, where ui is a regular vector of appropriate size.
Note that the condition λi ≥ λ1 is fulfilled if i ≤ r. With this condition, we

have
i⊕

j=1

Aijxj =
i−1⊕

j=1

Aijxj ⊕ Aiixi ≥ Aiixi = λixi ≥ λ1xi

and therefore, ⎛

⎝
i⊕

j=1

Aijxj

⎞

⎠
−

xi ≤ λ−1
1 .

If λi < λ1 we define xi as the solution to the equation

λ−1
1

i−1⊕

j=1

Aijxj ⊕ λ−1
1 Aiixi = xi.

Since, in this case, Tr(λ−1
1 Aii) = λ−1

1 trAii ⊕ · · · ⊕ λ−n
1 tr(An

ii) < 1, the
equation is solved by Theorem 2 in the form

xi = λ−1
1 (λ−1

1 Aii)∗
i−1⊕

j=1

Aijxj .

With the solution vector xi, we write

λ1xi =
i−1⊕

j=1

Aijxj ⊕ Aiixi =
i⊕

j=1

Aijxj ,

and then have ⎛

⎝
i⊕

j=1

Aijxj

⎞

⎠
−

xi = λ−1
1 .

Combining all obtained vectors xi together yields

(Ax)−x =
s⊕

i=1

⎛

⎝
i⊕

j=1

Aijxj

⎞

⎠
−

xi ≤ λ−1
1 ,

which shows that λ−1
1 is the minimum value of the problem.

Finally, the application of Lemma 1 to solve the inequality (Ax)−x ≤ λ−1
1

with respect to x leads to inequality (9).
�
Example 2. Consider problem (7) defined in terms of Rmax,+ with the matrix

A =
(

1 0
3 −2

)
.

Complete Solution of an Optimization Problem in Tropical Semifield 235

Note that the matrix A is reducible, and has the block-triangular form (3)
with the diagonal blocks given by (1 × 1)-matrices. The eigenvalues of the diag-
onal blocks are easily found to be λ1 = 1 and λ2 = −2.

By Theorem 3, the minimum in the problem is equal to λ−1 = −1. The
solution offered by the theorem is given by the vector x = (x1, x2)T , where
x1 = u for all u ∈ R. The element x2 is defined by the equation x2 = 2x1⊕(−3)x2,
which reduces to the equality x2 = 2x1. In vector form, the solution becomes

x =
(

0
2

)
u, u ∈ R.

We now consider a special case of the problem, where the partial solution
given by the previous theorem takes a more compact form.

Corollary 1. Under the conditions of Theorem 3, if λ1 ≤ λi for all i = 1, . . . , s,
then the vector

x = Du, D =

⎛

⎜⎝
(λ−1

1 A11)+ 0
. . .

0 (λ−1
s Ass)+

⎞

⎟⎠ ,

where u is any regular vector of appropriate size, is a solution of the problem.

Proof. It follows from Theorem 3 that the vector x = (xT
1 , . . . ,xT

s)T , which
have, for all i = 1, . . . , s, the blocks xi = (λ−1

i Aii)+ui, where ui are regular
vectors of appropriate size, is a solution of the problem.

It remains to introduce the block vector u = (uT
1 , . . . ,uT

s)T and the block-
diagonal matrix D = diag((λ−1

1 A11)+, . . . , (λ−1
s Ass)+) to finish the proof.
�

The next result shows a useful property of the solutions of problem (7).

Corollary 2. Under the conditions of Theorem 3, the set of solution vectors of
problem (7) is closed under vector addition and scalar multiplication.

Proof. Suppose that vectors x and y are solutions of the problem, which implies,
by Theorem 3, that x ≤ λ−1

1 Ax and y ≤ λ−1
1 Ay. We take arbitrary scalars α

and β, and consider the vector z = αx ⊕ βy. Since

z = αx ⊕ βy ≤ αλ−1
1 Ax ⊕ βλ−1

1 Ay = λ−1
1 A(αx ⊕ βy) = λ−1

1 Az,

the vector z is a solution of the problem, which proves the statement.
�

4 Derivation of Complete Solution

It follows from the results from the previous section that, under the assumptions
of Theorem 3, all solutions of problem (7) are given by inequality (9). Below,
we derive all solutions of the inequality, which we represent, without loss of
generality, in a form without a scalar factor on the right-hand side.

Given a matrix A ∈ Xn×n, we consider the inequality

x ≤ Ax. (10)

236 N. Krivulin

4.1 Solution via Matrix Sparsification

We start with the description of all solutions in the form of a family of solution
sets, each defined by means of sparsification of the matrix A.

Theorem 4. Let A be a matrix in the refined block-triangular normal form (3),
where the diagonal block A11 has eigenvalue λ1 > 1.

Denote by A the set of matrices A1 that are obtained from A by fixing one
non-zero entry in each row and by setting the others to 0, and that satisfy the
condition Tr(A−

1 (A ⊕ I)) ≤ 1.
Then, all regular solutions of inequality (10) are given by the conditions

x = (A−
1 (A ⊕ I))∗u, u > 0, A1 ∈ A. (11)

Proof. First we note that, under the conditions of the theorem, regular solutions
to inequality (10) exist. Indeed, using similar arguments as in Theorem 3, one
can see that the block vector x = (xT

1 , . . . ,xT
s)T , where, for all i = 1, . . . , s, we

take xi to be an eigenvector of the matrix Aii if λi ≥ 1, or to be a solution of
the equation Ai1x1 ⊕ · · · ⊕ Aiixi = xi otherwise, satisfies the inequality.

To prove the theorem, we show that any regular solution of inequality (10)
can be represented as (11), and vice versa. Assume x = (xj) to be a regular
solution of (10) with a matrix A = (aij), and consider the scalar inequality

xk ≤ ak1x1 ⊕ · · · ⊕ aknxn, (12)

which corresponds to row k in the matrix A.
If this inequality holds for some x1, . . . , xn, then, as the order defined by the

relation ≤ is assumed linear, there is a term in the sum on the right-hand side
that provides the maximum of the sum. Suppose that the maximum is attained
at the pth term akpxp, and hence akp > 0. Under this condition, we can replace
the above inequality by the two inequalities akpxp ≥ ak1x1 ⊕ · · · ⊕ aknxn and
akpxp ≥ xk, or, equivalently, by one inequality

akpxp ≥ ak1x1 ⊕ · · · ⊕ (akk ⊕ 1)xk ⊕ · · · ⊕ aknxn. (13)

Now assume that we determine maximum terms in all scalar inequalities in
(10). Similarly as above, we replace each inequality by an inequality with the
maximum term isolated on the left side.

To represent the new inequalities in a vector form, we introduce a matrix A1

that is obtained from A by fixing one entry, which corresponds to the maximum
term, in each row, and by setting the other entries to 0. With the matrix A1,
the scalar inequalities are written in vector form as A1x ≥ (A ⊕ I)x.

Let us verify that this inequality is equivalent to the inequality

x ≥ A−
1 (A ⊕ I)x.

We multiply the former inequality by A−
1 on the left. Since A−

1 A1 ≤ I, we
have x ≥ A−

1 A1x ≥ A−
1 (A⊕ I)x, which gives the latter one. At the same time,

Complete Solution of an Optimization Problem in Tropical Semifield 237

the multiplication of the latter inequality by A1 on the left, and the condition
A1A

−
1 ≥ I result in the former inequality as A1x ≥ A1A

−
1 (A⊕I)x ≥ (A⊕I)x.

By Theorem 1, the last inequality has regular solutions if and only if the
condition Tr(A−

1 (A ⊕ I)) ≤ 1 holds. All solutions are given by

x = (A−
1 (A ⊕ I))∗u, u > 0,

which means that the vector x is represented in the form of (11).
Now suppose that a vector x is defined by the conditions at (11). To verify

that x satisfies (10), we first use the condition Tr(A−
1 (A ⊕ I)) ≤ 1 to see that

(A−
1 (A ⊕ I))∗ ≥ (A−

1 (A ⊕ I))n. Then, we write

A(A−
1 (A ⊕ I))∗ = A

n−1⊕

m=0

(A−
1 (A ⊕ I))m =

n⊕

m=0

A(A−
1 (A ⊕ I))m.

Considering that A ≥ A1, we have AA−
1 ≥ A1A

−
1 ≥ I. For each m ≥ 1, we

obtain A(A−
1 (A ⊕ I))m ≥ (A ⊕ I)(A−

1 (A ⊕ I))m−1 ≥ (A−
1 (A ⊕ I))m−1, from

which it follows that

A(A−
1 (A ⊕ I))∗ = A ⊕

n⊕

m=1

A(A−
1 (A ⊕ I))m

≥
n⊕

m=1

(A−
1 (A ⊕ I))m−1 =

n−1⊕

m=0

(A−
1 (A ⊕ I))m = (A−

1 (A ⊕ I))∗.

Since, in this case, Ax = A(A−
1 (A ⊕ I))∗u ≥ (A−

1 (A ⊕ I))∗u = x, we
conclude that x satisfies inequality (10).
�

4.2 Backtracking Procedure of Generating Solution Sets

Note that, although the generation of the sparsified matrices according to the
solution described above is a quite simple task, the number of the matrices in
practical problems may be excessively large. Below, we propose a backtracking
procedure that allows to reduce the number of matrices under examination.

The procedure successively checks rows i = 1, . . . , n of the matrix A to find
and fix one non-zero entry aij for j = 1, . . . , n, and to set the other entries to
zero. On selection of an entry in a row, we examine the remaining rows to modify
their non-zero entries by setting to 0, provided that these entries do not affect
the current solution. One step of the procedure is completed when a non-zero
entry is fixed in the last row, and hence a sparsified matrix is fully defined.

To prepare the next step, we take the next non-zero entry in the row, provided
that such an entry exists. If there is no non-zero entries left in the row, the
procedure has to go back to the previous row. It cancels the last selection of non-
zero entry, and rolls back the modifications made to the matrix in accordance
with the selection. Then, the procedure fixes the next non-zero entry in this row
if it exists, or continues back to the previous rows until a new unexplored non-
zero entry is found, otherwise. If the new entry is fixed in a row, the procedure

238 N. Krivulin

continues forward to fix non-zero entries in the next rows, and to modify the
remaining rows. The procedure is completed when no more non-zero entries can
be selected in the first row.

To describe the modification routine implemented in the procedure, assume
that there are non-zero entries fixed in rows i = 1, . . . , k − 1, and we now select
the entry akp in row k. Since this selection implies that akpxp is considered the
maximum term in the right-hand side of inequality (12), it follows from (13)
that xp ≥ a−1

kp akjxj for all j �= k, and xp ≥ a−1
kp (akk ⊕ 1)xk for j = k.

Let us examine the inequality xi ≤ ai1x1 ⊕· · ·⊕ainxn for i = k +1, . . . , n. If
the condition aipa

−1
kp aki ≥ 1 holds, then the inequality is fulfilled at the expense

of its pth term alone, because aipxp ≥ aipa
−1
kp akixi ≥ xi. Since, in this case, the

contribution of the other terms is of no concern, we can set the entries aij for
all j �= p to 0 without changing the solution set under construction.

Suppose that the above condition is not satisfied. Then, we can verify the
conditions aipa

−1
kp akj ≥ aij for all j �= p, k, and aipa

−1
kp (akk ⊕ 1) ≥ aik for

j = k. If these conditions are satisfied for some j �= k or j = k, then we have
aipxp ≥ aipa

−1
kp akjxj ≥ aijxj or aipxp ≥ aipa

−1
kp (akk ⊕1)xk ≥ aikxk. This means

that term p dominates over term j. As before, considering that the last term
does not affect the right-hand side of the inequality, we put aij = 0.

4.3 Closed-Form Representation of Complete Solution

We conclude with the representation of the solution to the entire optimization
problem under investigation, in a compact closed form.

Theorem 5. Let A be a matrix in the refined block-triangular normal form (3),
where the diagonal blocks Aii for all i = 1, . . . , r have eigenvalues λi > 0.

Define B = λ−1
1 A, and denote by B the set of matrices B1 that are obtained

from B by fixing one non-zero entry in each row and by setting the other entries
to 0, and that satisfy the condition Tr(B−

1 (B ⊕ I)) ≤ 1.
Let S be the matrix, which is constituted by the maximal linear independent

system of columns in the matrices S1 = (B−
1 (B ⊕ I))∗ for all B1 ∈ B.

Then, the minimum value in problem (7) is equal to λ−1
1 , and all regular

solutions are given by
x = Sv, v > 0.

Proof. By Theorem 3, we find the minimum in the problem to be λ−1
1 , and

characterize all solutions by the inequality x ≤ Bx with the matrix B = λ−1
1 A.

Application of Theorem 4 involves defining a set B of matrices B1 that are
obtained from B by fixing one non-zero entry in each row together with setting
the others to 0, and such that Tr(B−

1 (B⊕ I)) ≤ 1. The theorem yields a family
of solutions x = S1u with S1 = (B−

1 (B ⊕ I))∗ for all u > 0 and B1 ∈ B.
Considering that each solution x = S1u defines a subset of vectors generated

by the columns of the matrix S1, we apply Corollary 2 to represent all solutions
as the linear span of the columns in the matrices S1, corresponding to all B1 ∈ B.

Complete Solution of an Optimization Problem in Tropical Semifield 239

Finally, we reduce the set of all columns by eliminating those, which are
linearly dependent on others. We take the remaining columns to form a matrix
S, and then write the solution as x = Sv, where v is any regular vector.
�
Example 3. We now apply the results offered by Theorem 4 to derive all solutions
of the problem considered in Example 1. We take the matrix B and replace one
element in each row of B by 0 = −∞ to produce the sparsified matrices

B1 =
(

0 0
2 0

)
, B2 =

(
0 −2
2 0

)
, B3 =

(
0 0
0 −3

)
, B4 =

(
0 −2
0 −3

)
.

To find those sparsified matrices, which satisfy the conditions of the theorem,
we need to calculate the matrices

B−
1 (B ⊕ I) =

(
0 −2
0 0

)
, B−

2 (B ⊕ I) =
(

0 −2
2 0

)
,

B−
3 (B ⊕ I) =

(
0 −2
5 3

)
, B−

4 (B ⊕ I) =
(
0 0
5 3

)
.

Furthermore, we obtain Tr(B−
1 (B⊕I)) = Tr(B−

2 (B⊕I)) = 0 = 1. Since the
matrices B1 and B2 satisfy the conditions, they are accepted. Considering that
Tr(B−

3 (B ⊕ I)) = Tr(B−
4 (B ⊕ I)) = 3 > 1, the last two matrices are rejected.

To represent all solutions of the problem, we calculate the matrices

S1 = B−
1 (B ⊕ I)∗ =

(
0 −2
0 0

)
, S2 = B−

2 (B ⊕ I)∗ =
(

0 −2
2 0

)
,

and then combine their columns to form a matrix that generates the solutions.
Taking into account that both columns of the matrix S2 are collinear to the

second column of S1, we drop these columns, and define S = S1. As a result,
we represent the solution of the problem as

x = Su, S =
(

0 −2
0 0

)
, u ∈ R2.

Example 4. Finally, we apply Theorem 4 to the problem in Example 2. We first
calculate the matrix

B = λ−1
1 A =

(
0 0
2 −3

)
.

We can derive two sparsified matrices B1 and B2 from B, and write

B1 =
(

0 0
2 0

)
, B−

1 (B ⊕ I) =
(

0 −2
0 0

)
, Tr(B−

1 (B ⊕ I)) = 0;

B2 =
(

0 0
0 −3

)
, B−

2 (B ⊕ I) =
(

0 0
5 3

)
, Tr(B−

2 (B ⊕ I)) = 3.

The matrix B2 does not satisfy the condition of the theorem, and thus is
rejected. Note that the matrix B1 coincides with the corresponding matrix in
Example 3. Since the matrix B1 completely determines the computations, the
solution to the problem has the same form as that obtained in this example.

240 N. Krivulin

5 Conclusions

The paper focused on the development of methods and techniques for the com-
plete solution of an optimization problem, formulated in the framework of tropi-
cal mathematics to minimize a nonlinear function defined by a matrix on vectors
over idempotent semifield. As the starting point, we have taken our previous
result, which offers a partial solution to the problem with both irreducible and
reducible matrices. To further extend this result, we have first obtained a new
partial solution of the problem in the case of a reducible matrix, and derived
a characterization of the solutions in the form of a vector inequality. We have
developed an approach to describe all solutions of the problem as a family of solu-
tion subsets by using a matrix sparsification technique. To generate all members
of the family in a reasonable way, we have proposed a backtracking procedure.
Finally, we have offered a representation for the complete solution of the problem
in a compact vector form, ready for further analysis and calculation.

The results obtained were illustrated with illuminating numerical examples.
The directions of future research will include the development of real-world

applications of the solutions proposed. A detailed analysis of the computational
complexity of the backtracking procedure is of particular interest. Various exten-
sions of the solution to handle other classes of optimization problems with dif-
ferent objective functions and constraints, and in different algebraic settings are
also considered promising lines of future investigation.

Acknowledgments. This work was supported in part by the Russian Foundation for
Humanities (grant number 16-02-00059). The author is very grateful to three referees
for their extremely valuable comments and suggestions, which have been incorporated
into the revised version of the manuscript.

References

1. Aminu, A., Butkovič, P.: Non-linear programs with max-linear constraints: a
heuristic approach. IMA J. Manag. Math. 23(1), 41–66 (2012)

2. Butkovič, P.: Max-linear Systems, Springer Monographs in Mathematics. Springer,
London (2010)

3. Elsner, L., van den Driessche, P.: Max-algebra and pairwise comparison matrices.
Linear Algebra Appl. 385(1), 47–62 (2004)

4. Elsner, L., van den Driessche, P.: Max-algebra and pairwise comparison matrices,
II. Linear Algebra Appl. 432(4), 927–935 (2010)

5. Gavalec, M., Ramı́k, J., Zimmermann, K.: Decision Making and Optimization.
Lecture Notes in Economics and Mathematical Systems. Springer, Cham (2015)

6. Golan, J.S.: Semirings and Affine Equations Over Them, Mathematics and Its
Applications, vol. 556. Kluwer Academic Publishers, Dordrecht (2003)

7. Gondran, M., Minoux, M.: Graphs, Dioids and Semirings. Operations Research/
Computer Science Interfaces. Springer, New York (2008)

8. Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work. Princeton
Series in Applied Mathematics. Princeton University Press, Princeton (2006)

Complete Solution of an Optimization Problem in Tropical Semifield 241

9. Hudec, O., Zimmermann, K.: Biobjective center - balance graph location model.
Optimization 45(1–4), 107–115 (1999)

10. Itenberg, I., Mikhalkin, G., Shustin, E.: Tropical Algebraic Geometry. Oberwolfach
Seminars, vol. 35. Birkhäuser, Basel (2007)

11. Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications, Math-
ematics and Its Applications, vol. 401. Kluwer Academic Publishers, Dordrecht
(1997)

12. Krivulin, N.K.: Eigenvalues and eigenvectors of matrices in idempotent algebra.
Vestnik St. Petersburg Univ. Math. 39(2), 72–83 (2006)

13. Krivulin, N.K.: Solution of generalized linear vector equations in idempotent alge-
bra. Vestnik St. Petersburg Univ. Math. 39(1), 16–26 (2006)

14. Krivulin, N.K., Plotnikov, P.V.: On an algebraic solution of the Rawls location
problem in the plane with rectilinear metric. Vestnik St. Petersburg Univ. Math.
48(2), 75–81 (2015)

15. Krivulin, N.: Complete solution of a constrained tropical optimization problem
with application to location analysis. In: Höfner, P., Jipsen, P., Kahl, W., Müller,
M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 362–378. Springer, Cham (2014).
doi:10.1007/978-3-319-06251-8 22

16. Krivulin, N.: Tropical optimization problems. In: Petrosyan, L.A., Romanovsky,
J.V., Yeung, D.W.K. (eds.) Advances in Economics and Optimization, pp. 195–
214. Nova Science Publishers, New York (2014). Economic Issues, Problems and
Perspectives

17. Krivulin, N.: Extremal properties of tropical eigenvalues and solutions to tropical
optimization problems. Linear Algebra Appl. 468, 211–232 (2015)

18. Krivulin, N.: A multidimensional tropical optimization problem with nonlinear
objective function and linear constraints. Optimization 64(5), 1107–1129 (2015)

19. Krivulin, N.: Rating alternatives from pairwise comparisons by solving tropical
optimization problems. In: Tang, Z., Du, J., Yin, S., He, L., Li, R. (eds.) 2015 12th
International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp.
162–167. IEEE (2015)

20. Krivulin, N.: Solving a tropical optimization problem via matrix sparsification. In:
Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAMICS 2015. LNCS, vol. 9348, pp.
326–343. Springer, Cham (2015). doi:10.1007/978-3-319-24704-5 20

21. Krivulin, N.: Using tropical optimization techniques to evaluate alternatives via
pairwise comparisons. In: Gebremedhin, A.H., Boman, E.G., Ucar, B. (eds.) 2016
Proceedings of 7th SIAM Workshop on Combinatorial Scientific Computing, pp.
62–72. SIAM, Philadelphia (2016)

22. Krivulin, N.: Direct solution to constrained tropical optimization problems with
application to project scheduling. Comput. Manag. Sci. 14(1), 91–113 (2017)

23. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies
in Mathematics, vol. 161. AMS, Providence (2015)

24. McEneaney, W.M.: Max-Plus Methods for Nonlinear Control and Estimation. Sys-
tems and Control, Foundations and Applications. Birkhäuser, Boston (2006)

25. Tam, K.P.: Optimizing and Approximating Eigenvectors in Max-Algebra. Ph.D.
thesis. The University of Birmingham, Birmingham (2010)

26. Tharwat, A., Zimmermann, K.: One class of separable optimization problems: solu-
tion method, application. Optimization 59(5), 619–625 (2010)

27. Zimmermann, K.: Disjunctive optimization, max-separable problems and extremal
algebras. Theor. Comput. Sci. 293(1), 45–54 (2003)

http://dx.doi.org/10.1007/978-3-319-06251-8_22
http://dx.doi.org/10.1007/978-3-319-24704-5_20

Concurrency-Preserving Minimal
Process Representation

Adrián Puerto(B)

Dipartimento di Informatica Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca, Milan, Italy

adrian.puertoaubel@disco.unimib.it

Abstract. We propose a method for reducing a partially ordered set,
in such a way that the lattice derived from a closure operator based on
concurrency is changed as little as possible. In fact, we characterize in
which cases it remains unchanged, and prove minimality of the resulting
reduced poset. In these cases, we can complete this poset so as to obtain
a causal net on which the closure operator will lead to the same lattice.

Keywords: Partial order · Concurrency · Closure operator · Lattice ·
Atom · Causal net

1 Introduction

In this work, we explore canonical representability of processes based on their
concurrency features. We study the closure operator based on concurrency devel-
oped in [1–3]. These works focus on a paradigm that considers a set of events, and
the set of conditions they relate to as a bipartite directed graph called a Petri net.
Acyclic Petri nets are a suitable representation of asynchronous processes, in that
their elements are partially ordered [4]. Indeed, partially ordered sets are a com-
mon characteristic in different models of true concurrent processes, such as event
structures [11,14] or Mazurkiewicz traces [9]. All these models share the fact that
maximal totally ordered subsets (or chains) represent sequential subprocesses,
whereas maximal subsets of pairwise unordered elements (or antichains) repre-
sent global states. Several subset operators have been defined on these struc-
tures. In particular, Nielsen et al. have presented downwards closed subsets of
event structures, or configurations, as forming interesting spaces when ordered
by inclusion: domains [11,14]. Intuitively, these configurations gather informa-
tion on the history of the subprocess leading to a particular set of events. In this
sense they can be understood as partial states, uniquely determined by the past
of a given subset, thus relying solely on causal dependence relations. As a mat-
ter of fact, inclusion in a domain represents a chronological ordering of possible
observations. The closure operator studied in this paper however, evolves around
concurrency relations and independence of subprocesses. Like in domains, it pro-
vides a family of subsets, and endows it with a structure. Nevertheless, unlike

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 242–257, 2017.
DOI: 10.1007/978-3-319-57418-9 15

Concurrency-Preserving Minimal Process Representation 243

configurations, it presents a notion of complementation determined by concur-
rency. Any element is by definition concurrent to all the elements in its comple-
ment, and so it could not distinguish one of them from another without a global
clock. From its local point of view its whole complement subset behaves as a
single local state. In the structure obtained from this closure operator, inclusion
is not to be interpreted as a chronology, but rather conveys the idea of a coarser
point of view. Informally, if we consider that sequential subprocesses can only
share information by synchronising or splitting, then this operator determines
which information about the process is available locally.

Even though this closure operator was originally defined excluding conflict
situations [2], the authors then extended their results to include these [1]. In the
same line of ideas, the results presented in this paper do not consider conflict,
as we intend to consider them further on. Also, this operator is described in
the frame of acyclic Petri nets, but the original authors generalise the result
to partial orders. One of their core contributions is the identification of a local
property of these partial orders, N-density (see Remark 2), with a property of
the space of subsets obtained from the closure operator, orthomodularity (see
Definition 4). Analogously, the results of this paper are framed in terms of Petri
nets, but presented for more general partially ordered sets, so that the results
could be applied to other models of concurrent processes, such as the above
mentioned. In fact, instead of N-density and orthomodularity, we here consider
weaker notions, so that our results are presented in a slightly more general form.

In this work, we propose to use this closure operator for reducing a partial
order. We characterize the cases in which this reduction preserves the structure
of closed sets, and we prove minimality of the obtained partial order. Intuitively,
the obtained partial order is an abstraction of the process, carrying only the
information which is available locally. In this sense, it is the skeleton of the
interactions between sequential subprocesses. Indeed, all the elements of the
reduced partial order are involved either in a synchronisation, or a branching,
or both.

In Sect. 2, the theoretical background is presented. Partial orders, together
with their in-line and concurrency relations are formally defined, so as to intro-
duce the notions of complement, and closure operator. Well known results relat-
ing this type of operators with lattice theory are presented, and finally, the
central feature of our novel construction is defined: atoms, or minimal closed
subsets. Section 3 presents the reduction: we try to obtain a normalised version
of the partial order in which the previously defined atoms become single ele-
ments. The first propositions show some properties of atoms, that will allow
us to order them partially in a way consistent with the original poset. The
obtained partial order is a minimal representation of causal dependencies such
that the overall concurrency structure is respected as much as possible. Section 4
is devoted to show under which assumptions, and to which extent this structure
is fully preserved. To this aim, we characterise the concurrency relation on the
reduced poset in terms of closures and complements of the original one. We then
construct the corresponding lattice of closed sets, and explicitly map it to the
closed set-lattice of the original poset with a homomorphism. We then show

244 A. Puerto

that this homomorphism is an embedding, and under which conditions it is an
actual isomorphism. Finally, minimality of the reduced partial order is proven.
In Sect. 5 we provide an example on how to use this reduction. Starting from
a rather general (although N-dense) partial order, we apply the reduction tech-
nique. We then perform a completion of the reduced partial order so as to obtain
a Petri net. In this new structure, we see that the elements of the reduced poset
correspond to the conditions of the Petri net. This fact should clarify the idea
that the considered closed sets abstract sequential subprocesses as local states.

The proofs are omitted in this version, for space reasons. The extended ver-
sion containing the full proofs can be found here:

(www.mc3.disco.unimib.it/pub/P17.pdf)

2 Posets, Closure Operators and Lattices

A natural way to represent a process is by ordering a set of events, in some cases
together with local states, or conditions. We do so by means of an order relation
that should be interpreted as a causal dependence between these.

Definition 1 Partially Ordered Set. A Partially Ordered Set, or poset is a
set P equipped with a reflexive, antisymmetric, and transitive relation ≤P ⊆ P 2

that we call order. Whenever two elements x, y ∈ P are ordered either x ≤P y
or y ≤P x, we say they are in line: liP := ≤P ∪ ≤−1

P . Conversely, if a pair of
elements is not in the order relation we say they are concurrent: coP := P 2\ liP .

We may define the covering relation associated to ≤P , ≺P := ≤P \ ≤2
P . We

say (P,≤P) is combinatorial whenever the order is the transitive and reflexive
closure of the covering relation: ≤P = (≺P)�.

Example 1. Figure 1 shows the following poset: P1 = {x, y, u, v} with ≤P1=
{(x, y), (x, u), (v, y)}. We can clearly see that x coP v, u coP y and u coP v.

We pay special attention to the co relation. Since ≤ is reflexive, co must be
irreflexive, and li being symmetric, so must also be co.

P1

u

x v

y

P2

a1

u

x v

y

a2 a3

Fig. 1. Two combinatorial posets P1 and P2. Arrows represent ≺ Pi, and dashed
lines represent coPi , i ∈ {1, 2}. On the left, P1 = {x, y, u, v} with ≤P1=
{(x, y), (x, u), (v, y)}. We can clearly see that (x, v), (u, y), (u, v) ∈ coP1 , as repre-
sented by the dashed lines.

www.mc3.disco.unimib.it/pub/P17.pdf

Concurrency-Preserving Minimal Process Representation 245

We would like to identify which elements of the partial order are concurrent
to the same elements. To this aim, we may extend the concurrency relation to
the power set P(P) = {S | S ⊆ P} of P as follows.

Definition 2. For any subset S ⊆ P , we define the polarity induced by coP as

(·)′ : P(P) −→ P(P)
S �−→ S′ := {y ∈ P | ∀x ∈ S : x coP y}

We will henceforth refer to this operator simply as a polarity, and refer to S′ as
the polar of S.

It is a well known result that applying such a polarity two times yields a closure
operator on P(P). In fact, ((·)′, (·)′) is a Galois connection [5, Chap. V Sect. 7].

Definition 3. For any subset S ⊆ P , we define the closure induced by coP as

(·)′′ : P(P) −→ P(P)
S �−→ S′′ := (S′)′

This operator is indeed:

– extensive ∀S ∈ P(P) : S ⊆ S′′

– monotone ∀S1, S2 ∈ P(P) : (S1 ⊆ S2 ⇒ S′′
1 ⊆ S′′

2), and
– idempotent ∀S ∈ P(P) : (S′′)′′ = S′′

We will from this point on refer to S′′ as the closure of S, and consider the space
L(P) = {S′′ | S ∈ P(P)} of closed subsets of P .

The empty set ∅ and the full poset P are trivially closed, and polar to each
other. As for any structure defined on a power set, there is a natural ordering
of its elements induced by inclusion. In this way, a set precedes another if it is
contained in it. When ordered in such a way, L(P) forms again a poset, and as
such it is common practice to represent it as a Hasse diagram.

Example 2. In Fig. 2 we can see the closed sets of P1 from Fig. 1. Since u coP1 v
and u coP1 y, we have that {u}′ = {v, y}, and no other element is concurrent
to both v and y, so {u}′′ = {u}. If we consider {x}′ = {v}, since u coP1 v we
have that u ∈ {x}′′. In fact {x}′′ = {x, u}. We may represent L(P1) as a Hasse
diagram. We note that P1 is common in the literature and often referred to as
the N Poset. It is, in particular, the paradigmatic poset that is not series-parallel.

It is a well known result [5, Chap. V Sect. 7] that, when considering the closure
operator associated to a symmetric relation, the resulting collection of closed sets
forms a complete lattice. Furthermore, since the co relation we handle is also
irreflexive, L(P) is actually an orthocomplemented lattice or shortly, ortholattice.
As such, L(P) is endowed with a set of operations related to the order relation
induced by inclusion. Since it is not our purpose here to discuss general aspects of
lattice theory, we will consider only the case of interest, and refer the inquisitive
reader to [6].

246 A. Puerto

P1

x

yu

v

{u}′

{v}′

L(P1)

{v}′ = {x, u}

{u}

{v, y} = {u}′

{v}

∅

P1

Fig. 2. Closure operator induced by concurrency relation on P1 generates L(P1). On
the left: closed sets as subsets of P1. On the right: Hasse diagram of L(P1).

Remark 1. L(P) with the usual set operations and (·)′ forms an ortholattice:
〈L(P),≤L(P),∧L(P),∨L(P), (·)′, ∅, P 〉

order: ≤L(P):= {(s1, s2) ∈ L(P)2 | s1 ⊆ s2}
meet: ∀S ⊆ L(P) :

∧

s∈S

L(P)s =
⋂

s∈S

s

join: ∀S ⊆ L(P) :
∨

s∈S

L(P)s = (
⋃

s∈S

s)′′

orthocomplement: ∀s ∈ L(P) : s′ ∈ L(P)

We note that ∅, and P behave respectively as least and largest elements, often
called bottom and top in lattice theory. These elements are often represented
by ⊥ and � in the literature. We however prefer to use 0L and 1L, to avoid
confusion, so as to use the ⊥ symbol consistently with [8], for the following
relation. Orthocomplementation induces a binary relation called orthogonality :

⊥P := {(s1, s2) ∈ L(P)2 | s1 ≤L(P) s′
2}

Orthocomplements naturally behave such that s1 ≤L(P) s′
2 ⇔ s2 ≤L(P) s′

1, so
that orthogonality is symmetric and irreflexive. Intuitively, two sets are orthogo-
nal, whenever they represent concurrent subprocesses. In fact it is apparent that
s1 ⊥P s2 ⇔ s1 × s2 ⊆coP , which allows us to extend this relation to the whole
of P(P).

We may now consider a particular type of closed sets, namely the smallest pos-
sible non-empty ones.

Definition 4. An atom is a closed set which contains no proper non-empty
closed subset. Given L(P), we may consider its set of atoms:

A(P,≤) = AP := {A ⊆ P | A �= ∅ ∧ ∀S ⊆ A : (S �= ∅ ⇒ S′′ = A)}

Concurrency-Preserving Minimal Process Representation 247

In terms of lattices, an atom is an element such that each other element less or
equal than it is either the bottom element, or the atom itself:

∀a ∈ L(P) : (a ∈ AP ⇔ a �= ∅ ∧ (∀s ∈ L(P) : (s ≤L(P) a ⇒ (s = ∅ ∨ s = a))))

We say a lattice is atomic if every element is greater or equal to some atom:

L(P) is atomic ⇔ ∀s ∈ L(P) : (∃a ∈ AP : a ≤L(P) s)

In an atomic lattice, we may consider the set of atoms under any given element:

∀s ∈ L(P) : As := {a ∈ AP | a ≤L(P) s}
An atomic lattice is said to be atomistic if every element can be expressed as the
join of the atoms under it:

L(P) is atomistic ⇔ ∀s ∈ L(P) : s =
∨

a∈As

L(P)a

Finally, an ortholattice is said to be orthomodular, whenever ∀x, y ∈ L(P):

x ≤L(P) y ⇒ y = x ∨L(P) (x′ ∧L(P) y)

Non-atomic lattices are those in which at least one closed set contains an infinite
sequence of closed sets such that each is properly contained in the previous one.
An atomistic lattice is one in which each closed set can be uniquely characterized
by the atoms contained in it. In an orthomodular lattice, if a set properly contains
another, then the former must intersect the orthocomplement of the latter. An
orthomodular lattice is atomistic, and every atomistic lattice must be atomic [8,
Chap. 3 Sect. 10]. The following examples should help clarify these notions.

Example 3. Consider the poset P1 as previously defined. In Fig. 2 we can clearly
identify the atoms: AP1 = {{u}, {v}}. Obviously, L(P1) is atomic. However,
we cannot make the difference between {x, u} and {u} in terms of atoms, so
it is not atomistic. Indeed A{x,u} = A{u} = {{u}}, so

∨L(P)
a∈A{u} a = {u} =

∨L(P)
a∈A{x,u} a �= {x, u}. Since it is not atomistic, neither is it orthomodular, and

we see that {u} ⊆ {x, u} but {u}′ ∩{x, u} = {v, y}∩{x, u} = ∅. On Fig. 3 we see
P2 on which atoms are depicted, together with a couple of their complements.
Clearly, L(P2) is atomic. On the Hasse diagram of L(P2) we can see that all
elements are above different sets of atoms, hence it is atomistic. However, it is not
orthomodular. Indeed {u} is a closed set contained in {v}′, but {v}′ ∩ {u}′ = ∅,
so {u} ∨L(P) ({u}′ ∧L(P) {v}′) = {u} ∨L(P) ∅ = {u} �= {v}′.

Remark 2. It is worth noting that posets that lead to an orthomodular lattice
have been characterized [2], assuming that the poset is combinatorial [4, Chap. 2
Sect. 2]. Under this condition, whenever a poset P has a subposet (i.e. a subset
where order is preserved) isomorphic to P1 from our example, then L(P) will
only be orthomodular if there is an element a ∈ P such that x ≤P a, a ≤P y,

248 A. Puerto

and u coP a coP v. Such a property is called N-density [4, Chap. 2 Sect. 3].
Therefore, N-density is also a sufficient condition on a poset for its closed-set
lattice to be atomistic. The poset P3 in Fig. 4 is N-dense. Also, note that N-dense
posets may contain the N poset (P1) as a subposet. Hence, N-density is a weaker
notion than N-freeness, and the class of N-dense posets is wider than that of
series-parallel posets.

P2

y

a1

a2 a3

x

u

v

{v}′ {u}′

L(P2)

{a1} {x} {v} {u} {a2} {a3}

{a1}′ {x}′ {v}′ {u}′ {a2}′ {a3}′

P2

∅

Fig. 3. On the left: some closed sets of P2. On the right: Hasse diagram of L(P2)

Example 4. In Fig. 4 we see an N-dense poset P3 that contains P1 as a subposet.
On the figure, one of the ways we find P1 as subposet of P3 has been represented
by labeling the corresponding points according to Fig. 1. Clearly, the element
a is in the configuration described in the previous remark. The corresponding
lattice L(P3) is orthomodular, and so atomistic.

P3

a

vx

yu

A3

A2

A1

A5A4

L(P3)

∅

A1 A2 A3 A4 A5

A′
1 A′

2 A′
3 A′

4 A′
5

P3

Fig. 4. On the left: N-dense poset P3 and its atoms. On the right: L(P3) is orthomodular.

Concurrency-Preserving Minimal Process Representation 249

3 Poset of Atoms

In this section, we will start presenting the contribution of this paper, by paying
special attention to atoms. We will consider them as subsets of a partial order,
and we will see how this order can be extended to them, so that the set of atoms
forms a subposet of the former.

As a first remark, we may notice that they are all pairwise disjoint.

Proposition 1. ∀A1, A2 ∈ AP : (A1 ∩ A2 �= ∅ ⇒ A1 = A2).

Another interesting property of atoms is that all the elements inside one of them
relate identically to the elements outside of it, either by the order relation, or
the concurrency one. Such a property of subsets is rather common in the litera-
ture, and referred to diversely according to the subject (See D-autonomous sets
defined on pre-orders in [10] for additional references). We prove this property in
Propositions 2 through 5. This will subsequently allow us to define a consistent
order on the set of atoms.

In the case of concurrency, the result is quite straightforward:

Proposition 2. Let A ∈ AP , x ∈ A, y ∈ P\A : y coP x. Then ∀z ∈ A : y coP z.

We will use the following result to prove the counterpart of Proposition 2 for the
ordering relation.

Proposition 3. Closed sets are convex. Formally:

∀S ⊆ P, ∀x, y ∈ S′′ : (x ≤ z ≤ y) ⇒ (z ∈ S′′)

We are now able to see that if an element of an atom is ordered before an element
outside of it, then all the elements of this atom must be ordered accordingly.

Proposition 4. Let A ∈ AP , x ∈ A, y ∈ P \ A. If x ≤P y, then for each
z ∈ A : z ≤P y.

An analogous proof leads to the following result.

Proposition 5. Let A ∈ AP , x ∈ A, y ∈ P \ A. If y ≤P x, then for each
z ∈ A : y ≤P z.

For the sake of clarity, we summarize these results as follows. Let A ∈ AP , y ∈
P \ A:

– (∃x ∈ A : x coP y) ⇒ (∀z ∈ A : z coP y)
– (∃x ∈ A : x ≤P y) ⇒ (∀z ∈ A : z ≤P y)
– (∃x ∈ A : y ≤P x) ⇒ (∀z ∈ A : y ≤P z)

Under these conditions, we may define ≤AP
as follows: Let A1, A2 ∈ AP . Then

A1 ≤AP
A2 :⇔: ∃x ∈ A1,∃y ∈ A2 : x ≤P y. Then clearly A1 ≤AP

A2 ⇔ ∀x ∈
A1,∀y ∈ A2 : x ≤P y. Furthermore, A1 coAP

A2 ⇔ A1 ⊥P A2.

250 A. Puerto

≤AP
is rather trivially an order on AP . It inherits reflexivity and transitivity

from ≤P , and if it were not antisymmetric, neither would ≤P . As a matter of
fact, any choice function f , defined as follows, is an order embedding:

f : AP −→ P

A �−→ f(A):=x ∈ A
(1)

And so, (AP ,≤AP
) can be embedded into (P,≤P). Indeed, provided f exists,

its injectivity comes as a consequence of atoms being pairwise disjoint (see
Proposition 1). This justifies the idea that (AP ,≤AP

) is a reduced version of
(P,≤P). Intuitively, the reduction can be seen as a collapsing of the atoms. As
we will show in the next section, atoms are sufficient to recover the lattice of
closed sets. On the other hand, Propositions 2 to 5 imply not only that atoms
are totally ordered subsets, but also that no branchings occur at any of their
elements. Indeed, no element of an atom has more than one predecessor and
one successor. This should clarify that the inner structures of atoms provide
no information on the interactions between the different sequential subprocesses
represented in the poset. Instead, all this information is condensed in their outer
structure: the reduced poset (AP ,≤AP

). For instance, a totally ordered set,
representing a single sequential process will consist of one single atom, and its
reduced version will then be a single isolated element. A set of n non interacting
sequential processes would consist of the corresponding n atoms, leading to a
reduced version of n pairwise concurrent elements. Naturally, the structure of
the reduced poset would grow more complex as sequential processes interact,
stepping away from these trivial examples.

In the following section, we will see that the concurrency structure of (P,≤P)
is preserved in (AP ,≤AP

) by means of orthogonality, and under which conditions
this statement fully holds.

4 Atoms as Lattice Generators

The results presented in this section rely heavily on the fact that an atomistic lat-
tice is uniquely determined by its set of atoms, and their orthogonality relation.
We study how this implies that L(AP) and L(P) are isomorphic. We will see
that L(AP) is always atomistic, and after inspecting the orthogonality relation
in both lattices, build the actual isomorphism.

The idea behind the following result arises from the observation that
∀A1, A2 ∈ AP : {A1} ⊥AP

{A2} ⇔ A1 coA A2 ⇔ A1 ⊥P A2, which can
in fact be extended to arbitrary subsets of AP .

Proposition 6. Let B1, B2 ⊆ AP . Then B1 ⊥AP
B2 ⇔ (

⋃
A∈B1

A) ⊥P

(
⋃

A∈B2
A).

We can now define L(AP) in an analogous manner to L(P), to the point of
showing that L(A) can be embedded into L(P). We shall later see under which
conditions, this embedding is actually an isomorphism.

To this aim, the following two propositions show that L(AP) is an atomistic
lattice.

Concurrency-Preserving Minimal Process Representation 251

AP3

A2

A5A4

A3

A1

f
↪−−−−−→

P3

a2

a5
a4

a3

a1

A3

A2

A1

A5A4

Fig. 5. On the left, AP3 = A(P3, ≤P3), obtained from P3 on the right. Consider f :
AP3 −→ P3 such that f(Ai) = ai∀i ∈ 1, .., 5. The elements in its image have been
labeled showing the actual embedding of AP3 into P3. Clearly, f both preserves and
reflects concurrency. Note that since L(P3) is atomistic (see Fig. 4), it is isomorphic to
L(AP3).

Proposition 7. ∀A ∈ AP : {A} ∈ L(AP).

This trivially implies that L(AP) is atomistic.

Proposition 8. L(AP) is atomistic, formally:

∀B ∈ L(AP) : B =
∨

A∈B

{A} = (
⋃

A∈B

{A})′′

Or equivalently:
∀B1, B2 ∈ L(AP) : ({A ∈ A(AP ,≤AP

) | {A} ⊆ B1} = {A ∈ A(AP ,≤AP
) |

{A} ⊆ B2}) ⇒ B1 = B2

At this point, we show that L(AP) can be embedded into L(P). We do so by
defining a map between them, and showing that it is an order homomorphism
in Proposition 9, and that it is injective in Proposition 10.

Definition 5. We define the morphism φ that will turn out to be an injective
order homomorphism (i.e. an embedding)

φ : L(AP) −→ L(P)

B �−→ φ(B) : =
∨

A∈B

A = (
⋃

A∈B

A)′′

We start by proving that φ preserves and reflects the order of the corresponding
lattices.

Proposition 9. ∀B1, B2 ∈ L(AP) : B1 ≤L(AP) B2 ⇔ φ(B1) ≤L(P) φ(B2).

252 A. Puerto

P1 AP1

u

x v

y

A1

A2

L(AP1)

A′
2 = A1 A2 = A′

1

∅

P1

φ
↪−−→

L(P1)

A′
2

A1

A′
1

A2

∅

P1

Fig. 6. On the left, the poset P1, with its two only atoms drawn: A1 = {u} and
A2 = {v}. Clearly A1 coAP1

A2 so (AP1 , ≤AP1
) = ({A1, A2}, ∅). On the center, the

corresponding lattice L(AP1), which is embeddable into L(P1), on the right. Note that
A2 ≤L(P1) A′

1 ⇒ A2 ⊥L(P1) A1, so the embedding φ preserves orthogonality.

This implies that φ is an order homomorphism. So if it were injective it would
be an order embedding. Let us confirm this by proving the injectivity of φ.

Proposition 10. Let B1, B2 ∈ L(AP) such that φ(B1) = φ(B2), then B1 = B2.

Thus, φ−1 is a well defined function on the codomain of φ. As a matter of fact,
provided a closed set of the codomain, it simply returns the set formed by the
atoms under it : φ−1(S) = {A ∈ AP | A ≤L(P) S}.

We can now positively state that L(AP) can be embedded into L(P):

φ : L(AP) ↪→ L(P)

Our purpose is however to go further and have L(AP) and L(P) isomorphic, for
which we require φ to be surjective. However, in general this is not the case, as
we may see in Fig. 6. As we can see, the fact preventing φ from being surjective,
seems to be that A′

2 (respectively A′
1) cannot be differentiated from A1 (A2)

solely in terms of atoms. This observation leads naturally to the following result:

Proposition 11. φ is surjective iff L(P) is atomistic.

We naturally would like to characterize the posets (P,≤) for which L(P) is
atomistic, in this sense it seems clear that a necessary and sufficient condition
will be:

∀S ⊆ P : (∃A1 ⊆ P : A′′
1 � S′′) ⇒ (∃A2 ⊆ P : A′′

2 � S′′ and A′′
1 �= A′′

2) (2)

We note that this condition is strictly weaker than N-density, which in turn
is weaker than N-freeness. For instance, poset P2 of Figs. 1 and 3 verifies
it, although it is not N-dense, (and therefore neither N-free). When L(P) is
atomistic, we are able to assert that φ is an order isomorphism. Furthermore,

Concurrency-Preserving Minimal Process Representation 253

when this is the case, Proposition 13 will prove that φ is even an orthocomple-
mented lattice isomorphism, preserving not only order, but orthogonality as well.
Propositions 14 and 15 will then show that φ preserves lattice operations.

In order to do this, we first require the following technical result.

Proposition 12. If L(P) is atomistic, then

∀S ∈ L(P) : S′ = (
⋃

A∈AP :A⊥P S

A)′′

We shall now prove that φ preserves orthocomplementation.

Proposition 13. If L(P) is atomistic then ∀B ∈ L(AP) : φ(B′) = φ(B)′.

Therefore, φ is an ortholattice isomorphism, hence L(P) � L(AP). We may
confirm this by giving the two following results.

Proposition 14. ∀B1, B2 ∈ L(AP) : φ(B1 ∨L(AP) B2) = φ(B1) ∨L(P) φ(B2).

The following result is however not as trivial, and requires L(P) to be atomistic
as well.

Proposition 15. ∀B1, B2 ∈ L(AP) : φ(B1 ∧L(AP) B2) = φ(B1) ∧L(P) φ(B2).

At this point, we are willing to state that (AP ,≤AP
) is the smallest poset embed-

dable into (P,≤P) such that L(P) � L(AP), provided L(P) is atomistic.
We formalise this notion of minimality, as follows: Let (P ′,≤P ′) be an arbi-

trary poset. If (P ′,≤P ′) can be embedded into (P,≤P), and L(P) � L(P ′), then
(AP ,≤AP

) can be embedded into (P ′,≤P ′).

Proposition 16. Let (P,≤P) and (P ′,≤P ′) be two posets such that L(P) and
L(P ′) are atomistic and isomorphic, and there exists an order embedding g :
(P ′,≤P ′) ↪→ (P,≤P). Let AP = A(P,≤P), then (AP ,≤AP

) can be embedded
into (P ′,≤P ′).

5 Completion and Causal Nets

We have provided a way to reduce a poset to a minimal form that preserves
the lattice obtained from the closure induced by coP . This minimality has some
implications in terms of local structure, which we shall exploit to offer a possible
application of the presented reduction.

Occurrence nets are a prevalent paradigm for modelling distributed processes.
In this case, we leave conflict situations for further study, and consider only
causal nets: the class of conflict-free occurrence nets.

Definition 6. A Petri net N = (B,E,F) is a bipartite directed graph with the
set of vertices partitioned in into the disjoint sets B and E, and F ⊆ (B ×
E) ∪ (E × B) as the set of edges. Elements in B are called places, those in E
transitions. Edges can only link places with transitions.

254 A. Puerto

Whenever it is acyclic, one may consider the reflexive and transitive closure
(F)∗ of F , so that (B ∪ E, (F)∗) is a partial order.

A causal net is an acyclic net which presents no conflict. This is the case
whenever the following property holds: ∀b ∈ B : |{e ∈ E | (e, b) ∈ F}| ≤
1 and |{e ∈ E | (b, e) ∈ F}| ≤ 1. We furthermore require that ∀e ∈ E : {b ∈ B |
(b, e) ∈ F} �= ∅ and {b ∈ B | (e, b) ∈ F} �= ∅.

Typically, in graphical representations, places are displayed as circles, and tran-
sitions as rectangles, as in Fig. 7. When considering causal nets as partial orders,
two properties are most relevant [4]. First, the order relation is combinatorial,
since it is the transitive and reflexive closure of the covering relation F . Second,
all causal nets are N-dense, a notion mentioned in Remark 2.

Definition 7. A combinatorial poset (P,≤P) is N-dense iff ∀x, y, u, v ∈ P such
that x ≤P y, x ≤P u, v ≤P y, x coP v, u coP v, and u coP y, there is an element
a ∈ P verifying a coP u, a coP v and x ≤P a ≤P y.

The poset P1 in Fig. 1 is not N-dense, whereas P3 in Fig. 4 is.
Combinatorialness, and N-density are however not sufficient for a partial

order to be a causal net. Under these conditions one could still be unable to find
a suitable bipartition of the elements.

We show, however, that the atoms of a poset, as defined in this paper, struc-
turally behave like places in the following sense. Given a combinatorial and
N-dense poset (P,≤P), the poset (AP ,≤AP

) resulting from reduction can be
completed with transitions, so as to obtain a causal net.

We will first note that whenever ≤P is combinatorial, so must be ≤AP
. On

the other hand, reduction also preserves N-density.

Proposition 17. Let (P,≤P) be combinatorial, and N-dense. Then (AP ,≤AP
)

is N-dense.

We will henceforth assume that both (P,≤p), and (AP ,≤AP
) are combinatorial

and N-dense.
Our purpose is now to perform a Dedekind-MacNeille completion on

(AP ,≤AP
) (see for example [6, Chap. 7 Sect. 36]). To this aim, we introduce

some notation:

Definition 8. Let (P,≤P) be a poset, and define, for each S ⊆ P :
The upset of S: ↑ S := {x ∈ P | ∀s ∈ S : s ≤P x}
The downset of S: ↓ S := {x ∈ P | ∀s ∈ S : x ≤P s}
The Dedekind Mac-Neille completion of (P,≤P) is DM(P) := {S ⊆ P | ↓(↑ S) =
S} with the order induced by inclusion.

The following statements are known results, we refer to [6, Chap. 7 Sect. 36–44]
for the full proofs. We may first note that (↑, ↓) is a Galois connection, hence
↓(↑ ·) is a closure operator. DM(P) is a complete lattice, thus justifying the
name. It contains the intersection of any of its elements. The empty set and
P are trivially in DM(P), and it is common practice not to include them in
DM(P), which we shall do in this paper. On the other hand, ↓(↑ ·) constitutes

Concurrency-Preserving Minimal Process Representation 255

a closure operator, so that ∀S ⊆ P : S ⊆ ↓(↑ S). On top of that, it holds that
∀x ∈ P : ↓(↑(↓{x})) = ↓{x} hence ∀x ∈ P : ∃! ↓{x} ∈ DM(P). This way, (P,≤)
can be embedded into (DM(P),⊆) so that order is both preserved and reflected.
Naturally, coDM(P):= {(s1, s2) ∈ DM(P) | s1 �⊆ s2 and s2 �⊆ s1}.

It is worth noting that, in the non-trivial case, (AP ,≤AP
) has no maximal,

(nor minimal) element. Indeed, if there is an x ∈ AP such that ∀a ∈ AP : x ≤AP

a (a ≤AP
x) then clearly x′ = ∅, so x = AP , and (AP ,≤AP

) = ({AP }, ∅).

P3 AP3 DM(AP3)

Fig. 7. From left to right: poset P3 of previous examples seen as a causal net, its atomic
reduction, and its completion.

In the following we will show that DM(AP) is a causal net. To this aim we
introduce some notation. Let:

– BN = {↓{a} | a ∈ AP } be the set of principal ideals, those elements of
DM(AP) that can be identified with the ones of AP ;

– EN = DM(AP) \ {↓{a} | a ∈ AP } = DM(AP) \ BN be the elements intro-
duced by the completion; and

– N = (BN , EN ,≺DM(AP))

The following two propositions prove, on one hand that the order on DM(AP)
is nowhere dense (i.e. ≤DM(AP)= (≺DM(AP))�); and on the other hand, that
it is bipartite, hence (DM(AP),≺DM(AP)) � N = (BN , EN ,≺DM(AP)) is an
ocurrence net.

Proposition 18. Let a1, a2 ∈ AP : a1 ≺AP
a2.

Then ∃!s ∈ DM(AP) : ↓{a1} � s � ↓{a2}.
Proposition 19. Let S ∈ EN , and ai, af ∈ AP be such that ↓{ai} ⊆ S ⊆ ↓{af}.
Then ∃a, a′ ∈ AP such that a ≺AP

a′, and ↓{ai} ⊆ ↓{a} ⊆ S ⊆ ↓{a′} ⊆ ↓{af}.

These results imply that DM(AP) is combinatorial, and that ∀a1, a2 ∈ AP :
a1 �≺DM(AP) a2. Furthermore, suppose s1, s2 ∈ EN : s1 ≺DM(AP) s2. Then ∃a1 ∈
s2\s1 : s1 � ↓{a1} � s2 which is absurd. And so NAP

= (BN , EN ,≺DM(AP)) is a
Petri net, which is certainly acyclic. Furthermore, we have that for s ∈ EN , either
s = ∅, s = AP , or ∃a1, a2 ∈ AP such that ↓{a1} ≺DM(AP) S ≺DM(AP) ↓{a2}.

256 A. Puerto

We shall now see that N is not only an occurrence nets, but actually a causal
net. This is achieved by showing that it is conflict-free, in other words, that all
forks and joins happen at elements of EN . Proposition 20 proves that no forks
can happen at BN , whereas Proposition 21 shows the respective result for joins.

Proposition 20. Let a ∈ AP , and s1, s2 ∈ EN such that ↓{a} ≺DM(AP) s1,
and ↓{a} ≺DM(AP) s2. Then s1 = s2.

Proposition 21. Let a ∈ AP , and s1, s2 ∈ EN such that s1 ≺DM(AP) ↓{a},
and s2 ≺DM(AP) ↓{a}. Then s1 = s2.

So NAP
= (BN , EN ,≺DM(AP)) is a causal net.

These last results furthermore imply that L(DM(AP)) � L(AP).

Proposition 22. L(DM(AP)) � L(AP).

6 Conclusions

We have provided a way to reduce a poset to a minimal form which preserves
the lattice of closed sets. The obtained poset is of particular interest, because
it depicts only the interactions between sequential subprocesses modeled in the
original poset. In this sense, operations which are internal to a given sequen-
tial subprocess are considered superfluous, and therefore not expressed in the
reduced version. We have furthermore shown that, under certain assumptions,
the elements of the reduced poset behave structurally as the places of a causal
net. As a matter of fact, it can be shown to be jump-free, and consists of gaps
(see [4, Chap. 2 Sect. 4]). Intuitively, the term gap makes reference to a missing
element [13, Chap. 8 Sect. 4]. There are two kinds of gaps, those isomorphic to
P1 (see Fig. 1), and those isomorphic to {A2, A3, A4, A5} in AP3 as in Fig. 5.
According to Smith [13], the first corresponds to a missing local state, whereas
the latter to a missing event. Clearly, by requiring N-density, we leave room only
for the latter. We note that jump-freeness implies that the causal net presented
in the last section is DC-continuous [12].

The extension of the presented procedure to posets which present conflict
is ongoing research. Further research on this topic will involve the following
conjectures. We claim that there is a bijection between the maximal chains of the
poset and those of the reduced one. This would imply that the two posets have
the same dimension (as defined, for example, in [7]). We furthermore believe
that poset dimension is an invariant on the classes of posets characterised by
their closed set lattices. We also claim that the maximal anti-chains, or cuts, in
the reduced poset are equivalence classes on the set of cuts of the original poset,
so that the reduction defines a partition on the cuts of the poset.

Concurrency-Preserving Minimal Process Representation 257

Acknowledgments. Work partially supported by MIUR.

References

1. Bernardinello, L., Ferigato, C., Haar, S., Pomello, L.: Closed sets in occurrence
nets with conflicts. Fund. Inform. 133(4), 323–344 (2014)

2. Bernardinello, L., Pomello, L., Rombolà, S.: Closure operators and lattices derived
from concurrency in posets and occurrence nets. Fund. Inform. 105, 211–235 (2010)

3. Bernardinello, L., Pomello, L., Rombolà, S.: Orthomodular algebraic lattices
related to combinatorial posets. In: Proceedings of the 15th Italian Conference on
Theoretical Computer Science, Perugia, Italy, 17–19 September 2014, pp. 241–245
(2014)

4. Best, E., Fernandez, C.: Nonsequential Processes-A Petri Net View. Monographs
in Theoretical Computer Science. An EATCS Series, vol. 13. Springer, Heidelberg
(1988)

5. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence
(1979)

6. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, Cambridge (1990)

7. Dushnik, B., Miller, E.W.: Partially ordered sets. Am. J. Math. 63(3), 600–610
(1941)

8. Kalmbach, G.: Orthomodular Lattices. Academic Press, New York (1983)
9. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 30

10. Möhring, R.H.: Algorithmic aspects of comparability graphs, interval graphs. In:
Rival, I. (ed.) Graphs, Order: The Role of Graphs in the Theory of Ordered Sets
and Its Applications, pp. 41–101. Springer Netherlands, Dordrecht (1985)

11. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
part I. Theor. Comput. Sci. 13, 85–108 (1981)

12. Petri, C.A., Smith, E.: Concurrency and continuity. In: Rozenberg, G. (ed.) APN
1986. LNCS, vol. 266, pp. 273–292. Springer, Heidelberg (1987). doi:10.1007/
3-540-18086-9 30

13. Smith, E.: Carl Adam Petri: Life and Science. Springer, Heidelberg (2015)
14. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)

ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). doi:10.
1007/3-540-17906-2 31

http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/3-540-18086-9_30
http://dx.doi.org/10.1007/3-540-18086-9_30
http://dx.doi.org/10.1007/3-540-17906-2_31
http://dx.doi.org/10.1007/3-540-17906-2_31

Embeddability into Relational Lattices
Is Undecidable

Luigi Santocanale(B)

LIF, CNRS UMR 7279, Aix-Marseille Université, Marseille, France
luigi.santocanale@lif.univ-mrs.fr

Abstract. The natural join and the inner union operations combine
relations of a database. Tropashko and Spight realized that these two
operations are the meet and join operations in a class of lattices, known
by now as the relational lattices. They proposed then lattice theory as
an algebraic approach to the theory of databases alternative to the rela-
tional algebra. Litak et al. proposed an axiomatization of relational lat-
tices over the signature that extends the pure lattice signature with a
constant and argued that the quasiequational theory of relational lattices
over this extended signature is undecidable.

We prove in this paper that embeddability is undecidable for relational
lattices. More precisely, it is undecidable whether a finite subdirectly-
irreducible lattice can be embedded into a relational lattice. Our proof
is a reduction from the coverability problem of a multimodal frame by a
universal product frame and, indirectly, from the representability prob-
lem for relation algebras.

As corollaries we obtain the following results: the quasiequational the-
ory of relational lattices over the pure lattice signature is undecidable and
has no finite base; there is a quasiequation over the pure lattice signa-
ture which holds in all the finite relational lattices but fails in an infinite
relational lattice.

1 Introduction

The natural join and the inner union operations combine relations (i.e. tables)
of a database. Most of today’s web programs query their databases making
repeated use of the natural join and of the union, of which the inner union is
a mathematically well behaved variant. Tropashko and Spight realized [22,23]
that these two operations are the meet and join operations in a class of lattices,
known by now as the class of relational lattices. They proposed then lattice
theory as an algebraic approach, alternative to Codd’s relational algebra [3], to
the theory of databases.

An important first attempt to axiomatize these lattices is due to Litak,
Mikulás, and Hidders [13]. These authors propose an axiomatization, comprising
equations and quasiequations, in a signature that extends the pure lattice sig-
nature with a constant, the header constant. A main result of that paper is that

Extended abstract, see [21] for a full version of this paper.

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 258–273, 2017.
DOI: 10.1007/978-3-319-57418-9 16

Embeddability into Relational Lattices Is Undecidable 259

the quasiequational theory of relational lattices is undecidable in this extended
signature. Their proof mimics Maddux’s proof that the equational theory of
cylindric algebras of dimension n ≥ 3 is undecidable [14].

We have investigated in [20] equational axiomatizations for relational lattices
using as tool the duality theory for finite lattices developed in [19]. A conceptual
contribution from [20] is to make explicit the similarity between the developing
theory of relational lattices and the well established theory of combination of
modal logics, see e.g. [11]. This was achieved on the syntactic side, but also on
the semantic side, by identifying some key properties of the structures dual to
the finite atomistic lattices in the variety generated by the relational lattices,
see [20, Theorem 7]. These properties make the dual structures into frames for
commutator multimodal logics in a natural way.

In this paper we exploit this similarity to transfer results from the theory
of multidimensional modal logics to lattice theory. Our main result is that it is
undecidable whether a finite subdirectly irreducible lattice can be embedded into
a relational lattice. We prove this statement by reducing to it the coverability
problem of a frame by a universal S53-product frame, a problem shown to be
undecidable in [10]. As stated there, the coverability problem is—in light of
standard duality theory—a direct reformulation of the representability problem
of finite simple relation algebras, problem shown to be undecidable by Hirsch
and Hodkinson [9].

Our main result and its proof allow us to derive further consequences. Firstly,
we refine the undecidability theorem of [13] and prove that the quasiequational
theory of relational lattices in the pure lattice signature is undecidable as well
and has no finite base. Then we argue that there is a quasiequation that holds in
all the finite relational lattices, but fails in an infinite one. For the latter result,
we rely on the work by Hirsch et al. [10] who constructed a finite 3-multimodal
frame which has no finite p-morphism from a finite universal S53-product frame,
but has a p-morphism from an infinite one. On the methodological side, we wish
to point out our use of generalized ultrametric spaces to tackle these problems.
A key idea in the proof of the main result is the characterization of universal
S5A-product frames as pairwise complete generalized ultrametric spaces with
distance valued in the Boolean algebra P (A), a characterization that holds when
A is finite.

The paper is structured as follows. We recall in Sect. 2 some definitions
and facts on frames and lattices. Relational lattices are introduced in Sect. 3.
In Sect. 4 we outline the proof of our main result—embeddability of a finite
subdirectly-irreducible lattice into a relational lattice is undecidable—and derive
then the other results. In Sect. 5 we show how to construct a lattice from a frame
and use functoriality of this construction to argue that such lattice embeds into a
relational lattice whenever the frame is a p-morphic image of a universal product
frame. The proof of the converse statement is carried out in Sect. 7. Among the
technical tools needed to prove the converse, the theory of generalized ultramet-
ric spaces over a powerset Boolean algebra and the aforementioned characteri-
zation of universal S5A-product frames as pairwise complete spaces over P (A)
are developed in Sect. 6.

260 L. Santocanale

Due to the lack of space, we omit most of the technical proofs on lattices and
ultrametric spaces; these proofs are accessible via the preprint [21].

2 Frames and Lattices

Frames. Let A be a set of actions. An A -multimodal frame (briefly, an A-frame
or a frame) is a structure F = 〈XF, {Ra | a ∈ A}〉 where, for each a ∈ A, Ra is a
binary relation on XF. We say that an A-frame is S4 if each Ra is reflexive and
transitive. If F0 and F1 are two A-frames, then a p-morphism from F0 to F1 is a
function ψ : XF0 −−→ XF1 such that, for each a ∈ A,

– if xRay, then ψ(x)Raψ(y),
– if ψ(x)Raz, then xRay for some y with ψ(y) = z.

Let us mention that A-multimodal frames and p-morphisms form a category.

A frame F is said to be rooted (or initial, see [18]) if there is f0 ∈ XF such
that every other f ∈ XF is reachable from f0. We say that an A-frame F is
full if, for each a ∈ A, there exists f, g ∈ XF such that f �= g and fRag. If
G = (V,D) is a directed graph, then we shall say that G is rooted if it is rooted
as a unimodal frame.

A particular class of frames we shall deal with are the universal S5A -product
frames. These are the frames U with XU =

∏
a∈A Xa and xRay if and only if

xi = yi for each i �= a, where x : =〈xi | i ∈ A〉 and y : =〈yi | i ∈ A〉.
Orders and Lattices. We assume some basic knowledge of order and lattice
theory as presented in standard monographs [4,7]. Most of the tools we use in this
paper originate from the monograph [6] and have been further developed in [19].

A lattice is a poset L such that every finite non-empty subset X ⊆ L admits
a smallest upper bound

∨
X and a greatest lower bound

∧
X. A lattice can also

be understood as a structure A for the functional signature (∨,∧), such that the
interpretations of these two binary function symbols both give A the structure
of an idempotent commutative semigroup, the two semigroup structures being
connected by the absorption laws x ∧ (y ∨ x) = x and x ∨ (y ∧ x) = x. Once
a lattice is presented as such structure, the order is recovered by stating that
x ≤ y holds if and only if x ∧ y = x.

A lattice L is complete if any subset X ⊆ L admits a smallest upper bound∨
X. It can be shown that this condition implies that any subset X ⊆ L admits

a greatest lower bound
∧

X. A lattice is bounded if it has a least element ⊥
and a greatest element . A complete lattice (in particular, a finite lattice) is
bounded, since

∨ ∅ and
∧ ∅ are, respectively, the least and greatest elements of

the lattice.
If P and Q are partially ordered sets, then a function f : P −−→ Q is order-

preserving (or monotone) if p ≤ p′ implies f(p) ≤ f(p′). If L and M are
lattices, then a function f : L −−→ M is a lattice morphism if it preserves the
lattice operations ∨ and ∧. A lattice morphism is always order-preserving. A
lattice morphism f : L −−→ M between bounded lattices L and M is bound-
preserving if f(⊥) = ⊥ and f() = . A function g : Q −−→ P is said to be

Embeddability into Relational Lattices Is Undecidable 261

left adjoint to an order-preserving f : P −−→ Q if g(q) ≤ p holds if and only if
q ≤ f(p) holds; such a left adjoint, when it exists, is unique. If L is finite, M is
bounded, and f : L −−→ M is a bound-preserving lattice morphism, then a left
adjoint to f always exists and preserves the constant ⊥ and the operation ∨.

A Moore family on a set U is a collection F of subsets of U which is closed
under arbitrary intersections. Given a Moore family F on U , the correspondence
sending Z ⊆ U to Z :=

⋂{Y ∈ F | Z ⊆ Y } is a closure operator on U , that is, an
order-preserving inflationary and idempotent endofunction of P (U). The subsets
in F , called the closed sets, are exactly the fixpoints of this closure operator. We
can give to a Moore family F a lattice structure by defining

∧
X :=

⋂
X,

∨
X :=

⋃
X. (1)

Let L be a complete lattice. An element j ∈ L is completely join-irreducible
if j =

∨
X implies j ∈ X, for each X ⊆ L; the set of completely join-irreducible

elements of L is denoted here J (L). A complete lattice is spatial if every element
is the join of the completely join-irreducible elements below it. An element j ∈
J (L) is said to be join-prime if j ≤ ∨

X implies j ≤ x for some x ∈ X, for each
finite subset X of L. If x is not join-prime, then we say that x is non-join-prime .
An atom of a lattice L is an element of L such that ⊥ is the only element strictly
below it. A spatial lattice is atomistic if every element of J (L) is an atom.

For j ∈ J (L), a join-cover of j is a subset X ⊆ L such that j ≤ ∨
X.

For X,Y ⊆ L, we say that X refines Y , and write X � Y , if for all x ∈ X
there exists y ∈ Y such that x ≤ y. A join-cover X of j is said to be minimal
if j ≤ ∨

Y and Y � X implies X ⊆ Y ; we write j �m X if X is a minimal
join-cover of j. In a spatial lattice, if j �m X, then X ⊆ J (L). If j �m X, then
we say that X is a non-trivial minimal join-cover of j if X �= {j}. Some authors
use the word perfect for a lattice which is both spatial and dually spatial. We
need here something different:

Definition 1. We say that a complete lattice is pluperfect if it is spatial and
for each j ∈ J (L) and X ⊆ L, if j ≤ ∨

X, then Y � X for some Y such that
j �m Y . The OD-graph of a pluperfect lattice L is the structure 〈J (L),≤,�m〉.
That is, in a pluperfect lattice every cover refines to a minimal one. Notice that
every finite lattice is pluperfect. If L is a pluperfect lattice, then we say that
X ⊆ J (L) is closed if it is a downset and j �m C ⊆ X implies j ∈ X. Closed
subsets of J (L) form a Moore family. The interest of considering pluperfect
lattices stems from the following representation theorem stated in [16] for finite
lattices; its generalization to pluperfect lattices is straightforward.

Theorem 2 Cf. [21, Theorem 2]. Let L be a pluperfect lattice and let L(J (L),
≤,�m) be the lattice of closed subsets of J (L). The mapping l �→ {j ∈ J (L) |
j ≤ l} is a lattice isomorphism from L to L(J (L),≤,�m).

262 L. Santocanale

3 The Relational Lattices R(D,A)

Throughout this paper we shall use the notation Y X for the set of functions of
domain Y and codomain X, for X and Y any two sets.

Let A be a collection of attributes (or column names) and let D be a set of
cell values. A relation on A and D is a pair (α, T) where α ⊆ A and T ⊆ Dα.
Elements of the relational lattice R(D,A)1 are relations on A and D. Informally,
a relation (α, T) represents a table of a relational database, with α being the
header, i.e. the collection of names of columns, while T is the collection of rows.

Before we define the natural join, the inner union operations, and the order
on R(D,A), let us recall some key operations. If α ⊆ β ⊆ A and f ∈ Dβ ,
then we shall use f�α

∈ Dα for the restriction of f to α; if T ⊆ Dβ , then T ��α

shall denote projection to α, that is, the direct image of T along restriction,
T ��α:= {f�α

| f ∈ T}; if T ⊆ Dα, then iβ(T) shall denote cylindrification to β,
that is, the inverse image of restriction, iβ(T) := {f ∈ Dβ | f�α ∈ T}. Recall
that iβ is right adjoint to ��α. With this in mind, the natural join and the inner
union of relations are respectively described by the following formulas:

(α1, T1) ∧ (α2, T2) := (α1 ∪ α2, T)
where T = {f | f�αi

∈ Ti, i = 1, 2}
= iα1∪α2(T1) ∩ iα1∪α2(T2),

(α1, T1) ∨ (α2, T2) := (α1 ∩ α2, T)
where T = {f | ∃i ∈ {1, 2},∃g ∈ Ti s.t. g�α1∩α2

= f}
= T1��α1∩α2 ∪T2��α1∩α2.

The order is then given by (α1, T1) ≤ (α2, T2) iff α2 ⊆ α1 and T1 ��α2⊆ T2.
A convenient way of describing these lattices was introduced in [13, Lemma

2.1]. The authors argued that the relational lattices R(D,A) are isomorphic to
the lattices of closed subsets of A ∪ DA, where Z ⊆ A ∪ DA is said to be closed
if it is a fixed-point of the closure operator (−) defined as

Z := Z ∪ {f ∈ DA | A \ Z ⊆ Eq(f, g), for some g ∈ Z},

where in the formula above Eq(f, g) is the equalizer of f and g. Letting δ(f, g) :=
{x ∈ A | f(x) �= g(x)}, the above definition of the closure operator is obviously
equivalent to the following one:

Z := α ∪ {f ∈ DA | δ(f, g) ⊆ α, for some g ∈ Z ∩ DA}, with α = Z ∩ A.

From now on, we rely on this representation of relational lattices. Relational lat-
tices are atomistic pluperfect lattices. The completely join-irreducible elements
of R(D,A) are the singletons {a} and {f}, for a ∈ A and f ∈ DA, see [13].

1 In [13] such a lattice is called full relational lattice. The wording “class of relational
lattices” is used there for the class of lattices that have an embedding into some
lattice of the form R(D,A).

Embeddability into Relational Lattices Is Undecidable 263

By an abuse of notation we shall write x for the singleton {x}, for x ∈ A ∪ DA.
Under this convention, we have therefore J (R(D,A)) = A ∪ DA. Every a ∈ A is
join-prime, while the minimal join-covers are of the form f �m δ(f, g) ∪ {g}, for
each f, g ∈ DA, see [20]. The only non-trivial result from [20] that we use later
(for Lemma 24 and Theorem 29) is the following:

Lemma 3. Let L be a finite atomistic lattice in the variety generated by the
class of relational lattices. If {j} ∪ X ⊆ J (L), j ≤ ∨

X, and all the elements of
X are join-prime, then j is join-prime.

The Lemma—which is an immediate consequence of Theorem 7 in [20]—asserts
that a join-cover of an element j ∈ J (L) which is not join-prime cannot be made
of join-prime elements only.

4 Overview and Statement of the Results

For an arbitrary frame F, we construct in Sect. 5 a lattice L(F); if F is rooted
and full, then L(F) is a subdirectly irreducible lattice, see Proposition 16. The
key Theorem leading to the undecidability results is the following one.

Theorem 4. Let A be a finite set and let F be an S4 finite rooted full A-frame.
There is a surjective p-morphism from a universal S5A-product frame U to F if
and only if L(F) embeds into some relational lattice R(D,B).

Proof (outline). The construction L defined in Sect. 5 extends to a contravariant
functor, so if U is a universal S5A-product frame and ψ : U −−→ F is a surjective
p-morphism, then we have an embedding L(ψ) of L(F) into L(U). We can assume
that all the components of U are equal, i.e. that the underlying set of U is of the
form

∏
a∈A X; if this is the case, then L(U) is isomorphic to the relational lattice

R(X,A).
The converse direction, developed from Sect. 6 up to Sect. 7, is subtler. Con-

sidering that L(F) is subdirectly-irreducible, we argue that if ψ : L(F) −−→
R(D,B) is a lattice embedding, then we can suppose it preserves bounds; in
this case ψ has a surjective left adjoint μ : R(D,B) −−→ L(F). Let us notice that
there is no general reason for ψ to be the image by L of a p-morphism. Said
otherwise, the functor L is not full and, in particular, the image of an atom by μ
might not be an atom. The following considerations, mostly developed in Sect. 7,
make it possible to extract a p-morphism from the left adjoint μ. Since both L(F)
and R(D,B) are generated (under possibly infinite joins) by their atoms, each
atom x ∈ L(F) has a preimage y ∈ R(D,B) which is an atom. The set F0 of non-
join-prime atoms of R(D,B) such that μ(f) is a non-join-prime atom of L(F) is
endowed with a P (A)-valued distance δ. The pair (F0, δ) is shown to be a pair-
wise complete ultrametric space over P (A). Section 6 recalls and develops some
observations on ultrametric spaces valued on powerset algebras. The key ones
are Theorem 18 and Proposition 19, stating that—when A is finite—pairwise
complete ultrametric spaces over P (A) and universal S5A-product frames are
essentially the same objects. The restriction of μ to F0 yields then a surjective
p-morphism from F0, considered as a universal S5A-product frame, to F. ��

264 L. Santocanale

The following problem was shown to be undecidable in [10]: given a finite
3-frame F, does there exists a surjective p-morphism from a universal S53-
product frame U to F? In the introduction we referred to this problem as the
coverability problem of a 3-frame by a universal S53-product frame. The problem
was shown to be undecidable by means of a reduction from the representabil-
ity problem of finite simple relation algebras, shown to be undecidable in [9].
We need to strengthen the undecidability result of [10] with some additional
observations—rootedness and fullness—as stated in the following Proposition.

Proposition 5. It is undecidable whether, given a finite set A with cardA ≥ 3
and an S4 finite rooted full A-frame F, there is a surjective p-morphism from a
universal S5A-product U to F.

Proof. Throughout this proof we assume a minimum knowledge of the theory of
relation algebras, see e.g. [15].

The Proposition actually holds if we restrict to the case when cardA = 3.
Given a finite simple relation algebra A, the authors of [10] construct a 3-
multimodal frame FA,3 such that A is representable if and only if FA,3 is a
p-morphic image of some universal S53-product frame. The frame FA,3 is S4 and
rooted [10, Claim 8]. We claim that FA,3 is also full, unless A is the two elements
Boolean algebra. To prove this claim, let us recall first that an element of FA,3

is a triple (t0, t1, t2) of atoms of A such that t�2 ≤ t0; t1; moreover, if t, t′ are two
such triples and i ∈ {0, 1, 2}, then tRit

′ if and only if t and t′ coincide in the i-th
coordinate. If a is an atom of A, then a ≤ el; a and a ≤ a; er for two atoms el, er

below the multiplicative unit of A. Therefore, the triples t := (el, a, a�) and
t′ = (a, er, a

�) are elements of FA,3 and tR2t
′. If, for each atom a, these triples

are equal, then every atom of A is below the multiplicative unit, which therefore
coincides with the top element ; since A is simple, then relation = ;x;
holds for each x �= ⊥. It follows that x = ;x; = , for each x �= ⊥, so A is
the two elements Boolean algebra. Thus, if A has more than two elements, then
t �= t′ and tR2t

′ for some t, t′ ∈ FA,3. Using the cycle law of relation algebras,
one also gets pairs of distinct elements of FA,3, call them u, u′ and w,w′, such
that uR0u

′ and wR1w
′.

Therefore, if we could decide whether there is a p-morphism from some uni-
versal S53-frame to a given S4 finite rooted full frame F, then we could also
decide whether a finite simple relation algebra A is representable, by answer-
ing positively if A has exactly two elements and, otherwise, by answering the
existence problem of a p-morphism to FA,3. ��

Combining Theorem 4 with Proposition 5, we derive the following undecid-
ability result.

Theorem 6. It is not decidable whether a finite subdirectly irreducible atomistic
lattice embeds into a relational lattice.

Let us remark that Theorem 6 partly answers Problem 7.1 in [13].
In [13] the authors proved that the quasiequational theory of relational lat-

tices (i.e. the set of all definite Horn sentences valid in relational lattices) in

Embeddability into Relational Lattices Is Undecidable 265

the signature (∧,∨,H) is undecidable. Here H is the header constant, which is
interpreted in a relational lattice R(D,A) as the closed subset A of A ∪ DA.
Problem 4.10 in [13] asks whether the quasiequational theory of relational lat-
tices in the restricted signature (∧,∨) of pure lattice theory is undecidable as
well. We positively answer this question.

Theorem 7. The quasiequational theory of relational lattices in the pure lattice
signature is undecidable.

It is a general fact that if the embeddability problem of finite subdirectly-
irreducible algebras in a class K is undecidable, then the quasiequational theory
of K is undecidable as well. We thank a colleague for pointing out to us how this
can be derived from Evans’ work [5]. We add here the proof of this fact, since
we shall need it later in the proof of Theorem10.

Proof. Given a finite subdirectly-irreducible algebra A with least non trivial
congruence θ(â, ā), we construct a quasiequation φA with the following property:
for any other algebra (in the same signature) K, K �|= φA if and only if A has
an embedding into K.

The construction is as follows. Let XA = {xa | a ∈ A} be a set of variables
in bijection with the elements of A. For each function symbol f in the signature
Ω, let TA,f be its table, that is the formula

TA,f =
∧

(a1,...,aar(f))∈Aar(f)

f(xa1 , . . . , xar(f)) = xf(a1,...,aar(f)).

We let φA be the universal closure of
∧

f∈Ω TA,f ⇒ xâ = xā. We prove next that
an algebra K sastifies φA if and only if there is no embedding of A into K.

If K |= φA and ψ : A −−→ K, then v(xa) = ψ(a) is a valuation such that
K, v |= ∧

f∈Ω TA,f , so ψ(â) = v(xâ) = v(xā) = ψ(ā) and ψ is not injective.
Conversely, suppose K �|= φA and let v be a valuation such that K, v |=∧

f∈Ω TA,f and K, v �|= xâ = xā. Define ψ : A −−→ K as ψ(a) = v(xa), then ψ
is a morphism, since K, v |= TA,f for each f ∈ Ω. Let Kerψ = {(a, a′) | ψ(a) =
ψ(a′)} so, supposing that ψ is not injective, Kerψ is a non-trivial congruence.
Then (â, ā) ∈ θ(â, ā) ⊆ Kerψ, so v(xâ) = ψ(â) = ψ(ā) = v(xā), a contradiction.
We have therefore Kerψ = {(a, a) | a ∈ A}, which shows that ψ is injective.

Let now K be a class of algebras in the same signature. We have then

K �|= φA iff K �|= φA for some K ∈ K
iff there is an embedding ofA into K, for some K ∈ K.

Thus, if the embeddability problem of finite subdirectly-irreducible algebras into
some algebra in K is undecidable, then the quasiequational theory of K is unde-
cidable as well. ��

Following [10], let us add some further observations on the quasiequational
theory of relational lattices.

266 L. Santocanale

Lemma 8. The class of lattices that have an embedding into a relational lattice
is closed under ultraproducts.

Proof. Let us say that a sublattice L of a lattice R(D,A) is H-closed if the
subset A belongs to L. Let R denote the closure under isomorphisms of the
class of H-closed sublattices of some R(D,A). It is proved in [13, Corollary 4.2]
that R is closed under ultraproducts. It immediately follows from this result
that the class of lattices that have an embedding into some relational lattice
is closed under ultraproducts, as follows. Let {Li −−→ R(Di, Ai) | i ∈ I} be a
family of lattice embeddings and let F be an ultrafilter over I. The ultraproduct
constructions on {Li | i ∈ I} and {R(Di, Ai) | i ∈ I} yield a lattice embedding∏

F Li −−→ ∏
F R(Di, Ai). Clearly, each R(Di, Ai) belongs to R, whence the

ultraproduct
∏

F R(Di, Ai) belongs to R as well: thus
∏

F R(Di, Ai) embeds
into some R(D,A), and so does

∏
F Li. ��

Theorem 9. The quasiequational theory of relational lattices is not finitely
axiomatizable.

Proof. A known result in universal algebra—see e.g. [2, Theorem 2.25]—states
that a subdirectly-irreducible algebra satisfies all the quasiequations satisfied by
a class of algebras if and only if it embeds in an ultraproduct of algebras in
this class. Lemma 8 implies that the class of lattices that have an embedding
into an ultraproduct of relational lattices and the class of lattices that have an
embedding into some relational lattices are the same. Therefore a subdirectly-
irreducible lattice L embeds in a relational lattice if and only if it satisfies all
the quasiequations satisfied by the relational lattices. If this collection of qua-
siequations was a logical consequence of a finite set of quasiequations, then we
could decide whether a finite subdirectly-irreducible L satisfies all these quasi-
equations, by verifying whether L satisfies the finite set of quasiequations. In
this way, we could also decide whether such an L embeds into some relational
lattice. ��

Finally, the following Theorem, showing that the quasiequational theory of
the finite relational lattices is stronger than the quasiequational theory of all the
relational lattices, partly answers Problem 3.6 in [13].

Theorem 10. There is a quasiequation which holds in all the finite relational
lattices which, however, fails in an infinite relational lattice.

Proof. In the first appendix of [10] an S4 finite rooted full 3-frame F is con-
structed that has no surjective p-morphism from a finite universal S53-product
frame, but has such a p-morphism from an infinite one.

Since L(F) is finite whenever F is finite, we obtain by using Theorem4 a
subdirectly-irreducible finite lattice L which embeds into an infinite relational
lattice, but has no embedding into a finite one.

Let φL be the quasiequation as in the proof of Theorem7. We have therefore
that, for any lattice K, K |= φL if and only if L does not embed into K.

Correspondingly, any finite relational lattice satisfies φL and, on the other
hand, K �|= φL if K is the infinite lattice into which L embeds. ��

Embeddability into Relational Lattices Is Undecidable 267

5 The Lattice of a Multimodal Frame

We assume throughout this Section that A is a finite set of actions.
Let α ⊆ A, F be an A-frame, x, y ∈ XF . We define an α-path from x to y

as a sequence x = x0Ra0x1 . . . xk−1Rak−1xk = y with {a0, . . . , ak−1} ⊆ α. We
use the notation x

α−→ y to mean that there is an α-path from x to y. Notice

that if F is an S4 A-frame, then x
{a}−−→ y if and only if xRay. Given an A-frame

F = 〈XF , {Ra | a ∈ A}〉, we construct a lattice as follows. For α ⊆ A, we say
that Y ⊆ XF is α -closed if x ∈ Y , whenever there is a α-path from x to some
y ∈ Y . We say that a subset Z ⊆ A ∪ XF is closed if Z ∩ XF is Z ∩ A-closed. It
is straightforward to verify that the collection of closed subsets of A ∪ XF is a
Moore family.

Definition 11. The lattice L(F) is the lattice of closed subsets of A ∪ XF .

The lattice operations on L(F) are defined as in the display (1). Actually,
L(−) is a contravariant functor from the category of frames to the category of
lattices. Namely, for a p-morphism ψ : F0 −−→ F1 and any Z ⊆ A ∪ XF1 , define
L(ψ)(Z) := (Z ∩ A) ∪ ψ−1(Z ∩ XF1).

Proposition 12 Cf. [21, Proposition 17]. L(ψ) sends closed subsets of A∪XF1

to closed subsets of A∪XF0 . Its restriction to L(F1) yields a bound-preserving lat-
tice morphism L(ψ) : L(F1) −−→ L(F0). Moreover, if ψ : F0 −−→ F1 is surjective,
then L(ψ) is injective.

We state next the main result of this Section.

Theorem 13. If there exists a surjective p-morphism from a universal S5A-
product frame U to an A-frame F, then L(F) embeds into a relational lattice.

Proof. We say that U is uniform on X if all the components of U are equal to X.
Spelled out, this means that XU =

∏
a∈A X. Let ψ : U −−→ F be a p-morphism

as in the statement of the Theorem. W.l.o.g. we can assume that U is uniform
on some set X. If this is not the case, then we choose a0 ∈ A such that Xa0

has maximum cardinality and surjective mappings pa : Xa0 −−→ Xa, for each
a ∈ A. The product frame U′ on

∏
a∈A Xa0 is uniform and

∏
a∈A pa : U′ −−→ U is

a surjective p-morphism. By pre-composing ψ with this p-morphism, we obtain
a surjective p-morphism from the uniform U′ to F. Now, if U is uniform on X,
then L(U) is equal to the relational lattice R(X,A). Then, by functoriality of L,
we have a lattice morphism L(ψ) : L(F) −−→ L(U) = R(X,A). By Proposition 12
L(ψ) is an embedding. ��

We review next some properties of the lattices L(F).

Proposition 14 Cf. [21, Proposition 20]. The completely join-irreducible ele-
ments of L(F) are the singletons, so L(F) is an atomistic lattice.

268 L. Santocanale

Identifying singletons of with their elements, the previous proposition states
that J (L(F)) = A∪XF . To state the next Proposition, let us say that an α-path
from x ∈ XF to y ∈ XF is minimal if there is no β-path from x to y, for each
proper subset β of α.

Proposition 15 Cf. [21, Proposition 21]. L(F) is a pluperfect lattice. Each
element of A is join-prime, while the minimal join-covers of x ∈ XF are of the
form x �m α ∪ {y}, for a minimal α-path from x to y.

Before stating the next Proposition, let us recall from [6, Corollary 2.37]
that a finite lattice L is subdirectly-irreducible if and only if the directed
graph (J (L),D) is rooted. Here D is the join-dependency relation on the join-
irreducible elements of L, which, on atomistic finite lattices, can be defined by
saying that jDk holds if j �= k and j ≤ p ∨ k for some p ∈ L with j �≤ p.

Proposition 16. If a finite A-frame F is rooted and full, then L(F) is a
subdirectly-irreducible lattice.

Proof. We argue that the digraph (J (L(F)),D) is rooted. Observe that x ∈
{a, y} = a∨ y whenever xRay. This implies that xDy and xDa when x, y ∈ XF ,
a ∈ A, x �= y and xRay. The fact that of (J (L(F)),D) is rooted follows now
from F being rooted and full. ��

6 Some Theory of Generalized Ultrametric Spaces

Generalized ultrametric spaces over a Boolean algebra P (A) turn out to be a
useful tool for relational lattices [13,20]—as well as, we claim here, for universal
product frames from multidimensional modal logic [11]. The use of metrics is
well known in graph theory, where universal product frames are known as Ham-
ming graphs, see e.g. [8]. Generalized ultrametric spaces over a Boolean algebra
P (A) were introduced in [17] to study equivalence relations. The main results of
this Section are Theorem 18 and Proposition 19 which together substantiate the
claim that when A is finite, universal S5A-product frames are pairwise complete
ultrametric spaces valued in the Boolean algebra P (A). It is this abstract point
of view that shall allow us to construct a universal product frame given a lattice
embedding L(F) −−→ R(D,A). We shall develop some observations that are not
strictly necessary to prove the undecidability result, which is the main result of
this paper. Nonetheless we include them since they are part of a coherent set of
results and, as far as we know, they are original.

Definition 17. An ultrametric space over P (A) (briefly, a space) is a pair
(X, δ), with δ : X × X −−→ P (A) such that, for every f, g, h ∈ X,

δ(f, f) ⊆ ∅, δ(f, g) ⊆ δ(f, h) ∪ δ(h, g).

Embeddability into Relational Lattices Is Undecidable 269

That is, we have defined an ultrametric space over P (A) as a category (with a
small set of objects) enriched over (P (A)op, ∅,∪), see [12]. We shall assume in
this paper that such a space (X, δ) is also reduced and symmetric, that is, that
the following two properties hold for every f, g ∈ X:

δ(f, g) = ∅ implies f = g, δ(f, g) = δ(g, f).

A morphism of spaces2 ψ : (X, δX) −−→ (Y, δY) is a function ψ : X −−→ Y such
that δY (ψ(f), ψ(g)) ≤ δX(f, g), for each f, g ∈ X. If δY (ψ(f), ψ(g)) = δX(f, g),
for each f, g ∈ X, then ψ is said to be an isometry. For (X, δ) a space over
P (A), f ∈ X and α ⊆ A, the ball centered in f of radius α is defined as usual:
B(f, α) := {g ∈ X | δ(f, g) ⊆ α}. In [1] a space (X, δ) is said to be pairwise
complete if, for each f, g ∈ X and α, β ⊆ A, B(f, α ∪ β) = B(g, α ∪ β) implies
B(f, α) ∩ B(g, β) �= ∅. This property is easily seen to be equivalent to:

δ(f, g) ⊆ α ∪ β implies δ(f, h) ⊆ α and δ(h, g) ⊆ β, for some h ∈ X.

If (X, δX) is a space and Y ⊆ X, then the restriction of δX to Y induces
a space (Y, δX); we say then that (Y, δX) is a subspace of X. Notice that the
inclusion of Y into X yields an isometry of spaces.

Our main example of space over P (A) is (DA, δ), with DA the set of functions
from A to D and the distance defined by

δ(f, g) := {a ∈ A | f(a) �= g(a)}. (2)

A second example is a slight generalization of the previous one. Given a surjective
function π : E −−→ A, let Sec(π) denote the set of all sections of π, that is the
functions f : A −−→ E such that π ◦ f = idA; the formula in (2) also defines a
distance on Sec(π). By identifying f ∈ Sec(π) with a vector 〈fa ∈ π−1(a) | a ∈
A〉, we see that

Sec(π) =
∏

a∈A

Xa, where Xa := π−1(a). (3)

That is, the underlying set of a space (Sec(π), δ) is that of a universal S5A-
product frame. Our next observations are meant to understand the role of the
universal S5A-product frame among all the spaces.

A space is spherically complete if the intersection
⋂

i∈I B(fi, αi) of every
chain {B(fi, αi) | i ∈ I} of balls is non-empty, see e.g. [1]. In this work the
injective objects in the category of spaces are characterized as the pairwise and
spherically complete spaces. The next Theorem shows that such injective objects
are, up to isomorphism, the “universal product frames”.

Theorem 18 Cf. [21, Proposition 24 and Theorem 25]. The spaces of the form
(Sec(π), δ) are pairwise and spherically complete. Moreover, every space (X, δ)
over P (A) has an isometry into some (Sec(π), δ) and if (X, δ) is pairwise and
spherically complete, then this isometry is an isomorphism.
2 As P (A) is not totally ordered, we avoid calling a morphism “non expanding map”
as it is often done in the literature.

270 L. Santocanale

We develop next the minimal theory needed to carry out the proof of unde-
cidability. We shall assume in particular that A is a finite set. It was shown in
[17] that, when A is finite, every space over P (A) is spherically complete–so,
from now on, this property will not be of concern to us.

Observe now that in the display (3), the transition relations of the universal
product frame

∏
a Xa and the metric of the space Sec(π) are interdefinable.

Indeed, for each a ∈ A, we have fRag iff δ(f, g) ⊆ {a}. On the other hand, since
A is finite, the metric is completely determined from the transition relations of
the frame, using the notion of α-path introduced in Sect. 5, as follows: δ(f, g) =
⋂{α ⊆ A | f

α−→ g}. We cast our observations in a Proposition:

Proposition 19. If A is finite, then there is a bijective correspondence between
spaces over P (A) of the form (Sec(π), δ) and universal S5A-product frames. Uni-
versal S5A-product frames are, up to isomorphism, the pairwise complete spaces
over P (A).

We assume in the rest of this section that (X, δ) is a fixed pairwise complete
space. We say that a function v : X −−→ P (A) is a module if v(f) ⊆ δ(f, g)∪v(g).
In enriched category theory “module” is a standard naming for an enriched
functor (here, a space morphism) from an enriched category to the base category
enriched on itself. Here a module can be seen as a space morphism from (X, δ)
to the space (P (A),Δ), where Δ is the symmetric difference. Given a module v,
let us define Sv := {x ∈ X | v(x) = ∅}.

Lemma 20 Cf. [21, Corollary 28]. For each module v, Sv is a pairwise complete
subspace of (X, δ).

It is possible to directly define a lattice L(X, δ) for each space (X, δ). For
simplicity, we shall use L(X, δ) here to denote the lattice structure corresponding
to L(U), where U is a universal product frame corresponding to (X, δ).

7 From Lattice Embeddings to Surjective p-morphisms

We prove in this Section the converse of Theorem 13:

Theorem 21. Let A be a finite set, let F be a finite rooted full S4 A-frame.
If L(F) embeds into a relational lattice R(D,B), then there exists a universal
S5A-product frame U and a surjective p-morphism from U to F.

To prove the Theorem, we study bound-preserving embeddings of finite atomistic
lattices into lattices of the form R(D,B). Let in the following i : L −−→ R(D,B)
be a fixed bound-preserving lattice embedding, with L a finite atomistic lattice.
Since L is finite, i has a left adjoint μ : R(D,B) −−→ L. By abuse of notation,
we shall also use the same letter μ to denote the restriction of this left adjoint
to the set of completely join-irreducible elements of R(D,B) which, we recall, is
identified with B∪DB . It is a general fact—and the main ingredient of Birkhoff’s
duality for finite distributive lattices—that left adjoints to bound-preserving
lattice morphism preserve join-prime elements. Thus we have:

Embeddability into Relational Lattices Is Undecidable 271

Lemma 22. If b ∈ B, then μ(b) is join-prime.

It is not in general true that left adjoints send join-irreducible elements to join-
irreducible elements, and this is a main difficulty towards a proof of Theorem21.
Yet, the following statements hold:

Lemma 23. For each x ∈ J (L) there exists y ∈ B ∪ DB such that μ(y) = x.

Lemma 24. Let g ∈ DB such that μ(g) is join-reducible in L. There exists
h ∈ DB such that μ(h) ∈ J (L) and μ(g) =

∨
μ(δ(g, h)) ∨ μ(h); moreover, μ(h)

is non-join-prime whenever L is not a Boolean algebra.

Let A be the set of atoms of L that are join-prime. While (DB , δ) is a space
over P (B), we need to transform DB into a space over P (A). To this end, we
define a P (A)-valued distance δA on DB by δA(f, g) := μ(δ(f, g)). Because of
Lemma 22, we have δA(f, g) ⊆ A.

Proposition 25. (DB , δA) is a pairwise complete ultrametric space over P (A).

We define next v : DB −−→ P (A) by letting v(f) := {a ∈ A | a ≤ μ(f)}.

Lemma 26 Cf. [21, Proposition 47]. The map v : DB −−→ P (A) is a module
on (DB , δA). Moreover v(f) = ∅ if and only if μ(f) ∈ J (L) \ A.

Using Lemmas 20 and 26, we derive:

Corollary 27. The subspace of (DB , δA) induced by F0 := {f ∈ DB | μ(f) ∈
J (L) \ A} is pairwise complete.

The following Proposition, which ends the study of bound-preserving lat-
tice embeddings into relational lattices, shows that modulo the shift of the
codomain to the lattice of a universal product frame, such a lattice embed-
ding can always be normalized, meaning that join-irreducible elements are sent
to join-irreducible elements by the left adjoint.

Proposition 28 Cf. [21, Proposition 51]. Let L be a finite atomistic lattice
and let A be the set of its join-prime elements. If L is not a Boolean algebra
and i : L −−→ R(D,B) is a bound-preserving lattice embedding, then there exists
a bound-preserving lattice embedding j : L −−→ L(F0, δA), where (F0, δA) is the
pairwise complete ultrametric space defined in Corollary 27. Moreover, the left
adjoint ν to j satisfies the following condition: for each k ∈ A ∪ F0, if k ∈ A
then ν(k) = k and, otherwise, ν(k) ∈ J (L) \ A.

The following Theorem asserts that we can assume that a lattice embedding
is bound-preserving, when its domain is a finite subdirectly-irreducible lattice.
It is needed in Theorem 7 to exclude the constants ⊥ and from the signature
of lattice theory.

272 L. Santocanale

Theorem 29 Cf. [21, Sect. 7]. If L is a finite subdirectly-irreducible atomistic
lattice which has a lattice embedding into some relational lattice R(D,A), then
there exists a bound-preserving embedding of L into some other relational lattice
R(D,B).

We conclude next the proof of the main result of this Section, Theorem21.

Proof (of Theorem 21). Since F is rooted and full, L(F) is a finite atomistic
subdirectly-irreducible lattice by Proposition 16. Therefore, if i : L(F) −−→
R(D,B) is a lattice embedding, then we can assume, using Theorem 29, that
i preserves the bounds. Also, if L(F) is a Boolean algebra, then it is the
two elements Boolean algebra, since we are assuming that L(F) is subdirectly-
irreducible. But then, F is a singleton, and the statement of the Theorem trivially
holds in this case.

We can therefore assume that L(F) is not a Boolean algebra. Let us recall
that A is the set of join-prime elements of L(F), see Proposition 15. Let (F0, δA)
be the pairwise complete space over P (A) and let j : L(F) −−→ L(F0, δA) be
the lattice morphism with the properties stated in Proposition 28; let ν be the
left adjoint to j. We can also assume that L(F0, δA) = L(U) for some universal
S5A-product frame U.

To avoid confusions, we depart from the convention of identifying singletons
with their elements. We define ψ : XU −−→ XF by saying that ψ(x) = y when
ν({x}) = {y}. This is well defined since in L(U) (respectively L(F)) the non-
join-prime join-irreducible-elements are the singletons {x} with x ∈ XFU

(resp.
x ∈ XF); moreover, we have XU = F0 and each singleton {x} with x ∈ F0 is
sent by ν to a singleton {y} ∈ J (L(F)) \ {{a} | a ∈ A} = {{x} | x ∈ XF}.
The function ψ is surjective since every non-join-prime atom {x} in L(F) has
a preimage by ν an atom {y} and such a preimage cannot be join-prime, so
y ∈ XU.

We are left to argue that ψ is a p-morphism. To this end, let us remark that,
for each a ∈ A and x, y ∈ XF (or x, y ∈ XU), the relation xRay holds exactly
when there is an {a}-path from x to y, i.e. when {x} ⊆ {a, y} = {a} ∨ {y} (we
need here that F and U are S4 frames).

Thus, let x, y ∈ XU be such that xRay. Then {x} ⊆ {a} ∨ {y} and ν({x}) ⊆
ν({a}) ∨ ν({y}) = {a} ∨ ν({y}). We have therefore ψ(x)Raψ(y). Conversely, let
x ∈ XU and z ∈ XF be such that ψ(x)Raz. We have therefore ν({x}) ⊆ {a}∨{z},
whence, by adjointness,

{x} ⊆ j({a} ∨ {z}) = j({a}) ∨ j({z})
= {a} ∨ {y | ν({y}) = {z}}
= {a} ∪ {y | ν({y}) = {z}}.

But this means that there is some y ∈ XU with ψ(y) = z and a {a}-path from
x to y. But then, we also have xRay. ��

Embeddability into Relational Lattices Is Undecidable 273

References

1. Ackerman, N.: Completeness in generalized ultrametric spaces. P-Adic Numbers
Ultrametric Anal. Appl. 5(2), 89–105 (2013)

2. Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Dover Publications,
Incorporated, Mineola (2012)

3. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

4. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge
University Press, New York (2002)

5. Evans, T.: Embeddability and the word problem. J. London Math. Soc. 28, 76–80
(1953)

6. Freese, R., Ježek, J., Nation, J.: Free lattices. American Mathematical Society,
Providence (1995)

7. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel (1998). New appen-
dices by the author with Davey, B.A., Freese, R., Ganter, B., Greferath, M., Jipsen,
P., Priestley, H.A., Rose, H., Schmidt, E.T., Schmidt, S.E., Wehrung, F., Wille, R

8. Hammack, R., Imrich, W., Klavzar, S.: Handbook of Product Graphs, 2nd edn.
CRC Press Inc, Boca Raton (2011)

9. Hirsch, R., Hodkinson, I.: Representability is not decidable for finite relation alge-
bras. Trans. Am. Math. Soc. 353, 1403–1425 (2001)

10. Hirsch, R., Hodkinson, I., Kurucz, A.: On modal logics between K × K × K and
S5 × S5 × S5. J. Symb. Log. 67, 221–234 (2002)

11. Kurucz, A.: Combining modal logics. In: Patrick Blackburn, J.V.B., Wolter, F.
(eds.) Handbook of Modal Logic Studies in Logic and Practical Reasoning, pp.
869–924. Elsevier, Amsterdam (2007)

12. Lawvere, F.W.: Metric spaces, generalized logic, closed categories. Rendiconti del
Seminario Matematico e Fisico di Milano XLIII, 135–166 (1973)

13. Litak, T., Mikuls, S., Hidders, J.: Relational lattices: from databases to universal
algebra. J. Logical Algebraic Methods Program. 85(4), 540–573 (2016)

14. Maddux, R.: The equational theory of CA3 is undecidable. J. Symbolic Logic 45(2),
311–316 (1980)

15. Maddux, R.: Relation Algebras Studies in Logic and the Foundations of Mathe-
matics. Elsevier, Amsterdam (2006)

16. Nation, J.B.: An approach to lattice varieties of finite height. Algebra Universalis
27(4), 521–543 (1990)

17. Priess-Crampe, S., Ribemboim, P.: Equivalence relations and spherically complete
ultrametric spaces. C. R. Acad. Sci. Paris 320(1), 1187–1192 (1995)

18. Sambin, G.: Subdirectly irreducible modal algebras and initial frames. Studia Log.
62, 269–282 (1999)

19. Santocanale, L.: A duality for finite lattices. Preprint, September (2009). http://
hal.archives-ouvertes.fr/hal-00432113

20. Santocanale, L.: Relational lattices via duality. In: Hasuo, I. (ed.) CMCS
2016. LNCS, vol. 9608, pp. 195–215. Springer, Cham (2016). doi:10.1007/
978-3-319-40370-0 12

21. Santocanale, L.: The quasiequational theory of relational lattices, in the pure lattice
signature. Preprint, July (2016). https://hal.archives-ouvertes.fr/hal-01344299

22. Spight, M., Tropashko, V.: Relational lattice axioms. Preprint (2008). http://arxiv.
org/abs/0807.3795

23. Tropashko, V.: Relational algebra as non-distributive lattice. Preprint (2006).
http://arxiv.org/abs/cs/0501053

http://hal.archives-ouvertes.fr/hal-00432113
http://hal.archives-ouvertes.fr/hal-00432113
http://dx.doi.org/10.1007/978-3-319-40370-0_12
http://dx.doi.org/10.1007/978-3-319-40370-0_12
https://hal.archives-ouvertes.fr/hal-01344299
http://arxiv.org/abs/0807.3795
http://arxiv.org/abs/0807.3795
http://arxiv.org/abs/cs/0501053

Tower Induction and Up-to Techniques
for CCS with Fixed Points

Steven Schäfer(B) and Gert Smolka

Saarland University, Saarbrücken, Germany
{schaefer,smolka}@ps.uni-saarland.de

Abstract. We present a refinement of Pous’ companion-based coinduc-
tive proof technique and apply it to CCS with general fixed points. We
construct companions based on inductive towers and thereby obtain a
powerful induction principle. Our induction principle implies a new suf-
ficient condition for soundness of up-to techniques subsuming respect-
fulness and compatibility. For bisimilarity in CCS, companions yield a
notion of relative bisimilarity. We show that relative bisimilarity is a con-
gruence, a basic result implying soundness of bisimulation up to context.
The entire development is constructively formalized in Coq.

1 Introduction

Coinductive definitions and their associated reasoning principles are one of the
basic tools for studying equivalences in programming languages and process
calculi. For process calculi, the idea has been developed by Milner [7] in the form
of bisimilarity and the bisimulation proof method. In the context of programming
languages, coinductive simulations are an important tool in the field of compiler
verification [6].

Coinductive definitions can be realized as greatest fixed points of monotone
functions on complete lattices. Tarski’s [16] construction of greatest fixed points
yields a primitive coinduction principle, which is dual to structural induction.
Unfortunately, this coinduction principle can be inconvenient in practice because
it requires the construction of an often involved invariant. In the context of
bisimilarity, these invariants are known as bisimulations and can become quite
complicated. This is especially cumbersome in the context of interactive theorem
proving. The construction of an appropriate bisimulation is often the lion’s share
of a bisimilarity proof.

Fortunately, there are several enhancements of the coinductive proof method,
which mitigate these problems.

One useful enhancement consists in changing the function underlying a coin-
ductive definition to simplify proofs by coinduction. There is significant room for
improvement here, as many different functions can have the same greatest fixed
point. These enhancements of the coinductive proof method are known as up-to
techniques [7,13]. As we will see, the gains from using up-to techniques can be
dramatic. There are simple examples (Sect. 4) of bisimilarity proofs, where the
smallest bisimulation is infinite, yet there is a finite bisimulation up-to.
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 274–289, 2017.
DOI: 10.1007/978-3-319-57418-9 17

Tower Induction and Up-to Techniques for CCS with Fixed Points 275

Recently, Hur et al. [5] have introduced another enhancement of the coinduc-
tive proof method in the form of parameterized coinduction. Parameterized coin-
duction yields both modular and incremental proof principles for coinduction. In
addition, Hur et al. show how to combine up-to techniques with parameterized
coinduction, which yields an easier way to apply up-to techniques in coinductive
proofs.

Pous [12] starts from this combination of parameterized coinduction and up-
to techniques to introduce another substantial simplification and extension of
the coinductive proof method. Pous shows that for every monotone function
there is a canonical best up-to function, its companion. Not only does the use of
companions lead to simple proof principles for up-to techniques, it also subsumes
the work of Hur et al. and allows for a smooth integration of parameterized
coinduction. In this context, up-to techniques for the companion are simply
functions below the companion.

If we apply the companion construction to bisimilarity, we obtain a notion of
relative bisimilarity. Intuitively, two processes are bisimilar relative to a relation
R if we can show that they are bisimilar under the assumption that R–related
processes are bisimilar. Up-to techniques correspond to properties of relative
bisimilarity. For example, the statement that relative bisimilarity is a congruence
implies the soundness of bisimulation up to context. In fact, the congruence
property of relative bisimilarity is a stronger result.

Despite these advances it remains difficult to show the soundness of up-to
techniques. Our aim in this paper is to introduce new proof techniques for the
companion, which simplify soundness proofs for up-to techniques. We demon-
strate our proof techniques with a non-trivial case study.

The key to our results is a novel inductive construction of companions
(Sect. 3). Our construction yields the tower induction principle for companions
(Theorem 6), which implies a complete characterization of companion-based up-
to functions (Lemma 8).

We apply our construction to strong bisimilarity for CCS with fixed points
(Sect. 4). Our main result is that relative bisimilarity extended to open terms
is a congruence. This roughly corresponds to the soundness of bisimulation up-
to context. To the best of our knowledge, this result has not appeared in the
literature before. Our proofs make extensive use of our characterization of up-to
functions for the companion.

Beyond these case studies, we combine parameterized coinduction with our
inductive construction of companions. This leads to the parameterized tower
induction principle (Sect. 5). The accumulation rule of Hur et al. appears as a
consequence of parameterized tower induction.

Finally, we report on a Coq formalization of our results (Sect. 6). The main
difference to the paper presentation is in our treatment of binders. We use a
de Bruijn representation in the form of Jf -relative monads [2] to distinguish
open and closed terms. Following [14], we establish all substitution lemmas using
the rules of a convergent rewriting system.

276 S. Schäfer and G. Smolka

Contributions. We consider the tower induction principle for companions and the
formal development of open relative bisimilarity for CCS with general recursive
definitions the two main contributions of the paper.

2 Lattice Theory Preliminaries

We recall some basic definitions and results about fixed points in complete lat-
tices [4].

A complete lattice may be defined as a triple (A,≤,
⋃

), where ≤ is a partial
order on A, such that every set M ⊆ A has a supremum

⋃
M . For every M ⊆ A

we have:
⋃

M ≤ y ⇔ ∀x ∈ M. x ≤ y

Every complete lattice has a greatest element �, as well as binary suprema x∪y.
Arbitrary infima

⋂
M can be obtained as suprema of lower bounds. In particular,

every complete lattice has a least element ⊥, along with binary infima x ∩ y.
A function f is monotone if f(x) ≤ f(y) whenever x ≤ y. For a monotone

function f : A → A we say that x is a prefixed point of f if f(x) ≤ x and a
postfixed point if x ≤ f(x). An element x is a fixed point of f if f(x) = x.

By Tarski’s theorem [16], every monotone function on a complete lattice has
a complete lattice of fixed points. In particular, every monotone function has a
greatest fixed point.

Theorem 1. Let f be a monotone function on a complete lattice. The supre-
mum over all postfixed points νf :=

⋃ {x | x ≤ f(x) } is the greatest fixed point
of f .

3 Towers and Companions

Pous [12] gives a useful characterization of the greatest fixed point as νf = t(⊥)
using a function t called the companion for f . Parrow and Weber [8] give an
ordinal-based construction of the companion in classical set theory. It turns
out that the companion can be obtained in constructive type theory with an
inductive tower construction [15].

Definition 2. Let f be a function on a complete lattice. The f-tower is the
inductive predicate Tf defined by the following rules.

x ∈ Tf

f(x) ∈ Tf

M ⊆ Tf
⋂

M ∈ Tf

Using Tf we define tf , the companion of f .

tf (x) :=
⋂

{ y ∈ Tf | x ≤ y }

Tower Induction and Up-to Techniques for CCS with Fixed Points 277

We will omit the index on Tf and tf when the function f is clear from the
context.

Note that t(x) is the least element of T above x, since the tower is closed
under infima. The following are further consequences of the closure under infima.

Fact 3. t is a closure operator with image T .

a) t is monotone
b) x ≤ t(x)

c) t(t(x)) = t(x)
d) x ∈ T ↔ t(x) = x.

Additionally, since the tower is closed under f , we have:

Fact 4. f(t(x)) = t(f(t(x)))

As a consequence of our inductive construction of T , we obtain an induction
principle for t.

Definition 5. A predicate P is inf-closed if
⋂

M ∈ P whenever M ⊆ P .

Theorem 6 (Tower Induction). Let P be an inf-closed predicate such that
P (t(x)) implies P (f(t(x))) for all x. Then P (t(x)) holds for all x.

Proof. Follows from Fact 3, by induction on the derivation of tf (x) ∈ Tf . �

Standard inf-closed predicates include λx. y ≤ x for a fixed y and λx. g(x) ≤ x
for monotone g. Both instantiations yield useful statements about t.

Using the predicate λx. νf ≤ x in Theorem 6, we can reconstruct the greatest
fixed point of f in terms of t.

Lemma 7. If f is monotone, then νf = tf (⊥).

Proof. We have t(⊥) ≤ t(f(t(⊥))) = f(t(⊥)) by monotonicity of t and Fact 4.
It follows that t(⊥) ≤ νf .

In the reverse direction we show νf ≤ t(x) for all x using Theorem 6. It
suffices to show that νf ≤ x implies that νf ≤ f(x). This follows from νf =
f(νf) and the monotonicity of f .

More generally, we have t(x) = νf for all x ≤ νf , since t is monotone and
idempotent.

Using the predicate λx. g(x) ≤ x in Theorem 6, we prove a characterization
of the up-to functions for t, i.e., the monotone functions below t.

Lemma 8 (Up-to Lemma). Let g be monotone. Then the following state-
ments are equivalent.

a) g ≤ t
b) g ◦ t ≤ t
c) ∀x. g(t(x)) ≤ t(x) → g(f(t(x))) ≤ f(t(x))

278 S. Schäfer and G. Smolka

Proof. The implication from (c) to (b) follows by tower induction. From (b) to
(a) we have g ≤ g ◦ t ≤ t, by Fact 3 and the monotonicity of g. The implication
from (a) to (c) follows from Fact 4. �

In particular, this shows that f is below t.

Lemma 9. Let f be monotone. Then f(t(x)) ≤ t(x).

Proof. By Lemma 8(b) using the monotonicity of f . �

We now relate our companion construction to Pous’ construction [12].

Definition 10. A function g is compatible for f if it is monotone and g◦f ≤ f◦g.

Lemma 11. For monotone f , we have tf =
⋃ {g | g is compatible forf}.

Proof. Let g be compatible for f . We have g(f(t(x))) ≤ f(g(t(x))) by com-
patibility, and by Lemma8 this implies g ≤ t. Additionally, the companion is
compatible for f , since it is monotone by Fact 3 and t ◦ f ≤ t ◦ f ◦ t = f ◦ t by
Facts 3 and 4. �

In light of Lemma11, we can see most results in this section as rederivations
of results from [12]. The exceptions are Theorem 6 and Lemma 8, which are new
results for the companion. In the sequel, we will make extensive use of the new
results to show soundness of up-to functions.

4 CCS with Recursive Processes

In this section we apply the companion construction to strong bisimilarity in
CCS [7] with fixed point expressions. Using the companion we obtain proof prin-
ciples analogous to bisimulation up-to context for the extension of bisimilarity to
open terms. Our proofs are similar to Milner’s proof [7] that strong bisimilarity
is a congruence for CCS, yet our results are strictly stronger. We illustrate this
by giving a straightforward proof of the well-known fact that weakly guarded
equations have unique solutions modulo strong bisimilarity.

The syntax of CCS processes and actions is given by the following grammar.

P,Q ::= 0 | α.P | P ‖ Q | P + Q | (νa)P | X | μX.P

α, β ::= a | a | τ

For the paper presentation we assume that there is some countably infinite type
of variables X,Y,Z. The fixed point expression μX.P binds the variable X
in P . We use the standard notions of free and bound variables. We adopt the
Barendregt convention and consider processes up to renaming of bound variables.

A substitution σ is a mapping from variables to processes. We can instantiate
a process P under a substitution σ by replacing all free variables according to
σ, while keeping the bound variables fixed. We write P [σ] for the process P

Tower Induction and Up-to Techniques for CCS with Fixed Points 279

α.P
α� P

P
α� P ′

P ‖ Q
α� P ′ ‖ Q

Q
α� Q′

P ‖ Q
α� P ‖ Q′

P
a� P ′ Q

a� Q′

P ‖ Q
τ� P ′ ‖ Q′

P
a� P ′ Q

a� Q′

P ‖ Q
τ� P ′ ‖ Q′

P
α� P ′

P + Q
α� P ′

Q
α� Q′

P + Q
α� Q′

P
α� P ′ α �= a, a

(νa)P
α� (νa)P ′

P [X �→ μX. P]
α� Q

μX. P
α� Q

Fig. 1. Labeled transition system for CCS.

instantiated under σ. The expression X �→ P denotes the substitution that
replaces the variable X by P . We combine substitutions by juxtaposition.

A process is closed if it does not contain any free variables.
The semantics of CCS is given by a labeled transition system (LTS), i.e., an

indexed relation between closed processes P
α�Q. Intuitively, the relation P

α�Q
means that process P can reduce to Q and perform the action α in a single
step. The labeled transition system for CCS is defined inductively by the rules
in Fig. 1.

Fixed point expressions allow us to specify arbitrary recursive processes. For
instance, replication can be expressed as !P := μX. X ‖ P , where X is not free
in P . Under this encoding, we have !P α� Q whenever !P ‖ P

α� Q. Note that
this yields an infinitely branching LTS for, e.g., !a.0.

We define strong bisimilarity as the greatest fixed point of a function b map-
ping binary relations into binary relations. First, let s be the function expressing
one step of simulation.

s(R) := λPQ. ∀αP ′. P
α� P ′ → ∃Q′. Q α� Q′ ∧ R P ′ Q′

The function b is just simulation in both directions. More precisely, it is the
greatest symmetric function below s, where a function between relations is sym-
metric if it maps symmetric relations to symmetric relations.

b(R) := λR. s(R) ∧ s(R†)†

R† := λPQ. R(Q,P)

Bisimilarity is the greatest fixed point of b. We write t for the companion of b.
Bisimilarity between processes P,Q is denoted by P ∼ Q.

We are trying to develop effective proof techniques for bisimilarity. Before
we consider how to show bisimilarity using the companion, let us recall the
classical bisimulation proof method. Following the literature, the postfixed points
of b are called bisimulations. Bisimilarity is the union of all bisimulations by
Theorem 1. In order to show that P ∼ Q holds, it suffices to find a bisimulation
R containing the pair (P,Q). The problem with this proof technique is that R
can be arbitrarily complicated and has to be explicitly constructed.

280 S. Schäfer and G. Smolka

Consider two processes A,B such that

A ∼ (a.B) ‖ (a.!A)
B ∼ (a.!B) ‖ (a.A)

The processes A and B are obviously bisimilar, as parallel composition is commu-
tative and the only difference beyond this is a simple renaming. Yet the smallest
bisimulation containing the pair (A,B) is infinite.

Instead of using the definition of bisimilarity, we can use the companion and
tower induction. The companion gives us a notion of relative bisimilarity, or
R-bisimilarity, which we write as P ∼R Q. Intuitively, processes are bisimilar
relative to R, if we can show that they are bisimilar, assuming that all R-related
processes are bisimilar. In coinductive proofs, we can frequently assume that
some processes are bisimilar after a step of reduction. We can express this in
terms of relative bisimilarity, by introducing guarded assumptions ◦R. Given a
relation R, we define ◦R := b(t(R)).

P ∼ Q := (P,Q) ∈ νb bisimilarity
P ∼R Q := (P,Q) ∈ t(R) relative bisimilarity

P ∼◦R Q = (P,Q) ∈ t(b(t(R))) guarded relative bisimilarity

The different notions of bisimilarity are related by the following laws, which
instantiate lemmas from Sect. 3.

Fact 12. ∼⊥ = ∼ ⊆ ∼◦R = ◦R ⊆ ∼R ⊇ R

Tower induction gives us a proof principle for showing bisimilarity in terms of
relative bisimilarity.

Lemma 13. If P ∼R Q implies P ∼◦R Q for all R, then P ∼ Q.

Proof. By Fact 12 together with tower induction using the inf-closed predicate
λR. (P,Q) ∈ R. �

Lemma 13 corresponds to the statement that bisimulation up-to the companion
is sound. To show that two processes are bisimilar, it suffices to show that they
are bisimilar relative to an assumption which states that they are bisimilar after
unfolding at least one reduction step.

Phrased in our vocabulary, Pous [12] has shown that relative bisimilarity is a
congruence for CCS with replication. This simplifies the proof of the bisimilarity
A ∼ B. By Lemma 13, it suffices to show A ∼◦R B, assuming that A ∼R B. We
have

A ∼ (a.B) ‖ (a.!A) ∼ (a.!A) ‖ (a.B)
B ∼ (a.!B) ‖ (a.A)

Since ∼ ⊆ ∼◦R, and ∼◦R is transitive, it thus suffices to show that

(a.!A) ‖ (a.B) ∼◦R (a.!B) ‖ (a.A)

Tower Induction and Up-to Techniques for CCS with Fixed Points 281

Since ∼◦R is a congruence, this follows from a.!A ∼◦R a.!B and a.B ∼◦R a.A.
Unfolding the definition of b, we have to show !A∼R!B and B ∼R A. The former
follows by compatibility with replication, the latter follows from the symmetry
of ∼R. We conclude that A ∼ B.

In this case, we can further simplify the proof to avoid unfolding the definition
of b. We simply strengthen the compatibility with action prefixes to P ∼R Q →
α.P ∼◦R α.Q since action prefixes can perform a step of reduction.

As defined, relative bisimilarity is not a congruence for CCS with recursive
processes, since it is only defined for closed terms. In order to proceed, we lift
relative bisimilarity to open terms.

Two processes P,Q are in open bisimilarity P ∼̇Q if they are bisimilar under
all closing substitutions, i.e., substitutions which replace all free variables by
closed processes. We write θ for closing substitutions. As before, we also consider
the relative variant of open bisimilarity. To distinguish open bisimilarity from
ordinary bisimilarity, we will refer to the latter as closed bisimilarity.

P ∼̇ Q := ∀θ. P [θ] ∼ Q[θ] open bisimilarity
P ∼̇R Q := ∀θ. P [θ] ∼R Q[θ] open relative bisimilarity

Open and closed (relative) bisimilarity coincide for closed processes.
Even though open bisimilarity is not defined coinductively, we obtain a rea-

soning principle analogous to Lemma13 using tower induction.

Lemma 14. If P ∼̇R Q implies P ∼̇◦R Q for all R, then P ∼̇ Q.

Proof. Tower induction with P (R) = ∀θ. (P [θ], Q[θ]) ∈ R. �

In the remainder of this section we show that relative open bisimilarity is a
congruence.

Lemma 15. Relative open bisimilarity is an equivalence relation.

Proof. By the definition of relative open bisimilarity, it suffices to show that
relative bisimilarity is an equivalence relation. This follows by tower induction.
The intersection of a family of equivalence relations is an equivalence relation
and it is easy to see that b(R) is an equivalence relation if R is. �

For the compatibility with the various connectives of CCS, we define local context
operators as follows:

c·(R) := { (α.P, α.Q) | R(P,Q) }
c‖(R) := { (P1 ‖ Q1, P2 ‖ Q2) | R(P1, P2), R(Q1, Q2) }
c+(R) := { (P1 + Q1, P2 + Q2) | R(P1, P2), R(Q1, Q2) }
cν(R) := { ((νa)P, (νa)Q) | R(P,Q) }

Compatibility under all contexts not containing fixed point expressions corre-
sponds to the statements c(∼R) ⊆ ∼R for all local context operators. These

282 S. Schäfer and G. Smolka

results have already been shown in [12] using a second order companion con-
struction. We give alternative proofs using the up-to lemma (Lemma 8).

As in [12] we encapsulate some of the symmetries in the problem using the
following lemma.

Fact 16 [12]. Let g be symmetric and g(b(R)) ≤ s(R). Then g(b(R)) ≤ b(R).

For compatibility with action prefixes we show a slightly stronger statement.

Lemma 17. If P ∼̇R Q, then α.P ∼̇◦R α.Q and α.P ∼̇R α.Q.

Proof. We have c· ≤ b, by unfolding the definitions. The statement follows
using Fact 12, since c·(t(R)) ⊆ b(t(R)) ⊆ ∼R. �

All remaining proofs follow the same pattern. After applying Lemma8 and
Fact 16 (which allows us to focus on establishing the simulation condition), our
work boils down to a simple case analysis. We illustrate only the case of parallel
composition in detail.

Lemma 18. P1 ∼̇R P2 → Q1 ∼̇R Q2 → P1 ‖ Q1 ∼̇R P2 ‖ Q2

Proof. We show c‖(∼R) ⊆ ∼R using Lemma 8. Assume that the statement holds
for a relation R and all P1, P2, Q1, Q2. We will refer to this as the coinductive
hypothesis.

We have to show that P1 ∼◦R P2 and Q1 ∼◦R Q2 imply P1 ‖ Q1 ∼◦R P2 ‖ Q2.
By Fact 16 it suffices to show this for one step of simulation. Let P1 ‖ Q1

α� U ,
we have to find a process V such that P2 ‖ Q2

α� V and U ∼R V .
We proceed by case analysis on P1 ‖ Q1

α� U . Formally, there are four cases
to consider of which two follow by symmetry.

– Communication between P1 and Q1. We have P1
a� P ′

1, Q1
a� Q′

1, α = τ , and
U = P ′

1 ‖ Q′
1. By the assumptions P1 ∼◦R P2 and Q1 ∼◦R Q2 there are P ′

2, Q
′
2

such that P2
a�P ′

2, Q2
a�Q′

2, P ′
1 ∼R P ′

2 and Q′
1 ∼R Q′

2. We pick V = P ′
2 ‖ Q′

2,
as P2 ‖ Q2

τ� P ′
2 ‖ Q2. The statement P ′

1 ‖ Q′
1 ∼R P ′

2 ‖ Q′
2 follows from the

coinductive hypothesis.
– Reduction in P1. We have P1

α�P ′
1 and U = P ′

1 ‖ Q1. By assumption, P2
α�P ′

2

and P ′
1 ∼R P ′

2. We pick V = P ′
2 ‖ Q2, as P2 ‖ Q2

α� P ′
2 ‖ Q2. The statement

P ′
1 ‖ Q1 ∼R P ′

2 ‖ Q2 follows from the coinductive hypothesis if we can show
Q1 ∼R Q2. This follows from the assumption that Q1 ∼◦R Q2 and Fact 12. �

Finally, we have to show that bisimilarity is compatible with fixed point expres-
sions. Schematically, the proof remains similar to the proof of Lemma18, except
that we replace the case analysis on the reduction relation by a nested induction.

Substitutions add an additional complication, however, since reducing a fixed
point expression instantiates a variable. Intuitively, this means that we have to
show that open bisimilarity is compatible with fixed points and instantiation at
the same time.

Tower Induction and Up-to Techniques for CCS with Fixed Points 283

First, let us consider the following context operators on closed relative bisim-
ilarity.

cμ(R) := { (μX.P, μX.Q) |
∀S closed. R(P [X �→ S], Q[X �→ S]) }

c[](R) := { (P [θ1], P [θ2]) | ∀x. R(θ1(x), θ2(x)) }
If cμ(R) ⊆ R, then we can show that two fixed points μX. P , μX. Q are related
if they are related whenever we substitute the same closed process for X in both
P and Q. We are implicitly assuming that X is the only free variable in P,Q.

If c[](R) ⊆ R, then R is compatible under related closing substitutions.
Specifically, if P is an open process and θ1, θ2 are two pointwise related closing
substitutions, we can show that P [θ1] and P [θ2] are related.

One half of the relationship between cμ and c[] is captured by the following
lemma.

Lemma 19. If cμ(∼R) ⊆ ∼R, and θ1(x) ∼R θ2(x) for all x, then P [θ1] ∼R P [θ2]
for all P .

Proof. By induction on P . The cases for action prefixes, choice, parallel com-
position and restriction follow from the compatibility of ∼R with the structure
of P . The case for variables follows from the assumption on θ1 and θ2.

Finally, let P = μX. Q. By compatibility with μ it suffices to show that
Q[θ1,X �→ S] ∼R Q[θ2,X �→ S]. This follows by induction, since the extended
substitutions are related by reflexivity of ∼R. �

In fact, we do have cμ(∼R) ⊆ ∼R, and the first assumption in the previous
lemma is vacuously true.

Lemma 20. If P [X �→ S] ∼R Q[X �→ S] holds for all R and closed S, where X
is the only free variable in P,Q, then μX.P ∼R μX.Q.

Proof. We show cμ(∼R) ⊆ ∼R by Lemma 8. We can assume that the statement
holds for a relation R and have to show that it holds for ◦R.

It suffices to show that Q[X �→ μX.P] ∼◦R Q[X �→ μX.Q]. The statement
then follows from μX.P ∼ P [X �→ μX.P] and transitivity:

μX. P ∼ P [X �→ μX. P] ∼◦R Q[X �→ μX. P] ∼◦R Q[X �→ μX. Q] ∼ μX. Q

where in the second step, we have used the assumption that P and Q are ◦R-
related under the same closing substitution.

What is left to show is almost compatibility under instantiation with related
substitutions. We show that Q0[X �→ μX. P] ∼◦R Q0[X �→ μX. Q] for all Q0.
By Fact 16, it suffices to show this statement for one step of simulation. Let
Q0[X �→ μX. P] α�Q′. We have to find Q′′ such that Q0[X �→ μX. Q] α�Q′′ and
Q′ ∼R Q′′.

We proceed by induction on the derivation of Q0[X �→ μX. P] α� Q′. There
are nine cases to consider in total. We illustrate three representative cases.

284 S. Schäfer and G. Smolka

– Q0 = S ‖ T and S[X �→ μX. P] α� S′. By the inductive hypothesis, there is
an S′′ such that S[X �→ μX. Q] α� S′′ and S′ ∼R S′′. It suffices to show that
S′ ‖ T [X �→ μX. P] ∼R S′′ ‖ T [X �→ μX. Q].
This follows from compatibility with parallel composition and instantiation
(Lemma 19). We have S′ ∼R S′′ by assumption and μX.P ∼R μX.Q follows
from the coinductive hypothesis.

– Q0 = μY. S and S[Y �→ μY. S][X �→ μX.P] α�S′. By the inductive hypothesis,
there is an S′′ such that S[Y �→ μY. S][X �→ μX.Q] α�S′′ and S′∼RS′′, which
is what we needed to show.

– Q0 = X and P [X �→ μX.P] α�P ′. By the inductive hypothesis, there is a P ′′

such that P [X �→ μX. Q] α� P ′′ and P ′ ∼R P ′′.
By the assumption on P and Q there is a Q′ such that Q[X �→ μX. Q] α� Q′

and P ′′ ∼R Q′. We have P ′ ∼R Q′ by transitivity of ∼R and the statement
follows. �

At this point we have all we need to prove that open relative bisimilarity is a
congruence.

Theorem 21. Open relative bisimilarity is a congruence.

Proof. Congruence under action prefixes, choice, parallel composition and
restrictions follows from the corresponding statements for relative bisimilarity,
and the fact that instantiation is homomorphic in the process structure.

For fixed points, we have to show that P ∼̇R Q implies μX.P ∼̇R μX.Q.
Unfolding the definitions, we have to show that (μX.P)[θ] ∼R (μX.Q)[θ]. Note
that θ leaves X invariant, since X is bound.

By Lemma 20, it suffices to show P [θ,X �→ S] ∼R Q[θ,X �→ S] for all closed
processes S. This follows from P ∼̇R Q, with an extended closing substitution. �

Furthermore, we can use Lemma 19 to show that ∼̇R is compatible with
instantiation.

Theorem 22. Let σ1, σ2 be substitutions such that σ1(x) ∼̇R σ2(x) for all x. If
P ∼̇R Q, then P [σ1] ∼̇R Q[σ2].

Proof. By the definition of P ∼̇R Q, we have P [σ1] ∼̇R Q[σ1].The statement
follows from Lemma 19, Lemma 20 and transitivity. �

As a small additional application, we use Theorem21 to show that weakly
guarded equations have unique solutions in CCS.

A context C is a process with holes.

C ::= [] | P | α.C | C + C | C ‖ C | (νa)C | μX.C

A context is weakly guarded if every hole appears under an action prefix, where
the action in question may be τ . A context C can be filled with a process P
resulting in a process C[P], by replacing every hole in C with P . For example,
the context C = α.[] ‖ τ.[] is weakly guarded and we have C[X] = α.X ‖ τ.X.

Tower Induction and Up-to Techniques for CCS with Fixed Points 285

Weakly guarded equations are bisimilarities of the form P ∼C[P], for weakly
guarded contexts C. By a result of Milner [7], such equations have unique solu-
tions. Intuitively, this is because reduction must take a step before reaching a
hole. We can formalize this intuition in terms of relative bisimilarities, which
leads to a simple proof.

Lemma 23. If C is weakly guarded and P ∼R Q, then C[P] ∼◦R C[Q].

Proof. By induction on C, using Theorem 21 and in particular using Lemma17
to move from guarded relative bisimilarity to relative bisimilarity. �
Lemma 24 (Unique Solutions). If C is weakly guarded, and P,Q are two
processes such that P ∼ C[P], and Q ∼ C[Q] then P ∼ Q.

Proof. By Lemma 13, it suffices to show P ∼◦R Q, assuming that P ∼R Q. Using
Lemma 23, we have C[P] ∼◦R C[Q] and the statement follows by transitivity, as
P ∼ C[P] ∼◦R C[Q] ∼ Q. �

5 Parameterized Tower Induction

We return to the abstract setting and establish an induction principle similar in
spirit to Hur et al.’s parameterized coinduction [5].

Lemma 25 (Parameterized Tower Induction). Let u be an element of a
complete lattice A, f a monotone endofunction, and P an inf-closed predicate.
We have P (t(u)) and P (f(t(u))), whenever

∀x. u ≤ t(x) → P (t(x)) → P (f(t(x))).

Proof. The statement P (f(t(u))) follows from P (t(u)) and the assumption
together with Fact 3.

To show P (t(u)), we generalize the statement to ∀x. Q(t(x)) for the inf-closed
predicate Q(x) = u ≤ x → P (x). By tower induction, it suffices to show that
P (f(t(x))) follows from u ≤ t(x) → P (t(x)) and u ≤ f(t(x)). From Lemma 9
we know that u ≤ f(t(x)) ≤ t(x). Thus P (t(x)) holds and P (f(t(x))) follows by
assumption. �
Hur et al. [5] implement parameterized coinduction with an accumulation rule
for parameterized fixed points. Pous shows that the same accumulation rule is
applicable to the companion. We present a different proof of the accumulation
rule by instantiating Lemma25 with the predicate λx. y ≤ x.

Lemma 26. For monotone f we have x ≤ f(t(x ∪ y)) ↔ x ≤ f(t(y)).

Proof. The right-to-left direction follows from y ≤ x ∪ y together with the
monotonicity of t and f . In the left-to-right direction we use Lemma 25. It suffices
to show that

∀z. y ≤ t(z) → x ≤ t(z) → x ≤ f(t(z)).

Combining the two assumptions, we have x ∪ y ≤ t(z). Using Fact 3, this is
equivalent to t(x ∪ y) ≤ t(z). The statement follows from x ≤ f(t(x ∪ y)) and
the monotonicity of f . �

286 S. Schäfer and G. Smolka

Together with Lemma 7, Lemma 26 implies a sound and complete coinduction
principle.

Fact 27. If f is monotone, then x ≤ f(t(x)) ↔ x ≤ νf .

Proof. We have νf = f(νf) = f(t(⊥)). �

Pous observed that every function below the companion is a sound up-to func-
tion [13] for f . This is a consequence of Fact 27.

Definition 28. g is a sound up-to function for f , if x ≤ νf whenever x ≤
f(g(x)).

Lemma 29. If g ≤ tf , then g is a sound up-to function for f .

Proof. This follows from Fact 27: x ≤ f(g(x)) ≤ f(t(x)). �

6 Coq Formalization

All results in this paper have been formalized in Coq. We make use of the Ssreflect
plugin and library, for its improved tactic language and the formalization of finite
types (for Jf -relative monads). To avoid working with pre-lattices, we assume
propositional and functional extensionality. The development is available at:
www.ps.uni-saarland.de/extras/companions.

The main divergence of the formalization from the paper is our treatment of
variable binding in CCS with fixed points. We represent variable binding using
a de Bruijn representation. Since we often have to distinguish between open and
closed terms we index our term language with an upper bound on the number of
free variables. This technique was first used by Adams [1], and later thoroughly
explained by Alternkirch et al. in the framework of relative monads [2]. Using
the terminology of Altenkirch et al., we formalize terms as Jf -relative monads.

In addition to the laws of a Jf -relative monad, we show all equations
from [14]. This allows us to show all substitution lemmas by rewriting.

7 Related Work

Coinduction. Hur et al. [5] introduce parameterized coinduction as an incremen-
tal proof technique for coinduction. For a monotone function f on a complete
lattice, they construct the function Gf (x) = ν(λy. f(x ∪ y)). They show that
Gf can be used for modular and incremental coinductive reasoning and describe
several examples and extensions.

One extension of parameterized coinduction incorporates up-to techniques.
Specifically, Hur et al. consider respectful up-to functions. Respectfulness is
another sufficient criterion for soundness of up-to functions. They use the fact
that the set of respectful up-to functions is closed under union to construct the
greatest respectful up-to function t. The parameterized fixed point Gf◦t turned

http://www.ps.uni-saarland.de/extras/companions/

Tower Induction and Up-to Techniques for CCS with Fixed Points 287

out to obey an “unfolding” lemma, which allowed them to freely use any respect-
ful up-to technique in a coinductive proof.

Recently, Pous [12] noticed that the greatest compatible up-to function
already admits the parameterized coinduction principle. It turns out that the
greatest compatible and the greatest respectful up-to function coincide. More-
over we have f ◦ t = Gf◦t. This means that the function t is everything we
require for incremental and modular coinductive proofs compatible with up-to
techniques.

Pous dubbed the greatest compatible up-to function the companion.
At the same time, Parrow and Weber [8] considered the greatest respectful

function for strong bisimilarity in the context of classical set theory. Their con-
struction avoids the quantification over respectful functions by using the theory
of ordinals in set theory. They use that bisimilarity may be defined by transfinite
iteration to construct the companion for bisimilarity.

Formally, the idea is that if κ is an ordinal larger than the cardinality of the
underlying lattice, then fκ(�) is the greatest fixed point of f . This can be used
to construct the companion as tf (x) =

⋂ { fα(�) | x ≤ fα(�), α ordinal }.
The tower construction [15] may be seen as the type theoretic analogue

of transfinite iteration in set theory. Under this view, we define the set of
points reachable from � by transfinite f -iteration as an inductive predicate
T ≈ { fα(�) | α ordinal }.

Up-To Techniques. The study of up-to techniques for bisimilarity originates
with Milner [7]. Milner considers bisimulation up-to bisimilarity to keep proofs of
bisimilarity manageable. Practical applications usually require combining several
different up-to functions. Even our toy example in Sect. 4 requires bisimulation
up-to context and bisimilarity to mimic the proof using the companion.

One problem with using only sound up-to functions in the sense of Defini-
tion 28 is that sound up-to functions do not compose. This drawback led San-
giorgi [13] to propose the notion of respectful up-to functions. Respectful up-to
functions are sound and closed under composition and union.

Sangiorgi [13] studies bisimilarity, but notes that the same definition of
respectfulness makes sense in the more general context of greatest fixed points
in complete lattices.

Pous [11] extends and simplifies the work of Sangiorgi by abstracting it to the
setting of complete lattices and by introducing the notion of compatibility. This
abstraction yields concrete gains, as the set of compatible maps forms another
complete lattice. In particular, this implies that we can use up-to techniques
to establish soundness of up-to techniques. Pous refers to this as “second order
techniques”.

Recently, Pous [12] adapted this development to the companion. For every
companion t, there exists a second-order companion, classifying the compati-
ble up-to functions. Pous uses the second-order companion extensively to show
soundness of bisimulation up-to context for CCS with replication and other case
studies.

288 S. Schäfer and G. Smolka

8 Conclusions and Future Work

We have presented a tower based construction of the companion of a monotone
function on a complete lattice. The new tower induction principle derived from
this construction allows us to show a number of improved results for companions.
We instantiate the abstract lattice theoretic development with strong bisimilarity
in CCS with general recursive processes. This instantiation yields a particularly
simple proof system for bisimilarity and we show the admissibility of reasoning
up-to context about bisimilarity. Our results imply the classical soundness result
for bisimulation up-to context in CCS with replication.

There are several avenues for future work.
All case studies in this paper consider up-to techniques for strong bisimilarity

in CCS. It is well known [10] that the case of weak bisimilarity is much more
subtle. If we try to adapt the development in Sect. 4 to weak bisimilarity, we
find that relative weak bisimilarity is not transitive and not compatible with
choice. This mirrors the failure of soundness of weak bisimulation up-to weak
bisimilarity and the fact that weak bisimilarity is not compatible with choice.

Despite these problems, there are useful up-to techniques for weak bisimi-
larity. Pous [10] developed weak bisimulation up-to elaboration, which combines
weak bisimulations with a limited form of unfolding under a termination hypoth-
esis. At this point it is not clear whether these techniques yield corresponding
reasoning principles for relative weak bisimilarity.

There are also open questions concerning the companion construction itself.
Assuming the axiom of excluded middle, it can be shown [15] that T is

well-ordered. In particular, in classical type theory, we can use this to expand
the tower induction principle to all predicates which are closed under infima of
well-ordered subsets. However, this principle is not provable in constructive type
theory [3].

It might yet be possible to show a slightly weaker statement constructively.
Pataraia [9] gives a constructive proof of Tarski’s theorem for least-fixed points
on directed complete partial orders. We conjecture that a similar construction
can be used to extend the tower induction principle to predicates which are
closed under infima of lower directed subsets.

References

1. Adams, R.: Formalized metatheory with terms represented by an indexed family
of types. In: Filliâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004.
LNCS, vol. 3839, pp. 1–16. Springer, Heidelberg (2006). doi:10.1007/11617990 1

2. Altenkirch, T., Chapman, J., Uustalu, T.: Monads need not be endofunctors. In:
Ong, L. (ed.) FoSSaCS 2010. LNCS, vol. 6014, pp. 297–311. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12032-9 21

3. Bauer, A., Lumsdaine, P.L.: On the Bourbaki-Witt principle in toposes. In: Math-
ematical Proceedings of the Cambridge Philosophical Society, vol. 155, pp. 87–99.
Cambridge University Press (2013)

http://dx.doi.org/10.1007/11617990_1
http://dx.doi.org/10.1007/978-3-642-12032-9_21

Tower Induction and Up-to Techniques for CCS with Fixed Points 289

4. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (2002)

5. Hur, C.-K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: The 40th Annual ACM SIGPLAN- SIGACT Symposium on
Principles of Programming Languages, POPL 2013, Rome, Italy, 23–25 January
2013, pp. 193–206 (2013)

6. Xavier, L.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

7. Milner, R.: Communication and Concurrency, vol. 84. Prentice Hall, Upper Saddle
River (1989)

8. Parrow, J., Weber, T.: The largest respectful function. Log. Methods Comput. Sci.
12(2) (2016)

9. Pataraia, D.: A constructive proof of Tarski’s fixed-point theorem for dcpo’s. Pre-
sented in the 65th Peripatetic Seminar on Sheaves and Logic, Aarhus, Denmark,
November 1997

10. Pous, D.: Weak bisimulation up to elaboration. In: Baier, C., Hermanns, H. (eds.)
CONCUR 2006. LNCS, vol. 4137, pp. 390–405. Springer, Heidelberg (2006). doi:10.
1007/11817949 26

11. Pous, D.: Complete lattices and up-to techniques. In: Shao, Z. (ed.) APLAS
2007. LNCS, vol. 4807, pp. 351–366. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-76637-7 24

12. Pous, D.: Coinduction all the way up. In: Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, pp. 307–316.
ACM, New York (2016)

13. Sangiorgi, D.: On the bisimulation proof method. Math. Struct. Comput. Sci. 8(5),
447–479 (1998)

14. Schäfer, S., Smolka, G., Tebbi, T.: Completeness and decidability of de Bruijn
substitution algebra in Coq. In: Proceedings of the Conference on Certified Pro-
grams and Proofs, CPP 2015, Mumbai, India, 15–17 January 2015, pp. 67–73.
ACM (2015)

15. Smolka, G., Schäfer, S., Doczkal, C.: Transfinite constructions in classical type
theory. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 391–404.
Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 26

16. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math.
5(2), 285–309 (1955)

http://dx.doi.org/10.1007/11817949_26
http://dx.doi.org/10.1007/11817949_26
http://dx.doi.org/10.1007/978-3-540-76637-7_24
http://dx.doi.org/10.1007/978-3-540-76637-7_24
http://dx.doi.org/10.1007/978-3-319-22102-1_26

Reasoning About Cardinalities of Relations
with Applications Supported

by Proof Assistants

Insa Stucke(B)

Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
ist@informatik.uni-kiel.de

Abstract. In this paper we prove the correctness of a program for com-
puting vertex colorings in undirected graphs. In particular, we focus on
the approximation ratio which is proved by using a cardinality operation
for heterogeneous relations based on Y. Kawaharas characterisation.

All proofs are mechanised by using the two proof assistants Coq and
Isabelle/HOL. Our Coq formalisation builds on existing libraries provid-
ing tools for heterogeneous relation algebras and cardinalities. To for-
malise the proofs in Isabelle/HOL we have to change over to untyped
relations. Thus, we present an axiomatisation of a cardinality operation
to reason about cardinalities algebraically also in homogeneous relation
algebras and implement this new theoretical framework in Isabelle/HOL.
Furthermore, we study the advantages and disadvantages of both systems
in our context.

1 Introduction

Relation algebra (as first introduced in [19] and further studied, e.g., in [10,16])
provides an elegant way to reason about many discrete structures. For instance,
there is a direct relationship between relations and graphs via adjacency rela-
tions. Hence, computational problems on graphs can be expressed and solved by
using the relation-algebraic method as shown in [16], for example. The relation-
algebraic approach is known for many methodical advantages in contrast to the
conventional set-theoretic one. For example, it allows consice problem specifica-
tions and hence very formal calculations. Due to this, relation-algebraic reasoning
turned out to be well-suited for mechanisation.

Thus, in [2] the authors develop a relational program for computing vertex
colorings in undirected (and loop-free) graphs. The correctness proof is given by
combining the assertion-based verification method with relation-algebraic calcu-
lations. In this context the usability of an automated theorem prover and the
proof assistants Coq and Isabelle/HOL is shown and compared. However, the
approximation ratio of the underlying Greedy algorithm is not studied at all
since there were no obvious tools to tackle proofs involving cardinalities.

In the last years there has been a lot of work concerning the cardinalities of
relations, mostly based on a definition of a cardinality operation for heteroge-
neous relation algebras presented by Kawahara in [9]. For example, in [3] and
c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 290–306, 2017.
DOI: 10.1007/978-3-319-57418-9 18

Reasoning About Cardinalities with Proof Assistants 291

[1], the authors present first results about the cardinalities of special relations as
points and vectors building the basis for reasoning about approximation ratios
algebraically. Furthermore, in [5], a library for Coq providing an implementation
of this cardinality operation in heterogeneous relation algebras is developed.

In the present paper the mentioned results about cardinalities of relations are
used to prove the approximation ratio of the program presented in [2]. Further-
more, we study the application of the proof assistants Coq and Isabelle/HOL in
this context. Therefore, we first use the library developed in [5] for mechanis-
ing the correctness proof in Coq. Our implementation in Isabelle/HOL builds
on a library for untyped relations (see [17]). Thus, we modify Y. Kawahara’s
definition of a cardinality operation and present a new theoretical framework
for dealing with cardinalities in homogeneous relation algebras. For this frame-
work we develop a library that is eventually applicable for the mechanisation
of the programs’ correctness proof. As in [2], we compare the advantages and
disadvantages of the usability of both tools in this context.

Our Coq proof script and Isabelle/HOL theories are available here [18].

2 Preliminaries

First, we recall the basic principles of relation algebra based on the heteroge-
neous approach of [6,15,16]. Set-theoretic relations form the standard model
of relation algebras. We assume the basic operations on set-theoretic relations,
viz. union, intersection, complementation, transposition and composition, in the
remainder denoted by R∪S, R∩S, R,RT and RS for relations R,S of appropri-
ate type. Furthermore, we consider the predicates R ⊆ S (inclusion) and R = S
(equality)and the empty, universal and identity relation denoted by O, L and I.

Those operations and constants form a (heterogeneous) relation algebra in
the sense of [15,16], with typed relations as elements. We write R : X ↔Y if R
is a relation with source X and target Y and denote the type of R by X ↔Y .
In the case of typed relations we frequently overload the symbols O, L and I, if
their type can be inferred from the context. If necessary we use indices as e.g.,
LXY for L of type X ↔Y . The axioms of a relation algebra are

(1) the axioms of a Boolean lattice for all same typed relations under the
Boolean operations ∪, ∩ and , ⊆ and L and O,

(2) the associativity of composition and that identity relations are neutral w.r.t.
composition,

(3) the Schröder rule, i.e., that for all relations Q, R and S with appropriate
types it holds QR ⊆ S ⇐⇒ QTS ⊆ R ⇐⇒ SRT ⊆ Q

(4) the Tarski rule, i.e., that for all relations R and all universal relations with
appropriate types it holds R �= O ⇐⇒ LRL = L.

In the relation-algebraic proofs of this paper we only indicate applications of (3),
(4) and consequences of the above axioms that are not obvious. Furthermore, we
assume that complementation and transposition bind stronger than composition
and composition binds stronger than union and intersection.

292 I. Stucke

In the following we define some specific classes of relations, for more details
we refer again to [15,16]. If R is homogeneous, i.e., of type X ↔X, R is called
irreflexive iff R ⊆ I and symmetric iff R = RT. A homogeneous relation R is
reflexive iff I ⊆ R, antisymmetric iff R ∩ RT ⊆ I, and transitive iff RR ⊆ R.
A reflexive, antisymmetric and transitive relation R is a order relation and if
additionally R ∪ RT = L holds, i.e., R is linear, then R is called a linear order
relation. A relation R is univalent iff RTR ⊆ I and total iff RL = L. A mapping
is a univalent and total relation.

A vector is a relation v with v = vL. For a set-theoretic relation v : X ↔Y
the equality v = vL means that v is of the form v = Z ×Y with a subset Z of X.
Then we say that v models the subset Z of X. Since for this purpose the target
of a vector is irrelevant, we use the specific singleton set 11 as target. Moreover,
a point p is a vector that is injective and surjective, i.e., ppT ⊆ I and Lp = L.

We also assume the following version of the Point Axiom of [7] holding for
set-theoretic relations, where P(v) := {p | p ⊆ v ∧ p is point} for all vectors v.

Axiom 2.1. For all objects X we have LX11 =
⋃

p∈P(LX11)
p.

Additionally we have the following lemma which states that this property can
be generalised for arbitrary vectors (see [7]).

Lemma 2.1. If v : X ↔11 is a vector, then v =
⋃

p∈P(v) p.
�
In [9], Kawahara investigates the cardinality of set-theoretic relations. The

main result is a characterisation of the cardinalities of relations. Considering the
properties of this characterisation as axiomatic specification of the cardinality
operation | · | leads to the following definition:

Definition 2.1. For all relations R we denote its cardinality by |R|. The fol-
lowing axioms specify the meaning of the cardinality operation, where Q,R and
S are arbitrary relations with appropriate types:

(C1) If R is finite, then |R| ∈ N and |R| = 0 iff R = O.
(C2) |R| = |RT|.
(C3) If R and S are finite, then |R ∪ S| = |R| + |S| − |R ∩ S|.
(C4) If Q is univalent, then |R ∩ QTS| ≤ |QR ∩ S| and |Q ∩ SRT| ≤ |QR ∩ S|.
(C5) |I1111| = 1.

In (C1) and (C3) the occuring relations are assumed to be finite so that the
cardinality |R| can be regarded as a natural number, in (C2) and (C4) the
notation |R| = |S| (respectively |R| ≤ |S|) is equivalent to the fact that there
exists a bijection between R and S (respectively an injection from R to S) and
(C5) says that the identity relation on the set 11 contains precisely one pair. In
the present paper we assumes in case of an expression |R| the sets of R’s type
to be finite and thus |R| ∈ N.

Based on the above axioms in [9] a lot of laws for the cardinality operation
are derived in a purely algebraic manner, for instance, the monotonicity of the
cardinality operation, i.e., that R ⊆ S implies |R| ≤ |S|. Futhermore, they imply
|⋃R∈R R| =

∑
R∈R |R|, for all finite sets R of pairwise disjoint relations. Other

consequences of the axioms we use in the remainder are the following:

Reasoning About Cardinalities with Proof Assistants 293

Lemma 2.2.

1. If R and S are univalent, then |RS ∩ Q| =
∣
∣R ∩ QST

∣
∣.

2. If R is univalent and S is a mapping, then |RS| = |R|.
3. If R is univalent, then |RTS| ≤ |S|.
The cardinality of points and vectors of type X ↔11 can be studied by using the
above results. The next lemma states that a point contains exactly one pair.

Lemma 2.3. If p : X ↔11 is a point, then |p| = 1.

Proof. Using cardinality axioms (C2) and (C5) and Lemma 2.2 (I1111 is univalent
and pT : 11↔X is a mapping), we have the following calculation:

|p| = |pT| = |I1111pT| = |I1111| = 1.
�
This lemma allows to show that the cardinality of a vector with target 11 is equal
to the cardinality of the set of all points it contains.

Lemma 2.4. For all v : X ↔11 we have |v| = |P(v)|.
Note that in the above lemma with |P(v)| we denote the usual cardinality of the
set P(v). For more details, in particular omitted proofs, and results concerning
the cardinality operation as well as applications we refer to [1,3,9].

3 Approximating Minimal Vertex Colorings

In [2] the authors present a relational program for computing vertex colorings in
undirected (and loop-free) graphs. The verification tasks arising by applying the
assertion-based verification method are supported by the automated theorem
prover Prover9 and the proof assistants Coq and Isabelle/HOL. By this example
the advantages and disadvantages of these tools are studied and compared.

The presented program is based on the well-known Greedy algorithm that
assigns sequentially a proper color to each vertex, i.e., a color that is not already
assigned to one of its neighbours. This procedure does not consider the fact that
one is usually interested in computing a minimal and not an arbitrary coloring
of a graph. Thus, one usually assumes the colors to be ordered so that the
algorithm chooses a minimal color for each vertex. By this approach a minimal
vertex coloring is approximated with a ratio of Δ + 1, where Δ is the maximum
degree of the given graph.

In [2] the approximation ratio is not treated at all. Thus, in the remainder
of this section we prove the ratio of the following program with the modified
choice of the color q using the results about the cardinality operation presented
in Sect. 2:

C := O;
while CL �= L do

let p = point(CL);

let q = point(CTEp ∩ M CTEp);
C := C ∪ pqT od

294 I. Stucke

The input relations of this program are an adjacency relation E : X ↔X,
modelling a given graph G with a set of vertices X, and a linear order relation
M : F ↔F on a set of colors F . The output relation of the program is C :
X ↔F representing the vertex coloring, i.e., a mapping so that in addition CC ⊆
E holds. The latter condition is called the coloring property. Furthermore, all
occuring universal relations in the program have target 11. As in [2] we assume
the deterministic operation point selecting a point to a given nonempty vector v
such that point(v) ⊆ v. For more details we refer to [2] since the only difference to
our program is the choice of the point q. In [2], q is choosen as point(CTEp), i.e.,

q is not used for one of p’s neighbours. If we choose q as point(CTEp∩M CTEp)

instead we also ensure that q is minimal since CTEp∩M CTEp is the vector of all
minimal colors w.r.t. the order relation M , see, e.g., [16] for further information.

To formally verify the correctness of the above program we apply the asser-
tion-based verification method. Thus, we first specify the programs’ pre- and
postcondition. The precondition is the conjunction of the following formulae
specifying E as an adjacency relation, i.e., an irreflexive and symmetric relation,
and M as a linear, reflexiv and antisymmetric relation (transitivity is not needed
here).

Pre(E,M) :⇐⇒ E = ET∧ E ⊆ I ∧ I ⊆ M ∧ M ∩ MT ⊆ I ∧ M ∪ MT = LFF

In the remainder we furthermore use the abbreviation Δv := max{|Ex| | x ∈
P(v)} for all vectors v and Δ := ΔL for the maximum degree of a given graph
modelled by E. If we do not specify a universal or empty relation’s type in this
section we assume its target to be 11.

The postcondition is a conjuction of three formulae stating that C is a vertex
coloring, i.e., an univalent and total relation fulfilling the coloring property, and
a formula saying that the number of used colors is at most Δ + 1:

Post(C,E) :⇐⇒ CTC ⊆ I ∧ CL = L ∧ CCT⊆ E ∧ |CTL| ≤ Δ + 1

The invariant is a conjunction of four formulae, where the first two ensure that
C is univalent and fulfills the coloring property and the latter two are essential
for proving the desired approximation ratio:

Inv(C,E,M) :⇐⇒ CTC ⊆ I ∧ CCT⊆ E ∧ CTL ⊆ M CTL ∧ |CTL| ≤ ΔCL + 1

As usual the following proof obligations have to be proved for partial correctness:

(PO1) Pre(E,M) =⇒ Inv(E,M,O)
(PO2) Inv(E,M,C) ∧ CL = L =⇒ Post(E,C)
(PO3) Pre(E,M) ∧ Inv(E,M,C) ∧ CL �= L =⇒ Inv(E,M,C ∪ pqT) (where p

and q are defined as in the given program).

Since Pre(E,M),Post(E,C) and Inv(E,M,O) are conjunctions of various
formulae the three obligations can be splitted into single statements for each
formula. In the remainder we only consider the statements involving cardinalities.

Reasoning About Cardinalities with Proof Assistants 295

For the omitted proofs we refer to Sects. 4 and 5 and the appendix. Here, we
start with proving the first proof obligation (PO1), i.e., the establishment of the
last formula of the invariant.

Lemma 3.1. For all relation E and M it holds Inv(E,M,O).

Proof. The last formula of the invariant is shown by using cardinality axiom
(C1) two times: |OTL| = 0 ≤ 1 ≤ ΔOL + 1.
�
Next, we prove (PO2), i.e., that the invariant and the negation of the loop-
condition imply the postcondition. Again we concentrate on the last formula
involving cardinalities.

Lemma 3.2. Let E, C, M be relations such that E is symmetric and irreflexive,
M is reflexive, antisymmetric and linear and CL = L and Inv(E,C,M) holds.
Then Post(E,C) holds.

Proof. Using Inv(E,C,M) in the first and CL = L in the second step we have
the following inequality: |CTL| ≤ ΔCL + 1 = ΔL + 1 = Δ + 1.
�
For proving (PO3), i.e., the maintenance of the last formula of the invariant, we
need the following auxiliary result.

Lemma 3.3. Let R be a reflexive, anstisymmetric and linear relation. Then
RT= I ∪ R holds.

Proof. Using the antisymmetry of R we have:

R ∩ RT⊆ I ⇐⇒ R ∩ RT∩ I ⊆ O ⇐⇒ RT⊆ R ∩ I ⇐⇒ RT⊆ I ∪ R.

By the linearity and reflexivity of R we show:

R ∪ RT= L ⇐⇒ R ∪ RT⊆ O ⇐⇒ R ∩ RT⊆ O ⇐⇒ R ⊆ RT=⇒ I ∪ R ⊆ RT.
�
Using the latter Lemma we show the maintenance of the invariants’ last formula:

Lemma 3.4. Let E, C and M be relations so that Pre(E,M) and Inv(E,M,C)

hold and p, q points with p ⊆ CL, q ⊆ CTEp ∩ M CTEp. Then |(C ∪ pqT)TL| ≤
Δ(C∪pqT)L + 1 holds.

Proof. Since p and q are points it holds qpTL = q and thus |(C ∪ pqT)TL| = |CTL∪
q|. For the same reasons we have pqTL = p which implies Δ(C∪pqT)L = ΔCL∪p

Hence we have to show |CTL ∪ q| ≤ ΔCL∪p + 1.
Using (C3) and Lemma 2.3 we have the following equality:

|CTL ∪ q| = |CTL| + |q| − |CTL ∩ q| = |CTL| + 1 − |CTL ∩ q|.

296 I. Stucke

If q ⊆ CTL it holds |CTL∩q| = |q| = 1. In this case the claim follows immediately
with the assumption Inv(C,E,M), in particular the last formula of it, and the
fact that ΔCL ≤ Δ(C∪pqT)L.
Hence, we consider the case that q ⊆ CTL. Then CTL∩q = O and it follows|CTL∪
q| = |CTL|+1. Thus, it is sufficient to show that |CTL|+1 ≤ ΔCL∪p +1 holds.So
we show that |CTL| ≤ ΔCL∪p, and therefor, |CTL| ≤ |Ep|.

Because of q ⊆ CL and the third formula of Inv(E,M,C) we have

q ∪ Mq ⊆ CTL ∪ M CTL ⊆ CTL

and thus
CTL ⊆ q ∩ Mq. (1)

Next, we prove
q ∩ Mq ⊆ CTEp (2)

by the following calculation:

q ⊆ M CTEp ⇐⇒ M CTEp ⊆ q

⇐⇒ MTq ⊆ CTEp Schröder rule

⇐⇒ I ∪ Mq ⊆ CTEp Lemma 3.3

⇐⇒ (I ∪ M)q ⊆ CTEp q point

⇐⇒ q ∪ Mq ⊆ CTEp

⇐⇒ q ∩ Mq ⊆ CTEp.

Using (1), (2) and Lemma 2.2.1 (C is univalent because of Inv(E,M,C)) as well
as the monotonicity of the cardinality operation we obtain the desired inequality:

|CTL| ≤ |q ∩ Mq| ≤ |CTEp| ≤ |Ep|.

�

4 Cardinalities in Coq

In [2] the proofs of the according obligations (PO1)–(PO3) presented in Sect. 3
are mechanised amongst others with the proof assistant Coq using the library
RelationAlgebra which provides a model for heterogeneous relation algebra and
many other related algebraic structures. The library is available via [13], and
presented in [14]. For more general information about Coq we refer to [4,20].

In [5] the authors extend the mentioned library so that a reasoning about
cardinalities is possible. RelationAlgebra is enriched by the module relalg con-
taining the most important definitions of special classes of relations, e.g., those
introduced in Sect. 2. For the tools concerning cardinalities a standalone library
was developed. To preserve the modularity of RelationAlgebra this library pro-
vides a separate module for each algebraic structure we defined in Sect. 2. The
hierarchy of the modules is illustrated in Fig. 1.

Reasoning About Cardinalities with Proof Assistants 297

Fig. 1. Hierarchy of the Coq library

To simplify rewriting, the definitions are realized by using classes, for
instance, being univalent is defined as follows:

Class is_univalent n m (x: X n m) := univalent: xT ∗ x <== 1.

Here, the variables n and m specify the type of the relation x and X provides
the notions and operations of a relation algebra. The symbols T,∗ and <==
denote transposition, composition and inclusion. The type of the identity relation
denoted by 1 is inferred automatically. In points the Point Axiom is assumed
and several resulting facts are proved, especially those presented in Sect. 2. The
definition of the cardinality operation is given in cardinal and follows the one
presented in Sect. 2. A detailed description of each module and the notations
can be found in [5].

In cardinal the proofs of all lemmata of Sect. 2 (and many more) are mech-
anised, for instance, Lemma 2.3 as follows:

Lemma card_point X (R: C X unit): is_point R → card R = 1.
Proof. rewrite ←cardcnv, ←dot1x. rewrite card_unimap. apply card1. Qed.

Here, is point specifies the relation R as a point and card denotes the cardinal-
ity operation. The Coq proof follows exactly the one of Sect. 2 where cardcnv,
card unimap and card1 correspond to (C2), Lemma 2.2 and (C5).

With the extended library all proofs of Sect. 3 can be done within Coq. In
the following we show the formulations of the Lemmata 3.1, 3.4 and 3.2 where
inv is the definition of the invariant as given in Sect. 3 (the adjacency and order
relation are introduced at the beginning of our Coq module once and for all) and
minimal elements M v the vector of the minimal elements of a vector v w.r.t. a
linear order relation M:
Lemma PO1: inv (zer n f).

Lemma PO2 (F: X n f) : inv F ∧ F∗(top’ f unit) == top → post (F ∪ p∗qT).
Lemma PO3 (F: X n f) (p: X n unit) (q: X f unit):

is_point p → p <== !(F∗top) →
is_point q → q <== minimal_elements M (!(FT∗E∗p)) →
inv F → inv (F ∪ p∗qT).

Mainly, the proofs have to be done step by step. At some points we benefit at
the one hand from the smart implementation of the specific relations that makes
rewriting less difficult and on the other hand from the decision tactics provided
by RelationAlgebra. A detailed description of those tactics can be found in [14].

298 I. Stucke

5 Cardinalities in Isabelle/HOL

In this section we show how the proof assistant Isabelle/HOL can be used to
prove the correctness of the program of Sect. 3. In particular, we develop the
required theoretical framework for it.

Compared to the one of Coq the type system of Isabelle/HOL is less powerful.
In the end the usage of multi-parameter classes is not possible whereby there is
no trivial way to define heterogeneous relation algebras. Thus, our Isabelle/HOL
theories built on an existing library, Relation Algebra, for homogeneous relation
algebras only, available via the Archive of Formal Proofs, see [17]. More general
information about Isabelle/HOL can be found, for example, in [8,12].

This limitation makes it impossible to transfer the approach realised in Coq
to Isabelle/HOL. Namely, if we consider points of type X ↔11, for instance, it
was essential for the proofs of Sect. 3 that they have cardinality 1. This fact is
mainly based on the cardinality axiom (C5) and the specific type X ↔11. When
using the Relation Algebra library we are not only restricted to homogeneous
relation algebras, but to untyped relations.

Due to this, we have to modify the definition of the cardinality operation of
Sect. 2. The first four axioms (C1)–(C4) can be adapted to untyped relations,
but (C5) involves the special singleton set 11. Thus, we assume the following
fifth axiom instead saying that the cardinality of the identity relation equals the
number of points (in the relation algebra):

(C5’) |I| = |P(L)|.
Note that there are equivalent formulations of (C5’), e.g., |L| = |I|2, but for us,
the given one is the most intuitive compared to (C5).

In the remainder we also assume a version of the Point Axiom for untyped
relations. The only difference to Axiom 2.1 is that the occuring universal relation
is untyped.

Axiom 5.1. (Point Axiom). It holds L =
⋃

p∈P(L) p.

One can easily check that we get the following corresponding consequences as in
Sect. 2.

Lemma 5.1.

1. For all vectors v we have v =
⋃

p∈P(v) p.
2. We have I =

⋃
p∈P(L) ppT.

Furthermore, the Lemma 2.2 also holds in the case of untyped relations. The
first important result which is significantly different, due to (C5’), is stated in
the following lemma and gives us the cardinality of (untyped) points.

Lemma 5.2. If p is a point, then |p| = |I|.
Proof. Using cardinality axioms (C2) and (C5’) and Lemma2.2 (I is univalent
and pT is a mapping) we have |p| = |pT| = |IpT| = |I|.
�

Reasoning About Cardinalities with Proof Assistants 299

Obviously, because of the above lemma, points and vectors are no longer suitable
for modelling sets if their cardinalities are essential in the context. Thus, in the
following and in particular for the formalisation is Isabelle/HOL we use partial
identities, i.e., relations R with R ⊆ I, instead of vectors to represent sets. In
place of points we consider atoms, i.e., nonempty relations a with aLaT ⊆ I. We
show that the cardinalities of those special relations correspond to the ones of
vectors and points. Therefore, we start with a lemma about the cardinality of
(untyped) vectors.

Lemma 5.3. If v is a vector, then |v| = |P(v)| · |I|.
Proof. Because of Lemma 5.1, cardinality axioms (C3) and (C1) (the points in
P(v) are pairwise disjoint) and Lemma 5.2 we obtain the claim by

|v| =
∣
∣
∣

⋃

p∈P(v)

p
∣
∣
∣ =

∑

p∈P(v)

|p| =
∑

p∈P(v)

|I| = |P(v)| · |I|.
�
Note that the above result holds in particular for v = L since L is a vector. This
gives us |L| = |I|2 because of (C5’).

To prove that every atom has cardinality 1 we need the following technical
lemma whose proof we omit due to the lack of space. It states that every atom
is the composition of a point and a points’ transposed (and vice versa), and that
the universal relation can be written as the union of all atoms it contains. Here,
we denote the set of all atoms (containted in L) as A(L).

Lemma 5.4.

1. It holds A(L) =
{
p; qT|p, q ∈ P(L)

}
.

2. It holds L =
⋃

a∈A(L) a.

From this we get the desired result about the cardinalities of atoms.

Lemma 5.5. If a is an atom, then |a| = 1.

Proof. For all atoms a it holds a �= O and thus |a| ≥ 1 with cardinality axiom
(C1). We prove |a| = 1, for all atoms a, by contradiction. Thus, we assume that
there exists an atom b with |b| > 1. Combining Lemmas 5.3 and 5.4.2 (for v = L)
we have A(L) = |I|2. Due to this and again Lemmas 5.3 and 5.4.2 we have

|I|2 = |L| = |
⋃

a∈A(L)

a| =
∑

a∈A(L)

|a| = |b| +
∑

a∈A(L)\{b}
|a|

> 1 +
∑

a∈A(L)\{b}
1 = 1 + |A(L) \ {b} | = 1 + |I|2 − 1,

which is a contradiction.
�
From this we get that partial points have cardinality 1 which makes them suitable
for modelling single elements of sets.

300 I. Stucke

Lemma 5.6. If p is a partial point, then |p| = 1.

Proof. By definition, p is an atom, thus the claim follows immediately with
Lemma 5.5.
�

We omit the corresponding proofs of the correctness of the program of Sect. 3,
but refer to the Isabelle/HOL formalisation we describe in the remainder of this
section and available via the web, see [18].

So far, the library Relation Algebra provides several facts holding in untyped
relation algebras as well as theories about functions and vectors with related
facts, so that most of the specific relations mentioned in Sect. 2 are already
defined. For instance, for vectors this is done in the following way

definition is vector :: ” ′a ⇒ bool”
where ”is vector x ≡ x = x; 1”

In the library the symbols +, ·, −, ; and � are used for union, intersection,
complement, composition and transposition and 1, 0 and 1′ for the universal,
empty and identity relation. For our purpose we import additional theory, e.g.,
about natural numbers, so that we use �,
, and , for the first three operations
and top, bot and 1′ for the constants L,O and I. As in the case of Coq neither
the Tarski rule nor the Point Axiom is provided by the library so far. Follow
the approach in Coq we develop a separate theory for each structure we define.
The dependencies of the main theories are illustrated in Fig. 2.

Fig. 2. Hierarchy of the Isabelle/HOL library

First, we extend the class relation algebra by the Tarski rule using a class:

class relation algebra tarski = relation algebra +
assumes tarski: ”x 	= bot ←→ top; x; top = top”

This is done in the theory Relation Algebra Tarski where we derive some fun-
dametal properties of points, for instance the following one:

lemma points surj: ”is point p −→ is sur p”

The theory Relation Algebra Points is an extension of the latter providing the
Axiom 5.1 and that the number of points is finite:

Reasoning About Cardinalities with Proof Assistants 301

class relation algebra fin points = relation algebra tarski +
assumes finiteness: ”finite {x. is point x}”
and pointaxiom [simp]:”

⊔ {x. is point x} = top”

Here,
⊔ {x. is point x} is a notation for

⋃
p∈P(L) p in Isabelle/HOL. In the theory

Relation Algebra Sums we proved a several properties of these finite unions, e.g.,
monotonicity.

Finally, we have a theory called Relation Algebra Cardinalities where the
cardinality operation is defined in the following way:

class cardinal =
fixes cd :: ”′a ⇒ nat” (”| |” [30] 999)

class relation algebra card = cardinal + relation algebra fin points +
assumes card0 : ”|x| = (0 :: nat) ←→ x = bot”
and cardcnv [simp] : ”|x�| = |x|”
and cardcup : ”|x
 y| = |x| + |y| − |x � y)|”
and cardded : ”is p fun x −→ |y � (x�; z)| ≤ |(x; y) � z|”
and cardded’ : ”is p fun x −→ |x � (z; y�)| ≤ |(x; y) � z|”
and cardone : ”|1′| = card {x. is point x}”

Here, card is the built-in operation for the cardinality of sets. With the given
definition we are able to prove the mentioned results about cardinalities, for
instance:
lemma cardunifun : assumes ”is p fun x” and ”is fun y” shows ”|x; y| = |x|”
lemma cardpoint : assumes ”is point x” shows ”|x| = |1′|”

The proofs of these lemmata are found automatically by Sledgehammer. From
this we get immediately that the cardinality of a point equals the cardinality of
the identity relation. In the same way we formalise all lemmata of this section and
many more where most of the proofs are heavily supported by Sledgehammer.

For the verification of the program of Sect. 3 we do not only use the above
mentioned theories about relation algebra and cardinalities, but also a library
for Hoare Logic in Isabelle/HOL, see [11]. This library provides the opportunity
to write, for instance, while-programs as theorems as well as tactics generating
the proof obligations for partial correctness automatically. Thus we can encode
the program as follows.

theorem correctness: ”VARS e m c p q
{ pre e m}
c := bot;
WHILE c • top 	= top

INV { inv e m c }
DO p := point((c • top)c);

q := point((c� • e • p)c � (mc • (c� • e • p)c)c);
c := c
 p • q�

OD

{ post e c }”

302 I. Stucke

Unfortunately, we have to switch to another symbol for composition here since;
is already defined in the theory for Hoare logic. Thus, we use • in this context.
The pre- and postconditions and the invariant slightly differ from the ones pre-
sented in Sect. 3 since we have to use partial points and identities for proving
the approximation bound.

definition ”pre e m ←→ is irrefl e ∧ is symm e ∧ is lin order m”
definition ”post e c ←→ is fun c ∧ has color prop e c ∧ |c�• top � 1′| ≤ Δtop + 1”
definition ”inv e m c ←→ pre e m ∧ is p fun c ∧ has color prop e c

∧ c� • top (mc • (c� • top)c)c ∧ |c� • top � 1′| ≤ Δc•top + 1”

One of the big advantages of using the theory for Hoare Logic is that its pro-
vides tactis for verification condition generation. In the case of our program or
theorem, respectively, we can apply the rule vcg simp. With this rule the three
proof obligations w.r.t. the given pre- and postconditions and the loop-invariant
are generated as subgoals automatically. In the following we see the resulting
subgoals after applying vcg simp.

The three statements are shown stepwise by using the theories mentioned in this
section. The proofs that are not found by Sledgehammer automatically are given
as structured Isar proofs, see [18], so that the reader can follow the basic ideas.

Besides the results presented in this section our library contains over 150
lemmata about finite unions of relations, points and vectors, atoms, and cardi-
nalities of relations. Furthermore, in Relation Algebra Orders we defined order
related relations and proved several facts about them.

6 Comparison of the Implementations

In Sects. 4 and 5 we show how the proof assistants Coq and Isabelle/HOL can
be used for formal program verfication and reasoning about relation algebras in
general. In this section we want to summarise our experiences with both systems
and highlight their advantages and disadvantages from our point of view.

For Coq, we used an existing library that already implements tools for prov-
ing results regarding cardinalities. One advantage of the library is that it extends
a library including a model for heterogeneous relation algebras and related
structures. Here, the implementation of typed relations is possible because of
Coq’s expressive type system based on the predicative calculus of inductive con-
structions. Such an expressive type system has many common advantages, for
instance, it ensures that all expressions and formulae are well-typed. Thus, the
Coq proofs mostly correspond to the handwritten ones we gave in this paper.

Reasoning About Cardinalities with Proof Assistants 303

Coq, and in particular the used library, provides several automated theorem
proving tactics and decision procedures, but most of them were not very helpful
in our context. Thus, the proofs have mostly to be done step by step using Coqs
standard tactics. Unfortunately, a direct link to automated theorem provers is
still missing. Furthermore, the formalisation of the proof obligations of the pre-
sented program has to be done by hand since there are no tools for an automated
generation. For non-experts the Coq code is quite hard to read without using an
IDE illustrating proof steps and subgoals.

By contrast, Isabelle/HOL bridges the gap between interactive and auto-
mated theorem proving because of its integrated tool Sledgehammer. Due to
the limited type system of Isabelle/HOL there is only an existing library for
homogeneous relation algebras. For this reason an extension by the cardinality
operation, as in the case of Coq, was not possible directly. Thus, we modified the
axiomatisation of the operation to make it applicable for homogeneous relations
in the first place. We formalised it in Isabelle/HOL and proved the correctness
of the relational program heaviliy supported by Sledgehammer. Unlike Coq,
Isabelle/HOL provides a library for Hoare Logic including tactics for generating
proof obligations automatically. In our context we were able to avoid typed rela-
tions by adapting the cardinality operation. In general, reasoning about typed
relations can be managed by using, for instance, predicates specifying the source
and target of a relation. Such an approach often results in more complicated and
longish proofs. In the future, one can benefit from our library containing most
of the basic facts that are necessary when dealing with cardinalities. Certainly,
invoking Sledgehammer does not always complete proofs successfully. As in Coq,
one has to do steps by hand, but Isabelle/HOL supports the proof language Isar.
Its intuitive syntax allows to write proofs structured and comprehensible for
non-experts.

7 Concluding Remarks

We presented a correctness proof of a relational program for approximating
vertex colorings in undirected (and loop-free) graphs. The proof of the approx-
imation ratio we done by using an operation to reason algebraically about car-
dinalities in heterogeneous relation algebras.

Furthermore, all proofs were mechanised in both proof assistants Coq and
Isabelle/HOL and build on existing libraries for relation algebras. In contrast
to Coq, there were no tools to tackle cardinalities in Isabelle/HOL so far. To
reuse a library for homogeneous relation algebras we presented a new theoretical
framework for reasoning about untyped relations. In this context, we not only
proved the programs’ correctness in Isabelle/HOL, but also developed a library
providing over 150 facts about, for instance, points, atoms and cardinalities.

For the future it would be helpful to have a tool for Hoare Logic in Coq
so that the generation of a programs’ proof obligations has not to be done by
hand or external programs. A further investigation of the new axiomatisation of
the cardinality operation is also conceivable to see how exhaustive this approach

304 I. Stucke

is. In general, it would be interesting to study what is provable without the
restriction to finite relations.

Acknowledgement. I thank Walter Guttmann and Damien Pous for their help con-
cerning the use of proof assistants and Rudolf Berghammer for helpful discussions and
his support, in general. I thank the unknown referees and Michael Winter for their
comments and suggestions which helped to improve the paper.

Appendix

In this appendix we show that the third formula of the invariant Inv(E,M,C)
is maintained stated in the following lemma.

Lemma. Let E, C and M be relations so that Pre(E,M) and Inv(E,M,C)

hold and p, q points with p ⊆ CL, q ⊆ CTEp ∩ M CTEp. Then (C ∪ pqT)TL ⊆
M (C ∪ pqT)TL holds.

Proof. Since Inv(E,M,C) holds, we have CTL ⊆ M CTL and hence

M CTL ⊆ CTL. (1)

The inclusion
M CTL ⊆ q (2)

is shown by the following calculation:

CTEp ⊆ CTL ⇐⇒ CTL ⊆ CTEp

=⇒ M CTL ⊆ M CTEp

⇐⇒ M CTEp ⊆ M CTL

=⇒ q ⊆ M CTL since q ⊆ CTEp ∩ M CTEp

=⇒ M CTL ⊆ q

Furthermore, we have the following:

(C ∪ pqT)
T
L ⊆ M (C ∪ pqT)TL ⇐⇒ M (C ∪ pqT)TL ⊆ (C ∪ pqT)TL.

We now show that the inclusion above on the right-hand side is true where we
use that p, q are points and thus qpTL = q again:

M (C ∪ pqT)TL = M CTL ∪ q qpTL = q

= M (CTL ∩ q)

Reasoning About Cardinalities with Proof Assistants 305

⊆ M CTL ∩ Mq

⊆ M CTL

⊆ CTL ∩ q (1) and (2)

= CTL ∪ q

= (C ∪ pqT)TL. qpTL = q

�

References

1. Berghammer, R., Danilenko, N., Höfner, P., Stucke, I.: Cardinality of relations with
applications. Discret. Math. 339(12), 3089–3115 (2016)

2. Berghammer, R., Höfner, P., Stucke, I.: Tool-based verification of a relational
vertex coloring program. In: Kahl, W., Winter, M., Oliveira, J.N. (eds.) RAM-
ICS 2015. LNCS, vol. 9348, pp. 275–292. Springer, Cham (2015). doi:10.1007/
978-3-319-24704-5 17

3. Berghammer, R., Höfner, P., Stucke, I.: Cardinality of relations and relational
approximation algorithms. J. Log. Algebraic Methods Program. 85(2), 269–286
(2016)

4. Bertot, Y., Castéran, P., Huet, G., Paulin-Mohring, C.: Interactive Theorem Prov-
ing and Program Development: Coq’Art: The Calculus of iInductive Constructions.
Texts in Theoretical Computer Science. Springer, Heidelberg (2004)

5. Brunet, P., Pous, D., Stucke, I.: Cardinalities of finite relations in Coq. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 466–474. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4 29

6. Freyd, P., Scedrov, A.: Categories, Allegories. Elsevier Science, Amsterdam (1990).
North-Holland Mathematical Library

7. Furusawa, H.: Algebraic formalisations of fuzzy relations and their representation
theorems. Ph.D. thesis, Department of Informatics, Kyushu University (1998)

8. Isabelle. https://isabelle.in.tum.de/
9. Kawahara, Y.: On the cardinality of relations. In: Schmidt, R.A. (ed.) RelMiCS

2006. LNCS, vol. 4136, pp. 251–265. Springer, Heidelberg (2006). doi:10.1007/
11828563 17

10. Maddux, R.D.: Relation Algebras. Studies in Logic and the Foundations of Math-
ematics, vol. 150. Elsevier, Amsterdam (2006)

11. Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H.,
Steinbrüggen, R. (eds.) Proof and System-Reliability, pp. 341–367. Kluwer,
Dordrecht (2002)

12. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

13. Pous, D.: Relation Algebra and KAT in Coq. http://perso.ens-lyon.fr/damien.
pous/ra/

14. Pous, D.: Kleene algebra with tests and Coq tools for while programs. In: Blazy, S.,
Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 180–196.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39634-2 15

15. Schmidt, G.: Relational Mathematics, vol. 132. Cambridge University Press,
Cambridge (2011). Encyclopedia of Mathematics and Its Applications

http://dx.doi.org/10.1007/978-3-319-24704-5_17
http://dx.doi.org/10.1007/978-3-319-24704-5_17
http://dx.doi.org/10.1007/978-3-319-43144-4_29
https://isabelle.in.tum.de/
http://dx.doi.org/10.1007/11828563_17
http://dx.doi.org/10.1007/11828563_17
http://perso.ens-lyon.fr/damien.pous/ra/
http://perso.ens-lyon.fr/damien.pous/ra/
http://dx.doi.org/10.1007/978-3-642-39634-2_15

306 I. Stucke

16. Schmidt, G., Ströhlein, T.: Relations and Graphs - Discrete Mathematics for Com-
puter Scientists. EATCS Monographs on Theoretical Computer Science. Springer,
Heidelberg (1993)

17. Struth, G., Weber, T.: Relation Algebra. Archive of Formal Proofs (2014). https://
www.isa-afp.org/entries/Relation Algebra.shtml

18. Stucke, I.: Reasoning about Cardinalities Supported by Proof Assistants, Proof
Scripts. http://www.rpe.informatik.uni-kiel.de/en/Staff/ist/ramics-2017

19. Tarski, A.: On the calculus of relations. J. Symb. Log. 6(3), 73–89 (1941)
20. The Coq Proof Assistant. https://coq.inria.fr

https://www.isa-afp.org/entries/Relation_Algebra.shtml
https://www.isa-afp.org/entries/Relation_Algebra.shtml
http://www.rpe.informatik.uni-kiel.de/en/Staff/ist/ramics-2017
https://coq.inria.fr

Type-n Arrow Categories

Michael Winter(B)

Department of Computer Science, Brock University,
St. Catharines, ON L2S 3A1, Canada

mwinter@brocku.ca

Abstract. It has been shown that the arrow category of type-2 fuzzy relations
with respect to an arrow category A can be defined as the Kleisli category of
A for a monad based on the concept of the extension of an object. In this paper
we want to continue the study of higher-order arrow categories by showing two
major results. First, we are going to remove the ad-hoc notion of an extension of
an object completely from the construction of higher-order arrow categories. The
second result establishes that the newly constructed higher-order arrow category
has sufficient structure for constructing further higher-order arrow categories, i.e.,
that the process of moving from type-n to type-(n+1) arrow categories can always
be iterated.

1 Introduction

Allegories and Dedekind categories, in particular, [1,7,8,10,11] provide an adequate
categorical and algebraic framework for reasoning about relations. An obvious exam-
ple for each of these categories is the categoryREL of sets and binary relation. A binary
relation can be represented by its characteristic function, i.e., by a function that returns
true if the pair is in the relation and false if not. The category REL is not the only
example of an allegory, of course. Given a complete Heyting algebra L, the category
L-REL of sets and so called L-relations is also an example. L-relations differ from reg-
ular relations by assigning to each pair a degree of membership from L instead of true
or false. Certain aspects of L-relations cannot be expressed in allegories or Dedekind
categories. For example, consider the special case that an L-relation R returns the small-
est or the greatest element of L for each pair. Such relations correspond in an obvious
way to regular binary relations, and therefore they are called crisp. Even though several
abstract notions of crispness in Dedekind categories have been proposed [2,5,6], it was
shown that this property cannot be expressed in the language of allegories or Dedekind
categories [14,15]. Therefore, Goguen and arrow categories [14,16] were introduced
adding two additional operations to the theory of Dedekind categories covering the
notion of crispness.

A higher-order or type-2 L-relation uses membership values from the LL, i.e., it uses
endofunctions on L as the degree of membership for each pair. Since LL forms a com-
plete Heyting algebra if L does, the category LL-REL also forms an arrow category. To

M. Winter—The author gratefully acknowledges support from the Natural Sciences and Engi-
neering Research Council of Canada.

c© Springer International Publishing AG 2017
P. Höfner et al. (Eds.): RAMiCS 2017, LNCS 10226, pp. 307–322, 2017.
DOI: 10.1007/978-3-319-57418-9 19

308 M. Winter

distinguish between L-REL and LL-REL one normally speaks about type-1 L-relations
and type-2 L-relations, respectively. By iterating the process we can define type-n L-
relations for arbitrary n. In this paper we are interested in the relationship between
type-1 and type-2 L-relations and the iteration process leading to type-n L-relations.

In [17,18] the extension was on object was used to show that the category of type-2
L-relations can be constructed as a Kleisli category of type-1 L relations in the context
of arrow categories. Since relations in arrow categories are abstract entities, i.e., mor-
phisms of a category, a simple replacement of L by LL is not possible. The lattice L is
only available implicitly by certain classes of special relations such as scalars. How-
ever, moving from type-1 to type-2 relations and back is important in order to model
higher-order fuzzy controllers [20]. The extension A� of a set A is the set A × L of pairs
of A elements and a lattice value. The corresponding isomorphism, i.e., the bijection
between A� and A × 1� with unit 1, was shown in the abstract setting. Furthermore, it
was shown that the induced product functor together with appropriate natural transfor-
mations forms a monad so that the category of type-2 L-relations was obtained as the
Kleisli category for this monad. These result were used in [20] to apply the abstract
theory of arrow categories in the development of fuzzy controllers.

In this paper we want to show two major results. The notion of an extension of
an object is an ad-hoc notion, i.e., has never been used otherwise. Therefore, we first
want to remove the extension of an object completely from the construction of higher-
order arrow categories. In [17,18] it was already shown that A� is isomorphic to A ×
1�, i.e., to a relational product with crisp projections. In this paper we will show that
1� is isomorphic to PL(1) where PL(A) is the fuzzy power of A. The fuzzy power of
A is the abstract version of the L-fuzzy powerset. Please note that this construction
is different from relational powers resp. the constructions given in power allegories.
As an immediate consequence we obtain the following result in the abstract setting of
arrow categories: If an arrow category has a unit, crisp relational products and fuzzy
powers, then the arrow category of type-2 L relations can be defined as the Kleisli
category induced by the monad above. Our second result shows that this process can
be iterated, i.e., it verifies that the arrow category of type-2 L relations again has a unit,
crisp relational products and fuzzy powers.

2 Mathematical Preliminaries

2.1 Allegories and Arrow Categories

In this section we want to recall some basic notions from categories, allegories and
arrow categories. For further details we refer to [1,15].

We will write R : A → B to indicate that a morphism R of a category C has source
A and target B. Composition and the identity morphism are denoted by; and IA with the
convention that composition is from left to right, i.e., R; S means R first, and then S .

Since the category of type-2 fuzzy relations can be obtained as a Kleisli category
of the category of type-1 fuzzy relations, we recall the concept of a monad and the
Kleisli category derived from a monad. Suppose C is a category. Then a monad on C is
a triple (F, η, μ) consisting of a endo-functor F : C → C and two natural transformations

Type-n Arrow Categories 309

η : I → F, i.e., from the identity functor to F, and μ : F2 → F, i.e., from the functor
obtained by applying F twice to F, so that the following two diagrams commute:

F(F(F(A)))
μF(A) ��

F(μA) ��

F(F(A))
μA��

F(A)
F(ηA)��

IF(A) �������� F(F(A))
μA ��

F(F(A))
ηF(A)��

IF(A)���������

F(F(A))
μA

�� F(A) F(A)

Monads allow one to define new categories based on the additional behavior and.or
properties encoded in the functor. The Kleisli category CF has the same objects as C. A
morphism in CF from A to B is a morphism from A to F(B) in C. η acts as an identity
for the Kleisli composition R � S = R; F(S); μ.

Now we want to recall some fundamentals on Dedekind categories [7,8]. Categories
of this type are called locally complete division allegories in [1]. In this paper we will
call morphisms of a Dedekind category relations.

Definition 1. A Dedekind category R is a category satisfying the following:

1. For all objects A and B the collection R[A, B] is a complete Heyting algebra. Meet,
join, the induced ordering, the least and the greatest element are denoted by[,\,Ď,
�AB,�AB, respectively.

2. There is a monotone operation � (called converse) mapping a relation Q : A → B
to Q� : B → A such that for all relations Q : A → B and R : B → C the following
holds: (Q;R)� = R�;Q� and (Q�)� = Q.

3. For all relations Q : A → B,R : B → C and S : A → C the modular law
(Q;R)[S Ď Q; (R[(Q�; S)) holds.

4. For all relations R : B → C and S : A → C there is a relation S/R : A → B
(called the left residual of S and R) such that for all X : A→ B the following holds:
X;R Ď S ⇔ X Ď S/R.

The residual operation together with converse induce a second residual by defining
Q\R := (R�/Q�)�. This operation is characterized by the equivalence Q; X Ď R iff
X Ď Q\R. Both residuals together allow the definition of the symmetric quotient. This
construction is defined by syQ(Q,R) := Q\R [Q�/R�. Consequently the symmetric
quotient is characterized by Q; X Ď R and R; X� Ď Q iff X Ď syQ(Q,R).

Notice that a complete Heyting algebra has an implication operation →, i.e., we
have X Ď Q → R iff X [Q Ď R. This implication leads to a notion of equivalence
defined by Q↔ R = (Q→ R)[(R→ Q).

Throughout this paper we will use some basic properties of relations such as
��AB = �BA,��AB = �BA, I

�
A = IA, the monotonicity of all operations, and the fact that

composition distributes over join from both sides without mentioning.
Notice that we have �AA;�AB = �AB;�BB = �AB, but that the more general equa-

tion �AB;�BC = �AC does not necessarily hold [13]. If it does hold for all objects A, B
and C, then we call the Dedekind category uniform.

An important class of relations is given by maps.

310 M. Winter

Definition 2. Let R be a Dedekind category. Then a relation Q : A→ B is called

1. univalent (or partial function) iff Q�;Q Ď IB,
2. total iff IA Ď Q;Q�,
3. injective iff Q� is univalent,
4. surjective iff Q� is total,
5. a map iff Q is total and univalent.

It is well-known that Q is total iff Q;�BC = �AC . We will use this and the corre-
sponding property for surjective relations without mentioning.

In the following lemma we have summarized some important properties of map-
pings and univalent relations. Again, a proof can be found in [9–13].

Lemma 1. Let R be a Dedekind category. Then we have for all Q,U : A→ B,R : A→
C, S ,T : B→ C and maps f : B→ C

1. Q; f Ď R iff Q Ď R; f �,
2. if Q is univalent, then Q; (S [T) = Q; S [Q;T,
3. if S is univalent, then (Q[R; S �); S = Q; S [R.
4. If Q is total and U univalent with Q Ď U, then Q = U.

A unit 1 is an object of a Dedekind category so that I1 = �11 and �A1 is total for
all objects A. A unit is an abstract version of a singleton set, and, hence, the relational
version of a terminal object. In the subcategory of mappings a unit becomes a terminal
object. This immediately shows that a unit is unique up to isomorphism.

The abstract version of a cartesian product is given by a relational product. Notice
that a relational product is a categorical product in the subcategory of maps but not
within the Dedekind category of all relations.

Definition 3. The relational product of two objects A and B is an object A× B together
with two relations π : A × B → A and ρ : A × B → B so that the following equations
hold

π�; π Ď IA, ρ
�; ρ Ď IB, π

�; ρ = �AB, π; π
� [ρ; ρ� = IA×B.

A Dedekind category has products if the relational product for each pair of objects
exists.

Wewill use the following abbreviations Q�R := Q; π�[R; ρ�, S �T := π; S[ρ;T
and U ⊗ V = π;U; π� [ρ;V; ρ�. We will adopt the convention that composition binds
tighter than the operations defined above. Notice that some of the equations below

(Q � R); π = Q ifR total (Q � R); ρ = R ifQ total

π�; (S � T) = S if T surjective ρ�; (S � T) = T if S surjective

(Q � R); (U ⊗ V) = Q;U � R;V (U ⊗ V); (S � T) = U; S � V;T

(U ⊗ V); (W ⊗ X) = U;W ⊗ V; X (Q � R); (S � T) = Q; S [R;T

only hold under certain assumptions. This fact is known as the unsharpness problem of
relational products. However, in this paper we will assume that all relational products
exist implying that all of the equations above are valid.

Type-n Arrow Categories 311

Using product we can define two shifting operations. If Q : A × B → C, then we

define
−→
Q : A → C × B := π�; (Q � ρ) and if R : A → C × B, then we define

←−
R :=

(R � ρ�); π : A × B→ C. These operations satisfy the following shifting conditions:

R Ď −→Q ⇔←−R Ď Q,
−→
Q Ď R⇔ Q Ď←−R ,

←−−→
Q = Q.

Given a complete Heyting algebra L an L-relation R between to sets A and B is a
function R : A × B → L. The values in L serve as degree of membership, i.e., they
indicate the degree of relationship between two elements from A and B. Notice that
regular binary relations between sets are a special case of L-relations where L is the set
B = {true, false} of truth values. The collection of all L-relations between sets together
with the standard definition of the operations forms a Dedekind category, normally
denoted by L-Rel. The lattice L itself can even in the abstract case be identified with the
collection of scalar relations on an object.

Definition 4. A relation α : A → A is called a scalar on A iff α Ď IA and �AA;α =
α;�AA.

The notion of scalars was introduced by Furusawa and Kawahara [5]. It is equivalent
to the notion of ideal elements, i.e., relations R : A → B that satisfy �AA;R;�BB = R.
These relations were introduced by Jónsson and Tarski [4].

A crisp relation is an L-relation that only uses the least element 0 and the greatest
element 1 of L as membership values. The subcategory of crisp relations can be iden-
tified with the category of regular binary relations, i.e., with the relations using B as
membership values. The language of Dedekind categories is not strong enough to grasp
the notion of a crisp relation [14,15]. As a consequence so-called arrow categories were
introduced [15,16]. These categories add two operations to Dedekind categories. The
down-arrow operation maps an L-relation R to the greatest crisp relation included in R
and the up-arrow operation maps R to the least crisp relation that includes R.

Definition 5. An arrow category A is a Dedekind category with �AB � �AB for all
objects A and B together with two operations ↑ and ↓ satisfying the following:

1. R↑,R↓ : A→ B for all R : A→ B.
2. (↑, ↓) is a Galois correspondence, i.e., Q↑ Ď R iff Q Ď R↓ for all Q,R : A→ B.
3. (R�; S ↓)↑ = R↑�; S ↓ for all R : B→ A and S : B→ C.
4. If α � �AA is a non-zero scalar then α↑ = IA.
5. (Q[R↓)↑ = Q↑ [R↓ for all Q,R : A→ B.

A relation R : A → B of an arrow category A is called crisp iff R↑ = R (or equiv-
alently R↓ = R). The collection of crisp relations is closed under all operations of a
Dedekind category, and, hence, forms a sub-Dedekind category ofA.

Arrow categories are always uniform [15]. As a consequence all projections are
surjective as the computation �CA = �CB;�BA = �CB; ρ�; π Ď �CA×B; π shows.

In the context of arrow categories we are usually interested in relational products for
which the projections are crisp. Note this property does not follow from the definition
of a relational product. If it is true, we call the relational product crisp. Working with
crisp relational products is not a restriction because there is usually (an isomorphic)
crisp version of any product.

312 M. Winter

The following lemma lists some further properties of relations in arrow categories
that we will be using in the remainder of the paper. A proof can be found in [15].

Lemma 2. Let A be an arrow category. Then we have for all Q,Qi : A → B for i ∈ I
and R : B→ C

1. (
�

i∈I
Qi)
↓ =
�

i∈I
Q↓i ,

2. Q�↓ = Q↓�,
3. if R is crisp, then (Q;R)↑ = Q↑;R,
4. if f : C → A is a map, then (f ;Q)↓ = f ↓;Q↓.

2.2 Extension of an Object

The extension A� of an object A was introduced in [17]. This construction is motivated
by pairing each element of A with all membership values from L. In addition to rep-
resenting the membership values by ideals or scalars this construction also allows to
obtain those values as crisp points, i.e., as crisp mappings p : 1 → 1�. For further
details we refer to [17].

Later we will use the extension of an object to define an arrow category of type-2
fuzziness. This will be done by defining a suitable Kleisli category. The whole approach
is based on the following simple idea. A type-2 L-relation, i.e., a LL-relation, between
the sets A and B is a function R : A×B→ (L→ L). It is well-known that such functions
are isomorphic to functions from A× (B× L)→ L. Notice that the latter are L-relations
from A to B�.

Definition 6. Let A be an object of an arrow category. An object A� together with two
relations ηA, νA : A→ A� is called the extension of A iff

1. ηA is crisp,
2. �AA; νA = νA,
3. ηA; η�A = IA,
4. ν�A

� [η�A; ηA = IA� ,
5. Q�; η�A = �BA for every relation Q : B→ A,

where Q� : B → A� is defined by Q� = ((Q; ηA)↔ (�BA; νA))↓ and ↔ is the Heyting
equivalence.

Some basic properties of extensions are summarized in the following lemma. A
proof can be found in [17].

Lemma 3. Let Q : A → B be a relation and f : C → A be a crisp mapping. Then we
have
1. ηA is total, surjective, and injective,
2. (Q;�BC)� = syQ(�AB;Q�,�AC; νC)↓,
3. f ;Q� = (f ;Q)�,
4. Q� is total,
5. syQ(ν1, ν1)↓ = I1� .

The following theorem was shown in [17] and verifies that A� is indeed a relational
product.

Type-n Arrow Categories 313

Theorem 1. LetA be an arrow category with extensions and unit 1. Then the extension
A� of A together with the relations π := η�A and ρ := (ν�A;�A1)� is a crisp relational
product of A and 1�.

For any object L we define an endofunctor P : R → R by P(X) = X × L and P(Q) =
Q⊗ IL. Furthermore, we define two morphisms ηA : A → P(A) and μA : P(P(A)) →
P(A) by ηA = π� and μA = π [ρ; ρ�. Notice that μA is not total, and that ηA is not
univalent, i.e., both relations are not mappings.

Theorem 2. Let R be a Dedekind category and L be an object of R so that the product
A × L exists for every object A. Then (P, η, μ) is a monad on R.

Recall that the composition � in the Kleisli category RP is defined by Q � R =
Q; P(R); μC = Q; (R � ρ�) with η as identity. This Kleisli category can be made into a
Dedekind category by using the meet and join operation from R and the following defi-

nitions of a converse and residual operation: Q∪ = ηB; μ�B; P(Q
�) =

−−→
Q� = π�; (Q� � ρ)

and S/PR = S/(P(R); μC).

Theorem 3. Let R be a Dedekind category and L be an object of R so that the product
A×L exists for every object A. Then the Kleisli category RP together with the operations
defined above forms a Dedekind category.

If A is an arrow category with a unit, crisp relational products and fuzzy pow-
ers, and we choose L to be the unit, then we can define Q⇑ = (Q; η�B; ηB)

↑ and
Q⇓ = (Q/(η�B; ηB))

↓.

Theorem 4. Let A be an arrow category and L be an object of A so that a crisp
product A × L exists for every object A. Then the Dedekind category AP together with
the operations defined above forms an arrow category.

3 Fuzzy Powers

In this section we want to investigate two abstract versions of power sets. The first one
is the well-known relational (or direct) power. Furthermore, they are also the relational
version of power objects as known in topos theory [1].

Definition 7. An object P(A) together with a relation ε : A → P(A) is called a rela-
tional power iff

syQ(ε, ε) = IP(A) and syQ(R, ε) is total for every R : A→ B.

The relational power is an abstract version of the power set of a set. In particular, it
emphasizes extensionality (syQ(ε, ε) = I) as a basic property of sets.

In a fuzzy context one is usually interested in the L-power set LA of a set, i.e.,
the set of (L-characteristic) functions from A to L. This set together with the obvious
generalization of the “is element of” relation does not necessarily satisfy the axioms of
a relational power. The reason is that ε might not be extensional. For an example, let

314 M. Winter

B4 = {0, a, b, 1} be the Boolean algebra with four elements and A = {x, y} be a set with
two elements. Then we have | BA

4 |= 42 = 16, i.e., 16 L-subsets of A. The relation ε is
given by

ε =

[
0 a b 1 0 a b 1 0 a b 1 0 a b 1
0 0 0 0 a a a a b b b b 1 1 1 1

]
.

If we compute syQ(ε, ε) we obtain

syQ(ε, ε) =

⎡⎢⎢⎢⎣

1 b a 0 b b 0 0 a 0 a 0 0 0 0 0
b 1 0 a b b 0 0 0 a 0 a 0 0 0 0
a 0 1 b 0 0 b b a 0 a 0 0 0 0 0
0 a b 1 0 0 b b 0 a 0 a 0 0 0 0
b b 0 0 1 b a 0 0 0 0 0 a 0 a 0
b b 0 0 b 1 0 a 0 0 0 0 0 a 0 a
0 0 b b a 0 1 b 0 0 0 0 a 0 a 0
0 0 b b 0 a b 1 0 0 0 0 0 a 0 a
a 0 a 0 0 0 0 0 1 b a 0 b b 0 0
0 a 0 a 0 0 0 0 b 1 0 a b b 0 0
a 0 a 0 0 0 0 0 a 0 1 b 0 0 b b
0 a 0 a 0 0 0 0 0 a b 1 0 0 b b
0 0 0 0 a 0 a 0 b b 0 0 1 b a 0
0 0 0 0 0 a 0 a b b 0 0 b 1 0 a
0 0 0 0 a 0 a 0 0 0 b b a 0 1 b
0 0 0 0 0 a 0 a 0 0 b b 0 a b 1

⎤⎥⎥⎥⎦

.

The relation above is obviously different from the identity. This relation indicates that
certain B4-sets are indeed equal up to a certain degree. For example, the sets s1(x) = b,
s1(y) = 0 and s2(x) = 1, s2(y) = a are equal up to degree b because for every element z
we have s1(z) [b = s2(z) [b, i.e., every element is in s1 with the same degree (up to
b) as in s2.

This leads to an alternative definition of a power capturing the notion of an L-power
set.

Definition 8. An object PL(A) together with a relation ε : A→ PL(A) is called a fuzzy
relational power iff

syQ(ε, ε)↓ = IPL(A) and syQ(R, ε)↓ is total for every R : A→ B.

First of all, the definition above provides a unique concept.

Lemma 4. LetA be an arrow category. Then the fuzzy relational power is unique up to
isomorphism.

Proof. Suppose P′L(A) and ε′ is another fuzzy relational power of A. From

syQ(ε′, ε)↓; syQ(ε, ε′)↓ Ď (syQ(ε′, ε); syQ(ε, ε′))↓

= syQ(ε′, ε′)↓

= IP′L(A)

Type-n Arrow Categories 315

and the fact that syQ(ε′, ε)↓ and syQ(ε, ε′)↓ are total by definition we conclude =
by Lemma 1(4). The second equation syQ(ε, ε′)↓; syQ(ε′, ε)↓ = IPL(A) follows
analogously. [\

As already indicated by the example above, the L-power set is an example of a fuzzy
relational power.

Lemma 5. The L-power set together with the relation ε(x, f) = f (x) is a fuzzy rela-
tional power.

Proof. First of all, we have for every R : A→ B

syQ(R, ε)↓(y, g) = 1

⇔ syQ(R, ε)(y, g) = 1

⇔ (
�

x∈A
R(x, y)→ ε(x, g))[(

�

x∈A
ε(x, g)→ R(x, y)) = 1

⇔
�

x∈A
R(x, y)→ ε(x, g) = 1 and

�

x∈A
ε(x, g)→ R(x, y) = 1

⇔ R(x, y)→ ε(x, g) = 1 and ε(x, g)→ R(x, y) = 1 for all x ∈ A
⇔ R(x, y) Ď ε(x, g) and ε(x, g) Ď R(x, y) for all x ∈ A
⇔ R(x, y) = ε(x, g) for all x ∈ A
⇔ R(x, y) = g(x) for all x ∈ A.

This implies

syQ(ε, ε)↓(f , g) = 1⇔ ε(x, f) = g(x) for all x ∈ A
⇔ f (x) = g(x) for all x ∈ A
⇔ f = g

⇔ IP(A)(f , g) = 1.

Furthermore, it implies that syQ(R, ε)↓(y, g) = 1 iff g(x) = R(x, y) for all x (or g =
R(, y)), i.e., g is the L-set that is related to y by R. Since there is exactly one such set
for every y in P↓(A) we conclude that syQ(R, ε)↓ is a mapping. [\

One can obtain a relational power from the set of all L-subsets by using the (L-
fuzzy) equivalence classes of the relation syQ(ε, ε). However, notice that this idea uses
relations based on different membership values. In fact, each cell in a matrix represen-
tation may use a different lattice for the coefficients of the matrix. This corresponds to a
variable basis approach. Since arrow categories emphasize a fixed basis approach, i.e.,
all relations use the same lattice L for membership, we have to state the following the-
orem in the broader context of Dedekind categories with cutoff operators. For the more
general definition and the concept of splittings we refer to [3].

Theorem 5. Let D be a Dedekind category with cutoff operator and fuzzy relational
powers. Then we have the following:

316 M. Winter

1. If P(A) is a relational power, then the crisp function syQ(ε, ε)↓ : P(A) → PL(A) is
injective.

2. If R : C → PL(A) splits syQ(ε, ε), then C together with ε;R� is a relational power
of A.

Proof. 1. By the definition of a crisp relational power the relation syQ(ε, ε)↓ is a map.
Furthermore, we have syQ(ε, ε)↓� Ď syQ(ε, ε)� = syQ(ε, ε). Since syQ(ε, ε) is uni-
valent we obtain that syQ(ε, ε)↓ is injective.

2. First of all, we have

syQ(Q, ε;R�) = syQ(Q, ε;R�);R;R� R is a splitting

= syQ(Q, ε;R�;R);R� R�mapping

= syQ(Q, ε; syQ(ε, ε));R� R splits syQ(ε, ε)

= syQ(Q, ε);R�.

This implies that syQ(Q, ε;R�) is total because syQ(Q, ε) and R� are. From the
computation

syQ(ε;R�, ε;R�) = R;R�; syQ(ε;R�, ε;R�);R;R� R is a splitting

= R; syQ(ε;R�;R, ε;R�;R);R� R�mapping

= R; syQ(ε; syQ(ε, ε), ε; syQ(ε, ε));R� R splits syQ(ε, ε)

= R; syQ(ε, ε);R�

= R;R�;R;R� R splits syQ(ε, ε)

= IC R is a splitting

we obtain the second property of a relational power. [\

4 Replacing the Extension

In this section we want to show that the monad used in the construction of a higher-
order arrow category can be defined without the ad-hoc concept of an extension of an
object. As already stated as Theorem 1 it was shown in [17] that A� is isomorphic to the
crisp relational product A×1�. We now want to show that 1� is actually the fuzzy power
of 1.

Lemma 6. Let A be an arrow category with a unit and extensions. Then 1� together
with the relation ν1 : 1→ 1� is a fuzzy power of 1.

Proof. Suppose Q : 1→ A. Then we have

syQ(Q, ν1)
↓ = syQ(�11;Q,�11; ν1)

↓
I1 = �11

= (Q�;�11)
� Lemma 3(2)

= Q��. I1 = �11

By Lemma 3(4) the relation Q�� is total, and for Q = ν1 we obtain syQ(ν1, ν1)↓ = ν1�� =
I1� using Lemma 3(5). [\

Type-n Arrow Categories 317

Note that the previous lemma together with Theorem 1 shows that A� is isomorphic
to the crisp relational product A ×PL(1). More precisely, it shows that if A� exists, then
the constructions on the right-hand side exist and the two objects are isomorphic. We
now want to verify that opposite statement.

Theorem 6. Let A be an arrow category with a unit, crisp relational products and
fuzzy relational powers. Then the object A × PL(1) together with the relations ηA := π�

and νA := �A1; ε; ρ� is an extension of A.

Proof. 1. ηA is crisp by definition.
2. We have �AA; νA = �AA;�A1; ε; ρ� = �A1; ε; ρ� = νA sinceA is uniform.
3. As shown after Definition 5 π is surjective so that we conclude ηA; η�A = π

�; π = IA.
4. We compute

ν�A
� [η�A; ηA
= (ρ; ε�;�1A)

� [π; π�
= ρ; (ε�;�1A)

� [π; π� Lemma 3(3)

= ρ; (ε�;�1A; ηA ↔ �PL(1)A; νA)
↓ [π; π�

= ρ; (ε�;�1A; π
� ↔ �PL(1)A;�A1; ε; ρ

�)↓ [π; π�
= ρ; (ε�;�1A×PL(1) ↔ �PL(1)1; ε; ρ

�)↓ [π; π� π total andA uniform

= ρ; (ε�;�1PL(1); ρ
� ↔ �PL(1)1; ε; ρ

�)↓ [π; π� ρ total

= ρ; (ε�;�1PL(1) ↔ �PL(1)1; ε)
↓; ρ� [π; π� Lemma 3(3)

= ρ; syQ(�PL(1)1; ε,�PL(1)1; ε)
↓; ρ� [π; π� Lemma 3(2)

= ρ; syQ(�11; ε,�11; ε)
↓; ρ� [π; π� uniform

= ρ; syQ(ε, ε)↓; ρ� [π; π�
= ρ; ρ� [π; π�
= IA×PL(1).

5. We want to show first that π�; (ρ� syQ(�1A; (Q� � IA), ε)↓) Ď Q; π� ↔ �B1; ε; ρ�.
Using the notation X := ρ� syQ(�1A; (Q� � IA), ε)↓ it will be sufficient to show the
two inclusions π�; X [Q; π� Ď �B1; ε; ρ� and π�; X [�B1; ε; ρ� Ď Q; π�. For that
we have

(π�; X [Q; π�); ρ

Ď Q; (Q�; π�; X [π�); ρ
Ď Q; (Q�; π�;[π�; X�); X; ρ
= Q; (Q�; π�;[π�; X�); syQ(�1A; (Q

�
� IA), ε)

↓ product property

Ď �BA; (Q
�; π�;[ρ�); syQ(�1A; (Q

�
� IA), ε)

↓

= �B1;�1A; (Q
�

� IA); syQ(�1A; (Q
�

� IA), ε)
↓ A uniform

Ď �B1; ε,

318 M. Winter

which immediately implies the first inclusion by Lemma 1(1). Now, consider

(π�; X [�B1; ε; ρ
�); π

Ď (π� [�B1; ε; syQ(�1A; (Q
�

� IA), ε)
↓�); X; π product property

= (π� [�B1; ε; syQ(ε,�1A; (Q
�

� IA))
↓); X; π

Ď (π� [�B1;�1A; (Q
�

� IA)); X; π

= (π� [�BA; (Q
�

� IA)); X; π A uniform

Ď (π� [�BA; (Q
�

� IA)); ρ

= (π� [�BA; (Q
�; π� [ρ�)); ρ

= (π� [�BB; (π
� [Q; ρ�)); ρ [13] Lemma 2.2.4(3)

= (π�; (π� [Q; ρ�)� [�BB); (π
� [Q; ρ�); ρ Lemma 1(3)

= (π�; (π[ρ;Q�));Q
Ď Q,

which immediately implies the second inclusion by Lemma 1(1). We conclude

�BA = π
�; ρ

= π�; (syQ(�1A; (Q
�

� IA), ε)
↓;�PL(1)A [ρ) Definition ε

= π�; (syQ(�1A; (Q
�

� IA), ε)
↓; ρ�; π[ρ)

= π�; (syQ(�1A; (Q
�

� IA), ε)
↓; ρ� [ρ; π�); π Lemma 1(3)

= π�; (ρ� syQ(�1A; (Q
�

� IA), ε)
↓); π

= (π�; (ρ� syQ(�1A; (Q
�

� IA), ε)
↓))↓; π crisp

Ď (Q; π� ↔ �B1; ε; ρ
�)↓; π see above

= (Q; π� ↔ �BA;�A1; ε; ρ
�)↓; π A uniform

= (Q; ηA ↔ �BA; μA)
↓; η�A

= Q�; η�A.

This completes the proof. [\

5 Iterating Higher-Order Fuzziness

If A is an arrow category with a unit, crisp relational products and fuzzy relational
powers, then we can move to the Kleisli category AP. This category is actually an
arrow category with the arrow operations (see [18]) defined by Q⇑ := (Q; π; π�)↑ and
Q⇓ := (Q/π; π�)↓. In order to iterate this process we have to show that AP again has a
unit, crisp relational products and fuzzy relational powers.

Lemma 7. LetA be an arrow category with a unit, crisp relational products and fuzzy
relational powers. Then 1 is a unit inAP.

Type-n Arrow Categories 319

Proof. First, we want to show that �P(1)1 = π. Since π is total, we have �P(1)1 =

IP(1);�P(1)1 Ď π; π�;�P(1)1 Ď π;�11 = π; I1 = π. From this we immediately con-
clude that I1 = �11 inAP. In order to show that the universal relation from A to the unit
1 inAP is total, we compute

ηA = π
�

Ď �AP(A)

= �APL(1); ρ
� ρ total

= �AP(1); ρ; ρ
� ρ surjective

= �AP(1); (�1P(A) � ρ�) π total

= �AP(1); (�1PL(1); ρ
�

� ρ�) ρ total

= �AP(1); (π
�; ρ; ρ� � ρ�)

= �AP(1); (π
�; (�P(1)A � ρ) � ρ�) π total

= �AP(1); (�∪AP(1) � ρ�)

= �AP(1) � �∪AP(1).

This completes the proof. [\
We want to show that A × B, i.e., the crisp relation product in A, is also a crisp

relational product in AP. The corresponding projections have to be relations from A
with source A × B and target P(A) resp. P(B). Therefore, we define p1 := π; π� and
p2 := ρ; π�.

Theorem 7. Let A be an arrow category with a unit, crisp relational products and
fuzzy relational powers. Then (A × B, p1, p2) is a crisp relational product of A and B in
the Kleisli categoryAP.

Proof. First of all, p1 and p2 are crisp since the projections π and ρ are crisp and the
class of crisp relations is closed under all relational operations.

p∪1 � p1 = π
�; (p�1 � ρ); (p1 � ρ�)

= π�; (p�1 ; p1 [ρ; ρ�) product property

= π�; (π; π�; π; π� [ρ; ρ�)
= π�; (π; π� [ρ; ρ�) π univalent

= π�

= ηA

p∪2 � p2 = ηB follows analogously. Furthermore, we have

p∪1 � p2 = π
�; (p�1 � ρ); (p1 � ρ�)

= π�; (p�1 ; p2 [ρ; ρ�) product property

= π�; (π; π�; ρ; π� [ρ; ρ�)
= π�; (π;�AB; π

� [ρ; ρ�)

320 M. Winter

= π�; ρ; ρ� π total

= �AB; ρ
�

= �AP(B). ρ total

Finally, from the computation

p1 � p∪1 = p1; (p
∪
1 � ρ�)

= p1; (π
�; (p�1 � ρ) � ρ�)

= p1; (π
�; (π; π� � ρ) � ρ�)

= p1; (π
�; (π� ⊗ I) � ρ�)

= p1; (π
�; π� � ρ�) product property

= π; π�; (π�; π� � ρ�)

= π; π�; π� product property

and a similar computation showing p2 � p∪2 = ρ; ρ
�; π� we obtain p1 � p∪1 [p2 � p∪2 =

π; π�; π� [ρ; ρ�; π� = (π; π� [ρ; ρ�); π� = π� = ηA×B. [\
The last theorem of this paper will that the object PL(A × PL(1)) × PL(1) together

with the relation −→ε : A→ PL(A×PL(1))×PL(1) is a fuzzy power inAP. The following
diagram visualizes the situation when forming syqP(Q,

−→ε)⇓ inAP.

PL(A × PL(1)) × PL(1)
π��

B
syQ(←−Q,ε)↓ ��

syQP(Q,
−→ε)⇓ ����������������������� PL(A × PL(1))

B × PL(1)
ρ ��

π

��

PL(1) A × PL(1)
ρ��

ε
��

π��

←−
Q

		�������������������������

A
Q

		�������������������������

−→ε

Theorem 8. Let A be an arrow category with a unit, crisp relational products and
fuzzy relational powers. Then PL(A × PL(1)) × PL(1) together with the relation −→ε :
A→ PL(A × PL(1)) × PL(1) is a fuzzy power inAP

Proof. First, we compute the following

Q � X⇑ Ď −→ε ⇔ Q; (X⇑ � ρ�) Ď −→ε
⇔ Q; (X↑; π; π� � ρ�) Ď −→ε
⇔ Q; (X↑; π ⊗ I) Ď −→ε
⇔←−−−−−−−−−−−Q; (X↑; π ⊗ I) Ď ε shifting property

⇔ (Q; (X↑; π ⊗ I) � ρ�); π Ď ε
⇔ (Q;�ρ�); π; X↑; π Ď ε

⇔←−Q; X↑; π Ď ε

Type-n Arrow Categories 321

⇔←−Q; X↑ Ď ε; π�, Lemma 1(1)
−→ε � X⇑∪ Ď Q⇔ −→ε ; (X⇑∪ � ρ�) Ď Q

⇔ −→ε ; (π�; ((π; π�; X�)↑ � ρ) � ρ�) Ď Q

⇔ −→ε ; (π�; (π; π�; X↑� � ρ) � ρ�) Ď Q

⇔ −→ε ; (π�; (π�; X↑� ⊗ I) � ρ�) Ď Q

⇔ −→ε ; (π�; X↑� ⊗ I) Ď Q product property

⇔ π�; (ε � ρ); (π�; X↑� ⊗ I) Ď Q

⇔ π�; (ε; π�; X↑� � ρ) Ď Q

⇔ −−−−−−−−→ε; π�; X↑� Ď Q

⇔ ε; π�; X↑� Ď←−Q.
This immediately implies

X Ď syQP(Q,
−→ε)⇓ ⇔ X⇑ Ď syQP(Q,

−→ε) arrows inAP

⇔ Q � X⇑ Ď −→ε and −→ε � X⇑∪ Ď Q syQ inAP

⇔←−Q; X↑ Ď ε; π� and ε; π�; X↑� Ď←−Q see above

⇔ X↑ Ď syQ(
←−
Q, ε; π�) syQ inA

⇔ X Ď syQ(
←−
Q, ε; π�)

↓
arrows inA

⇔ X Ď (syQ(
←−
Q, ε); π�)

↓
π univalent

⇔ X Ď syQ(
←−
Q, ε)

↓
; π�. Lemma 2(4)

from which we conclude syQP(Q,
−→ε)⇓ = syQ(

←−
Q, ε)

↓
; π�. We obtain

syQP(
−→ε ,−→ε)⇓ = syQ(

←−−→ε , ε)
↓
; π� see above

= syQ(ε, ε)↓; π� shifting property

= π� fuzzy power inA
= η

Furthermore, we get

syQP(Q,
−→ε)⇓ � � = syQP(Q,

−→ε)⇓; (�� ρ�)

= syQP(Q,
−→ε)⇓; ρ; ρ� π total

= syQ(
←−
Q, ε)

↓
; π�; ρ; ρ� see above

= syQ(
←−
Q, ε)

↓
;�; ρ�

= �; ρ� fuzzy power inA
= �, ρ total

i.e., that syQP(Q,
−→ε)⇓ is total inAP. [\

322 M. Winter

6 Conclusion and Future Work

In this paper we have provided a general framework for handling and iterating higher-
order fuzziness in arrow categories. However, this theory is based on multiple arrow
categories, i.e., one arrow category for each type n. The reason is that all relations in an
arrow category use the same underlying lattice for their degree of membership. In future
work we would like to consider a similar construction within the framework of weak
arrow categories [19]. These categories allow different membership values for relation
within one category.

References

1. Freyd, P., Scedrov, A.: Categories, Allegories, vol. 39. North-Holland Mathematical Library,
Amsterdam (1990)

2. Furusawa, H.: Algebraic formalizations of fuzzy relations and their representation theorems.
Ph.D.-thesis, Department of Informatics, Kyushu University, Japan (1998)

3. Furusawa, H., Kawahara, Y., Winter, M.: Dedekind categories with cutoff operators. Fuzzy
Sets Syst. 173, 1–24 (2011)

4. Jónsson, B., Tarski, A.: Boolean algebras with operators, I, II. Amer. J. Math. 73, 891–939
(1951). 74, 127–162 (1952)

5. Kawahara, Y., Furusawa, H.: Crispness and representation theorems in dedekind categories.
DOI-TR 143, Kyushu University (1997)

6. Kawahara, Y., Furusawa, H.: An algebraic formalization of fuzzy relations. Fuzzy Sets Syst.
101, 125–135 (1999)

7. Olivier, J.P., Serrato, D.: Catégories de Dedekind. Morphismes dans les Catégories de
Schröder. C.R. Acad. Sci. Paris 290, 939–941 (1980)

8. Olivier, J.P., Serrato, D.: Squares and rectangles in relational categories - three cases: semi-
lattice, distributive lattice and Boolean non-unitary. Fuzzy Sets Syst. 72, 167–178 (1995)

9. Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous relation algebras. In: Brink, C.,
Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science. Advances in Com-
puting Sciences, pp. 39–53. Springer, Heidelberg (1997)

10. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer, Berlin (1993)
11. Schmidt, G.: Relational Mathematics. Cambridge University Press, Cambridge (2011)
12. Tarski, A.: On the calculus of relations. J. Symbolic Logic 6, 73–89 (1941)
13. Winter, M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf Nichtde-

termismus in Programmiersprachen. Dissertationsverlag NG Kopierladen GmbH, München
(1998)

14. Winter, M.: A new algebraic approach to L-fuzzy relations convenient to study crispness.
INS Inf. Sci. 139, 233–252 (2001)

15. Winter, M.: Goguen Categories – A Categorical Approach to L-Fuzzy Relations. Springer,
Berlin (2007)

16. Winter, M.: Arrow categories. Fuzzy Sets Syst. 160, 2893–2909 (2009)
17. Winter, M.: Membership values in arrow categories. Fuzzy Sets Syst. 267, 41–61 (2015)
18. Winter, M.: Higher-order arrow categories. In: Höfner, P., Jipsen, P., Kahl, W., Müller, M.E.

(eds.) RAMICS 2014. LNCS, vol. 8428, pp. 277–292. Springer, Cham (2014). doi:10.1007/
978-3-319-06251-8 17

19. Winter, M., Jackson, E.: Categories of relations for variable-basis fuzziness. Fuzzy Sets Syst.
298, 222–237 (2016)

20. Winter, M., Jackson, E., Fujiwara, Y.: Type-2 fuzzy controllers in arrow categories. In:
Höfner, P., Jipsen, P., Kahl, W., Müller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp.
293–308. Springer, Cham (2014). doi:10.1007/978-3-319-06251-8 18

http://dx.doi.org/10.1007/978-3-319-06251-8_17
http://dx.doi.org/10.1007/978-3-319-06251-8_17
http://dx.doi.org/10.1007/978-3-319-06251-8_18

Author Index

Alain, Mathieu 43

Berghammer, Rudolf 60
Buchholtz, Ulrik 77

Desharnais, Jules 43, 93

Glück, Roland 109
Guttmann, Walter 127

Jipsen, Peter 144
Joosten, Sebastiaan J.C. 159
Joosten, Stef 177

Kahl, Wolfram 193
Kirousis, Lefteris 209
Kolaitis, Phokion G. 209
Krivulin, Nikolai 226

Livieratos, John 209

McIver, A.K. 3
Möller, Bernhard 93
Morehouse, Edward 77
Morgan, C.C. 3

Pin, Jean-Éric 24
Puerto, Adrián 242

Rabehaja, T. 3

Santocanale, Luigi 258
Schäfer, Steven 274
Smolka, Gert 274
Stucke, Insa 290

Winter, Michael 307

	Preface
	Organization
	Abstracts of Invited Talks
	A (Co)Algebraic Theory of Succinct Acceptors
	Algebra for Quantitative Information Flow
	Contents
	Invited Papers
	Algebra for Quantitative Information Flow
	1 Introduction
	2 Getting Real: Updating Secrets and Third-Party ``Collateral'' Damage in Everyday Programs
	3 A Denotational Model for Quantitative Information Flow
	3.1 Review of the Probability Monad and Hyper-Distributions
	3.2 Review of ``Traditional'' vs. More Recent Quantitative Information Flow Semantics for (Non-)interference
	3.3 HMM's as Correlation Transformers

	4 Generalising Entropy: Secure Refinement
	5 Some Algebraic Inequalities
	5.1 Basic Laws for Information Flow
	5.2 Information Flows Concerning the Collateral State

	6 Related Work and Discussion
	References

	Dual Space of a Lattice as the Completion of a Pervin Space
	1 Introduction
	2 Formal Languages
	3 Pervin Spaces
	3.1 The Category of Pervin Spaces
	3.2 Pervin Spaces as Preordered Sets
	3.3 Pervin Spaces as Topological Spaces

	4 Complete Pervin Spaces
	5 Examples of Pervin Spaces
	6 Duality Results
	7 Quotient Spaces
	8 Inequations
	9 Bibliographic Notes
	10 Conclusion
	References

	Contributed Papers
	Relations as Images
	1 Introduction
	2 Mathematical Background
	3 Representing an Image in the Plane by a Relation
	4 Dilation and Erosion
	5 Graph Morphology
	6 Conclusion
	References

	Tool-Based Relational Investigation of Closure-Interior Relatives for Finite Topological Spaces
	1 Introduction
	2 Problem Background and the Numerical Results
	3 Relation-Algebraic Preliminaries
	4 The RelView Tool and Some Basic Code
	5 Computation of the Numerical Data via RelView
	6 Modifications of the Program with Applications
	7 Concluding Remarks
	References

	Varieties of Cubical Sets
	1 Introduction
	1.1 Cube Categories
	1.2 Test Categories

	2 Cube Categories
	2.1 Monoidal Algebraic Theories
	2.2 Interpretations
	2.3 Cubical Monoidal Languages
	2.4 The Canonical Cube Categories
	2.5 A Tour of the Menagerie

	3 Test Categories
	4 Conclusion
	References

	Non-associative Kleene Algebra and Temporal Logics
	1 Introduction
	2 Modelling CTL*
	3 Semirings, Quantales and Iteration
	4 General Algebraic Semantics of CTL*
	5 Modified Iteration and the Semantics of Until
	6 The Next-Time Operator
	7 Infinitary Semantics of CTL*
	8 Generated Quantales
	9 Towards CTL: The Semantics of State Formulas
	10 From CTL* to CTL
	11 From CTL* to LTL
	12 Conclusion
	References

	Algebraic Investigation of Connected Components
	1 Introduction
	2 Full Atomic Lattices
	3 Graph Algebras
	4 Connected Components
	4.1 Innately Connected Components
	4.2 Algebraic Directed Acyclic Graphs
	4.3 Undirected Graphs
	4.4 Directed Graphs

	5 Conclusion and Further Work
	References

	Stone Relation Algebras
	1 Introduction
	2 Pseudocomplemented Algebras
	3 Stone Relation Algebras
	4 Relational Properties of Weighted Graphs
	4.1 Mappings and Related Properties
	4.2 Vectors and Related Properties
	4.3 Orders and Related Properties

	5 Stone-Kleene Relation Algebras
	6 Conclusion
	References

	Relation Algebras, Idempotent Semirings and Generalized Bunched Implication Algebras
	1 Introduction
	2 Coupled Semirings
	3 Distributive Residuated Lattices and Generalized Bunched Implication algebras
	4 Partially-Ordered Groupoid Semantics for Some Cyclic Involutive GBI-Algebras
	5 Conclusion
	References

	Parsing and Printing of and with Triples
	1 Introduction
	2 Overview of Amperspiegel
	3 Parsing
	3.1 Obtaining a Graph by Parsing a String
	3.2 Describing a Context Free Grammar with a Graph

	4 Rules
	4.1 The Rule Engine by Example
	4.2 Rule Engine Semantics

	5 Amperspiegel's Embedding of the Rule Engine
	6 Printing
	7 Using Amperspiegel to Transform ArchiMate Files into Ampersand Code
	7.1 Parsing XML
	7.2 Transforming a Graph
	7.3 Printing a Graph

	8 Discussion
	9 Conclusion
	References

	Software Development in Relation Algebra with Ampersand
	1 Introduction
	2 Ampersand
	3 Conceptual Analysis
	4 Programming in Relation Algebra
	4.1 Rule: Fill shownPhrase
	4.2 Rule: Substitute
	4.3 Rule: Done Initializing
	4.4 Rule: Reset Statement Text
	4.5 Rule: Flush Substitutions
	4.6 Rule: Signal Phrase Update

	5 Programming in the Small
	6 Reflection
	6.1 Comparison
	6.2 Contribution
	6.3 Ampersand in Practice
	6.4 Further Research

	References

	Allegories and Collagories for Transformation of Graph Structures Considered as Coalgebras
	1 Introduction
	2 Notation and Background: Categories, Allegories, Collagories
	3 Background: Algebraic Graph Transformation
	4 Tabulations and Cotabulations
	5 Direct Products and Sums
	6 Coalgebras in OCCs
	7 Coalgebras in Allegories
	8 Coalgebras in Collagories
	9 Tabulations and Cotabulations of Relational Collagory Homomorphisms
	10 Creation of Top Morphisms and of Direct Products
	11 Coalgebraic Graph Structure Transformation
	12 Conclusion and Outlook
	References

	Aggregation of Votes with Multiple Positions on Each Issue
	1 Introduction
	2 Basic Concepts and Earlier Work
	2.1 Basic Concepts
	2.2 Earlier Work

	3 Results
	3.1 Possibility Domains
	3.2 Uniform Possibility Domains

	4 Concluding Remarks
	References

	Complete Solution of an Optimization Problem in Tropical Semifield
	1 Introduction
	2 Preliminary Definitions and Results
	2.1 Idempotent Semifield
	2.2 Matrix and Vector Algebra
	2.3 Reducible and Irreducible Matrices
	2.4 Vector Inequalities and Equations

	3 Tropical Optimization Problem
	4 Derivation of Complete Solution
	4.1 Solution via Matrix Sparsification
	4.2 Backtracking Procedure of Generating Solution Sets
	4.3 Closed-Form Representation of Complete Solution

	5 Conclusions
	References

	Concurrency-Preserving Minimal Process Representation
	1 Introduction
	2 Posets, Closure Operators and Lattices
	3 Poset of Atoms
	4 Atoms as Lattice Generators
	5 Completion and Causal Nets
	6 Conclusions
	References

	Embeddability into Relational Lattices Is Undecidable
	1 Introduction
	2 Frames and Lattices
	3 The Relational Lattices R(D,A)
	4 Overview and Statement of the Results
	5 The Lattice of a Multimodal Frame
	6 Some Theory of Generalized Ultrametric Spaces
	7 From Lattice Embeddings to Surjective p-morphisms
	References

	Tower Induction and Up-to Techniques for CCS with Fixed Points
	1 Introduction
	2 Lattice Theory Preliminaries
	3 Towers and Companions
	4 CCS with Recursive Processes
	5 Parameterized Tower Induction
	6 Coq Formalization
	7 Related Work
	8 Conclusions and Future Work
	References

	Reasoning About Cardinalities of Relations with Applications Supported by Proof Assistants
	1 Introduction
	2 Preliminaries
	3 Approximating Minimal Vertex Colorings
	4 Cardinalities in Coq
	5 Cardinalities in Isabelle/HOL
	6 Comparison of the Implementations
	7 Concluding Remarks
	References

	Type-n Arrow Categories
	1 Introduction
	2 Mathematical Preliminaries
	2.1 Allegories and Arrow Categories
	2.2 Extension of an Object

	3 Fuzzy Powers
	4 Replacing the Extension
	5 Iterating Higher-Order Fuzziness
	6 Conclusion and Future Work
	References

	Author Index

