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Abstract This work considers the barotropic Euler equations and proposes a high-
order conservative scheme based on aLagrange-Projection decomposition. The high-
order in space and time are achieved using Discontinuous Galerkin (DG) and Runge-
Kutta (RK) strategies. The use of a Lagrange-Projection decomposition enables the
use of time steps that are not constrained by the sound speed thanks to an implicit
treatment of the acoustic waves (Lagrange step), while the transport waves (Projec-
tion step) are treated explicitly. We compare our DG discretization with the recent
one (Renac in Numer Math 1-27, 2016, [7]) and state that it satisfies important non
linear stability properties. The behaviour of our scheme is illustrated by several test
cases.
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1 Introduction

We are interested in the gas dynamics equations in Eulerian coordinates

{
∂tρ + ∂x (ρu) = 0,

∂t (ρu) + ∂x
(
ρu2 + p

) = 0,
(1)
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where ρ > 0 is the density, u the velocity and p = p(ρ) is the pressure of the fluid
such that p′(ρ) > 0. In the numerical experiments, we will choose p(ρ) = gρ2/2
where g > 0 is the gravity constant so that the model can also be understood as the
Shallow-Water equations with flat topography (in this case, ρ stands for the water
depth). The unknowns depend on the space and time variables x and t , with x ∈ R

and t ∈ [0,∞). At time t = 0, the model is supplemented with a given initial data
ρ(x, t = 0) = ρ0(x) and u(x, t = 0) = u0(x).

The aimof this paper is to propose a high-order discretization basedon aLagrange-
Projection decomposition of the governing equations and using a Discontinuous
Galerkin (DG) [4, 9] strategy for the space variable.

The Lagrange-Projection (or equivalently Lagrange-Remap) decomposition is
interesting since it allows to naturally decouple the acoustic and transport terms of
the model. It proved to be useful and very efficient when considering subsonic or
low-Mach number flows. In this case, the CFL restriction of Godunov-type schemes
is driven by the acoustic waves and can be very restrictive. The Lagrange-Projection
strategy allows for a very natural implicit-explicit scheme with a CFL restriction
based on the (slow) transport waves and not on the (fast) acoustic waves. We refer
for instance the reader to [1, 2, 5], to the recent contribution [3], and to the refer-
ences therein. Note that the later contribution considers the Shallow-Water equations
with non flat topography and that the corresponding (implicit-explicit) Lagrange-
Projection scheme is well-balanced but only first-order accurate. It is the purpose
of this contribution to extend the first-order Lagrange-Projection schemes of the
above references to high-order of accuracy in both space and time. The proposed
approach is quite close to the one recently developed in [7], but as we will see, the
corresponding Projection step turns out to be different.

2 Lagrange-Projection Decomposition
and Finite-Volume Scheme

In this section, we briefly present the Lagrange-Projection decomposition considered
in this paper and the corresponding first-order finite volume scheme.
Operator splitting decomposition and relaxation approximation.Using the chain rule
for the space derivatives of (1), the Lagrange-Projection decomposition consists in
first solving {

∂tρ + ρ∂x u = 0,
∂t (ρu) + ρu∂x u + ∂x p = 0,

(2)

which gives in Lagrangian coordinates τ∂x = ∂m , with τ = 1/ρ,

{
∂tτ − ∂mu = 0,
∂t u + ∂m p = 0,

(3)

and then the transport system
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{
∂tρ + u∂xρ = 0,
∂t (ρu) + u∂x (ρu) = 0.

(4)

The numerical approximation of (3) and (4) will be given in the next sections but
let us notice from now on that the Lagrangian system (3) will be treated considering
the following relaxation approximation [6, 8],

⎧⎪⎨
⎪⎩

∂tτ − ∂mu = 0,

∂t u + ∂mΠ = 0,

∂tΠ + a2∂mu = λ (p − Π) .

(5)

Here, the new variable Π represents a linearization of the real pressure p, the con-
stant parameter a is a linearization of the Lagrangian sound speed ρc such that
the sub-characteristic condition a > ρc, c = √

p′(ρ), is satisfied, and the relaxation
parameter λ allows to recover Π = p and the original system (3) in the asymptotic
regime λ → ∞. As usual, the relaxation systemwill be solved using a splitting strat-
egy which consists in first settingΠ = p at initial time (which is formally equivalent
to considering λ → ∞ in (5)), and then solving the relaxation system (5) with λ = 0.
First-order numerical scheme. The first-order finite volume scheme associated with
the above decomposition and relaxation approximation is classical and given for
instance in [2]. Nevertheless, it will be recovered in the DG extension proposed in
the next section by setting the degree of all polynomials p to 0. Space and time
will be discretized using a space step Δx and a time step Δt . We will consider a
set of cells κ j = [x j−1/2, x j+1/2) and instants tn = nΔt , where x j+1/2 = jΔx and
x j = (x j−1/2 + x j+1/2)/2 are respectively the cell interfaces and cell centers, for
j ∈ Z and n ∈ N.

3 Discontinuous Galerkin Discretization

We begin this section by introducing the notations of the DG discretization. Recall
that theDGapproach considers that the approximate solution at each time tn is defined
on each cell κ j by a polynomial in space of order less or equal than p for a given inte-
ger p ≥ 1 (p = 0 corresponds to the usual first-order and piecewise constant finite
volume scheme). With this in mind, we consider the (p + 1) Lagrange polynomials
{	i }i=0,...,p associated with the Gauss-Lobatto quadrature points in [−1, 1]. More
precisely, denoting −1 = s0 < s1 < · · · < sp = 1 the p + 1 Gauss-Lobatto quadra-
ture points, 	i is defined by the relations 	i (sk) = δi,k for k = 0, ..., p, where δ is the
Kronecker symbol. Then, in each cell κ j , we define the shifted Lagrange polynomials
Φi, j byΦi, j (x) = 	i

(
2

Δx (x − x j )
)
and we take {Φi, j }i=0,...,p as a basis for polynomi-

als of order less or equal than p on κ j . If we denote by XΔx the DG approximation
of X , we thus have XΔx (x, t) = ∑p

k=0 Xk, j (t)Φk, j (x), ∀x ∈ κ j , where the coef-
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ficients Xk, j depend on time and correspond to the value of the numerical solution
at the shifted Gauss-Lobatto quadrature points xk, j = x j + Δx

2 sk .
Before entering the details of the numerical approximation, let us briefly recall

that the Gauss-Lobatto quadrature formula for f : κ j × R
+ → R writes

∫
κ j

f (x, t) dx ≈ Δx

2

p∑
k=0

ωk f (xk, j , t),

where ωk are the weights of the Gauss-Lobatto quadrature. It is well-known that this
formula is exact as soon as f is a polynomial of order less or equal than (2p − 1)with
respect to x on κ j . Just note that the integral

∫
κ j

Φi, j (x)Φk, j (x) dx will be therefore

approximated by Δx
2 ωiδi,k in the following. At last, note that the piecewise constant

case p = 0 can be also considered in this framework provided that we set s0 = 0,
Φ0, j = 1 and ω0 = 2.
Time discretization (tn → tn+1). We begin with the acoustic step (5) with λ = 0.
Multiplying the three equations by Φi, j , integrating over κ j , and considering the
piecewise polynomial approximations XΔx for X = τ, u,Π easily leads to

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Δx

2
ωi∂tτi, j (t) −

∫
κ j

Φi, j (x)∂mu(x, t) dx = 0,

Δx

2
ωi∂t ui, j (t) +

∫
κ j

Φi, j (x)∂mΠ(x, t) dx = 0,

Δx

2
ωi∂tΠi, j (t) + a2

∫
κ j

Φi, j (x)∂mu(x, t) dx = 0,

that we discretize in time by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τ n+1−
i, j = τ n

i, j + 2Δt

ωiΔx

∫
κ j

Φi, j (x)∂mu(x, tα) dx,

un+1−
i, j = un

i, j − 2Δt

ωiΔx

∫
κ j

Φi, j (x)∂mΠ(x, tα) dx,

Πn+1−
i, j = Πn

i, j − a2 2Δt

ωiΔx

∫
κ j

Φi, j (x)∂mu(x, tα) dx,

(6)

where the superscript n + 1− formally represents the fictitious time tn+1−
, and α = n

or α = n + 1− if the time discretization is taken to be explicit or implicit.
As far as the transport step is concerned, the same process of reasoning leads to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρn+1
i, j = ρn+1−

i, j − 2Δt

ωiΔx

∫
κ j

Φi, j (x)u(x, tα)∂xρ(x, tn+1−
) dx,

(ρu)n+1
i, j = (ρu)n+1−

i, j − 2Δt

ωiΔx

∫
κ j

Φi, j (x)u(x, tα)∂x (ρu)(x, tn+1−
) dx .

(7)



A High-Order Discontinuous Galerkin Lagrange Projection Scheme … 67

Note that this transport step is always treated explicitly in time.
Volume integrals and flux calculations. Considering the acoustic step, we aim at
approximating the integrals

∫
κ j

Φi, j (x)∂m X (x, tα) dx with X = u,Π . Observe that

∫
κ j

Φi, j (x)∂m X (x, tα) dx ≈ Δx

2
ωi τ

n
i, j ∂x X (xi, j , tα) dx = τn

i, j

∫
κ j

Φi, j (x)∂x X (x, tα) dx,

the last equality is indeed exact since X andΦ are polynomials of order less or equal
than p, so that Φi, j∂x X (·, t) is of order less or equal than (2p − 1). The objective is
now to use one integration by part to move the derivative from X to Φ, and to use
the numerical fluxes to evaluate the interfacial terms, which gives

∫
κ j

Φi, j (x)∂x X (x, tα) dx ≈ δi,p X∗,α
j+1/2 − δi,0X∗,α

j−1/2 − Δx

2

p∑
k=0

ωk Xα
k, j∂xΦi, j (xk, j ).

Again, we refer the reader to [2] for the expressions of the star quantities in the above
formula and the following ones, which are nothing but the numerical fluxes of the
first-order finite volume scheme. At last, from (6) we obtain the acoustic step

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ n+1−
i, j = τ n

i, j + 2Δt
ωi Δx τ n

i, j

[
δi,pu∗,α

j+1/2 − δi,0u∗,α
j−1/2 − Δx

2

∑p
k=0 ωkuα

k, j ∂x Φi, j (xk, j )

]
= Lα

i, j τ
n
i, j ,

un+1−
i, j = un

i, j − 2Δt
ωi Δx τ n

i, j

[
δi,pΠ

∗,α
j+1/2 − δi,0Π

∗,α
j−1/2 − Δx

2

∑p
k=0 ωkΠ

α
k, j ∂x Φi, j (xk, j )

]
,

Πn+1−
i, j = Πn

i, j − a2 2Δt
ωi Δx τ n

i, j

[
δi,pu∗,α

j+1/2 − δi,0u∗,α
j−1/2 − Δx

2

∑p
k=0 ωkuα

k, j ∂x Φi, j (xk, j )

]
,

(8)

with Lα
i, j = 1 + 2Δt

ωi Δx

[
δi,pu∗,α

j+1/2 − δi,0u∗,α
j−1/2 − Δx

2

∑p
k=0 ωkuα

k, j∂xΦi, j (xk, j )

]
.

Regarding the transport step, we want to evaluate the integrals

∫
κ j

Φi, j (x)u(x, tα)∂x X (x, tn+1−
) dx

with X = ρ, ρu. The same process as before leads to

∫
κ j

Φi, j (x)u(x, tα)∂x X (x, tn+1−
) dx = δi,p X∗,n+1−

j+1/2 u∗,α
j+1/2 − δi,0X∗,n+1−

j−1/2 u∗,α
j−1/2

−
∫

κ j

(Xu)∂xΦi, j dx − Xn+1−
i, j

∫
κ j

Φi, j (x)∂x u(x, tα) dx,

where we take∫
κ j

Φi, j∂x u(x, tα) dx = δi,pu∗,α
j+1/2 − δi,0u∗,α

j−1/2 − Δx
2

∑p
k=0 ωkuα

k, j∂xΦi, j (xk, j )

and
∫
κ j

(Xu)∂xΦi, j dx ≈ Δx
2

∑p
k=0 ωk Xn+1−

k, j uα
k, j∂xΦi, j (xk, j ).
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Conservativity property and mean values. Easy calculations not reported here show
that the whole Lagrange-Projection scheme can be written as follows

ρn+1
i, j = ρn

i, j − 2Δt

ωi Δx

[
δi,pρ

∗,n+1−
j+1/2 u∗,α

j+1/2 − δi,0ρ
∗,n+1−
j−1/2 u∗,α

j−1/2 − Δx

2

p∑
k=0

ωkρ
n+1−
k, j uα

k, j ∂x Φi, j (xk, j )

]
,

(ρu)n+1
i, j = (ρu)n

i, j − 2Δt

ωi Δx

⎡
⎣δi,pΠ

∗,α
j+1/2 − δi,0Π

∗,α
j−1/2 − Δx

2

p∑
k=0

ωkΠn+1−
k, j ∂x Φi, j (xk, j )

⎤
⎦

− 2Δt

ωi Δx

⎡
⎣δi,p(ρu)

∗,n+1−
j+1/2 u∗,α

j+1/2 − δi,0(ρu)
∗,n+1−
j−1/2 u∗,α

j−1/2 − Δx

2

p∑
k=0

ωk (ρu)n+1−
k, j uα

k, j ∂x Φi, j (xk, j )

⎤
⎦

while the mean values X
n+1
j = 1

Δx

∫
κ j

X (x, tn+1) dx = ∑p
i=0

ωi
2 Xn+1

i, j with X =
ρ, ρu obey the conservative formulas

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρn+1
j = ρn

j − Δt

Δx

[
ρ

∗,n+1−
j+1/2 u∗,α

j+1/2 − ρ
∗,n+1−
j−1/2 u∗,α

j−1/2

]
,

(ρu)
n+1
j = (ρu)

n
j − Δt

Δx

[
Π

∗,α
j+1/2 + (ρu)

∗,n+1−
j+1/2 u∗,α

j+1/2

−Π
∗,α
j−1/2 − (ρu)

∗,n+1−
j−1/2 u∗,α

j−1/2

]
.

(9)

Additional nonlinear stability properties can be proved for both the implicit and
explicit schemes (α = n and α = n + 1−). In particular, we have been able to prove
the positivity of the nodal densities ρn+1−

i, j at time tn+1−
and of the mean densities

ρn+1
j at time tn+1, but also the validity of a discrete entropy inequality for the mean

energy following the same lines as in [7].
Comparison with the double integration by part used in [7]. The present scheme turns
out to be very close to the one recently proposed in [7], and it shares the same stability
properties. However, the overall process in [7] is based on double integrations by
part leading to the use of both numerical and exact fluxes at the interfaces, instead of
only numerical fluxes in our approach. Interestingly, we observed that both schemes
are strictly equivalent if one considers the mean values, but the nodal values turn
out to be different because of the transport step. These little differences are due to
the use of quadrature formulas to integrate the polynomials Xu∂xΦi, j . In this case,
the numerical integrations are not exact since polynomials Xu∂xΦi, j are of order
3p − 1 > 2p − 1.
Positivity and generalized slope limiters. We have already stated the positivity of the
nodal values ρn+1−

i, j at the end of the acoustic step and of the mean values ρn+1
j at the

end of the transport step. Similarly to [7], we suggest to use a positivity limiter to
ensure that ρn+1

i, j > 0. More precisely, we replace ρn+1
i, j by θ jρ

n+1
i, j + (

1 − θ j
)
ρn+1

j ,

where the coefficients θ j are taken to be θ j = min

(
1,

ρn+1
j −ε

ρn+1
j −mini ρn+1

i, j

)
. This formula

ensures that if ρ is less than the threshold ε, the nodal values of the corresponding
cell are corrected, using the positive mean value, towards values greater than ε. In
general we set the parameter ε to 1.0e−10. Note that in the forthcoming numerical
experiments, the positivity limiter is not active. In order to avoid non physical oscil-
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lations, we also use the generalized slope limiters introduced in [4]. More precisely,
considering the minmod function m(a, b, c) = s · min(|a|, |b|, |c|) if
s = sign(a) = sign(b) = sign(c) and 0 otherwise, the increments

Δ+ X
n+1
j = X

n+1
j+1 − X

n+1
j , Δ− X

n+1
j = X

n+1
j − X

n+1
j−1, and the values

X−,n+1
j+1/2 = X

n+1
j + m

(
Xn+1

p, j − X
n+1
j ,Δ+ X

n+1
j ,Δ− X

n+1
j

)
,

X+,n+1
j−1/2 = X

n+1
j − m

(
X

n+1
j − Xn+1

0, j ,Δ+ X
n+1
j ,Δ− X

n+1
j

)
,

the new states at time tn+1 are defined by

{
Xn+1

i, j if X−,n+1
j+1/2 = Xn+1

p, j and X+,n+1
j−1/2 = Xn+1

0, j ,

X
n+1
j + 2

Δx

(
xi, j − x j

) · m
(
∂x Xn+1(x j ),Δ+ X

n+1
j ,Δ− X

n+1
j

)
otherwise.

4 Numerical Results

The aim of this section is to compare our explicit-explicit EXEXp and implicit-
explicit IMEXp Lagrange-Projection schemes, where p refers to the polynomial
order of the DG approach. The time integrations are performed using Strong
Stability Preserving Runge-Kutta methods described in [4]. Recall that p(ρ) =
gρ2/2 so that the parameter a is chosen locally at each interface according to

a j+1/2 = κ max
(
ρn

j

√
gρn

j , ρ
n
j+1

√
gρn

j+1

)
with κ = 1.01 and g = 9.81.We setΔt =

min(ΔtLag,ΔtTra) for the EXEXp schemes and Δt = ΔtTra for the IMEXp schemes
whereΔtLag = Δx

2p+1 min j
(
2a j+1/2 min(τp, j , τ0, j+1)

)
is the DG time-step restriction

associated with the Lagrangian step, while the Transport step CFL restriction reads

ΔtTra = Δx mini, j
2
ωi

(∫
κ j

uα∂xΦi, j dx − δpu∗,α,−
j+1/2 + δ0u∗,α,+

j−1/2

)
.

Manufactured smooth solution.This preliminary test case is taken from [7] and allows
us to test the experimental order of accuracy (EOA) of the schemes, especially on
the Transport step. The space domain is [0, 1], the boundary conditions are periodic
and the initial conditions are ρ0(x) = 1 + 0.2 sin(2πx) and u0(x) = 1. We solve (1)
with a source term such that the exact solution is ρ(x, t) = 1 + 0.2 sin (2π(x − t))
and u(x, t) = 1, which just means that we impose un+1−

i, j = 1 and Πn+1−
i, j = Πn

i, j , so
that the Acoustic step is trivial. Note that we use in this special case the EXEXp

schemes. The EOA are reported in Table1.
Dam break problem. In this test case,we takeρ0(x) = 20 if x ∈ [0, 750 [ ,ρ0(x) = 10
if x ∈ ] 750, 1500], and u0 = 0 everywhere. The solutions given by the EXEXp and
IMEXp schemes with p = 0, 1 and 2 are shown on Fig. 1 using a 100-cell mesh,
and compared with the classical first-order HLL scheme over a 100-cell mesh and
a reference 1000-cell refined mesh. Note that the slope limiters allow to reduce
spurious oscillations, but there is still a little undershoot for the EXEX1 scheme.



70 C. Chalons and M. Stauffert

Table 1 EOA for the manufactured smooth solution at time T = 0.5

Δx p = 0 p = 1 p = 2

‖ρΔx − ρ‖1 order ‖ρΔx − ρ‖1 order ‖ρΔx − ρ‖1 order

1/512 9.3986E-03 0.9432 1.0196E-05 1.9996 1.3457E-08 2.9907

1/1024 4.7945E-03 0.9710 2.5493E-06 1.9998 1.6849E-09 2.9977

1/2048 2.4217E-03 0.9854 6.3736E-07 1.9999 2.1070E-10 2.9994

Fig. 1 Dam Break problem, water height at time T = 10, EXEXp (left), IMEXp (right)
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