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Abstract Wepresent an adaptiveDiscontinuousGalerkin discretization for the solu-
tion of porousmedia flow problems. The considered flows are immiscible and incom-
pressible. The adaptive approach implemented allows for refinement/coarsening in
both the element size and the polynomial degree. The method is evaluated using
homogeneous and heterogeneous test cases.
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1 Introduction

The modeling and simulation of flow in porous media is essential in many environ-
mental problems such as groundwater flow and petroleum engineering. The inherent
geological complexity and the strong heterogeneity of the soil parameters require
locally conservative methods such as Discontinuous Galerkin (DG)methods in order
to be able to follow small concentrations [1].

The first h-adaptive DG framework for porous media two-phase flow was intro-
duced by Klieber and Riviére [11]. The authors used a decoupled formulation with
continuous capillary pressure functions, only 2d flow on non-conforming simpli-
cial grids were considered and they implemented an error indicator obtained from
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transient linear convection diffusion problems [9]. More recently, Kane [10] imple-
mented a higher order h-adaptive scheme for 2d and 3d two-phase flow problemwith
strong heterogeneity, discontinuous capillary pressure functions and gravity effects.
The results in [10] show that an increase of the polynomial degree gives a consider-
able improvement of the solutionwith sharper fronts and the oscillations appearing in
the vicinity of the front are reduced with the local mesh refinement. A discretization
scheme independent abstract framework allowing for a more rigorous a-posteriori
estimator for porous media two-phase flow problem was introduced by [13]. This
paved the way for a h-adaptive strategy for a homogeneous two-phase flow problem.
However it has only been applied so far to Finite Volume methods [6].

The first contribution of this work is to provide a first and second order Adam-
Moulton time discretization combined with the Interior Penalty DG methods. This
implicit space time discretization leads to a fully coupled nonlinear system requiring
to build a Jacobian matrix at each time step for the Newton-Raphson method. The
second contribution of this work is providing a hp-adaptive strategy extending the
previous work of [10], this is the first porous media two-phase flow fully adaptive
scheme allowing for adaptivity for both the element size and the polynomial degree.
This hp-adaptive strategy allows to refine the mesh when the solution is estimated
to be rough and increase the polynomial degree when the solution is estimated to be
smooth hence compensating the increased computational cost for complex models.

The rest of this document is organised as follows. In the next section, we describe
the two-phase flow model. The DG discretization is introduced in Sect. 3. The adap-
tive strategy in space is outlined in Sect. 4. Numerical examples are provided in
Sect. 5. Finally concluding remarks are provided in the last section.

2 Governing Equations

Weconsider an open and bounded domainΩ ∈ R
d , d ∈ {1, 2, 3} and the time interval

J = (0, T ), T > 0. The flow of the wetting-phase and the nonwetting-phase is
described by the Darcy’s law and the continuity equation for each phase, namely,
with

∑
α sα = 1 and pn − pw = pc(sw,e),

vα = −λαK (∇ pα − ραg) and φ
∂ραsα

∂t
+ ∇ · (ραvα) = ραqα. (1)

Here, we search for the phase pressures pα and the phase saturations sα, α ∈ {w, n}.
We denote with subscript w the wetting-phase and with subscript n the nonwetting-
phase. K is the permeability of the porous medium, ρα is the phase density, qα is a
source/sink term and g is the constant gravitational vector. We assume the porosity
φ is time independent and there exist φ1,φ2 > 0 such that 0 < φ1 ≤ φ ≤ φ2 and
with the phase mobilities λα = krα

μα
, α ∈ {w, n}, where μα is the phase viscosity and
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krα is the relative permeability of phase α. The relative permeabilities are functions
that depend on the phase saturation in nonlinear fashion (i.e. krα = krα(sα)). For

example, in theBrooks-Coreymodel [5], krw(sw,e) = s
2+3θ

θ
w,e , krn(sn,e) = (sn,e)

2(1 −
(1 − sn,e)

2+θ
θ ), where the effective saturation sα,e is sα,e = sα−sα,r

1−sw,r−sn,r
, ∀α ∈ {w, n}.

Here, sα,r ,α ∈ {w, n} are the phase residual saturations. The parameter θ ∈ [0.2, 3.0]
is a result of the inhomogeneity of the medium. The capillary pressure pc = pc(sw,e)

is a function of the phase saturation pc(sw,e) = pds
−1/θ
w,e where pd ≥ 0 is the constant

entry pressure.
From the constitutive relations sw + sn = 1 and pn − pw = pc(sw,e), we can

rewrite the two-phase flow problem as a system of equations with two unknowns
pw and sn ,

−∇ · (λt K∇ pw + λnK∇ pc − (ρwλw + ρnλn)Kg) = qw + qn,

φ
∂sn
∂t

− ∇ · (λnK (∇ pw − ρng)) − ∇ · (λnK∇ pc) = qn.
(2)

Here, λt = λw + λn denotes the total mobility.
The first equation of (2) is of elliptic type with respect to the pressure pw. The

type of the second equation of (2) is either nonlinear hyperbolic if ∂ pc(sn)
∂sn

≡ 0 or
degenerate parabolic if the capillary pressure is not neglected. The diffusion term
might degenerate if λn(sn = 0) = 0. In order to have a complete system we add
appropriate boundary and initial conditions. Thus, we assume that the boundary of
the system is divided into disjoint open sets ∂Ω = Γ̄D ∪ Γ̄N . We define the total
inflow Jt = Jw + Jn as the sum of the phases inflow on the Neumann boundary Γ̄N .

3 Discretization

Let Th = {E} be a family of non-degenerate, quasi-uniform, possibly non-
conforming partitions of Ω consisting of Nh elements (quadrilaterals or trian-
gles in 2d, tetrahedrons or hexahedrons in 3d) of maximum diameter h. Let Γ h

be the union of the open sets that coincide with internal interfaces of elements
of Th . Dirichlet and Neumann boundary interfaces are collected in the set Γ h

D
and Γ h

N . Let e denote an interface in Γ h shared by two elements E− and E+ of
Th ; we associate with e a unit normal vector ne directed from E− to E+. We
also denote by |e| the measure of e. The discontinuous finite element space is
Dr (Th) = {v ∈ L

2(Ω) : v|E ∈ Pr (E) ∀E ∈ Th}, wherePr (E) denotes Qr (resp.
Pr ) the space of polynomial functions of degree atmost r ≥ 1 on E (resp. the space of
polynomial functions of total degree r ≥ 1 on E). We approximate the pressure and
the saturation by discontinuous polynomials of total degrees rp and rs respectively.
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For any function q ∈ Dr (Th), we define the jump operator �·� and the average oper-
ator {·} over the interface e: ∀e ∈ Γ h , �q� := qE− − qE+ , {q} := 1

2qE− + 1
2qE+ ,

and ∀e ∈ ∂Ω , �q� = {q} := qE− .
In order to treat the strong heterogeneity of the permeability tensor, we follow [8]
and introduce a weighted average operator {·}ω:

∀e ∈ Γ h, {q}ω = ωE−qE− + ωE+qE+ and ∀e ∈ ∂Ω, {q}ω = qE− .

The weights are ωE− = δ
E+
K

δ
E+
K +δ

E−
K

, ωE+ = δ
E−
K

δ
E+
K +δ

E−
K

with δ
E−
K = nTe KE−ne and δ

E+
K =

nTe KE+ne. Here, KE− and KE+ are the permeability tensors for the elements E−
and E+.

3.1 Semi Discretization in Space

The derivation of the semi-discrete DG formulation is standard (see [11]). First, we
multiply each equation of (2) by a test function and integrate over each element,
then we apply Green formula to obtain the semi-discrete weak DG formulation.
Hence, the aforementioned formulation consists in finding the continuous in time
approximations pw,h(·, t) ∈ Drp (Th), sn,h(·, t) ∈ Drs (Th) such that:

Bh(pw,h,ϕ; sn,h) = lh(ϕ) ∀ϕ ∈ Drp (Th), ∀t ∈ J ,

(Φ∂t sn,h,ψ) + ch(pw,h,ψ; sn,h) + dh(sn,h,ψ) = rh(ψ) ∀ψ ∈ Drs (Th), ∀t ∈ J .
(3)

The bilinear formBh in the total fluid conservation equation of the system (3) is:

Bh(pw,h,ϕ; sn,h) = Bbulk,h + Bcons,h + Bsym,h + Bstab,h . (4)

The first termBbulk,h := Bbulk,h(pw,h,ϕ; sn,h) of (4) is the volume term:

Bbulk,h =
∑

E∈Th

∫

E
(λt K∇ pw,h + λnK∇ pc,h) · ∇ϕ −

∑

E∈Th

(ρnλn + ρwλw)Kg · ∇ϕ. (5)

The second termBcons,h := Bcons,h(pw,h,ϕ; sn,h), is the consistency term:

Bcons,h = −
∑

e∈Γ h∪Γ h
D

∫

e
{λt K∇ pw,h}ω · ne�ϕ� −

∑

e∈Γ h∪Γ h
D

∫

e
{λnK∇ pc,h}ω · ne�ϕ�

+
∑

e∈Γ h∪Γ h
D

∫

e
{(ρnλn + ρwλw)Kg)}ω · ne�ϕ�.

(6)
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The termBsym,h := Bsym,h(pw,h,ϕ; sn,h), is the symmetry term. Depending on the
choice of ε we get different DG methods (ε = −1 SIPG, ε = 1 NIPG, ε = 0 IIPG):

Bsym,h =ε
∑

e∈Γ h∪Γ h
D

∫

e
{λt K∇ϕ}ω�pw,h� + ε

∑

e∈Γ h∪Γ h
D

∫

e
{λnK∇ϕ}ω�sn,h�. (7)

Bstab,h := Bstab,h(pw,h,ϕ) = ∑

e∈Γ h∪Γ h
D

γ
p
e

∫
e�pw,h��ϕ� is the stability term.

Following [3], the penalty formulation is: γ p
e = σp

rp(rp+d−1)|e|
min(|E−|,|E+|) , σp ≥ 0.

The right hand side of the total fluid conservation equation of the system (3) is a
linear form including the boundary conditions and the source terms.

lh(ϕ) =
∫

Ω

(qw + qn)ϕ −
∑

e∈ΓN

∫

e
Jtϕ + ε

∑

e∈Γ h
D

∫

e
λt K∇ϕ · ne pD

+ ε
∑

e∈Γ h
D

∫

e
λnK∇ϕ · nesD +

∑

e∈Γ h
D

γ p
e

∫

e
pDϕ, ∀ϕ ∈ Drp (Th).

(8)

The second equation of the system (3) is the discrete weak formulation of the
nonwetting-phase conservation equation where the convection term −∇ ·
(λnK (∇ pw − ρng)) might be approximated by an upwind discretization technique.

ch(pw,h,ψ; sn,h) =
∑

E∈Th

∫

E
(Kλn(∇ pw,h − ρng)) · ∇ψ −

∑

e∈Γ h∪Γ h
D

∫

e
{Kλ#

n∇ pw,h}ω�ψ�

+
∑

e∈Γ h∪Γ h
D

∫

e
{ρnKλ#

ng}ω�ψ� + ε
∑

e∈Γ h∪Γ h
D

∫

e
{Kλ#

n∇ψ}ω�pw,h�,

(9)

where λ#
n = (1 − ρ)λn,E + ρλ

↑
n and λ

↑
n is the upwind mobility:

∀e ∈ ∂E− ∩ ∂E+, λ↑
n =

{
λn,E− if − K (∇ pw + ∇ pc − ρng) · n ≥ 0,

λn,E+ else.

Hence depending on the value of ρ ∈ {0, 1}, we might use central differencing or
upwinding of the mobility for internal interfaces.
The diffusion term −∇ · (λnK∇ pc) is discretized by a bilinear form similar to that
of (4). A more detailed expression can be found in [10].

3.2 Fully Coupled/Fully Implicit DG Scheme

The time interval [0, T ] is divided into N intervals Δti = ti+1 − ti as 0 = t0 ≤ t1 ≤
· · · ≤ tN−1 ≤ tN = T . Let piw and sin be the numerical solutions at time t i . The
approximation s0n,h is chosen as the L2 projection of the saturation sn(0). For the
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sake of simplicity and easier reading, we apply a first order Adams-Moulton time
discretization and Interior Penalty DG for space discretization to the semi-discrete
system (3):

Bh(p
i+1
w,h ,ϕ; si+1

n,h ) = lh(ϕ), ∀ϕ ∈ Drp (Th),

(Φ
si+1
n,h − sin,h

Δt
,ψ) + ch(p

i+1
w,h ,ψ; si+1

n,h ) + dh(s
i+1
n,h ,ψ) = rh(ψ), ∀ψ ∈ Drs (Th),

(s0n,h, ζ) = (s0n , ζ), ∀ζ ∈ Drs (Th).

(10)

4 Adaptivity

The first approach considered,GradIndicator, is based on a heuristic indicator which
depends on the local gradient of the DG solution measured in the L2 norm. We
define on each element E of the mesh, the indicator ηi

E at time step i , such that:
ηi
E = ‖∇sin‖L2(E), ∀E ∈ Th . Each element whose indicator ηi

E is greater than a
threshold value ηTol ≥ 0 is refined.

For the second approach, the choice between h-adaptivity and p-adaptivity
depends heavily on the value of a smoothness indicator ςE . Given an error indicator
ηE , E ∈ Th , we define ηr−1

E the L2 projection into a lower order polynomial space
Dr−1(Th). The derivation of this L2 projection is quite straightforward due to the hier-
archical aspect of the modal DG bases implemented. The indicator ηE = ‖sn‖H 1(E)

allows to refine the mesh when the solution is estimated to be rough and increase the
polynomial degree when the solution is estimated to be smooth. The use of heuristic
error indicators requires a maximum level of allowed h-refinement maxlevel to be
specified to avoid overly aggressive refinement. Whenever an element is selected for
h-refinement it is also selected for p-coarsening in order to reduce the oscillations in
the vicinity of the front of the propagation. An hp-adaptive strategy of this type called
PRIOR2P as in [12] is implemented. In that approach, the smoothness indicator is

ςE ∼ 1 − log((ηr−1
E )/(ηr−2

E ))

log((r−1)/(r−2)) , where r is the local polynomial degree.

5 Numerical Simulations

In this section we present some numerical tests for the adaptive DG scheme. All
test cases are implemented with the Interior Penalty methods. In order to ensure
second order accuracy, we employ a central differencing of the mobility for internal
interfaces thus following a similar approach to that of Rivière et al. [7].
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5.1 2d Flow Problem

We consider here a two dimensional test case that admits an exact solution from
[2] aiming to examine the L2 error of the DG methods. The problem depicts the
transport of a Gaussian pulse in a rotating flow field. Considering Ω = (−0.5, 0.5)2

and J = (0, T ), we search for (S) such that: ∂S
∂t + ∇ · (uS + K∇S) = 0 in Ω × J.

The problem boundary and initials conditions derive from the exact solution

S(x, y, t) = 2σ2/(2σ2 + 4Kt) e(− (x̄−xc )2+(ȳ−yc )2

2σ2+4Kt
) where, u = (−4y, 4x)T , x̄ =

xcos(4t) + ysin(4t), ȳ = −xsin(4t) + ycos(4t), xc = −0.25, yc = 0, K = 10−4

and 2σ2 = 0.004.
The domain is subdivided uniformly into square elements. The coarsest mesh

consist of 8 × 8 elements. The solutions are approximated by piecewise polynomials
of order k, k ∈ {1, 2, 3, 4}. The penalty parameter σp = 10−10. Figures1, 2 and 3
provide contours of the solution for the IIPG scheme combined with second order
Adams-Moultonmethod time discretization. The numerical analysis in Table1 shows
that the PRIOR2P indicator yields a smaller L2 error.

5.2 3d Heterogeneous Problem

In this section, we focus on a three-dimensional case.We also consider different sand
types with different permeabilities and different entry pressures (Table2).

The bottom of the reservoir is impermeable for both phases. Hydrostatic con-
ditions for the pressure pw and homogeneous Dirichlet conditions for the satu-
ration sn are prescribed at the lateral boundaries. A flux of 0.25Kg s−1m−2 of

Fig. 1 Rotating pulse,
solution at T=0.4

Table 1 L2 error for solution at T = 0.4

‖S −
Sh‖L2(Ω)

Final nb of
DOFs

Avg nb of lin
it/ Newton
cycle

Avg inv time/
Newton [s]

Avg assem
time / Newton
[s]

GradIndicator 3.06 × 10−04 19230 28.63 0.0525 0.44

PRIOR2P 3.494 × 10−06 46750 33.36 0.096 0.96
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the DNAPL is infiltrated from the top into a domain of depth of 1m. The initial
ALUCubeGrid mesh consist of 17 × 17 × 17 hexahedral elements and resolves
the interfaces between regions with different permeabilities. 150 time steps of length
Δt = 20 s are computed (final time T = 3000 s). This grid is locally adapted (non-
conforming). We also set rp = rs for the problem.

Figure4 illustrates the evolution of the nonwetting saturation during the simula-
tion. The effects of the hp algorithm are reflected in the mesh distribution showing an
intense refinement and lower polynomial degree in the parts of the domain where the
value of the indicator is above the threshold value. The second row of Fig. 4 shows
the drastic improvement of the front shape and the reduction of the oscillations in
the vicinity of the front when h and hp-adaptive methods are used. Table3 provides
more details concerning the computational effort.

6 Conclusion & Outlook

In this work, we have introduced an adaptive discontinuous Galerkin scheme for
incompressible, immiscible two-phase flow in strongly heterogeneous porous media
with gravity forces and discontinuous capillary pressures. We considered as a 3d test
case a DNAPL infiltration in an initially water saturated reservoir. The oscillations
appearing in the vicinity of the front of the propagation are reduced with the local

Table 2 3d problem parameters

Ω1 Ω2 Ω\Ω1 ∩ Ω\Ω2

Φ [-] 0.39 0.39 0.40

k [m2] 6.64 × 10−16 6.64 × 10−15 6.64 × 10−11

Swr [-] 0.1 0.1 0.12

Snr [-] 0.00 0.00 0.00

θ [-] 2.0 2.0 2.70

pd [Pa] 5000 5000 755

Table 3 L2 error for solution at T = 0.4

Final nb of
DOFs

Avg nb of lin
it/ Newton
cycle

Avg inv time/
Newton [s]

Avg assem
time / Newton
[s]

Total CPU
time [s]

No-adapt
deg=2

196520 96.19 2.97 33.9 7360.3

h-adapt deg=1 171232 127.157 20.38 9.86 6740.4

h-adapt deg=2 398680 509.56 78.0 16.26 19812.1

hp-adapt deg2 296680 468 70.69 28.3 19294.8
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Fig. 2 Polynomial degrees
at T=0.4 for GradIndicator

Fig. 3 Polynomial degrees
at T=0.4 for PRIOR2P

Fig. 4 First row from left to right, domain geometry, contour plot of saturation distribution after
3000s of injection,mesh distribution, polynomial degree distribution along the slice y=0.45. Second
row saturation profile along the slice y=0.45; from left to right, non-adaptive with rp = rs = 2,
h-adaptive with rp = rs = 1, h-adaptive with rp = rs = 2, hp-adaptive with max{rp, rs}=2



456 B. Kane et al.

mesh refinement and the decrease of the local polynomial order. Future work will
be concerned with the derivation of robust anisotropic hp-adaptive methods and
the extension to other DG methods such as the Compact Discontinuous Galerkin 2
(CDG2) [4].
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