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Abstract We present a new mixed finite element method for linear elasticity with
weakly enforced stress symmetry on simplicial grids. Motivated by the multipoint
flux mixed finite element method for Darcy flow, we consider a special quadrature
rule that allows for elimination of the stress and rotation variables and leads to a cell-
centered system for the displacements. Theoretical and numerical results indicate
first-order convergence for all variables in the natural norms.
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1 Problem Set up

Weconsider the static linear elasticity problem in a domainΩ ⊂ R
d , d = 2, 3.Given

the body force vector field f on Ω , the stress σ and the displacement u satisfy the
constitutive and equilibrium equations

Aσ = ε(u), div σ = f in Ω. (1)
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Here A(x) is the symmetric and positive definite compliance tensor, which in the
case of an isotropic body is

Aσ = 1

2μ

(
σ − λ

2μ + dλ
tr(σ)I

)
,

where I is the d × d identity matrix and μ(x) > 0 and λ(x) ≥ 0 are the Lamé coef-
ficients, and ε(u) = 1

2

(∇u + (∇u)T
)
. The boundary conditions are u = g on ΓD ,

σ n = 0 on ΓN , where ΓD ∪ ΓN = ∂Ω , n is the outward unit normal vector on ∂Ω ,
and we assume for simplicity that ΓD �= ∅. Throughout the paper div is the usual
divergence for vector fields, and it produces a matrix field when applied to a matrix
field by taking the divergence of each row.

LetM and N be the spaces of real d × d matrices and skew-symmetric matrices,
respectively. Introducing the Lagrange multiplier γ, a skew-symmetric matrix repre-
senting the rotation, to penalize the asymmetry of the stress tensor, we arrive at the
weak formulation for (1): find (σ, u, γ) ∈ X × V × W such that

(Aσ, τ ) + (u, div τ ) + (γ, τ ) = 〈g, τ n〉ΓD , ∀τ ∈ X, (2)

(div σ, v) = ( f, v) , ∀v ∈ V, (3)

(σ, ξ) = 0, ∀ξ ∈ W, (4)

where X = {
τ ∈ H(div;Ω,M) : τ n = 0 on ΓN

}
, V = L2(Ω,Rd), and W =

L2(Ω,N). The reason for considering a mixed formulation with weak stress sym-
metry is that its lowest order mixed finite element approximation developed in [3]
is suitable for a local stress elimination via a quadrature rule, resulting in a cell-
centered system for displacement (and the rotation). This approach is motivated by
the multipoint flux mixed finite element method [11], as well as the multipoint stress
approximation [8, 9].

2 Numerical Approximation

Consider a polygonal domain Ω ∈ R
d and let Th be a finite element partition of Ω

consisting of triangles in two dimensions and tetrahedra in three dimensions. For any
element E ∈ Th there exists a bijectionmapping FE : Ê → E ,where Ê is a reference
element.Denote the Jacobianmatrix by DFE and let JE = det(DFE ). LetXh × Vh ×
W

l
h = (BDM1)

d × (P0)
d × (Pl)

d×d,skew, l = 0, 1 ⊂ X × V × W, where BDM1 is
the lowest order Brezzi-Douglas-Marini space [5]. On the reference triangle these
spaces are defined as
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X̂h(Ê) = P1(Ê)2 × P1(Ê)2 =
(

α1 x̂ + β1 ŷ + γ1 α2 x̂ + β2 ŷ + γ2
α3 x̂ + β3 ŷ + γ3 α4 x̂ + β4 ŷ + γ4

)
,

V̂h(Ê) = P0(Ê) × P0(Ê), Ŵ
l
h(Ê) =

(
0 p

−p 0

)
, p ∈ Pl(Ê) for l = 0, 1.

The definition of the spaces on tetrahedra is obtained naturally from the one above.
The corresponding spaces on any element E ∈ Th are defined via the transforma-
tions, for χ ∈ Xh , v ∈ Vh , and w ∈ W

l
h ,

χ ↔ χ̂ : χ = 1

JE
DFE χ̂ ◦ F−1

E , v ↔ v̂ : v = v̂ ◦ F−1
E , w ↔ ŵ : w = ŵ ◦ F−1

E .

Themixedfinite element approximation of (2)–(4) is shown to be stable andfirst order
accurate for all of variables in their natural norms in [3] (l = 0) and [7] (l = 1). The
drawback is that the resulting algebraic system is a two-level saddle point systemwith
three coupled variables, and thus expensive to solve. We next propose a quadrature
rule that allows for local elimination of the stresses and rotations which leads to a
cell-centered displacement-rotation, or further, displacement-only system.

A quadrature rule. We employ a trapezoidal-type quadrature rule for the stress
bilinear form. For χ, τ ∈ Xh , define

(Aχ, τ )Q =
∑
E∈Th

(Aχ, τ )Q,E , (Aχ, τ )Q,E = |E |
s

s∑
i=1

A(ri )χ(ri ) : τ (ri ),

where s = 3 on triangles and s = 4 on tetrahedra. In the case of linear rotations, a
similar quadrature rule is employed for the stress-rotation bilinear forms.

Two multipoint stress mixed finite element methods. We seek σh ∈ Xh, uh ∈ Vh

and γh ∈ W
l
h , l = 0, 1, such that

(Aσh, τ )Q + (uh, div τ ) + (γh, τ )Q = 〈g, τ n〉ΓD , τ ∈ Xh, (5)

(div σh, v) = ( f, v), v ∈ Vh, (6)

(σh, ξ)Q = 0, ξ ∈ W
l
h . (7)

We note that the quadrature rule in (γh, τ )Q and (σh, ξ)Q is applied only for l = 1.
It is in fact exact for l = 0. We refer to the methods with l = 0 and l = 1 as the
MSMFE-0 and the MSMFE-1 method, respectively. The well-posedness of (5)–(7)
can be established using the classical Babuŝka-Brezzi conditions [6], which in our
case are as follows:

(S1) There exists a constant c > 0 such that

c‖τ‖2div ≤ (Aτ , τ )Q for τ ∈ Xh s.t. (div τ , v) + (τ , ξ)Q = 0, ∀(v, ξ) ∈ Vh × W
l
h,
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Fig. 1 Finite elements and stress degrees of freedom sharing a vertex (left) and cell-centered stencil
(right)

(S2) There exists β > 0 such that

inf
0 �=(v,ξ)∈Vh×W

l
h

sup
0 �=τ∈Xh

(div τ , v) + (τ , ξ)Q
‖τ‖div (‖v‖ + ‖ξ‖) ≥ β.

Here ‖ · ‖div and ‖ · ‖ denote the H(div;Ω) and the L2(Ω) norms, respectively.
Condition (S1) can be easily established by showing that (Aτ , τ )Q is equivalent to
‖τ‖2, see, e.g., [11]. Condition (S2) has been shown in [3, 4] for l = 0 and in [2]
for l = 1. The latter case is challenging, due to the presence of the quadrature rule.
It requires inf-sup stability for the bilinear form (div q, w)Q for the Taylor-Hood
P2 − P1 spaces. This is shown in [2] using a macro-element argument motivated
by [10].

Reduction to a cell-centered scheme. The algebraic system that arises from the
(5)–(7) is of the form

⎛
⎝Aσσ AT

σu AT
σγ

Aσu 0 0
Aσγ 0 0

⎞
⎠

⎛
⎝σ
u
γ

⎞
⎠ =

⎛
⎝g

f
0

⎞
⎠ ,

where (Aσσ)i j = (Aτi , τ j )Q , (Aσu)i j = (div τi , v j ) and (Aσγ)i j = (τi , ξ j )Q . It is
known [5, 6] that the degrees of freedom for BDM1 can be chosen to be the values of
the normal fluxes at any d points on each edge (face) ê of the reference element Ê .
This naturally extends to normal stresses in our case of BDM1 × BDM1. We choose
these points to be the vertices of ê. Let us consider any interior vertex r and suppose
that it is shared by l elements E1, ..., Em as shown in Fig. 1 withm = 4. Let e1, ..., ek
be the edges (faces) that share the vertex r and let τ1, ..., τd k , be the stress basis func-
tions on these edges (faces) associated with the vertex r. Denote the corresponding
values of the normal components of σh by σ1, ...,σd k . Note that for for the sake of
clarity the normal stresses are drawn at a distance from the vertex. The quadrature
rule (Aτi , τ j )Q decouples σ1, ...,σd k from the rest of the stress degrees of freedom.
As a result, the matrix Aσσ is block-diagonal with d k × d k blocks associated with
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the mesh vertices. Due to (S1), these local blocks are symmetric and positive definite
blocks. Hence, eliminating σ leads to a cell-centered displacement-rotation system

(
Aσu A−1

σσ A
T
σu Aσu A−1

σσ A
T
σγ

Aσγ A−1
σσ A

T
σu Aσγ A−1

σσ A
T
σγ

)(
u
γ

)
=

(
f̃
h̃

)
. (8)

Further reduction is possible in the case of MSMFE-1, l = 1, where the quadrature
rule (τi , ξ j )Q results in a block-diagonal rotation matrix Aσγ A−1

σσ A
T
σγ with d(d −

1)/2 × d(d − 1)/2 blocks associatedwithmesh vertices. It is symmetric and positive
definite, due to (S2). Hence, local elimination of the rotation in (8) results in a
displacement-only cell-centered system

(Aσu A
−1
σσ A

T
σu − Aσu A

−1
σσ A

T
σγ(Aσγ A

−1
σσ A

T
σγ)

−1Aσγ A
−1
σσ A

T
σu)u = f̂ . (9)

The cell-centered stencil in (8) and (9) is shown in Fig. 1 (right). The displacements
(and rotations) in each element E are coupled to the displacements (and rotations)
in all elements that share a vertex with E .

Error estimates. As shown above, the MSMFE-0 and MSMFE-1 methods allow to
eliminate locally the stress (and rotation) variables, thus significantly reducing the
size of the global problem. The following result from [2] addresses the accuracy
of the methods. First-order convergence is obtained for all variables in their natural
norms. Moreover, the computed displacement is h2-close to the true displacement
when measured at the center of mass of each element.

Theorem 1 If A ∈ W 1,∞(Ω), then

‖σ − σh‖ + ‖u − uh‖ + ‖γ − γh‖ ≤ Ch(‖σ‖1 + ‖u‖1 + ‖γ‖1). (10)

Moreover, if A ∈ W 2,∞(Ω), then

‖Qhu − uh‖ ≤ Ch2 (‖σ‖1 + ‖ div σ‖1 + ‖γ‖1) , (11)

where Qh denotes the L2-projection onto the space Vh.

3 Numerical Results

We present several numerical tests confirming the theoretical convergence rates and
illustrating the behavior of the method. The first two examples test convergence on
the unit hypercube in 2 and 3 dimensions, respectively, while the last examplemodels
a pulley under centripetal load. For the first two examples, the boundary conditions
are Dirichlet on the entire boundary and the analytical solution is given. All tests
have been performed using the FEniCS finite element package [1].
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Fig. 2 Computed displacement on the finest mesh with the MSMFE-1 method in Example1 left
and Example2 right

Table 1 Relative errors computed with the MSMFE-0 method for Example 1

h ‖σ − σh‖div Rate ‖u − uh‖ Rate ‖Qhu − uh‖ Rate ‖γ − γh‖ Rate

1/2 2.26E+00 – 2.18E+00 – 1.72E+00 – 1.68E+00 –

1/4 1.57E+00 0.5 7.45E-01 1.6 7.02E-01 1.7 9.32E-01 0.9

1/8 6.70E-01 1.2 2.67E-01 1.5 1.43E-01 2.4 5.42E-01 0.8

1/16 2.99E-01 1.2 1.20E-01 1.2 2.94E-02 2.3 2.97E-01 0.9

1/32 1.48E-01 1.0 6.03E-02 1.0 7.80E-03 1.9 1.54E-01 1.0

1/64 7.37E-02 1.0 3.03E-02 1.0 2.03E-03 1.9 7.80E-02 1.0

Example 1 We solve problem (1) with a given displacement solution

u =
(

cos(2πxy) sin(πx) sin(πy)
cos(2πxy) sin(2πx) sin(2πy)

)

on the unit square. The Lamé parameters are set to be λ = 123.0 and μ = 79.3. The
computational grid is obtained by a Delauney triangulation of the given domain on
several levels of refinement. The computed displacement with theMSMFE-1method
on the finest level h = 1/64 is shown in Fig. 2 (left). We present the relative errors
and convergence rates for the MSMFE-0 and MSMFE-1 methods in Tables1 and
2, respectively. As expected from the theory, both methods exhibit at least linear
convergence for all variables in their natural norms, with a quadratic convergence
for the displacement error computed at the cell-centers. We also note that the rotation
error converges with order O(h1.5) for the MSMFE-1 method, which is due to the
use of a P1 finite element space for this variable.
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Table 2 Relative errors computed with MSMFE-1 method for Example 1

h ‖σ − σh‖div Rate ‖u − uh‖ Rate ‖Qhu − uh‖ Rate ‖γ − γh‖ Rate

1/2 2.26E+00 – 2.49E+00 – 1.92E+00 – 1.28E+00 –

1/4 1.57E+00 0.5 7.50E-01 1.7 7.10E-01 1.8 7.77E-01 0.7

1/8 6.77E-01 1.2 2.68E-01 1.5 1.48E-01 2.3 3.39E-01 1.2

1/16 3.01E-01 1.2 1.20E-01 1.2 3.12E-02 2.2 1.11E-01 1.6

1/32 1.48E-01 1.0 6.04E-02 1.0 8.64E-03 1.9 3.95E-02 1.5

1/64 7.40E-02 1.0 3.03E-02 1.0 2.27E-03 1.9 1.50E-02 1.4

Table 3 Relative errors computed with MSMFE-0 method for Example 2

h ‖σ − σh‖div Rate ‖u − uh‖ Rate ‖Qhu − uh‖ Rate ‖γ − γh‖ Rate

1/2 1.42E+00 – 4.88E-01 0.0 3.09E-01 – 4.53E-01 0.0

1/4 7.06E-01 1.0 2.22E-01 1.1 7.23E-02 2.1 2.14E-01 1.1

1/8 3.47E-01 1.0 1.08E-01 1.0 1.78E-02 2.0 1.03E-01 1.1

1/16 1.72E-01 1.0 5.37E-02 1.0 4.43E-03 2.0 5.07E-02 1.0

1/32 8.59E-02 1.0 2.68E-02 1.0 1.11E-03 2.0 2.52E-02 1.0

Table 4 Relative errors computed with MSMFE-1 method for Example 2

h ‖σ − σh‖div Rate ‖u − uh‖ Rate ‖Qhu − uh‖ Rate ‖γ − γh‖ Rate

1/2 1.47E+00 – 4.82E-01 0.0 2.98E-01 – 3.53E-01 0.0

1/4 7.32E-01 1.0 2.22E-01 1.1 7.37E-02 2.0 1.49E-01 1.2

1/8 3.61E-01 1.0 1.08E-01 1.0 1.90E-02 2.0 5.68E-02 1.4

1/16 1.78E-01 1.0 5.37E-02 1.0 4.86E-03 2.0 2.04E-02 1.5

1/32 8.83E-02 1.0 2.68E-02 1.0 1.23E-03 2.0 7.21E-03 1.5

Example 2 For the second test, we model a simultaneous twisting and compression
of the unit cube, with a given displacement solution:

⎛
⎝ −0.1(ex − 1) sin(πx) sin(πy)

−(ex − 1)(y − cos( π
12 )(y − 0.5) + sin( π

12 )(z − 0.5) − 0.5)
−(ex − 1)(z − sin( π

12 )(y − 0.5) − cos( π
12 )(z − 0.5) − 0.5)

⎞
⎠ .

We allow the Young’s modulus to change over the domain as E = e4x and take the
Poisson ratio ν = 0.2. The Lamé parameters are obtained from the relationships
λ = Eν

(1+ν)(1−2ν)
and μ = E

2(1+ν)
. The computed displacement with the MSMFE-1

method on the finest level h = 1/32 is shown in Fig. 2 (right). The relative errors
and convergence rates obtained by theMSMFE-0 andMSMFE-1 methods, as shown
in Tables3 and 4, respectively, behave similarly to the two-dimensional Example1
(Tables1 and 2).
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Fig. 3 Stress solution magnitude of the MSMFE-1 method left and a non-mixed method right for
Example3

Example 3 The last example is from the FEniCS repository and it models a pulley
under centripetal load given by

f = (
ρω2x, ρω2y, 0

)′
,

with rotation rate ω = 10 (rad/s) and mass density ρ = 300 (kg/m3). The dis-
placement is set to be zero at the shaft of the pulley, while zero traction boundary
conditions are enforced on the rest of the boundary. We compare the computed stress
of the MSMFE-1 method to the one obtained by solving the classical displacement
formulation for linear elasticity, with a post-processing step to recover the stress, see
Fig. 3). For the sake of space, we omit the displacement solutions as they are visually
of equal quality. However, we observe smoother approximation of the stress variable
provided by the MSMFE-1 method, as the method computes a locally conservative
H-div approximation and does not require a numerical differentiation, hence avoiding
extra loss of accuracy.
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