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Abstract The prototype for flow and transport in porousmedia in an interior domain
is coupled to the Laplace equation on the complement, an unbounded domain. We
approximate the solution of this interface problem either by the non-symmetric or
the three-field coupling of the Finite Volume Method (FVM) and the Boundary
ElementMethod (BEM). For these two couplingmethodswe introduce (semi-) robust
a posteriori error estimators and use them in an adaptive algorithm to improve the
convergence. Numerical experiments compare these two adaptive methods in terms
of effectivity index, errors and mesh refinement.

Keywords Finite volume method · Boundary element method · Non-symmetric
coupling · Three-field coupling · Robust a posteriori error estimates · Adaptive
mesh refinement

1 Introduction and Model Problem

The finite volumemethod (FVM) is the method of choice for problems coming from
fluid mechanics applications because of its direct flux conservation and the possibil-
ity to solve convection dominated problems via a simple upwind stabilization. When
such a flow problem is coupled with a problem on an unbounded domain (e.g., to
replace unknown boundary conditions) it is useful to reduce the exterior problem to
a problem on the boundary. This leads to a formulation as an integral equation and its
discretization to the boundary element method (BEM). There are several possibili-
ties to couple FVMwith BEM, in this work we compare the adaptive non-symmetric
[3, 4] and the adaptive three-field FVM-BEM coupling approach [1, 2]. Both cou-

C. Erath
TU Darmstadt, Department of Mathematics, Dolivostraße 15, 64293 Darmstadt, Germany
e-mail: erath@mathematik.tu-darmstadt.de

R. Schorr (B)
TU Darmstadt, Department of Mathematics/GSC CE, Dolivostraße 15,
64293 Darmstadt, Germany
e-mail: schorr@gsc.tu-darmstadt.de

© Springer International Publishing AG 2017
C. Cancès and P. Omnes (eds.), Finite Volumes for Complex Applications
VIII—Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings
in Mathematics & Statistics 200, DOI 10.1007/978-3-319-57394-6_36

337



338 C. Erath and R. Schorr

plings have been analyzed for 2D and 3D cases. For simplicity we only consider the
2D case here.

Let Ω ⊂ R
2 be a bounded domain with connected polygonal Lipschitz bound-

ary Γ with diam(Ω) < 1 (possible by scaling) to ensure H−1/2(Γ ) ellipticity of
the single layer operator defined below. The corresponding unbounded exterior
domain is Ωe = R

2\Ω . The coupling boundary Γ = ∂Ω = ∂Ωe is divided in an
inflow and outflow part, namely Γ in := {

x ∈ Γ
∣
∣b(x) · n(x) < 0

}
and Γ out :={

x ∈ Γ
∣
∣b(x) · n(x) ≥ 0

}
, respectively, where n is the normal vector on Γ pointing

outward with respect to Ω . Then the model problem reads, (see also [1, 3]): Find
u ∈ H 1(Ω) and ue ∈ H 1

�oc(Ωe) such that

div(−A∇u + bu) + cu = f in Ω, (1a)

−Δue = 0 in Ωe, (1b)

ue(x) = C∞ log |x | + O(1/|x |) for |x | → ∞, (1c)

u = ue + u0 on Γ, (1d)

(A∇u − bu) · n = ∂ue
∂n

+ t0 on Γ in, (1e)

(A∇u) · n = ∂ue
∂n

+ t0 on Γ out . (1f)

Here, Lm(·) and Hm(·), m > 0 denote the standard Lebesgue and Sobolev spaces
equipped with the corresponding norms ‖ · ‖Lm (·) and ‖ · ‖Hm (·). We will use (·, ·)ω
for the L2 scalar product for ω ⊂ Ω . The duality between Hm(Γ ) and H−m(Γ ) is
given by the extended L2-scalar product 〈·, ·〉Γ . We collect all functions with local
H 1 behavior in H 1

�oc(Ω) and the Lipschitz continuous functions in W 1,∞.
The diffusion matrix A : Ω → R

2×2 has entries in W 1,∞(T ) for every T ∈ T ,
whereT is ameshofΩ introducedbelow inSect. 2.Additionally,A is bounded, sym-
metric and uniformly positive definite. Furthermore, b ∈ W 1,∞(Ω)2 and c ∈ L∞(Ω)

satisfy the coerciveness assumption (div b(x))/2 + c(x) ≥ 0 for almost every x ∈
Ω . For the a posteriori estimators we assume slightly more regularity on the data
than usual; f ∈ L2(Ω), u0 ∈ H 1(Γ ) and t0 ∈ L2(Γ ). The constant C∞ is unknown;
see [1, 3] for possible different radiation conditions. Note that we can rewrite the
exterior problem (1b)–(1c) with the aid of the Calderón system and the Cauchy
data ξ := ue|Γ ∈ H 1/2(Γ ) and φ := ∂ue/∂n|Γ ∈ H−1/2(Γ ) into an equivalent inte-
gral equation. The model problem and the weak form are equivalent. There exists a
unique weak solution (u, ue) ∈ H 1(Ω) × H 1

�oc(Ω); see [1, 3].

2 Non-symmetric and Three-Field FVM-BEM Coupling

This section introduces two different types of FVM-BEM couplings. In order to do
this we first fix some notation.

Triangulations and discrete function spaces: With T we denote a regular trian-
gulation of Ω which consists of non-degenerate closed triangles. We assume that
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T is shape-regular, i.e., maxT∈T h2T /|T | ≤ σ < ∞ with hT := supx,y∈T |x − y|
and that (possible) discontinuities of the known data A, b, c, f , u0, and t0 are
aligned withT . Then the setsN and E are the nodes and edges ofT , respectively.
We denote by ET ⊂ E the set of all edges of T , i.e., ET := {

E ∈ E
∣
∣ E ⊂ ∂T

}
, by

EΓ := {
E ∈ E

∣
∣ E ⊂ Γ

}
the set of all edges on the boundary Γ , and by EI = E \EΓ

all interior edges. Furthermore, hE is the length of an edge E ∈ E and the unit normal
vector n on a boundary always points outwards with respect to the domain.

For a vertex-centered FVM formulation we need a dual mesh T ∗, which can
be constructed from the primal mesh T . The so-called control volumes V ∈ T ∗
are constructed by connecting the center of gravity of an element T ∈ T with the
midpoint of the edges E ∈ ET ; see [3, Fig. 1]. Note that for every vertex ai ∈ N
(i = 1 . . . #N ), we can assign a unique box Vi ∈ T ∗ only containing ai .

Finally, with S 1(T ) we define the piecewise affine and globally continuous
function space on T and S 1∗ (EΓ ) is S 1(EΓ ) (S 1 on EΓ ) with integral mean zero.
We denote by P0(EΓ ) and P0(T ∗) the EΓ -piecewise and T ∗-piecewise constant
function spaces. For v∗ ∈ P0(T ∗) we may use v∗ := ∑

ai∈N v∗
i χ

∗
i , v

∗
i ∈ R, where

χ∗
i is the characteristic function of Vi ∈ T ∗.

Non-symmetric FVM-BEM coupling: Now we can introduce the non-symmetric
FVM-BEM coupling method which reads: Find uh ∈ S 1(T ) and φh ∈ P0(EΓ )

such that

AV (uh, v
∗) − 〈φh, v

∗〉Γ = ( f, v∗)Ω + 〈t0, v∗〉Γ ,

〈(1/2 − K )uh, ψh〉Γ + 〈V φh, ψh〉Γ = 〈(1/2 − K )u0, ψh〉Γ (2)

for all v∗ ∈ P0(T ∗), ψh ∈ P0(EΓ ) with the finite volume bilinear form

AV (uh, v
∗) :=

∑

ai∈N
v∗
i

(∫

∂Vi\Γ
(−A∇uh + buh) · n ds

+
∫

Vi

cuh dx +
∫

∂Vi∩Γ out

b · n uh ds
)

, (3)

the single layer operator (V φh)(x) := − 1
2π

∫
Γ

φh(y) log |x − y| dsy , and the double
layer operator (K uh)(x) := − 1

2π

∫
Γ
uh(y)

∂
∂ny

log |x − y| dsy , x ∈ Γ .
The system (2) approximates u by uh and the conormal φ by φh . However, for

convection dominated problems the central approximation of the convection term
can lead to strong oscillations in the FVM solution. Since FVM is based on the
balance equation we can easily apply a full upwinding stabilization which avoids
these oscillations but still preserves local flux conservation: Given Vi ∈ T ∗, we
consider the intersections τi j = Vi ∩ Vj �= ∅ with the neighboring boxes Vj ∈ T ∗;
see also [3, Fig. 1]. Then we replace buh on interior dual edges ∂Vi\Γ inAV (3) by
an upwind approximation. Instead of uh on τi j we use uh,i j := uh(ai ) if 1

|τi j |
∫
τi j
b ·

ni ds ≥ 0, otherwise uh,i j := uh(a j ). Here, ni points outwards with respect to Vi .



340 C. Erath and R. Schorr

The stability and convergence analysis (also with the upwind option) [3, Theorem
2 and 3] holds under a minimal eigenvalue condition on A (constraint from the
ellipticity of the non-symmetric variational form [3, Theorem 1]). With the usual
regularity assumptions this scheme leads to first order convergence.

Three-field FVM-BEM coupling: The three-field coupling uses a different for-
mulation of the exterior problem (i.e., the full Calderón system) and reads: Find
uh ∈ S 1(T ), ξh ∈ S 1∗ (EΓ ) and φh ∈ P0(EΓ ) such that

AV (uh, v
∗) − 〈φh, v

∗〉Γ = ( f, v∗)Ω + 〈t0, v∗〉Γ ,

−〈uh, ψh〉Γ − 〈V φh, ψh〉Γ + 〈(1/2 + K )ξh, ψh〉Γ = −〈u0, ψh〉Γ ,

〈(1/2 + K ∗)φh, θh〉Γ + 〈W ξh, θh〉Γ = 0 (4)

for all v∗ ∈ P0(T ∗), θh ∈ S 1∗ (EΓ ), ψh ∈ P0(EΓ ). Here, we additionally use the
adjoint double layer operator (K ∗φh)(x) := − 1

2π

∫
Γ

φh(y)
∂

∂nx
log |x − y| dsy and

the hypersingular integral operator (W ξh)(x) := 1
2π

∂
∂nx

∫
Γ

ξh(y)
∂

∂ny
log |x − y| dsy ,

x ∈ Γ . Note that the system (4) additionally approximates the trace ξ by ξh and that
the upwind option in AV described above applies here as well. An a priori conver-
gence analysis (also with the upwind option but without the eigenvalue restriction)
can be found in [1]. With the usual regularity assumptions this scheme leads to first
order convergence as well. Although the three-field coupling leads to a larger system
of linear equations than the non-symmetric coupling one should apply it if the trace
ξh is explicitly important or if the right-hand side contribution K u0 is difficult to
evaluate.

3 Residual Based a Posteriori Error Estimator

In order to introduce an element-wise refinement indicator, which is a part of our
a posteriori error estimator,wedefine the residual R := R(uh) = f − div(−A∇uh +
buh) − cuh on T ∈ T and an edge-residual or jump J : L2(E ) → R by

J |E := J (uh)|E =

⎧
⎪⎨

⎪⎩

[
(−A∇uh)|E,T − (−A∇uh)|E,T ′

] · n for all E ∈ EI ,

(−A∇uh + buh) · n + φh + t0 for all E ∈ E in
Γ ,

−A∇uh · n + φh + t0 for all E ∈ E out
Γ .

with E = T ∩ T ′ ∈ EI , T, T ′ ∈ T . Note that ϕ|E,T denotes the trace of ϕ ∈ H 1(T )

on E and the normal vector n points from T to T ′.
To prove a robust upper bound of the energy error we need some further notation.

In order to apply a robust interpolant, the diffusion distribution in Ω has to be
quasi-monotone; for a definition we refer to [2, 4]. To simplify notation we restrict
ourselves here to a piecewise constant diffusion coefficient α ∈ P0(T ) with A =
αI. For the T -piecewise constant function α ∈ P0(T ) we write αT := α|T for
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all T ∈ T . Furthermore, we define αE := max
{
αT1 , αT2

}
for E ∈ EI with E ⊂ T1 ∩

T2, αE := αT for E ∈ EΓ with E ⊂ ∂T . For convection and reaction we define
βT := minx∈T {(div b(x))/2 + c(x)} for all T ∈ T , βE := min

{
βT1 , βT2

}
for E ∈

EI with E ⊂ T1 ∩ T2 andβE := βT for E ∈ EΓ with E ⊂ ∂T . Next, we defineμT :=
min

{
β

−1/2
T , hTα

−1/2
T

}
and μE := min

{
β

−1/2
E , hEα

−1/2
E

}
for all T ∈ T and all E ∈

E , respectively. Note that we take the second argument if βT = 0 or βE = 0.
Then, the semi-robust refinement indicator for the non-symmetric coupling reads

for all T ∈ T

η2
T := μ2

T ‖R‖2L2(T ) + 1

2

∑

E∈EI∩ET

α
−1/2
E μE‖J‖2L2(E) +

∑

E∈EΓ ∩ET

α
−1/2
E μE‖J‖2L2(E)

+
∑

E∈EΓ ∩ET

hE‖∂/∂s
(
(1/2 − K )(u0 − uh) − V φh

)‖2L2(E), (5)

where ∂/∂s denotes the arc length derivative. For the three-field coupling the semi-
robust refinement indicator differs slightly, since the exterior trace is approximated
separately. Hence, for all T ∈ T we get

η2
T := μ2

T ‖R‖2L2(T ) + 1

2

∑

E∈EI∩ET

α
−1/2
E μE‖J‖2L2(E) +

∑

E∈EΓ ∩ET

α
−1/2
E μE‖J‖2L2(E)

+
∑

E∈EΓ ∩ET

hE‖∂uh/∂s − ∂/∂s
(
u0 − V φh + (1/2 + K )ξh

)‖2L2(E) (6)

+
∑

E∈EΓ ∩ET

hE‖W ξh + (1/2 + K ∗)φh‖2L2(E)

If we apply the upwind stabilization option, an additional refinement quantity is
necessary. For both coupling systems this reads for all T ∈ T

η2
T,up := α

−1/2
T μT

∑

τ T
i j ∈DT

‖b · ni (uh − uh,i j )‖2L2(τ T
i j )

(7)

withDT :=
{
τ T
i j

∣
∣τ T

i j = Vi ∩ Vj ∩ T for Vi , Vj ∈ T ∗, Vi �= Vj , Vi ∩ T �= ∅, Vj ∩ T

�= ∅
}
and the upwind value uh,i j from Sect. 2. With the refinement indicators (5)

and (6) (plus (7)) we can define an error estimator

η :=
( ∑

T∈T
η2
T (+η2

T,up)
)1/2

(8)

for the non-symmetric (2) and the three-field (4) FVM-BEM coupling. For both
couplings η is reliable and efficient with respect to the error in the energy norm
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Eh :=
{

|||u − uh |||Ω + ‖φ − φh‖V non-symmetric,

|||u − uh |||Ω + ‖φ − φh‖V + ‖ξ − ξh‖W three-field
(9)

with |||v|||Ω := ‖A1/2∇v‖2L2(Ω)
+ ‖ (div b/2 + c)1/2 v‖2L2(Ω)

, ‖ · ‖2V := 〈V ·, ·〉Γ and

‖ · ‖2W := 〈W ·, ·〉Γ . For both couplings the upper bound (reliability) is robust with
respect to the variation of the model data. For the non-symmetric coupling, however,
we have a minimal eigenvalue restriction of the diffusion matrixA again. The analyt-
ical proof for the lower bound (efficiency) in both couplings holds only for a quasi-
uniform mesh on the boundary Γ . An improved efficiency result in slightly stronger
norms (but for a shape regular triangulation also on the boundary) has recently been
published in [4]. Additionally, the constant in the lower bound is only semi-robust,
i.e., it depends on the local Péclet number. For more details and discussions on the
bounds we refer to [4] (non-symmetric) and [2] (three-field).

4 Numerical Experiments

With the refinement indicators (5) and (6) (plus (7)) we devise an adaptive algorithm
with the well known Dörfler marking strategy, where we consider a sequence T (k),
k = 0, 1, . . . of triangulations: Throughout, let θ = 0.5, then at refinement step k
choose M (k) ⊂ T (k) with minimal cardinality such that

∑

T∈M (k)

(
η2
T (+η2

T,up)
) ≥ θ

∑

T∈T (k)

(
η2
T (+η2

T,up)
)
.

Then refine the elements in the set M (k) with a red-green-blue refinement which
ensures the shape regularity of the new mesh T (k+1).

4.1 Convection-Diffusion Problem

For our first problem we choose Ω = (0, 1/2) × (0, 1/2) and prescribe the solution
in the interior to be u(x1, x2) = 0.5

(
1 − tanh

( 0.25−x1
0.02

))
for x = (x1, x2) ∈ Ω , and

the solution in the exterior domain Ωe to be ue(x1, x2) =
log

√
(x1 − 0.25)2 + (x2 − 0.25)2. We choose the jumping diffusion coefficient as

α = 0.42 for x2 < 0.25 and 10 for x2 ≥ 0.25, the convection field b = (1000x1, 0)T

and the reaction coefficient c = 0. Since this is a convection dominated problem
we will use the full upwind stabilization. The right-hand side f and the jumps are
calculated by means of the analytical solution.

Table1 shows the contributions to the error in the energy norm (9) of both adaptive
couplings. Note that in the non-symmetric case we compute ξh by uh |Γ − u0 which
is motivated by (1d). It can be observed that the error for the three-field coupling
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Table 1 Errors for different refinement levels k for both coupling systems of the first example

k Scheme #T |||u − uh |||Ω ‖ξ − ξh‖W ‖φ − φh‖V ‖u − uh‖L2(Ω)

8 Non-symmetric 5834 4.48e − 01 6.11e − 02 4.79e − 02 6.62e − 03

Three-field 4542 4.60e − 01 5.81e − 02 4.86e − 02 5.65e − 03

12 Non-symmetric 66959 1.80e − 01 1.95e − 02 1.68e − 02 2.32e − 03

Three-field 52065 1.76e − 01 1.12e − 02 1.07e − 02 1.81e − 03

16 Non-symmetric 671921 6.17e − 02 4.40e − 03 4.61e − 03 7.61e − 04

Three-field 534051 5.84e − 02 3.25e − 03 3.11e − 03 5.38e − 04
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Fig. 1 The effectivity index η/Eh for the two coupling methods for the first example

is slightly better (less elements but smaller errors). In Fig. 1 we show the effectivity
index η/Eh forb = {(10x1, 0)T ; (100x1, 0)T ; (1000x1, 0)T ; (10000x1, 0)T }. In both
cases we observe the dependency on the local Péclet number, i.e., once we have
resolved the shock region, the effectivity index convergences as well.

4.2 A More Practical Example

For the second example we do not know an analytical solution of (1). Additionally,
we replace the radiation condition (1c) by ue(x) = a∞ + O(1/|x |) for |x | → ∞.
Thus we have to assume the scaling condition 〈∂ue/∂n, 1〉Γ = 0; see [2] and have
to modify our discretization. The domain will be the classical L-shaped domain
Ω = (−1/4, 1/4)2 \ [0, 1/4] × [−1/4, 0]. We fix the piecewise constant diffusion
coefficient α to 1 for x1 > 0, 0.1 for x2 ≤ 0 and 0.5 else, b = (1500, 1000)T , and
c = 0.01. The right-hand side will be f (x1, x2) = 5 for 0.2 ≤ x1 ≤ −0.1, −0.2 ≤
x2 ≤ −0.05 and 0 else and the jumps t0 and u0 are set to zero. This problem is again
convection dominated, therefore, we use the full upwind stabilization. In Fig. 2 two
adaptively generated meshes and contour lines are plotted to show the similarities
between the two coupling approaches. Both meshes refine along the steepest parts of
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Fig. 2 Adaptively generated mesh and contour lines for the non-symmetric FVM-BEM (left) and
three-field FVM-BEM (right) for the second example

the solution, but they localize at slightly different areas. To generate the contour lines
we calculate the values in Ωe from the Cauchy data ξh and φh and the representation
formula; see [1, 3]. Therefore, the contour lines showalso theflow into the unbounded
domain and show the difference in the accuracy of the approximation of the exterior
solution.

5 Conclusions

We presented the adaptive non-symmetric and the adaptive three-field FVM-BEM
coupling. For both methods we established an error estimator which is reliable and
efficient. In contrast to the three-field coupling the upper bound for the non-symmetric
coupling imposes a lower bound on the smallest eigenvalue of the diffusion matrix
which seems to be only a theoretical constraint. The effectivity index for bothmethods
is semi-robust against variation of the model data. The three-field coupling leads to
slightly better results than the non-symmetric coupling with respect to the same num-
ber of elements. However, the three-field coupling is computationallymore expensive
since it approximates the exterior trace directly. On the other hand the input data does
not appear in an integral operator.
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