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Preface

The finite volume method consists in a space discretization technique for partial
differential equations. It is based on the fundamental principle of local conservation
(or more generally local balance), making it very natural and successful in many
applications, including fluid dynamics, magnetohydrodynamics, structural analysis,
nuclear physics, and semiconductor theory. Motivated by their large applicability
for real-world problems, finite volumes have been the purpose of an intensive
research effort in the last decades, yielding significant progresses in the design, the
numerical analysis, and the practical implementation of the methods.

Research on finite volumes remains very active since the problems to solve are
everyday more complex and demanding. Among the current challenges addressed
by the scientific community, let us mention for instance the design of robust (with
respect to the mesh and/or physical parameters) numerical methods, of high-order
methods, and of methods preserving structural properties (positivity and dissipation
of a prescribed quantity). The implementation of such methods on new architectures
is also a crucial issue.

Previous conferences on this series have been held in Rouen (1996), Duisburg
(1999), Porquerolles (2002), Marrakech (2005), Aussois (2008), Prague (2011), and
Berlin (2014).

The present volumes contain the invited and contributed papers presented as
posters or talks at the Eights International Symposium on Finite Volumes for
Complex Applications held in Lille, June 12-16, 2017. It also contains a bench-
mark on discretizations for incompressible viscous flows governed by Stokes and
Navier—Stokes equations.

The first volume contains the invited contributions, the benchmark on
discretizations for incompressible viscous flows, and some contributed papers
focusing on theoretical aspects of finite volumes, including discrete functional
analysis tools, convergence proof, and error estimates for problems governed by
partial differential equations.

The second volume is focused on the simulation of problems arising in
real-world applications, such as complex fluid mechanics, elasticity problems, and
complex porous media flows.
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The volume editors thank the authors for their high-quality contributions, the
member of the program committee for supporting the organization of the review
process, and all reviewers for their thorough work on the evaluation of each of the
contributions.

The organization of the conference was made possible thanks to the financial
support of Lille 1 University, the Centre National pour la Recherche Scientifique
(CNRS), Inria, Total, IFP Energies nouvelles, the CEA, the Labex CEMPI and
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Universities of Nice, Paris 13, and Paris-Est Marne-la-Vallée.
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precious help to make this conference a friendly moment.
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A Weighted Splitting Approach
for Low-Mach Number Flows

David Iampietro, Frédéric Daude, Pascal Galon
and Jean-Marc Hérard

Abstract Insteady-state regimes, water circulating in the nuclear power plants pipes
behaves as a low Mach number flow. However, when steep phenomena occur, strong
shock waves are produced. Herein, a fractional step approach allowing to decouple the
convective from the acoustic effects is proposed. The originality is that the splitting
between these two parts of the physics evolves dynamically in time according to
the Mach number. The first one-dimensional explicit and implicit numerical results
on a wide panel of Mach numbers show that this approach is as accurate and CPU-
consuming as a state of the art Lagrange-Projection-type method.

Keywords Low Mach number flows + Fractional step + Operator splitting - Hyper-
bolic + Relaxation schemes
1 Introduction

Even if it is intrinsically quasi-incompressible, water flowing inside nuclear plants
can generate strong shock waves through which pressure can vary by dozens of bar.
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From a numerical point of view this diversity of behaviors raises a dilemma. Indeed,
an efficient way to capture shocks in a fluid is to use exact or approximate Riemann
solvers. However, stationary cases shown in [9] and theory developed in [7] prove
that these latter are unable to maintain the approximated solution in the initial low-
Mach phase space also called “well-prepared space”. What is more, they suffer from
a serious loss of accuracy in case of low-Mach number flows. Eventually, the CFL
condition inherent to explicit schemes requires very demanding non-dimensional
time steps bounded by the Mach number. One way to bypass these difficulties is
to decouple convection from acoustic waves production by splitting the original
conservation laws into two subsystems. Then, they can be successively solved and
a specific low-Mach number treatment or a direct time-implicit scheme can be done
on the acoustic subsystem. Such a strategy has been tested in [4] where a transport
and an acoustic subsystems are exhibited, the latter being reformulated in Lagrange
variables. Inspired by the pioneering work of [1], the present approach introduces a
splitting weighted by a parameter related to the instantaneous flow Mach number.
By doing so, it becomes sensitive to any change of Mach regime, allows to capture
shocks and may be accurate in the case of low-Mach number flows.

2 A Weighted Splitting Approach

Our work focuses on the compressible Euler system whom differential structure is
similar to these of two-phase homogeneous models. In one dimension, the mass,
momentum and energy conservation laws read:

0 p+0x(pu)=0, (1a)
3 (pu) + 3, (pu* + p) =0, (1b)
9 (pe) +9x ((pe+ p)u) =0. (Ic)

Here, e = u?/2 + ¢ is the specific total energy made of the kinetic contribution
plus the specific internal energy ¢ related to pressure and density by the equation
of state ¢ = ¢£95 (p, p). Eventually, one can introduce c the sound speed such that
(po)? = (8,, S|p)71 (p — 0?9, 8“,) which strongly depends on the fluid equation
of state and governs the acoustic waves speed. Following [1], let us introduce &
(respectively /) a convective (respectively an acoustic) subsystem, namely:

0 p+0x(pu) =0, 9 p=0,
T dpw+d (pu+ S50 p) =0, F 1y d(puw)+d ((1-E51)p) =0,
% (pe)+dx ((pe+ &5 (1) pu) =0. 3 (pe)+dx ((1 =& @) pu) =0.

Here, &)(.) is a time-dependent weighting factor belonging to interval ]0, 1]. Itis
directly related to the maximal Mach number of the flow by the expression below:
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&) = mi s it _ ( _ |M(X,f)|)
0(t) = min (Mpyx(t), 1); with: My,q, (1) = sup { M(x,t) = , @
xeR c(x,t)

£2 being the computational domain. One can notice that formally summing conser-
vative subsystems % and .7 allows to recover the original Euler system (1). In the
case of a globally low-Mach number flow, M, (t) ~ &)(t) < 1, and pressure terms
completely disappear from 6 which turns out to be a pure “convective” subsystem.
Pressure terms are treated afterwards in .7 which becomes an “acoustic” subsystem.
Actually, a low-Mach correction or a straight time-implicit resolution applied on its
flux would allow to reduce the numerical diffusion or remove the most constraining
part of the CFL condition. However, suppose that at instant ¢ the flow is such that
M. (¢) jumps to 1 suddenly. Then, &;(t) will be close to 1, ¢ formally converges
towards the full Euler system while .7 is a degenerated stationary subsystem. Hence,
if € is solved using a time-explicit Godunov-like scheme, Euler shocks would be
optimally captured. This strategy relies on the hypothesis that the waves produced
by ¢ and & are real and also that their asymptotic behavior in terms of & is the
expected one. The proposition below clarifies this point (see [10]):

Proposition 1 (Hyperbolicity of convective and acoustic subsystems)
Let us introduce c (p, p) and co (p, p) two modified sound speeds such that:

(e (0. PN = (9p,0) " (2P — P2 0pepp) s 3)

—1
(0car (0, P)? = (0p ) P
In case of a stiffened gas thermodynamics, cgg > 0. Besides, if pressure remains

positive, ci{ > 0. Under this condition, the subsystems € and </ are hyperbolic.
The eigenvalues of € and < are:

)»(lg—u—éaoc{,; Sk;‘fzufkgg:u—i—é‘bc(g, @
M =—(1-6) co =27 =0<27 =(1-6) e,

the 1-wave and 3-wave of both subsystems are associated to genuinely non-linear
fields whereas the 2-wave field are linearly degenerate.

3 Suliciu-like Relaxation Schemes To Solve ¢ and <&/

Relaxation schemes emerge from the theory of kinetic schemes described in [2, 3]. As
shown in [5], such a method can be applied on a rather general fluid model endowed
with a set of conservation laws, a strictly convex entropy and basic thermodynamical
constraints linking state variables. Following the Suliciu-like relaxation method,
also used in [4], let us introduce €* (respectively 7*) the relaxation convective
(respectively the relaxation acoustic) subsystem:
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3t,0+3x(,014)=0,

3 (pu) +dx (pu®) + dx (& (1) IT) =0,
T8 e o, ((pet+ B Myu) =0,

(o )+, ((p 1T +afyu) = 50 (p= 1),

afp:()’
3 (pu) +8x (1 =& (1) ) =0,
SN a(pe)+ 0, ((1— &) Mu) =0,

&@HHﬂMU—%mM@@=§@—H%

Here, 2 (p — IT) can be formally interpreted as a correction term of time scale
w forcing the relaxed pressure /7 to converge towards the physical pressure instan-
taneously if u tends to zero. Besides, a¢ and a, are the constant relaxation coef-
ficients encapsulating the thermodynamical nonlinearity. What is more, under the
subcaracteristic condition a¢ > p cy (respectively a, > p cor), €* (respectively
o/") converges formally towards 4 (respectively <7) at order one in . Then, the
augmented set of conservation laws is still hyperbolic and all its fields are linearly
degenerate. Hence, it is possible to derive an exact Godunov solver for these relaxed
subsystems. The eigenvalues of " areu — &y aw t,uandu + &y a¢ T witht = 1/p
the specific volume. The ones of &/ are — (1 — &}) au 7,0, and (1 — &7) ax 7.
The numerical flux related to € (respectively .2¢) is derived by solving a convective
(respectively an acoustic) Riemann problem associated to ¢ (respectively <7*). In
the end, for an explicit time integration, the convective flux at face i 4+ 1/2 and time
t" reads:

1 n n
2 (Fsg (U ) (Uz+1))
" _% |” — &y (ag)ivin T | (Uz+1/2 U
Hci+1/2 = 1 ( U** n U* n (5)
2 u%)H-l/Z ( i+1/2 1/2)
% | Uiy + &g (ag)iviy Tz+1| Ui — U;kilr/lz)

with F, (U) = [pu, pu> + &} p, (pe+ &3 p) u]T, and

(o )" (1 )"
*,
Ul*+';/2 (07 )" ()i Uf+172 (O, )" Wi |
(P )" (ef )" (P41, 0)" (€, 0)"

(@)iv12 = K max (o} (co)!', pl'yy (ce)lyy) . K > 1.
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The expressions of intermediate quantities like (u%,)} | /25 (,o,f, )" and (e,*; L
k € {i, i + 1} are close to these derived in [4, 6]. More details are given in [10]. The
acoustic flux is simpler because of the zero eigenvalue:

0
Hac:l+01/2 = (1-(&)%) (179;1):4-1/2 ) (6)
1250 We))itn
ul 4+ ul 1
(u* ):l — i+1 [ . p;q _ pln ;
o +1/2 2 2 (agf)i+1/2 ( +1 )
with: pro 4+ pt (agy o) @)
i+1 i 4 i+1/2 n n
(Hgi)z+1/2 ) 5 (”i+1 - ”i) J

@))iv12 = K max (o} (cor)?, pl'yy (car)iy) . K > 1.

Following [7], the parameter 6. w12 introduced in (7) is a low-Mach number
correction term. Indeed, 6/, p=1 is the original formula with no correction,

081 = ‘(uf;{);‘Jr]/z‘ /max (c?, cf,,) prevents an initial well-prepared solution from
leaving the well-prepared space after one iteration. It also diminishes the numerical
diffusion in the low-Mach number configurations. See [4, 7, 9] for more details. The
discrete expression of the weighting parameter & follows the continuous definition
written in (2):

iell, Nears ]\ €7

. 7]
&' = max (&, min (M), 1)); with: M)y, = max | —-). (8)
Here, 0 < &,y < 1 is only a lower bound preventing &' from being exactly
equal to zero if velocity is initially null everywhere. Finally, the overall dynamical
fractional step approach can be summed up in the following equations:

)

<€ - U:'H Un Ax ( Ci+1/2 (U UH-I) Cl 1/2 (Ul I Un))
Hin+ — pEOS (U;H_) [JZH—

o - { U?H =U/" - AA_; (Ha0i+1/2 (Un+ Uznj-rl) Hae; 12 (Ul 1 UH))

HinJrl — pEOS (U;Hrl) p:1+1 (9)

We also have the following results (see [10] for a proof):
Proposition 2 (Conservativity, Positivity, Low-Mach Accuracy)

e Conservativity: The overall scheme (9) is conservative.
o Positivity: Assume Vi : p!' >0, &' > 0. Then, ,0’”r1
under modified subcaracteristic condltlons

0, 8;1+1 > 0 is ensured
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pien pien
(a%)i+1/2 = K max (;Oln (C(m‘”);l’ pinJrl (C(Coo)?Jrl! a; s ai+l ) (loa)
pie,n_pien
@ i1 = K max (o] €a)ls Pl oy af " alii")  (10b)
pie.n pie.n

where the non-dimensional expressions associated with a; and a;; " are of
order O(1); and under a global CFL condition: At" = min (Atg, At At;{),
with Aty (respectively Ate,, At”,) the timestep bounded by the Euler (respectively
¢, o/ ) CFL condition guaranteeing no interaction between waves produced by
the face Riemann problems.

e Low-Mach accuracy: Assume that the initial conditions belong to the well-
prepared space (see [7] for a definition) and that & is given by (8). Then, the
non-dimensional numerical diffusion of a smooth solution computed thanks to the
scheme is a O (Ax) instead of O (Ax /M) if the above global CFL condition holds,
and if the discrete low-Mach correction 0", | J2 IS triggered.

4 Numerical Results

We perform a one-dimensional Sod-type shock tube. The fluid is endowed of an
ideal gas thermodynamics with y = 7/5. The initial data are: p) =1 kg.m =3,
u% =0m.s !, po.L = po.r (14+¢), p% =0.125 kg.m™3, u% =0m.s !, Po.R =
0.1 bar. By tuning &, the maximal flow Mach number can be modified. Figure 1
shows the pressure convergence curves for three different Mach values: M = 0.92,
M =9.5x 10"2and M = 4.2 x 1073, The cells number varies from 10? to 9 x 10*.
Five different schemes have been tested: “no-Sp” corresponds to the case where
&3 = 1 is imposed along the simulation. Thus, the splitting is not triggered. “Sp-
(~/M)” is the weighted splitting approach with &y = max (cfi,,f, min (, /ML, 1))
while “Sp-(M)” involves &' defined in formula (8) which is optimal, because, as
proven in [10], it minimizes the numerical diffusion of the subsystem % in the low-
Mach number case. Eventually, “LP” is the Lagrange Projection splitting method,
fully described in [4] and taken as a benchmark. “-corr” means that the low-Mach
correction is triggered.

One can notice that, when M ~ 1, all the schemes are equivalent in terms of
accuracy. In the sequel, as the Mach number decreases the low-Mach corrected
schemes become the most accurate ones. Particularly, Sp-(v/M)-corr seems to be
more precise than Sp-LP-corr at M = 4.2 x 1072, However, one should notice that
for every schemes, the order of convergence is depreciated as the Mach number
decreases. Indeed for pressure, it passes from 0.87 at M = 0.92 (the expected order
already obtained in [8]) to 0.82 at M = 9.5 x 102 and 0.56 in the low-Mach case.

Velocity profiles are plotted on Fig.2. It seems that the accuracy of Sp-(M) is
higher than these of Sp-(~/M) through the left rarefaction wave where the exact
solution is continuous. Besides, the low-Mach correction applied on the weighted
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Fig. 1 Pressure convergence curves: explicit schemes
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Fig. 2 Velocity profiles: M = 4.2 x 1073, N s = 103

splitting approach results in small overshoots located in the tail of the left rarefaction
wave and before the shock front.

Instead of using the low-Mach correction, one can directly apply an implicit
approximation of the acoustic flux (6) using a method that relies on strong
relaxed Riemann Invariants (see [4, 6] for more details). Pressure convergence
curves for different implicit schemes at M = 4.2 x 1072 are shown on Fig. 3. Here,
Vk € {1/2, 5, 20}, the mention “-cfl[k]” indicates that the Courant number involved
in the determination of Ar; and At?, defined in Proposition2 is equal to “k”. As
expected, the implicit techniques are more diffusive than explicit schemes. Besides,
at a given mesh, CPU time diminishes considerably as the Courant number increases.
For example, at N,.; = 10°, Sp-(M)-Imp-RI-cfl0.5 takes 10.1s whereas Sp-(M)-
Imp-RI-cfl5 (respectively Sp-(M)-Imp-RI-cfl20) requires 1.9 s (respectively 0.7 s).
Finally, one can notice that the present implicit weighted splitting approach is as
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accurate as the implicit Lagrange-Projection method. In the low-Mach regime, the
trade-off between explicit-accuracy versus the implicit-CPU-rapidity is solved thanks
to the efficiency curve plotted on Fig. 4. At a given precision, for low-Mach unsteady
cases, explicit schemes are still less CPU-consuming than implicit techniques.
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Weno Scheme for Transport Equation
on Unstructured Grids with a DDFV
Approach

Florence Hubert and Rémi Tesson

Abstract In this paper we develop a DDFV approach for WENO scheme on unstruc-
tred grids for 2D transport equations. An order 2 scheme is presented using the DDFV
diamond structure to define the different stencils. Numerical tests illustrate the accu-
racy and robustness of the method.

Keywords Weighted essentially non-oscillatory + Transport equation - Discrete
duality finite volume scheme

MSC (2010): 65MO08 - 65Z12 - 65D05

1 Introduction

The problems we are interested in are fluid-structure interaction problems in 2D,
where we use a level-set approach. In such problems, we look at the behavior and
displacement of a structure, that can be a solid or an elastic membrane, inside a fluid.
The level-set approach consists, in this situation, in representing the interface between
the fluid and the structure implicitly as the level-set of a function ¢. The modelization
of this situations often implies fluid mechanics equations, such as Stokes equations,
coupled with transport equations.

Here we focus on numerical tools for the resolution of transport equations.
Because the level-set function ¢ that captures the interface is the solution of a transport
equation we want to be very sharp when solving this equation. Order one schemes
are known to be very diffusive and inadapted in the level-set context. High order
method, like WENO schemes, appear to be a good solution to solve precisely trans-
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port equation. First introduce by Harten, Osher and others [6-8, 13], WENO schemes
are known to be efficient on convection problems.

The interest to use locally refined meshes is that it allows us to be accurate near the
interface between fluid and structure although to be efficient in term of computational
time and memory. In this paper, we will develop a DDFV approach for WENO scheme
on locally refined grids. The Discrete Duality Finite Volume method (DDFV) is a
Finite Volume method, that has been successfully used to solve Stokes equations
[11] on various kind of meshes, including locally refined meshes. In Sect.2 we will
present the time and spatial discretization of the transport equation, in Sect. 3 we will
expose the reconstruction procedure used in the WENO scheme in itself and then we
will illustrate our statement with numerical tests in Sect. 4.

2 Discretization of the Transport Equation

2.1 Notations and DDFV Structure

In fluid-structure interaction problems, the velocity used in the transport equation
is often given by fluid mechanics equations like Stokes equations. In such models
we must couple the resolution of Stokes equations with the resolution of transport
equation. In order to be able to deal with a large class of meshes and to release us
from the orthogonality constraint imposed by VF4 methods (see [4]), we choose to
use a DDFV strategy.

DDFV are Finite Volume methods introduced first in [3, 9]. They consist in a
decomposition of the computing domain in a set of polygons. Those polygons form
the primal mesh and one unknown is associated to the barycenter of each polygon.
Then other unknowns are added on the vertices of the polygons. Those vertices are
therefore seen as centers of other polygons that define a dual mesh as in Fig. 1. The
interest of introducing new unknowns is that it allows us to compute an approximation
of the gradient in every directions.

o o B---¢---%--0---0

1 ' 1 1

P r

| N ® @ O---pm-----. b=
1 1 [AY 1

1 1 Y 1

e & m /m\ oW

1 1 1 ]

Te oA

$ o y—i— t--gilmimiw
1 1 Nl = = @ =

|.|.+ 1 1 ] II
—e— o —o— B---0---EO-EH-0-H

Fig. 1 DDFV structure. From the left to the right primal mesh, dual mesh and diamond structure
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We denote by K a polygon of the primal mesh 97 and K* a polygon of the dual
mesh 2T*. In the following, we will denote an element of the primal or dual mesh by
C e MUM™.

Another mesh, the diamond mesh, can be associated to the DDFV structure. This
third mesh is very convenient when we have to implement the DDFV method because
it is a link beetween primal and dual meshes in which they both play a symmetric
role. In particular, this is on the diamond mesh that we define the discretized gradient.
To create the diamond mesh, we construct quadrangle associated to each edge of the
primal and dual mesh like in Fig. 1.

2.2 Time Discretization

The transport equation on a bounded open set £2 C R?, with a divergence-free veloc-
ity u, can be written as:
d¢

T —div(¢u) == Z(¢) D

For the time discretization, we follow [5] and use a TVD Runge-Kutta of order k. The
order k is then chosen to be in adequation with the order of the spatial discretization,
that means here k = 2. Let At be the the time step of the method, we will denote by
¢" the approximation of function ¢ at time #, = nAt. The RK2 scheme is then given
by the following steps:

1 1 1
¢n,1 — an +At$ (¢n) , ¢n+1 = §¢n + Ed)n,l + EAtg (¢n1) (2)

We will now focus on the space discretization of operator . by a WENO method.

2.3 Discretization of Operator div(¢pU)

Let ¢" = (¢c)ceomume» the vector of the approximations ¢¢ of the mean values
¢c = ﬁ f ¢ @ of function ¢ on the cells C € 9 U M* that we want to compute.
Following the Finite Volume strategy, we integrate the operator . on each cell:

1 1
i K4 [ . 3
|C|/C @ =1 /Qc pu.n ©)

where 7 is the outer unit normal to the boundary OC of C.
Because the cells are polygonal, we can rewrite the boundary integral as a sum

over the edgeS:
gL — E Jloy 4

occacv?
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The line integral of the right member can be approximated using a p point Gaussian
quadrature. Taking p = 1 allows us to find back the classical DDFV formulation of
divergence operator. Of course the same work can be done for p > 1

/ gun~ > |olé(x,)u(x,).n, wherex, is the middle of o 5)
ac ocoC

The WENO scheme consists in approximating for each cell C and each edge o, the
value ¢(x,) by a convex combination of the value in x,, of several polynomials whose
mean values coincide with the mean values of ¢ on a set of selected cells. This set
of cells is called the stencil of the method. The WENO procedure for polynomial
reconstructions will be developed in Sect. 3. For the moment, let us assume that we
dispose of such an approximation ¢¢ .. Then we define the spatial discretization .
of operator . using an upwind flux as:

L (@) == D lol[bc.oW(x)n)" — ¢, W(xy).ns)"]

o=CNC

- Z |0 [dc.0 uxe).no)t = dp(xo) U(xs).n0) "] (6)

ceCnNo

where C and C share the edge o and ¢, prescribed through the boundary condition.
Let define ¢™™ = (gb'é) cemun- the vector of the approximation ¢f. of the mean
value of ¢ on the cells C at time #,. The full discretization is then given by:

1
gy zm[z (00) + 2 (0 + ML) @

The previous work is done in the same way on both primal mesh and dual mesh. If
we take a look at Eq. (6), we can see that each cell is only linked with its neighbours.
One can then think that primal and dual meshes are totally decoupled. In fact the
coupling beetween the two meshes will be ensured by the reconstruction process as
we are going to see in the next section and depends on the degree of the polynomial
approximation.

3 Reconstruction Procedure

3.1 Problem Statement

Given a cell C and an edge o, we want to reconstruct an approximation of ¢(x,)
though we only know the mean values (¢¢) of ¢ on 9t U 90t*. Following the WENO
strategy, the approximation ¢¢ , is computed as a convex combination of several
polynomial interpolations of ¢.
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To find those polynomial interpolations, we fix a subset S C 9t U It*, depending
on C and o, and we choose the polynomial Ps[¢] among the polynomials of degree
k as the solution of the following problem:

1 _
—_— P = , YVCeS 8
|C|/C S[6] = e, VC e ®)

The degree k of polynomial Ps is fixed arbitrary and impacts the size of the stencil S.

For high degree k, interpolation often leads to oscillating polynomials. That is the
reason why we compute a convex combination of several different interpolations of ¢.
The weights in the convex combination are choosen in order to favour non-oscillating
polynomials

bco = D asPs[l(xs) ©)
S

In this paper, we choose to focus on the oscillating criterion proposed by Abgrall in
[1] but other criterion and weights can be found in [5, 10]:

(e + co(Ps[o])~* .
ag = , with ¢g(P) = |pal for P = P X" (10)
’ > (e +co(Prigh) ™ ' .0.22;11 \%
T

3.2 Polynomial Interpolation Procedure

Let us consider a stencil S = {Cy, ..., C;} and (d_)cl)i:]“; the mean values of ¢ on the
cells C;. We want to find a polynomial Pg that depends on the stencil S and such as:
(Pg)c = ¢c, for each C € S. With idea of computing an approximation Ps on the
stencil S and to avoid spatial dependency, we use a barycentric representation with
respect to a given cell Cy:

Ps = Z Pa(X —x¢))"

lal<n

where xc, is the barycenter of cell Co C S. When we rewrite the previous equations
on Ps in an extended form

z Pal(X — x¢))")c = ¢c, foreachC e S

lal<n

we can easily see that we have to solve a linear problem &/ X = b, with <7k , =
(X —xc,)% ¢, X = (Pa)oanddb = (gi_)C)CCS.Ifthe matrix <7 is invertible, the stencil
S is called admissible. In practice, we don’t have access to an easy way to know if
a stencil is admissible. When a stencil is not admissible, then we have to change
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the stencil, test again if it is admissible and repeat those operations until we find an
admissible one.

3.3 Stencil Choice

The choice of the stencil is a crucial point in the construction of the scheme. Stencils
will be composed of both primal and dual cells. As in classical WENO scheme
stencils have to be centered in the smooth regions and one-sided near the shocks.

The usual strategy is to associate a given number of stencil to each cell, and
then to evaluate the corresponding polynomials on each edges. Here, because the
natural structure to use in DDFV schemes is the diamonds structure, we define
stencils from this structure. We associate stencils to each couple (C, o) and each
couple is associated to an unique diamond &, see Fig.2 (left). Let us define
V(D) = {2’/ such that 2 N 2’ # (}. In order to construct the stencils, we will use
the unknowns provided by 2 but also by ¥ (Z) and ¥ (¥ (Z)). This choice allows
us to have access to enough unknowns on the boundary and to construct centered as
one-sided stencils.

Then we will construct the stencils associated to (C, o) as follows. First, we set
C as the first cell of the stencil. Then we will choose randomly the other ones (if
needed) in 2 U ¥ (2) U ¥ (V¥ (D)).

Because diamonds are quadrangles and two neighbours share an edge, the number
A, of potential unknowns is then given by 4, <4+4 x 243 x4 x 2 = 36.

For a reconstruction of order 0, we only need one point in the stencil and so we
only have one potential stencil. One can easily see that in that case we find back
the classical upwind scheme and both primal and dual meshes are totally decoupled.
For a reconstruction of order greater than 0, primal and dual mesh are coupled. For
example in the case of order 2, we have at most A5 = (356) different stencils. We can
however mention that in practice, the maximal number of potential unknowns is not
achieved (see Fig.2 for examples).

m® e
|
¢ o ol | o
9 . uu )
| | ® =

Fig. 2 Diamond cells. Z is in black, ¥ (2) in gray and ¥ (¥ (2)) in light gray
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4 Numerical Tests

In all the following tests, we use a locally refined mesh like in Fig. 1. The previous
WENO scheme is implemented in each case with 15 stencils.

4.1 Sinus Translation

First, we test our WENO scheme on the equation

% g—f g—f =0, () el[=22] x[-2;2]
with the initial condition ¢o(x, y) = sin(5(x + y)). One can refer to [10] for com-
parison of the results. Tests are done with a time step equal to Ar = 0.01 and in each
case we compute the L error at time t = 2.The results for the error and the order
of the scheme are presented in Table 1 (mesh size refers for the minimal size of the
square cells). We obtain an order 2 for the method, which is in adequation with the
degree of the polynomial reconstruction.

4.2 Solid Body Rotation (SBR)

Solid body rotation is a classical test used in the literature for advection equation.
Zalesak proposed in [14] the rotation of a slotted cylinder. The width of the slot as
well as the “bridge” connecting the two half must be about 5 cells. Here, we choose
an adaptation of this test introduced in [12] and used in [2]. It consists in the rotation
of three body shapes, a hump, a cone and a the slotted cylinder of Zalesak. The
overvalue of the initial condition is given on Fig. 3 (left). We choose At = 0.005 and
a mesh size h = 1/128. As it is mention in [2], a way to measure the accuracy of
the scheme is to count the number of isolines outside of the slot. Figure 3, show the
isolines at + = 27r. We can see here that all the isolines fit the slot. Results at r = 7
in Fig. 3 are here to point the fact that all three shapes really pass through the refined
part of the mesh.

Table 1 L, error for sinus translation

Mesh size 1.25.107! 6.25.1072 3.125.1072 1.5625.1072
Error L1 5.699.107! 1.448.10~! 3.363.1072 7.884.1073
Order - 1.98 2.10 2.09
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Fig. 3 Isovalues from 0.1 to 0.9 for SBR. From the /eft to the right Isovalues at t = 0, 7, 27
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Conclusion

We presented in this paper a DDFV approach for WENO scheme working on any
structured and unstructred grids. We exhibited the expected order 2 of the scheme on
smooth test case. The experiment on the SBR test seems also very promising. This
approach will have many applications in moving domains on adaptative meshes.
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New Types of Jacobian-Free Approximate
Riemann Solvers for Hyperbolic Systems

Manuel J. Castro, José M. Gallardo and Antonio Marquina

Abstract We present recent advances in PVM (Polynomial Viscosity Matrix) meth-
ods based on internal approximations to the absolute value function. These solvers
only require a bound on the maximum wave speed, so no spectral decomposition is
needed. Moreover, they can be written in Jacobian-free form, in which only evalua-
tions of the physical flux are used. This is particularly interesting when considering
systems with complex Jacobians, as the relativistic magnetohydrodynamics (RMHD)
equations. The proposed solvers have also been extended to the case of approximate
DOT (Dumbser-Osher-Toro) methods, which can be regarded as simple and efficient
approximations to the classical Osher-Solomon method. Some numerical experi-
ments involving the RMHD equations are presented. The obtained results are in
good agreement with those found in the literature and show that our schemes are
robust and accurate. Finally, notice that although this work focuses on RMHD, the
proposed schemes can be directly applied to general hyperbolic systems.
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1 Preliminaries

Consider a hyperbolic system of conservation laws
ow—+ 0 F(w) =0, (D

where w(x, t) takes values on an open convex set & C RY and F: 0 — R" is a
smooth flux function. We are interested in the numerical solution of (1) using finite
volume methods of the form

At
with = w} — A_x(FiH/z — Fio1p), @

where w!' denotes the approximation to the average of the exact solution on the cell
I; = [xi—1/2, Xi4+1,2] attime t" = n At (unless necessary, dependence on time will be
dropped). The numerical flux is assumed to have the form

F(w; F(w; 1
M - EQi+1/2(Wi+l = wi), ®)

Fiiip=
where Q; /> denotes the numerical viscosity matrix, which determines the numerical
diffusion of the scheme.

It is worth noticing that Roe’s method [10] can be written in the form (3) with
viscosity matrix Q;112 = |A;41/2], where A; 1> is a Roe matrix for the system.
This remark has originated several numerical methods in the literature (see, e.g.,
[5, 6, 11] and the references therein), for which the corresponding viscosity matrix
consists of some approximation to the absolute value matrix |A; 1 ].

2 Some Comments on PVM Riemann Solvers

Polynomial Viscosity Matrix (PVM) Riemann solvers were introduced in [2]. They
are based on the idea of approximating the absolute value of the Roe matrix A; 1/, by
means of a suitable polynomial evaluation of such matrix. If P (x) is some polynomial
approximation of |x| in the interval [—1, 1], and A; 412 max is the eigenvalue of A; />
with maximum modulus (or an upper bound of it), the numerical flux of the PVM
method associated to P (x) is given by (3) with viscosity matrix

Oit12 = INit1/2,max) PNt 1/2.max] "' Air1/2),

which provides an approximation to |A; 2|, the viscosity matrix of Roe’s method.
It is important to notice that no spectral decomposition of the matrix A; 1, is needed
to build a PVM method, but only a bound on its spectral radius. This feature makes



New Types of Jacobian-Free Approximate Riemann Solvers for Hyperbolic Systems 25

PVM methods greatly efficient and applicable to systems in which the eigenstructure
is not known or difficult to obtain.

A number of well-known schemes in the literature can be viewed as particular
cases of PVM methods: Lax-Friedrichs, Rusanov, HLL, FORCE, Roe, etc. In the
cases in which a Roe matrix is not available or is difficult to compute, A; /> can be
taken as the Jacobian matrix of the system evaluated at some average state.

The stability of a PVM scheme strongly depends on the properties of the basis
polynomial P (x). In particular, it must verify the stability condition

x| < P(x) <1, Vxel[-1,1] “4)

Of course, a standard CFL restriction has also to be imposed.

The technique for constructing PVM methods has been further extended in [3]
to the case of rational functions, which has originated new families of very pre-
cise incomplete Riemann solvers. Moreover, in [4] the authors have introduced the
so-called approximate DOT (Dumbser-Osher-Toro) solvers, which combine the tech-
nique of PVM methods with the universal Osher-type solvers proposed in [7]. These
methods can be viewed as simple and efficient approximations to the classical Osher-
Solomon method [9], sharing most of its interesting features and being applicable to
general hyperbolic systems, unlike the original Osher-Solomon method.

With respect to the choice of the basis function, in [3, 4] Chebyshev polyno-
mials (which provide optimal uniform approximations to |x|) were considered. An
advantage of these methods is that they can be implemented in a recursive way
using only vector operations. On the other hand, as Chebyshev approximations cross
the origin, PVM-Chebyshev methods need an entropy fix to handle sonic flow cor-
rectly. Furthermore, Chebyshev functions do not satisfy the stability condition (4)
strictly, which may cause the scheme to be unstable under certain conditions (see
[3]). For these reasons, it would be interesting to consider another family of polyno-
mial approximations to |x| fixing the above mentioned problems. Such a family of
internal approximations can be iteratively constructed as follows:

1 2 2
po(x) =1, pn+1(x)=§(2pn(x)—pn(x) +x7),n=0,1,2,... (5

For instance, the polynomial used in the numerical tests in Sect.4 is given by

6_ 23,44 31,2 4 39

- _ 1,8, 3.6_ 23 31
p3(x) = —x° + 5% aX tx 128"

3 Jacobian-Free Implementation

In this section we build Jacobian-free PVM solvers associated to the internal approx-
imation p, (x) introduced in the previous section. First of all, it should be noted that
the recursive form (5) is not suitable for that purpose due to the term p,, (x)2. For this
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reason, the explicit form of p,(x) combined with Horner’s method will be consid-
ered instead. On the other hand, notice that it will not be necessary to compute the
viscosity matrix Q;11,, explicitly, but only the vector Q;41/>(w;4+1 — w;) appearing
in the numerical flux (3).

To illustrate the procedure, consider the polynomial

pa(x) = apx* + a1x? + as = x*(apx? + 1) + aa,

where g = —1/8,a; = 3/4and o, = 3/8.Let A = A(w) be the Jacobian matrix of
F evaluated at an intermediate state w, and let v be an arbitrary state; for simplicity,
assume that \,.x = 1. Then, as stated in Sect. 2, the following approximation holds:

|Alv & pr (AW = (A2 (A% + ay 1) + ax)v.

The above expression can be computed using Horner’s algorithm:

e Define vy = v and compute vy = AZvy.
e Calculate vi = agvy + ajvg and vy = A2V1.
e Compute v; = V1 + apvg. Then, |[A(w)|v & pr(A)v = v,.

The product A(w)v can be approximated using the finite difference formulation

Fw+ev)— F(w)
E b

Aw)y ~

which leads to

F(w+ F(w+ev) — F(w)) — F(w)

I3

A(w)y ~

= D .(w; v).

In practice, the value ¢ has to be chosen small relative to the norm of w; for instance,
in Sect.4 we have taken ¢ = 107%||w|| 2, which provides good results. Finally, the
vector | A(w)|v can be approximated using the following steps, in which only vector
operations and evaluations of the physical flux F are involved:

e Define vy = v and compute vy = @, (w; vp).
e Calculate vi = agvy + v and vy = @, (w; vy).
e Compute v, = V| + a;vp. Then, |A(w)|v =~ v;,.

4 Numerical Results

The equations of relativistic ideal magnetohydrodynamics (RMHD) have been cho-
sen to analyze the behavior of the proposed schemes, mainly due to the complex
form of the Jacobian of the system. It will be assumed throughout this section that
the speed of light is normalized to ¢ = 1. The notations are standard: see, e.g., [8].
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4.1 One-Dimensional Test Problems

In this section we have chosen two one-dimensional tests that constitute standard
references in RMHD. The initial conditions for these Riemann problems can be
found in [1]. The adiabatic coefficient in Test 1 is v = 2, while for Test 2 it is
v = 5/3. The tests have been computed using 800 cells, a Courant number of 0.8,
and a final time of t; = 0.4. To save space, only the results for the density component
will be shown; similar comments and results apply for the other variables.

The numerical experiments have been performed with the Jacobian-free versions
of the following methods:

e PVM-Cheb-12 and PVM-int-8: PVM methods based, respectively, on the Cheby-
shev approximation of degree 12 and the internal approximation of degree 8. The
intermediate matrix A; ., has been taken as the Jacobian of the flux evaluated at
the mean state %(wi + Wit1).

e DOT-Cheb-12 and DOT-int-8: approximate DOT solvers using the same polyno-
mials as above and a Gauss-Legendre quadrature with ¢ = 3 points.

The results have also been compared with the classical Harten-Lax-van Leer (HLL)
method. In this case, the minimum and maximum speeds of propagation have been
taken as —1 and 1 respectively, so HLL reduces to Rusanov’s method.

Finally, with respect to the higher order schemes, a third-order PVM method has
been considered in space, combined with a third-order TVD Runge-Kutta method
for time stepping.

4.1.1 Blast Wave with Strong Initial Pressure Difference

This problem, first proposed in [1], consists in a blast wave problem with a very
strong initial pressure. The maximal Lorenz factor is about 3.37, which means that
the flow is strongly relativistic. The solution consists of two left-propagating fast and
slow rarefaction waves, a contact discontinuity, and two right-going slow and fast
shocks. In this case, the relativistic length-contraction effect induces a compression
of the waves travelling to the right. Thus, the contact discontinuity and the right-
going shocks remain under-resolved: see [1] for more details about this pathology.
As it is shown in Fig. 1, our results are in good agreement with those in [1, 12].

4.1.2 Relativistic Shock Reflection Problem

In this section we consider the relativistic MHD analog of the Noh test problem pro-
posed in [1]. Initially, there are two streams approaching each other with a Lorenz
factor of 22.366, which makes this problem a extremely strong relativistic one. The
solution, shown in Fig. 2, has two very strong fast shocks propagating outwards sym-
metrically in opposite directions. Moreover, two slow shocks travelling in opposite
directions are formed, which are also properly computed.
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8
DOT-Cheb-12 DOT-Cheb-12

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1 Density component of the solution in test Sect. “Blast Wave with Strong Initial Pressure
Difference”. Left first order. Right third order
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- HLL
o PVM-int-8

X PVM-Cheb-12
+ DOT-int-8
DOT-Cheb-12

0.40 0.45 0.50 0.55 0.60 0.40 0.45

Fig. 2 Density component of the solution in test Sect. “Relativistic Shock Reflection Problem”.
Zoom of the central zone. Left first order. Right third order

The post-shock oscillations at the fast shocks are minimal and can be greatly
damped by reducing the Courant number in the computation. At the point of sym-
metry x = 0.5 there is a spurious density undershoot due to the numerical pathology
known as wall heating, that is produced by an undesired accumulation of entropy in a
few zones around the point of symmetry. The numerical error around the undershoot
is about 4.44%, which is quite acceptable (see [1, 12]).

4.2 Two-Dimensional Test Problems

Due to the challenging nature of the two-dimensional tests considered here, we have
considered second-order TVD versions of the schemes, which seem robust enough
to resolve the complex features of the solutions accurately. In general, the results
obtained with the PVM-int-8 and PVM-Cheb-12 schemes are very similar. For this
reason, in order to save space only the results obtained with the PVM-int-8 scheme
will be shown. On the other hand, DOT-type schemes are not considered, as they
produce similar results as PVM-type schemes but at a higher computational cost.
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4.2.1 Relativistic Orszag-Tang Problem

This test constitutes the relativistic version of the Orszag-Tang vortex problem, which
is a well-known model for testing the transition to supersonic MHD turbulence. The
initial conditions can be found in [13]. The problem has been solved up to time t = 4
in the computational domain [0, 27] x [0, 2] usinga 512 x 512 grid, with CFL=0.5
and adiabatic index v = 4/3. Periodic boundary conditions have been considered.

Figure 3 shows the results obtained with the second-order PVM-int-8 scheme for
the density component at times ¢ = 4 and ¢ = 7. At a qualitative level, our results
are in good agreement with those presented in [13].

4.2.2 Cylindrical Blast Wave

This test concerns the evolution of a blast wave in a plasma with an initial uniform
magnetic field. It is a canonical problem for testing the evolution of strong multidi-
mensional shocks.

The blast wave is initiated using a cylinder of overpressured and overdense gas
placed at the center of the domain, where the plasma is at rest and subject to a constant
magnetic field in the x-direction. We have taken the same initial conditions as in [13].
The problem has been solved in the computational domain [—6, 6] x [—6, 6] using
a 250 x 250 grid, until time # = 4 with CFL number 0.5. The adiabatic index is
~v = 4/3 and transmissive boundary conditions have been applied.

Figure 4 shows the results for the case in which the initial magnetic field in the
x-direction is taken as B, = 0.1, obtained with the second-order PVM-int-8 scheme.

36
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Fig. 3 Orszag-Tang vortex. Density at times t =4 and t = 7
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Fig. 4 Cylindrical blast wave with B, = 0.1. Solution at time ¢ = 4. Left density. Right pressure

As it can be seen, the main waves are properly captured: an almost circular external
fast shock and an oblate reverse shock. The results agree with those found in the
literature (see, e.g., [12, 13]).
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A Fractional Step Method to Simulate Mixed
Flows in Pipes with a Compressible
Two-Layer Model

Charles Demay, Christian Bourdarias, Benoit de Laage de Meux,
Stéphane Gerbi and Jean-Marc Hérard

Abstract The so-called mixed flows in pipes include two-phase stratified regimes
as well as single-phase pressurized regimes with transitions. It is proposed to handle
those configurations numerically with the compressible two-layer model developed
in [7]. Thus, a fractional step method is proposed to deal explicitly with the slow
propagation phenomena and implicitly with the fast ones. It results in a large time-step
scheme accurate in both regimes. Numerical experiments are performed including
convergence results and academical test cases.

Keywords Two-layer model - Implicit-explicit scheme + Mixed flow

1 Introduction

We focus on air-water flows in pipes and particularly on the so-called mixed flows.
The latter include stratified regimes driven by slow surface waves as well as pressur-
ized regimes (pipe full of water or air) driven by fast acoustic waves. This type of flow
occurs in piping systems of several industrial areas such as nuclear and hydraulic
power plants or sewage pipelines.
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Numerous modelling and numerical issues are tackled when dealing with mixed
flows due to the different nature of each regime. Using a 1D approach, a model with
an associated numerical scheme is proposed in [1] without computing the air phase.
With the aim of accounting for air-water interactions, a compressible two-layer model
is developed in [7]. It results in an hyperbolic two-phase two-pressure model which
presents strong similarities with the isentropic form of two-fluid models introduced
in [3]. In that framework, classical explicit schemes bring large numerical diffusivity
in the slow stratified regime.

Thus, a fractional step method is derived herein to split the slow dynamics from the
fast dynamics and adapt the numerical treatment. This approach is used in [2, 5] for
the Baer-Nunziato model and more recently in [6] for the model under consideration.
Furthermore, an implicit-explicit time discretization is also proposed in the sequel
to end up with a large time-step scheme and get accuracy in the stratified regime.
Contrary to the work presented in [6], the overall approach is driven by the fast
pressure relaxation and the shallow-water structure of the system such that interesting
results are obtained even for low speed flows.

2 The Compressible Two-Layer Model

The considered model deals with stratified gas-liquid flows in pipes. It results from
a depth-averaging of the isentropic Euler set of equations for each phase where the
classical hydrostatic assumption is made for the liquid, see [7] for details. Considering
a two-layer air-water flow through a pipe of height H, it reads:

dhy + Urdchy = A, (P — Pa(p2)),
omy + oymypuy =0, ()
dmyuy + dempui + dchy P(pr) — Prachy = (=D a1 — ua),

where k = 1 for water, k = 2 for air, my = hypy and h; + h, = H. Here, hy, px,
Py (px) and 1y, denote respectively the height, the mean density, the mean pressure and
the mean velocity of phase k. The interfacial dynamics is represented by the transport
equation on h; while the other two equations account for mass and momentum
conservation in each phase. The interfacial pressure is denoted by P; and closed by
the hydrostatic constraint, while the interfacial velocity is denoted by U; and closed
following an entropy inequality, one obtains (see [7]):

h
(U1, Pr) = (uz, Pi(p1) —p1g71>, (1)

where g is the gravity field magnitude. As the phases are compressible, state equa-
tions are required for gas and liquid pressures. For instance, perfect gas law may be
used for air and linear law for water. The celerity of acoustic waves is defined by
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Ck =4/ Pk’(pk). In practice, one uses A, = 4?:‘/1?;1 and A, = %ﬁpzmz — uy|, where
w1 is the dynamic viscosity of water and f; is a friction factor, see [6] for details.

Properties of (.¥)

(i) Smooth solutions of (%) comply with an entropy inequality.
(ii) The convective part of (%) is hyperbolic under the condition |u; — uz| # cy.
Its eigenvalues are unconditionally real and given by My = up, Ay 3 = u; £ ¢y,
Aas = uy £ . The field associated with the I-wave is linearly degenerate
while the other fields are genuinely nonlinear:
(iii) Unique jump conditions hold within each isolated field.
(iv) The positivity of hy and py is verified.

The details and proofs are provided in [7]. Two additional properties of (.*) are used
in the proposed fractional step method. Firstly, using (1), the momentum equation
for water can be written under a Saint-Venant-like form (see [8]):

h2
dmyuy 4 domyu? +axmg7‘ + hid P = Ay — uy). 2)

Secondly, the pressure relaxation in the first equation of () writes classically:
P; — P, 3)
—>00

and this relaxation is very fast in our framework as A, >> 1. In addition, regarding
the pressurized regime, (.*’) degenerates towards a single-phase Euler system when
one phase vanishes, as soon as the source terms also vanish.

3 Fractional Step Method Adapted to Mixed Flows

In order to handle both regimes included in mixed flows, the proposed fractional step
method splits (%) into three sub-systems. The material component of () is treated
in (/},) including the pressure relaxation source term and using the Saint-Venant
structure (2) for the water phase:

0hy +ux0chy = A (P — P2),
omy +oympur, =0, k=1,2,
2 (%)

h
dymyuy + domiu? + 3x,01851 =0,

0;mouy + 3xm2u§ =0.

(S,) refers to the acoustic component of (%) including the pressure gradients:
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athk = O, 3;mk == 0, k = 1, 2,
omuy + h10, Pp =0, (<)
Oymauy + ho0y Py + (P, — Pp)ochy, =0,

where P; = Pi(p1) — pi g%. Finally, (.#},) deals with the velocity relaxation source
terms:
Il =0, dymy =0, dmpuy = (=D hy(ur —u2), k=1,2. ()

A key feature is that the fast relaxation (3) solved in (.%},) is explicitly seen by (.#,).

Proposition 1 (Hyperbolicity of (.#,,)) The convective part of (.7, ) is weakly hyper-

bolic. Its eigenvalues are given by {u,; u; = ,/g%}.

(#,) is not hyperbolic as its spectrum reduces to zero. This singularity is handled in
the sequel using a relaxation approach.

In the discrete setting, the time step is denoted At and the space step Ax. The
space is partitioned into cells C; = [x; 1, 1 [ where x; 1 = (i + %)Ax are the
cell interfaces. At times " = n At, the solution is approximated on each cell C; by

T
Wi = ((hl)f', (h1p1)}, (h2p2)}, (hipruy)y, (thzuz),’-’) .

Step 1: Explicit scheme for (.#,,). In this step, W; is updated from W/ to W*. A
classical explicit finite-volume scheme with Rusanov fluxes is used on the convective
part while the pressure relaxation source term is treated implicitly. It writes:

At

W’*:W’rf—Ax

(F(Wl’_’%) - F(Wff%)) - ZAT’)CB(W?)(W;?+1 —WL) SV, @)

where F(W) = (0, myu1, mouz, myu} +mi g, mou?)™, B(W) = (u5,0,0,0,0)7
and S(W) = (A,(P; — P»),0,0,0, 0)7. The fluxes are defined by:

n 1 n n n n
FW,,) =3 (FOW!) + W, ) = 1y (W — WD),

L

&)
riol = MAx (|u" BICES ﬂ)”|)
2 T e\ 2 0 5751

In order to solve implicitly the source term, the mass terms m;; ; are updated first and
the first equation in (.%,) is solved under the form f (hf ;) = 0 where:

on" my ; m;
dx — AtA" i(P,(—’) — (2 ))
ox P y H—y

(6)

X

il
i

f(y):y—h'l‘,l-+At/ Sl

1
)
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One may easily demonstrate that f is strictly increasing on [0; H] with the limits
f ;) —ooand f — 400, suchthat f(x) = 0admits aunique solution 7 ; on[0; H].
+ H- ’

Proposition 2 (Positivity of heights and densities) The proposed scheme for (.%,,)
ensures the positivity of heights and densities under the classical CFL condition:

At rigl 11
—m.ax(%) <1, @)

which only implies material velocities.

Step 2: Implicit relaxation approach for (.#,). In this step, only u; is updated
from u; to u3*. The lack of hyperbolicity is handled with a relaxation approach, see
[4, 5], introducing the system () which relaxes towards (-#}) in the limit ¢ — O:

0hy =0, oymy =0, k=1,2,
omyuy 4+ h0,11; =0,
Oymauy + h0y Il + (I — I1;)0dhy =0, )

1
dymilTy + afhidyug + aj (ux — u)dxhi = —mi (Tl = Po), k= 1,2,

where I1; = I1; — plg%‘ and [T, relaxing toward Py as ¢ — 0. The PDE verified
by I} is derived from the PDE verified by Py in (.%) . In addition, a; are positive
numerical parameters used to ensure the stability of the relaxation approximation in
the regime of small ¢, their definition is provided later according to the flow regime.

Proposition 3 (Hyperbolicity of (.#))) When a; > 0O, the convective part of (£))
is strictly hyperbolic. Its eigenvalues are given by {0; :i:%; :tf)—i}.

In order to keep a numerical diffusivity based on the material CFL condition (7), an
implicit-explicit time discretization is proposed for the convective part of (.))) :

R =R, mE =mi, k=1,2,

(my*ul™ — mijuy)/ At + h{* 0, 11" = 0,

(m3"uy" — mauz) /At + hy" 0, 015" + (ITy — I)d:hy = 0,

(M I — miIE) At + af hdul +af (uf —u3)dch; =0, k=1,2.
(®)
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Classical combinations on (8) lead to the following semi-discrete equations on uy:

wi* —ut At a* 1 At a® (ut — u*
;__8,( _laxu** :——axP*+—3x Maxh* ,
At pf \pp ! ey 1 o mj :
) ©)
uy —uk At a? 1 Pj — Pf
2 2 _*ax (%axuz*) = ——*3XP2* — (2—*1)8)51’13
At o 05 P> my

In (9), instantaneous relaxation (¢ — 0) is assumed between I1; and P; such that
I1; = P}. Thus, the proposed implicit relaxation approach acts as a stabilization
process involving a diffusion term weighted by ay.

Definition 1 Under the light of (9), a; is defined according to the flow regime:

e In the stratified regime (h; < H): the pressure gradient /1,9, Py in (.,) is seen as a
source term. It accounts for variable interfacial pressure which can be interpreted
as air phase pressure due to the relaxation (3) solved in the first step. Thus, a; is
set to zero.

e In the pressurized regime (h; = H): the stabilization process is applied and a;

must follow the so-called Whitham condition: a7 > max(p?c?), see [4, 5].
P1

e In all the regimes, a, follows the Whitham condition a% > max(pgcg).
P2

After integrating (9) on a cell C; and using centered schemes for gradients, one
obtains an implicit system which may be written in matrix form:

AU =S, (10)

where A} is a non-singular tridiagonal matrix (M-matrix structure) and S} corre-
sponds to the integrated source term. Calculations are not detailed here. In practice,
the diffusion coefficient (a}/ PR} 1 is computed using an harmonic average and a

threshold on % is introduced to idezntify the flow regime.

Step 3: Implicit scheme for (.7,). In this step, only u, is updated from u;* to uZ“ .
The velocity relaxation source term is treated implicitly (except the A, coefficient)

such that the following non-singular 2x2 system is obtained:

myh 4 A — A WY o mau) (n
—Arhys omy 4 Aogy ) \ust! (mau2)s* )

This step concludes the overall scheme which ensures the positivity of heights and
densities under the material CFL condition (7).
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4 Numerical Results

In this section, the proposed scheme is denoted SP; and compared with a classical
Rusanov scheme applied on (%) under an acoustic CFL condition.

Riemann problem for the convective part. One considers an analytical solution
which contains two shocks for each phase traveling with the fast acoustic waves and
a contact discontinuity (slow wave) where h; jumps. Without the pressure relaxation
(3), note that a; follows the Whitham condition. Fields are displayed on Fig.1 at
T = 23.1073s with 500 cells. A mesh refinement is also performed to check the
numerical convergence of the method.

As expected, the SP; scheme is accurate on the slow wave. Regarding the fast
waves, it is more diffusive than Rusanov on phase 1 (the fastest) while better results
are obtained on phase 2. Indeed, the optimal regime for the Rusanov scheme is on
phase 1 with acoustic time steps. Stability and convergence towards relevant shock
solutions are obtained with the expected convergence rate % due to the contact dis-
continuity.

Dambreak. The source terms are activated and one considers the dambreak prob-
lem where the initial condition is a discontinuity on /&; with constant density and
zero speed. Regarding the water layer, the (incompressible) Saint-Venant system
admits an analytical solution, see [8]. As the compressibility of water as well as the
additional air layer should have a minor influence here, one expects to obtain the
same kind of solution for phase 1. Therefore, a 1 m long pipe is considered with

o Sqrt(Ax) — - hy
10 0.5025

Exact sol. —
0.502 - Rysanov ====
0.5015 - SPr —

0.501

S 9 % <
F ST RN

Errors in L"-norm

0o b 05005 -

2 S
&
T

SN

.
0 10° 10 10° 102 0 05 1

Exact sol. —
Rusanov ==== 0r
99 3 SP, —

Exact sol. —
9.95 -
Rusanov ====

SP, —

9.85

9.8

9.75

97

)
15 k_‘

20 L
0 0.5 1

9.65

Fig. 1 Errors in L'-norm and fields at 7 = 23.10~s with 500 cells for the Riemann problem
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hy/H

0.6 Saint-Venant Saint-Venant

exact sol. — exact sol. —
Rusanov ====

SP, —

055 Rusanoy ===
SP, =—
05

0.45

04

0 0.5 1

Fig. 2 Fields at T = 24.1073s with 1000 cells for the dambreak problem

(hi/H)r = 0.6 and (h;/H)g = 0.4 as initial conditions. The velocity and height
fields for phase 1 are plotted on Fig.2 at T = 24.1073s using 1000 cells.

Contrary to the results obtained with the large time-step scheme proposed in [6],
the SP; scheme displays accurate fields regarding the Saint-Venant solution. The
Rusanov scheme is highly diffusive and regarding CPU time, it needs 3 minutes
while SP; takes 6 seconds. Those results emphasize the fact that a classical explicit
scheme applied on (.%) is not adapted to low speed configurations.

Mixed flow. One considers a closed sloping pipe with constant height and zero
speed as initial conditions. The pipe is Sm long with H = Im, h; = 0.8m, 6 = 30
degrees. A mesh of 250 cells is used and the threshold is set to 0.99H. The flow
becomes pressurized at the bottom (only water) and dried at the top (only air), see
Fig.3 for a snapshot of the water height and Fig.4 for the pressure field.

Interesting qualitative results are obtained which demonstrates the ability of the
SP; scheme to handle mixed flows. Regarding the pressure field, one observes oscil-
lations at the transition point between the regimes which are classical when dealing
with mixed flows, see [1]. In the pgissurized region, the pressure gradient slope is

1

given by the expected equilibrium 5 = —p; g sin(9).

NN N

Fig. 3 Pipe filling snapshots for water height with 250 cells
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Fig. 4 Pressure field and water height at 7 = 0.5s
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A Second Order Cell-Centered Scheme
for Lagrangian Hydrodynamics

Théo Corot

Abstract We describe a high-order cell-centered Godunov type scheme for
Lagrangian hydrodynamics on general unstructured meshes using nodal fluxes. The
nodal solver only depends on the angular repartition of the physical variables around
the node. A second order extension of the scheme, using a linear reconstruction and
a Runge—Kutta method is described.

Keywords Lagrangian hydrodynamics + Godunov scheme * High-order finite vol-
ume method

1 Introduction

Lagrangian methods, which have the mesh moving with the fluid, are commonly used
to simulate multi-material fluid flows. Indeed these methods have the advantage of
capturing interfaces sharply. They are widely used in computational fluid dynamics.
In this work we are insterested in solving the two-dimensional compressible gas
dynamics equations in the Lagrangian framework [2]. The physical variables con-
sidered are the density p, the velocity u, the total energy E and the pressure p. The
equations can be written in an integral form

d _
? f.Q,-(t) pdV = O
4 fgl_m pudV + [g, pndS =0

d _ (D
i Jo,0 PEAV + [, p (.m)dS =0
£ ffl,-(t) dv — fs(t) (u,n)dS =0
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where £2; is, in pratice, a cell moving with the fluid. The first three equations of
( 1) describe mass, momentum and total energy conservation. The last one is the
geometric conservation law.

Several methods have been developed to solve this system of conservation laws.
For example staggered schemes [2] or free-Lagrange methods [11]. There are also
complete codes developed using Lagrangian methods, like [15] for instance.

We choose to use a Godunov type scheme with node based fluxes. Indeed node
velocities are needed to move the mesh. The development of this type of schemes
has been enabled by Després and Mazeran [10] with GLACE scheme. Then it has
been pursued by Maire, who highlighted a strong sensitivity of GLACE to the cell
aspectin [13] which led to EUCCLHYD scheme. Later Burton and others developed
a new scheme using similar ideas [3]. These schemes have been extended to high
orders, unstructured grids, multi-dimension and arbitrary Lagrange-Euler [4, 5, 9,
12, 14]. However, we remarked in [8] that in a particular case of one dimensional
Riemann problem, node velocities computed with GLACE and EUCCLHYD nodal
solvers can have an incorrect direction. To overcome this problem we proposed an
alternative scheme using a continous approach around the nodes. This approach led
to the construction of a nodal solver which only depends on the angular repartition
of the physical variables around the node and not on edge lengths. In this paper we
recall this last scheme and describe a second order extension.

2 Presentation of the First Order Scheme

Here we present the first order scheme developed in [8] which will be extended to
the second order in the next section.

2.1 Mesh and Definition

Let us first provide some basic definitions concerning the mesh and our finite volume
scheme. We note 7 = L the specific volume, ¢ the sound speed and z = pc the
acoustic impedance. We use general unstructured mesh, denote r the nodes and j
the cells. We define V; the volume of the cell j and M; the constant mass of this
cell. We note x, the coordinates of the node r and x; = v% /, @, XdV the centroid of
the cell j. We write r ~ j if and only if the node r is a vertex of the cell ;.

Since we use nodal fluxes, we need to define some normal at each node of acell j,

_ Ner) + Ny

Cjr= 5 ; 2
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Fig.1 Cell j

where N(,., y and N, ,,) are the normal vectors of the two edges of the cell j having
r as a vertex (see Fig. 1) such that | N,., ) | (resp | N¢,.,,) |) is the length of the edge
(r,r-) (resp (r, r+)). Our scheme can be written with a semi-discrete formulation

Mj%Tj — Z (llr,Cj,r) =0

r~j

Mj%llj"‘ZAper,r:O ) (3)
r~j

MjGEj+ X pr(w.Cjp) =0
rej

Now we need to describe how to compute u, and p, at each node. In order to describe
the nodal solver, we define, as in Fig.2, for each cell having r as a vertex, }’r and
(b?,r the angles made by each of the two edges of the cell j having r as a vertex with
a horizontal line. We note 6;, = ?r — d)},r' Furthermore we define the variation
of a physical variable w (pressure, velocity or acoustic impedance) around a node
with respect to an angle 6 as the function 8 — w(6). These functions are piecewise
constant. Moreover we define the nodal vector (see Fig.2)

_ cos ()
g =— (sin(@)) ) @)
J J
X 8/ ¥ // ! (p%/ ¢1 !

’0

o N
ng n

l
m

Fig. 2 Node r
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2.2 The Nodal Solver

To compute nodal pressure p, and velocity u, we need to define an intermediate
unknown pressure around each node § — p, (). Then our nodal solver can be written

P©) +2(0) @) . m0) = pr ) +2 (0) (0, m)
Iy Pr (0)ngdf =0 . (5)
(o™ 5d6) e = I3 <550 @6

Note that in one dimension, p + zu and p — zu, are the acoustic Riemann invariants.
Then the first equation of (5) is the multidimensional extension of these invariants.
The second expresses that the sum of forces around the node vanishes. The last one
defines p, as a mean weighted value of p,, which permit us to recover one unique
pressure and, consequently, a conservative scheme. Weights are chosen in order to
be as close as possible to the acoustic solver in the case of one dimensional Riemann
problem [8]. The system (5) can be written

Asu. =Db,
Lopr = 3 [Tirpj + (uj.my,)] ©)
j~r
where we define )
A =2 Aj,
j~r
b, = [Aj,u;+ pjn;,]
j~r o
Ajr =2 [,/ ng @ myd0 o
n;, = f;;r ngdﬁ
i
I, = Z I—Vj.r
j~r
0,
1=

Remark 1 This nodal solver only depends on the angular repartition of physical
variables around the node and has no dependence on edge lengths. Moreover, it has
been proven in [8] that, this solver always recovers the right direction of the velocity
when one considers a one dimensional problem around a node. Finally the first
order scheme using this nodal solver is conservative and verifies a weak consistency

property.
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3 Second Order Extension

In this section we describe a second order extension of our scheme. This extension
is made thanks to a piecewise linear reconstruction of pressure and velocity in each
cell and a Runge—Kutta two-step integration method to discretize the time derivative.

3.1 Piecewise Linear Reconstruction

Let w be a fluid variable (pressure or velocity components). The idea is to assume
that w has a linear variation in the cell j

wi(x) =w; + (Vw;,x — x;) ®)

with x; = Vi f 2 xdV. Consequently we need to compute the gradient Vw ;. Many
ways are posjsiblé, such as using ENO [6], WENO [7] or a least squares method [12]
to reconstruct the slope. In this paper we chose to construct it using a least squares
method. The gradient is constructed by imposing that

Vk € Neig(j) wj(Xi) = wy 9

where Neig(j) is the set of all neighboring cells of j. In practice this problem is over-
determined and the gradient is computed using a least squares method. Consequently
it is computed as the solution of the minimization problem

Vw; = argmin Z [wk -—w; — (ij, X; — xj)]z. (10)
keNeig(j)

The solution of (10) is easy to compute, searching for zeros of the first order derivative
one obtains

V= a3 (nw) () an
keNeig(j)
with
Aj: z (Xk—Xj)®(Xk_Xj). (12)
keNeig(j)

Once the gradient computed, one has to limit its value in order to preserve monotonic-
ity. x — w(x) becomes

wi(X) =w; + (¢;Vw;, x — x;) (13)
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where ¢; € [0, 1] and

¢j =ming;, (14)
With max
i () 1w %) = wj > 0
Oir = i () i) = w; <0 - (15)
1 else

Here w7“* (resp w?””) denotes the maximum (resp minimum) of w in the neig-
bouring cells of j. The function u characterizes the limiter. In this article we chose
to use pu(x) = min(1, x) to obtain the Barth Jepersen limiter [1]. Once this linear
reconstruction is done, in order to obtain a second order scheme, we use the values
extrapolated at each node w; (x,) instead of the mean values w; in the nodal solver.

3.2 Time Discretization

We chose to discretize the semi-discrete equations (3) using a second order Runge—
Kutta method. Let us assume that we know the physical variables at a time " and
we want to compute these quantities at a time "' = " 4 6¢. The second order
Runge—Kutta scheme can be described using a predictor and a corrector step.

3.2.1 Predictor Step

e Compute nodal velocities u;' and pressures p!' using our nodal solver and extrap-
olated values at each node deduced with the linear reconstruction of Sect.3.1.
e Compute nodal normals C’; , and update the momentum and the total energy with

1

n+» St
u; =ui— 5 > piCy,
T (16)
”+% _n or" n ’
E; " =Ej -5 P (pywy, C5,)
e Update node positions
i or"
X, 2 =x'+ Tuj‘ 17)

” n+4 . .
and deduce cell densities p; * using mass conservation
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p; = —=r} (18)

3.2.2 Corrector Step

e Knowing the physical variables and the geometry at the end of the predictor step,
.. n+% n+% . .
compute nodal velocities u, > and pressures p, > with our nodal solver using
extrapolated values given by the linear reconstruction.

1
e Compute nodal normals Cjt * and update the momentum and the total energy with

1 1
n+l _ on 6" sy et
uj - uj M; ooy Dr Cj,r
| | N (19)
n+l _ pn _ 8t" nty o nty it
E;i" =L - ,(1” u- G,
r~j
e Update node positions
1
n+l __ on n, nts
X" =x + 6t"u, (20)

n+1

and deduce the cell densities p;™" using mass conservation.

4 Numerical Validation

Let us consider the classical one dimensional Sod shock tube in order to validate
the second order extension. This case is a simple one dimensional Riemann problem
involving one perfect gas with an adiabatic constant v = 1.4. The shock tube is a
[0, 1] x [0, 1] box where we initially have

(1,0, 1) ifx <0.5
(p,u, p) (1 =0, x) = [(0.125,0, 0.1) ifx > 0.5 @D
All the boundaries are sliding walls. We compare the convergence order of the first
and second order scheme. To do it we compute the test on four meshes : M is a
5000 x 3 cartesian grid, M, a 10000 x 3, M3 a 15000 x 3 and M4 a 20000 x 3.

We note ueyr, Perr and pg,, L' errors made on the pressure, velocity and density.
Letus also denote u’,,, p’,, and p/,, L' errors made on a subdomain containing only
the rarefaction wave. These errors are written in Tables 1 and 2.

The second order scheme gives higher convergence speed (Table 1) than the clas-
sical one obtained in the Eulerian framework, especially for the density. This can
be explained by the fact that contrary to the Eulerian methods, Lagrangian schemes
permit to follow the contact discontinuity exactly. Moreover one can see in Table 1
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Table 1 Sod shock tube. Convergence of the numerical solution toward the exact solution

Mesh Order | uerr Perr Perr Order | uerr Perr Perr

M 1 47E-3 |2.85E-3 |2.86E-3 |2 5.92E-4 |2.79E-4 |3.2E-4

M; 1 2.65E-3 | 1.62E-3 | 1.64E-3 |2 2.96E-4 |1.41E-4 |1.68E-4

M3 1 1.89E-3 |1.15E-3 |1.18E-3 |2 2E-4 9.51E-5 |1.19E-4

My 1 1.45E-3 |9.02E-4 |9.26E-4 |2 1.52E-4 |7.26E-5 |9.31E-5
Convergence order ~ 0.84 |~ 0.84 |~ 0.82 ~096 |~096 |~0.86

Table 2 Sod shock tube. Convergence of the rarefaction wave toward the exact solution

Mesh | Order | uy,, Perr Perr Order | uy,, Perr Perr

M 1 1.39E-3 |9.15E-4 |7.75E-4 |2 1.26E-4 |7.68E-5 | 6.84E-5

M, 1 795E-4 |5.21E-4 |4.44E-4 |2 6.32E-5 |3.91E-5 |3.47E-5

M3 1 5.69E-4 |3.73E-4 |3.19E4 |2 4.22E-5 |2.64E-5 |2.33E-5

My 1 448E-4 |2.93E-4 |2.51E4 |2 3.17E-5 |2E-5 1.76E-5
Convergence order ~ 0.83 |~ 0.83 |~ 0.83 ~099 |~097 |~0.98

that our second order scheme has a convergence order close to 1 for the pressure and
the velocity while it is slightly lower for the density. However when one looks at the
convergence speed only on the rarefaction (Table 2) all convergence orders are close

to 1

for the second order scheme.
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Abstract We focus here on an integral approach to compute compressible invis-
cid fluid flows in physical domains cluttered up with many small obstacles. This
approach is based on a multidimensional porous integral formulation of Euler sys-
tem of equations. Its discretization uses a first order semi-implicit finite volume
scheme with pressure-correction algorithm preserving the positivity of both density
and pressure. Numerical tests are completed by simulating a 2D channel flow con-
taining two aligned tubes. The results are compared to reference solutions obtained
with a pure fluid approach on a fine mesh.
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1 Introduction

In this paper we introduce a way to investigate fluid flows in thermohydraulic cir-
cuits components in nuclear reactors where three so-called “system”, “component”
and “local” representation scales coexist. The first one is a 0D/1D description and
aims at providing a real time simulation of full circuits. The third one is the CFD
scale and allows a fine description on restricted physical domains. The intermediate
scale relies on a homogenized representation of some components [7, 9]; it consists
in taking into account a fluid and solid volume in cells. Our purpose is to build a
formulation embedding the “local” and “component” scales and ensuring the conti-
nuity between these two scales. A possible approach has been introduced in [6] using
explicit schemes. The basic idea consists in an integral formulation of PDEs in a
domain where a fluid flows around many small obstacles. Herein an implicit finite
volume scheme is considered, using the open-source code Code_Saturne [4]. The
compressible Euler equations (1) governing inviscid fluid flows are considered, and
the unknowns p, u, P respectively denote the density, the velocity and the pressure
of the fluid, while the momentum is Q = pu. The volumetric total energy E is such

that £ = p (”72 + e(P, p)). The internal energy e(P, p) is prescribed by the EOS

(Equation Of State), f is a mass volumetric external force and @, a volumetric heat
transfer source term. Thus the set of governing equations is:

ap +V-0=0
Q0+ V-w® Q)+VP=pf (1)
OE + V- (E+ P))=pf -u+pd,

The speed of acoustic waves noted c is such that: ¢*> = (% - W) / (W).
P 0

The total enthalpy is: H = #, and W is the conservative variable: W = (p, Q, E)'.

2 Integral Formulation

The integral form of conservation laws described in [6, 8] is considered. Set of
equations (1) is integrated on control volumes §2; which may contain many solid
obstacles. All £2; cells form a mesh of the computational domain 2 C R? (d = 1,2
or 3), such that: 2 = U; £2;. The obstacles may be completely or partially included in
£2;. Part of a control volume boundary may coincide with the surface of an obstacle.
Figure 1 is a sketch of the admissible situtations. In the sequel, the subscript i j refers
to interfaces between neighbouring control volumes §2; and £2;, and the superscript ¢
refers to fluid volumes and interfaces ij where the fluid may cross the interface, noted

Flj of measure Sf; = meas (Flj)) . Besides, the superscript w refers to solid interfaces
where a wall boundary I;" of measure S” is located inside the control volume £2;
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Fig.1 A (blue) control volume $2; includes (gray) obstacles numbered from 1 to 5. Obstacles may:
overlap part of the boundary of cell i (1); partially occupy one fluid cell (or subcell) (2); and split it

into two fluid sub-cells .Qél and (202 (3); be totally included in cell i or one of its subcells (4); be
aligned with part of the boundary of cell i (5). The dashed blue surface corresponds to the fluid-fluid

part of the boundary I“i‘_ljk between sub-cells £2; x and their neighbouring sub-cells occupied by the
fluid '

or on its boundary. The mass flux is null through surfaces S}". The volume occupied
by the fluid within the control volume £2; is denoted by .Q? . Nonetheless, a control
volume £2; may contain several fluid sub-domains .ka (k € [1, N(@)] with N (i) the
number of sub-elements), that are not connected to each other. We introduce within
each fluid sub-cell .ka amean value of the fluid state variable W (x, #) noted W, ; ().
The mean fluid state variable in cell £2;, W;(¢), is introduced as follows:

meas (9‘”) W= > W(x, 1)dx

ke(l.. NG Y ik

By additivity, using .Q = Upe (o NG Qlo «» Where ka are all mutually disjoint:
meas (.Qld)) = Z meas (Q:f)k)
ke{l,...N ()}
The conservation laws (1) can be rewritten as follows:
oW+ V. -F(W)=DW) 2)
where F (W) = (pu, pu ® u + PI, u (E + P))"isthe convective fluxand D (W) =

©,pf,p(f-u+ ®,)) represents the source term. Equation (2) is integrated over
a bounded time interval [#g, #;] C R"and space with respect to the .Q;b . sub-cell, the
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divergence theorem allows to rewrite:

t t
/ (W, 1) —W(x,t))dx +/ 1/ F (W (x,t))-ndI'dt = / ]/ D (W (x, t))dx dt
'Q;’,)k Tk 0 J 27,

‘ €)
Here, I} = &ka denotes the whole boundary of the fluid sub-cell £2;", with n the

outward normal vector. Fluid I'QOk and wall I'7"; boundaries of each sub-cell Qv@k are
distinguished, such that: I ; = Ff}c U I} and Fi(bk N I} = ¥. Summing up over the
N (i) fluid sub-cells of the control volume £2;, we get the integral formulation:

meas (9‘“) (W, (1) — W; (0)) + Z / / F(W(x, 1) - nddt
LN (@)} (4)

= Z // D (W (x,1))dx dt

L N(@)}

3 Time Scheme

The time discretization of the dynamic equation (4) is based on an implicit first order
scheme. It is assumed that all numerical fluxes may be evaluated by means of a
standard finite volume method, considering one mean value W} per cell £2; at each
time t". W{' is an approximation of W;(¢"), and the time step at the nth iteration
is: A" = t"*! — ", The numerical algorithm uses a fractional step method, with
prediction and correction of the pressure [1, 5]. Each time stepping is divided in
three steps: a mass balance step which is used to update the density and to predict
the pressure, a momentum balance step where the velocity is updated and an energy
balance step that allows to update the total energy and to correct the pressure. The
superscript (-)" 71~ states that the variable is implicit for the current step (or known
from the last step).

1. Mass balance

Pressure and density are implicit, while velocity and entropy are considered frozen
at time ¢". The following scheme is set:

(D]

meas (9’) L (Pl."“” - P,.") + A /r Q" -ndl' =0 )

where: (c?)" = ¢*(P", p"), and the approximation 6 P = (c?)" dpis considered, with
§P = P"tl.= — pP" The approximation of the implicit mass flux Q* is:

Q"= Q" — A"V Pt (6)
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and a two-point flux approximation is used: [, V¢ - ndI" = Zjev(l-)(¢j - (Z)i)Sf;/
h;j, on admissible meshes.

2. Momentum balance

In this step, velocity (and momentum) is implicit, whereas density and pressure are
known from Eq. (5), and total energy is frozen. Integration of the momentum equation
gives:

meas (-Q?) (Q:.H_l’_ — Q?) + A" ./1,0 ((Q* 'ﬂ)u)n+l’7d[‘ + A /F Pn+1,7nd1-,

i

— At"meas (.(2?) pf’“’*f:’ﬂ'* =0 7

. 1.—
where: P!~ is equal to P/

provides the velocity #"*!~ and thus Q

for all wall interfaces of cell i. This second step
n+l,— — pn+l,—un+1,—’ llSiIlgI

((Q* '”) ¢)ij = (Q* '")ij ¢?jpwind ®)
with: qs;fjf’wmd = Bij¢i + (1 — B,-j) ¢;, and: 3;; = max (O, sgn (Q* .n)ij).

3. Energy balance

Total energy is implicit while pressure, density and velocity are explicit from the
previous steps. Using upwind scheme (8), the total energy E"*!~ is updated:

‘ E P n+l1,—
meas (.Qi@) (E?-H‘_ - El") + At”/ ((Q* -n) + ) dr
re p

— At"meas (_Q;b) (of -u+ p@v)?ﬂ’* =0 O

Property 1 (Positivity of the density and the pressure): If the initial conditions are
such that: p! > 0and P!" > 0 and the EOS is such that: 4 = pc*/P > 1. The density

,0;“'1’_ and the pressure Pi"+1’_ remain positive for all i, if the time step At" complies
with the CFL-like condition (10):
i p~c2 n i
meas (:2‘”) > A" > By (T) (" n),, S, (10)
jev !

Sketch of proof Equation (5) gives an invertible linear system: A P"*1'— = B with
(A7), j >0, and also B; > 0 if and only if condition (10) holds, thus implying
+1,= : TS I - +1,— A
P! > 0. To be conservative, we have set: p] ™"~ = (¢! P/ + (3 —

1) /4" which completes the proof: pf’“’f > 0, since 47" > 1.
Eventually, the variables are updated: p"*!' = p"*1—, w't! = y"*+1— Er+l =

En+1,7’ and Pn+1 — P(anrl’ €n+1)’ where: pn+1€n+1 — En+1 —05 pn+1 (un+1)2.
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4 Numerical Results

Mesh refinement impact

Numerical approximations obtained thanks to this new approach are compared with
approximate solutions of the fluid model when the mesh perfectly matches obstacles
inside the computational domain (i.e. without any porous control volume). The inte-
gral approach is applied on porous meshes so that fluid cells are partially obstructed
by obstacles. The numerical example consists in computing the steady flow of a
compressible inviscid fluid in a channel aligned with the x-direction. At mid-length,
the channel is cluttered by two identical, steady and impermeable tubes aligned with
it. A sketch of the test case is displayed on Fig.2. The two-dimensional computa-
tional domain is 2 = [0, L] x [0, &]. It contains a discontinuous transition interface
between a totally fluid area and an obstructed area at x = % We consider admis-
sible meshes, with faces aligned with the obstacles. At the inlet and outlet sections
of the domain, boundary conditions from the resolution of half Riemann problems
are enforced [3] and a steady state is computed. Slip wall boundary conditions are
imposed at the top (y = &) and bottom (y = 0) of the computational domain. The
time step is controlled by the CFL-like condition (10). Several numerical approxi-
mations of the steady state are obtained using coarse and fine meshes. Six meshes
are perfectly adapted to the domain, thus including either totally fluid cells or fully
solid cells. They are respectively composed of 24 x 5,48 x 10, 96 x 20, 192 x 40,
384 x 80 and 768 x 160 regular cells. The four other meshes include porous cells,
they are respectively composed of 24 x 6, 48 x 12, 96 x 24 and 192 x 48 regular
cells. We assume that a steady state is reached when the dimensionless time residuals
on pressure and velocity in L? norm become small enough (1077, see Fig.3). The
time to steadiness is mainly governed by the velocity time residual. We note P" the
pressure on the intern upstream vertical faces, and S,, the vertical wall surface of these
intern upstream faces, such that S,, = S;, — S, (see Fig. 2). We define the flux vector
@ =108, OSH, (QU + P) ST and the head losses vector A = [0, 0, P¥'S,,]’, with
QO the momentum, S the fluid cross section, H the total enthalpy, U the bulk velocity
in the x-direction and P the pressure. When the perfect steady state is reached, the
conservation laws provide: @i, = @our + A. The relative deviation between inlet
and outlet boundary values for all the variables is defined as:

Sin Sout
= Tn/s =
L
— Q h Sy < Tnss —
)
— Ih/S —>

L2

Fig.2 The £2 domain has a L x h size, containing two internal obstacles (in gray). They lie in the
downstream middle of £2 and are spaced of % such that S,,; + S,y = Si . The fluid flows from the
left inlet towards the right outlet
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Fig. 3 Time residuals and value of e () for the adapted and porous meshes. The adapted meshes
correspond to the black plots and the porous meshes to the red plots
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Fig. 4 Pressure field (Pa) for 48 x 12 porous mesh (black cells are solid)
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For each mesh, e (¢) is plotted for (o components on Fig.3. This deviation is
small (< 107%). When the cells number increases, e (¢) may slightly increase since
unsteady terms (vortices) appear on refined meshes (Fig. 4).

Mesh adaptation w.r.t. obstacles position: sensibility analysis

The coarsest mesh, composed of 24 x 5 cells, is considered for two sensibility tests.
The differences in results between the adapted fluid mesh and any configuration
where the bottom of one of the obstacles is slightly shifted off its grid edge are
compared. The first configuration, called M, corresponds to the mesh adapted to
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Table 1 Comparison of M and M, configurations, x and y are the cell center coordinates

Variables X y EMM:
Density 4.6875 0.1 2.3842 x10~°
Pressure 2.60417 0.1 1.6911 x10~8

Table 2 Comparison of My and M3 configurations, x and y are the cell center coordinates

Variables X y EMiM3
Density 2.8125 0.1 1.5046 x 1073
Pressure 2.8125 0.1 2.2050 x 1073

Table 3 Comparison of M3 and M3 configurations, x and y are the cell center coordinates

Variables X y EM2M3
Density 2.8125 0.1 1.5046 x 1073
Pressure 2.8125 0.1 2.2099 x 103

the tubes position. In the second configuration, M5, the lower tube width is slightly
reduced (107> h) so that weakly porous cells exist. In the last situation, M3, the width
of the same tube is reduced again at the top (107> h), and its upstream wall is also
slightly shifted in the downstream direction (107> h). The relative deviation, EM«M:
between two simulations of different M} and M, configurations (k, [ =1, 2 or 3) on
all N‘im fluid cells for each discrete variable ; = (p;, P;),i € {1, ..., N? } (see

c cells

Tables 1, 2 and 3) is defined as follows:

EMkMI —

My M M
max "P,‘ — ¥ ‘ / “Pi
i€l Noy)

Here the domain measures are: L = 5 and 2 = 1. The deviations are rather weak
(< 1073). The porous formulation is robust w.r.t. standard computations. We note
that the gaps are concentrated in the same area, near the upstream faces (x = 2.5).
They are higher between M3 and the other configurations. Current work aims at
extending the integral formulation to incompressible viscous fluid flows governed
by the Navier-Stokes equations. Viscous effects are taken into account thanks to a
wall function which vanishes when the mesh is refined [2].

Acknowledgements The first author receives a financial support by ANRT through an EDF-CIFRE
contract 2016/0728.
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A High-Order Discontinuous Galerkin
Lagrange Projection Scheme
for the Barotropic Euler Equations

Christophe Chalons and Maxime Stauffert

Abstract This work considers the barotropic Euler equations and proposes a high-
order conservative scheme based on a Lagrange-Projection decomposition. The high-
order in space and time are achieved using Discontinuous Galerkin (DG) and Runge-
Kutta (RK) strategies. The use of a Lagrange-Projection decomposition enables the
use of time steps that are not constrained by the sound speed thanks to an implicit
treatment of the acoustic waves (Lagrange step), while the transport waves (Projec-
tion step) are treated explicitly. We compare our DG discretization with the recent
one (Renac in Numer Math 1-27, 2016, [7]) and state that it satisfies important non
linear stability properties. The behaviour of our scheme is illustrated by several test
cases.

Keywords Barotropic Euler equations - High-order discontinuous Galerkin
schemes + Lagrange-projection decomposition + Implicit explicit - Large time steps
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1 Introduction

We are interested in the gas dynamics equations in Eulerian coordinates
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where p > 0 is the density, u the velocity and p = p(p) is the pressure of the fluid
such that p’(p) > 0. In the numerical experiments, we will choose p(p) = gp?/2
where g > 0 is the gravity constant so that the model can also be understood as the
Shallow-Water equations with flat topography (in this case, p stands for the water
depth). The unknowns depend on the space and time variables x and 7, with x € R
and ¢ € [0, 00). At time ¢ = 0, the model is supplemented with a given initial data
plx,t=0) = po(x)and u(x,t =0) = up(x).

The aim of this paper is to propose a high-order discretization based on a Lagrange-
Projection decomposition of the governing equations and using a Discontinuous
Galerkin (DG) [4, 9] strategy for the space variable.

The Lagrange-Projection (or equivalently Lagrange-Remap) decomposition is
interesting since it allows to naturally decouple the acoustic and transport terms of
the model. It proved to be useful and very efficient when considering subsonic or
low-Mach number flows. In this case, the CFL restriction of Godunov-type schemes
is driven by the acoustic waves and can be very restrictive. The Lagrange-Projection
strategy allows for a very natural implicit-explicit scheme with a CFL restriction
based on the (slow) transport waves and not on the (fast) acoustic waves. We refer
for instance the reader to [1, 2, 5], to the recent contribution [3], and to the refer-
ences therein. Note that the later contribution considers the Shallow-Water equations
with non flat topography and that the corresponding (implicit-explicit) Lagrange-
Projection scheme is well-balanced but only first-order accurate. It is the purpose
of this contribution to extend the first-order Lagrange-Projection schemes of the
above references to high-order of accuracy in both space and time. The proposed
approach is quite close to the one recently developed in [7], but as we will see, the
corresponding Projection step turns out to be different.

2 Lagrange-Projection Decomposition
and Finite-Volume Scheme

In this section, we briefly present the Lagrange-Projection decomposition considered
in this paper and the corresponding first-order finite volume scheme.

Operator splitting decomposition and relaxation approximation. Using the chain rule
for the space derivatives of (1), the Lagrange-Projection decomposition consists in
first solving

9:p + pdu =0, @)
0;(pu) + pudcu + 9y p = 0,
which gives in Lagrangian coordinates td, = 9,,, with T = 1/p,
8,1’ - amu == 0,
[ it + D p = 0, ©)

and then the transport system
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0o +udp =0, )
0;(ou) +ud,(pu) = 0.

The numerical approximation of (3) and (4) will be given in the next sections but
let us notice from now on that the Lagrangian system (3) will be treated considering
the following relaxation approximation [6, 8],

8T — Oyu =0,
du + 0,11 =0, )
I + a*du=A(p—1I).

Here, the new variable [T represents a linearization of the real pressure p, the con-
stant parameter a is a linearization of the Lagrangian sound speed pc such that
the sub-characteristic condition a > pc, ¢ = +/p’(p), is satisfied, and the relaxation
parameter A allows to recover IT = p and the original system (3) in the asymptotic
regime A — oo. As usual, the relaxation system will be solved using a splitting strat-
egy which consists in first setting /7 = p at initial time (which is formally equivalent
to considering A — oo in (5)), and then solving the relaxation system (5) with A = 0.
First-order numerical scheme. The first-order finite volume scheme associated with
the above decomposition and relaxation approximation is classical and given for
instance in [2]. Nevertheless, it will be recovered in the DG extension proposed in
the next section by setting the degree of all polynomials p to 0. Space and time
will be discretized using a space step Ax and a time step Af. We will consider a
set of cells k; = [xj_1/2, Xj+1,2) and instants t" = nAt, where x;,1» = jAx and
Xj = (xj_12 +xj11/2)/2 are respectively the cell interfaces and cell centers, for
j€Zandn € N.

3 Discontinuous Galerkin Discretization

We begin this section by introducing the notations of the DG discretization. Recall
that the DG approach considers that the approximate solution at each time ¢" is defined
on each cell ; by a polynomial in space of order less or equal than p for a given inte-
ger p > 1 (p = 0 corresponds to the usual first-order and piecewise constant finite
volume scheme). With this in mind, we consider the (p + 1) Lagrange polynomials
{€;}i=o,..,p associated with the Gauss-Lobatto quadrature points in [—1, 1]. More
precisely, denoting —1 =59 < s51 < --- < 5, = 1 the p + 1 Gauss-Lobatto quadra-
ture points, ¢; is defined by the relations ¢; (sy) = 8, fork = 0, ..., p, where é is the
Kronecker symbol. Then, in each cell « ;, we define the shifted Lagrange polynomials
@; by ®; j(x) = £; (£ (x — x;)) and we take {®; ;};0,...., as a basis for polynomi-
als of order less or equal than p on « ;. If we denote by X 4, the DG approximation
of X, we thus have X 5, (x, 1) = Zf:o Xy, j(t) P j(x), Vx € kj, where the coef-
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ficients X ; depend on time and correspond to the value of the numerical solution
at the shifted Gauss-Lobatto quadrature points x; ; = x; + %sk.

Before entering the details of the numerical approximation, let us briefly recall
that the Gauss-Lobatto quadrature formula for f : k; x RT — R writes

Ax &
/ flende~ — kz_(;wkf(xk,,, 0,

where wy, are the weights of the Gauss-Lobatto quadrature. It is well-known that this
formula is exact as soon as f is a polynomial of order less or equal than (2p — 1) with
respect to x on ;. Just note that the integral fK D i (x)Py j(x) dx will be therefore

approximated by %wi 8; x in the following. At last, note that the piecewise constant
case p = 0 can be also considered in this framework provided that we set 5o = 0,
®O,j =1 anda)o =2.

Time discretization (t" — t"*'). We begin with the acoustic step (5) with A = 0.
Multiplying the three equations by @; ;, integrating over «;, and considering the
piecewise polynomial approximations X o, for X = 7, u, IT easily leads to

Ax
Twiatfi,j(t) —/ D; i (x)Ou(x,t)dx =0,

7

A
Srwtans 0+ [ @000 0 dx =0

Kj

Ax 2
7(1)[8;17[71‘(1‘)4-& dﬁi’j(x)amu(x,t)dx =0,

that we discretize in time by

[ - 2At

1

o=+ o Ax /K,» D, j(x)Dpu(x, 1) dx,
- 2At
1

wip =i — m/K/ @; ; (x)0, T (x, ") dx, (6)
- 2At
1 2

Hlnj - Hiy'lj — a)iAx/K D; j(x)dpu(x, t*) dx,

J

where the superscript n + 1~ formally represents the fictitious time /"7, and @ = n
or o« = n + 17 if the time discretization is taken to be explicit or implicit.
As far as the transport step is concerned, the same process of reasoning leads to

- 2At -
Pt =it — / ®; j()ux, 1), p(x, ") dx,
5J »J a)iAx ; &
2At ™
ntl — A b, ; )9 R |
(pw); ;" = (pu);; o Ax i,j (Du(x, 1%)0x (pu) (x, 1777 ) dx.

i
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Note that this transport step is always treated explicitly in time.

Volume integrals and flux calculations. Considering the acoustic step, we aim at

approximating the integrals fK D; j(x)0, X (x, 1) dx with X = u, IT. Observe that
J

o Ax o
g QD,-,j(x)amX(x,t )dx ~ > —w; ljaxX(x,],t )dx _Tll ,-’j(x)E)XX(x,t ) dx,

j Kj

the last equality is indeed exact since X and @ are polynomials of order less or equal
than p, so that @; ;0, X (-, t) is of order less or equal than (2p — 1). The objective is
now to use one integration by part to move the derivative from X to &, and to use
the numerical fluxes to evaluate the interfacial terms, which gives

Ax &
/ (00X (1) dx & 8 p X758 ) — 810X 7% 5 — > D X0, Pr (X ).
K =0

J

Again, we refer the reader to [2] for the expressions of the star quantities in the above
formula and the following ones, which are nothing but the numerical fluxes of the
first-order finite volume scheme. At last, from (6) we obtain the acoustic step

n+1= _ _n 2At _n . *,0 s R _ Ax 14 o L. .
T =TT oact [‘Stvp“jﬂ/z SiouiZ =5 k=0 “’k“k,jax(bw(xkd)]
— o Vl
- LI Jjlige (8)
n+1= _ n 2At _n X *,0 Ax P a - . .
Uij = Ui~ wiaxtj |:5unnj+1/2 3, 017 -127 72 2 k=0 wknk,jdx‘p'vj(xkd)]’
n+1= _ rn 2 2At _n . *,0 I X% _ Ax P o - X
Iy =1 — @ Oas Ty |:61~Puj+1/2 80w %1 p = 7 2keo wk”k._/3X¢t-J(xk./):|v

o 241 0 0 Ax NP o )
with L, = 1+ 255 Az |:8i,puj+l/2 — 8oty — 5 Do wkuk,jaxdz-,j(xkd)].

Regardmg the transport step, we want to evaluate the integrals
/qﬁi,j(x)u(x,r“)axX(x,t"“’)dx
i
with X = p, pu. The same process as before leads to
/ ®; j (Ou e, 10X (e, ") die = 8, X1yl y — 80X Ty W,
Kj

— [ Xuw)d, ®; ; dx — X" | & i (x)dcu(x, 1%) dx,
sJ i, J

J

where we take
B s A 14
f/c,- Qf),-,jaxu(x, t%) dx = (Si,pu_’;fl/z — (S,‘,()I/tj_al/z — Tx Zk:O a)kuij Oy dﬁi,j(xk,j)
~ A 1~
and ij (Xu)8xd>i,j d)C ~ Tx z]fzo kal’:,-; Mz’jaxqji,j(xk’j).
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Conservativity property and mean values. Easy calculations not reported here show
that the whole Lagrange-Projection scheme can be Written as follows

241
n+1 *,n+1 n+1-
p,j' =,0f_,- T wiAx [5'11/’/431/2 “,+1/2 di 0/0, 1/2 “T Ot1/2 Zwkp * ”k._;“”x@ivj(xkvj)]'
2At Ax -
1 , 1
(pu)”+ (pu);fj P {&,pnjfl/z 8, 017 ST Zwk”fj axcp,-,j(xk,j)}
24t - -
7(:),-Ax |:6i.p(pu)j-.:1+/12 “7f1/2 10()0”)] 1/2 u] 1/2 zwk(/"l)’l+l uk’jaxq)i,j(xk,j):|
. —n+1
while the mean values X, = Lf X(x,t"“)dx =>", < X’H'l with X =
J Ax Kj 2
0, pu obey the conservative formulas
At
—n+l _ —n *,n+1 *,00 *,n+17 *a
Pi =Pi™ Ay [/’/H/z Uik = Pjlija U 1—1/2]
—n+1 —n At *,n+1"
Gowy; " = (o) = 2= [0+ (w8 w3 ©

+1-
—117% ) = (o)™ “jal/z]

Additional nonlinear stability properties can be proved for both the implicit and
explicit schemes (¢ = n and @ = n + 17). In particular, we have been able to prove
the positivity of the nodal densities ,0’”rl at time ¢"*!1" and of the mean densities

p?“ at time t"*!, but also the validity of a discrete entropy inequality for the mean

energy following the same lines as in [7].

Comparison with the double integration by part used in [7]. The present scheme turns
out to be very close to the one recently proposed in [7], and it shares the same stability
properties. However, the overall process in [7] is based on double integrations by
part leading to the use of both numerical and exact fluxes at the interfaces, instead of
only numerical fluxes in our approach. Interestingly, we observed that both schemes
are strictly equivalent if one considers the mean values, but the nodal values turn
out to be different because of the transport step. These little differences are due to
the use of quadrature formulas to integrate the polynomials Xud,®; ;. In this case,
the numerical integrations are not exact since polynomials Xud,®; ; are of order
3p—1>2p—1.

Positivity and generalized slope limiters. We have already stated the positivity of the
nodal values ,o'”rl at the end of the acoustic step and of the mean values p _"“ at the
end of the transport step. Similarly to [7], we suggest to use a positivity hmiter to
ensure that p}'t' > 0. More precisely, we replace oI by 6,0/ t" + (1 —6;) 2",

where the coefficients 6; are taken to be §; = min { 1, m) . This formula
i PP

ensures that if p is less than the threshold ¢, the nodal values of the corresponding

cell are corrected, using the positive mean value, towards values greater than ¢. In

general we set the parameter € to 1.0e~'?. Note that in the forthcoming numerical

experiments, the positivity limiter is not active. In order to avoid non physical oscil-
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lations, we also use the generalized slope limiters introduced in [4]. More precisely,
considering the minmod function m(a, b, c) = s - min(|a|, |b|, |c]) if
s = sign(a) = sign(b) = sign(c) and 0 otherwise, the increments

A =X X AX = X”“ X", and the values
—n+1 n+1 1 —n —n—+1 —n+1
X =X m (X"f XA X ALY )
xpnd =% (X - xp A X A X”+1)
the new states at time t"*! are defined by
+1 —n+l +1 +.n1+1 +1
X?il 1fX]+'i/2_X”]ande"I/z_ng,
—n
X, + 2 (x1; —x;) ~m(8xX"+1(xj), A+Xj ,A_Xj ) otherwise.

4 Numerical Results

The aim of this section is to compare our explicit-explicit EXEX,, and implicit-
explicit IMEX,, Lagrange-Projection schemes, where p refers to the polynomial
order of the DG approach. The time integrations are performed using Strong
Stability Preserving Runge-Kutta methods described in [4]. Recall that p(p) =
gp?/2 so that the parameter a is chosen locally at each interface according to

Aj41/2 = kK Max (p;' /g,o;?, ,o}’ﬂ /g,o;?ﬂ) withxk = 1.01 and g = 9.81. We set At =

min(Afg g, AtTra) for the EXEX, schemes and At = Atry, for the IMEX, schemes
where Aty = 557 min; (Za j+1/2min(z, ;, To, ]+1)) is the DG time-step restrlctlon
associated with tfle Lagrangian step, while the Transport step CFL restriction reads
Atry, = Ax min; L% (sz ud, P; jdx — 8,u7i H + 50’/{,‘_1/2)

Manufactured smooth solution. This preliminary test case is taken from [7] and allows
us to test the experimental order of accuracy (EOA) of the schemes, especially on
the Transport step. The space domain is [0, 1], the boundary conditions are periodic
and the initial conditions are pyp(x) = 1 + 0.2 sin(2wx) and uy(x) = 1. We solve (1)
with a source term such that the exact solution is p(x,7) = 1 + 0.2 sin 2 (x — t))
and u(x, t) = 1, which just means that we impose u”;rl =1 and 17"Jrl =17,
that the Acoustic step is trivial. Note that we use in this special case the EXEX
schemes. The EOA are reported in Table 1.

Dam break problem. In this test case, we take pg(x) = 20ifx € [0, 750 [, po(x) = 10
if x € 750, 1500], and uo = 0 everywhere. The solutions given by the EXEX, and
IMEX,, schemes with p =0, 1 and 2 are shown on Fig. I using a 100-cell mesh,
and compared with the classical first-order HLL scheme over a 100-cell mesh and
a reference 1000-cell refined mesh. Note that the slope limiters allow to reduce
spurious oscillations, but there is still a little undershoot for the EXEX; scheme.
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Table 1 EOA for the manufactured smooth solution at time 7" = 0.5

Ax p=0 p=1 p=2
loax — pli1 | order loax — pli1 | order loax — pli1 | order

1/512 9.3986E-03 |0.9432 1.0196E-05 | 1.9996 1.3457E-08 |2.9907
1/1024 4.7945E-03 [0.9710 2.5493E-06 | 1.9998 1.6849E-09 | 2.9977
1/2048 2.4217E-03 | 0.9854 6.3736E-07 | 1.9999 2.1070E-10 | 2.9994

25 T T T T T T T T T T T T T T

HLLof —o— HLLyet —8—

20 ::::CCCC‘Q‘%\ HLL —— 4 HLL —— 4
= EXEXy —=— IMEXg —=—
£ 15t \\\ EXEX? — IMEX? —
® \ EXEX, IMEX,
§ 10 F m“ﬂ _ .
: \

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

X X

Fig.1 Dam Break problem, water height at time 7 = 10, EXEX, (left), IMEX, (right)
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Sensitivity Analysis for the Euler Equations
in Lagrangian Coordinates

Christophe Chalons, Régis Duvigneau and Camilla Fiorini

Abstract Sensitivity analysis (SA) is the study of how changes in the inputs of
a model affect the outputs. SA has many applications, among which uncertainty
quantification, quick evaluation of close solutions, and optimization. Standard SA
techniques for PDEs, such as the continuous sensitivity equation method, call for the
differentiation of the state variable. However, if the governing equations are hyper-
bolic PDEzs, the state can be discontinuous and this generates Dirac delta functions in
the sensitivity. The aim of this work is to define and approximate numerically a sys-
tem of sensitivity equations which is valid also when the state is discontinuous: to do
that, one can define a correction term to be added to the sensitivity equations starting
from the Rankine-Hugoniot conditions, which govern the state across a shock. We
show how this procedure can be applied to the Euler barotropic system with different
finite volumes methods.
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1 Introduction

Sensitivity analysis (SA) concerns the quantification of changes in Partial Differential
Equations (PDEs) solution due to perturbations in the model input. It has been a
topic of active research for the last years, due to its many applications, for instance in
uncertainty quantification, quick evaluation of close solutions [4], and optimization
[2], to name but a few. Note that SA approaches differ from adjoint methods, which
are restricted to the evaluation of functional derivatives. Standard SA methods work
only under certain hypotheses of regularity of the solution U [1]. These assumptions
are not verified in the case of hyperbolic systems of the general form

U+ 9, FU)=0, xeR, >0,
U(x, 0) = Up(x),

due to possible discontinuities, which can occur even when the initial condition is
smooth. If the state U is discontinuous, Dirac delta functions will appear in the
sensitivity U, = 9,U. Here and throughout this work, a denotes the input parameter
of the model which may vary and induce a non trivial sensitivity U, of the state
solution U.
In this work, we consider the Euler equations in Lagrangian coordinates in a
barotropic case, i.e. the p-system:
[8,1 deu =0, 0
ou+ o p(r) =0,

where t > 0is the covolume (i.e. T = F%, where p is the density of the fluid), u is the
velocity and the pressure p(t) is a function of t such that p’(t) < O and p”(zr) > 0.
Under these assumptions, (1) is strictly hyperbolic with eigenvalues A, = £c where
¢ = +/—p'(7) is the Lagrangian sound speed. In this work we will consider p(z) =
777, where y = 1.4 is the heat capacity ratio.
By differentiating the system (1) with respect to the parameter of interest a and
considering smooth solutions of (1), we obtain the sensitivity equations:
[a,ra Ot = 0, o
Oy + 0:(p'(v)7,) = 0.

One can define the following vectors:

T —u T, . —Uyg
U= u FU) = [p(r)}, U, = [u} F,(U,U,) = [p,(rm},
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and rewrite the systems (1) and (2) in a vectorial form:
0,U+ 9, FU) =0, 3)
o,U, + 0,F,(U, U, =0.

At this stage, it is easy but important to remark that the global system (3) admits the
same real eigenvalues Ay (both with multiplicity 2) as the original system (1) but
it is only weakly hyperbolic as soon as t, # 0. We recall that weak hyperbolicity
means that the Jacobian matrix of the system admits real eigenvalues but is not R-
diagonalizable. As a consequence and without any modification of (3), discontinuous
weak solutions of the state variable U will generally induce Dirac delta functions in
the sensitivity variable U,, in addition to the usual discontinuity, so that the solutions
of (3) have to be understood in the sense of measures. However, and as already stated
above, we are not interested in considering Dirac delta functions. Instead, we would
like to introduce a modification in the sensitivity equations in order to make the
system (3) valid in the usual sense of weak solutions also for discontinuous state
variables (as done in [5]). This is the aim of the next section.

2 Source Term

In order to remove the Dirac delta functions that are naturally present in the solutions
of (3), we suggest to add to (2) a source term S, which is of the following form:

Ny
S = ZSkpk, (4)
k=1

where N, is to be associated to the number of discontinuities in the state solution U,
Py is the amplitude of the k-th correction (to be computed), and &y, is the Dirac delta
function §; = 6(x — x,.1), where x; ; is the position of the k-th discontinuity. Let us
consider then a control volume (x;, x) X (¢1, #,) containing a single discontinuity
indexed by k and propagating at speed oy. By integrating the equations (2) with
the additional source term (4) over the control volume, when the size of the control
volume tends to zero one has:

pi(t) = (U, — U)o, +F, —F,, ®)

where the plus (respectively minus) indicates the value of the sensitivity U, and of
the flux F, to the right (respectively left) of the discontinuity. In other words, (5)
gives a natural meaning of p, in terms of a defect measure of the Rankine-Hugoniot
relations applied to (2). It is now a matter of defining p, in such a way that the new
model including the source term is also valid for discontinuities of the state variable
(recall that (2) was obtained by differentiating with respect to a the smooth solutions
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of (1)). Considering the Rankine-Hugoniot conditions across a discontinuity of the
state variable, namely (U~ — U")o; = F~ — F", we differentiate with respect to
the parameter a to obtain (U, — U)oy + (U~ — U")oy, =F, — F/, withoy, =
d,0%. Comparing the latter with (5), one is thus led to set

pi(t) = 01 o (UT —U"). (6)

3 Numerical Schemes

We introduce a constant space step Ax and a varying time step At". We define the
mesh interfaces x;;1 = jAx, the cells C; = [x;_1,2, Xj11,2], the cell centres x;
and the intermediate times "' = " 4+ A", where At" is chosen according to the
usual CFL condition.

The Godunov method.

In this paragraph, we present the usual Godunov method based on the exact resolution
of the Riemann problem including the source term, and associated with the initial
data U(xa 0) = UL]l(x<xr) + UR]l(x>x,) and Ua ()C, 0) = Ua,L]l(x<xc) + Ua,R]l(x>xc)-
The details are not reported here but one has been able to prove that the analytical
solution is known and that its structure is resumed in Figs. 1 and 2. In particular, the
solution for the state consists of two waves, which can be either shocks or rarefaction
waves, and whose speed can be computed exactly. On the other hand, the sensitivity
has the same two-wave structure, however both of the waves are discontinuities. This
simplification for the sensitivity is due to the fact that we are considering a reduced
Euler system, under barotropic conditions (cf. [6]).

Since the state equations (1) are conservative, the Godunov method can be written
with the classic update formula

n+1 n At * *

where U7_, , denotes the exact intermediate state variable in the Riemann solution
associated to left and right states in the j — 1-th and j-th cells.

Due to the presence of the source term in the sensitivity equations, a conservative
update formula like (7) cannot be obtained. However, recall that the structure of the
sensitivity at each interface is very simple and made of two shocks. As a consequence,
one can easily perform the average on the cells, provided that the slopes «; and k>,
i.e. the slope of the red lines and the blue solid line in Fig.2, are known at each
interface j — 1/2. More precisely, we easily get

n+1 n At * n * n
Uﬂ,j = Ud,.i + E (Kz».i—1/2(Ua,j—l/2_Ua,j) - Kl,_i+l/2(Ua,_]q.]/z_Ua,j)) , (8
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t t

Te x Te x

(a) 1-shock—2-shock. (b) 1-shock—2-rarefaction.

U* U*
UL UR UL UR

‘CUC xr xc xXr
(c) I-rarefaction—2-shock.  (d) 1-rarefaction—2-rarefaction.

Fig. 1 Configurations for the state variable U

where the intermediate states U, ;_;, and Uj ;,, are known analytically and
depend on U’_, », and U}, , respectively. We remark that k¢ j+1,2 depends on the
solution structure: in case of shock it is given by the Rankine-Hugoniot conditions,
in case of rarefaction wave it is the eigenvalue A evaluated in the intermediate state
U7, Let us observe that (8) already encompasses the source term to remove the
Dirac delta function, therefore we do not need to discretise it. However, this correc-
tion is taken into account even in a numerical rarefaction profile (we recall that two
points in a rarefaction wave are not necessarily linked by a rarefaction), and this is
the cause of the failure of Godunov’s method. In the next section, we present a Roe’s
method which uses shock detectors in order to overcome this problem.

A Roe-type method.

The proposed approximate Riemann solver of Roe-type consists of three con-
stant states (say Uy, U* and Uy for the state, and U, ;, U} and U,y for the
sensitivity) separated by two shock waves propagating at velocities A f 3 E 12 =

—\/—(p(‘l:;’_l) —pE)/() — ) and AF9E, , = —AR9E, ,if 17, # 7} (and
of course F /—p’(‘f;') otherwise). In the following, we will use the notation
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v

T
(c) 1-shock—2-shock. (d) 1-shock—2-shock.
Fig. 2 Corresponding configurations for the sensitivity U,
)»ff)llfz = kg_‘;f 12 = —kfgf 1/2- The fact that the velocities at each interface are

equal and opposite in sign allows us to write at the interface j — 1/2 the Harten, Lax
and van Leer consistency relations for the state in the following way:

F(U!) —F(U"_))

ROE
2750

9)

* 1 n n
Uisip=5Uj +U) -

Knowing UjL 1,2 and the velocity AROL ateachinterface one can average the solution

value on the cells, obtaining the following update formula for the state:

At

n+l _ ym
Ay

(Pii12 = Pj 1)) (10)

where @" is the numerical flux and is defined as follows:

" FUD+FU) A%
Pip=—""7~—5 G-l

We now consider the sensitivity equation, with the following source term, defined
according to Eqgs. (4)—(6) and given by
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_ ROE ROE
Aij_1/2 - )‘] 1/2(U1—1/2 ,r/"—l)dl,j—l + au)‘j—l/z(U;% - Uj—l/z)dljv

where d; ; is a shock detector to be defined, and dy ; = 1 if there is an £—shock in
the j—th cell, it is zero elsewhere. The shock detector used in this work is based on
the fact that the velocity u is always decreasing across a shock, and the covolume
is decreasing across a 1 —shock, whilst it is increasing across a 2—shock.

Finally, the update formula for the sensitivity is the following:

n n n At
Ut=u, - (@a = o) 5 Sp+Sip), D
where @/ is defined as follows:

F, (U, UL ) +F,U_ . U, )
2

)‘80152

J—

Dy 12 = T Uz — U -

We remark that in (11), we add the source term S;_;, to both cells j—th and (j —

1)—th: indeed, it is defined starting from an integral balance done on both cells.
Finally, we extended this scheme to the second order: we used a standard two-step

Runge-Kutta method in time, whereas in space we used a MUSCL scheme adapted

to take into account a second order discretization of the source term.

4 Numerical Results

In this section we present some numerical results. The spatial domain is (0, 1),
x. = 0.5, and final time 7 = 0.03.

The test case considered is a 1-shock—2-rarefaction, with the following initial con-
ditions: Uy = (0.7,0)7, Ug = (0.2,0)7,U,., = (0, )T, U,z = (0,0)7, and the
parameter of interest is a = uy. Figure3 shows the state 7 and its sensitivity 7,
(u and u, have a similar behaviour) at the final time 7. As one can see, all the meth-

Tz, T) To(2,T)

0.7 T T 0 =
]
0.6+ f i
i
| i
-0.5¢ H i
[
0.5¢ \ ! — = i:
‘ ‘ ‘ :
041 i
’iﬁ ‘ L :
— Exact — Ho 1 order ||
0.3 H —Roe 1" order |
! arder \ }
Godunov —-—- No source term| |
0.2 1.5 |

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 3 Test case: 1-shock - 2-rarefaction, Ax = 1073
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HT(T) — Tex (T)HL‘(U 1) HH(T) — Taex (T)HLl(n.l)

——Roe 1" order
——Roe 2™ order
Godunov

Al “Roe I order 1

1074 H —¢—Roe 2" order
Godunov 1

1076 5 4 -3 2 5 4 3
10 10 10° 10° 10° 10° 10

Fig. 4 Convergence results for test case 1-shock - 2-rarefaction

ods approximate well the state solution and the modified sensitivity formulation
succeeds in removing the Dirac delta function located at point x &~ 0.4 and notice-
able without source term (scheme labelled “No source term” in Fig. 3), however we
remark that there are two main problems in the sensitivity solution: the shock corre-
sponding to the state rarefaction is not captured and the value in the star zone is not
correct. The first problem can be solved by refining the mesh or by using higher-order
schemes (one can observe that the second order Roe method captures the discon-
tinuity better); whilst the second problem, in our opinion, is due to the numerical
diffusion in the shock. Figure 4 shows the convergence of the schemes: for the state
we have the expected convergence; concerning the sensitivity, for coarser meshes
the error is decreasing because its main part is in the rarefaction zone, however when
this contribution becomes comparable with the error in the star zone, a plateau is
reached.

5 Conclusion and Discussion

The numerical results show that the modified sensitivity system here proposed is
well defined and it allows us to achieve the main goal of this work, i.e. to have a sen-
sitivity without Dirac delta function. However, the proposed modified formulation

7(x,T) u(x,T)
0.8 ——No numerical diffusion scheme 0.02 ——No numerical diffusion scheme
— Exact — Exact
0.7 0
0.6 -0.02 ,
-0.04
0.5
-0.06
0.4
: -0.08
0.3
-0.1
02 | -0.12
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Fig. 5 Scheme with no numerical diffusion in the shock
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yields an incorrect value of the sensitivity in the star zone. Interestingly, numeri-
cal results show that even the exact Godunov method does not provide a correct
solution, neither does a higher order scheme. In our opinion, this problem is due to
the numerical diffusion in the shock. To illustrate this, we briefly show in Fig.5 the
results obtained with a modified Godunov method based on sampling techniques,
introduced in [3], which does not have any numerical diffusion and seems to provide
a correct sensitivity in the star region.
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Jooyoung Hahn, Karol Mikula, Peter Frolkovi¢ and Branislav Basara

Abstract In this paper, a semi-implicit method is proposed to solve a propagation in
a normal direction with a cell-centered finite volume method. An inflow-based gra-
dient is used to discretize the magnitude of the gradient and it brings the second order
upwind difference in an evenly spaced one dimensional domain. In three dimensional
domain, we numerically verify that the proposed scheme is second order. The imple-
mentation is straightforwardly combined with a conventional finite volume code and
1-ring face neighborhood for parallel computation. An experimental order of con-
vergence and a comparison of wall clock time between semi-implicit and explicit
method are illustrated by numerical examples.

Keywords Semi-implicit method - Level set method + Polyhedron mesh

MSC (2010): 65MO08 - 65NO08 - 35F25 - 35F30

The original version of the book was revised: Missed out corrections have been updated. The
erratum to the book is available at https://doi/org/10.1007/978-3-319-57394-6_58

J. Hahn (X)) - B. Basara
AVL LIST GmbH, Hans-List-Platz 1, 8020 Graz, Austria
e-mail: jooyoung.hahn@avl.com

B. Basara
e-mail: branislav.basara@avl.com

K. Mikula - P. Frolkovi¢

Department of Mathematics and Descriptive Geometry, Slovak University of Technology,
Radlinskeho 11, 810 05 Bratislava, Slovakia

e-mail: karol.mikula@stuba.sk

P. Frolkovic¢
e-mail: peter.frolkovic @stuba.sk

© Springer International Publishing AG 2017 81
C. Cancés and P. Omnes (eds.), Finite Volumes for Complex Applications

VIII—Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings

in Mathematics & Statistics 200, DOI 10.1007/978-3-319-57394-6_9


https://doi/org/10.1007/978-3-319-57394-6_58

82 J. Hahn et al.

1 Introduction

We solve a partial differential equation for a propagation in a normal direction [11]:
AP (x, 1) + FX)IVoXx, 1) = G(x), (x,1) €2 x[0,T], (1)

where 2 C R3isa computational domain, 7 is the final time, the speed function F
and the force term G are fixed, and the initial condition is given on §2. Equation (1)
has been extensively used to solve evolving interfacial problems in many applications
such as image processing, computer vision, combustion, fluid dynamics, etc.; more
details are given in [10, 14] and the references therein. In contrast to a standard struc-
tured mesh in image processing, real world three dimensional (3D) problems from
physics or engineering are usually defined on a complicated geometry, for exam-
ple, the combustion problems in 3D engines. Moreover, in industrial applications,
a polyhedron mesh has been used extensively because of its shape flexibility [12].
In this paper, in order to extend topological advantages of the level set method into
industrial problems with complicated geometry, we propose a numerical algorithm
to solve the governing equation (1) on polyhedron meshes. We impose a linear exten-
sion at boundary, that is, a “ghost” value is linearly extrapolated from the boundary
value. It can be properly discretized in a cell-centered finite volume method.

Inspired by the methods in [3, 5-8, 16], we propose a semi-implicit method to
solve (1). It is very crucial to design a method to reduce a time step restriction
in a polyhedron mesh. When the geometrical shape of a computational domain is
complex, it is inevitable to have nonuniform size of cell volumes and it gives a severe
restriction of time stepping in an explicit method because of the CFL condition
for very small cells. The main difference between the proposed method and the
methods in [2, 7-9] is an approximation of the gradient. Instead of using a cell-
centered gradient to achieve the second order scheme, we approximate a gradient by
an inverse distance average of face gradients only from inflow sides, named by the
inflow-based gradient. In an evenly discretized 1D domain, the inflow-based gradient
brings the correct second order upwind discretization of magnitude of the gradient
in (1). Moreover, it allows us to use the simplest structure of decomposed domains
for parallel computation which is the 1-ring face neighborhood structure.

In the rest of the paper, the inflow-based gradient is introduced in Sect. 2 and then
a semi-implicit method is proposed. In Sect. 3, the experimental order of convergence
(EOC) is investigated and the wall clock time of semi-implicit and explicit method
is compared.



Semi-implicit Level Set Method with Inflow-Based Gradient in a Polyhedron Mesh 83

2  Semi-implicit Method with Inflow-Based Gradient

In order to explain the proposed method for a 3D mesh, some notations are introduced.
The sets of indices to uniquely indicate cells, faces, and vertices are denoted by €', %,
and 7, respectively. A whole computational domain £2 C R is discretized by open
cells £2,, such that 2= U pe [_2,, with the volume [£2,| # 0. We define two sets
of neighbor information of £2,,, p € €’; the first is the neighbor cells whose face
is shared by £2,,, 4}, = {qg € € : there exists aface ey € 02, N 082,, f € F}and
the second is the attached faces to £2, and they are indicated by two sets:.%, = {f €
FeredRpand B, =(f € F,: ef € 082, N 352}. Note that a nonplanar face
of apolyhedron cell should be tessellated into triangles to make its sub-face as a plane.
From a given face center of a nonplanar face, a triangle is defined by two consecutive
vertices of the face and the face center. By an abuse of notation, .% includes all
tessellated faces.

2.1 Inflow-Based Gradient Finite Volume Method

With simple coefficient G = 0 in the governing equation (1) and using Gauss’s
theorem, we have a standard spatial discretization at p € ¥ in cell-centered finite
volume method:

Vo \Y
/3t¢+2(¢pf_¢p)apf=0, apf:/FW'n:Ff%'nPf’

2 feF, er

2

where n s a unit outward normal vector ataface ey, f € F »» Frisavalue of F atthe
face center, n,; = |es|n, and |V /|, = (02 + |V¢,[?)? with a small o > 0. The
spatial discretization is explained by two steps; the first is to define an inflow-based
gradient and the second is to compute a face value ¢,;.

An inflow-based gradient computed by face gradients is defined at a cell center.
A face gradient is obtained by a minimization from the values close to a face such as
cell centers and vertices. A vertex value is linearly interpolated from cell-centered
gradients. A cell-centered gradient with a linear extrapolation at boundary is obtained
by a minimizer of a functional f(y) = eryp w,,(x)!y (X —Xxp) — (p(x) — ¢p) 2,
where a weight function is w,(x) =[x — Xp|_2 and a set of points ., at the cell
p e €iseither {x, | q € N,}if B, =0or{x,|qgeN}U{x,|be B,}if B, #
. From a cell-centered gradient, a vertex value can be approximated by an inverse
distance average and linear approximation from adjacent cells.

Before we define an inflow-based gradient, a face gradient should be computed in
order to obtain a flux in (2) ata face e, f € .. Let us denote &y as a set of points
around a face center: either {x,, x,} UV if3! p,g € € suchthat e, € 982, N 082,
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or{x,} UV,ifdl p € € suchthat f e %, # ¢, where V are vertices of afaceey.
Note that & is a generalization of diamond-cell strategy in a regular structured cube
mesh [1]. A face value oy and gradient B are obtained by minimizer of a functional

glag,by) = o wiX|as +bs- (x=xp) = ¢(x)

wr(X) =[x —x f|’2 at the face center x ;. Note that a face value «y on a boundary

face is a linearly extended value. Finally, we define an inflow-based gradient as an

inverse distance average of face gradients only from inflow faces with an inverse
. —1 . .

distant d,,y = |x; — X,|7 and its sum W, = Zfedl; dyy:

2 . .
, where a weight function

Dyp=W;' D dyBy, 3)

fedty

where d;:%;u?;, B, =1{beB,lap <0}, and ﬁ’p_:{feﬁp\
By | aps < 0}.1f &/ =0, then we define D, ¢ = 0.

Now, we compute a face value ¢, in (2) from the inflow-based gradient. When
a face value is computed at an internal face, a face value ¢, in (2) is computed
straightforwardly:

feF,\N#, pec€ = 3'qge.N, suchthat ey € 982, N3,

¢p+ D¢ (xy —xp) if apr >0,

z . “4)
¢y + Dq ¢-(xy—x4) if a,r <O.

= ¢pf=[

When a face value is computed at a boundary face, we use the linear extrapolation
and then a face value ¢, in (2) is formulated by

¢p + D;¢ - (xp — Xp) if app = 0,
op if aph < 0.

be%p(#@),pG%:¢pb=[ (5)

Note that the boundary face value «;, b € %, is obtained by imposing a linear
extrapolation. From (4) and (5), we finally have the spatial discretization:

/Q == (b +D;¢-dr—d))apy — > (Dyo-dys)ay

p feZF, feZFr

- Z (0 — &p) app — Z (D, ¢ -dpp) app,

be%B, be B}

(6)

where ) = B,\ B,, F 5 = (F,\ B,)\ F,,d,5 =Xy —X,,and foreach f €
Fp\ B, p € € there exists an index g € .4, such that ey C 352, N 952,. From a
tedious derivation of (6) in an evenly spaced 1D domain, the inflow-based gradient
in the above formula brings the second order upwind difference of the magnitude
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of the gradient. Note that the first order upwind difference is used in well-known
standard schemes [11, 13].

2.2 Semi-implicit Method

Let us denote an evenly divided time step At = T/N for a fixed N € N and ¢}, =
¢ (x,, nAt). Inspired by [3, 7-9, 16], the outflow information is used explicitly
and we propose to use the inflow information partly implicitly and partly iteratively
because of a limitation of sharing variables in the 1-ring face neighborhood structure
of decomposed domains:

|QP| n,k n—1 n,k — nk—1 n,k n—1
At (@5 =y )+ 20 (@5 + D o" " dyr — )
feF,
k-1 k 1 1 1 ™
+> (ab‘ — ¢ )apb + > (Dy¢" -4, dl =0,
beB, festy
where k =1, ..., K and ,Qf; = 93; Uz l;* . The above system of equations can be

written by

|‘QP| n—1 n,k n—1 yn,k n—1 nk—1
T 2L g | 2 et =R e, ®)

fedy feFy
where the right-hand side R is a collection of explicit information:

—1 k=1 |‘QP| -1 k=1 _n—1
R@, ¢y = Dl - " gkl
At et
€%,

— nk—1 -1 - n—1 —1
= D D¢ dypayrt = > D¢ dya
feF, festt

For all examples in Sect. 3, we fix K = 1 and update ¢" = ¢™! using ¢"* = ¢"~!
in the above formulas.

3 Numerical Experiments

Two examples are presented to check an EOC of the proposed method. An algebraic
multigrid method (AMG) in AVL, FIRE® on decomposed computational domains
with 1-ring face neighborhood structure is used to solve (8) for all examples. In
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level P, P

1 4,033 3,947
2 30,683 28,410
3 241,726 224,548
4 1,914,579 1,788,209

Fig. 1 The first and second from the /left figure are polyhedron cells in a box (P,) and a cylinder
(P.) shape generated by AVI, FIRE® and the right table is the number of cells at each level. If one
level gets higher, the average volume of cells is approximately 8 times smaller

Fig. 1, a box shape £2 = [—0.05, 0.05]> ¢ R? and a cylinder shape whose height 0.1
and radius is 0.05 are chosen to be a computational domain and polyhedron cells are
generated in four levels to check EOC. A time step At in (7) for each level from 1
to 4 is fixed tobe 3.0- 1073, 1.5-1073,7.5-10~%, and 3.75 - 1074, respectively. A
regularization parameter o = 107'2 in (2) is fixed for all examples.

The first example is a bidirectional flow from an analytically represented shape:

do(x, 1) £ |Vo(x, 1) = %1, (x,1) € IT* x[0,T], )

where a closed surface IT is given such that [T = 3IT* NaII—, [TTUIT~ = L2,
I NI~ = @ and an initial value ¢ (x, 0) is positive on [T, negative on I1~, and
zero at x € [1. The bidirectional flow computes a signed distance function from 7
using linear extrapolation at boundary. In Table 1, T is chosen as a sphere whose
radius is 0.02 and a cube whose edge is 0.04 and T = 0.3 is large enough to reach a
steady state of (9) in a given box or cylinder shape domains in Fig. 1. From a sphere
shape, the EOC from L I_norm is second order but it is the first order from L -norm.
It is because L*°-norm is sensitive on a singularity placed at the center of sphere.
If the singularity is avoided in L° = L*°(§2,) where §2, = {x € 22||x| > ¢} and
¢ = 0.01, the the EOC from L% is around 2. From a cube shape, the EOC from L'
and L*°-norms is the first order which is caused by a lot of discontinuities of gradient
in a solution.

In Table2, we compare the wall clock time between semi-implicit and explicit
method in the first example. The time step in an explicit method is computed by the
same CFL condition in [2] and it is roughly three times smaller than the time steps
used for the proposed semi-implicit method. The wall clock time of the proposed
method only takes 18.75% of an explicit method in the average of 7; /T, * 100 and
it is caused by choosing a relatively large time step compared to an explicit method.
Note that for the explicit method a second order total variation diminishing (TVD)
Runge-Kutta method [4, 15] is used.

The second example is a propagation of surface which makes a given surface to
shrink or expand along its normal direction:

ap(x, 1) |V (x, )| =0, (x,t) €2 x][0,T], (10)
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Table 1 The EOC of bidirectional flow (9); more details in Sect. 3

Sphere Cube

Py P, Py, P.
Level| L! EOC | L! EOC | L! EOC | L! EOC
1 1.90-107% |- 1.70-10~% |- 1.09-1073 |- 8.30-107% |-

2 524-107° [1.86 | 429-107° [1.98 | 529-10~* [1.05 | 4.38-10~* [0.92
3 1.30-107> [2.00 | 1.08-107> [1.99 | 2.54-10~* [1.06 | 1.94-10~* |[1.17
4 3.10-107% |2.07 | 2.60-10"° [2.06 | 1.28-10~* 10.99 | 9.55-10° |1.02
Level| L® EOC | L® EOC | L*® EOC | L*® EOC

1 8.67-107% |- 8.09.10~% |- 3.87-107° |- 4.17-1073 |-
2 440-107* 098 | 3.92-107* |1.04 | 2.14-1073 [0.85 | 2.13-1073 |0.97
3 2.71-107* ]0.70 | 2.36-10~% |0.73 | 8.88-10~* |1.27 | 8.51-10~* |1.32
4 1.17-107% [1.20 | 1.11-107* |1.08 | 445-10~* [1.00 | 4.52-10~* |0.91
Level| L EOC | LY EOC
1 490-107% |- 4241074 |-
1.84-107% |1.41 | 1.93-10~* |1.14 N/A
488-107° [1.92 | 441-107> |2.13
1.43-107> [1.77 | 1.22-107> |1.85

ENIS N S}

Table 2 A comparison of wall clock time between semi-implicit (7;) and explicit (7,) method of
solving (9) until 7" = 0.003; From the level 1 to 4, the numbers of CPUs are 2, 8, 32, and 128,
respectively. The wall clock time is the average of 5 repeated computations

‘ Py P.
Level 1 2 3 4 1 2 3 4
Sphere | T; 1.09 4.59 21.39 | 79.10 | 1.04 4.38 21.31 86.59
T, 5.79 24.70 113.49 1491.35 |5.49 23.48 112.98 |406.89
Cube T; 1.08 4.55 21.18 | 96.16 |1.03 4.27 21.48 | 86.90
T, 5.78 24.65 113.36 | 491.35 |5.49 23.37 13.42 |406.29

where an initial level set function is a signed distance function of spherical and
octahedron shapes. In case of shrinking shapes, we use the initial shapes as two
spheres whose centers are (£0.025, 0, 0) and radius is 0.02 or two octahedrons whose
centers are same as the spheres and an edge is 0.02+/2 and the final time T = 0.006.
In case of expanding shapes, we use the initial shapes as two spheres whose centers
are (£0.025, 0, 0) and radius is 0.024 or two octahedrons whose centers are same
as the spheres and an edge is 0.024+/2 and the final time 7" = 0.006. Note that
the expanding two separated shapes merge as one shape at the final time. In this
example, since the meaningful numerical results are only on the zero level set, we
measure a local error from L} = L'(I"), where I is the zero level set of exact

loc

solution. In Table 3, the EOC from L} -norm is presented. The EOC of shrinking

loc
octahedrons is supposed to be the first order because of discontinuities of gradient
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Table 3 The EOC of a propagation in a normal direction (10); more details in Sect.3

Shrinking spheres Shrinking octahedrons

Py P Py P
Level | L), EOC| L}, EOC| L}, EOC| L}, EOC
1 234.107% |- 2.65-107% |- 7471074 |- 6.05-107% |-
2 6.37-107° |1.88 | 6.86-10~°> |1.95| 4.09-10~* |0.87 | 3.77-10~* |0.68
3 1431075 |2.15 | 1.37-1075 |2.33 | 1.51-107% |1.44 | 1.35-10~* |1.48
4 3.05-107° [223 | 2.78-107° |2.30 | 4.41-107° |1.77 | 3.90-1075 |1.80

Expanding spheres Expanding octahedrons

Py P Py P
Level | L} EOC| L} EOC| L} EOC| L} EOC
1 1.60-10~% |- 1.36-107% |- 7.08-107% |- 6.15-107% |-
2 4.02-107> [1.99 | 3.80-107> |[1.84 | 3.35-10~* |1.08 | 3.31-10~* |0.89
3 1.05-107° [1.94 | 9.34.107° [2.03| 1.80-10~* |0.89 | 1.71-10~* |0.95
4 2.50-107% [2.07 | 2.35-107% [1.99 | 9.64-107> |0.90 | 9.31-1075 |0.88

on the zero level set but it seems to be higher than 1. The EOC of shrinking spheres
is higher than expanding spheres because the solution of shrinking spheres do not
have any singularities on the zero level set. As it is expected, the EOC of expanding
octahedrons is close to the first order and it is because of discontinuities of gradient
and linearly extrapolated boundary values.

4 Conclusion

We proposed a new semi-implicit level set method for motion in normal direction
which is second order accurate on three-dimensional polyhedron meshes.

Acknowledgements The work was supported by grants VEGA 1/0808/15, VEGA 1/0728/15,
APVV-0522-15.
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A Staggered Scheme for the Euler Equations
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Abstract We extend to the full Euler system the scheme introduced in [Berthelin,
Goudon, Minjeaud, Math. Comp. 2014] for solving the barotropic Euler equations.
This finite volume scheme is defined on staggered grids with numerical fluxes derived
in the spirit of kinetic schemes. The difficulty consists in finding a suitable treatment
of the energy equation while density and internal energy on the one hand, and velocity
on the other hand, are naturally defined on dual locations. The proposed scheme
uses the density, the velocity and the internal energy as computational variables and
stability conditions are identified in order to preserve the positivity of the discrete
density and internal energy. Moreover, we define averaged energies which satisfy
local conservation equations. Finally, we provide numerical simulations of Riemann
problems to illustrate the behaviour of the scheme.
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1 Introduction

This work aims at designing a scheme to numerically solve the 1D-Euler system:

p pu
| pu )|l +0,| pu>+p | =0, (t,x)€[0,00) xR,
pE pEu+ pu (D

E=u*/2+e, p=(y—1)pe,

where p, u, E and p stand for the density, the velocity, the total energy and the
pressure respectively, u?/2 and e are the kinetic and internal energies, and y > 1 is
the adiabatic exponent.

We wish to extend to (1) the scheme designed in [1] for the barotropic Euler equa-
tions. This scheme works on staggered grids—meaning that densities and velocities
are not collocated—and this raises a difficulty for (1) as the definition of the total
energy mixes quantities, namely the velocity and the internal energy, naturally defined
on different grids. To address this issue, it is convenient to work with the internal
energy equation, namely

d;(pe) + 0x(peu) = —pdyu, 2

instead of the evolution equation for pE, since discrete densities, pressures, and
internal energies are naturally stored at the same locations. This formulation has also
the advantage of making more direct the analysis of the positivity of e. Unfortunately,
as it is well-known, this non conservative formulation is not equivalent to (1) when
the solution presents discontinuities. We shall follow the approach discussed in [2] by
introducing in (2) correction terms accounting for the kinetic energy balance. Then,
the scheme introduced in [2] can be shown: a) to be consistent with (a weak form of)
the total energy equation as the space step §x goes to zero and b) to conserve the global
discrete total energy. Our purpose is two-fold. First of all, we shall adapt the scheme
of [1] for dealing with (1). Second of all, we introduce averaged energies which
satisfy local conservation equations. Finally we provide some numerical simulations
in Sect. 5.

2 Staggered Scheme

Let (x;); be a subdivision of the 1D computational domain and denote the size of
the cells by 8x]+1 = xj41 — X;. The cell centers, Xjp1 = (xj + xj41)/2, define the
dual mesh and we set §x; = ((ij” + 8xl+1)/2 The discrete densities Pjtt and
internal energies e; 1 are stored at ‘the centers x; j+1 Whereas the velocities u; are
located at the edges x;. The time dicretization is expllclt and we use the convention
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that, with ¢ the evaluation of a certain quantity at time ¢, g stands for its update at
time ¢t + &t.

e The density p;, 1 is updated using the discrete mass balance equation:

ﬁj-q—% _:Oj+% " ngr] —yj

=0.
St Sx

j+3

The mass fluxes are definedby 7; = 7 + .7 where 7" = F(p;_1,¢j,u)),
ﬁj_ = y’(pﬁ%,ej,uj) and ¢; = (ej_1+e€;,1)/2. Denoting  c(e) =
/(y —T)ye the sound speed, the definition of the numerical fluxes .Z#* is
extracted from [1]

0 ifu < —c(e),
2
F* o, euy = | PUL O 4o < o), and F(p, eou) = —F+(p, e, —u).
4c(e)
pu ifu > c(e),

In the sequel we use the following two properties: Vu € R, Vp, e > 0,

0< 7 (p,e,u) < plar(e,w)]™ and  — plh_(e,w)]” < F (p,e,u) <0,
3)
where AL (e, u) = u £ c(e) and [z]* = %(|z| + 7).
e The velocity u; is then updated using the discrete momentum balance equation:

O e S
8t (S)Cj (ij‘

=

ﬁjﬁj — pPjU; n %j+% - %j—

=0. (4)

The momentum flux &, 1 and the pressure /7, +1 are defined by:

— . FTt T . — _ . )
gj%—ujjj%—i—uﬁ]/”% and [T, 1 =(y —Dpj1e;, 1.

The quantities p; and f ]i  are expressed as mean values of p el and # ji, F ji+15

+ +

_ OXjspiay TPy g+ _Tint7;
poj = and ¥, = ————. (5)

26x; it 2
e The internal energy e, 1 is updated using the following discrete equation:
ﬁ~+1?~+1—p-+ie»+% L — & Uit — s
J+36i+s T e A e B +Hj+1L =S1. (6
ot ij+% 2 ij_k% 2
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The internal energy flux &; is given by &; = e ]_lﬂ +e;,1.7; . According to
(2], therhs S, 1 is demgned to account for the rest term that appears in the discrete
kinetic energy balance and that do not vanish when §x goes to zero.

e To be more specific, the kinetic energy balance is obtained by multiplying (4) by
u ;. We find, see [1, 2]:

5.l 5.
Pig =P A=Ay Mmoo
ot dx; 8x; ! ”
2 w2
where the kinetic energy flux is given by 71 = 4 ﬁj;z ’2 T P! and
R._L—,(g._u.)2+L Mg+ _Mg—
I s P T T 2 i~ 2 i+

1 _ 1 _ _
+ gj(”j —uj)(u; —Mjfl)er 1+ gj(’/‘j —uj)(ujp —Mj)fj%

It is thus quite natural to define the source term in the following way:

_ Oxj11Rj11 +6x;R;

Si+3 28x

j+3

The scheme presented above is close to the 1D version of the scheme presented
in [3] but the two schemes differ by two points. Firstly, the mass fluxes in [3] are
upwinded with respect to the material velocity (in other words, it corresponds to the
choice . #*(p, e, u) = £p[ul*). Secondly, the time steppings are different: even if
both schemes are explicit, the variables are not updated in the same order. We solve
the discrete equations in the following way: p — u — e whereas [3] proceeds with
p — e — u.In particular, here the corrective term S + does not need any time shift
since the updated velocity u is known when solving (6)

3 Stability Conditions

We now turn to the study of the stability conditions which ensure the positivity of
the density and the internal energy.

Proposition 1 Assuming that e
conditions hold for all j

i+ 20, p;01 20,V and the following CFL-like
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b [ujm]™ + clejiy) +elejil) +[u;]” + clejyy) +elej 1) < 1
‘ij+% ! V2 ! V2 v
(7
3t (y—1
Y C(ej+%+k) < W’ Vk € {—1,0, 1}, (8)
J+3
then e .

jHL 2 Oandﬁj% > 0.
Proof We assume that €yl >0, Pjt! > 0 and that (7) and (8) holds for all j.
We start by observing that:
[hse, ) < [ul™ 4 c(e) ©
V2e(ey) S clejy) +elejyn) (10)

Positivity of the density: As proved in [1], the positivity of p; +1 comes from the
inequality
8t

Sx

1 (s Cejrn, ujyD)]™ + A (ej,up)l™) < 1.
Jt3

It is directly implied by (7) since y > 1 and (9) holds.
Positivity of the internal energy: We rewrite the terms (—l)inj_;,_%ﬁj-',—i, i €{0,1},

involved in (6), by making the discrete time derivative (;4; — uj4;) appear. Then,
we make use of the Young inequality as follows:

(DM = D@ =D (pyyes [@ai = u50) + pppse syt

clei, 1) cle; 1) )
Z —pjyl (ﬁ(ﬁjﬂ —uj) + (v — De;y1 ( \]/; - (_l)lujJri))-

>To+ T? + T} where:

Next, we write 5j+%Ej+%

St clej1) S =&
To=pji1e;41 (1 B m(y ; 1)(2 N ) Sxjp1

818Xy 8t c(e,-%)p - .
1= 7 AT e = Pt U — Uy
2 ij+% ij+% 2«/53/ Jt3

)%

Thus, to guarantee that e, 1 is non negative it is sufficient to ensure that these three
terms are non negative. This holds under the assumptions (7) and (8).



96 T. Goudon et al.

Indeed, using the definition of the flux &’; and owing to (3), we obtain

ot _ C(ej+%) n C(ej+%)
To>pji1ejpt 1_5x- 1(V—l) [u] +T+[Mj+1] + ﬁ
Jt3

ot T _
- (Sx—'lpj.g_%e]q.% ([)\+(€j+la ujr)]” + [A-(ej, u;)] )

J+3

where, due to (7), the rhs is non negative by virtue of (9) and (10) .
Next, we turn to T}. Using twice the Young inequality and bearing in mind the
definition of p;, we observe that

_ 3t _
(Ui —uji)* (,Oj+i - —(F —9]-+,-_1))-
2

8_2‘ 8)(j+,‘ S (Sx]‘+,‘
S
8)Cj+l' J¥its

Jj+i =
25xj+% 48xj+%

Hence, we have

: (SXLH' _ _ S5t 2 pj+lc(ej+l)
T > @y —ujrd)* | pjri ———(FF - ) ——= ),
1= 48xj+% it it Piti OXj4i JHitd JHi—3% Yy V2 8Xj4i

@y —uji)

Coming back to (5), we write T]i >

(Tzi’0 + Tzi']) where, for
k=0,1,

g+ g
8X ik} itk — P jrivk—1 6 2

i k
Ty = ) Pjitk—t — 8t ) y Epj-i—ﬁk—%c(ej-&-%)'

Note that a non negative term has been added to obtain a symmetric formulation in
the above inequality. Due to (3) and (7) we get

. 1
JHi+tk—3

- P Sx
y ot

JHitk T T jitk—1 S Pjtithk—1s

and this allows us to write

L O 8t 4
TEk > I iy =1 ————c,.n ).
2 2y j+itk=3 Y 5% aisk V2 it

We conclude by observing that this term is non negative by virtue of (8).
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4 Numerical Diffusion and Energy Conservation

It is worth discussing the expression of the numerical diffusion produced by our
scheme, see also the appendix in [1]. Let us set the following non negative quantity

—Uuj ifu; < —clej)
u? + c(e;)?
= g luj| < clej)
4c(ej)
u; ifu; > c(ej)

and the following notations for averaged quantities

9 T 4j+} qj t4qj+n
{q}j=f and {q};,: ="
Denoting #!'l = .+ — .Z~, wichis a positive quantity, the mass and the momentum

fluxes can be cast as the sum of a centered term and a diffusion term:
C;
J

2 )
(FI .
:{ﬂ}j+%{u}j+% —Tﬁ_z(uﬂrl _I/tj).

l—

1
2

Concerning the internal energy and kinetic energy fluxes, they become:

C.
& = {pe}ju; — 71 (eH%pH% - ej—%pjf%) ;

2 {(FW 0 ((u? u’

u J+3 +1
A Z{’g}ﬁ%{_}ﬂ-%_—z e I

As a by-product, it is remarkable that the scheme properly deals with 1D-contact
discontinuities: if the discrete velocity and pressure are constant in the neighborhood
of xj+%, ie Uj 1 =U; =Ujp] =Uj4p = U and nj—1/2 = Hj+1/2 = H‘/‘+3/2 = H,
then the scheme guaranties that they remain constant in the neighborhood of this
point at the next time, ie ﬁjﬂ/z =MMandu;i =u=1u;.

Let us now introduce the averaged energy in x; +1 and x; defined by:

2 2

- u-
J Jj+1
5xj,0j7 +5xj+1:0j+17
EJ+% =ejy1 + 5
Yi+zPits
and 5
R e e B o ol L

Ej=-
=77 28x;p;
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To obtain conservative equations for those quantities, we introduce the fluxes

G+ 6i | IR xR,

|
J=2 *
and 7" | = o
it+3 2 jta 4

Next we get the following consistent balance equations for p; E; and p;, 1Ej 0

PiriEjry —Pjy1 By n Tiv1 = n Wi {1} 1 —u {1}
ot (SxH% dxjy1

=0

2

and

I * * _ _
ik —piE; T =7 L gty = My

=0.
St (ij' 3)(7]'

5 Numerical Simulations of Riemann Problems

We perform the numerical resolutions of some Riemann problems — see [4] — on the
computational domain [0, 1]. The number of grid points is equal to 1000 and the
time step is given by 8t = §x/100. We take y = 1.4. The initial data p, u, p are
piecewise constant functions with a discontinuity located at xo = 0.5, according to
the table below. In Fig. I, we represent the pressure p; +1s velocity u; and internal
energy e; 1 at the final time 7 (also given in the table below).

Pl Pr uj Ur Dl Pr T
Test #1|1 0.125 |0 0 1 0.1 0.25
Test #2|1 1 0 0 1000 0.01 0.012
Test #3]5.9992415.99242(19.5975|—6.19633[460.894|46.0950|0.035

Test #1, the so-called Sod test problem, is a mild test whose solution consists of
a left rarefaction, a contact disconinuity and a right shock. Test #2 is a more severe
test problem whose solution contains a left rarefaction, a contact discontinuity and
a right shock. Test #3 corresponds to the collision of two strong shocks and consists
of a left facing shock (travelling very slowly to the right), a right travelling contact
discontinuity and a right travelling shock wave.
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Test #1

|

2 |

Test#2 =~ . i
‘ I

INEREN]

Test #3

Fig. 1 Numerical (solid lines) and exact (dotted lines) solutions: pressure (left), velocity (middle),
internal energy (right)
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A Numerical Scheme for the Propagation of
Internal Waves in an Oceanographic Model

Christian Bourdarias, Stéphane Gerbi and Ralph Liteif

Abstract In this paper, we introduce a new reformulation of the Green-Naghdi
model in the Camassa-Holm regime for the propagation of internal waves over a flat
topography to improve the frequency dispersion of the original model. We develop
a second order splitting scheme where the hyperbolic part of the system is treated
with a high-order finite volume scheme and the dispersive part is treated with a
finite difference approach. Numerical simulations are then performed to validate the
model.

Keywords Green Naghdi model + Nonlinear shallow water - Splitting method -
Finite volume - Finite Difference - WENO reconstruction

1 Introduction

This study deals with the propagation of internal waves in the uni-dimensional setting
located at the interface between two layers of fluids of different densities. The fluids
are assumed to be incompressible, homogeneous, and immiscible, limited from above
by a rigid lid and from below by a flat bottom. This type of fluid dynamics problem
is encountered by researchers in oceanography when they study the wave near the
shore. Because of the difference in the salinity of the different layers of water near
the shore, it is useful to model the flow of salted water by a two layers incompressible
fluids flow. The usual way of describing such a flow is to use the 3D-Euler equations
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Fig. 1 Domain of study and governing equations

for the different layers adding some thermodynamic and dynamic conditions at the
interface. This system will be called the full Euler system (Fig. 1) .
We introduce dimensionless variables and the two scale parameters i, the shal-

lowness parameter and ¢, the nonlinearity parameter, defined by: u = ‘i—i , €= j—l
where a is a typical length of the vertical oscillation of the interface, X is a typ-
ical wavelength. We also define the dimensionless parameters y = % and § = Z—;
representing respectively the ratio between the densities and the depth of the two
layers.

In this work, we present a splitting technique for the numerical resolution of
the GN model in the Camassa-Holm (or medium amplitude internal waves) regime,
e = O(/Iv), obtained and fully justified by Duchéne, Israwi and Talhouk in [4]. In
the Camassa-Holm regime, the authors has proved the existence and well-posedeness
of the resulting system and its consistecy with the full Euler system in the sense that its
solution remain close to the exact solution of the full Euler system with corresponding
initial data up to the order &'(u?).

This model is first recast under a new formulation more suitable for numerical
resolution with the same order of precision as the standard one but with improved
frequency dispersion. For this sake, we introduce a one parameter family depending
ona > 0. The choice of the parameter « is motivated by the exact agreement between
the phase velocity dispersion relation of the full Euler system and the improved Green-
Naghdi system (1) for fixed values for y and § and for large wavenumbers (k around
4-5). This parameter is denoted «,,, and is obtained by an algebraic equation, see
[2] for details.

We obtain the Green-Naghdi model in the Camassa-Holm with improved disper-
sion whose unknowns are ¢ the mean elevation of the interface and v the shear mean
velocity:
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¢+ (f(eg)w) =0, 1
(I 4+ pvaT[OD[3,v + e5vdy + %((y + 8)0x¢ + €0, (q3(s)vD)]

1
+;((J/ +8)3:¢ +ed(q3(e0)V) + e Q1 (v) + pnevQa(¢) + pevQs(¢) = 0.

(1

with f(X) = {00 T(0]V = —92Y | SIZIV = —kd, (£0,v) . g3(eC) =

HfEo - q),
01(v) = k0, ((9:)?) . 02(¢) = =S[Z1U + pvaTIOD ™ ((¥ + 8)d L),
03(8) = k1L TI01( + pvaTIOD) ™' [(y + 8)0:¢] .

2 Numerical Methods

As pointed out by many authors [ 1, 8] the improved dispersion Green-Naghdi Egs. (1)
is well-adapted to the implementation of a splitting scheme separating the hyperbolic
and the dispersive parts of the equations.

2.1 The Splitting Method

We decompose the solution operator S(.) associated to (1) at each time step Az by
the following second order operator splitting:

S(At) = §1(At1/2)S$2(At)S1 (At /2)

where Si(.) is the solution operator associated to the conservative part, and S»(.)
the solution operator associated to the dispersive part of the Eq. (1). In this study, S;
is computed using a finite volume method while S, is computed using a classical
finite-difference method.

e S;(¢) is the solution operator associated to the conservative part namely the
nonlinear shallow water equations, NSWE:

3¢ + 9 (f(e0)v) = 0,

/ )
ef ;8“1;2 + i+ 8)§) —0.

8,v+8x(

Under the hyperbolicity condition for the shallow water system provided in [6], this
system is strictly hyperbolic.

e 5, () is the solution operator associated to the remaining (dispersive) part of the
equations.
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at§ = 07

1 2
(I + pvaT[OD[dv — ;((y +8)0:¢ + £0x(q3(e0)))]

1
+E((V +8)3: + €9, (g3 (V) + e Q1(v) + pev0a(¢) + pevQ3(¢) = 0.
3)

2.2 Finite Volume Scheme

In what follows, we consider the numerical approximation of the hyperbolic system
of conservation laws (2). We have constructed three finite volume schemes: first
order, second order “MUSCL” type method and finally 5th order WENO method
and tested their accuracy by using the exact (up to the order &'(1?)) solitary wave
solutions of the one layer Green-Naghdi equations over a flat bottom (see [8]). We
do not present the results in this paper but the 5th order method is clearly much more
accurate. However we do not obtain the predicted order with respect with the spatial
mesh size. This might be due to the fact that the given analytic solution satisfies the
model up to an &'(u?) remainder. We believe that this splitting strategy may be also
applied in the variable bottom case. This is the subject of a future work.

2.2.1 Higher Order Finite-Volume Scheme: WENO5-RK4

To reach higher order accuracy in smooth regions and a good resolution around
discontinuities, we implement fifth-order accuracy WENO reconstruction, follow-
ing [7]. To automatically achieve high order accuracy and non-oscillatory property
near discontinuities, WENO schemes use the idea of adaptive stencils in the recon-
struction procedure based on the local smoothness of the numerical solution.

As far as time discretization is concerned, we use the fourth-order explicit
RungeKutta “RK4” method.

2.3 Finite Difference Scheme for the Dispersive Part

The finite volume-finite difference mix imply to switch between the cell-averaged
and nodal values for each unknown and at each time step. To this end, we use the
fifth-order accuracy WENO reconstruction, that allows to approximate the nodal
values (i.e. finite difference unknowns) (U}')i=1,n+1 in terms of the cell-averaged

values (i.e. finite volume unknowns) (U?),'ZL N-
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The finite difference discretization of the system (3) leads to the following discrete
problem:

n+l _ »n
A W
At
vn+l —
At

-1 1 n € ny,,n n 82 / n n n n
+( — pvaDy) [a()/+5)01(4“ )+ 2—=q3(eC"WV D1 (V") + ;%(8( YD1 (V™)

+peQ10") + uveQa(8") + pevQs (") | =0,

1 2
— oD - 2§q3(sc">v"01(v"> - %qé(s;”)ol@")(v")(v")

“4)
with
Q10") =2 D1 (V") D2 (V"),

0:(¢") = kD167 Dy (( = pva Do) ™ (v + D1 ") |-

036" = —1¢"Da[ (1 = pvae Do)~ (y + D1 )]

The system (4) is solved at each time step using a classical finite-difference tech-
nique, where the matrices D and D, are the classical centered discretizations of the
derivatives 9, and 32 given below:

1
0U)j=——(-U; 8U;;1 — 8U;_ U;,_»),
(0:U) 12Ax( 12+ 8Uiq1 1+ Ui-2)

(0;U); = @(—U,ﬂ + 16U; 1 — 30U; 4 16U — Ui o).
For time discretization, the fourth-order formula “DF4” is associated to a fourth-
order classical Runge-Kutta “RK4” scheme, and thus one obtains the “DF4-RK4”
scheme.
We only treat either periodic boundary conditions or reflective boundary condi-
tions for the hyperbolic and dispersive parts of the splitting scheme. Suitable relations
are imposed on both cell-averaged and nodal quantities.

3 Numerical Validations: Kelvin-Helmholtz Instabilities

In this section, we present a numerical experiment to validate the numerical effi-
ciency and accuracy of the improved Green-Naghdi model (1). We use the WENOS5
reconstruction for the hyperbolic part of the splitting scheme and a fourth order
finite difference scheme “DF4” for the dispersive part, both associated to a fourth-
order classical Runge-Kutta “RK4” time scheme called “WENOS5-DF4-RK4”. We
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Fig. 2 Comparison with the Green-Naghdi models, with surface tension, at time t = 2, fora = 1
(left) and o = 1.271 (right)

would like to highlight the importance of the choice of the parameter « in order
to improve the frequency dispersion of the model (1), through the simulation of
a sufficiently regular initial wave, following the numerical experiments performed
in [5]. In the aforementioned paper they introduce a new class of Green-Naghdi type
models for the propagation of internal waves with improved frequency dispersion
in order to prevent high-frequency Kelvin-Helmholtz instabilities. These models are
obtained by regularizing the original Green-Naghdi one by slightly modifying the
dispersion components using a class of Fourier multipliers. They represent three dif-
ferent choices of the Fourier multipliers, each one yields to a specific Green-Naghi
model which they denote as follows: “original’ as the classical Green-Naghi model
introduced in [3], “regularized” which is a well-posed system for sufficiently small
and regular data, even in absence of surface tension, “improved” whose dispersion
relation is the same as the one of the full Euler system. In order to compare with
the numerical experiments done in [5], we choose the initial data ¢ (0, x) = —e =4/’
and v(0, x) = O (represented by the dashed lines). The computational domain is the
interval x € (—4, 4) discretized with 512 cells using periodic boundary conditions.

The dimensionless parameters are set as follows: u = 0.1, ¢ = 0.5, § =0.5,
y = 0.95. With thess values and choosing the wavenumber k = 5, we obtain
Qopr = 1.271.

Figures2 and 3 show the comparisons between our numerical solution for o =
1 (left) and o, = 1.271 (right) and the Green-Naghdi models solutions obtained
in [5], with a small amount of surface tension, at time ¢ = 2 and ¢t = 3 respectively.
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Fig. 3 Comparison with the Green-Naghdi models, with surface tension, at time r = 3, fora = 1

(lefr) and ayp = 1.271 (right)
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Fig. 4 Comparison with the Green-Naghdi models, without surface tension (bo~! = 0), at time

t =2, fora =1 (left) and app, = 1.271 (right)
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We observe an excellent agreement between our numerical solution computed for
Qop: = 1.271 and both “improved” and “regularized” models at t =2 and t = 3.
As expected, at r = 3 the original model induces Kelvin-Helmbholtz instabilities.
Meanwhile, the flows predicted by the regularized and improved models and by
our model (1) with o,,, = 1.271 remain smooth and are very similar. Similarly,
Fig.4 shows an excellent agreement between the numerical solutions computed for
Qop; = 1.271 with the “improved” and “regularized” models, without surface tension
at time ¢ = 2, while the flow of the original model is completely destroyed due to
Kelvin-Helmholtz instabilities.

The overall observations show the importance of the choice of the parameter «
in improving the frequency dispersion. Indeed, when choosing «,,; = 1.271, we
observe an excellent matching between our numerical solutions and those obtained
by the “improved” model before the latter is completely destroyed in absence of
surface tension due to the Kelvin-Helmholtz instabilities. As well, our numerical
solution matches the one computed by the “regularized” model even for a large time
and with or without surface tension. This is not the case when choosing @ = 1. In
fact, the “improved” model has exactly the same dispersion relation as the one of the
full Euler system and for all wave numbers (see [5, Sect. 3] for more details) and the
dispersion relation of the “regularized” model fit the one of the full Euler system to an
O (1*) order. This explains the reason behind the matching when choosing an optimal
value for  and highlight the advantage of the proposed approach in improving the
frequency dispersion.
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A Splitting Scheme for Three-Phase
Flow Models

Hamza Boukili and Jean-Marc Hérard

Abstract A fractional step method that provides approximate solutions of a three-
phase flow model is presented herein. The three-fluid model enables to handle smooth
or discontinuous unsteady solutions. The numerical method is grounded on the use of
the entropy inequality that governs smooth solutions of the set of PDEs. The evolution
step relies on an explicit scheme, while implicit schemes are embedded in the relax-
ation step. The main properties of the scheme are given. Numerical approximations
of two basic Riemann problems are eventually presented.

Keywords Three-phase flow - Entropy - Shocks - Vapour explosion -+ Finite
volumes

1 Introduction

In order to perform numerical simulations of vapour explosion, a phenomenum result-
ing from the violent interaction between a hot liquid metal and a coolant (usually
liquid water and its vapour), flow models with at least three phases are mandatory.
Owing to the high velocity and high pressure levels arising in these situations, and
also due to the occurence of strong shock waves, models should at least enable
highly unsteady simulations, and should be such that unique and well defined jump
conditions hold through discontinuities. However, only few contributions arise from
the literature on that topic. Among these, one may at least mention [6-8, 10, 11].
Actually, we will focus here on the barotropic class defined in [8], and will present
a possible fractional step method in order to compute approximate solutions of the
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latter model. Some among identified difficulties concern the way to cope with pres-
sure relaxation effects and to preserve positive values of densities and statistical
fractions; moreover, schemes should be such that they provide convergent and con-
sistant approximations of shock patterns. Possible extensions to the non barotropic
framework and problems arising with mass transfer terms are not addressed here.

2 Three-Phase Flow Model

Governing equations

In the sequel, ;. € [0, 11, pr, mr = ook, Uy, respectively denote the mean statistical
fraction, the mean density, the partial mass and the mean velocity of phase k (phase
1 denotes liquid metal). The mean pressure Py (py) is an increasing function with:

lim P(x) =400 lim P.(x) =0
X—00 x—0
and we note as usual c,f = P[(pr). The set of PDEs that is considered is (see [8]):

B S (W) S = (W)
Bg;k + BmkUk — ; (1)

0 U? Py
(’W;)szk + my gjak k +2] 11;ekal(W) doy _mkSk(W)

It may be alternatively rewritten in a more condensed form:

3_W+8F(W) G(W)a w)
ot 0x dax

=S(W) (2)
where the main variable W and fluxes F(W), H(W) are defined as:
= (a2, a3, my, my, mz, myUy, myUs, m3Us)'
F(W) = (0,0,m Uy, myUs, m3Us, mU} + o Py, maUs + oz Py, m3Us + a3 Ps)'
H(W) = (a2, 3,0,0,0,0,0, 0)f

G (W) being implicitly defined by (1). The statistical fraction «; complies with:

o = 1 — ay — a3. We restrict herein to the case where: #; (W) = Uy, with (see [8]):

(W) = I (W) = (W) = Py ; 3)
Ii3(W) =I5 (W) = [I5(W) = P
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Closure laws for ¢ (W), Sx (W) take the form:

o (W) =dW)ZL, (P — P)) ;

miS((W) = 57, (e (W)U — Up) @

where d(W) and ey (W) = e; (W) are positive bounded functions. Meaningful pres-
sure relaxation time scales d (W) arise from [5]. Other relaxation time scales e;; (W)
embedded in momentum transfer terms may be found in the standard literature. We
also define: ¥, (ox) = %kf"), and the entropy of the mixture:

n=Xp_; (mUZ /2 + Y(on)

together with the entropy flux: f,(W) = Z2_, (UTE + Y (o) + %) mUy. Actually
this three-phase flow model inherits from similar properties as the Baer Nunziato
two-phase flow model [1] (see [2, 3] for a slightly broader class).

Main properties
We recall first the main properties of the latter system (see [8]):

Property 1

e Structure of the convective subset:
The homogeneous convective subset (left hand side of (2)) is hyperbolic unless
|Uy — Ur| = cx. Its eigenvalues are:

rM W) =U, ; rsW)=Uxc 5 Ms(W)y=Usxcr ; re7(W)=Us*c3

The O — 1-wave is linearly degenerate, while other fields are genuinely non linear.

e Entropy inequality:
Smooth solutions of (2) comply with the entropy inequality:

an(W) n afy(W) <0.
ot 0x

(&)

e Jump conditions:
Within each isolated wave, system (2) admits unique jump conditions.

We may now consider the O — 1 coupling wave, which is the key point of the
homogeneous model. Actually, six independent Riemann invariants arise which are
given below. These will be used in order to construct exact solutions of the one-
dimensional Riemann problem associated with (2) when neglecting source terms.
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Proposition 1 Riemann invariants of the 0 — 1 coupling wave are:

W)y=Uy ; I},(W)=m(Us—U)) ; 131(W)=m3(U%—U1)'

_ 2 P 2 P
i oy = 2U2) +f Z(czoc) @ s I = U%) /3 G,

1§ ,(W) = ma(Uy — UD)? +m3(Us — Up)* + Zi_, (e Po).

The proof is straightforward though cumbersome.

3 Numerical Scheme

A fractional step method is introduced in order to compute approximate solutions
of (2). The latter method complies with the entropy inequality (5). A Finite Volume
scheme is built, considering a classical one-dimensional mesh, where Ax; denotes
the size of cell £2;. The first step involves an explicit scheme, whereas the scheme in
the second -relaxation- step is implicit.

Time scheme

e Step 1. A first evolution step computes approximations of solutions of the con-
vective subset; for given W/, the state variable is updated following:

Axi("V;"Jrl’7 - W 4+ A" (%H/z( +1) — Zisip(W, W) ©6)
FAGW]') (A1 (W], +1) A (W, W) =0.
e Step 2. The second step takes all source terms into account, for given W"’H ,and
computes Wl'“rl solution of:
(an+l o Win-H,—) _ Atny(Win-H,—’ WinJrl) =0 (7)

where: (W™ W) = (2. 613, 0,0,0, S, Si2. Si.3)", with:
D = Sy (AW DRI = POW)

and:
Six = Sy (e W @W = Uwh)

fork =1,2,3.
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Numerical fluxes in the evolution step
We restrict herein to simple first-order Rusanov-type fluxes defined as follows:

Fij(Wi, W)) = (F(Wy) + F(W)) — Rij(W; — W) /2,

together with:
A (Wi Wy) = (HW:) + H(W))) /2

R;; is defined as : max; ;j(r(W;), r(W;)), where r (W) denotes the spectral radius of

the whole jacobian matrix (% + G(W)% .

Property 2

e For given strictly positive values (o )! and (my)?, the evolution step computes
positive values (ak);’“’_ and (mk)l’."Ll’_ if and only if the time step complies with

the classical CFL-like condition:
At”maszl_ww”(Rj_l/g + Rj_;,.]/z)/(ZA.Xj) =CFL <1 (8)

o Assume that (otk);H']’_ and (mk)?'H‘_ are positive. Then the discrete relaxation
Step 2 computes a unique set of positive values (otk)l'.‘+1 and (mk);”1 , and a unique

set (Uy, Uy, U3)f'Jrl without any restriction on the time step.

The proof for the first part involving the evolution Step 1 is classical. Actually,
(mk)?ﬂ'* is a convex combination of partial masses (im)! and ()7, as soon as

condition (8) holds. A similar result holds for (ock);”l’*. Moreover, when turning to
Step 2, it may be easily checked that the linear system that provides (U;, U,, U3)"*+!
admits a unique solution, since the determinant § of the local discrete system:

8i = mymam3 + (813 + ex3)mimy + (12 + €3)myms3 + (€12 + €13)mams
+(ene1s + eneéx + e13éx)(my +my +ms) ,
©)
where é;; and m respectively stand for At”ek,(Wi”+l’_) and (mk)?“’_, is strictly
positive. Moreover, the relation (mk)l’.Hrl = (mk)f’H"_ guarantees positive values of
partial masses. Eventually, the proof of existence and uniqueness of positive values
of (ozk):’+1 is more intricate; it requires solving a non linear system with respect to
(x,¥) = (@), (@3)""") under the constraints: x > 0,y > 0,1 —x —y > 0. We
emphasize that similar schemes have been used for two-phase flow models [9].

4 Numerical Results

We focus here on simple EOS that read: Py (por) = P,? (pr)¥. Two distinct Riemann
problems are investigated, these being representative of what happens in water-
vapour explosion. The time step complies with the CFL-like condition (8). We have
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set in all cases: C FL = 1/2. The initial discontinuity separating states W and Wg
islocated at x = 1/2. We restrict here to uniform meshes, and we consider very large
relaxation time scales, setting d(W) = 0 and e (W) = 0.

Riemann problem 1: The first test case is a classical shock tube problem, where
the initial data are such that velocities are null everywhere at the beginning of the
computation, whatever the phase is. More precisely, we define W, and W such that:

()L =04 5 (o3) =05 5 ()r =02 ; (22)r =035

WU =W0dr=0. ; (=15 (or=1/8.

where EOS are such that: y; = 7/5, y» = 1.005, y3 = 1.001 and P,? = 1.10°. Phasic
pressures are plotted on Fig. 1, while & = I(? 1 (W) and the effective pressure of the
mixture acting on wall boundaries P, = Xy—1_ 304 P are given on Fig.2. & is
clearly well preserved through the right-going 0 — 1-wave -which is located around
= 0.702- unlike P,,;;, which was expected. Velocity profiles have been added on
Fig.3. The finest mesh contains 80000 regular cells.

Riemann problem 2: The second test case is a simple Riemann problem where the
initial data W, and Wy are chosen such that:

Iy (W) = I, (W)

form =1 — 6, see property (3). EOS are suchthat: y; =3/2,y» =2,y3 =5/2,and
we still set: P = 1.10°. Actually, this is a very tough test case, which is much more
discriminating than most of other Riemann problems that involve all waves. A simple
though efficient way to measure errors in this particular case consists in computing
the L' norm of independent variables 15", (W). Obviously, and as expected, the rough

le+05

80000 [~

60000 [~

40000 —

20000 [~ =

0 . | . | . | . | .
0 0,2 04 0,6 0.8 1

Fig. 1 Riemann problem 1. Pressure profiles on the finest mesh: Py (green), P> (black), P3 (red)
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80000

60000

40000

20000
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0 0,2 0,4 0,6 0.8

—

Fig.2 Riemann problem 1. Pressure profiles on the finest mesh: & = I& | (W) (black), Py (red)

400

200 —

100 —

|
00 0,2

Fig. 3 Riemann problem 1. Velocity profiles on the finest mesh: U; (green), U, (black), Uz (red)

Rusanov scheme yields rather high levels of error (close to 0.1% on the coarsest mesh,
see Fig.4). Nonetheless, and as expected, the error in L' norm varies as h'/2, since
the 0 — 1-wave is LD (see Fig.5).
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Fig.4 Riemann problem 2. Pressure profiles for & = I& 1 (W) on three distinct meshes: 8000 cells

(black), 2000 cells (red), 800 cells (green)

46
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-3
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Fig.5 Riemann problem 2. L' norm of the error for & = I(?,l (W) vs the mesh size &, using log/log
scale. Coarsest and finest meshes contain 100 and 6400 regular cells respectively
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Modelling and Simulation of Non-hydrostatic
Shallow Flows

M. J. Castro, C. Escalante and T. Morales de Luna

Abstract We consider the non-hydrostatic system derived by Yamazaki et al. for
shallow flows. This model consists in the well known shallow water model which
is coupled with two additional equations corresponding to non-hydrostatic terms.
We develop a second-order well-balanced numerical method which combines finite-
volume and finite-difference schemes. The numerical scheme has been implemented
in GPUs and has been applied to idealized and challenging experimental test cases.
The test cases show the accuracy and efficiency of the scheme.

Keywords Non-hydrostatic - Shallow-water - Finite-difference - Finite-volume -
GPU
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1 Introduction

When modelling and simulating geophysical flows, the Nonlinear Shallow-Water
equations, hereinafter SWE, is often a good choice as an approximation of the Navier-
Stokes equations. Nevertheless, SWE do not take into account effects associated with
dispersive waves. In recent years, effort has been done in the derivation of relatively
simple mathematical models for shallow water flows that include long nonlinear
water waves. Although such models are more expensive, from the computational
point of view, the increasing computational power of current computers allows to
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consider Boussinesq Type Models. See for instance the works in [2, 4, 9-11, 13, 15]
among others.

The challenge is to improve nonlinear dispersive properties of the model by includ-
ing information on the vertical structure of the flow while designing fast and efficient
algorithms for its simulation.

Here we shall use the approach introduced by Yamazaki in [16]. The model will
be solved numerically using a two step algorithm: on a first step we solve the SWE
in conservative form and on the second step we include the non-hydrostatic effects.

Numerical tests and comparison with experimental data show the accuracy and
efficiency of the approach. The overall computational cost of the algorithm is no
higher than 2.4 times the computational cost of classical SWE.

2 Description of the Model

We consider the non-hydrostatic model introduced in [16]. The governing equations
are derived from the incompressible Navier-Stokes equations. As usual in shallow
water models, the equations are obtained by a process of depth averaging on the
vertical direction z. Nevertheless, opposed to what is done for SWE, the pressure
is not assumed hydrostatic. Following Stelling and Zijlema and Casulli [8], total
pressure is decomposed into a sum of hydrostatic and non-hydrostatic pressures. In
this process, vertical velocity is assumed to have linear vertical profile. Moreover,
for the vertical momentum equation, the vertical advective and dissipative terms are
assumed small compared to their horizontal counterparts and thus neglected. The
objective is to consider the easiest model that takes into account dispersive effects
and the key point we seek is efficiency. Nevertheless what will be presented here
can be easily adapted in the general case where these terms are included. Numerical
simulations have shown that, for the purpose addressed here, they are not indeed
relevant.
The resulting model can be written as

oh+V.-q=0,

. ® 1 1
oq +d1v(q q) + V(zgh2 + Ehp) = (gh+ p)VH — 1, 1
hatW: p

hV -q—q-V2n—nh)+2hw=0.

where ¢ is time and g is gravitational acceleration. u = (u, v) contains the depth
averaged velocities components in the x and y directions respectively. w is the depth
averaged velocity component in the z direction. q = hu is the discharge vector in
the x and y directions. p is the non-hydrostatic pressure at the bottom. The flow
depth is h = n + H where 7 is the surface elevation measured from the still-water
level, H is the still water depth and 7 is a friction law term (see Fig. 1). Operators V
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Fig. 1 Sketch and

description of the variables m /T—\
"

w

and V- denote the gradient vector field and the divergence respectively in the (x, y)
direction.

3 Numerical Scheme

For the sake of simplicity, we shall consider here just the one-dimensional case.
System (1) can then be written in the compact form

U + 0, Fsw(U) = Ggw (U)o H + Iy (h, dch, H 0. H, p, 3, p) — T,
ho,w = p, 2)
AWU,0.U,H, 0,H,w) =0,

where we introduce the notation

U—(h) Few) = | 42 ql G (U)—(O)
q P SwW %_}_Eghz s SW gh P

and for the friction term vector, the well-known Manning empirical formula is used.
Finally,

0
T u(h, ok, H,0.H, p,oup) = 1 ,
i P o) (—§<haxp+pax<2n—h)))

and
%(U’ Ux’ H’ HX? W) = haxq - qax (2)7 - h) +2hW

The model is now solved numerically using a two-step algorithm: first the hyper-
bolic problem (SWE) is solved, then, in a second step, non-hydrostatic terms will be
taken into account.

Remark 1 As pointed out in [14], in shallow water, complex events can be observed
related to turbulent processes. One of these processes corresponds to the breaking of
waves near the coast. The model presented here cannot describe this process without
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an additional term which allows the model dissipate the required amount of energy
on such situations. We refer to [5] for further details.

3.1 First Step: SWE

We consider first the hyperbolic problem (SWE) given by
U + 0 Fsw(U) = Gsw(U)d: H. 3)

This system is solved numerically by using a finite volume method. As usual,
we subdivide the horizontal spatial domain into standard computational cells I; =
[xi—1/2, Xi+1/2] with lengths Ax; and define

1
U,-(t):E/U(x,t)dx,
i JI

the cell average of the function U (x, ) on cell /; at time ¢. We shall also denote by
x; the center of the cell ;. For the sake of simplicity, let us assume that all cells have
the same length Ax.

Then, an efficient second-order well-balanced PVM path-conservative finite-
volume method [6, 12] is applied.

For the sake of brevity, we omit here the details and refer to [5, 6] for the detail.

3.2 Second Step: Non-hydrostatic Terms

Regarding non-hydrostatic terms, we consider a staggered-grid formed by the points
Xi—12, Xix1,2 of the interfaces for each cell I;, and denote the point values of the
functions p and w on point x;, /> at time ¢ by

Di+172(t) = p(Xig12, 1) Wig12(t) = w(Xiq1/2, ).
Now, a second order compact finite-difference scheme is applied to

8tU = yNH(hs axhs H: ava D axp) - T,
ho,w = p, )
%(U’ Ux’ H5 Hwi) = 05

where the values obtained in previous step are used as initial condition for the system.
The resulting linear system is solved using an iterative Jacobi method combined
with a scheduled relaxation.
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3.3 2D and GPU Implementation

The described numerical scheme can be easily adapted to the 2D system (1). In this
case, the computational domain is decomposed into subsets with a simple geometry,
called cells or finite volumes. We use one common arrangement of the variables,
known as the Arakawa C-grid (see [5] for the details).

The first step of the algorithm adapts well to GPUs architectures as is shown in
[7]. Moreover, the compactness of the numerical stencil and the easy parallelization
of the Jacobi method makes that the second step can also be easily implemented on
GPUs.

4 Numerical Tests

4.1 Periodic Waves Breaking over a Submerged Bar

The experiment of plunging breaking periodic waves over a submerged bar by
Beji and Battjes [1] is considered here. The numerical test is performed in a one-
dimensional channel with a trapezoidal obstacle submerged. Waves in the free surface
are measured in seven point stations Sy, S, ..., S¢ (See [1] for the details).
Figure2 shows the time evolution of the free surface at points Sy, ..., S¢. The
comparison with experimental data emphasizes the need to consider a dispersive
model to faithfully capture the shape of the waves near the continental slope. Both
amplitude and frequency of the waves are captured on all wave gauges successfully.

Fig. 2 Comparison of data S S
time series (red) and 0.02 0.02
numerical (blue) at wave o /\/\/\/\/\/\/\/\ o UUWUU\N
gauges
S1, 82, 83, S4, S5, S ~0.02 -0.02
0 5 10 0 5 10
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4.2 Solitary Wave on a Conical Island

We compare now to the experimental data obtained at the Coastal and Hydraulic
Laboratory, Engineer Research and Development Center of the U.S. Army Corps of
Engineers ([3]). The laboratory experiment consists in an idealized representation of
Babi Island, in the Flores Sea, in Indonesia.

A directional wave-maker is used to produce planar solitary waves of specified
crest lengths and heights (See [3] for the details).

Numerical simulation shows two wave fronts splitting in front of the island and
collide behind it (See Fig.3). Comparison with measured and computed water level
at gauges WG|, WG,, WG3, WG4 shows good results, as well as comparison
between computed run-up and laboratory measurement (Fig. 4).

4.3 Circular Dam-Break

We consider a 2D problem consisting in a circular dam-break in the [-5, 5] x [—5, 5]
domain (See [5] for the details).

The goal of this numerical test, is to compare the execution times in seconds
for the SWE and non-hydrostatic GPU codes for different mesh sizes. Simulations
are carried out in the time interval [0, 1]. CFL parameter is set to 0.9 and open
boundary conditions are considered. Due to maximum page limit of this contribution,
the corresponding figures could not be included but we refer to [5] for a complete
description. We include here just the execution times for both codes, shown in Table 1.
As we see, the additional computation cost of the non-hydrostatic model with the
algorithm described here is only 2.4 times that of a SWE code.
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Table 1 Execution times in sec for SWE and N H GPU implementations

Number of volumes Runtime (s)
SWE Non-hydrostatic

250 x 250 0.64 0.64
500 x 500 2.29 5.79
750 x 750 7.17 17.33
1000 x 1000 16.75 40.47
1250 x 1250 33.88 79.67
1500 x 1500 56.38 136.12

5 Conclusions

A non-hydrostatic model has been considered in order to incorporate dispersive
effects in the propagation of waves in a homogeneous, inviscid and incompressible
fluid.

The numerical scheme employed, combines a finite volume path-conservative
scheme for the underlying hyperbolic system and finite differences for the discretiza-
tion of non-hydrostatic terms and a GPU implementation is carried out.

It can be stated that the scheme presented here is efficient and can model dis-
persive effects with a moderate computational cost. Computational times for the
non-hydrostatic code are no higher than 2.4 SWE times for refined meshes. To our
knowledge, the approach presented here is one of the most efficient from the com-
putational point of view.
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A Flux Splitting Method
for the Baer-Nunziato Equations
of Compressible Two-Phase Flow

Svetlana Tokareva and Eleuterio Toro

Abstract We extend the Toro-Vazquez flux vector splitting approach (TV), origi-
nally proposed for the ideal 1D Euler equations in [11], to the Baer-Nunziato equa-
tions of compressible two-phase flow. Following the TV approach we identify cor-
responding advection and pressure operators and assess the TV flux splitting in the
setting of finite volume and path-conservative methods in terms of accuracy and
efficiency.

Keywords Compressible multiphase flow - Non-conservative systems * Flux
splitting
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1 Introduction

The Baer-Nunziato model was first proposed in [1] in the context of granular ener-
getic combustible materials embedded in gaseous combustion products. A distinctive
feature of the Baer-Nunziato model is the admission of two velocity vectors and two
pressures. The equations are hyperbolic, except for some well identified situations,
and the complete mathematical structure of the 1D system, as well as split 3D system,
is available [6, 8]. The homogeneous one-dimensional Baer-Nunziato equations are
a time-dependent system of seven partial differential equations:
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2,Q + 9, F(Q) + T(Q)9,a =0 1
with B _ B _ i _
Q 0 i
ap api 0
apii & (pi + p) —p
Q=|apE |. FQ = |ai(pE+p)|. TQ =|—pi
ap apu 0
apu « (pu2 + p) p
| apE | | au (pE + p) | | pu |

Here p, u, p, E are gas density, velocity, pressure and specific total energy, and
D U, D, E are the corresponding variables for the solid phase; o and & are volume
fractions. The specific total energies of the phases are expressed as £ = e + %uz
and E = ¢ + %L_ﬁ, where e and e are specific internal energies. System (1) requires
additional closure relations involving density, internal energy and pressure of each
phase. Such relations are provided by the equations of state (EOS). An ideal EOS
for the gas phase and a stiffened EOS for the solid phase are frequently used, namely
p=(y—1pe, p=(y—1)pe — 7Py, where v and 7 are the specific heat ratios
of the gas and solid phases, respectively, and Py is a known constant. The volume
fractions are related through the saturation condition: @ + «« = 1.

2 TV Flux Splitting Method for the Baer-Nunziato
Equations

Consider the homogeneous one-dimensional Baer-Nunziato equations (1). We follow
the Toro-Vazquez (TV) flux splitting approach [11] taking into account that the
equations of interest here do not have a conservation-law form. First, we identify
the conservative part and express the conservative flux as the sum of advection and
pressure fluxes as follows:

0 0 0
apit apu 0
a (pi* + p) apit’ ap
FQ) = |ai ($piu>+pe+p) | = | sapi | + |aia(pe+p) |, (2
apu apu 0
o (pu? + p) apu® ap
Lou (3pu® + pe+p) | | sapu®| | ow(pe+ p) |

with the respective advection and pressure fluxes defined as
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AQ) = [0, apit, apie®, Sapin®, cpu, apu?, lapu3]T , 3)
— = = — T
P(Q) =[0,0, ap, aii (pe + p) , 0, ap, au (pe + p)] " . 4)

Following [10, 11], we consider two systems, the advection system (A-system)
and the pressure system (P-system), noting however that here the pressure system
is augmented by the nonconservative term present in the Baer-Nunziato equations.
Thus, the two systems are

0,Q + 0,A(Q) =0, (advection system, conservative)
0,Q 4+ 0:P(Q) + T(Q)d,a = 0. (pressure system, non-conservative)  (5)

The TV flux splitting approach consists of approximating the numerical fluxes for
the pressure system and advection system separately and constructing the numerical
fluxes for the full system based on these.

The construction of the numerical flux corresponding to the advection system
is straightforward and follows directly from [11]. We now turn our attention to the
non-conservative pressure system by considering the associated Riemann problem
written in primitive variables

V., ifx <0,
OV+BV)OV =0, V(x,00=4 = "%~ (6)
Vg, ifx >0,
with
- i i 0 00 0 007
@ —& 0 00 0O 00O
P -2 o ol o o0
u i —_a—p — i(pe;+e) | P 0 00
V=|5|. BV = a6 (@p +2) LS L
P o 0 00 0 00
u 0 0 00 0 0!
LP i (—uepp -— - ue) 0 00 "(p[fe“:e) % u

where h = e+ p/p and h = &+ p/ are specific enthalpies of the gas and solid
phase, respectively, and Ap = p — p, Au = u — u. The eigenvalues of the matrix
B(V) are

1 1
/\1=§(M—A), A =0, )\3=§(u+A), @)

1 - 1 T
M=sG—A), =0 N=c@+Ad), \=i ®)

where A = [u? + ;17;;’ A= Jur+ /% The corresponding linearly independent
P P
right eigenvectors can be found in [9].
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0 g

Fig. 1 Intermediate states for the gas (left) and solid (right) phase

A typical characteristic structure of the solution of the Riemann problem for the
pressure system is shown in Fig. 1, where Sy, Sy, Sk and Si, So, Sy, Sg denote
the speeds of the characteristics of the gas and solid phase, respectively. The case
illustrated in Fig. 1 corresponds to the right subsonic wave configuration, i.e. S <
Sy =it < Sg, when & > 0. In [9] it is shown that Pl =PL, Pr = PR> Po = D]
for the gas phase and p]} = pr, px = Pr, Po = P}, io = iy for the solid phase.
Since A\ <=0 < A3 and A4 < 0 < Ag, the Godunov state in the subsonic wave
configuration will be completely defined by the sign of A\; = & resulting in significant
CPU time savings in the sampling procedure. We also note that due to the above
mentioned conditions no entropy fix will be needed for linearized fluxes.

Having computed the intermediate states, we sample the solution of the Riemann
problem at x = 0 to define the Godunov state V,, /> and construct the conservative
numerical fluxes for the pressure and advection systems as follows:

0
0

Qit1/2Piv1)2

Piiipp = | &i1ppitivig (Did1)28i12 + Piv12) | 9
0
Qit1/2Di+1)2
| Qit1/2Ui41/2 (Pi+1/26i+1/2 + Pi+1/2)_
-0 S
5 0
i 0
A =Qinipling | 508 | +aiapuinp | 0|, (10)
0 p
0 pu
19
U L2P4" 1,
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where we take

.7 if _i >01 ‘1 if i Zos
e[l dtEanz0 [ i
l+1, 1fui+1/2<0, l—I—l, 1fui+1/2<0

The complete flux for the conservative term is given by F; 1o = Aj112 + Piy12.
Finally, we use the following approximation of the non-conservative terms at the
cell interface x;, 1/, proposed in [7]:

Uiv12(Qit1 — ;)

0
(PR1+1/2O‘l+1 ﬁzz+1/25‘i)
Tivi2 = | —Uiv12(Pgip10Qi+1 = PLis1200) | . (11)

—y _ —y _
PRiv12%i+1 = Priv12%i
_ iy _ ' -
L Mi+1/2(PR,,-+1/204i+1 - pL,i+l/2ai) .

The numerical flux constructed in the previous section can be used directly in the
finite volume scheme which in 1D takes the form [7]

n n Ar" —
Q' =Q - S (B, —HE ), (12)

where H;_, , and H;ﬁH /2 are defined by

_ Fitipp+Tig1yp, ifitipr <0,
Hz+1/2 — +1/ +1/ o +1/ (13)

Fii1, ifuiy12 >0,

Firi1)2, ifuj 10 <0,
HY =10 Y (14)

Fitip =Ty, ifitiprp > 0.

A first-order path-conservative scheme is given by
n+l __ A" D+ D 15
Q" =qQ " Ax, ( 12T 1+1/2) (15)
where
! ‘P —1/2
Di+_1/2 =/0 M(W;r_l/z(sv er'l_l/z,Q )) ds —A;_ 1/2»

1
_ ‘pz+1 2
Diip= /0 M(Wz+1/2(s Qsz+1/2)) : ds + Ait1)2,
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with M(Q) = g—g + T(Q) and T = [T, 0, ..., 0], using the canonical paths

90:1/2(sv Qi) Q) =Q ) +5(Qf — Q).
©ir1208, QL Qi) = QF +5(Qfy o — Q)

with Q' , being the Godunov state at the corresponding cell interface.

3 Numerical Results and Efficiency Study

In this section, we test the performance of the TV numerical flux implemented in the
first-order finite volume or path-conservative frameworks using various approximate
Riemann solvers for the associated P-system. We consider the Riemann problem,
introduced in [7], which includes large variations of initial data and non-ideal EOS
for the solid phase. The initial data consists of two constant states separated by a
discontinuity at x = 0.5; the initial data are listed in Table 1 and the EOS parameters
are the following: v = 1.35, % = 3 and P, = 3400. Transmissive boundary condi-
tions are imposed at x = 0 and x = 1. We use the following estimation for the time
step: At" = Ccpr. Ax /S, where Ccry. is prescribed and the expression for S is
givenby St =max{|u| +a], |u}| +a’'}, i =1.. .N,andaf and&f are the sound
speeds of the gas alnd solid phase, respectively.

The results of the computations using first-order finite volume and
path-conservative schemes with various Riemann solvers for the P-system are shown
in Fig. 2. For the efficiency study of the TV flux splitting method with various Rie-
mann solvers for the P-system we performed computations on a sequence of meshes
using first order flux splitting schemes as well as the finite-volume scheme with
HLL and HLLC Riemann solvers for the full Baer-Nunziato system. Figure 3 is an
efficiency plot, namely an Error versus CPU time plot. The curve “HLLC full” cor-
responds to the finite-volume scheme with the HLLC-type Riemann solver for the
Baer-Nunziato equations from [8], the curve “HLL full” is the numerical solution
obtained by the nonconservative HLL-PVM method applied to the complete unsplit
Baer-Nunziato system according to [3], while other curves correspond to versions of
the TV flux splitting scheme depending on the Riemann solver used for the pressure
system: “HLL-TV” denotes the HLL-PVM Riemann solver of [3], “HLLEM-TV”
denotes the HLLEM solver [5], “NumRoe-TV” corresponds to the numerical Roe
approach of [2] and, finally, “LinRS-TV” illustrates the results from the linearized

Table 1 Initial data
ar | pL ur | pL | ar | pr uRr | PR ap |pL |up | pL | QR |pR |UR | PR
0.2 | 1900.0 0.0 | 10.0 | 0.9 | 1950.0 | 0.0 | 1000.0 /0.8 /12.0/0.0{3.0(0.11.0/0.0|1.0
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Riemann solver of [9] applied to the pressure system. In practice, we have observed
that the maximum CFL coefficient which guarantees stable results for a range of
test problems depends on the Riemann solver used for the P-system [9]. Therefore,
for the linearized Riemann solver and full HLL solver we set Ccg. = 0.9, for HLL-
PVM and HLLEM Riemann solvers Ccp. = 0.8 and for the numerical Roe approach
CcrL = 0.6. Each curve displays six points of the form (Error, CPU time), corre-
sponding to six meshes. Errors were computed in the L;-norm for the variable p. In
Fig.3 we choose Error = 0.002. We see that the TV flux splitting method with the
linearized Riemann solver for the P-system is the most efficient; it takes only 1.88s
of CPU time to attain the chosen error. This solver is slightly more efficient than the
HLLC scheme of [8] which takes 2.37 s to reach the indicated error; moreover, the
implementation of the HLLC Riemann solver for the Baer-Nunziato equations and
the solution sampling for the numerical flux computation are more complicated than
in the linearized Riemann solver for the P-system. The next most efficient method
is the HLL scheme applied directly to the full Baer-Nunziato system (no flux vector
splitting); it is however 15.7 times more expensive than the present TV splitting
with the linearized Riemann solver for the P-system. Very close to the HLL-full is
the TV splitting with the HLL flux for the P-system, followed by the TV splitting
with numerical Roe flux for the P-system. The most inefficient scheme turns out to
be the TV splitting with HLLEM scheme. However, it should be noted that these
last two schemes are rather general and can easily be implemented to solve more
general hyperbolic systems than the one considered in this paper. See also [4] for
other comparisons of different schemes for the Baer-Nunziato model.

The attraction of the TV splitting is the simplicity with which one can construct
the numerical flux for the full scheme. Such simplicity is two fold, first the work is
centred on a reduced system, namely pressure system; then for such system one can
devise very simple numerical schemes for the associated pressure numerical flux. The
end resultis a very simple and efficient scheme for the full system, without sacrificing
robustness and accuracy. As soon as one devises complicated and expensive methods
for the pressure system, the attraction of the TV flux vector splitting approach is lost,
as demonstrated by our efficiency study.
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GPU Accelerated Finite Volume Methods
for Three-Dimensional Shallow Water Flows

Mohamed Boubekeur, Fayssal Benkhaldoun and Mohammed Seaid

Abstract This paper presents a newly developed finite volume method to sim-
ulate three-dimensional free-surface flows on GPU-equipped supercomputer. The
model consists of a class of multi-layered shallow water equations with exchange
terms between layers and the finite volume method uses a predictor-corrector proce-
dure. These techniques are devised to be computationally efficient and well-suitable
for hardwares of multi-core CPUs with many core GPU accelerators. An extensi-
ble multi-threading programming API is used as a common kernel language that
allows runtime selection of different computing devices (GPU and CPU, CUDA and
OpenMP). Numerical results are presented for a circular dam-break problem.

Keywords Shallow water flows - Finite volume methods + GPU computing

1 Introduction

Recently a set of multi-layer shallow water equations has been proposed in [1] to
model vertical effects and mass exchanges in one-dimensional free-surface flows.
Authors in [3] proposed a simple finite volume method to solve this class of multi-
layer shallow water models. The method belongs to predictor-corrector solvers and
avoids the solution of Riemann problems to reconstruct numerical fluxes. In the
predictor stage, the multi-layered shallow water equations are rewritten in a non-
conservative form and the intermediate solutions are calculated using the modified
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method of characteristics. In the corrector stage, the numerical fluxes are recon-
structed from the intermediate solutions in the first stage and used in the conservative
form of the multi-layered shallow water equations. The proposed method is simple
to implement, and easy to parallelize, and allows to be faster than conventional finite
volume methods, see for instance [2].

A cost effective way to obtain higher performance and reduce time of simulations
consists in using Graphics Processor Units (GPU). The popularity of using these
devices is growing to accelerate computationally intensive tasks, see for example [4]
for a GPU implementation of finite volume methods for single-layered shallow water
flows. GPU card presents a massively parallel architecture which includes hundreds
of processing units optimized for performing floating point operations and multi-
threaded execution. These architectures allow to obtain higher performance than
standard CPU at a very affordable price. The objective of the current work is twofold:
on one hand we extend our finite volume method to the two-dimensional multi-
layered shallow water system and on the other hand we implement these techniques
on GPU to speed up the computational process.

2 Multi-layered Shallow Water Equations

In the current work we consider the two-dimensional version of the multi-layered
shallow water equations proposed in [1]. The system is reformulated in a conservative
form as
oW  OF(W) 9G(W)
-— + +

ot ax ay

=QW), (1)

where W is the vector of conserved variable, F and G the vectors of flux functions,
and Q are the vector of source terms
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Hu, laHu%—i- 7gla[—12 laHullvl
2 ) 5
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where (u, vy) is the local water velocity for the ath layer, v the eddy viscosity, g
the gravitational acceleration, p the water density, ¢, and 1, are the bed shear stress,
and ¢, and n,, are the shear of the blowing wind. Here, H denotes the water height
of the whole flow system and [, denotes the relative size of the «th layer with

The mass exchange term £, is defined as

o M

lﬁEZBUVHuﬂ

dx ’

B(I,gHu,g)

1
2 0x
p=1 y=I

and the interface velocity is computed by a simple upwinding following the sign of
the mass exchange term as

uutv lféu 1 2 Ov
Ugtl, if§u+1 < 0.
2
Similarly, the mass exchange term E;Jr , is defined as
2

o M

_ Z d(lgHvg) 1, Z a(l,Hvy)
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and the interface velocity

Va, lfgv 1 / 7
2

- v
Vail, if §a+l < 0.
2

It should also be pointed out that the layers defined in the model do not refer to
physical interfaces between non-miscible fluids but to a meshless discretization of
the flow domain. Hence, the possibility of water exchange between the layers is
accounted for in the model. The great interest of this strategy is to preserve an accurate
description of the velocity profile but to deal with a two-dimensional fluid model and
thus to avoid the drawback of remeshing a three-dimensional moving domain for
which the free-surface may present very sharp profiles such as dam-break problems
and hydraulic jumps.

3 GPU Accelerated Finite Volume Characteristics Solver

For the space discretization of the system (1) we cover the spatial domain with cells
Cij =[x;_ 1 x,+1] X [yJ” Vil 1] centered at (x;, y;) with uniform sizes Ax and
Ay for s1mphc1ty in the presentatlon only. We also use the notations

Wil ;) =W, xip1,yj), - W, 1) = W, xi, yjg),

d W, ()= W(t dyd
an J® AxAy/ / (#, x, y)dydx,

to denote the point-values and the approximate cell-average of the variable W at
the gridpoint (¢, Xig1, Y ), (8, xi, y;11), and (7, x;, y;), respectively. Integrating the
Eq. (1) with respect to space over the control volume Ci,j, we obtain the following
semi-discrete system

dW;; Fippi—Ficipi  Gijrip—Gij—ip
, , , , , — Q.. ’
dt + Ax + Ay Qi 2)

where Fi112 ; = F(W;+12,;) and G; j+1/2 = G(W; j+1/2) are the numerical fluxes
at the cell interfaces x = x;+1,2 and y = y;+1,2, respectively. In (2), Q; ; is a consis-
tent discretization of the source term Q in (1). The spatial discretization of Eq. (2) is
resumed when a numerical construction of the fluxes F;1 /> ; and G; j+1,2 is chosen.
In general, this construction requires a solution of Riemann problems at the interfaces
Xi+1/2 and y;+1 2. From a computational viewpoint, this procedure is very demanding
and may restrict the application of the method to shallow water equations for which
Riemann solutions are not available.
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In the current study we consider the finite volume characteristics method proposed
in [3] for the numerical solution of one-dimensional counterpart of the system (1).
The method computes the intermediate solutions W,/ ; and W; j1/, by reformu-
lating the system (1) in a non-conservative form and apply the modified method of
characteristics. This step in the method is referred to by predictor stage whereas the
solution is recovered from the corrector stage (2). Details on the implementation of
finite volume characteristics method can be found in [3] and will not be repeated
here. Time integration of the semi-discrete system can be achieved by using any
explicit scheme such as Runge-Kutta methods. For instance, a first-order explicit
Euler scheme applied to (2) yields

At At
1
Wi = Wi = o Bl —Filoipg) + 2 (Gl i1 = Gijrpp) + MQ 5,
3)
where the time interval is divided into N subintervals [7,, #,+1] with length Ar =
tir1 —t, forn =0,1,..., N and W" denotes the value of a generic function W

at time #,. Because the time integration scheme is explicit, the time step At has to
satisfy a stability condition of the form

in (Ax, A
At:Cmm( X y)’
max (A, u)

where C is the Courant number to be chosen less than unity, A and p are the maximum
of eigenvalues associated to the single-layer model defined as

A= _rlnaxM(ua—i-\/gH‘,lual, Ma—ngDv
n= _maxM(va+\/gH el va—\/gH‘).

It well established that in the CUDA framework, both the CPU and the GPU main-
tain their own memory. However, it is possible to copy data from CPU memory to
GPU memory and vice versa without any computational difficulties. The GPU is
constituted by a set of multiprocessors for which each of these multiprocessors has a
number of processors and each processor executes the same instructions but it oper-
ates on different data. Using GPU, a kernel is executed by many threads which are
organized forming a grid of thread blocks that run logically in parallel. All blocks
and threads have spatial indices, so that the spatial position of each thread could
be identified in the program and each thread block runs in a single multiprocessor.
Here, four CUDA kernels were implemented: one to compute the mass exchange,
one to compute the characteristics in the predictor stage, one to compute the fluxes,
and the last one to update the solution in the corrector stage. In our implementation,
this architecture is used to implement some kernel functions to compute the solution
W+ at each time step. The combination of the finite volume method for space dis-
cretization and the explicit Euler scheme for time integration offers a straightforward
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parallel execution by considering that each thread represents a control volume. To
minimize the execution time, the data exchange between the CPU and GPU mem-
ories is also limited. Here, the data exchange is used only for initialization and to
export results. It should be stressed that the memory exchange between GPU and
CPU is negligible, it is used only to initialize and to extract the final solution. The
OpenGL library uses GPU to GPU transfer and it is nearly 100 GB/s. The CUDA
performance of the code for the mesh with 500 x 500 grid-points and 20 layers is
718.65 GFLO PS. For each time step, the method is carried out using the following
two steps:

e Predictor step: Three kernel functions are implemented, the first one computes
the mass exchanges terms, the second computes the characteristics, and the last
one computes the numerical fluxes F; 1/ ; and G; j+1/2. Using these kernels, we
compute the intermediate solutions W;11,, ; and W; 11,2

e Corrector step: A kernel is implemented to update the solution Wl";”] using the
time stepping (3)

e Post-processing: We use W;’jl to draw the water height using the OpenGL library.

Note that the OpenGL library is integrated in the CUDA platform which allows
displaying the simulated results in real-time without communication between CPU
and GPU memories. All the simulations use a double numerical precision.

4 Numerical Results

We solve the test example of dam-break problem in three-dimensional free-surface
flows. The single-layer version of this example has been investigated in [2] to study
cyclone/anticyclone asymmetry in nonlinear geostrophic adjustment. Hence, we
adapt the same parameters as those used in [2] and the multi-layer system (1) is
solved in the spatial domain [—10, 10] x [—10, 10] subject to Neumann boundary
conditions. The initial conditions are

1 JaxZ ¥ by? — 1
H(o,x,y>=1+4(1—tanh(‘”‘“)), g (0. X, y) = v4(0, x, y) =0,

c

where a = 52, b = 25 and ¢ = 0.1. In our simulations g = 1, the eddy viscosity
v = 0.01 and the courant number C = 0.75. In all our simulations we used for the
GPU card a NVIDA Quadro K5100M with 8 multiprocessors and each processor is
constituted by 192 processors. The times of execution are also compared to those
obtained using CPU simulation which are performed using an OpenMP implemen-
tation. The CPU is an Intel i7 with 8 cores cadenced to 3 GHz.

In Fig. 1 we present the water free-surface and velocity field obtained at times
t =1, 3 and 5s. As can be seen a bore has formed and the water drains from the
deepest region as a rarefaction wave progresses outwards. The flow in that region
becomes supercritical. It is also clear that the numerical solution preserves rotational
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symmetry in a perfect way and the problem is solved correctly by our finite volume

method.

Fig. 1 Water heights (left) and velocity fields (right) obtained for dam-break problem with 20

layers at three different instants using the GPU simulation

Table 1 Execution times in seconds obtained using 5, 10 and 20 layers on different meshes with

50 x 50, 100 x 100, 200 x 200 and 500 x 500 gridpoints

5 layers

50 x 50 100 x 100 200 x 200 500 x 500
CPU 1 core 0.92 7.62 65.45 1046.14
CPU 8 cores 0.54 3.65 24.76 355.31
GPU 0.47 1.54 6.98 77.26

10 layers

50 x 50 100 x 100 200 x 200 500 x 500
CPU 1 core 1.81 15.68 134.40 2202.90
CPU 8 cores 0.96 6.70 45.25 738.15
GPU 0.77 2.82 13.29 157.0

20 layers

50 x 50 100 x 100 200 x 200 500 x 500
CPU 1 core 343 31.94 273.74 4349.97
CPU 8 cores 1.87 12.90 96.85 1496.98
GPU 1.42 5.71 28.71 360.50
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Next we compare the results obtained for this test problem on the GPU to those
obtained using the CPU for 1 core and 8 cores without the post-processing step.
Table 1 summarizes the execution times for both implementations on CPU and GPU
platforms using different numbers of layers and meshes. These execution times do
not include the OpenGL. Here we solve the multi-layer system for 5, 10 and 20 layers
using meshes with 50 x 50, 100 x 100, 200 x 200 and 500 x 500 gridpoints, and
the results are reported at the simulation time ¢t = 10 s. It is evident from the results
in Table I that a linear increase in the execution times results from any increase in
the number of layers in the system for all implementations and meshes. However, in
all considered cases the GPU simulation is the fasted. Computing the mass exchange
terms is not totally parallel because of the dependency between the layers.

5 Conclusion

A GPU accelerated finite volume method is presented for solving three-dimensional
free-surface flows using the multi-layered shallow water equations. The method
combines the modified method of characteristics and the finite volume method in a
predictor and corrector procedures. The method is simple, accurate and avoids res-
olution of Riemann problems in its reconstruction of numerical fluxes. The method
is entirely ported to such a system using CUDA-driver to make fully possible use
of the GPU acceleration capability on large-scale parallel computations. The high-
resolution simulations with large number of layers and gridpoints have been demon-
strated for a circular dam-break problem. The simulation time is compared to CPU
implementation for 1 core and 8 cores by varying the number of layers and mesh
size. We noted that the GPU simulations are the fastest for all cases and for the same
precision.
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the implementation of finite volume characteristics method.
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Projective Integration for Nonlinear BGK
Kinetic Equations

Ward Melis, Thomas Rey and Giovanni Samaey

Abstract We present a high-order, fully explicit, asymptotic-preserving projective
integration scheme for the nonlinear BGK equation. The method first takes a few
small (inner) steps with a simple, explicit method (such as direct forward Euler) to
damp out the stiff components of the solution. Then, the time derivative is estimated
and used in an (outer) Runge—Kutta method of arbitrary order. Based on the spectrum
of the linearized BGK operator, we deduce that, with an appropriate choice of inner
step size, the time step restriction on the outer time step as well as the number of
inner time steps is independent of the stiffness of the BGK source term. We illustrate
the method with numerical results in one and two spatial dimensions.

Keywords Projective integration - BGK - Asymptotic-preserving - WENO

MSC (2010):  82B40 - 76P05 - 65M08 - 65L06

1 Introduction

The Boltzmann equation constitutes the cornerstone of kinetic theory. It describes
the evolution of the one-particle mass distribution function f¢(x, v, ) € RY as:

1
O f +v Vuf = go@(fa)(V), (D
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where t > 0 represents time, and (x, v) C RP-*P are the D,-dimensional particle
positions and D,-dimensional particle velocities. In Eq. (1), the dimensionless con-
stant ¢ > 0 determines the regime of the gas flow, for which we roughly identify the
hydrodynamic regime (¢ < 10™*), the transitional regime (¢ € [107#, 107!]), and
the kinetic regime (¢ > 10~"). Furthermore, the left hand side of (1) corresponds
to a linear transport operator that comprises the convection of particles in space,
whereas the right hand side contains the Boltzmann collision operator that entails
velocity changes due to particle collisions. However, due to its high-dimensional
and complicated structure, the Boltzmann collision operator is often replaced by
simpler collision models that capture most essential features of the former. The most
well-known such model is the BGK model [1], which models collisions as a linear
relaxation towards thermodynamic equilibrium, and is given by:

1
3tf€+V-foS=g(///v(fs)—fs), @)

in which .Z, (f¢) denotes the local Maxwellian distribution, which, for a D,-
dimensional velocity space, is given by:

e___ P V=VPY _ er
My (f°) = OnT)D 2 eXP( 5T )._ MV 3)

The Maxwellian distribution contains the velocity moments of the distribution func-
tion f¢, which are calculated as:

1
p = fedv, vi=-— / vifedv, T =
RDv P JRDv

lv— ¥ fodv, (4)
Dvp ‘/]RI)U

_ _ D, . .
where p ¢ R*, v = (Vd ) dey € RP» and T € R are the density, macroscopic veloc-
ity and temperature, respectively, which all depend on space x and time ¢. Then, in
the limit ¢ — 0, the solution to Eq.(2) converges towards MY ’V’T, whose moments

in (4) are solution to the compressible Euler system:

9:p +divy(pv) = 0,
9 (pV) +divy (pVRV + pTI) =0, &)
OE +divg V(E+pT)) =0,

in which E is the second moment of f°, namely its total energy.

In this paper, we construct a fully explicit, asymptotic-preserving, arbitrary order
time integration method for the stiff Eq. (2). The asymptotic-preserving property [6]
implies that, in the limit when ¢ tends to zero, an e-independent time step constraint,
of the form At = O(Ax), can be used, in agreement with the classical hyperbolic
CFL constraint for the limiting fluid Eq. (5). To achieve this, we will use a projective
integration method, which was introduced in [5] and first applied to kinetic equations
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in [7]. For a comprehensive review of numerical schemes for collisional kinetic
equations such as Eq. (1), we refer to [4]. Although it is known that an implicit
treatment of (2) can be implemented explicitly [4], the order in time is usually
restricted to 2. Therefore, the main advantage of the proposed method is its arbitrary
order in time.

The remainder of this paper is structured as follows. We describe the projective
integration method in more detail in Sect.2, after which we discuss (in Sect.3)
the spectral properties of the linearized BGK operator, which are needed to ensure
stability of the method. Some numerical experiments are done in Sect. 4.

2 Projective Integration

Projective integration [5, 7] combines a few small time steps with a naive (inner)
timestepping method (here, a direct forward Euler discretization) with a much larger
(projective, outer) time step. The idea is sketched in Fig. 1.

Inner integrators. We discretize Eq.(2) on a uniform, constant in time, periodic
spatial mesh with spacing Ax, consisting of / mesh pointsx; = i Ax, 1 <i < I, with
I Ax = 1, and a uniform time mesh with time step §¢ and discrete time instants th =
k&t. Furthermore, we discretize velocity space by choosing J discrete components
denoted by v;. The numerical solution on this mesh is denoted by l.’f ;» where we have
dropped the superscript € on discretized quantities. We then obtain a semidiscrete
system of ODEs of the form:

. 1
f=D,f), Di(f)=-D:o(f)+ - (A, () — 1), (6)

where Dy , () represents a suitable discretization of the convective derivative v - Vy
(for instance, using upwind differences), and f is a vector of size [ - J.

T T T time
=1 " 1

Fig. 1 Sketch of projective integration. At each time, an explicit method is applied over a number
of small time steps (black dots) so as to stably integrate the fast modes. As soon as these modes are
sufficiently damped the solution is extrapolated using a much larger time step (dashed lines)
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As inner integrator, we choose the (explicit) forward Euler method with time step
ét, for which we will, later on, use the shorthand notation:

4 = 55, (%) = £F + 8D, (1), k=0.1,.... @)

Outer integrators. In system (6), the small parameter ¢ leads to the classical time
step restriction of the form §t = O (¢) for the inner integrator. However, as ¢ goes to
0, we obtain the limiting system (5) for which a standard finite volume/forward Euler
method only needs to satisfy a stability restriction of the form At < CAx, with C a
constant that depends on the specific choice of the scheme.

In [7], it was proposed to use a projective integration method to accelerate such
a brute-force integration; the idea, originating from [5], is the following. Starting
from a computed numerical solution f” at time t" = nAt, one first takes K + 1 inner
steps of size 8¢ using (7), denoted as £-**!, in which the superscripts (1, k) denote
the numerical solution at time t"* = nAt + két. The aim is to obtain a discrete
derivative to be used in the outer step to compute ! = £+1.0 via extrapolation in

time:
n,K+1 __ fn,K

= K A — (K + DMT' (8)

Higher-order projective Runge—Kutta (PRK) methods can be constructed by

replacing each time derivative evaluation K; in a classical Runge—Kutta method by
K + 1 steps of an inner integrator as follows:

{fn,k+l — fnk + 8tD,(fn'k), 0<k<K
s=1 fn,K-H _fn,l( (9)
e
ot
a0 = K (e A — (K + Dsn) S Bl
Cs
2<s<8: ekl prrak gD (Erteky,  0<k<K (10)
fn+c&,K+l _ fn+C.;,K
ks — 5 5
k ot
S
fn+1 — fn,K+1 + (At _ (K + l)(St) beks~ (11)

s=1

To ensure consistency, the Runge-Kutta matrix a = (a,,;)3,_,, weights b = (b,)5_,,

s,i=1>

and nodes ¢ = (C_Y)f:] satisfy the conditions 0 < by, < 1and 0 < ¢; < 1, as well as:

Dbhy=1, Dayi=c., 1<s<S. (12)
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3 Spectral Properties

To choose the method parameters (the size of the small and large time steps 8¢ and
At, as well as the number K of small steps), one needs to analyze the spectrum of the
collision operator. In [8], this was done in the hyperbolic scaling for a system with a
linear Maxwellian that serves as a relaxation of a nonlinear hyperbolic conservation
law.

By linearizing the Maxwellian (3) around the global Maxwellian distribution
MV = A0 it is shown in [3, p.206] that the resulting linearized equilib-
rium can be written as:

D,+1

Min(f)XV, 1) = D U)W, [, 1), (13)

k=0

in which the scalar product is defined by:

B — 1 — |v[?
(8. h) —/R g(Mh(v) GV exp( > )dv. (14)

Furthermore, the orthonormal set of basis functions ¥, (v) in (13) are obtained from
a straightforward application of the Gram-Schmidt process to the D, + 1 collision
invariants (1, v, |v|?), yielding:

|V|2 B Dv
(IPO(V),..,,WDU+1(V)) = (17v]a"'7va7 2D—v/2 . (15)

Using the linearized Maxwellian (13), the linearized version of the full BGK equation
(2) reads:

1
3rfs+V'fos=—g(f—HBGK)f8, (16)

where . denotes the identity operator and ITggk is the following rank-(D, + 2)

projection operator:
D,+1

Mok f* = D V) (W, [9). (17)

k=0

This shows that the structure of the linearized Maxwellian (13) and the linearized
BGK projection operator (17) are almost identical to those in [8]. We can actu-
ally view these linear kinetic models as a special simplified case of the linearized
BGK equation. Therefore, it is expected that the construction of stable, asymptotic-
preserving projective integration methods for the full BGK equation (2) is practically
identical to that in [8]. In particular, the conclusion is that, when choosing 6¢ = ¢,
one is able to choose At = O(Ax) and K independent of ¢, resulting in a scheme
with computational cost independent of €.
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4 Numerical Experiments

BGK in 1D. As a first experiment, we focus on the nonlinear BGK equation (2) in
1D. We consider a Sod-like test case for x € [0, 1] consisting of an initial centered
Riemann problem with the following left and right state values:

(b, ¥, Te) = (1,0, 1), (ors V&, Tr) = (0.125,0,0.25).  (18)

The initial distribution f®(x, v, 0) is then chosen as the Maxwellian (3) correspond-
ing to the above initial macroscopic variables. We impose outflow boundary con-
ditions and perform simulations for ¢ € [0, 0.15]. As velocity space, we take the
interval [—8, 8], which we discretize on a uniform grid using J = 80 velocity nodes.
In all simulations, space is discretized using the WENO3 spatial discretization with
Ax = 0.01. Below, we compare solutions for three gas flow regimes: ¢ = 10~
(kinetic regime), ¢ = 1072 (transitional regime) and & = 10~ (fluid regime).

In the kinetic (¢ = 10~") and transitional (¢ = 1072) regimes, we compute the
numerical solution using the fourth order Runge—Kutta (RK4) time discretization
with time step 8t = 0.1 Ax. In the fluid regime (¢ = 10~°), direct integration schemes
such as RK4 become too expensive due to a severe time step restriction, which
is required to ensure stability of the method. Exploiting that the spectrum of the
linearized BGK equation is close to that of the linear kinetic models used in [8], see
Sect. 3, we construct a projective integration method to accelerate time integration in
the fluid regime. As inner integrator, we select the forward Euler time discretization
with 8§t = €. As outer integrator, we choose the fourth-order projective Runge—Kutta
(PRK4) method, using K = 2 inner steps and an outer step of size Ar = 0.4Ax.

The results are shown in Fig.2, where we display the density p, macroscopic
velocity v and temperature 7" as given in (4) at + = 0.15. In addition, we plot the
heat flux ¢, which, in a general D, -dimensional setting, is a vector q = (g¢ )5; | with
components given by:

1
g == / lef? ¢ fedv, (19)
2 Jrow

in which ¢ = (Cd)5;1 = v — v is the peculiar velocity. The different regimes are
shown by blue (kinetic), purple (transitional) and green (fluid) dots. The red line
in each plot denotes the limiting (¢ — 0) solution of each macroscopic variable,
which all converge to the solution of the compressible Euler equations (5) with ideal
gas law P = pT and heat flux g = 0. From this, we observe that the BGK solution
is increasingly dissipative for increasing values of ¢ since the rate with which f*
converges to its equilibrium .#, (f°) becomes slower. In contrast, for sufficiently
small ¢, relaxation to thermodynamic equilibrium occurs practically instantaneous
and the Euler equations (5) yield a valid description. Since this is a hyperbolic
system, it allows for the development of sharp discontinuous and shock waves which
are clearly seen in the numerical solution.
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Fig. 2 Numerical solution of the BGK equation in 1D at ¢+ = 0.15 for a Sod-like shock test (18)
using WENO3 with Ax = 0.01. RK4 is used for ¢ = 10~! (blue dots) and ¢ = 102 (purple dots).
The PRK4 method is used for ¢ = 107> (green dots). Red line hydrodynamic limit (¢ — 0)

Shock-bubble interaction in 2D. Here, we consider the BGK equation in 2D and
we investigate the interaction between a moving shock wave and a stationary smooth
bubble, which was proposed in [9], see also [2]. This problem consists of a shock wave
positioned at x = —1 in a spatial domain x = (x, y) € [—2, 3] x [—1, 1] traveling
with Mach number Ma = 2 into an equilibrium flow region. Over the shock wave,
the following left (x < —1) and right (x > —1) state values are imposed [2]:

. 16 [57 133 _
(pL,VL, Vi, TL) = 7, 31—6,0, 6_4 , (,OR,VR, TR) = (1,0, l) . (20)

Due to this initial profile, the shock wave will propagate rightwards into the flow
region at rest (x > —1). Moreover, in this equilibrium region, a smooth Gaussian
density bubble centered at xo = (0.5, 0) is placed, given by:

p(x,0) =1+ 1.5exp (—16 |x — xo|?). (21)

Then, the initial distribution f°(x, v, 0) is chosen as the Maxwellian (3) correspond-
ing to the initial macroscopic variables in (20)—(21). We impose outflow and periodic
boundary conditions along the x- and y-directions, respectively, and we perform sim-
ulations for ¢ € [0, 0.8]. As velocity space, we take the domain [—10, 10]?, which
we discretize on a uniform grid using J, = J, = 30. We discretize space using the
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p(x,0,1)
T(x,0,1)

Fig. 3 Shock-bubble interaction. Top contour plot of density (left) and pressure (right). Bottom
density (left) and temperature (right) along y = 0 at t = 0 (black dashed), t = 0.2 (blue), t = 0.4
(purple), t = 0.6 (green) and t = 0.8 (red)

WENO?2 spatial discretization with I, = 200 and I, = 25. Furthermore, we consider
a fluid regime by taking & = 107>,

We construct a PRK4 method with FE as inner integrator to speed up simulation
in time. The inner time step is fixed as § = ¢ and we use K = 2 inner steps in
each outer integrator iteration. The outer time step is chosen as Ar = 0.4Ax. To
compare our results with those in [9], where the smallest value of ¢ is chosen as
e = 1072, we regard the one-dimensional evolution of density and temperature along
the axis y = 0. Fort € {0, 0.2, 0.4, 0.6, 0.8}, we plot these intersections in Fig. 3. We
conclude that we obtain the same solution structure at ¢t = 0.8 as in [9]. However, our
results are sharper and less dissipative supposedly due to the particular small value
of £ (1077 vs. 1072). In contrast to [2], we nicely capture the swift changes in the
temperature profile for x € [0.5, 1] at# = 0.8.
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Asymptotic Preserving Property
of a Semi-implicit Method

Lei Zhang, Jean-Michel Ghidaglia and Anela Kumbaro

Abstract This work focuses on the study of the asymptotic preserving property of a
semi-implicit method. The semi-implicit method, which is a pressure-based method,
has been successfully used to simulate two-phase flows in numerous industrial appli-
cations. This method is used in our studies due to the fact that pressure-based methods
generally perform well at low Mach numbers. The semi-implicit method is applied
to the homogeneous equilibrium model (HEM) in this work to simulate two-phase
flows. We show that the semi-implicit method is asymptotic preserving, i.e. the
discretization for a compressible model tends to a consistent discretization for the
related incompressible model at the low Mach number limit. Finally, test cases are
performed to show that the numerical method is able to deal with low Mach number
flows, as well as flows with a wide range of Mach numbers.

Keywords Semi-implicit method - Asymptotic preserving + Homogeneous equi-
librium model - Low mach number

1 Introduction

In numerous situations, there are low Mach number regions within a globally com-
pressible flow, for instance in a nozzle with a large variation in cross-sectional area,
in two-phase flows due to the mixture of liquid and gas, etc. Consequently it is impor-
tant to develop a numerical method capable of treating both the compressible (local
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Mach number of order O(1)) and the incompressible regime (very small local Mach
number), which is referred to as all-speed scheme in the literature.

Several authors have used the notion of asymptotic preserving as a guideline to
design such appropriate numerical methods [4-6] with the following definition [4]:
for a physical model .#¢ with a perturbation parameter ¢ (in our context, ¢ is related
to the Mach number), . represents the limit of .#* when ¢ —> 0; given .Z%
a discretization of the physical model .#Z*, is said to be asymptotic preserving if
its limit as ¢ —> 0 is a consistent discretization of the model .#°, moreover the
stability condition should be independent of the parameter ¢.

For density-based methods, the CFL time step restriction becomes extremely
stringent for small Mach numbers due to the large discrepancy between the sound
speed and characteristic flow velocity. Therefore a pressure-based method, called
semi-implicit method [9, 10, 12], is adopted in our studies to simulate two-phase
flows using the homogeneous equilibrium model (HEM). In this work, we show that
the semi-implicit method is asymptotic preserving.

This paper is organized as follows. In Sect. 2, the homogeneous equilibrium model
(HEM) is introduced, as well as the semi-implicit method used to solve this model.
Section3 gives the low Mach limit of the HEM and shows that the semi-implicit
method is asymptotic preserving. Section4 presents two test cases to illustrate that
the semi-implicit method is able to deal with low Mach number flows, as well as
flows with a large range of Mach numbers.

2 HEM and Its Semi-implicit Discretization

The homogeneous equilibrium model (HEM), which assumes a dynamic and thermal
equilibrium between the two phases of a fluid [13], is used in our study. Although
it is the simplest model for two phase flows it has been used by several authors [14,
15] to simulate applications of industrial interest. The scaled HEM used in our work
is given as follows [16]

() + V- (pi) =0, ()
(), + V.- (pa i) —av- (pi)+ VP/M? =0, )
(ph), + V - (pei) + PV -ii — (P), =0, 3)

which can be obtained by rescaling variables (p, u, x, P, t, h, e) in the original

HEM with respect to the reference parameters (Oref, Urefs Xrefs Pref, ;Lei, %, %) 4,

5], for example p = p/pret. The parameter M = .,/ pret ufef/ Pyt represents the global
Mach number which characterizes a fluid flow. In fact this number is known in the

literature as the Euler number. However in the case of a perfect gas, since y Pt =

Pret crch, we have ./ prer urch / Pret = /¥ Ure/ Cret (Where y is the specific heatratio, and
cref 18 a reference speed of sound), and we call this number the global Mach number.
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In the remainder of the paper, the tildes will be omitted for simplicity of notation,
in addition we note & = M?>. The specific enthalpy / is used in energy equation (3),
because in the initial stages of development, we have worked with a water table with
pressure P and specific enthalpy % as independent thermodynamic variables. One
can notice that the HEM has the same form as the Euler equations, except that the
physical quantities are interpreted differently, i.e. p, h, e are respectively the density,
the specific enthalpy, and the specific internal energy of a mixture, u is the common
velocity of the two phases, P is the pressure. In addition we have the following
thermodynamic relation h = e + P/p.

The resolution of the HEM is the same as for the Euler equations, except that it
is necessary to determine whether a fluid is a mixture or single phase (liquid or gas)
in order to apply different equations of state. This can be done by deducing the gas
mass fraction [3] using the following formula once the pressure P and the specific
enthalpy A are obtained

X = (h—h*(P)) / (B (P) = hj*(P)). )

where 23" and A, which are functions of pressure P, are respectively the saturation
specific enthalpy for the gas and for the liquid. If 0 < X < 1, i.e. the fluid is a mixture
of gas and liquid, the density is given by

1/p = X/p(P) + (1 — X) / o} (P), 5)
where p;* and p;* are respectively the saturation density for the gas and for the liquid,
and they are only dependent on the pressure P. Otherwise the fluid is single phase,
and we are in fact resolving the Euler equations. As the HEM and its discretization
is the same as the Euler equations, these two terms will be used interchangeably in
the following.

Using the semi-implicit method [9, 10] for the scaled system (1)—(3) over a control
volume K yields

1
PRt — o 2 £ @Sy

yn Ve =0, (6)
w o uy Lt
n n n n n n _
Pk———+ V—Kzfj(pu)f(wf Sy - ﬁg(m,@(u)f Syt VP =0,
@)
ml _ onn > c(pe) (u)nﬁ-l -S¢ pn pnt+l _ pn
(oh)k (Ph)k Ml U n iz(u)nﬂ S, _ K K _o
At Vk Vk < o At ’
(8)

where Vi is the volume of cell K, S is the area vector on face f pointing outward
from cell K. In the semi-implicit method, the pressure gradient term in momentum
equation (7) and the fluid velocity at a cell face in scalar equations (6) and (8) are
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evaluated implicitly, whereas all other terms are determined explicitly. The pressure
gradient is evaluated using the Green—Gauss reconstruction [2]. In addition, as in
[9], Rhie and Chow’s interpolation [11] is used to determine the velocity at the cell
face between the two cells K and L at time instant "+

1 1 (At Ar\ Pl — prtt
u?fl — _(u?;rl + u2+l) _ (_n _n) L K n
2 2e \px  pf |drgg|
1 At 1 At
+ ——vp+ ——vpt ©)
2e pk 2e pk

where drg is the vector joining the center of cell K to the center of cell L and n is
the normal vector on face f pointing outward from cell K to cell L. This interpolation
method is used to prevent the well-known checker-board problem [7] encountered
on a mesh with co-located variables (all variables are located at the same position
in a cell). This formulation is used to calculate the velocity at cell face for all the
discretized Eqs. (6)—(8), however the convective term (,ou)’} is determined using the
upwind scheme depending on the sign of u’}. The resolution strategy for the system
consists of obtaining a N x N (N is the number of cells in a mesh) linear system
containing the pressure as an unknown variable from the above discretization, and
one can refer to [9, 16] for details. It should be noticed that this numerical method
is not conservative, and consequently is not able to capture exactly the shock for
compressible flows. In [16], a conservative version of the numerical method was
developed.

3 Asymptotic Preserving Property

The low Mach limit (where P is a constant) of the Euler equations is [4]:

po(Uo); + V- (poup ® ug) —uV - (poup) + VP =0, (10)
Py=P, )

V.oup =0, (12)

(p0): + V- (poug) = 0, (13)

which can be obtained by performing the asymptotic development for the physical
quantities

O)=Co+e@i+---, (14)

where () represents the pressure P, velocity u, specific internal energy e, specific
enthalpy / and density p.
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Now we can show that the semi-implicit discretization (6)—(8) of the scaled system
(1)—(3) tends to a discretization of the low Mach limit (10)—(13) as ¢ —> 0. As for
the continuous problem, we can postulate for physical quantities at the center of cell
K that ()% = ()g. ¢ + ()T g, where m € {n, n + 1}, and for the fluid velocity at
the cell face (w)’} = (u)y rt e(u)’” . We suppose that at time instant t": Py , = P
(a constant), thus the upwind part used to calculate (u)g, ¢ of order O ( ) disappears
(see Eq. (9)). Then the discretized momentum Eq. (7) leads to (the equality of terms
of order O ( ) and with appropriate boundary conditions (see [ 16] for more details)):

Pt =P. (15)

Therefore with a well prepared initial condition P& ¥ = P, the pressure remains

uniform in the domain. The equality of terms of order O (1) in mass equation (6),
momentum equation (7) and energy equation (8) leads to respectively

Pk = Po x| X0 W5 Sr o (16)
At Vk
un+1 - Zf(pu)() (ll)o Z/(P)S (“)3 : Sf n
P0, K OKAt - \J/FK = —ug g — ’j\(/K - +VP1,+1<1=O’
(17)
(pe)n+l (pe)a Zf(ﬂE)o f(ll)lH—l + P(;‘l & =0. (18)
At Vk ' Vk

It can be seen that the discretizations (16) and (17) are respectively a consistent dis-
cretization of Eqs. (13) and (10). It remains to be shown that a consistent discretiza-
tion of Eq.(12) can be found from the discretized energy equation (18). Inspired by
the work of [4], the linearisation of pe with respect to p and P leads to (the term
concerning the derivative of pe with respect to P is zero as the pressure is constant)

(Pe)n-H (Pe)(r;,K . 1 d(poeo) n+1 n
At - E( dpo ) (05, x> PY0yTx = 16 1) (19)
> (o) ;) - Sy d(poeo) B N W W OLL W
= ( 0 k> P)
Vk 9po Vk
Fw'y -8
+ (pe)ﬁ,xz v
K

(20)

which can be combined with the discretized mass equation (16) to obtain

B 9 B (u)n+1
[P + (pe)y x — ( ("060)) (0h k- P)pg,K} ZiWir St
P

9po Vk
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The coefficient P + (pe)y. x — (a(gzj(’)) _ (05 k> P) 00k 1s generally different to O
) 5 Po. )

(e.g. for stiffened gas [16]), thus we have D P (u)gf)} - Sy = 0, which is effectively
a consistent discretization for Eq. (12).

Furthermore, it was shown in [16] that the stability condition for the semi-implicit
method with co-located variables is the CFL condition limited by the fluid velocity,
and hence is independent of Mach number. In conclusion, the semi-implicit method
for the HEM is asymptotic preserving.

4 Numerical Results

4.1 Single Phase Flow in a Channel with Bump

This test case consists of a single phase flow (Euler equations) at low Mach
numbers in a channel, which is also studied in [1, 3, 8]. The computational domainis a
4m long and 1 m high rectangle with a geometric perturbation in the lower wall. The
initial conditions are: p = 10° Pa, u = (u,, 0) m/s, h = 25 x 10° J/kg, with u, =
1, 0.1, 0.01 to have the corresponding Mach numbers M = 102, 1073, 10~ (the
perfect gas equation of state with y = 1.4 is used). At the inlet, the velocity and the
specific enthalpy are imposed, whereas the pressure is given at the outlet, with these
values applied throughout the domain as the initial conditions. A slip condition is
specified for the walls. The objective of this test case is to study the behaviour of the
numerical method at low Mach numbers. The Mach number contours for different
fluid velocities at the inlet are presented in Fig. 1. As expected [1], symmetry of the
curves with respect to the geometry is obtained.

Fig. 1 Mach number
contours for different fluid
velocities at the inlet

(©) M=10"*.
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Fig. 2 The pressure 00001 —— —————
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We also evaluate the pressure variation against Mach number, as indicated in
Fig.2. We can remark that the pressure variation is of order O(M?), which agrees
well with the continuous model (see Eq.(14)). The pressure variation is defined by
Pyar = (Pmax — Prin) / Pmax> With Pyax the pressure maximum, and Pp;, the pressure
minimum.

4.2 Two-Phase Flow in a Channel with Bump

This test case [3] is similar to the test in the previous section, however at the
inlet the fluid is a liquid that is close to saturation. Therefore, as the pressure drops
around the geometric perturbation (Fig.3a), a small amount of liquid evaporates, as

Fig. 3 Numerical results for O e
two-phase flow in a channel
with bump

o p—

< ass0v6

(a) Pressure.

N
(b) Mass fraction of gas.

Mach number
4.088e-01

0.35

S
2R

o

Ll INIREIL o

(c) Mach number.
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indicated in Fig. 3b. Due to the large discrepancy between the sound speed in a liquid
and in a mixture, we can observe a dramatic Mach number change across the phase
transition lines, as illustrated in Fig. 3c. These numerical results agree qualitatively
with those obtained in [3]. This test case shows that the semi-implicit method is able
to simulate flows with a large range of Mach numbers.
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A Finite-Volume Discretization
of Viscoelastic Saint-Venant
Equations for FENE-P Fluids

Sébastien Boyaval

Abstract Saint-Venant equations can be generalized to account for a viscoelastic
rheology in shallow flows. A Finite-Volume discretization for the 1D Saint-Venant
system generalized to Upper-Convected Maxwell (UCM) fluids was proposed in
Bouchut and Boyaval (M3AS 23(08): 1479-1526, 2013, [6]), which preserved a
physically-natural stability property (i.e. free-energy dissipation) of the full system.
It invoked a relaxation scheme of Suliciu type for the numerical computation of
approximate solutions to Riemann problems. Here, the approach is extended to the
1D Saint-Venant system generalized to the finitely-extensible nonlinear elastic fluids
of Peterlin (FENE-P). We are currently not able to ensure all stability conditions a
priori, but the scheme is fully computable. And, using numerical simulations, it
may help understand the famous High-Weissenberg number problem (HWNP) well-
known in computational rheology.

Keywords Saint-venant equations - Fene-p viscoelastic fluids - Finite-volume -
Simple Riemann solver - Suliciu relaxation scheme
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1 Introduction

Saint-Venant equations standardly model shallow free-surface gravity flows and can
be generalized to account for the viscoelastic rheology of non-Newtonian fluids
[71, Upper-Convected Maxwell (UCM) fluids in particular [6]. Here, we consider a
generalized Saint-Venant (gSV) system for finitely-extensible nonlinear elastic fluids
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using Peterlin closure (i.e. FENE-P fluids [3]) in Cartesian coordinates

dh + 9, (hu) =0 (1)
3 (hu) + 0, (hu® + gh*/2+hN) =0 2)

A 000y +u0x0xy +2(¢ — Doy dyu) = 1 — 0y /(1 — (0 +0x0)/8) ()
A (0,022 + udyo,, +2(1 — 0)on.0cu) = 1 — 0. /(1 — (02 + 040) /) (4)

for 1D ey-translation invariant flow along e, under a uniform gravity field —ge, with

e mean flow depth A (¢, x) > 0 (in case of a non-rugous flat bottom),

e mean flow velocity u(¢, x) (for uniform cross sections), plus

e a normal-stress difference N = G(o,;, — 0y,)/(1 — (0;; + 0xy)/€) given by the
two conformation variables o,, o, > 0 and constrained by 0 < o,, + o, < £.

The nonlinear formula N (o, 0y, ) accounts for finite-extensibility effects of matter
in the elastic response, which are not present in UCM fluids [3]. These are con-
trolled by the parameter £ > 0, and one formally recovers UCM fluids [6] (with
linear response) when £ — oo. Besides, the relaxation time A > 0 and the elastic-
ity modulus G > 0 bear the same meaning as for UCM fluids. In particular, when
A, G7!' = 0and G < oo, (1), (2), (3) and (4) formally reduces to the viscous Saint-
Venant system with viscosity v = 2AG. Last, note that (3) and (4) invoke the quite
general Gordon—Schowalter derivatives with a slip parameter ¢ € [0, %] constrained
by the hyperbolicity of the system (1), (2), (3) and (4). (This follows after an easy
computation similar to [9]).

In this work, we discuss a Finite-Volume method to solve (numerically) the
Cauchy problem for the nonlinear hyperbolic 1D system (1), (2), (3) and (4). Stan-
dardly, we need to consider weak solutions (in fact, to (6), (7), (8) and (9), see below)
plus admissibility constraints that are physically-meaningful dissipation rules for-
malizing the thermodynamics second principle close to an equilibrium [10]. Here,
we consider the inequality associated with the companion conservation law for the
free-energy

(8 (o ¢—2)) +1
- (?"’_7_2(1—_0( Og(( _(Uxx +Uzz))/( - ))+ Og(cxxazz)))

that is, on denoting the impulse by P = gh?/2 + hN,

2 2
Gh ( 1 ( Oxx ) —1 ( Oz ) )
5% |1 — t+o, 1-
20 =A\ - 1 — (0z; +0xx) /¢ I = (0 +0x0)/8

=D >0, F+ 0, (u(F+P) (5

where the left-hand-side is obviously non-positive on the admissibility domain
Ut ={0 < h,0 < 04,0 <0, 00 + 0, <L}

Note that we do not consider the vacuum state 7 = 0 as admissible here, see [9].
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2 Finite-Volume Discretization of FENE-P/Saint-Venant

Piecewise-constant approximate solutions to the Cauchy problem on (t, x)
€ [0, T) x R for the gSV system can be defined by a Finite-Volume (FV) method.
With a view to preserving %/ ¢ and the dissipation (5) after discretization, we choose
q = (h, hu, ho,,, ho,;) as discretization variable. Indeed, the free-energy functional
F is convex on the convex domain % ¢ 3 g (this follows after an easy computation
from [5, Lemma 1.3]) while it is not convex in the variable (&, hu, hI1, h'Y) whatever
smooth invertible functions @, ¢ are used for the reformulation of gSV

ah + 9, (hu) = 0 (6)
h2
3, (hut) + 0, (hu2 + % + hN) =0 %
h372§w/(0xxh2(lft)) Oy
3 (hIT) + 0, (hull) = . - | seton (8)
2= (g p2E—D) :
3(hX) + o, (hux) = 3 ((;*Z ) (1 - 1:%) )

with IT = @ (0,,h*179), ¥ = ¢(0..h*¢~D) (computations are similar to [6, Appen-
dix]). In the sequel, we therefore discretize a quasilinear system with source

9q + A(q)dq = S(q) . (10)

but thanks to (6), (7), (8) and (9) and the dissipation rule (5), there is no ambiguity
(for those discontinuous solutions built using a Riemann solver at least, see [2, 9,
12]).

2.1 Time Splitting Method

In a cell (x;_1/2, Xi41/2), 1 € Z, with volume Ax; = X412 — X;—12 > 0 and center
x; = (xi—1/2 + Xit1/2)/2, we approximate g solution to (10) onR>o x R > (#, x) by

1 Xi+1/2
gt~ — q(t,x)dx, i € Z,t € (t", "]
Ax,-

Xi—1/2
onatimegrid0 =1* <! < ... <" <" < ... <tV = T where A" = |"+! —
t"| will be chosen small enough compared with Ax = sup;.; Ax; < 00 to ensure
stability.

More precisely, we have in mind the numerical approximation of g as solu-
tion to a (well-posed) Cauchy problem for (10) on R>p x R given some ini-
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tial condition ¢(r — 0%) = ¢° € L>(R). So we start from approximations g° ~
ALX’_ f;:’l‘/f q°(x)dx,i € Z, and define the cell values g foreachn = 1,..., N by a
(two-step) time scheme:

(i) first, an approximate solution on [¢", t"*!) to the homogeneous gSV system (i.e.

without the source term S) is computed by an explicit three-point scheme

n

At

1/2

g =qf = — (At} qls) = Frlaly.q)) - (1)
1

(i) next, an approximate solution to the full gSV system on (¢", t"*'] is computed
qin+1 — qi’H‘l/z + AtnS(qin+l) . (12)

Then, we require the scheme

n

g =g = —— (Fi(q] . qi\) = Fr(ql_.q)) + A"S(g ™) (13)

A)Ci
to be consistent with the conservative formulation (6), (7), (8) and (9) in the sense
of [5, 2.1], i.e. the numerical fluxes F;, F, are required to satisfy F;, = F,., 1= Fp,
Fl,hu = Fr,hu = Fpy, ...with Fh(qv Q) = hu|qv Fhu(qv 6]) = (huz + gh2/2 + hN)lq
etc. To that aim, we shall define F; and F, using a simple approximate Riemann
solver [11] for (6), (7), (8) and (9). Moreover, with a view to preserving % ¢ and a
discrete version of (5)

n

n . At
F(g/*"?) = F@" + -
X;

(G} gi4) — Ggiy,4/))) <0 (14)

for a numerical free-energy flux function consistent with G(g, q) = u(F + P)|,

in (5), we shall discuss the relaxation technique introduced by Suliciu as simple

Riemann solver in the sequel. For analogous systems equipped with an entropy that

is convex in the discretization variable similarly to F, discretizations that satisfy an

entropy inequality could be constructed with that Riemann solver in the past [4—6].
In the end, the scheme (13) computed from (11) and (12) satisfies:

Proposition 1 If (14) holds, then a discrete free-energy dissipation holds

n

At
F(g'™" — F(gh + 3 (Gl q') — G(gl 1, ) < At"D(g!™") . (15)

l

1/2 1/2
;z-s-/ =hl'.‘+l,u7’+/ :u;’H

; it suffices to show that

Proof On noting h
Mot =l ) AT =1 — ol /(= (@ +alih /0

A (0n+1 — o )/Atn =1 _Jznz—f-il/(l _ (0n+1 +0n+1)/€)

22,0 22,0 22,0 xx,i
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imply F(q"*") — F(q'™""*) < Ar"D(g""") < 0. Now, this is a consequence of the
convexity of F|; , in (0yy,0;;) and Vi, o Flp, - S = D.

2.2 Suliciu Relaxation of the Riemann Problem Without
Source

For all time ranges ¢ € [¢", "), n=0...N — 1, we now define at each interface
Xiyls i € Z,between cells i and i + 1 consistent numerical flux functions F; and F,

Fitar a) = Folan = [ (R a1.0,) — a1)dé.

- (16)
Foqi. qr) = Folgr) + |, (R(S,qz,qr) —qr)dé,

n

invoking an approximate solution R ((x —Xiy12)/(t — 1), q], qi”ﬂ) to the Riemann
problem for (10) with initial condition g;' 1, <o + l.>0q;,, att = t", and any Fp.
In this work, we propose as approximate solution that given by Suliciu relaxation

RE.q.q)) =LA, 2, 2,), a7)

i.e. the projection (operator L) onto g = (h, hu, ho,,, ho,;) of the exact solution
Z (&, 2, 2,) to the Riemann problem for a system with relaxed pressure

o;h + 9, (hu) =0
3, (hu) + 3, (hu* +7) =0
3 (0 h* 1) + ud, (0 B 79) = 0
3 (0.h* D) 4 udy (0..h*¢ D)y =0 (18)
3, (ht) + 3y (humw + uc*) =0
3 (h?/2+ @) + 8y (hu@?/2+ &) + ur) =0
0,c +uo,c=0

and initial condition given by (0 =1, r)

Dy = (hoy (hit)g, hy™ (ho)os ' 7 (h02)o, ho P(qo), (hit)y /2Ry + €(qo), €o)
(19)
where ¢, (g, g-) are chosen so as to ensure stability, that is the dissipation rule (14)
here (see below). The Riemann solver R is consistent under the CFL condition

n 1 3 1 n n n n n n n n
A" < Eluel;A—ximax (u! — (g gl )/ hE ) +egl s qf )/ R) . (20)
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and has an analytic expression as a function of g, and ¢, since the hyperbolic system
(18) fully decomposes into linearly degenerate eigenfields (see formulas in [5, 6]).

It remains to specify a choice of functions c;, ¢, preserving % and ensuring (14).

Although it is not clear whether our construction allows one to approximate solu-
tions on any time ranges ¢ € [0, T), since the series >, At" may be bounded uni-
formly for all space-grid choice (sup; |u} | may grow unboundedly as n — ©0), spec-
ifying such ¢, ¢, defines a fully computable scheme. In particular, the nonlinear
system (12) at step (ii) is quadratic, with at least one admissible solution for any Az"
that is analytically computable.

Note however a difficulty here for FENE-P fluids with ¢;, ¢,. Suliciu relaxation
approach (18) was retained at step (i) because the solver often allows one to preserve
invariant domains like % ¢ and a dissipation rule (14) through well-chosen ¢/, c,,
see e.g. [4-6]. Indeed, on noting the exact Riemann solution to (18), to get (14) on

choosing G(g;, q,) = u (h(% + é) + rr) |22(0.41.4,)» 1t 1s enough that Vg, g, € wt

g =LA (£, 2, 2,) € U" and hioylpo20,, w520, P(ge) < ;. VE€R (21)

where ¢ =c¢i(q;,q,) if & <u* and cg =c.(q,q) if &§>u* with u*:=
cup + 7w + cuy — 1My

c+c

One can easily propose ¢;, ¢, satisfying the first condition in (21), i.e.

L:l(l C’(”"”’)”’_”f) -0 22)
hi  hy (ci/hp) (e +cp)

1 c(uy —u) +m —m

W (1 e e+ o) ) =0 @9

as usual for Saint-Venant systems, plus the admissibility conditions (o =1/r)
()=o) Doz o+ ()0 (1) ™o < € 24

forany o, ,, 0yx, > Osatisfying o, , + 0.y, < £ (see below). But the second con-

dition is usually treated for a monotone function ¢, : h — h \/ Onlpe2, g2, P

Unfortunately, a lengthy (but easy) computation shows that the latter is not monotone
here, so the standard method to choose ¢;, ¢, a priori does not apply.
2.3 Choice of Relaxation Parameter

We treat the first part of (21) as usual and define ¢, = max(h,a,, ¢,), where a, :=
/0, P(q,) and 0o = [/r, such that the functions ¢,(g;, g,) ensure (22), (23) and (24).
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First, let us inspect (22) and (23) classically following [8, Sect.3.3]. Denot-

. (7, —m) _ (m=m,) 1
ing ;¥; = (u; —u,) 4 + h1a1+h,z;r, >0,aY = W —u) + hl;,+h; >0 so =

Iheelolts it then holds (h5)™" = (7o) ™'y, > 0 with y, 1= 1 — 7l € (%1, 1]
prov1ded one chooses ¢, > 0 such that ¢, > h,a,(1 + «,Y,) for @, > 1. This y1elds
»€ (0, h,/y,] and thus (22) and (23) in particular.

On the other hand, let us now inspect (24), which rewrites with i}, > 0

Woho + W, B, <1 2A,w, € (1 — V1= 4A,B, 1+./1— 4ADBO) C Ryo.
(25)
Here w, = (h;/ho)z(l’f), A, = 0,0/, B, = 0y /€ are positive such that A, +
B, < 1 (hence A,B, < A,(1 —A,) < %) and 2(1 — ¢) € [1, 2]. The upper-bound

in (25) is satisfied with o, = (wj)ﬁ/((wj)ﬁ — 1) > 1, on noting

W = (1 +VT=34,8,)/240) "7 = = = 1/y, = hi/h, . (26)
o, —

It remains to ensure the lower bound in (25). Obviously, w := l_V' 4A"B < 1so
one only needs to inspect the case A} <h,. Now Wlth aW, =

(=) (t,—m)
(ur - ul)-'r + hléil+h ; = 0 ar r (ur - Ml)+ + h1a1+h’t; > O if Co = hl)a()

W()((W;)_z“ o — 1)~! then holds

W) < (14 ahyW,/c,)™" < h*/h, .

At the end, we claim the following choices

(7 — 7))+

¢; = h; max (a[ + o ((m —up)t + m) s B ((ur u)y + ﬁ)) 27

- _ u =7y Gt —m)y
¢, = h, max (a, + a, ((u1 ur)+ + T & hrar) . Br ((Mr up)+ + hral +h ar))(zg)
satisfy simultaneously (22), (23) and (24) in a compatible way with a, = /9, P(q,),
1 1 1 1
o, = max(2, ()78 /()T = 1)), By = (w,) T8 /(1 = (w;)19)), w, =

b—\Jl—40.. ,0xx.0 b+, /l—40.; ,Oxx.0
L wh = T 222 for o = I /r. Moreover, note that we have cho-

20,
sen o, such that all subcharacteristic conditions (21) are satisfied in the £ — oo limit,
hence also the free-energy dissipation (15). Indeed, ¢, is monotone in the £ — oo
limit and one can then apply the standard method to choose ¢;, ¢, [6].

3 Conclusion

We have proposed a fully computable FV discretization for a 1D nonlinear hyperbolic
system modelling viscoelastic shallow flows with a new ingredient in comparison
with [6]: a (physical) bound on the elastic behaviour oy, + o;.
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But the free-energy dissipation criterium proposed herein, for consistency of
approximating sequences with admissible solutions, cannot be ensured a priori by
classical relaxation techniques.

In fact, numerical experiments even seem to indicate that the dissipation may be
difficult to satisfy for Riemann problems with sufficiently large initial data, small £
and fine meshes, even when the scheme does not blow up.

A careful analysis of such specific situations may help understand the famous
High-Weissenberg problem, well-known in the field of computational rheology [1,
13]. This remains to be done in the future.
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Palindromic Discontinuous Galerkin Method

David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger
and Laurent Navoret

Abstract We present a high-order scheme for approximating kinetic equations with
stiff relaxation. The construction is based on a high-order, implicit, upwind Discon-
tinuous Galerkin formulation of the transport equations. In practice, because of the
triangular structure of the implicit system, the computations are explicit. High order
in time is achieved thanks to a palindromic composition method. The whole method
is asymptotic-preserving with respect to the stiff relaxation and remains stable even
with large CFL numbers.

Keywords Lattice boltzmann - Discontinuous galerkin - Implicit -+ Composition
method - High order - Stiff relaxation.

MSC (2010): 65L04 - 65M99

1 Introduction

The Lattice Boltzmann Method (LBM) is a general method for solving systems of
conservation laws [5]. The LBM relies on a kinetic representation of the system
of conservation laws by a small set of transport equations coupled through a stiff
relaxation source term. The kinetic model is solved with a splitting method, in which
the transport and relaxation steps are treated separately. Usually, the transport is
exactly solved by the characteristic method.

The main drawback of the LBM is that it requires regular grids and that the
time step At is imposed by the grid step Ax. In this paper, we thus prefer to solve
the transport equation with a Discontinuous Galerkin (DG) method. We extend the
DGLBM [12] in several directions. The first improvement is to apply an implicit
DG method instead of an explicit one for solving the transport equations. This can
be done at almost no additional cost. Indeed, with an upwind numerical flux, the
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linear system of the implicit DG method is triangular and, in the end, can be solved
explicitly. In this way, we obtain stable methods even with high CFL numbers. This
kind of ideas can be found for instance in [3, 6].
The second improvement is to construct a high order time integrator that remains
accurate even for infinitely fast relaxation, thanks to a composition method [11].
We validate our approach on a few one-dimensional test cases.

2 A Vectorial Kinetic Model

We consider the following kinetic equation

D
of + > Vot =
k=1

l(f”"(f)—f)- (1
-
The unknown is a vectorial distribution function f (x, ) € R"” depending on the space
variable x € R” and time ¢ € R. The relaxation time 7 is a small positive constant.
The constant matrices V¥, 1 <k < d are diagonal. In other words (1) is a set of
transport equations at constant velocities coupled through a stiff BGK relaxation.
Generally this kinetic model is an approximation of an underlying hyperbolic
system of conservation laws. The macroscopic conservative variables w(x, t) € R™
are obtained through a linear transformation

w = Pf

where P is a m x n constant matrix. Generally the number of conservative variables
is smaller than the number of kinetic data: m < n. The equilibrium distribution £°7 (f)
is such that

Pf = Pfe4(f),

and
w =Pf = Pg = f°(f) = f*(g). 2)

When 7 — 0, the kinetic equations provide an approximation of the system of con-
servation laws

D
oW+ D 3k (w) =0,

k=1

where the flux is given by

q“(w) = PVFtei(f), w = Pf.
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The flux is indeed a function of w only because of (2). For more details, we refer
to [1, 4, 8]. In the following, without loss of generality, we shall only consider the
one-dimensional case D = 1.

3 Implicit Discontinous Galerkin (DG) Method

In this section, we briefly recall how to approximate the transport equation by a DG
method of order d, based on Lagrange polynomials. We wish to approximate the
solution f(x, ) of a scalar transport equation in the case v > 0 (the case v < 0 is
obtained in a similar way)

O f +vo,f=0.

The space variable x € [a, b]. We split the interval [a, b] into N, cells of size
h=(b—a)/Ny.Ineachcell Cy, £ =0... N, — 1, we consider the d + 1 Gauss—
Lobatto points xy;,i = 0...d, associated to quadrature weights wy ;. The DG basis
function ¢y ; has its support in cell £ and in addition satisfies the interpolation prop-
erty o, (x¢ j) = 6;;. The transported function f(x, t) is then approximated by an
expansion on the DG basis

d
oD = file,0) =D fojDpe,;(x), x€Cy.

j=0

We can also identify fj, with a vector of RY, N = N.(d + 1) + 2, £, = (fo(1),
Joo(t), fo1(@), ..., fn.—1.4(t), fn—1(2)). Itis useful to consider the boundary values
Jo= f-14 and fy. o= fn—1 as artificial unknowns. For simplicity, we will also
assume that the boundary conditions do not depend on time. Now we apply the DG
formulation to f: for all cell C;, and all test function ¢, ;

(O fu + v0x fi)pei + v (fro — fimr.a) pei(xeo) = 0. (3)
Cy

Let us point out the upwind nature of the formulation (3): when v > 0, for computing
the values inside cell C; we only need the knowledge of the values inside cell Cy_1,
or the left boundary condition. Therefore, after applying a Gauss-Lobatto quadrature
to (3), we obtain a set of linear differential equations

Oy + Lyfy, =0, “4)

where L, is alower block-triangular matrix (with a good numbering of the unknowns).
The diagonal blocks are of size (d + 1) x (d + 1). If the velocity v < 0, the structure
is similar. Therefore, in the following, we adopt the same notation L;, for the scalar
or vectorial DG transport operator.



174 D. Coulette et al.

4 High Order Time Integration

We can also define an approximation N;, of the collision operator N defined by
Nf = (f¢¢(f) — £)/7. The DGLBM approximation of (1) finally reads

Oty = Lpfy, + Nofy,.

We use the following Crank—Nicolson second order time integrator for the transport
equation:

At At
exp(AtLy) ~ Tr(Ar) .= I+ TLh)(I - TLh) . (®)]

Similarly, for the collision integrator, we use

QT — Anft, 2480 (E,)

exp(AtNy)f, >~ Co (AN, = Al AL (6)
When 7 — 0, it becomes
Co(Anfy, =26, (F,) — £, @)
An integrator M, (At) is time-symmetric if it satisfies
My (—At) = Ma(AD™', My (0) = 1d. (8)

This property implies that M, is necessarily a second order approximation of the exact
integrator [9, 11]. As explained in [7], T, and C, are time-symmetric when 7 > 0.
But, because of (7), C, is no more symmetric for 7 = 0. Therefore, the usual Strang
splitting operator is not time-symmetric either. We rather consider the following
splitting method, which is time-symmetric and remains second order accurate even
for infinitely fast relaxation:

o4 = B EEHREH G ED 1 ED
2(A1) = L) () () G ().
By palindromic compositions of the second order method M, it is then very easy to

achieve any even order of accuracy. See [7, 9, 11]. A general palindromic scheme
with s + 1 steps has the form

M, (At) = My(y0 A Mo (71 At) ... My (7, At), )

where the ;s are real numbers such that
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For p = 4 and s = 4 we have for example the fourth-order Suzuki scheme (see [9,
11, 13])
1 4173

T M= (10)

Yo=N="7="7=

This scheme requires five stages and one negative time step. For p = 6 and s = 8,
we have also the sixth-order Kahan-Li scheme [10] given by:

Yo =78 = 0.392161444007314139275655330038.. ..
v =7y = 0.332599136789359438604272125325 ...

Y2 = v = —0.7062461725576393598098453372227 . .. (11)
v3 =5 = 0.0822135962935508002304427053341 . ..
V4 = 0.798543990934829963398950353048 . . .

The methods (10) and (11) require to apply the elementary collision or transport
bricks C, and T, with negative time steps —Ar < 0.

The exact transport operator is perfectly reversible. If we were using an exact
characteristic solver, negative time steps would not cause any problem. However,
the DG approximation introduces a slight dissipation due to upwinding. In order to
ensure stability, we have thus to replace 7,(—Ar) with a more stable operator. This
can be done by observing that solving d; f + v0, f = 0 for negative time ¢t < 0 is
equivalent to solve d, f — v0, f = 0 for ¢’ = —¢ > 0. Therefore we simply apply
the DG solver T, (Ar) with opposite velocities instead of 7> (—At).

The numerical collision operator C, is reversible when 7 — 0. Actually, it does
not depend on At anymore (see (7)). In this stage, negative time steps do not cause
any difficulty, at least when 7 < At.

5 Numerical Results

In this section we consider an isothermal compressible flow of density p and velocity
u. The sound speed is fixed to ¢ = 0.6. The conservative system is given by m = 2
and w = (p, pu), q(w) = (pu, pu* + c¢*p). The kinetic model is given by n = 4 and

. 1100
V =diag(—=\, A\, =\, ), P= (001 1)’

eq Wi _ q(w)k eq _ Wk q(w)k

S W ) DY

k=1,2.

The lattice velocity A has to satisfy the sub-characteristic condition A > |u| + c.
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5.1 Smooth Solution

For the first validation of the method we consider a test case with a smooth solution,
in the fluid limit 7 = 0. The initial condition is given by

p(x,0) =1+¢ 3 y(x,0)=0.

The sound speed is set to ¢ = 0.6 and the lattice velocity to A = 2. We define the
CFL number 3 = AAt/J, where ¢ is the minimal distance between two Gauss-
Lobatto points in the mesh. First, the CFL number is fixed to § = 5. We consider
a sufficiently large computational domain [a, b] = [—2, 2] and a sufficiently short
final time #;,,x = 0.4 so that the boundary conditions play no role. The reference
solution f (-, fax) 1S computed numerically with a very fine mesh. In the DG solver
the polynomial order in x is fixed tod = 5.

On Fig. I (left picture) we give the results of the convergence study for the smooth
solution. We consider the L? error.

We make the same experiment with G = 50. The convergence study for the Suzuki
and Kahan-Li schemes is also presented on Fig. 1 (right picture). At high CFL, not
only the scheme remains stable, but the high accuracy is also preserved.

logl0(delta_x) log10(delta_x)
-2.0 -2 -19 -18 -1.7 -1.6 -1.5 -1.4 -26 -24 -22 -2 -18 -16

log 1 0(error)

log10{emror)
----- slope =2 —— order 2 (Strang AP) 3
=== slope =4 order 4 (Suzuki_5) | [ slope=4 --ee- slope = 6
----- slope =6 —— order 6 (Kahan_Li 9) — order 4 (suzuki_5) — order 6 (kahan_li_9)

Fig. 1 Convergence study for several palindromic methods, order 2 (red), 4 (blue) and 6 (green).
The dotted lines are reference lines with slopes 2, 4 and 6 respectively. Left CFL number 3 = 5.
Right CFL number 3 = 50
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Fig. 2 Riemann problem with 7 = 0. Comparison of the exact solution (green curve), and the
numerical sixth-order solution (purple curve). Left density. Right velocity

5.2 Behavior for Discontinuous Solutions

‘We have also experimented the scheme for discontinuous solutions. Of course, in this
case the effective order of the method cannot be higher than one and we expect Gibbs
oscillations near the discontinuities. On the interval [a, b] = [—1, 1], we consider a
Riemann problem with the following initial condition

2 if 0,
pr, 0y =17 DI 0) =0
1 otherwise.

We consider numerical results in the fluid limit 7 = 0. On Fig.2 we compare the
sixth-order numerical solution with the exact one att = #,,,x = 0.4 for a CFL number
(6 =3 and N, = 100 cells. We observe that the high order scheme is able to capture
a precise rarefaction wave and the correct position of the shock wave. We observe
oscillations emanating from the points where the solution is not smooth (shocks and
boundaries of the rarefaction wave), as expected.

6 Conclusion

In this paper we have described a new numerical method, the Palindromic Discon-
tinuous Galerkin Method, for solving kinetic equations with stiff relaxation. The
method has the following features:

e The transport solver is based on an implicit, high-order, upwind Discontinuous
Galerkin method. Thanks to the upwind flux, the linear system to be solved at
each time step is triangular.
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e Time integration is high-order, based on a general palindromic composition
method. We have tested it up to order 6. The method is low-storage.

e The scheme remains stable and accurate at high CFL numbers and for infinitely
fast relaxation.

We are currently working on the extension of the method to higher dimensions and
to optimizations of the implementation on hybrid computers (preliminary results
can be found in [2]). We are also studying the possibility of more general boundary
conditions. For practical applications it will be important to add to the method a
limiter strategy for controlling oscillations in shock waves.
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IMEX Finite Volume Methods for Cloud
Simulation
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Abstract We present new implicit-explicit (IMEX) finite volume schemes for
numerical simulation of cloud dynamics. We use weakly compressible equations
to describe fluid dynamics and a system of advection-diffusion-reaction equations
to model cloud dynamics. In order to efficiently resolve slow dynamics we split the
whole nonlinear system in a stiff linear part governing the acoustic and gravitational
waves as well as diffusive effects and a non-stiff nonlinear part that models non-
linear advection effects. We use a stiffly accurate second order IMEX scheme for
time discretization to approximate the stiff linear operator implicitly and the non-
stiff nonlinear operator explicitly. Fast microscale cloud physics is approximated by
small scale subtractions.

Keywords Weakly compressible flows - Euler equations - Navier-Stokes equa-
tions - Low mach number - IMEX schemes - Cloud physics - Multiphase system

MSC (2010): 65MO08 - 65N08 - 35Q30 - 35L.65

M. Lukacova-Medvid’ova - B. Wiebe ()

Institute of Mathematics, Johannes Gutenberg-University Mainz, Staudingerweg 9,
55 128 Mainz, Germany

e-mail: b.wiebe @uni-mainz.de

M. Lukacova-Medvid’ova
e-mail: lukacova@uni-mainz.de

J. Rosemeier - P. Spichtinger

Institute of Atmospheric Physics, Johannes Gutenberg-University Mainz, Becherweg 21,
55 128 Mainz, Germany

e-mail: rosemeie @uni-mainz.de

P. Spichtinger
e-mail: spichtin@uni-mainz.de

© Springer International Publishing AG 2017 179
C. Cances and P. Omnes (eds.), Finite Volumes for Complex Applications

VIII—Hyperbolic, Elliptic and Parabolic Problems, Springer Proceedings

in Mathematics & Statistics 200, DOI 10.1007/978-3-319-57394-6_20



180 M. Lukacova-Medvid’ova et al.

1 Mathematical Model

In this paper we present a new operator splitting finite volume method for weakly
compressible flows including cloud dynamics. The mathematical model consists of
the Navier—Stokes equations describing weakly compressible fluid flow including
viscous and friction effects. Further atmospheric factors like the Coriolis force and
turbulence are not considered in this paper. In order to model microscale cloud
physics we add evolution equations for water vapor, cloud water and rain. Phase
change between these phases is modeled by an advection-diffusion-reaction system.
Note that the total mass of the dry air remains constant, whereas the momentum and
energy are not conserved, but satisfy the balance laws.

Let p, p, u(= 0), 9, ,0_9 express the pressure, density, velocity, potential temper-
ature and energy for a dry background state, which is in the hydrostatic equilibrium

3X31_] = _ﬁga

where g = 9.81 (m/s?) is the gravitational acceleration. Furthermore let p’, p’, u’, 6’,
(p6)’ stand for the corresponding perturbations of the background states. Thus, we
have p=p+p,p=p+p,0=0+0, and (pd) = pb + pb' + p'0 + p'0' =
0 + (pB)'. Since the background velocity @i = 0, it holds u = u’ and we will omit
the prime symbol hereinafter.

In order to avoid numerical instabilities due to the multiscale flow behavior in the
case of low Mach number limit, numerical simulations are typically realized for the
perturbations, which satisfy the following equations

3p' 4+ V- (pu) =0,

0

3 (ow) + V- (pu@u+ p'ld—pu, (Vu+ (Vw)')) = —p'ges = —p'g [ 0 ],
1

3 (p0) +V - (pbu — ppuVO) = Sy, (1)

where (., i, are viscosity and heat conductivity constants. To include the moist
dynamics we use in (1); instead of the potential temperature for dry air the moist
potential temperature. Denoting 7' the temperature, the moist potential temperature

can be approximated as
R Do Rm/Cp
()
R p

where py = 10° (Pa) is the reference pressure, R = 287.05 (J/(kg - K)) is the gas
constant of dry air, R, = (1 — ¢, — g. — ¢-)R + g, R, is the modified gas constant
of moist air and ¢, = 1005 (J/(kg - K)), R, = 461.51 (J/(kg - K)). The mass fractions
of water vapor, cloud water 