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Integrals

Branislava Ćurči�c-Blake

After reading this chapter you know:

• what an integral is,
• what definite and indefinite integrals are,
• what an anti-derivative is and how it is related to the indefinite integral,
• what the area under a curve is and how it is related to the definite integral,
• how to solve some integrals and
• how integrals can be applied, with specific examples in convolution and the calculation

of expected value.

7.1 Introduction to Integrals

There are many applications of integrals in everyday scientific work, including data and
statistical analysis, but also in fields such as physics (see Sect. 7.7). To enable understanding
of these applications we will explain integrals from two different points of view. Several
examples will be provided along the way to clarify both.
Firstly, integrals can be considered as the opposite from derivatives, or as ‘anti-derivatives’.

This point of view will lead to the definition of indefinite integrals. Viewing integrals as the
opposite of derivatives reflects that by first performing integration and then differentiation or
vice versa, you basically get back to where you started. In other words, integration can be
considered as the inverse operation of differentiation. However, while it is possible to
calculate or find the derivative for any function, determining integrals is not always as easy.
In fact, many useful indefinite integrals are not solvable, that is, they cannot be given as an
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analytic expression! In those cases, numerical integrationmay sometimes help, but that topic is
outside the scope of this book.
Secondly, integrals (of functions of one variable) can be considered as the area under a

curve. This point of view will lead to the definition of definite integrals. Integration can also
be performed for functions of multiple variables and we will only briefly touch upon this
topic in this chapter.

7.2 Indefinite Integrals: Integrals as the Opposite
of Derivatives

As we mentioned before, one way to think about integrals is as the opposite or the reverse of
derivatives; some people like to think about integrals as anti-derivatives. In other words, by
integration you aim to find out what f(x) is, given its derivative f 0(x), or more formally

f(x)¼ Ð
f 0(x)dx

Here, the symbol for the indefinite integral
Ð
is introduced. In contrast to the definite

integral that will be introduced in Sect. 7.3 the integral is here defined for the entire domain
of the function. An important part of the integral is dx, the differential of the variable x. It
denotes an infinitesimally small change in the variable (see Sect. 6.12), and shows that the
variable of integration is x. The meaning of dx will become more clear when we explain
definite integrals in Sect. 7.3.

Example 7.1

If f 0(x)¼nxn�1, what is f(x)?
We thus need to find f(x)¼ Ð

f 0(x)dx¼ Ð
nxn�1dx. Since we know that d

dx x
n ¼ nxn�1, for this

example we find that f(x)¼xn.

For ease of notation, we denote F(x) as the integral of a function f(x):

F(x)¼ Ð
f(x)dx

The function f(x) that is integrated is also referred to as the integrand.

7.2.1 Indefinite Integrals Are Defined Up to a Constant

Since the derivative of a constant is zero, indefinite integrals are only defined up to a constant.
This means that in practice, after finding the anti-derivative (also known as the primitive) of a
function, you can add any constant to this anti-derivative and it will still fulfill the
requirement that its derivative is equal to the function you were trying to find the anti-
derivative for. An intuitive understanding of this property of indefinite integrals is provided
by Example 7.2 and Fig. 7.1.

200 B. Ćurči�c-Blake

http://dx.doi.org/10.1007/978-3-319-57354-0_6


Example 7.2

If f(x)¼x2, then f 0(x)¼2x, but f 0(x)¼2x is also true for f(x)¼x2+3 or f(x)¼x2�5. Figure 7.1 helps to
understand this more intuitively: by adding a constant to a function of x, the function is shifted
along the y-axis, but otherwise does not change shape. Hence, the derivative (the slope of the
black lines in Fig. 7.1, see also Sect. 6.8) for a certain value of x, remains the same.

Fig. 7.1 The function f(x)¼x2 is plottedwhen different constants are added. It illustrates that the
tangent at a specific value of x (black lines) has the same slope for all depicted functions.

Example 7.3

Revisiting our Example 7.1, if f(x)¼nxn�1, then the integral
F(x)¼ Ð

f(x)dx¼ Ð
nxn�1dx¼xn+C

where C is any constant.

7.2.2 Basic Indefinite Integrals

Similar to what we did for derivatives in Sect. 6.9, we here provide several basic indefinite
integrals that are useful to remember. Note that when you know derivatives of functions, you
actually already know a lot of indefinite integrals, as well, by thinking about the inverse
operation (from the derivative back to the original function). Thus, Tables 7.1 and 6.1 bear
many similarities as the derivative of the integral of a function is this function again. For
example, differentiating a power function involves lowering the power by one, whereas
integrating a power function involves increasing the power by one. There is an exception
though, when the power is �1 (see Tables 6.1 and 7.1). Probably, the concept of indefinite
integrals as anti-derivatives is becoming clearer now.
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Example 7.4

Determine the integral of f xð Þ ¼ 3ffiffiffiffi
5x

p

It is easier to determine this integral once you realize that f(x) is actually a power function:

xð Þ ¼ 3ffiffiffiffi
5x

p ¼ 3 � 5xð Þ�1
2 ¼ 3:5�

1
2x�

1
2. Now, we can determine the integral using Table 7.1:

F xð Þ ¼
ð
f xð Þdx ¼

ð
3 � 5�1

2x�
1
2dx ¼ 3 � 5�1

2

ð
x�

1
2dx ¼ 3 � 5�1

2
x�

1
2þ1

�1
2 þ 1

þ C ¼ 6ffiffiffi
5

p ffiffiffi
x

p þ C

Before providing more examples and practicing integration yourself, we first present some
basic rules of integration in Box 7.1:

Box 7.1 Basic rules of integration

1. d
dx

Ð
f xð Þdx ¼ f xð Þ

2.
Ð

d
dx f xð Þdx ¼ f xð Þ þ C

3.
Ð
af(x)dx¼a

Ð
f(x)dx, if a is a constant

4.
Ð
[af(x)�bg(x)]dx¼a

Ð
f(x)dx�b

Ð
g(x)dx, if a and b are constants (linearity).

Table 7.1 Indefinite integrals
Ð
f(x)dx for basic functions f(x).

More basic indefinite integrals can be found at https://en.
wikipedia.org/wiki/Lists_of_integrals

f(x) F(x)¼ Ð
f(x)dx

A (constant) Ax+C

xn , n2ℂ^ n 6¼�1 xnþ1

nþ1 þ C

eax , a2ℂ^ a 6¼0 1
a e

ax þ C
1
x or x�1

� �
ln x þ C if x > 0
ln �xð Þ þ C if x < 0

�

sinax , a2ℂ^a 6¼0 �1
a cos ax þ C

cosax , a2ℂ^a 6¼0 1
a sin ax þ C

tanx �ln|cosx|+C

ax , a>0^a 6¼1 ax
ln a þ C

1ffiffiffiffiffiffiffiffi
x2�1

p ln x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p��� ���þ C

1
x2þ1

arctanx+C

1ffiffiffiffiffiffiffiffi
1�x2

p arcsinx+C
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Example 7.5

Determine the following integrals:

a. Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

ffiffiffiffiffiffiffiffiffiffi
x

ffiffiffi
x

ppq
dx ¼ Ð ffiffiffiffiffiffiffiffiffiffiffiffi

x
ffiffiffiffiffi
x

3
2

pq
dx ¼ Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � x32 � 12
q

dx ¼ Ð ffiffiffiffiffiffiffiffiffiffiffi
x1þ

3
4

q
dx ¼ Ð

x
7
4 � 12dx ¼

Ð
x7=8dx ¼ 8x15=8

15
þ C

b.
Ð

3
x þ sin 5x
� �

dx ¼ Ð
3
x dx þ Ð

sin 5xdx ¼ 3 ln xj j � 1
5 cos 5x þ C

c.
Ð
(sin5x�sin5α)dx¼ Ð

sin5xdx� Ð
sin5αdx¼�1

5 cos 5x � x sin 5αþ C. Note that since the integra-
tion is over x, sin5α should be considered as a constant.

d.
Ð

e�iωt þ eiωt
� �

dt ¼ Ð
e�iωtdt þ Ð

eiωtdt ¼ � 1
iωe

�iωt þ 1
iω e

iωt þ C

Exercise

7.1 Determine the following indefinite integrals:

a.
Ð
(e3t+2sin2t)dt

b.
Ð

3
x2 dx

c.
Ð
4x�1dx

d.
Ð ffiffiffiffiffiffi

4x
p

dx

e.
Ð ffiffiffiffiffiffiffiffiffiffi

4x�3
p

þ 5
� �

dx

f.
Ð
(3x+tanx)dx

7.3 Definite Integrals: Integrals as Areas Under a Curve

So far, we considered integrals as anti-derivatives, thereby introducing indefinite integrals.
Here, we view integrals in a different way, as areas under a curve, bounded by a lower and an
upper limit. The curve is thus a graph of a function on a specific domain. Let’s discuss this
link between integrals and area under a curve in more detail. Suppose you want to know the
area under the curve for the graph of the function f(x)¼�x2+5 between x¼�2 and x¼2
(Fig. 7.2, left). A very rough approximation of the area under the curve would be to calculate
the sum of the areas of the rectangles with a base of 1 and a height of f(x) for all integer values
of x from x¼�2 to x¼1 (Fig. 7.2, middle). Now you can probably imagine that when we
decrease the base of these rectangles by doubling the number of rectangles, the sum of their
areas will better approach the area under the curve (Fig. 7.2, right). If we increase the number
of rectangles even further to n and denote the base of these rectangles by Δx we find that the
approximation of the area under the curve for this specific example equals

Xn�1

i¼0

f �2þ i � Δxð Þ � Δx

Now, if we let the number of rectangles between two general limits a and b (instead of�2
and 2) go to 1 by letting Δx go to 0, we arrive at the definition of the definite integral
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ðb

a

f xð Þdx

where a is the lower limit and b the upper limit. It should now be clear to you that this
expression is equal to the area under the curve given by the graph of the function f(x) between
x¼a and x¼b. More formally, the sum and integral that were used here are known as the
Riemann sum and Riemann integral. Now, you may also understand that the differential dx
can be understood as the limit of Δx when it goes to 0.
Also in the definition of the definite integral using the Riemann sum, we can retrace that

integration is the inverse of differentiation. Remember that the formal definition of a
derivative (Sect. 6.8, Eq. 6.1, replacing y by f(x)) was:

df xð Þ
dx ¼ lim

Δx!0

Δf xð Þ
Δx

Here, we also considered small changes in x and in f(x) asΔf(x)¼ f(x+Δx)� f(x). Hence, in
derivation we subtract function values and divide the difference by Δx, while in integration
we add function values and multiply the sum by Δx.
To calculate the definite integral you need to determine the anti-derivative or primitive

function and subtract its values at the two limits:

If F xð Þ ¼
ð
f xð Þdx then

ðb

a

f xð Þdx ¼ F bð Þ � F að Þ ð7:1Þ

Sometimes a slightly different notation is used:

ðb

a

f xð Þdx ¼ F xð Þjx¼a � F xð Þjx¼b

Fig. 7.2 Illustration of calculation of area under the curve for the function f(x)¼�x2+5 for x2(�2,2).
Left: graph of the function, vertical lines at x¼�2 and x¼2 indicate the boundaries of the domain.
Middle: approximation of the area under the curve when using rectangles of base 1. Right: improved
approximation of the area under the curve when using rectangles of base 0.5.
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where F(x)|x¼a should be read as F(x) for x¼a.

Example 7.6

Calculate
ð3π

2π

sin xdx.

We know that (Table 7.1) Ð
sinxdx¼�cosx+C

By following rule (7.1), we can now calculate that:

ð3π

2π

sin xdx ¼ � cos 3πð Þ � � cos 2πð Þ ¼ � �1ð Þ þ 1 ¼ 2

We now present some important rules for definite integrals in Box 7.2:

Box 7.2 Important rules for definite integrals

1.
ða

a

f xð Þdx ¼ 0

2.
ðb

a

f xð Þdx ¼ �
ða

b

f xð Þdx

3. If c2(a,b) then
ðb

a

f xð Þdx ¼
ðc

a

f xð Þdx þ
ðb

c

f xð Þdx

These rules concern the limits of an integral. Thus, clearly any definite integrals with the
same upper and lower limits are equal to zero. Swapping the upper and lower limits swaps the
sign of the result. The third rule in Box 7.2 is the most interesting as it can sometimes come
in quite handy when calculating definite integrals, as illustrated in the next example.

Example 7.7

Calculate

ð218π

2π

sin xdx þ
ð3π

218π

sin xdx

(continued)
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Example 7.7 (continued)

Here it would be pretty hard to calculate cos 218π
� �

without a calculator, whereas when we use
the third rule in Box 7.2 and employ the answer to Example 7.3, we find that

ð218π

2π

sin xdx þ
ð3π

218π

sin xdx ¼
ð3π

2π

sin xdx ¼ 2

Notice that the solution to definite integrals, in contrast to indefinite integrals, does not
contain a constant (C). Let’s now see how definite integrals can be used to calculate the area
under a complex curve (Example 7.8) and how a practical—albeit simple—problem (Exam-
ple 7.9) can give us more insight in why we calculate definite integrals the way we do.

Example 7.8

Consider the function

f(x)¼4cos(x+0.1)�0.5x

in Fig. 7.3 and determine the area under its graph between the two (approximate) roots x�
1.9122 and x¼5.3439.

Fig. 7.3 Plot of the function f(x)¼4cos(x+0.1)�0.5x for x2(�2,5.5). The area under its graph
consists of a positive (A1) and a negative (A2) part.

Between x¼�1.9122 and x¼5.3439 the function is first positive, then negative. It changes sign
at (approximately) x¼�1.9122 and x¼1.3067 and then at x¼5.3439. Thus, the area A under the
curve will be

A¼A1�A2

(continued)
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Example 7.8 (continued)

which is the so called signed area as illustrated in Fig. 7.4.

Fig. 7.4 Area under the curve (blue) for the function f(x)¼4cos(x+0.1)�0.5x between
x¼�1.9122 and x¼5.3439.

We now know that A1 ¼
ð1:3067

�1:9122

f xð Þdx and A2 ¼
ð5:3439

1:3067

f xð Þdx. Thus, the area under the curve

for f(x) between x¼�1.9122 and x¼5.3439 is

A ¼
ð1:3067

�1:9122

f xð Þdx �
ð5:3439

1:3067

f xð Þdx

We can now apply the rules in Table 7.1 to find the primitive or anti-derivative F of f(x) and
calculate A. The primitive is F xð Þ ¼ 4 sin x þ 0:1ð Þ � 0:5

2 x2 and thus

A ¼ F 1:3067ð Þ � F �1:9122ð Þð Þ � F 5:3439ð Þ � F 1:3067ð Þð Þ
¼ 4 sin 1:3067þ 0:1ð Þ
� 4 sin �1:9122þ 0:1ð Þ � 0:5

2
1:30672 þ 0:5

2
�1:9122ð Þ2

� 4 sin 5:3439þ 0:1ð Þ
þ 4 sin 1:3067þ 0:1ð Þ þ 0:5

2
5:34392 � 0:5

2
1:3067ð Þ2 � 21:9529

Example 7.9

Marianne is speedwalking at a constant velocity of 2 m/s. What distance will she cover within 9 s if
she keeps walking at the same speed?

We can approach this problem in two different ways. Let’s first do it in a way which does not
require integrals anduses our knowledgeof physics.Weknowthatdistance travelled equals velocity
times duration, thusMarianne covers 2m/s� 9 s¼ 18mwithin9 s.Amore complexway, thathelps us
understand why we calculate definite integrals the way we do, is the following. We know that the
duration Δt¼9s. Let’s assume that we determine the distance travelled between start time t0¼1s
and end time tEND¼10s. We also know that velocity is the derivative of distance travelled in time:

(continued)
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Example 7.9 (continued)

v ¼ dx
dt � Δx

Δt or Δx¼v�Δt. Now v�Δt is the area of a rectangle with base Δt and height vwhich is the
area under the curve of the constant function v¼2 m/s as displayed in the figure, or

x ¼
ðtEND
t0

v tð Þdt ¼ vtjtENDt0 ¼ 2m
s

10� 1ð Þs ¼ 18m

We now also see that subtracting the two values of the primitive is equal to subtracting the
distance travelled in 1 s from the distance travelled in 10 s, which is the distance travelled in 9 s.
Anyway, Marianne thus covers 18 m in 9 s. Is that fast enough for speed-walking?

Exercise

7.2. Determine the following definite integrals:

a.
ð1

0

ffiffiffiffiffi
x3

p
dx

b.
ðT

2

0
sin

2πt
T

	 

dt

c.
ð1

0

ex � 1ð Þ2exdx

7.3.1 Multiple Integrals

Just as we can differentiate functions of multiple variables by partial differentiation (see Sect.
6.10), we can also integrate functions of multiple variables. Such (definite) integrals are called
multiple integrals. And like definite integrals of one variable are associated with area under a
curve, definite integrals of two variables are associated with volume under a surface, defined
by the domain that is integrated over. To integrate functions of multiple variables, you start
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from the inner most integral and work your way out, always considering the variables you
are not integrating over as constant, again similar to partial differentiation, where you
consider the variables you do not differentiate for as constant. Let’s make this clearer by an
example.

Example 7.10

Calculate
ð2

1

ð4

2

xy2 þ 3x3y
� �

dx dy

This integral should be read as
ð2

1

ð4

2

xy2 þ 3x3y dx

0
@

1
A dy and thus, to calculate it, we have to

integrate the function f(x,y)¼xy2+3x3y for x between 2 and 4 and y between 1 and 2. Executing
this step-by-step, we find that:

ð2

1

ð4

2

xy2 þ 3x3y dx dy ¼
ð2

1

1
2
x2y2 þ 3

4
x4y

	 
������
4

2

dy ¼
ð2

1

8y2 þ 192y
� ��

2y2 þ 12y
� �

dy ¼
ð2

1

6y2 þ 180y dy ¼ 2y3 þ 90y2
� �

������
2

1¼ 16þ 360ð Þ � 2þ 90ð Þ ¼ 284

In this example, we calculated a double integral. Similarly, an integral with three variables
of integration is called a triple integral.

7.4 Integration Techniques

So far, we only considered integrals of relatively simple functions. However, not all integration
of relatively simple functions is simple. For example, how do we integrate functions such as
f xð Þ ¼ ffiffiffi

x
p

1þ xð Þ or f(x)¼xsin2x? There are numerous integration techniques that can
help. Some of them are universal for all types of integrals. Some are more suited for definite
integrals. Here, we will only explain some of these techniques, and illustrate them with
examples. The goal of this section is to get you familiarized with the practice of integration.
For more practice, we recommend starting with Jordan and Smith 2010, Mathematical
techniques, and advance with Chap. 7 of Demidovich et al. (1966) available online in
English.

7.4.1 Integration by Parts

Integration by parts is a method that relies on the product rule for differentiation (see also
Table 6.2) that states that if
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y(x)¼ f(x)g(x)

then

y0 xð Þ ¼ f 0 xð Þg xð Þ þ f xð Þg0
xð Þ:

If we now apply anti-derivation to thefirst equation and substitute the second equation, we get:

f(x)g(x)¼y(x)¼ Ð
y 0(x)dx¼ Ð

( f 0(x)g(x)+ f(x)g 0(x) )dx

By rearranging the most outer terms, we find that:ð
f xð Þg0

xð Þdx ¼ f xð Þg xð Þ �
ð
f 0 xð Þg xð Þdx ð7:2Þ

This means, that if a function is the product of one function with the derivative of another
function, we have a method to determine the integral of this product.

Example 7.11

Determine the integral

y(x)¼ Ð
x2exdx

To solve this integral, we first consider the simpler integral

y1(x)¼
Ð
xexdx

Careful consideration of this function shows that integration by parts according to Eq. 7.2
can be applied for f(x)¼x and g 0(x)¼ex. To perform integration by parts we now need to
determine f'(x) and g(x), which is relatively simple as these are simple functions. Thus f'(x)¼1
and g(x)¼ Ð

exdx¼ex and after integration by parts of y1 we find that:

y1(x)¼
Ð
xexdx¼xex� Ð

1 �exdx¼xex�ex+C¼ex(x�1)+C

Simple, right? This is how integration by parts works. Now let’s go back to the original function
y(x). For this function, we choose f(x)¼x2 and g 0(x)¼ex and thus f 0(x)¼2x and g(x)¼ex. Applying
integration by parts according to Eq. 7.2 we now find:

y(x)¼ Ð
x2exdx¼x2ex� Ð

2xexdx

We have just determined that
Ð
xexdx¼ex(x�1)+C and thus:

y xð Þ ¼ x2ex � 2
�
ex x � 1

�þ C
� � ¼ ex x2 � 2x þ 2

� �þ C

For integration by parts to be applicable you should be able to assign f(x) and g 0(x) such that

1. f 0(x) is simpler than f(x)
2. g(x) is not more complicated than g0(x)
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Example 7.12

Determine
Ð
x lnxdx.

Here we consider the two functions x and lnx that form the product. Is one of them simpler
after derivation? Is the second one not more complicated after integration? The derivative of
f(x)¼ lnx is in fact simpler than the function itself:

f 0 xð Þ ¼ 1
x

Thus, we have identified one function that is simpler after differentiation. But does the second
function in the product have an integral that is not more complicated than the function itself? So,
let’s assign g0(x)¼x. Then g xð Þ ¼ Ð

xdx ¼ x2
2 . This integral is not much more complicated, but is it

sufficiently simple? Let’s try and find out:
Applying integration by parts according to Eq. 7.2, using our choice of f(x) and g0(x) we find

that:

ð
x ln xdx ¼ x2

2
ln x �

ð
1
x
x2

2
dx ¼ x2

2
ln x � x2

4
þ C ¼ x2

2
ln x � 1

2

	 

þ C

Example 7.13

Determine
Ð
excosxdx.

Now we consider the two functions ex and cosx that form the product. Is one of them simpler
after derivation? Is the second one not more complicated after integration?

We know that ex is not more complicated after integration. But is cosx simpler after deriva-
tion? Let’s give it a try and assign f(x)¼cosx, g 0(x)¼ex. Then f 0(x)¼�sinx and g(x)¼ex. When we
now apply integration by parts according to Eq. 7.2 we find that:

ð
ex cos xdx ¼ cos xex þ

ð
sin xexdx

The integral on the right-hand side actually does not lookmuch simpler. But let’s keep at it and
apply integration by parts one more time to the integral on the right-hand side. This time we
assign f(x)¼sinx, g 0(x)¼ex. Then f 0(x)¼cosx and g(x)¼ex and we find that:

ð
ex cos xdx ¼ cos xex þ sin xex �

ð
ex cos xdx

Now we recognise the integral that we want to determine (
Ð
excosxdx) on both sides of the

equation. By rearranging the terms, we get:

2
Ð
excosxdx¼cosxex+sinxex+C

and thus:

ð
ex cos xdx ¼ ex

2
cos x þ sin xð Þ þ C
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Exercise

7.3 Determine the following integrals using integration by parts:

a.
Ð
(x�1)2exdx

b.
ðπ

0

x sin 2xdx

c.
Ð
(lnx)2dx

7.4.2 Integration by Substitution

Another, probably much more often used method to determine integrals is (u-)substitution.
In short, the aim is to make the integrand as simple as possible to determine the integral. To
determine integrals by rewriting them to “easier” forms the following steps need to be taken:

1. For an integral
Ð
f(x)dx find a part of the function that can be substituted by u(x)

2. Differentiate to express dx in terms of du: dx¼x 0(u)du
Check if the new integral

Ð
f(x)dx¼ Ð

f(x(u))x'(u)dx is easier to solve and if not try another
substitution.
3. Once you have finished the calculus, substitute back to the initial variable x to find an

indefinite integral or also substitute the limits to find a definite integral.

As this explanation probably sounds rather abstract, let’s try to get a better understanding
by some examples.

Example 7.14

Determine
Ð
x(x+5)5dx.

First, we determine a likely suitable substitution u(x). It seems appropriate to simplify the
function by substituting

u(x)¼x+5

We can find the differential du as follows:

du¼d(x+5)¼dx+0¼dx

We also know that:

x¼u�5

Now we can rewrite the integral as follows:

ð
x x þ 5ð Þ5dx ¼

ð
u� 5ð Þ uð Þ5du

This is easy to solve for u:

(continued)
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Example 7.14 (continued)ð
u� 5ð Þ uð Þ5du ¼

ð
u6 � 5u5� �

du ¼
ð
u6du� 5

ð
u5du ¼ u7

7
� 5u6

6
þ C

To determine the original integral in terms of x, all we should do now is substitute u again.
Thus, the integral is:

ð
x x þ 5ð Þ5dx ¼ x þ 5ð Þ7

7
� 5 x þ 5ð Þ6

6
þ C

Example 7.15

Determine
Ð

3x2 þ 10x þ 7
� �

e� 5x2þ7xþx3ð Þdx
At first sight, the integrand looks too complex to be able to determine the integral. But let’s try

to find a suitable substitute u(x). As the biggest problem seems to be in the complex exponent, we
first try to define this as a substitute:

u xð Þ ¼ 5x2 þ 7x þ x3

As we know that
Ð
e�xdx¼�e�x+C, this might be a sensible approach to this integral.

Next, we determine the differential du by derivation:

du
dx

¼ 10x þ 7þ 3x2

or

du ¼ 3x2 þ 10x þ 7
� �

dx

Now substitution results in a very simple integrand and integration becomes a piece of cake:

ð
3x2 þ 10x þ 7
� �

e� 5x2þ7xþx3ð Þdx ¼
ð
e�udu ¼ �e�u þ C

Finally, substituting u(x) results in:

ð
3x2 þ 10x þ 7
� �

e� 5x2þ7xþx3ð Þdx ¼ �e� 5x2þ7xþx3ð Þ þ C

Example 7.16

Determine
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5x þ 3
p

dx.
The most obvious choice for substitution is:

u xð Þ ¼ 5x þ 3

(continued)
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Example 7.16 (continued)

Then

du xð Þ
dx

¼ 5

dx ¼ 1
5
du

We can now rewrite the integral to:

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x þ 3

p
dx ¼

ð ffiffiffi
u

p 1
5
du ¼ 1

5
2
3
u

3
2 þ C

For the final step, substitution gives:

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x þ 3

p
dx ¼ 2

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x þ 3ð Þ3

q
þ C

Example 7.17

Determine
Ð

3x4
x5þ6dx:

There is no obvious choice for substitution now: we could either choose the numerator or the
denominator as a candidate for substitution. However, the denominator has a higher order
polynomial than the numerator. Thus, if the denominator is differentiated it will be closer to
the numerator. For this reason, we choose the denominator for u- substitution:

u xð Þ ¼ x5 þ 6

du xð Þ
dx

¼ 5x4

dx ¼ 1
5x4

du

We can now rewrite the integral to:

ð
3x4

x5 þ 6
dx ¼

ð
3x4

u
1
5x4

du ¼ 3
5

ð
du
u

¼ 3
5
ln uj j þ C

So finally, substituting u again yields:

ð
3x4

x5 þ 6
dx ¼ 3

5
ln x5 þ 6

�� ��þ C

214 B. Ćurči�c-Blake



Example 7.18

Determine
Ð
cos6xsinxdx.

If we again choose to substitute the part of the product with the higher power, similar to
Example 7.16, we can write:

u xð Þ ¼ cos x

du xð Þ
dx

¼ � sin x

dx ¼ �1
sin x

du

We can now rewrite the integral to:

ð
cos 6x sin xdx ¼

ð
u6 sin x

�1
sin x

du ¼ �
ð
u6du ¼ �1

7
u7 þ C

Final substitution of u gives:

ð
cos 6x sin xdx ¼ �1

7
cos xð Þ7 þ C

Exercise

7.4 Determine the following integrals using substitution:

a.
Ð
x2e�4x3dx

b.
Ð

3 sin x
2þ cos x dx

c.
Ð ffiffi

x
p þ2ð Þ6ffiffi

x
p dx

d.
Ð

3
x ln x dx

e.
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
dx

7.4.3 Integration by the Reverse Chain Rule

Just like integration by parts employed the product rule for differentiation, we can use the
chain rule for differentiation to our advantage for integration. One could say that the “reverse
chain rule” makes implementation of u-substitution easier as, in a way, it is the same rule.
Remember that for a composite function f(x)¼g(h(x)) (Table 6.2):
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df xð Þ
dx

¼ dg h xð Þð Þ
dx

¼ dg

dh

dh

dx
¼ h0 xð Þg0

h xð Þð Þ

Applying integration, we find that:

ð
h0 xð Þg0

h xð Þð Þdx ¼ g h xð Þð Þ þ C ð7:3Þ

In general, this rule is used for integration of trigonometric, logarithmic, rational/power
and exponential functions. To apply the reverse chain rule in case of some composite
function (e.g. sin(3x+5), or log5|sinx|), one should try to recognise the derivative of the
function inside the composite function (thus h(x)). For example, let’s consider the integrand:

xsinx2

Note that sinx2¼sin(x2), whereas sin2x¼sinxsinx. In this case 2x is the derivative of x2

and we recognize that the sinusoidal function is multiplied by half the derivative of the
function that is inside the sinusoidal function. We can thus write:

x sin x2 ¼ 2x � 12 sin x2 ¼ h0 xð Þg 0
h xð Þð Þ

Once we have recognized this structure in the integrand, the next step is to determine h(x)
and g(h):

h xð Þ ¼ x2, h
0
xð Þ ¼ 2x

g
0
hð Þ ¼ 1

2
sin h, g hð Þ ¼ �1

2
cos h

We then know how to determine the integral of this composite function, by applying the
reverse chain rule Eq. 7.3: Ð

x sin x2dx ¼ �1
2 cos x

2 þ C

Example 7.19

Determine
Ð
3x2sinx3dx.

We recognize that 3x2 is the derivative of x3 and hence apply the reverse chain rule (Eq. 7.3) as
follows:

h xð Þ ¼ x3, h
0
xð Þ ¼ 3x2,

g0 hð Þ ¼ sinh, g hð Þ ¼ � cosh

We thus find that:

ð
3x2 sin x3dx ¼ � cos x3 þ C
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Exercise

7.5 Determine the following integrals using the reverse chain rule:

a.
Ð
x3ex

4
dx

b.
Ð
x3(1+x4)3dx

7.4.4 Integration of Trigonometric Functions

Although the integration techniques introduced in Sects. 7.4.1 to 7.4.3 allow integration of
many different functions, there will still be integrals left that cannot be determined. For
specific types of integrands, such as rational or transcendental functions, several additional
useful methods exist to determine their integrals (see for example Bronshtein et al. 2007).
Here, we will only briefly cover some integration methods for trigonometric integrands so
that you get a feeling of how integration is done in general. We direct you to more specialized
literature for broader and more advanced methods of integration (e.g. Jordan and Smith
(2010)). An overview can also be found on https://en.wikipedia.org/wiki/List_of_integrals_
of_trigonometric_functions.
The following methods can be used to determine some integrals of trigonometric

functions:

1. If the integral contains a rational function of sines and cosines, the following substitution
is often useful:
tan x

2 ¼ t which implies that sin x ¼ 2t
1þt2, cos x ¼ 1�t2

1þt2 and dx ¼ 2dt
1þt2. Here we use that

sin x ¼ 2 sin x
2 cos

x
2 and cos x ¼ cos 2x2 � sin 2x

2. By this substitution, the integrand
becomes a rational function of t.

2. If the integrand is a positive power of a trigonometric function, recurrent formulas can be
used to determine the integral:

ð
sin nxdx ¼ 1

n
sin n�1x cos xþ n� 1

n

ð
sin n�2xdx

ð
cos nxdx ¼ 1

n
cos n�1x sin xþ n� 1

n

ð
cos n�2xdx

3. If the integrand is a negative power of a trigonometric function, such as
Ð

1
sin nx dx orÐ

1
cos n xdx (n2N,n>1), the integral can be determined by using the following recurrent

formulas:
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ð
1

sin nx
dx ¼ 1

n� 1
cos x

sin n�1x
þ n� 2
n� 1

ð
1

sin n�2x
dx

ð
1

cos nx
dx ¼ 1

n� 1
sin x

cos n�1x
þ n� 2
n� 1

ð
1

cos n�2x
dx

4. Integrals of the form
Ð
sinmxcosnxdx, (n,m2Z,>0), can be determined using the following

recurrent formulas:

ð
sin nxcos mxdx ¼ sin nþ1xcos m�1x

mþ n
þ m� 1
mþ n

ð
sin nxcos m�2xdx

or

ð
sin nxcos mxdx ¼ � sin n�1xcos mþ1x

mþ n
þ n� 1
nþ m

ð
sin n�2xcos mxdx

(see also https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions#Integra
nds_involving_both_sine_and_cosine)

5. Integrals of the form
Ð
sinnxcosmxdx, (n,m2Z) can be simplified and subsequently

determined using the trigonometric identities for multiplication of trigonometric
functions:

sin nx cosmx ¼ 1
2 sin n� mð Þx þ sin nþ mð Þx½ �

Example 7.20

Determine
Ð

dx
5þ4cosx

This integral can be determined using the first method in this section by substituting tan x
2 ¼ t,

cos x ¼ 1�t2

1þt2
and dx ¼ 2dt

1þt2
:

ð
dx

5þ 4cosx
¼

ð 2dt
1þt2

5þ 4 1�t2

1þt2

¼
ð

2dt
9þ t2

We know how to determine this integral as it is similar to the integral of 1
x2þ1 (Table 7.1)

ð
dx

5þ 4cosx
¼ 2

9

ð
dt

1þ t2
9

If we substitute t2
9 ¼ u2, then dt¼3du and thus

(continued)
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Example 7.20 (continued)ð
dx

5þ 4cosx
¼ 6

9

ð
du

1þ u2 ¼ 6
9
arctanuþ C ¼ 6

9
arctan

t
3
þ C ¼ 6

9
arctan tan

x
2

3
þ C

7.5 Scientific Examples

7.5.1 Expected Value

The expected value hxi of a stochastic variable x is frequently encountered in statistics. It refers
to the value one expects to get for x on average if an experiment would be run many times.
For example, if you toss a coin 10 times, you expect to get 5 heads and 5 tails. You expect this
value because the probability of getting heads is 0.5 and if you toss 10 times you anticipate
that you will get heads 5 times. The expected value is also called the expectation value, the
mean, the mean value, the mathematical expectation and, in statistics, it is known as the first
moment.
If the probability distribution P(x), which describes the probability of getting a specific

value of x is known, the expected value can be calculated by multiplying each of the possible
outcomes by the probability that each outcome will occur, and by integrating all products:

a¼〈x〉¼ Ð
xP(x)dx

The expected value can be viewed as the weighted average value, where the weight is given
by the probability distribution. This is easier to understand in the case of a discrete
distribution. Note that nowadays almost all measurements are discrete, even when measuring
continuous events, as our digital devices sample the values at a specific frequency, e.g. at 2 Hz
(every 0.5 s). As explained in Sect. 7.3, in the case of n discrete values, we can replace the
integral by a sum

a ¼
Xi¼n

i¼1

xiP xið Þ

Example 7.21

The most frequently used example of expected value concerns throwing a dice. If a dice is of good
quality, the probability of the dice landing on any of the 6 sides is equal. Thus, the probability of
getting a 5 is 1/6, as is the probability of getting any of the other possible values:

P xið Þ ¼ 1
6
, xi ¼ 1;2; 3; 4;5;6f g

The expected value when throwing a dice is thus:

(continued)
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Example 7.21 (continued)

a ¼
Xn
i¼1

xiP xið Þ ¼ 1þ 2þ 3þ 4þ 5þ 6ð Þ
6

¼ 3:5

This is the same as the average of the values on a six-sided dice.

In most cases the probability will not be equal for all values of x. To calculate the expected
value, it is then convenient to have a functional description of the probability distribution.

Example 7.22

A frequently encountered distribution is the Gaussian distribution. Any stochastic variable that is
determined by many independent factors will follow such a distribution. Examples are height and
weight of humans. The Gaussian probability distribution function is:

G xð Þ ¼ 1ffiffiffiffi
2π

p
σ
e

x�μð Þ2
2σ2

Here, μ is the mean value of the distribution and σ is its standard deviation. Let’s see if μ is
indeed the same as the expected value:

xh i ¼
ð1

�1
xP xð Þdx ¼

ð1

�1
x

1ffiffiffiffiffiffi
2π

p
σ
e

x�μð Þ2
2σ2 dx

To determine this integral is beyond the scope of this book, but we will here describe some
important steps. For amore detailed explanation we refer to Reif (1965, the Berkley Physics course
Volume 5, Appendix 1; https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions).

The integral can be solved using substitution and then incorporating some of the characteris-
tics of the Gaussian distribution. In this manner, the expected value can be rewritten using:

u¼x�μ

du¼dx

resulting in:

xh i ¼ 1ffiffiffiffiffiffi
2π

p
σ

ð1

�1
ue

u2

2σ2duþ 1ffiffiffiffiffiffi
2π

p
σ

ð1

�1
μe

u2

2σ2du

The first integral vanishes as the integrand is odd:

ð0

�1
ue

u2

2σ2du ¼ �
ð1

0

ue
u2

2σ2du

The second integral can be rewritten as (Reif 1965, Berkley Physics course, Volume 5,
Appendix 1, Equations 11 and 12)

ð1

�1
μe

u2

2σ2du ¼ μ

ð1

�1
e

u2

2σ2du ¼ μ
ffiffiffiffiffiffi
2π

p
σ

Thus, the expected value of a Gaussian distribution is indeed equal to its mean.
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7.5.2 Convolution

Convolution is a very important mathematical operation in the analysis of time series. It can
be viewed as a type of filter. If you have one function or time series f(t), convolution with
another function g(t) yields the amount by which g(t) overlaps with f(t) when g(t) is shifted in
time. Convolution is expressed by an integral, as follows:

f ∗ g½ � tð Þ ¼
ð1

�1
f τð Þg t � τð Þdτ

In other words, convolution is a mathematical operation on two functions, resulting in a
third function that represents the overlap between the two functions as a function of the
translation of one of the original functions with respect to the other. The effect of convo-
lution will become clearer in some examples. Note that in all figures belonging to the
examples below both the convolution and f(t) were normalized to the maximum of g(t),
for illustration purposes.

Example 7.23

The convolution of a rectangular function and a linear function results in a saw-tooth function.
When the rectangular function is shifted, the maximum of the convolution, that indicates where
both functions have maximum overlap, also shifts (Fig. 7.5).

Fig. 7.5 Left: Convolution (red) of a rectangular function (blue) with a linear function (green).
Right: Convolution of the same functions when f(x) is shifted along the x-axis. Note that the
convolution and f(x) were normalized for illustration purposes.

Example 7.24

The convolution of a rectangular and a saw-tooth function is similar to Example 7.23. If the order
of the convolution between saw-tooth and rectangular function is reversed, we see that the
resulting function is shifted along the x-axis (Fig. 7.6).

(continued)
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Example 7.24 (continued)

Fig. 7.6 Left: Convolution (red) of a rectangular function (blue) with a saw-tooth function
(green). Right: Convolution of the same functions in reverse order. Note that the convolution
and f(x) were normalized for illustration purposes.

Example 7.25

The convolution of a rectangular and a Gaussian function is again a Gaussian function (Fig. 7.7).

Fig. 7.7 Convolution (red) of a rectangular function (blue) with a Gaussian function (green).

Example 7.26

It is not true that the convolution of any function with a Gaussian function is again a Gaussian
function, as is illustrated with this example of the convolution of a saw-tooth function with a
Gaussian function (Fig. 7.8).

Fig. 7.8 Convolution (red) of a saw-tooth function (blue) with a Gaussian function (green). The
convolution is skewed just like the saw-tooth function.
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Example 7.27

In behavioral neuroscience, functional magnetic resonance imaging ( fMRI) is often used to
determine brain activation during tasks. It employs the local relative increase in oxygenated
blood (the blood oxygen-level-dependent or BOLD-response) that develops when a brain area
is involved in such a task. The general linear modeling (GLM) approach to analyze fMRI data was
introduced in Chap. 5, and the BOLD response and hemodynamic response function (HRF) were
introduced in Chap. 6 (Sect. 6.13.3). General linear modeling involves modeling the BOLD
response in a brain area that is involved in a task. The simplest model assumes that there is
(constant) activity in such a brain area during the task and no activity during rest, in between task
blocks, resulting in a so-called block model (see Fig. 4.16, top and cf. Example 4.4). Such a model
does not take the sluggish BOLD-response into account, however, which becomes maximal only
seconds after the brain has been stimulated. To compensate for this sluggishness and model the
specific physiological response as well as possible the block model is convoluted with a model of
the BOLD response, the HRF (see Fig. 7.9 middle and bottom).

Fig. 7.9 fMRI data analysis preparation. The input time series (top) are convoluted with the HRF
(middle) to create a predictor for the GLM analysis (bottom). This is done for each condition, task
or any other experimental manipulation.

Example 7.28

Since a few decades, we mostly only make digital photos, which allows easy manipulation
using computer programs such as Photoshop or Paint. Most of us have used these programs to
beautify ourselves and we have become quite used to ‘photoshopped’ pictures of celebrities in
magazines. Oftentimes, convolution is used to enhance photos digitally. For example, the

(continued)
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Example 7.28 (continued)

pixelated photo on the left in Fig. 7.10 can be convoluted with a 2D Gaussian function to blur or
smoothen it, so that the pixels (and thereby the wrinkles!) are not recognizable any more
(Fig. 7.10, right).

Fig. 7.10 Left: A pixelated picture. Right: The same picture after 2D Gaussian smoothing (over
4 � 4 pixels) has been applied. Wrinkles have disappeared and facial features have changed.

Example 7.29

Cross-correlation provides a beautiful example of convolution in everyday science.
Cross-correlation provides a measure of the similarity between two functions as a function of a
time-lag applied to one of them. This is also known as the sliding dot product or sliding
inner-product (cf. Sect. 4.2.2.1). For continuous functions f(t) and g(t) the cross-correlation is
given by

f ∗g τð Þ ¼
ð1

�1
f∗ tð Þg t þ τð Þdt

Here, f∗(t) denotes the complex conjugate of f(t). You can see that cross-correlation is the same
as convolution for f(�t). Thus, the cross-correlation is a function of τ, which has the same range
as t.

Glossary

Analytic As in analytic expression, a mathematical expression that is written such that it can easily
be calculated. Typically, it contains the basic arithmetic operations (addition, subtraction, multi-
plication, division) and operators such as exponents, logarithms and trigonometric functions.
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Convolution Convolution of a function or time series f(t), with another function g(t) yields the amount
by which g(t) overlaps with f(t) when g(t) is shifted in time; convolution can be viewed as a
modifying function or filter.

Cross-correlation A measure of similarity of two functions as a function of the displacement of one
with respect to the other.

Definite As in definite integral; the integral of a function on a limited domain.
Double integral Multiple integral with two variables of integration.
fMRI Functional magnetic resonance imaging; a neuroimaging technique that employs magnetic

fields and radiofrequency waves to take images of e.g. the functioning brain, employing that
brain functioning is associated with changes in oxygenated blood flow.

Gaussian distribution Also known as normal distribution. It is a symmetric, bell-shaped distribution
that is very common and occurs when a stochastic variable is determined by many independent
factors.

General linear model Multiple linear regression; predicting a dependent variable from a set of
independent variables according to a linear model.

Hemodynamic response function A model function of the increase in blood flow to active brain
neuronal tissue.

Indefinite As in indefinite integral; the integral of a function without specification of a domain.
Integrand Function that is integrated.
Inverse As in ‘inverse operation’ or ‘inverse function’, meaning the operation or function that achieves

the opposite effect of the original operation or function. For example, integration is the inverse
operation of differentiation and lnx and ex are each other’s inverse functions.

Limit Here: the boundaries of the domain for which the definite integral is determined.
Multiple integral Definite integral over multiple variables.
Numerical integration Estimating the value of a definite integral using computer algorithms.
Primitive Anti-derivative.
Stochastic variable A variable whose value depends on an outcome, for example the result of a coin

toss, or of throwing a dice.
Triple integral Multiple integral with three variables of integration.

Symbols Used in This Chapter (in Order of Their Appearance)

Ð
. Indefinite integral

ðb

a

:

Definite integral between the limits a and b

arctan Inverse of tangent function
arcsin Inverse of sine function
� Approximately equal to

Overview of Equations for Easy Reference

Indefinite integral

f(x)¼ Ð
f 0(x)dx
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Basic indefinite integrals

f xð Þ ¼ A constantð Þ, Ð
f xð Þdx ¼ Axþ C

f xð Þ ¼ xn , n2ℂ ^ n 6¼ �1,
Ð
f xð Þdx ¼ xnþ1

nþ 1
þ C

f xð Þ ¼ eax , a2ℂ ^ a 6¼ 0
Ð
f xð Þdx ¼ 1

a
eax þ C

f xð Þ ¼ 1
x

or x�1
� � Ð

f xð Þdx ¼ lnxþ C if x > 0
ln �xð Þ þ C if x < 0

�

f xð Þ ¼ sin ax, a2ℂ ^ a 6¼ 0,
Ð
f xð Þdx ¼ �1

a
cos axþ C

f xð Þ ¼ cos ax, a2ℂ ^ a 6¼ 0
Ð
f xð Þdx ¼ 1

a
sin axþ C

f xð Þ ¼ tan x,
Ð
f xð Þdx ¼ � ln cos xj j þ C

f xð Þ ¼ ax, a > 0 ^ a 6¼ 1,
Ð
f xð Þdx ¼ ax

ln a
þ C

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ,
Ð
f xð Þdx ¼ ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p��� ���þ C

f xð Þ ¼ 1
x2 þ 1

,
Ð
f xð Þdx ¼ arctanxþ C

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ,
Ð
f xð Þdx ¼ arcsinxþ C

Basic rules of integration

1. d
dx

Ð
f xð Þdx ¼ f xð Þ

2.
Ð

d
dx f xð Þdx ¼ f xð Þ þ C

3.
Ð
af(x)dx¼a

Ð
f(x)dx , if a is a constant

4.
Ð
[af(x)�bg(x)]dx¼a

Ð
f(x)dx�b

Ð
g(x)dx, if a and b are constants (linearity).

Definite integral ðb

a

f xð Þdx

where a and b are the limits of integration.

If F(x)¼ Ð
f(x)dx then

ðb

a

f xð Þdx ¼ F bð Þ � F að Þ or
ðb

a

f xð Þdx ¼ F xð Þjx¼a � F xð Þjx¼b

where F(x)|x¼a is F(x) for x¼a.
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Important rules for definite integrals

1.
ða

a

f xð Þdx ¼ 0

2.
ðb

a

f xð Þdx ¼ �
ða

b

f xð Þdx

3. If c2(a,b) then
ðb

a

f xð Þdx ¼
ðc

a

f xð Þdx þ
ðb

c

f xð Þdx

Integration by parts Ð
f(x)g 0(x)dx¼ f(x)g(x)� Ð

f 0(x)g(x)dx

Reverse chain rule Ð
h 0(x)g 0(h(x))dx¼g(h(x))+C

Expected value

a¼〈x〉¼ Ð
xP(x)dx

Convolution

f ∗ g½ � tð Þ ¼
ð1

�1
f τð Þg t � τð Þdτ

Cross-correlation

f ∗ g τð Þ ¼
ð1

�1
f ∗ tð Þg t þ τð Þdt

Answers to Exercises

7.1. a. 1
3 e

3t � cos 2t þ C
b. �3

x þ C
c. 4ln|x|+C
d. 4

3 x
3=2 þ C

e. �4x�
1
2 þ 5x þ C

f. 3x
ln 3 � ln cos xj j þ C
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7.2. a. 2
5

b. T
π

c. e 1
3e

2 � e þ 1
� �� 1

3

7.3. a. (x�1)2ex�2ex(x�1)+2ex+C¼ex(x2�4x+5)+C
b. �π

2
c. In this case, we suggest to use integration by parts twice. First, we write

f xð Þ ¼ ln xð Þ2, f 0 xð Þ ¼ 21x ln x. That leaves us with g 0(x)¼1, thus g(x)¼x.
So, applying integration by parts once, we find that:

Ð
ln xð Þ2dx ¼ x ln xð Þ2 � Ð

2x
x ln xdx ¼ x ln xð Þ2 � 2

Ð
ln xdx

The remaining integral on the right-hand side, we can solve by again applying
integration by parts. This time we choose f(x)¼ lnx, f

0
xð Þ ¼ 1

x, and as above g 0(x)¼1,
thus g(x)¼x. Ð

lnxdx¼x lnx� Ð
dx¼x lnx�x+C

So, we finally arrive at: Ð
(lnx)2dx¼x(lnx)2�2x lnx+2x+C

7.4. a. � 1
12 e

�4x3 þ C
b. �3ln|2+cosx|+C
c. 2

7

ffiffiffi
x

p þ 2ð Þ7 þ C
d. 3ln|ln|x||+C
e. 2

3

ffiffiffi
8

p � 1
� �

7.5. a. Use
h(x)¼x4, h’(x)¼4x3,
g’(h)¼eh , g(h)¼eh

The result is 1
4 e

x4 þ C

b. Use
h xð Þ ¼ 1

4 x
4, h’ xð Þ ¼ x3,

g’ hð Þ ¼ 1þ 4hð Þ3, g hð Þ ¼ 1
16 1þ 4hð Þ4

The result is 1
16 1þ x4
� �4 þ C
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