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Matrices

Natasha Maurits

After reading this chapter you know:

• what matrices are and how they can be used,
• how to perform addition, subtraction and multiplication of matrices,
• that matrices represent linear transformations,
• the most common special matrices,
• how to calculate the determinant, inverse and eigendecomposition of a matrix, and
• what the decomposition methods SVD, PCA and ICA are, how they are related and how they

can be applied.

5.1 What Are Matrices and How Are They Used?

Matrices, in mathematics, are rectangular arrays of (usually) numbers. Their entries are called
elements and can also be symbols or even expressions. Here, we discuss matrices of numbers.
Of course, these numbers can be of any type, such as integer, real or complex (see Sect. 1.2).
For most practical applications, the matrix elements have specific meanings, such as the
distance between cities, demographic measures such as survival probabilities (represented in a
Leslie matrix) or the absence or presence of a path between nodes in a graph (represented in an
adjacency matrix), which is applied in network theory. Network theory has seen a surge of
interest in recent years because of its wide applicability in the study of e.g. social commu-
nities, the world wide web, the brain, regulatory relationships between genes, metabolic
pathways and logistics. We here first consider the simple example of roads between the four
cities in Fig. 5.1.
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A matrix M describing the distances between the cities is given by:

M ¼
0 22 14 10
22 0 8 12
14 8 0 13
10 12 13 0

2
664

3
775

Here, each row corresponds to a ‘departure’ city A–D and each column to an ‘arrival’ city
A–D. For example, the distance from city B to city C (second row, third column) is 8, as is
the distance from city C to city B (third row, second column). Cities A and B are not
connected directly, but can be reached through cities C or D. In both cases, the distance
between cities A and B amounts to 22 (14 + 8 or 12 + 10; first row, second column and
second row, first column).
One of the advantages of using a matrix instead of a table is that they can be much more

easily manipulated by computers in large-scale calculations. For example, matrices are used to
store all relevant data for weather predictions and for predictions of air flow patterns around
newly designed airfoils.
Historically, matrices, which were first known as ‘arrays’, have been used to solve systems

of linear equations (see Chap. 2 and Sect. 5.3.1) for centuries, even dating back to 1000 years
BC in China. The name ‘matrix’, however, wasn’t introduced until the nineteenth century,
when James Joseph Sylvester thought of a matrix as an entity that can give rise to smaller
matrices by removing columns and/or rows, as if they are ‘born’ from the womb of a
common parent. Note that the word ‘matrix’ is related to the Latin word for mother: ‘mater’.
By removing columns or rows and considering just one row or one column of a matrix, we

obtain so-called row- or column-matrices, which are simply row- or column-vectors, of

Fig. 5.1 Four cities A, B, C and D and the distances between them. In this example city A cannot be
reached from city B directly, but can be reached via city C or city D.
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course. Hence, vectors (see Chap. 4) are just special forms of matrices. Typically, matrices are
indicated by capital letters, often in bold (as in this book) and sometimes, when writing
manually, by underlined or overlined capital letters. The order or size of a matrix is always
indicated by first mentioning the number of rows and then the number of columns. Thus, an

m � n matrix has m rows and n columns. For example, A ¼ 1 6 � 3
0:5 7 4

� �
is a 2 � 3

matrix. When the number of rows equals the number of columns, as in the distance example
above, the matrix is called square. An element of a matrix A in its i th row and j th column can
be indicated by aij, ai,j or a(i,j). Thus, in the example matrix A above a1,2¼ 6 and a2,1 ¼ 0.5.
This is very similar to how vector elements are indicated, except that vector elements have
one index instead of two.

5.2 Matrix Operations

All common mathematical operations, such as addition, subtraction and multiplication, can
be executed on matrices, very similar to how they are executed on vectors (see Sect. 4.2.1).

5.2.1 Matrix Addition, Subtraction and Scalar Multiplication

Since the concepts of vector addition, subtraction and scalar multiplication should by now be
familiar to you, explaining the same operations for matrices becomes quite easy. The
geometrical definition that could be used for vectors is not available for matrices, so we
here limit the definition of these operations to the algebraic one. The notation for matrix
elements that was just introduced in the previous section helps to define these basic
operations on matrices. For example, addition of matrices A and B (of the same size) is
defined as:

Aþ Bð Þij ¼ aij þ bij

Thus, the element at position (i,j) in the sum matrix is obtained by adding the elements at
the same position in the matrices A and B. Subtraction of matrices A and B is defined
similarly as:

A� Bð Þij ¼ aij � bij,

and multiplication of a matrix A by a scalar s is defined as:

sAð Þij ¼ saij
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Exercises

5.1. In the figure below three cities A, B and C are indicated with two roads between them.

A B

C

There is no direct connection between cities A and C. The distance matrix between the
three cities is:

0 12 21
12 0 9
21 9 0

0
@

1
A

(a) Copy the figure and add the distances to the roads.
(b) A direct (straight) road between cities A and C is built: how does the distance matrix

change?
(c) There are also three public parks D, E and F in the area. The (shortest) distance matrix

between the cities (rows) and the parks (columns) is given by:

15 24 0
9 12 12
0 15 15

0
@

1
A

Indicate the location of the parks in the figure, assuming that the new road between A
and C has been built.

5.2. Add and subtract (i.e. first-second matrix) the following pairs of matrices:

(a)
3 4
�1 8

� �
and

2 �2
3 7

� �

(b)
3 �7 4
�2 6 5
1 �2 �9

0
@

1
A and

4 3 2
1 �2 �4
�5 8 11

0
@

1
A

(c)
1:2 3:2 �1:5
3:4 2:3 �3:2

� �
and

0:8 �1:6 0:5
1:7 �1:3 1:2

� �

5.3. Calculate

(a)
1
7
1

2
1
4

0
@

1
Aþ 3

1
0
1

0
1
0

0
@

1
A� 2

�1
0
�2

1
4
�3

0
@

1
A

(b) � 0:5 3:1
6:7 2:4

� �
� 2

1 0:7
1:2 0:7

� �
þ 1:5

4 3
8 3

� �
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5.2.2 Matrix Multiplication and Matrices as Transformations

Matrix addition, subtraction and scalar multiplication are quite straightforward generaliza-
tions of the same operations on vectors. For multiplication, the story is a little different,
although there is a close relation between matrix multiplication and the vector inner product.
A matrix product is only well defined if the number of columns in the first matrix equals the
number of rows in the second matrix. Suppose A is anm� nmatrix and B is an n� pmatrix,
then the product AB is defined by:

ABð Þij ¼
Xn
k¼1

aikbkj

If you look closer at this definition, multiplying two matrices turns out to entail repeated
vector inner product calculations, e.g. the element in the third row and second column of the
product is the inner product of the third row of the first matrix with the second column of the
second matrix. Let’s work this out for one abstract and for one concrete example:

a11
a21

a12
a22

a13
a23

� � b11 b12
b21 b22
b31 b32

0
@

1
A¼ a11b11þa12b21þa13b31 a11b12þa12b22þa13b32

a21b11þa22b21þa23b31 a21b12þa22b22þa23b32

� �

3 4 2
�2 �1 0
2 �3 7

0
@

1
A 1 2

3 4
5 6

0
@

1
A¼

3 �1þ4 �3þ2 �5 3 �2þ4 �4þ2 �6
�2 �1�1 �3þ0 �5 �2 �2�1 �4þ0 �6
2 �1�3 �3þ7 �5 2 �2�3 �4þ7 �6

0
@

1
A¼

25 34
�5 �8
28 34

0
@

1
A

Exercises

5.4. Which pairs of the following matrices could theoretically be multiplied with each other and in
which order? Write down all possible products.
A with order 2 � 3
B with order 3 � 4
C with order 3 � 3
D with order 4 � 2

5.5. What is the order (size) of the resulting matrix when multiplying two matrices of orders

(a) 2 � 3 and 3 � 7
(b) 2 � 2 and 2 � 1
(c) 1 � 9 and 9 � 1

5.6. Calculate whichever product is possible: AB, BA, none or both.

(a) A ¼ 3 4
�1 8

� �
, B ¼ 2 �2

3 7

� �

(b) A ¼
3
�2
1

�7
6
�2

0
@

1
A, B ¼

4 3 2
1 �2 �4
�5 8 11

0
@

1
A

(c) A ¼ 1:2 3:2 �1:5
3:4 2:3 �3:2

� �
, B ¼ 0:8 �1:6 0:5

1:7 �1:3 1:2

� �
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So far, we discussed matrix operations as operations on abstract entities. However,
matrices are actually commonly used to represent (linear) transformations. What this entails
can be easily demonstrated by showing the effect of the application of matrices on vectors.
Application here means that the matrix and vector are multiplied. Let’s first illustrate this

by an example. Consider a vector ~p ¼ 3
2

� �
, a matrix M ¼ 1 2

2 �2

� �
and its product

~p0 ¼ M~p ¼ 1 2
2 �2

� �
3
2

� �
¼ 7

2

� �
(see Fig. 5.2).

First, observe that when we calculateM~p another 2� 1 vector results, since we multiply a
2� 2 matrix and a 2� 1 vector. Apparently, judging from Fig. 5.2, applying the matrixM to

the vector p
*

transforms the vector; it rotates it and changes its length. To understand this

transformation, let’s see how this matrix transforms the two basis vectors of 2D space;
1
0

� �

and
0
1

� �
. These two vectors are called basis vectors, because any vector

a
b

� �
in 2D space can

be built from them by a linear combination as follows:
a
b

� �
¼ a

1
0

� �
þ b

0
1

� �
. The

matrixM transforms the first basis vector
1
0

� �
to

1
2

� �
and the second basis vector

0
1

� �
to

2
�2

� �
, i.e. the two columns of the matrix M show how the transform affects the basis

vectors. The effect ofM on any vector
a
b

� �
is thus equal toM

a
b

� �
¼ a

1
2

� �
þ b

2
�2

� �
.

For the example in Fig. 5.2 this results indeed in M
3
2

� �
¼ 3

1
2

� �
þ 2

2
�2

� �
¼ 7

2

� �
.

There are some special geometric transformation matrices, both in 2D, as well as 3D. One
that is often encountered is the rotation matrix, that leaves the length of a vector unaltered,
but rotates it around the origin in 2D or 3D. The rotation matrix has applications in e.g., the
study of rigid body movements and in the manipulation of images, as in the preprocessing of

Fig. 5.2 Illustration of how vector p
*

is transformed into vector p
*0 by matrix M (see main text).
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functional magnetic resonance imaging (fMRI) scans. The transformation matrix that rotates
a vector around the origin (in 2D) over an angle θ (counter clockwise) is given by

cos θ � sin θ
sin θ cos θ

� �
, as illustrated in Fig. 5.3 (cf. Chap. 3 on the geometrical definition of

sine and cosine).
Another common geometric transformation matrix is the shearing matrix, that transforms

a square in 2D into a parallelogram (see Fig. 5.4). Applying the matrix transformation
1 k
0 1

� �
results in shearing along the x-axis (y-coordinate remains unchanged), whereas

applying the matrix transformation
1 0
k 1

� �
results in shearing along the y-axis (x-

coordinate remains unchanged). This transformation matrix is also applied in e.g., the
preprocessing of fMRI scans.

Fig. 5.3 Illustration of how the 2D basis vectors,
1
0

� �
in red and

0
1

� �
in blue, are affected by a counter-

clockwise rotation over an angle θ. The vectors before rotation are indicated by drawn arrows, the
vectors after rotation are indicated by dotted arrows.

Fig. 5.4 Illustration of how the two 2D basis vectors are affected by shearing along the x- and y-axes.

The applied transformation matrix for shearing along the x-axis is
1 3
0 1

� �
(results in red) and the

applied transformation matrix for shearing along the y-axis is
1 0
2 1

� �
(results in blue).
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5.2.3 Alternative Matrix Multiplication

Just as there are different ways of multiplying vectors, there are also different ways of
multiplying matrices, that are less common, however. For example, matrices can be multi-
plied element-wise; this product is also referred to as theHadamard product, Schur product or
pointwise product:

A∘Bð Þij ¼ aijbij

This only works when the two matrices have the same size. Another matrix product is the
Kronecker product, which is a generalization of the tensor product (or dyadic product) for
vectors. For vectors this product is equal to an n � 1 column vector being multiplied by a
1 � n row vector, which results in an n � n matrix when following the standard multipli-
cation rules for matrices:

~a� ~b ¼ ~a~b
T ¼

a1
a2
⋮
an

0
BB@

1
CCA b1 b2 ⋯ bnð Þ ¼

a1b1 a1b2 ⋯ a1bn
a2b1 a2b2 ⋯ a2bn
⋮ ⋮ ⋱ ⋮

anb1 anb2 ⋯ anbn

0
BB@

1
CCA

For two matrices A (m � n) and B (p � q), the Kronecker product A�B is defined by:

A� B ¼
a11B a12B ⋯ a1nB
a21B a22B ⋯ a2nB
⋮ ⋮ ⋱ ⋮

am1B am2B ⋯ amnB

0
BB@

1
CCA

Note that the size of the matrices A and B does not need to match for the Kronecker
product. The Kronecker product has proven its use in the study of matrix theory (linear
algebra), e.g. in solving matrix equations such as the Sylvester equation AX + XB ¼ C for
general A, B and C (see e.g. Horn and Johnson 1994).

Exercises

5.7. Calculate the Hadamard or pointwise product of

(a)
1 2
�1 1

� �
and

2 3
4 1

� �

(b)
2 �0:3 1
1:5 7 �0:4

� �
and

1:4 9 0:5
8 �0:1 10

� �

(continued)
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5.8. Calculate the Kronecker product of

(a)
1 2
�1 1

� �
and 3 �1 4ð Þ

(b) �2 �3ð Þ and
0 1 2
3 4 5
6 7 8

0
@

1
A

5.2.4 Special Matrices and Other Basic Matrix Operations

There are some special forms of matrices and other basic operations on matrices that should
be known before we can explain more interesting examples and applications of matrices.
The identity or unit matrix of size n is a square matrix of size n � n with ones on the

diagonal and zeroes elsewhere. It is often referred to as I or, if necessary to explicitly mention
its size, as In. The identity matrix is a special diagonal matrix. More generally, a diagonal
matrix only has non-zero elements on the diagonal and zeroes elsewhere. If a diagonal matrix
is extended with non-zero elements only above or only below the diagonal, we speak about an
upper or lower triangular matrix, respectively. A matrix that is symmetric around the
diagonal, i.e. for which aij¼aji, is called symmetric. An example of a symmetric matrix is a
distance matrix, such as encountered in the very first example in this chapter. A matrix is
skew-symmetric if aij¼�aji. A matrix is called sparse if most of its elements are zero. In
contrast, a matrix whose elements are almost all non-zero is called dense. A logical matrix
(or binary or Boolean) matrix only contains zeroes and ones.
One operation that was already encountered in the previous chapter on vectors is the

transpose. The transpose of an n � m matrix A is an m � n matrix of which the elements are
defined as:

AT
� �

ij
¼ aji

A generalization of the transpose to complex-valued elements is the conjugate transpose, for
which the elements are defined by:

A∗ð Þij ¼ �aji,

where the overbar indicates the complex conjugate (see Sect. 1.2.4.1). For real matrices, the
transpose is equal to the conjugate transpose. In quantum mechanics the conjugate transpose
is indicated by † (dagger) instead of *. Notice that (AB)T ¼ BTAT and (AB)* ¼ B*A* for
matrices A and B for which the matrix product AB is possible.
Now that we have introduced the conjugate transpose, we can also introduce a few more

special (complex) matrices. For aHermitianmatrix: A¼ A*, for a normalmatrix: A*A¼ AA*
and for a unitary matrix: AA* ¼ I. Note that all unitary and Hermitian matrices are normal,
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but the reverse is not true. The unitary matrices will return when we explain singular value
decomposition in Sect. 5.3.3.
All special matrices that were introduced in this section are summarized in Table 5.1 with

their abstract definition and a concrete example.

Table 5.1 Special matrices with their abstract definition and an example

Definition Example
Identity/unit aij ¼ 0 if i 6¼ j

aij ¼ 1 if i ¼ j
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BBBB@

1
CCCCA

Diagonal aij ¼ 0 if i 6¼ j
aij 6¼ 0 if i ¼ j

2 0 0
0 �3 0
0 0 7

0
@

1
A

Lower-triangular aij ¼ 0 if i < j
aij 6¼ 0 if i � j

1 0 0
3 �2 0
�5 6 �4

0
@

1
A

Upper-triangular aij ¼ 0 if i > j
aij 6¼ 0 if i � j

1 3 19
0 �2 �8
0 0 �4

0
@

1
A

Symmetric aij ¼ aji 0 12 21
12 0 �9
21 �9 0

0
@

1
A

Skew-symmetric aij ¼ �aji 0 �12 �21
12 0 �9
21 9 0

0
@

1
A

Sparse Most elements are zero 1 0 0 0 0
0 2 0 �3 0
0 0 0:5 0 0
0 0 0 �1 0
�1 0 0 0 7

0
BBBB@

1
CCCCA

Dense Most elements are non-zero 3 7 �5 8 �1
0 2 4 �3 0
6 4 �1 34 7
2 0 6 �11 3
�1 �3 5 6 7

0
BBBB@

1
CCCCA

Logical aij 2 {0,1} 0 0 1 0 1
0 1 0 1 0
1 1 1 0 0
0 1 0 1 0
1 1 0 0 1

0
BBBB@

1
CCCCA

Hermitian A ¼ A* 3 1þ i 8
1� i 7 �i
8 i �2

0
@

1
A

Normal A*A ¼ AA* 3 1þ i 8
1� i 7 �i
8 i �2

0
@

1
A

Unitary AA* ¼ I 1
2

1þ i 1� i
1� i 1þ i

� �
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Exercises

5.9. In what sense (according to the definitions in Table 5.1) are the following matrices special?
Mention at least one property.

(a)
1 1 0
1 1 0
0 0 1

0
@

1
A

(b)
1 0 3
0 0 0
0 0 1

0
@

1
A

(c)
0 4 3
�4 0 �7
�3 7 0

0
@

1
A

(d)
1 4 3
0 1 �7
0 0 1

0
@

1
A

(e)
1 0 0
0 23 0
0 0 �7

0
@

1
A

(f)
1 0 0
0 1 0
0 0 1

0
@

1
A

5.10. Determine the conjugate transpose of

(a)
1 2 3
�i 1 �3� 2i
5 4þ 5i 3

0
@

1
A

(b)
1 2 3
�1 1 �3
5 4 0

0
@

1
A

(c)
4 0 3� 2i

19þ i �3 �3
�8i �11� i 17

0
@

1
A

5.3 More Advanced Matrix Operations and Their
Applications

Now that the basics of matrix addition, subtraction, scalar multiplication and multiplication
hold no more secrets for you, it is time to get into more interesting mathematical concepts
that rest on matrix calculus and to illustrate their applications.

5.3.1 Inverse and Determinant

One of the oldest applications of matrices is to solve systems of linear equations that were
introduced to you in Chap. 2. Consider the following system of linear equations with three
unknowns x, y and z:
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3xþ 4y� 2z ¼ 5

�2x� 2yþ z ¼ �3

xþ y� 7z ¼ �18

This system can also be written as a matrix equation:

3 4 �2
�2 �2 1
1 1 �7

0
@

1
A x

y
z

0
@

1
A ¼

5
�3
�18

0
@

1
A or as

M
x
y
z

0
@

1
A ¼

5
�3
�18

0
@

1
A where M ¼

3 4 �2
�2 �2 1
1 1 �7

0
@

1
A

Such a system and more generally, systems of n equations in n unknowns, can be solved by
using determinants, which is actually similar to using the inverse of a matrix to calculate the
solution to a system of linear equations. The inverse of a square matrix A is the matrix A�1

such that AA�1 ¼ A�1A ¼ I. The inverse of a matrix A does not always exist; if it does A is
called invertable. Notice that (AB)�1 ¼ B�1A�1 for square, invertable matrices A and B.
Now suppose that the matrix M in the matrix equation above has an inverse M�1. In that
case, the solution to the equation would be given by:

x
y
z

0
@

1
A ¼ I

x
y
z

0
@

1
A ¼ M�1M

x
y
z

0
@

1
A ¼ M�1

5
�3
�18

0
@

1
A

Mathematically, the inverse of 2 � 2 matrix
a b
c d

� �
is given by 1

ad�bc
d �b
�c a

� �

where ad � bc is the determinant
a b
c d

����
���� of the matrix. This illustrates why a square matrix

has an inverse if and only if (iff) its determinant is not zero, as division by zero would result in
infinity. For a 3 � 3 matrix or higher-dimensional matrices the inverse can still be calculated
by hand, but it quickly becomes cumbersome. In general, for a matrix A:

A�1 ¼ 1
det Að Þ adj Að Þ,

where adj(A) is the adjoint of A. The adjoint of a matrix A is the transpose of the cofactor
matrix. Each (i,j)-element of a cofactor matrix is given by the determinant of the matrix that
remains when the i-th row and j-th column are removed, multiplied by �1 if i + j is odd. In
Box 5.1 the inverse is calculated of the matrix M given in the example that we started this
section with.
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Box 5.1 Example of calculating the inverse of a matrix

To be able to calculate M�1 where M ¼
3 4 �2
�2 �2 1
1 1 �7

0
@

1
A we first need to know how to calculate

the determinant of a 3 � 3 matrix. This is done by first choosing a reference row or column and
calculating the cofactors for that row or column. Then the determinant is equal to the sum of the
products of the elements of that row or column with its cofactors. This sounds rather abstract so
let’s calculate det(M) by taking its first row as a reference.

det Mð Þ ¼ det
3 4 �2
�2 �2 1
1 1 �7

0
@

1
A

¼ 3
�2 1
1 �7

����
����� 4

�2 1
1 �7

����
����� 2

�2 �2
1 1

����
����

¼ 3 � 13� 4 � 13� 2 � 0 ¼ �13

For the matrix M its cofactor matrix is given by

�2 1
1 �7

����
���� � �2 1

1 �7

����
���� �2 �2

1 1

����
����

� 4 �2
1 �7

����
���� 3 �2

1 �7

����
���� � 3 4

1 1

����
����

4 �2
�2 1

����
���� � 3 �2

�2 1

����
���� 3 4

�2 �2

����
����

0
BBBBBB@

1
CCCCCCA

¼
13 �13 0
26 �19 1
0 1 2

0
@

1
A.

Hence, the adjoint matrix ofM is its transpose
13 26 0
�13 �19 1
0 1 2

0
@

1
A. Thus, the inverse ofM is given by:

M�1 ¼ 1
�13

13 26 0
�13 �19 1
0 1 2

0
@

1
A

To verify that the inverse that we calculated in Box 5.1 is correct, it suffices to verify that
the matrix multiplied by its inverse equals the identity matrix. Thus, for matrix M we verify
that M�1M ¼ I:

M�1M ¼ 1
�13

13 26 0

�13 �19 1

0 1 2

0
B@

1
CA

3 4 �2

�2 �2 1

1 1 �7

0
B@

1
CA

¼ � 1
13

�13 0 0

0 �13 0

0 0 �13

0
B@

1
CA ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA ¼ I

Finally, now that we have foundM�1, we can find the solution to the system of equations
that we started with:
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x

y

z

0
B@
1
CA¼M�1

5

�3

�18

0
B@

1
CA¼� 1

13

13 26 0

�13 �19 1

0 1 2

0
B@

1
CA

5

�3

�18

0
B@

1
CA¼� 1

13

�13

�26

�39

0
B@

1
CA¼

1

2

3

0
B@

1
CA

Finally, this solution can again be verified by inserting the solution in the system of
equations that was given at the beginning of this section.
Cramer’s rule is an explicit formulation of using determinants to solve systems of linear

equations. We first formulate it for a system of three linear equations in three unknowns

a1xþ b1yþ c1z ¼ d1
a2xþ b2yþ c2z ¼ d2
a3xþ b3yþ c3z ¼ d3

Its associated determinant is:

D ¼
a1 b1 c1
a2 b2 c2
a3 b3 c3

������
������:

We can also define the determinant

Dx ¼
d1 b1 c1
d2 b2 c2
d3 b3 c3

������
������,

which is the determinant of the system’s associated matrix with its first column replaced by
the vector of constants and similarly

Dy ¼
a1 d1 c1
a2 d2 c2
a3 d3 c3

������
������ and Dz ¼

a1 b1 d1
a2 b2 d2
a3 b3 d3

������
������:

Then, x, y and z can be calculated as:

x ¼ Dx

D
, y ¼ Dy

D
, z ¼ Dz

D
:

Similarly, the solution of a system of n linear equations in n unknowns:

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

0
BB@

1
CCA

x1
x2
⋮
xn

0
BB@

1
CCA ¼

b1
b2
⋮
bn

0
BB@

1
CCA or Ax ¼ b,
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according to Cramer’s rule is given by:

x1 ¼ Dx1
D , x2 ¼ Dx2

D , . . . , xn ¼ Dxn
D , where Dxi is the determinant of the matrix formed

by replacing the i-th column of A by the column vector b
*
. Note that Cramer’s rule only

applies when D 6¼0. Unfortunately, Cramer’s rule is computationally very inefficient for
larger systems and thus not often used in practice.

Exercises

5.11. Show that using Cramer’s rule to find the solution to a system of two linear equations in two
unknowns ax + by ¼ c and dx + ey ¼ f is the same as applying the inverse of the matrix
a b
d e

� �
to the vector

c
f

� �
.

5.12. Find the solution to the following systems of linear equations using Cramer’s rule:

(a) (Example 2.6) 3x+5¼5y^2x�5y¼6
(b) 4x�2y�2z¼10^2x+8y+4z¼32^30x+12y�4z¼24

5.13. Find the solution to the following systems of linear equations using the matrix inverse:

(a) (Exercise 2.4a) x � 2y ¼ 4 ^ x
3 � y ¼ 4

3
(b) (Example 2.7) 2x+y+z¼4^x�7�2y¼�3z^2y+10�2z¼3x

Now that you know how to calculate the determinant of a matrix, it is easy to recognize
that the algebraic definition of the cross-product introduced in Sect. 4.2.2.2 is similar to
calculating the determinant of a very special matrix:

~a� ~b ¼
a1

a2

a3

0
B@

1
CA�

b1

b2

b3

0
B@

1
CA ¼

a2b3 � a3b2

a3b1 � a1b3

a1b2 � a2b1

0
B@

1
CA ¼

~i ~j ~k

a1 a2 a3

b1 b2 b3

�������
�������

¼ a2 a3

b2 b3

����
����~i� a1 a3

b1 b3

����
����~jþ a1 a2

b1 b2

����
����~k

Finding the inverse of larger square matrices and thus finding the solution to larger systems
of linear equations may also be accomplished by calculating the inverse matrix by hand.
However, as you will surely have noticed when doing the exercises, finding the solution of a
system of three linear equations with three unknowns calculating the inverse matrix by hand
is already rather cumbersome, tedious and error-prone. Computers do a much better job than
we at this sort of task which is why (numerical) mathematicians have developed clever, fast
computer algorithms to determine matrix inverses. There is even a whole branch of numer-
ical mathematics that focuses on solving systems of equations that can be represented by
sparse matrices, as fast as possible (Saad 2003). The relevance of sparse matrices is that they
naturally appear in many scientific or engineering applications whenever partial differential
equations (see Box 5.2 and Chap. 6) are numerically solved on a grid. Typically, only local
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physical interactions play a role in such models of reality and thus only neighboring grid cells
interact, resulting in sparse matrices. Examples are when heat dissipation around an under-
ground gas tube or turbulence in the wake of an airfoil needs to be simulated. In Box 5.2 a
simple example is worked out to explain how a discretized partial differential equation can
result in a sparse matrix.

Box 5.2 How discretizing a partial differential equation can yield a sparse matrix

We here consider the Laplace equation for a scalar function u in two dimensions (indicated by
x and y), which is e.g. encountered in the fields of electromagnetism and fluid dynamics:

∇2u ¼ @2u
@x2

þ @2u
@y2

¼ 0

It can describe airflow around airfoils or water waves, under specific conditions. In Sect. 6.11
partial derivatives are explained in more detail. To solve this equation on a rectangle, a grid or
lattice of evenly spaced points (with distance h) can be overlaid as in Fig. 5.5.

Onemethod to discretize the Laplace equation on this grid (see for details e.g. Press et al. n.d.) is:

ui�1, j � 2ui, j þ uiþ1, j

h2 þ ui, j�1 � 2ui, j þ ui, jþ1

h2 ¼ 0

or

ui:j ¼ 1
4

ui�1, j þ uiþ1, j þ ui, j�1 þ ui, jþ1
� � ð5:1Þ

Here, i runs over the grid cells in x-direction and j runs over the grid cells in y-direction. This
discretized equation already shows that the solution in a point (i,j) (in red in the figure) is only
determined by the values in its local neighbours, i.e. the four points (i + 1,j), (i� 1,j), (i, j + 1) and (i,
j � 1) (in blue in the figure) directly surrounding it. There are alternative discretizations that use
variable spacings in the two grid directions and/or fewer or more points; the choice is determined
by several problem parameters such as the given boundary conditions.

Here, I only want to illustrate how solving this problem involves a sparse matrix. Typically,
iterative solution methods are used, meaning that the solution is approximated step-by-step
starting from an initial solution and adapting the solution at every iteration until the solution
hardly changes anymore. The solution at iteration step n + 1 (indicated by a superscript) can then
be derived from the solution at time step n e.g. as follows (cf. Eq. 5.1):

unþ1
i, j ¼ 1

4
un
i�1, j þ un

iþ1, j þ un
i, j�1 þ un

i, jþ1

� �

Here, we can recognize a (sparse) matrix transformation as I will explain now. Suppose we are
dealing with the 11� 7 grid in the figure.We can then arrange the values of u at iteration step n in
a vector e.g. by row: ~un ¼ un

1,1 ⋯ un
1,11 un

2,1 ⋯ un
2,11 un

3,1 ⋯ un
7,11

� �T and similarly for
the values of u at iteration step n + 1. The 77 � 77 matrix transforming ~un into ~unþ1 then has only
four non-zero entries and 73 zeroes in every row (with some exceptions for the treatment of the
boundary grid points) and is thus sparse. It should be noted that this particular iterative solution
method is slow and that much faster methods are available.
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5.3.2 Eigenvectors and Eigenvalues

A first mathematical concept that rests on matrix calculus and that is part of other interesting
matrix decomposition methods (see Sect. 5.3.3) is that of eigenvectors and eigenvalues. An
eigenvector ~v of a square matrix M is a non-zero column vector that does not change its
orientation (although it may change its length by a factor λ) as a result of the transformation
represented by the matrix. In mathematical terms:

M~v ¼ λ~v,

where λ is a scalar known as the eigenvalue. Eigenvectors and eigenvalues have many
applications, of which we will encounter a few in the next section. For example, they allow to
determine the principal axes of rotational movements of rigid bodies (dating back to eigh-
teenth century Euler), to find common features in images as well as statistical data reduction.
To find the eigenvectors of a matrixM, the following system of linear equations has to be

solved:

M � λIð Þ~v ¼ 0:

It is known that this equation has a solution iff the determinant of M�λI is zero. Thus,
the eigenvalues of M are those values of λ that satisfy |M�λI|¼0. This determinant is a
polynomial in λ of which the highest power is the order of the matrixM. The eigenvalues can
be found by finding the roots of this polynomial, known as the characteristic polynomial of
M. There are as many roots as the order (highest power) of the polynomial. Once the
eigenvalues are known, the related eigenvectors can be found by solving for ~v in M~v ¼ λ~v.
This probably sounds quite abstract, so a concrete example is given in Box 5.3.

Fig. 5.5 Grid with equal spacing h for numerical solution of the Laplace equation in two dimensions. To
solve for the point (i,j) (in red), values in the surrounding points (in blue) can be used.
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Box 5.3 Example of calculating the eigenvalues and eigenvectors of a matrix

To find the eigenvalues of the matrix
3 1
2 4

� �
, we first determine its characteristic equation as the

determinant

3 1
2 4

� �
� λ

1 0
0 1

� �����
���� ¼ 3� λ 1

2 4� λ

� �����
���� ¼ 3� λð Þ 4� λð Þ � 2 ¼ λ2 � 7λþ 10

Since λ2�7λ+10¼(λ�2)(λ�5), the roots of this polynomial are given by λ¼2 and λ¼5. The eigen-
vector for λ¼2 follows from:

3 1

2 4

 !
x

y

 !
¼ 2

x

y

 !
) 3x þ y

2x þ 4y

 !
¼ 2x

2y

 !

) 3x þ y ¼ 2x ^ 2x þ 4y ¼ 2y

) x þ y ¼ 0 ^ 2x þ 2y ¼ 0

) x ¼ �y

) x

y

 !
¼ �1

1

 !

Notice that
�1
1

� �
is the eigenvector in this case, because for any multiple of this vector it is true

that x ¼ �y.
Similarly, the eigenvector for λ¼5 follows from:

3 1

2 4

� �
x

y

� �
¼ 5

x

y

� �
) 3x þ y

2x þ 4y

� �
¼ 5x

5y

� �
) 3x þ y ¼ 5x ^ 2x þ 4y ¼ 5y

) �2x þ y ¼ 0 ^ 2x � y ¼ 0

) x ¼ 1
2
y

) x

y

� �
¼ 1

2

� �

Notice that
1
2

� �
is the eigenvector in this case, because for any multiple of this vector it is true

that 2x ¼ y.

Hence, the matrix
3 1
2 4

� �
has eigenvectors

�1
1

� �
and

1
2

� �
with eigenvalues 2 and

5, respectively.

Exercises

5.14. Consider the shearing matrix
1 2
0 1

� �
. Without calculation, which are the eigenvectors of

this matrix and why?

5.15. Calculate the eigenvectors and eigenvalues of

(continued)
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(a)
7 0 0
0 �19 0
0 0 2

0
@

1
A

(b)
2 1
�1 4

� �

(c)
2 2 �1
1 3 �1
1 4 �2

0
@

1
A

(d)
5 1
4 5

� �

5.3.3 Diagonalization, Singular Value Decomposition, Principal
Component Analysis and Independent Component Analysis

In the previous section I already alluded to several applications using eigenvalues and
eigenvectors. In this section I will discuss some of the most well-known and most often
used methods that employ eigendecomposition and that underlie these applications.
The simplest is diagonalization. A matrix M can be diagonalized if it can be written as

M ¼ VDV�1 ð5:2Þ

where V is an invertible matrix and D is a diagonal matrix. First note that V has to be square
to be invertible, so thatM also has to be square to be diagonalizable. Now let’s find out how
eigenvalues and eigenvectors play a role in Eq. 5.2. We can rewrite Eq. 5.2 by right
multiplication with V to:

MV ¼ VD

or similarly, when we indicate the columns of V by~vi and the elements of D by di, i¼ 1, . . .,
n, then:

M
�
~v1 ~v2 ⋯ ~vn

� ¼ �~v1 ~v2 ⋯ ~vn
�
D ¼ �d1~v1 d2~v2 ⋯ dn~vn

�
This shows that in Eq. 5.2 the columns of V must be the eigenvectors of M and the

diagonal elements of D must be the eigenvalues of M. We just noted that only square
matrices can potentially be diagonalized. What singular value decomposition does is generalize
the concept of diagonalization to any matrix, making it a very powerful method.
For an intuitive understanding of SVD you can think of a matrix as a large table of data,

e.g. describing which books from a collection of 500 a 1000 people have read. In that case
the matrix could contains ones for books (in 500 columns) that a particular reader
(in 1000 rows) read and zeroes for the books that weren’t read. SVD can help summarize
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the data in this large matrix. When SVD is applied to this particular matrix it will help
identify specific sets of books that are often read by the same readers. For example, SVD
may find that all thrillers in the collection are often read together, or all science fiction
novels, or all romantic books; the composition of these subcollections will be expressed in
the singular vectors, and their importance in the singular values. Now each reader’s reading
behavior can be expressed in a much more compact way than by just tabulating all books
that he or she read. Instead, SVD allows to say e.g., that a reader is mostly interested in
science fiction novels, or maybe that in addition, there is some interest in popular science
books. Let’s see how this compression of data can be achieved by SVD by first looking at
its mathematics.
In singular value decomposition (SVD) an m � n rectangular matrixM is decomposed into

a product of three matrices as follows:

M ¼ UΣV∗

where U is a unitary (see Table 5.1) m � m matrix, Σ an m � n diagonal matrix with
non-negative real entries and V another unitary n � n matrix. To determine these
matrices you have to calculate the sets of orthonormal eigenvectors of MM* and M*M.
This can be done, as MM* and M*M are square. The orthonormal eigenvectors of the
former are the columns of U and the orthonormal eigenvectors of the latter are the
columns of V. The square roots of the non-zero eigenvalues of MM* or M*M (which
do not differ) are the so-called singular values of M and form the diagonal elements of
Σ in decreasing order, completed by zeroes if necessary. The columns of U are referred
to as the left-singular vectors of M and the columns of V are referred to as the
right-singular vectors of M. For an example which can also be intuitively understood,
see Box 5.4.

Box 5.4 Example of SVD of a real square matrix and its intuitive understanding

To determine the SVD of the matrix M ¼ 1 �2
2 �1

� �
, we first determine the eigenvalues and

eigenvectors of the matrixM*M (which is equal toMTM in this real case) to get the singular values
and right-singular vectors ofM. Thus, we determine its characteristic equation as the determinant

1 2

�2 �1

 !
1 �2

2 �1

 !
� λ

1 0

0 1

 !�����
����� ¼ 5 �4

�4 5

 !
� λ

1 0

0 1

 !�����
����� ¼

5� λ �4

�4 5� λ

 !�����
����� ¼ 5� λð Þ2 � 16 ¼ λ2 � 10λþ 9 ¼ λ� 1ð Þ λ� 9ð Þ

The singular values (in decreasing order) then are σ1 ¼ ffiffiffi
9

p ¼ 3, σ2 ¼ ffiffiffi
1

p ¼ 1 and Σ ¼ 3 0
0 1

� �
.

The eigenvector belonging to the first eigenvalue of MTM follows from:

(continued)
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Box 5.4 (continued)

5 �4

�4 5

 !
x

y

 !
¼ 9

x

y

 !
) 5x � 4y

�4x þ 5y

 !
¼ 9x

9y

 !

) 5x � 4y ¼ 9x ^ �4x þ 5y ¼ 9y

) �4x � 4y ¼ 0 ^ �4x � 4y ¼ 0

) x ¼ �y

) x

y

 !
¼ 1

�1

 !

To determine the first column of V, this eigenvector must be normalized (divided by its length;

see Sect. 4.2.2.1): ~v1 ¼ 1ffiffiffi
2

p 1
�1

� �
.

Similarly, the eigenvector belonging to the second eigenvalue of MTM can be derived to be

~v2 ¼ 1ffiffiffi
2

p 1
1

� �
, making V ¼ 1ffiffi

2
p 1 1

�1 1

� �
. In this case, ~v1 and ~v2 are already orthogonal (see Sect.

4.2.2.1, making further adaptations to arrive at an orthonormal set of eigenvectors
unnecessary. In case orthogonalization is necessary, Gram-Schmidt orthogonalization could be
used (see Sect. 4.3.2).

In practice, to now determine U for this real 2 � 2 matrix M, it is most convenient to use that
when M¼UΣV∗(¼UΣVT), MV¼UΣ or MVΣ�1¼U (using that V∗V¼VTV¼I and Σ is real). Thus, the

first column of U is equal to ~u1 ¼ 1
σ1

M~v1 ¼ 1
3

1 �2
2 �1

� �
1ffiffiffi
2

p 1
�1

� �
¼ 1ffiffiffi

2
p 1

1

� �
and the second

column of U is equal to ~u2 ¼ 1
σ2

M~v2 ¼ 1
1

1 �2
2 �1

� �
1ffiffiffi
2

p 1
1

� �
¼ 1ffiffiffi

2
p �1

1

� �
, making

U ¼ 1ffiffi
2

p 1 �1
1 1

� �
. One can now verify that indeed M¼UΣVT.

As promised, I will now discuss how SVD can be understood by virtue of this specific example. So

let’s see what VT, Σ and U (in this order) do to some vectors on the unit circle:
1
0

� �
in blue, 1ffiffi

2
p 1

1

� �

in yellow ,
0
1

� �
in red and 1ffiffi

2
p �1

1

� �
in green, as illustrated in Fig. 5.6.

VT rotates these vectors over 45�. Σ subsequently scales the resulting vectors by factors of 3 in
the x-direction and 1 in the y-direction, after which U performs another rotation over 45�. You can
verify in Fig. 5.6 that the result of these three matrices applied successively is exactly the same as
the result of applying M directly. Thus, given that U and V are rotation matrices and Σ is a scaling
matrix, the intuitive understanding of SVD for real square matrices is that any such matrix
transformation can be expressed as a rotation followed by a scaling followed by another rotation.
It should be noted that for this intuitive understanding of SVD rotation should be understood to
include improper rotation. Improper rotation combines proper rotation with reflection
(an example is given in Exercise 5.16(a)).

Exercises

5.16. Calculate the SVD of

(a)
2 1
1 2

� �

(b)
2 0
0 1

� �

(continued)
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5.17. For the SVD of M such that M¼UΣV∗ prove that the columns of U can be determined from
the eigenvectors of MM*.

Now that the mathematics of SVD and its intuitive meaning have been explained it is
much easier to explain how SVD can be used to achieve data compression. When you’ve
calculated the SVD of a matrix, representing e.g., the book reading behavior mentioned
before, or the pixel values of a black-and-white image, you can compress the information by
maintaining only the largest L singular values in Σ, setting all other singular values to zero,
resulting in a sparser matrix Σ

0
. When you then calculate M

0¼UΣ
0
V∗, you’ll find that only

the first L columns of U and V remain relevant, as all other columns will be multiplied by
zero. So instead of keeping the entire matrix M in memory, you only need to store a limited
number of columns of U and V. The fraction of information that is maintained in this
manner is determined by the fraction of the sum of the eigenvalues that are maintained
divided by the sum of all eigenvalues. In the reference list at the end of this chapter you’ll find
links to an online SVD calculator and examples of data compression using SVD, allowing
you to explore this application of complex matrix operations further.

Fig. 5.6 Visualization of SVD for real square matrices to gain an intuitive understanding.
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Another method that is basically the same as SVD, that is also used for data compression
but is formulated a bit differently is principal component analysis or PCA. PCA is typically
described as a method that transforms data to a new coordinate system such that the largest
variance is found along the first new coordinate (first principal component or PC), the next
largest variance is found along the second new coordinate (second PC) etcetera. Let me
explain this visually by an example in two dimensions. Suppose that the data is distributed as
illustrated in Fig. 5.7 (left).
Here, we can order the data in a matrix X of dimensions n� 2, where each row contains a

data point (xi,yi), i¼ 1. . .n. In a p-dimensional space, our data matrix would have p columns.
To perform PCA of the data (PC decomposition of this matrix), first the data is mean-
centered (Fig. 5.7 (middle)), such that the mean in every dimension becomes zero. The next
step of PCA can be thought of as fitting an ellipsoid (or ellipse in two dimensions) to the data
(Fig. 5.7 (right)). The main axes of this ellipsoid represent the PCs; the longest axis the first
PC, the next longest axis the second PC etcetera. Thus, long axes represent directions in the
data with a lot of variance, short axes represent directions of little variance. The axes of the
ellipsoid are represented by the orthonormalized eigenvectors of the covariance matrix of the
data. The covariance matrix is proportional to X*X (or XTX for real matrices). The propor-
tion of the variance explained by a PC is equal to the eigenvalue belonging to the
corresponding eigenvector divided by the sum of all eigenvalues. This must sound familiar:
compare it to the explanation of the information maintained during data compression using
SVD in the previous paragraph. Mathematically, the PC decomposition of the n � p matrix
X is given by T ¼ XW, where W (for ‘weights’) is a p � p matrix whose columns are the
eigenvectors of X*X and T is an n � p matrix containing the component scores.
That PCA and SVD are basically the same can be understood as follows. We know now

that the SVD of a matrix M is obtained by calculating the eigenvectors of M*M or MTM.
And indeed, when the SVD of X is given by X¼UΣWT, then XTX¼(UΣWT)TUΣWT¼
WΣUTUΣWT¼WΣ2WT. Thus, the eigenvectors of XTX are the columns of W, i.e. the
right-singular vectors of X. Or, in terms of the PC decomposition of X: T¼XW¼UΣWT

W¼UΣ. Hence, each column of T is equal to the left singular vector of X times the
corresponding singular value. Also notice the resemblance between Figs. 5.6 and 5.7.
As SVD, PCA is mostly used for data or dimensionality reduction (compression). By

keeping only the first L components that explain most of the variance, high-dimensional

Fig. 5.7 Illustration of PCA in two dimensions. Left: example data distribution. Middle: mean-centered
data distribution. Right: fitted ellipse and principal components PC1 (red) and PC2 (yellow).
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data may become easier to store, visualize and understand. This is achieved by, again,
truncating the matrices T and W to their first L columns. An example of dimensionality
reduction from work in my own group (collaboration with Dr. O.E. Martinez Manzanera) is
to use PCA to derive simple quantitative, objective descriptors of movement to aid clinicians
in obtaining a diagnosis of specific movement disorders. In this work we recorded and
analyzed fingertip movement of ataxia patients performing the so-called finger-to-nose test,
in which they are asked to repeatedly move their index finger from their nose to the fingertip
of an examiner. In healthy people, the fingertip describes a smooth curve during the finger-
to-nose task, while in ataxia patients, the fingertip trajectory is much more irregular. To
describe the extent of irregularity, we performed PCA on the coordinates of the fingertip
trajectory, assuming that the trajectory of healthy participants would be mostly in a plane,
implying that for them two PCs would explain almost all of the variance in the data. Hence,
as an application of dimensionality reduction using PCA, the variance explained by the first
two PCs provides a compact descriptor of the regularity of movement during this task. This
descriptor, together with other movement features, was subsequently used in a classifier to
distinguish patients with ataxia from patients with a milder coordination problem and from
healthy people.
Finally, I would like to briefly introduce the method of independent component analysis

or ICA, here. For many it is confusing what the difference is between PCA and ICA and
when to use one or the other. As explained before, PCA minimizes the covariance (second
order moment) of the data by rotating the basis vectors, thereby employing Gaussianity or
normality of the data. This means that the data have to be normally distributed for PCA to
work optimally. ICA, on the other hand, can determine independent components for
non-Gaussian signals by minimizing higher order moments of the data (such as skewness
and kurtosis) that describe how non-Gaussian their distribution is. Here, independence
means that knowing the values of one component does not give any information about
another component. Thus, if the data is not well characterized by its variance then ICA
may work better than PCA. Or, vice versa, when the data are Gaussian, linear and
stationary, PCA will probably work. In practice, when sensors measure signals of several
sources at the same time, ICA is typically the method of choice. Examples of signals that
are best analyzed by ICA are simultaneous sound signals (such as speech) that are picked
up by several receivers (such as microphones) or electrical brain activity recorded by
multiple EEG electrodes. The ICA process is also referred to as blind source separation.
Actually, our brain does a very good job at separating sources, when we identify our own
name being mentioned in another conversation amidst the buzz of a party (the so-called
‘cocktail party effect’). There are many applications of ICA in science, such as identifying
and removing noise signals from EEG measurements (see e.g. Islam et al. 2016) and
identifying brain functional connectivity networks in functional MRI measurements (see
e.g. Calhoun and Adali 2012). In the latter case PCA and ICA are actually sometimes used
successively, when PCA is first used for dimensionality reduction followed by ICA for
identifying connectivity networks.
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Glossary

Adjacency matrix Matrix with binary entries (i,j) describing the presence (1) or absence (0) of a path
between nodes i and j.

Adjoint Transpose of the cofactor matrix.
Airfoil Shape of an airplane wing, propeller blade or sail.
Ataxia A movement disorder or symptom involving loss of coordination.
Basis vector A set of (N-dimensional) basis vectors is linearly independent and any vector in

N-dimensional space can be built as a linear combination of these basis vectors.
Boundary conditions Constraints for a solution to an equation on the boundary of its domain.
Cofactormatrix The (i,j)-element of this matrix is given by the determinant of the matrix that remains

when the i-th row and j-th column are removed from the original matrix, multiplied by�1 if i + j is
odd.

Conjugate transpose Generalization of transpose; a transformation of a matrix A indicated by A* with
elements defined by A∗ð Þij ¼ �aji .

Dense matrix A matrix whose elements are almost all non-zero.
Determinant Can be seen as a scaling factor when calculating the inverse of a matrix.
Diagonalization Decomposition of a matrixM such that it can be written asM¼VDV�1 where V is an

invertible matrix and D is a diagonal matrix.
Diagonal matrix A matrix with only non-zero elements on the diagonal and zeroes elsewhere.
Discretize To represent an equation on a grid.
EEG Electroencephalography; a measurement of electrical brain activity.
Eigendecomposition To determine the eigenvalues and eigenvectors of a matrix.
Element As in ‘matrix element’: one of the entries in a matrix.
Gaussian Normally distributed.
Graph A collection of nodes or vertices with paths or edges between them whenever the nodes are

related in some way.
Hadamard product Element-wise matrix product.
Identity matrix A square matrix with ones on the diagonal and zeroes elsewhere, often referred to as I.

The identity matrix is a special diagonal matrix.
Independent component analysis A method to determine independent components of non-Gaussian

signals by minimizing higher order moments of the data.
Inverse The matrix A�1 such that AA�1 ¼ A�1A ¼ I.
Invertable A matrix that has an inverse.
Kronecker product Generalization of the outer product (or tensor product or dyadic product) for

vectors to matrices.
Kurtosis Fourth-order moment of data, describing how much of the data variance is in the tail of its

distribution.
Laplace equation Partial differential equation describing the behavior of potential fields.
Left-singular vector Columns of U in the SVD of M: M¼UΣV∗

.

Leslie matrix Matrix with probabilities to transfer from one age class to the next in a population
ecological model of population growth.

Logical matrix A matrix that only contains zeroes and ones (also: binary or Boolean matrix).
Matrix A rectangular array of (usually) numbers.
Network theory The study of graphs as representing relations between different entities, such as in a

social network, brain network, gene network etcetera.
Order Size of a matrix.
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Orthonormal Orthogonal vectors of length 1.
Partial differential equation An equation that contains functions of multiple variables and their partial

derivatives (see also Chap. 6).
Principal component analysis Method that transforms data to a new coordinate system such that the

largest variance is found along the first new coordinate (first PC), the then largest variance is found
along the second new coordinate (second PC) etcetera.

Right-singular vector Columns of V in the SVD of M: M¼UΣV∗

Root Here: a value of λ that makes the characteristic polynomial |M�λI| of the matrix M equal to
zero.

Scalar function Function with scalar values.
Shearing To shift along one axis.
Singular value Diagonal elements of Σ in the SVD of M: M¼UΣV∗

.

Singular value decomposition The decomposition of an m � n rectangular matrixM into a product of
three matrices such that M¼UΣV∗ where U is a unitary m � m matrix, Σ an m � n diagonal
matrix with non-negative real entries and V another unitary n � n matrix.

Skewness Third-order moment of data, describing asymmetry of its distribution.
Skew-symmetric matrix A matrix A for which aij¼�aji.
Sparse matrix A matrix with most of its elements equal to zero.
Stationary Time-dependent data for which the most important statistical properties (such as mean

and variance) do not change over time.
Symmetric matrix A matrix A that is symmetric around the diagonal, i.e. for which aij¼aji.
Transformation Here: linear transformation as represented by matrices. A function mapping a set onto

itself (e.g. 2D space onto 2D space).
Transpose A transformation of a matrix A indicated by AT with elements defined by (AT)ij¼aji.
Triangular matrix A diagonal matrix extended with non-zero elements only above or only below the

diagonal.
Unit matrix Identity matrix.

Symbols Used in This Chapter (in Order of Their Appearance)

M or M Matrix (bold and capital letter in text, italic and capital letter in equations)
(�)ij Element at position (i,j) in a matrixXn
k¼1

Sum over k, from 1 to n

~� Vector
θ Angle
∘ Hadamard product, Schur product or pointwise matrix product
� Kronecker matrix product
�T (Matrix or vector) transpose
�∗ (Matrix or vector) conjugate transpose
† Used instead of * to indicate conjugate transpose in quantum mechanics
��1 (Matrix) inverse
|�| (Matrix) determinant
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Overview of Equations, Rules and Theorems for Easy
Reference

Addition, subtraction and scalar multiplication of matrices
Addition of matrices A and B (of the same size):

Aþ Bð Þij ¼ aij þ bij

Subtraction of matrices A and B (of the same size):

A� Bð Þij ¼ aij � bij

Multiplication of a matrix A by a scalar s:

sAð Þij ¼ saij

Basis vector principle

Any vector
a
b

� �
(in 2D space) can be built from the basis vectors

1
0

� �
and

0
1

� �
by a linear

combination as follows:
a
b

� �
¼ a

1
0

� �
þ b

0
1

� �
.

The same principle holds for vectors in higher dimensions.

Rotation matrix (2D)
The transformation matrix that rotates a vector around the origin (in 2D) over an angle θ

(counter clockwise) is given by
cos θ � sin θ
sin θ cos θ

� �
.

Shearing matrix (2D)
1 k
0 1

� �
: shearing along the x-axis (y-coordinate remains unchanged)

1 0
k 1

� �
: shearing along the y-axis (x-coordinate remains unchanged)

Matrix product
Multiplication AB of an m � n matrix A with an n � p matrix B:

ABð Þij ¼
Xn
k¼1

aikbkj

Hadamard product, Schur product or pointwise product:

A∘Bð Þij ¼ aijbij
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Kronecker product:

A� B ¼
a11B a12B ⋯ a1nB
a21B a22B ⋯ a2nB
⋮ ⋮ ⋱ ⋮

am1B am2B ⋯ amnB

0
BB@

1
CCA

Special matrices
Hermitian matrix: A ¼ A*
normal matrix: A*A ¼ AA*
unitary matrix: AA* ¼ I

where A∗ð Þij ¼ �aji defines the conjugate transpose of A.

Matrix inverse
For a square matrix A the inverse A�1 ¼ 1

det Að Þ adj Að Þ, where det(A) is the determinant of

A and adj(A) is the adjoint of A (see Sect. 5.3.1).

Eigendecomposition
An eigenvector ~v of a square matrix M is determined by:

M~v ¼ λ~v,

where λ is a scalar known as the eigenvalue

Diagonalization
Decomposition of a square matrix M such that:

M ¼ VDV�1

where V is an invertible matrix and D is a diagonal matrix

Singular value decomposition
Decomposition of an m � n rectangular matrix M such that:

M ¼ UΣV∗

where U is a unitary m � m matrix, Σ an m � n diagonal matrix with non-negative real
entries and V another unitary n � n matrix.
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Answers to Exercises

5.1. (a)

A B

C

12

9

(b) The direct distance between cities A and C can be calculated according to
Pythagoras’ theorem as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 þ 92

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

144þ 81
p ¼ ffiffiffiffiffiffiffiffi

225
p ¼ 15. Hence, the

distance matrix becomes
0 12 15
12 0 9
15 9 0

0
@

1
A.

(c)

A/F B

C/D

E
12

5.2. The sum and difference of the pairs of matrices are:

(a)
5 2
2 15

� �
and

1 6
�4 1

� �

(b)
7 �4 6
�1 4 1
�4 6 2

0
@

1
A and

�1 �10 2
�3 8 9
6 �10 �20

0
@

1
A

(c)
2 1:6 �1
5:1 1 �2

� �
and

0:4 4:8 �2
1:7 3:6 �4:4

� �

5.3. (a)
6
7
8

0
�4
10

0
@

1
A

(b)
3:5 0
2:9 0:7

� �

5.4. Possibilities for multiplication are AB, AC, BD, CB and DA.

5.5. (a) 2 � 7
(b) 2 � 1
(c) 1 � 1
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5.6. (a) AB ¼ 18 22
22 58

� �
, BA ¼ 8 �8

2 68

� �

(b) BA ¼
8
3

�20

�14
�11
61

0
@

1
A

(c) no matrix product possible

5.7. (a)
2 6
�4 1

� �

(b)
2:8 �2:7 0:5
12 �0:7 �4

� �

5.8. (a)
3 �1
�3 1

4 6
�4 3

�2 8
�1 4

� �

(b)
0 �2 �4
�6 �8 �10
�12 �14 �16

0 �3 �6
�9 �12 �15
�18 �21 �24

0
@

1
A

5.9. (a) symmetric, logical
(b) sparse, upper-triangular
(c) skew-symmetric
(d) upper-triangular
(e) diagonal, sparse
(f) identity, diagonal, logical, sparse

5.10. (a)
1 i 5
2 1 4� 5i
3 �3þ 2i 3

0
@

1
A

(b)
1 �1 5
2 1 4
3 �3 0

0
@

1
A

(c)
4 19� i 8i
0 �3 �11þ i

3þ 2i �3 17

0
@

1
A

5.11. Using Cramer’s rule we find that x ¼ Dx

D
¼ c b

f e

����
����= a b

d e

����
���� ¼ ce � bf

ae � bd
and

y ¼Dy

D
¼ a c

d f

����
����= a b

d e

����
����¼ af � cd

ae � bd
. From Sect. 5.3.1 we obtain that the inverse of the

matrix
a b
d e

� �
is equal to

1
ae � bd

e �b
�d a

� �
and the solution to the system of linear
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equations is
1

ae � bd
e �b
�d a

� �
c
f

� �
¼ ce � bfð Þ= ae � bdð Þ

af � cdð Þ= ae � bdð Þ
� �

which is the

same as the solution obtained using Cramer’s rule.

5.12. (a) x¼�11, y ¼ �535

(b) D¼
4 �2 �2
2 8 4
30 12 �4

������
������¼4 8 ��4� 4 � 12ð Þ � � � 2 2 � �4� 30 � 4ð Þþ � � 2 2 � 12ð

�30 � 8Þ ¼ �144

Dx ¼
10 �2 �2
32 8 4
24 12 �4

������
������ ¼ �1632 Dy ¼

4 10 �2
2 32 4
30 24 �4

������
������ ¼ 2208

Dz ¼
4 �2 10
2 8 32
30 12 24

������
������ ¼ �4752

Thus, x ¼ Dx

D
¼ �1632

�144
¼ 11

1
3
, y ¼ Dy

D
¼ 2208

�144
¼ �15

1
3

and

z ¼ Dz

D
¼ �4752

�144
¼ 33

5.13. (a) x ¼ 4, y ¼ 0
(b) x ¼ 2, y ¼ �1, z ¼ 1

5.14. This shearing matrix shears along the x-axis and leaves y-coordinates unchanged (see
Sect. 5.2.2). Hence, all vectors along the x-axis remain unchanged due to this

transformation. The eigenvector is thus
1
0

� �
with eigenvalue 1 (since the length of

the eigenvector is unchanged due to the transformation).

5.15. (a) λ1¼7 with eigenvector
1
0
0

0
@

1
A (x ¼ x, y ¼ 0, z ¼ 0), λ2¼�19 with eigenvector

0
1
0

0
@

1
A (x ¼ 0, y ¼ y, z ¼ 0) and λ3¼2 with eigenvector

0
0
1

0
@

1
A (x ¼ 0, y ¼ 0,

z ¼ z).

(b) λ¼3 (double) with eigenvector
1
1

� �
(y ¼ x).

(c) λ1¼1 with eigenvector
�1
1
1

0
@

1
A (x¼�z, y¼ z), λ2¼�1 with eigenvector

1
1
5

0
@

1
A

(5x ¼ z, 5y ¼ z) and λ3¼3 with eigenvector
1
1
1

0
@

1
A (x ¼ y ¼ z).
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(d) λ1¼3 with eigenvector
1
�2

� �
(y ¼ �2x) and λ2¼7 with eigenvector

1
2

� �
(y ¼ 2x).

5.16. (a) To determine the SVD, we first determine the eigenvalues and eigenvectors ofMT

M to get the singular values and right-singular vectors ofM. Thus, we determine its
characteristic equation as the determinant

2 1

1 2

 !
2 1

1 2

 !
� λ

1 0

0 1

 !�����
����� ¼

5 4

4 5

 !
� λ

1 0

0 1

 !�����
����� ¼

5� λ 4

4 5� λ

 !�����
����� ¼ 5� λð Þ2 � 16 ¼ λ2 � 10λþ 9 ¼ λ� 1ð Þ λ� 9ð Þ

Thus, the singular values are σ1 ¼
ffiffiffi
9

p ¼ 3 and σ1 ¼
ffiffiffi
1

p ¼ 1 andΣ ¼ 3 0
0 1

� �
.

The eigenvector belonging to the first eigenvalue of MTM follows from:

5 4

4 5

� �
x

y

� �
¼ 9

x

y

� �
) 5xþ 4y

4xþ 5y

� �
¼ 9x

9y

� �
) 5xþ 4y ¼ 9x ^ 4xþ 5y ¼ 9y

) �4xþ 4y ¼ 0 ^ 4x� 4y ¼ 0

) x ¼ y

) x

y

� �
¼ 1

1

� �

To determine the first column of V, this eigenvector must be normalized (divided by

its length; see Sect. 4.2.2.1) and thus ~v1 ¼ 1ffiffiffi
2

p 1
1

� �
.

Similarly, the eigenvector belonging to the second eigenvalue ofMTM can be derived

to be~v2 ¼ 1ffiffiffi
2

p 1
�1

� �
, makingV ¼ 1ffiffi

2
p 1 1

1 �1

� �
. In this case,~v1 and~v2 are already

orthogonal (see Sect. 4.2.2.1), making further adaptations to arrive at an orthonormal
set of eigenvectors unnecessary.

To determine U we use that ~u1 ¼ 1
σ1

M~v1 ¼ 1
3

2 1
1 2

� �
1ffiffiffi
2

p 1
1

� �
¼ 1ffiffiffi

2
p 1

1

� �
and

~u2 ¼ 1
σ2

M~v2 ¼ 1
1

2 1
1 2

� �
1ffiffiffi
2

p 1
�1

� �
¼ 1ffiffiffi

2
p 1

�1

� �
, making U ¼ 1ffiffi

2
p 1 1

1 �1

� �
.

You can now verify yourself that indeed M¼UΣV∗.
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(b) Taking a similar approach, we find that

U ¼ 1 0
0 1

� �
, Σ ¼ 2 0

0 1

� �
and V ¼ 1 0

0 1

� �
.

5.17. If M¼UΣV∗ and using that both U and V are unitary (see Table 5.1), then MM∗¼
UΣV∗(UΣV∗)∗¼UΣV∗VΣU∗¼UΣ2U∗. Right-multiplying both sides of this equation
with U and then using that Σ2 is diagonal, yields MM∗U¼UΣ2¼Σ2U. Hence, the
columns of U are eigenvectors of MM* (with eigenvalues equal to the diagonal
elements of Σ2).
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