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Preface

Almost every student or scientist will at some point run into mathematical formulas or ideas
in scientific papers that may be hard to understand or apply, given that formal math
education may be some years ago. These math issues can range from reading and under-
standing mathematical symbols and formulas to using complex numbers, dealing with
equations involved in calculating medication equivalents, applying the General Linear
Model (GLM) used in, e.g., neuroimaging analysis, finding the minimum of a function,
applying independent component analysis, or choosing the best filtering approach. In this
book we explain the theory behind many of these mathematical ideas and methods and
provide readers with the tools to better understand them. We revisit high-school mathemat-
ics and extend and relate them to the mathematics you need to understand and apply the
math you may encounter in the course of your research. In addition, this book teaches you to
understand the math and formulas in the scientific papers you read. To achieve this goal, each
chapter mixes theory with practical pen-and-paper exercises so you (re)gain experience by
solving math problems yourself. To provide context, clarify the math, and help readers apply
it, each chapter contains real-world and scientific examples. We have also aimed to convey an
intuitive understanding of many abstract mathematical concepts.
This book was inspired by a lecture series we developed for junior neuroscientists with very

diverse scientific backgrounds, ranging from psychology to linguistics. The initial idea for this
lecture series was sparked by a PhD student, who surprised Dr. Ćurči�c-Blake by not being
able to manipulate an equation that involved exponentials, even though she was very bright.
Initially, the PhD student even sought help from a statistician who provided a very complex
method to calculate the result she was looking for, which she then implemented in the
statistical package SPSS. Yet, simple pen-and-paper exponential and logarithm arithmetic
would have solved the problem. Asking around in our departments showed that the problem
this particular PhD student encountered was just an example of a more widespread problem
and it turned out that many more junior (as well as senior) researchers would be interested in
a refresher course about the essentials of mathematics. The first run of lectures in 2014 got
very positive feedback from the participants, showing that there is a need for mathematics
explained in an accessible way for a broad scientific audience and that the authors’ approach
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provided that. Since then, we have used our students’ feedback to improve our approach and
this book and its affordable paperback format now make this approach to refreshing the
‘math you know you knew’ accessible for a wide readership.
Instead of developing a completely new course, we could have tried to build our course on

an existing introductory mathematics book. And of course there are ample potentially
suitable mathematics books around. Yet, we find that most are too difficult when you are
just looking for a quick introduction to what you learned in high school but forgot about. In
addition, most mathematics books that are aimed at bachelor-and-up students or
non-mathematician researchers present mathematics in a mathematical way, with strict
rigor, forgetting that readers like to gain an intuitive understanding and ascertain the purpose
of what they are learning. Furthermore, many students and researchers who did not study
mathematics can have trouble reading and understanding mathematical symbols and equa-
tions. Even though our book is not void of mathematical symbols and equations, the
introduction to each mathematical topic is more gradual, taking the reader along, so that
the actual mathematics becomes more understandable. With our own firm backgrounds in
mathematics (Prof. Maurits) and physics (Dr. Ćurči�c-Blake) and our working experience and
collaborations in the fields of biophysical chemistry, neurology, psychology, computer
science, linguistics, biophysics, and neuroscience, we feel that we have the rather unique
combination of skills to write this book.
We envisage that undergraduate students and scientists (from PhD students to professors)

in disciplines that build on or make use of mathematical principles, such as neuroscience,
biology, psychology, or economics, would find this book helpful. The book can be used as a
basis for a refresher course of the essentials of (mostly high-school) mathematics, as we use it
now. It is also suited for self-study, since we provide ample examples, references, exercises,
and solutions. The book can also be used as a reference book, because most chapters can be
read and studied independently. In those cases where earlier discussed topics are needed, we
refer to them.
We owe gratitude to several people who have helped us in the process of writing this book.

First and foremost, we would like to thank the students of our refresher course for their
critical but helpful feedback. Because they did many exercises in the book first, they also
helped us to correct errors in answers. The course we developed was also partially taught by
other scientists who helped us shape the book and kindly provided some materials. Thank
you Dr. Cris Lanting, Dr. Jan Bernard Marsman, and Dr. Remco Renken. Professor Arthur
Veldman critically proofread several chapters, which helped incredibly in, especially, clarify-
ing some (too) complicated examples.
Dr. Ćurči�c-Blake thanks her math school teachers from Tuzla, whom she appreciates and

always had a good understanding with. While the high-school math was very easy, she had to
put some very hard work in to grasp the math that was taught in her studies of physics. This is
why she highly values Professor Milan Vujiči�c (who taught mathematical physics) and
Professor Enes Udoviči�c (who taught mathematics 1 and 2) from Belgrade University who
encouraged her to do her best and to learn math. She would like to thank her colleagues for
giving her ideas for the book and Prof. Maurits for doing the majority of work for this book.
Her personal thanks go to her parents Branislav and Spasenka, who always supported her,
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her sons Danilo and Matea for being happy children, and her husband Graeme Blake for
enabling her, while writing chapters of this book.
One of the professional tasks Professor Maurits enjoys most is teaching and supervising

master students and PhD students, finding it very inspiring to see sparks of understanding
and inspiration ignite in these junior scientists. With this book she hopes to ignite a similar
spark of understanding and hopefully enjoyment toward mathematics in a wide audience of
scientists, similar to how the many math teachers she has had since high school did in her.
She thanks her students for asking math questions that had her dive into the basics of
mathematics again and appreciate it once more for its logic and beauty, her parents for
supporting her to study mathematics and become the person and researcher she is now, and,
last but not least, Johan for bearing with her through the writing of ‘yet’ another book and
providing many cups of tea.
Finally, we thank you, the reader, for opening this book in an effort to gain more

understanding of mathematics. We hope you enjoy reading it, that it gives you answers to
your questions, and that it may help you in your scientific endeavors.

Groningen, The Netherlands Natasha Maurits
Groningen, The Netherlands
April 2017

Branislava Ćurči�c-Blake
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1
Numbers and Mathematical Symbols

Natasha Maurits

After reading this chapter you know:

• what numbers are and why they are used,
• what number classes are and how they are related to each other,
• what numeral systems are,
• the metric prefixes,
• how to do arithmetic with fractions,
• what complex numbers are, how they can be represented and how to do arithmetic with them,
• the most common mathematical symbols and
• how to get an understanding of mathematical formulas.

1.1 What Are Numbers and Mathematical Symbols
and Why Are They Used?

A refresher course on mathematics can not start without an introduction to numbers. Firstly,
because one of the first study topics for mathematicians were numbers and secondly, because
mathematics becomes really hard without a thorough understanding of numbers. The branch
of mathematics that studies numbers is called number theory and arithmetic forms a part of
that. We have all learned arithmetic starting from kindergarten throughout primary school
and beyond. This suggests that an introduction to numbers is not even necessary; we use
numbers on a day-to-day basis when we count and measure and you might think that
numbers hold no mysteries for you. Yet, arithmetic can be as difficult to learn as reading and
some people never master it, leading to dyscalculia.

N. Maurits (*)
Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
e-mail: n.m.maurits@umcg.nl

1© Springer International Publishing AG 2017
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So, what is a number? You might say: ‘well, five is a number and 243, as well as
1963443295765’. This is all true, but what is the essence of a number? You can think of a
number as an abstract representation of a quantity that we can use to measure and count. It is
represented by a symbol or numeral, e.g., the number five can be represented by the Arabic
numeral 5, by the Roman numeral V, by five fingers, by five dots on a dice, by ||||, by five
abstract symbols such as ••••• and in many other different ways. Synesthetes even associate
numbers with colors. But, importantly, independent of how a number is represented, the
abstract notion of this number does not change.
Most likely, (abstract) numbers were introduced after people had developed a need to

count. Counting can be done without numbers, by using fingers, sticks or pebbles to
represent single or groups of objects. It allows keeping track of stock and simple communi-
cation, but when quantities become larger, this becomes more difficult, even when abstract
words for small quantities are available. A more compact way of counting is to put a mark—
like a scratch or a line—on a stick or a rock for each counted object. We still use this
approach when tally marking. However, marking does not allow dealing with large numbers
either. Also, these methods do not allow dealing with negative numbers (as e.g., encountered
as debts in accounting), fractions (to indicate a part of a whole) or other even more complex
types of numbers.
The reason that we can deal with these more abstract types of numbers, that no longer

relate to countable series of objects, is that numeral systems have developed over centuries. In
a numeral system a systematic method is used to create number words, so that it is not
necessary to remember separate words for all numbers, which would be sheer impossible.
Depending on the base that is used, this systematic system differs between languages and
cultures. In many current languages and cultures base 10 is used for the numeral system,
probably as a result of initially using the 10 digits (fingers and thumbs) to count. In this
system, enumeration and numbering is done by tens, hundreds, thousands etcetera. But
remnants of older counting systems are still visible, e.g. in the words twelve (which is not
ten-two) or quatre-vingts (80 in French; four twenties). For a very interesting, easy to read
and thorough treatise on numbers please see Posamenter and Thaller (2015).
We now introduce the first mathematical symbols in this book; for numbers. In the base

10 numeral system the Arabic numerals 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 are used. In general,
mathematical symbols are useful because they help communicating about abstract mathe-
matical structures, and allow presenting such structures in a concise way. In addition, the use
of symbols speeds up doing mathematics and communicating about it considerably, also
because every symbol in its context only has one single meaning. Interestingly, mathematical
symbols do not differ between languages and thus provide a universal language of mathe-
matics. For non-mathematicians, the abstract symbols can pose a problem though, because it
is not easy to remember their meaning if they are not used on a daily basis. Later in this
chapter, we will therefore introduce and explain often used mathematical symbols and some
conventions in writing mathematics. In this and the next chapters, we will also introduce
symbols that are specific to the topic discussed in each chapter. They will be summarized at
the end of each chapter.
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1.2 Classes of Numbers

When you learn to count, you often do so by enumerating a set of objects. There are
numerous children (picture) books aiding in this process by showing one ball, two socks,
three dolls, four cars etcetera. The first numbers we encounter are thus 1, 2, 3, . . . Note that
‘. . .’ is a mathematical symbol that indicates that the pattern continues. Next comes zero.
This is a rather peculiar number, because it is a number that signifies the absence of
something. It also has its own few rules regarding arithmetic:

aþ 0 ¼ a
a� 0 ¼ 0
a

0
¼ 1

Here, a is any number and1 is the symbol for infinity, the number that is larger than any
countable number.
Together, 0, 1, 2, 3, . . . are referred to as the natural numbers with the symbol ℕ. A special

class of natural numbers is formed by the prime numbers or primes; natural numbers >1 that
only have 1 and themselves as positive divisors. The first prime numbers are 2, 3, 5, 7, 11, 13,
17, 19 etcetera. An important application of prime numbers is in cryptography, where they
make use of the fact that it is very difficult to factor very large numbers into their primes.
Because of their use for cryptography and because prime numbers become rarer as numbers
get larger, special computer algorithms are nowadays used to find previously unknown
primes.
The basis set of natural numbers can be extended to include negative numbers: . . ., �3,

�2, �1, 0, 1, 2, 3, . . . Negative numbers arise when larger numbers are subtracted from
smaller numbers, as happens e.g. in accounting, or when indicating freezing temperatures
indicated in �C (degrees Centigrade). These numbers are referred to as the integer numbers
with symbol ℤ (for ‘zahl’, the German word for number). Thus ℕ is a subset of ℤ.
By dividing integer numbers by each other or taking their ratio, we get fractions or rational

numbers, which are symbolized byℚ (for quotient). Any rational number can be written as a
fraction, i.e. a ratio of an integer, the numerator, and a positive integer, the denominator. As
any integer can be written as a fraction, namely the integer itself divided by 1, ℤ is a subset of
ℚ. Arithmetic with fractions is difficult to learn for many; to refresh your memory the main
rules are therefore repeated in Sect. 1.2.1.
Numbers that can be measured but that can not (always) be expressed as fractions are

referred to as real numbers with the symbol ℝ. Real numbers are typically represented by
decimal numbers, in which the decimal point separates the ‘ones’ digit from the ‘tenths’ digit
(see also Sect. 1.2.3 on numeral systems) as in 4.23 which is equal to 423

100. There are finite
decimal numbers and infinite decimal numbers. The latter are often indicated by providing a
finite number of the decimals and then the ‘. . .’ symbol to indicate that the sequence
continues. For example, π ¼ 3.1415 . . . Real numbers such as π that are not rational are
called irrational. Any rational number is real, however, and therefore ℚ is a subset of ℝ.
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The last extension of the number sets to be discussed here is the set of complex numbers
indicated by ℂ. Complex numbers were invented to have solutions for equations such as x2+
1¼0. The solution to this equation was defined to be x¼ i. As the complex numbers
are abstract, no longer measurable quantities that have their own arithmetic rules and are
very useful in scientific applications, they deserve their own section and are discussed in
Sect. 1.2.4.
The relationship between the different classes of numbers is summarized in Fig. 1.1.

Exercise

1.1. What is the smallest class of numbers that the following numbers belong to?

a) �7
b) e (Euler’s number, approximately equal to 2.71828)
c) √3
d) 0.342
e) 543725
f) π
g) √�3

Fig. 1.1 The relationship between the different classes of numbers: ℕ�ℤ�ℚ�ℝ�ℂ, where � is the
symbol for ‘is a subset of’.

4 N. Maurits



1.2.1 Arithmetic with Fractions

For many, there is something confusing about fractional arithmetic, which is the reason we
spend a section on explaining it. To add or subtract fractions with unlike denominators you
first need to know how to find the smallest common denominator. This is the least common
multiple, i.e. the smallest number that can be divided by both denominators. Let’s illustrate
this by some examples.
Suppose you want to add 2

3 and
4
9. The denominators are thus 3 and 9. Here, the common

denominator is simply 9, because it is the smallest number divisible by both 3 and 9. Thus, if
one denominator is divisible by the other, the largest denominator is the common denom-
inator. Let’s make it a bit more difficult. When adding 1

3 and
3
4 the common denominator is

12; the product of 3 and 4. There is no smaller number that is divisible by both 3 and 4. Note
that to find a common denominator, you can always multiply the two denominators.
However, this will not always give you the least common multiple and may make working
with the fractions unnecessarily complicated. For example, 79 and

5
12 do have 9 � 12 ¼ 108 as

a common denominator, but the least common multiple is actually 36. So, how do you find
this least common multiple? The straightforward way that always works is to take one of the
denominators and look at its table of multiplication. Take the one you know the table of best.
For 9 and 12, start looking at the multiples of 9 until you have found a number that is also
divisible by 12. Thus, try 2 � 9 ¼ 18 (not divisible by 12), 3 � 9 ¼ 27 (not divisible by 12)
and 4 � 9 ¼ 36 (yes, divisible by 12!). Hence, 36 is the least common multiple of 9 and 12.
Once you have found a common denominator, you have to rewrite both fractions such that
they get this denominator by multiplying the numerator with the same number you needed
to multiply the denominator with to get the common denominator. Then you can do the
addition. Let’s work this out for 7

9 þ 5
12:

7
9
þ 5
12

¼ 7� 4
9� 4

þ 5� 3
12� 3

¼ 28
36

þ 15
36

¼ 43
36

¼ 1
7
36

Note that we have here made use of an important rule for fraction manipulation: whatever
number you multiply the denominator with (positive, negative or fractional itself), you also
have to multiply the numerator with and vice versa! Subtracting fractions takes the exact same
preparatory procedure of finding a common denominator. And adding or subtracting more
than two fractions also works the same way; you just have to find a common multiple for all
denominators. There is also an unmentioned rule to always provide the simplest form of the
result of arithmetic with fractions. The simplest form is obtained by 1) taking out the wholes
and then 2) simplifying the resulting fraction by dividing both numerator and denominator
by common factors.
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Exercise

1.2. Simplify

a)
24
21

b)
60
48

c)
20
7

d)
20
6

1.3. Find the answer (and simplify whenever possible)

a)
1
3
þ 2
5

b)
3
14

þ 7
28

c)
1
2
þ 1
3
þ 1
6

d)
3
4
þ 7
8
þ 9
20

e)
1
4
� 5
6
þ 3
8

f) �1
3
þ 1
6
� 1
7

For multiplying and dividing fractions there are two important rules to remember:

1) when multiplying fractions the numerators have to be multiplied to find the new
numerator and the denominators have to be multiplied to find the new denominator:

a

b
� c

d
¼ ac

bd

2) dividing by a fraction is the same as multiplying by the inverse:

a

b
� c

d
¼ a

b
� d

c
¼ ad

bc

For the latter, we actually make use of the rule that when multiplying the numerator/
denominator with a number, the denominator/numerator has to be multiplied with the same
number and that to get rid of the fraction in the denominator we have to multiply it by its
inverse:

a

b
� c

d
¼

a
b
c
d

¼
a
b � d

c
c
d � d

c

¼
a
b � d

c

1
¼ a

b
� d

c
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Exercise

1.4. Find the answer (and simplify whenever possible)

a)
2
3
� 6
7

b) 1
2
5
� 1

3
7

c)
5
6
� 6
5

d)
11
13

� 2
3
� 6
13

e)
2
4
� 2� 12

48

Finally, for this section, it is important to note that arithmetic operations have to be
applied in a certain order, because the answer depends on this order. For example, when
3 + 4 � 2 is seen as (3 + 4) � 2 the answer is 14, whereas when it is seen as 3 + (4 � 2) the
answer is 11. The order of arithmetic operations is the following:

1) brackets (or parentheses)
2) exponents and roots
3) multiplication and division
4) addition and subtraction

There are several mnemonics around to remember this order, such as BEDMAS, which
stands for Brackets-Exponent-Division-Multiplication-Addition-Subtraction. The simplest
mnemonic is PEMA for Parentheses-Exponent-Multiplication-Addition; it assumes that you
know that exponents and roots are at the same level, as are multiplication and division and
addition and subtraction. Think a little bit about this. When you realize that subtracting a
number is the same as adding a negative number, dividing by a number is the same as
multiplying by its inverse and taking the nth root is the same as raising the number to the
power 1/n, this makes perfect sense (see also Sect. 1.2.2).

Exercise

1.5. Calculate the answer to

a) 8� 4� 1� 32 þ 3� 4

b) 8� 4� 1ð Þ � 32 þ 3� 4

c) 8� 4� 1ð Þ � 32 þ 3
� �� 4

d) 8� 4� 1ð Þ � 32 þ 3� 4
� �
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1.2.2 Arithmetic with Exponents and Logarithms

Other topics in arithmetic that often cause people problems are exponentials and their
inverse, logarithms. Exponentiation is a mathematical operation in which a base a is
multiplied by itself n times and is expressed as:

an ¼ a�⋯� a

Here, n is referred to as the exponent. Exponentiation is encountered often in daily life,
such as in models for population growth or calculations of compound interest. For example,
when you have a savings account that yields 2% interest per year, your starting capital of
€100,00 will have increased to 100þ 2

100 � 100 ¼ 1, 02 � 100 ¼ 102. Another year later, you

will have 102þ 2
100 � 102 ¼ 1, 02 � 102 ¼ 1, 02 � 1, 02 � 100 ¼ 1; 02ð Þ2 � 100 ¼ 104, 04.

Thus, after n years, your capital will have grown to (1,02)n�100. In general, when your
bank gives you p% interest per year, your starting capital of C will have increased to
1þ p

100

� �n � C after n years. Here, we clearly see exponentiation at work. Let me here remind
you of some arithmetic rules for exponentiation that will come in very handy when
continuing with the next chapters (a and b should be non-zero):

a0 ¼ 1

a�n ¼ 1
an

anam ¼ anþm

an

am
¼ an�m

anð Þm ¼ anm

abð Þn ¼ anbn

ð1:1Þ

Exercise

1.6. Simplify to one power of 2:

a)
2324

22

b)
22
� �1

223

2�422

This is also the perfect point to relate roots to exponentials, because it makes arithmetic
with roots so much easier. Mostly, when people think of roots, they think of the square root,
designated with the symbol √. A square root of a number x is the number y such that y2 ¼ x.
For example, the square roots of 16 are 4 and �4, because both 42 and (�4)2 are 16. More
generally, the nth root of a number x is the number y such that yn¼ x. An example is given by
the cube root of 8 which is 2 (23 ¼ 8). The symbol used for the nth root is ffi

n
p , as in

ffiffiffi
83

p ¼ 2.
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And here comes the link between roots and exponents:
ffiffiffi
xn

p ¼ x
1
n. Knowing this relationship,

and all arithmetic rules for exponentiation (Eq. 1.1), allows for easy manipulation of roots.
For example,

ffiffiffi
94

pffiffiffi
38

p ¼ 9
1
4

3
1
8

¼ 9
1
4 � 3�1

8 ¼ 32
� �1

4 � 3�1
8 ¼ 3

1
2 � 3�1

8 ¼ 3
1
2�1

8 ¼ 3
3
8 ¼ 33

� �1
8 ¼

ffiffiffiffiffi
278

p

Exercise

1.7. Simplify as much as possible:

a)

ffiffiffiffiffiffiffiffiffiffiffi
10003

p
ffiffiffiffiffiffi
164

p

b)
ffiffiffiffiffiffi
254

p ffiffiffi
5

p

c)
ffiffiffiffiffiffiffiffi
3y8

p
d)

ffiffiffi
94

p
ffiffiffi
38

p (this is the same fraction as in the example above; now try to simplify by rewriting the

fourth root to an eighth root right away)

e)
ffiffiffiffiffiffiffi
x153

p

f)
ffiffiffiffiffiffiffi
p497

p

g)

ffiffiffiffiffiffiffi
a6

b27

3

s

h)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�27x6y9

64
3

r

Finally, I will briefly review the arithmetics of the logarithm, the inverse operation of
exponentiation. The base n logarithm of a number y is the exponent to which n must be
raised to produce y; i.e. logny¼ x when nx ¼ y. Thus, for example, log101000¼ 3, log216¼ 4
and log749 ¼ 2. A special logarithm is the natural logarithm, with base e, referred to as ln. The
number e has a special status in mathematics, just like π, and is encountered in many
applications (see e.g., Sect. 3.2.1). It also naturally arises when calculating compound interest,
as it is equal to 1þ 1

n

� �n
when n goes to infinity (see Sect. 6.7; verify that this expression gets

close to e for a few increasing values for n). The basic arithmetic rules for logarithms are:

logby
a ¼ alogby

logb
ffiffiffi
ya

p ¼ logby
a

logbxy ¼ logbxþ logby

logb
x

y
¼ logbx� logby

logby ¼
logky
logkb
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The third arithmetic rule above shows that logarithms turn multiplication into addition,
which is generally much easier. This was the reason that, before the age of calculators and
computers (until approximately 1980), logarithms were used to simplify the multiplication
of large numbers by means of slide rules and logarithm tables.

Exercise

1.8. Simplify as much as possible:

a)
logb x2þ1½ �4

� �
logb

ffiffi
x

p

b) log2 8 � 2xð Þ
c) 1

log27 3ð Þ

d) log2 8 � ffiffiffi
83

p Þ�
1.9. Rewrite to one logarithm:

a) log2x
2 þ log25þ log2

1
3

b) log3
ffiffiffi
a

p þ log3 10ð Þ � log3a
2

c) logaa
2 � loga3þ loga

1
3

d) logx
ffiffiffi
x

p þ logxx
2 þ logx

1ffiffi
x

p

1.2.3 Numeral Systems

In the Roman numeral system, the value of a numeral is independent of its position: I is
always 1, V is always 5, X is always 10 and C is always 100, although the value of the numeral
has to be subtracted from the next numeral if that is larger (e.g., IV ¼ 4 and XL ¼ 40).
Hence, XXV is 25 and CXXIV is 124. This way of noting numbers becomes inconvenient
for larger numbers (e.g., 858 in Roman numerals is DCCCLVIII, although because of the
subtraction rule 958 in Roman numerals is CMLVIII). In the most widely used numeral
system today, the decimal system, the value of a numeral does depend on its position. For
example, the 1 in 1 means one, while it means ten in 12 and 100 in 175. Such a positional or
place-value notation allows for a very compact way of denoting numbers in which only as
many symbols are needed as the base size, i.e., 10 (0,1,2,3,4,5,6,7,8,9) for the decimal system
which is a base-10 system. Furthermore, arithmetic in the decimal system is much easier than
in the Roman numeral system. You are probably pleased not to be a Roman child having to
do additions! The now commonly used base-10 system probably is a heritage of using ten
fingers to count. Since not all counting systems used ten fingers, but also e.g., the three
phalanges of the four fingers on one hand or the ten fingers and ten toes, other numerical
bases have also been around for a long time and several are still in use today, such as the
duodecimal or base-12 system for counting hours and months. In addition, new numerical
bases have been introduced because of their convenience for certain specific purposes, like the
binary (base-2) system for digital computing. To understand which number numerals
indicate, it is important to know the base that is used, e.g. 11 means eleven in the decimal
system but 3 in the binary system.
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To understand the systematics of the different numeral systems it is important to realize
that the position of the numeral indicates the power of the base it has to be multiplied with to
give its value. This may sound complicated, so let’s work it out for some examples in the
decimal system first:

154¼ 1� 102 þ 5� 101 þ 4� 100

¼ 1� 100þ 5� 10þ 4� 1

3076¼ 3� 103 þ 0� 102 þ 7� 101 þ 6� 100

¼ 3� 1000þ 0� 100þ 7� 10þ 6� 1

Hence, from right to left, the power of the base increases from base0 to base1, base2

etcetera. Note that the 0 numeral is very important here, because it indicates that a power is
absent in the number. This concept works just the same for binary systems, only the base is
different and just two digits, 0 and 1 are used:

101¼ 1� 22 þ 0� 21 þ 1� 20

¼ 1� 4þ 0� 2þ 1� 1

110011¼ 1� 25 þ 1� 24 þ 0� 23 þ 0� 22 þ 1� 21 þ 1� 20

¼ 1� 32þ 1� 16þ 0� 8þ 0� 4þ 1� 2þ 1� 1

Thus 101 and 110011 in the binary system are equal to 5 and 51 in the decimal system.
An overview of these two numeral systems is provided in Table 1.1.
In the binary system a one-positional number is indicated as a bit and an eight-positional

number (consisting of 8 bits) is indicated as a byte.

Exercise

1.10. Convert these binary numbers to their decimal counterparts

a) 10
b) 111
c) 1011
d) 10101
e) 111111
f) 1001001

Table 1.1 The first seven powers used for the place values in the decimal (base 10) and the binary (base
2) systems

Power 7 6 5 4 3 2 1 0
Value in decimal system 10,000,000 1,000,000 100,000 10,000 1000 100 10 1
Value in binary system 128 64 32 16 8 4 2 1
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There are some special notations for numbers in the decimal system, that are easy to know
and use. To easily handle very large or very small numbers with few significant digits, i.e.,
numbers with many trailing or leading zeroes, the scientific notation is used in which the
insignificant zeroes are more or less replaced by their related power of 10. Consider these
examples:

10000 ¼ 1� 104

0:0001 ¼ 1� 10�4

5340000 ¼ 5:34� 106

0:00372 ¼ 3:72� 10�3

696352000000000 ¼ 6:96352� 1014

To get the scientific notation of a number, you thus have to count the number of digits the
comma has to be shifted to the right (positive powers) or to the left (negative powers) to arrive
at the original representation of the number. Calculators will use ‘E’ instead of the 10 base,
e.g., 10000 ¼ 1E4.

Exercise

1.11. Write in scientific notation

a) 54000
b) 0.0036
c) 100
d) 0.00001
e) 654300
f) 0.000000000742

To finalize this section on numeral systems I would like to remind you of the metric
prefixes, that are used to indicate a multiple or a fraction of a unit and precede the unit. This
may sound cryptic, but what I mean are the ‘milli-’ in millimeter and the ‘kilo-’ in kilogram,
for example. The reason to introduce them here is that nowadays, all metric prefixes are
related to the decimal system. Table 1.2 presents the most commonly used prefixes.

1.2.4 Complex Numbers

In general, complex numbers extend the one-dimensional world of real numbers to two
dimensions by including a second, imaginary number. The complex number i, which
indicates the imaginary unit, is defined as the (positive) solution to the equation x2+1¼0,
or, in other words, i is the square root of�1. Every complex number is characterized by a pair
of numbers (a,b), where a is the real part and b the imaginary part of the number. In this
sense a complex number can also be seen geometrically as a vector (see also Chap. 4) in the
complex plane (see Fig. 1.2). This complex plane is a 2-dimensional coordinate system where
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the real part of the complex number indicates the distance to the vertical axis (or reference
line) and the imaginary part of the complex number indicates the distance to the horizontal
axis. Both axes meet in the origin. The horizontal axis is also referred to as the real axis and
the vertical axis as the imaginary axis. A complex number z is also written as z¼a+bi. For
manipulating complex numbers and working with them, it helps to remember that a
complex number has these two representations, i.e. as a pair or vector (a,b) in the
two-dimensional complex plane and as a number a+bi.

Table 1.2 The most commonly used metric prefixes, their symbols, associated multiplication factors and
powers of 10

Prefix Symbol Factor Power of 10
Exa E 1000 000 000 000 000 000 18
Peta P 1000 000 000 000 000 15
Tera T 1000 000 000 000 12
Giga G 1000 000 000 9
Mega M 1000 000 6
Kilo k 1000 3
Hecto h 100 2
Deca da 10 1
Deci d 0.1 �1
Centi c 0.01 �2
Milli m 0.001 �3
Micro μ 0.000 001 �6
Nano n 0.000 000 001 �9
Pico p 0.000 000 000 001 �12
Femto f 0.000 000 000 000 001 �15

Fig. 1.2 Illustration of the complex number a + bi as a pair or vector in the complex plane. Re real axis,
Im imaginary axis.
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Exercise

1.12. Draw/position the following complex numbers in the complex plane

a) 1 + i
b) �2 � 2.5i
c) �3 + 2i
d) 4√�1

1.2.4.1 Arithmetic with Complex Numbers

Let’s start simple, by adding complex numbers. This is done by adding the real and imaginary
parts separately:

aþ bið Þ þ cþ dið Þ ¼ aþ cð Þ þ bþ dð Þi

Similarly, subtracting two complex numbers is done by subtracting the real and imaginary
parts separately:

aþ bið Þ � cþ dið Þ ¼ a� cð Þ þ b� dð Þi

Alternatively, adding or subtracting two complex numbers can be viewed of geometrically
as adding or subtracting the associated vectors in the complex plane by constructing a
parallelogram (see Fig. 1.3).

Fig. 1.3 Illustration of adding (blue) and subtracting (green) the complex numbers a + bi (black) and
c + di (red) in the complex plane. The dashed arrows indicate how c + di is added to (blue dashed) or
subtracted from (green dashed) a + bi.
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Multiplying two complex numbers is done by using the distributive law (multiplying the
two elements of the first complex number with each of the two elements of the second
complex number and adding them):

aþ bið Þ cþ dið Þ ¼ acþ adiþ bciþ bdi2 ¼ ac� bdð Þ þ ad þ bcð Þi ð1:2Þ

Here, we make use of the fact that i2¼�1. Finally, division of two complex numbers is
done by first multiplying numerator and denominator by the complex conjugate of the
denominator (and then applying the distributive law again) to make the denominator real:

aþ bi

cþ di
¼ aþ bið Þ

cþ dið Þ
c� dið Þ
c� dið Þ ¼

ac� adiþ bci� bdi2

c2 � cdiþ cdi� d2i2

¼ acþ bdð Þ þ bc� adð Þi
c2 þ d2

¼ acþ bd

c2 þ d2
þ bc� ad

c2 þ d2
i

The complex conjugate of a complex number is indicated by an overbar and is calculated
as:

aþ bi ¼ a� bi

Hence, for a complex number z ¼ a + bi:

z�z ¼ a2 þ b2

Exercise

1.13. Calculate:

a) (1 + i) + (�2 + 3i)
b) (1.1 � 3.7i) + (�0.6 + 2.2i)
c) (2 + 3i) � (2 � 5i)
d) (4 � 6i) � (6 + 4i)
e) (2 + 2i) � (3 � 3i)
f) (5 � 4i) � (1 � i)

g)
5� 10i
1� 2i

h)
18þ 9iffiffiffi
5

p � 2i

1.2.4.2 The Polar Form of Complex Numbers

An alternative and often very convenient way of representing complex numbers is by using
their polar form. In this form, the distance r from the point associated with the complex
number in the complex plane to the origin (the point (0,0)), and the angle φ between the
vector associated with the complex number and the positive real axis are used. The distance r
can be calculated as follows (please refer to Fig. 1.4):
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r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ ffiffiffiffi

z�z
p 	 zj j

Here, the symbol ‘	’ stands for ‘is defined as’ and we use the complex conjugate of z again.
The symbol ‘|.|’ stands for modulus or absolute value. The angle, or argument φ can be
calculated by employing the trigonometric tangent function (see Chap. 3).
The polar expression of the complex number z is then (according to Euler’s formula, see

Sect. 3.3.1) given by:

z ¼ reiϕ

At this point, this may seem like a curious, abstract form of an exponential power and may
seem not very useful. However, this polar form of complex numbers does allow to e.g., find
all 3 complex roots of the equation z3 ¼ 1 and not just the one obvious real root z ¼ 1 (see
also Chap. 2 on equation solving and Sect. 3.3.1).

1.3 Mathematical Symbols and Formulas

The easiest way to learn the language of mathematics is to practice it, just like for any foreign
language. For that reason we explain most symbols in this book in the context of how they are
used. However, since mathematics is a very extensive field and since practicing mathematics
takes time, we here also provide a more general introduction to and reminder of often used
mathematical symbols and some conventions related to using the symbolic language of
mathematics.

Fig. 1.4 Illustration of the polar form of the complex number a + bi in the complex plane. Re real axis,
Im imaginary axis, r absolute value or modulus, φ argument.
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1.3.1 Conventions for Writing Mathematics

There are a few conventions when writing mathematical texts, that are also helpful to know
when reading such texts. In principle, all mathematical symbols are written in Italics when
they are part of the main text to discern them from non-mathematical text. Second, vectors
and matrices (see Chaps. 4 and 5) are indicated in bold, except when writing them by hand.
Since bold font can then not be used, (half) arrows or overbars are used above the symbol
used for the vector or matrix. Some common mathematical symbols are provided in
Table 1.3.

1.3.2 Latin and Greek Letters in Mathematics

To symbolize numbers that have no specific value (yet), both Latin and Greek letters are
typically used in mathematics. In principle, any letter can be used for any purpose, but for
quicker understanding there are some conventions on when to use which letters. Some of
these conventions are provided in Table 1.4.

1.3.3 Reading Mathematical Formulas

To the less experienced, reading mathematical formulas can be daunting. Although practice
also makes perfect here, it is possible to give some general advice on how to approach a
mathematical formula and I will do so by means of an example. Suppose you are reading an
article (€Unlü et al. 2006) and you stumble upon this rather impressive looking formula
(slightly adapted for better understanding):

Cm
i εð Þ¼ j;kð Þj r iþ k�1ð Þ� r jþ k�1ð Þj j 
 εð Þ for k¼ 1 . . .m; j¼ i . . .N�mþ1f gj j

N�mþ1

The first thing to do when encountering a formula, is to make sure that you know what
each of the symbols means in the context of the formula. In this case, I read the text to find
out what C is (I already know that it will depend on m, i and ε from the left hand side of the

Table 1.3 Meaning of some common mathematical symbols with examples

Symbol Meaning Example
⟹ implies z ¼ i⟹z2 ¼ �1
, if and only if x + 3 ¼ 2x � 2,x ¼ 5
� approximately equal to π � 3.14
/ proportional to y ¼ 3x⟹y/x
! factorial 3! ¼ 3 � 2 � 1 ¼ 6
< less than 3 < 4
> greater than 4 > 3
� much less than 1 � 100,000,000
 much greater than 100,000,000  1
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Table 1.4 Conventions on the use of Latin and Greek letters in mathematics

Latin letter Application Example
a, b, c, . . . as parameter in equations, or functions y ¼ ax + b

y ¼ ax2 + bx + c
z ¼ a + bi

vectors a or ~a or a
*

e base of natural logarithm, approximately equal to 2.71828. . .
x, y, z Cartesian coordinates (x,y) ¼ (1,3)

(x,y,z) ¼ (�1,2,�4)
axes in 2D- or 3D space x-axis

d, D diameter
derivative (see Chap. 6) d

dt,
d2

dx2

i, j, k counters i ¼ 1, . . ., nXn
i¼1

xi

Xn
i¼1

Xm
j¼1

xi, j

vector element xi
matrix element xi,j
complex unity z ¼ a + bi

n, m, N quantity i ¼ 1, . . .,n
j ¼ 1, . . ., m

number of participants/animals in experimental science N
P, Q, R point in space P ¼ (1,2)

Q ¼ (�1,1,3)
r radius circle or sphere radius

modulus in polar coordinates or polar form of complex numbers z¼reiϕ

t time (counter)
T time (window), period

Greek letter Application Example
α (alpha) angle

significance level (in statistics)
β (beta) power (in statistics)
δ (delta) Dirac delta

δ xð Þ ¼ 1 if x ¼ 0
0 if x 6¼ 0

�
Kronecker delta

δij ¼ 0 if i 6¼ j
1 if i ¼ j

�
Δ (delta) small increment Δt
ε (epsilon) (very) small (positive) number for every δ < ε
φ (phi) angle (in polar coordinates)

argument (in polar form of complex numbers) z¼reiϕ

ζ (zeta), θ (theta), ξ (ksi), ψ
(psi)

angles

π relation between circumference and
radius r of a circle

circumference ¼ 2πr
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formula), what i, j, and k count (I already know they will most likely be counters because of
the mathematical convention explained in Table 1.4), what m and N are and what r is. I
already know that ε will be a small number (again, because of the mathematical convention
explained in Table 1.4). Then what remains to be known are the symbols .| (here: for every
pair (j,k) such that), |.| (here: cardinality (the number of pairs (j,k); outer symbols) and
distance (inner symbols)) and {.} (the set of).
What the article tells me is that r(i) is a collection ofm consecutive data points (anm-tuple)

taken from a total number of N data points, starting at the ith data point and that C m
i εð Þ is

the relative number of pairs of these m-tuples which are not so different, i.e. which differ less
than a small number ε for each pair of entries. N � m + 1 is the total number of different
m � tuples that can be taken from the total data set. The largest value that i can take on is
thus alsoN� m + 1. The first thing to notice in the formula is that by letting k run from 1 to
m and j from i toN� m + 1, all possible pairs of m-tuples are indeed considered. This can be
understood by assuming a value for m (e.g., 2), taking into account that i runs from 1 to
N� m + 1 and then writing out the indices of the first and last pairs of m-tuples with indices
i + k � 1 and j + k � 1. The part between the round brackets makes sure that from all
possible pairs, only the pairs of m-tuples that have a distance smaller than ε are counted. So
this formula indeed calculates what it is supposed to do.
So, what general lessons about formula reading can be learned from this example?
First, you need to know what all symbols mean in the context of the formula. Second, you

need to understand what the more general mathematical symbols mean in the formula.
Third, you break the formula into pieces and build up your understanding from there. More
examples will be given in each of the following chapters.

Glossary

Arithmetic Operations between numbers, such as addition, subtraction, multiplication and division
Axis Reference line for a coordinate system
Base The number b in the exponentiation operation bn

Cardinality The number of elements in a set, also indicated by #
Cartesian coordinates Uniquely specify a point in 2D space as a pair of numbers that indicates the

signed distances to the point from two fixed perpendicular directed lines (axes), measured in the
same unit of Length

Common denominator The least common multiple, i.e. the smallest number that can be divided by
both denominators

Complex conjugate For a complex number a+bi the complex conjugate is a�bi
Complex numbers Pairs of numbers (a,b) where a is the real part and b the imaginary part, also

indicated as a+bi, where i ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit
Cryptography Discipline at the intersection of mathematics and computing science that deals with

various aspects of information security
Denominator Lower part in a fraction a

b
Derivative Measure of change in a function
Distributive law To multiply a sum (or difference) by a factor, each element is multiplied by this factor

and the resulting products are added (or subtracted)
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Dyscalculia Difficulty learning or comprehending numbers or arithmetic, often considered as a
developmental disorder

Exponent The number n in the exponentiation operation bn

Finite decimal number Decimal number with a finite number of decimals
Imaginary Here: the imaginary part of a complex number
Infinite decimal number Decimal number with an infinite numbers of decimals
Infinity The number larger than any countable number
Integer numbers The numbers . . ., �3, �2, �1, 0, 1, 2, 3, . . . collectively referred to as ℤ
Irrational numbers Real numbers such as π that are not rational
Logarithm The base n logarithm of a number y is the exponent to which nmust be raised to produce y
Natural logarithm Logarithm with base e
Natural numbers The numbers 0, 1, 2, 3, . . . collectively referred to as ℕ
Numerator Upper part in a fraction a

b
Parameter Consider a function f(x) ¼ ax2 + bx + c; here, x is a variable and a, b, and c are parameters,

indicating that the function represents a whole class of functions for different values of its
parameters

Power Power is used in the context of exponentiation, e.g. as in bn, where b is the base and n the
exponent. One can also describe this as ‘b is raised to the power n’ or ‘the nth power of b’

Prime numbers Natural numbers >1 that only have 1 and themselves as positive divisors
Rational numbers Numbers that can be written as fractions; a ratio of two integers, collectively referred

to as ℚ
Real numbers Numbers that can be measured but that cannot (always) be expressed as fractions,

collectively referred to as ℝ
Root The nth root of a number x is the number y such that yn ¼ x.
Scientific notation Used to write numbers that are too large to be written in decimal form. In this

notation all numbers are written as a � 10b, where a can be any real number and b is an integer
Significance level In statistics: probability of rejecting the null hypothesis given that it is true.

Typically, the significance level is set to 0.05, meaning that a 1 in 20 chance of falsely rejecting
the null hypothesis is accepted

Significant digit A digit with meaning for the number
Synesthete A person who, when one sense is stimulated, has experiences in another. In the context of

this chapter: a person who identifies colors and shapes with numbers.
Vector Entity with a magnitude and direction, often indicated by an arrow, see Chap. 4

Symbols Used in This Chapter (in Order of Their Appearance)

The symbols presented in Tables 1.3 and 1.4 are not repeated here.

0,1,2,3,4,5,6,7,8,9 Arabic numerals used in the base 10 numeral system
. . . the pattern continues
+ addition
¼ equal to
� multiplication
1 infinity
� degree
� is a subset of
ℕ natural numbers
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ℤ integer numbers
ℚ rational numbers
ℝ real numbers
ℂ complex numbers
� division
√ square root
e Euler’s number
I Roman numeral for 1
V Roman numeral for 5
X Roman numeral for 10
L Roman numeral for 50
C Roman numeral for 100
D Roman numeral for 500
E scientific notation for a base 10 exponent on calculators, e.g. 1E3 ¼ 103

i complex unity (positive solution of x2 + 1 ¼ 0)
� complex conjugate (overbar)
r here: modulus of complex number
φ here: argument of complex number
|�| absolute value, modulus, cardinality or distance
	 defined as
{.} the set of
.| such that
# cardinality

Overview of Equations, Rules and Theorems for Easy
Reference

Relationship between numeral systems
ℕ�ℤ�ℚ�ℝ�ℂ

Order of arithmetic operations

1) brackets (or parentheses)
2) exponents and roots
3) multiplication and division
4) addition and subtraction

Arithmetic with fractions

a

b
� c

d
¼ ac

bd

a

b
� c

d
¼ a

b
� d

c
¼ ad

bc
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Arithmetic with exponentials

a0 ¼ 1

a�n ¼ 1
an

anam ¼ anþm

an

am
¼ an�m

anð Þm ¼ anm

abð Þn ¼ anbn

Arithmetic with logarithms

logby
a ¼ alogby

logb
ffiffiffi
ya

p ¼ logby
a

logbxy ¼ logbxþ logby

logb
x

y
¼ logbx� logby

logby ¼
logky
logkb

Arithmetic with complex numbers

aþ bið Þ þ cþ dið Þ ¼ aþ cð Þ þ bþ dð Þi
aþ bið Þ � cþ dið Þ ¼ a� cð Þ þ b� dð Þi
aþ bið Þ cþ dið Þ ¼ ac� bdð Þ þ ad þ bcð Þi

aþ bi

cþ di
¼ acþ bd

c2 þ d2
þ bc� ad

c2 þ d2
i ð1:3Þ

aþ bi ¼ a� bi

z�z ¼ a2 þ b2 for a complex number z ¼ a + bi

Answers to Exercises

1.1. a) ℤ integer numbers
b) ℝ real numbers
c) ℝ real numbers
d) ℚ rational numbers
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e) ℕ natural numbers
f) ℝ real numbers
g) ℂ complex numbers

1.2. a) 24
21 ¼ 8

7 ¼ 117

b) 60
48 ¼ 11248 ¼ 114

c) 20
7 ¼ 267

d) 20
6 ¼ 326 ¼ 313

1.3. a) 1
3 þ 2

5 ¼ 5
15 þ 6

15 ¼ 11
15

b) 3
14 þ 7

28 ¼ 6
28 þ 7

28 ¼ 13
28

c) 1
2 þ 1

3 þ 1
6 ¼ 3

6 þ 2
6 þ 1

6 ¼ 6
6 ¼ 1

d) 3
4 þ 7

8 þ 9
20 ¼ 30

40 þ 35
40 þ 18

40 ¼ 83
40 ¼ 2 3

40

e) 1
4 � 5

6 þ 3
8 ¼ 6

24 � 20
24 þ 9

24 ¼ � 5
24

f) �1
3 þ 1

6 � 1
7 ¼ �14

42 þ 7
42 � 6

42 ¼ �13
42

1.4. a) 2
3 � 6

7 ¼ 12
21 ¼ 4

7

b) 125 � 137 ¼ 7
5 � 10

7 ¼ 70
35 ¼ 2

c) 5
6 � 6

5 ¼ 5
6 � 5

6 ¼ 25
36

d) 11
13� 2

3� 6
13¼ 11

13� 2
3� 13

6 ¼ 22
18¼ 1 4

18¼ 129
e) 2

4 � 2� 12
48 ¼ 2

4 � 1
2 � 12

48 ¼ 3
48 ¼ 1

16

1.5. a) 8�4�1�32þ3�4¼ 2�9þ12¼ 5

b) 8�4�1ð Þ�32þ3�4¼ 9þ12¼ 21

c) 8�4�1ð Þ� 32þ3ð Þ�4¼1�12�4¼48

d) 8� 4� 1ð Þ � 32 þ 3� 4ð Þ ¼ 1� 9þ 12ð Þ ¼ 21

1.6. a) 2324

22 ¼ 23þ4�2 ¼ 25

b) 22ð Þ1223
2�422

¼ 21þ3þ4�2 ¼ 26

1.7. a)
ffiffiffiffiffiffiffi
10003p ffiffiffiffi
164p ¼ 10

2 ¼ 5
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b)
ffiffiffiffiffi
254

p ffiffiffi
5

p ¼ 52�
1
45

1
2 ¼ 5

1
2þ1

2 ¼ 5

c)
ffiffiffiffiffiffiffi
3y8

p ¼ y4
ffiffiffi
3

p

d)
ffiffi
94

pffiffi
38

p ¼
ffiffiffiffi
818p ffiffi
38

p ¼
ffiffiffiffi
81
3

8

q
¼ ffiffiffiffiffi

278
p

e)
ffiffiffiffiffiffi
x153

p
¼ x

1
3�15 ¼ x5

f)
ffiffiffiffiffiffi
p497

p ¼ p
1
7�49 ¼ p7

g)
ffiffiffiffiffi
a6
b27

3
q

¼ a
1
3�6

b
1
3�27

¼ a2

b9

h)
ffiffiffiffiffiffiffiffiffiffiffiffi
�27x6y9

64
3
q

¼ �3x2y3

4

1.8. a)
logb x2þ1½ �4ð Þ

logb
ffiffi
x

p ¼ logb x2 þ 1½ �4
� �

� logb
ffiffiffi
x

p ¼ 4logb x2 þ 1ð Þ � 1
2 logbx

b) log2 8 � 2xð Þ ¼ log28þ log22
x ¼ 3þ x

c) 1
log273

¼ log2727
log273

¼ log327 ¼ 3

d) log2 8� ffiffiffi
83

p Þ¼log28þlog28
1
3¼3þ1

3log28¼3þ1
3�3¼4

�
or log2 8� ffiffiffi

83
p Þ¼log2 8�2ð Þ�

¼log216¼4

1.9. a) log2x
2 þ log25þ log2

1
3 ¼ log2 x2 � 5 � 13

� � ¼ log2
5
3x

2
� �

b) log3
ffiffiffi
a

p þ log3 10ð Þ � log3a
2 ¼ log3

ffiffi
a

p �10
a2

� �
¼ log3

10
a
ffiffi
a

p

c) logaa
2 � loga3þ loga

1
3 ¼ loga

a2
3�3 ¼ loga

a2
9

d) logx
ffiffiffi
x

p þ logxx
2 þ logx

1ffiffi
x

p ¼ logx
x2

ffiffi
x

pffiffi
x

p ¼ logxx
2 ¼ 2

1.10. a) 10 ¼ 2 + 0 ¼ 2
b) 111 ¼ 4 + 2 + 1 ¼ 7
c) 1011 ¼ 8 + 0 + 2 + 1 ¼ 11
d) 10101 ¼ 16 + 0 + 4 + 0 + 1 ¼ 21
e) 111111 ¼ 32 + 16 + 8 + 4 + 2 + 1 ¼ 63
f) 1001001 ¼ 64 + 0 + 0 + 8 + 0 + 0 + 1 ¼ 73

1.11. a) 5.4 � 104

b) 3.6 � 10�3

c) 1 � 102

d) 1 � 10�5

e) 6.543 � 105

f) 7.42 � 10�10
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1.12. The numbers a) to d) have been drawn in this figure

.

1.13. a) (1 + i) + (�2 + 3i) ¼ �1 + 4i
b) (1.1 � 3.7i) + (�0.6 + 2.2i) ¼ 0.5 � 1.5i
c) (2 + 3i) � (2 � 5i) ¼ 8i
d) (4 � 6i) � (6 + 4i) ¼ �2 � 10i
e) (2 + 2i) � (3 � 3i) ¼ 6 + 6i � 6i � 6i2 ¼ 12
f) (5 � 4i) � (1 � i) ¼ 5 � 4i � 5i + 4i2 ¼ 1 � 9i

g)
5� 10i
1� 2i

¼ 5� 10ið Þ 1þ 2ið Þ
12 þ 22

¼ 5� 10i þ 10i � 20i2

5
¼ 5

h)

18þ 9iffiffiffi
5

p � 2i
¼ 18þ 9ið Þ ffiffiffi

5
p þ 2i
� �

5þ 22
¼ 18

ffiffiffi
5

p þ 9
ffiffiffi
5

p
i þ 18i þ 18i2

9

¼ 2
ffiffiffi
5

p � 2
� �þ ffiffiffi

5
p þ 2
� �

i
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2
Equation Solving

Branislava Ćurči�c-Blake

After reading this chapter you know:

• what equations are and the different types of equations,
• how to solve linear, quadratic and rational equations,
• how to solve a system of linear equations,
• what logarithmic and exponential equations are and how they can be solved,
• what inequations are and
• how to visualize equations and solve them graphically.

2.1 What Are Equations and How Are They Applied?

An equation is a mathematical expression; a statement that two quantities are equal. A simple
example is given by

5 ¼ 5

or

3þ 2 ¼ 5

These are equations without unknowns. For statements like these to be true the values of
the expressions on each side of the equal sign have to be the same. Often, equations have one
variable that is unknown, such as
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3þ x ¼ 5

Here, variable x is unknown, and to solve the equation, we have to find its value so that the
above equation becomes true. The solution is x¼2, because if we substitute it into the above
equation, it becomes

3þ 2 ¼ 5

which is true. Solving equations dates back several thousands of years. For example, the
Babylonians (2000–1000 BC) already used equation solving to calculate the dimensions of a
rectangle given its surface and the difference between its height and width.

2.1.1 Equation Solving in Daily Life

You may not be aware that we use equations every day. Often, equation solving is involved
when dealing with money, e.g. when one needs to calculate percentages, differences or taxes.
An example is the following:

Example 2.1

Marc wants to buy three beers (€1.50 each) and one bottle of wine (€10.00). He has €15.00. How
much money does he have left after he finished shopping?

If we denote the change with x, we can write the given information in the form of an equation
as follows:

3 � 1:5þ 1 � 10þ x ¼ 15

Here, on the left side all expenses and change x are included. Together, they need to add up to
the €15.00 that Marc has. The equation can be solved in two steps by first adding all like terms:

14:5þ x ¼ 15 ! x ¼ 0:5

Thus if Marc buys all the drinks he wants, he will have €0.50 left.

In everyday shopping we thus use equations, without even thinking about it. A similar
example is provided by calculating sale prices:

Example 2.2

The bag that originally cost €70.00 is now on sale at a 25% discount. What is the sale price of the
bag?

If the new price is denoted as x we can compose and solve an equation as follows:

x ¼ 70� 70 � 25
100

! x ¼ 70 1� 0:25ð Þ ! x ¼ 70 � 0:75 ! x ¼ 52:5

Thus, the sale price of the bag is €52.50.

28 B. Ćurči�c-Blake



In this section some specific examples of equations were provided, to get you introduced to
the topic. In the next section, we will generalize these examples and introduce some
definitions associated with equations.

2.2 General Definitions for Equations

2.2.1 General Form of an Equation

Linear equations in one unknown, such as the examples above, can generally be written as:

ax ¼ b, ð2:1Þ

where x is the unknown or the variable that we aim to solve the equation for and a and b are
constants.

2.2.2 Types of Equations

The equations that were introduced as examples in Sect. 2.1 were quite simple and were
examples of linear equations with one unknown (x). More generally, we can distinguish
between linear and nonlinear equations that have one or more unknowns.
A linear equation with one unknown is an equation that can be rewritten to the form of

Eq. (2.1). It only includes terms that are constant or that are the product of a constant and a
single variable to its first power. Interestingly, such an equation describes a straight line. You
can think of linear as straight in two dimensions or flat (as a plane) in three dimensions.
Linear equations in two unknowns can be represented by:

axþ byþ c ¼ 0,

where x and y are the unknowns or the variables that we aim to solve the equation for and a,
b and c are constants. To find a solution for both variables, a minimum of two independent
equations is necessary.
Nonlinear (polynomial) equations are equations in which one or more terms contain a

variable with a power different from one and/or in case of a nonlinear equation with more
unknowns there is a term with a combination of different variables. Such a combination
could e.g. be a product or a quotient of variables. Other non-polynomial nonlinear equations
will be introduced in Sects. 2.6 and 2.7.

2.3 Solving Linear Equations

In Sect. 2.1.1 we already solved some equations without thinking too much about our
approach. This can often be done, as long as the equations are very simple. However, if
equations become a bit more complicated, it is useful to have a recipe for equation solving
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that always works, as long as a solution exists, of course. The general goal of solving any linear
equation with one unknown x is to get it into the form

x ¼ c, ð2:2Þ

where c is a constant. ANY linear equation can be solved, i.e. transformed into the form of
Eq. (2.2) by following the general rules listed below:

1. Expand terms, when the equation is not (yet) written as a sum of linear terms.
2. Combine like terms by adding or subtracting the same values from both sides.
3. Clear out any fractions by multiplying every term by the least common denominator.
4. Divide every term by the same non-zero value to make the constant in front of the variable

in the equation equal to 1.

These rules may sound rather abstract now, but in the next sections, some of these rules are
explained in more detail and you can practice their application in some exercises.

2.3.1 Combining Like Terms

To solve a linear equation in one unknown one of the first steps is to combine like terms,
which means that all terms with the same variable (e.g. x) are gathered. In other words, if you
start with an equation

axþ b ¼ cþ dx

you will gather all terms in x on the same side to rewrite it to:

a� dð Þx ¼ c� b

Here, to transfer a term to the other side of the equality sign, we had to subtract it from the
side we transfer it from. To keep the equation true, we thus also have to subtract that term
from the side of the equation we transfer it to. This means that when you are transferring a
term from one side of the equation to the other you are basically changing its sign. In this
case, by subtracting dx from the right hand side of the equation, we also had to subtract it
from the left hand side of the equation, where it thus got a negative sign. Something similar
happened to the constant term b.

Example 2.3

Sjoerd ordered three bottles of wine online. Postage was €9.00 and the total costs were €45.00.
How much did each bottle of wine cost?

To solve this problem we represent the price of a bottle of wine by x. Then we can compose an
equation as follows:

(continued)
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Example 2.3 (continued)
3x þ 9 ¼ 45

Here the like terms are 9 and 45 because they are both constants. So we combine them:

3x ¼ 45� 9 ! 3x ¼ 36 ! x ¼ 12

We find that each bottle of wine costs €12.00.

Exercise

2.1. Grandma Jo left 60 pieces of rare coins to her heirs. She had two daughters. However, the
older of the two daughters, Mary, died just a few days before Grandma Jo, so her coins are to
be divided among Mary’s three daughters. How many rare coins will each granddaughter of
Grandma Jo inherit?

2.2. Solve the following linear equations in one unknown:

a) 7x þ 2 ¼ �54
b) �5x � 7 ¼ 108
c) 3x � 9 ¼ 33
d) 5x þ 7 ¼ 72
e) 4x � 6 ¼ 6x
f) 8x � 1 ¼ 23� 4x

2.3.2 Simple Mathematical Operations with Equations

Solving an equation may be fun, if you look at it as solving a puzzle. You may swap ‘pieces’
around, and you may try to fit ‘pieces’ in different ways. Often you may have to think out of
the box and find creative solutions. The easiest way is to perform simple mathematical
operations such as addition, subtraction, multiplication or division, as described in rules
2 and 3 above. In case of solving a linear equation with one unknown you may want to
e.g. add a constant or multiply the equation by a constant. Consider the following example:

5
3
xþ 1

3
¼ 5

In this case it might help to first multiply the whole equation by 3 to get rid of the
fractions. To keep the equation true, you have to multiply both sides by the same number:

5
3
xþ 1

3
¼ 5

���� � 3 ! 5xþ 1 ¼ 5 � 3 ! 5x ¼ 15� 1 ! x ¼ 14
5

Note that we also applied rule number 4. Similarly, to solve

100xþ 50 ¼ 200
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you may first want to divide by 100:

100xþ 50 ¼ 200 � 1
100

! xþ 1
2
¼ 2 ! x ¼ 3

2

����
In Box 2.1 a useful set of rules to solve equations is given, summarizing more formally

what we just did.

Box 2.1 Useful Arithmetic Rules for Solving Linear Equations

If a¼b and c 2 ℂ then

aþ c ¼ bþ c
ac ¼ bc

If a¼b, c 2 ℂ and c 6¼0 then

a
c
¼ b

c

If F is any function and a¼b then

FðaÞ ¼ FðbÞ

Exercise

2.3. Solve the following equations:

a) 2x
3 ¼ x

3

b) 2x
3 ¼ 5x þ 3

2.4 Solving Systems of Linear Equations

We briefly mentioned, when we introduced linear equations with two unknowns, that to
find a solution for both variables, a minimum of two independent equations is necessary.
Such a set of linear equations is the smallest possible system of linear equations. In general, a
system of linear equations is a set which contains two or more linear equations with two or
more unknowns. This might sound rather abstract, but actually such a system is regularly
encountered in practice.

Example 2.4

Suppose John only ate bread with peanut butter or jam during 1 month. Each jar of jam contains
30 g of sugar and 20 g of other nutrients. Each jar of peanut butter contains 15 g of sugar and 40 g
of other nutrients. How many jars of jam and peanut butter did John use in this month if he
consumed 150 g of sugar and 450 g of other nutrients?

(continued)
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Example 2.4 (continued)

We can rewrite the problem as a system of two linear equations in two unknowns. Suppose
that x is the number of jars of jam, and y is the number of jars of peanut butter, then the system of
linear equations describing this problem is:

150 ¼ 30x þ 15y

450 ¼ 20x þ 40y

This system of equations has the solution x ¼ �5
6, y ¼ 1123, which you can for now verify by

substituting it in the system of equations.

Here is another example, in which a system of three linear equations in three unknowns
can help solve a practical problem encountered when three friends have dinner together.

Example 2.5

Mary, Jo and Sandy had dinner together and agree to go Dutch and split the bill according to
what they had. They received two bills, one for drinks (total of €26.00) and one for food (€36.00)
without further details. Mary had two glasses of wine, one juice and salmon. Jo had three glasses
of wine and salmon. Sandy had beefsteak and two glasses of juice. They remember that juice cost
€2.00 a glass, and that beefsteak was €3.00 more expensive than salmon. How much does each
colleague have to pay?

We thus need to determine what wine (x), salmon (y) and beefsteak (z) cost. We know that
beefsteak was €3.00 more expensive than salmon, which will give us the first equation. Further,
we know that the three of them together ate two salmons and one beefsteak, giving us the
second equation, and had five glasses of wine and three glasses of juice, giving us the third
equation. We can thus write:

z ¼ y þ 3

2y þ z ¼ 36

5x þ 3 � 2 ¼ 26

In total, these three equations are a system of three linear equations with three unknowns.
The third equation is straightforward to solve as it has only one unknown x:

5x ¼ 26� 6 ! 5x ¼ 20 ! x ¼ 4

Further, we can substitute the first equation z¼y+3 into the second:

2y þ y þ 3ð Þ ¼ 36 ! 3y þ 3 ¼ 36 ! 3y ¼ 33 ! y ¼ 11

And if we now substitute y back into the first equation we get the price of the beefsteak

z ¼ 11þ 3 ¼ 14

(continued)

2 Equation Solving 33



Example 2.5 (continued)

Now, we can calculate how much Mary, Jo and Sandy each have to pay:

Mary : 2x þ 2þ y ¼ 2 � 4þ 2þ 11 ¼ 21

Jo : 3y þ x ¼ 3 � 4þ 11 ¼ 23

Sandy : zþ 2 � 2 ¼ 14þ 4 ¼ 18

As a final check we should verify whether the total bills sum up to the same total amount.
The two bills for drinks and food add up to €36.00 + €26.00 ¼ €62.00. The bills for Mary, Jo and
Sandy add up to €21.00 + €23.00 + €18.00 ¼ €62.00. Thus, the final bills match and we solved the
problem.

The approach that we followed for solving the problem in Example 2.5 is called substitu-
tion, which is a bit of an ad-hoc method. There are also more systematic algebraicmethods of
solving systems of linear equations and a graphical one. The methods for solving systems of
linear equations that we explain in the following sections in more detail are the following:

a. Solving by substitution
b. Solving by elimination
c. Solving graphically
d. Solving by Cramer’s rule

2.4.1 Solving by Substitution

This is the basic method to solve a system of any type of equations. It is not always easy to
implement, but if possible gives straightforward answers. Basically, if you have a system of
n equations with n unknowns, you first solve one equation to obtain the solution for one variable,
then substitute that solution in the next equation to obtain the solution for the next variable
etcetera. This procedure is further illustrated in the next examples for systems of linear equations.

Example 2.6

Solve the following system of two linear equations in two unknowns:

3x þ 5 ¼ 5y

2x � 5y ¼ 6

To solve this system, you can start by e.g. expressing y in terms of x based on the first equation:
y ¼ 3

5 x þ 1 and then substitute y into the second equation: 2x � 5 3
5x þ 1
� � ¼ 6, to solve this

equation:

2x � 3x � 5 ¼ 6 ! �x ¼ 11 ! x ¼ �11

(continued)
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Example 2.6 (continued)

The solution for x can then be substituted into the expression for y to find its solution:

y ¼ 3
5
x þ 1 ¼ �33

5
þ 1 ! y ¼ �28

5
¼ �5

3
5

A similar procedure can be followed for a system of more than two unknowns:

Example 2.7

Solve the following system of three linear equations in three unknowns:

2x þ y þ z ¼ 4

x � 7� 2y ¼ �3z

2y þ 10� 2z ¼ 3x

We can solve this system by substitution e.g., by first obtaining x from the second equation:

x ¼ 2y � 3zþ 7

We can now substitute x into the first and third equations and gather like terms:
First equation: 2(2y�3z+7)+y+z¼4 ! 4y�6z+14+y+z¼4 ! 5y�5z¼�10
Third equation: 2y+10�2z¼3(2y�3z+7) ! 2y+10�2z¼6y�9z+21 ! �4y+ 7z¼11
Thus, now we have two equations in two unknowns (y and z):

5y � 5z ¼ �10 ! y ¼ z� 2

�4y þ 7z ¼ 11

Finally, we substitute the expression for y in the last equation: �4(z�2)+7z¼11! 3z¼3. Thus
z¼1 and by substituting this in the other equations, we find that y¼�1 and x¼2. To verify
whether this solution is correct, we can insert the values of x, y and z into the original system of
equations to see if the equations become true.

2x þ y þ z ¼ 4 ! 2 � 2� 1þ 1 ¼ 4 ! 4 ¼ 4 True

x � 7� 2y ¼ �3z ! 2� 7� 2 � �1ð Þ ¼ �3 � 1 ! � 5þ 2 ¼ �3 True

2y þ 10� 2z ¼ 3x ! 2 � �1ð Þ þ 10� 2 � 1 ¼ 3 � 2 ! 6 ¼ 6 True

We have thus found a correct solution for the system of equations.
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Exercises

2.4. Solve the following systems of linear equations (^ means ‘and’):

a) x � 2y ¼ 4 ^ x
3 � y ¼ 4

3
b) 2x � 2y ¼ 5 ^ �4x þ 8y ¼ �16
c) 2x

3 � y ¼ 2 ^ x þ y
2 ¼ 1

d) 0:2x � 0:4y ¼ 0:6 ^ �0:8x þ 1:8y ¼ �2:4

2.4.2 Solving by Elimination

As illustrated in the previous section, solving a system of more than two linear equations by
substitution can be very lengthy and clumsy. Mistakes are almost guaranteed. A more elegant
way, which is sometimes—but not always—easier to implement, is to solve a system of linear
equations by elimination. In essence, one then tries to manipulate one equation (e.g. by
multiplication or division by a constant) to make the coefficients of one of the variables the
same in two equations. Then you can subtract or add these two equations to eliminate that
particular variable. Let’s make this more clear by an example:

Example 2.8

Consider the following system of two linear equations in two unknowns:

x þ y ¼ 10

x � y ¼ 2

As you can see the coefficient of x is the same in both equations. This implies that by simply
subtracting the second equation from the first we can eliminate x. We do that by subtracting the
terms on the left side from each other, and the terms on the right side, separately!

x � x þ y � �yð Þ ¼ 10� 2 ! 0þ 2y ¼ 8 ! y ¼ 4

We can now substitute y in any of the two equations. If we substitute it in the first, we find
that:

x þ 4 ¼ 10 ! x ¼ 6

You can now verify yourself whether we found the correct solution by substituting x and y in
the second equation, similar to how this was done in Example 2.7. Note that this system can also
be solved by first eliminating y by adding the two equations.

In the previous example we did not have to manipulate any of the equations. However,
often this is necessary to simplify the procedure, as illustrated in the next example:
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Example 2.9

Consider the following system of two linear equations in two unknowns:

2x þ y ¼ 4

x � 3y ¼ �1

To solve this system we first multiply the second equation by �2:

2x þ y ¼ 4

�2x þ 6y ¼ 2

Then we add the two equations to find that:

7y ¼ 6

Thus, y ¼ 6
7 and x ¼ �1þ 3 � 67 ¼ �7

7 þ 18
7 ¼ 11

7 . Of course, this system can also be solved by
choosing other elimination strategies.

When solving a system of three linear equations in three unknowns, in the first step one
should eliminate one variable by manipulating two of the three equations as illustrated in the
next example:

Example 2.10

Consider the following system of three linear equations in three unknowns:

x þ y þ z ¼ 3

2x þ 4y � z ¼ �7

�3x þ 2y þ z ¼ �7

This system can be solved by first eliminating y, for example by first multiplying the first
equation by 2 and dividing the second equation by 2. This gives the following system of
equations:

2x þ 2y þ 2z ¼ 6

x þ 2y � 1
2
z ¼ �3

1
2

�3x þ 2y þ z ¼ �7

In the next step, we reduce the system of three equations, to a system of two equation by
eliminating y. We do this by subtracting the second equation from both the first and the third
equation:

x þ 2
1
2
z ¼ 9

1
2

�4x þ 1
1
2
z ¼ �3

1
2

(continued)
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Example 2.10 (continued)

Now we have a system of two equations with two variables, and we know how to solve that.
We can do this e.g., by elimination again, by multiplying the first equation by 4 and then adding
the two equations. This gives z¼3. The values for x and y can then be found by substitution in
other suitable equations to be x¼2 and y¼�2.

Exercise

2.5. Solve the following systems of linear equations:

a) 7x þ 4y ¼ 2 ^ 9x � 4y ¼ 30
b) 2x þ y ¼ 4 ^ x � y ¼ �1
c) 2x � 5y ¼ 5 ^ �6x þ 7y ¼ �39
d) x � 2y þ 3z ¼ 7 ^ 2x þ y þ z ¼ 4 ^ �3x þ 2y � 2z ¼ �10

2.4.3 Solving Graphically

Each linear equation in two unknowns describes a straight line in the two-dimensional plane.
Notice that a straight line in the (x,y)-plane is described by y¼ax+b, where a is a coefficient
describing the steepness of the line and b indicates the intersection with the y-axis. Some-
times it can help to solve a system of two linear equations in two unknowns by plotting the
associated lines. To solve the system, you just have to find the intersection of the two lines.

Example 2.11

Consider the following system of two linear equations in two unknowns that was introduced in
Example 2.8:

x þ y ¼ 10

x � y ¼ 2

The associated curves are:

y ¼ �x þ 10

y ¼ x � 2

The graph looks like this:

As the lines intersect at (6,4) the solution to the system is x¼6, y¼4.
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Such a plot can also illustrate when a system of two linear equations in two unknowns has
no solution: when the two associated lines run in parallel, there is no intersection. Of course,
plotting the associated lines to find a solution to a system of equations only works when the
plotting range is chosen such that the intersection is actually within the plotted part of the
plane.
In principle, a graphical approach to find the solution of a system of three linear equations

in three unknowns would also work, but this is not very practical. In this case, one would be
looking for the intersection of three planes, which is much harder to plot and visualize.

2.4.4 Solving Using Cramer’s Rule

One of the most practical ways of solving systems of linear equations is Cramer’s rule. It
offers a solution to a system of n equations in n unknowns by using determinants that are
explained in detail in Sect. 5.3.1.
In its most simple form Cramer’s rule can be applied to solve a system of two equations in

two unknowns, according to the rule indicated in Box 2.2.

Box 2.2 Cramer’s Rule for a System of 2 Linear Equations

The system of two equations with two unknowns x and y

ax þ by ¼ c

dx þ ey ¼ f

has the solution

x ¼ ce� bf
ae� bd

y ¼ af � cd
ae� bd

when ae�bd 6¼0.

Cramer’s rule also applies to systems of n linear equations in n unknowns for n> 2, which
is explained in Sect. 5.3.

2.5 Solving Quadratic Equations

Not all polynomial equations are linear. If a variable in a polynomial equation has power >1
the equation is nonlinear. Specifically, a quadratic equation in one unknown is a second-
order polynomial equation of the form:

ax2 þ bxþ c ¼ 0,
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where a 6¼0. Quadratic equations can be used, for example, to model relationships between
variables when a linear relationship is not appropriate, e.g. when modeling walking speed as a
function of age. Walking speed is slow when you are very young, reaches a peak and then
decreases again when you get older. Its curve would thus show an inverted U-shape, i.e. a
second-order polynomial shape. Statistical programs such as SPSS provide the option to do
regression analysis (see also Sect. 4.3.2 for an explanation of linear regression) and model such
nonlinear relationships.
It is important to note that solutions of quadratic equations are not always unique—

meaning that there might be more than one solution. In fact, quadratic equations can have
no, one or two solutions. For example, the equation x2�4¼0 has two solutions: x¼2
and x¼�2. More generally, a quadratic equation can be solved by following the general
rules outlined in Sect. 2.3, extended with the following rules that will be explained in more
detail below:

1. If needed, apply a function to both sides (e.g. take the square root of both sides to get rid of
a square).

2. Recognize a pattern you have seen before, like the difference of squares, or square of
differences.

3. Factorize in order to simplify.
4. Equate each factor to zero.

Regarding rule 1, it is useful to remember that if F is any kind of function (such as the
square or square root function, or the logarithmic function), and a¼b, then also F(a)¼F(b).
For example, if a¼b, then loga¼ logb, ca¼cb and ea¼eb (see Box 2.1).

Example 2.12

Solve the equation:

23x ¼ 4

This type of equation often occurs in chemistry calculations, for instance when calculating drug
doses (see Sect. 2.9 for an example). To solve it wewill take the logarithmwith base 2 of thewhole
equation and apply arithmetic rules for logarithms (Sect. 1.2.2). This yields

log22
3x ¼ log24 ! 3x ¼ 2 ! x ¼ 2

3

Example 2.13

Solve the equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x þ 5

p
¼ 7

To solve this equation both sides can be squared. This yields:

3x þ 5 ¼ 72 ! 3x ¼ 49� 5 ! x ¼ 44
3
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We will now consider three different ways of solving quadratic equations.

2.5.1 Solving Graphically

To get a better understanding of quadratic equations, we first discuss the graphical approach
to solving them. This is done by first drawing the function f(x)¼ax2+bx+c in the (x,y)-plane.
Its curve is a parabola. The solution of the equation is given by the points on the curve that
intersect with the x-axis, since there f(x)¼0. When the parabola’s peak just touches the x-
axis, there is one solution to the equation, when the x-axis cuts the parabola into three parts,
there are two solutions and in all other cases there are none.
The parabola associated with f(x) has a maximum or a minimum, depending on the sign of

a (illustrated in Fig. 2.1)

Fig. 2.1 Example of parabolas associated with quadratic equations. Top: The solutions indicated by x1
and x2 of the equation 0.5x2�5¼0. Here a > 0, thus the curve is concave up. Bottom: The solutions
indicated by x1 and x2 of the equation �0.5(x�1)2+5¼0. Here a < 0, thus the curve is concave down. For
both parabolas, the vertex and the y-intercept are also indicated.
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1. If a>0, f(x) is facing up (concave up) and the parabola has a minimum
2. If a<0, f(x) is facing down (concave down) and the parabola has a maximum
3. In any case, the peak of the parabola (or vertex) is at the position

x ¼ �b

2a

2.5.2 Solving Using the Quadratic Equation Rule

Solving equations graphically, although intuitive, might be difficult, and not always exact,
depending on whether the solution is a grid point. One method of solving quadratic
equations that always works is the quadratic equation rule (Box 2.3):

Box 2.3 Quadratic Equation Rule

The solution of

ax2 þ bx þ c ¼ 0

is given by

x1,2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

Here, the solution consists of two roots, x1 and x2, where the first is found for the plus sign
and the second for the minus sign. Applying this rule is relatively easy, as illustrated in this
example:

Example 2.14

Solve the following equation by applying the quadratic equation rule:

2x2 þ 3 ¼ �5

Here a¼2,b¼0 and c¼3+5¼8. By applying the quadratic equation rule we find the two
solutions

x1 ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

¼ 0þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0� 4 � 2 � 8p

2 � 2 ¼
ffiffiffiffiffiffiffiffiffi�64

p

4
¼ 8i

4
¼ 2i

x2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
2a

¼ 0� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0� 4 � 2 � 8p

2 � 2 ¼
ffiffiffiffiffiffiffiffiffi�64

p

4
¼ �8i

4
¼ �2i

As you can see there are two solutions for this equation and both are complex numbers
(see Sect. 1.2.4).
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Exercise

2.6. Find the roots of the following equations using the quadratic equation rule:

a) 2x2 þ 7x þ 5 ¼ 0
b) x2 � 9 ¼ 0
c) x2 � 3 ¼ 5x þ 2
d) x x � 5ð Þ ¼ 3
e) 2 y2 � 6y

� � ¼ 3
f) 1þ 6

x þ 9
4x2 ¼ 0

2.5.3 Solving by Factoring

In my opinion this is the most interesting way of solving equations as it requires bringing out
one’s creativity and imagination. The goal is to recognise factors (simpler forms) and rewrite
the equation using only a product of these simple forms, which are subsequently each set to
zero. This is not always possible, but often it is. Factors are (in the case of an n-th order
polynomial equation) simpler polynomials than the original equation. For example, qua-
dratic equations should be factored into two first-order polynomials.

Example 2.15

Consider the quadratic equation x(x�1)¼0 which is already factored into two factors: the factor
x and the factor (x � 1). To find the solution of this equation, at least one of the factors has to be
set to zero. Hence, solutions are found by equating each of the factors to zero: x¼0 OR x�1¼0.
Thus, the solutions are x1¼0 and x2¼1.

To solve polynomial equations by factoring, it is important to remember the following rule
and special cases regarding multiplication of such factors:

Box 2.4 Factor Multiplication Rule

General rule:

x þ að Þ x þ bð Þ ¼ x2 þ aþ bð Þx þ ab

Special cases:

x þ yð Þ2 ¼ x2 þ 2xy þ y2

x � yð Þ2 ¼ x2 � 2xy þ y2

x2 � y2 ¼ x � yð Þ x þ yð Þ
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Example 2.16

Solve the following equation by factoring:

x2 � 5x � 24 ¼ 0

Thus, we need to find numbers a and b such that (x�a)(x�b)¼x2�5x�24¼0. There are many
different approaches to find these numbers. First, we will here use that if we add and subtract the
same number we do not change the outcome:

x2 � 5x � 24 ¼ x2 � 5x � 3x þ 3x � 24

Now, we can rewrite the equation as

x2 � 8x þ 3x � 24 ¼ 0,

allowing to take the factor x � 8 out which results in the other factor being x + 3:

x x � 8ð Þ þ 3 x � 8ð Þ ¼ 0

x þ 3ð Þ x � 8ð Þ ¼ 0

Thus, the solutions are x1¼�3 and x2¼8.

Example 2.17

Solve the following equation by factoring:

x2 � 9 ¼ 0

Here you have to realize that 9 is a square of 3 (32 ¼ 9), and to remember one of the special
cases of the factor multiplication rule (Box 2.4). We can then rewrite the left-hand side of the
equation, which is a difference of squares, to:

x2 � 9 ¼ x � 3ð Þ x þ 3ð Þ

Thus, the equation has two solutions x�3¼0 or x+3¼0; thus x1¼3 and x2¼�3.

Example 2.18

Solve the following equation by factoring:

x2 þ 6x þ 9 ¼ 0

If we realize that 32¼9 and that 3+3¼6, we see that the above equation is the square of a sum
(a special case of the factor multiplication rule again). Thus we can rewrite the left-hand side of
the equation to:

(continued)
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Example 2.18 (continued)

x2 þ 6x þ 9 ¼ x þ 3ð Þ2

and the above equation to:

x þ 3ð Þ2 ¼ 0

Thus, the solutions are x1,2¼�3. For this equation there is only one (double) solution.

To find the factors of a quadratic equation, there is also a more systematic approach.
Suppose that you are trying to solve the equation x2+ cx+d¼0. Taking the general factor
multiplication rule into account, we know that we are looking for two numbers a and b such
that their sum is c and their product is d. Hence, assuming that the solutions of the equation
are integers, we can make a table of all possible pairs of factors of d that are likely solutions
and calculate their sum. The pair that has the right sum and product then provides two
solutions. Let’s illustrate this approach for Example 2.16:

Example 2.16 (continued)

Solve the following equation by factoring:

x2 � 5x � 24 ¼ 0

We first construct a table with integer factors of �24 that are likely candidates for factors and
add their sums:

Factor 1 Factor 2 Sum
�2 12 10
2 �12 �10

�3 8 5
3 �8 �5

�4 6 2
4 �6 �2

Now, we immediately see that the pair of factors 3 and �8 has the right sum. Thus, the
equation can be factored into (x+3)(x�8)¼0 and its solutions are x1¼�3 and x2¼8.
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Exercise

2.7. Find the roots of the following equations using factoring:

a) x2 � 7x þ 2 ¼ �8
b) x2 � 4x þ 4 ¼ x
c) x2 þ 2x � 8 ¼ 0
d) 2x3 � 14x2 þ 20x ¼ 0

2.6 Rational Equations (Equations with Fractions)

We already touched upon fractions in Sect. 1.2.1. Rational equations use fractions. These are
equations that have a rational expression on one or both sides in which the unknown variable
is in one or more of the denominators. For example, in the following equation, the variable
x is in the denominator on the left side:

3
xþ 2

¼ 7þ x

3

Such equations are used for example in percentage calculations, or when calculating the
speed at which a computer job will be done, as illustrated in the next example.

Example 2.19

You need to do a heavy calculation on a two core PC to obtain a fit to your data. Normally, core
1 would take 6 h to fit the data. However, core 2 is faster and would take 3 h to fit the data. How
long will it take to calculate the data fit using both cores of the PC?

This problem that requires P calculations can be solved using rational equations. First, we
realize that core 1 takes 6 h to do P calculations. Thus it can do P

6 calculations per hour. Second, we
know that core 2 takes 3 h to do P calculations. Thus it can do P

3 calculations per hour. Thus if we say
that T is the total time needed for both cores to calculate the data fit together, we find that we
need to solve a rational equation:

P
6
þ P

3
¼ P

T

Solving this equation we find that

9
18

¼ 1
T

! T ¼ 2

Thus, using rational equations we find that it takes 2 h to calculate the fit using both cores of
the PC. Note that this problem can also be solved in other ways that do not involve rational
equations.
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2.7 Transcendental Equations

These are equations where at least one side contains a so called transcendental (i.e.
non-algebraic) function. This is a whole world of equations, and usually they can be written
in the form F(x)¼0, where F(x) can be any function. Some examples of functions, discussed
in this book are logarithmic, trigonometric or exponential functions. Importantly, these
equations are not always solvable, or the solutions can only be approximated numerically,
with the help of computer algorithms. In some cases they can be expressed in algebraic form
and then solved. We will only consider such cases here for two types of functions, exponential
and logarithmic functions.

2.7.1 Exponential Equations

Exponential equations can be solved in two cases:

1) In case the equation consists of exponentials with different bases that are not added or
subtracted, we can find a solution by applying a logarithm with any base to the equation.

2) In case exponentials of the same base k are added (e.g. 21, 22 and 20, that have the same
base k ¼ 2), we can substitute y ¼ kx for an exponential equation in x.

Example 2.20

(Example of case 1) Solve the equation:

3x ¼ 4x�2 � 2x

In this case no exponentials are added or subtracted and we can apply a logarithm with any
base to both sides of the equation. We will try the natural logarithm with base e, but it could be
any base, and in fact base 2 might be more straightforward.

Remember that logax
b¼blogax and loga (x �y)¼ logax+logay (Sect. 1.2.2). If we now apply ln to

both sides of the equation we get:

ln 3x ¼ ln 4x�2 � 2x� � ! x ln 3 ¼ ln 4x�2 þ ln 2x !
x ln 3 ¼ x� 2ð Þ ln 4þ x ln 2

If we group over x we find that

x ¼ 2 ln 4
� ln 3þ ln 4þ ln 2
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Example 2.21

(Example of case 2) Solve the equation:

32x�1 ¼ 9x � 3

Remember that 32¼9, thus we can substitute y¼3x. Since 32x¼(3x)2¼y2, and 32x�1 ¼ 32x
3 ¼ y2

3
we can rewrite the equation to

y2

3
¼ y2 � 3

which we can then rewrite to 3y2�y2�9¼0. Thus 2y2�9¼0, and we know how to solve this by
using e.g. the quadratic equation rule in Sect. 2.5.2.

Exercise

2.8. Find the roots of the following equations using logarithms or substitution:

a) 36x ¼ 9
b) 8þ 62xþ1 ¼ 44
c) 10e2x � 30ex þ 15 ¼ 0

2.7.2 Logarithmic Equations

Logarithmic equations can be solved in the following two cases:

1) If the equation contains one or more logarithms of the same expression (say P(x)), then we
can use the substitution:

y ¼ logaP xð Þ

2) If the equation contains a linear combination of logarithms with the same base, we can use
the arithmetic rules for logarithms (Sect. 1.2.2) to solve the equation.

Example 2.22

(Example of case 1). Solve the equation:

m ln x2 þ 4
� �� �2 þ n ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln x2 þ 4ð Þð Þ2 þ b

q

According to the solution provided for case 1) we can rewrite

y ¼ ln x2 þ 4
� �

(continued)
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Example 2.22 (continued)

to get

my2 þ n ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ b

p
If we square both sides, this results in

my2 þ n
� �2 ¼ a2y2 þ a2b

which has now become a regular polynomial equation in y. After solving for y, x can be deter-
mined according to

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ey � 4

p

Example 2.23

(Example of case 2). Solve the equation:

2log5 3x � 1ð Þ � log5 12x þ 1ð Þ ¼ 0

Rewriting this equation using the arithmetic rules for logarithms yields:

log5
3x � 1ð Þ2
12x þ 1

¼ log51

and thus

3x � 1ð Þ2
12x þ 1

¼ 1

This equation has two solutions (x1¼0 and x2¼2). However, if we now verify the solutions by
substituting x1 and x2 in the original equation, the first logarithm has 3x1�1¼�1 as its argument,
and log5�1 is not defined, whereas the second logarithm (log5(12x1+1)¼ log51¼0) is well
defined, so we will discard the first solution. Therefore, the solution of the equation is only x ¼ 2.

Exercise

2.9. Solve the following equations using substitution and logarithmic arithmetic:

a) log5x � log5xð Þ2 ¼ 0
b) 2log5 3x � 1ð Þ � log5 12x þ 1ð Þ ¼ 0
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2.8 Inequations

2.8.1 Introducing Inequations

Inequations are used in daily life almost as frequently as equations. They are used whenever
we have to consider a lower or higher limit. For example, when driving, there is a maximum
speed limit. If we take over a car that is driving slowly, are we going to have to drive too fast?
If you spend 200 Euros on a new printer today, what is the maximum amount you can spend
on food to not go over the daily withdrawal limit of your bank? For how many family
members can you buy a plane ticket, before you hit the limit of your credit card? While
equations include an equality (¼) sign, inequations have an inequality symbol between two
mathematical expressions as given in Table 2.1.

2.8.2 Solving Linear Inequations

As you need to know how to solve equations before you start solving any inequation, we
started this chapter with an extensive introduction to equation solving. Inequations are
solved using the same techniques as for equations, except that one needs to take care of the
direction of the inequality symbol. The main rule is that if you multiply an inequation with a
negative number you need to swap the direction of the inequality symbol, i.e. greater than
becomes less than and vice versa.
For example, the inequation

�3x > 5

is solved by multiplying the whole inequation by�1
3. In this case the inequality symbol needs

to change direction so the inequation becomes:

�1
3

�3xð Þ < �1
3
� 5

Therefore, the solution is

x < �5
3

Table 2.1 Inequality symbols and their meanings

< less than
> greater than
� less than or equal to
� greater than or equal to
6¼ not equal to
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Another important thing to remember is that the solution of an inequation is not a single
value, as for linear equations, but a set of numbers that satisfies a certain criterion. I will
explain that for the example above.
The solution of the above inequation is any x smaller than �5

3. This is illustrated in
Fig. 2.2.
Table 2.2 summarizes what happens to inequality symbols in an inequation when both

sides are multiplied by �1.
Inequations can also have three parts in the case where the solution of the inequation is

limited both from above and from below. An example is given by:

�2 < 3x < 5

The solution of this inequation can be found by dividing all parts by 3. Since three is a
positive number, the directions of all inequality symbols will remain the same:

�1
3
� 2 < x <

1
3
� 5 ! � 2

3
< x <

5
3

We can also write this as

x2 �2
3
;
5
3

� �

Here, 2 stands for ‘is an element of’ or ‘belongs to’ and the ( ) brackets indicate that the
boundary values are not included in the solution. Graphically this solution is illustrated in
Fig. 2.3.

Fig. 2.2 Illustration of the set of solutions for the inequation �3x > 5. The black arrow represents all
solutions. Any number smaller than �5/3 is a solution. The black dot indicates that the solution does not
include the boundary value.

Table 2.2 Rules for changing the inequality symbol direction

Inequality
symbol

Inequality symbol after multiplication by
�1

< >

> <
� �
� �
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But what about inequations like 3�6x? This inequation includes the inequality symbol
�, which stands for ‘greater than or equal to’ (See Table 2.1). If we apply already known rules
for equation solving to solve this inequation we find that:

3
6
� x ! 1

2
� x ! x � 1

2
! x2 �1;

1
2

� �

This means that the solutions of the equation 3�6x are all numbers smaller than 1
2

including 1
2. The bracket ] indicates that the boundary value is included in the solution.

In line with the previous examples we can then illustrate this set of solutions as in Fig. 2.4.
Some further examples of the use of brackets to denote sets of numbers are provided in

Table 2.3.

Exercise

2.10. Find the solution to the following inequations:

a) 3x þ 7 > 2x � 5
b) 3� 5x < 7x � 2
c) 4 � 7x < 6

Fig. 2.4 Illustration of the set of solutions for the inequation 3 � 6x. The black square indicates that the
solution includes the boundary value.

Table 2.3 Examples of bracket use in linear inequations

Example Same as

x2 �1
2;

1
2

� � �1
2 < x < 1

2

x2 �1
2;

	
1
2

� �1
2 � x < 1

2

x2 �1
2 ; 12
	 
 �1

2 � x � 1
2

x2��1, 12
�

x < 1
2

x2��1, 12



x � 1
2

Fig. 2.3 Illustration of the set of solutions for the inequation �2 < 3x < 5. The black dots indicate that
the solution does not include the boundary values.
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2.8.3 Solving Quadratic Inequations

Quadratic inequations can be solved by using general knowledge about solving linear
inequations while at the same time taking into account the quadratic nature of the
inequation. Remember that the solution to a quadratic equation is determined by the
roots of a parabola. To solve a quadratic inequation you thus need to:

1. Decide whether the parabola is concave up or concave down,
2. find the roots of that parabola and then
3. create the set of solutions.

This may sound pretty abstract but will become clear when discussing an example.

Example 2.24

Determine the solution of the inequation:

4x2 � 9 < 0

First we realize that 4 > 0, thus the parabola is concave up. That means that there are two
solutions to the equation

4x2 � 9 ¼ 0

We will look at the part of the parabola that is <0, thus the part between the two solutions of
the equation. Let’s solve this equation by factoring (Sect. 2.5.3).

4x2 � 9 ¼ 2x � 3ð Þ 2x þ 3ð Þ

Thus its roots are x1 ¼ 3
2 and x2 ¼ �3

2. Here x2<x1. Visually, we can now determine that the
solution of the quadratic inequation is

x2 �3
2

;
3
2

� �

as is also illustrated in the figure.
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Example 2.25

Determine the solution of the inequation in Example 2.24, but then with the opposite inequality
symbol:

4x2 � 9 > 0

We can now immediately determine the solution with the help of the figure in Example 2.24:

x2 �1;
�3
2

� �
[ 3

2
;1

� �

Here, [ denotes the union of two sets.

Exercise

2.11. Find the solution to the following inequations:

a) 2x2 þ 7x þ 5 � 0
b) x2 � 9 < 0
c) x2 � 3 > 5x þ 2

2.9 Scientific Example

Equivalent dose for anti-psychotic medication
My favorite example of equation use in neuroscience is based on a now widely used

method to calculate the equivalent dose for antipsychotics (Andreasen et al. 2010). These are
medications that can be used to suppress symptoms of psychosis and an equivalent dose is a
dose which would offer an equal effect between different antipsychotics. The term equivalent
dose is also used for other types of medications, such as e.g., analgesics. The importance of
being able to calculate equivalent doses is that patients sometimes already use other types of
antipsychotics (or analgesics) and doctors want to be able to track the total strength of the
medication. Also, when comparing medication dosages between patients who use different
medications, this is important. Here, we discuss a specific example.

Example 2.26

A patient is known to daily use 45 mg of Mirtazipine, 10 mg of Zyprexa and 15 mg of Abilify. How
much is that expressed in mg of haloperidol?

Mirtazipine is an antidepressant, which will not count towards the equivalent dose of halo-
peridol. The other two drugs are antipsychotics where it should be known that Abilify is a brand
of aripiprazole, and Zyprexa is based on olanzapine.

From the table in Fig. 2.5 we can derive that a dose of x mg of haloperidol is equivalent to

ya ¼ 4:343x0:645

(continued)
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Example 2.26 (continued)

Fig. 2.5 Formulas for calculating dose equivalents using regression with power transformation,
and chlorpromazine and haloperidol equivalents based on them. Table reprinted fromAndreasen
et al. (2010). Antipsychotic dose equivalents and dose-years: a standardized method for compar-
ing exposure to different drugs. Biol. Psychiatry 67, 255–262, with permission from Elsevier.

mg of Aripiprazole, and that a dose of x mg of haloperidol is equivalent to

yo ¼ 2:900x0:805

mg of Olanzapine.
Thus, we want to determine x from the equations above, while we know the doses of

aripiprazole (ya¼15) and olanzapine (yo¼10), as well as the full dosage per day (the sum of the
two doses). You now know how to do this:

xa ¼ ya
4:343

� � 1
0:645

xo ¼ yo
2:9

� � 1
0:805

Here, xa is the equivalent dose of haloperidol for the daily dose of aripiprazole and xo is the
equivalent dose of haloperidol for the daily dose of olanzapine. Note that x¼xa+xo is the daily
dose of antipsychotics in haloperidol terms. Thus

xa ¼ 15
4:343

� � 1
0:645

¼ 6:8324

xo ¼ 10
2:9

� � 1
0:805

¼ 4:6540

and the daily equivalent dose of haloperidol (in mg) is

x ¼ xa þ xo ¼ 11:4864

Thus this patients receives the equivalent of 11.49 mg of haloperidol daily.
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Glossary

Analgesic medication to relief pain; painkiller
Algebraic using an approach in which only mathematical symbols and arithmetic operations are used
Antipsychotic medication used to treat psychosis
Arithmetic operations between numbers, such as addition, subtraction, multiplication and division
Concave hollow inward
Determinant a scalar calculated from a matrix; can be seen as a scaling factor when calculating the

inverse of a matrix (see also Sect. 5.3.1)
Elimination eliminating an unknown by expressing it in terms of other unknowns
Equation a mathematical expression that states that two quantities are equal
Equivalent dose dose which would offer an equal effect between different medications
Function a mathematical relation, like a recipe, describing how to get from an input to an output
Independent here: equations that cannot be transformed into each other by multiplication
Least common denominator the least number that is a multiple of all denominators
Linear a function or mathematical relationship that can be represented by a straight line in 2D and a

plane in 3D; can be thought of as ‘straight’
Nonlinear not linear
Numerically (solving) to find an approximate answer to a mathematical problem using computer

algorithms
Polynomial an expression consisting of a sum of products of different variables raised to different

non-negative integer powers
Psychosis a mental condition that can have many different symptoms including hallucinations
Rational equation equation that has a rational expression on one or both sides in which the unknown

variable is in one or more of the denominators
Root solution of a polynomial equation
Substitution replacing a symbol or variable by another mathematical expression
Transcendental a number that is not the root of a polynomial with integer coefficients; most well-

known are e and π
Union the union of two sets is the set that contains all elements in both sets
Unique here: a single solution to an equation
Unknown variable in an equation for which the equation has to be solved; an equation can have

multiple unknowns
Variable alphabetic character representing a number
Vertex peak of a parabola
Y-intercept intercept of a curve with the y-axis

Symbols Used in This Chapter (in Order of Their Appearance)

¼ equal to
! implies
6¼ not equal to
ℂ complex numbers
log logarithm
ln natural logarithm (base e)
i complex unity
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< less than
> greater than
� less than or equal to
� greater than or equal to
6¼ not equal to
x2 �1

2;
1
2

� � �1
2 < x < 1

2

x2 �1
2

	
, 12
� �1

2 � x < 1
2

x2 �1
2;

1
2


	 �1
2 � x � 1

2
1 infinity
[ unification

Overview of Equations for Easy Reference

General form of linear equation
Any linear equation with one unknown x can be written as ax¼b where a and b are constants.

Arithmetic rules useful for solving linear equations
If a ¼ b and c 2 ℂ then

aþ c ¼ bþ c
ac ¼ bc

If a ¼ b, c 2 ℂ and c 6¼0 then

a

c
¼ b

c

If F is any function and a ¼ b then F(a) ¼ F(b)

FðaÞ ¼ FðbÞ

Cramer’s rule for a system of 2 linear equations
The system of two equations with two unknowns x and y

axþ by ¼ c

dxþ ey ¼ f

has the solution

x ¼ ce� bfð Þ= ae� bdð Þ
y ¼ af � cdð Þ= ae� bdð Þ
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when

ae� bd 6¼ 0:

Quadratic equation rule
The solution of

ax2 þ bxþ c ¼ 0

is given by

x1,2 ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a

Factor multiplication rule
General rule:

xþ yð Þ xþ zð Þ ¼ x2 þ yþ zð Þxþ yz

Special cases:

xþ yð Þ2 ¼ x2 þ 2xyþ y2

x� yð Þ2 ¼ x2 � 2xyþ y2

x2 � y2 ¼ x� yð Þ xþ yð Þ

Rules for changing the direction of the inequality symbol

Inequality symbol Inequality symbol after multiplication by �1
< >

> <

� �
� �

Answers to Exercises

2.1. Suppose each of the granddaughters inherits x coins. Then we can write
3x þ 1

2 � 60 ¼ 60 ! 3x ¼ 60� 30 ! 3x ¼ 30 ! x ¼ 10. Thus each granddaugh-
ter will inherit ten rare coins.

2.2. a. x ¼ �8
b. x ¼ �23
c. 3x � 9 ¼ 33 ! 3x ¼ 33þ 9 ! x ¼ 42

3 ! x ¼ 14
d. x ¼ 65

5 ¼ 13
e. 4x � 6 ¼ 6x ! 4� 6ð Þx � 6 ¼ 0 ! �2x ¼ 6 ! x ¼ �3
f. 8x � 1 ¼ 23� 4x ! 12x ¼ 24 ! x ¼ 2
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2.3. a) x ¼ 0
b) x ¼ �9

13

2.4. a) x ¼ 4; y ¼ 0
b) x ¼ 1; y ¼ �3

2
c) x ¼ 3

2 ; y ¼ �1
d) x ¼ 3; y ¼ 0

2.5. a) x ¼ 2; y ¼ �3
b) x ¼ 1; y ¼ 2
c) x ¼ 10; y ¼ 3
d) x ¼ 2; y ¼ �1; z ¼ 1

2.6. a) x1 ¼ �212 and x2 ¼ �1
b) x1 ¼ �3 and x2 ¼ 3

c) x1 ¼ 5�3
ffiffi
5

p
2 and x2 ¼ 5þ3

ffiffi
5

p
2

d) x1 ¼ 5� ffiffiffiffi
37

p
2 and x2 ¼ 5þ ffiffiffiffi

37
p
2

e) x1 ¼ 3� 1
2

ffiffiffiffiffi
42

p
and x2 ¼ 3þ 1

2

ffiffiffiffiffi
42

p

f) x1 ¼ �3� 3
2

ffiffiffi
3

p
and x2 ¼ �3þ 3

2

ffiffiffi
3

p

2.7. a) (x�5)(x�2)¼0 thus x1¼2 and x2¼5
b) (x�4)(x�1)¼0 thus x1¼1 and x2¼4
c) (x+4)(x�2)¼0 thus x1¼�4 and x2¼2
d) We can rewrite this equation to 2x(x�5)(x�2)¼0 thus x1¼0, x2¼2 and x3¼4

2.8. a) Using that 9¼32, we have to solve 6x¼2 and thus x ¼ 1
3.

b) We can rewrite 62x+1¼36¼62 so that we have to solve 2x+1¼2 and thus x ¼ 1
2.

c) Substitute y¼ex, so that y2¼e2x, resulting in the quadratic equation 10y2�30y+
15¼0, which has solutions y1 ¼ 3

2 þ 1
2

ffiffiffi
3

p
and y2 ¼ 3

2 � 1
2

ffiffiffi
3

p
. Then

x1 ¼ ln 3
2 þ 1

2

ffiffiffi
3

p� �
and x2 ¼ ln 3

2 � 1
2

ffiffiffi
3

p� �
.

2.9. a) First we substitute y¼ log5x. Then the equation can be rewritten as y�y2¼0, which
has two solutions y1¼ 0 and y2¼ 1. Hence log5x1¼0 and log5x2¼1 and thus x1¼1
and x2¼5

b) We can rewrite this equation using the rules for logarithms to log5
3x�1ð Þ2
12xþ1 ¼ log51,

so that we have to solve the equation 3x�1ð Þ2
12xþ1 ¼ 1, which has solutions x1¼0, x2¼2.

2.10. a) x2 �12;ð 1Þ
b) x2 5

12;
� 1Þ

c) x2 4
7;
h

6
7

�
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2.11. a) We first solve the equation 2x2+7x+5¼0 which has two solutions x1 ¼ �5
2

and x2¼�1. Because the coefficient of x2 is larger than zero, a > 0, the parabola
has a minimum and is concave up. We are looking for those solutions where the
curve is �0. Thus

x2 �1;ð �5
2

�
[ �1;½ 1Þ

b) In a similar approach as for Exercise 2.11a we find that:

x2 �3;ð 3Þ

c) We first rewrite the inequation to x2�5x�5>0. Its related equation has two

solutions x1,2 ¼ 5� ffiffiffiffi
45

p
2 . Thus

x2
 

�1,
5� 3

ffiffiffi
5

p

2

!
[ 5þ 3

ffiffiffi
5

p

2
;1

 !

References

Online Sources of Information

https://en.wikipedia.org/wiki/Linear_equation
http://www.mathsisfun.com/algebra/quadratic-equation-graph.html
http://www.mathsisfun.com/geometry/parabola.html
https://www.khanacademy.org/

Books

Bronstein, Semendjajev, Taschenbuch der Mathematik [Handbook of Mathematics] (Teubner, Leipzig,
1984)

Papers

N.C. Andreasen, M. Pressler, P. Nopoulos, D. Miller, B.C. Ho, Antipsychotic dose equivalents and
dose-years: a standardized method for comparing exposure to different drugs. Biol. Psychiatr. 67,
255–262 (2010)

60 B. Ćurči�c-Blake

https://en.wikipedia.org/wiki/Linear_equation
http://www.mathsisfun.com/algebra/quadratic-equation-graph.html
http://www.mathsisfun.com/geometry/parabola.html
https://www.khanacademy.org/


3
Trigonometry

Natasha Maurits

After reading this chapter you know:

• what the three main trigonometric ratios are and how they can be calculated,
• how to express angles in degrees and radians,
• how to sketch the three main trigonometric functions,
• how to sketch functions of the form Asin(Bx+C)+D and how to interpret A, B, C and D,
• what Fourier (or spectral or harmonic) analysis is and
• how Fourier analysis is used in real-life examples.

3.1 What Is Trigonometry and How Is It Applied?

The word trigonometry is derived from the Greek words trigon (triangle) and metron
(measure) and thus literally means ‘measuring triangles’. In particular, trigonometry cleverly
employs the relation between sides and angles in triangles. Even though many people find
trigonometry a rather abstract branch of mathematics, it actually developed from very
practical applications in astronomy and land measurement, where distances from one point
to another have to be obtained. Let me give you an example of how measuring triangles and
employing the relation between sides and angles in a triangle can help obtain the distance
between two points that are too far apart to be measured with a tape measure. Suppose you
want to know the height of the beautiful Martini Tower, a landmark of our home city of
Groningen, to determine whether it is taller than the Dom Tower in Utrecht. To do this, you
only need a tape measure to measure (1) the distance between you and an object between you

N. Maurits (*)
Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
e-mail: n.m.maurits@umcg.nl
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and the Martini Tower, (2) the height of this object and (3) the distance between you and the
Martini Tower (see Fig. 3.1).
The smaller triangle in Fig. 3.1a and the larger triangle in Fig. 3.1b are similar: they have

the same angles, so the ratio between the height of the Martini Tower and the distance
between you and the Martini Tower (142.40 m) and the ratio between the length of the
object (a helpful bystander who is 1.70 m tall) and the distance between you and the object
(2.50 m) must be the same. The height of the Martini Tower can then be calculated from the
equality height/142.40 ¼ 1.70/2.50, giving height ¼ 142.40 � 1.70/2.50 ¼ 96.83 m.
A similar procedure can be used to calculate the distance from a boat to a point on the

shore, such as a lighthouse, by cleverly choosing the triangles. In this case, you would
construct two different triangles, the first with two of its vertices on the boat—close to
each other so that you can measure the distance in between—and the third at the lighthouse

Fig. 3.1 Measuring the height of Martini Tower using trigonometry. (a) Smaller triangle between you
and object. (b) Larger similar triangle between you and Martini Tower.
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L and another one with the same shape (angles), but smaller, with the third vertex also on the
boat close to you (Fig. 3.2).
In general, trigonometry allows calculating the length of an edge of a right-angled triangle if

an angle and the length of another edge are known, or an angle if the lengths of two other edges
are known, using similar triangles. With this approach, it is also possible to calculate, for
example, distances to a star from earth or between celestial bodies. More developed forms of
trigonometry are used in architecture, medicine and biology, music and acoustics, neuroim-
aging and astronomy, and I will show you how in some examples later in this chapter.

3.2 Trigonometric Ratios and Angles

After a while it became convenient to refer to the ratios between the lengths of two edges in a
right-angled triangle with specific names. As these ratios do not depend on the size of the
triangle, but only on the angles, tables were drafted with the values of these ratios for different
angles. The three main trigonometric ratios were named sine, cosine and tangent.
For the angle α in Fig. 3.3 the sine (S) is defined as the ratio between the opposite edge

(O) and the hypothenuse (H), the cosine (C) as the ratio between the adjacent (A) edge and
the hypotenuse and the tangent (T) as the ratio between the opposite edge and the adjacent
edge. To summarize:

sine ¼ O/H
cosine ¼ A/H
tangent ¼ O/A ¼ sine/cosine

Fig. 3.2 Measuring the distance to a lighthouse L on the shore from a boat B using trigonometry. PQL:
reference triangle. SQR: similar triangle. Here: PQ:SQ¼QL:QR. Since PQ, SQ and QR can bemeasured, QL
can be derived.
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To memorize these trigonometric ratios a mnemonic for the acronym SOHCAHTOA—
Sine (Opposite over Hypotenuse), Cosine (Adjacent over Hypotenuse), Tangent (Opposite
over Adjacent)—can be useful (see for many examples: http://acronyms.thefreedictionary.
com/Sohcahtoa).

Exercise

3.1. Find the values of the three main trigonometric ratios (sine, cosine, tangent) for each of the
following angles θ:

3.2. Suppose you are building an ellipsoid dinner table for which you would like to use four
(square) legs on the positions indicated in the figure (table seen from below, arrows point
to the center of the legs). The legs are connected by trapezoid beams that you now need to
saw. The machine you use can saw angles, but what are the angles 1, 2, 3 and 4?

Fig. 3.3 Basic triangle to define trigonometric ratios.
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Employing Pythagoras’ theorem, we can easily derive the first of a number of useful
relationships between the trigonometric ratios. Just to remind you, Pythagoras’ theorem
states that the sum of the squares of the edges adjacent to a right angle in a triangle is equal to
the square of the hypothenuse (or in Fig. 3.3: Opposite2 + Adjacent2 ¼ Hypothenuse2).
Thus:

sin 2 þ cos 2 ¼ O

H

� �2

þ A

H

� �2

¼ O2 þ A2

H2 ¼ H2

H2 ¼ 1 ð3:1Þ

This relationship between sine and cosine is always true, independent of the angle, and
allows easily deriving the value of the cosine if the value of the sine is known and vice versa.
This relationship also tells us that if we would plot cosine versus sine for all possible values of
the angle, a circle with radius one would result (remember that the definition of a unit circle
in the (x,y)-plane is x2 + y2 ¼ 1). This knowledge will be very useful when exploring the
trigonometric ratios as trigonometric functions a little later in this chapter. In addition, when
defining the trigonometric ratios on the unit circle, life gets a bit easier as the hypothenuse
(the radius of the unit circle) becomes 1 and drops out of the ratios for sine and cosine
(Fig. 3.4).
The edge lengths of the smaller triangle in Fig. 3.4a are thus equal to the sine and cosine.

To understand why the tangent is represented by the green line in Fig. 3.4a requires a little
more thinking. Remember that the ratios only depend on the angle and not on the size of the
triangle; thus, they are the same in similar triangles. As the tangent is the ratio between the
sine and the cosine (the length of the red edge divided by the length of the blue edge) and for
the larger similar triangle in Fig. 3.4a the adjacent edge has length 1, the tangent is here
simply equal to the length of the green line. Also, as the trigonometric ratios in a triangle are
only defined for angles between 0 and 90 degrees (the angles can simply not get larger within

Fig. 3.4 Trigonometric ratios on the unit circle (a) for angles between 0 and 90 degrees, (b) for angles
between 90 and 180 degrees, (c) for angles between 180 and 270 degrees. The sine is equal to the
length of the red line, the cosine to the length of the blue line and the tangent to the length of the
green line.
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a right-angled triangle), the representation on the unit circle allows extending these defini-
tions to larger angles, making use of the periodicity of the trigonometric functions. Before
doing that, we need to define angles and quadrants on the circle (Fig. 3.5).
By definition, angles are defined starting from the positive x-axis going counter-clockwise.

Thus, for example, a 90-degree (or 90�, as the symbol for degrees is �) angle is defined
between the positive x-axis and the positive y-axis, while a 290� angle is defined between the
positive x-axis and the negative y-axis. The first quadrant is then the top right one, the second
the top left, the third the bottom left and the fourth the bottom right. When traversing from
the fourth to the first quadrant one can either further increase the angle or start counting
from 0� again, e.g. an angle of 390� is equal to an angle of 30�. Angles are thus given modulo
360�. Similarly, an angle of �30� is equal to an angle of 330�.
Now consider Fig. 3.4b. Here, the angle is larger than 90�, but the sine and cosine can still

be derived from a (now different) triangle. Note that the cosine is now negative (even though
length is always positive, the cosine edge of the triangle extends along the negative x-axis in
the plot), making the tangent negative, as well, which is why we consider the downward edge
of the similar triangle on the other side of the origin to derive the tangent. For angles between
180 and 270� a similar approach can be used (Fig. 3.4c). Note that sine and cosine are both
negative for this quadrant, making the tangent positive again.

3.2.1 Degrees and Radians

In the previous text I already talked about angles, also assuming that you are familiar with
right angles being 90�. If we go around the full circle in Fig. 3.5, we will have travelled 360�.
You may wonder why this is not 100�, in line with the base 10 system we use for counting.
This dates all the way back to the Babylonian astronomers of the last centuries BC who used a
base 60 system to calculate (Neugebauer, 1969). Angles can also be expressed in other units,
however. The SI unit for angle is the radian (or rad), which is more convenient to use than �.
For example, that the derivative of the sine is the cosine, and that lim

x!0

sin xð Þ
x ¼ 1 (see Chap. 6)

only hold when using radians. Using radians, a whole revolution of a circle is compared to the
circumference of a circle, i.e. 2πr, where r is the radius of the circle. An angle in radians is the
length of the corresponding arc on a unit circle (Fig. 3.6).

Fig. 3.5 Illustration of the definition of angles and quadrants employing a circle.
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Note that in a circle with a radius that is twice as large the corresponding arc will also be
twice as long. As angles do not change depending on the distance to the arc, in general radians
measure the arc formed by the angle divided by the radius of that arc. For a full circle (360�),
the arc is equal to the circumference of the circle 2πr. Hence, when dividing by the radius of
the circle r, we find that 360� equals 2π radians, or 1� ¼ 2π/360 ¼ π/180 rad. Vice versa,
1 rad ¼ 360/2π� ¼ 180/π�. As angles are given modulo 360�, similarly they are given
modulo 2π rad.

Exercises

3.3. Convert the following angles from degrees to radians:

(a) 30�

(b) 45�

(c) 60�

(d) 80�

(e) 90�

(f) 123�

(g) 260�

(h) �16�

(i) �738�

3.4. Convert the following angles from radians to degrees

(a) 2π/3 rad
(b) π/4 rad
(c) 9π/4 rad
(d) 0.763π rad
(e) π rad
(f) θπ rad
(g) θ rad

Fig. 3.6 Definition of an angle in radians: the dashed arc has a length of 1.
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3.3 Trigonometric Functions and Their Complex Definitions

So far, we have only considered trigonometric ratios; sine, cosine and tangent were defined
employing the lengths of the edges of a triangle. In other words, we can now derive the sine,
cosine and tangent for every angle by considering an appropriate triangle as we did e.g. in the
context of the unit circle in Fig. 3.4. However, being able to define the sine, cosine and tangent
for every angle, implies that we can also consider these trigonometric ratios as functions of an
angle. A function is like a recipe, describing how to get from an input to an output. For
example, a function f that relates a value of x to its square root

ffiffiffi
x

p
could be given by

f xð Þ ¼ ffiffiffi
x

p
. Similarly, we can define functions that relate an angle α to its sine ( f(α)¼sin

(α)), cosine ( f(α)¼cos(α)) or tangent ( f(α)¼tan(α)). Note that in these functions we use
abbreviations for the trigonometric ratios. Now that we have trigonometric functions we can
also graph these functions in a coordinate system. Usually, when plotting any function, the
input x is plotted along the horizontal x-axis and the output, the value of the function
f(x), along the y-axis.
A plot of sin(x) could be made manually by first making a table for pairs of (x, sin(x)), then

plotting the points in the table in the (x,y)-plane and sketching a smooth curve through these
points. The values for sin(x) could be obtained from a calculator. However, the fact that
sin(x) is defined as the opposite edge in the triangle in the unit circle in Fig. 3.4 also helps in
plotting (Fig. 3.7).
Imagine a point travelling along the unit circle, starting at the positive x-axis where the

angle is 0�. This position corresponds to the origin in the plot of the sine function. Then,
while the point is travelling along the circle, plot its varying distance from the x-axis for the
corresponding angles in the plot of the sine function (fat dotted line in Fig. 3.7). When the
point has travelled the full circle, a plot for sin(x) between 0 and 2π radians results (drawn line
in Fig. 3.7, right). For the cosine function a similar approach could be taken, but now the
points with varying distance from the y-axis are plotted for the corresponding angles (dotted

Fig. 3.7 Plotting sin(x) (right, drawn line) and cos(x) (right, dotted line) employing the unit circle on the
left. The fat dotted line links the point P on the unit circle to the related point on the sine graph.
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line in Fig. 3.7, right). Both the sine and cosine functions extend to the left and right,
although these extensions are not drawn, as the point could continue travelling along the unit
circle and also in the opposite direction (for negative angles). The trigonometric functions
thus repeat themselves regularly (every 2π for the sine and cosine and every π for the tangent)
and are therefore called periodic.
To obtain values for trigonometric functions for any angle it is usually easiest to use a

calculator. However, there are a few values for sin(x) for specific angles x that are useful to
remember (Table 3.1).

Exercises

3.5. Determine whether each of the following statements is true or false.

(a) cos(0�) ¼ 0
(b) sin(30�) ¼ 1

2

ffiffiffi
3

p

(c) sin(45�) ¼ 1/2
(d) cos(45�) ¼ 1

2

ffiffiffi
2

p

(e) cos(60�) ¼ 1

3.6. Find the value of x.

3.7. Sketch graphs of the following functions and provide exact values for the angles 0, 30, 45, 60
and 90 degrees.

(a) sin(x)
(b) cos(x)
(c) tan(x)

The good thing about remembering the values in Table 3.1 is that – given that you are able
to sketch the trigonometric functions - you can derive the values for the trigonometric
functions for a whole bunch of other angles without having to remember them. Let me show
you how with the help of Table 3.1 and Fig. 3.8.
Note first that cos(x) is simply shifted with respect to sin(x) by π/2 radians and that

there is ample symmetry within and between the trigonometric functions. Regarding the

Table 3.1 Values for sin(x) to remember

x in rad π/6 π/4 π/3 π/2 π
sin (x) 0.5 1

2

ffiffiffi
2

p
1
2

ffiffiffi
3

p
1 0
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latter let’s start with the cosine: this function remains the same when mirrored in the
y-axis. Or expressed mathematically: cos(�x)¼cos(x). For the sine, a similar but
slightly different relationship holds: this function is unchanged when rotated around
the origin over 180�. Or mathematically: sin(�x)¼�sin(x). Finally, the tangent
function behaves similarly as the sine function in terms of symmetry: tan �xð Þ ¼
sin �xð Þ
cos �xð Þ ¼ � sin xð Þ

cos xð Þ ¼ � tan xð Þ.
To see how other values for trigonometric functions can now easily be obtained I give two

examples in Fig. 3.8. The dashed arrow pointing to the left shows that (in radians)
cos �π

4

� � ¼ cos π
4

� � ¼ sin π
4

� � ¼ 1
2

ffiffiffi
2

p
. The dashed arrow pointing to the right illustrates

that sin 2π
3

� � ¼ sin π
3

� � ¼ 1
2

ffiffiffi
3

p
.

Exercise

3.8. Use the even-odd identities to simplify the expressions (i.e. get the minuses out of the
brackets).

(a) cos(�2x)
(b) tan �π

4

� �
(c) sin � 4π

3

� �

In Exercise 3.8, you encountered the expression cos(�2x); I here now explain how this
function is related to the basic function cos(x) and more generally how nonstandard
trigonometric functions (and their graphs) are related to the standard trigonometric functions
sin(x), cos(x) and tan(x). If you understand these general relationships, this will help you
understand the widely applied Fourier or harmonic analysis that is explained later in this
chapter.

Fig. 3.8 Deriving other values for trigonometric functions employing the values in Table 3.1 (black
dots). Red: sin(x), blue: cos(x)green: tan(x).
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It is easiest to think about this in a visual way: graphs for nonstandard trigonometric
functions can be obtained by scaling and moving the standard curve. Mathematically this is
expressed by choosing different values for the parameters A, B, C andD in the basic function:

A sin Bxþ Cð Þ þ D ð3:2Þ

Here A determines the amplitude (the largest and smallest values), B the period (how long
it takes the function to repeat itself), C the phase (the shift in angle with respect to the basis
function) and D the offset (the mean value around which the function oscillates). For
example, the cosine function is the same as the sine function shifted by π

2 to the left, hence
cos xð Þ ¼ sin x þ π

2

� �
. In many examples, a sine function approximates a variable that

changes periodically over time, such as the tides, predator/prey populations or sleep-wake
rhythms. In these cases the period, referred to by T, is given in seconds. The period also
determines the frequency f of the sine as its inverse f ¼ 1/T (given in Hz ¼ 1/s). The higher
the frequency of the sine, the faster it repeats itself over time. Thus:

sin(x) has period 2π and frequency 1
2π

sin(3x) has period 2π
3

and frequency 3
2π

sin(2πt) has period 1 and frequency 1
sin(4πt) has period 1

2
and frequency 2

sin(6πt+50) has period 1
3

and frequency 3

Exercises

3.9. Which of the graphs below represents sin(x), sin(2x), sin(x)+2, sin(x+2) and 2sin(x)?

3.10. By plotting points, sketch the graphs of the following functions.

(a) y¼4sin(x)
(b) y¼sin(4x)

(continued)
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3.11. By plotting points, sketch the graphs of the following functions.

(a) y¼2+sin(x)
(b) y¼�cos(x)

3.12. What transformations should be used to obtain the following
functions from the standard sine function?

(a) y¼�3sin(x)�5
(b) y¼2sin(3x)
(c) y¼2sin(x+π)+2
(d) y ¼ 3 sin 2x � π

2

� �� 1
(e) y ¼ �4 sin πx

5

� �
(f) y¼�x+3sin(2x�π)

3.3.1 Euler’s Formula and Trigonometric Formulas

There is an interesting relationship between the complex exponential function and the
trigonometric functions known as Euler’s formula:

eix ¼ cos xð Þ þ i sin xð Þ ð3:3Þ

It employs that a point in the complex plane can be described in polar (left hand
of Eq. 3.3) as well as in Cartesian (right hand of Eq. 3.3) coordinates (see also Fig. 3.9 and
Sect. 1.2.4).
The nice thing about Euler’s formula is that it allows deriving many relationships between

the trigonometric functions employing the relative ease of manipulating exponentials,
compared to trigonometric functions. For example, starting with the following identity for
exponentials:

ei xþyð Þ ¼ eixeiy,

Fig. 3.9 The point cos(x)+ isin(x) on the unit circle in the complex plane.
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we can fill in Euler’s formula on both sides to arrive at:

cos xþ yð Þ þ i sin xþ yð Þ ¼ cos xð Þ þ i sin xð Þð Þ cos yð Þ þ i sin yð Þð Þ

Expanding the right hand side (and using that i2¼�1) we get:

cos(x+y)+ isin(x+y)¼cos(x)cos( y)+ icos(x)sin( y)+ isin(x)cos( y)�sin(x)sin( y)

When we now equate the real and imaginary parts of this equation we find that:

cos xþ yð Þ ¼ cos xð Þ cos yð Þ � sin xð Þ sin yð Þ
sin xþ yð Þ ¼ cos xð Þ sin yð Þ þ sin xð Þ cos yð Þ

Similarly (you could try to derive these equalities as an additional exercise):

cos x� yð Þ ¼ cos xð Þ cos yð Þ þ sin xð Þ sin yð Þ
sin x� yð Þ ¼ sin xð Þ cos yð Þ � cos xð Þ sin yð Þ

and, employing Eq. 3.3:

sin 2xð Þ ¼ sin x þ xð Þ ¼ cos xð Þ sin xð Þ þ sin xð Þ cos xð Þ ¼ 2 sin xð Þ cos xð Þ
cos 2xð Þ ¼ cos x þ xð Þ ¼ cos xð Þ cos xð Þ � sin xð Þ sin xð Þ ¼ cos 2 xð Þ � sin 2 xð Þ
From the last equation, applying Eq. 3.1, we finally derive:

cos 2xð Þ ¼ cos 2 xð Þ � sin 2 xð Þ ¼ 2cos 2 xð Þ � 1 ¼ 1� 2sin 2 xð Þ

As touched upon in Sect. 1.2.4.2, the polar form of complex numbers also allows to e.g.,
find all 3 complex roots of the equation z3¼1 and not just the one obvious real root z ¼ 1.
To solve z3¼1 using complex numbers, we first substitute 1 by its polar form, by realizing
that 1 is located on the real axis in the complex plane. It therefore has modulus 1 and the
angle between the positive real axis and 1 is zero. Hence:

1 ¼ 1 � e0i

Of course this is rather trivial. However, the angle φ is only defined modulo 2π, meaning
that the angle could also be 2π or 4π or any other multiple of π. Thus:

1¼1 �en�2πi for n ¼ 0, 1, 2, . . .

If we now look at the equation we are trying to solve (and use some of the arithmetic rules
for exponents), we find that we are looking for a complex number z such that

z3 ¼ reiϕ
� �3 ¼ r3e3iϕ ¼ 1 � en�2πi
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Thus, we are looking for a real r such that r3¼1 and real φ such that 3i φ ¼ 2nπi, n ¼ 0,
1, 2, . . . A solution is thus r ¼ 1 and ϕ ¼ 2

3 nπ, n ¼ 0, 1, 2, . . . or, in other words, the three

complex roots are z ¼ 1, z ¼ e
2
3π i and z ¼ e

4
3π i. Note that these three complex roots are

evenly distributed over de unit circle in the complex plane. In general, finding all n complex
roots of the equation zn¼1 works in exactly the same way. One of the roots is 1 and the other
n-1 roots are evenly distributed over the unit circle in the complex plane.

3.4 Fourier Analysis

Trigonometry is probably most often used—across many, many scientific fields—in the form
of Fourier analysis, which is also known as spectral or harmonic analysis. Harmonic analysis is
a more general field of mathematics, though. In Fourier analysis, a function is decomposed
into a sum of trigonometric functions (which can be seen as oscillatory components). The
inverse procedure also exists and is known as inverse Fourier analysis: in that case a function is
synthesized from its components (Fig. 3.10).
The procedure got its name from Jean Baptiste Joseph Fourier, who, in the early

nineteenth century, was the first to realize that any periodic function could be decomposed
into an infinite sum (or series) of trigonometric functions. Before Fourier, predecessors of
Fourier analysis were already used to represent planetary and asteroid orbits. As is the case for
many branches of mathematics, Fourier analysis was thus developed to solve practical
problems, in this case for example in astronomy.
The frequencies in a Fourier series are not random, but are rather determined by the

period T of the function that is considered. The lowest frequency in the series is 1/T and
higher frequencies are simply multiples of this lowest frequency: i.e. 2/T, 3/T, 4/T etc. The
lowest frequency is called the base, ground or fundamental frequency and the multiples are
called harmonic frequencies. This is why this type of analysis is sometimes also referred to as
harmonic analysis. Thus, when a signal with a period of 10 seconds is expressed as a Fourier
series, the base frequency is 1/10¼ 0.1 Hz and the harmonic frequencies are 0.2, 0.3, 0.4 Hz
etc. This does however not imply that each of these frequencies is actually present in the series
(Fig. 3.11).

Fig. 3.10 Illustration of the bi-directional procedure of Fourier analysis and its inverse.
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Furthermore, if the signal is symmetric around time 0 only cosines (that are symmetric
functions) are needed in the Fourier series, whereas when the signal is antisymmetric around
zero (as in Fig. 3.11) only sines (that are antisymmetric functions) are needed to represent the
signal. The more terms are added to the series, the more accurate the approximation of the
original signal will be, as Fig. 3.11 also illustrates. In practice, only a few terms are often
enough for a reasonable approximation of a periodic function/signal.
Calculating the coefficients (weights) for a Fourier series requires quite some mathematics

but can be done (see Box 3.1 (Fourier Series) for mathematical details). By its weights, the
Fourier series provides information on how important the different trigonometric functions
are for representing the original function and as each trigonometric function has a specific
frequency, the Fourier series provides information on the frequency content of the original
function.

Box 3.1 Summary of the mathematics of Fourier series and Fourier transform (based
on ‘From Neurology to Methodology and back. An Introduction to Clinical
Neuroengineering. Chapter Tremor, Polymyography, and Spectral Analysis, 2012,
p. 43–44, Natasha Maurits. With permission of Springer.)

Fourier series
Any periodic function x(t) of period T can be expressed as a Fourier series as follows:

x tð Þ ¼
X
n

an sin 2πnt=Tð Þ þ bn cos 2πnt=Tð Þ,n ¼ 0, 1, 2, . . . ð3:4Þ

Here, the frequency of each sine and cosine is n/T. Given x(t), the coefficients an and bn can be
calculated by integrations over one period of x(t):

(continued)

Fig. 3.11 Left: Example of a Fourier series expansion for a periodic block function (period 2π). Right: The
Fourier series approximation of the signal is displayed when more and more terms are added. Dashed
line: first approximation (sin(x)), dotted line: second approximation (sin(x) + 1/3 sin(3x)), dash-dotted line:
third approximation (sin(x) + 1/3 sin(3x) + 1/5 sin(5x)), solid line: fourth approximation (sin(x) + 1/3 sin
(3x) + 1/5 sin(5x) + 1/7 sin(7x)). Note that not all harmonic frequencies are present and only sines are
needed to represent the original antisymmetric signal. Box 3.1. explains how to determine the weights
for each of the elements in the Fourier series.
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Box 3.1 (continued)

an ¼ 2
T

ðT
0
x tð Þ sin 2πnt=Tð Þdt,n > 0, a0 ¼ 0

bn ¼ 2
T

ðT
0
x tð Þ cos 2πnt=Tð Þdt,n > 0,

b0 ¼ 1
T

ðT
0
x tð Þdt

Fourier transform
The Fourier transform is an extension of the Fourier series, but for non-periodic signals. A Fourier
transform requires a functional description of the signal x(t) and also results in a functional
(complex-valued) expression:

X fð Þ ¼
ð1

�1
x tð Þe�2π i f tdt

Here, the sum in Eq. 3.4 has become an integral and the sines and cosines are now represented
according to Euler’s formula.

The inverse transform can also be executed and is referred to as the inverse Fourier transform:

x tð Þ ¼
ð1

�1
X fð Þe2π i f tdf

Unfortunately, real-world signals are hardly ever periodic, making it impossible to deter-
mine a Fourier series of such signals. These signals may be almost periodic over short periods
of time, but variation over time is inevitable for signals that are obtained from real-world
systems that are subject to noise of varying origin. Therefore, Fourier series do not provide a
practical approach to get information on the frequency content of real-world signals. The
Fourier transform (see Box 3.1 (Fourier transform) for its mathematical expression), can be
used instead to assess the frequency content of non-periodic signals and is, in that sense, a
generalization of the Fourier series. However, the Fourier transform can only be applied
when the signal can be expressed as a function which is not the case for real-world signals that
are normally sampled. Thus, we need another form of the Fourier transform to obtain the
frequency content of sampled signals: the discrete Fourier transform (DFT). To perform the
DFT efficiently using a computer, the transform has been implemented in several software
programs as a fast Fourier transform (FFT), which makes Fourier analysis quite easy in
practice. To be fast, most FFT implementations assume that the signal length N is a power of
2 (e.g. 512, 1024, 2048, . . .). If that is the case the FFT algorithm will return exactly the
same value(s) as a DFT. If that is not the case, the FFT algorithm will add values to the signal
until its length has become the next power of two – a procedure referred to as zero padding.
To allow interpretation of the results of a DFT/FFT, it is necessary to understand some

details of the transform. In a DFT of a signal of T seconds and consisting ofN samples, for all
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N sines and cosines with frequencies 0, 1/T, 2/T, 3/T, 4 T, . . ., N-1/T the extent to which
they are present in the original signal is determined by a mathematical expression. Evaluation
of this expression results in two coefficients or weights for each frequency: one for the sine
and one for the cosine (quite similar to the Fourier series, see Box 3.1). Note that these
coefficients can be zero, implying that the related frequency is not present in the signal. The
result of this calculation is often displayed as a spectrum (see Fig. 3.12 for an example), with
frequency on the horizontal axis. Some form of the coefficients for each frequency is set out
vertically; for a power spectrum the sum of the squared coefficients is displayed, for an
amplitude spectrum the square root of the values in the power spectrum is presented. The
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Fig. 3.12 Examples of both (a) the power spectrum (in μV2) and (b) amplitude spectrum (in μV) of (c) a
piece of physiological signal (an electroencephalogram, measuring electrical brain activity), calculated by
FFT. Notice that the peaks are relatively more pronounced in a power spectrum, which is therefore used
more often in practice. However, to evaluate the relative contribution of different frequencies to the
signal, an amplitude spectrum is more suitable. (‘From Neurology to Methodology and back. An Intro-
duction to Clinical Neuroengineering. Chapter Tremor, Polymyography, and Spectral Analysis, 2012,
p. 46, Natasha Maurits. With permission of Springer.).
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lower frequencies (longer periods) are closer to zero, to the left of the horizontal axis, while
the higher frequencies (shorter periods) are to the right of the horizontal axis. Here, I would
like to remind you of Eq. 3.2 that was used to explain that smaller values of B are related to
smaller frequencies.
The frequencies in the spectrum are thus fully determined by the length T of the signal

that is analyzed, as multiples of 1/T. The highest frequency in the spectrum is the so-called
Nyquist frequency, which is equal to half the sampling frequency. Or vice versa, the sampling
frequency should be at least twice the highest frequency in the signal. This can intuitively be
understood by realizing that we need at least two points to represent an oscillation, one at the
maximum and one at the minimum. So, if the signal was sampled at 500 Hz (500 samples
obtained every second), the maximum spectral frequency is 250 Hz. As the Fourier transform
provides a complex-valued result, every trigonometric function contributing is not only
characterized by its frequency (B in Eq. 3.2) but also by its phase (C in Eq. 3.2). Phase
spectra can also be made (plotting the phase as a function of frequency), but when people talk
about a spectrum, they usually refer to the magnitude (power or amplitude) spectrum.

3.4.1 An Alternative Explanation of Fourier Analysis: Epicycles

An intuitive way to derive the formula for the Fourier transform predates Fourier consider-
ably, originating in ancient Alexandria in Egypt. Claudius Ptolemy, who lived around
150 CE, realized that the motion of celestial bodies was not perfectly circular as Aristotle’s
circular cosmology posed until then, but speeded up, slowed down, and in the cases of the
planets even stopped and reversed (http://galileo.rice.edu/sci/theories/ptolemaic_system.
html). One of Ptolemy’s improved constructions to describe the motions includes an epicycle
and deferent (Fig. 3.13). The motions described by epicycles and deferents look a bit like
Spirograph drawings.

Fig. 3.13 From earth the planet in this diagram appears to be moving on a circle whose center moves
around earth (Neugebauer, 1969). The larger circle is the deferent, the smaller circle the epicycle.
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To further fine tune the description of the motions, this principle (putting circular
trajectories on top of each other) can be repeated indefinitely. And actually, by doing this,
any periodic movement can be represented. Funny examples can be viewed onYoutube
(e.g. http://youtu.be/QVuU2YCwHjw). This should remind you of Fourier series, the
infinite sum of trigonometric functions being able to represent any periodic function. So
let’s find out if there is indeed a relationship between epicycles, deferents and Fourier series.
Mathematically, a point that moves around on a circle with radius R can be described as if

it were moving in the complex plane around the origin, very similar to the point moving on
the unit circle in Fig. 3.7, albeit with non-unitary radius R. According to Euler’s formula
(Eq. 3.3) and Fig. 3.9 a point p that moves around a circle with radius R and angular
frequency ω¼2πf is described by

p tð Þ ¼ Reiωt ¼ Re2πift

Now, if a point p moves around with angular frequency ω1¼2πf1 on a circle with
radius R1 that is itself moving around another circle with radius R2 with angular frequency
ω2¼2πf2, as in Fig. 3.13, this is described by:

p tð Þ ¼ R1e
2πif 1t þ R2e

2πif 2t

When extending this principle indefinitely, so that we get many circular trajectories on top
of each other with any possible (angular) frequency, the sum turns into an integral (see also
Chap. 7) and we arrive at:

p tð Þ ¼
ð1

�1
R fð Þe2πiftdf

And this is precisely the definition of the inverse Fourier transform (cf. Box 3.1), where the
trajectory in the time domain is described by p(t) and in the frequency domain by R( f ). So
here is the relationship between epicycles, deferents and Fourier series.

3.4.2 Examples and Practical Applications of Fourier Analysis

The simplest examples of FFTs of functions are those of trigonometric functions themselves:
the FFT of a sine with frequency f in the time domain is given by a delta function at f Hz in
the frequency domain (see Fig. 3.14a). As the Fourier transform is a linear transform, the
FFT of the sum of two sines with frequencies f1 and f2 in the time domain is given by two
delta functions at f1 and f2 Hz in the frequency domain (see Fig. 3.14b). In Fig. 3.11 an
example was given of a Fourier series expansion of a block function; its FFT is given in
Fig. 3.14c. What the examples in Fig. 3.14a, b and d illustrate is that finite support of the
function in one domain (like a delta function) implies infinite support in the other domain
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(like a sine). The reverse is not true; the (periodic) block function and its Fourier transform in
Fig. 3.14c both have infinite support.

Exercise

3.13. Sketch the FFT of

(a) a sine with frequency 3 Hz
(b) the sum of two sines (with frequencies 2 Hz and 5 Hz)
(c) white noise
(d) 50 Hz noise

Fourier transforms also find many examples in the spectral analysis of biological signals;
one example for an electroencephalogram (or EEG) was given in Fig. 3.14. The reason to

Fig. 3.14 Examples of Fourier transforms for simple functions. Left: function in the time domain, right:
function in the frequency domain (a) Single sine with frequency 5 Hz. (b) Sum of two sines with
frequencies 3 and 7 Hz. (c) Periodic block signal (Fig. 3.11). (d) (non-periodic) block signal with support

[�a,a]. Its Fourier transform is given by 2 sin afð Þ
f .
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analyze biological signals in the frequency domain (as is done when calculating a spectrum) is
often that there is relevant information to be obtained for clinical decision making. In the
case of an EEG, the spectral power in the frequency band between 8 and 13 Hz (referred to as
alpha band), for example, conveys information on how relaxed the patient is. The alpha peak
frequency becomes smaller with age, indicating general slowing of brain activity.
Another example of obtaining clinically relevant information is the use of spectral analysis

of electromyography (EMG) and accelerometry signals to assess tremor. By measuring the
electrical activity of muscles (EMG) and the movement of the trembling limb itself, the
peak tremor frequency and its variability across movements and postures can be obtained
from the spectrum. This helps a clinician to make a distinction between different forms of
tremor such as essential tremor, enhanced physiological tremor and functional tremor. Some key
features to make this distinction are that the peak tremor frequency is typically more variable
in functional tremor, and that there is often a shift in the peak tremor frequency for enhanced
physiological tremor upon loading of the trembling limb. An example of accelerometry and
electromyography spectra for a patient with functional tremor is given in Fig. 3.15, illustrat-
ing this variability in peak tremor frequency across different movements and postures.

Fig. 3.14 (continued).
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Fig. 3.15 Results of polymyography in a patient with functional tremor. Left: accelerometer or EMG
traces. EMG from two muscle groups in the left arm and two muscle groups in the right arm (all traces
displayed for 4–5 s), right: the Fourier spectrum for the selected data. Spectra are displayed from 0–30 Hz.
Vertical axes have been adapted individually for each figure. (a) Accelerometer results during hand
relaxation: tremor in right hand at 5.0 Hz. (b) EMG results (same time interval as a) during hand
relaxation: tremor in the right hand at 5.0 Hz. Tremor bursts are visible in the EMG. (c) Accelerometer
results during top-nose test: coarse tremor in right hand at 4.9 Hz. Slight tremor at the same frequency in
the left hand. Note the triple harmonic peak in the spectrum at 14.7 Hz. (d) EMG results (same time
interval as c) during top-nose test: tremor in the right hand at 4.9 Hz. Harmonics are visible in the spectra
at two, three and multiple times this base frequency. (e) Accelerometer results during diadochokinesis
with the left hand (top signal) at 1.2 Hz. A tremor develops in the right hand (bottom signal) at
approximately the double frequency (2.6 Hz). (f) EMG results (same time interval as e) during
diadochokinesis with the left hand at 1.2 Hz. The tremor that is observed in the accelerometer recording
in (e) is not visible in the right hand EMG (spectrum) because of its irregularity. (‘From Neurology to
Methodology and back. An Introduction to Clinical Neuroengineering. Chapter Tremor, Polymyography,
and Spectral Analysis, 2012, p. 53–55, Natasha Maurits. With permission of Springer.).
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3.4.3 2D Fourier Analysis and Some of Its Applications

So far, I have considered one-dimensional Fourier transform only, for functions of one
variable, such as time. However, Fourier transform can be easily extended to more dimen-
sions, by applying the transform to one dimension at a time. The reason to talk about this
here, is that the two-dimensional Fourier transform has some interesting and often-used
applications in image analysis and neuroimaging.
I’ll explain the 2D Fourier transform by applying it to the example grey-color image in

Fig. 3.16a. To visualize and explain the result of the Fourier transform I will focus on the
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Fig. 3.15 (continued).
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magnitude spectrum in Fig. 3.16b, which is comparable to the 1D spectral examples
provided above.
In the magnitude spectrum, the zero frequency is now right in the middle, with the two

spatial frequency axes cutting the magnitude spectrum in equal halves. In 2D Fourier
transform, the contributing trigonometric functions are no longer 1D sines and cosines
but 2D sinusoidal waves with different frequencies and orientations depending on the
location in the magnitude spectrum (Fig. 3.17).
To get a better understanding of how the different spatial frequencies contribute to form

the image, I first removed the lowest frequencies from the magnitude spectrum, setting their
coefficients to zero (Fig. 3.18 top left). When inverse transforming the image, Fig. 3.18 top

Fig. 3.15 (continued).
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Fig. 3.17 The magnitude spectrum of Fig. 3.16b, with its two spatial frequency axes indicated and some
representative contributing spatial sine waves. Locations on the axes correspond to vertically or hori-
zontally oriented spatial sine waves, off-axes locations correspond to spatial sine waves at an angle. The
closer to the origin, the smaller the spatial frequency and the larger the period.

Fig. 3.16 (a) Example grey-color image and (b) the magnitude spectrum of its 2D Fourier transform.
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right results, illustrating that after removing the low spatial frequencies from the image, only
the details of the image result. Vice versa, when removing the high spatial frequencies from
the magnitude spectrum (Fig. 3.18 bottom left), after inverse Fourier transformation, only
the coarse structures of the image remain; the image looks blurred (Fig. 3.18 bottom right).
The procedure described here is a form of spatial filtering: selected spatial frequencies are

maintained in the image, while others are suppressed. More generally, data filtering (also in
one dimension) can be performed efficiently by ‘detouring’ through the frequency domain
(Fig. 3.19).

Fig. 3.18 Effect of removing selected spatial frequencies from the magnitude spectrum in 3.16b of the
original image in Fig. 3.16a. Top left: mask indicating which spatial frequencies were preserved (in white,
Gaussian drop-off) for high-pass filtering. Note that in this representation the lowest frequencies are in
the corners of the mask. Top right: Image with lowest spatial frequencies removed. Only fine details in
the image remain. Bottom left: mask for low-pass filtering. Bottom right: Image with highest spatial
frequencies removed. The image is blurred.
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Instead of setting some frequencies to zero while maintaining others, there is usually a
smooth transition between frequencies that are suppressed (multiplied by zero in the
frequency domain) and frequencies that are maintained (multiplied by one in the frequency
domain). This transition is reflected in a masking function which is known as the transfer
function. Depending on which frequencies are suppressed and maintained, a filter can be
low-pass (suppressing high frequencies; Fig. 3.20 top left), high-pass (suppressing low
frequencies; Fig. 3.20 top right), band-pass (suppressing low and high frequencies;
Fig. 3.20 bottom left) or band-stop or notch (suppressing a band of frequencies; Fig. 3.20
bottom right).
Filtering is one of the most common applications of the Fourier transform, that is applied

in image processing (many options in graphical software like Photoshop or Paint employ
spatial filters), but also in many other engineering and scientific fields as it provides a method
for data compression and thus for efficient data storage. For example, the jpeg image format
employs the (Fast) Fourier transform. But filters are also used in music to adapt its harmonic
content and thereby change its timbre, or in cochlear implants to preprocess and denoise the
incoming sound for optimal presentation to the patient.
A final example application of 2D Fourier transform is in neuroimaging: the collection

of magnetic resonance imaging (MRI) data is fully done in Fourier space, or k-space, as it
is also referred to. An MR image is only obtained after the k-space data is inverse Fourier
transformed: this process is referred to as image reconstruction. To collect the raw data
in k-space comes quite naturally to MR imaging of a body part as protons that are
excited by radiofrequency waves and then subjected to magnetic gradient fields emit
waves that can be read out. By cleverly applying magnetic gradients of different strengths
and directions, a body part can be imaged slice by slice and every point in 2D k-space
can be covered.

Fig. 3.19 Principle of filtering via the frequency domain. In a first step the signal is transformed to the
frequency domain using FFT. Then, in a second step, unwanted frequencies are suppressed by multipli-
cation with the transfer function of a low-pass filter (to suppress high frequencies in this case) and finally,
the signal is transformed back to the time domain using inverse FFT (FFT�1). The transfer function is
indicated in the second part of the figure; it is 1 for frequencies that need to be preserved, 0 for
frequencies that need to be fully suppressed and smoothly varies from 1 to 0 in the transition band
(between the dashed lines). f: frequency, t: time.
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Glossary

Accelerometry Measurement of acceleration using accelerometers (sensor device).
Antisymmetric In this chapter: a function f for which f(�x)¼� f(x).
Cosine (trigonometric) Ratio between the adjacent edge and the hypothenuse in a right-angled

triangle.
Data compression To represent data such that it occupies less memory.
Deferent In specific movements described by epicycles and deferents the larger circle that an object

moves along.
Delta function A function that is zero everywhere, except at zero, with an integral of 1 over the entire

real domain.
Diadochokinesis Fast execution of opposite movements, e.g. rotating the hand from palm up to palm

down and back.

Fig. 3.20 Illustration of the four types of filters by their transfer functions. Top left: low-pass filter,
top-right: high-pass filter, bottom left: band-pass filter, bottom-right: band-stop filter. f: frequency. The
frequencies that are fully preserved are in the pass-band, while frequencies that are fully suppressed are
in the stop-band. The area between the pass-band and the stop-band is referred to as the transition
zone. A filter is often described by its half-amplitude cut-off (and by its roll-off; the steepness of the
transfer function in the transition band), where the gain (the amplification factor of the transfer
function) is 0.5. Hence, for example, for a 40 Hz low-pass filter, the half-amplitude cut-off is at 40 Hz.

88 N. Maurits



Enhanced physiological tremor Tremor that occurs normally, e.g. when fatigued, but stronger in
amplitude.

Electroencephalography Measurement of electrical brain activity using electrodes placed on the scalp.
Electromyography Measurement of electrical muscle activity using electrodes placed on the skin over a

muscle (formally: surface electromyography).
Epicycle In specific movements described by epicycles and deferents the smaller circle that an object

moves along.
Essential tremor Patients with this type of tremor typically present with action tremor (tremor during

posture and/or movements), mostly in the arms, with tremor frequency in the range of 4–12 Hz.
Filtering Suppression of specific frequencies in a signal.
Function A mathematical relation, like a recipe, describing how to get from an input to an output.
Functional tremor Tremor for which no organic cause can be found.
Hypothenuse Edge opposite the right angle in a right-angled triangle.
Modulo Modulo(n) expresses equivalence up to a remainder n.
Nyquist frequency The highest frequency that is still adequately represented in a sampled signal (half

the sampling frequency).
Periodic Repeating itself regularly.
Right-angled (triangle) A geometric object (triangle) with a right (90�) angle.
Similar (triangles) Triangles that have the same angles but differ in size.
SI Système international d’unités (international system of units).
Sine (trigonometric) Ratio between the opposite edge and the hypothenuse in a right-angled triangle.
Spectrum Here: representation of a function or signal as a function of frequency, typically resulting

from a Fourier transform.
Support The support of a function is the set of points where the function values are non-zero.
Symmetric In this chapter: a function f for which f(�x)¼ f(x).
Tangent (trigonometric) Ratio between the opposite edge and the adjacent edge in a right-angled

triangle.
Transfer function Here: expresses how strongly frequencies are preserved or suppressed by a filter, can

vary between 0 and 1.
Tremor Oscillatory movement of a body part.
Unit circle Circle with radius one.

Symbols Used in This Chapter (in Order of Their Appearance)

sin Sine
cos Cosine
tan Tangent
lim
x!0

Limit for x approaching zero

α,θ,ϕ Angles
r,R Radius (of a circle)
rad Radian
e Exponential
i Imaginary unit
∑ SumÐ

Integral
f Frequency
t Time
ω Angular frequency
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Overview of Equations, Rules and Theorems for Easy
Reference

Mnemonic for memorizing trigonometric ratios
sine ¼ O/H
cosine ¼ A/H
tangent ¼ O/A ¼ sine/cosine
where O ¼ opposite, A ¼ adjacent, H ¼ hypothenuse

Angles and values to remember

x in rad π/6 π/4 π/3 π/2 π
sin(x) 0.5 1

2

ffiffiffi
2

p
1
2

ffiffiffi
3

p
1 0

Euler’s formula

eix ¼ cos xð Þ þ i sin xð Þ

Trigonometric relations

sin 2 xð Þ þ cos 2 xð Þ ¼ 1

cos xþ yð Þ ¼ cos xð Þ cos yð Þ � sin xð Þ sin yð Þ
sin xþ yð Þ ¼ cos xð Þ sin yð Þ þ sin xð Þ cos yð Þ
cos x� yð Þ ¼ cos xð Þ cos yð Þ þ sin xð Þ sin yð Þ
sin x� yð Þ ¼ sin xð Þ cos yð Þ � cos xð Þ sin yð Þ

sin 2xð Þ ¼ 2 sin xð Þ cos xð Þ
cos 2xð Þ ¼ cos 2 xð Þ � sin 2 xð Þ

cos 2xð Þ ¼ 1� 2sin 2 xð Þ

Answers to Exercises

3.1. The ratios must be calculated for the angle θ, so the sine, e.g., is always the length of
the edge opposite from θ divided by the length of the hypothenuse etcetera. Sometimes
rotating the triangles in your mind to relate them to the triangles in Fig. 3.3 will help.
Thus the answers are for the left triangle: sine ¼ 4/5, cosine ¼ 3/5, tangent ¼ 4/3,
middle triangle: sine¼ 4/7, cosine¼ √33/7, tangent¼ 4/√33, right triangle: sine¼ 3/5,
cosine ¼ 4/5, tangent ¼ 3/4.

3.2 First the lengths of the edges of the two triangles that angles 1 to 4 belong to must be
determined. For angle 1, the adjacent edge is 75 cm long; this is the opposite edge for
angle 2. For angle 2, the adjacent edges is 45 cm long; this is the opposite edge for angle
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1. Similarly, the adjacent edge for angle 3 (opposite edge angle 4) is 65 cm long and the
adjacent edge for angle 4 (opposite edge angle 3) is 35 cm long. The angles can now be
determined by using the trigonometric ratio for the tangent: tan ¼ O/A. Thus,
tan∠1 ¼ 45

75, tan∠2 ¼ 75
45, tan∠3 ¼ 35

65 and tan∠4 ¼ 65
35. A calculator can now be

used to determine the angles using the inverse tangent (or atan) function.

3.3 (a) 30� ¼ 30*2π/360 ¼ π/6 rad
(b) 45� ¼ 45*2π/360 ¼ π/4 rad
(c) 60� ¼ 60*2π/360 ¼ π/3 rad
(d) 80� ¼ 80*2π/360 ¼ 4/9 π rad
(e) 90� ¼ 80*2π/360 ¼ π/2 rad
(f) 123� ¼ 123*2π/360 ¼ 123/180 π rad
(g) (g) 260� ¼ 260*2π/360 ¼ 13/9 π rad
(h) (h) -16� ¼ �16*2π/360 ¼ �4/45 π rad
(i) -738� ¼ �738 + 2*360� ¼ �18� ¼ �18*2π/360 ¼ �1/10 π rad

3.4. (a) 2π/3 rad ¼ 2π/3*360/2π� ¼ 120�

(b) π/4 rad ¼ π/4*360/2π� ¼ 45�

(c) 9π/4 rad ¼ 9π/4-2π rad ¼ π/4*360/2π� ¼ 45�

(d) 0.763π rad ¼ 0.763 π *360/2π� ¼ 137,34�

(e) π rad ¼ π*360/2π� ¼ 180�

(f) θπ rad ¼ θπ*360/2π� ¼ 180θ�
(g) θ rad ¼ θ*360/2π� ¼ 180θ/π�

3.5. (a) false: cos 0� ¼ cos (0 rad) ¼ 1
(b) false: sin 30� ¼ sin (π/6 rad) ¼ 0.5
(c) false: sin 45� ¼ sin (π/4 rad) ¼ 1

2

ffiffiffi
2

p
(d) true
(e) false: cos 60� ¼ cos(π/3 rad) ¼ 0.5

3.6. For the angle of 60� the length of the opposite edge and the hypothenuse are x and
13, respectively. These two values can thus be used to calculate the sine of this angle by
their ratio. But the sine of this angle is also equal to sin(60�) ¼ sin(π/3 rad) ¼ 1

2

ffiffiffi
3

p
.

Thus x/13 ¼ 1
2

ffiffiffi
3

p
, or x ¼ 13

2

ffiffiffi
3

p
.

3.7. See Fig. 3.8 for the graphs of sin(x), cos(x) and tan(x). The exact values for the angles
0, 30, 45, 60 and 90 degrees (that help you make these sketches) are:

degrees rad sin cos tan
0 0 0 1 0
30 π/6 0.5 1

2

ffiffiffi
3

p
1
3

ffiffiffi
3

p

45 π/4 1
2

ffiffiffi
2

p
1
2

ffiffiffi
2

p
1

60 π/3 1
2

ffiffiffi
3

p
0.5

ffiffiffi
3

p

90 π/2 1 0 1
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3.8. (a) cos(�2x) ¼ cos(2x)
(b) tan(�π/4) ¼ �tan(π/4)
(c) sin(�4π/3) ¼ �sin(4π/3)

3.9. sin(x): black, sin(2x): green, sin(x)+2: red, sin(x+2): magenta and 2sin(x): blue.

3.10. (a) For sketching y ¼ 4sin(x), first make a table, with easily obtained values (making
use of Table 3.1 and the trigonometric symmetries), e.g.:

x y
-π ffi � 3.14 0
-π/2 �4
-π/3 -2

ffiffiffi
3

p ffi � 3.46
0 0
π/3 2

ffiffiffi
3

p ffi 3.46
π/2 4
π 0

Then sketch an x- and a y-axis to scale that are long enough to accommodate for
the maximum (4) and minimum (�4) of the function and for at least one period
(2π ffi 6.28) of the function. Note that you are free to choose the scale of the axes.
Put in the points you calculated in the table and sketch a smooth line through the
points. Such a sketch could look like:

Note that a sketch of a trigonometric function does not need to be limited to the
positive x-axis: I here sketched it for both negative and positive values of x and also
for more than one period.
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(b) For sketching y ¼ sin(4x), first make a table, with easily obtained values (making
use of Table 3.1 and the trigonometric symmetries), e.g.:

x y
-π/4 0
-π/8 �1
-π/12 -12

ffiffiffi
3

p ffi � 0.87
0 0
π/12 1

2

ffiffiffi
3

p ffi 0.87
π/8 1
π/4 0

Then sketch an x- and a y-axis to scale that are long enough to accommodate for
the maximum (1) and minimum (�1) of the function and for at least one period
(π/2 ffi 1.57) of the function. Put in the points you calculated in the table and
sketch a smooth line through the points. Such a sketch could look like:

3.11. (a) Following a similar procedure as in Exercise 3.10 a sketch of y¼2+sin(x) could look
like:
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(b) Similarly, a sketch of y¼�cos(x) could look like:

3.12. (a) y¼�3sin(x)�5 is obtained from the standard sine function by multiplying it by
�3 and shifting it down by 5.

(b) y¼2sin(3x) is obtained by multiplying it by 2 and changing the period to 2π/3
(if this last part is hard to grasp: the period is that number that you fill in for x,
making the total between the brackets equal to 2π).

(c) y¼2sin(x+π)+2 is obtained by multiplying it by 2, shifting it up by 2 and shifting
it to the left by π (again, it is to the left and not to the right because when I fill in -π,
the value between brackets becomes 0).

(d) y ¼ 3 sin 2x � π
2

� �� 1 is obtained by multiplying it by 3, shifting it down by
1, changing the period to π and shifting it to the right by π/2.

(e) y ¼ �4 sin πx
5

� �
is obtained by multiplying it by �4 and changing the period to

10.
(f) y¼�x+3sin(2x�π) is obtained by multiplying it by 3, changing the period to π,

shifting it to the right by π and finally by plotting this whole function around the
line y¼�x. It will look like:
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3.13. The FFT of

(a) a sine with frequency 3 Hz looks like:

(b) the sum of two sines (2 Hz and 5 Hz) looks like:

(c) white noise looks like (random spectrum):
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(d) 50 Hz noise looks like:
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4
Vectors

Natasha Maurits

After reading this chapter you know:

• what vectors are and how they can be used,
• how to algebraically perform and geometrically represent addition and subtraction of vectors,
• how to algebraically perform and intuitively understand common forms of vector multiplica-

tion and
• how vector relationships can be expressed and what their use is.

4.1 What Are Vectors and How Are They Used?

Vectors, in mathematics, are entities that have both direction and magnitude, but not a fixed
position. In two- and three-dimensional space vectors can be thought of and represented as
arrows. Examples of vectors are forces and velocities. Interestingly, mathematical operations
on vectors already existed before vectors were called vectors; the parallelogram law of adding
vectors was already known to ancient scholars who studied physical problems. For example,
the net force resulting from two forces that act on an object in different directions can be
obtained as the diagonal of the parallelogram spanned by the two vectors (Fig. 4.1).
The name ‘vector’ was introduced only relatively recently, in the nineteenth and twentieth

centuries, even though people had been working with coordinates, pairs of ordered numbers
that have a close relationship with vectors, for much longer. Let me explain this relationship.
Any point P in space is fixed by its coordinates, in case of 2D space by the pair (x,y) and in
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case of 3D space by the triplet (x,y,z). Here, x, y, and z are the coordinates of P. In vector
notation this is represented as:

~p ¼ x
y

� �
in 2D space or ~p ¼

x
y
z

0
@

1
A in 3D space; here x, y and z are the elements of ~p.

In case of the latter notation, the vector can be represented as an arrow; a line piece with
a direction that starts in the origin and ends at point P (Fig. 4.2). This physical arrow is
still visible in the notation for vectors that we use here, where we draw a small arrow over the
letter.
In two or three dimensions, vectors are sometimes also denoted in the ‘ij’ or ‘ijk’ notation,

i.e. the vector ~p above would be represented as ~p ¼ x~i þ y~j in 2D or ~p ¼ x~i þ y~j þ z~k in
3D. Here,~i,~j and~k are vectors of length 1 along the principal x-, y-, and z-axes, respectively.

Fig. 4.1 The parallelogram law for vector addition illustrated for the case of a net force acting on an
object O as the result of two forces A and B. The net force is the dashed vector A + B.

Fig. 4.2 Illustration of the relationship between a point P in 2D space (left) and in 3D space (right) and
its associated vector ~p.
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4.2 Vector Operations

All common mathematical operations, such as addition, subtraction and multiplication, can
be executed on vectors, just as they can be executed on e.g. real numbers. The extension of
these basic operations to vectors is done in such a way that important properties of the basic
mathematical operations (commutativity, associativity and distributivity, see Box 4.1) are
preserved as much as possible.

Box 4.1 Properties of binary mathematical operations (examples)

Commutativity : aþ b ¼ bþ a ab ¼ ba

Associativity : aþ bþ cð Þ ¼ aþ bð Þ þ c a bcð Þ ¼ abð Þc
Distributivity : a bþ cð Þ ¼ abþ ac, when a is a scalar

In this section, the basic vector operations are explained both algebraically and
geometrically.

4.2.1 Vector Addition, Subtraction and Scalar Multiplication

Let’s start simply, with vector addition. This vector operation was geometrically already
introduced in Fig. 4.1: addition of two vectors (in 2D or 3D space) is equal to taking the
diagonal of the parallelogram spanned by the two vectors. Note that also in 3D space the
parallelogram spanned by two vectors forms a plane. Adding three vectors can also be
explained geometrically, as this is equal to taking the diagonal of the parallelepipid spanned
by the three vectors (Fig. 4.3).
In more dimensions, or when adding more than three vectors, however, the geometrical

structures needed for vector addition, become difficult to imagine. Alternatively, vectors can
(algebraically) be added (or subtracted) by adding (or subtracting) their elements.

Fig. 4.3 Geometric explanation of adding three vectors ~a, ~b and~c in 3D space. The sum is the diagonal
of the parallelepiped spanned by the three vectors.
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For example, given the vectors ~a ¼ a1
a2

� �
and ~b ¼ b1

b2

� �
, their sum ~a þ~b equals

a1 þ b1
a2 þ b2

� �
and similarly, their difference~a �~b equals

a1 � b1
a2 � b2

� �
. This also holds true in

more than two dimensions and for more than two vectors, e.g., in n-dimensional space:

~aþ ~bþ~c ¼
a1
⋮
an

0
@

1
Aþ

b1
⋮
bn

0
@

1
Aþ

c1
⋮
cn

0
@

1
A ¼

a1 þ b1 þ c1
⋮

an þ bn þ cn

0
@

1
A:

Geometrically, vector subtraction is achieved by taking the diagonal of the parallelogram
spanned by the first vector and the negative of the second vector, i.e. the vector of the same
length, but with the opposite direction (Fig. 4.4).
Thus, algebraic and geometric addition and subtraction of vectors give the same results,

albeit in a different notation: the algebraic notation uses arrays of numbers while the
geometric notation employs arrows in a plane or in 3D space. Importantly, however, the
algebraic notation can be generalized to more dimensions, where we cannot draw arrows
anymore and the geometric approach fails.

Example 4.1

Add and subtract (algebraically) the pair of vectors
7
3
�2

0
@

1
A and

2
�5
8

0
@

1
A.

(continued)

Fig. 4.4 Geometric explanation of subtracting two vectors ~a and ~b in 2D space. Their difference is the
diagonal of the parallelogram spanned by the first vector and the negative of the second vector

(indicated by a thin line), i.e. ~a� ~b ¼ ~aþ ��~b
�
.
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Example 4.1 (continued)

To add the vectors the elements of the two vectors are added:
7
3
�2

0
@

1
Aþ

2
�5
8

0
@

1
A ¼

7þ 2
3� 5
�2þ 8

0
@

1
A ¼

9
�2
6

0
@

1
A. To subtract the vectors the elements are subtracted:

7
3
�2

0
@

1
A�

2
�5
8

0
@

1
A ¼

7� 2
3þ 5
�2� 8

0
@

1
A ¼

5
8

�10

0
@

1
A.

From the definition of vector subtraction it follows that there must be a null vector, the
result of subtracting a vector from itself. This is the only vector that has zero magnitude,
which is why it is called the null vector.
Another basic vector operation is scalar multiplication. Multiplying an n-dimensional

vector by a scalar (real number) s is defined as:

s~a ¼ s
a1
⋮
an

0
@

1
A ¼

sa1
⋮
san

0
@

1
A.

This can also be explained geometrically as illustrated in Fig. 4.5.
Finally, the representation of a vector as a point in space immediately suggests how we can

define its magnitude (also referred to as length, module or absolute value), using Pythagoras
theorem:

~aj j ¼
a1
⋮
an

0
@

1
A

������
������ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ⋯þ a2n

q
:

This is illustrated for 2D space in Fig. 4.6.

Fig. 4.5 Geometric explanation of scalar multiplication of a vector ~a (left) by a factor 2 (middle) and
3 (right). The result is indicated by dashed vectors. Thus scalar multiplication is equal to multiple
additions.
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Exercises

4.1. Add and subtract (i.e. first-second vector) the following pairs of vectors:

(a)
7

3

 !
and

2

4

 !

(b)
�2

17

 !
and

3

�14

 !

(c)

1

2

3

0
B@

1
CA and

4

�23

7

0
B@

1
CA

(d)

2:4

1:2

3:6

5:4

0
BBBB@

1
CCCCA and

1:2

3:6

5:4

2:4

0
BBBB@

1
CCCCA

4.2. For Exercise 4.1(a), also perform the addition and subtraction geometrically.

4.3. Calculate

(a)
1
3
2

0
@

1
Aþ 3

�3
2
�5

0
@

1
A� 2

�3
3
4

0
@

1
A

(continued)

Fig. 4.6 Geometric explanation of vector magnitude in 2D space. The left triangle is equal to the
triangle formed by O-a1-P in the right part of the figure.
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(b) �
0:5
3:1
6:7

0
@

1
A� 2

1
0:7
1:2

0
@

1
Aþ 1:5

4
3
8

0
@

1
A

4.4. Let P ¼ (�2,�2), Q ¼ (�3,4) and R ¼ (1,2) be three points in the xy-plane.

(a) Draw the points P, Q and R in the xy-plane and the vectors ~u joining P to Q, ~v joining Q to
R and ~w joining R to P.

(b) What are the elements of the vectors of ~u, ~v and ~w?
(c) What is ~uþ ~v þ ~w? First answer without calculation and verify by calculation.

4.5. An airplane is taking off in a straight line with velocity vector
200
180
100

0
@

1
A (in km/h). Suppose that

(x, y) are its ground coordinates and z its altitude.

(a) Where is the airplane after 1 min?
(b) How many seconds does it take the airplane to climb 100 m?
(c) How long would it take the airplane to reach its cruising altitude of 9 km if it would keep

flying at this speed and in this direction?

4.2.2 Vector Multiplication

Let’s take vector operations to the next level by considering multiplication of two vectors.
This operation is a little less straightforward than the operations explained in the previous
section, because there are multiple ways in which two vectors can be multiplied and they all
have their specific applications. Here, only the often used inner or dot product and the cross
product are discussed.

4.2.2.1 Inner Product

Geometrically, the inner product of two vectors ~a and ~b is defined as:

~a � ~b ¼ ~aj j ~b
��� ��� cosφ,

where 0<φ<π is the angle between the two vectors when they originate at the same position
(Fig. 4.7).
This definition immediately shows that the inner product of two vectors is a scalar and that

it is zero when the cosine of the angle between them is zero, i.e. when they are perpendicular.
The reverse is also true. Hence, two vectors are perpendicular if and only if (iff ) their inner
product is zero. Another word for perpendicular is orthogonal. It is not very difficult to gain an
intuitive understanding of the inner product. Remember that the cosine can be calculated
as the ratio between the adjacent edge and the hypothenuse in a right-angled triangle
(Sect. 3.2). Hence, in the triangle drawn in Fig. 4.8, cosφ equals the part of ~a in the
direction of ~b (the adjacent edge adj), divided by ~aj j.
This makes the inner product equal to:
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~a �~b ¼ ~aj j ~b
��� ��� cosφ ¼ ~aj j ~b

��� ���adj
~aj j ¼

~b
��� ���adj, hence to the part of ~a in the direction of ~b,

times the length of~b. Thus, the more two vectors~a and~b are oriented in the same direction,

the larger their inner product will be, with the maximum possible inner product being ~aj j ~b
��� ���.

This fits with the inner product being zero when two vectors~a and~b are orthogonal: in that
case the part of ~a in the direction of ~b is zero. An application that illustrates this intuitive
understanding is how work is calculated in physics. Work equals the product of the force
exerted on an object and its displacement. If the (constant) force acts in the same direction as

Fig. 4.8 Illustration supporting the intuitive understanding of the inner or dot product of two vectors~a

and ~b, adj ¼ adjacent edge.

Fig. 4.7 Illustration of the geometric definition of the inner product of two vectors ~a and ~b.
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the displacement of the object (such as when pushing a spring), then this product is just a
‘simple’ product. If the force is not in the same direction as the displacement (e.g. in the case
of friction), the work is the inner product of the force and the displacement, i.e. the product
of the component of the force in the direction of the displacement and the displacement.
In higher dimensions, the geometrical definition of the inner product is again difficult to

apply and luckily, there is also a simple algebraic definition:

~a � ~b ¼
a1
⋮
an

0
@

1
A �

b1
⋮
bn

0
@

1
A ¼ a1b1 þ⋯anbn:

This definition implies that the magnitude (length, absolute value) of a vector can also be
expressed in terms of the inner product with itself (cf. Sect. 4.2.1):

~aj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ⋯þ a2n

q
¼

ffiffiffiffiffiffiffiffiffiffi
~a � ~a

p

This definition of the length of a vector is also known as the Euclidean length, Euclidean
norm or L2-norm of a vector. When dividing a vector by its own length a unit vector results,
i.e. with length 1. Thus,~i,~j and ~k, as introduced in Sect. 4.1 are unit vectors.
Another application of the inner product is how a plane is defined. Any plane in 3D

through the origin is defined by ~n �~x ¼ 0, where ~n ¼ n1~i þ n2~j þ n3~k is a normal vector,
perpendicular to this plane and ~x is any 3D vector such that ~n �~x ¼ 0 (Fig. 4.9). Any plane
parallel to this plane is also defined by this same normal vector and by one point in the plane
that determines the (non-zero) constant on the right hand side of the equation. This is
explained by an exercise in this section. The general definition of a plane as~n �~x ¼ C , where
C is a constant, holds true for any dimension.

Fig. 4.9 A plane in 3D through the origin and its normal vector. Note that the normal vector is
perpendicular to the plane and thus to any line in the plane.

4 Vectors 107



Exercises

4.6. Calculate the inner product of these pairs of vectors algebraically

(a)
1
0

� �
and

0
1

� �

(b)
1
1

� �
and

1
�1

� �

(c)
1
2

� �
and

3
6

� �

(d)
2
1

� �
and

1
2

� �

(e)
2
1

� �
and

�1
3

� �
Note how the algebraic manner of calculating the inner product makes matters so much
easier (compared to the geometrical calculation according to Fig. 4.8), especially in higher
dimensions of course, as in the next exercise.

4.7. Calculate the inner product of these pairs of vectors algebraically

(a)
1
2
3

0
@

1
A and

4
5
7

0
@

1
A

(b)
1
�2
�5

0
@

1
A and

4
�23
10

0
@

1
A

(c)

2:4
1:2
3:6
5:4

0
BB@

1
CCA and

1
�2
�1
2

0
BB@

1
CCA

(d)

2
ffiffiffi
3

p
1
�5
�4

0
BB@

1
CCA and

ffiffiffi
3

p
4ffiffiffiffiffiffiffiffiffiffi
0:36

p
2

0
BB@

1
CCA

4.8. Use the geometrical definition of the inner product to calculate the angle between the
following pairs of vectors

(a)
1
0

� �
and

1
4

� �

(b)
1
1

� �
and

�1
�1

� �

(c)
1
2

� �
and

3
6

� �

(d)
�1
3

� �
and

�4
1

� �

(e)
2
1

� �
and

�1
3

� �

4.9. Determine the definition of the following planes

(a) with normal vector
1
�2
3

0
@

1
A through the origin

(b) with normal vector
�1:5
0:5
2

0
@

1
A through the point

2
4
�3

0
@

1
A

(continued)
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4.10. Determine, for each of the planes defined in Exercise 4.9. two other points that lie in the
plane.

4.11. Calculate the work performed by an object moving in the presence of the forces in the
figure:

(a) for an object moving from the origin to the point (3,0) in the presence of force F1 of 10N
(b) for an object moving from the origin to the point (0,�4) in the presence of force F2 of 15N

4.2.2.2 Cross Product

Another way of multiplying two vectors is the cross product. There are some important
differences between the inner product and the cross product. Whereas the inner product is
defined in any space—two-, three- or higher dimensional—the cross product is only defined
in 3D. And whereas the inner product results in a scalar (number), the cross product results
in a vector that is perpendicular to the plane spanned by the two original vectors.
For the cross product, it is easiest to begin with its algebraic definition:

~a� ~b ¼
a1
a2
a3

0
@

1
A�

b1
b2
b3

0
@

1
A ¼

a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

0
@

1
A

This may look pretty weird, but will hopefully become clearer when we get along. First,
let’s focus on the calculation itself. To remember what you need to do when calculating a
cross product it is important to realize that there is some logic in the calculation. To calculate
the first element, you ignore the first elements of the original vectors and calculate the
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difference of the ‘cross-wise’ products of the remaining (second and third) elements of the
vectors (Fig. 4.10). You do the same for the second and third elements of the cross product
vector, but, and this is tricky, for the second element, you reverse the order. So instead of
calculating a1b3�a3b1, which would be the logical continuation of what I just explained you
need to do to obtain the first element, you calculate the negative of that.

Example 4.2

Calculate the cross product of the vectors
7
3
�2

0
@

1
A and

2
�5
8

0
@

1
A.

Following the algebraic definition of the cross product above, we find that the cross product of
these two vectors is equal to:

7

3

�2

0
B@

1
CA�

2

�5

8

0
B@

1
CA ¼

3 � 8� �2 � �5ð Þ
� 7 � 8� �2 � 2ð Þð Þ

7 � �5� 3 � 2

0
B@

1
CA ¼

24� 10

� 56þ 4ð Þ
�35� 6

0
B@

1
CA ¼

14

�60

�41

0
B@

1
CA

The steps taken in the calculation of the cross product of the vectors ~a and ~b are actually
equivalent to calculating the determinant of amatrix which is explained in detail in Sect. 5.3.1.
To know in which direction the cross product vector points with respect to the two original
vectors, the right hand rule can be used. When you make a shape of your right hand as if you
are pointing a gun at someone, while keeping your middle finger straight, your index finger
oriented along the first vector and your middle finger oriented along the second vector, your
thumb will point in the direction of the cross product (Fig. 4.11).

Fig. 4.10 Illustration of the steps to take when calculating a cross product.
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As can be understood from both the algebraic definition as well as from the right hand
rule, the cross product is anti-commutative, i.e. ~a �~b ¼ �~b �~a.
There is also a geometric definition of the cross product:

~a� ~b ¼ ~aj j ~b
��� ��� sinφ~n

Similar to the inner product, 0<φ<π is the angle between the two vectors when they
originate at the same position (Fig. 4.7). The vector ~n is a unit vector; its orientation is
determined by the right hand rule. Thus, the length of the cross product is equal to:

~a� ~b
��� ��� ¼ ~aj j ~b

��� ��� sinφ
This expression helps to gain an intuitive understanding of the cross product. Similar to

what we did to obtain an intuitive understanding of the inner product in Sect. 4.2.2.1,

Fig. 4.11 Illustration of the right hand rule for calculating the cross product ~a� ~b.
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remember that the sine can be calculated as the ratio between the opposite edge and the
hypothenuse in a right-angled triangle (Sect. 3.2). Hence, in the triangle drawn in Fig. 4.12,
sinφ equals the part of ~a perpendicular to ~b (the opposite edge opp), divided by ~aj j.
This makes the length of the cross product equal to:

~a �~b
��� ��� ¼ ~aj j ~b

��� ��� sinφ ¼ ~aj j ~b
��� ���opp

~aj j ¼
~b
��� ���opp, hence to the part of ~a perpendicular to ~b,

times the length of ~b. Thus, the length of the cross product tells us how perpendicular two

vectors are, with the maximum value of ~aj j ~b
��� ��� being attained when the two vectors are

orthogonal. We can also use this exercise to understand the meaning of the length of the cross
product in a more geometrical way. Reconsider Fig. 4.12 and the parallelogram spanned by

the vectors~a and~b. Its area is determined by ~b
��� ���h, where h is the height of the parallelogram.

But also h ¼ ~aj j sinφ ¼ opp. Hence, the area of the parallelogram is equal to ~b
��� ���opp.

Therefore, the area of a parallelogram spanned by two vectors is equal to the length of the
cross product of the two vectors.
There are many branches of physics in which the cross product is encountered. For

example, torque, which expresses how much a force acting on an object makes that object
rotate, is the cross product of the distance vector ~r originating at the axis of rotation and
ending at the point where the force acts and the applied force vector~F :

T ¼ ~r � ~F

The length of ~r is known as the moment arm.
Another example from physics originates in the field of electromagnetism. Actually,

probably the first time you encountered the right hand rule was in physics class, where you
learned that it allows you to find the direction of the magnetic field due to a current in a coil
or in a straight wire. In physics there are many applications of the right hand rule and several of
them are related to cross products (see e.g. https://en.wikipedia.org/wiki/Right-hand_rule).
One such example from electromagnetism is the force of a magnetic field acting on a moving

Fig. 4.12 Illustration supporting the intuitive understanding of the cross product of two vectors~aand~b.
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charged particle. That force equals the product of the charge of the particle Q (a scalar) and the
cross product of the velocity ~v and the magnetic field ~B:

F ¼ Q
�
~v� ~B

�

Exercises

4.12. Calculate the cross product of these pairs of vectors algebraically

(a)
1
1
2

0
@

1
A and

2
3
4

0
@

1
A

(b)
1
0
�2

0
@

1
A and

�5
2
7

0
@

1
A

(c)
�1
�1
�1

0
@

1
A and

0:2
0:3
0:4

0
@

1
A

4.13. Determine the plane

(a) spanned by the vectors
1
1
1

0
@

1
A and

2
3
4

0
@

1
A and going through the origin

(b) spanned by the vectors
2
1
�1

0
@

1
A and

2
3
4

0
@

1
A and going through the point

1
1
1

0
@

1
A

4.3 Other Mathematical Concepts Related to Vectors

Now that the basics of vector addition, subtraction, scalar multiplication and multiplication
hold no more secrets for you, it is time to get into more interesting mathematical concepts
that rest on vector calculus and the relationships between pairs or sets of vectors.

4.3.1 Orthogonality, Linear Dependence and Correlation

In Sect. 4.2.2.1 we already stated that two vectors are orthogonal iff their inner product
equals zero. In 2D or 3D this is equal to the two vectors being perpendicular to each other. In
contrast, if two vectors have the same orientation and only differ in their length, they are
linearly dependent. Formally, this can be defined as: two vectors~a and~b are linearly dependent
if there is a scalar s 6¼0 such that s~a ¼ ~b. The definition of linear dependence can be extended
to multiple vectors: n vectors ~a1 . . .~an are linearly dependent if there are scalars s1. . . sn 6¼
0 such that

X
i

si~ai ¼ 0, or similarly, if one of the vectors can be expressed as a linear

combination of the others. So far, so good. But what does correlation have to do with
orthogonality and linear dependence? To understand this, we first consider correlation.
Here, we define the correlation between two random variables X and Y by Pearson’s

4 Vectors 113



correlation coefficient (or the Pearson product-moment correlation coefficient, or simply ‘the
correlation coefficient’) as the covariance (cov) of the two variables divided by the product of
their standard deviations σ:

ρ X; Yð Þ ¼ cov X;Yð Þ
σXσY

This is the correlation coefficient for a population. To estimate the population correlation
coefficient ρ, you have to take a sample from the population and calculate the sample
correlation coefficient r. Suppose that (x1,y1) . . . (xn, yn) are n pairs of points
sampled from X and Y of which the sample means of X and Y have been subtracted (X and
Y have been demeaned or centered). Then the sample correlation coefficient r can be
calculated as follows:

r X; Yð Þ ¼
1

n�1

Pn
i¼1

xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
i¼1

y2i

s ¼
Pn
i¼1

xiyiffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffiPn
i¼1

y2i

s ¼ ~x �~y
~xj j ~yj j ¼ cosφ

Hence, the sample correlation coefficient can be calculated by taking the inner product
of two vectors representing pairs of demeaned variables and by dividing this product by the
product of the vector norms. A graphical interpretation is the angle between them: the
more the two (n-dimensional) vectors are oriented in the same direction, the more
correlated the variables are. Thus, orthogonality denotes that the raw variables are perpen-
dicular whereas uncorrelatedness denotes that the demeaned variables are perpendicular. To
finalize this section we visualize the relations between orthogonality, linear independence

Fig. 4.13 Venn diagram illustrating the relations between orthogonality, linear independence and
correlation.
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and correlation in the Venn diagram in Fig. 4.13. This shows that all orthogonal vectors
are independent, all uncorrelated vectors are independent and some uncorrelated vectors
are orthogonal.
Note that when sampling in real life, zero correlation is very unlikely to occur: most data

will show some correlation.

Exercises

4.14. Are the following pairs of vectors (1) independent?, (2) correlated?, (3) orthogonal?

(a)

1
1
2
3

0
BB@

1
CCA and

2
3
4
5

0
BB@

1
CCA

(b)

0
0
1
1

0
BB@

1
CCA and

1
0
1
0

0
BB@

1
CCA

(c)

1
�5
3
�1

0
BB@

1
CCA and

5
1
1
3

0
BB@

1
CCA

(d)

�1
�1
1
1

0
BB@

1
CCA and

1
�1
1
�1

0
BB@

1
CCA

(e)

1
2
3
4

0
BB@

1
CCA and

3
6
9
12

0
BB@

1
CCA

4.3.2 Projection and Orthogonalization

Another interesting relation that rests on vector calculus is that between the inner product
and the projection of one vector onto another. In Sect. 4.2.2.1, we derived that the inner
product is equal to:

~a �~b ¼ ~aj j ~b
��� ��� cosφ ¼ ~aj j ~b

��� ���adj
~aj j ¼

~b
��� ���adj, hence to the part of ~a in the direction of ~b,

times the length of ~b. The part of ~a in the direction of ~b (adj) is already very close to the
projection of~a on~b as can be seen in Fig. 4.8, the only thing we need to do is to multiply it by

a vector of unit length in the direction of ~b, i.e. by ~b= ~b
��� ���. Thus the projection of ~a on ~b is

given by:

~a � ~b
~b
��� ���2

~b:
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Once we know how to project two vectors onto each other, we can easily derive how to
orthogonalize vector~a with respect to vector~b; simply by subtracting the projection of vector
~a on vector ~b from vector ~a (as illustrated in Fig. 4.14):

~a⊥ ¼ ~a� ~a � ~b
~b
��� ���2

~b:

This procedure can be repeated to orthogonalize multiple vectors with respect to each
other, e.g. three vectors ~a1, ~a2 and~a3:

~a1,⊥ ¼ ~a1

~a2,⊥ ¼ ~a2 � ~a2 � ~a1,⊥
~a1,⊥j j2 ~a1,⊥

~a3,⊥ ¼ ~a3 � ~a3 � ~a1,⊥
~a1,⊥j j2 ~a1,⊥ � ~a3 � ~a2,⊥

~a2,⊥j j2 ~a2,⊥:

This process is known as Gram-Schmidt (or Schmidt-Gram) orthogonalization and can be
extended to more vectors in a similar manner. Orthogonalization has some very useful
applications, for example in multiple linear regression. Linear regression is a method to
model the relationship between a scalar dependent variable (such as height) by an explanatory
variable (such as age) by a linear model (i.e. a straight line in this simple example, see
Fig. 4.15).
If there are more explanatory variables the method is referred to as multiple linear

regression. Thus, describing this in a more mathematical way, in multiple linear regression
one tries to predict a dependent random variable Y from m explanatory variables X1 to Xm.
To estimate the model you need n observations or measurements (Yi, X1i, . . ., Xmi),
i ¼ 1, . . ., n, for example from multiple people (if e.g. predicting some human property)
or from multiple voxels (if e.g. predicting brain activation using functional magnetic

Fig. 4.14 Illustration of projection of vector~aon vector ~b (dashed vector) and orthogonalized vector~a⊥
(dot-dashed vector).
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resonance imaging). Of course, the linear relationship will not be perfect, so there will be a
deviation εi from the ith observation to the estimated model. Thus for the ith observation the
relationship can be described as:

Yi ¼ β1Xi1 þ β2Xi2 þ . . .þ βmXim þ εi

where β1. . .βm are the model weights that need to be estimated. When putting these
relationships together for all i the following matrix equation results:

~Y ¼ X~β þ~ε

where

X ¼
X11 ⋯ X1m

X21 ⋯ X2m

⋮ ⋱ ⋮
Xn1 ⋯ Xnm

0
BB@

1
CCA

Thus, the columns of X contain the n observed values for each of the m explanatory
variables. X is often referred to as the design matrix, its column vectors as regressors, ~β as the
(vector of) regression coefficients and ~ε as the (vector of) error terms or noise. I here have
already introduced the concept of a matrix, which will be explained in much more detail in
the next Chapter. Let’s consider an example of multiple linear regression to clarify its use.

Fig. 4.15 Illustration of simple linear regression to predict height from age. Dots represent individual
measurements, the dashed line is the linear model.
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Example 4.3

In science it is common practice to try to use one or more measured variables to predict another.
One way to do this is with linear regression. For this example, let’s suppose we want to know
whether the average number of sugar-sweetened beverages taken per day and age can predict
blood pressure (inspired by Nguyen et al. 2009). Suppose five participants are assessed; their data
are displayed in the table below:

Participant
number # Beverages/day

Age
(years)

Systolic blood
pressure (mmHg)

1 5 20 140
2 3 25 130
3 7 50 150
4 1 40 120
5 0 39 110

To see whether the number of sweet beverages and age can predict systolic blood pressure, we
can derive a linear equation per participant i of the form BPi¼β1 �bevi+β2 �agei. Here, BP is the
systolic blood pressure and bev is the number of beverages per day. Since we havemore equations
(5) than unknowns (2), β1 and β2 canmost likely not be determined such that the equations will be
true for all participants. So instead of trying to solve a system of linear equations (see Sect. 2.4),
we employ multiple linear regression and add an error term εi to each equation: BPi¼β1 �bevi+β2 �
agei+εi. Thus:

140 ¼ β1 � 5þ β2 � 20þ ε1

130 ¼ β1 � 3þ β2 � 25þ ε2

150 ¼ β1 � 7þ β2 � 50þ ε3

120 ¼ β1 � 1þ β2 � 40þ ε4

110 ¼ β1 � 0þ β2 � 39þ ε5

We can use statistical programs like SPSS to apply multiple linear regression. In this case, after
entering the participant details in SPSS and running multiple linear regression, we find that
β1¼ 5.498 and β2¼ 0.042. In addition SPSS tells us that β1 is significantly different from 0, whereas
β2 is not. This means that—in this example—the number of beverages does explain blood pressure
for the participants, while age does not.

An important prerequisite for successful (multiple) linear regression is that the regressors
are not multicollinear. Multicollinearity means that two or more of the regressors are highly
correlated or that one of the regressors is (almost) a linear combination of the others
(dependent). In such a case it is not possible to determine the regression coefficients reliably;
a small change in the observations may result in a large change in the regression coefficients.
A more phenomenological explanation is that it is not possible for the regression algorithm to
decide where to ‘put the weights’; at the regressor that is (almost) a linear combination of
others or at those other regressors. Gram-Schmidt orthogonalization is one of the ways to
resolve this problem, as orthogonal regressors are linearly independent (see Fig. 4.13). The
next example will show this.

118 N. Maurits



Example 4.4

A couple of years ago, we used Gram-Schmidt orthogonalization to allow the coupling of muscle
activity (as measured by electromyography (EMG)) to brain activity (as measured by functional
magnetic resonance imaging (fMRI); van Rootselaar et al. 2007, 2008) to gain further understand-
ing of the brain areas that are involved in movement disorders such as tremor (Broersma et al.
2015). In the study on tremor we asked essential tremor patients (see also Sect. 3.4.2) to maintain
a posture with extended arm and hand which evokes the tremor, and to alternate this with rest,
while they were lying on their back in the magnetic resonance scanner. As one of the regressors
for predicting brain activation over time in each voxel (~Y in the multiple linear regression model
above), we used the block design regressor of the task. This is a vector with ones for each scan
during which patients maintained posture and zeros for each scan during which patients rested
(giving one of the columns in the design matrix X in the multiple linear regression model above;
see Fig. 4.16, top). During this experiment we also recorded EMG activity from the fore arm
muscles as a measure of tremor intensity (see Fig. 4.16, middle). As tremor was evoked by posture,
the EMG regressor—consisting of the average EMG intensity for each scan—was highly correlated
with the block design regressor (compare Fig. 4.16 top andmiddle). Thus, if we would have simply
put the block design regressor and the EMG regressor as two columns in the designmatrix X in the
linear regression model above to predict brain activation, the two regressors would have been
dependent and we would not have been able to find reliable brain activations related to tremor.
However, by first Gram-Schmidt orthogonalizing the EMG regressor with respect to the block
design regressor and putting the result (see Fig. 4.16, bottom) in the design matrix instead of the
EMG regressor, we were. In this orthogonalized EMG regressor we preserve only the tremor
activity that is stronger or weaker than the average tremor activity, providing us with information
about tremor variability. The brain areas for which activation correlates with this orthogonalized
EMG regressor then presumably are involved in modulating tremor intensity. With this approach
we found that the cerebellum is implicated in essential tremor (Broersma et al. 2015).

Fig. 4.16 Visualization of a block design regressor (movement; top), EMG regressor (middle) and
result of Gram-Schmidt orthogonalization of the two (bottom). The final design matrix used for
analyzing the fMRI data of the tremor experiment contained the block design regressor (top) as
well as the orthogonalized EMG-regressor (bottom). Note that vector element values are plotted
as a function of scan number here.
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Glossary

Algebraically Using an expression in which only mathematical symbols and arithmetic operations are
used.

Associativity Result is the same independent of how numbers are grouped (true for addition and
multiplication of more than two numbers; see Box 4.1).

Commutativity Result is the same independent of the order of the numbers (true for addition and
multiplication; see Box 4.1).

Coordinates Pairs (2D space) or triplets (2D space) of ordered numbers that determine a point’s
position in space.

Covariance A measure of joint variability of two random variables; if the two variables jointly increase
and jointly decrease the covariance is positive, if one variable increases when the other decreases and
vice versa, the covariance is negative.

Demeaned A set of variables from which the mean has been subtracted, i.e. with zero mean (also
known as centered).

Determinant Property of a square matrix, which can be thought of as a scaling factor of the
transformation the matrix represents (see also Chap. 5).

Distributivity Result is the same for multiplication of a number by a group of numbers added together,
and each multiplication done separately after which all multiplications are added (in this case the
algebraic expression is really much easier to understand than the words; see Box 4.1).

Electromyography Measurement of electrical muscle activity by (surface or needle) electrodes.
Element As in ‘vector element’: one of the entries in a vector.
Geometrically Using geometry and its methods and principles.
Geometry The branch of mathematics dealing with shapes, sizes and other spatial features.
iff ‘If and only if’: math lingo for a relation that holds in two directions, e.g. a iff b means ‘if a then b

and if b then a’.
Linear combination The result of multiplying a set of terms with constants and adding them.
Linear dependence Two vectors having the same orientation, differing only in their length.
Matrix A rectangular array of (usually) numbers.
Multicollinearity Two or more of a set of vectors or regressors are highly correlated or one of the vectors

or regressors in this set is (almost) a linear combination of the others.
Multiple linear regression Predicting a dependent variable from a set of independent variables

according to a linear model.
Norm Length or size of a vector.
Normal vector A vector that is perpendicular to a plane.
Null vector The result of subtracting a vector from itself.
Orthogonal Two vectors that are geometrically perpendicular or equally, have an inner product of

zero.
Orthogonalize To make (two vectors) orthogonal.
Parallelepiped 3D figure formed by six parallelograms (it relates to a parallelogram like a cube relates to

a square).
Parallelogram A quadrilateral with two pairs of parallel sides (note that a square is a parallelogram, but

not every parallelogram is square).
Regressor An independent variable that can explain a dependent variable in a regression model,

represented by a vector in the regression model
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Scalar Here: a real number that can be used for scalar multiplication in which a vector multiplied by a
scalar results in another vector.

Unit vector A vector divided by its own length, resulting in a vector with length one.
Vector Entity with a magnitude and direction, often (geometrically) indicated by an arrow.
Voxel Here: a sample of brain activation as measured on a 3D rectangular grid.
Work Product of the force exerted on an object and its displacement.

Symbols Used in This Chapter (in Order of Their Appearance)

~� Vector
~i,~j, ~k Vectors of length 1 along the principal x-, y-, and z-axes

~�jj Vector norm
ϕ Here: angle between two vectors
� Inner product
cos Cosine
adj Edge in a right-angled triangle adjacent to the acute angle
~n Normal vector
� Here: cross product
sin Sine
opp Edge in a right-angled triangle opposite to the acute angle cross product
cov Covariance
σ Standard deviation
~�⊥ Orthogonalized vector

Overview of Equations, Rules and Theorems for Easy
Reference

Addition and subtraction of vectors

~aþ ~bþ~c ¼
a1
⋮
an

0
@

1
Aþ

b1
⋮
bn

0
@

1
Aþ

c1
⋮
cn

0
@

1
A ¼

a1 þ b1 þ c1
⋮

an þ bn þ cn

0
@

1
A

Magnitude (length, module, absolute value, norm) of a vector

~aj j ¼
a1
⋮
an

0
@

1
A

������
������ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 þ⋯þ a2n

q
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Inner vector product

~a � ~b ¼
a1
⋮
an

0
@

1
A �

b1
⋮
bn

0
@

1
A ¼ a1b1 þ⋯anbn or

~a � ~b ¼ ~aj j ~b
��� ��� cosφ,

where 0<φ<π is the angle between ~a and ~b when they originate at the same position.

Definition of a plane through the origin

~n �~x ¼ 0,

where~n is a normal vector, perpendicular to the plane and~x is any vector such that~n �~x ¼ 0

Cross vector product

~a� ~b ¼
a1
a2
a3

0
@

1
A�

b1
b2
b3

0
@

1
A ¼

a2b3 � a3b2
a3b1 � a1b3
a1b2 � a2b1

0
@

1
A or

~a� ~b ¼ ~aj j ~b
��� ��� sinφ~n

where 0<φ<π is the angle between~a and~bwhen they originate at the same position and~n is
a unit vector.

Correlation coefficient
The sample correlation between two random demeaned variables X and Y as defined by
Pearson’s correlation coefficient is given by:

r X; Yð Þ ¼
1

n�1

Pn
i¼1

xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�1

Pn
i¼1

y2i

s ¼
Pn
i¼1

xiyiffiffiffiffiffiffiffiffiffiffiPn
i¼1

x2i

s ffiffiffiffiffiffiffiffiffiffiPn
i¼1

y2i

s ¼ ~x �~y
~xj j ~yj j ¼ cosφ

where ~x and ~y are two vectors representing the pairs of variables and 0<φ<π is the angle
between these vectors when they originate at the same position.

Projection
The projection of ~a on ~b is given by:

122 N. Maurits



~a � ~b
~b
��� ���2

~b

(Gram-Schmidt) orthogonalization
The orthogonalization of two vectors ~a1 and ~a2 or the Gram-Schmidt orthogonalization of
three vectors ~a1, ~a2 and ~a3 is given by:

~a1,⊥ ¼ ~a1

~a2,⊥ ¼ ~a2 � ~a2 � ~a1,⊥
~a1,⊥j j2 ~a1,⊥

~a3,⊥ ¼ ~a3 � ~a3 � ~a1,⊥
~a1,⊥j j2 ~a1,⊥ � ~a3 � ~a2,⊥

~a2,⊥j j2 ~a2,⊥:

Answers to Exercises

4.1. The sum and difference of the two vectors are:

(a)
9
7

� �
and

5
�1

� �

(b)
1
3

� �
and

�5
31

� �

(c)
5

�21
10

0
@

1
A and

�3
25
�4

0
@

1
A

(d)

3:6
4:8
9
7:8

0
BB@

1
CCA and

1:2
�2:4
�1:8
3

0
BB@

1
CCA

4.2. The vector
7
3

� �
is indicated with a dashed arrow and the vector

2
4

� �
is indicated with

a dotted arrow, both starting at the origin. The geometrical sum of the two vectors is
indicated in the left figure and the geometrical difference of the two vectors is indicated
in the right figure, both by a drawn arrow. Some additional lines and copies of the
(negative of the) arrows are indicated to visualize the supporting parallelogram.
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4.3. (a)
�2
3

�21

0
@

1
A

(b)
3:5
0
2:9

0
@

1
A

4.4. P ¼ (�2,�2), Q ¼ (�3,4) and R ¼ (1,2).

(a) Below, the points P, Q and R and their connecting vectors have been drawn.
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(b) ~u ¼ �1
6

� �
, ~v ¼ 4

�2

� �
and ~w ¼ �3

�4

� �
(c) The null vector (after connecting—i.e. adding—all vectors, we end up in the same

location).

4.5. (a) One minute is 1/60th hour, thus the location of the airplane after 1min is the
velocity vector divided by 60: (3.33, 3, 1.66).

(b) 100m is 0.1 km. The airplane climbs 100 km in 1 h, thus 0.1 km in
1/1000 h ¼ 3.6 s.

(c) It takes 3.6 s to climb 100 m, thus 3.6 � 10 � 9 ¼ 324 s to climb to 9 km.

4.6. The inner product of each of these pairs of vectors is

(a) 0
(b) 0
(c) 15
(d) 4
(e) 1

4.7. The inner product of each of these pairs of vectors is

(a) 35
(b) 0
(c) 7.2
(d) �1

4.8. Use that ~a �~b ¼ ~aj j ~b
��� ��� cosφ.

(a) cosφ ¼ 1=
ffiffiffiffiffi
17

p
, thus φ�76

�

(b) cos φ¼�2/2¼�1, thus φ¼180
�

(c) cosφ ¼ 15=
ffiffiffi
5

p � ffiffiffiffiffi
45

p ¼ 15=
ffiffiffiffiffiffiffiffi
225

p ¼ 15=15 ¼ 1, thus φ¼0
�

(d) cosφ ¼ 7=
ffiffiffiffiffi
10

p � ffiffiffiffiffi
17

p
, thus φ�58

�

(e) cosφ ¼ 1=
ffiffiffi
5

p � ffiffiffiffiffi
10

p
, thus φ�82

�

4.9. (a) x � 2y + 3z ¼ 0

(b) In general, a plane with normal vector
�1:5
0:5
2

0
@

1
A is given by�1.5x + 0.5y + 2z¼ C.

To find C, we substitute the point
2
4
�3

0
@

1
A that is in the plane:

�1.5�2 + 0.5�4–3�2 ¼ �3 + 2 – 6 ¼ �7 and thus this plane is given by
�1.5x + 0.5y + 2z ¼ �7.
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4.10. (a) any combination of x, y and z that satisfies x � 2y + 3z ¼ 0 is a point in the plane,
e.g. (�1, 1, 1) or (2, 2, 2/3).

(b) similar to 4.10(a), (1, 1, �3) is a point in this plane, but also (0, 0, �3.5).

4.11. The work performed by the object is determined by the formula work¼F �d �cos(α),
where F is the force (in N), d the displacement (in m) and α the angle between the
displacement and the force.

(a) work ¼ 10�3�4/5 ¼ 90/5 ¼ 18
(b) work ¼ 15�4�4/5 ¼ 180/5 ¼ 36

4.12. (a)
1
1
2

0
@

1
A�

2
3
4

0
@

1
A ¼

4� 6
� 4� 4ð Þ
3� 2

0
@

1
A ¼

�2
0
1

0
@

1
A

(b)
1
0
�2

0
@

1
A�

�5
2
7

0
@

1
A ¼

0þ 4
� 7� 10ð Þ

2� 0

0
@

1
A ¼

4
3
2

0
@

1
A

(c)
�1
�1
�1

0
@

1
A�

0:2
0:3
0:4

0
@

1
A ¼

�0:4þ 0:3
� �0:4þ 0:2ð Þ
�0:3þ 0:2

0
@

1
A ¼

�0:1
0:2
�0:1

0
@

1
A

4.13. Remember that a plane is determined by its normal vector and that a normal vector can
be determined by the cross product of two points (vectors) in the plane.

(a) the normal vector for this plane is given by

1
1
1

0
@

1
A�

2
3
4

0
@

1
A ¼

4� 3
� 4� 2ð Þ
3� 2

0
@

1
A ¼

1
�2
1

0
@

1
A,

thus the plane (through the origin) is x � 2y + z ¼ 0.

(b) the normal vector for this plane is given by

2
1
�1

0
@

1
A�

2
3
4

0
@

1
A ¼

4þ 3
� 8þ 2ð Þ
6� 2

0
@

1
A ¼

7
�10
4

0
@

1
A,

Thus the plane (through the point (1, 1, 1)) is 7x � 10y + 4z ¼ 1.

4.14. Tip: remember that two vectors ~a and ~b are dependent if there is a scalar s such that

s~a ¼ ~b, correlated if
�
~a � �a

� � �~b � �b
� ¼ 0 (where � denotes the mean over all vector

elements) and orthogonal if ~a �~b ¼ 0
(a) independent, correlated and not orthogonal
(b) independent, uncorrelated and not orthogonal
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(c) independent, correlated and orthogonal
(d) independent, uncorrelated and orthogonal
(e) dependent, correlated and not orthogonal
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5
Matrices

Natasha Maurits

After reading this chapter you know:

• what matrices are and how they can be used,
• how to perform addition, subtraction and multiplication of matrices,
• that matrices represent linear transformations,
• the most common special matrices,
• how to calculate the determinant, inverse and eigendecomposition of a matrix, and
• what the decomposition methods SVD, PCA and ICA are, how they are related and how they

can be applied.

5.1 What Are Matrices and How Are They Used?

Matrices, in mathematics, are rectangular arrays of (usually) numbers. Their entries are called
elements and can also be symbols or even expressions. Here, we discuss matrices of numbers.
Of course, these numbers can be of any type, such as integer, real or complex (see Sect. 1.2).
For most practical applications, the matrix elements have specific meanings, such as the
distance between cities, demographic measures such as survival probabilities (represented in a
Leslie matrix) or the absence or presence of a path between nodes in a graph (represented in an
adjacency matrix), which is applied in network theory. Network theory has seen a surge of
interest in recent years because of its wide applicability in the study of e.g. social commu-
nities, the world wide web, the brain, regulatory relationships between genes, metabolic
pathways and logistics. We here first consider the simple example of roads between the four
cities in Fig. 5.1.
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A matrix M describing the distances between the cities is given by:

M ¼
0 22 14 10
22 0 8 12
14 8 0 13
10 12 13 0

2
664

3
775

Here, each row corresponds to a ‘departure’ city A–D and each column to an ‘arrival’ city
A–D. For example, the distance from city B to city C (second row, third column) is 8, as is
the distance from city C to city B (third row, second column). Cities A and B are not
connected directly, but can be reached through cities C or D. In both cases, the distance
between cities A and B amounts to 22 (14 + 8 or 12 + 10; first row, second column and
second row, first column).
One of the advantages of using a matrix instead of a table is that they can be much more

easily manipulated by computers in large-scale calculations. For example, matrices are used to
store all relevant data for weather predictions and for predictions of air flow patterns around
newly designed airfoils.
Historically, matrices, which were first known as ‘arrays’, have been used to solve systems

of linear equations (see Chap. 2 and Sect. 5.3.1) for centuries, even dating back to 1000 years
BC in China. The name ‘matrix’, however, wasn’t introduced until the nineteenth century,
when James Joseph Sylvester thought of a matrix as an entity that can give rise to smaller
matrices by removing columns and/or rows, as if they are ‘born’ from the womb of a
common parent. Note that the word ‘matrix’ is related to the Latin word for mother: ‘mater’.
By removing columns or rows and considering just one row or one column of a matrix, we

obtain so-called row- or column-matrices, which are simply row- or column-vectors, of

Fig. 5.1 Four cities A, B, C and D and the distances between them. In this example city A cannot be
reached from city B directly, but can be reached via city C or city D.
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course. Hence, vectors (see Chap. 4) are just special forms of matrices. Typically, matrices are
indicated by capital letters, often in bold (as in this book) and sometimes, when writing
manually, by underlined or overlined capital letters. The order or size of a matrix is always
indicated by first mentioning the number of rows and then the number of columns. Thus, an

m � n matrix has m rows and n columns. For example, A ¼ 1 6 � 3
0:5 7 4

� �
is a 2 � 3

matrix. When the number of rows equals the number of columns, as in the distance example
above, the matrix is called square. An element of a matrix A in its i th row and j th column can
be indicated by aij, ai,j or a(i,j). Thus, in the example matrix A above a1,2¼ 6 and a2,1 ¼ 0.5.
This is very similar to how vector elements are indicated, except that vector elements have
one index instead of two.

5.2 Matrix Operations

All common mathematical operations, such as addition, subtraction and multiplication, can
be executed on matrices, very similar to how they are executed on vectors (see Sect. 4.2.1).

5.2.1 Matrix Addition, Subtraction and Scalar Multiplication

Since the concepts of vector addition, subtraction and scalar multiplication should by now be
familiar to you, explaining the same operations for matrices becomes quite easy. The
geometrical definition that could be used for vectors is not available for matrices, so we
here limit the definition of these operations to the algebraic one. The notation for matrix
elements that was just introduced in the previous section helps to define these basic
operations on matrices. For example, addition of matrices A and B (of the same size) is
defined as:

Aþ Bð Þij ¼ aij þ bij

Thus, the element at position (i,j) in the sum matrix is obtained by adding the elements at
the same position in the matrices A and B. Subtraction of matrices A and B is defined
similarly as:

A� Bð Þij ¼ aij � bij,

and multiplication of a matrix A by a scalar s is defined as:

sAð Þij ¼ saij
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Exercises

5.1. In the figure below three cities A, B and C are indicated with two roads between them.

A B

C

There is no direct connection between cities A and C. The distance matrix between the
three cities is:

0 12 21
12 0 9
21 9 0

0
@

1
A

(a) Copy the figure and add the distances to the roads.
(b) A direct (straight) road between cities A and C is built: how does the distance matrix

change?
(c) There are also three public parks D, E and F in the area. The (shortest) distance matrix

between the cities (rows) and the parks (columns) is given by:

15 24 0
9 12 12
0 15 15

0
@

1
A

Indicate the location of the parks in the figure, assuming that the new road between A
and C has been built.

5.2. Add and subtract (i.e. first-second matrix) the following pairs of matrices:

(a)
3 4
�1 8

� �
and

2 �2
3 7

� �

(b)
3 �7 4
�2 6 5
1 �2 �9

0
@

1
A and

4 3 2
1 �2 �4
�5 8 11

0
@

1
A

(c)
1:2 3:2 �1:5
3:4 2:3 �3:2

� �
and

0:8 �1:6 0:5
1:7 �1:3 1:2

� �

5.3. Calculate

(a)
1
7
1

2
1
4

0
@

1
Aþ 3

1
0
1

0
1
0

0
@

1
A� 2

�1
0
�2

1
4
�3

0
@

1
A

(b) � 0:5 3:1
6:7 2:4

� �
� 2

1 0:7
1:2 0:7

� �
þ 1:5

4 3
8 3

� �
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5.2.2 Matrix Multiplication and Matrices as Transformations

Matrix addition, subtraction and scalar multiplication are quite straightforward generaliza-
tions of the same operations on vectors. For multiplication, the story is a little different,
although there is a close relation between matrix multiplication and the vector inner product.
A matrix product is only well defined if the number of columns in the first matrix equals the
number of rows in the second matrix. Suppose A is anm� nmatrix and B is an n� pmatrix,
then the product AB is defined by:

ABð Þij ¼
Xn
k¼1

aikbkj

If you look closer at this definition, multiplying two matrices turns out to entail repeated
vector inner product calculations, e.g. the element in the third row and second column of the
product is the inner product of the third row of the first matrix with the second column of the
second matrix. Let’s work this out for one abstract and for one concrete example:

a11
a21

a12
a22

a13
a23

� � b11 b12
b21 b22
b31 b32

0
@

1
A¼ a11b11þa12b21þa13b31 a11b12þa12b22þa13b32

a21b11þa22b21þa23b31 a21b12þa22b22þa23b32

� �

3 4 2
�2 �1 0
2 �3 7

0
@

1
A 1 2

3 4
5 6

0
@

1
A¼

3 �1þ4 �3þ2 �5 3 �2þ4 �4þ2 �6
�2 �1�1 �3þ0 �5 �2 �2�1 �4þ0 �6
2 �1�3 �3þ7 �5 2 �2�3 �4þ7 �6

0
@

1
A¼

25 34
�5 �8
28 34

0
@

1
A

Exercises

5.4. Which pairs of the following matrices could theoretically be multiplied with each other and in
which order? Write down all possible products.
A with order 2 � 3
B with order 3 � 4
C with order 3 � 3
D with order 4 � 2

5.5. What is the order (size) of the resulting matrix when multiplying two matrices of orders

(a) 2 � 3 and 3 � 7
(b) 2 � 2 and 2 � 1
(c) 1 � 9 and 9 � 1

5.6. Calculate whichever product is possible: AB, BA, none or both.

(a) A ¼ 3 4
�1 8

� �
, B ¼ 2 �2

3 7

� �

(b) A ¼
3
�2
1

�7
6
�2

0
@

1
A, B ¼

4 3 2
1 �2 �4
�5 8 11

0
@

1
A

(c) A ¼ 1:2 3:2 �1:5
3:4 2:3 �3:2

� �
, B ¼ 0:8 �1:6 0:5

1:7 �1:3 1:2

� �
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So far, we discussed matrix operations as operations on abstract entities. However,
matrices are actually commonly used to represent (linear) transformations. What this entails
can be easily demonstrated by showing the effect of the application of matrices on vectors.
Application here means that the matrix and vector are multiplied. Let’s first illustrate this

by an example. Consider a vector ~p ¼ 3
2

� �
, a matrix M ¼ 1 2

2 �2

� �
and its product

~p0 ¼ M~p ¼ 1 2
2 �2

� �
3
2

� �
¼ 7

2

� �
(see Fig. 5.2).

First, observe that when we calculateM~p another 2� 1 vector results, since we multiply a
2� 2 matrix and a 2� 1 vector. Apparently, judging from Fig. 5.2, applying the matrixM to

the vector p
*

transforms the vector; it rotates it and changes its length. To understand this

transformation, let’s see how this matrix transforms the two basis vectors of 2D space;
1
0

� �

and
0
1

� �
. These two vectors are called basis vectors, because any vector

a
b

� �
in 2D space can

be built from them by a linear combination as follows:
a
b

� �
¼ a

1
0

� �
þ b

0
1

� �
. The

matrixM transforms the first basis vector
1
0

� �
to

1
2

� �
and the second basis vector

0
1

� �
to

2
�2

� �
, i.e. the two columns of the matrix M show how the transform affects the basis

vectors. The effect ofM on any vector
a
b

� �
is thus equal toM

a
b

� �
¼ a

1
2

� �
þ b

2
�2

� �
.

For the example in Fig. 5.2 this results indeed in M
3
2

� �
¼ 3

1
2

� �
þ 2

2
�2

� �
¼ 7

2

� �
.

There are some special geometric transformation matrices, both in 2D, as well as 3D. One
that is often encountered is the rotation matrix, that leaves the length of a vector unaltered,
but rotates it around the origin in 2D or 3D. The rotation matrix has applications in e.g., the
study of rigid body movements and in the manipulation of images, as in the preprocessing of

Fig. 5.2 Illustration of how vector p
*

is transformed into vector p
*0 by matrix M (see main text).
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functional magnetic resonance imaging (fMRI) scans. The transformation matrix that rotates
a vector around the origin (in 2D) over an angle θ (counter clockwise) is given by

cos θ � sin θ
sin θ cos θ

� �
, as illustrated in Fig. 5.3 (cf. Chap. 3 on the geometrical definition of

sine and cosine).
Another common geometric transformation matrix is the shearing matrix, that transforms

a square in 2D into a parallelogram (see Fig. 5.4). Applying the matrix transformation
1 k
0 1

� �
results in shearing along the x-axis (y-coordinate remains unchanged), whereas

applying the matrix transformation
1 0
k 1

� �
results in shearing along the y-axis (x-

coordinate remains unchanged). This transformation matrix is also applied in e.g., the
preprocessing of fMRI scans.

Fig. 5.3 Illustration of how the 2D basis vectors,
1
0

� �
in red and

0
1

� �
in blue, are affected by a counter-

clockwise rotation over an angle θ. The vectors before rotation are indicated by drawn arrows, the
vectors after rotation are indicated by dotted arrows.

Fig. 5.4 Illustration of how the two 2D basis vectors are affected by shearing along the x- and y-axes.

The applied transformation matrix for shearing along the x-axis is
1 3
0 1

� �
(results in red) and the

applied transformation matrix for shearing along the y-axis is
1 0
2 1

� �
(results in blue).
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5.2.3 Alternative Matrix Multiplication

Just as there are different ways of multiplying vectors, there are also different ways of
multiplying matrices, that are less common, however. For example, matrices can be multi-
plied element-wise; this product is also referred to as theHadamard product, Schur product or
pointwise product:

A∘Bð Þij ¼ aijbij

This only works when the two matrices have the same size. Another matrix product is the
Kronecker product, which is a generalization of the tensor product (or dyadic product) for
vectors. For vectors this product is equal to an n � 1 column vector being multiplied by a
1 � n row vector, which results in an n � n matrix when following the standard multipli-
cation rules for matrices:

~a� ~b ¼ ~a~b
T ¼

a1
a2
⋮
an

0
BB@

1
CCA b1 b2 ⋯ bnð Þ ¼

a1b1 a1b2 ⋯ a1bn
a2b1 a2b2 ⋯ a2bn
⋮ ⋮ ⋱ ⋮

anb1 anb2 ⋯ anbn

0
BB@

1
CCA

For two matrices A (m � n) and B (p � q), the Kronecker product A�B is defined by:

A� B ¼
a11B a12B ⋯ a1nB
a21B a22B ⋯ a2nB
⋮ ⋮ ⋱ ⋮

am1B am2B ⋯ amnB

0
BB@

1
CCA

Note that the size of the matrices A and B does not need to match for the Kronecker
product. The Kronecker product has proven its use in the study of matrix theory (linear
algebra), e.g. in solving matrix equations such as the Sylvester equation AX + XB ¼ C for
general A, B and C (see e.g. Horn and Johnson 1994).

Exercises

5.7. Calculate the Hadamard or pointwise product of

(a)
1 2
�1 1

� �
and

2 3
4 1

� �

(b)
2 �0:3 1
1:5 7 �0:4

� �
and

1:4 9 0:5
8 �0:1 10

� �

(continued)

136 N. Maurits



5.8. Calculate the Kronecker product of

(a)
1 2
�1 1

� �
and 3 �1 4ð Þ

(b) �2 �3ð Þ and
0 1 2
3 4 5
6 7 8

0
@

1
A

5.2.4 Special Matrices and Other Basic Matrix Operations

There are some special forms of matrices and other basic operations on matrices that should
be known before we can explain more interesting examples and applications of matrices.
The identity or unit matrix of size n is a square matrix of size n � n with ones on the

diagonal and zeroes elsewhere. It is often referred to as I or, if necessary to explicitly mention
its size, as In. The identity matrix is a special diagonal matrix. More generally, a diagonal
matrix only has non-zero elements on the diagonal and zeroes elsewhere. If a diagonal matrix
is extended with non-zero elements only above or only below the diagonal, we speak about an
upper or lower triangular matrix, respectively. A matrix that is symmetric around the
diagonal, i.e. for which aij¼aji, is called symmetric. An example of a symmetric matrix is a
distance matrix, such as encountered in the very first example in this chapter. A matrix is
skew-symmetric if aij¼�aji. A matrix is called sparse if most of its elements are zero. In
contrast, a matrix whose elements are almost all non-zero is called dense. A logical matrix
(or binary or Boolean) matrix only contains zeroes and ones.
One operation that was already encountered in the previous chapter on vectors is the

transpose. The transpose of an n � m matrix A is an m � n matrix of which the elements are
defined as:

AT
� �

ij
¼ aji

A generalization of the transpose to complex-valued elements is the conjugate transpose, for
which the elements are defined by:

A∗ð Þij ¼ �aji,

where the overbar indicates the complex conjugate (see Sect. 1.2.4.1). For real matrices, the
transpose is equal to the conjugate transpose. In quantum mechanics the conjugate transpose
is indicated by † (dagger) instead of *. Notice that (AB)T ¼ BTAT and (AB)* ¼ B*A* for
matrices A and B for which the matrix product AB is possible.
Now that we have introduced the conjugate transpose, we can also introduce a few more

special (complex) matrices. For aHermitianmatrix: A¼ A*, for a normalmatrix: A*A¼ AA*
and for a unitary matrix: AA* ¼ I. Note that all unitary and Hermitian matrices are normal,
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but the reverse is not true. The unitary matrices will return when we explain singular value
decomposition in Sect. 5.3.3.
All special matrices that were introduced in this section are summarized in Table 5.1 with

their abstract definition and a concrete example.

Table 5.1 Special matrices with their abstract definition and an example

Definition Example
Identity/unit aij ¼ 0 if i 6¼ j

aij ¼ 1 if i ¼ j
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

0
BBBB@

1
CCCCA

Diagonal aij ¼ 0 if i 6¼ j
aij 6¼ 0 if i ¼ j

2 0 0
0 �3 0
0 0 7

0
@

1
A

Lower-triangular aij ¼ 0 if i < j
aij 6¼ 0 if i � j

1 0 0
3 �2 0
�5 6 �4

0
@

1
A

Upper-triangular aij ¼ 0 if i > j
aij 6¼ 0 if i � j

1 3 19
0 �2 �8
0 0 �4

0
@

1
A

Symmetric aij ¼ aji 0 12 21
12 0 �9
21 �9 0

0
@

1
A

Skew-symmetric aij ¼ �aji 0 �12 �21
12 0 �9
21 9 0

0
@

1
A

Sparse Most elements are zero 1 0 0 0 0
0 2 0 �3 0
0 0 0:5 0 0
0 0 0 �1 0
�1 0 0 0 7

0
BBBB@

1
CCCCA

Dense Most elements are non-zero 3 7 �5 8 �1
0 2 4 �3 0
6 4 �1 34 7
2 0 6 �11 3
�1 �3 5 6 7

0
BBBB@

1
CCCCA

Logical aij 2 {0,1} 0 0 1 0 1
0 1 0 1 0
1 1 1 0 0
0 1 0 1 0
1 1 0 0 1

0
BBBB@

1
CCCCA

Hermitian A ¼ A* 3 1þ i 8
1� i 7 �i
8 i �2

0
@

1
A

Normal A*A ¼ AA* 3 1þ i 8
1� i 7 �i
8 i �2

0
@

1
A

Unitary AA* ¼ I 1
2

1þ i 1� i
1� i 1þ i

� �
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Exercises

5.9. In what sense (according to the definitions in Table 5.1) are the following matrices special?
Mention at least one property.

(a)
1 1 0
1 1 0
0 0 1

0
@

1
A

(b)
1 0 3
0 0 0
0 0 1

0
@

1
A

(c)
0 4 3
�4 0 �7
�3 7 0

0
@

1
A

(d)
1 4 3
0 1 �7
0 0 1

0
@

1
A

(e)
1 0 0
0 23 0
0 0 �7

0
@

1
A

(f)
1 0 0
0 1 0
0 0 1

0
@

1
A

5.10. Determine the conjugate transpose of

(a)
1 2 3
�i 1 �3� 2i
5 4þ 5i 3

0
@

1
A

(b)
1 2 3
�1 1 �3
5 4 0

0
@

1
A

(c)
4 0 3� 2i

19þ i �3 �3
�8i �11� i 17

0
@

1
A

5.3 More Advanced Matrix Operations and Their
Applications

Now that the basics of matrix addition, subtraction, scalar multiplication and multiplication
hold no more secrets for you, it is time to get into more interesting mathematical concepts
that rest on matrix calculus and to illustrate their applications.

5.3.1 Inverse and Determinant

One of the oldest applications of matrices is to solve systems of linear equations that were
introduced to you in Chap. 2. Consider the following system of linear equations with three
unknowns x, y and z:
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3xþ 4y� 2z ¼ 5

�2x� 2yþ z ¼ �3

xþ y� 7z ¼ �18

This system can also be written as a matrix equation:

3 4 �2
�2 �2 1
1 1 �7

0
@

1
A x

y
z

0
@

1
A ¼

5
�3
�18

0
@

1
A or as

M
x
y
z

0
@

1
A ¼

5
�3
�18

0
@

1
A where M ¼

3 4 �2
�2 �2 1
1 1 �7

0
@

1
A

Such a system and more generally, systems of n equations in n unknowns, can be solved by
using determinants, which is actually similar to using the inverse of a matrix to calculate the
solution to a system of linear equations. The inverse of a square matrix A is the matrix A�1

such that AA�1 ¼ A�1A ¼ I. The inverse of a matrix A does not always exist; if it does A is
called invertable. Notice that (AB)�1 ¼ B�1A�1 for square, invertable matrices A and B.
Now suppose that the matrix M in the matrix equation above has an inverse M�1. In that
case, the solution to the equation would be given by:

x
y
z

0
@

1
A ¼ I

x
y
z

0
@

1
A ¼ M�1M

x
y
z

0
@

1
A ¼ M�1

5
�3
�18

0
@

1
A

Mathematically, the inverse of 2 � 2 matrix
a b
c d

� �
is given by 1

ad�bc
d �b
�c a

� �

where ad � bc is the determinant
a b
c d

����
���� of the matrix. This illustrates why a square matrix

has an inverse if and only if (iff) its determinant is not zero, as division by zero would result in
infinity. For a 3 � 3 matrix or higher-dimensional matrices the inverse can still be calculated
by hand, but it quickly becomes cumbersome. In general, for a matrix A:

A�1 ¼ 1
det Að Þ adj Að Þ,

where adj(A) is the adjoint of A. The adjoint of a matrix A is the transpose of the cofactor
matrix. Each (i,j)-element of a cofactor matrix is given by the determinant of the matrix that
remains when the i-th row and j-th column are removed, multiplied by �1 if i + j is odd. In
Box 5.1 the inverse is calculated of the matrix M given in the example that we started this
section with.
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Box 5.1 Example of calculating the inverse of a matrix

To be able to calculate M�1 where M ¼
3 4 �2
�2 �2 1
1 1 �7

0
@

1
A we first need to know how to calculate

the determinant of a 3 � 3 matrix. This is done by first choosing a reference row or column and
calculating the cofactors for that row or column. Then the determinant is equal to the sum of the
products of the elements of that row or column with its cofactors. This sounds rather abstract so
let’s calculate det(M) by taking its first row as a reference.

det Mð Þ ¼ det
3 4 �2
�2 �2 1
1 1 �7

0
@

1
A

¼ 3
�2 1
1 �7

����
����� 4

�2 1
1 �7

����
����� 2

�2 �2
1 1

����
����

¼ 3 � 13� 4 � 13� 2 � 0 ¼ �13

For the matrix M its cofactor matrix is given by

�2 1
1 �7

����
���� � �2 1

1 �7

����
���� �2 �2

1 1

����
����

� 4 �2
1 �7

����
���� 3 �2

1 �7

����
���� � 3 4

1 1

����
����

4 �2
�2 1

����
���� � 3 �2

�2 1

����
���� 3 4

�2 �2

����
����

0
BBBBBB@

1
CCCCCCA

¼
13 �13 0
26 �19 1
0 1 2

0
@

1
A.

Hence, the adjoint matrix ofM is its transpose
13 26 0
�13 �19 1
0 1 2

0
@

1
A. Thus, the inverse ofM is given by:

M�1 ¼ 1
�13

13 26 0
�13 �19 1
0 1 2

0
@

1
A

To verify that the inverse that we calculated in Box 5.1 is correct, it suffices to verify that
the matrix multiplied by its inverse equals the identity matrix. Thus, for matrix M we verify
that M�1M ¼ I:

M�1M ¼ 1
�13

13 26 0

�13 �19 1

0 1 2

0
B@

1
CA

3 4 �2

�2 �2 1

1 1 �7

0
B@

1
CA

¼ � 1
13

�13 0 0

0 �13 0

0 0 �13

0
B@

1
CA ¼

1 0 0

0 1 0

0 0 1

0
B@

1
CA ¼ I

Finally, now that we have foundM�1, we can find the solution to the system of equations
that we started with:
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x

y

z

0
B@
1
CA¼M�1

5

�3

�18

0
B@

1
CA¼� 1

13

13 26 0

�13 �19 1

0 1 2

0
B@

1
CA

5

�3

�18

0
B@

1
CA¼� 1

13

�13

�26

�39

0
B@

1
CA¼

1

2

3

0
B@

1
CA

Finally, this solution can again be verified by inserting the solution in the system of
equations that was given at the beginning of this section.
Cramer’s rule is an explicit formulation of using determinants to solve systems of linear

equations. We first formulate it for a system of three linear equations in three unknowns

a1xþ b1yþ c1z ¼ d1
a2xþ b2yþ c2z ¼ d2
a3xþ b3yþ c3z ¼ d3

Its associated determinant is:

D ¼
a1 b1 c1
a2 b2 c2
a3 b3 c3

������
������:

We can also define the determinant

Dx ¼
d1 b1 c1
d2 b2 c2
d3 b3 c3

������
������,

which is the determinant of the system’s associated matrix with its first column replaced by
the vector of constants and similarly

Dy ¼
a1 d1 c1
a2 d2 c2
a3 d3 c3

������
������ and Dz ¼

a1 b1 d1
a2 b2 d2
a3 b3 d3

������
������:

Then, x, y and z can be calculated as:

x ¼ Dx

D
, y ¼ Dy

D
, z ¼ Dz

D
:

Similarly, the solution of a system of n linear equations in n unknowns:

a11 a12 ⋯ a1n
a21 a22 ⋯ a2n
⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

0
BB@

1
CCA

x1
x2
⋮
xn

0
BB@

1
CCA ¼

b1
b2
⋮
bn

0
BB@

1
CCA or Ax ¼ b,
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according to Cramer’s rule is given by:

x1 ¼ Dx1
D , x2 ¼ Dx2

D , . . . , xn ¼ Dxn
D , where Dxi is the determinant of the matrix formed

by replacing the i-th column of A by the column vector b
*
. Note that Cramer’s rule only

applies when D 6¼0. Unfortunately, Cramer’s rule is computationally very inefficient for
larger systems and thus not often used in practice.

Exercises

5.11. Show that using Cramer’s rule to find the solution to a system of two linear equations in two
unknowns ax + by ¼ c and dx + ey ¼ f is the same as applying the inverse of the matrix
a b
d e

� �
to the vector

c
f

� �
.

5.12. Find the solution to the following systems of linear equations using Cramer’s rule:

(a) (Example 2.6) 3x+5¼5y^2x�5y¼6
(b) 4x�2y�2z¼10^2x+8y+4z¼32^30x+12y�4z¼24

5.13. Find the solution to the following systems of linear equations using the matrix inverse:

(a) (Exercise 2.4a) x � 2y ¼ 4 ^ x
3 � y ¼ 4

3
(b) (Example 2.7) 2x+y+z¼4^x�7�2y¼�3z^2y+10�2z¼3x

Now that you know how to calculate the determinant of a matrix, it is easy to recognize
that the algebraic definition of the cross-product introduced in Sect. 4.2.2.2 is similar to
calculating the determinant of a very special matrix:

~a� ~b ¼
a1

a2

a3

0
B@

1
CA�

b1

b2

b3

0
B@

1
CA ¼

a2b3 � a3b2

a3b1 � a1b3

a1b2 � a2b1

0
B@

1
CA ¼

~i ~j ~k

a1 a2 a3

b1 b2 b3

�������
�������

¼ a2 a3

b2 b3

����
����~i� a1 a3

b1 b3

����
����~jþ a1 a2

b1 b2

����
����~k

Finding the inverse of larger square matrices and thus finding the solution to larger systems
of linear equations may also be accomplished by calculating the inverse matrix by hand.
However, as you will surely have noticed when doing the exercises, finding the solution of a
system of three linear equations with three unknowns calculating the inverse matrix by hand
is already rather cumbersome, tedious and error-prone. Computers do a much better job than
we at this sort of task which is why (numerical) mathematicians have developed clever, fast
computer algorithms to determine matrix inverses. There is even a whole branch of numer-
ical mathematics that focuses on solving systems of equations that can be represented by
sparse matrices, as fast as possible (Saad 2003). The relevance of sparse matrices is that they
naturally appear in many scientific or engineering applications whenever partial differential
equations (see Box 5.2 and Chap. 6) are numerically solved on a grid. Typically, only local
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physical interactions play a role in such models of reality and thus only neighboring grid cells
interact, resulting in sparse matrices. Examples are when heat dissipation around an under-
ground gas tube or turbulence in the wake of an airfoil needs to be simulated. In Box 5.2 a
simple example is worked out to explain how a discretized partial differential equation can
result in a sparse matrix.

Box 5.2 How discretizing a partial differential equation can yield a sparse matrix

We here consider the Laplace equation for a scalar function u in two dimensions (indicated by
x and y), which is e.g. encountered in the fields of electromagnetism and fluid dynamics:

∇2u ¼ @2u
@x2

þ @2u
@y2

¼ 0

It can describe airflow around airfoils or water waves, under specific conditions. In Sect. 6.11
partial derivatives are explained in more detail. To solve this equation on a rectangle, a grid or
lattice of evenly spaced points (with distance h) can be overlaid as in Fig. 5.5.

Onemethod to discretize the Laplace equation on this grid (see for details e.g. Press et al. n.d.) is:

ui�1, j � 2ui, j þ uiþ1, j

h2 þ ui, j�1 � 2ui, j þ ui, jþ1

h2 ¼ 0

or

ui:j ¼ 1
4

ui�1, j þ uiþ1, j þ ui, j�1 þ ui, jþ1
� � ð5:1Þ

Here, i runs over the grid cells in x-direction and j runs over the grid cells in y-direction. This
discretized equation already shows that the solution in a point (i,j) (in red in the figure) is only
determined by the values in its local neighbours, i.e. the four points (i + 1,j), (i� 1,j), (i, j + 1) and (i,
j � 1) (in blue in the figure) directly surrounding it. There are alternative discretizations that use
variable spacings in the two grid directions and/or fewer or more points; the choice is determined
by several problem parameters such as the given boundary conditions.

Here, I only want to illustrate how solving this problem involves a sparse matrix. Typically,
iterative solution methods are used, meaning that the solution is approximated step-by-step
starting from an initial solution and adapting the solution at every iteration until the solution
hardly changes anymore. The solution at iteration step n + 1 (indicated by a superscript) can then
be derived from the solution at time step n e.g. as follows (cf. Eq. 5.1):

unþ1
i, j ¼ 1

4
un
i�1, j þ un

iþ1, j þ un
i, j�1 þ un

i, jþ1

� �

Here, we can recognize a (sparse) matrix transformation as I will explain now. Suppose we are
dealing with the 11� 7 grid in the figure.We can then arrange the values of u at iteration step n in
a vector e.g. by row: ~un ¼ un

1,1 ⋯ un
1,11 un

2,1 ⋯ un
2,11 un

3,1 ⋯ un
7,11

� �T and similarly for
the values of u at iteration step n + 1. The 77 � 77 matrix transforming ~un into ~unþ1 then has only
four non-zero entries and 73 zeroes in every row (with some exceptions for the treatment of the
boundary grid points) and is thus sparse. It should be noted that this particular iterative solution
method is slow and that much faster methods are available.
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5.3.2 Eigenvectors and Eigenvalues

A first mathematical concept that rests on matrix calculus and that is part of other interesting
matrix decomposition methods (see Sect. 5.3.3) is that of eigenvectors and eigenvalues. An
eigenvector ~v of a square matrix M is a non-zero column vector that does not change its
orientation (although it may change its length by a factor λ) as a result of the transformation
represented by the matrix. In mathematical terms:

M~v ¼ λ~v,

where λ is a scalar known as the eigenvalue. Eigenvectors and eigenvalues have many
applications, of which we will encounter a few in the next section. For example, they allow to
determine the principal axes of rotational movements of rigid bodies (dating back to eigh-
teenth century Euler), to find common features in images as well as statistical data reduction.
To find the eigenvectors of a matrixM, the following system of linear equations has to be

solved:

M � λIð Þ~v ¼ 0:

It is known that this equation has a solution iff the determinant of M�λI is zero. Thus,
the eigenvalues of M are those values of λ that satisfy |M�λI|¼0. This determinant is a
polynomial in λ of which the highest power is the order of the matrixM. The eigenvalues can
be found by finding the roots of this polynomial, known as the characteristic polynomial of
M. There are as many roots as the order (highest power) of the polynomial. Once the
eigenvalues are known, the related eigenvectors can be found by solving for ~v in M~v ¼ λ~v.
This probably sounds quite abstract, so a concrete example is given in Box 5.3.

Fig. 5.5 Grid with equal spacing h for numerical solution of the Laplace equation in two dimensions. To
solve for the point (i,j) (in red), values in the surrounding points (in blue) can be used.
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Box 5.3 Example of calculating the eigenvalues and eigenvectors of a matrix

To find the eigenvalues of the matrix
3 1
2 4

� �
, we first determine its characteristic equation as the

determinant

3 1
2 4

� �
� λ

1 0
0 1

� �����
���� ¼ 3� λ 1

2 4� λ

� �����
���� ¼ 3� λð Þ 4� λð Þ � 2 ¼ λ2 � 7λþ 10

Since λ2�7λ+10¼(λ�2)(λ�5), the roots of this polynomial are given by λ¼2 and λ¼5. The eigen-
vector for λ¼2 follows from:

3 1

2 4

 !
x

y

 !
¼ 2

x

y

 !
) 3x þ y

2x þ 4y

 !
¼ 2x

2y

 !

) 3x þ y ¼ 2x ^ 2x þ 4y ¼ 2y

) x þ y ¼ 0 ^ 2x þ 2y ¼ 0

) x ¼ �y

) x

y

 !
¼ �1

1

 !

Notice that
�1
1

� �
is the eigenvector in this case, because for any multiple of this vector it is true

that x ¼ �y.
Similarly, the eigenvector for λ¼5 follows from:

3 1

2 4

� �
x

y

� �
¼ 5

x

y

� �
) 3x þ y

2x þ 4y

� �
¼ 5x

5y

� �
) 3x þ y ¼ 5x ^ 2x þ 4y ¼ 5y

) �2x þ y ¼ 0 ^ 2x � y ¼ 0

) x ¼ 1
2
y

) x

y

� �
¼ 1

2

� �

Notice that
1
2

� �
is the eigenvector in this case, because for any multiple of this vector it is true

that 2x ¼ y.

Hence, the matrix
3 1
2 4

� �
has eigenvectors

�1
1

� �
and

1
2

� �
with eigenvalues 2 and

5, respectively.

Exercises

5.14. Consider the shearing matrix
1 2
0 1

� �
. Without calculation, which are the eigenvectors of

this matrix and why?

5.15. Calculate the eigenvectors and eigenvalues of

(continued)
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(a)
7 0 0
0 �19 0
0 0 2

0
@

1
A

(b)
2 1
�1 4

� �

(c)
2 2 �1
1 3 �1
1 4 �2

0
@

1
A

(d)
5 1
4 5

� �

5.3.3 Diagonalization, Singular Value Decomposition, Principal
Component Analysis and Independent Component Analysis

In the previous section I already alluded to several applications using eigenvalues and
eigenvectors. In this section I will discuss some of the most well-known and most often
used methods that employ eigendecomposition and that underlie these applications.
The simplest is diagonalization. A matrix M can be diagonalized if it can be written as

M ¼ VDV�1 ð5:2Þ

where V is an invertible matrix and D is a diagonal matrix. First note that V has to be square
to be invertible, so thatM also has to be square to be diagonalizable. Now let’s find out how
eigenvalues and eigenvectors play a role in Eq. 5.2. We can rewrite Eq. 5.2 by right
multiplication with V to:

MV ¼ VD

or similarly, when we indicate the columns of V by~vi and the elements of D by di, i¼ 1, . . .,
n, then:

M
�
~v1 ~v2 ⋯ ~vn

� ¼ �~v1 ~v2 ⋯ ~vn
�
D ¼ �d1~v1 d2~v2 ⋯ dn~vn

�
This shows that in Eq. 5.2 the columns of V must be the eigenvectors of M and the

diagonal elements of D must be the eigenvalues of M. We just noted that only square
matrices can potentially be diagonalized. What singular value decomposition does is generalize
the concept of diagonalization to any matrix, making it a very powerful method.
For an intuitive understanding of SVD you can think of a matrix as a large table of data,

e.g. describing which books from a collection of 500 a 1000 people have read. In that case
the matrix could contains ones for books (in 500 columns) that a particular reader
(in 1000 rows) read and zeroes for the books that weren’t read. SVD can help summarize
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the data in this large matrix. When SVD is applied to this particular matrix it will help
identify specific sets of books that are often read by the same readers. For example, SVD
may find that all thrillers in the collection are often read together, or all science fiction
novels, or all romantic books; the composition of these subcollections will be expressed in
the singular vectors, and their importance in the singular values. Now each reader’s reading
behavior can be expressed in a much more compact way than by just tabulating all books
that he or she read. Instead, SVD allows to say e.g., that a reader is mostly interested in
science fiction novels, or maybe that in addition, there is some interest in popular science
books. Let’s see how this compression of data can be achieved by SVD by first looking at
its mathematics.
In singular value decomposition (SVD) an m � n rectangular matrixM is decomposed into

a product of three matrices as follows:

M ¼ UΣV∗

where U is a unitary (see Table 5.1) m � m matrix, Σ an m � n diagonal matrix with
non-negative real entries and V another unitary n � n matrix. To determine these
matrices you have to calculate the sets of orthonormal eigenvectors of MM* and M*M.
This can be done, as MM* and M*M are square. The orthonormal eigenvectors of the
former are the columns of U and the orthonormal eigenvectors of the latter are the
columns of V. The square roots of the non-zero eigenvalues of MM* or M*M (which
do not differ) are the so-called singular values of M and form the diagonal elements of
Σ in decreasing order, completed by zeroes if necessary. The columns of U are referred
to as the left-singular vectors of M and the columns of V are referred to as the
right-singular vectors of M. For an example which can also be intuitively understood,
see Box 5.4.

Box 5.4 Example of SVD of a real square matrix and its intuitive understanding

To determine the SVD of the matrix M ¼ 1 �2
2 �1

� �
, we first determine the eigenvalues and

eigenvectors of the matrixM*M (which is equal toMTM in this real case) to get the singular values
and right-singular vectors ofM. Thus, we determine its characteristic equation as the determinant

1 2

�2 �1

 !
1 �2

2 �1

 !
� λ

1 0

0 1

 !�����
����� ¼ 5 �4

�4 5

 !
� λ

1 0

0 1

 !�����
����� ¼

5� λ �4

�4 5� λ

 !�����
����� ¼ 5� λð Þ2 � 16 ¼ λ2 � 10λþ 9 ¼ λ� 1ð Þ λ� 9ð Þ

The singular values (in decreasing order) then are σ1 ¼ ffiffiffi
9

p ¼ 3, σ2 ¼ ffiffiffi
1

p ¼ 1 and Σ ¼ 3 0
0 1

� �
.

The eigenvector belonging to the first eigenvalue of MTM follows from:

(continued)
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Box 5.4 (continued)

5 �4

�4 5

 !
x

y

 !
¼ 9

x

y

 !
) 5x � 4y

�4x þ 5y

 !
¼ 9x

9y

 !

) 5x � 4y ¼ 9x ^ �4x þ 5y ¼ 9y

) �4x � 4y ¼ 0 ^ �4x � 4y ¼ 0

) x ¼ �y

) x

y

 !
¼ 1

�1

 !

To determine the first column of V, this eigenvector must be normalized (divided by its length;

see Sect. 4.2.2.1): ~v1 ¼ 1ffiffiffi
2

p 1
�1

� �
.

Similarly, the eigenvector belonging to the second eigenvalue of MTM can be derived to be

~v2 ¼ 1ffiffiffi
2

p 1
1

� �
, making V ¼ 1ffiffi

2
p 1 1

�1 1

� �
. In this case, ~v1 and ~v2 are already orthogonal (see Sect.

4.2.2.1, making further adaptations to arrive at an orthonormal set of eigenvectors
unnecessary. In case orthogonalization is necessary, Gram-Schmidt orthogonalization could be
used (see Sect. 4.3.2).

In practice, to now determine U for this real 2 � 2 matrix M, it is most convenient to use that
when M¼UΣV∗(¼UΣVT), MV¼UΣ or MVΣ�1¼U (using that V∗V¼VTV¼I and Σ is real). Thus, the

first column of U is equal to ~u1 ¼ 1
σ1

M~v1 ¼ 1
3

1 �2
2 �1

� �
1ffiffiffi
2

p 1
�1

� �
¼ 1ffiffiffi

2
p 1

1

� �
and the second

column of U is equal to ~u2 ¼ 1
σ2

M~v2 ¼ 1
1

1 �2
2 �1

� �
1ffiffiffi
2

p 1
1

� �
¼ 1ffiffiffi

2
p �1

1

� �
, making

U ¼ 1ffiffi
2

p 1 �1
1 1

� �
. One can now verify that indeed M¼UΣVT.

As promised, I will now discuss how SVD can be understood by virtue of this specific example. So

let’s see what VT, Σ and U (in this order) do to some vectors on the unit circle:
1
0

� �
in blue, 1ffiffi

2
p 1

1

� �

in yellow ,
0
1

� �
in red and 1ffiffi

2
p �1

1

� �
in green, as illustrated in Fig. 5.6.

VT rotates these vectors over 45�. Σ subsequently scales the resulting vectors by factors of 3 in
the x-direction and 1 in the y-direction, after which U performs another rotation over 45�. You can
verify in Fig. 5.6 that the result of these three matrices applied successively is exactly the same as
the result of applying M directly. Thus, given that U and V are rotation matrices and Σ is a scaling
matrix, the intuitive understanding of SVD for real square matrices is that any such matrix
transformation can be expressed as a rotation followed by a scaling followed by another rotation.
It should be noted that for this intuitive understanding of SVD rotation should be understood to
include improper rotation. Improper rotation combines proper rotation with reflection
(an example is given in Exercise 5.16(a)).

Exercises

5.16. Calculate the SVD of

(a)
2 1
1 2

� �

(b)
2 0
0 1

� �

(continued)
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5.17. For the SVD of M such that M¼UΣV∗ prove that the columns of U can be determined from
the eigenvectors of MM*.

Now that the mathematics of SVD and its intuitive meaning have been explained it is
much easier to explain how SVD can be used to achieve data compression. When you’ve
calculated the SVD of a matrix, representing e.g., the book reading behavior mentioned
before, or the pixel values of a black-and-white image, you can compress the information by
maintaining only the largest L singular values in Σ, setting all other singular values to zero,
resulting in a sparser matrix Σ

0
. When you then calculate M

0¼UΣ
0
V∗, you’ll find that only

the first L columns of U and V remain relevant, as all other columns will be multiplied by
zero. So instead of keeping the entire matrix M in memory, you only need to store a limited
number of columns of U and V. The fraction of information that is maintained in this
manner is determined by the fraction of the sum of the eigenvalues that are maintained
divided by the sum of all eigenvalues. In the reference list at the end of this chapter you’ll find
links to an online SVD calculator and examples of data compression using SVD, allowing
you to explore this application of complex matrix operations further.

Fig. 5.6 Visualization of SVD for real square matrices to gain an intuitive understanding.
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Another method that is basically the same as SVD, that is also used for data compression
but is formulated a bit differently is principal component analysis or PCA. PCA is typically
described as a method that transforms data to a new coordinate system such that the largest
variance is found along the first new coordinate (first principal component or PC), the next
largest variance is found along the second new coordinate (second PC) etcetera. Let me
explain this visually by an example in two dimensions. Suppose that the data is distributed as
illustrated in Fig. 5.7 (left).
Here, we can order the data in a matrix X of dimensions n� 2, where each row contains a

data point (xi,yi), i¼ 1. . .n. In a p-dimensional space, our data matrix would have p columns.
To perform PCA of the data (PC decomposition of this matrix), first the data is mean-
centered (Fig. 5.7 (middle)), such that the mean in every dimension becomes zero. The next
step of PCA can be thought of as fitting an ellipsoid (or ellipse in two dimensions) to the data
(Fig. 5.7 (right)). The main axes of this ellipsoid represent the PCs; the longest axis the first
PC, the next longest axis the second PC etcetera. Thus, long axes represent directions in the
data with a lot of variance, short axes represent directions of little variance. The axes of the
ellipsoid are represented by the orthonormalized eigenvectors of the covariance matrix of the
data. The covariance matrix is proportional to X*X (or XTX for real matrices). The propor-
tion of the variance explained by a PC is equal to the eigenvalue belonging to the
corresponding eigenvector divided by the sum of all eigenvalues. This must sound familiar:
compare it to the explanation of the information maintained during data compression using
SVD in the previous paragraph. Mathematically, the PC decomposition of the n � p matrix
X is given by T ¼ XW, where W (for ‘weights’) is a p � p matrix whose columns are the
eigenvectors of X*X and T is an n � p matrix containing the component scores.
That PCA and SVD are basically the same can be understood as follows. We know now

that the SVD of a matrix M is obtained by calculating the eigenvectors of M*M or MTM.
And indeed, when the SVD of X is given by X¼UΣWT, then XTX¼(UΣWT)TUΣWT¼
WΣUTUΣWT¼WΣ2WT. Thus, the eigenvectors of XTX are the columns of W, i.e. the
right-singular vectors of X. Or, in terms of the PC decomposition of X: T¼XW¼UΣWT

W¼UΣ. Hence, each column of T is equal to the left singular vector of X times the
corresponding singular value. Also notice the resemblance between Figs. 5.6 and 5.7.
As SVD, PCA is mostly used for data or dimensionality reduction (compression). By

keeping only the first L components that explain most of the variance, high-dimensional

Fig. 5.7 Illustration of PCA in two dimensions. Left: example data distribution. Middle: mean-centered
data distribution. Right: fitted ellipse and principal components PC1 (red) and PC2 (yellow).
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data may become easier to store, visualize and understand. This is achieved by, again,
truncating the matrices T and W to their first L columns. An example of dimensionality
reduction from work in my own group (collaboration with Dr. O.E. Martinez Manzanera) is
to use PCA to derive simple quantitative, objective descriptors of movement to aid clinicians
in obtaining a diagnosis of specific movement disorders. In this work we recorded and
analyzed fingertip movement of ataxia patients performing the so-called finger-to-nose test,
in which they are asked to repeatedly move their index finger from their nose to the fingertip
of an examiner. In healthy people, the fingertip describes a smooth curve during the finger-
to-nose task, while in ataxia patients, the fingertip trajectory is much more irregular. To
describe the extent of irregularity, we performed PCA on the coordinates of the fingertip
trajectory, assuming that the trajectory of healthy participants would be mostly in a plane,
implying that for them two PCs would explain almost all of the variance in the data. Hence,
as an application of dimensionality reduction using PCA, the variance explained by the first
two PCs provides a compact descriptor of the regularity of movement during this task. This
descriptor, together with other movement features, was subsequently used in a classifier to
distinguish patients with ataxia from patients with a milder coordination problem and from
healthy people.
Finally, I would like to briefly introduce the method of independent component analysis

or ICA, here. For many it is confusing what the difference is between PCA and ICA and
when to use one or the other. As explained before, PCA minimizes the covariance (second
order moment) of the data by rotating the basis vectors, thereby employing Gaussianity or
normality of the data. This means that the data have to be normally distributed for PCA to
work optimally. ICA, on the other hand, can determine independent components for
non-Gaussian signals by minimizing higher order moments of the data (such as skewness
and kurtosis) that describe how non-Gaussian their distribution is. Here, independence
means that knowing the values of one component does not give any information about
another component. Thus, if the data is not well characterized by its variance then ICA
may work better than PCA. Or, vice versa, when the data are Gaussian, linear and
stationary, PCA will probably work. In practice, when sensors measure signals of several
sources at the same time, ICA is typically the method of choice. Examples of signals that
are best analyzed by ICA are simultaneous sound signals (such as speech) that are picked
up by several receivers (such as microphones) or electrical brain activity recorded by
multiple EEG electrodes. The ICA process is also referred to as blind source separation.
Actually, our brain does a very good job at separating sources, when we identify our own
name being mentioned in another conversation amidst the buzz of a party (the so-called
‘cocktail party effect’). There are many applications of ICA in science, such as identifying
and removing noise signals from EEG measurements (see e.g. Islam et al. 2016) and
identifying brain functional connectivity networks in functional MRI measurements (see
e.g. Calhoun and Adali 2012). In the latter case PCA and ICA are actually sometimes used
successively, when PCA is first used for dimensionality reduction followed by ICA for
identifying connectivity networks.
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Glossary

Adjacency matrix Matrix with binary entries (i,j) describing the presence (1) or absence (0) of a path
between nodes i and j.

Adjoint Transpose of the cofactor matrix.
Airfoil Shape of an airplane wing, propeller blade or sail.
Ataxia A movement disorder or symptom involving loss of coordination.
Basis vector A set of (N-dimensional) basis vectors is linearly independent and any vector in

N-dimensional space can be built as a linear combination of these basis vectors.
Boundary conditions Constraints for a solution to an equation on the boundary of its domain.
Cofactormatrix The (i,j)-element of this matrix is given by the determinant of the matrix that remains

when the i-th row and j-th column are removed from the original matrix, multiplied by�1 if i + j is
odd.

Conjugate transpose Generalization of transpose; a transformation of a matrix A indicated by A* with
elements defined by A∗ð Þij ¼ �aji .

Dense matrix A matrix whose elements are almost all non-zero.
Determinant Can be seen as a scaling factor when calculating the inverse of a matrix.
Diagonalization Decomposition of a matrixM such that it can be written asM¼VDV�1 where V is an

invertible matrix and D is a diagonal matrix.
Diagonal matrix A matrix with only non-zero elements on the diagonal and zeroes elsewhere.
Discretize To represent an equation on a grid.
EEG Electroencephalography; a measurement of electrical brain activity.
Eigendecomposition To determine the eigenvalues and eigenvectors of a matrix.
Element As in ‘matrix element’: one of the entries in a matrix.
Gaussian Normally distributed.
Graph A collection of nodes or vertices with paths or edges between them whenever the nodes are

related in some way.
Hadamard product Element-wise matrix product.
Identity matrix A square matrix with ones on the diagonal and zeroes elsewhere, often referred to as I.

The identity matrix is a special diagonal matrix.
Independent component analysis A method to determine independent components of non-Gaussian

signals by minimizing higher order moments of the data.
Inverse The matrix A�1 such that AA�1 ¼ A�1A ¼ I.
Invertable A matrix that has an inverse.
Kronecker product Generalization of the outer product (or tensor product or dyadic product) for

vectors to matrices.
Kurtosis Fourth-order moment of data, describing how much of the data variance is in the tail of its

distribution.
Laplace equation Partial differential equation describing the behavior of potential fields.
Left-singular vector Columns of U in the SVD of M: M¼UΣV∗

.

Leslie matrix Matrix with probabilities to transfer from one age class to the next in a population
ecological model of population growth.

Logical matrix A matrix that only contains zeroes and ones (also: binary or Boolean matrix).
Matrix A rectangular array of (usually) numbers.
Network theory The study of graphs as representing relations between different entities, such as in a

social network, brain network, gene network etcetera.
Order Size of a matrix.
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Orthonormal Orthogonal vectors of length 1.
Partial differential equation An equation that contains functions of multiple variables and their partial

derivatives (see also Chap. 6).
Principal component analysis Method that transforms data to a new coordinate system such that the

largest variance is found along the first new coordinate (first PC), the then largest variance is found
along the second new coordinate (second PC) etcetera.

Right-singular vector Columns of V in the SVD of M: M¼UΣV∗

Root Here: a value of λ that makes the characteristic polynomial |M�λI| of the matrix M equal to
zero.

Scalar function Function with scalar values.
Shearing To shift along one axis.
Singular value Diagonal elements of Σ in the SVD of M: M¼UΣV∗

.

Singular value decomposition The decomposition of an m � n rectangular matrixM into a product of
three matrices such that M¼UΣV∗ where U is a unitary m � m matrix, Σ an m � n diagonal
matrix with non-negative real entries and V another unitary n � n matrix.

Skewness Third-order moment of data, describing asymmetry of its distribution.
Skew-symmetric matrix A matrix A for which aij¼�aji.
Sparse matrix A matrix with most of its elements equal to zero.
Stationary Time-dependent data for which the most important statistical properties (such as mean

and variance) do not change over time.
Symmetric matrix A matrix A that is symmetric around the diagonal, i.e. for which aij¼aji.
Transformation Here: linear transformation as represented by matrices. A function mapping a set onto

itself (e.g. 2D space onto 2D space).
Transpose A transformation of a matrix A indicated by AT with elements defined by (AT)ij¼aji.
Triangular matrix A diagonal matrix extended with non-zero elements only above or only below the

diagonal.
Unit matrix Identity matrix.

Symbols Used in This Chapter (in Order of Their Appearance)

M or M Matrix (bold and capital letter in text, italic and capital letter in equations)
(�)ij Element at position (i,j) in a matrixXn
k¼1

Sum over k, from 1 to n

~� Vector
θ Angle
∘ Hadamard product, Schur product or pointwise matrix product
� Kronecker matrix product
�T (Matrix or vector) transpose
�∗ (Matrix or vector) conjugate transpose
† Used instead of * to indicate conjugate transpose in quantum mechanics
��1 (Matrix) inverse
|�| (Matrix) determinant
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Overview of Equations, Rules and Theorems for Easy
Reference

Addition, subtraction and scalar multiplication of matrices
Addition of matrices A and B (of the same size):

Aþ Bð Þij ¼ aij þ bij

Subtraction of matrices A and B (of the same size):

A� Bð Þij ¼ aij � bij

Multiplication of a matrix A by a scalar s:

sAð Þij ¼ saij

Basis vector principle

Any vector
a
b

� �
(in 2D space) can be built from the basis vectors

1
0

� �
and

0
1

� �
by a linear

combination as follows:
a
b

� �
¼ a

1
0

� �
þ b

0
1

� �
.

The same principle holds for vectors in higher dimensions.

Rotation matrix (2D)
The transformation matrix that rotates a vector around the origin (in 2D) over an angle θ

(counter clockwise) is given by
cos θ � sin θ
sin θ cos θ

� �
.

Shearing matrix (2D)
1 k
0 1

� �
: shearing along the x-axis (y-coordinate remains unchanged)

1 0
k 1

� �
: shearing along the y-axis (x-coordinate remains unchanged)

Matrix product
Multiplication AB of an m � n matrix A with an n � p matrix B:

ABð Þij ¼
Xn
k¼1

aikbkj

Hadamard product, Schur product or pointwise product:

A∘Bð Þij ¼ aijbij
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Kronecker product:

A� B ¼
a11B a12B ⋯ a1nB
a21B a22B ⋯ a2nB
⋮ ⋮ ⋱ ⋮

am1B am2B ⋯ amnB

0
BB@

1
CCA

Special matrices
Hermitian matrix: A ¼ A*
normal matrix: A*A ¼ AA*
unitary matrix: AA* ¼ I

where A∗ð Þij ¼ �aji defines the conjugate transpose of A.

Matrix inverse
For a square matrix A the inverse A�1 ¼ 1

det Að Þ adj Að Þ, where det(A) is the determinant of

A and adj(A) is the adjoint of A (see Sect. 5.3.1).

Eigendecomposition
An eigenvector ~v of a square matrix M is determined by:

M~v ¼ λ~v,

where λ is a scalar known as the eigenvalue

Diagonalization
Decomposition of a square matrix M such that:

M ¼ VDV�1

where V is an invertible matrix and D is a diagonal matrix

Singular value decomposition
Decomposition of an m � n rectangular matrix M such that:

M ¼ UΣV∗

where U is a unitary m � m matrix, Σ an m � n diagonal matrix with non-negative real
entries and V another unitary n � n matrix.
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Answers to Exercises

5.1. (a)

A B

C

12

9

(b) The direct distance between cities A and C can be calculated according to
Pythagoras’ theorem as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
122 þ 92

p
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

144þ 81
p ¼ ffiffiffiffiffiffiffiffi

225
p ¼ 15. Hence, the

distance matrix becomes
0 12 15
12 0 9
15 9 0

0
@

1
A.

(c)

A/F B

C/D

E
12

5.2. The sum and difference of the pairs of matrices are:

(a)
5 2
2 15

� �
and

1 6
�4 1

� �

(b)
7 �4 6
�1 4 1
�4 6 2

0
@

1
A and

�1 �10 2
�3 8 9
6 �10 �20

0
@

1
A

(c)
2 1:6 �1
5:1 1 �2

� �
and

0:4 4:8 �2
1:7 3:6 �4:4

� �

5.3. (a)
6
7
8

0
�4
10

0
@

1
A

(b)
3:5 0
2:9 0:7

� �

5.4. Possibilities for multiplication are AB, AC, BD, CB and DA.

5.5. (a) 2 � 7
(b) 2 � 1
(c) 1 � 1
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5.6. (a) AB ¼ 18 22
22 58

� �
, BA ¼ 8 �8

2 68

� �

(b) BA ¼
8
3

�20

�14
�11
61

0
@

1
A

(c) no matrix product possible

5.7. (a)
2 6
�4 1

� �

(b)
2:8 �2:7 0:5
12 �0:7 �4

� �

5.8. (a)
3 �1
�3 1

4 6
�4 3

�2 8
�1 4

� �

(b)
0 �2 �4
�6 �8 �10
�12 �14 �16

0 �3 �6
�9 �12 �15
�18 �21 �24

0
@

1
A

5.9. (a) symmetric, logical
(b) sparse, upper-triangular
(c) skew-symmetric
(d) upper-triangular
(e) diagonal, sparse
(f) identity, diagonal, logical, sparse

5.10. (a)
1 i 5
2 1 4� 5i
3 �3þ 2i 3

0
@

1
A

(b)
1 �1 5
2 1 4
3 �3 0

0
@

1
A

(c)
4 19� i 8i
0 �3 �11þ i

3þ 2i �3 17

0
@

1
A

5.11. Using Cramer’s rule we find that x ¼ Dx

D
¼ c b

f e

����
����= a b

d e

����
���� ¼ ce � bf

ae � bd
and

y ¼Dy

D
¼ a c

d f

����
����= a b

d e

����
����¼ af � cd

ae � bd
. From Sect. 5.3.1 we obtain that the inverse of the

matrix
a b
d e

� �
is equal to

1
ae � bd

e �b
�d a

� �
and the solution to the system of linear
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equations is
1

ae � bd
e �b
�d a

� �
c
f

� �
¼ ce � bfð Þ= ae � bdð Þ

af � cdð Þ= ae � bdð Þ
� �

which is the

same as the solution obtained using Cramer’s rule.

5.12. (a) x¼�11, y ¼ �535

(b) D¼
4 �2 �2
2 8 4
30 12 �4

������
������¼4 8 ��4� 4 � 12ð Þ � � � 2 2 � �4� 30 � 4ð Þþ � � 2 2 � 12ð

�30 � 8Þ ¼ �144

Dx ¼
10 �2 �2
32 8 4
24 12 �4

������
������ ¼ �1632 Dy ¼

4 10 �2
2 32 4
30 24 �4

������
������ ¼ 2208

Dz ¼
4 �2 10
2 8 32
30 12 24

������
������ ¼ �4752

Thus, x ¼ Dx

D
¼ �1632

�144
¼ 11

1
3
, y ¼ Dy

D
¼ 2208

�144
¼ �15

1
3

and

z ¼ Dz

D
¼ �4752

�144
¼ 33

5.13. (a) x ¼ 4, y ¼ 0
(b) x ¼ 2, y ¼ �1, z ¼ 1

5.14. This shearing matrix shears along the x-axis and leaves y-coordinates unchanged (see
Sect. 5.2.2). Hence, all vectors along the x-axis remain unchanged due to this

transformation. The eigenvector is thus
1
0

� �
with eigenvalue 1 (since the length of

the eigenvector is unchanged due to the transformation).

5.15. (a) λ1¼7 with eigenvector
1
0
0

0
@

1
A (x ¼ x, y ¼ 0, z ¼ 0), λ2¼�19 with eigenvector

0
1
0

0
@

1
A (x ¼ 0, y ¼ y, z ¼ 0) and λ3¼2 with eigenvector

0
0
1

0
@

1
A (x ¼ 0, y ¼ 0,

z ¼ z).

(b) λ¼3 (double) with eigenvector
1
1

� �
(y ¼ x).

(c) λ1¼1 with eigenvector
�1
1
1

0
@

1
A (x¼�z, y¼ z), λ2¼�1 with eigenvector

1
1
5

0
@

1
A

(5x ¼ z, 5y ¼ z) and λ3¼3 with eigenvector
1
1
1

0
@

1
A (x ¼ y ¼ z).
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(d) λ1¼3 with eigenvector
1
�2

� �
(y ¼ �2x) and λ2¼7 with eigenvector

1
2

� �
(y ¼ 2x).

5.16. (a) To determine the SVD, we first determine the eigenvalues and eigenvectors ofMT

M to get the singular values and right-singular vectors ofM. Thus, we determine its
characteristic equation as the determinant

2 1

1 2

 !
2 1

1 2

 !
� λ

1 0

0 1

 !�����
����� ¼

5 4

4 5

 !
� λ

1 0

0 1

 !�����
����� ¼

5� λ 4

4 5� λ

 !�����
����� ¼ 5� λð Þ2 � 16 ¼ λ2 � 10λþ 9 ¼ λ� 1ð Þ λ� 9ð Þ

Thus, the singular values are σ1 ¼
ffiffiffi
9

p ¼ 3 and σ1 ¼
ffiffiffi
1

p ¼ 1 andΣ ¼ 3 0
0 1

� �
.

The eigenvector belonging to the first eigenvalue of MTM follows from:

5 4

4 5

� �
x

y

� �
¼ 9

x

y

� �
) 5xþ 4y

4xþ 5y

� �
¼ 9x

9y

� �
) 5xþ 4y ¼ 9x ^ 4xþ 5y ¼ 9y

) �4xþ 4y ¼ 0 ^ 4x� 4y ¼ 0

) x ¼ y

) x

y

� �
¼ 1

1

� �

To determine the first column of V, this eigenvector must be normalized (divided by

its length; see Sect. 4.2.2.1) and thus ~v1 ¼ 1ffiffiffi
2

p 1
1

� �
.

Similarly, the eigenvector belonging to the second eigenvalue ofMTM can be derived

to be~v2 ¼ 1ffiffiffi
2

p 1
�1

� �
, makingV ¼ 1ffiffi

2
p 1 1

1 �1

� �
. In this case,~v1 and~v2 are already

orthogonal (see Sect. 4.2.2.1), making further adaptations to arrive at an orthonormal
set of eigenvectors unnecessary.

To determine U we use that ~u1 ¼ 1
σ1

M~v1 ¼ 1
3

2 1
1 2

� �
1ffiffiffi
2

p 1
1

� �
¼ 1ffiffiffi

2
p 1

1

� �
and

~u2 ¼ 1
σ2

M~v2 ¼ 1
1

2 1
1 2

� �
1ffiffiffi
2

p 1
�1

� �
¼ 1ffiffiffi

2
p 1

�1

� �
, making U ¼ 1ffiffi

2
p 1 1

1 �1

� �
.

You can now verify yourself that indeed M¼UΣV∗.
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(b) Taking a similar approach, we find that

U ¼ 1 0
0 1

� �
, Σ ¼ 2 0

0 1

� �
and V ¼ 1 0

0 1

� �
.

5.17. If M¼UΣV∗ and using that both U and V are unitary (see Table 5.1), then MM∗¼
UΣV∗(UΣV∗)∗¼UΣV∗VΣU∗¼UΣ2U∗. Right-multiplying both sides of this equation
with U and then using that Σ2 is diagonal, yields MM∗U¼UΣ2¼Σ2U. Hence, the
columns of U are eigenvectors of MM* (with eigenvalues equal to the diagonal
elements of Σ2).
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6
Limits and Derivatives

Branislava Ćurči�c-Blake

After reading this chapter you know:

• why you need limits and derivatives,
• what derivatives and limits are,
• how to determine a limit,
• how to calculate a derivative,
• what the maximum and minimum of a function are in terms of derivatives and
• what the slope of a function is.

6.1 Introduction to Limits

Whenever we are dealing with an optimization problem, such as finding the brightest pixel in
a picture, the strongest activation in an fMRI statistical map, the minimum of the fitting
error or the maximum likelihood we need to calculate a derivative. A derivative provides a
measure of the rate of change of a function and to find the minimum or maximum of a
function we need to know where the rate of change of the function is zero. These concepts are
illustrated in Fig. 6.1.
Thus, to find extrema of a function we determine the roots of the derivative of the function.

To understand how derivatives are defined we need to understand limits of functions first. A
limit is a value that a function approaches when an input variable (or argument) of that
function approaches a value. This sounds rather abstract, so what does it mean? The best way
to clarify this is by an example.
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Example 6.1

What is the limit of the function f(x)¼x+3.3 when x approaches 3?
We can examine this by looking at the value of the function when x is close to 3. Let’s consider

x equal to 2.5, 2.9, 2.99, 2.999. . .. In the table below, the values of x are in the left column, and the
associated values of the function are in the right column.

x y¼x+3.3
2.5 5.8
2.9 6.2
2.99 6.29
2.999 6.299
2.9999 6.2999

Thus, the function approaches 6.3 if its variable x approaches 3. However, we only considered
the function for x approaching 3 from below (from the left). Since the direction of approach was
NOT specified, we also need to consider the approach from above (from the right) e.g. for values
of x equal to 3.5, 3.1, 3.01, 3.001, 3.0001 etc. Also, when approaching x ¼ 3 from above, the value
for this function is 6.3:

x y¼x+3.3
3.5 6.8
3.1 6.4
3.01 6.31
3.001 6.301
3.0001 6.3001

Fig. 6.1 Illustration of how the minima and maxima of a function are related to the rate of change of a
function. Here the function f(x)¼xsin(x2)+1 is plotted for x2[�1,3]. It has a global maximum and
minimum (red dots), a local maximum (yellow dot) and points of inflection (points where the curvature
changes sign; two are indicated by blue dots). The slope of the tangent lines (red), which is the local rate
of change of the function, is equal to the derivative of the function. It can be seen that it can be positive,
negative or zero. At maxima, minima, and at some (but not all) points of inflection it is zero.
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This example illustrates what it means to determine the limit of a function. Importantly,
unless otherwise specified, to determine the limit of a function, one needs to determine the
value of the function both for the variable approaching a given value from above (from the
right or from higher values) as well as from below (from the left or from lower values). For
this first example, we can also calculate the limit algebraically by substituting x ¼ 3 to find
that f(x)¼6.3. However, this is not always the case, as the next example illustrates.

Example 6.2

What is the limit of f xð Þ ¼ x2�4
x�2 when x approaches 2?

Note that we cannot calculate the limit algebraically straightaway, as the function is not
defined for x ¼ 2. The nominator is 0 for this value of x and division by zero is not defined. We
will discuss this in more detail in Sect. 6.6 about continuity. To determine this limit wemake tables
as in Example 6.1 with x approaching 2 from below and from above:

x y ¼
x2 � 4
x � 2

1.5 3.5
1.9 3.9
1.99 3.99
1.999 3.999
1.9999 3.9999

x y ¼
x2 � 4
x � 2

2.5 4.5
2.1 4.1
2.01 4.01
2.001 4.001
2.0001 4.0001

Thus, since f(x) approaches 4 for x approaching 2 from below as well as from above, the limit of
this function is 4. The graph of this function is given in Fig. 6.2. In this case the limit can also be
calculated algebraically by first manipulating the function. As the numerator is divisible by x � 2,
the function can be simplified to f(x)¼x+2, which is the line in Fig. 6.2. Substitution of x ¼ 2 then
yields (x)¼4.

Fig. 6.2 The circle indicates the limit of this function when x approaches 2. This is a removable
discontinuity (see Sect. 6.6).
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6.2 Intuitive Definition of Limit

Mathematically, the limit is expressed as

lim
x!a

f xð Þ ¼ L

which can be read as ‘the limit of f(x) when x approaches a is L’. Intuitively, this means that f
(x) can become arbitrarily close to L, when bringing x sufficiently close to a. For the limit
to exist, it has to be the same for x approaching a from below (the left) as well as from above
(the right). Note that f(x) itself does not need to be defined at x ¼ a, as was illustrated in
Example 6.2.
In some cases, the limit of a function may only exist from one side (from above or from

below) or it may exist from both sides but have different values. For these cases it is important
to have a separate notation of one-sided limits. The limit from the right is the value L that a
function f(x) approaches when x approaches a from higher values or from the right and is
indicated by:

lim
x!aþ

f xð Þ ¼ L or lim
x#a

f xð Þ ¼ L

Similarly, the limit from the left is the value L that a function f(x) approaches when
x approaches a from lower values or from the left and is indicated by:

lim
x!a�

f xð Þ ¼ L or lim
x"a

f xð Þ ¼ L

The next example provides a case where the limits from the right and from the left differ.

Example 6.3

Determine lim
x!2

x3
x�2.

We can determine whether the limit exists by making tables for x approaching 2 from the left
and from the right:

x y ¼
x3

x � 2
1.5 �6.75
1.9 �68.59
1.99 �788.059
1.999 �7988.05

x y ¼
x3

x � 2
2.5 31.25
2.1 92.61
2.01 812.06
2.001 8012.006

(continued)
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Example 6.3 (continued)

As you can see, the limits from the left and from the right exist, but they are not the same. The
limit from the left keeps increasing negatively and is approaching �1 (minus infinity), whereas
the limit from the right keeps increasing positively and is approaching +1. Thus, the function has
no limit for x approaching 2.

Exercise

6.1. Determine the following limits using tables to approach the limit from the left and from the
right

(a) lim
x!7

3x � 3ð Þ
(b) lim

x!7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3x2 � 3

p

(c) lim
x!7

3x�3
xþ5

(d) lim
x!3

f xð Þ when f xð Þ ¼ x � 2, x � 3
3x, x > 3

�

6.3 Determining Limits Graphically

In certain cases, such as when functions are different for different domains, it may be easier to
determine (the existence of) limits graphically. Functions that are different for (two) different
domains are functions of the type:

f xð Þ ¼ f 1 xð Þ, for x2 �1; að �
f 2 xð Þ, for x2 a;1ð Þ

(

where a is the value of x defining the boundary between the two domains in this case.
Domains can be defined in different ways (see Table 2.3 for more examples), and the number
of domains may vary. For example, it is also possible to have a function with three domains,
such as:

f xð Þ ¼
f 1 xð Þ, for x2 �1; að �
f 2 xð Þ, for x2 a; bð �
f 3 xð Þ, for x2 b;1ð Þ

8><
>:

For these functions, it helps to plot their graph to determine whether the limit exists, i.e. to
determine whether the limits from the left and the right are the same. We will illustrate this
with two examples:
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Example 6.4

Determine lim
x!1

f xð Þ for the function:

f xð Þ ¼ x � 2, for x2 �1;1ð �
x2, for x2 1;1ð Þ

(

When plotting the graph of this function,

we observe that the limits from the left and from the right are different. Thus, this function has no
limit for x approaching 1.

Example 6.5

Determine lim
x!2

f(x) for the function:

f xð Þ ¼ x þ 3, for x2 �1; 2ð �
�x þ 7, for x2 2;1ð Þ

(

Again, we plot the graph of this function:

Here we see that the limits from the left and from the right are both equal to 5. Thus, the limit
of this function for x approaching 2 is 5.

For these two examples we showed how plotting the graph of a function can help
determine the existence of a limit. However, also for functions that are different for different
domains, their limits can often be obtained algebraically. This is the case for Example 6.5, but
also for the function in the next example that is defined on three domains.
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Example 6.6

Determine the limit for x approaching a) ½; b) 1; c) 1.001; d) 3.5, for the following function

f xð Þ
2x, � 2 < x < 1

1, x ¼ 1

2x, 1 < x < 3

8><
>:

To determine the limits, the relevant domain has to be identified. Once that is done, the limits
can be determined algebraically as follows:

a) x ¼ 1
2 is in the domain (�2,1) where f(x)¼2x. Thus lim

x!1
2

f xð Þ ¼ 2 � 12 ¼ 1.

b) We have to determine the limit for x approaching 1 from the left and for x approaching 1 from
the right. In both cases, f(x)¼2x, as the function is only 1 for x ¼ 1. Thus lim

x!1
f xð Þ ¼ 2 � 1 ¼ 2.

c) x¼1.001 is in the domain (1,3) where f(x)¼2x. Thus lim
x!1:001

f xð Þ ¼ 2 � 1:001 ¼ 2:002.

d) The function is not defined for x ¼ 3.5. Thus lim
x!3:5

f xð Þ does not exist.

6.4 Arithmetic Rules for Limits

In this section we provide the basic arithmetic rules for calculating limits. They are provided
for two-sided limits, but are similar for one-sided limits.

Box 6.1 Arithmetic rules for limits

1. lim
x!c

a � f xð Þ ¼ a � lim
x!c

f xð Þ, when a is constant

2. lim
x!c

f xð Þ � g xð Þ½ � ¼ lim
x!c

f xð Þ � lim
x!c

g xð Þ
3. lim

x!c
f xð Þg xð Þ½ � ¼ lim

x!c
f xð Þ � lim

x!c
g xð Þ

4. lim
x!c

f xð Þ
g xð Þ
h i

¼ lim
x!c

f xð Þ
lim
x!c

g xð Þ, if and only if lim
x!c

g xð Þ 6¼ 0

5. lim
x!c

f xð Þn ¼ lim
x!c

f xð Þ
h in

, n2ℝ

6. lim
x!c

a ¼ a, when a is constant

7. lim
x!c

x ¼ c

Example 6.7

Determine lim
x!5

x2�4x�5
x�4 .

Applying the arithmetic rules in Box 6.1 we can rewrite the limit as follows:

lim
x!5

x2 � 4x � 5
x � 4

¼
lim
�

x!5
x2 � 4x � 5

�
lim
�

x!5
x � 4

� ¼ 0
1
¼ 0
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Exercise

6.2. Determine the following limits using the arithmetic rules in Box 6.1

a) lim
x!�2

x2þ6xþ7
xþ3

b) lim
x!�2

x2�9
xþ3

c) lim
x!4

x2�1
x2þx�2

d) lim
x!1

x2�6xþ9
x2�9

6.5 Limits at Infinity

We already encountered infinity in the context of limits in Example 6.3, where we calculated
lim
x!2

x3
x�2. We found that the limits from the left and right were different and kept increasing,

the closer we got to x ¼ 2. They were approaching �1 and 1, from the left and from the
right, respectively. In the present context infinity, or 1, is an abstract concept that can be
thought of as a number larger than any number. Yet, even though 1 is an abstract
concept, we can work with it and actually, do mathematics with it, as we will see later in
this section.

Example 6.8

Determine lim
x!0

1
x.

The function 1
x is not defined for x ¼ 0 (division by zero). Hence, we first plot the graph of this

function to understand what’s happening (Fig. 6.3):

Fig. 6.3 Graph of the function f xð Þ ¼ 1
x. This is an example of an asymptotic discontinuity

(see Sect. 6.6).

(continued)
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Example 6.8 (continued)

We can observe that the limit from the right approaches 1:

lim
x!0þ

1
x
¼ 1

whereas the limit from the left approaches �1:

lim
x!0�

1
x
¼ �1

Thus, the limit has different values when x approaches zero from the left or from the right and
it does not exist.

We can also determine limits of functions when their argument approaches 1: lim
x!1. In

such cases we have to examine what happens with the function when its input variable
becomes larger and larger. In doing so, we have to consider how fast parts of the function
approach 1, as illustrated in the next examples.

Example 6.9

Determine lim
x!1 x2 � 3x

� �
.

We can decompose this limit according to the arithmetic rules for limits in Box 6.1:

lim
x!1 x2 � 3x

� � ¼ lim
x!1 x2 � lim

x!1 3xð Þ

Now both limits approach 1 and thus it seems that lim
x!1 x2 � 3x

� � ¼ 1�1 ¼ 0. However,

there are different ‘degrees’ of infinity which can be understood as follows. For x>3, x2>3x,
thus we can say that x2 approaches infinity faster than 3x. This is why the limit in this example
is +1:

lim
x!1 x2 � 3x

� � ¼ 1

Example 6.10

Determine lim
x!1

x2�3xð Þ
3x2þ3xð Þ.

The rule of thumb here is to identify the highest power of the argument. In this rational
polynomial function the highest power of x is x2. The highest power will determine the outcome
of the limit as it results in the fastest approach of infinity and will dominate all lower powers.
Thus, all elements with lower power can be neglected and we only need to consider the elements
of quadratic power in this case:

lim
x!1

x2 � 3x
� �
3x2 þ 3xð Þ ¼ lim

x!1
x2

3x2
¼ 1

3
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Exercise

6.3. Determine the following limits by examining which part of the function approaches1 faster.
It may help to plot one graph of the different constituting parts together.

a) lim
x!1

x2�4x�5
x�5

b) lim
x!1

ln x
xþ2

c) lim
x!�1

ex�9
xþ3

d) lim
x!1

x2�1
2x2þx�2

e) lim
x!1

x2
sin x

6.6 Application of Limits: Continuity

An application of limits in mathematics itself is in the definition of continuity of a function.
Intuitively, a function is continuous on a given domain if its graph is fully connected and has
no jumps, gaps of holes, or slightly more formally, if for small enough changes in its
arguments, the change in value of the function is arbitrarily small. One definition of
continuity of a function f(x) in a point c is:

lim
x!c

f xð Þ ¼ f cð Þ

Given what we now know about limits this definition implies three things:

1) f is defined at c
2) the limit exists
3) the value of this limit is equal to f(c)

This implies that f(x) only has to be continuous for all arguments in its domain for it to be
continuous. As an example f xð Þ ¼ 1

x is a continuous function, even though its limit at x ¼ 0
does not exist (Example 6.7). It is still continuous because zero does not belong to its domain
(the set of arguments for which the function is defined). However, it has an (asymptotic)
discontinuity at x ¼ 0, which will be discussed later in this section.
The concept of continuity is very important, as it provides a basis for other mathematical

concepts, such as for example the derivatives that are introduced later in this chapter. In
practice, it for example helps understanding the difference between digital and analogue
recordings. Often—but not always—analogue recordings are continuous, while digital
recordings are always discontinuous or discrete as they sample a data stream at a certain
sampling rate and not at every point in time.
For most mathematical applications, we deal with functions that are discontinuous at

certain points only. Several types of such discontinuities exist and we actually already
encountered a few:
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1. Point or removable discontinuity. This discontinuity occurs when a function is defined
differently at a single point (as in Example 6.6), or when a function is not defined at a
certain point (as in Example 6.2). These points are also referred to as removable discon-
tinuities, as their limit usually exists, and if the point is removed from the domain, the
function appears continuous (cf. Examples 6.2 and 6.6; Fig. 6.2).

2. Jump discontinuity. This type of discontinuity occurs when a function approaches two
different values from the two sides of the discontinuity and can be thought of as a jump, as
illustrated in Example 6.4. It often occurs for piecewise functions that are defined
differently for different parts of their domain. Another example is the Heaviside step
function (see Fig. 6.4) which can be defined as:

f xð Þ ¼
0, x2 �1; 0ð Þ
1
2
, x ¼ 0

1, x2 0;1ð Þ

8><
>:

3. Asymptotic discontinuity. To understand this type of discontinuity you have to under-
stand what an asymptote is. This is a value for an argument where its function approaches
�1 (vertical asymptote) or a value that a function approaches when its argument goes to
�1 (horizontal asymptote). When a function has a vertical asymptote, it has an
asymptotic discontinuity for that argument, as in Example 6.8, where the function has
an asymptotic discontinuity at x ¼ 0. Note that this function also has a horizontal
asymptote at y ¼ 0, as can be observed from Fig. 6.3. Similarly, as an example, the
function f xð Þ ¼ x2þ3

x�1 has an asymptotic discontinuity at x ¼ 1.

6.7 Special Limits

We here provide some special limits without proof.

Box 6.2 Special limits

1. lim
x!1 1þ 1

x

� �x ¼ e or lim
x!0

1þ xð Þ1x ¼ e

(continued)

Fig. 6.4 Heaviside step function.
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Box 6.2 (continued)

2. lim
x!0

sin x
x ¼ 1

3. lim
x!0

ex�1
x ¼ 1

4. lim
x!0

ln 1þxð Þ
x ¼ 1

The graph of sin x
x is plotted here for illustration. The reason that its limit is equal to 1 for

x approaching 0 is that for very small x (|x|�1), sinx�x.

6.8 Derivatives

Derivatives are very important for many branches of science in which the rate of change of
continuous functions has to be determined. Whenever you need to determine changes over
time or growth rates, or when calculating velocity or acceleration, or maximum or minimum
values of a function, you use derivatives. In formally defining derivatives, we will use limits
again.
Intuitively, we can think of a derivative as the amount by which a function changes when

its argument changes an arbitrarily small amount. The value of the derivative depends on the
value of the argument. A simple example is the velocity of a car: its velocity is determined by
its displacement in a given period of time (change in position divided by change in time) and
is equal to the derivative of its position as a function of time, with respect to time.
It turns out that the derivative is equal to the slope of the tangent of the function

(cf. Fig. 6.1). The tangent (or tangent line) is the line that just touches the graph and is
maximally parallel to the graph of the function. Below (Fig. 6.5) are two examples.
It can clearly be seen for the left graph in Fig. 6.5 that the slope of the tangent line changes

for different values of x (x1 and x2). But the slope of the tangent line (derivative) does not
always change as a function of x, as can be observed for the right graph in Fig. 6.5. For this
linear function, the tangent line is the same as the function, and it is the same in both points
(and actually everywhere). Indeed, for any linear function the derivative is a constant.
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We have just introduced the derivative of functions by simple examples and hopefully you
have gained an intuitive idea about derivatives. Now, let’s consider the formal definition of a
derivative, which employs limits that were just introduced to you.
Let’s start by considering the left graph in Fig. 6.5 and the points on the graph for its

arguments x1 and x2. When x1 and x2 are relatively far apart, the straight line between them
looks as in Fig. 6.6 (left). When we draw the same line for x1 and x2 that are closer together, it
looks like a tangent (Fig. 6.6 (right)).

Fig. 6.5 Examples of tangent lines (red) for two different functions (their graphs are plotted in blue),

for different values of their arguments (indicated with circles). Left: y ¼ ffiffiffi
x3

p þ2
� �2, right: y¼2x+1.

Fig. 6.6 Same graph as in Fig. 6.5 (left). Left: Plot of the straight line (red) through the two points (x1,y1)
and (x2,y2) on the curve when these points are far apart. Right: The same situation when (x1,y1) and
(x2,y2) are brought closer together.
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If this line is given by the equation

g xð Þ ¼ axþ b

then the slope a of this line through the two points (x1,y1) and (x2,y2) is given by:

a ¼ y2 � y1
x2 � x1

This is also the rate of change of the function y with respect to its input variable
x between x1 and x2. If the two points get closer and closer together (which should remind
you of the definition of a limit), then the slope a is equal to the slope of the tangent at that
point:

lim
x2!x1

y2 � y1
x2 � x1

This is the instantaneous rate of change of the function at x ¼ x1. We can also rewrite
this to:

lim
Δx!0

Δy
Δx

where Δ (delta) is a change, with Δy¼y2�y1 and Δx¼x2�x1. We now arrive at the formal
definition of a derivative:

dy

dx
¼ lim

Δx!0

Δy
Δx

ð6:1Þ

Alternatively, the derivative df xð Þ
dx of a function f(x) with respect to x is written as f 0(x).

For the special case of derivation with respect to time, yet another (dot) notation is reserved:
df tð Þ
dt

¼ _f . Note that the act of calculating a derivative is referred to as differentiation.

Box 6.3 summarizes different notations for derivatives.

Box 6.3 Alternative definitions of a derivative

When y is a function of one variable:

dy
dx

¼ df xð Þ
dx

¼ d
dx

f xð Þ ¼ dy
dx

¼ y 0
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6.9 Basic Derivatives and Rules for Differentiation

Before any examples, I will here provide the derivatives for several basic functions (Table 6.1).
Together with the rules for differentiation in Table 6.2, they will allow you to differentiate
most functions.
Thus, the derivative of a constant function is zero, the derivative of a function of x to some

power is always proportional to that same function for which the power is lowered by one.
We will see several examples of this below. For now, just try to determine the derivative of
f xð Þ ¼ 1

x, applying this rule. What is also interesting is that the derivative of an exponential
function turns out to be that same exponential. This is an important property of derivatives,
that we will make use of in the next chapter on integrals. The exponential is useful to describe
many physical phenomena, most importantly waves. Since sound, light and alternating
current can all be described in terms of waves, the exponential is used to describe not only
the propagation, but also the velocity of sound and light.

Table 6.1 Derivatives dy xð Þ
dx for basic functions y(x)

y(x)
dy xð Þ
dx

C (constant) 0

xn , n2ℚ nxn�1

ex ex

sinx cosx

cosx �sinx
logax 1

x ln a
, x > 0; a > 0 and a 6¼ 1ð Þ

lnx 1
x
, x > 0ð Þ

ax axlna

Table 6.2 Combined functions and rules for their
differentiation

y(x)
dy xð Þ
dx

cu(x),c is a constant cu0(x)

u(x)+v(x) u0(x)+v0(x)

u(x)v(x) u0(x)v(x)+u(x)v0(x)
product rule

u xð Þ
v xð Þ

u0 xð Þv xð Þ � u xð Þv 0
xð Þ

v2 xð Þ
quotient rule

y(x)¼y(u) u¼u(x) dy
du

du
dx

chain rule

y¼y(v) v¼v(u) u¼u(x) dy
dx

¼ dy
dv

dv
du

du
dx

chain rule
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As an example, combining the rule for differentiation of polynomials with the chain rule,

we can derive that for y xð Þ ¼ 1
v xð Þ, y 0 xð Þ ¼ � v 0 xð Þ

v2 xð Þ . Also, the chain rule can be applied

multiple times (Table 6.2, last row), so that the derivative of y(x)¼y(v), where v¼v(u) and
u¼u(x) is y0 xð Þ ¼ dy

dv
dv
du

du
dx.

Now let’s practice with the rules in Tables 6.1 and 6.2 by means of some examples.

Example 6.11

Calculate the derivative of the function y(x)¼2x�3cosx.
Since y(x) is a sum of two functions 2x and�3cosx, we can calculate its derivative by calculating

the separate derivatives of the two functions, according to the rule for a sum of functions in
Table 6.2:

y 0 ¼ 2xð Þ0 þ �3 cos xð Þ0

Then, we use the rule for multiplication with a constant in the same table:

y 0 ¼ 2x
0 þ �3ð Þ cos xð Þ0

And now we can calculate the derivative using the rules in Table 6.1:

y 0 ¼ 2 � 1þ �3ð Þ � sin xð Þ ¼ 2þ 3 sin x

Example 6.12

Calculate the derivative of the function y(x)¼x4+3x.
We can again apply the rules in Tables 6.1 and 6.2:

y 0 ¼ x4
� �0 þ 3xð Þ0 ¼ 4x4�1 þ 3 xð Þ0 ¼ 4x3 þ 3

Example 6.13

Calculate the derivative of the function y(x)¼log3x.
Again, we will use the rules in Table 6.1:

y 0 ¼ 1
x ln 3

Example 6.14

Calculate the derivative of the function y(x)¼lnx+0.5sinx.
Applying the rules in Tables 6.1 and 6.2 yields:

y0 ¼ ln xð Þ0 þ 0:5 sin xð Þ0 ¼ 1
x
þ 0:5 cos x
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Example 6.15

Calculate the derivative of the function y(x)¼sin4x .
Here we have to apply the chain rule in Table 6.2, where u(x)¼4x and y(u)¼sinu:

y 0 xð Þ ¼ d sinuð Þ
du

d 4xð Þ
dx

¼ cos 4xð Þ � 4 ¼ 4 cos 4x

Exercise

6.4. Differentiate the following functions:

a) y(x)¼3x2+2x3�1
b) y(x)¼sin3x
c) y(x)¼17e3t+x22 (note that t is a constant)
d) y(x)¼7x
e) y(x)¼33cos11x+5
f) y(x)¼e�x

g) y xð Þ ¼ 3x4 � ffiffiffi
x

p

To prepare you for the next set of exercises, we provide some more examples first.

Example 6.16

Calculate the derivative of the function y(x)¼xsinx.
We apply the product rule in Table 6.2, where u(x)¼x and v(x)¼sinx:

y 0 xð Þ ¼ x sin xð Þ0 ¼ xð Þ0 sin x þ x sin xð Þ0 ¼ sin x þ x cos x

Example 6.17

Calculate the derivative of the function y(x)¼xkanx, where a, k and n are constants.
We again apply the product rule and the chain rule in Table 6.2:

y 0 xð Þ ¼ xk
� �0

anx þ xk anxð Þ0 ¼ kxk�1anx þ xknanx lna ¼ xk�1anx k þ nx ln að Þ

Example 6.18

Calculate the derivative of the function y xð Þ ¼ sin xþ cos x
1þ tan x .

Now we use the quotient rule in Table 6.2:

y 0 xð Þ ¼ sin x þ cos xð Þ0 1þ tan xð Þ � sin x þ cos xð Þ 1þ tan xð Þ0

1þ tan xð Þ2

(continued)
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Example 6.18 (continued)

We now need the derivative of tanx, which we just provide here. However, it is a good exercise
to calculate it yourself using the definition tan x ¼ sin x

cos x and the quotient rule in Table 6.2.

tan xð Þ0 ¼ 1
cos 2x

We can now continue calculating the derivative of y(x) using the basic rules in Table 6.1:

y 0 xð Þ¼
cos x � sin xð Þ 1þ tan xð Þ � sin x þ cos xð Þ 1

cos 2x
1þ tan xð Þ2

¼
cos x � sin x þ sin x � sin 2x

cos x
� sin x
cos 2x

� 1
cos x

1þ tan xð Þ2

¼
cos x � 1

cos x
sin 2x þ 1
� �� sin x

cos 2x
1þ tan xð Þ2 :

Exercise

6.5. Differentiate the following functions:

a. 2 sin x
2 cos x

2. To simplify the final solution, use the formulas sin x
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 1� cos xð Þ

q
,

cos x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 1þ cos xð Þ

q
, which you can derive from the formula cos2x¼cos2x�sin2x (see

Chap. 3).
b. y ¼ ex

ffiffiffi
x4

p
c. y¼axxa

d. y ¼ x2 � 1
� � ffiffiffi

x
p

e. y ¼ 3
ffiffiffiffiffi
x25

p
�x

ffiffiffi
x

p
f. y¼x �10x
g. y¼eax(asinx�cosx)

6.10 Higher Order Derivatives

So far we only addressed so-called first order derivatives, where we only calculate the
derivative of a function once. In practice, higher order derivatives are also very common.
The second order derivative is simply the derivative of the derivative of a function. In the
same way you can calculate a third-order derivative - taking the derivative of the derivative of
the derivative of a function. We summarized this in Box 6.4.

180 B. Ćurči�c-Blake



Box 6.4 Higher order derivatives

Second order derivative

y 00 xð Þ ¼ y 2ð Þ xð Þ ¼ d2y

dx2
¼ d

dx
dy
dx

� 	

Third order derivative

y 000 xð Þ ¼ y 3ð Þ xð Þ ¼ d3y

dx3
¼ d

dx
d2y

dx2

 !
¼ d

dx
d
dx

dy
dx

� 	
 �

For example, you already know that velocity is the (first order) derivative of displacement.
Similarly, acceleration is the first order derivative of velocity, making it the second order
derivative of displacement. Again, as acceleration is a second order derivative with respect to
time, we can use the dot notation introduced earlier:

When x(t) is the displacement function, velocity is given by _x ¼ dx
dt

¼ v tð Þ and acceler-

ation by €x ¼ d 2x

dt2
¼ a tð Þ.

Example 6.19

Calculate the first, second and third order derivatives for the function y(x)¼3x3+2x2�1.
This is done step by step, by first calculating the first order derivative, then the second and

finally the third order derivative:

y 0 xð Þ ¼ 9x2 þ 4x

y 00 xð Þ ¼ 18x þ 4

y 000 xð Þ ¼ 18

As you can see, the third order derivative of this function is constant.

Exercise

6.6. Calculate the first, second and third order derivatives for the following functions:

a. y(t)¼e�iωt, remember that i � i¼�1 (Sect. 1.2.4)
b. y(x)¼sin3x
c. y(x)¼17e3t+x22

d. y xð Þ ¼ lnx
x

6.11 Partial Derivatives

Partial derivatives of a function of two or more variables (e.g. f(x,y.z)) are derivatives
with respect to one variable while the other variables are considered constant. Partial
derivatives are often used to determine (spatial) gradient changes in different directions
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(e.g in fMRI or diffusion tensor imaging (DTI)). We will first explain partial derivatives using
an example.

Example 6.20

Consider the function f(x,y)¼3x2+5xy+y3. Calculate the partial derivative with respect to x,

denoted by @ f x;yð Þ
@ x (see Box 6.4 for notation of partial derivatives).

In this case, variable y is considered constant. The rules for partial differentiation are the same
as the rules for general differentiation. The partial derivative with respect to x is thus:

@f x; yð Þ
@x

¼ @

@x
3x2
� �þ @

@x
5xyð Þ þ @

@x
y3
� � ¼ 6x þ 5y þ 0 ¼ 6x þ 5y

The last term y3 was constant in x, and the derivative of a constant is 0.

Box 6.5 Partial derivative notation

For a function of two variables f(x,y):

@f x; yð Þ
@x

¼ df x; yð Þ
dx

� 	
y¼constant

@f x; yð Þ
@y

¼ df x; yð Þ
dy

� 	
x¼constant

More notations for partial derivatives:

@f x; y; ::ð Þ
@x

¼ @

@x
f x; y; ::ð Þ ¼ fx x; y; . . .ð Þ ¼ @x f x; y; . . .ð Þ

Similar to higher order derivatives of a function with one variable, there are second and
higher order partial derivatives. Note that, in case of partial derivatives, you can first calculate
the partial derivative with respect to one variable (say x) and then with respect to the second
variable (say y) (Box 6.6).

Box 6.6 Second order partial derivatives

@2f x; y; . . .ð Þ
@x2

¼ @

@x
@f x; y; ::ð Þ

@x

� 	

@2f x; y; . . .ð Þ
@y2

¼ @

@y
@f x; y; ::ð Þ

@y

� 	

@2f x; y; . . .ð Þ
@x@y

¼ @

@x
@f x; y; ::ð Þ

@y

� 	

Note that @ 2f x;y;...ð Þ
@ x @ y ¼ @ 2f x;y;...ð Þ

@ y @ x for continuous functions.
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Example 6.21

Consider the function from the previous example

f x; yð Þ ¼ 3x2 þ 5xy þ y3

and calculate all possible second order derivatives as in Box 6.6.

@2f x; yð Þ
@x2

¼ @2

@x2
3x2
� �þ @2

@x2
5xyð Þ þ @2

@x2
y3
� � ¼ 6þ 0þ 0 ¼ 6

@2f x; yð Þ
@y2

¼ @2

@y2
3x2
� �þ @2

@y2
5xyð Þ þ @2

@y2
y3
� � ¼ 0þ 0þ 6y ¼ 6y

@2f x; yð Þ
@x@y

¼ @2

@x@y
3x2
� �þ @2

@x@y
5xyð Þ þ @2

@x@y
y3
� � ¼ 0þ 5þ 0 ¼ 5

Thus, calculating partial derivatives is easy as long as you know how to calculate derivatives
in general.

Exercise

6.7. Calculate all possible first and second order partial derivatives of the function: f(x,t)¼e�ixt

6.12 Differential and Total Derivatives

In Sect. 6.8 we defined the derivative as

dy

dx
¼ lim

Δx!0

Δy
Δx

Here Δx¼(x2�x1) is a difference between two points. Thus, for very small Δx we can
think of it as being equal to dx; this is then referred to as a differential. Thus a differential is an
infinitesimally small (very, very small) difference in the variable. We will need the differential
for understanding the total derivative (below) and integrals (Chap. 7). Once we accept this
definition of a differential we can manipulate differential formulas as if the differentials are
variables on their own. For example, as

df xð Þ
dx

¼ df xð Þ
dx

We can rewrite this to:

df xð Þ ¼ df xð Þ
dx

dx
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More generally, for a function f(x,y) the total derivative is equal to:

df x; yð Þ ¼ @f x; yð Þ
@x

dxþ @f x; yð Þ
@y

dy

Example 6.22

Calculate the total derivative of f(x,t)¼e�ixt.

We already know from Exercise 6.7 that @f x;tð Þ
@ x ¼ �ite�ixt and @f x;tð Þ

@ t ¼ �ixe�ixt .
Thus:

df x; tð Þ ¼ @f x; tð Þ
@x

dx þ @f x; tð Þ
@t

dt ¼ �ite�ixtdx þ�ixe�ixtdt

6.13 Practical Use of Derivatives

We already mentioned that derivatives are widely used in science. For example, fitting a
function to a given dataset requires derivatives, because derivatives are used to calculate
maxima and minima. Let’s have a closer look at how derivatives are used to calculate extrema
of a function.

6.13.1 Determining Extrema of a Function

For a smooth function (a function that has well-defined derivatives across its entire domain),
its extrema (minima and maxima) can be determined by identifying the points where the
function is flat (where its slope is zero), or, in other words, where its derivative equals zero.
Consider the function in Fig. 6.7. It is a quadratic function with one minimum. But how

do we know where the minimum is exactly? We find it by taking the first derivative with
respect to x and determining its root. Thus, for this function

f xð Þ ¼ xþ 3ð Þ2 þ 1

Fig. 6.7 Quadratic function (x+3)2+1 with a minimum at (x,y)¼(�3,1).
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we solve the equation

df xð Þ
dx

¼ 0

To determine the derivative, we apply the chain rule in Table 6.2, using that u(x)¼x+3,
resulting in:

df xð Þ
dx

¼ 2 xþ 3ð Þ

Next, we find the root of the derivative:

2 xþ 3ð Þ ¼ 0

xþ 3ð Þ ¼ 0

Thus, the function has a minimum at x¼�3.
How can we determine whether it is a minimum or maximum? The easiest is to look at the

points around it and see whether the function is higher or lower than this extreme value, but
we can also find out mathematically (Box 6.7).

Box 6.7 Distinguishing maxima and minima of a function

1) Determine the stationary points xi of the function f(x) by finding the roots of its derivative.

2) The stationary points are local extrema (maxima or minima) when f 0(xi)¼0 and f 00(xi) 6¼0.

3) The local extrema is a local maximum when f 00(xi)<0 and a local minimum when f 00(xi)>0.

4) When f 00(xi)¼0 the nature of the stationary point must be determined by other means, often by
noting a sign change around that point.

Example 6.23

Consider the function f(x)¼x2+5x+4 and determine its stationary points.

(continued)
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Example 6.23 (continued)

To determine whether this function has extrema, we first calculate its first derivative and find
its roots:

f 0 xð Þ ¼ 2x þ 5 ¼ 0

Thus, for x1 ¼ �5
2 this function has a stationary point. But is it an extrema, and if so is it a

maximum or a minimum? To determine this, we consider the second derivative of f and deter-
mine its sign at x1:

f 00 xð Þ ¼ 2

The second order derivative is constant and positive for the entire domain. Thus, f 00(x1)>0. If
we compare this result to the rules in Box 6.6, we find that the function has aminimum atx1 ¼ �5

2 .
We can confirm this by studying the graph of this function in the figure.

Example 6.24

Consider the function f(x)¼x3 and determine its stationary point(s). Are they extrema?
First we determine the roots of the derivative of f:

f 0 xð Þ ¼ 3x2 ¼ 0

This equation has a solution for x1¼0, i.e. x1¼0 is a stationary point of the function. Next, we
calculate the second order derivative and determine its sign at x1¼0:

f 00 xð Þ ¼ 6x

Hence, at x1¼0 the second order derivative f 00(x1)¼4x1¼0. Thus, f has a stationary point but
not an extrema. Let’s inspect the function’s graph in the figure to find out why. The function
has neither a maximum nor a minimum at x1¼0, but it bends. This is a point of inflection. Not all
third order polynomial functions apparently have a maximum or a minimum.
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Example 6.25

Consider the function f(x)¼2cosx�x and determine its stationary point(s). Are they extrema?

If we study the graph of this function (left part of the figure) we can see that the function has
several local maxima andminima but none is an absolutemaximum orminimum; an extrema over
the entire domain of the function. If we consider only the limited domain x2(�3,5) then the
function has exactly one minimum and one maximum (right part of the figure). We find the
locations of these extrema by finding the roots of the derivative of the function (you need a
calculator for this):

f 0 xð Þ ¼ 0 when sin x ¼ �1
2
and x2 �3;5ð Þ ! xmax ¼ �0:52 and xmin ¼ 3:66

Thus not every function has an absolute maximum or minimum. Some functions have
many local maxima or minima, some have points of inflection. This is very important to
realize as the maximum or minimum are used when finding the best fit of measured data to a
certain function (or distribution).

6.13.2 (Linear) Least Squares Fitting

A frequently used practical application of finding a minimum is (linear) least squares fitting.
Least squares fitting is a method to fit a function f(x,y,. . .) to a given dataset. The idea is to
minimize the offsets between the data and the fitting function. The fitting function is usually
chosen based on some a priori hypothesis about relationships in the data, or experience, and
it can be of any form such as linear, exponential or a power function. Here, to demonstrate
the use of derivatives, we will explain least squares fitting of a linear function.
The general form of a linear function (straight line) is:

f xð Þ ¼ axþ b ð6:2Þ
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where a and b are constants. If we have measured a variable y, at specific points x, we have a
collection of data pairs (xi,yi) where i¼1, . . . ,n. Here n is the number of data pairs. The yi
could be, e.g., temperature read-outs at time points xi. Our aim is to fit the linear function in
Eq. 6.2 to the data. The least squares fitting procedure will aim to minimize the sum of the
square residuals. Here, the residual Ri at a point xi is the difference between the measured
temperature yi and the fitted function at xi:

Ri ¼ yi � f xið Þ

In practice, the perpendicular distances are more often used as residuals (see Fig. 6.8).
For the linear fitting function in Eq. 6.1 they are given by:

di ¼ yi � axi þ bð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p
The least squares fitting procedure aims to minimize the sum of squares of these

distances. The sum of squares is used because the derivative of the square function
exists in all points, allowing differentiation of the residuals in all points. The square residuals
are given by:

di
2 ¼ yi � axi þ bð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p

 !2

¼ yi �
�
axi þ b

� ��
2

1þ b2

The sum of squares is then given by:

R2 ¼
Xn
i¼1

yi �
�
axi þ b

� �2
1þ b2

To minimize it we of course use derivatives! We find the minimum of this sum of squares
of residuals by solving the system of equations:

Fig. 6.8 Data points (blue) fitted by a linear function (black). Residuals calculated as perpendicular
distances (green). For one point we illustrate how residuals can be calculated as vertical distances (red
line).
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@y

@a
R2
� � ¼ 0 and

@y

@b
R2
� � ¼ 0

6.13.3Modeling the Hemodynamic Response in Functional MRI

In neuroimaging, we try to determine several brain characteristics, such as its anatomy, the
distribution of white matter tracts and the gray matter volume. We also use neuroimaging
techniques to determine what happens in the brain when a person performs some task (like
reading, or solving a puzzle). Functional neuroimaging is used to accomplish this; when using
MRI techniques we call this functional MRI (fMRI). fMRI is a great technique to measure
brain activation when a person is performing a task, because it has such high spatial
resolution (up to 2 	 2 	 2 mm3). However, the actual brain activation is not measured
directly with fMRI; instead the change in blood oxygenation level, in response to a change in
neuronal electrical activity due to task performance, is measured. This human hemodynamic
response to brief periods of neural activity is sluggish and therefore delayed and dispersed in
time. Approximately 5–6 s after the onset of neuronal activity, the blood oxygenation
level rises to its maximum (see Fig. 6.9 top panel). We already mentioned in Sect. 4.3.2
Example 4.4, that the task-related brain activation can be modeled by a regressor, that
contains a prediction of the brain response. For an experiment that is designed in blocks of
alternating rest and task performance (block design), we expect the brain response to
alternate in areas that are involved in the task, as well. To predict a response, i.e. to make a
regressor, for fMRI experiments, we convolve the regressor that contains task information

Fig. 6.9 Top: model of the hemodynamic response function, bottom: derivative of the function in the
top panel. Red dots indicate extrema of the top function, that correspond to roots of the bottom
function. Blue dots indicate points of inflection of the top function, that correspond to extrema of the
bottom function.

6 Limits and Derivatives 189



(onsets and the duration of each block, where rest is indicated by 0 and task by 1 for a
block design) and a prediction of the hemodynamic response. Convolution is explained in
Sect. 7.5.2. In fMRI this prediction of the hemodynamic response is called the hemodynamic
response function (HRF) (see Fig. 6.9 top panel).
To allow for more flexibility in the shape of the prediction of this response, the first

temporal derivative of the HRF (Fig. 6.9 bottom panel) is also used to convolve the block
design regressor with (see explanation in Liao et al. 2002 or Henson et al. 2002), giving a
second regressor. Note how the derivative of the HRF appears shorter-lived. Also, this is a
nice example showing that where a function has an extrema (red dots in Fig. 6.9 top panel) its
derivative is zero. One can also spot the points of inflection (blue dots in Fig. 6.9 top panel),
that are of a different nature than the ones in Example 6.24. At its points of inflection, the
original function (the HRF) does not have stationary points, but its derivative has an
extrema.

6.13.4 Dynamic Causal Modeling

Neuroscientists are interested in how the brain functions and particularly, in how brain
regions communicate with each other. One method to investigate brain communication is
dynamic causal modeling or DCM (Friston et al., 2003). DCM employs derivatives to model
and investigate the dynamic properties of local brain activity. In dynamic causal modeling
bilinear equations are used to describe the interaction between two brain regions.
To explain this in more detail, let’s consider two brain regions 1 and 2, with their activities

z1(t) and z2(t), as measured during a neuroimaging experiment in which participants had to
watch images with positive or negative content. Presentation of images with a positive
content is modeled as up(t) (which is 1 when a positive image is shown and 0 otherwise)
and similarly un(t) is used to model the presentation of negative images. In DCM one
assumes a causal model of interactions between brain regions and how these interactions
change due to experimental manipulations. For example, you can assume that activity in
region 2 causes activity in region 1 and that that activity will be affected by watching negative
images (as modeled by un(t); Fig. 6.10a). Or you can assume that the activities in both
regions affect each other and that the activity in region 1 is affected by watching positive
images (as modeled by up(t); Fig. 6.10b). These assumptions result in two different causal
models.
In general, the dynamic causality is modeled as:

dz tð Þ
dt

¼ Az tð Þ þ Bjuj tð Þz tð Þ þ Cuj

In the example above, z(t) is the activity in either region 1 or region 2. The uj are the inputs
up(t) and un(t). The coefficients A, B

j and C need to be determined. What one can observe is

that the change in activity in one brain region (dz tð Þ
dt ) is coupled via coefficient A to activity in

another brain region. We say that activity in the latter region causes the change in activity in
the first region, where the amount of coupling is given by A. The extent to which the
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coupling is affected by inputs (uj) is modeled by coefficients B. The direct effect of these
inputs on brain activity is modeled by coefficients C.

Example 6.26

Determine the equations that describe the causal model in Fig. 6.10a.
Since we have only one causal interaction from region 1 to region 2 we need only one dynamic

causal equation to describe the model:

dz2 tð Þ
dt

¼ a12z1 tð Þ þ bn
12unz1 tð Þ

However, the input un also directly affects activity in brain region 1, so we need another
equation to describe that:

dz1 tð Þ
dt

¼ cn1 un tð Þ

Example 6.27

Determine the equations that describe the causal model in Fig. 6.10b.
These equations can be found in a similar way as for Example 6.26. This model is a bit more

complex, but can nevertheless be described by two equations:

dz2 tð Þ
dt

¼ a12z1 tð Þ þ bp
12upz1 tð Þ

dz1 tð Þ
dt

¼ a21z2 tð Þ þ bp
21upz2 tð Þcp1 up tð Þ

Fig. 6.10 DCMmodels to model brain activity z1(t) and z2(t) in two brain regions during a neuroimaging
experiment in which participants watched images with positive or negative content. Presentation of
images with a positive content is modeled by up(t) and un(t) is used to model the presentation of
negative images. Different assumptions result in different models. (a) DCM model of activity in region
2 causing activity in region 1, assuming that activity in region 1 will be affected by watching negative
images; (b) DCM model of activities in both regions affecting each other, assuming that the activity in
region 1 is affected by watching positive images.
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Glossary

Absolute As in absolute maximum or minimum: the largest maximum or minimum value over the
entire domain of a function.

Argument Input variable of a function.
Asymptote A line or a curve that approaches a given curve arbitrarily closely; their point of touch tends

towards infinity. It is the tangent of a curve at infinity.
Asymptotic discontinuity A function that has a vertical asymptote for the argument belonging to the

discontinuity.
Blood oxygenation level The level of oxygen in the blood.
Continuous A function that is defined on its domain, for which sufficiently small changes in the input

result in arbitrarily small changes in the output.
Derivative Rate of change of a function; also the slope of the tangent line.
Differential Infinitesimal differences of a function.
Discrete Opposite of continuous; a discrete variable can only take on specific values.
Domain The set of arguments for which a function is defined.
Extrema Collective name for maxima and minima of a function.
Hemodynamic response Here: the increase in blood flow to active brain neuronal tissue.
Infinity An abstract concept that in the context of mathematics can be thought of as a number larger

than any number.
Limit A limit is the value that a function or sequence “approaches” as the variable approaches some value.
Local extrema As in local maximum or minimum: a maximum or minimum value of the function in a

neighbourhood of the point.
One-sided limit Limit that only exists for the variable of a function approaching some value from

one side.
Optimisation problem The problem of finding the best solution from all possible solutions.
Partial derivative A derivative of a function of several variables with respect to one variable, considering

remaining variables as a constant.
Piecewise A function that is defined differently for different parts of its domain.
Point of inflection Point where the curvature changes sign, i.e. where the derivative has an extrema.
Propagation Movement.
Regressor An independent variable that can explain a dependent variable in a regression model.
Removable discontinuity (Also known as point discontinuity) discontinuity that occurs when a

function is defined differently at a single point, or when a function is not defined at a certain point.
Root Point where a function is equal to zero.
(To) sample To digitize an analog signal, analog-to-digital (A/D) conversion.
Stationary point A point on a curve where the derivative is equal to zero.
Tangent (line) A straight line that touches a function at only one point, also an instantaneous rate of

change at that point.

Symbols Used in This Chapter (in Order of Their Appearance)

lim
x!a

f xð Þ Limit

lim
x!aþ

f xð Þ or lim
x#a

f xð Þ Limit from the right

lim
x!a�

f xð Þ or lim
x"a

f xð Þ Limit from the left
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dy
dx

¼ y 0 xð Þ (First order) derivative

df tð Þ
dt

¼ _f
Time derivative

y
00
(x)¼y(2)(x) Second order derivative

y
000
(x)¼y(3)(x) Third order derivative

@ f x; yð Þ
@ x

Partial derivative with respect to x

@ f x; yð Þ
@ y

Partial derivative with respect to y

df(x,y) Differential

Overview of Equations for Easy Reference

Limit

lim
x!a

f xð Þ ¼ L

Function with multiple domains

f xð Þ ¼
f 1 xð Þ, for x2 �1; að �
f 2 xð Þ, for x2 a; bð �
f 3 xð Þ, for x2 b;1ð Þ

8<
:

Arithmetic rules for limits

1. lim
x!c

a � f xð Þ ¼ a � lim
x!c

f xð Þ, when a is constant

2. lim
x!c

f xð Þ � g xð Þ½ � ¼ lim
x!c

f xð Þ � lim
x!c

g xð Þ
3. lim

x!c
f xð Þg xð Þ½ � ¼ lim

x!c
f xð Þ � lim

x!c
g xð Þ

4. lim
x!c

f xð Þ
g xð Þ
h i

¼ lim
x!c

f xð Þ
lim
x!c

g xð Þ, if and only if lim
x!c

g xð Þ 6¼ 0

5. lim
x!c

f xð Þn ¼ lim
x!c

f xð Þ
h in

, n2ℝ

6. lim
x!c

a ¼ a, when a is constant

7. lim
x!c

x ¼ c

Heaviside function

f xð Þ ¼
0, x2 �1; 0ð Þ
1
2
, x ¼ 0

1, x2 0;1ð Þ

8><
>:
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Special limits

1. lim
x!1 1þ 1

x

� �x ¼ e or lim
x!0

1þ xð Þ1x ¼ e

2. lim
x!0

sin x
x ¼ 1

3. lim
x!0

ex�1
x ¼ 1

4. lim
x!0

ln 1þxð Þ
x ¼ 1

Definition of derivative

dy

dx
¼ lim

Δx!0

Δy
Δx

Alternative expressions for the derivative if y ¼ f (x)

y0 ¼ dy

dx
¼ df xð Þ

dx
¼ d

dx
f xð Þ ¼ f

0
xð Þ

Basic derivatives

y xð Þ ¼ C,
dy xð Þ
dx

¼ 0, C is constant

y xð Þ ¼ xn, n2ℚ,
dy xð Þ
dx

¼ nxn�1

y xð Þ ¼ ex,
dy xð Þ
dx

¼ ex

y xð Þ ¼ sin x,
dy xð Þ
dx

¼ cos x

y xð Þ ¼ cos x,
dy xð Þ
dx

¼ � sin x

y xð Þ ¼ logax,
dy xð Þ
dx

¼ 1
x ln a

, x > 0; a > 0 and a 6¼ 1ð Þ

y xð Þ ¼ ln x,
dy xð Þ
dx

¼ 1
x
, x > 0ð Þ

y xð Þ ¼ ax,
dy xð Þ
dx

¼ ax ln a
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Basic rules for differentiation

y xð Þ ¼ cu xð Þ, c is a constant y0 xð Þ ¼ cu0 xð Þ
y xð Þ ¼ u xð Þ þ v xð Þ, y0 xð Þ ¼ u0 xð Þ þ v0 xð Þ
y xð Þ ¼ u xð Þv xð Þ, y0 xð Þ ¼ u0 xð Þv xð Þ þ u xð Þv0 xð Þ, product rule
y xð Þ ¼ u xð Þ

v xð Þ , y0 xð Þ ¼ u0 xð Þv xð Þ � u xð Þv0 xð Þ
v2 xð Þ , quotient rule

y xð Þ ¼ y uð Þu ¼ u xð Þ, dy

du

du

dx
, chain rule

y ¼ y vð Þ v ¼ v uð Þ u ¼ u xð Þ, dy

dx
¼ dy

dv

dv

du

du

dx
, chain rule

Higher order derivatives.
Second order derivative

y00 xð Þ ¼ y 2ð Þ xð Þ ¼ d2y

dx2
¼ d

dx

dy

dx

� 	

Third order derivative

y000 xð Þ ¼ y 3ð Þ xð Þ ¼ d3y

dx3
¼ d

dx

d2y

dx2

� 	
¼ d

dx

d

dx

dy

dx

� 	
 �

Partial derivatives.
First order partial derivatives for a function of two variables:

@f x; yð Þ
@x

¼ df x; yð Þ
dx

� 	
y¼constant

@f x; yð Þ
@y

¼ df x; yð Þ
dy

� 	
x¼constant

Second order partial derivatives

@2f x; y; . . .ð Þ
@x2

¼ @

@x

@f x; y; ::ð Þ
@x

� 	

@2f x; y; . . .ð Þ
@y2

¼ @

@y

@f x; y; ::ð Þ
@y

� 	

@2f x; y; . . .ð Þ
@x@y

¼ @

@x

@f x; y; ::ð Þ
@y

� 	
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More notations for partial derivatives

@f x; y; ::ð Þ
@x

¼ @

@x
f x; y; ::ð Þ ¼ f x x; y; . . .ð Þ ¼ @xf x; y; . . .ð Þ

Total differential of a function of two variables

df x; yð Þ ¼ @f x; yð Þ
@x

dxþ @f x; yð Þ
@y

dy

Answers to Exercises

6.1. a) 18
b) 12
c) 1.5
d) Does not exist.

6.2. a) �1
b) �5
c) 5/6
d) �1/2

6.3. a) 1
b) 0
c) 0
d) ½
e) 1

6.4. a) y 0¼6x+6x2

b) y 0¼3 cos3x
c) y 0¼22x21

d) y 0¼7
e) y 0¼�363 sin11x
f) y 0¼�e�x

g) y0 ¼ 12x3 � 1
2
ffiffi
x

p

6.5. a) y 0¼cosx

b) y 0 ¼ ex x
1
4 þ 1

4x
�3

4

� �
c) y 0¼axxa�1(x ln a+a)
d) y 0 ¼ 5x2�1

2
ffiffi
x

p

e) y 0 ¼ 6
5 x

3
5 � 3

2

ffiffiffi
x

p
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f) y 0¼10x(1+x ln10)
g) y 0¼eaxsinx(1+a2)

6.6. a) y 0(t)¼� iωe�iωt, y 00(t)¼�ω2e�iωt, y 000(t)¼ iω3e�iωt

b) y 0(x)¼3 cos 3x, y 00(x)¼�9 sin 3x, y 000(x)¼�27cos3x
c) y 0(x)¼22x21, y 00(x)¼462x20, y 000(x)¼9240x19

d) y0(x)¼x�2(� ln x+1), y 00(x)¼x�3(2 ln x�3), y 000(x)¼x�4(�6 ln x+11)

6.7. @f x;tð Þ
@x ¼ �ite�ixt , @f x;tð Þ

@t ¼ �ixe�ixt , @2f x;tð Þ
@x2 ¼ �t2e�ixt , @2f x;tð Þ

@t2 ¼ �x2e�ixt ,
@2f x;tð Þ
@x@t ¼ �e�ixt i þ xtð Þ.
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7
Integrals

Branislava Ćurči�c-Blake

After reading this chapter you know:

• what an integral is,
• what definite and indefinite integrals are,
• what an anti-derivative is and how it is related to the indefinite integral,
• what the area under a curve is and how it is related to the definite integral,
• how to solve some integrals and
• how integrals can be applied, with specific examples in convolution and the calculation

of expected value.

7.1 Introduction to Integrals

There are many applications of integrals in everyday scientific work, including data and
statistical analysis, but also in fields such as physics (see Sect. 7.7). To enable understanding
of these applications we will explain integrals from two different points of view. Several
examples will be provided along the way to clarify both.
Firstly, integrals can be considered as the opposite from derivatives, or as ‘anti-derivatives’.

This point of view will lead to the definition of indefinite integrals. Viewing integrals as the
opposite of derivatives reflects that by first performing integration and then differentiation or
vice versa, you basically get back to where you started. In other words, integration can be
considered as the inverse operation of differentiation. However, while it is possible to
calculate or find the derivative for any function, determining integrals is not always as easy.
In fact, many useful indefinite integrals are not solvable, that is, they cannot be given as an
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analytic expression! In those cases, numerical integrationmay sometimes help, but that topic is
outside the scope of this book.
Secondly, integrals (of functions of one variable) can be considered as the area under a

curve. This point of view will lead to the definition of definite integrals. Integration can also
be performed for functions of multiple variables and we will only briefly touch upon this
topic in this chapter.

7.2 Indefinite Integrals: Integrals as the Opposite
of Derivatives

As we mentioned before, one way to think about integrals is as the opposite or the reverse of
derivatives; some people like to think about integrals as anti-derivatives. In other words, by
integration you aim to find out what f(x) is, given its derivative f 0(x), or more formally

f(x)¼ Ð
f 0(x)dx

Here, the symbol for the indefinite integral
Ð
is introduced. In contrast to the definite

integral that will be introduced in Sect. 7.3 the integral is here defined for the entire domain
of the function. An important part of the integral is dx, the differential of the variable x. It
denotes an infinitesimally small change in the variable (see Sect. 6.12), and shows that the
variable of integration is x. The meaning of dx will become more clear when we explain
definite integrals in Sect. 7.3.

Example 7.1

If f 0(x)¼nxn�1, what is f(x)?
We thus need to find f(x)¼ Ð

f 0(x)dx¼ Ð
nxn�1dx. Since we know that d

dx x
n ¼ nxn�1, for this

example we find that f(x)¼xn.

For ease of notation, we denote F(x) as the integral of a function f(x):

F(x)¼ Ð
f(x)dx

The function f(x) that is integrated is also referred to as the integrand.

7.2.1 Indefinite Integrals Are Defined Up to a Constant

Since the derivative of a constant is zero, indefinite integrals are only defined up to a constant.
This means that in practice, after finding the anti-derivative (also known as the primitive) of a
function, you can add any constant to this anti-derivative and it will still fulfill the
requirement that its derivative is equal to the function you were trying to find the anti-
derivative for. An intuitive understanding of this property of indefinite integrals is provided
by Example 7.2 and Fig. 7.1.
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Example 7.2

If f(x)¼x2, then f 0(x)¼2x, but f 0(x)¼2x is also true for f(x)¼x2+3 or f(x)¼x2�5. Figure 7.1 helps to
understand this more intuitively: by adding a constant to a function of x, the function is shifted
along the y-axis, but otherwise does not change shape. Hence, the derivative (the slope of the
black lines in Fig. 7.1, see also Sect. 6.8) for a certain value of x, remains the same.

Fig. 7.1 The function f(x)¼x2 is plottedwhen different constants are added. It illustrates that the
tangent at a specific value of x (black lines) has the same slope for all depicted functions.

Example 7.3

Revisiting our Example 7.1, if f(x)¼nxn�1, then the integral
F(x)¼ Ð

f(x)dx¼ Ð
nxn�1dx¼xn+C

where C is any constant.

7.2.2 Basic Indefinite Integrals

Similar to what we did for derivatives in Sect. 6.9, we here provide several basic indefinite
integrals that are useful to remember. Note that when you know derivatives of functions, you
actually already know a lot of indefinite integrals, as well, by thinking about the inverse
operation (from the derivative back to the original function). Thus, Tables 7.1 and 6.1 bear
many similarities as the derivative of the integral of a function is this function again. For
example, differentiating a power function involves lowering the power by one, whereas
integrating a power function involves increasing the power by one. There is an exception
though, when the power is �1 (see Tables 6.1 and 7.1). Probably, the concept of indefinite
integrals as anti-derivatives is becoming clearer now.
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Example 7.4

Determine the integral of f xð Þ ¼ 3ffiffiffiffi
5x

p

It is easier to determine this integral once you realize that f(x) is actually a power function:

xð Þ ¼ 3ffiffiffiffi
5x

p ¼ 3 � 5xð Þ�1
2 ¼ 3:5�

1
2x�

1
2. Now, we can determine the integral using Table 7.1:

F xð Þ ¼
ð
f xð Þdx ¼

ð
3 � 5�1

2x�
1
2dx ¼ 3 � 5�1

2

ð
x�

1
2dx ¼ 3 � 5�1

2
x�

1
2þ1

�1
2 þ 1

þ C ¼ 6ffiffiffi
5

p ffiffiffi
x

p þ C

Before providing more examples and practicing integration yourself, we first present some
basic rules of integration in Box 7.1:

Box 7.1 Basic rules of integration

1. d
dx

Ð
f xð Þdx ¼ f xð Þ

2.
Ð

d
dx f xð Þdx ¼ f xð Þ þ C

3.
Ð
af(x)dx¼a

Ð
f(x)dx, if a is a constant

4.
Ð
[af(x)�bg(x)]dx¼a

Ð
f(x)dx�b

Ð
g(x)dx, if a and b are constants (linearity).

Table 7.1 Indefinite integrals
Ð
f(x)dx for basic functions f(x).

More basic indefinite integrals can be found at https://en.
wikipedia.org/wiki/Lists_of_integrals

f(x) F(x)¼ Ð
f(x)dx

A (constant) Ax+C

xn , n2ℂ^ n 6¼�1 xnþ1

nþ1 þ C

eax , a2ℂ^ a 6¼0 1
a e

ax þ C
1
x or x�1

� �
ln x þ C if x > 0
ln �xð Þ þ C if x < 0

�

sinax , a2ℂ^a 6¼0 �1
a cos ax þ C

cosax , a2ℂ^a 6¼0 1
a sin ax þ C

tanx �ln|cosx|+C

ax , a>0^a 6¼1 ax
ln a þ C

1ffiffiffiffiffiffiffiffi
x2�1

p ln x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p��� ���þ C

1
x2þ1

arctanx+C

1ffiffiffiffiffiffiffiffi
1�x2

p arcsinx+C
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Example 7.5

Determine the following integrals:

a. Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

ffiffiffiffiffiffiffiffiffiffi
x

ffiffiffi
x

ppq
dx ¼ Ð ffiffiffiffiffiffiffiffiffiffiffiffi

x
ffiffiffiffiffi
x

3
2

pq
dx ¼ Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x � x32 � 12
q

dx ¼ Ð ffiffiffiffiffiffiffiffiffiffiffi
x1þ

3
4

q
dx ¼ Ð

x
7
4 � 12dx ¼

Ð
x7=8dx ¼ 8x15=8

15
þ C

b.
Ð

3
x þ sin 5x
� �

dx ¼ Ð
3
x dx þ Ð

sin 5xdx ¼ 3 ln xj j � 1
5 cos 5x þ C

c.
Ð
(sin5x�sin5α)dx¼ Ð

sin5xdx� Ð
sin5αdx¼�1

5 cos 5x � x sin 5αþ C. Note that since the integra-
tion is over x, sin5α should be considered as a constant.

d.
Ð

e�iωt þ eiωt
� �

dt ¼ Ð
e�iωtdt þ Ð

eiωtdt ¼ � 1
iωe

�iωt þ 1
iω e

iωt þ C

Exercise

7.1 Determine the following indefinite integrals:

a.
Ð
(e3t+2sin2t)dt

b.
Ð

3
x2 dx

c.
Ð
4x�1dx

d.
Ð ffiffiffiffiffiffi

4x
p

dx

e.
Ð ffiffiffiffiffiffiffiffiffiffi

4x�3
p

þ 5
� �

dx

f.
Ð
(3x+tanx)dx

7.3 Definite Integrals: Integrals as Areas Under a Curve

So far, we considered integrals as anti-derivatives, thereby introducing indefinite integrals.
Here, we view integrals in a different way, as areas under a curve, bounded by a lower and an
upper limit. The curve is thus a graph of a function on a specific domain. Let’s discuss this
link between integrals and area under a curve in more detail. Suppose you want to know the
area under the curve for the graph of the function f(x)¼�x2+5 between x¼�2 and x¼2
(Fig. 7.2, left). A very rough approximation of the area under the curve would be to calculate
the sum of the areas of the rectangles with a base of 1 and a height of f(x) for all integer values
of x from x¼�2 to x¼1 (Fig. 7.2, middle). Now you can probably imagine that when we
decrease the base of these rectangles by doubling the number of rectangles, the sum of their
areas will better approach the area under the curve (Fig. 7.2, right). If we increase the number
of rectangles even further to n and denote the base of these rectangles by Δx we find that the
approximation of the area under the curve for this specific example equals

Xn�1

i¼0

f �2þ i � Δxð Þ � Δx

Now, if we let the number of rectangles between two general limits a and b (instead of�2
and 2) go to 1 by letting Δx go to 0, we arrive at the definition of the definite integral
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ðb

a

f xð Þdx

where a is the lower limit and b the upper limit. It should now be clear to you that this
expression is equal to the area under the curve given by the graph of the function f(x) between
x¼a and x¼b. More formally, the sum and integral that were used here are known as the
Riemann sum and Riemann integral. Now, you may also understand that the differential dx
can be understood as the limit of Δx when it goes to 0.
Also in the definition of the definite integral using the Riemann sum, we can retrace that

integration is the inverse of differentiation. Remember that the formal definition of a
derivative (Sect. 6.8, Eq. 6.1, replacing y by f(x)) was:

df xð Þ
dx ¼ lim

Δx!0

Δf xð Þ
Δx

Here, we also considered small changes in x and in f(x) asΔf(x)¼ f(x+Δx)� f(x). Hence, in
derivation we subtract function values and divide the difference by Δx, while in integration
we add function values and multiply the sum by Δx.
To calculate the definite integral you need to determine the anti-derivative or primitive

function and subtract its values at the two limits:

If F xð Þ ¼
ð
f xð Þdx then

ðb

a

f xð Þdx ¼ F bð Þ � F að Þ ð7:1Þ

Sometimes a slightly different notation is used:

ðb

a

f xð Þdx ¼ F xð Þjx¼a � F xð Þjx¼b

Fig. 7.2 Illustration of calculation of area under the curve for the function f(x)¼�x2+5 for x2(�2,2).
Left: graph of the function, vertical lines at x¼�2 and x¼2 indicate the boundaries of the domain.
Middle: approximation of the area under the curve when using rectangles of base 1. Right: improved
approximation of the area under the curve when using rectangles of base 0.5.
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where F(x)|x¼a should be read as F(x) for x¼a.

Example 7.6

Calculate
ð3π

2π

sin xdx.

We know that (Table 7.1) Ð
sinxdx¼�cosx+C

By following rule (7.1), we can now calculate that:

ð3π

2π

sin xdx ¼ � cos 3πð Þ � � cos 2πð Þ ¼ � �1ð Þ þ 1 ¼ 2

We now present some important rules for definite integrals in Box 7.2:

Box 7.2 Important rules for definite integrals

1.
ða

a

f xð Þdx ¼ 0

2.
ðb

a

f xð Þdx ¼ �
ða

b

f xð Þdx

3. If c2(a,b) then
ðb

a

f xð Þdx ¼
ðc

a

f xð Þdx þ
ðb

c

f xð Þdx

These rules concern the limits of an integral. Thus, clearly any definite integrals with the
same upper and lower limits are equal to zero. Swapping the upper and lower limits swaps the
sign of the result. The third rule in Box 7.2 is the most interesting as it can sometimes come
in quite handy when calculating definite integrals, as illustrated in the next example.

Example 7.7

Calculate

ð218π

2π

sin xdx þ
ð3π

218π

sin xdx

(continued)
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Example 7.7 (continued)

Here it would be pretty hard to calculate cos 218π
� �

without a calculator, whereas when we use
the third rule in Box 7.2 and employ the answer to Example 7.3, we find that

ð218π

2π

sin xdx þ
ð3π

218π

sin xdx ¼
ð3π

2π

sin xdx ¼ 2

Notice that the solution to definite integrals, in contrast to indefinite integrals, does not
contain a constant (C). Let’s now see how definite integrals can be used to calculate the area
under a complex curve (Example 7.8) and how a practical—albeit simple—problem (Exam-
ple 7.9) can give us more insight in why we calculate definite integrals the way we do.

Example 7.8

Consider the function

f(x)¼4cos(x+0.1)�0.5x

in Fig. 7.3 and determine the area under its graph between the two (approximate) roots x�
1.9122 and x¼5.3439.

Fig. 7.3 Plot of the function f(x)¼4cos(x+0.1)�0.5x for x2(�2,5.5). The area under its graph
consists of a positive (A1) and a negative (A2) part.

Between x¼�1.9122 and x¼5.3439 the function is first positive, then negative. It changes sign
at (approximately) x¼�1.9122 and x¼1.3067 and then at x¼5.3439. Thus, the area A under the
curve will be

A¼A1�A2

(continued)
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Example 7.8 (continued)

which is the so called signed area as illustrated in Fig. 7.4.

Fig. 7.4 Area under the curve (blue) for the function f(x)¼4cos(x+0.1)�0.5x between
x¼�1.9122 and x¼5.3439.

We now know that A1 ¼
ð1:3067

�1:9122

f xð Þdx and A2 ¼
ð5:3439

1:3067

f xð Þdx. Thus, the area under the curve

for f(x) between x¼�1.9122 and x¼5.3439 is

A ¼
ð1:3067

�1:9122

f xð Þdx �
ð5:3439

1:3067

f xð Þdx

We can now apply the rules in Table 7.1 to find the primitive or anti-derivative F of f(x) and
calculate A. The primitive is F xð Þ ¼ 4 sin x þ 0:1ð Þ � 0:5

2 x2 and thus

A ¼ F 1:3067ð Þ � F �1:9122ð Þð Þ � F 5:3439ð Þ � F 1:3067ð Þð Þ
¼ 4 sin 1:3067þ 0:1ð Þ
� 4 sin �1:9122þ 0:1ð Þ � 0:5

2
1:30672 þ 0:5

2
�1:9122ð Þ2

� 4 sin 5:3439þ 0:1ð Þ
þ 4 sin 1:3067þ 0:1ð Þ þ 0:5

2
5:34392 � 0:5

2
1:3067ð Þ2 � 21:9529

Example 7.9

Marianne is speedwalking at a constant velocity of 2 m/s. What distance will she cover within 9 s if
she keeps walking at the same speed?

We can approach this problem in two different ways. Let’s first do it in a way which does not
require integrals anduses our knowledgeof physics.Weknowthatdistance travelled equals velocity
times duration, thusMarianne covers 2m/s� 9 s¼ 18mwithin9 s.Amore complexway, thathelps us
understand why we calculate definite integrals the way we do, is the following. We know that the
duration Δt¼9s. Let’s assume that we determine the distance travelled between start time t0¼1s
and end time tEND¼10s. We also know that velocity is the derivative of distance travelled in time:

(continued)
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Example 7.9 (continued)

v ¼ dx
dt � Δx

Δt or Δx¼v�Δt. Now v�Δt is the area of a rectangle with base Δt and height vwhich is the
area under the curve of the constant function v¼2 m/s as displayed in the figure, or

x ¼
ðtEND
t0

v tð Þdt ¼ vtjtENDt0 ¼ 2m
s

10� 1ð Þs ¼ 18m

We now also see that subtracting the two values of the primitive is equal to subtracting the
distance travelled in 1 s from the distance travelled in 10 s, which is the distance travelled in 9 s.
Anyway, Marianne thus covers 18 m in 9 s. Is that fast enough for speed-walking?

Exercise

7.2. Determine the following definite integrals:

a.
ð1

0

ffiffiffiffiffi
x3

p
dx

b.
ðT

2

0
sin

2πt
T

	 

dt

c.
ð1

0

ex � 1ð Þ2exdx

7.3.1 Multiple Integrals

Just as we can differentiate functions of multiple variables by partial differentiation (see Sect.
6.10), we can also integrate functions of multiple variables. Such (definite) integrals are called
multiple integrals. And like definite integrals of one variable are associated with area under a
curve, definite integrals of two variables are associated with volume under a surface, defined
by the domain that is integrated over. To integrate functions of multiple variables, you start
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from the inner most integral and work your way out, always considering the variables you
are not integrating over as constant, again similar to partial differentiation, where you
consider the variables you do not differentiate for as constant. Let’s make this clearer by an
example.

Example 7.10

Calculate
ð2

1

ð4

2

xy2 þ 3x3y
� �

dx dy

This integral should be read as
ð2

1

ð4

2

xy2 þ 3x3y dx

0
@

1
A dy and thus, to calculate it, we have to

integrate the function f(x,y)¼xy2+3x3y for x between 2 and 4 and y between 1 and 2. Executing
this step-by-step, we find that:

ð2

1

ð4

2

xy2 þ 3x3y dx dy ¼
ð2

1

1
2
x2y2 þ 3

4
x4y

	 
������
4

2

dy ¼
ð2

1

8y2 þ 192y
� ��

2y2 þ 12y
� �

dy ¼
ð2

1

6y2 þ 180y dy ¼ 2y3 þ 90y2
� �

������
2

1¼ 16þ 360ð Þ � 2þ 90ð Þ ¼ 284

In this example, we calculated a double integral. Similarly, an integral with three variables
of integration is called a triple integral.

7.4 Integration Techniques

So far, we only considered integrals of relatively simple functions. However, not all integration
of relatively simple functions is simple. For example, how do we integrate functions such as
f xð Þ ¼ ffiffiffi

x
p

1þ xð Þ or f(x)¼xsin2x? There are numerous integration techniques that can
help. Some of them are universal for all types of integrals. Some are more suited for definite
integrals. Here, we will only explain some of these techniques, and illustrate them with
examples. The goal of this section is to get you familiarized with the practice of integration.
For more practice, we recommend starting with Jordan and Smith 2010, Mathematical
techniques, and advance with Chap. 7 of Demidovich et al. (1966) available online in
English.

7.4.1 Integration by Parts

Integration by parts is a method that relies on the product rule for differentiation (see also
Table 6.2) that states that if
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y(x)¼ f(x)g(x)

then

y0 xð Þ ¼ f 0 xð Þg xð Þ þ f xð Þg0
xð Þ:

If we now apply anti-derivation to thefirst equation and substitute the second equation, we get:

f(x)g(x)¼y(x)¼ Ð
y 0(x)dx¼ Ð

( f 0(x)g(x)+ f(x)g 0(x) )dx

By rearranging the most outer terms, we find that:ð
f xð Þg0

xð Þdx ¼ f xð Þg xð Þ �
ð
f 0 xð Þg xð Þdx ð7:2Þ

This means, that if a function is the product of one function with the derivative of another
function, we have a method to determine the integral of this product.

Example 7.11

Determine the integral

y(x)¼ Ð
x2exdx

To solve this integral, we first consider the simpler integral

y1(x)¼
Ð
xexdx

Careful consideration of this function shows that integration by parts according to Eq. 7.2
can be applied for f(x)¼x and g 0(x)¼ex. To perform integration by parts we now need to
determine f'(x) and g(x), which is relatively simple as these are simple functions. Thus f'(x)¼1
and g(x)¼ Ð

exdx¼ex and after integration by parts of y1 we find that:

y1(x)¼
Ð
xexdx¼xex� Ð

1 �exdx¼xex�ex+C¼ex(x�1)+C

Simple, right? This is how integration by parts works. Now let’s go back to the original function
y(x). For this function, we choose f(x)¼x2 and g 0(x)¼ex and thus f 0(x)¼2x and g(x)¼ex. Applying
integration by parts according to Eq. 7.2 we now find:

y(x)¼ Ð
x2exdx¼x2ex� Ð

2xexdx

We have just determined that
Ð
xexdx¼ex(x�1)+C and thus:

y xð Þ ¼ x2ex � 2
�
ex x � 1

�þ C
� � ¼ ex x2 � 2x þ 2

� �þ C

For integration by parts to be applicable you should be able to assign f(x) and g 0(x) such that

1. f 0(x) is simpler than f(x)
2. g(x) is not more complicated than g0(x)
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Example 7.12

Determine
Ð
x lnxdx.

Here we consider the two functions x and lnx that form the product. Is one of them simpler
after derivation? Is the second one not more complicated after integration? The derivative of
f(x)¼ lnx is in fact simpler than the function itself:

f 0 xð Þ ¼ 1
x

Thus, we have identified one function that is simpler after differentiation. But does the second
function in the product have an integral that is not more complicated than the function itself? So,
let’s assign g0(x)¼x. Then g xð Þ ¼ Ð

xdx ¼ x2
2 . This integral is not much more complicated, but is it

sufficiently simple? Let’s try and find out:
Applying integration by parts according to Eq. 7.2, using our choice of f(x) and g0(x) we find

that:

ð
x ln xdx ¼ x2

2
ln x �

ð
1
x
x2

2
dx ¼ x2

2
ln x � x2

4
þ C ¼ x2

2
ln x � 1

2

	 

þ C

Example 7.13

Determine
Ð
excosxdx.

Now we consider the two functions ex and cosx that form the product. Is one of them simpler
after derivation? Is the second one not more complicated after integration?

We know that ex is not more complicated after integration. But is cosx simpler after deriva-
tion? Let’s give it a try and assign f(x)¼cosx, g 0(x)¼ex. Then f 0(x)¼�sinx and g(x)¼ex. When we
now apply integration by parts according to Eq. 7.2 we find that:

ð
ex cos xdx ¼ cos xex þ

ð
sin xexdx

The integral on the right-hand side actually does not lookmuch simpler. But let’s keep at it and
apply integration by parts one more time to the integral on the right-hand side. This time we
assign f(x)¼sinx, g 0(x)¼ex. Then f 0(x)¼cosx and g(x)¼ex and we find that:

ð
ex cos xdx ¼ cos xex þ sin xex �

ð
ex cos xdx

Now we recognise the integral that we want to determine (
Ð
excosxdx) on both sides of the

equation. By rearranging the terms, we get:

2
Ð
excosxdx¼cosxex+sinxex+C

and thus:

ð
ex cos xdx ¼ ex

2
cos x þ sin xð Þ þ C
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Exercise

7.3 Determine the following integrals using integration by parts:

a.
Ð
(x�1)2exdx

b.
ðπ

0

x sin 2xdx

c.
Ð
(lnx)2dx

7.4.2 Integration by Substitution

Another, probably much more often used method to determine integrals is (u-)substitution.
In short, the aim is to make the integrand as simple as possible to determine the integral. To
determine integrals by rewriting them to “easier” forms the following steps need to be taken:

1. For an integral
Ð
f(x)dx find a part of the function that can be substituted by u(x)

2. Differentiate to express dx in terms of du: dx¼x 0(u)du
Check if the new integral

Ð
f(x)dx¼ Ð

f(x(u))x'(u)dx is easier to solve and if not try another
substitution.
3. Once you have finished the calculus, substitute back to the initial variable x to find an

indefinite integral or also substitute the limits to find a definite integral.

As this explanation probably sounds rather abstract, let’s try to get a better understanding
by some examples.

Example 7.14

Determine
Ð
x(x+5)5dx.

First, we determine a likely suitable substitution u(x). It seems appropriate to simplify the
function by substituting

u(x)¼x+5

We can find the differential du as follows:

du¼d(x+5)¼dx+0¼dx

We also know that:

x¼u�5

Now we can rewrite the integral as follows:

ð
x x þ 5ð Þ5dx ¼

ð
u� 5ð Þ uð Þ5du

This is easy to solve for u:

(continued)
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Example 7.14 (continued)ð
u� 5ð Þ uð Þ5du ¼

ð
u6 � 5u5� �

du ¼
ð
u6du� 5

ð
u5du ¼ u7

7
� 5u6

6
þ C

To determine the original integral in terms of x, all we should do now is substitute u again.
Thus, the integral is:

ð
x x þ 5ð Þ5dx ¼ x þ 5ð Þ7

7
� 5 x þ 5ð Þ6

6
þ C

Example 7.15

Determine
Ð

3x2 þ 10x þ 7
� �

e� 5x2þ7xþx3ð Þdx
At first sight, the integrand looks too complex to be able to determine the integral. But let’s try

to find a suitable substitute u(x). As the biggest problem seems to be in the complex exponent, we
first try to define this as a substitute:

u xð Þ ¼ 5x2 þ 7x þ x3

As we know that
Ð
e�xdx¼�e�x+C, this might be a sensible approach to this integral.

Next, we determine the differential du by derivation:

du
dx

¼ 10x þ 7þ 3x2

or

du ¼ 3x2 þ 10x þ 7
� �

dx

Now substitution results in a very simple integrand and integration becomes a piece of cake:

ð
3x2 þ 10x þ 7
� �

e� 5x2þ7xþx3ð Þdx ¼
ð
e�udu ¼ �e�u þ C

Finally, substituting u(x) results in:

ð
3x2 þ 10x þ 7
� �

e� 5x2þ7xþx3ð Þdx ¼ �e� 5x2þ7xþx3ð Þ þ C

Example 7.16

Determine
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5x þ 3
p

dx.
The most obvious choice for substitution is:

u xð Þ ¼ 5x þ 3

(continued)
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Example 7.16 (continued)

Then

du xð Þ
dx

¼ 5

dx ¼ 1
5
du

We can now rewrite the integral to:

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x þ 3

p
dx ¼

ð ffiffiffi
u

p 1
5
du ¼ 1

5
2
3
u

3
2 þ C

For the final step, substitution gives:

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x þ 3

p
dx ¼ 2

15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x þ 3ð Þ3

q
þ C

Example 7.17

Determine
Ð

3x4
x5þ6dx:

There is no obvious choice for substitution now: we could either choose the numerator or the
denominator as a candidate for substitution. However, the denominator has a higher order
polynomial than the numerator. Thus, if the denominator is differentiated it will be closer to
the numerator. For this reason, we choose the denominator for u- substitution:

u xð Þ ¼ x5 þ 6

du xð Þ
dx

¼ 5x4

dx ¼ 1
5x4

du

We can now rewrite the integral to:

ð
3x4

x5 þ 6
dx ¼

ð
3x4

u
1
5x4

du ¼ 3
5

ð
du
u

¼ 3
5
ln uj j þ C

So finally, substituting u again yields:

ð
3x4

x5 þ 6
dx ¼ 3

5
ln x5 þ 6

�� ��þ C
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Example 7.18

Determine
Ð
cos6xsinxdx.

If we again choose to substitute the part of the product with the higher power, similar to
Example 7.16, we can write:

u xð Þ ¼ cos x

du xð Þ
dx

¼ � sin x

dx ¼ �1
sin x

du

We can now rewrite the integral to:

ð
cos 6x sin xdx ¼

ð
u6 sin x

�1
sin x

du ¼ �
ð
u6du ¼ �1

7
u7 þ C

Final substitution of u gives:

ð
cos 6x sin xdx ¼ �1

7
cos xð Þ7 þ C

Exercise

7.4 Determine the following integrals using substitution:

a.
Ð
x2e�4x3dx

b.
Ð

3 sin x
2þ cos x dx

c.
Ð ffiffi

x
p þ2ð Þ6ffiffi

x
p dx

d.
Ð

3
x ln x dx

e.
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
dx

7.4.3 Integration by the Reverse Chain Rule

Just like integration by parts employed the product rule for differentiation, we can use the
chain rule for differentiation to our advantage for integration. One could say that the “reverse
chain rule” makes implementation of u-substitution easier as, in a way, it is the same rule.
Remember that for a composite function f(x)¼g(h(x)) (Table 6.2):
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df xð Þ
dx

¼ dg h xð Þð Þ
dx

¼ dg

dh

dh

dx
¼ h0 xð Þg0

h xð Þð Þ

Applying integration, we find that:

ð
h0 xð Þg0

h xð Þð Þdx ¼ g h xð Þð Þ þ C ð7:3Þ

In general, this rule is used for integration of trigonometric, logarithmic, rational/power
and exponential functions. To apply the reverse chain rule in case of some composite
function (e.g. sin(3x+5), or log5|sinx|), one should try to recognise the derivative of the
function inside the composite function (thus h(x)). For example, let’s consider the integrand:

xsinx2

Note that sinx2¼sin(x2), whereas sin2x¼sinxsinx. In this case 2x is the derivative of x2

and we recognize that the sinusoidal function is multiplied by half the derivative of the
function that is inside the sinusoidal function. We can thus write:

x sin x2 ¼ 2x � 12 sin x2 ¼ h0 xð Þg 0
h xð Þð Þ

Once we have recognized this structure in the integrand, the next step is to determine h(x)
and g(h):

h xð Þ ¼ x2, h
0
xð Þ ¼ 2x

g
0
hð Þ ¼ 1

2
sin h, g hð Þ ¼ �1

2
cos h

We then know how to determine the integral of this composite function, by applying the
reverse chain rule Eq. 7.3: Ð

x sin x2dx ¼ �1
2 cos x

2 þ C

Example 7.19

Determine
Ð
3x2sinx3dx.

We recognize that 3x2 is the derivative of x3 and hence apply the reverse chain rule (Eq. 7.3) as
follows:

h xð Þ ¼ x3, h
0
xð Þ ¼ 3x2,

g0 hð Þ ¼ sinh, g hð Þ ¼ � cosh

We thus find that:

ð
3x2 sin x3dx ¼ � cos x3 þ C
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Exercise

7.5 Determine the following integrals using the reverse chain rule:

a.
Ð
x3ex

4
dx

b.
Ð
x3(1+x4)3dx

7.4.4 Integration of Trigonometric Functions

Although the integration techniques introduced in Sects. 7.4.1 to 7.4.3 allow integration of
many different functions, there will still be integrals left that cannot be determined. For
specific types of integrands, such as rational or transcendental functions, several additional
useful methods exist to determine their integrals (see for example Bronshtein et al. 2007).
Here, we will only briefly cover some integration methods for trigonometric integrands so
that you get a feeling of how integration is done in general. We direct you to more specialized
literature for broader and more advanced methods of integration (e.g. Jordan and Smith
(2010)). An overview can also be found on https://en.wikipedia.org/wiki/List_of_integrals_
of_trigonometric_functions.
The following methods can be used to determine some integrals of trigonometric

functions:

1. If the integral contains a rational function of sines and cosines, the following substitution
is often useful:
tan x

2 ¼ t which implies that sin x ¼ 2t
1þt2, cos x ¼ 1�t2

1þt2 and dx ¼ 2dt
1þt2. Here we use that

sin x ¼ 2 sin x
2 cos

x
2 and cos x ¼ cos 2x2 � sin 2x

2. By this substitution, the integrand
becomes a rational function of t.

2. If the integrand is a positive power of a trigonometric function, recurrent formulas can be
used to determine the integral:

ð
sin nxdx ¼ 1

n
sin n�1x cos xþ n� 1

n

ð
sin n�2xdx

ð
cos nxdx ¼ 1

n
cos n�1x sin xþ n� 1

n

ð
cos n�2xdx

3. If the integrand is a negative power of a trigonometric function, such as
Ð

1
sin nx dx orÐ

1
cos n xdx (n2N,n>1), the integral can be determined by using the following recurrent

formulas:
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ð
1

sin nx
dx ¼ 1

n� 1
cos x

sin n�1x
þ n� 2
n� 1

ð
1

sin n�2x
dx

ð
1

cos nx
dx ¼ 1

n� 1
sin x

cos n�1x
þ n� 2
n� 1

ð
1

cos n�2x
dx

4. Integrals of the form
Ð
sinmxcosnxdx, (n,m2Z,>0), can be determined using the following

recurrent formulas:

ð
sin nxcos mxdx ¼ sin nþ1xcos m�1x

mþ n
þ m� 1
mþ n

ð
sin nxcos m�2xdx

or

ð
sin nxcos mxdx ¼ � sin n�1xcos mþ1x

mþ n
þ n� 1
nþ m

ð
sin n�2xcos mxdx

(see also https://en.wikipedia.org/wiki/List_of_integrals_of_trigonometric_functions#Integra
nds_involving_both_sine_and_cosine)

5. Integrals of the form
Ð
sinnxcosmxdx, (n,m2Z) can be simplified and subsequently

determined using the trigonometric identities for multiplication of trigonometric
functions:

sin nx cosmx ¼ 1
2 sin n� mð Þx þ sin nþ mð Þx½ �

Example 7.20

Determine
Ð

dx
5þ4cosx

This integral can be determined using the first method in this section by substituting tan x
2 ¼ t,

cos x ¼ 1�t2

1þt2
and dx ¼ 2dt

1þt2
:

ð
dx

5þ 4cosx
¼

ð 2dt
1þt2

5þ 4 1�t2

1þt2

¼
ð

2dt
9þ t2

We know how to determine this integral as it is similar to the integral of 1
x2þ1 (Table 7.1)

ð
dx

5þ 4cosx
¼ 2

9

ð
dt

1þ t2
9

If we substitute t2
9 ¼ u2, then dt¼3du and thus

(continued)
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Example 7.20 (continued)ð
dx

5þ 4cosx
¼ 6

9

ð
du

1þ u2 ¼ 6
9
arctanuþ C ¼ 6

9
arctan

t
3
þ C ¼ 6

9
arctan tan

x
2

3
þ C

7.5 Scientific Examples

7.5.1 Expected Value

The expected value hxi of a stochastic variable x is frequently encountered in statistics. It refers
to the value one expects to get for x on average if an experiment would be run many times.
For example, if you toss a coin 10 times, you expect to get 5 heads and 5 tails. You expect this
value because the probability of getting heads is 0.5 and if you toss 10 times you anticipate
that you will get heads 5 times. The expected value is also called the expectation value, the
mean, the mean value, the mathematical expectation and, in statistics, it is known as the first
moment.
If the probability distribution P(x), which describes the probability of getting a specific

value of x is known, the expected value can be calculated by multiplying each of the possible
outcomes by the probability that each outcome will occur, and by integrating all products:

a¼〈x〉¼ Ð
xP(x)dx

The expected value can be viewed as the weighted average value, where the weight is given
by the probability distribution. This is easier to understand in the case of a discrete
distribution. Note that nowadays almost all measurements are discrete, even when measuring
continuous events, as our digital devices sample the values at a specific frequency, e.g. at 2 Hz
(every 0.5 s). As explained in Sect. 7.3, in the case of n discrete values, we can replace the
integral by a sum

a ¼
Xi¼n

i¼1

xiP xið Þ

Example 7.21

The most frequently used example of expected value concerns throwing a dice. If a dice is of good
quality, the probability of the dice landing on any of the 6 sides is equal. Thus, the probability of
getting a 5 is 1/6, as is the probability of getting any of the other possible values:

P xið Þ ¼ 1
6
, xi ¼ 1;2; 3; 4;5;6f g

The expected value when throwing a dice is thus:

(continued)
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Example 7.21 (continued)

a ¼
Xn
i¼1

xiP xið Þ ¼ 1þ 2þ 3þ 4þ 5þ 6ð Þ
6

¼ 3:5

This is the same as the average of the values on a six-sided dice.

In most cases the probability will not be equal for all values of x. To calculate the expected
value, it is then convenient to have a functional description of the probability distribution.

Example 7.22

A frequently encountered distribution is the Gaussian distribution. Any stochastic variable that is
determined by many independent factors will follow such a distribution. Examples are height and
weight of humans. The Gaussian probability distribution function is:

G xð Þ ¼ 1ffiffiffiffi
2π

p
σ
e

x�μð Þ2
2σ2

Here, μ is the mean value of the distribution and σ is its standard deviation. Let’s see if μ is
indeed the same as the expected value:

xh i ¼
ð1

�1
xP xð Þdx ¼

ð1

�1
x

1ffiffiffiffiffiffi
2π

p
σ
e

x�μð Þ2
2σ2 dx

To determine this integral is beyond the scope of this book, but we will here describe some
important steps. For amore detailed explanation we refer to Reif (1965, the Berkley Physics course
Volume 5, Appendix 1; https://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions).

The integral can be solved using substitution and then incorporating some of the characteris-
tics of the Gaussian distribution. In this manner, the expected value can be rewritten using:

u¼x�μ

du¼dx

resulting in:

xh i ¼ 1ffiffiffiffiffiffi
2π

p
σ

ð1

�1
ue

u2

2σ2duþ 1ffiffiffiffiffiffi
2π

p
σ

ð1

�1
μe

u2

2σ2du

The first integral vanishes as the integrand is odd:

ð0

�1
ue

u2

2σ2du ¼ �
ð1

0

ue
u2

2σ2du

The second integral can be rewritten as (Reif 1965, Berkley Physics course, Volume 5,
Appendix 1, Equations 11 and 12)

ð1

�1
μe

u2

2σ2du ¼ μ

ð1

�1
e

u2

2σ2du ¼ μ
ffiffiffiffiffiffi
2π

p
σ

Thus, the expected value of a Gaussian distribution is indeed equal to its mean.
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7.5.2 Convolution

Convolution is a very important mathematical operation in the analysis of time series. It can
be viewed as a type of filter. If you have one function or time series f(t), convolution with
another function g(t) yields the amount by which g(t) overlaps with f(t) when g(t) is shifted in
time. Convolution is expressed by an integral, as follows:

f ∗ g½ � tð Þ ¼
ð1

�1
f τð Þg t � τð Þdτ

In other words, convolution is a mathematical operation on two functions, resulting in a
third function that represents the overlap between the two functions as a function of the
translation of one of the original functions with respect to the other. The effect of convo-
lution will become clearer in some examples. Note that in all figures belonging to the
examples below both the convolution and f(t) were normalized to the maximum of g(t),
for illustration purposes.

Example 7.23

The convolution of a rectangular function and a linear function results in a saw-tooth function.
When the rectangular function is shifted, the maximum of the convolution, that indicates where
both functions have maximum overlap, also shifts (Fig. 7.5).

Fig. 7.5 Left: Convolution (red) of a rectangular function (blue) with a linear function (green).
Right: Convolution of the same functions when f(x) is shifted along the x-axis. Note that the
convolution and f(x) were normalized for illustration purposes.

Example 7.24

The convolution of a rectangular and a saw-tooth function is similar to Example 7.23. If the order
of the convolution between saw-tooth and rectangular function is reversed, we see that the
resulting function is shifted along the x-axis (Fig. 7.6).

(continued)
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Example 7.24 (continued)

Fig. 7.6 Left: Convolution (red) of a rectangular function (blue) with a saw-tooth function
(green). Right: Convolution of the same functions in reverse order. Note that the convolution
and f(x) were normalized for illustration purposes.

Example 7.25

The convolution of a rectangular and a Gaussian function is again a Gaussian function (Fig. 7.7).

Fig. 7.7 Convolution (red) of a rectangular function (blue) with a Gaussian function (green).

Example 7.26

It is not true that the convolution of any function with a Gaussian function is again a Gaussian
function, as is illustrated with this example of the convolution of a saw-tooth function with a
Gaussian function (Fig. 7.8).

Fig. 7.8 Convolution (red) of a saw-tooth function (blue) with a Gaussian function (green). The
convolution is skewed just like the saw-tooth function.
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Example 7.27

In behavioral neuroscience, functional magnetic resonance imaging ( fMRI) is often used to
determine brain activation during tasks. It employs the local relative increase in oxygenated
blood (the blood oxygen-level-dependent or BOLD-response) that develops when a brain area
is involved in such a task. The general linear modeling (GLM) approach to analyze fMRI data was
introduced in Chap. 5, and the BOLD response and hemodynamic response function (HRF) were
introduced in Chap. 6 (Sect. 6.13.3). General linear modeling involves modeling the BOLD
response in a brain area that is involved in a task. The simplest model assumes that there is
(constant) activity in such a brain area during the task and no activity during rest, in between task
blocks, resulting in a so-called block model (see Fig. 4.16, top and cf. Example 4.4). Such a model
does not take the sluggish BOLD-response into account, however, which becomes maximal only
seconds after the brain has been stimulated. To compensate for this sluggishness and model the
specific physiological response as well as possible the block model is convoluted with a model of
the BOLD response, the HRF (see Fig. 7.9 middle and bottom).

Fig. 7.9 fMRI data analysis preparation. The input time series (top) are convoluted with the HRF
(middle) to create a predictor for the GLM analysis (bottom). This is done for each condition, task
or any other experimental manipulation.

Example 7.28

Since a few decades, we mostly only make digital photos, which allows easy manipulation
using computer programs such as Photoshop or Paint. Most of us have used these programs to
beautify ourselves and we have become quite used to ‘photoshopped’ pictures of celebrities in
magazines. Oftentimes, convolution is used to enhance photos digitally. For example, the

(continued)
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Example 7.28 (continued)

pixelated photo on the left in Fig. 7.10 can be convoluted with a 2D Gaussian function to blur or
smoothen it, so that the pixels (and thereby the wrinkles!) are not recognizable any more
(Fig. 7.10, right).

Fig. 7.10 Left: A pixelated picture. Right: The same picture after 2D Gaussian smoothing (over
4 � 4 pixels) has been applied. Wrinkles have disappeared and facial features have changed.

Example 7.29

Cross-correlation provides a beautiful example of convolution in everyday science.
Cross-correlation provides a measure of the similarity between two functions as a function of a
time-lag applied to one of them. This is also known as the sliding dot product or sliding
inner-product (cf. Sect. 4.2.2.1). For continuous functions f(t) and g(t) the cross-correlation is
given by

f ∗g τð Þ ¼
ð1

�1
f∗ tð Þg t þ τð Þdt

Here, f∗(t) denotes the complex conjugate of f(t). You can see that cross-correlation is the same
as convolution for f(�t). Thus, the cross-correlation is a function of τ, which has the same range
as t.

Glossary

Analytic As in analytic expression, a mathematical expression that is written such that it can easily
be calculated. Typically, it contains the basic arithmetic operations (addition, subtraction, multi-
plication, division) and operators such as exponents, logarithms and trigonometric functions.
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Convolution Convolution of a function or time series f(t), with another function g(t) yields the amount
by which g(t) overlaps with f(t) when g(t) is shifted in time; convolution can be viewed as a
modifying function or filter.

Cross-correlation A measure of similarity of two functions as a function of the displacement of one
with respect to the other.

Definite As in definite integral; the integral of a function on a limited domain.
Double integral Multiple integral with two variables of integration.
fMRI Functional magnetic resonance imaging; a neuroimaging technique that employs magnetic

fields and radiofrequency waves to take images of e.g. the functioning brain, employing that
brain functioning is associated with changes in oxygenated blood flow.

Gaussian distribution Also known as normal distribution. It is a symmetric, bell-shaped distribution
that is very common and occurs when a stochastic variable is determined by many independent
factors.

General linear model Multiple linear regression; predicting a dependent variable from a set of
independent variables according to a linear model.

Hemodynamic response function A model function of the increase in blood flow to active brain
neuronal tissue.

Indefinite As in indefinite integral; the integral of a function without specification of a domain.
Integrand Function that is integrated.
Inverse As in ‘inverse operation’ or ‘inverse function’, meaning the operation or function that achieves

the opposite effect of the original operation or function. For example, integration is the inverse
operation of differentiation and lnx and ex are each other’s inverse functions.

Limit Here: the boundaries of the domain for which the definite integral is determined.
Multiple integral Definite integral over multiple variables.
Numerical integration Estimating the value of a definite integral using computer algorithms.
Primitive Anti-derivative.
Stochastic variable A variable whose value depends on an outcome, for example the result of a coin

toss, or of throwing a dice.
Triple integral Multiple integral with three variables of integration.

Symbols Used in This Chapter (in Order of Their Appearance)

Ð
. Indefinite integral

ðb

a

:

Definite integral between the limits a and b

arctan Inverse of tangent function
arcsin Inverse of sine function
� Approximately equal to

Overview of Equations for Easy Reference

Indefinite integral

f(x)¼ Ð
f 0(x)dx
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Basic indefinite integrals

f xð Þ ¼ A constantð Þ, Ð
f xð Þdx ¼ Axþ C

f xð Þ ¼ xn , n2ℂ ^ n 6¼ �1,
Ð
f xð Þdx ¼ xnþ1

nþ 1
þ C

f xð Þ ¼ eax , a2ℂ ^ a 6¼ 0
Ð
f xð Þdx ¼ 1

a
eax þ C

f xð Þ ¼ 1
x

or x�1
� � Ð

f xð Þdx ¼ lnxþ C if x > 0
ln �xð Þ þ C if x < 0

�

f xð Þ ¼ sin ax, a2ℂ ^ a 6¼ 0,
Ð
f xð Þdx ¼ �1

a
cos axþ C

f xð Þ ¼ cos ax, a2ℂ ^ a 6¼ 0
Ð
f xð Þdx ¼ 1

a
sin axþ C

f xð Þ ¼ tan x,
Ð
f xð Þdx ¼ � ln cos xj j þ C

f xð Þ ¼ ax, a > 0 ^ a 6¼ 1,
Ð
f xð Þdx ¼ ax

ln a
þ C

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p ,
Ð
f xð Þdx ¼ ln xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p��� ���þ C

f xð Þ ¼ 1
x2 þ 1

,
Ð
f xð Þdx ¼ arctanxþ C

f xð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ,
Ð
f xð Þdx ¼ arcsinxþ C

Basic rules of integration

1. d
dx

Ð
f xð Þdx ¼ f xð Þ

2.
Ð

d
dx f xð Þdx ¼ f xð Þ þ C

3.
Ð
af(x)dx¼a

Ð
f(x)dx , if a is a constant

4.
Ð
[af(x)�bg(x)]dx¼a

Ð
f(x)dx�b

Ð
g(x)dx, if a and b are constants (linearity).

Definite integral ðb

a

f xð Þdx

where a and b are the limits of integration.

If F(x)¼ Ð
f(x)dx then

ðb

a

f xð Þdx ¼ F bð Þ � F að Þ or
ðb

a

f xð Þdx ¼ F xð Þjx¼a � F xð Þjx¼b

where F(x)|x¼a is F(x) for x¼a.
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Important rules for definite integrals

1.
ða

a

f xð Þdx ¼ 0

2.
ðb

a

f xð Þdx ¼ �
ða

b

f xð Þdx

3. If c2(a,b) then
ðb

a

f xð Þdx ¼
ðc

a

f xð Þdx þ
ðb

c

f xð Þdx

Integration by parts Ð
f(x)g 0(x)dx¼ f(x)g(x)� Ð

f 0(x)g(x)dx

Reverse chain rule Ð
h 0(x)g 0(h(x))dx¼g(h(x))+C

Expected value

a¼〈x〉¼ Ð
xP(x)dx

Convolution

f ∗ g½ � tð Þ ¼
ð1

�1
f τð Þg t � τð Þdτ

Cross-correlation

f ∗ g τð Þ ¼
ð1

�1
f ∗ tð Þg t þ τð Þdt

Answers to Exercises

7.1. a. 1
3 e

3t � cos 2t þ C
b. �3

x þ C
c. 4ln|x|+C
d. 4

3 x
3=2 þ C

e. �4x�
1
2 þ 5x þ C

f. 3x
ln 3 � ln cos xj j þ C
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7.2. a. 2
5

b. T
π

c. e 1
3e

2 � e þ 1
� �� 1

3

7.3. a. (x�1)2ex�2ex(x�1)+2ex+C¼ex(x2�4x+5)+C
b. �π

2
c. In this case, we suggest to use integration by parts twice. First, we write

f xð Þ ¼ ln xð Þ2, f 0 xð Þ ¼ 21x ln x. That leaves us with g 0(x)¼1, thus g(x)¼x.
So, applying integration by parts once, we find that:

Ð
ln xð Þ2dx ¼ x ln xð Þ2 � Ð

2x
x ln xdx ¼ x ln xð Þ2 � 2

Ð
ln xdx

The remaining integral on the right-hand side, we can solve by again applying
integration by parts. This time we choose f(x)¼ lnx, f

0
xð Þ ¼ 1

x, and as above g 0(x)¼1,
thus g(x)¼x. Ð

lnxdx¼x lnx� Ð
dx¼x lnx�x+C

So, we finally arrive at: Ð
(lnx)2dx¼x(lnx)2�2x lnx+2x+C

7.4. a. � 1
12 e

�4x3 þ C
b. �3ln|2+cosx|+C
c. 2

7

ffiffiffi
x

p þ 2ð Þ7 þ C
d. 3ln|ln|x||+C
e. 2

3

ffiffiffi
8

p � 1
� �

7.5. a. Use
h(x)¼x4, h’(x)¼4x3,
g’(h)¼eh , g(h)¼eh

The result is 1
4 e

x4 þ C

b. Use
h xð Þ ¼ 1

4 x
4, h’ xð Þ ¼ x3,

g’ hð Þ ¼ 1þ 4hð Þ3, g hð Þ ¼ 1
16 1þ 4hð Þ4

The result is 1
16 1þ x4
� �4 þ C
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Accelerometry, 81
Adjacency matrix, 129, 153
Adjoint matrix, 141
Arabic numerals, 2
Arithmetic rules for limits, 169, 170
Arrays, 129, 130
Asymptotic discontinuity, 170, 173

B
Basis vector principle, 155
BEDMAS (Brackets-Exponent-Division-

Multiplication-Addition-Subtraction), 7

C
Classes of numbers, 3–16

arithmetic with exponents and logarithms,
8–10

arithmetic with fractions, 5–7
numeral systems, 10–16

Column-matrices, 130
Common denominator, 5
Complex numbers, 4, 15, 16
Conjugate transpose, 137, 139, 153,

154, 156
Cramer’s rule, 39, 57, 142, 143, 158
Cross product, 109, 110, 112, 113

D

Definite integrals, 203–209
Denominator, 3
Dense matrix, 138
Derivatives, 174–176

differential and total, 183, 184
higher order, 180, 181
partial, 181–183
practical use, 184–191
and rules for differentiation, 177–180

Diagonal matrix, 137, 138, 147, 148, 153,
154, 156

Diffusion tensor imaging (DTI), 182
Domains, 167
Double integral, 209
2D sinusoidal waves, 84
Dynamic causal modeling, 190–191

E
Eigendecomposition, 156
Eigenvalues, 145, 146
Eigenvectors, 145, 146
Electromyography, 81
Equations, 27, 34–39

general definitions, 29
solving linear equations, 29–34

by elimination, 36–38
solving graphically, 38, 39
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Equations (cont.)
by substitution, 34–36
using Cramer’s rule, 39

types, 29
Euclidean length, 107
Euler’s formula, 72–74, 76, 79, 90
Exponent, 8

F

Factor multiplication rule, 58
Finite decimal numbers, 3

G
Gram-Schmidt (or Schmidt-Gram)

orthogonalization, 116

H
Hadamard product, 136, 153–155
Hermitian matrix, 137, 138, 156
Higher order derivatives, 180, 181

I

Identity matrix, 137, 138
Imaginary axis, 13
Indefinite integrals, 199–203, 206
Inequations, 50–54
Infinite decimal numbers, 3
Integrals, 199–200

definite, 203–209
indefinite, 200–203
multiple, 208–209

Integration techniques, 209–219
integration by parts, 209–212
integration by reverse chain rule,

215–217
integration by substitution, 212–215

Intuitive definition of limit, 166, 167
Irrational, 3

K

Kronecker product, 136, 137, 153, 156

L

Least squares fitting, 187–189
Leslie matrix, 129, 153
Limits, 163–165

application, 172, 173
arithmetic rules, 169, 170
determining graphically, 167–169
at infinity, 170–172
intuitive definition, 166, 167
special limits, 173, 174

Logarithmic equations, 48, 49
Logical matrix, 137, 138, 153
Lower-triangular matrix, 138

M
Mathematical symbols and formulas, 16–19

conventions for writing, 17
Latin and Greek letters, 17, 18
reading formulas, 17–19

Matrices, 129
Matrices as transformations, 133–137
Matrix operations, 139–152

addition, 131, 132
alternative multiplication, 136, 137
applications, 139–152

diagonalization, 147, 148
Eigenvectors and eigenvalues, 145, 146
inverse and determinant, 139–144
SVD, 148–152

multiplication, 131–135
alternative, 136–137

subtraction, 131, 132
Moment arm, 112
Multiple integrals, 208–209

N

Normal matrix, 137, 138, 156
Null vector, 103
Numbers and mathematical symbols, 1, 2
Numerator, 3

O
Orthogonalize vector, 115, 116, 118, 119
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P

Partial derivatives, 181–183
Pythagoras’ theorem, 65

Q

Quadratic equation rule, 58
Quadratic equations, solving, 39–46

by factoring, 43–46
graphically, 41–42
using quadratic equation rule, 42, 43

Quadratic function, 184
Quadratic inequations, solving, 52–54

R
Rational equations, 46
Real axis, 13
Real numbers, 3
Roman numeral system, 10
Rotation matrix, 155
Row-matrices, 130

S

Scientific notation, 12
Shearing matrix, 155
Significant digits, 12
Singular value decomposition (SVD), 148–152
Skew-symmetric matrix, 138
Smooth function, 184
Solving linear equations, 29–34

by elimination, 36–38
solving graphically, 38, 39
by substitution, 34–36
using Cramer’s rule, 39

Sparse, 137, 143, 144, 154, 158
Sparse matrix, 138
Special matrices, 137–139

diagonal matrix, 137
Hermitian matrix, 137
identity matrix, 137

logical matrix, 137
normal matrix, 137
square matrix, 137
triangular matrix, 137
unit matrix, 137
unitary matrix, 137

Square matrix, 131, 135, 137, 140, 143, 145,
147–150, 153, 156

Substitution, 34
Symmetric matrix, 138

T

Transcendental equations, 47–49
Triangular matrix, 137, 154
Trigonometry, 61, 62

degrees and radians, 66, 67
Euler’s formula and trigonometric formulas,

72–74
Fourier analysis, 74–87
functions and definitions, 68–74
trigonometric ratios and angles, 63–67

Triple integral, 209

U
Unit matrix, 137, 154
Unitary matrix, 137, 138, 156
Upper-triangular matrix, 138

V
Vector, 99–120

covariance, 114
cross product, 109–113
linearly combination, 113
linearly dependent, 113
multiplication, 105–113
operations, 101–113
projection and orthogonalization, 115–119

Vertical axis, 13
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