
A Global Search Approach for Inducing Oblique
Decision Trees Using Differential Evolution

Rafael Rivera-Lopez1 and Juana Canul-Reich2(B)

1 Departamento de Sistemas y Computación, Instituto Tecnológico de Veracruz,
Veracruz, Mexico

rrivera@itver.edu.mx
2 División Académica de Informática y Sistemas,

Universidad Juárez Autónoma de Tabasco, Cunduacán, Mexico
juana.canul@ujat.mx

Abstract. This paper describes the application of a Differential Evolu-
tion based approach for inducing oblique decision trees in a global search
strategy. By using both the number of attributes and the number of class
labels in a dataset, this approach determines the size of the real-valued
vector utilized for encoding the set of hyperplanes used as test conditions
in the internal nodes of an oblique decision tree. Also a scheme of three
steps to map the linear representation of candidate solutions into feasible
oblique decision trees is described. Experimental results obtained show
that this approach induces more accurate classifiers than those produced
by other proposed induction methods.

Keywords: Machine learning · Classification · Evolutionary algorithms

1 Introduction

Evolutionary algorithms (EAs) are population-based search methods that have
been successfully applied for providing near-optimal solutions for many com-
putationally complex problems in almost all areas of science and technology.
The effectiveness of EAs is due to two factors: (1) they combine a clever explo-
ration of the search space to identify promising areas, and (2) they perform an
efficient exploitation of these areas aiming to improve the known solution or solu-
tions. EAs are inspired by evolutionary theories that synthesize the Darwinian
evolution through natural selection with the Mendelian genetic inheritance. In
particular, Differential Evolution (DE) algorithm is an EA designed for solv-
ing optimization problems with variables in continuous domains that, instead
of implementing traditional crossover and mutation operators, it applies a lin-
ear combination of several randomly selected candidate solutions to produce a
new solution [28]. DE has been applied for solving optimization problems aris-
ing in several domains of science and engineering including economics, medicine,
biotechnology, manufacturing and production, big data and data mining, etc.,
[25]. In data mining, DE has been utilized for constructing models of classifi-
cation [19], clustering [7], and rule generation [8] with the aim of identifying
c© Springer International Publishing AG 2017
M. Mouhoub and P. Langlais (Eds.): Canadian AI 2017, LNAI 10233, pp. 27–38, 2017.
DOI: 10.1007/978-3-319-57351-9 3



28 R. Rivera-Lopez and J. Canul-Reich

hidden relationships among known instances. DE has been used in conjunc-
tion with neural networks [19], support vector machines [20], bayesian classifiers
[13], instance based classifiers [12] and decision trees [30] for the induction of
classifiers.

In this paper, a differential evolution-based approach named DE-ODT for
inducing oblique decision trees in a global search strategy is described. The rep-
resentation scheme of candidate solutions used by DE-ODT allows to apply DE
operators without any modification, and the procedure for mapping a real-valued
chromosome into a feasible decision tree ensures to carry out an efficient search
in the solution space. DE-ODT is compared with three approaches for induc-
ing oblique decision trees: the Oblique Classifier 1 (OC1) [24], the Perceptron
Decision Tree (PDT) method [23], and the EFTI algorithm [32], and with the
J48 method [34]. Experimental results obtained in this work show that DE-ODT
induces more accurate classifiers than those found by the other methods. In order
to describe the implementation of DE-ODT method, this paper is organized as
follows: Sect. 2 describes the elements of differential evolution algorithm. The
use of evolutionary algorithms for inducing oblique decision trees is presented
in Sect. 3, and in Sect. 4 details of DE-ODT method with emphasis in both the
determination of the size of candidate solutions and the induction of feasible
oblique decision trees are given. Section 5 describes experimental results, and
finally, Sect. 6 gives conclusions and future work.

2 Differential Evolution Algorithm

DE is a population-based metaheuristic that evolves a set of candidate solutions
by applying evolutionary operators in order to find near-optimal solutions to
optimization problems. Each candidate solution is encoded using a real-valued
vector xi = (xi,1, xi,2, · · · , xi,m)T of m variables.

In this paper, the standard DE algorithm [28], named DE/rand/1/bin in
accordance to the nomenclature adopted for referencing DE variants, is used as
a procedure for oblique decision tree induction that implements a global search
strategy. DE/rand/1/bin uses the following evolutionary operators:

1. Mutation: Three randomly selected candidate solutions (xa, xb and xc) are
linearly combined, using Eq. (1), to yield a mutated solution xmut.

xmut = xa + F (xb − xc) (1)

where F is a scale factor for controlling the differential variation.
2. Crossover: The mutated solution is utilized to perturb another candidate

solution xcur using the binomial crossover operator defined as follows:

xnew,j =

{
xmut,j if r ≤ Cr ∨ j = k

xcur,j otherwise
; j ∈ {1, . . . ,m} (2)

where xnew,j , xmut,j and xcur,j are the values in the j-th position of xnew,
xmut and xcur, respectively, r ∈ [0, 1) and k ∈ {1, . . . ,m} are uniformly
distributed random numbers, and Cr is the crossover rate.



A Global Search Approach for Inducing Oblique DTs Using DE 29

3. Selection: xnew is selected as member of the new population if it has a better
fitness value than that of xcur.

DE/rand/1/bin, described in Algorithm1, starts with a population of ran-
domly generated candidate solutions whose values are uniformly distributed in
the range [xmin, xmax] as follows:

xi,j = xmin + r (xmax − xmin) ; i ∈ {1, . . . , NP} ∧ j ∈ {1, . . . ,m} (3)

where NP is the population size. New populations of candidate solutions are
iteratively created until a stop condition is reached and then the best solution of
the last population is returned. It can be observed that DE requires few control
parameters (Cr, F , and NP ) in comparison to other EAs.

Algorithm 1. Standard DE algorithm introduced in [28].
1: k ← 0
2: Xk ← ∅
3: for i in {1, . . . , NP} do
4: xi ← Randomly generated candidate solution using (3)
5: Xk ← Xk ∪ {xi}
6: end for
7: while stop condition is not reached do
8: k ← k + 1
9: Xk ← ∅

10: for cur in {1, . . . , NP} do
11: {xa,xb,xc} ← Randomly selected candidate solutions of Xk−1

12: xmut ← Mutated candidate solution using (1)
13: xnew ← Perturbed candidate solution of xcur using (2)

14: xsel ←
{
xnew if fitness(xnew) is better than fitness(xcur)

xcur otherwise

15: Xk ← Xk ∪ {xsel}
16: end for
17: end while
18: return The best candidate solution in Xk

3 EAs for Inducing Oblique Decision Trees

A decision tree (DT) is a hierarchical structure composed of a set of nodes
containing both test conditions (internal nodes) and class labels (leaf nodes) that
are joined by arcs representing the possible result values of each test condition.
A DT is a classification model induced through a set of training instances which
is used for predicting the class membership of new unclassified instances. Each
training instance is encoded as a vector v = (v1, v2, . . . , vd, c)

T of d variables
(attributes or features) and a label c that determines the class membership of



30 R. Rivera-Lopez and J. Canul-Reich

the instance. The simplicity and the high level of interpretability of a DT along
with its predictive power has made it one of the most widely used classifiers.

The number of attributes used in the test conditions of a DT determines
its type (univariate or multivariate). Since efficient induction methods such as
CART [5] and C4.5 [27] generate univariate DTs (also called axis-parallel DTs)
it is the most known type of DTs. On the other hand, oblique DTs and non-
linear DTs are multivariate DTs in which a linear combination and a nonlinear
composition of attributes in test conditions is utilized, respectively. In partic-
ular, oblique DTs use a set of not axis-parallel hyperplanes for splitting the
instance space in order to predict the class membership of unclassified instances.
A hyperplane is defined as follows:

d∑
i=1

xivi + xd+1 > 0 (4)

where vi is the value of attribute i, xi is a real-valued coefficient used in the
hyperplane and xd+1 represents the independent term. Oblique DTs are generally
smaller and more accurate than univariate DTs but they are generally more
difficult to interpret [6].

EAs have been previously applied for DT induction (DTI) and there exist sev-
eral surveys that describe their implementation [2,11]. Some approaches imple-
ment a recursive partitioning strategy in which an EA is used for finding a
near-optimal test condition for each tree internal node [6], however, the app-
roach most commonly used is to perform a global search in the solution space
with the aim of finding near-optimal DTs [3,17,18,23,31–33]. A genetic algo-
rithm (GA) is an EA that generally employs a linear representation of candidate
solutions and its implementation for DTI is associated to the problem of map-
ping an oblique DT from a linear structure [17]. However, with the application
of special genetic operators, GA can use a tree representation for DTI [3,18].
An special GA that evolves a unique candidate solution is used in EFTI method
[32] for inducing a complete oblique DT. Furthermore, DE has been utilized for
finding the parameter settings of a DTI method [30] and for constructing both
univariate DTs [31] and oblique DTs [23]. Finally, since genetic programming
(GP) represents its candidate solutions as trees, standard GP [22] and GP vari-
ants such as strongly-typed GP [4] and grammar-based GP [1] have been applied
for oblique DTI.

4 DE-ODT Method for Inducing Oblique DTs

DE-ODT is proposed in this paper as a method for oblique DTI in a global search
strategy that evolves a population of candidate solutions encoded as fixed-length
real-valued vectors. A similar approach known as PDT method is described
in [23] but, although DE-ODT and PDT share the same objective and both
implement a global search strategy for DTI with DE, substantial differences in
the representation scheme used in DE-ODT allows for induction of more accurate



A Global Search Approach for Inducing Oblique DTs Using DE 31

and compact oblique DTs than PDT and other similar approaches. In the next
paragraphs the main elements of DE-ODT method are described.

4.1 Global Search Strategy to Generate Near-Optimal Oblique DTs

The great majority of algorithms for DTI apply a recursive partitioning strat-
egy that implements some splitting criterion in order to separate the training
instances. Several studies point out that this strategy has three fundamental
problems: overfitting [14], selection bias towards multi-valued attributes [15]
and instability to small changes in the training set [29]. On the other hand,
algorithms that implement a global search strategy can ensure a more efficient
exploration of the solution space although it is known that building optimal DTs
is NP-Hard [16].

DE-ODT implements a global search strategy with the aim of construct-
ing more accurate oblique DTs, and also for overcoming the inherent problems
of the recursive partitioning strategy. Since oblique DTs use hyperplanes with
real-valued coefficients as test conditions, the search for near-optimal oblique
DTs can be considered a continuous optimization problem, and DE has proven
to be a very competitive approach for solving this type of problems. Although
other metaheuristic-based approaches have been previously used for classifica-
tions tasks, DE-ODT is introduced in this work as a simple and straightforward
method in which DE is applied for finding near-optimal solutions, and where
each real-valued chromosome encodes only a feasible oblique DT.

4.2 Linear Representation of Oblique DTs

Two schemes for encoding candidate solutions in EAs can be used: tree or lin-
ear representation. When tree representation is adopted, special crossover and
mutation operators must be implemented in order to ensure the construction
of only feasible candidate solutions [3,18]. An advantage of this representation
is that EAs can evolve DTs with different sizes but it is known that crossover
has a destructive effect on the offsprings [18]. On the other hand, if a linear
representation is utilized then a scheme for mapping the sequence of values into
a DT must be applied [17]. The main advantage of linear representation is that
it is applied for encoding candidate solutions in several EAs such as GA, DE
and evolutionary strategies and they can be implemented for DTI without any
modification. Nevertheless, since these EAs use a fixed-length representation, it
is necessary to define a priori this length and this can limit the performance of
the induced DTs.

In DE-ODT method each candidate solution encodes only the internal nodes
of a complete binary oblique DT stored in breadth-first order in a fixed-length
real-valued vector (Fig. 1). This vector encodes the set of hyperplanes used as test
conditions of the oblique DT. Vector size is determined using both the number
of attributes and the number of class labels.



32 R. Rivera-Lopez and J. Canul-Reich

Fig. 1. Linear encoding scheme for the internal nodes of a complete binary tree.

4.3 Estimated Number of Tree Internal Nodes

Since each internal node of an oblique DT has a hyperplane as test condition,
the size of real-valued vector used for encoding each candidate solution is fixed
as ne(d + 1), where ne is the estimated number of internal nodes of a complete
binary DT and d is the number of attributes of the training set. Considering
that: (1) an oblique DTs is more compact than an univariate DTs when they
are induced with the same training set, and (2) the DT size is related to the
structure of the training set, DE-ODT determines the value of ne using both
the number of attributes (d) and the number of class labels (k) in the training
set. If, for one complete binary DT, h is the depth, ni is the number of internal
nodes and nl is the number of leaf nodes, respectively, then d and k can be
used as lower bounds for ni and nl (ni = 2h−1 − 1 ≥ d and nl = 2h−1 ≥ k),
respectively. Using these relations, two estimated depths (hi = �log2 (d + 1)+1�
and hl = �log2 (k) + 1�) are calculated and ne is obtained as follows:

ne = 2max(hi,hl)−1 − 1 (5)

4.4 Induction of Feasible Oblique DTs

Since the training set must be utilized for inducing one DT, DE-ODT uses it
for mapping each candidate solution into a feasible oblique DT, including its
leaf nodes. DE applies the training accuracy of a DT as fitness value within the
evolutionary process. The induction of a feasible oblique DT (Fig. 2) in DE-ODT
has three steps:

1. Construction: First, an empty complete binary DT with ne nodes (7 nodes
in example of Fig. 2) is created. Then, the coefficient values of a hyperplane
are assigned to each node in this DT by applying the next criterion: Values
on positions {1, . . . , d + 1} of this vector are used in the hyperplane of the
first node, values on positions {d + 2, . . . , 2d + 2} are used in the hyperplane
of the second node, and so on.

2. Assignment: One instance set is assigned to a node (the complete training
set for the root node of the tree) and it is labeled as an internal node. For
evaluating each instance in this set using the hyperplane associated to the



A Global Search Approach for Inducing Oblique DTs Using DE 33

Fig. 2. Construction and assignment of a feasible oblique DT.

internal node, two instance subsets are created and they are assigned to the
successor nodes of this node. This assignment is repeated for each node of the
DT. If the internal node is located at the end of a branch of the DT (node
4 in Fig. 2, for example), then two leaf nodes are created and are designated
children of the ending node of the branch. The subsets created are assigned
to these leaf nodes. On the other hand, if all instances in the set assigned to
the internal node have the same class label, it is labeled as a leaf node (nodes
3 and 5 in Fig. 2) and its successor nodes are removed, if they exist (nodes 6
and 7 in Fig. 2).

3. Pruning: Finally, when the assignment of training instances is completed, a
pruning procedure is applied for removing tree branches in order to improve
the accuracy of the DT induced.

These steps allow to induce feasible oblique DTs with different number of
nodes, although the candidate solutions are encoded using fixed-length real-
valued vectors.

5 Experiments

In order to evaluate the performance of DE-ODT method and for comparison to
other approaches, two experiments were conducted using several datasets with
numerical attributes chosen from UCI repository [21]. DE-ODT is implemented
in Java language using the JMetal library [10]. The parameters used in the

Table 1. Parameters used in experiments with DE-ODT.

Parameter Value Parameter Value

Scale factor 1 Num. of generations 50

Crossover rate 0.9 Population size 20
√
d (proposed in [6])

Fitness function DT accuracy Pruning method Reduced error pruning [26]



34 R. Rivera-Lopez and J. Canul-Reich

experiments are described in Table 1 and the datasets are described in the first
four columns of Tables 2 and 3.

In the first experiment, DE-ODT is compared to PDT and J48 methods using
the sampling procedure described in [23]: Each dataset is randomly divided into
two sets, 85% of instances are used for training and the rest are used for testing.
30 independent runs of each dataset are conducted. For each run, an oblique
DT is induced and its test accuracy is calculated. Both average accuracy and
average DT size across these 30 runs are obtained. This experimental scheme
is replicated using three induction methods: DE-ODT, PDT and J48. Table 2
shows the experimental results1: Column 5 shows the average accuracy reported
by [23]. Columns 6 and 7 show the average accuracy and the average DT size
produced by DE-ODT method and the results obtained by J48 are shown in
columns 8 and 9. In this table can be observed that accuracies obtained by
DE-ODT method are better than: (1) the accuracies produced by J48 for all
datasets, and (2) the accuracies reported by PDT for 7 of 8 datasets. DE-ODT
produces more compact oblique-DTs than those produced for J48. In the case
of DT size for PDT method, these results were not reported in [23]. Figure 3(a)
shows a comparative plot of the average accuracies obtained.

Table 2. Results obtained for PDT, DE-ODT and J48.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

PDT DE-ODT J48

Dataset Inst. Attr. Classes Acc. Acc. Size Acc. Size

Breast tissue 106 9 6 39.92 64.44 5.97 33.70 7.6

Vertebral column 310 6 2 84.11 93.04 2.90 79.29 5.0

Ecoli 336 7 8 76.73 87.33 5.83 80.47 9.1

Glass 214 9 7 58.08 71.04 7.03 64.42 11.5

Hill valley 1212 100 2 99.45 81.35 3.83 50.49 1.0

Iris 150 4 3 94.35 99.97 3.37 93.77 3.5

Libras movement 360 90 15 31.85 56.34 26.1 55.80 26.2

Sonar 208 60 2 77.29 94.73 4.03 71.13 5.4

In the second experiment, DE-ODT is compared to OC1 and EFTI methods
using 5 independents runs of 10-fold stratified cross-validation. EFTI is a novel
approach that reports better results with several datasets than other EA-based
algorithms. Results are shown in Table 3: Columns 5–8 show the average accuracy
and the average DT size reported in [32] for both OC1 and EFTI methods.
Columns 9 and 10 show the average accuracy and the average DT size produced
by DE-ODT method. In Table 3 can be observed that the accuracies obtained
for DE-ODT are better than those obtained by both EFTI and OC1 methods

1 Highest values for each dataset are in bold.



A Global Search Approach for Inducing Oblique DTs Using DE 35

in 10 of 13 datasets, although the DT size are slightly larger than the DT size
reported for EFTI method. Figure 3(b) shows a comparative plot of the average
accuracies obtained in this experiment.

Table 3. Results obtained by OC1, EFTI and DE-ODT.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

OC1 EFTI DE-ODT

Dataset Inst. Attr. Classes Acc. Size Acc. Size Acc. Size

Breast-w 683 9 2 95.53 3.68 96.59 2.02 99.56 3.48

Diabetes 768 8 2 73.03 6.54 74.94 2.35 81.25 3.70

Glass 214 9 7 62.04 13.12 70.82 7.31 75.05 7.22

Iris 150 4 3 95.60 3.54 94.13 3.00 100.00 3.20

Vehicle 846 18 4 68.16 33.54 68.75 5.44 55.51 6.70

Vowel 990 10 11 74.55 51.68 54.90 17.86 55.11 9.96

Heart-statlog 270 13 2 76.30 4.70 81.28 2.12 83.70 3.38

Australian 690 14 2 83.63 6.10 84.51 2.28 77.10 4.08

Balance-scale 625 4 3 71.58 3.08 87.85 2.40 92.70 3.06

Ionosphere 351 34 2 88.26 6.18 86.39 2.49 97.61 6.26

Sonar 208 60 2 70.39 6.76 74.64 2.38 96.54 5.38

Liver-disorders 345 6 2 67.23 5.38 70.36 2.33 81.97 2.92

Page-blocks 5473 10 5 97.05 23.78 93.16 2.04 97.17 5.12

In order to evaluate the performance of DE-ODT a statistical test of the
results obtained was realized. Friedman test is applied for detecting the exis-
tence of significant differences between the performance of two or more methods
and the Nemenyi post-hoc test is utilized for checking these differences. Nemenyi
test uses the average ranks of each classifier and checks for each pair of classifiers

(a) First experiment (b) Second experiment

Fig. 3. Average accuracies obtained in experiments.



36 R. Rivera-Lopez and J. Canul-Reich

whether the difference between their ranks is greater than the critical difference(
CD = qα

√
k(k + 1)/(6N)

)
defined in [9], where k is the number of methods,

N is the number of datasets, and qα is a critical value associated of the signifi-
cance level α. For the first experiment, Friedman statistic for 3 methods using
8 datasets is 9.75 and the p-value obtained is 0.007635 for 2◦ of freedom (dof)
of chi-square distribution. This p-value indicates the existence of statistical dif-
ferences between these methods and then Nemenyi test post-hoc is conducted.
Figure 4(a) shows the CDs obtained for Nemenyi test and it shown as well that
DE-ODT has better performance than PDT and J48. For the second experiment,
Friedman statistic for 3 methods using 13 datasets is 8.0, the p-value is 0.01832
with 2 dof and it also indicates statistical differences between these methods.
Figure 4(b) shows the CDs obtained for Nemenyi test and in it can be observed
that DE-ODT has better performance than EFTI and OC1 methods.

(a) First experiment (b) Second experiment

Fig. 4. Comparison of classifiers using Nemenyi post-hoc test.

6 Conclusions

In this paper, a DE-based method implementing a global search strategy for
finding a near-optimal oblique DTs is introduced. This search strategy ensures
a more efficient exploration of solution space in order to reach more compact
and accurate DTs. DE-ODT uses a fixed-length linear representation of oblique
DTs that permits to apply DE operators without any modification. By using the
training set in the mapping scheme implemented in this work, the induction of
feasible oblique DTs is guaranteed. DE-ODT was evaluated using two sampling
procedures with several UCI datasets and statistical tests suggest that DE-ODT
achieves a better performance than other induction methods. In general, since
DE-ODT uses DE for constructing oblique DTs, it induces more accurate oblique
DTs than those produced by other proposed induction methods. Based on our
results, future work will be oriented to evaluate other DE variants for inducing
oblique DTs and to investigate the effect of using several parameter configura-
tions on the DE-ODT performance, also more experiments will be conducted
for analyzing the DE-ODT execution time, as well as to compare the DE-ODT
performance with those obtained by other classification methods such as random
forest and support vector machines.

Acknowledgments. This work has been supported by the Mexican Government
(CONACyT FOMIX-DICC project No. TAB-2014-C01-245876 and the PROMEP-SEP
project No. DSA/103.5/15/6409).



A Global Search Approach for Inducing Oblique DTs Using DE 37

References

1. Agapitos, A., O’Neill, M., Brabazon, A., Theodoridis, T.: Maximum margin deci-
sion surfaces for increased generalisation in evolutionary decision tree learning. In:
Silva, S., Foster, J.A., Nicolau, M., Machado, P., Giacobini, M. (eds.) EuroGP
2011. LNCS, vol. 6621, pp. 61–72. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20407-4 6

2. Barros, R.C., Basgalupp, M.P., Carvalho, A., Freitas, A.A.: A survey of evolution-
ary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern.-Part
C: Appl. Rev. 42(3), 291–312 (2012). doi:10.1109/TSMCC.2011.2157494

3. Basgalupp, M.P., Barros, R.C., de Carvalho, A.C., Freitas, A.A.: Evolving deci-
sion trees with beam search-based initialization and lexicographic multi-objective
evaluation. Inf. Sci. 258, 160–181 (2014). doi:10.1016/j.ins.2013.07.025

4. Bot, M.C.J., Langdon, W.B.: Improving induction of linear classification trees
with genetic programming. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E.,
Spector, L., Parmee, I.C., Beyer, H.G. (eds.) GECCO-2000, pp. 403–410. Mor-
gan Kaufmann, Burlington (2000)

5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression
Trees. Taylor & Francis, Abingdon (1984)

6. Cantú-Paz, E., Kamath, C.: Inducing oblique decision trees with evolutionary algo-
rithms. IEEE Trans. Evol. Comput. 7(1), 54–68 (2003). doi:10.1109/TEVC.2002.
806857

7. Das, S., Abraham, A., Konar, A.: Automatic clustering using an improved differ-
ential evolution algorithm. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum.
38(1), 218–237 (2008). doi:10.1109/tsmca.2007.909595

8. De Falco, I.: Differential evolution for automatic rule extraction from medical data-
bases. Appl. Soft Comput. 13(2), 1265–1283 (2013). doi:10.1016/j.asoc.2012.10.022

9. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7(Dec), 1–30 (2006)

10. Durillo, J.J., Nebro, A.J.: jMetal: a Java framework for multiobjective optimiza-
tion. Adv. Eng. Softw. 42(10), 760–771 (2011). doi:10.1016/j.advengsoft.2011.05.
014

11. Espejo, P.G., Ventura, S., Herrera, F.: A survey on the application of genetic
programming to classification. IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev.
40(2), 121–144 (2010). doi:10.1109/TSMCC.2009.2033566

12. Garćıa, S., Derrac, J., Triguero, I., Carmona, C.J., Herrera, F.: Evolutionary-based
selection of generalized instances for imbalanced classification. Knowl.-Based Syst.
25(1), 3–12 (2012). doi:10.1016/j.knosys.2011.01.012

13. Geetha, K., Baboo, S.S.: An empirical model for thyroid disease classification using
evolutionary multivariate Bayesian prediction method. Glob. J. Comput. Sci. Tech-
nol. 16(1), 1–9 (2016)

14. Hawkins, D.M.: The problem of overfitting. ChemInform 35(19) (2004). doi:10.
1002/chin.200419274

15. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional
inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006). doi:10.1198/
106186006x133933

16. Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP-complete.
Inf. Process. Lett. 5(1), 15–17 (1976). doi:10.1016/0020-0190(76)90095-8

17. Kennedy, H.C., Chinniah, C., Bradbeer, P., Morss, L.: The contruction and evalua-
tion of decision trees: a comparison of evolutionary and concept learning methods.
In: Corne, D., Shapiro, J.L. (eds.) AISB EC 1997. LNCS, vol. 1305, pp. 147–161.
Springer, Heidelberg (1997). doi:10.1007/BFb0027172

http://dx.doi.org/10.1007/978-3-642-20407-4_6
http://dx.doi.org/10.1007/978-3-642-20407-4_6
http://dx.doi.org/10.1109/TSMCC.2011.2157494
http://dx.doi.org/10.1016/j.ins.2013.07.025
http://dx.doi.org/10.1109/TEVC.2002.806857
http://dx.doi.org/10.1109/TEVC.2002.806857
http://dx.doi.org/10.1109/tsmca.2007.909595
http://dx.doi.org/10.1016/j.asoc.2012.10.022
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://dx.doi.org/10.1109/TSMCC.2009.2033566
http://dx.doi.org/10.1016/j.knosys.2011.01.012
http://dx.doi.org/10.1002/chin.200419274
http://dx.doi.org/10.1002/chin.200419274
http://dx.doi.org/10.1198/106186006x133933
http://dx.doi.org/10.1198/106186006x133933
http://dx.doi.org/10.1016/0020-0190(76)90095-8
http://dx.doi.org/10.1007/BFb0027172


38 R. Rivera-Lopez and J. Canul-Reich

18. Kr ↪etowski, M., Grześ, M.: Evolutionary learning of linear trees with embedded
feature selection. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M.
(eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 400–409. Springer, Heidelberg
(2006). doi:10.1007/11785231 43

19. Leema, N., Nehemiah, H.K., Kannan, A.: Neural network classifier optimization
using differential evolution with global information and back propagation algorithm
for clinical datasets. Appl. Soft Comput. 49, 834–844 (2016). doi:10.1016/j.asoc.
2016.08.001

20. Li, J., Ding, L., Li, B.: Differential evolution-based parameters optimisation and
feature selection for support vector machine. Int. J. Comput. Sci. Eng. 13(4), 355–
363 (2016)

21. Lichman, M.: UCI Machine Learning Repository (2013). University of California,
Irvine. http://archive.ics.uci.edu/ml

22. Liu, K.H., Xu, C.G.: A genetic programming-based approach to the classification
of multiclass microarray datasets. Bioinformatics 25(3), 331–337 (2009). doi:10.
1093/bioinformatics/btn644

23. Lopes, R.A., Freitas, A.R.R., Silva, R.C.P., Guimarães, F.G.: Differential evolution
and perceptron decision trees for classification tasks. In: Yin, H., Costa, J.A.F.,
Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 550–557. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32639-4 67

24. Murthy, S.K., Kasif, S., Salzberg, S., Beigel, R.: OC1: a randomized algorithm for
building oblique decision trees. In: Proceedings of AAAI 1993, vol. 93, pp. 322–327
(1993)

25. Plagianakos, V.P., Tasoulis, D.K., Vrahatis, M.N.: A review of major application
areas of differential evolution. In: Chakraborty, U.K. (ed.) Advances in Differential
Evolution. SCI, vol. 143, pp. 197–238. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68830-38

26. Quinlan, J.R.: Simplifying decision trees. Int. J. Hum.-Comput. Stud. 27(3), 221–
234 (1987). doi:10.1006/ijhc.1987.0321

27. Quinlan, J.R.: C4.5: Programs forMachineLearning.MorganKaufmann,Burlington
(1993)

28. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997). doi:10.
1023/A:1008202821328

29. Strobl, C., Malley, J., Tutz, G.: An introduction to recursive partitioning: rationale,
application, and characteristics of classification and regression trees, bagging, and
random forests. Psychol. Methods 14(4), 323–348 (2009). doi:10.1037/a0016973

30. Tušar, T.: Optimizing accuracy and size of decision trees. In: ERK-2007, pp. 81–84
(2007)

31. Veenhuis, C.B.: Tree based differential evolution. In: Vanneschi, L., Gustafson, S.,
Moraglio, A., Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 208–
219. Springer, Heidelberg (2009). doi:10.1007/978-3-642-01181-8 18

32. Vukobratović, B., Struharik, R.: Evolving full oblique decision trees. In: CINTI
2015, pp. 95–100. IEEE (2015). doi:10.1109/CINTI.2015.7382901

33. Wang, P., Tang, K., Weise, T., Tsang, E.P.K., Yao, X.: Multiobjective genetic
programming for maximizing ROC performance. Neurocomputing 125, 102–118
(2014). doi:10.1016/j.neucom.2012.06.054

34. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques. Morgan Kaufmann, Burlington (2005)

http://dx.doi.org/10.1007/11785231_43
http://dx.doi.org/10.1016/j.asoc.2016.08.001
http://dx.doi.org/10.1016/j.asoc.2016.08.001
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1093/bioinformatics/btn644
http://dx.doi.org/10.1093/bioinformatics/btn644
http://dx.doi.org/10.1007/978-3-642-32639-4_67
http://dx.doi.org/10.1007/978-3-540-68830-38
http://dx.doi.org/10.1007/978-3-540-68830-38
http://dx.doi.org/10.1006/ijhc.1987.0321
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1037/a0016973
http://dx.doi.org/10.1007/978-3-642-01181-8_18
http://dx.doi.org/10.1109/CINTI.2015.7382901
http://dx.doi.org/10.1016/j.neucom.2012.06.054

	A Global Search Approach for Inducing Oblique Decision Trees Using Differential Evolution
	1 Introduction
	2 Differential Evolution Algorithm
	3 EAs for Inducing Oblique Decision Trees
	4 DE-ODT Method for Inducing Oblique DTs
	4.1 Global Search Strategy to Generate Near-Optimal Oblique DTs
	4.2 Linear Representation of Oblique DTs
	4.3 Estimated Number of Tree Internal Nodes
	4.4 Induction of Feasible Oblique DTs

	5 Experiments
	6 Conclusions
	References


