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Abstract. Many traditional relation extraction techniques require a large num-
ber of pre-defined schemas in order to extract relations from textual documents.
In this paper, to avoid the need for pre-defined schemas, we employ the notion of
universal schemas that is formed as a collection of patterns derived from Open
Information Extraction as well as from relation schemas of pre-existing datasets.
We then employ matrix factorization and collaborative filtering on such universal
schemas for relation extraction. While previous systems have trained relations
only for entities, we exploit advanced features from relation characteristics such
as clause types and semantic topics for predicting new relation instances. This
helps our proposed work to naturally predict any tuple of entities and relations
regardless of whether they were seen at training time with direct or indirect access
in their provenance. In our experiments, we show improved performance com-
pared to the state-of-the-art.

Keywords: Matrix factorization � Universal schema � Relation extraction �
Topic modeling

1 Introduction

Relation Extraction (RE) aims at determining the relationships between entities in
textual documents and is among the more important tasks of information extraction that
has been applied in a large number of applications such as question-answering, and
search engines, among others. In this context, most supervised and semi-supervised
extraction methods use a predefined, finite and fixed schema of relation types (such as
located-in or founded-by). Among the supervised methods, the works in [8, 21] have
focused on performing language analysis for semantic relation extraction. A running
theme among these techniques is the capacity to generate linguistic features based on
syntactic, dependency, or shallow semantic structures of the text. Semi-supervised
approaches have been employed by various researchers [7, 12, 18] to extract patterns
derived initially from rule-based relations. These approaches exploit the concept of
information redundancy and hypothesize that similar relations tend to appear in uni-
form contexts. However, most of these systems are limited in terms of scalability and
portability across domains by predefined and fixed schema of relation types.

In contrast, Open Information Extraction (OIE) [5, 6, 11, 19] systems offer a more
nuanced approach that rely minimally on background knowledge and manually labeled
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training data. OIE systems require no supervision for performing highly scalable
extractions and are often portable across domains. Distant supervision [1, 15, 16] aims
to exploit information from knowledge bases such as Freebase in order to learn
large-scale relations from text. Heuristic method [16] has been employed to generate
training relations by mapping phrases to their corresponding entities in KBs. Depen-
dence on pre-existing datasets in distant supervision approaches can be avoided by
using language itself as the source for the universal schema. To this end, Riedel et al.
[15] have already presented a model based on matrix factorization with universal
schemas for predicting relations. These authors presented a series of models that learn
lower dimensional manifolds for tuple of entities and relations with a set of weights in
order to capture direct correlations between relations. While these approaches have
shown reasonable performance, their limitation is in that they train cells only for tuple
of entities, and therefore, are limited when an insufficient number of evidences are
present for the entities present in the relations. For instance, the relation OBAMA–
president-of–US could not infer the hidden relation HOLLANDE-president-of-
FRANCE due to differences of the tuples <(OBAMA, US)> and <(HOLLANDE,
FRANCE)>. Even if entity types are exploited in the system, the failure to predict other
relations such as OBAMA–born-in–US with similar tuple of entities can be prob-
lematic in such systems.

In this paper, we exploit advanced features from relation characteristics, namely
clause types and semantic topics to enrich the cells in the matrix of a matrix factor-
ization model for predicting new relation instances. Particularly, we exploit clause
types and topic models to predict relations regardless of whether they were seen at
training time with direct or indirect access. Our work uses the concept of universal
schema from [15] in order to convert the KB combined with OIE patterns into a binary
matrix in which tuples of entities are its rows and relations denote the columns.

The rest of this paper is organized as follows. Section 2 presents background on
relation extraction with matrix factorization and collaborative filtering. In Sect. 3, we
present a detailed description of several models with feature enrichments in matrix
models. This is followed by an in-depth discussion of experimental results in Sect. 4,
where the results are compared to the state-of-the-art. Section 5 finalizes the paper with
conclusions and future work.

2 Background

The application of matrix factorization and collaborative filtering methods in relation
extraction aims at predicting hidden relations that might not have been directly
observed. Kemp et al. [9] used Infinite Relational Model (IRM) in order to build a
framework to discover latent relations jointly from an n-dimensional matrix. In this
matrix, each dimension has a latent structure through which relations can be found.
Bollegala et al. [3] try to explore clusters of entity pairs and patterns jointly as latent
relations by employing co-clustering. Takamatsu et al. [17] use probabilistic matrix
factorization with Singular Value Decomposition to reduce dimensions to discover
relations. Riedel et al. [15] use matrix factorization and collaborative filtering by
including surface patterns in a universal schema and a ranking objective function to
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learn latent vectors for tuple of entities and relations. In their systems, they use surface
patterns extracted from OIE. The goal of these systems is to predict the hidden relations
through matrix completion. Our work is similar to [15] in that we use matrix factor-
ization and collaborative filtering for the discovery of potential relations. Given the fact
that the work in [15] populate the matrix cells only for entity pairs, they can fall short
when predicting latent relations that do not have sufficient evidence from observed
relation instances. In our work, we represent universal schemas in the form of a matrix
where tuples of entities form the rows and relations constitute the columns. We further
employ advanced features from relation characteristics such as clause types and
semantic topics for enriching the cells in the matrix to predict new relation instances
(See Fig. 1).

Open Information Extraction (OIE) [5, 6, 11, 19] is another closely related area of
research to our work. The majority of OIE systems use a shallow syntactic represen-
tation or dependency parsing in the form of verbs or verbal phrases and their argu-
ments. Wu and Weld [20] propose a shallow syntactic representation of natural
language text in the form of verbs or verbal phrases and their arguments. Besides that,
there have been several approaches [11, 18, 20] that employ robust and efficient
dependency parsing for relation extraction. More recent OIE systems such as ClausIE
[5] use dependency parsing and a small set of domain-independent lexica without any
post-processing or training data. At the outset, these systems exploit linguistic
knowledge about the grammar of the English language to first detect clauses in an input

Fig. 1. (A) Universal schema with relation and tuples, 1 denotes observed relation, values 0.97,
0.93 are predicted probability of the relation; (B) Examples of observed cells and predicted cells.
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sentence and to subsequently identify each clause type based on the grammatical
function of its constituents. In our work, for surface patterns of the matrix, we use OIE
patterns for populating relations of all kinds in the matrix. We exploit clause-based
features extracted from OIE (ClausIE) combined with topic models (LDA), which are
used as important characteristics for predicting potential relations.

The work in distant supervision [1, 15, 16] aim at exploiting knowledge bases
(KBs) such as Freebase to learn relations. Heuristic method [16] is employed to gen-
erate training relations by mapping pairs of mentioned entities in a sentence to cor-
responding entities in a KB. As a result, such methods do not require labeled corpora,
avoid being domain dependent, and allow the use of any size of documents. These
methods learn extracted relations for a known set of relations. Universal schema [15]
employs the notion of distant supervision by using a knowledge base to derive simi-
larity between both structured relations such as “LocatedAt” and surface form relations
such as “is located at” extracted from text. Factorization of the matrix with universal
schemas results in low-dimensional factors that can effectively predict unseen relations.
Our work is close to [15] in that we convert the KB into a binary matrix with tuple of
entities corresponding to the rows and relations corresponding to the columns in the
matrix.

3 The Proposed Approach

Riedel et al. [15] have presented a universal schema to build a matrix, which is a union
of patterns extracted by OIE from text and fixed relations from knowledge bases. In our
work, we use clause-based OIE [5] to extract surface patterns with fully-enriched
clause feature structures. Our task is to predict the hidden relations by completing the
schema in the matrix over surface patterns and fixed relations. Using the same notation
as [15], we use T and R to correspond to entity tuples and relations. Given a relation
r 2 R and a tuple t 2 T , the objective of our work is to derivea fact or relation instance
about a relation r and a tuple of two entities e1 and e2. A matrix is constructed with size
|T| � |R| for relation instances. Each matrix cell presents a fact as xr;t and is a binary
variable. The variable in each cell of the matrix is 1 when relation r is true for the tuple
t, and 0 when relation r is false for t. We aim at predicting new relations that could
potentially hold for tuple of entities, which are missing in the matrix. We present
several models that can address the task as follows.

3.1 Matrix Factorization (F Model)

In the matrix factorization approach, we denote each relation by ar and each tuple of
entities as et. We measure compatibility between relation r and tuple t as the dot
product of two latent feature representations of size k. Thus we have:

hr;t ¼
X
k

ar;ket;k ð1Þ
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The formula is factorizing a matrix into a multiplication of two matrices H = AE,
A denoting the lower dimension matrix of ar, and E representing the lower dimension
matrix of et based on PCA [4]. Thus, a model with the matrix H = ðhr;tÞ of natural
parameters is defined as the low rank factorization AE. To estimate the values in PCA,
we have:

xr;t ¼ r hr;t
� � ¼ r

X
k

ar;ket;k

 !
ð2Þ

This is applying a logistic function rðhr;tÞ¼ 1=ð1þ expð�hr;tÞÞ [4, 14, 15] to
model a binary cell in the matrix. Each cell is drawn from a Bernoulli distribution with
natural parameter hr;t. We maximize the log-likelihood of the observed cells under a
probabilistic model to learn low dimensional representations. The representations ar
and et can be found by minimizing the negative log-likelihood using stochastic gradient
descent with xr;t ¼ rðhr;tÞ. This formulation also applies to all the following models as
well.

3.2 Neighbor Model (N Model)

In the matrix, a relation in a column could be neighbor to some other co-occurring
relation (neighbor relation). For example, relation “CEO-of” and “Director-of” are
often seen in similar relation instances. Therefore, the Neighbor Model [10] is essential
to capture the localized correlation of the cells in the matrix to incorporate this
information. We implement a neighborhood model N via a set of weights w of features
based on co-occurrence of information around tuples of entities, e.g., headword
“President” often appears in tuples of entities in relations such as “CEO-of” and
“Director-of”. In this model, each cell is scored based on the set of weights between
this cell and its associated neighbors. This leads to the following formulation:

hr;t ¼
X
k

wkfk r0; rð Þ ð3Þ

where wk is the weight of association between r0 and r; fkðr0; rÞ defines a conjunctive
feature between relation r and neighbor relation r’ and k is the number of relations r0

that have the exact same tuples as r.
In this model, we additionally employ clause-based features, which are core char-

acteristic of relations for selectional preference. For instance, a relation OBAMA-
president-of-US or OBAMA-leader-of-US could be presented by a clause type
“Subject-Verb-Complement”, while another relation “OBAMA-born-in-US” is in the
form of a “Subject-Verb-Adverb” clause. Therefore, considering only entities will fail to
predict relations in tuple <(OBAMA, US)>. We have used clause types in OIE [5] when
extracting surface patterns for the matrix. We can interpolate the confidence for a given
tuple and relation based on the trueness of other similar relations for the same tuple.
Measuring compatibility of an entity tuple and relation amounts to summing up the
compatibilities between each argument slot representation and the corresponding entity
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representation. We extend the model in Eq. 3 to incorporate clause types, which is
presented as follows:

hr;t ¼
X
k

vt;rwkfk r0; rð Þ ð4Þ

where vt;r is a vector of clause types.

3.3 Entity Model (E Model)

Earlier, Riedel et al. [15] introduced the use of entities in collaborative filtering. In their
method, they employed entities to predict latent relations. The model embeds each
entity into a low dimensional space of size k. For binary relations, their arguments (t1
and t2) are entities modeled in the low dimensional space and are represented as e1 for
t1 and e2 for t2. The equation below leads to the calculation of the compatibility of
tuple of entities and their relations by summing up the presentation of each argument
slot. Thus, this leads to:

hr;t ¼
X
k

at1;ke1r;k þ
X
k

at2;ke2r;k ð5Þ

Analogous to the Neighbor model, we augment the entity model with clause-based
features, which enhances the entity model as follows:

hr;t ¼
X
k

at1;ke1r;kvt1 þ
X
k

at2;ke2r;kvt2 ð6Þ

where vt1 isa vector of clause type for argument 1, and vt2 is a vector of clause type for
argument 2.

3.4 Topic-Based Model (T Model)

In the Entity model, selectional preferences are employed based on each argument’s
slot representation and the corresponding entity representation in order to learn from
other relations. However, in addition to this, many relations can be considered to be
related to other relations based on the probability of being observed within the same
semantic topic group. For instance, the relation tuple <(HOLLANDE, FRANCE)>
could be learned from the observed relation <OBAMA, US>, if and when “OBAMA”-
“HOLLANDE” and “US”-“FRANCE” are observed in the same semantic topic groups.
Therefore, relations could further be learned by their selectional preferences in
semantic topic groups. This helps to determine more relations that are missing when
learning from directly observed relations. We use Latent Dirichlet Allocation [2] to
generate semantic groups of topics, and then embed this information in the matrix. We
embed each entity into a low dimensional space if they are mapped together within
similar topics. We measure each cell based on the compatibility of the argument
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representation and their corresponding semantic topic groups with other cells. This can
be more formally represented as:

hr;t ¼
X
k

at1;ke1r;kht1;k þ
X
k

at2;ke2r;kht2;k ð7Þ

where ht1 denotes the vector of topics for argument 1, and ht2 denotes vector of topics
for argument 2.

Given the fact that using only semantic groups of topics could be noisy for training
purposes, we also further augment the topic model with clause-based features. For
instance, <(HOLLANDE-FRANCE)> could be learned by <(OBAMA-US)> if they are
presented with a similar clause type. This could be presented as:

hr;t ¼
X
k

at1;ke1r;kht1;kvt1 þ
X
k

at2;ke2r;kht2;kvt2 ð8Þ

where vt1 is the vector of clause type for argument 1, and vt2 is the vector of clause type
for argument 2.

3.5 Interpolated Models

Each of the above models represents a unique and important aspect of the data that
needs to be combined with other models to predict potential relations in the matrix. In
practice, combining the introduced models can capture different necessary aspects of
the data. For instance, the combined model of Entity and Neighbor can take advantage
of selectional preference on argument slot presentation from the Entity model and the
weight of the related neighbors from the Neighbor model. We linearly interpolate the
models, e.g., the combination of F, N, E and T models can be shown as follows:

hr;t ¼ F ht;r
� �þN ht;r

� �þE ht;r
� �þ T ht;r

� � ð9Þ

3.6 Parameter Estimation

Similar to the F model, relation cells in the matrix model are parameterized through
weights and/or latent component vectors. In each model, we predict a relation with a
number between 0 and 1. However, the models require negative training data for the
learning process. We train the models by ranking the positive cells (observed true facts)
with higher score than the negative cells (false facts). The log-likelihood setting could
be contrasted with this constraint that primarily requires negative facts to be scored
below a defined threshold. Thus, it is possible to calculate the gradient for the weights
of cells. We also use log-likelihood as the objective function and employ stochastic
gradient descent with a logistic function rðhr;tÞ ¼ 1=ð1þ expð�hr;tÞÞ to learn the
parameters xr;t ¼ rðhr;tÞ.
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4 Experimentation

4.1 Experimental Setting

In this paper, in order to benchmark our approach, we conducted experiments on the
dataset1 proposed in [1]. The content of this dataset is comprised of reports from New
York Times where each sentence has been annotated with relation types with linked
entity tags to Freebase. Note that, we do not use the dataset from [15] given the fact that
it does not include the original sentences, which prevents us from being able to identify
grammatical clauses as required in our approach. We used ClausIE [5] to extract the
clause patterns and then check them with entity tuples annotated in each sentence in
order to embed them into the matrix. For embedding clause types into the matrix, we
use three fundamental clause types, namely SVO, SVC and SVA. The details of these
clauses are presented in [5]. Given we only focus on three clause types, if a tuple of
entities was extracted with a different clause type, e.g., “Bill has worked for IBM since
2010” that corresponds to the SVOA clause pattern, we check the main entities of the
relation’s corresponding elements and convert its clause type into one of the three main
types of clauses. In this case, SVOA will be converted into SVO because “Bill”
represents S and “has worked” denotes V, and “IBM” represents O.

Additionally, for extracting the semantic groups of topics, we generate and estimate
topic models based on LDA through Gibbs Sampling using GibbsLDA++2. We opti-
mize three important parameters a, b and number of topics T in the LDA. It is based on
the topic number and the size of the vocabulary in the document collection, which are
a = 50/T and b = 0.01, respectively [13]. Then we vary topic sizes between 100, 150,
and 200. We evaluate each group of topics and select topic size 150, which shows the
best performance for our experiments.

4.2 Experimental Results

We have conducted experiments on both individual models and interpolated models for
predicting relations as listed in Tables 1 and 2. We randomly split the dataset for
training and testing and applied 10-fold cross validation for all models. We have
applied the threshold 0.5 as suggested in [15] for all models that indicate the confidence
value to predict a relation. Table 1 shows the detailed performance of each model as
well as the combined models in Table 2. As observed in the table, using clause features
shows improved performance compared to when models are built without clause
information. Using the clause information, we can see the EC model with F-measure of
41.81% is better than the E model with F-measure of 38.77%; N model obtained only
36% in F-measure while NC obtained 39.5% in F-measure. We observe that, N models
are lower than the other models due to weak co-occurrence with other relations. The
interpolation of N, F, E and T models outperforms the non-interpolated models,
indicating the power of selectional preferences learned from data, e.g., F+E+N (being

1 http://nlp.stanford.edu/software/mimlre-2014-07-17-data.tar.gz.
2 http://gibbslda.sourceforge.net.
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the baseline presented by Reidel et al. [15]) and F+E+N+T models have an F-measure
of 51.9% and 52.23%, respectively.

The interpolated models EC+NC, EC+TC, and EC+TC+NC benefit from important
aspects of the data from the EC, NC and TC models and take advantage of selectional
preference on argument slot presentation from entities and the weight of the related
neighbors. EC+NC achieves an F-measure of 43.88%, EC+TC has an F-measure of
47.62% and EC+TC+NC produces an F-measure of 48.69%. Therefore, the interpo-
lated models obtain better results compared to the individual EC, NC, or TC models.
We observed that TC employs features based on the presentation of argument slots
from entities; and the presentation of argument slots in the TC model results in a much
higher number of co-occurrences compared to the EC model. Therefore, the interpo-
lated models with TC achieve better results compared to the interpolated models with
EC, e.g., TC+NC yielded 47.82% while EC+NC yielded 43.88%.

The interpolated models with F such as F+TC, F+NC+TC and F+EC+NC+TC have
sufficient number of features, which are employed based on PCA components
(F model). Therefore, F+TC, F+NC+TC and F+EC+NC+TC achieve better results
compared to the interpolated models without F such as TC, NC+TC, and EC+NC+TC.
For instance, NC+TC obtains an F-measure of 47.82% while F+NC+TC obtains

Table 1. Experimental results in individual models.

Models Precision (%) Recall (%) F-measure (%)

E 48.23 32.41 38.77
EC (E with clause) 51.97 37.02 41.81
N 44.61 30.18 36.00
NC (N with clause) 48.94 33.11 39.50
T 46.79 41.70 44.10
TC (T with clause) 54.71 37.02 44.16
F 58.02 39.26 46.83

Table 2. Experimental results in interpolated models.

Models Precision (%) Recall (%) F-measure (%)

Baseline [15] (F+E+N) 79.58 38.51 51.90
F+E+N+T 51.16 53.30 52.21
EC+NC 72.29 32.51 43.88
TC+NC 64.12 34.98 47.82
EC+TC 59.58 39.67 47.62
F+EC 54.65 42.36 47.69
F+NC 56.24 40.14 46.85
F+TC 53.02 46.87 49.75
NC+EC+TC 57.24 42.36 48.69
F+EC+NC 57.31 49.24 52.96
F+NC+TC 55.01 54.80 54.90
F+EC+NC+TC 60.23 60.00 60.11
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54.90%. Finally, the best interpolated model is F+EC+NC+TC which produces the
highest result with 60.11% in F-measure when compared to the other models. Our
interpolated models, namely F+NC+TC, F+E+N+T and F+EC+NC+TC outperform the
baseline (F+E+N) proposed in [15].

Finally, we would like to summarize the impact of our proposed work on perfor-
mance. As seen in the table, when employing clause types on the baseline (F+E+N vs.
F+EC+NC), we see that precision drops; however, recall increases and overall the
incorporation of clause type improves F-measure. Also when adding semantic topics to
the baseline (F+E+N vs. F+E+N+T), we see a similar trend. The important observation
is that once clause types and topic models are added simultaneously (F+EC+NC+TC)
that we achieve a significant improvement on recall and a reasonable precision per-
formance, leading to much higher F-measure. This shows that clause types and
semantic topics can help identify a higher number of relevant relations and hence
increase retrieval rates and also maintain acceptable precision.

Table 3 shows several specific relation types in our models. We show the top-5
relation types that have the best F-measure scores in the top-6 best performing models
such as the F model (the best individual model), EC+NC+TC (the best interpolated
model without F), F+E+N and F+E+N+T (the two best models without clause types),
F+TC+NC and F+EC+NC+TC (the best interpolated models with clause types). These
relations take advantage of selectional preference in the training process due to their
co-occurrence and/or clause type similarity with other relations. For instance, similar
entities co-occur multiple times in relations such as “org/country_of_headquarters”,
“org/city_of_headquarters” or “per/country_of_birth”; therefore, making the cells for
these relationships highly similar and related to each other. Hence, the models will take
advantage of such similarity in the training process in order to learn latent relations
between the relationships. Beside entity co-occurrences, some relations appear only
within a specific clause type. e.g., “person/founded” is often seen in the “SVC” clause
type while “org/member_of” is observed as the “SVO” clause type; hence, the appli-
cation of the clause type information can significantly help find similarity or rela-
tionship between these relations and the others in the matrix and lead to reduced noise
in the training process.

4.3 Discussions

In terms of the performance of the individual models, we observe that the E and T
models outperform the N model. The E and T models employ the presentation of

Table 3. F-measures of top-5 relation types in the best six models.

F EC+NC+TC F+E+N F+E+N+T F+TC+NC F+EC+NC+TC

org/country_of_headquarters 60.97 67.22 70.49 76.42 69.16 77.39
person/founded 61.53 62.63 43.68 72.50 72.99 75.84

org/city_of_headquarters 25.84 66.66 63.93 75.60 75.00 76.52
per/country_of_birth 56.92 69.31 79.63 73.54 72.25 76.88
org/member_of 58.96 79.73 78.70 71.59 76.72 70.22
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argument slots while N employs co-occurrence with neighbors. The N model might
face situations where only a few co-occurrences with other neighbor relations are
observed that can cause weak evidence in the training process for learning hidden
relations. However, in the T and E models where their argument slots are presented in
high dimensions, this could increase the number of desirable co-occurrences. These
models take advantage of selectional preference in the training process due to the
exploitation of co-occurrence information with other relations. Most of the models have
increasing performance when applying clause type features because the clause type
information can reduce noise in the training process.

Interpolated models benefit from the advantages of each individual model. Thus,
most of the interpolated models achieve better results compared to separate models.
Comparing our best models (F+NC+TC) and (F+EC+NC+TC) with Reidel et al.’s
model (F+E+N) as a baseline, the results reveal that we obtained 55.01% of precision
and 54.80% of recall in F+NC+TC, and 60.23% of precision and 60% of recall in F+EC
+NC+TC while Reidel et al. achieved 79.58% of precision and 38.51% of recall.
Applying semantic topics to the models could reduce precision but increase recall
significantly when compared to the baseline. Baseline+Topic model (F+E+N+T)
achieves 51.16% of precision and 53.30% of recall. Our model obtained an improve-
ment in recall when compared to the baseline. However, our models also show lower
precision because applying topic-based features in our models will lead to an increas-
ingly higher number of hidden relations for prediction compared to the baseline. This
can cause a lower precision in our model even when our model predicts more hidden
relations compared to Reidel et al.’s model. Finally, based on the F-measure metric, our
models show up to 8% improvement in comparison to the baseline model.

Now, let us look at some of the major causes of error in our proposed models.
There are some factors, which can affect the results. First, some relation types show
missing evidence for training that cause low accuracy when predicting latent relations.
For example, the relation “per:cause_of_death” has only been observed very few times
with other relations in the matrix. Consequently, after the training process, the trained
models do not have enough knowledge to predict such infrequent relations. Second,
there are incorrect linked entities that cause noise in the matrix. We found that some
tuples of entities, which are linked to entities from Freebase, are not accurately placed
in the correct tuple or relation in the dataset. For example, “Obama, who is the Pres-
ident of US, has visited Canada” has been annotated with the tuple of entities
<(OBAMA-CANADA)> with relation “person: employee”. Therefore, such a tuple in
the training set will introduce noise, which can lead to issues when predicting relations.
Finally, ambiguous tuples of entities might occur in the dataset, e.g., tuple of entities
(<WASHINGTON-US>) areseen in several relations such as “org:country_of_head-
quarters”, “per:countries_of_residence”, and “per:origin” because “WASHINGTON”
could refer to a city in some cases, or a person in other cases that leads to noise in the
training processes. As a result, this will have a negative effect on performance when
predicting hidden relations.
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5 Concluding Remarks

In this paper, we presented several matrix models with feature enrichment for pre-
dicting potential relations. We have exploited universal schemas that are formed as a
collection of patterns from OIE and relation schemas from pre-existing datasets to build
a matrix model in order to use matrix factorization and collaborative filtering to predict
hidden relations. While previous systems have trained relations only for entities, we
further exploited advanced features such as clause types and semantic topics for pre-
dicting hidden relations. Particularly, we exploited clause-based features extracted from
OIE combined with semantic groups of topics, which are used as important charac-
teristics for predicting potential relations. In our experiments, the results reveal that our
proposed models achieve better results compared to the state of the art, which
demonstrates the efficiency of our proposed approach.
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