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Abstract. We consider off-policy temporal-difference (TD) learning in
discounted Markov decision processes, where the goal is to evaluate a
policy in a model-free way by using observations of a state process gen-
erated without executing the policy. To curb the high variance issue in
off-policy TD learning, we propose a new scheme of setting the λ para-
meters of TD, based on generalized Bellman equations. Our scheme is to
set λ according to the eligibility trace iterates calculated in TD, thereby
easily keeping these traces in a desired bounded range. Compared to
prior works, this scheme is more direct and flexible, and allows much
larger λ values for off-policy TD learning with bounded traces. Using
Markov chain theory, we prove the ergodicity of the joint state-trace
process under nonrestrictive conditions, and we show that associated
with our scheme is a generalized Bellman equation (for the policy to be
evaluated) that depends on both λ and the unique invariant probability
measure of the state-trace process. These results not only lead immedi-
ately to a characterization of the convergence behavior of least-squares
based implementation of our scheme, but also prepare the ground for
further analysis of gradient-based implementations.

Keywords: Markov decision process · Policy evaluation · Generalized
bellman equation · Temporal differences · Markov chain · Randomized
stopping time

1 Introduction

We consider off-policy temporal-difference (TD) learning in discounted Markov
decision processes (MDPs), where the goal is to evaluate a policy in a model-
free way by using observations of a state process generated without executing
the policy. Off-policy learning is an important part of the reinforcement learning
methodology [25] and has been studied in the areas of operations research and
machine learning (see e.g., [3,5,6,8–11,17,18,20,29]). Available algorithms, how-
ever, tend to have very high variances due to the use of importance sampling,
an issue that limits their applicability in practice. The purpose of this paper is
to introduce a new TD learning scheme that can help address this problem.
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Our work is motivated by the recently proposed Retrace [15] and ABQ [12]
algorithms, and by the Tree-Backup algorithm [18] that existed earlier. These
algorithms, as explained in [12], all try to use the λ-parameters of TD to curb the
high variance issue in off-policy learning. In this paper we propose a new scheme
of setting the λ-parameters of TD, based on generalized Bellman equations. Our
scheme is to set λ according to the eligibility trace iterates calculated in TD,
thereby easily keeping those traces in a desired range. Compared to the previous
works, this is a direct way to bound the traces in TD, and it is also more flexible,
allowing much larger λ values for off-policy learning.

Regarding generalized Bellman equations, they are a powerful tool. In clas-
sic MDP theory they have been used in some intricate optimality analyses.
Their computational use, however, seems to emerge primarily in the field of rein-
forcement learning (see [24], [1, Chap. 5.3] and [28] for related early and recent
research). Like the earlier works [12,15,18,28,33], our work aims to employ this
tool to make off-policy learning more efficient.

Our analyses of the new TD learning scheme will focus on its theoretical side.
Using Markov chain theory, we prove the ergodicity of the joint state and trace
process under nonrestrictive conditions (see Theorem 2.1), and we show that
associated with our scheme is a generalized Bellman equation (for the policy
to be evaluated) that depends on both λ and the unique invariant probability
measure of the state-trace process (see Theorem 3.1). These results not only lead
immediately to a characterization of the convergence behavior of least-squares
based implementation of our scheme (see Corrolary 2.1 and Remark 3.1), but
also prepare the ground for further analysis of gradient-based implementations.

We note that due to space limit, in this paper we can only give the ideas or
outlines of our proofs. The full details will be given in the longer version of this
paper, which will also include numerical examples that we will not cover here.

The rest of the paper is organized as follows. In Sect. 2, after a brief back-
ground introduction, we present our scheme of TD learning with bounded traces,
and we establish the ergodicity of the joint state-trace process. In Sect. 3 we
derive the generalized Bellman equation associated with our scheme.

2 Off-Policy TD Learning with Bounded Traces

2.1 Preliminaries

The off-policy learning problem we consider in this paper concerns two Markov
chains on a finite state space S = {1, . . . , N}. The first chain has transition
matrix P , and the second P o. Whatever physical mechanisms that induce the
two chains shall be denoted by π and πo, and referred to as the target policy
and behavior policy, respectively. The second Markov chain we can observe;
however, it is the system performance for the first Markov chain that we want to
evaluate. Specifically, we consider a one-stage reward function rπ : S → � and
an associated discounted total reward criterion with state-dependent discount
factors γ(s) ∈ [0, 1], s ∈ S. Let Γ denote the N×N diagonal matrix with diagonal
entries γ(s). We assume that P and P o satisfy the following conditions:
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Condition 2.1 (Conditions on the target and behavior policies).
(i) P is such that the inverse (I − PΓ )−1 exists, and (ii) P o is such that for all
s, s′ ∈ S, P o

ss′ = 0 ⇒ Pss′ = 0, and moreover, P o is irreducible.

The performance of π is defined as the expected discounted total rewards for
each initial state s ∈ S:

vπ(s) := Eπ
s [ rπ(S0) +

∑∞
t=1 γ(S1) γ(S2) · · · γ(St) · rπ(St)] , (2.1)

where the notation Eπ
s means that the expectation is taken with respect to

(w.r.t.) the Markov chain {St} starting from S0 = s and induced by π (i.e., with
transition matrix P ). The function vπ is well-defined under Condition 2.1(i). It
is called the value function of π, and by standard MDP theory (see e.g., [19]),
we can write it in matrix/vector notation as

vπ = rπ + PΓ vπ, i.e., vπ = (I − PΓ )−1rπ.

The first equation above is known as the Bellman equation (or dynamic pro-
gramming equation) for a stationary policy.

We compute an approximation of vπ of the form v(s) = φ(s)�θ, s ∈ S, where
θ ∈ �n is a parameter vector and φ(s) is an n-dimensional feature representation
for each state s (φ(s), θ are column vectors and � stands for transpose). Data
available for this computation are:
(i) the Markov chain {St} with transition matrix P o generated by πo, and
(ii) rewards Rt = r(St, St+1) associated with state transitions, where the func-

tion r relates to rπ(s) as rπ(s) = Eπ
s [r(s, S1)] for all s ∈ S.

To find a suitable parameter θ for the approximation φ(s)�θ, we use the off-
policy TD learning scheme. Define ρ(s, s′) = Pss′/P o

ss′ (the importance sampling
ratio);1 denote ρt = ρ(St, St+1), γt = γ(St). Given an initial e0 ∈ �n, for each
t ≥ 1, the eligibility trace vector et ∈ �n and the scalar temporal-difference term
δt(v) for any approximate value function v : S → � are calculated according to

et = λt γt ρt−1 et−1 + φ(St), (2.2)

δt(v) = ρt

(
Rt + γt+1v(St+1) − v(St)

)
. (2.3)

Here λt ∈ [0, 1], t ≥ 1, are important parameters in TD learning, the choice of
which we shall elaborate on shortly.

1 Our problem formulation entails both value function and state-action value function
estimation for a stationary policy in the standard MDP context. In these applica-
tions, it is the state-action space of the MDP that corresponds to the state space S
here; see [29, Examples 2.1, 2.2] for details. The third application is in a simulation
context where P o corresponds to a simulated system and both P o, P are known so
that the ratio ρ(s, s′) is available. Such simulations are useful, for example, in study-
ing system performance under perturbations, and in speeding up the computation
when assessing the impacts of events that are rare under the dynamics P .
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Using et and δt, a number of algorithms can be formed to generate a sequence
of parameters θt for approximate value functions. One such algorithm is LSTD
[2,29], which obtains θt by solving the linear equation for θ ∈ �n,

1
t

∑t−1
k=0 ek δk(v) = 0, v = Φθ (2.4)

(if it admits a solution), where Φ is a matrix with row vectors φ(s)�, s ∈ S.
LSTD updates the equation (2.4) iteratively by incorporating one by one the
observation of (St, St+1, Rt) at each state transition. We will discuss primarily
this algorithm in the paper, as its behavior can be characterized directly using
our subsequent analyses of the joint state-trace process. As mentioned earlier, our
analyses will also provide bases for analyzing other gradient-based TD algorithms
[9,10] using stochastic approximation theory. However, due to its complexity, this
subject is better to be treated separately, not in the present paper.

2.2 Our Choice of λ

We now come to the choices of λt in the trace iterates (2.2). For TD with function
approximation, one often lets λt be a constant or a function of St [23,25,27]. If
neither the behavior policy nor the λt’s are further constrained, {et} can have
unbounded variances and is also unbounded in many natural situations (see
e.g., [29, Sect. 3.1]), and this makes off-policy TD learning challenging.2 If we let
the behavior policy to be close enough to the target policy so that P o ≈ P , then
variance can be reduced, but it is not a satisfactory solution, for the applicability
of off-policy learning would be seriously limited.

Without restricting the behavior policy, the two recent works [12,15] (as well
as the closely related early work [18]) exploit state-dependent λ’s to control
variance. Their choices of λt are such that λtρt−1 < 1 for all t, so that the trace
iterates et are made bounded, which can help reduce the variance of the iterates.

Our proposal, motivated by these prior works, is to set λt according to et−1

directly, so that we can keep et in a desired range straightforwardly and at the
same time, allow a much larger range of values for the λ-parameters. As a simple
example, if we use λt to scale the vector γtρt−1et−1 to be within a ball with some
given radius, then we keep et bounded always.

In the rest of this paper, we shall focus on analyzing the iteration (2.2)
with a particular choice of λt of the kind just mentioned. We want to be more
general than the preceding simple example. However, we also want to retain
certain Markovian properties that are very useful for convergence analysis. This
leads us to consider λt being a certain function of the previous trace and past
states. More specifically, we will let λt be a function of the previous trace and a
certain memory state that is a summary of the states observed so far, and the
formulation is as follows.

Denote the memory state at time t by yt. For simplicity, we assume that
yt can only take values from a finite set M, and its evolution is Markovian:
2 Asymptotic convergence is still ensured, however, for several algorithms [29–31],

thanks partly to a powerful law of large numbers for stationary processes.



On Generalized Bellman Equations and TD Learning 7

yt = g(yt−1, St) for some given function g. The joint process {(St, yt)} is then a
simple finite-state Markov chain. Each yt is a function of (S0, . . . , St) and y0. We
further require, besides the irreducibility of {St} (cf. Condition 2.1(ii)), that3

Condition 2.2 (Evolution of memory states). Under the behavior policy
πo, the Markov chain {(St, yt)} on S × M has a single recurrent class.

Thus we let yt and λt evolve as

yt = g(yt−1, St), λt = λ(yt, et−1) (2.5)

where λ : M × �n → [0, 1]. We require the function λ to satisfy two conditions.

Condition 2.3 (Conditions for λ). For some norm ‖·‖ on �n, the following
hold for each memory state y ∈ M:
(i) For any e, e′ ∈ �n, ‖λ(y, e) e − λ(y, e′) e′‖ ≤ ‖e − e′‖.
(ii) For some constant Cy, ‖γ(s′)ρ(s, s′) · λ(y, e) e‖ ≤ Cy for all possible state

transitions (s, s′) that can lead to the memory state y.

In the above, the second condition is to restrict {et} in a desired range (as it
makes ‖et‖ ≤ maxy∈M Cy + maxs∈S ‖φ(s)‖). The first condition is to ensure
that the traces et jointly with (St, yt) form a Markov chain with nice properties
(as will be seen in the next subsection).

Consider the simple scaling example mentioned earlier. In this case we can
let yt = (St−1, St), and for each y = (s, s′), define λ(y, ·) to scale back the vector
γ(s′)ρ(s, s′) e when it is outside the Euclidean ball with radius Css′ : λ

(
y, e

)
= 1

if γ(s′)ρ(s, s′)‖e‖2 ≤ Css′ ; and λ
(
y, e

)
= Css′

γ(s′)ρ(s,s′)‖e‖2
otherwise.

2.3 Ergodicity Result

The properties of the joint state-trace process {(St, yt, et)} are important for
understanding and characterizing the behavior of the proposed TD learning
scheme. We study them in this subsection; most importantly, we shall establish
the ergodicity of the state-trace process. The result will be useful in conver-
gence analysis of several associated TD algorithms, although in this paper we
discuss only the LSTD algorithm. In the next section we will also use the ergod-
icity result when we relate the LSTD equation (2.4) to a generalized Bellman
equation for the target policy, which will then make the meaning of the LSTD
solutions clear.

As a side note, one can introduce nonnegative coefficients i(y) for memory
states y to weight the state features (similarly to the use of “interest” weights
in the ETD algorithm [26]) and update et according to

et = λt γt ρt−1 et−1 + i(yt)φ(St). (2.6)

The results given below apply to this update rule as well.
Let us start with two basic properties of {(St, yt, et)} that follow directly

from our choice of the λ function:
3 These conditions are nonrestrictive. If the Markov chains have multiple recurrent

classes, each recurrent class can be treated separately using the same arguments.
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(i) By Condition 2.3(i), for each y, λ(y, e)e is a continuous function of e, and
thus et depends continuously on et−1. This, together with the finiteness of
S × M, ensures that {(St, yt, et)} is a weak Feller Markov chain.4

(ii) Then, by a property of weak Feller Markov chains [14, Theorem
12.1.2(ii)], the boundedness of {et} ensured by Condition 2.3(ii) implies that
{(St, yt, et)} has at least one invariant probability measure.

The third property, given in the lemma below, concerns the behavior of {et} for
different initial e0. It is an important implication of Condition 2.3(i) (actually
it is our purpose of introducing the condition 2.3(i) in the first place). Due to
space limit, we omit the proof, which is similar to the proof of [29, Lemma 3.2].

Lemma 2.1. Let {et} and {êt} be generated by the iteration (2.2) and (2.5),
using the same trajectory of states {St} and initial y0, but with different initial
e0 and ê0, respectively. Then under Conditions 2.1(i) and 2.3(i), et − êt

a.s.→ 0.

We use the preceding lemma and ergodicity properties of weak Feller Markov
chains [13] to prove the ergodicity theorem given below (for lack of space, we
again omit the proof). Before stating this result, we note that for {(St, yt, et)}
starting from the initial condition x = (s, y, e), the occupation probability mea-
sures {μx,t} are random probability measures on S × M × �n given by

μx,t(D) := 1
t

∑t−1
k=0 1

(
(Sk, yk, ek) ∈ D

)

for all Borel sets D ⊂ S ×M×�n, where 1(·) is the indicator function. We write
Px for the probability distribution of {(St, yt, et)} with initial condition x.

Theorem 2.1. Under Conditions 2.1–2.3, {(St, yt, et)} is a weak Feller Markov
chain and has a unique invariant probability measure ζ. For each initial condition
(S0, y0, e0) = (s, y, e) =: x, the occupation probability measures {μx,t} converge
weakly5 to ζ, Px-almost surely.

Let Eζ denote expectation w.r.t. the stationary state-trace process
{(St, yt, et)} with initial distribution ζ. Since the traces and hence the entire
process lie in a bounded set under Condition 2.3(ii), the weak convergence of
{μx,t} to ζ implies that the sequence of equations, 1

t

∑t−1
k=0 ek δk(v) = 0, as

given in (2.4) for LSTD, has an asymptotic limit that can be expressed in terms
of the stationary state-trace process as follows.

Corollary 2.1. Let Conditions 2.1–2.3 hold. Then for each initial condition of
(S0, y0, e0), almost surely, the first equation in (2.4), viewed as a linear equation
in v, tends to6 the equation Eζ [e0δ0(v)] = 0 in the limit as t → ∞.

4 This means that for any bounded continuous function f on S × M × �n (endowed
with the usual topology), with Xt = (St, yt, et), E

[
f(X1) | X0 = x

]
is a continuous

function of x [14, Prop. 6.1.1].
5 This means

∫
fdμx,t → ∫ fdζ as t → ∞, for every bounded continuous function f .

6 By this we mean that as linear equations in v, the random coefficients in this sequence
of equations converge to the corresponding coefficients in the limiting equation.
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3 Generalized Bellman Equations

In this section we continue the analysis started in Sect. 2.3. Our goal is to relate
the linear equation Eζ [e0δ0(v)] = 0, the asymptotic limit of the linear equation
(2.4) for LSTD as just shown by Corrolary 2.1, to a generalized Bellman equation
for the target policy π. Then, we can interpret solutions of (2.4) as solutions of
approximate versions of that generalized Bellman equation.

To simplify notation in subsequent derivations, we shall use the following
shorthand notation: For k ≤ m, denote Sm

k = (Sk, Sk+1, . . . Sm), and denote

ρm
k =

∏m
i=k ρi, λm

k =
∏m

i=k λi, γm
k =

∏m
i=k γi, (3.1)

whereas by convention we treat ρm
k = λm

k = γm
k = 1 if k > m.

3.1 Randomized Stopping Times

Consider the Markov chain {St} induced by the target policy π. Let Condi-
tion 2.1(i) hold. Recall that for the value function vπ, we have

vπ(s) = Eπ
s

[ ∑∞
t=0 γt

1 rπ(St)
]

(by definition), and vπ(s) = rπ(s)+Eπ
s [γ1vπ(S1)]

for each state s. The second equation is the standard one-step Bellman equation.
To write generalized Bellman equations for π, we need the notion of random-

ized stopping times for {St}. They generalize stopping times for {St} in that
whether to stop at time t depends not only on St

0 but also on certain random
outcomes. A simple example is to toss a coin at each time and stop as soon as the
coin lands on heads, regardless of the history St

0. (The corresponding Bellman
equation is the one associated with TD(λ) for a constant λ.) Of interest here is
the general case where the stopping decision does depend on the entire history.

To define a randomized stopping time formally, first, the probability space of
{St} is enlarged to take into account whatever randomization scheme that is used
to make the stopping decision. (The enlargement will be problem-dependent, as
the next subsection will demonstrate.) Then, on the enlarged space, a random-
ized stopping time τ for {St} is by definition a stopping time relative to some
increasing sequence of sigma-algebras F0 ⊂ F1 ⊂ · · · , where the sequence {Ft}
is such that (i) for all t ≥ 0, Ft ⊃ σ(St

0) (the sigma-algebra generated by St
0), and

(ii) w.r.t. {Ft}, {St} remains to be a Markov chain with transition probability
P , i.e., Prob(St+1 = s | Ft) = PSts. (See [16, Chap. 3.3].)

The advantage of this abstract definition is that it allows us to write Bellman
equations in general forms without worrying about the details of the enlarged
space which are not important at this point. For notational simplicity, we shall
still use Eπ to denote expectation for the enlarged probability space and write
Pπ for the probability measure on that space, when there is no confusion.

If τ is a randomized stopping time for {St}, the strong Markov property
[16, Theorem 3.3] allows us to express vπ in terms of vπ(Sτ ) and the total
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discounted rewards Rτ prior to stopping:

vπ(s) = Eπ
s

[∑τ−1
t=0 γt

1 rπ(St) +
∑∞

t=τ γτ
1 · γt

τ+1 rπ(St)
]

= Eπ
s

[
Rτ + γτ

1 vπ(Sτ )
]
, (3.2)

where Rτ =
∑τ−1

t=0 γt
1 rπ(St) for τ ∈ {0, 1, 2, . . .}∪{+∞}.7 We can also write the

Bellman equation (3.2) in terms of {St} only, by taking expectation over τ :

vπ(s) = Eπ
s

[∑∞
t=0

(
q+t (St

0) · γt
1 rπ(St) + qt(St

0) · γt
1 vπ(St)

)]
, (3.3)

where q+t (St
0) = Pπ(τ > t | St

0), qt(St
0) = Pπ(τ = t | St

0). (3.4)

The r.h.s. of (3.2) or (3.3) defines an associated generalized Bellman operator
T : �N → �N that has several equivalent expressions; e.g., for all s ∈ S,

(Tv)(s) = Eπ
s

[
Rτ + γτ

1 v(Sτ )
]

= Eπ
s

[∑∞
t=0

(
q+t (St

0) · γt
1 rπ(St) + qt(S

t
0) · γt

1 v(St)
)]

.

If τ ≥ 1 a.s., then as in the case of the one-step Bellman operator, the value
function vπ is the unique fixed point of T , i.e., the unique solution of v = Tv.8

3.2 Bellman Equation for the Proposed TD Learning Scheme

With the terminology of randomized stopping times, we are now ready to write
down the generalized Bellman equation associated with the TD-learning scheme
proposed in Sect. 2.2. It corresponds to a particular randomized stopping time.
We shall first describe this random time, from which a generalized Bellman
equation follows as seen in the preceding subsection. That this is indeed the
Bellman equation for our TD learning scheme will then be proved.

Consider the Markov chain {St} under the target policy π. We define a ran-
domized stopping time τ for {St}:

• Let yt, λt, et, t ≥ 1, evolve according to (2.5) and (2.2).
• Let the initial (S0, y0, e0) be distributed according to ζ, the unique invariant

probability measure in Theorem2.1.
• At time t ≥ 1, we stop the system with probability 1 − λt if it has not yet

been stopped. Let τ be the time when the system stops (τ = ∞ if the system
never stops).

To make the dependence on the initial distribution ζ explicit, we write Pπ
ζ for

the probability measure of this process.

7 In the case τ = 0, R0 = 0. In the case τ = ∞, R∞ =
∑∞

t=0 γt
1 rπ(St), and the second

term γτ
1 vπ(Sτ ) in (3.2) is 0 because γ∞

1 :=
∏∞

k=1 γk = 0 a.s. under Condition 2.1(i).
8 It can be shown in this case that the substochastic matrix involved in the affine

operator T is a linear contraction w.r.t. a weighted sup-norm on �N , by using Con-
dition 2.1(i) and nonnegative matrix theory (see also [1, Prop. 2.2]).
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Note that by definition λt and λt
1 are functions of the initial (y0, e0) and

states St
0. From how the random time τ is defined, we have for all t ≥ 1,

Pπ
ζ (τ > t | St

0, y0, e0) = λt
1 =: h+

t (y0, e0, St
0), (3.5)

Pπ
ζ (τ = t | St

0, y0, e0) = λt−1
1 (1 − λt) =: ht(y0, e0, St

0), (3.6)

and hence

q+t (St
0) := Pπ

ζ (τ > t | St
0) =

∫

h+
t (y, e, St

0) ζ
(
d(y, e) | S0

)
, (3.7)

qt(St
0) := Pπ

ζ (τ = t | St
0) =

∫

ht(y, e, St
0) ζ

(
d(y, e) | S0

)
, (3.8)

where ζ(d(y, e) | s) is the conditional distribution of (y0, e0) given S0 = s,
w.r.t. the initial distribution ζ. As before, we can write the generalized Bellman
operator T associated with τ in several equivalent forms. Let Eπ

ζ denote expec-
tation under Pπ

ζ . Based on (3.2) and (3.5)–(3.6), it is easy to derive that9 for all
v : S → �, s ∈ S,

(Tv)(s) = Eπ
ζ

[∑∞
t=0 λt

1γ
t
1 rπ(St) +

∑∞
t=1 λt−1

1 (1 − λt)γt
1 v(St) | S0 = s

]
. (3.9)

Alternatively, by integrating over (y0, e0) and using (3.7)–(3.8), we can write

(Tv)(s) = Eπ
ζ

[∑∞
t=0

(
q+t (St

0) · γt
1 rπ(St) + qt(St

0) · γt
1 v(St)

) ∣
∣ S0 = s

]
, (3.10)

for all v : S → �, s ∈ S, where in the case t = 0, q+0 (·) ≡ 1 = Pπ
ζ (τ > 0 | S0)

and q0(·) ≡ 0 = Pπ
ζ (τ = 0 | S0) (since τ > 0 by construction).

Comparing the two expressions of T , we remark that the expression (3.9)
reflects the role of the λt’s in determining the stopping time, whereas the expres-
sion (3.10), which has eliminated the auxiliary memory states yt, shows more
clearly the dependence of the stopping time on the entire history St

0. It can also
be seen from the initial distribution ζ that the behavior policy asserts a signifi-
cant role in determining the Bellman operator T for the target policy. This is in
contrast with off-policy TD learning that uses a constant λ, where the behavior
policy affects only how one approximates the Bellman equation underlying TD,
not the Bellman equation itself.

We now proceed to show how the Bellman equation v = Tv given above
relates to the off-policy TD learning scheme in Sect. 2.2. Some notation is needed.
Denote by ζS the marginal of ζ on S. Note that ζS coincides with the invariant
probability measure of the Markov chain {St} induced by the behavior policy. For
two functions v1, v2 on S, we write v1 ⊥ζS v2 if

∑
s∈S ζS(s) v1(s) v2(s) = 0. If L is

a linear subspace of functions on S and v ⊥ζS v′ for all v′ ∈ L, we write v ⊥ζS L.
Recall that φ is a function that maps each state s to an n-dimensional feature
vector. Denote by Lφ the subspace spanned by the n component functions of φ,

9 Rewrite (3.2) as vπ(s)=Eπ
s

[∑∞
t=0 1(τ > t) γt

1 rπ(St) +
∑∞

t=0 1(τ = t) γt
1 vπ(St)

]
and

for the tth terms in the r.h.s., take expectation over τ conditioned on (St
0, y0, e0).
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which is the space of approximate value functions for our TD learning scheme.
Recall also that Eζ denotes expectation w.r.t. the stationary state-trace process
{(St, yt, et)} under the behavior policy (cf. Theorem2.1).

Theorem 3.1. Let Conditions 2.1–2.3 hold. Then as a linear equation in v,
Eζ

[
e0 δ0(v)

]
= 0 is equivalently Tv − v ⊥ζS Lφ, where T is the generalized

Bellman operator for π given in (3.9) or (3.10).

Remark 3.1 (On LSTD). Note that Tv − v ⊥ζS Lφ, v ∈ Lφ is a projected
version of the generalized Bellman equation Tv − v = 0 (projecting the l.h.s.
onto the approximation subspace Lφ w.r.t. the ζS -weighted Euclidean norm).
Theorem 3.1 and Corrolary 2.1 together show that this is what LSTD solves in
the limit. If this projected Bellman equation admits a unique solution v̄, then
the approximation error v̄ − vπ can be characterized as in [22,32].

Proof (outline). We divide the proof into three parts. The first part is more
subtle than the other two, which are mostly calculations. Due to space limit, we
can only outline the proof here, leaving out the details of some arguments.
(i) We extend the stationary state-trace process to t = −1, −2, . . . and work with
a double-ended stationary process {(St, yt, et)}−∞<t<∞ (such a process exists
by Kolmogorov’s theorem [4, Theorem 12.1.2]). We keep using the notation Pζ

and Eζ for this double-ended stationary Markov chain. Then, by unfolding the
iteration (2.2) for et backwards in time, we show that10

e0 = φ(S0) +
∑∞

t=1 λ0
1−tγ

0
1−tρ

−1
−t φ(S−t) Pζ−a.s., (3.11)

or with λ0
1 = ρ−1

0 = 1 by convention, we can write e0 =
∑∞

t=0 λ0
1−tγ

0
1−tρ

−1
−t φ(S−t)

Pζ-a.s. The proof of (3.11) uses the stationarity of the process, Condition 2.1(i)
and a theorem on integration [21, Theorem 1.38] among others.
(ii) Using the expression (3.11) of e0, we calculate Eζ

[
e0 · ρ0f(S1

0)
]

for any
bounded measurable function f on S × S. In particular, we first obtain

Eζ

[
e0 · ρ0f(S1

0)
]

=
∑∞

t=0 Eζ

[
φ(S0) · Eζ

[
λt
1γ

t
1ρ

t
0 f(St+1

t ) | S0

] ]
(3.12)

by using (3.11) and the stationarity of the state-trace process. Next we relate
the expectations in the summation in (3.12) to expectations w.r.t. the process
with probability measure Pπ

ζ , which we recall is induced by the target policy π

and introduced at the beginning of this subsection. Let Ẽπ
ζ denote expectation

w.r.t. the marginal of Pπ
ζ on the space of {(St, yt, et)}t≥0. From the change of

measure performed through ρt
0, we have

Eζ

[
λt
1γ

t
1ρ

t
0 f(St+1

t ) | S0, y0, e0
]

= Ẽπ
ζ

[
λt
1γ

t
1 f(St+1

t ) | S0, y0, e0
]
, t ≥ 0. (3.13)

Combining this with (3.12) and using the fact that ζ is the marginal distribution
of (S0, y0, e0) in both processes, we obtain

Eζ

[
e0 · ρ0f(S1

0)
]

=
∑∞

t=0 Ẽ
π
ζ

[
φ(S0) · Ẽπ

ζ

[
λt
1γ

t
1 f(St+1

t ) | S0

] ]
. (3.14)

10 Recall the shorthand notation (3.1) introduced at the beginning of Sect. 3.



On Generalized Bellman Equations and TD Learning 13

(iii) We now use (3.14) to calculate Eζ

[
e0 δ0(v)

]
for a given function v. Recall

from (2.3) δ0(v) = ρ0 · (r(S1
0) + γ1v(S1) − v(S0)

)
, so we let f(St+1

t ) = r(St+1
t ) +

γt+1v(St+1) − v(St) in (3.14). Then a direct calculation shows that11

Eζ

[
e0 δ0(v) | S0

]
= φ(S0) · { − v(S0) + (Tv)(S0)

}
. (3.15)

Therefore Eζ

[
e0 δ0(v)

]
=

∑
s∈S ζS(s)φ(s) · (Tv − v)(s), and this shows that

Eζ

[
e0 δ0(v)

]
= 0 is equivalent to Tv − v ⊥ζS Lφ. ��

Concluding Remark. This completes our analysis of the LSTD algorithm for
the proposed TD-learning scheme. To conclude the paper, we note that the pre-
ceding results also prepare the ground for analyzing gradient-based algorithms
similar to [9,10] in a future work. Specifically, like LSTD, these algorithms would
aim to solve the same projected generalized Bellman equation as characterized
by Theorem 3.1 (cf. Remark 3.1). Their average dynamics, which is important
for analyzing their convergence using the mean ODE approach from stochas-
tic approximation theory [7], can be studied based on the ergodicity result of
Theorem 2.1, in essentially the same way as we did in Sect. 2.3 for the LSTD
algorithm.

References

1. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,
Belmont (1996)

2. Boyan, J.A.: Least-squares temporal difference learning. In: Proceedings of the
16th International Conference Machine Learning (ICML) (1999)

3. Dann, C., Neumann, G., Peters, J.: Policy evaluation with temporal differences: a
survey and comparison. J. Mach. Learn. Res. 15, 809–883 (2014)

4. Dudley, R.M.: Real Analysis and Probability. Cambridge University Press,
Cambridge (2002)

5. Geist, M., Scherrer, B.: Off-policy learning with eligibility traces: a survey. J. Mach.
Learn. Res. 15, 289–333 (2014)

6. Glynn, P.W., Iglehart, D.L.: Importance sampling for stochastic simulations.
Manag. Sci. 35, 1367–1392 (1989)

7. Kushner, H.J., Yin, G.G.: Stochastic Approximation and Recursive Algorithms
and Applications, 2nd edn. Springer, New York (2003)

8. Liu, B., Liu, J., Ghavamzadeh, M., Mahadevan, S., Petrik, M.: Finite-sample analy-
sis of proximal gradient TD algorithms. In: The 31st Conference on Uncertainty
in Artificial Intelligence (UAI) (2015)

9. Maei, H.R.: Gradient temporal-difference learning algorithms. Ph.D. thesis, Uni-
versity of Alberta (2011)

10. Mahadevan, S., Liu, B., Thomas, P., Dabney, W., Giguere, S., Jacek, N., Gemp, I.,
Liu, J.: Proximal reinforcement learning (2014). arXiv:1405.6757

11 Note
∑∞

t=0 Ẽ
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