
Methods and Patterns for User-Friendly
Quantum Programming

Alexandros Singh, Konstantinos Giannakis, Kalliopi Kastampolidou,
and Christos Papalitsas

Abstract The power and efficiency of particular quantum algorithms over classical
ones has been proved. The rise of quantum computing and algorithms has high-
lighted the need for appropriate programming means and tools. Here, we present a
brief overview of some techniques and a proposed methodology in writing quantum
programs and designing languages. Our approach offers “user-friendly” features
to ease the development of such programs. We also give indicative snippets in
an untyped fragment of the Qumin language, describing well-known quantum
algorithms.

Keywords Quantum programming • Quantum programming language • Func-
tional programming • Qumin

1 Introduction

With Moore’s law reaching an apparent plateau, attention to unconventional com-
puting paradigms is ever increasing. Quantum computation, that is, computing
based on quantum mechanical principles, is among the most sought-after of these.
While quantum computing is still in relative infancy, quantum algorithms show very
promising results. For example Grover’s algorithm, which can be used as a database
search algorithm, offers a quadratic speed-up over its classical counterparts, outpac-
ing any classical algorithm [1].

Grover’s algorithm can also be used to brute force a symmetric cryptographic
key with orders of magnitude more efficiency than any other classical algorithm.
Another popular quantum algorithm is Shor’s algorithm which can factor any integer
N in polynomial time and could make many modern cryptographic systems (such
as RSA) obsolete [2].

The above observations have attracted the attention, not only of academia, but
also of the industry and various funding sources. The pursuit of novel and efficient

A. Singh (�) • K. Giannakis • K. Kastampolidou • C. Papalitsas
Department of Informatics, Ionian University, Corfu, Greece
e-mail: p13sing@ionio.gr; kgiann@ionio.gr; p12kast@ionio.gr

© Springer International Publishing AG 2017
P. Vlamos (ed.), GeNeDis 2016, Advances in Experimental Medicine
and Biology 989, DOI 10.1007/978-3-319-57348-9_17

201

mailto:p13sing@ionio.gr
mailto:kgiann@ionio.gr
mailto:p12kast@ionio.gr

202 A. Singh et al.

computing technologies has already led to the raise of investments and funding
schemes that aim to profit from proposed current and future quantum computing
systems, with D-Wave System being a notable example [3].

Quantum programming has experienced a surge of interest, with many theoretical
models being proposed from quantum circuits to lambda calculi/type systems [4–8],
quantum logics, and quantum assembly languages [9–11]. Quantum Programming
Languages (QPL) allow us to argue about quantum algorithms beyond the hardware-
like level of quantum circuits which they are frequently described in. Such a
higher level description of quantum algorithms would include features such as data
structures, procedures, and syntactic constructions such as control flow statements:
recursion, loops, conditionals, etc.

Works like [12] have tried to formulate some basic requirements one would
expect a QPL to fulfil. These vary accordingly to the underlying paradigm,
with frequent requirements amongst others being: completeness, extensibility,
abstracting away and being independent from the underlying machinery, and being
expressive enough to allow one to define quantum data structures, oracles etc.,
handling of measurement, handling of quantum memory/registers. A QPL that
fulfils the aforementioned requirements would open the road for the application of
quantum computing in various areas such as networks, databases, cryptography and
telecommunications, leading to revolutionary innovations in many fields crucial to
our modern computing-intensive world.

In this work we present a brief overview of some techniques, algorithms and
patterns we consider helpful in writing quantum programs and designing languages
that offer “user-friendly” features to ease the development of such programs. We
also give indicative code snippets in a fragment of the Qumin language.

Qumin has an experimental implementation in a Python programming language
environment [13], using the libraries numpy for matrix/vector calculations and
parsimonious for parsing. The implementation consists of the interpreter for
the language, tools for parsing and typechecking and auxiliary tools for parsing
type signatures and automatically generating various types.

This paper is organized as follows: Sect. 2 includes the related work. In Sect. 3
we describe an extension of the untyped lambda calculus, whereas Sect. 4 is our
main contribution. Specifically, we discuss and illustrate by examples, the proposed
techniques for programming in a quantum framework. Finally, a discussion of our
results and plans for future work is included in Sect. 5.

2 Related Works

For a comprehensive introduction to quantum computing we refer the reader to
the work of Nielsen and Chuang in [14]. Various models and paradigms have
been defined for quantum programming and a handful of fully-fledged quantum
programming languages have already been implemented, as we discuss below.

Methods and Patterns for User-Friendly Quantum Programming 203

The field of quantum algorithms has produced a number of very interesting
works. Among them, Shor’s [2] and Grover’s algorithms [1] are some of the better
known ones. Quantum programming has experienced a surge of interest, with
many theoretical models being proposed from the well-established quantum circuits
to experimental (typed and untyped) lambda calculi, type systems [4, 6–8], and
quantum assembly languages [9–11].

Such models include the popular QRAM model: a register machine capable
of performing quantum operations (such as preparing a quantum state, unitary
transformations and measurement of quantum registers), which is controlled by
a classical computer. Some descriptions and/or implementations of QPLs include
the functional languages Quipper [6], QML [4], QPL [11], QLISP [10], and the
imperative languages QCL [12, 15] and LanQ [16].

In [17] the authors Sanders and Zuliani also present a quantum programming
language, the qGCL based on the Guarded Command Language, along with its
formal semantics. Additionally, the above work includes some examples of actual
quantum algorithms expressed in the aforementioned language.

3 A Naive Extension of the Untyped Lambda Calculus

To prepare the ground for our upcoming discussion of algorithms and patterns, it
would be beneficial to first discuss the theory of untyped lambda calculus, extended
with some primitive operations and constants, in order to facilitate operations in
Hilbert spaces H, which we will refer to as �H .

t := (term)
x (variable)
v (vector)
U (operator)
.U � v/ (operator application)
.v˝ v/ (tensor product)
measure.v/ (measurement)
�x:t (abstraction)
t t (application)

Where, for a given Hilbert space H,

• v belongs to the set of normalized vectors of H.
• U belongs to the set of matrix representations of unitary operators of H.
• U � v is operator application, by way of matrix multiplication: Uv.
• v ˝ v is the tensor/Kronecker product of two vectors/matrices.
• measure.v/ is measurement of state v in the computational basis. (returns state

after collapse)

204 A. Singh et al.

In practice, the parentheses and the multiplication dot can be omitted when the
meaning is clear. For example, Deutsch’s algorithm is expressed in �H as such:

�Uf :measure..H ˝ I/Uf .H ˝ H/.j0i ˝ j1i//

Where Uf is the matrix that corresponds to the oracle of a binary function:

f W f0; 1g ! f0; 1g
Uf .jx; yi/ D jx; y ˚ f .x/i

4 Programming in Qumin

We will focus on the dynamically typed fragment of the language Qumin. The
central construct we are interested in is that of an function as captured by the lambda
abstraction. For example �x:x C 5 is written in Qumin as such:

lambda.x/f.x C 5/g

Lambda abstractions can be invoked in-line by including arguments in a paren-
thesis as such:

lambda.x;y/f.x C 5/g.3;5/

Which would evaluate to 8.
Qumin, being a functional programming language, places great significance in

the notion of functions. Functions are first-class citizens, in that they can be passed
around and returned as any other primitive, like lists or numbers, and can be bound
to identifiers. The returned value of a function is the last evaluated expression in
its body. For example, a function that takes another function and applies it to an
argument:

lambda.f;x/ff.x/g.lambda.x/f.x C x/g;5/

Which evaluates to 10.
To define a named function, we attach a lambda abstraction to an identifier. For

example f .x/ D x C 5 is written in Qumin as such:

let f = lambda(x){
(x + 5)

}

And can be invoked as such:

f.5/

Which of course evaluates to 10.

Methods and Patterns for User-Friendly Quantum Programming 205

Qumin also supports implicit partial application:

let f(x,y){
(x + y)

}
let partiallyApplied = f(10)
partiallyApplied(30) => 40

Finally, specifically in the case of binary functions, we can also call them in infix
notation: (argument1 function argument2). For example:

let myOp = lambda(x,y){
parindent (x + (3 * y))

}
(5 myOp 10) => 35

Arithmetic operators (+,-,*/) in Qumin are defined as any other function
would be, we just call them infix for clarity.

4.1 Quantum Programming in Qumin

4.1.1 Vectors and Matrices

Vectors and matrices are of central importance in quantum computing, where they
represent the state/qubits of a system and unitary operators/gates respectively. In
Qumin vectors and matrices are implemented using lists and lists of lists. For
example a state j i D a j0i C b j1i in the two-dimensional space H, is written
in Qumin as such:

let psi D Œab�

While, for example, the identity matrix that corresponds to the identity operator
in H would be written as:

let identity = [[1 0]
[0 1]]

Naturally, as the dimension of H increases, the process of writing matrices by
hand quickly gets unwieldy. For example, for 4 qubits one would be expected to
write a 16x16 (256 values) matrix by hand. To tackle this problem, we can eschew
the use of matrix representations and work with linear operators as functions.
This alleviates the aforementioned problem of having to manually define multi-
dimensional matrices by hand. E.g. the identity operator is always f .x/ D x,
regardless of the space’s dimension. Unfortunately this has the side-effect of
making things like finding eigenvalues/eigenvectors much more difficult, while also
introducing a severe slowdown in computations.

206 A. Singh et al.

4.1.2 Matrix Generators

The solution to the aforementioned dilemma is given by a group of functions called
(matrix) generators. Generators allow us to make use of a linear operator in its
function form where convenient, and in its matrix form otherwise. A generator is
a function that when given an linear operator f W H ! H and a basis fvig of H,
generates f ’s matrix representation on H with respect to the basis. This allows us to
write linear operators as functions, composing them and manipulating them as one
would expect to manipulate a mathematical operator, and when we want to make
use of its matrix representation, all we have to do is invoke the generator on it.

Matrix Generator Algorithm.
Inputs: f W H! H; fvig
Outputs: Mdim.H/�dim.H/

0: M []
1: For v in fvig:
2: append f .v/ to M
3: transpose M

For example, the identity operator is defined as such:

let identity = lambda(vec){
vec

}

Then generating, for example, the identity matrix on a 16-dimensional (4-qubit)
Hilbert space, amounts to running:

generateMatrix(identity,16)

Apart from allowing us to avoid writing big matrices by hand, generators allow us
to define operators in a mathematical, easily-understood, and general with respect to
dimension, way. For example the Quantum Fourier Transform is written in Qumin
as such:

--load generator

let omega = lambda(jj,k,N){
exp((fold(*, [2 pi 0+1i jj k]) / N))

}

let qfSum = lambda(limit,vec,index,N){
if ((limit = 0)){

0
}
else {

((omega(index,limit,N) * car(vec)) +

Methods and Patterns for User-Friendly Quantum Programming 207

qfSum((limit - 1), cdr(vec), index, N))
}

}

let outer = lambda(vec,index,N){
if((N = index)){

[]
}
else{
append(((1 / sqrt(N)) * qfSum(N,vec,index,N)),

outer(vec,(index + 1),N))
}

}

let qft = lambda(vec){
let N = len(vec)
outer(vec,0,N)

}

As we can see, the Qumin implementation closely follows the mathematical
expression of QFT:

yk D 1p
N

N�1X

jD0
xj!

jk

Where:

! jk D e2� i jk
N

The function omega implements ! jk (ie the Nth root of unity), qfSum imple-

ments the sum
N�1P
jD0

xj!
jk, and outer builds the transformed vector (yk) by multi-

plying each result of qfSum by 1p
N

.

4.1.3 Deutsch’s Algorithm

We will now proceed to show an implementation of Deutsch’s algorithm. Once
again, we look back to �H . Quantum computation in �H is based on three primitive
operations: �;˝ and measure, which in Qumin are defined as functions named �,
˝ and measure respectively. If one wishes to avoid using unicode, he can use

208 A. Singh et al.

the aliases apply for � and tensor for ˝ instead. For example, we already have
presented Deutsch’s algorithm in �H so let us present the Qumin version:

--load generator
--load operators

let fConstant = lambda(x){
[1 0]

}

let fBalanced = lambda(x){
x

}

let deutsch = lambda(f){
let H = generateMatrix(hadamard,2)
let I = generateMatrix(identity,2)
let Uf = oracle(generateMatrix(f,2))
let state = ([1 0] ˝ [0 1])
measure(((H ˝ I) � (Uf � ((H ˝ H) � state))))

}

As we can see, the body of deutsch closely resembles the corresponding lambda
version: �Uf :measure..H ˝ I/Uf .H ˝ H/.j0i ˝ j1i//

Running Deutsch’s algorithm on the first example function, f .x/ D 0 gives us:

deutsch(fConstant)

=> Probability of state 0 is 0.5
Probability of state 1 is 0.5
Probability of state 2 is 0.0
Probability of state 3 is 0.0
System collapsed to state: 0

While it on the second example function, f .x/ D x gives us:

deutsch(fBalanced)

=> Probability of state 0 is 0.0
Probability of state 1 is 0.0
Probability of state 2 is 0.5
Probability of state 3 is 0.5
System collapsed to state: 3

As expected.
One may notice that in the implementation of Deutsch’s algorithm we made use

of a function called oracle. The oracle function converts classical operators
to unitary ones, allowing us to use them in our quantum computations. To do this,

Methods and Patterns for User-Friendly Quantum Programming 209

oracle expects as input a binary function f and creates a new operator U that
operates on a composite space, the tensor product of the domain of f as a qudit and
an additional helper qudit. That is, for f .x/, oracle creates U.x; y/ defined as such:
U.x; y/ D .x; y ˝ f .x//.

5 Conclusion and Future Work

Notable works on quantum aspects of computing, like the well-known quantum
algorithms of Shor and Deutsch have shown some prosperous signs. There is a need
for deep understanding and examination of the computation processes that could
be implemented. Works like this contribute in the field of quantum programming.
Overall, since Quantum Computing is a quite new scientific field, the theoretical
foundation of technologies and methodologies regarding this branch is still under
research. Aiming to this direction, our work proposed a specific methodology to
program and express quantum algorithms and computation processes.

As for future work, it would be of interest to use the language as a tool to study
the computational aspects of quantum computation, such as using it to simulate
variants of quantum automata that have interesting and useful properties, such as
measure-once automata [18] and periodic quantum automata [19]. Apart from that,
further implementations of quantum algorithms would also be of interest, serving
to expose potential new features that are crucial to their implementation. Finally,
the language could be used as an educational tool for familiarization with notions
related to quantum computation and quantum algorithms.

References

1. Grover, L.K. 1997. Quantum mechanics helps in searching for a needle in a haystack. Physical
Review Letters 79(2):325.

2. Shor, P.W. 1994. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994, 124–
134. Los Alamitos: IEEE.

3. D-Wave Systems, S. 2016. D-wave 2x. http://www.dwavesys.com/. [D-Wave 2X]
4. Altenkirch, T., and J. Grattage. 2005. A functional quantum programming language. In Logic

in Computer Science, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, 2005,
249–258. Chicago, IL, USA: IEEE.

5. Altenkirch, T., J. Grattage, J.K. Vizzotto, and A. Sabry. 2007. An algebra of pure quantum
programming. Electronic Notes in Theoretical Computer Science 170:23–47.

6. Green, A.S., P.L. Lumsdaine, N.J. Ross, P. Selinger, and B. Valiron. 2013. Quipper: a scalable
quantum programming language. In ACM SIGPLAN Notices, vol. 48, 333–342. New York:
ACM.

7. Selinger, P., B. Valiron, et al. 2009. Quantum lambda calculus. In Semantic Techniques in
Quantum Computation, 135–172. Cambridge: Cambridge University Press.

8. Van Tonder, A. 2004. A lambda calculus for quantum computation. SIAM Journal on
Computing 33(5):1109–1135.

http://www.dwavesys.com/

210 A. Singh et al.

9. Blaha, S. 2002. Quantum computers and quantum computer languages: quantum assembly
language and quantum c language. arXiv preprint quant-ph/0201082

10. Desmet, B., E. D’Hondt, P. Costanza, and T. D’Hondt. 2006. Simulation of quantum computa-
tions in lisp. In 3rd European Lisp Workshop, Co-Located with ECOOP.

11. Selinger, P. 2004. Towards a quantum programming language. Mathematical Structures in
Computer Science 14(04):527–586.

12. Ömer, B. 1998. A procedural formalism for quantum computing. Tech. rep., Department of
Theoretical Physics, Technical University of Vienna.

13. QUIT Group, I.U. 2016. Qumin language project. https://github.com/wintershammer/QImp/.
[Github repositiory, accessed 6/10/2016].

14. Nielsen, M.A., and I.L. Chuang. 2010. Quantum Computation and Quantum Information.
Cambridge: Cambridge University Press.

15. Ömer, B. 2005. Classical concepts in quantum programming. International Journal of
Theoretical Physics 44(7):943–955.

16. Mlnarik, H. 2007. Operational semantics and type soundness of quantum programming
language lanQ. arXiv preprint arXiv:0708.0890.

17. Sanders, J.W., and P. Zuliani. 2000. Quantum programming. In Mathematics of Program
Construction, 80–99. Berlin: Springer.

18. Moore, C., and J.P. Crutchfield. 2000. Quantum automata and quantum grammars. Theoretical
Computer Science 237(1):275–306.

19. Giannakis, K., C. Papalitsas, and T. Andronikos. 2015. Quantum automata for infinite periodic
words. In 6th International Conference on Information, Intelligence, Systems and Applications
(IISA), 2015, 1–6. Piscataway, NJ: IEEE.

https://github.com/wintershammer/QImp/

	Methods and Patterns for User-Friendly Quantum Programming
	1 Introduction
	2 Related Works
	3 A Naive Extension of the Untyped Lambda Calculus
	4 Programming in Qumin
	4.1 Quantum Programming in Qumin
	4.1.1 Vectors and Matrices
	4.1.2 Matrix Generators
	4.1.3 Deutsch's Algorithm

	5 Conclusion and Future Work
	References

