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Abstract. SKINNY is a new lightweight tweakable block cipher family
proposed by Beierle et al. at CRYPTO 2016. SKINNY has 6 main vari-
ants where SKINNY-n-t is a block cipher that operates on n-bit blocks
using t-bit tweakey (key and tweak) where n = 64 or 128 and t = n, 2n,
or 3n. In this paper, we present impossible differential attacks against
reduced-round versions of all the 6 members of the SKINNY family in
the single-tweakey model. More precisely, using an 11-round impossi-
ble differential distinguisher, we present impossible differential attacks
against 18-round SKINNY-n-n, 20-round SKINNY-n-2n and 22-round
SKINNY-n-3n (n = 64 or 128). To the best of our knowledge, these are
the best attacks against these 6 variants in the single-tweakey model.

Keywords: Cryptanalysis · Impossible differential attacks · Tweakable ·
Block ciphers · SKINNY

1 Introduction

SKINNY [3] is a Substitution Permutation Network (SPN) family of tweakable
lightweight block ciphers proposed at CRYPTO 2016 by Beierle et al. It supports
two block lengths n = 64 or 128 and for each of them, the tweakey t can be either
n, 2n or 3n. This family of ciphers inherits the recent design trend of having an SPN
cipher with suboptimal internal components. More precisely, SKINNY uses a light
tweakey schedule along with a round function that consists of a compact S-box
and a sparse diffusion layer. However, these suboptimal components are arranged
such that tight security bounds are guaranteed. Indeed, using Mixed Integer Lin-
ear Programming (MILP), the designers of SKINNY provide high security bounds
against differential/linear attacks for all the SKINNY versions in both the single-
tweakey and related-tweakey models. Furthermore, SKINNY has a good perfor-
mance for round-based ASIC implementation as it requires a very small area using
serial ASIC. Moreover, the designers of SKINNY show that its ASIC threshold
implementation is very favorable to AES-128 threshold implementation [5]. Pro-
viding compact implementation and a high level of security with the existence of
the tweakey was feasible by generalizing the Superposition TWEAKEY (STK)
construction [7]. Lastly, being a tweakable block cipher allows SKINNY to be
employed into a higher level of operating modes such as SCT [11].
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The designers of SKINNY presented 16-round attacks against SKINNY-n-
n (n = 64 or 128) in the single-tweakey model utilizing 11-round impossible
differential distinguisher. To provoke public cryptanalysis of SKINNY, they have
announced a competition [2] against two particular variants of SKINNY, namely,
SKINNY-64-128 and SKINNY-128-128, in which they indicated that the best
known attack against SKINNY-64-128, in the single-tweakey model, is 18 rounds.
As a result, a handful of third-party analysis have been published [1,10,12].
However, these attacks are in the arguably weaker attack model, the related-
tweakey model, in which the attacker is assumed to have the ability to query the
encryption oracle with keys that have specific relations.

In this paper, we present impossible differential attacks against reduced-
round versions of all the 6 variants of SKINNY, namely, SKINNY-n-n, SKINNY-
n-2n and SKINNY-n-3n (n = 64 or 128). All these attacks utilize the same 11-
round impossible differential distinguisher. Then, we exploit the fact that the
tweakey additions are only performed on the first two rows of the state, along
with the MixColumns operation properties and the tweakey schedule relations,
to extend this distinguisher by 7, 9, 11 rounds to launch key-recovery attacks in
the single-tweakey model against 18, 20, 22 rounds of SKINNY-n-n, SKINNY-
n-2n and SKINNY-n-3n (n = 64 or 128), respectively. Specifically, we extend
the designers’ 11-round impossible differential distinguisher by 3, 3 and 3 rounds
above it and 4, 6 and 8 rounds below it to launch 18, 20 and 22 rounds attacks
against SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respec-
tively. The time, data and memory complexities of our attacks are presented in
Table 1.

Table 1. The time, data and memory complexities of our attacks.

Block cipher version # of rounds Time Data Memory

SKINNY-64-64 18 257.1 247.52 258.52

SKINNY-128-128 18 2116.94 292.42 2115.42

SKINNY-64-128 20 2121.08 247.69 274.69

SKINNY-128-256 20 2245.72 292.1 2147.1

SKINNY-64-192 22 2183.97 247.84 274.84

SKINNY-128-384 22 2373.48 292.22 2147.22

The rest of the paper is organized as follows. Section 2 provides the notations
used throughout the paper and a brief description of SKINNY. In Sect. 3, we
present the impossible differential distinguisher used in our attacks. The details
of our attacks are presented in Sects. 4, 5 and 6, respectively. Finally, the paper
is concluded in Sect. 7.

2 Specifications of SKINNY

The following notations are used throughout the rest of the paper:
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– TKi: The round tweakey used in round i.
– ETKi: The equivalent round tweakey used in round i.
– xi: The input to the SubCells (SC) operation at round i.
– yi: The input to the AddRoundConstantTweakey (AK) operation at round i.
– y

′
i: The input to the AddRoundConstantEquivlantTweakey (AEK) operation

at round i.
– zi: The input to the ShiftRows (SR) operation at round i.
– wi: The input to the MixColumns (MC) operation at round i.
– xi[j]: The jth cell of xi, where 0 ≤ j < 16.
– xi[j · · · l]: The cells from j to l of xi, where j < l.
– xi[j, l]: The cells j and l of xi.
– xi[j][k]: The kth bit of the jth cell of xi.
– xi[j]{k, l,m}: The XOR of bits k, l,m of cell j of xi.
– xi[col : j]: The four cells in column j, e.g., xi[col : 0] = xi[0, 4, 8, 12].
– xi[SR−1[col : j]]: The four cells in column j after the SR−1 operation is

applied, e.g., xi[SR−1[col : 0]] = xi[0, 7, 10, 13].
– xi[col : j][k, l]: The jth and lth cells of column j of xi, e.g., xi[col : 0][0, 1] =

xi[0, 4].
– Δxi,Δxi[j]: The difference at state xi and cell xi[j], respectively.

The SKINNY family supports two block lengths of n = 64 and 128 bits.
In both versions, the internal state IS is represented as a 4 × 4 array of cells
such that one cell represents a nibble (when the block length n = 64) and a
byte (when the block length n = 128). While classical block ciphers have two
inputs, namely the plaintext and the key, and output the ciphertext, SKINNY
is a tweakable block cipher [7,9] that uses an input called the tweakey instead of
the key. Then, the user has the freedom to choose which part of the tweakey to
be assigned to the key and which part to be assigned to the tweak. This family of
block ciphers with block length n deploys three main tweakeys of lengths t = n
bits, t = 2n bits and t = 3n bits. Similar to the state, the tweakey state can be
represented as z 4 × 4 arrays of cells, i.e., we have arrays TK1 (in case z = 1),
TK1 and TK2 (in case z = 2), TK1 , TK2 , and TK3 (in case z = 3).

The encryption operation proceeds as follows. First, the plaintext m =
m0‖m1 ‖ · · · ‖m14‖m15 (where |mi| = n/16 = s-bit) is loaded into the internal
state IS row-wise as depicted in Fig. 1. Then, the tweakey input tk = tk0‖tk1‖ · · ·
‖tk16z−1 (where |tki| is s-bit as in the internal state) is loaded row-wise such that
TK1[i] = tki for 0 ≤ i ≤ 15 (in case z = 1), TK1[i] = tki,TK2[i] = tk16+i for
0 ≤ i ≤ 15 (in case z = 2) or TK1[i] = tki,TK2[i] = tk16+i,TK3[i] = tk32+i for
0 ≤ i ≤ 15 (in case z = 3). Finally, the internal state is updated by applying
the round function r times, where the number of rounds r depends on the block
length and the tweakey size as shown in Table 2.

As shown in Fig. 1, in each round, SKINNY applies five different oper-
ations, namely, SubCells, AddConstants, AddRoundTweakey, ShiftRows and
MixColumns. The cipher does not apply whitening tweakeys. Consequently,
parts of the first and last rounds do not add any security. In what follows,
we describe the five different operations that are employed in each round:
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Table 2. Number of rounds for SKINNY-n-t, with n-bit state and t-bit tweakey state.

Block size n Tweakey size t

n 2n 3n

64 32 36 40

128 40 48 56

Fig. 1. The SKINNY round function

– SubCells (SC): A nonlinear bijective mapping applied on every cell of the
internal state, where 4-bit (in case n = 64) or 8-bit (in case n = 128) S-boxes
are applied.

– AddConstants (AC): A 4 × 4 round constant is XORed to the state. These
round constants are generated using a 6-bit affine LFSR. The details of gen-
erating the round constants can be found in [3].

– AddRoundTweakey (ART): The first and second rows of all the tweakey
arrays are XORed to the state. More precisely, for 0 ≤ i ≤ 7, we have:

• IS[i] = IS[i] ⊕ TK1[i], when z = 1,
• IS[i] = IS[i] ⊕ TK1[i] ⊕ TK2[i], when z = 2,
• IS[i] = IS[i] ⊕ TK1[i] ⊕ TK2[i] ⊕ TK3[i], when z = 3.

– ShiftRows (SR): The rows of the state are rotated as in AES but to the
right, i.e., the following permutation P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14,
15, 12] is applied.

– MixColumns (MC): Each column in the state is multiplied by a binary matrix
M , where M and its inverse M−1 are given as follows:

M =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ , M−1 =

⎛
⎜⎜⎝

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

⎞
⎟⎟⎠.

Tweakey Schedule. As depicted in Fig. 2, the tweakey arrays are updated
through tweakey schedule as follows. First all the tweakey arrays, i.e., TK1
(when z = 1), TK1,TK2 (when z = 2), or TK1,TK2,TK3 (when z = 3)
are permuted using a permutation PT such that PT = [9, 15, 8, 13, 10, 14,
12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Finally, each cell in the first and second rows of
TK2,TK3 (when z = 2 or z = 3) is updated using the LFSR operations shown
in Table 3, where x0 is the LSB of the cell.
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Table 3. The SKINNY LFSR used in the tweakey schedule, where s denotes the cell
size in bits.

TK s LFSR

TK2 4 (x3 ‖ x2 ‖ x1 ‖ x0) → (x2 ‖ x1 ‖ x0 ‖ x3 ⊕ x2)

8 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0) → (x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0 ‖ x7 ⊕ x5)

TK3 4 (x3 ‖ x2 ‖ x1 ‖ x0) → (x0 ⊕ x3 ‖ x3 ‖ x2 ‖ x1)

8 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0) → (x0 ⊕ x6 ‖ x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1)

Fig. 2. The tweakey schedule

In our attack, we use AddKey (AK) operation which compromises the AC
and ART operations. Moreover, we swap the linear operations AK, MC ◦ SR,
and hence we use the equivalent subtweakey ETK instead of the subtweakey
TK such that ETKr+1 = MC ◦ SR(TKr).

3 An Impossible Differential Distinguisher of SKINNY

Impossible differential cryptanalysis was proposed independently by Biham,
Biryukov and Shamir [4] and Knudsen [8]. It exploits a (truncated) differential
characteristic of probability exactly 0 and thus acts as a distinguisher. Then, this
distinguisher is turned into a key-recovery attack by prepending and/or append-
ing additional rounds, which are usually referred to as the analysis rounds. The
keys involved in the analysis rounds which lead to the impossible differential are
wrong keys and thus are excluded. Miss-in-the-Middle is the general technique
used to construct impossible differentials, where a cipher E is split such that
E = E2 ◦ E1, and we try to find two deterministic differentials, the first one
covers E1 and has the form Δδ → Δγ, and the second covers E−1

2 , and has the
form Δβ → Δζ. When the intermediate differences Δγ,Δζ do not match, the
differential Δδ → Δβ that covers the whole cipher E holds with zero probability.

The designers of SKINNY exhaustively searched for the longest truncated
impossible differential that has one active cell in both Δδ and Δβ. They found
16 such truncated impossible differentials where each one covers 11 rounds. They
exploited one of these 16 impossible differentials, illustrated in Fig. 3, to attack
16-round SKINNY-n-n (n = 64 or 128). This distinguisher, which we reuse in
our attacks, states that a pair of messages that has only one active cell at x3[12]
cannot have only one active cell at x14[8]. The reason is that the active cell



122 M. Tolba et al.

Fig. 3. Impossible differential distinguisher of SKINNY

Δx3[12] results in 4 active cells and 12 unknown cells after 6 rounds, i.e., at
state x9. From the other side, the active cell Δx14[8] results in 4 inactive cells,
5 unknown cells and 7 active cells at state Y9 contradicting with the forward
differential at Δy9[15].

Our attacks depend on the following proposition:

Proposition 1 (Differential Property of the S-box). Given two nonzero differ-
ences Δi and Δo in F16 or F256, the equation: S(x) + S(x + Δi) = Δo has one
solution on average. This property also applies to S−1.

All our attacks use the same 11-round distinguisher, have 3 analysis rounds
on its top. They, however, differ in the analysis rounds appended below it. In
what follows, we describe our attack against SKINNY-64-128 in details and then
mention only the main differences for the other attacks.
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4 Impossible Differential Key-Recovery Attack
on 20-Round SKINNY-n-2n (n = 64 or 128)

4.1 Impossible Differential Key-Recovery Attack
on SKINNY-64-128

In this section, we present the first published attack on 20-round SKINNY-64-
128 in the single-tweakey model. We use the notion of data structures to generate
enough pairs of messages to launch the attack. In the first three rounds, we use
the equivalent tweakey ETK instead of the tweakey TK. Therefore, the first
round has no tweakey, and hence we can build our structures at y

′
1. Then, we

propagate it backward linearly through MC−1, SR−1, and SC−1 to obtain the
corresponding plaintexts. Our utilized structure takes all the possible values in
7 nibbles y

′
1[3, 4, 5, 6, 9, 11, 14] while the remaining nibbles take a fixed value.

Thus, one structure generates 24×7 × (24×7 − 1)/2 ≈ 255 possible pairs. Hence,
we have 255 possible pairs of messages satisfying the plaintext differences. In
addition, we utilize the following pre-computation tables in order to efficiently
extract/filter the (equivalent) tweakey nibbles corresponding to the active state
nibbles involved in the analysis rounds, where the table Hl{(E)TKi[S]} (also
referred to as Hl) is used to extract/filter the (equivalent) tweakey used in round
i at cells belonging to the set S and H∗ is computed once and used to extract
all the tweakey nibbles of the last analysis round and those corresponding to
column 1 in round 18.

H1{TK18[2,6]}: For all the 224 possible values of Δz17[SR−1[col : 2][0, 1]],
z17[SR−1[col : 2]], compute Δy18[col : 2], y18[col : 2]. Then, store Δz17[SR−1[col :
2][0, 1]], z17[SR−1[col : 2]], y18[col : 2][0, 1] in H1 indexed by Δy18[col : 2], y18[col :
2][2, 3]. H1 has 224 rows and on average about 224/224 = 1 value in each row.

H2{TK18[0,4]}: For all the 228 possible values of Δz17[SR−1[col : 0][0, 2, 3]],
z17[SR−1[col : 0]], compute Δy18[col : 0], y18[col : 0]. Then, store Δz17[SR−1[col :
0][0, 2, 3]], z17[SR−1[col : 0]], y18[col : 0][0, 1] in H2 indexed by Δy18[col : 0],
y18[col : 0][2, 3]. H2 has 224 rows and on average about 228/224 = 24 values in
each row.

H3{TK18[3,7]}: For all the 228 possible values of Δz17[SR−1[col : 3][0, 1, 3]],
z17[SR−1[col : 3]], compute Δy18[col : 3], y18[col : 3]. Then, store Δz17[SR−1[col :
3][0, 1, 3]], z17[SR−1[col : 3]], y18[col : 3][0, 1] in H3 indexed by Δy18[col : 3],
y18[col : 3][2, 3]. H3 has 224 rows and on average about 228/224 = 24 values in
each row.

H4{TK17[0,4]}: For all the 220 possible values of Δz16[SR−1[col : 0][0]],
z16[SR−1[col : 0]], compute Δy17[col : 0][0, 1, 3], y17[col : 0]. Then, store
Δz16 [SR−1[col : 0][0]], z16[SR−1[col : 0]], y17[col : 0][0, 1] in H4 indexed by
Δy17[col : 0][0, 1, 3], y17[col : 0][2, 3]. H4 has 220 rows and on average about
220/220 = 1 value in each row.
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Fig. 4. Impossible differential attack on 20-round SKINNY-n-2n
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H5{TK17[2,3,6]}: From the properties of the MixColumns, we have
Δx16[0] = Δx16[8] = Δx16[12] = Δw15[8]. Therefore, for all the 240 possible
values for Δx16[8], x16[8, 12],Δw16[2, 7], w16[2, 6, 14], x17[3, 11], compute
w16[10, 15],Δy17[2, 3, 6, 10, 11, 14], y17[2, 3, 6, 10, 11, 14, 15] such that y17[15] =
SC([w16[15] ⊕ x17[3]), from the MixColumns operation. Then, store
Δz16[SR−1[col : 2][0, 2]],Δz16[ SR−1[col : 3][1, 3]], z16[SR−1[col : 2]], z16[SR−1

[col : 3][3]], y17[2, 3, 6] in H5 indexed by Δy17[2, 3, 6, 10, 11, 14], y17[10, 11, 14, 15].
H5 has 240 rows and on average about 240/240 = 1 value in each row.

H6{TK17[1,5]}: For all the 224 possible values of Δz16[SR−1[col : 1][0, 3]], z16
[SR−1[col : 1]], compute Δy17[col : 1][0, 1, 3], y17[col : 1]. Then, store Δz16[SR−1

[col : 1][0, 3]], z16[SR−1[col : 1]], y17[col : 1][0, 1] in H6 indexed by Δy17[col :
1][0, 1, 3], y17[col : 1][2, 3]. H6 has 220 rows and on average about 224/220 = 24

values in each row.

H7{TK16[0]}: For all the 220 possible values of Δz15[SR−1[col : 0][2]], z15[SR−1

[col : 0]], compute Δy16[col : 0][0, 2, 3], y16[col : 0]. Then, store Δz15[SR−1[col :
0][2]], z15[SR−1[col : 0]], y16[col : 0][0] in H7 indexed by Δy16[col : 0][0, 2, 3], y16[
col : 0][2, 3]. H7 has 220 rows and on average about 220/220 = 1 value in each row.

H8{TK16[2]}: For all the 220 possible values of Δz15[SR−1[col : 2][0]], z15[SR−1

[col : 2]], compute Δy16[col : 2][0, 1, 3], y16[col : 2]. Then, store Δz15[SR−1[col :
2][0]], z15[SR−1[col : 2]], y16[col : 2][0, 1] in H8 indexed by Δy16[col : 2][0, 1, 3], y16[
col : 2][2, 3]. H8 has 220 rows and on average about 220/220 = 1 value in each row.

H9{TK15[2]}: From the properties of the MixColumns, we have Δx15[2] =
Δx15[10] = Δx15[14] = Δw14[10]. Therefore, for all the 24 possible differ-
ences for Δx15[2, 10], 28 possible values of x15[2, 10] and 24 possible values of
TK15[2], compute Δz15[2, 10], z15[2, 10]. Then, store Δz15[2] in H9 indexed by
Δz15[2, 10], z15[2, 10], TK15[2]. H9 has 220 rows and on average about 216/220 =
2−4 values in each row.

H10{ETK1[4,11,14]}: For all the 212 possible differences of Δw1[5, 9, 13], we
have only 24 valid differences that have exactly one difference in
Δy

′
2[13] and 3 zero differences in Δy

′
2[1, 5, 9]. Therefore, for all the 24 possi-

ble differences of Δw1[5, 9, 13], 212 possible values of w1[5, 9, 13] and 28 possible
values of ETK1[4, 14], compute Δy

′
1[4, 14], y

′
1[4, 14],Δx1[11], x1[11]. Then, store

Δw1[5, 9, 13], w1[5, 9, 13], x1[11] in H10 indexed by Δy
′
1[4, 14], y

′
1[4, 14],Δx1[11],

ETK1[4, 14]. H10 has 228 rows and on average about 224/228 = 2−4 values in each
row.

H11{ETK1[3,6,9]}: For all the 212 possible differences of Δw1[3, 7, 11], we have
only 24 valid differences that have exactly one difference in Δy

′
2[7] and 3 zero differ-

ences in Δy
′
2[3, 11, 15]. Therefore, for all the 24 possible differences of Δw1[3, 7, 11],

212 possible values of w1[3, 7, 11] and 24 possible values of ETK1[6], compute
Δy

′
1[6], y

′
1[6],Δx1[3, 9], x1[3, 9]. Then, store Δw1[3, 7, 11], w1[3, 7, 11], x1[ 3, 9] in
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H11 indexed by Δx1[3, 9],Δy
′
1[6], y

′
1[6],ETK1[6]. H11 has 220 rows and on aver-

age about 220/220 = 1 value in each row.

H12{TK16[1]}: For all the 28 possible values of Δx16[1], x16[1], compute
Δy16[1], y16[1]. Then, store y16[1] in H12 indexed by Δy16[1]. H12 has 24 rows
and on average about 28/24 = 24 values in each row.

H13{ETK1[1,5]}: For all the 216 possible values of Δw1[6], w1[1, 6], ETK1[1, 5]
(ETK1[1] = ETK1[5], see Appendix A in the full version of this paper [13]), com-
pute Δy

′
1[5], y

′
1[1, 5]. Then, store Δw1[6], w1[1, 6] in H13 indexed by Δy

′
1[5], y

′
1[1, 5],

ETK1 [1]. H13 has 216 rows and on average about 216/216 = 1 value in each row.

H14{ETK2[7,10,13]}: From the properties of the MixColumns, we have
Δw2[4] = Δw2[8] = Δw2[12] = Δy

′
3[12]. Therefore, for all the 24 possible differ-

ences for Δw2[4, 8, 12], 212 possible values of w2[4, 8, 12] and 212 possible values
of ETK2[7, 10, 13], compute Δy

′
2[7, 10, 13], y

′
2[7, 10, 13]. Then, store Δy

′
2[10] in

H14 indexed by Δy
′
2[7, 10, 13], y

′
2[7, 13],ETK2[7, 10, 13]. H14 has 232 rows and on

average about 228/232 = 2−4 value in each row.

H∗: For all the 232 possible values of Δzi[SR−1[col : j]], zi[SR−1[col : j]], com-
pute Δyi+1[col : j], yi+1[col : j]. Then, store Δzi[SR−1[col : j]], zi[SR−1[col :
j]], yi+1[col : j][0, 1] in H∗ indexed by Δyi+1[col : j], yi+1[col : j][2, 3]. H∗ has
224 rows and on average about 232/224 = 28 values in each row.

Instead of guessing the tweakey nibbles involved in the analysis rounds as in
the general approach of impossible differential attacks, we use the above men-
tioned pre-computation tables to deduce the tweakey nibbles that lead a specific
pair of plaintext/ciphertext to the impossible differential and thus should be
excluded. The details of our attack are as follows:

1. Generate 2m structures as described above. Therefore, we have 2m+55 pairs
of messages generated using 2m+28 messages. Then, ask the encryption
oracle for their corresponding ciphertexts and decrypt them partially over
MC−1, SR−1 to compute z19.

2. Determine the number of possible values of TK19[0 : 7] that satisfy the last
round by performing the following steps for all the message pairs:

(a) Access H∗ for i = 18, j = 0 and compute TK19[0, 4] such that
TK19[0, 4] = y19[0, 4]⊕z19[0, 4]1. Therefore, we have 28 possible tweakeys
for TK19[0, 4].

(b) Access H∗ for i = 18, j = 1 and compute TK19[1, 5] such that
TK19[1, 5] = y19[1, 5] ⊕ z19[1, 5]. Therefore, we have 28+8=16 possible
tweakeys for TK19[0, 1, 4, 5].

1 TK19[0, 4] = y19[0, 4] ⊕ z19[0, 4] means that TK19[0] = y19[0] ⊕ z19[0], TK19[4] =
y19[4] ⊕ z19[4].
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(c) Access H∗ for i = 18, j = 2 and compute TK19[2, 6] such that
TK19[2, 6] = y19[2, 6] ⊕ z19[2, 6]. Therefore, we have 216+8=24 possible
tweakeys for TK19[0, 1, 2, 4, 5, 6].

(d) Access H∗ for i = 18, j = 3 and compute TK19[3, 7] such that
TK19[3, 7] = y19[3, 7] ⊕ z19[3, 7]. Therefore, we have 224+8=32 possible
tweakeys for TK19[0 : 7].

3. Determine the number of possible values of TK18[0 : 7] that satisfy the next
to last round by performing the following steps for all the message pairs and
remaining tweakeys that satisfy the path until now:

(a) Access H1 and compute TK18[2, 6] such that TK18[2, 6] = y18[2, 6] ⊕
z18[2, 6]. Therefore, we have 232 possible tweakeys for TK19[0 : 7], TK18

[2 , 6].
(b) Access H2 and compute TK18[0, 4] such that TK18[0, 4] = y18[0, 4] ⊕

z18[0, 4]. Therefore, we have 232+4=36 possible tweakeys for TK19[0 : 7],
TK18[0, 2, 4, 6].

(c) Access H3 and compute TK18[3, 7] such that TK18[3, 7] = y18[3, 7] ⊕
z18[3, 7]. Therefore, we have 236+4=40 possible tweakeys for TK19[0 : 7],
TK18[0, 2, 3, 4, 6, 7].

(d) Access H∗ for i = 17, j = 1 and compute TK18[1, 5] such that
TK18[1, 5] = y18[1, 5] ⊕ z18[1, 5]. Therefore, we have 240+8=48 possible
tweakeys for TK19[0 : 7], TK18[0 : 7].

4. Determine the number of possible values of TK17[0 : 6] that satisfy the
eighteenth round by performing the following steps for all the message pairs
and remaining tweakeys that satisfy the path until now:

(a) Access H4 and compute TK17[0, 4] such that TK17[0, 4] = y17[0, 4] ⊕
z17[0, 4]. Therefore, we have 248 possible tweakeys for TK19[0 : 7],
TK18[0 : 7], TK17[0, 4].

(b) Access H5 and compute TK17[2, 3, 6] such that TK17[2, 3, 6] =
y17[2, 3, 6] ⊕ z17[2, 3, 6]. Therefore, we have 248 possible tweakeys for
TK19[0 : 7], TK18[0 : 7], TK17[0, 2, 3, 4, 6].

(c) Access H6 and compute TK17[1, 5] such that TK17[1, 5] = y17[1, 5] ⊕
z17[1, 5]. Therefore, we have 248+4=52 possible tweakeys for TK19[0 : 7],
TK18[0 : 7], TK17[0 : 6].

5. Determine the number of possible values of TK 16[0, 2] that satisfy the sev-
enteenth round by performing the following steps for all the message pairs
and remaining tweakeys that satisfy the path until now:

(a) Access H7 and compute TK16[0] such that TK16[0] = y16[0] ⊕ z16[0].
Therefore, we have 252 possible tweakeys for TK 19[0 : 7], TK18[0 :
7], TK17[0 : 6], TK16[0].

(b) Access H8 and compute TK16[2] such that TK16[2] = y16[2] ⊕ z16[2].
Therefore, we have 252 possible tweakeys for TK19[0 : 7], TK18[0 :
7], TK17[0 : 6], TK16[0, 2]2.

2 Note that instead of having TK16[6] that lead to the impossible differential distin-
guisher, we have x16[6] that result in the same impossible differential distinguisher.
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6. The knowledge of TK19[6] and TK17[4] enables us to deduce TK15[2] (see
Appendix A in [13]). Hence, we determine the number of possible tweakey
values that satisfy the sixteenth round by performing the following steps for
all the message pairs and remaining tweakeys that satisfy the path until now:

(a) Access H9; and we will find 2−4 possible values in each row, i.e., we have 4-
bit filter on the remaining tweakeys. Therefore, we have 252−4=48 possible
tweakeys for TK19[0 : 7], TK18[0 : 7], TK17[0 : 6], TK16[0, 2] TK15[2].

7. The knowledge of TK18[2, 4] and TK16[0, 2] enables us to deduce ETK1[4, 6,
14]3 (see Appendix A in [13]). Hence, we determine the number of possible
values for ETK1[3, 9, 11] that satisfy the second round by performing the
following steps for all the message pairs and remaining tweakeys that satisfy
the path until now:

(a) Access H10 and compute ETK1[11] such that ETK1[11]= y
′
1[11] ⊕ x1[11];

we will find 2−4 possible values in each row, i.e., we have 4-bit filter on the
remaining tweakeys. Therefore, we have 248−4=44 possible tweakeys for
TK19[0 : 7], TK18[0 : 7], TK17[0 : 6], TK16[0, 2], TK15[2], ETK1[4, 6, 11,
14].

(b) Access H11 and compute ETK1[3, 9] such that ETK1[3, 9] = y
′
1[3, 9] ⊕

x1[3, 9]. Therefore, we have 244 possible tweakeys for TK19[0 : 7],TK18[0 :
7], TK17[0 : 6], TK16[0, 2], TK15[2], ETK1[3, 4, 6, 9, 11, 14].

8. Determine the number of possible values for TK16[1] that satisfy the seven-
teenth round by performing the following steps for all the message pairs and
remaining tweakeys that satisfy the path until now:

(a) Access H12 and compute TK16[1] such that TK16 = y16[1] ⊕ z16[1].
Therefore, we have 244+4=48 possible tweakeys for TK19[0 : 7],TK18[0 :
7], TK17[0 : 6] , TK16[0, 1, 2], TK15[2], ETK1[3, 4, 6, 9, 11, 14].

9. The knowledge of TK18[0] and TK16[1] enables us to deduce ETK1[1, 5]
(see footnote 3) (see Appendix A in [13]). Hence, we determine the number
of possible tweakey values that satisfy the second round by performing the
following steps for all the message pairs and remaining tweakeys that satisfy
the path until now:

(a) Access H13 and we will find 1 possible value in each row. Therefore, we
have 248 possible tweakeys for TK19[0 : 7], TK18[0 : 7], TK17[0 : 6] ,
TK16[0, 1, 2], TK15[2], ETK1[1, 3, 4, 5, 6, 9, 11, 14],.

10. The knowledge of TK19[0, 3, 7] and TK17[1, 3, 5] enables us to deduce
ETK2[7, 10, 13] (see Appendix A in [13]). Hence, we determine the num-
ber of possible tweakey values that satisfy the third round by performing the
following steps for all the message pairs and remaining tweakeys that satisfy
the path until now:

3 Note that ETK1[6] = ETK1[14] and ETK1[1] = ETK1[5].
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(a) Access H14 and we will find 2−4 possible values in each row. Therefore, we
have 248−4=44 possible tweakeys for TK19[0 : 7], TK18[0 : 7], TK17[0 : 6],
TK16[0, 1, 2], TK15[2], ETK1[1, 3, 4, 5, 6, 9, 11, 14], ETK2[7, 10, 13].

Attack Complexity. As depicted in Fig. 4, we have 38 tweakey nibbles that are
involved in the analysis rounds. Thanks to the tweakey schedule, these 38 nibbles
take only 2116 possible values (see Appendix A in [13]). For each of the 2m+55

message pairs, we remove, on average, 244 out of 2116 possible values of these
tweakey nibbles. Therefore, the probability that a wrong tweakey is not discarded
with one pair is 1 − 244−116 = 1 − 2−72. Hence, after processing all the 2m+55

pairs, we have 2116(1 − 2−72)2
m+55 ≈ 2116 × (e−1)2

m+55−72 ≈ 2116 × 2−1.4×2m−17

remaining candidates for 116-bit of the tweakey. In order to determine the opti-
mal value of m that leads to the best computational complexity, we evaluate
the computational complexity of the attack as a function of m, as illustrated in
Table 4. Similar to AES [6], the SKINNY round function can be implemented
using 16 table lookups. As seen from Table 4, steps 5(a), 5(b) and 6(a) dominate
the time complexity of the attack, and hence in order to optimize the time com-
plexity of the attack we choose m = 19.69. Consequently, we have 2107 remaining
tweakey candidates for the 116-bit of the tweakey. Therefore, the tweakey can
be recovered by exhaustively searching the 2107 remaining tweakey candidates
with 212 remaining tweakey bits, that are not involved in the attack, using 2
plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is
2 × 2107 × 212 + 2120.15 = 2121.08 encryptions. The data complexity of the attack
can be determined from step 1 in which we generate 2m=19.69 structures. Hence,
the data complexity of the attack is 219.69+28=47.69 chosen plaintexts. The mem-
ory complexity of the attack is dominated by the memory that is required to
store 2m+55=74.69 pairs to exclude the wrong tweakeys, hence, it is 274.69.

4.2 Impossible Differential Key-Recovery Attack
on SKINNY-128-256

The only difference between SKINNY-64-128 and SKINNY-128-256 is the
tweakey schedule, more precisely, the LFSR operation. The above attack on
SKINNY-64-128 can be applied on SKINNY-128-256 while only considering that
the cell size s = 8. Therefore, one structure can generate 2111 pairs with 256 cho-
sen plaintexts. According to the tweakey schedule, the 38 bytes involved in the
attack have 2232 possible values (see Appendix B in the full version of this paper
[13]). In this attack, we exclude, on overage, 288 out of 2232 possible values of
the involved tweakey bytes for every message pair. Hence, the probability that
one wrong tweakey is not discarded is 1 − 288−232 = 1 − 2−144. Therefore, we
have 2232 × (1 − 2−144)2

m+111 ≈ 2232 × (e−1)2
m+111−144 ≈ 2232 × 2−1.4×2m−33

remaining candidates for 232-bit of the tweakey bytes, after processing all the
message pairs. In order to optimize the time complexity of the attack, we choose
m = 36.1. Consequently, we have 2220 remaining candidates for 232-bit of the
tweakey, and hence the tweakey can be recovered by exhaustively searching the
remaining candidates with 224 possible values, for the 24 bits of the tweakey that
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Table 4. Time complexity of the different steps of the attack on 20-round SKINNY-
64-128, where NT denotes the number of tweakeys to be excluded.

Step Time complexity (in 20-round encryptions) NT m = 19.69

1 2m+28 - 247.69

2(a) 2m+55 × 1

16 × 20
≈ 2m+46.68 28 266.37

2(b) 2m+55 × 28 × 1

16 × 20
≈ 2m+54.68 216 274.37

2(c) 2m+55 × 216 × 1

16 × 20
≈ 2m+62.68 224 282.37

2(d) 2m+55 × 224 × 1

16 × 20
≈ 2m+70.68 232 290.37

3(a) 2m+55 × 232 × 1

16 × 20
≈ 2m+78.68 232 298.37

3(b) 2m+55 × 232 × 1

16 × 20
≈ 2m+78.68 236 298.37

3(c) 2m+55 × 236 × 1

16 × 20
≈ 2m+82.68 240 2102.37

3(d) 2m+55 × 240 × 1

16 × 20
≈ 2m+86.68 248 2106.37

4(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 248 2114.37

4(b) 2m+55 × 248 × 2

16 × 20
≈ 2m+95.68 248 2115.37

4(c) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 252 2114.37

5(a) 2m+55 × 252 × 1

16 × 20
≈ 2m+98.68 252 2118.37

5(b) 2m+55 × 252 × 1

16 × 20
≈ 2m+98.68 252 2118.37

6(a) 2m+55 × 252 × 1

16 × 20
≈ 2m+98.68 248 2118.37

7(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 244 2114.37

7(b) 2m+55 × 244 × 1

16 × 20
≈ 2m+90.68 244 2110.37

8(a) 2m+55 × 244 × 1

16 × 20
≈ 2m+90.68 248 2110.37

9(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 248 2114.37

10(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 244 2114.37

are not involved in the attack, using 2 plaintext/ciphertext pairs. Therefore, the
total time complexity of the attack is 2× 2220 × 224 +236.1+111 × 2104 × 3

16×20
4=

2245 + 2244.36 = 2245.72. The data complexity of the attack is 2m+56=92.1 chosen
plaintexts; and the memory complexity is dominated by storing 2m+111=147.1

message pairs.

4 The second term is computed from step 5(a), 5(b) and 6(a).
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5 Impossible Differential Key-Recovery Attack
on 18-Round SKINNY-n-n (n = 64 or 128)

The only difference between SKINNY-64-64 and SKINNY-128-128 is the cell size
s, where s = 4 (resp. s = 8) in case of SKINNY-64-64 (resp. SKINNY-128-128).
Therefore, we present the steps of the two attacks concurrently as a function
of s. This attack is applicable to the first 18 rounds of the 20-round attack on
SKINNY-n-2n, i.e., the ciphertext c = x18. Therefore, we use the same steps
used in the previous attack from step 4 to the end and the same precomputation
tables from H4 to the end with the following modifications:

– Each structure can generate 27×s×27×s−1 = 214×s−1 with 27×s chosen plain-
texts. Then, to apply the attack we take 2m structures to generate 2m+14×s−1

pairs, but we have 4 s-bit filter in the transition over MC−1 from the cipher-
text to w17. Therefore, we have 2m+14×s−1−4×s=m+10×s−1 remaining pairs to
launch the attack.

– The number of rows and entries in each table will be represented as a function
of s. For example, H6 has 25×s rows; and in each row, we have 2s entries.

– The modifications of the number of tweakeys to be excluded from step 4 to
the end are presented in Table 5.

– The relation of the tweakey cells can be found in Appendix C in the full
version of this paper [13].

Attack Complexity. We have 22 tweakey cells that are involved in the analysis
rounds where these 22 tweakey cells have only 213×s possible values (see Appen-
dix C in [13]). The probability that one wrong tweakey is not discarded with
one pair is 1−2−s−13×s = 1−2−14×s. Hence, after processing all the 2m+10×s−1

pairs, we have 213×s(1 − 2−14×s)2
m+10×s−1 ≈ 213×s × (e−1)2

m+10×s−1−14×s ≈
213×s ×2−1.4×2m−4×s−1

remaining candidates for 13×s-bit of the tweakey. Steps
5(a), 5(b) and 6(a) dominate the time complexity of the attack, as seen from
Table 5, and hence in order to optimize the time complexity of the attack we
choose m = 19.52 (resp. m = 36.42) in case of SKINNY-64-64 (resp. SKINNY-
128-128). Consequently, we have 244 (resp. 289) remaining tweakey candidates
for the 52-bit (resp. 104-bit) of the tweakey. Therefore, the tweakey can be recov-
ered by exhaustively searching the 244 (resp. 289) remaining tweakey candidates
with 212 (resp. 224) for the other tweakey bits, that are not involved in the
attack, using 1 plaintext/ciphertext pair. Therefore, the total time complexity
of the attack is 244 × 212 + 256.14 = 257.1 (resp. 289 × 224 + 2116.84 = 2116.94)
encryptions in case of SKINNY-64-64 (resp. SKINNY-128-128). The data com-
plexity of the attack can be determined from step 1 in which we generate
2m=19.52 (resp. 2m=36.42) structures. Hence, the data complexity of the attack
is 219.52+28=47.52 (resp. 236.42+56=92.42) chosen plaintexts in case of SKINNY-
64-64 (resp. SKINNY-128-128). The memory complexity is dominated by the
memory required to store the 258.52 (resp. 2115.42) pairs after the ciphertext fil-
tration and is estimated to be 258.52 (resp. 2115.42) in case of SKINNY-64-64
(resp. SKINNY-128-128).
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6 Impossible Differential Key-Recovery Attack on
22-Round SKINNY-n-3n (n = 64 or 128)

SKINNY-64-192 differs from SKINNY-128-384 in the cell size s and the tweakey
schedule. As the tweakey schedule does not influence the attack procedure, we
present the two attacks as a function of s. The 20-round attack on SKINNY-n-2n
(n = 64 or 128) can be extended to 22-round attack on SKINNY-n-3n (n = 64 or
128) by appending 2 rounds, i.e., the ciphertext c = x22. Therefore, we can use
the same attack procedures of SKINNY-n-2n (n = 64 or 128) to attack SKINNY-
n-3n (n = 64 or 128) by repeating step 2 three times to extract the tweakey cells
TK19[0 : 7], TK20[0 : 7], TK21[0 : 7]. The details of the tweakey schedule can be
found in Appendix D in the full version of this paper [13]. Moreover, as in the
previous attack on 18-round SKINNY-n-n (n = 64 or 128), each structure can
generate 27×s × 27×s−1 = 214×s−1 with 27×s chosen plaintexts. Then, we take
2m structures to generate 2m+14×s−1 pairs using 2m+7×s chosen plaintexts.

Attack Complexity. The 54 tweakey cells that are involved in the analysis
rounds have only 245×s possible values. The probability that a wrong tweakey
is not discarded with one pair is 1 − 227×s−45×s = 1 − 2−18×s. Hence, after
processing all the 2m+14×s−1 pairs, we have 245×s(1 − 2−18×s)2

m+14×s−1 ≈
245×s × (e−1)2

m+14×s−1−18×s ≈ 245×s × 2−1.4×2m−4×s−1
remaining candidates

for 45 × s-bit of the tweakey. In order to optimize the time complexity of the

Table 5. Time complexity of the different steps of the attack on 18-round SKINNY-64-
64 and SKINNY-128-128, where NT denotes the number of tweakeys to be excluded.

Step Time Complexity (in 18-round encryptions) NT s = 4,m = 19.52 s = 8,m = 36.42

1 2m+7×s - 247.52 292.42

4(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 1 250.35 2107.25

4(b) 2m+10×s−1 × 2

16 × 18
≈ 2m+10×s−8.17 1 251.35 2108.25

4(c) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 2s 250.35 2107.25

5(a) 2m+10×s−1 × 2s × 1

16 × 18
≈ 2m+11×s−9.17 2s 254.35 2115.25

5(b) 2m+10×s−1 × 2s × 1

16 × 18
≈ 2m+11×s−9.17 2s 254.35 2115.25

6(a) 2m+10×s−1 × 2s × 1

16 × 18
≈ 2m+11×s−9.17 1 254.35 2115.25

7(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 2−s 250.35 2107.25

7(b) 2m+10×s−1 × 2−s × 1

16 × 18
≈ 2m+9×s−9.17 2−s 246.35 299.25

8(a) 2m+10×s−1 × 2−s × 1

16 × 18
≈ 2m+9×s−9.17 1 246.35 299.25

9(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 1 250.35 2107.25

10(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 2−s a 250.35 2107.25

aAfter this step, we have 2−s tweakeys to be excluded for each message pair, i.e., we exclude 1

tweakey after processing 2s pairs.
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attack, we choose m = 19.84 (resp. m = 36.22) in case of SKINNY-64-192
(resp. SKINNY-128-384). Consequently, we have 2170 (resp. 2347) remaining
tweakey candidates for the 180-bit (resp. 360-bit) of the tweakey. Therefore,
the tweakey can be recovered by exhaustively searching the 2170 (resp. 2347)
remaining tweakey candidates with 212 (resp. 224) for the other tweakey bits,
that are not involved in the attack, using 3 (calculated from the unicity distance)
plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is
3 × 2170 × 212 + 2183.97 = 2184.79 (resp. 3 × 2347 × 224 + 2372.35 = 2373.48) encryp-
tions in case of SKINNY-64-192 (resp. SKINNY-128-384). The data complexity
of the attack is 219.84+28=47.84 (resp. 236.22+56=92.22) chosen plaintexts in case of
SKINNY-64-192 (resp. SKINNY-128-384). The memory complexity of the attack
is 274.84 (resp. 2147.22) in case of SKINNY-64-64 (resp. SKINNY-128-384).

7 Conclusion

In this work, we presented impossible differential attacks against reduced-round
versions of all the 6 SKINNY’s variants. All of these attacks use the same impos-
sible differential distinguisher that covers 11-round. We extended this 11-round
distinguisher by 7, 9 and 11 rounds to attack 18, 20 and 22 rounds of SKINNY-
n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respectively, exploiting
the properties of the MixColumns operation, the simple tweakey schedule and
the fact that the tweakey is only added to the first two rows of the state. The pre-
sented attacks are currently the best known ones on all the variants of SKINNY
in the single-tweakey model.
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