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Abstract. We address a cryptanalysis of two protocols based on the
supposed difficulty of discrete logarithm problem on (semi) groups of
matrices over a group ring. We can find the secret key and break entirely
the protocols.
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1 Introduction

The Diffie-Hellman key agreement protocol is the first published practical solu-
tion to the key distribution problem, allowing two parties that have never met to
exchange a secret key over an open channel. It uses the cyclic group F

∗
q , where Fq

is the finite field of q elements. The security of this protocol is based on the dif-
ficulty of computing discrete logarithms (DL) in the group F

∗
q . There are several

algorithms for computing discrete logarithms, some of them are subexponential
when applied to F

∗
q .

It is important to search for easily implementable groups, for which the DL
problem is hard and there is no known subexponential time algorithm for com-
puting DL. The group of points over Fq of an elliptic curve is such a group. In [8],
the group of invertible matrices with coefficients in a finite field was considered
for such a key exchange. In [6], using the Jordan form it was shown that the dis-
crete logarithm problem on such matrices can be reduced to the same problem
over some small extensions of the finite base field.

In [4], the authors consider the semigroup of matrices (3-by-3 matrices) over
the group ring F7[S5], where S5 is the group of permutation of {1, 2, 3, 4, 5}.
The security of this protocol is based on the supposed difficulty of the discrete
logarithm problem in the (semi) group of matrices with coefficients in F7[S5].

Moreover in [5], the authors propose the same semigroup as a platform for
the Cramer-Shoup cryptosystem which is a generalization of ElGamal’s protocol.
Here the security is based on the supposed difficulty of the discrete logarithm
problem in the group of invertible 3-by-3 matrices with coefficients in F7[S5].

In [1,2,7] a cryptanalysis of [4] is proposed. Their methods are somehow
different. In [1], the problem of discrete logarithm in a semigroup is reduced
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to the same problem in a subgroup of the same semigroup. In [2] one uses a
slight modification of Shor’s quantum algorithm to find the period of a singular
matrix (there is no notion of order for such a matrix) and thereby solving the
discrete logarithm problem in semigroups. In [7], Mat3(F7[S5]) is embedded in
Mat360(F7) and then one uses the same procedure as in [6] (adapted to singular
matrices). The conclusion of all three papers above is that using a quantum
computer one can break the key exchange protocol of [4].

In contrast to the above analysis we use the irreducible representations of
the group S5; then using the fact that the algebra F7[S5] is semi-simple, we
give an isomorphism between this algebra and an algebra of block matrices with
coefficients in F7. Then we use this isomorphism to give an isomorphism between
Mat3(F7[S5]), and still another algebra of block matrices over F7. To do so, we
combine the same blocks of the first isomorphism.

This way we reduce the discrete logarithm problem over Mat3(F7[S5]), to the
same problem over block matrices with coefficients in F7. The maximum size of a
block is 18, reducing dramatically the computations. Now we can apply the same
procedure (eventually modified for singular matrices) as in [4], to each block and
resolve the problem of discrete logarithm entirely (using actual computers) and
find the secret key. So the conclusion is that the platform proposed in [4] and
[5] are simply insecure.

The rest of this paper is organized as follows. Section 2, will be devoted to the
irreducible representations of S5. In Sect. 3, we explain the isomorphism between
matrices with coefficients in F7[S5], and block matrices with coefficients in F7,
and show that the protocols proposed in [4,5] can be broken. In Sect. 4, we give
an example to illustrate our analysis. Finally we conclude with some remarks in
Sect. 5.

2 Irreducible Representations of S5

For our purpose, it will be easier to use the following presentation of S5. We
note W := (12) and Z := (12345). The group S5 is defined by generators W,Z
and relations T , where T is the following set of relations:

W 2 = id

Z5 = id

(ZW )4 = id

WZ−1WZW = Z−1WZWZ−1WZ

[W,Z−2WZ2] = id

[W,Z−3WZ3] = id

The group S5 has two distinct representations of dimension one (namely the
trivial one and the signature), two non isomorphic irreducible representations of
dimension four, two non isomorphic irreducible representations of dimension five,
and one irreducible representation of dimension six. We give the images of the
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generators Z and W by these representations, and one can verify the relations
T , for the images, thereby proving that one defines morphisms from S5 to matrix
groups. One can compare the trace of these morphisms with the character table
of S5 to be sure we obtain all the irreducible representations of S5.

To construct these representations one can follow the general description of
[3], using Young polytabloids, to construct the Specht modules which give the
irreducible representation of S5.

W = (12) �−→ A1 ⊕ A′
1 ⊕ A4 ⊕ A′

4 ⊕ A5 ⊕ A′
5 ⊕ A6

where

A1 = 1; A′
1 = −1; A4 =

⎛
⎜⎜⎝

−1 0 0 −1
0 −1 0 1
0 0 −1 −1
0 0 0 1

⎞
⎟⎟⎠ ; A′

4 =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 −1

⎞
⎟⎟⎠

A5 =

⎛
⎜⎜⎜⎜⎝

−1 0 1 0 −1
0 −1 −1 0 0
0 0 1 0 0
0 0 0 −1 −1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

; A′
5 =

⎛
⎜⎜⎜⎜⎝

1 0 −1 0 1
0 1 1 0 0
0 0 −1 0 0
0 0 0 1 1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

A6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 1 0 1 0
0 −1 −1 0 0 1
0 0 1 0 0 0
0 0 0 −1 −1 −1
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Z = (12345) �−→ B1 ⊕ B′
1 ⊕ B4 ⊕ B′

4 ⊕ B5 ⊕ B′
5 ⊕ B6

where

B1 = 1; B′
1 = 1; B4 =

⎛
⎜⎜⎝

0 0 0 1
−1 0 0 −1
0 −1 0 1
0 0 −1 −1

⎞
⎟⎟⎠ ; B′

4 =

⎛
⎜⎜⎝

0 0 0 1
−1 0 0 −1
0 −1 0 1
0 0 −1 −1

⎞
⎟⎟⎠

B5 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

⎞
⎟⎟⎟⎟⎠

; B′
5 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

⎞
⎟⎟⎟⎟⎠

; B6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

3 Cryptanalysis of Protocols

In [4] the authors propose the Diffie-Hellman key exchange using 3-by-3 matrices
over F7[S5]. So Alice and Bob, take a public matrix M ∈ Mat3(F7[S5]) which
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may be non-invertible. Alice chooses a secret integer n, computes Mn and sends
it to Bob. Bob chooses a secret integer n′, computes Mn′

and sends it to Alice.
Every party can now compute the common key Mnn′

.
In [5], they use the same platform for the Cramer-Shoup cryptosystem which

we do not recall. We underline only that there is a public key M as above, and
during the protocol among other data sent, there is Mn where n is the secret
key. So if we are able to give a solution for the discrete logarithm problem in the
case of M ∈ Mat3(F7[S5]), in both cases the platform proposed is not secure.
That is what we are going to explain.

As 7 does not divide |S5| = 120, the algebra F7[S5] is semi-simple and
Maschke’s theorem asserts that this algebra is isomorphic to a direct sum of
matrix algebras (over F7), in other words it is isomorphic to an algebra of
block matrices over F7. Let us denote by f this isomorphism. To be of any
use for our purpose, we have to make precise this isomorphism explicitly. The
F7-linear extension (to F7[S5]) of the morphism of S5 using the irreducible
representations of S5 given on generators W = (12), Z = (12345) in Sect. 2,
gives the isomorphism f between F7[S5] and its image. So for any element
x =

∑120
i=1 aixi ∈ F7[S5], ai ∈ F7 and xi ∈ S5 we can compute its image as

a direct sum of matrices with coefficients in F7. Note that this decomposition is
a special case of Wedderburn’s theorem asserting that every semi-simple algebra
can be decomposed as a direct sum of all its distinct simple submodules.

Up to now we have represented a matrix M ∈ Mat3(F7[S5]) as a matrix with
coefficients in F7 by replacing each coefficient Mij of M by f(Mij). For example
M11 is replaced by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a′
1

a4
a′
4

a5
a′
5

a6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ai, a
′
i are block matrices with coefficients in F7 and the indexes denote the

size of the block.
Let us denote by A,B,C,E, F,G,H, I, J the block matrices corresponding to

M11,M12,M13,M21,M22,M23,M31,M32,M33. Then B is a block matrix which
we represent the same way as A by denoting b1, b

′
1, b4, b

′
4, . . . its blocks. We use

the same notations for C,D, . . . . It is an easy computation to prove that there
is a natural isomorphism between matrices

⎛
⎝
A B C
D E F
H I J

⎞
⎠
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and the block matrix whose first block is obtained by composing (side by side)
the first blocks of A,B,C,D, . . . , namely

⎛
⎝
a1 b1 c1
d1 e1 f1
h1 i1 j1

⎞
⎠ ,

which gives a 3 × 3 matrix over F7.
The second block is obtained by composing the second blocks of

A,B,C,D, . . . , namely ⎛
⎝
a′
1 b′

1 c′
1

d′
1 e′

1 f ′
1

h′
1 i′1 j′

1

⎞
⎠ ,

and so on.
To sum up, we represent the matrix M ∈ Mat3(F7[S5]) by a block matrix in

F7 whose blocks are of size 3, 3, 12, 12, 15, 15, 18. We represent also the matrix
Mn by a block matrix with the same size 3, 3, 12, 12, 15, 15, 18 in F7. Now we
can apply the same techniques as in [6], namely write the Jordan form of each
block in some small extension base F7α and find the secret key n. Note that for
singular blocks, we need a slight modification of the procedure of [6], as proposed
in [7].

4 An Example

We use the notations of Sects. 2 and 3.
Let us denote e the identity element of S5.
Let

M =

⎛
⎝

2e + W + S 3e + WS e + S2

5e + 2SWS e + W + S3 S
W + S2 2e + S e + W

⎞
⎠ ∈ F7[S5]

and N = Mn (n is unknown) two given matrices. Our goal is to find l ∈ N such
that M l = N .

We represent every coefficient of M as a block matrix as follows:

2e+W + S = (2A1) + (A1 ⊕A′
1 ⊕A4 ⊕A′

4 ⊕A5 ⊕A′
5 ⊕A6) + (B1 ⊕B′

1 ⊕B4 ⊕
B′

4 ⊕ B5 ⊕B′
5 ⊕B6) = (2A1 +A1 +B1) ⊕ (A′

1 +B′
1) ⊕ (A4 +B4) ⊕ A′

4 +B′
4) ⊕

(A5 +B5) ⊕ (A′
5 +B′

5) ⊕ (A6 +B6) = (4) ⊕ (0) ⊕ (A4 +B4) ⊕ (A′
4 +B′

4) ⊕ (A5 +
B5) ⊕ (A′

5 + B′
5) ⊕ (A6 + B6).

3e+WS = (3A1) + (A1B1 ⊕A′
1B

′
1 ⊕ (A4B4 ⊕A′

4B
′
4 ⊕A5B5 ⊕A′

5B
′
5 ⊕A6B6) =

(3A1 + A1B1) ⊕ (A′
1B

′
1) ⊕ A4B4) ⊕ (A′

4B
′
4) ⊕ (A5B5) ⊕ (A′

5B
′
5) ⊕ (A6B6) =

(4) ⊕ (−1) ⊕ (A4B4) ⊕ (A′
4B

′
4) ⊕ (A5B5) ⊕ (A′

5B
′
5) ⊕ (A6B6).
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e + S2 = (2) ⊕ (1) ⊕ B2
4 ⊕ B′2

4 ⊕ B2
5 ⊕ B′2

5 ⊕ B2
6 .

5+2SWS = (0)⊕(2)⊕2B4A4B4⊕2B′
4A

′
4B

′
4⊕2B5A5B5⊕2B′

5A
′
5B

′
5⊕2B6A6B6.

e+W+S3 = (3)⊕(0)⊕(A4+B3
4)⊕(A′

4+B′3
4)⊕(A5+B3

5)⊕(A′
5+B′3

5)⊕(A6+B3
6).

S = (1) ⊕ (−1) ⊕ B4 ⊕ B′
4 ⊕ B5 ⊕ B′

5 ⊕ B6.

W +S2 = (2)⊕(2)⊕(A4+B2
4)⊕(A′

4+B′2
4)⊕(A5+B2

5)⊕(A′
5+B′2

5)⊕(A6+B2
6).

2e + S = (3) ⊕ (1) ⊕ B4 ⊕ B′
4 ⊕ B5 ⊕ B′

5 ⊕ B6.

e + W = (2) ⊕ (1) ⊕ A4 ⊕ A′
4 ⊕ A5 ⊕ A′

5 ⊕ A6.

So far we have represented M by a matrix whose coefficients are block matrices as
above with coefficients in F7. It is straightforward that this matrix is isomorphic
to the block matrix we form as follows:

Take the first component of each coefficients to form the matrix

M1 =

⎛
⎝

4 4 2
0 3 1
2 3 2

⎞
⎠ ,

then take the second component of each coefficient to form the matrix

M ′
1 =

⎛
⎝

2 −1 1
2 0 −1
2 1 1

⎞
⎠ .

Take the third component of the coefficients to obtain

M4 =

⎛
⎝

A4 + B4 A4B4 B2
4

2B4A4B4 A4 + B3
4 B4

A4 + B − 42 B4 A4

⎞
⎠

Note that this matrix is of size 12. Continuing this way we obtain another matrix
of size 12 which we denote by M ′

4, two matrices of size 15 denoted by M5 and
M ′

5 and a last matrix of size 18 denoted by M6. We have M = M1 ⊕ M ′
1 ⊕

M4 ⊕ M ′
4 ⊕ M5 ⊕ M ′

5 ⊕ M6.
We do the same operation on matrix N = Mn to express it as a block matrix

of the same size as above. Now we can separately work on corresponding blocks
of M and N of the same size, computing the characteristic polynomials, Jordan
forms... as suggested in [6], and reduce the discrete logarithm problem to the one
on some small extension of the field F7. It may happen that some block is not
invertible. We can still compute the Jordan forms and with a slight modification
as suggested in [7] finish the work.

Note that the size of blocks in the above decomposition of M are the product
of the size of M as a matrix with coefficients in F7[S5] (namely 3) and the degrees
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of irreducible representations of S5. So if we replace the group S5 by some other
finite group G and the field F7 by Fp, such that Fp[G] is a semi-simple algebra,
the same procedure works. In fact representations of finite groups are very well
known (techniques for constructing the irreducible representations will be differ-
ent). If n1, n2, . . . , nk are the degrees of all distinct irreducible representations
of G we know that |G| = n2

1 + n2
2 + . . . n2

k and each nj divides |G| and even
more... (see [9]), such that these degrees are small enough comparing to |G|, and
a matrix M ∈ Fp[G] of size 3 for example, will be decomposed in block matrices
with coefficients in Fp and sizes 3n1, 3n2, . . . , 3nk.

5 Conclusion

We showed that using matrices with coefficients in F7[S5] as a platform for Diffie-
Hellman key exchange is not secure. One may wonder if replacing F7 by F2,F3 or
F5 give something essentially different. In fact in these cases the group algebra
is not semi-simple anymore and Wedderburn’s theorem cannot be applied. But
these new algebras are not far from being semi simple; in fact they differ from
being semi simple by a nilpotent radical, and the quotient is semi simple and
then the same procedure as explained in Sect. 2 can be applied. To sum up we
believe that no secure cryptographic protocol can be based upon these algebras.

Furthermore replacing the group S5 by some other finite group G, can be
cryptanalyzed the same way using the irreducible representations of G.
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