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Abstract. In this article, a new oblivious transfer (OT) protocol, secure
in the presence of erasure-free one-sided active adaptive adversaries is
presented. The new bit OT protocol achieves better communication com-
plexity than the existing bit OT protocol in this setting. The new bit
OT protocol requires fewer number of public key encryption operations
than the existing bit OT protocol in this setting. As a building block, a
new two-party lossy threshold homomorphic public key cryptosystem is
designed. It is secure in the same adversary model. It is of independent
interest.
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1 Introduction

Oblivious transfer (OT) is one of the most critical problems in cryptography
since many applications can be designed based on the existence of a secure OT
protocol. In one-sided active adaptive adversary model for two-party computa-
tion, it is assumed that the adversary is active, adaptive and it can corrupt at
most one party [13]. This is a relaxation from the standard adaptive adversary
model for two-party computation, where the adversary can corrupt both par-
ties. This relaxed model is used to achieve more efficient protocols. Let n denote
the security parameter. Garay et al. [12] designed the most efficient OT protocol
secure against active adaptive adversaries. For string OT of size q bits, their pro-
tocol requires O(q) public key encryption (PKE) operations in the worst case.
Here, q is a polynomial of n. Hazay and Patra [13] designed an OT protocol for
one-sided active adaptive adversary model. For string OT of size q bits, their
protocol requires constant number of PKE operations in the expected case. So,
relaxing the notion of security has resulted in a protocol requiring significantly
smaller number of PKE operations, in the expected case. In the erasure-free
adaptive adversary model, it is assumed that the adversary can see all history of
a party when it corrupts that party.

Hazay and Patra [13] designed an OT protocol for one-sided active adap-
tive adversary model. The OT protocol of [13] requires O(n2) communication
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complexity for bit OT. One research goal is to improve the communication com-
plexity in this setting.

Contribution of this Article. In this article, a new OT protocol secure against
erasure-free one-sided active adaptive adversaries is presented. The worst case
analysis is used as the measure of efficiency in this article. The new bit OT pro-
tocol needs O(n) communication complexity, which is a significant improvement
over the O(n2) communication complexity of the bit OT protocol of [13]. The bit
OT protocol of [13] requires O(n) PKE operations in the worst case, and the new
bit OT protocol needs a constant number of PKE operations in the worst case.
The OT protocol of [13] is secure in the universally composable (UC) frame-
work. The new OT protocol is secure according to the simulation-based security
definition of Canetti [5], which satisfies sequential composition.

As a building block, a new two-party lossy threshold homomorphic PKE
scheme is designed. This encryption scheme is of independent interest. It can be
used in other two-party protocols.

Techniques. Aumann and Lindell [1] designed an OT protocol secure against
covert static adversaries. The new OT protocol is designed by converting their
OT protocol. It is secure against erasure-free one-sided active adaptive adver-
saries. The new OT protocol achieves a much stronger notion of security than the
OT protocol of [1] in two senses. Firstly, the active adversary model is a stronger
security model than the covert adversary model [1]. Secondly, the adaptive adver-
sary model is more secure than the static adversary model [5]. The OT protocol
of [1] is modified in two ways. The protocol of [1] uses a traditional homomorphic
PKE scheme and the new OT protocol uses a two-party lossy threshold homo-
morphic PKE scheme. For verification, the protocol of [1] uses cut-and-choose
technique and the new OT protocol uses adaptive zero-knowledge arguments.

2 Background

Notation. Let n denote the security parameter. Let Zq = {0, 1, . . . , q−1} where
q is a prime. Let Z

∗
q = {1, 2, . . . , q − 1}. For all elements a and b �= 1 in group

G, the discrete logarithm of a in base b is denoted by logb(a). For a set R,

let r
$← R denote that r is selected uniformly at random from R. Let A be a

probabilistic polynomial-time algorithm. Let coins(A) denote the distribution of
the internal randomness of A. y ← A(x) means that y is computed by running

A on input x and randomness r where r
$← coins(A). Let Epk(m, r) denote the

result of encryption of plaintext m using encryption key pk and randomness r.
Let Dsk(c) denote the result of decryption of ciphertext c using decryption key
sk. Let Comμ(a, r) denote the commitment of secret a using commitment key μ
and randomness r.

The DDH Assumption. The decisional Diffie-Hellmann (DDH) assumption
for cyclic group G of order prime q says that, for random generator g ∈ G

∗
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(G∗ denotes the generators of G), the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are

computationally indistinguishable, where a, b, c
$← Zq.

Trapdoor Commitment Scheme. A trapdoor commitment scheme is a com-
mitment scheme such that a trapdoor is generated during the key generation.
With the trapdoor, one can efficiently compute a randomness to open a given
commitment to any value of choice. Without the trapdoor, the binding property
of the commitment scheme holds. Pedersen [18] designed a trapdoor commitment
scheme based on the DDH assumption. In Pedersen’s commitment scheme, the
commitment key is μ = gδ, and δ is the trapdoor.

Adaptive Zero-Knowledge Arguments. For definition of zero-knowledge
argument, see [15]. An adaptive zero-knowledge argument is a zero-knowledge
argument secure against adaptive adversaries. For definition of non-erasure
Σ-protocol, see [8,17].

Additive Homomorphic PKE Scheme. In an additive homomorphic PKE
scheme, one can efficiently compute an encryption c of (m1 + m2) from cipher-
texts c1 and c2 encrypting plaintexts m1 and m2, respectively. This is called
homomorphic addition and denoted by c = c1 +h m2. In an additive homomor-
phic PKE scheme, one can also efficiently compute an encryption c2 of (m1×m2)
from an encryption c1 of m1 and the plaintext m2. This is called homomorphic
multiplication by constant, and denoted by c2 = m2 ×h c1.

Randomizable PKE Scheme. In a randomizable PKE scheme, there exists
a probabilistic polynomial-time algorithm Blind, which, on input public key pk
and an encryption c of plaintext m, produces another encryption c1 of plaintext
m such that c1 is distributed identically to Epk(m, r) where r

$← Coins(E).

Lossy Encryption Scheme

Definition 1 (Lossy PKE Scheme [3]). A lossy PKE scheme is a tuple
(G,E,D) of probabilistic polynomial time algorithms such that keys generated
by G(1k, 1) and G(1k, 0) are called injective keys and lossy keys, respectively.
The algorithms must satisfy the following properties.

1. Correctness on Injective Keys: For all plaintexts m,

Pr

[
(pk, sk) ← G(1k, 1

)
; r $← coins(E) : Dsk

(
Epk(m, r)

)
= m

]
= 1.

2. Indistinguishability of Keys: The lossy public keys are computationally
indistinguishable from the injective public keys. If proj : (pk, sk) → pk is the
projection map, then {proj(KG(1k, 1))} c≡ {proj(KG(1k, 0))}.

3. Lossiness on Lossy Keys: If (pk�, sk�) ← G(1k, 0), then, for all m0,m1, the
distributions Epk�

(m0, R) and Epk�
(m1, R) are statistically indistinguishable.
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4. Openability: If (pk�, sk�) ← G(1k, 0) and r0
$← coins(E), then, for all

m0,m1, with overwhelming probability, there exists r1 ∈ coins(E) such that
Epk�

(m0, r0) = Epk�
(m1, r1). That is, there exists a (possibly inefficient) algo-

rithm Opener that can open a lossy ciphertext to any arbitrary plaintext with
all but negligible probability.

The semantic security of a lossy encryption scheme is implied by definition [3].

Security Model. The security of the new protocols are proved following the
simulation based security definition by Canetti [5].

3 Definition of Two-Party Lossy Threshold PKE Scheme

A definition of two-party lossy threshold PKE scheme secure against one-sided
active adaptive adversaries is presented below.

Definition 2 (Lossy Threshold PKE Scheme Secure against Erasure-Free One-
Sided Active Adaptive Adversaries). A lossy threshold PKE scheme secure
against erasure-free one-sided active adaptive adversaries for the set of
parties P = {P1, P2}, and security parameter n, is a 4-tuple (K,KG,E,ΠDEC)
having the following properties.

Key Space: The key space K is a family of finite sets (pk, sk1, sk2). pk is the
public key and ski is the secret key share of Pi. Let Mpk denote the message
space for public key pk.

Key Generation: There exists a probabilistic polynomial-time key generation
algorithm KG, which, on input (1n,mode), generates public output pk and
a list {vk, vk1, vk2} of verification keys, and secret output ski for Pi, where
(pk, sk1, sk2) ∈ K. By setting mode to zero and one, key in lossy mode and
injective mode can be generated, respectively. vk is called the verification key,
vki is called the verification key of Pi.

Encryption: There exists a probabilistic polynomial-time encryption algorithm
E, which, on input pk, m ∈ Mpk, r

$← coins(E), outputs an encryption
c = Epk(m, r) of m.

Decryption: There exists a two-party decryption protocol ΠDEC secure against
erasure-free one-sided active adaptive adversaries. On common public input
(c, pk, vk, vk1, vk2), and secret input ski for each Pi, i ∈ {1, 2}, where ski is
the secret key share of Pi for the public key pk (as generated by KG), and c is
an encrypted message, ΠDEC returns a message m, or the symbol ⊥ denoting
a decryption failure, as a common public output.

Lossy Encryption Properties: The encryption scheme is a lossy encryption
scheme according to Definition 1.

Threshold Semantic Security: Consider the following game G for an
erasure-free one-sided active adaptive adversary A.
G1. A may corrupt at most one party. If A corrupts Pi, then A learns the

history of Pi.
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G2. The challenger executes algorithm KG. The challenger broadcasts the
public key and the verification keys. For each i ∈ {1, 2}, the challenger
sends ski to Pi. If there is a corrupted party Pi, then A learns ski.

G3. A adaptively makes the following types of queries.
1. Corruption query

A may corrupt a party, if no party was corrupted before. If A corrupts
Pi, then A learns ski and the history of Pi.

2. Decryption query
A selects a message m ∈ Mpk, and sends it to the challenger. The
challenger sends A the decryption shares and the validity proofs of P1

and P2, for an encryption of m.
A repeats step G3 as many times as it wishes.

G4. A selects two message m0 and m1 from Mpk, and sends them to the chal-
lenger. The challenger randomly selects a bit b, and sends an encryption
c of mb, to A.

G5. A repeats step G3 as many times as it wishes. A cannot request message
m0 or m1 in step G3(2).

G6. A outputs a guess bit b1.
A threshold encryption scheme is said to be semantically secure against
erasure-free one-sided active adaptive adversaries if, for any prob-
abilistic polynomial-time erasure-free one-sided active adaptive adversary,
b = b1 with probability only negligibly greater than 1

2 .

The verification keys are used for validity proofs in ΠDEC . During ΠDEC , each
party Pi uses validity proof such that Pi can convince the remaining party that
Pi performed its calculation in ΠDEC correctly, without disclosing its secret.
Note that A can only request for ciphertexts for which it knows the plaintext.
It is not like the chosen ciphertext attack (CCA) where the adversary can ask
for decryption shares for any chosen ciphertext. Step G3(2) is used in game G
to denote that, despite learning all the decryption shares and validity proofs
for several chosen plaintexts, the adversary still does not gain any advantage in
guessing the plaintext from the ciphertext.

Let FKG be the ideal functionality for the key generation. In a two-party
lossy threshold encryption scheme, there may exist a two-party distributed key
generation (DKG) protocol that computes FKG securely against erasure-free
one-sided active adaptive adversaries.

4 A New Two-Party Lossy Threshold Homomorphic
Encryption Scheme

In this section, a new two-party lossy threshold homomorphic public key encryp-
tion scheme ELTA2E = (K,KG,E,ΠDEC) is presented. The name ELTA2E
denotes an encryption scheme that is lossy, threshold, secure against adap-
tive adversaries, for two parties and based on the ElGamal encryption scheme.
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ELTA2E is based on the DDH assumption. All protocols of ELTA2E work in
the CRS model.1

Bellare and Yilek [4] designed a non-threshold lossy encryption scheme with
efficient Opener algorithm, based on the DDH assumption. Let EncLossy denote
their encryption scheme. ELTA2E is created by adding the threshold properties
to EncLossy.

One possible group G for ELTA2E is as follows. Safe primes are primes of
the form p = 2q + 1 where q is also a prime. On input n, using known methods
to generate safe primes, an n-bit safe prime p is generated, with generator g0 of
Z

∗
p. There is exactly one subgroup G of Z∗

p of order q. Let g be the generator of

G. g = g0
p−1

q = (g0)
2. (p, q, g) is the description of group G. Unless otherwise

specified, all computations are performed in group G. Pedersen commitment
scheme [18] is used as the trapdoor commitment scheme in ELTA2E.

KeyGeneration. Let the input be (1n,mode). Select α1, α2
$← Zq. Set α = (α1+

α2) mod q, h = gα, h1 = gα1 , h2 = gα2 . Select γ
$← Zq. Set j = gγ . If mode = 1,

then set � = gγα. If mode = 0, then select ρ
$← Zq \ {α}, and set � = gγρ. The

public key is pk = (q, g, j, h, �). The secret key shares are sk1 = α1, sk2 = α2. The
verification keys are vk = g, vk1 = h1, vk2 = h2.

Encryption. The encryption algorithm E works as follows. Let the plaintext
be m ∈ {0, 1}. Select randomness r = (s, t) $← Zq × Zq. Compute y = gsjt, and
z = hs�tgm. Return the ciphertext c = (y, z).

Protocol for Threshold Decryption. The threshold decryption protocol
ΠDEC works as follows. P1 sends ds1 = y(sk1). Adaptive zero-knowledge argu-
ment for equality of discrete logarithm is used as the validity proof in ΠDEC .
P1 proves that logy(ds1) = logvk(vk1). If P1 fails, then P2 aborts. P2 sends
ds2 = y(sk2). P2 proves that logy(ds2) = logvk(vk2). If P2 fails, then P1 aborts.
P1 and P2 compute w = z

ds1·ds2
. From w, P1 and P2 compute m where m ∈ {0, 1},

and gm = w in G. If there is no such value m, then P1 and P2 output ⊥, denoting
decryption failure.

It is also possible to perform private threshold decryption to just one party
Pk. In that case, P2−k sends ds2−k = y(sk2−k), and proves as above. Pk computes
dsk, then computes the output similarly.

Distributed Key Generation Protocol. ELTA2E has a DKG protocol
ΠDKG. The protocol ΠDKG is presented below.

Protocol ΠDKG.

CRS: μ ∈ Zp.
Group description: (p, q, g).
Input: (1n,mode).

1 In the common reference string (CRS) model, it is assumed that all parties have
access to a common string that is selected from some specified distribution.
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1. P1 selects α1, γ1, β1, θ1
$← Zq. P1 sets sk1 = α1. P1 computes h1 = gα1 , j1 =

gγ1 . P1 computes commitments b1 = Comμ(h1, β1), c1 = Comμ(j1, θ1).
P1 sends (b1, c1).

2. P1 proves the knowledge of committed secret for commitments b1 and c1. If
P1 fails in any proof, then P2 aborts.

3. P2 selects α2, γ2
$← Zq. P2 sets sk2 = α2. P2 computes h2 = gα2 , j2 = gγ2 .

P2 sends (h2, j2).
4. P2 proves knowledge of discrete logarithm of h2 and j2. If P2 fails in any

proof, then P1 aborts.
5. P1 sends the openings (h1, β1) and (j1, θ1) of its commitments.
6. P2 verifies that b1 = Comμ(h1, β1), and c1 = Comμ(j1, θ1). If any of these

two equalities does not hold, then P2 aborts.
7. P1 and P2 set vk = g, vk1 = h1, vk2 = h2, h = h1h2, j = j1j2.

8. If mode = 0, then P1 selects τ1
$← Zq \ {α1}, and sets �1 = jτ1 .

If mode = 1, then P1 sets �1 = jα1 . P1 sends �1.
9. If mode = 1, then P1 proves that logj (�1) �= logvk (vk1).

If mode = 1, then P1 proves that logj (�1) = logvk (vk1).
If P1 fails, then P2 aborts.

10. P2 sends �2 = jα2 .
11. P2 proves that logj (�2) = logvk (vk2). If P2 fails, then P1 aborts.
12. P1 and P2 set � = �1�2, pk = (q, g, j, h, �).
13. P1 outputs (pk, sk1, (vk, vk1, vk2)).
14. P2 outputs (pk, sk2, (vk, vk1, vk2)).
The proofs in steps 2,4,9, and 11 are performed using adaptive zero-knowledge
arguments. The CRS μ is used as the commitment key for Pedersen commitment
scheme. The CRS μ also acts as the CRS for the zero-knowledge arguments. The
reason for using commitments in ΠDKG is to ensure that no party can affect the
distribution of the generated key.

Lemma 1. ELTA2E is additive homomorphic.

Proof. Homomorphic Addition. Let c1 = (gs1jt1 , hs1�t1gm1), and c2 =
(gs2jt2 , hs2�t2gm2) be two ciphertexts encrypting plaintexts m1 and m2, respec-
tively. c = c1 +h c2 = (gs1jt1 · gs2jt2 , hs1�t1gm1 · hs2�t2gm2) = (gs1+s2jt1+t2 ,
hs1+s2�t1+t2gm1+m2).

Homomorphic Multiplication by Constant. Let c1 = (y1, z1) = (gs1jt1 ,
hs1�t1gm1) be a ciphertext encrypting plaintext m1. Let m2 be a known plaintext.
c2 = c1 ×h m2 =

(
(gs1jt1)m2 , (hs1�t1gm1)m2

)
= (gs1m2jt1m2 , hs1m2�t1m2gm1m2).

ELTA2E is Randomizable. Let c = (y, z) = (gsjt, hs�tgm) be a cipher-
text encrypting plaintext m. The Blind function on input (pk, c) = ((q, g, j, h,−
�), (y, z)) works as follows. Select s1, t1

$← Zq×Zq. Set y1 = y·gs1jt1 , z1 = z·hs1�t1 .
Return c1 = (y1, z1).
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5 Security of the DKG Protocol ΠDKG

Canetti et al. [6] introduced the single inconsistent party (SIP) technique. At
the start of simulation, the identity of the single inconsistent party (SIP) is
generated uniformly at random. The view of any party except the SIP in the
simulation is computationally indistinguishable from its view in the real world.
The view of the adversary is independent from the choice of SIP. This technique
is used in the security proofs of ELTA2E. Let A be a one-sided active adaptive
adversary and Z be the environment. Let SDKG be the simulator for ΠDKG for
adversary A and environment Z. At start, SDKG selects I

$← {P1, P2} where I
denotes the identity of the SIP. If A corrupts I, then SDKG rewinds to the start
of simulation, generates a new I

$← {P1, P2}, and proceeds again. A corrupts at
most one party, so the probability of a randomly selected party I being corrupted
is at most 1

2 . The expected number of rewinds of SDKG is at most two, and the
simulation can be performed in expected polynomial time. To bound the running
time of SDKG to strictly polynomial time, simulation can continue running up to
n�1 steps where �1 is a constant. If SDKG does not halt within n�1 steps, then
SDKG fails. The probability of failure of SDKG is negligible.

Theorem 1. Provided that the DDH assumption holds, and trapdoor commit-
ment scheme and adaptive zero-knowledge arguments exist, protocol ΠDKG com-
putes FKG securely against erasure-free one-sided active adaptive adversaries.

Proof (Sketch). The main idea of the proof is given here. The full proof is available

in the full version [16]. At start, SDKG selects δ
$← Zq, and sets the CRS to μ = gδ.

Then, SDKG knows the trapdoor δ of the commitment key μ. The simulator SDKG

for the case where P1 is the SIP, works as follows. If A corrupts P2 after any step,
then SDKG corrupts P2 in the ideal world. If P2 fails in some proof, then P1 aborts
in the real world. In the ideal world, SDKG sends abortP2 to the trusted party and
halts. The trusted party sends abortP2 to P1, and P1 halts. If P2 does not fail in

any proof, then the following things happen. In step 1, SDKG selects α2, γ2
$← Zq,

computes h2 = gα1 , j2 = gγ2 , h1 = h
h2

, j1 = j
j2

. SDKG selects β1, θ1
$← Zq and

computes b1 = Comμ(h1, β1), c1 = Comμ(j1, θ1). By the hiding property of the
commitment scheme, the distribution of (b1, c1) in two worlds are identical. SDKG

honestly performs step 2. In step 3, if P2 is honest, then SDKG uses h2, j2 computed
in step 1. In step 4 and 11, if P2 is corrupted, SDKG acts as an honest verifier. If P2

passes the proofs, then SDKG extracts α2 and γ2 using the knowledge extractor
of the zero-knowledge argument, in step 4. If P2 is honest, then SDKG acts as an
honest prover in step 4 and 11. In step 5, SDKG computes ĥ1 = h

h2
, ĵ1 = j

j2
.

Using the trapdoor δ of the commitment key μ, SDKG computes β̂1, θ̂1 such that
b1 = Comμ(ĥ1, β̂1), and c1 = Comμ(ĵ1, θ̂1). SDKG uses (ĥ1, β̂1), (ĵ1, θ̂1) as the
message from P1. If A corrupts P2 before step 3, then, corrupted P2 sends h2 and
j2 in step 3. The value of h and j are fixed since they are part of the input of
SDKG. A sees that the openings of the commitments are consistent, and h = ĥ1h2

and j = ĵ1j2, as required. (ĥ1, ĵ1) is identically distributed to (h1, j1). If P2 is
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honest up to step 3, then ĥ1 = h
h2

= h1, β̂1 = β1, ĵ1 = j1, θ̂1 = θ1. In step 6, P1

passes the verification tests in the ideal world. In step 7, SDKG sets vk = g, vk1 =
ĥ1, vk2 = h2, and uses (h, j) of the input. As argued earlier, these values in two
worlds are identically distributed. In step 8, SDKG computes �̂1 = �

j(α2) > � is

fixed in both worlds. The distribution of α2 in two worlds are identical. Then, �̂1
and �1 are identically distributed. In step 9, SDKG generates a proof transcript
using trapdoor δ. By definition of zero-knowledge argument, the proof transcript
in two worlds are computationally indistinguishable. If P2 is honest, then SDKG

honestly performs steps 10 and 11. In step 12, SDKG uses (�, pk) of input. In step
13, the output of honest P1 is (pk, vk, vk1, vk2, α1). Then, the output of the honest
P1 in two worlds are identically distributed. In step 14, if P2 is honest, then SDKG

sets (pk, vk, vk1, vk2, α2) as the output of P2. The distribution of sk2 in two worlds
are identical. The simulator for the case where P2 is the SIP is similar, so it is not
given separately.

6 Security of Encryption Scheme ELTA2E

Lemma 2. If the decisional Diffie-Hellman assumption holds, then ELTA2E is
a lossy encryption scheme. ELTA2E has an efficient (polynomial-time) Opener
algorithm.

Proof. Correctness of Decryption in the Injective Mode. In the injective
mode, pk = (q, g, j, h, �) = (q, g, gγ , gα, gα·γ) . Then, w = z

ds1·ds2
= z

ysk1 ·ysk2
=

z
yα1+α2 = z

yα = hs�tgm

(gsjt)α = (gα)s(gγα)tgm

(gs(gγ)t)α = gαs+αγt+m

gαs+αγt = gm.

Indistinguishability of Keys. In the injective mode, pk = (q, g, j, h, �) =
(q, g, gγ , gα, gγα). In the lossy mode, pk = (q, g, j, h, �) = (q, g, gγ , gα, gγρ). By
the DDH assumption, the public key in injective mode is computationally indis-
tinguishable from the public key in lossy mode.

Lossiness on Lossy Keys. Let pk = (q, g, j, h, �) = (q, g, gγ , gα, gγρ) be a lossy
public key. Encryption of a message m with randomness (s, t) is c = (y, z) =
(gs+γt, gαs+γρt · gm) . Since ρ �= α, (s+γt) and (αs+γρt) are linearly independent
combinations of s and t. Then, y and z are uniformly random group elements.

Efficient Opener Algorithm. Let pk = (q, g, j, h, �) = (q, g, gγ , gα, gγρ) be a
lossy public key. Let the corresponding secret key be sk = (γ, ρ, α). Let c = (y, z)
be an encryption of plaintext m with randomness r = (s, t). Then, c = (y, z) =
(gs+γt, gαs+γρt · gm) . Let m1 be the plaintext with which the ciphertext c has
to be opened. On input (pk, sk, (y, z),m, (s, t),m1), the algorithm Opener has
to find randomness r1 = (s1, t1) ∈ Zq × Zq such that s + γt = s1 + γt1, and
αs + γρt + m = αs1 + γρt1 + m1. These two equations are two linear equations
on the variables (s1, t1). The Opener algorithm solves these two equations to
find s1 and t1 in polynomial time.
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Lemma 3. Provided that the decisional Diffie-Hellman assumption holds, and
trapdoor commitment scheme and adaptive zero-knowledge arguments exist, the
encryption scheme ELTA2E achieves threshold semantic security in the pres-
ence of erasure-free one-sided active adaptive adversaries.

Proof (Sketch). The threshold semantic security is proved by reduction, following
the idea in [11]. The lossy encryption properties of EncLossy are proved in [4].
Since any lossy PKE scheme is semantically secure [3], EncLossy is semantically
secure. Assume that there exists a probabilistic polynomial-time one-sided active
adaptive adversary A1 that can break the semantic security of the two-party lossy
threshold encryption scheme ELTA2E. It is described how to construct a prob-
abilistic polynomial-time one-sided active adaptive adversary A2, using A1, that
can break the semantic security of the non-threshold lossy encryption scheme
EncLossy. As EncLossy is semantically secure, a contradiction is reached. To
convert A1 to A2, it is necessary to simulate the extra information that are
not available in the non-threshold lossy cryptosystem. The simulator is designed
using the SIP technique. The inputs of the simulator are the public key pk =
(q, g, j, h, �), the mode parameter mode, and the identity I of the single inconsis-
tent party. In step G1, if A1 corrupts a party Pi, then A2 corrupts Pi. A2 receives
the history of Pi from Z. In step G2, if P1 is the SIP, A2 simulates as follows. A2

selects α1, α2
$← Zq. A2 sets sk1 = α1, sk2 = α2, vk = g, vk2 = gα2 , vk1 = h

vk2
.

A2 sends ((pk, vk, vk1, vk2, sk1), (pk, vk, vk1, vk2, sk2)) to A1 in step G2. The
distribution of sk1, sk2 are identical in two worlds. A2 sets vk1 = h

vk2
. The value

of h is fixed and the distribution of vk2 in two worlds are identical. Therefore,
the distribution of vk1 in two worlds are identical. Here h = vk1 · vk2, so it is
consistent. If the adversary corrupts P2, then it sees that vk2 = gsk2 so every-
thing is consistent for P2. When P2 is the SIP, the simulation is similar and not
given separately. In step G3(1), if A1 corrupts a party Pi, then A2 corrupts Pi.
A2 receives ski and the history of Pi from Z. In step G3(2), A1 selects m ∈ Mpk

and sends m to A2. A2 computes cm = (ym, zm) = (gsjt, hs�tgm). cm is a valid
encryption of m. If P1 is the SIP, then A2 simulates the steps of protocol ΠDEC

as follows. In step 1, A2 computes ds1 = (ym)sk1 where sk1 is the secret key
share of P1 computed by A2 in step G2. As argued in step G2, the distribution
of sk1 in two worlds are identical. Then, the distribution of ds1 in two worlds are
identical. In step 2, A2 acts as an honest prover. In step 3, if P2 is honest, then
A2 computes ds2 = (ym)sk2 where sk2 is the secret key share of P2 computed
by A2 in step G2. Proof argument is similar to step 1. In step 4, if P2 is honest,
then A2 acts as an honest prover. If P2 is corrupted, then A2 acts as an honest
verifier. If P2 fails, then A2 sends abortP2 to the trusted party and halt. Then,
the trusted party sends abortP2 to P1 and honest P1 halts. Honest P1 aborts in
the real world. In step 5, A2 computes w = gm. The value of w is identical in two
worlds. In step 6, A2 uses m. The simulation of step G3(2) when P2 is the SIP
is similar. So, it is not given separately. In step G4, A1 chooses two plaintexts
m0,m1 ∈ Mpk and sends them to A2. A2 sends (m0,m1) to the challenger of

EncLossy. Then, the challenger of EncLossy selects b
$← {0, 1}, computes an



Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 175

encryption c of mb and returns c to A2. A2 sends c to A1. Step G5 is similar to
step G3. In step G6, A1 returns a guess b1. A2 returns b1.

Theorem 2. Provided that the DDH assumption holds, and trapdoor com-
mitment scheme and adaptive zero-knowledge arguments exist, the encryption
scheme ELTA2E is a two-party lossy threshold encryption scheme secure against
erasure-free one-sided active adaptive adversaries.

Proof. By Lemma 2, ELTA2E satisfies the lossy encryption properties. By
Lemma 3, ELTA2E satisfies the threshold semantic security requirement given
in Definition 2. Then, ELTA2E is a two-party lossy threshold encryption scheme
secure against erasure-free one-sided active adaptive adversaries.

7 Oblivious Transfer Against One-Sided Active Adaptive
Adversaries

In this section, a new protocol ΠOTAA for bit OT is presented. Let FOT denote
the ideal functionality for OT. Let Fzk denote the ideal functionality for adaptive
zero-knowledge argument. The protocol ΠOTAA is presented below.

Protocol ΠOTAA.

CRS: μ
$← Zp.

Input of S : (x0, x1) ∈ {0, 1}2.
Input of R : σ ∈ {0, 1}.
Auxiliary Input: (n, p, q, g) where n is the security parameter, and (p, q, g)

is the representation of a group G for the encryption scheme ELTA2E =
(K,KG,E,ΠDEC).

1. S and R jointly generate an injective key for ELTA2E, by executing FKG

with input (1n, 1). Here, S and R acts as P1 and P2, respectively. Both parties
get the public key pk = (q, g, j, h, �), and the verification keys (vk, vk1, vk2).
S gets its secret key share sk1 and R gets its secret key share sk2.

2. R selects s0, t0, s1, t1
$← Zq. R computes c0 = Epk (1 − σ, (s0, t0)) , and c1 =

Epk (σ, (s1, t1)) . R sends (c0, c1).
3. R proves that one of (c0, c1) is an encryption of zero, without disclosing which

one. If R fails, then S aborts.
4. For each i ∈ {0, 1}, S and R perform the following steps.

(a) S computes di = xi ×h ci. S computes vi = Blind(pk, di). S sends vi.
(b) S proves correctness of homomorphic multiplication by constant. If S

fails, then R aborts.
5. For each i ∈ {0, 1}, S and R jointly perform private decryption of vi to R, as

follows.
(a) Let vi = (yi, zi). S sends ds1,i = (yi)

(sk1) .
(b) S proves that log(yi) (ds1,i) = log(vk)(vk1). If S fails, then R aborts.
(c) R performs the following steps.
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i. R computes ds2,i = (yi)
(sk2) .

ii. R computes θi = zi

ds1,i·ds2,i
.

iii. From θi, R computes wi where wi ∈ {0, 1} and gwi = θi in G.
6. R outputs wσ.
ΠOTAA works in the CRS model in the (Fzk,FKG)-hybrid world. One possibility
to generate the auxiliary inputs p, q, g is as follows. S generates the description
(p, q, g) of the group G for ELTA2E, using Bach’s algorithm [2]. S sends (p, q, g)
to R. R checks its validity. If the description is invalid, then S and R repeat the
same process. The proofs in steps 3, 4(b) and 5(b) are performed by adaptive
zero-knowledge arguments. The CRS μ acts as the CRS for functionality FKG

and all the zero-knowledge arguments. In step 3, R proves that one of c0 and
c1 encrypts zero, without disclosing which one. If R could set both ciphertexts
c0 and c1 to encryptions of one, then R could learn both x0 and x1 at step 5.
This proof is incorporated to prevent this type of cheating by R. In step 4, S
computes di = xi ×h ci, vi = Blind(di). S sends vi. R knows the ciphertext ci.
The Blind function is included so that new randomness is added to the result
di. Then, R cannot learn the constant xi after seeing vi.

Correctness of Protocol ΠOTAA. If S and R both follow the protocol, then
the following events occur. S and R generate an injective key for ELTA2E.
R honestly computes c0 and c1. cσ encrypts one, and c1−σ encrypts zero.
R passes the proof in step 3. S honestly performs step 4, and passes the proofs.
vσ encrypts xσ and v1−σ encrypts zero. In step 5, S and R honestly perform two
private decryption processes. By the “correctness on injective keys” property of
ELTA2E, wσ = xσ and w1−σ = 0. Therefore, R learns xσ.

Extension to String OT. In a string OT, S has a pair of bit strings of length
q as input: (x0, x1) =

({
x1
0, x

2
0, . . . , x

q
0

}
,
{
x1
1, x

2
1, . . . , x

q
1

})
. Here q is a polyno-

mial of n. R has input σ ∈ {0, 1}. The output of R is xσ =
{
x1

σ, x2
σ, . . . , xq

σ

}
and S does not get any output. The bit OT protocol ΠOTAA is extended to a
string OT protocol as follows. In step 4, for each i ∈ {0, 1}, j ∈ {1, 2, . . . , q}, S
computes vj

i = xj
i ×h ci. In step 5, for each i ∈ {0, 1}, j ∈ {1, 2, . . . , q}, S and R

jointly perform private decryption of vj
i to R, so R obtains result wj

i . R outputs{
w1

σ, w2
σ, . . . , wq

σ

}
.

8 Security of Protocol ΠOTAA

The following theorem describes the security of protocol ΠOTAA.

Theorem 3. Assume that the DDH assumption holds and there exists a trapdoor
commitment scheme and adaptive zero-knowledge arguments. Assume that there
exists a two-party lossy threshold public key cryptosystem which is secure against
erasure-free one-sided active adaptive adversaries, is additive homomorphic, ran-
domizable, and has an efficient (polynomial-time) Opener algorithm. Then, proto-
col ΠOTAA is a protocol for oblivious transfer secure under sequential composition,
in the presence of erasure-free one-sided active adaptive adversaries.
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Proof. Let A be an erasure-free one-sided active adaptive adversary and Z be
the environment. Let SOT be the simulator for protocol ΠOTAA for adversary
A and environment Z. The security is proved using the SIP technique. The full
security proof is available in the full version [16]. The main intuition behind the
security is described for two cases below. In both cases, at start, SOT selects
δ

$← Zq, and sets the CRS to μ = gδ. SOT stores δ as the trapdoor of the
commitment key μ.

Case 1: Security for the case where S is the SIP
In step 1, SOT generates a lossy key pair of ELTA2E as follows. SOT selects
α1, α2

$← Zq. SOT sets α = (α1+α2) mod q, h = gα. SOT selects γ
$← Zq. SOT sets

j = gγ . SOT selects ρ
$← Zq \ {α}, and sets � = gγρ. SOT sets pk = (q, g, j, h, �).

SOT stores the corresponding secret key sk = (α, γ, ρ). SOT generates the lossy
key pair in a similar way to the way the key generation algorithm KG of ELTA2E
generates a lossy key pair. That means, the distribution of the key pair (pk, sk) is
identically distributed to a lossy key pair generated by algorithm KG. The rea-
son for generating the components of the keys, without using algorithm KG is as
follows. When SOT generates the values, it can obtain the values of α, γ and ρ.
The secret key sk = (α, γ, ρ) is necessary to use the efficient Opener algorithm of
ELTA2E. If protocol ΠDKG is used to implement step 1, then SOT uses the simu-
lator SDKG of protocol ΠDKG on input (pk, 0, P1). That means SOT invokes sim-
ulator SDKG on input public key pk, mode parameter set to zero to denote lossy
mode, and the identity I of the SIP set to P1. By Theorem 1, the message that
SDKG generates in the hybrid world is computationally indistinguishable from
the message that A views during the execution of ΠDKG in the real world. In the
real world, an injective key pair is used. Since A corrupts at most one party, A
cannot learn the secret key shares of both parties. So, A cannot learn the secret
key. By the “indistinguishability of keys” property of ELTA2E, the public key
in the hybrid world is computationally indistinguishable from the public key in
the real world. If R is honest, then SOT computes c0, c1 based on σ = 0 in step
2. By threshold semantic security of ELTA2E, the distribution of c0, c1 in two
worlds are computationally indistinguishable. If A corrupts R after step 2, then
A cannot replace the input σ as the value of σ is already fixed by the message
supplied up to step 2. SOT corrupts R in the hybrid world and receives its input
σ from Z. SOT sends σ to the trusted party of FOT , and receives back its out-
put xσ. If R is corrupted, then SOT acts as an honest verifier in step 3. If R fails,
then SOT sends abortR to the trusted party and halts. The trusted party sends
abortR to S and S halts. In this case, honest S aborts in the real world. If R passes,
then SOT extracts the plaintexts of c0 and c1 by using the knowledge extractor
of the zero-knowledge arguments. From these plaintexts, SOT learns the possi-
bly modified input σ1 of corrupted R. SOT sends σ1 to the trusted party of FOT ,
and receives back its output xσ1 . SOT sets σ = σ1 and the output of R to xσ1 .
In the real world, the generated key pair is injective, so A cannot open a cipher-
text encrypting one to be a ciphertext encrypting zero. In the hybrid world, SOT

generates a lossy key pair. Since A corrupts at most one party, A cannot learn
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the secret key. Without the knowledge of the secret key, A cannot use the effi-
cient Opener algorithm as the efficient Opener algorithm requires the secret key
as one of its inputs. That means in the hybrid world, A cannot open a cipher-
text encrypting one to be a ciphertext encrypting zero in polynomial time. That
means the result of the zero-knowledge argument will be identical in both worlds.
If σ = 0, then SOT performs no additional updates in step 3, since SOT calcu-
lated c0, c1 based on σ = 0. If σ = 1, then, in step 3, SOT computes randomness
ŝ0, t̂0, ŝ1, t̂1 using the efficient Opener algorithm, such that c0 = Epk(0, (ŝ0, t̂0))
and c1 = Epk(1, (ŝ1, t̂1)). SOT supplies ŝ0, t̂0, ŝ1, t̂1 as the randomness for step 2.
Since SOT knows the secret key of the lossy key pair, algorithm Opener produces
output in polynomial time. By the “openability” property of ELTA2E, the gen-
erated randomness is consistent. In step 4(a), SOT selects x̂i

$← {0, 1}, computes
di = x̂i ×h ci, v̂i = Blind(pk, di). By threshold semantic security of ELTA2E,
the distribution of vi in two worlds are computationally indistinguishable. Cor-
rectness of decryption does not hold for a lossy key for ELTA2E. So, SOT sets
wσ = xσ, w1−σ = 0. SOT computes θi = gwi , ds2,i = (vyi)

sk2 , d̂s1,i = vzi

θi·ds1,i
. In

the real world, A receives ds1,i = (yi)
sk1 . Since S is honest, so A does not know

sk1. By the DDH assumption, the distribution of ds1,i in two worlds are compu-
tationally indistinguishable. The proofs of step 3 and step 4(b) do not work for a
lossy key for ELTA2E. If R is honest, then SOT generates a proof transcript for
steps 3, 4(b), and 5(b) using the trapdoor δ. By definition of zero-knowledge argu-
ment, the proof transcripts in two worlds are computationally indistinguishable.
If R is honest, then SOT honestly performs step 5(c). If R is corrupted, then, in
the hybrid world, A obtains wi. In the real world, A obtains wi due to the “cor-
rectness on injective keys” property of ELTA2E. If R is corrupted, then A will
obtain the same value xσ in step 6 in the hybrid world that it obtains in the real
world. In an OT protocol, S has no output. So trivially, the output of the honest
party S is identical (an empty string) in both worlds. If A corrupts R after any
substep of step 4 or 5, then SOT performs the same steps if A corrupts R after
step 3.

Case 2: Security for the case where R is the SIP
In step 1, SOT performs similar to step 1 in case 1. If ΠDKG is used to generate the
key, then, SOT uses the simulator SDKG of protocol ΠDKG on input (pk, 0, P2).
SOT computes c0, c1 based on σ = 0 in step 2. Proof argument is similar to step
2 of case 1. In step 4, if S is honest, then SOT selects x̂i

$← {0, 1}, computes d̂i =
x̂i ×h ci, v̂i = Blind(d̂i). Proof argument is similar to step 4 of case 1. If S is cor-
rupted, then SOT acts as an honest verifier in steps 4(b) and 5(b). If S fails in any
proof, then SOT sends abortS to the trusted party and halts. In this case, honest R
aborts in the real world. If S passes, then SOT extracts the possibly replaced input
x̃i by using the knowledge extractor of the zero-knowledge argument. If S is hon-
est, then SOT generates proof transcripts for steps 4(b) and 5(b) using trapdoor
δ. By definition of zero-knowledge argument, the proof transcript in two worlds
are computationally indistinguishable. If A corrupts S after step 4, then SOT cor-
rupts S in the hybrid world, and receives its input (x0, x1) from Z. In this case,
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A cannot replace the input (x0, x1) as the value of (x0, x1) is already fixed by the
message sent up to step 4. SOT sets (x̃0, x̃1) to (x0, x1). If x̂i �= x̃i, then SOT com-
putes randomness for the ciphertexts transmitted so far and the value of x̃i, using
the efficient Opener algorithm. By the “openability” property of ELTA2E, the
randomness generated is consistent. Since SOT knows the secret key, the Opener
algorithm produces output in polynomial-time. SOT sets wσ = x̃σ, w1−σ = 0. If
S is honest, then SOT computes θi = gwi , ds2,i = (yi)

sk2 , d̂s1,i = zi

θi·ds2,i
. In step

6, SOT sends (x̃0, x̃1) to the trusted party of FOT . Let σ be the input of honest
R. Then the trusted party sends the output x̃σ to R. In the real world, honest R
outputs the value x̃σ, by the “correctness on injective keys” property of ELTA2E.
Then, the output of the honest party R is identical in two worlds. If A corrupts R
after any substep of step 3, 4 or 5, then SOT performs the same steps if A corrupts
R after step 3(a).

9 Efficiency and Comparison with Related Work

Efficiency. In ELTA2E, a ciphertext c ∈ G × G. G is a subgroup of Z∗
p and

p is an n-bit prime. The size of ciphertext is 2n. The size of Pedersen com-
mitment [18] is n. It is possible to use protocol ΠDKG for implementing step
1 of ΠOTAA. The communication complexity of ΠDKG is 50n. The total com-
munication complexity of ΠOTAA (including the communication complexity of
ΠDKG) is 101n ∈ O(n). In step 2, R performs two encryption operations of
ELTA2E. In step 5, S performs two homomorphic multiplication by constant
and two Blind function evaluations. One homomorphic multiplication by con-
stant and one Blind function together is similar in computational complexity of
one encryption operation of ELTA2E. So, the total number of PKE operation
of ΠOTAA is 4, in the worst case. For string OT of length n, the communication
complexity is (38n2 + 98n), and the number of PKE operations is (2n + 2), in
the worst case.

Comparison with Related Work. Hazay and Patra [13] designed an OT
protocol for erasure-free one-sided active adaptive adversaries. Their protocol
for bit OT requires (288n2 + 100n + 16) ∈ O(n2) communication complexity.
Protocol ΠOTAA needs 101n ∈ O(n) communication complexity. The worst case
number of PKE operations of the protocol of [13] for bit OT is (16n+6) ∈ O(n).
The worst case number of PKE operations of ΠOTAA is constant (only four).

For OT of strings of size n, the OT protocol of [13] requires (288n2+110n+16)
communication complexity and (16n+6) PKE operations in the worst case. For
OT of strings of size n, protocol ΠOTAA requires (38n2 + 98n) communication
complexity and (2n + 2) PKE operations in the worst case. For string OT of
size n, protocol ΠOTAA requires seven times less communication complexity and
eight times less PKE operations than the OT protocol of [13].
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10 Efficiency of the OT Protocol by Hazay and Patra [13]

In this section, the main factor of the complexity of the OT protocol by Hazay
and Patra [13] is described. They have different efficiency for polynomial-size
message space and exponential-size message space, with respect to the secu-
rity parameter n. Here, the efficiency of bit OT, which falls in the category of
polynomial-size message space, is described.

The OT protocol of [13] uses a non-committing encryption (NCE) scheme
secure against one-sided active adaptive adversaries. They designed a protocol
ΠOSC that for this purpose. ΠOSC uses the somewhat non-committing encryp-
tion (SNCE) of [12]. The SNCE protocol of [12] uses the non-committing encryp-
tion scheme (NCE) of [10]. There was another more recent NCE scheme [7] which
is error-free but requires more communication complexity and computational
complexity than the NCE of [10,21]. The NCE scheme of [10] uses a subroutine
named attempt. In [Theorem 2 [10]], it is mentioned that the NCE scheme of
[10] has to repeat 4n calls of attempt in order to ensure that the probability of
failure of subroutine attempt remains negligible in n. That means, the worst case
number of repeats of attempt is 4n. Each call of attempt has communication cost
(12n + 1). The communication complexity of the NCE scheme of [10] is O(n2)
for message size of one bit. Each call of attempt uses one encryption operation of
a simulatable public key encryption scheme, so the number of PKE operations
for attempt is 1. Then, the NCE scheme of [10] needs 4n PKE operations in
the worst case. The communication complexity of the SNCE protocol of [12],
with equivocality parameter � = 2, is O(n2). It uses the NCE protocol of [10]
for sending an index i ∈ {1, . . . , �}. As mentioned in [12], the expected number
of PKE operations for this step is O(log �). In the worst case, this step requires
4n ∈ O(n) PKE operations. The OT protocol of [13] uses a zero-knowledge proof
that uses a constant number of PKE operations. The communication complexity
of the bit OT protocol of [13] is O(n2). The number of PKE operations of the
bit OT of [13], in the worst case, is O(n).

Hazay and Patra claims that their OT protocol needs a constant number
of PKE operations [Theorem 2 [13]]. One possibility is that they were counting
one encryption of the NCE scheme ΠOSC secure against one-sided adaptive
adversaries (or one encryption of the dual-mode encryption scheme of [19]), each
of them as a single PKE operation. But the encryption scheme ΠOSC uses other
PKE schemes (the non-committing encryption scheme for the sender (NCES)
of [3], the non-committing encryption scheme for the receiver (NCER) of [14]
and the SNCE scheme of [12]) as its subroutines inside its implementation. The
notion of atomic PKE scheme is necessary for the analysis of the number of
PKE operations. An atomic PKE scheme denotes a PKE scheme that does not
use any other PKE scheme as a subroutine in its implementation. To get the
actual number of PKE scheme of a protocol, it should be counted that how many
operations of atomic PKE scheme are invoked inside that protocol.
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11 Adaptive Zero Knowledge Arguments

In this section, the adaptive zero-knowledge arguments used in the protocols are
described. First, the non-erasure Σ-protocols for the corresponding relations are
presented. Then, it is described how to convert them to adaptive zero-knowledge
arguments.

Scnorr [20] suggested a non-erasure Σ-protocol for knowledge of discrete
logarithm [8]. A non-erasure Σ-protocol for equality of discrete logarithm is given
in [8]. Damg̊ard [8] presented a non-erasure Σ-protocol for proving knowledge of
committed secret for Pedersen commitment scheme.

If mode = 0, then, in step 10 of ΠDKG, P1 has to prove that logj(�1) �=
logvk(vk1). This can be called a proof for inequality of discrete logarithm. Let
the common input be

(
x1, x2, y1, y2

)
=

(
(y1)

w1 mod p, (y2)
w2 mod p, y1, y2

)
. The

prover P knows witness w1, w2 ∈ Zq such that w1 �= w2. A new non-erasure Σ-
protocol for proving the inequality of discrete logarithm is designed. P chooses
r

$← Zq. P computes a1 = (y1)
r mod p, a2 = (y2)

r mod p. P sends a = (a1, a2).

V chooses a challenge e
$← Zq and sends it. P computes z1 = r+ew1 mod q, z2 =

r + ew2 mod q. P sends (z1, z2). V accepts if and only if (y1)
z1 = a1(x1)

e mod
p, (y2)

z2 = a1(x2)
e mod p, (y1)

z2 �= a1(x1)
e mod p, and (y2)

z1 �= a2(x2)
e mod p.

A new non-erasure Σ-protocol, for proving multiplication correct for
ELTA2E, is designed. P computes c2 = m2 ×h c1, c3 = Blind(pk, c2). Let
(s3, t3) be the randomness used in the Blind function. Let the common input
be x = (c1, c3) = ((b1, d1), (b3, d3)). Then, b3 = (b1)

m2gs3jt3 , d3 = (d1)
m2hs3�t3 .

P knows witness (m2, s3, t3) ∈ G × G × G. The Σ-protocol is as follows. P

chooses r1, r2, r3
$← Zq, sets a1 = (b1)

r1gr2jr3 mod p, a2 = (d1)
r1hr2�r3 mod p.

P sends a = (a1, a2). V chooses a challenge e
$← Zq and sends it. P sets

z1 = r + em2 mod q, z2 = r2 + es3 mod q, z3 = r3 + et3 mod q. P sends
z = (z1, z2, z3). V accepts if and only if (b1)

z1gz1jz3 = a1(b3)
e mod p, and

(d1)
z1hz1�z3 = a2(d3)

e mod p.
Proving that a given ciphertext c = (x, y) is an encryption of zero is equiv-

alent to prove that logg(x) = logh(y). For proving that one of two given
ciphertexts encrypts zero without disclosing which one, the OR-construction of
Σ-protocols [8] is performed.

Converting Σ-Protocol to Adaptive Zero-Knowledge Argument.
Damg̊ard [9] described how to convert a Σ-protocol ΠΣR for a given relation R
to a zero-knowledge proof ΠR

AdZKA for the same relation. This conversion works
in the CRS model and needs a trapdoor commitment scheme. The CRS μ is used
as the commitment key. P computes its first message a of ΠΣR, selects ra

$← Zp,

computes c = Comμ(a, ra), and sends c. V selects e
$← {0, 1}t, and sends e. P

computes its second message z of ΠΣR, and sends (a, z, ra) to V . V checks that
(a, e, z) is an accepting conversation for ΠΣR, and also that Comμ(a, ra) = c.
The security proof of this type of zero-knowledge proof against adaptive adver-
saries is given in [[17] Chap. 5]. When a trapdoor commitment scheme is used in
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a zero-knowledge proof, it only achieves computational soundness. By definition,
the resulting system is a zero-knowledge argument.

12 Future Work

One future research work is to design an efficient two-party computation protocol
for one-sided active adaptive adversary model, using the new efficient oblivious
transfer protocol. Another research direction is to design efficient oblivious trans-
fer protocol for the fully adaptive adversary model, that is, when the adversary
may corrupt both parties at some point.
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