
Marc Joye
Abderrahmane Nitaj (Eds.)

 123

LN
CS

 1
02

39

9th International Conference on Cryptology in Africa
Dakar, Senegal, May 24–26, 2017
Proceedings

Progress in Cryptology -
AFRICACRYPT 2017

Lecture Notes in Computer Science 10239

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Marc Joye • Abderrahmane Nitaj (Eds.)

Progress in Cryptology -
AFRICACRYPT 2017
9th International Conference on Cryptology in Africa
Dakar, Senegal, May 24–26, 2017
Proceedings

123

Editors
Marc Joye
NXP Semiconductors
San Jose, CA
USA

Abderrahmane Nitaj
University of Caen
Caen
France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-57338-0 ISBN 978-3-319-57339-7 (eBook)
DOI 10.1007/978-3-319-57339-7

Library of Congress Control Number: 2017937579

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 9th International Conference on the Theory and Application of Cryptographic
Techniques in Africa, Africacrypt 2017, took place May 24–26, 2017, in Dakar,
Senegal. The conference was organized by Cheikh Anta Diop University, Dakar,
Senegal, in cooperation with the International Association for Cryptologic Research
(IACR). We heartily thank our general chairs, Mamadou Sangharé, Djiby Sow, and
Abdoul Aziz Ciss, as well as the whole Organizing Committee for their efforts in
making the conference a success.

The aim of Africacrypt is to provide an international forum for practitioners and
researchers from industry, academia, and government from all over the world for a
wide-ranging discussion of all forms of cryptography and its applications.

The conference received a total of 40 full papers, out of which 13 papers were
selected for publication in these proceedings. Each submission was assigned at least
three Program Committee (PC) members. In addition to the PC members, many
external reviewers joined the review process in their particular areas of expertise. We
were fortunate to have this energetic team of experts, and are deeply grateful to all
of them for their hard work, which included a very active discussion phase. The paper
submission, review, and discussion processes were effectively and efficiently made
possible by the Web-based system developed by Shai Halevi. We thank him for his
support and the IACR for hosting the review system. The program was completed with
two keynote talks by Johannes Buchmann and Damien Stehlé, and by an invited talk by
Luca De Feo. We are very grateful to them for accepting our invitation.

Last but not least, we would like to thank all the authors who submitted papers to
this conference, the Organizing Committee members, colleagues, and student helpers
for their valuable time and effort, and all the conference attendees who made this event
a truly intellectually stimulating one through their active participation.

March 2017 Marc Joye
Abderrahmane Nitaj

Organization

AFRICACRYPT 2017

9th International Conference on Cryptology in Africa, Dakar,
Senegal, May 24–26, 2017

Africacrypt is the annual International Conference on the Theory and Applications of
Security and Cryptography.

General Chairs

Mamadou Sangharé Université Cheikh Anta Diop de Dakar, Senegal
Djiby Sow Université Cheikh Anta Diop de Dakar, Senegal
Abdoul Aziz Ciss École Polytechnique de Thiès, Senegal

Program Chairs

Marc Joye NXP Semiconductors, USA
Abderrahmane Nitaj Université de Caen, France

Program Committee

Riham Altawy University of Waterloo, Canada
Muhammad R.K. Ariffin UPM Kuala Lumpur, Malaysia
Abdelhak Azhari Université de Casablanca, Morocco
Hussain Benazza Université de Meknes, Morocco
Colin Boyd NTNU, Norway
Dario Catalano Università di Catania, Italy
Pierre-Louis Cayrel Université Saint Etienne, France
Sherman S.M. Chow CU Hong Kong, SAR China
Nadia El Mrabet EMSE, France
Pierre-Alain Fouque Université Rennes I, France
Georg Fuchsbauer ENS Paris, France
Jens Groth University College London, UK
Javier Herranz Universidad Politècnica de Catalunya, Spain
Tetsu Iwata Nagoya University, Japan
Saqib Kakvi University of Bristol, UK
Seny Kamara Brown University, USA
Fabien Laguillaumie Université de Lyon I, France
Mark Manulis University of Surrey, UK
Tarik Moataz Brown University, USA
Ayoub Otmani Université de Rouen, France

Thomas Peters UCL, Belgium
Tajje-eddine Rachidi Al Akhawayn University in Ifrane, Morocco
Vanishree Rao PARC, USA
Magdy Saeb Arab Academy for Science, Egypt
Rei Safavi-Naini University of Calgary, Canada
Kazue Sako NEC, Japan
Palash Sarkar Indian Statistical Institute, India
Peter Schwabe Radboud Universiteit, The Netherlands
Francesco Sica Nazarbayev University, Kazakhstan
Djiby Sow Université de Dakar, Senegal
François-Xavier Standaert UCL, Belgium
Willy Susilo University of Wollongong, Australia
Christine Swart University of Cape Town, South Africa
Joseph Tonien University of Wollongong, Australia
Amr M. Youssef Concordia University, Canada

External Reviewers

Ali Akhavi
Lejla Batina
Christof Beierle
Olivier Blazy
Andrea Cerulli
Qian Chen
Noureddine Chikouche
Abdoul Aziz Ciss
Michael Clear
Edouard Cuvelier
Gareth Davies
Julien Devigne
Dario Fiore
Ryo Furukawa
Romain Gay
Benoît Gérard
Essam Ghadafi
Aurore Guillevic
Mohammad Hajiabadi
Tsuchida Hikaru
Vincenzo Iovino
Sune K. Jakobsen
Jérémy Jean
Abdel Alim Kamal
Sabyasachi Karati
Ahmed Abdel Khalek

Elena Kirshanova
Stefan Koelbl
François Koeune
Baptiste Lambin
Liran Lerman
Fuchun Lin
Mary Maller
Paz Morillo
Thierry Mefenza Nountu
Kazuma Ohara
Michele Orrù
Romain Poussier
Raghvendra Rohit
Olivier Sanders
Ben Smith
Martin Strand
Isamu Teranishi
Nicolas Thériault
Yosuke Todo
Mohamed Tolba
Christine van Vredendaal
Vesselin Velichkov
Alexandre Wallet
Fredrich Wiemer
Yongjun Zhao

VIII Organization

Contents

Cryptographic Schemes

RingRainbow – An Efficient Multivariate Ring Signature Scheme. 3
Mohamed Saied Emam Mohamed and Albrecht Petzoldt

Pinocchio-Based Adaptive zk-SNARKs and Secure/Correct Adaptive
Function Evaluation. 21

Meilof Veeningen

Revisiting and Extending the AONT-RS Scheme: A Robust
Computationally Secure Secret Sharing Scheme . 40

Liqun Chen, Thalia M. Laing, and Keith M. Martin

Side-Channel Analysis

Climbing Down the Hierarchy: Hierarchical Classification for Machine
Learning Side-Channel Attacks . 61

Stjepan Picek, Annelie Heuser, Alan Jovic, and Axel Legay

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS
Circuits for Cryptographic Applications . 79

Milena Djukanovic, Davide Bellizia, Giuseppe Scotti,
and Alessandro Trifiletti

Differential Bias Attack for Block Cipher Under Randomized Leakage
with Key Enumeration . 95

Haruhisa Kosuge and Hidema Tanaka

Differential Cryptanalysis

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 117
Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef

Impossible Differential Attack on Reduced Round SPARX-64/128 135
Ahmed Abdelkhalek, Mohamed Tolba, and Amr M. Youssef

Applications

Private Conjunctive Query over Encrypted Data . 149
Tushar Kanti Saha and Takeshi Koshiba

http://dx.doi.org/10.1007/978-3-319-57339-7_1
http://dx.doi.org/10.1007/978-3-319-57339-7_2
http://dx.doi.org/10.1007/978-3-319-57339-7_2
http://dx.doi.org/10.1007/978-3-319-57339-7_3
http://dx.doi.org/10.1007/978-3-319-57339-7_3
http://dx.doi.org/10.1007/978-3-319-57339-7_4
http://dx.doi.org/10.1007/978-3-319-57339-7_4
http://dx.doi.org/10.1007/978-3-319-57339-7_5
http://dx.doi.org/10.1007/978-3-319-57339-7_5
http://dx.doi.org/10.1007/978-3-319-57339-7_6
http://dx.doi.org/10.1007/978-3-319-57339-7_6
http://dx.doi.org/10.1007/978-3-319-57339-7_7
http://dx.doi.org/10.1007/978-3-319-57339-7_8
http://dx.doi.org/10.1007/978-3-319-57339-7_9

Efficient Oblivious Transfer from Lossy Threshold
Homomorphic Encryption . 165

Isheeta Nargis

Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic
Encryption and the Group Method of Data Handling 184

Joppe W. Bos, Wouter Castryck, Ilia Iliashenko,
and Frederik Vercauteren

Number Theory

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves
of Genus 2 . 205

Michel Seck, Hortense Boudjou, Nafissatou Diarra,
and Ahmed Youssef Ould Cheikh Khlil

Cryptanalysis of Some Protocols Using Matrices over Group Rings. 223
Mohammad Eftekhari

Author Index . 231

X Contents

http://dx.doi.org/10.1007/978-3-319-57339-7_10
http://dx.doi.org/10.1007/978-3-319-57339-7_10
http://dx.doi.org/10.1007/978-3-319-57339-7_11
http://dx.doi.org/10.1007/978-3-319-57339-7_11
http://dx.doi.org/10.1007/978-3-319-57339-7_12
http://dx.doi.org/10.1007/978-3-319-57339-7_12
http://dx.doi.org/10.1007/978-3-319-57339-7_13

Cryptographic Schemes

RingRainbow – An Efficient Multivariate Ring
Signature Scheme

Mohamed Saied Emam Mohamed1(B) and Albrecht Petzoldt2

1 Technische Universität Darmstadt, Darmstadt, Germany
mohamed@cdc.informatik.tu-darmstadt.de

2 National Institute for Standards and Technology, Gaithersburg, MD, USA
albrecht.petzoldt@nist.gov

Abstract. Multivariate Cryptography is one of the main candidates for
creating post-quantum cryptosystems. Especially in the area of digital
signatures, there exist many practical and secure multivariate schemes.
However, there is a lack of more advanced schemes, such as schemes for
oblivious transfer and signature schemes with special properties. While,
in the last years, a number of multivariate ring signature schemes have
been proposed, all of these have weaknesses in terms of security or effi-
ciency. In this paper we propose a simple and efficient technique to extend
arbitrary multivariate signature schemes to ring signature schemes and
illustrate it using the example of Rainbow. The resulting scheme pro-
vides perfect anonymity for the signer (as member of a group), as well as
shorter ring signatures than all previously proposed post-quantum ring
signature schemes.

Keywords: Multivariate cryptography · Ring signatures · Rainbow sig-
nature scheme

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Today, the security of nearly all of the crypto-
graphic schemes used in practice is based on number theoretic problems such as
factoring large integers and solving discrete logarithms. The best known schemes
in this area are RSA [22], DSA [13] and ECC. However, schemes like these will
become insecure as soon as large enough quantum computers are built. The
reason for this is Shor’s algorithm [24], which solves number theoretic prob-
lems like integer factorization and discrete logarithms in polynomial time on a
quantum computer. Therefore, one needs alternatives to those classical public
key schemes which are based on hard mathematical problems not affected by
quantum computer attacks (so called post-quantum cryptosystems).

Besides lattice, code and hash based cryptosystems, multivariate cryptog-
raphy is one of the main candidates for this [4]. Multivariate schemes are in
general very fast and require only modest computational resources, which makes

c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 3–20, 2017.
DOI: 10.1007/978-3-319-57339-7 1

4 M.S.E. Mohamed and A. Petzoldt

them attractive for the use on low cost devices like smart cards and RFID chips
[5,6]. However, while there exist many practical multivariate standard signa-
ture schemes such as UOV [14], Rainbow [9] and Gui [21], there is a lack of
more advanced multivariate schemes such as schemes for oblivious transfer and
signature schemes with special properties.

Ring signature schemes allow a user to sign messages anonymously as a
member of a group R. The verifier can check, if the message was indeed signed
by a member of the group, but has no means to reveal the concrete identity of
the signer. Therefore, ring signature schemes are an important tool to secure the
privacy of the users. In the last years, a number of multivariate ring signature
schemes have been proposed [19,27,28,31]. However, as we find, all of these
schemes share certain weaknesses with regard to efficiency or security.

In this paper, we present a new general technique to extend multivariate
signature schemes to ring signature schemes. By doing so, we obtain a much
simpler construction for multivariate ring signature schemes, which is therefore
much easier to understand and analyze than previous constructions. By apply-
ing our technique to Rainbow, we obtain a ring signature scheme whose ring
signatures are not longer than standard signatures of many other post-quantum
signature (e.g. lattice, hash based) schemes. Furthermore, due to the efficiency
of the Rainbow scheme, our scheme is very fast.

The rest of this paper is organized as follows. Section 2 reviews the concept
of ring signatures and discusses the basic security notions. In Sect. 3 we give
an overview of multivariate cryptography and introduce the Rainbow signature
scheme, which is one of the best studied and most efficient multivariate signature
schemes. Furthermore, in this section, we consider the existing multivariate ring
signature schemes and analyze them with regard to security and performance.
Section 4 presents our technique to extend multivariate signature schemes such as
Rainbow to ring signature schemes and discusses the security of our construction.
In Sect. 5 we give concrete parameter sets for our scheme based on Rainbow,
while Sect. 6 presents an alternative construction of multivariate ring signatures
reducing key and signature sizes. In Sect. 7 we describe a technique to reduce the
public key size further. Section 8 deals with the implementation of our scheme
and presents performance results, whereas Sect. 9 compares our construction
with other existing ring signature schemes (both from the classical and the post-
quantum world). Finally, Sect. 10 concludes the paper.

2 Ring Signatures

Ring signature schemes as proposed by Rivest et al. [23] allow a signer to sign a
message anonymously on behalf of a group R = {u1, . . . , uk} of possible signers.
The receiver of a signed message can check, if the message was indeed signed by
a member of the group, but can not reveal the concrete identity of the signer.

RingRainbow – An Efficient Multivariate Ring Signature Scheme 5

For example, the group of signers could be the set of employees of a company. By
verifying the ring signature of a signed document (e.g. a bill), the receiver can
ensure that it really was signed by an employee of the given company. By hiding
the identity of the actual signer, ring signatures make therefore an important
contribution to secure the privacy of the signer.

The concept of ring signatures is closely related to group signatures. However,
while, in a group signature scheme, there exists a group manager who can, in
the case of a controversy, connect a group signature to the actual signer, such a
function does not exist in a ring signature scheme. Therefore, a ring signature
scheme provides full anonymity to the signers (as members of the group).

Another related notion is that of threshold ring signatures. A threshold ring
signature allows a verifier to check if, for any given number s ∈ {1, . . . , k}, at
least s members of the group R contributed to a signature. A basic ring signature
scheme is therefore a special case of a threshold ring signature scheme with s = 1.
Threshold ring signature schemes on the basis of multivariate polynomials have
been proposed in [19,31]. However, by restricting to the case of ring signatures,
we can reduce the key and signature sizes of the scheme drastically.

Formally, we can define a ring signature scheme RS as follows [3].
Let R = {u1, u2, . . . , uk} be a group (called ring) of users. A ring signature

scheme consists of the three algorithms KeyGen, RingSign and Verify.

– KeyGen(1λ): The probabilistic algorithm KeyGen takes as input a security
parameter λ and outputs a key pair (sk, pk). In a ring signature scheme, this
algorithm is performed by every user ui ∈ R.

– RingSign(d, ski, {pk1, . . . , pkk}): The (probabilistic) algorithm RingSign
takes as input the message d to be signed, the secret key ski of one user ui

and a list of the public keys {pk1, . . . , pkk} of all users uj ∈ R. The algorithm
outputs a ring signature σ for the message d on behalf of the ring R.

– Verify((d, σ), {pk1, . . . , pkk}): The deterministic algorithm Verify takes as
input a message/signature pair (d, σ) and a list of public keys {pk1, . . . , pkk}.
It outputs TRUE, if σ is a valid ring signature for the message d on behalf
of the ring R, and FALSE otherwise.

We assume that the ring signature scheme RS is correct, i.e.

Pr[Verify((d, RingSign(d, ski, {pk1, . . . , pkk}), {pk1, . . . , pkk}) = 1

for all i ∈ {1, . . . , k}.

The basic security criteria of a ring signature scheme are anonymity and
unforgeability.

– Anonymity: The receiver of a signed message should not be able to detect
the concrete identity of the signer. More formally, anonymity can be defined
using the following security game.

6 M.S.E. Mohamed and A. Petzoldt

Game[Anonymity]:
1. The algorithm KeyGen is used to generate k key pairs ((sk1, pk1), . . . ,

(skk, pkk)). The set of public keys {pk1, . . . , pkk} is given to the adver-
sary A.

2. The adversary A is given access to a signing oracle OS(i, d), which, on
input of an index i ∈ {1, . . . , k} and a message d returns a valid ring
signature σ for the message d on behalf of the ring R = {u1, . . . , uk}.
Hereby, in order to create the signature σ, the signing oracle OS uses the
secret key ski of the user ui.

3. A outputs a message d� as well as two indices i0 and i1 ∈ {1, . . . , k}. He
is given a signature σ ← RingSign(d�, skib , {pk1, . . . , pkk}), where b is
randomly chosen from {0, 1}.

4. The adversary A outputs a bit b′. He wins the game, if and only if b′ = b
holds.

The ring signature scheme RS is said to provide anonymity, if the advantage

AdvA = 2 · Pr[b′ = b] − 1

is, for every PPT adversary A, negligible.

– Unforgeability: Given a message d, an adversary A not belonging to the
ring R of legitimate signers is not able to forge a valid ring signature σ for
the message d on behalf of the ring R.

More formally, we can define unforgeability using the following game.

Game[Unforgeability]:
1. The algorithm KeyGen is used to generate k key pairs ((sk1, pk1), . . . ,

(skk, pkk)). The set of public keys {pk1, . . . , pkk} is given to the adversary
A.

2. The adversary A is given access to a signing oracle OS(d), which, on the
input of a message d, returns a valid ring signature σ for the message d
on behalf of the ring R = {u1, . . . , uk}.

3. A is given a challenge message d�. He wins the game, if he is able to
produce a valid ring signature σ� for d� on behalf of the ring R.

The ring signature scheme RS is said to provide unforgeability, if the success
probability

PrA[success] = Pr[Verify((d�, σ�), {pk1, . . . , pkk}) = TRUE]

is, for any PPT adversary A, negligible.

RingRainbow – An Efficient Multivariate Ring Signature Scheme 7

3 Multivariate Cryptography

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials (see Eq. (1)).

p(1)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(1)
ij · xixj +

n∑

i=1

p
(1)
i · xi + p

(1)
0

p(2)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(2)
ij · xixj +

n∑

i=1

p
(2)
i · xi + p

(2)
0

...

p(m)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(m)
ij · xixj +

n∑

i=1

p
(m)
i · xi + p

(m)
0 (1)

The security of multivariate schemes is based on the

MQ Problem: Given m multivariate quadratic polynomials p(1)(x), . . . , p(m)(x)
in n variables x1, . . . , xn as shown in Eq. (1), find a vector x̄ = (x̄1, . . . , x̄n) such
that p(1)(x̄) = . . . = p(m)(x̄) = 0.

The MQ problem (for m ≈ n) is proven to be NP-hard even for quadratic
polynomials over the field GF(2) [12].

To build a public key cryptosystem on the basis of the MQ problem, one starts
with an easily invertible quadratic map F : Fn → F

m (central map). To hide the
structure of F in the public key, one composes it with two invertible affine (or
linear) maps S : Fm → F

m and T : Fn → F
n. The public key of the scheme is

therefore given by P = S ◦ F ◦ T : Fn → F
m. The private key consists of S, F

and T and therefore allows to invert the public key.

Note: Due to the above construction, the security of multivariate public key
schemes is not only based on the MQ-Problem, but also on the EIP-Problem
(“Extended Isomorphism of Polynomials”) of finding the composition of P.

In this paper we concentrate on multivariate signature schemes. The standard
signature generation and verification process of a multivariate signature scheme
works as shown in Fig. 1.

Signature Generation. To generate a signature for a message d, the signer uses a
hash function H : {0, 1}� → F

m to compute the hash value w = H(d) ∈ F
m and

computes recursively x = S−1(w) ∈ F
m, y = F−1(x) ∈ F

n and z = T −1(y).
The signature of the message w is z ∈ F

n. Here, F−1(x) means finding one (of
possibly many) pre-image of x under the central map F .

Verification. To check, if z ∈ F
n is indeed a valid signature for a message d, one

computes w = H(d) and w′ = P(z) ∈ F
m. If w′ = w holds, the signature is

accepted, otherwise rejected.

A good overview of existing multivariate schemes can be found in [8].

8 M.S.E. Mohamed and A. Petzoldt

Signature Generation

w ∈ F
m S−1

x ∈ F
m F−1

y ∈ F
n T −1

z ∈ F
n

P

Signature Verification

Fig. 1. General workflow of multivariate signature schemes

3.1 The Rainbow Signature Scheme

The Rainbow signature scheme [9] is one of the most promising and best studied
multivariate signature schemes. The scheme can be described as follows:

Let F = Fq be a finite field with q elements, n ∈ N and 0 < v1 < v2 <
. . . < v� < v�+1 = n be a sequence of integers. We set m = n − v1, Oi =
{vi + 1, . . . , vi+1} and Vi = {1, . . . , vi} (i = 1, . . . �).

Key Generation. The private key of the scheme consists of two invertible affine
maps S : Fm → F

m and T : Fn → F
n and a quadratic map F(x) = (f (v1+1)(x),

. . . , f (n)(x)) : Fn → F
m. The polynomials f (i) (i = v1 +1, . . . , n) are of the form

f (i) =
∑

k,l∈Vj

α
(i)
k,l · xk · xl +

∑

k∈Vj ,l∈Oj

β
(i)
k,l · xk · xl +

∑

k∈Vj∪Oj

γ
(i)
k · xk + η(i) (2)

with coefficients randomly chosen from F. Here, j is the only integer such that
i ∈ Oj . The public key is the composed map P = S ◦ F ◦ T : Fn → F

m.

Signature Generation. To generate a signature for a document d, one uses a
hash function H : {0, 1}� → F

m to compute the hash value w = H(d) ∈ F
m and

computes recursively x = S−1(w) ∈ F
m, y = F−1(x) ∈ F

n and z = T −1(y).
Here, F−1(x) means finding one (of approximately qv1) pre-image of x under
the central map F . This is done as shown in Algorithm1.

It might happen that one of the linear systems in step 3 of the algorithm does
not have a solution. In this case one has to choose other values for y1, . . . , yv1

and start again.
The signature of the document d is z ∈ F

n.

Signature Verification. To check, if z ∈ F
n is indeed a valid signature for a

document d, one computes w = H(d) and w′ = P(z) ∈ F
m. If w′ = w holds,

the signature is accepted, otherwise rejected.

3.2 Multivariate Ring Signature Schemes

In the last years, a number of multivariate ring signature schemes have been
proposed [19,27,28,31]. In this section, we give an overview of the main con-
structions and analyze them with regard to security and performance.

RingRainbow – An Efficient Multivariate Ring Signature Scheme 9

Algorithm 1. Inversion of the Rainbow central map
Input: Rainbow central map F , vector x ∈ F

m

Output: vector y ∈ F
n such that F(y) = x

1: Choose random values for the variables y1, . . . , yv1 and substitute these values into
the polynomials f (i) (i = v1 + 1, . . . , n).

2: for k = 1 to � do
3: Perform Gaussian Elimination on the polynomials f (i) (i ∈ Ok) to get the

values of the variables yi (i ∈ Ok).

4: Substitute the values of yi (i ∈ Ok) into the polynomials f (i)

(i ∈ {vk+1 + 1, . . . , n}).
5: end for

The Schemes of Petzoldt et al. [19] and Zhang et al. [31]. These two
schemes are threshold ring signature schemes, i.e. they allow the verifier to check
if a minimal number s of users contributed to the signature (1 ≤ s ≤ k). Both
of the schemes are based on the multivariate identification scheme of Sakumoto
et al. [25], but use different techniques to extend the identification into a sig-
nature scheme: In the case of [19] this is the Fiat-Shamir protocol, the authors
of [31] use the Γ -transformation. By both techniques it is possible to obtain a
threshold ring signature scheme whose security is only based on the MQ Problem
of solving a system of multivariate quadratic equations, which makes the schemes
provable secure. However, due to the additional functionality of a threshold ring
signature scheme, both schemes produce very long signatures. By restricting to
a simple ring signature scheme (i.e. s = 1), we can reduce the signature length
and improve the performance of the scheme drastically.

The Scheme of Wang [27]. The ring signature scheme proposed by Wang in
[27] is also based on the multivariate identification scheme of Sakumoto et al.
[25]. Each user ui (u = 1, . . . , k) chooses a vector si ∈ F

n as his private key and
a multivariate quadratic system Pi : Fn → F

m with Pi(si) = 0 as his public key.
In order to generate a ring signature for a message d, the signer produces for
each user a transcript of the identification scheme (using the “secret” 0 for the
non signers). Unfortunately, the verifier has no means to check how many zero
vectors were used during the signature generation. Therefore it is possible for an
adversary which is no member of the ring and therefore does not know any of the
private keys si to forge a valid ring signature (using 0 for all the secret vectors
si (i = 1, . . . , k)). Furthermore, the scheme proposed in [27] contains only one
round of the identification scheme, enabling an adversary to forge a signature
with probability 2

3 . Therefore, the scheme of [27] does not provide any security
at all.

The Scheme of Wang et al. [28]. The scheme of Wang et al. is similar to
our construction in the sense that it provides a general technique to extend an
arbitrary multivariate signature scheme to a ring signature scheme. Therefore,
as it is in the case of our construction, the security of the resulting ring signature
scheme is based on the security of the underlying multivariate signature scheme.
However, in our construction, the ring signatures are generated in a much simpler

10 M.S.E. Mohamed and A. Petzoldt

and faster way. To generate a ring signature with the scheme of [28], one needs
k hash function evaluations, 2k + 1 evaluations of public keys and one signature
generation of the underlying signature scheme, while our scheme requires only
k − 1 evaluations of multivariate systems and one signature generation. During
verification, [28] requires k − 1 hash function evaluations and 2k − 2 evaluations
of a multivariate quadratic system, while our scheme needs only k evaluations of
the public key. Furthermore, these simple signature generation and verification
algorithms make our scheme much easier to understand and to analyze and
lead to (slightly) shorter ring signatures. Moreover, with regard to security, the
paper [28] does not take attacks against underdetermined multivariate systems
(see Sects. 4.1 and 5 of this paper) into consideration. Therefore, especially for
large sizes of the group R, the authors of [28] overestimate the security of their
scheme significantly (or propose too small parameters).

4 Our Ring Signature Scheme

In this section we present our technique to extend arbitrary multivariate sig-
nature schemes such as UOV [14], Rainbow [9] and Gui [21] to ring signature
schemes. Whereas, in this section, we present our technique in a very general
way, we concentrate in the following sections on ring signatures based on the
Rainbow signature scheme (see Sect. 3.1), which offers both good performance
and short signatures. Furthermore, the key sizes of Rainbow are acceptable and
can be further reduced by the technique of [18] (see Sect. 7).

Let R = {u1, . . . , uk} be a ring of users.

Key Generation. Each user ui generates a key pair ((Si,Fi, Ti),Pi) of the under-
lying multivariate signature scheme. The public key P of the group is the con-
catenation of all individual public keys, i.e. P = P1||P2|| . . . ||Pk, while each user
ui keeps Si,Fi and Ti as his private key ski.

Signature Generation. In order to sign a message d on behalf of the ring R, a
user ui uses a hash function H to compute the hash value w = H(d) ∈ F

m of
the message. He then chooses random vectors z1, . . . , zi−1, zi+1, . . . , zk ∈ F

n. He
computes

w̃ = w −
k∑

j=1
j �=i

Pj(zj) ∈ F
m (3)

and uses his private key to compute a vector zi ∈ F
n such that P(zi) = w̃.

The ring signature for the message d is (z1, z2, . . . , zk) ∈ F
k·n.

Signature Verification. In order to check if (z1, z2, . . . , zk) ∈ F
k·n is indeed a

valid ring signature for the message d, the receiver computes the hash value
w = H(d) ∈ F

m of the message d and uses the public keys P1, . . . ,Pk to compute

ŵ =
k∑

j=1

Pj(zj). (4)

RingRainbow – An Efficient Multivariate Ring Signature Scheme 11

If ŵ = w holds, the signature is accepted, otherwise it is rejected.

Remark: In case of an honestly computed ring signature (z1, z2, . . . , zk) ∈ F
kn

we have

ŵ =
k∑

j=1

Pj(zj) =
k∑

j=1
j �=i

Pj(zj) + Pi(zi) = w − w̃ + w̃ = w. (5)

Therefore, an honestly generated ring signature is always accepted.

4.1 Security

In this section we analyze the security of our construction. We do not consider the
security of the underlying multivariate signature schemes in this paper and refer
to the original papers [14,17,21] for a security analysis of the different schemes.
Here, we concentrate on our construction of a ring signature scheme. For this,
we have to show the anonymity and unforgeability of the resulting scheme.

Anonymity.

Theorem 1. Our construction provides perfect anonymity for the actual signer
as a member of the group, i.e. the final ring signature contains no information,
which member of the group generated the signature and even a computationally
unrestricted adversary can not reveal the identity of the signer.

Proof (sketch). We assume that R = {u1, u2} and perform Game[Anonymity]
(see Sect. 2) for this situation. Then we show that, independently of the fact
which secret key is used during the generation of the ring signature, the signing
oracle OS outputs each of the qn+v1 possible ring signatures of the message d�

with probability ≈ q−n−v1 . For each possible ring signature σ� of d� we therefore
have

Pr[σ�generated using sk1] = Pr[σ� generated using sk2] ≈ 1/2.

Therefore, an adversary can only guess whether σ� was computed with sk1 or
sk2 and his advantage is exactly 0 (independent from his resources).

Unforgeability. To forge a ring signature with respect to a ring of signers
R = {u1, . . . , uk}, an attacker has to find a solution z1, . . . , zk of the equation

P1(z1) + P2(z2) + · · · + Pk(zk) = w. (6)

Basically, there are two possibilities to do this.

1. The adversary could proceed similar to a legitimate user of the ring signature
scheme and choose k − 1 random vectors z1, . . . , zk−1 ∈ F

n, compute w̃ =
w −

∑k−1
i=1 Pi(zi) and try to find a solution to the system Pk(zk) = w̃.

12 M.S.E. Mohamed and A. Petzoldt

2. The adversary could try to solve the system (6) directly as an underdeter-
mined system of multivariate quadratic equations.

Note that the first case is equivalent to breaking an instance of the underlying
multivariate signature scheme. We do not consider this case here and refer to the
papers [14,17,21] for a security analysis of the various schemes, We assume that,
if we choose the parameters of our scheme according to the recommendations
given in these papers, our scheme is secure against attacks of this kind. Hence,
we concentrate in the following on the second case.

Unfortunately, solving (6) directly is not as hard as breaking the underlying
scheme, where the attacker has to find a solution zk ∈ F

n of Pk(zk) = w̃.
The reason for this is that the system (6) is a highly underdetermined mul-

tivariate quadratic system. For systems of this type we have to consider the
following two important results.

1. If the number of variables n in an underdetermined multivariate quadratic
system P of m equations is given by n = ω · m, then a solution of the system
P can be found in the same time as finding a solution of a determined system
of m − �ω	 + 1 equations [26].

2. If the number of variables n in the multivariate quadratic system P exceeds
n ≥ m(m+3)

2 , P can be solved in polynomial time [15].

In our parameter choice (see next section), we have to consider these two results.
Therefore, the parameters of our scheme depend not only on the required level of
security, but, since the number of variables in the public system P (6) depends
on k, also on the size of the ring R.

5 Parameters

In this section we give concrete parameter proposals for our ring signature
scheme. We define our scheme over the field GF(256) and instantiate it on the
basis of the Rainbow signature scheme of Sect. 3.1, which offers both good per-
formance and short signatures. The proposed parameter sets are obtained as
follows.

1. Direct attacks against the scheme should be infeasible, i.e. the parameters
of the scheme have to be chosen in such a way that the two attacks against
underdetermined quadratic systems mentioned in the previous section become
infeasible.

2. Attacks of the Rainbow type against the single systems P(zi) = wi (i =
1, . . . k) must be infeasible. With regard to this, we follow the results of [17].

As we find, for small numbers of k (e.g. k = 5), the parameters of our scheme
are very similar to the parameters recommended for Rainbow in [17]. For larger
values of k, attacks against underdetermined systems play an increasing role.

The resulting parameter sets and key sizes can be found in Table 1.

RingRainbow – An Efficient Multivariate Ring Signature Scheme 13

Table 1. Proposed parameters for our ring signature scheme (F = GF(256); Rainbow)

Security level (bit) 5 users 10 users 20 users 50 users

80 Parameters (16,17,15) (15,20,18) (14,26,24) (13,56,53)

Public key size (kB) 191 551 2,095 40,588

Signature size (bit) 1,920 4,240 10,240 48,800

100 Parameters (25,21,19) (24,25,22) (22,31,28) (20,60,55)

Public key size (kB) 432 1,206 3,921 52,312

Signature size (bit) 2,600 5,680 12,960 54,000

128 Parameters (36,23,20) (34,26,23) (32,33,29) (30,64,58)

Public key size (kB) 680 1,708 5,522 70,180

Signature size (bit) 3,160 6,640 15,040 60,800

As the table shows, especially for small values of k, the signature sizes of our
scheme are quite small. The size of a ring signature is of range several kbit and
therefore not longer than standard signatures of many other post-quantum (e.g.
lattice, hash based) signature schemes. However, for larger values of k, key and
signature sizes of our scheme increase significantly.

6 Alternative Construction of a Multivariate Ring
Signature Scheme

As can be seen from Table 1, the key sizes (especially the size of the public key)
increase drastically if the number of users in the ring gets larger. To avoid this,
we present in this section an alternative way to construct a ring signature scheme
on the basis of multivariate signature schemes such as Rainbow. In particular, we
use here instead of component wise addition of the single signatures component
wise multiplication. By doing so, we can prevent attacks against highly underde-
termined multivariate quadratic systems, since the degree of the corresponding
system becomes very large. Our alternative construction can be described as
follows.

Key Generation. The key generation of our alternative construction works just
as presented in Sect. 4. Each user ui generates a key pair ((Si,Fi, Ti),Pi) of the
underlying multivariate signature scheme. The public key P of the group is the
set of all individual public keys, i.e. P = {P1,P2, . . . ,Pk}, while each user ui

keeps Si,Fi and Ti as his private key ski.

Signature Generation. In order to sign a message d on behalf of the ring R, a
user ui uses a hash function H : {0, 1}� → {0, . . . , q − 1}m to compute the hash
value w = H(d)+ 1m ∈ F

m of the message, where 1m is a vector with all entries
equal to one. He then chooses random vectors z1, . . . , zi−1, zi+1, . . . , zk ∈ F

n

satisfying

(Pj(zj))s �= 0, j ∈ {1, . . . , k} \ {i}, s ∈ {1, . . . ,m}.

14 M.S.E. Mohamed and A. Petzoldt

He computes

w̃ = w · (
k∏

j=1
j �=i

Pj(zj))−1 ∈ F
m (7)

and uses his private key to compute a vector zi ∈ F
n such that Pi(zi) = w̃.

The ring signature for the message d is (z1, z2, . . . , zk) ∈ F
kn. Note that in

Eq. (7) multiplication and inversion work component wise on the elements of
the corresponding vectors.

Remark: The reason of constructing the hash value of the document d in the
way shown above is to generate a hash value without zero elements. By doing
so we can ensure that all vectors wi have the same structure. This guarantees
the anonymity of the actual signer.

Signature Verification. In order to check if (z1, z2, . . . , zk) ∈ F
kn is indeed a

valid ring signature for the message d, the receiver computes the hash value
w = H(d) ∈ F

m of the message d and uses the public keys P1, . . . ,Pk to compute

ŵ =
k∏

j=1

Pj(zj). (8)

If ŵ = w holds, the signature is accepted, otherwise it is rejected. Again note
that the multiplication works component wise.

Remark: In the case of an honestly computed ring signature (z1, z2, . . . , zk) ∈
F

kn we have

ŵ =
k∏

j=1

Pj(zj) =
k∏

j=1
j �=i

Pj(zj) · Pi(zi) = w · (w̃)−1 · w̃ = w. (9)

Therefore, an honestly generated ring signature is always accepted.

6.1 Unforgeability

While the anonymity of our ring signature scheme can be shown exactly as
in Sect. 4.1, we here concentrate on the unforgeability. Similar to Sect. 4.1, an
attacker can try to forge a ring signature in two different ways:

1. The adversary could proceed similar to a legitimate user of the ring signature
scheme and choose k − 1 random vectors z1, . . . , zk−1 ∈ F

n, compute w̃ =
w · (

∏k−1
j=1 Pj(zj))−1 and try to find a solution of the system Pk(zk) = w̃.

2. The adversary could try to solve the system

P1(z1) · . . . · Pk(zk) = w

directly as an underdetermined system of multivariate equations.

RingRainbow – An Efficient Multivariate Ring Signature Scheme 15

Again, forging a ring signature by the first method is equivalent to breaking an
instance of the underlying multivariate scheme, which is, by our assumption,
infeasible.

When attacking our scheme in the second way, the attacker is faced with an
underdetermined system of multivariate polynomial equations. But, in contrast
to Sect. 4.1, this system is no longer quadratic, but the polynomials are, for a
ring of k users, of degree 2k. The methods to solve underdetermined quadratic
systems mentioned in Sect. 4.1 do not work in this case1. It is therefore infeasible
for the attacker to forge a ring signature using this strategy. This means that
we do not have to increase the parameters of our scheme when the number of
users in the ring gets large. Beyond the significant reduction of key size this also
makes it much easier to add additional users to the ring.

Table 2 shows our parameter recommendations and resulting key and sig-
nature sizes for our alternative construction of a multivariate ring signature
scheme.

Table 2. Proposed parameters for our alternative construction of a multivariate ring
signature scheme (F = GF(256); Rainbow)

Security level (bit) 5 users 10 users 20 users 50 users

80 Parameters (v1, o1, o2) (17,13,13) (17,13,13) (17,13,13) (17,13,13)

Public key size (kB) 125.7 251.4 502.7 1,257

Signature size (bit) 1,720 3,440 6,880 17,200

100 Parameters (v1, o1, o2) (26,16,17) (26,16,17) (26,16,17) (26,16,17)

Public key size (kB) 294.9 589.7 1,179 2,949

Signature size (bit) 2,6360 4,720 9,440 23,600

128 Parameters (v1, o1, o2) (36,21,22) (36,21,22) (36,21,22) (36,21,22)

Public key size (kB) 680.3 1,361 2,721 6,803

Signature size (bit) 3,160 6,320 12,640 31,600

7 Reduction of Public Key Size

In [18], Petzoldt et al. proposed a technique to reduce the public key size of the
UOV and Rainbow signature schemes. In particular, they were able to construct
a Rainbow key pair ((S,F , T),P), where the coefficient matrix P of the public
key has the form (for Rainbow schemes with two layers) (Fig. 2).

1 Of course, the attacker could try to transform the given system of high degree into
a quadratic one. However, even if the given system is very sparse, this increases the
number of equations and variables in the quadratic system drastically. Furthermore,
the ratio between the number of variables and the number of equations gets close
to 1.

16 M.S.E. Mohamed and A. Petzoldt

D

B1

B2

C

D1

Fig. 2. Structure of the public key P

Here we have D = (n+1)·(n+2)
2 and D1 = D − (o2+1)·(o2+2)−2

2 . The matrices
B1 ∈ F

m×D1 and B2 ∈ F
o2×(D−D1) can be arbitrarily set by the user. In partic-

ular, B1 and B2 can be chosen in a structured way which reduces the public key
size of the Rainbow scheme significantly.

Note that, when applying this technique to our ring signature scheme, we
can choose the same matrices B1 and B2 for all users u1, . . . , uk. By doing so,
we can reduce the public key size of our scheme by up to 68% (see Table 3).

Table 3. Possible reduction of public key size

Security level (bit) 5 users 10 users 20 users 50 users

80 Parameters (17,13,13) (17,13,13) (17,13,13) (17,13,13)

Public key size (standard) (kB) 125.7 251.4 502.7 1,257

Public key size (reduced) (kB) 47.3 93.8 186.7 465.5

Reduction (%) 62.4 62.7 62.9 63.0

100 Parameters (26,16,17) (26,16,17) (26,16,17) (26,16,17)

Public key size (standard) (kB) 294.9 589.7 1,179 2,949

Public key size (reduced) (kB) 99.5 197.3 393.0 980.2

Reduction (%) 66.3 66.5 66.7 66.8

128 Parameters (36,21,22) (36,21,22) (36,21,22) (36,21,22)

Public key size (standard) (kB) 680.3 1,361 2,721 6,803

Public key size (reduced) (kB) 219.4 435.9 868.8 2,168

Reduction (%) 67.7 68.0 68.1 68.1

Furthermore, when choosing the matrices B1 and B2 in a cyclic way, we can
speed up the evaluation of the Rainbow public key by up to 60% [20]. Since this
step is used both in the signature generation and verification processes of our
scheme, both processes can be sped up drastically (see Table 4).

8 Implementation and Efficiency Results

In this section we present our results regarding the efficiency of our construction.
To generate a ring signature on behalf of a ring R = {u1, . . . , uk} of k members,
a user ui has to perform

RingRainbow – An Efficient Multivariate Ring Signature Scheme 17

– k − 1 evaluations of public systems Pi and
– 1 Rainbow signature generation.

The verification process of our scheme consists of k evaluations of the Rainbow
public keys P1, . . . ,Pk.

Since both the evaluation and inversion of Rainbow systems are very efficient,
our scheme offers good performance. By using structured public keys (see last
section), we can speed up our scheme further (see Table 4).

To study the efficiency of our construction in practice, we created a straight-
forward C implementation of Rainbow and our ring signature scheme and ran it
for the parameter sets proposed in Sect. 5. Table 4 shows the results. In each cell,
the first number shows the running time of the signature generation/verification
process of the standard scheme, while the second number shows the correspond-
ing timings for the structured scheme.

Table 4. Running times of signature generation and verification

Security level (bit) 5 users 10 users 20 users 50 users

80 Parameters (16,17,15) (15,20,18) (14,26,24) (13,56,53)

Sign. generation (ms) 13.31/9.15 28.73/17.31 58.98/37.04 1225/738.0

Sign. verification (ms) 10.81/5.08 26.23/13.54 50.51/27.42 1200/703.0

100 Parameters (25,21,19) (24,25,22) (22,31,28) (20,60,55)

Sign. generation (ms) 16.04/10.30 41.07/23.81 123.80/68.10 1580.32/905.4

Sign. verification (ms) 12.75/5.57 35.55/ 16.38 115.97/57.35 1547.69/859.0

128 Parameters (36,23,20) (34,26,23) (32,33,29) (30,64,58)

Sign. generation (ms) 27.56/17.54 58.97/32.00 175.37/88.94 3177.13/1706

Sign. verification (ms) 20.03/7.70 50.43/20.45 163.22/72.24 3110.79/1610

9 Discussion

Especially for small values of k, our ring signature scheme is very efficient. In this
case, the resulting ring signatures are not larger than standard signatures of other
post-quantum signature schemes such as lattice and hash based constructions.

However, when the number of users in the ring R increases, key sizes and
signature sizes of our scheme increase significantly.

Another disadvantage of the first version of our scheme is that it is very
difficult to add additional users to the ring R, since this might made it necessary
to change the parameters. One therefore has to fix the maximal number kmax of
users in the ring R a priori and choose the parameters of the scheme according to
kmax. This problem can be solved by switching from addition to componentwise
multiplication (see Sect. 6). Table 5 shows a comparison of our scheme with other
(post-quantum and classical) ring signature schemes.

As the Table shows, our scheme outperforms the other post-quantum ring
signature schemes in terms of signature size. In this sense, it can also compete

18 M.S.E. Mohamed and A. Petzoldt

Table 5. Comparison of our scheme with other ring signature schemes (80 bit security)

Scheme Our [29] [16] [7] [1] [2] [10]

5 users Pk size (kB) 47.3 1.3 179 147 751 1.0 1.0

Sign. size (bit) 1,720 26,000 301,546 659,632 6,973,251 7,810 15,820

50 users Pk size (kB) 465.5 12.5 1,785 7,513 15,020 9.8 9.8

Sign. size (bit) 17,200 260,000 3,015,462 6,596,320 69,732,510 78,100 158,200

Mult Lattice Mult Lattice Code RSA DL

Threshold ring signatures

with the RSA and DL based constructions of [2,10]. On the other hand, the key
sizes of our scheme are much larger than those of the classical and the lattice
based construction of [29].

Furthermore, there exist some pairing based constructions of ring signature
schemes, which offer a sublinear signature size [11]. For large values of k, the ring
signatures of these schemes are significantly smaller than those of the above con-
structions. However, these schemes can be easily broken by quantum computers.
Therefore, our scheme offers the shortest ring signatures of all post-quantum
constructions.

10 Conclusion

In this paper we proposed a new multivariate ring signature scheme on the basis
of the Rainbow signature scheme [9]. However, we can construct our scheme
on the basis of every other multivariate signature scheme such as UOV and
HVEv-, too. Our scheme is one of the first multivariate signature schemes with
special properties and one of few candidates for post-quantum ring signatures.
The scheme is very efficient, especially when the number of users in the ring
is small, and produces the shortest ring signatures of all existing post-quantum
constructions.

Future work includes the development of other multivariate signature
schemes with special properties such as blind and group signatures.

References

1. Aguilar, C., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold
ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7),
4833–4842 (2011)

2. Asaar, M.R., Salmasizadeh, M., Susilo, W.: A short identity-based proxy ring sig-
nature scheme from RSA. Comput. Stand. Interfaces 38, 144–151 (2015)

3. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions and con-
structions without random oracles. IACR eprint 2005/304

4. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography.
Springer, Heidelberg (2009)

RingRainbow – An Efficient Multivariate Ring Signature Scheme 19

5. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-85053-3 4

6. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern
x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9 3

7. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold
ring signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT
2010. LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14712-8 16

8. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems.
Springer, USA (2006)

9. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). doi:10.1007/11496137 12

10. Franklin, M., Zhang, H.: Unique ring signatures: a practical construction. In:
Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 162–170. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-39884-1 13

11. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19074-2 25

12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

13. Kravitz, D.: Digital signature algorithm. US patent 5231668, July 1991
14. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). doi:10.1007/3-540-48910-X 15

15. Miura, H., Hashimoto, Y., Takagi, T.: Extended algorithm for solving underdefined
multivariate quadratic equations. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol.
7932, pp. 118–135. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9 8

16. Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate based threshold ring sig-
nature scheme. Appl. Algebra Eng. Commun. Comput. 24(3–4), 255–275 (2012)

17. Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow
signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp.
218–240. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12929-2 16

18. Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – a multivariate signa-
ture scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17401-8 4

19. Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate threshold ring signature
scheme. AAECC 25(3–4), 255–275 (2012)

20. Petzoldt, A., Bulygin, S., Buchmann, J.: Fast verification for improved versions
of the UOV and rainbow signature schemes. In: Gaborit, P. (ed.) PQCrypto
2013. LNCS, vol. 7932, pp. 188–202. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38616-9 13

21. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for
HFEv-based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48797-6 14

http://dx.doi.org/10.1007/978-3-540-85053-3_4
http://dx.doi.org/10.1007/978-3-642-04138-9_3
http://dx.doi.org/10.1007/978-3-642-14712-8_16
http://dx.doi.org/10.1007/978-3-642-14712-8_16
http://dx.doi.org/10.1007/11496137_12
http://dx.doi.org/10.1007/978-3-642-39884-1_13
http://dx.doi.org/10.1007/978-3-642-19074-2_25
http://dx.doi.org/10.1007/3-540-48910-X_15
http://dx.doi.org/10.1007/978-3-642-38616-9_8
http://dx.doi.org/10.1007/978-3-642-12929-2_16
http://dx.doi.org/10.1007/978-3-642-17401-8_4
http://dx.doi.org/10.1007/978-3-642-38616-9_13
http://dx.doi.org/10.1007/978-3-642-38616-9_13
http://dx.doi.org/10.1007/978-3-662-48797-6_14
http://dx.doi.org/10.1007/978-3-662-48797-6_14

20 M.S.E. Mohamed and A. Petzoldt

22. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

23. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
doi:10.1007/3-540-45682-1 32

24. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

25. Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes
based on multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 40

26. Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic
equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC
2012. LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30057-8 10

27. Wang, L.L.: A new multivariate-based ring signature scheme. In: Proceeedings of
ISCCCA (2013)

28. Wang, S., Ma, R., Zhang, Y., Wang, X.: Ring signature scheme based on multi-
variate public key cryptosystems. Comput. Math. Appl. 62, 3973–3979 (2011)

29. Wang, S., Zhao, R.: Lattice-based ring signature scheme under the random oracle
model (2014). CoRR abs/1405.3177

30. Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: high-speed signatures on a low-cost
smart card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 371–385. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 27

31. Zhang, J., Zhao, Y.: A new multivariate based threshold ring signature scheme.
In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp.
526–533. Springer, Cham (2014). doi:10.1007/978-3-319-11698-3 42

http://dx.doi.org/10.1007/3-540-45682-1_32
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/978-3-642-22792-9_40
http://dx.doi.org/10.1007/978-3-642-30057-8_10
http://dx.doi.org/10.1007/978-3-642-30057-8_10
http://dx.doi.org/10.1007/978-3-540-28632-5_27
http://dx.doi.org/10.1007/978-3-319-11698-3_42

Pinocchio-Based Adaptive zk-SNARKs
and Secure/Correct Adaptive Function

Evaluation

Meilof Veeningen(B)

Philips Research, Eindhoven, The Netherlands
meilof.veeningen@philips.com

Abstract. Pinocchio is a practical zk-SNARK that allows a prover to
perform cryptographically verifiable computations with verification effort
potentially less than performing the computation itself. A recent proposal
showed how to make Pinocchio adaptive (or “hash-and-prove”), i.e., to
enable proofs with respect to computation-independent commitments.
This enables computations to be chosen after the commitments have been
produced, and for data to be shared between different computations in a
flexible way. Unfortunately, this proposal is not zero-knowledge. In par-
ticular, it cannot be combined with Trinocchio, a system in which Pinoc-
chio is outsourced to three workers that do not learn the inputs thanks
to multi-party computation (MPC). In this paper, we show how to make
Pinocchio adaptive in a zero-knowledge way; apply this to make Trinoc-
chio work on computation-independent commitments; present tooling to
easily program flexible verifiable computations (with or without MPC);
and use it to build a prototype in a medical research case study.

1 Introduction

Recent advances in SNARKs (Succinct Non-interactive ARguments of Knowl-
edge) are making it more and more feasible to outsource computations to the
cloud while obtaining cryptographic guarantees about the correctness of their
outputs. In particular, the Pinocchio system [8,11] achieved for the first time
for a practical computation a verification time of a computation proof that was
actually faster than performing the computation itself.

In Pinocchio, proofs are verified with respect to plaintext inputs and outputs
of the verifier; but in many cases, it is useful to have computation proofs that
also refer to committed data, e.g., provided by a third party. Ideally, such proofs
should be adaptive, i.e., multiple different computations can be performed on the
same commitment, that are chosen after the data has been committed to; and
zero-knowledge, i.e., the commitments and proofs should reveal no information
about the committed data. This latter property allows proofs on sensitive data,
and it allows extensions like Trinocchio [13] that additionally hide this sensitive
data from provers by multi-party computation.

Although several approaches are known from the literature, no really satisfac-
tory practical adaptive zk-SNARK exists. The recent “hash first” proposal [7]
c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 21–39, 2017.
DOI: 10.1007/978-3-319-57339-7 2

22 M. Veeningen

shows how to make Pinocchio adaptive at low overhead, but is unfortunately
not zero-knowledge. On the other hand, Pinocchio’s successor Geppetto [3] is
zero-knowledge but not adaptive: multiple computations can be performed on
the same data but they need to be known before committing. The asymptoti-
cally best known SNARKS combining the two properties have Θ(n log n) non-
cryptographic and Θ(n) cryptographic work for the prover, a Θ(n)-sized CRS,
and constant-time verification (where n is the size of the computation), but with
a large practical overhead: [10] because it relies on the impractical subset-sum
language; other constructions (e.g., [3,7]) because they rely on including hash
evaluation in the computation1. Finally, [1] enables Pinocchio proofs on authen-
ticated data with prover complexity as above, but verification time is linear in
the number of committed inputs.

In this work, we give a new Pinocchio-based adaptive zk-SNARK that solves
the above problems. We match the best asymptotic performance (i.e., Θ(n log n)
non-cryptographic work and Θ(n) cryptographic work for the prover; a Θ(n)-size
CRS and constant-time verification); but obtain the first practical solution by
adding only minor overhead to “plain” Pinocchio (instead of relying on expensive
approaches such as subset-sum or bootstrapping).

As additional contributions, we apply our zk-SNARK in the Trinocchio set-
ting, and present tooling to easily perform verifiable computations. Trinocchio
[13] achieves privacy-preserving outsourcing to untrusted workers by combining
the privacy guarantees of multi-party computation with the correctness guaran-
tees of the Pinocchio zk-SNARK. With our adaptive zk-SNARK, computation
can be chosen after the inputs were provided and more complex functionalities
can be achieved by using the output of one computation as input of another. We
also improve the generality of [13] by proving security for any suitable MPC pro-
tocol and adaptive zk-SNARK. Our tooling consists of a Python frontend and a
C++ backend. The frontend allows easy programming of verifiable computations
(with libraries for zero testing, oblivious indexing and fixed-point computations),
and execution either directly (for normal outsourcing scenarios) or with MPC
(for privacy-preserving outsourcing). The backend provides key generation, prov-
ing, and verification functionality for both scenarios.

2 Preliminaries

2.1 Algebraic Tools, Notation, and Complexity Assumptions

Our constructions aim to prove correctness of computations over a prime order
field F = Fp. We make use of pairings, i.e., groups (G,G′,GT) of order p and an
efficient bilinear map e : G × G

′ → GT , where for any generators g1 ∈ G, g2 ∈
G

′, e(g1, g2) �= 1 and e(ga
1 , gb

2) = e(g1, g2)ab. Throughout, we will make use of
polynomial evaluations in a secret point s ∈ F. For f ∈ F[x], write 〈f〉1 for
f(s) · g1 and 〈f〉2 for f(s) · g2.

1 In practice, computing the hash is complex itself. It can be avoided with bootstrap-
ping [10], giving slightly worse asymptotics and again a large practical overhead.

Pinocchio-Based Adaptive zk-SNARKs 23

Let (G,G′,GT , e) ← G(1κ) denote parameter generation in this setting. We
require the following assumptions from [4] (that generalise those from [11] to
asymmetric pairings):

Definition 1. The q-power Diffie Hellman (q-PDH) assumption holds for G
if, for any NUPPT adversary A: Pr[(G,G′,GT , e) ← G(1κ); g ∈R G

∗; g′ ∈R

G
′∗; s ∈R Z

∗
p; y ← A(G,G′,GT , e, {gsi

, g′si}i=1,...,q,q+2,...,2q) : y = gsq+1
] ≈κ 0.

Definition 2. The q-power knowledge of exponent (q-PKE) assumption holds
for G and a class Z of auxiliary input generators if, for every NUPPT aux-
iliary input generator Z ∈ Z and any NUPPT adversary A there exists a
NUPPT extractor EA such that: Pr[crs := (G,G′,GT , e) ← G(1κ); g ∈R

G
∗; s ∈R Z

∗
p; z ← Z(crs, g, . . . , gsq

); g′ ∈R G
′∗; (c, c′||a0, . . . , aq) ←

(A||EA)(crs, {gsi

, g′si}i=0,...,q, z) : e(c, g′) = e(g, c′) ∧ c �=
∏q

i=0 gais
i

1] ≈κ 0.

Here, (a||b) ← (A||EA)(c) denotes running both algorithms on the same
inputs and random tape, and assigning their results to a respectively b. For
certain auxiliary input generators, the q-PKE assumption does not hold, so we
have to conjecture that our auxiliary input generators are “benign”, cf. [4].

Definition 3. The q-target group strong Diffie Hellman (q-SDH) assumption
holds for G if, for any NUPPT adversary A, Pr[crs := (G,G′,GT , e) ← G(1κ);
g ∈R G

∗; g′ ∈R G
′∗; s ∈R Zp(r, Y) ← A(crs, {gsi

, g′si}i=0,...,q) : r ∈ Zp \ {s} ∧
Y = e(g, g′)

1
s−r] ≈κ 0.

2.2 Adaptive zk-SNARKs in the CRS Model

We now define adaptive zk-SNARKs as in [10] with minor modifications. We
first define extractable trapdoor commitment families. This is a straightforward
generalisation of an extractable trapdoor commitment scheme [10] that explicitly
captures multiple commitment keys generated from the same CRS:

Definition 4. Let (G0,Gc,C) be a scheme where (crs, td) ← G0(1κ) outputs a
system-wide CRS and a trapdoor; (ck, ctd) ← Gc(crs) outputs a commitment key
and a trapdoor; and c ← ck(m; r) outputs a commitment with the given key. Such
a scheme is called an extractable trapdoor commitment family if:

– (Computationally binding) For every NUPPT A, Pr[(crs, ·) ← G0(1κ);
(ck, ·) ← Gc(crs); (v; r; v′; r′) ← A(crs; ck) : Cck(v; r) = Cck(v′; r′)] ≈ 0.

– (Perfectly hiding) Letting (crs, ·) ← G0(1κ); (ck, ·) ← Gc(crs), for all v, v′,
Cck(v; r) and Cck(v′; r′) are identically distributed given random r, r′

– (Trapdoor) There exists a NUPPT algorithm T such that if (crs, td) ←
G0(1κ); (ck; ctd) ← Gc(crs); (u; t) ← T (crs; td; ck; ck); r ← T (t;u; v), then
u is distributed identically to real commitments and Cck(v; r) = u.

– (Extractable) For every NUPPT committer A, there exists a NUPPT extrac-
tor EA such that Pr[(crs; ·) ← G0(1κ); (ck; ·) ← Gc(crs); (u||v; r) ← (A||EA)
(crs; ck) : u ∈ Range(Cck) ∧ u �= Cck(v; r)] ≈ 0.

24 M. Veeningen

Given relation R and commitment keys ck1, . . . , ckn from the same commit-
ment family, define: Rck1,...,ckn := {(u ; v , r ,w) : ui = Ccki(vi ; ri)∧(v ;w) ∈ R}.
Intuitively, an adaptive zk-SNARK is a zk-SNARK for relation Rck1,...,ckn .

Definition 5. An adaptive zk-SNARK for extractable trapdoor commitment
family (G0,Gc,C) and relation R is a scheme (G,P,V) where2:

– (crsp; crsv; tdp) ← G(crs; {cki}), given a CRS and commitment keys, outputs
evaluation and verification keys, and a trapdoor;

– π ← P(crs; {cki}; crsp;u; v; r;w), given a CRS; commitment keys; an evalua-
tion key; commitments; openings; and a witness, outputs a proof;

– 0/1 ← V(crs; {cki}; crsv;u;π), given a CRS; commitment keys; a verification
key; commitments; and a proof, verifies the proof,

satisfying the following properties (let setup := (crs; td) ← G0(1κ);∀i :
(cki; ctdi) ← Gc(crs); (crsp; crsv; tdp) ← G(crs; {cki})):

– Perfect completeness (“proofs normally verify”) Pr[setup; (u; v; r;w) ←
R{cki} : V(crs; {cki}; crsv;u;P(crs; {cki}; crsp;u; v; r;w)) = 1] = 1.

– Argument of knowledge (“the commitment openings and a valid witness can
be extracted from an adversary producing a proof”): for every NUPPT A
there exists NUPPT extractor EA such that, for every auxiliary information
aux ∈ {0, 1}poly(κ): Pr[setup; (u;π||v; r;w)←(A||EA)(crs; {cki}; crsp; aux|| . . . ;
td; ctd1; . . . ; ctdn; tdp) : (u; v; r;w) /∈ R{cki} ∧ V(crs; {cki}; crsv;u;π) = 1] ≈κ

0. Here, (A||EA)(·|| . . . ; ·′) is parallel execution with extra input ·′ for EA.
– Perfectly composable zero knowledge (“proofs can be simulated using the com-

mitments and trapdoor”): there exists a PPT simulator S such that, for all
stateful NUPPT adversaries A, Pr[setup; (u; v; r;w) ← A(crs, {cki}, crsp);
π ← P(crs, {cki}, crsp;u; v; r;w) : (u, v, r,w) ∈ R{cki} ∧ A(π) = 1] =
Pr[setup; (u; v; r;w) ← A(crs, {cki}, crsp);π ← S(crs, {cki}, crsp;u; td, {ctdi},
tdp) : (u, v, r,w) ∈ R{cki} ∧ A(π) = 1].

We base our definitions on [10] because it is closest to what we want to
achieve. Unlike in [3], we do not guarantee security when relation R is chosen
adaptively based on the commitment keys; this is left as future work.

2.3 The Pinocchio zk-SNARK Construction from [11]

QAPs. Pinocchio models computations as quadratic arithmetic programs (QAPs)
[8]. A QAP over a field F is a triple (V,W,Y) ∈ (Fd×k)3, where d is called the
degree of the QAP and k is called the size. A vector x ∈ F

k is said to be a

2 We differ from [10] in three minor ways: (1) we generalise from commitment schemes
to families because we need this in Adaptive Trinocchio; (2) we allow witnesses that
are not committed to separately, giving a slight efficiency improvement; (3) the
extractor has access to the trapdoor, as needed when using Pinocchio [8].

Pinocchio-Based Adaptive zk-SNARKs 25

solution to the QAP if (V · x) × (W · x) = Y · x , where × denotes the pairwise
product and · denotes normal matrix-vector multiplication. A QAP Q is said to
compute function f : Fi → F

j if b = f(a) if and only if there exists a witness w
such that (a ; b;w) is a solution to Q. For example, consider the QAP

V =
(

1 1 0 0
1 1 0 0

)

, W =
(

1 1 0 0
0 0 0 1

)

, Y =
(

0 0 0 1
0 0 1 0

)

.

Intuitively, the first row of this QAP represents equation (x1+x2)·(x1+x2) = x4

in variables (x1, x2, x3, x4) whereas the second row represents equation (x1+x2)·
x4 = x3. Note that x3 = (x1 + x2)3 if and only if there exists x4 satisfying the
two equations, so this QAP computes function f : (x1, x2) �→ x3.3

Fixing d distinct, public ω1, . . . , ωd ∈ F, then a QAP can equivalently be
described by a collection of interpolating polynomials in these points. Namely,
let {vi(x)} be the unique polynomials of degree < d such that vi(ωj) = Vj,i,
and similarly for {wi(x)}, {yi(x)}. Then {vi(x), wi(x), yi(x)} is an equivalent
description of the QAP. Defining t(x) = (x − ω1) · . . . · (x − ωd) ∈ F[x], note that
x 1, . . . ,xn is a solution to Q if and only if, for all j, (

∑
i x i · vi(ωj)) · (

∑
i x i ·

wi(ωj)) = (
∑

i x i ·yi(ωj)), or equivalently, if t(x) divides p(x) := (
∑

i x i ·vi(x)) ·
(
∑

i x i · wi(x)) − (
∑

i x i · yi(x)) ∈ F[x].

Security Guarantees. Pinocchio is a zk-SNARK, which is essentially the same
as an adaptive zk-SNARK except proving and verifying are with respect to
plaintext values instead of commitments. In Pinocchio, relation R is that, for
given v , there exists witness w such that (v ;w) is a solution to a given QAP
Q. Pinocchio replies on a pairing secure under the (4d + 4)-PDH, d-PKE and
(8d + 8)-SDH assumptions discussed above, where d is the degree of the QAP.

Construction. Fix random, secret s, αv, αw, αy, β, rv, rw, ry(x) := rvrw. The cen-
tral idea of Pinocchio is to prove satisfaction of all QAP equations using eval-
uations of the interpolating polynomials in a secret point. Namely, the prover
computes quotient polynomial h = p/t and basically provides evaluations “in the
exponent” of h,

∑
i x i · vi,

∑
i x i · wi,

∑
i x i · yi in the point s that is unknown

to him, that can then be verified using the pairing. Precisely, the prover algo-
rithm, given solution x = (v ;w) to the QAP, generates random δv, δw, δy; com-
putes coefficients h of the polynomial (

∑
i x i · vi(x) + δvt(x)) · (

∑
i x i · wi(x) +

δwt(x)) − (
∑

i x i · yi(x) + δyt(x))/t(x) (with δ terms added to make the proof
zero-knowledge), and outputs (all

∑
i over witness indices |v | + 1, . . . , |x |; recall

that for polynomial f , 〈f〉1 := f(s) · g1 and 〈f〉2 := f(s) · g2):

3 In Pinocchio, the linear terms corresponding to V, W, Y can also contain constant
values. This is achieved by assigning special meaning to a “constant” wire with value
1. We do not formalise this separately, instead leaving it up to the user to include a
special variable and an equation xi · xi = xi that forces this variable to be one.

26 M. Veeningen

〈V 〉1 =
∑

i x i〈rvvi〉1 + δv〈rvt〉1, 〈αvV 〉2 =
∑

i x i〈αvrvvi〉2 + δv〈αvrvt〉2,
〈W 〉2 =

∑
i x i〈rwwi〉2 + δw〈rwt〉2, 〈αwW 〉1 =

∑
i x i〈αwrwwi〉1 + δw〈αwrwt〉1,

〈Y 〉1 =
∑

i x i〈ryyi〉1 + δy〈ryt〉1, 〈αyY 〉2 =
∑

i x i〈αyryyi〉2 + δy〈αyryt〉2.
〈Z〉1 =

∑
i x i〈rvβvi + rwβwi + ryβyi〉1 + δv〈rvβt〉1 + δw〈rwβt〉1 + δy〈ryβt〉1,

〈H〉1 =
∑d

j=0 hj〈xj〉1.

The evaluation key consists of all 〈·〉1, 〈·〉2 items used in the formulas above.4

The verification algorithm, given statement v , extends 〈V 〉1, 〈W 〉1, 〈Y 〉1
to include also the input/output wires (

∑
i over I/O wire indices 1, . . . , |v |):

〈V +〉1 = 〈V 〉1 +
∑

i x i〈rvvi〉1, 〈W+〉2 = 〈W 〉2 +
∑

i x i〈rwwi〉2, 〈Y +〉1 =
〈Y 〉1 +

∑
i x i〈ryyi〉1. Then, it checks (the verification key are the needed 〈·〉1,

〈·〉2 items):

e(〈V 〉1, 〈αv〉2) = e(〈1〉1, 〈αvV 〉2); (V)
e(〈αw〉1, 〈W 〉2) = e(〈αwW 〉1, 〈1〉2); (W)
e(〈Y 〉1, 〈αy〉2) = e(〈1〉1, 〈αyY 〉2); (Y)

e(〈V 〉1 + 〈Y 〉1, 〈β〉2) · e(〈β〉1, 〈W 〉2) = e(〈Z〉1, 〈1〉2); (Z)

e(〈V +〉1, 〈W+〉2) · e(〈Y +〉1, 〈1〉2)−1 = e(〈H〉1, 〈ryt〉2). (H)

At a high level, checks (V), (W), (Y) guarantee that the proof is a proof of
knowledge of the witness w ; check (Z) guarantees that the same witness w
was used for 〈V 〉1, 〈W 〉2, 〈Y 〉1; and check (Z) guarantees that indeed, p(x) =
h(x) · t(x) holds, which implies a solution to the QAP.

3 Adaptive zk-SNARKs Based on Pinocchio

This section presents the central contribution of this paper: an adaptive
zk-SNARK based on Pinocchio. We obtain our Pinocchio-based adaptive
zk-SNARK by generalising the role of the 〈Z〉1 element of the Pinocchio proof.
Recall that in Pinocchio, proof elements 〈V 〉1, 〈W 〉1, and 〈Y 〉1 are essentially
weighted sums

∑
j x j〈vj〉1,

∑
j x j〈wj〉2,

∑
j x j〈yj〉1 over elements 〈vj〉1, 〈wj〉2,

〈yj〉1 from the CRS, with the weights given by the witness part of the QAP’s solu-
tion vector x . The 〈Z〉1 element ensures that these weighted sums consistently
use the same witness. This is done by forcing the prover to come up essentially
with β · (〈V 〉1 + 〈W 〉2 + 〈Y 〉1) given only elements 〈β · (vj + wj + yj)〉1 in which
vj , wj , and yj occur together. The essential idea is of our construction is to use
the 〈Z〉1 element also to ensure consistency to external commitments.

In more detail, in earlier works [3,13], it was noted that the Pinocchio
〈V 〉1, 〈W 〉2, 〈Y 〉1 elements can be divided into multiple “blocks” (〈Vi〉1, 〈Wi〉2,
〈Yi〉1, 〈Zi〉1). Each block contains the values of a number of variables of the
4 We use 〈αvV 〉2 etc. instead of 〈αvV 〉1 from [13], so that we can rely on the asym-

metric q-PKE assumption from [4] (which [13] did not spell out).

Pinocchio-Based Adaptive zk-SNARKs 27

Extractable Trapdoor Commitment Scheme Family (G01,Gc1,C1):

– G01: Fix G1,G2,G3 and random s. Return crs = (xi
1, xi

2}i=0,...,d), td = s.
– Gc1: Pick random α. Return ck = (1 1, α 2, x 1, αx 2, . . . , xd

1, αxd
2)

– C1: Return (r 1 1 + v1 x 1 + v2 x2
1 + . . . , r α 2 + v1 αx 2 + v2 αx2

2 + . . .)

Key generation G1: Fix a QAP of degree at most d, and let vj(x), wj(x), yj(x) be
as in Pinocchio. Fix random, secret αv, αw, αy, β, rv, rw. Let ry = rvrw. Let zj(x) =
xj+rvvj+rwwj+ryyj if j ≤ W and zj(x) = rvvj+rwwj+ryyj otherwise. Evaluation
key (i = 1, . . . , n, j = 1, . . . , d):

xj
1, rvvj 1, rvt 1, αvrvvj 2, αvrvt 2 rwwj 1, rwt 1, αwrwwj 1, αwrwt 1 ryyj 1,

ryt 1, αyryyj 2, αyryt 2 βiz(i−1)d+j 1, βiznd+j 1, βi 1, βirvt 1, βirwt 1, βiryt 1

Verification key (i = 1, . . . , n): (αv 2, αw 1, αy 2, βi 2, βi 1, ryt 2).

Proof generation P1: Let ui = C1
cki

(vi; ri), and let w be the witness such that
(v1, . . . ,vn;w) is a solution to the QAP. Generate random δv,i, δw,i, δy,i. Compute
h as the coefficients of polynomial ((j xj · vj(x) + δv · t(x)) · (j xj · wj(x) + δw ·
t(x)) − (j xj · yj(x) + δy · t(x)))/t(x). Return (i = 1, . . . , n; [·] means only if i = 1):

Vi 1 = d
j=1 vi,j rvv(i−1)d+j 1 + N

j=1 wj rvvnd+j 1 + δv,i rvt 1, αvVi 2 = . . .

Wi 1 = d
j=1 vi,j rww(i−1)d+j 1 + N

j=1 wj rwwnd+j 1 + δw,i rwt 1, αwWi 1 = .

Yi 1 = d
j=1 vi,j ryy(i−1)d+j 1 + N

j=1 wj ryynd+j 1 + δy,i ryt 1, αyYi 2 = . . .

Zi 1 = d
j=1 vi,j βiz(i−1)d+j 1 + N

j=1 wj βiznd+j 1 + ri βi 1 + δv,i βirvt 1

H 1 = j hj xj
1. + δw,i βirwt 1 + δy,i βiryt 1

Proof verification V1: Letting cki = (. . . , αi 2), ui = (Ci 1, αiCi 2), check that:

e(Ci 1, αi 2) = e(1 1, αiCi 2); e(Vi 1, αv 2) = e(αvVi 1, 1 2); (C,V)

e(αw 1, Wi 2) = e(1 1, αwWi 2); e(Yi 1, αy 2) = e(1 1, αyYi 2); (W,Y)

e(Vi 1 + Yi 1 + Ci 1, βi 2) · e(βi 1, Wi 2) = e(Zi 1, 1 2); (Z)

e(V 1, W 2) · e(Y 1, 1 2)
−1 = e(H 1, ryt 2). (H)

(where V 1 = V1 1 + . . . + Vn 1, W 2 = W1 2 + . . . + Wn 2, Y 1 = Y1 1 + . . .)

Fig. 1. Pinocchio-Based Adaptive zk-SNARK (G1,P1,V1)

QAP solution, which is enforced by providing 〈zj〉1 = 〈βi · (vj + wj + yj)〉1 ele-
ments only for the indices j of those variables. Our core idea is use external
commitments of the form

∑
k vk · 〈xk〉1 (that can be re-used across Pinocchio

computations) and link the kth component of this commitment to the jth vari-
able of the block using a modified 〈zj〉1 = 〈βi · (xk + vj + wj + yj)〉1. We use
one block per external commitment that the proof refers to. The witness (which
is not committed to externally) is included in the first block, with the normal

28 M. Veeningen

Pinocchio element 〈zj〉1 = 〈β1 · (vj + wj + yj)〉1 just checking internal consis-
tency as usual. The verification procedure changes slightly: 〈V 〉1 is no longer
extended to 〈V +〉1 to include public I/O (which we do not have); instead, the
(Z) check ensures consistency with the corresponding commitment, for which
there is a new correctness check (C).

The precise construction is shown in Fig. 1. This construction contains details
on how to add randomness to make the proof zero-knowledge; and it shows how
additional 〈α·〉1 elements are added to obtain an extractable trapdoor commit-
ment family (G01,Gc1,C1). In [14], we show that:

Theorem 1. Under the (4d + 3)-PDH, d-PKE, and (8d + 6)-SDH assumptions
(with d the maximal QAP degree), (G01,Gc1,C1) is an extractable trapdoor com-
mitment scheme family, and (G1,P1,V1) is an adaptive zk-SNARK.

4 Smaller Proofs and Comparison to Literature

We now present two optimization that decrease the size of the above zk-SNARK,
and compare the concrete efficiency of our three proposals to two related pro-
posals from the literature. Note that, in the above construction, seven Pinocchio
proof elements 〈V 〉1, 〈αvV 〉2, 〈W 〉2, 〈αwW 〉1, 〈Y 〉1, 〈αyY 〉2, 〈Z〉1 are repeated
for each input commitment. We present two different (but, unfortunately, mutu-
ally incompatible) ways in which this can be avoided.

In our first optimization, inspired by a similar proposal to reduce verification
work in Pinocchio ([3], later corrected by [12]), we decrease proof size and ver-
ification time at the expense of needing a larger-degree QAP. Namely, suppose
that all variables in a given commitment occur only in the right-hand side of
QAP equations. In this case, vj(x) = wj(x) = 0 for all j, so proof elements
〈Vi〉1, 〈αvVi〉2, 〈Wi〉2, 〈αwWi〉1, 〈Yi〉1, 〈αyYi〉2 contain only randomness and, set-
ting δv,j = δw,j = 0, can be omitted. As a consequence, the marginal costs per
commitment used decrease from 7 to 3; the (V) and (W) verification steps can
be skipped and the (Z) step simplified. To guarantee that a committed variable
a only occurs in the right-hand of equations, we can introducing a witness b and
equation 0 · 0 = a − b, slightly increasing the overall QAP size and degree. (This
cannot be done for the first commitment since 〈V1〉1, . . . also contain the witness,
which occur in the left-hand side of equations as well.)

Our second proposal is a modified zk-SNARK that also reduces the marginal
cost per commitment from 7 to 3, but gives more efficient verification when
using many commitments. The core idea is to first concatenate all commitments
u1, . . . ,un into one “intermediate commitment u ′, and then use our original zk-
SNARK with respect to u ′. More precisely, we build intermediate commitment
u ′

1 with the first �1 values of u1; u ′
2 with �1 zeros followed by the first �2 values

of u2; etcetera. Then, u ′ =
∑

i u
′
i is a commitment to the first �1, . . . , �n values

of the respective commitments u1, . . . ,un. To avoid ambiguity between normal
and intermediate commitments, to normal commitments we add a random factor
rc, i.e. (r〈rc〉1 +

∑
i v i〈rcx

i〉1, r〈αrc〉2 + . . .) and intermediate commitments are

Pinocchio-Based Adaptive zk-SNARKs 29

as above5. Proving correspondence between normal and intermediate commit-
ments is done similarly to the (Z) check above: we generate random βi and give
〈β′

i · (rcx
j + x�1+...+�i−1+j〉1 to the prover, who needs to produce proof element

〈Z ′
i〉1 such that 〈Z ′

i〉1 = β′
i · (〈Ci〉1 + 〈C ′

i〉1), which he can only do if 〈C ′
i〉1 is

formed correctly. Details and the security proof appear in [14].

Table 1. Comparison between Pinocchio-based SNARKs (n: number of commitments;
d is QAP degree; d′ ≤ d is QAP degree with optimization; D ≥ d is fixed QAP degree)

Construction Comm. size Proof size Prover computation Verif comp

Non-crypt. op Crypt. op

Geppetto 3 gr. el 8 gr. el Θ(D logD) Θ(D) 4n + 12 pair.

Hash First+Pinocchio 2 gr. el 9n+1 gr. el Θ(d log d) Θ(d) 13n + 3 pair.

Hash First+Pinocchioa 2 gr. el 5n+5 gr. el Θ(d′ log d′) Θ(d′) 8n + 8 pair.

Our zk-SNARK I 2 gr. el 7n+1 gr. el Θ(d log d) Θ(d) 11n + 3 pair.

Our zk-SNARK Ia 2 gr. el 3n+5 gr. el Θ(d′ log d′) Θ(d′) 7n + 7 pair.

Our zk-SNARK II 2 gr. el 3n+8 gr. el Θ(d log d) Θ(d) 6n + 12 pair
a First optimization from Sect. 4 applied.

In Table 1, we provide a detailed comparison of our zk-SNARKs with two sim-
ilar constructions: the Geppetto protocol due to [3] (which is also zero-knowledge
but not adaptive); and the “hash first” approach applied to Pinocchio [7] (which
is adaptive but not zero-knowledge). Geppetto is Protocol 2 from [3]. We assume
QAP witnesses of O(d). In Geppetto, a fixed set of QAPs of degree di are com-
bined into one large “MultiQAP” of degree D slightly larger than max di. As
a consequence, if both small and large computations need to be applied on the
same data, then the small computations take over the much worse performance
of the large computations. For Hash First+Pinocchio, we took the extractable
scheme XPE since the Geppetto and our construction are extractable as well.
To make it work on multiple commitments (which is described for neither Hash
First nor Pinocchio), we assume natural generalisations of Hash First and of
Pinocchio along the lines of [3,13]. Our first optimization can be applied to this
construction; we mark the result with a star and write d′ ≥ d for the increased
degree due to the use of this optimization. Finally, we show our zk-SNARK with-
out and with the first optimization; and our second zk-SNARK construction (to
which the optimization does not apply).

In conclusion, Geppetto is the most efficient construction, but apart from not
being adaptive, it also requires all computations to be fixed and of the same size,
making it inefficient for small computations when they are combined with large
ones. Our construction outperforms Hash First+Pinocchio, essentially adding
zero knowledge for free; which variant is best depends on n and d′ −d. Note that
Hash First allows using the same commitment in different zk-SNARK schemes;

5 Hence this construction can only handle inputs of combined size at most d.

30 M. Veeningen

our scheme only allows this for zk-SNARKs based on the kind of polynomial
commitments used in Pinocchio.

5 Secure/Correct Adaptive Function Evaluation

In this section, we sketch how our zk-SNARK can be used to perform “adaptive
function evaluation”: privacy-preserving verifiable computation on committed
data. We consider a setting in which multiple mutually distrusting data owners
want to allow privacy-preserving outsourced computations on their joint data.
A client asks a computation to be performed on this data by a set of workers.
The input data is sensitive, so the workers should not learn what data they are
computing on (assuming up to a maximum number of workers are passively cor-
rupted). On the other hand, the client wants to be guaranteed the computation
result is correct, for instance, with respect to a commitment to the data pub-
lished by the data owner (making no assumption on which data owners and/or
workers are actively corrupted). The difference in assumptions for the privacy
and correctness guarantees is motivated by settings where data owners together
choose the computation infrastructure (so they feel active corruption is unlikely)
but need to convince an external client (e.g. a medical reviewer) of correctness.
We work in the CRS model, where a trusted party (who is otherwise not involved
in the system) performs one-time key generation.

In [14], we provide a precise security model that captures the above security
guarantees by ideal functionalities. We define two ideal functionalities. The first
guarantees privacy and correctness (secure adaptive function evaluation), and is
realised by our construction if at most a threshold of workers are passively cor-
rupted (but all other parties can be actively corrupted). The second guarantees
only correctness (correct adaptive function evaluation), and is realised by our
construction regardless of corruptions.

5.1 Our Construction

We now present our general construction based on multi-party computation and
any adaptive zk-SNARK (as we will see later, our adaptive zk-SNARK gives a
particularly efficient instantiation). At a high level, to achieve secure adaptive
function evaluation, the workers compute the function using multi-party compu-
tation (MPC), guaranteeing privacy and correctness under certain conditions.
However, when these conditions are not met, we still want to achieve correct
adaptive function evaluation, i.e., we still want to ensure a correct computation
result. To achieve this, the workers also produce, using MPC, a zk-SNARK proof
of correctness of the result.

We require a MPC protocol in the outsourcing setting, i.e., with separate
inputters (in our case, the data owners and the client), recipients (the client)
and workers. The protocol needs to be reactive, so that the data owners can

Pinocchio-Based Adaptive zk-SNARKs 31

provide their input before knowing the function to be computed6; and secure
even if any number of data owners the client are actively corrupted. Security of
the MPC protocol will generally depend on how many workers are corrupted;
our construction will realise secure adaptive function evaluation (as opposed to
just correct adaptive function evaluation) exactly when the underlying MPC
protocol is secure. (As we show below, MPC protocols based on (t, n)-Shamir
secret sharing (e.g., [5]) between n = 2t + 1 workers satisfy these requirements.)

Protocol Adaptive Trinocchio

(Data provider has ai ∈ F
d; client has ac ∈ F

d , function f : (Fd)n × F
d → F

d−d .)

1. The trusted party generates a system-wide CRS crs of the trapdoor commitment
family, and commitment keys ck1, . . . , ckn, ckc for the data owner and client. This
material is distributed to all parties.

2. Each data owner computes commitment ci = Ccki(ai, ri) to its input ai ∈ F
d

using randomness ri, and publishes it on a bulletin board.
3. The data owners, workers, and client use the MPC protocol to do the following:

– Each data owner provides input ai and randomness ri
– For each i, compute ci = Ccki(ai , ri); if ci = ci then abort

4. The client provides function f to the trusted party. The trusted party determines
a QAP Q computing f and a function f solving Q, and performs key generation
of the adaptive zk-SNARK (where one commitment combines the client’s input
and output). The client gets verification key crsv; the workers get Q, f , and the
corresponding evaluation key crsp.

5. The data owners, workers, and client continue with the MPC from step 3:
– Client: provide input ac

– Compute (b ; w) ← f (a1 ; . . . ; an ; ac)
– Compute cc ← Cckc(ac , b ; rc) for random rc
– Compute π ← P(crs, {cki}, . . . , ckn, ckc, crsp; c1, . . . , cn, cc ; a1 ; . . . ; an ;

ac , b ; r1 , . . . , rn , rc ; w)
– Open outputs b , rc , cc , π to the client

6. The client checks whether V(crs, ck1, . . . , ckn, ckc, crsv; c1, . . . , cn, cc; π) = 1 and
cc = Cckc(ac, b; rc) and if so, returns computation result b.

Fig. 2. The adaptive Trinocchio protocol

Our protocol is shown in Fig. 2. It uses an MPC protocol with the above
properties, a trapdoor commitment family, and an adaptive zk-SNARK, instan-
tiated for the function to be computed. The protocol relies on a trusted party
that generates the key material of the zk-SNARK, but is otherwise not involved
in the computation. Each data owner has an input ai ∈ F

d and the client has an
6 Using non-reactive MPC requires is also possible, but then steps 3 and 4 of the

protocol need to be swapped. As a consequence, data owners can abort based on the
client’s choice of function, leading to a weaker form of correct function evaluation.

32 M. Veeningen

input ac ∈ F
d′

and a function f : (Fd)n ×F
d′ → F

d−d′
that it wants to compute

on the combined data. Internal variables of the MPC protocol are denoted �·�.
In step 1, the trusted party sets up the trapdoor commitment family, gener-

ating separate keys for data providers and the client. (This prevents parties
from copying each other’s input.) In step 2, each data provider publishes a
commitment to his input. In step 3, each data providers inputs its data and
the randomness used for the commitment to the MPC protocol. The workers
re-compute the commitments based on this opening and abort in case of a mis-
match. (This prevents calling P on mismatching inputs in which case it may
not be zero-knowledge.) In step 4, the client chooses the function f to be com-
puted, based on which the trusted party performs key generation. (By doing
this after the data owners’ inputs, we prevent a selective failure attack from
their side.) In step 5, the computation is performed. Using MPC, the client’s
output and witness are computed; a commitment to the client’s I/O is pro-
duced, and a zk-SNARK proof of correctness with respect to the commitments
of the data owners and client is built.7 The client learns the output, randomness
for its commitment, the commitment itself, and the proof. In step 6, the client
re-computes the commitment and verifies the proof; in case of success, it accepts
the output.

By sharing commitments between proofs, it is possible to generate key mate-
rial for a number of small building blocks once, and later flexibly combine them
into larger computations without requiring new key material. In particular, as
we show in the case study, this enables computations on arbitrary-length data
using the same key material (which was impossible in Trinocchio). It is also easy
to support multiple clients or multiple commitments per data owner.

In [14], we show that indeed, the above construction achieves the formal
definitions of secure adaptive function evaluation (under the same conditions of
the corruptions of workers as the underlying MPC protocol) and correct adaptive
function evaluation (regardless of corruptions).

5.2 Efficient Instantiation Using Secret Sharing and Our
zk-SNARK

We now show that our zk-SNARKs and MPC based on Shamir secret sharing
give a particularly efficient instantiation of the above framework. The idea is the
same as for Trinocchio [13]: our zk-SNARK is essentially an arithmetic circuit of
multiplicative depth 1, so given a solution to the QAP, the prover algorithm can
be performed under MPC without any communication between the workers.

In more detail, we perform MPC based on Shamir secret sharing between the
m workers (e.g., [5]). This guarantees privacy as long as at most t workers are
passively corrupted, where m = 2t + 1. Inputs are provided by the inputters as
an additive sharing between all workers: this way actively corrupted inputters
cannot provide an inconsistent sharing. The workers Shamir-share and sum up
the additive shares to obtain a Shamir sharing of the input. Outputs are provided

7 Equivalently, the workers can open cc and π and send them to the client in the plain.

Pinocchio-Based Adaptive zk-SNARKs 33

to recipients either as Shamir shares or as freshly randomised additive shares:
the latter allows producing our zk-SNARK proof without any communication.

Either of our zk-SNARK constructions can be used; we provide details for the
first one. Below, write �·� for Shamir sharing and [·] for additive sharing. (Note
that Shamir sharings can be converted locally to additive sharings at no cost.)
In step 3 of the protocol, to open c′

i, the parties apply Ccki on their additive shares
of the input and randomness, add a random additive sharing of zero (which can
be generated non-interactively using pseudo-random zero sharing), and reveal
the result. In step 5, �b�; �w� are computed as Shamir secret shares. Next, [cc] is
computed as an additive sharing by applying Cckc on additive shares and adding
a random sharing of zero. Next, P1 is applied by performing the following steps:
– Generate δv,i, δw,i, δy,i by pseudo-random secret sharing.
– Compute [h] = ((

∑
j�x j� · vj(x)+ �δv� · t(x)) · (

∑
j�x j� ·wj(x)+ �δw� · t(x))−

(
∑

j�x j� · yj(x)+ �δy� · t(x)))/t(x). Essentially this is done by performing the
computation straight on Shamir secret shares; because there is only layer of
multiplications of shares, this directly gives an additive sharing of the result.
Smart use of FFTs gives time complexity O(d · log d) [2,13].

– All proof elements are now linear combinations of secret-shared data; compute
them by taking linear combinations of the (Shamir or additive) shares and
adding a random sharing of zero.

What remains is how to compute the solution of the QAP using multi-party
computation. Namely, in addition to computing the function result �b�, the MPC
also needs to compute witness �w� to the QAP. Actually, if the function to be
computed is described as an arithmetic circuit, this is very easy. Namely, in this
case, the witness for the natural QAP for the function is exactly the vector of
results of all intermediate multiplications; and these results are already available
as Shamir secret shares as a by-product of performing the MPC. Hence, in this
case, computing �w� in addition to �b� incurs no overhead.

If a custom MPC protocol for a particular subtask is used, then it is necessary
to devise specific QAP equations and an MPC protocol to compute their witness.
As an example, consider the MPC operation �b� ← �a �= 0�, i.e., b is assigned 1
if a �= 0 and 0 if a = 0. For computing �b�, a fairly complex protocol is needed,
cf. [5]. However, proving that b is correct using a QAP is simple [11]: introduce
witnesses c := (a + (1 − b))−1, d := 1 and equations:

a · c = b a · (d − b) = 0 d · d = d.

Indeed, if a = 0 then the first equation implies that b = 0; if a �= 0 then the
second and third equations imply that b = 1. In both cases, the given value for
c and d = 1 make all three equations hold. In our case study, we show similarly
how, for complex MPC protocols for fixed-point arithmetic, simple QAPs proving
correctness exist with easily computable witnesses.

6 Prototype and Distributed Medical Research Case

In this section, we present a proof-of-concept implementation of our second zk-
SNARK construction and our Adaptive Trinocchio protocol. Computations can

34 M. Veeningen

be specified at a high level using a Python frontend; executed either locally or
in a privacy-preserving way using multi-party computation; and then automat-
ically proven and verified to be correct by a C++ backend. We show how two
different computations can be performed on the same committed data coming
from multiple data owners (with key material independent from input length,
and optionally in a privacy-preserving way): aggregate survival statistics on two
patient populations, and the “logrank test”: a common statistical test whether
there is a statistically significant difference survival rate between the populations.

6.1 Prototype of Our zk-SNARK and Adaptive Trinocchio

Our prototype, available at https://github.com/meilof/geppetri, is built on top
of VIFF, a Python implementation of MPC based on Shamir secret sharing. In
VIFF, computations on secret shares are specified as normal computations by
means of operator overloading, e.g., assigning c=a*b induces a MPC multiplica-
tion protocol. We add a new runtime to VIFF that also allows computations to
be performed locally without MPC.

To support computation proofs, we developed the viffvc library that pro-
vides a new data type: VcShare, a wrapper around a secret share. Each VcShare
represents a linear combination of QAP variables. Addition and multiplication
by constants of VcShares is performed locally by manipulating the linear com-
bination. Constants v are represented as v · one, where witness one satisfies
one · one = one so one = 1. When two VcShares λ1x1 + . . . and μ1x1 + . . . are
multiplied, a local or MPC multiplication operation is performed on the underly-
ing data, and the result is a new VcShare xk wrapping the result as a new QAP
variable. QAP equation (λ1x1 + . . .) · (μ1x1 + . . .) = 1 ·xk is written to a file, and
the multiplication result xk or its secret share, when known, is written to another
file. Apart from multiplication, some additional operations are supported. For
the �b� ← �a �= 0� operation discussed in Sect. 5.2, the implementation computes
�b� and �c� = (�a� + (1 − �b�))−1, and writes these secret shares/values and the
equations from Sect. 5.2 to the respective files. We also support secret indexing
(e.g., [5]), and fixed-point computations as discussed below.

Computations are performed by this custom VIFF-based system together
with an implementation of our zk-SNARK. A first tool, qapgen, generates the
CRS for our trapdoor commitment scheme. A second tool, qapinput, builds
a commitment to a given input; and computes secret shares of these inputs
that are used for MPC computations. Then, our Python implementation is used
to compute the function, either locally or using multi-party computation. At
the end of this execution, there is one file with the QAP equations, and one
file with values/shares for each QAP variable. Our qapgenf tool uses the first
file to perform key generation of the QAP (this is done only once and for next
executions, previous key material is re-used). Our qapprove tool uses the second
file to generate the zk-SNARK proof (shares) to be received by the client. Finally,
a qapver tool verifies the proof based on the committed inputs and outputs.

https://github.com/meilof/geppetri

Pinocchio-Based Adaptive zk-SNARKs 35

Algorithm 1. Anonymized survival data computation
Require: �d1�, �n1�, �d2�, �n2�: block of survival data points for two populations
Ensure: (�d′

1�, �n
′
1�, �d

′
2�, �n

′
2�) aggregated survival data for the block

1: function Summ(�di,1�, �di,2�, �ni,1�, �ni,2�)
2: return (

∑
i�d1,i�, �n1,1�,

∑
i�d2,i�, �n2,1�)

6.2 Application to Medical Survival Analysis

We have applied our prototype to (adaptively) perform computations on survival
data about two patient populations. In medical research, survival data about a
population is a set of tuples (nj , dj), where nj is the number of patients still in
the study just before time j and dj is the number of deaths at time j. We assume
both populations are distributed among multiple hospitals, that each commit to
their contributions (dj,1, nj,1, dj,2, nj,2) to the two populations at each time.

Aggregate Survival Data. Our first computation is to compute an aggregate ver-
sion of the survival data, where each block {dj,1, nj,1, dj,2, nj,2}25j=1 of 25 time
points is summarised as (

∑
j dj,1, n1,1,

∑
j dj,2, n1,2). The function Summ com-

puting this summary is shown in Algorithm 1. Function Summ translates into a
QAP on 26 commitments: as input, for each time point j, a commitment

∑
i ci,j

to the combined survival data (�d i,1�, �ni,1�, �d i,2�, �ni,2�) from the different
hospitals i at that time (using the fact that commitments are homomorphic); as
output, a commitment to (�d′

1�, �n
′
1�, �d

′
2�, �n

′
2�).

Logrank Test. Our second computation is the so-called “Mantel-Haenzel logrank
test”, a statistical test to decide whether there is a significant difference in sur-
vival rate between the two populations (as implemented, e.g., in R’s survdiff
function). Given the survival data from two populations, define:

Ej,1 =
(dj,1 + dj,2) · nj,1

nj,1 + nj,2
; Vj =

nj,1nj,2(dj,1 + dj,2)(nj,1 + nj,2 − dj,1 − dj,2)
(nj,1 + nj,2)2 · (nj,1 + nj,2 − 1)

;

X =

∑
j Ej,1 −

∑
j dj,1

∑
j Vj

.

The null hypothesis for the logrank test, i.e., the hypothesis that the two curves
represent the same underlying “survival function”, corresponds to X ∼ χ2

1. This
null hypothesis is rejected (i.e., the curves are different) if 1−cdf(X) > α, where
cdf is the cumulative density function of the χ2

1 distribution and, e.g., α = 0.05.
We use MPC to compute X, and then apply the cdf in the clear.

Our implementation consists of two different functions: a function Block
(Algorithm 2) that computes (Ej,1, Vj , dj,1) given the survival data at point
j; and a function Fin that, given

∑
Ej,1,

∑
Vj , and

∑
dj,1 computes X

(Algorithm 3). As above, function Block is applied to commitment
∑

i ci,j to
the combined survival data from different hospitals at a particular time, giv-
ing output commitment c′

j . Function Fin is applied to commitment
∑

j c′
j to

36 M. Veeningen

Algorithm 2. Logrank computation for each time step
Require: �di,1�, �di,2�, �ni,1�, �ni,2� survival data at time point i
Ensure: (�ei�

f , �vi�
f , �di�) contributions to

∑
j Ej,1,

∑
j Vj ,

∑
j dj,1 for test statistic

1: function Block(�di,1�, �di,2�, �ni,1�, �ni,2�)
2: �ac� ← �di,1� + �di,2�
3: �bd� ← �ni,1� + �ni,2�
4: �frc�f ← �ac�/�bd�
5: �ei�

f ← �frc�f · �ni,1�
6: �vn� ← �ni,1� · �ni,2� · �ac� · (�bd� − �ac�)
7: �vd� ← �bd� · �bd� · (�bd� − 1)
8: �vi�

f ← �vn�/�vd�
9: return (�ei�

f , �vi�
f , �di�)

Algorithm 3. Logrank final computation
Require: �es�, �vs�, �ds�: summed-up values required to compute X
Ensure: �chi�f test statistic comparing two curves; supposedly chi ∼ χ2

1

1: function Fin(�es�, �vs�, �ds�)
2: �ds�f ← �ds�
 PRECISION
3: �dmi�f ← �ds�f − �vs�f

4: �chi0�f ← �dmi�f/�vs�f

5: �chi�f ← �chi0�f · �dmi�f

6: return �chi�f

(
∑

Ej,1,
∑

Vj ,
∑

dj,1), again using the fact that commitments are homomor-
phic; outputting a commitment to X that is output to the client.

Algorithms 2 and 3 use fixed-point numbers �x�f , representing value x · 2−k

where we use precision k = 20. We use the fixed-point multiplication �c�f ←
�a�f · �b�f and division �c�f ← �a�/�b�, �c�f ← �a�f/�b�f protocols due to [5].
To prove that �c�f ← �a�f · �b�f is correct, note that we need to show that
2kc − a · b ∈ [−2k, 2k], or equivalently, that α := 2kc − a · b + 2k ≥ 0 and
β := 2k − (2kc − a · b) ≥ 0. We prove this by computing, using MPC, bit
decompositions [5] α = α0 +α1 ·2+ . . .+αk ·2k and β = β0 +β1 ·2+ . . .+βk ·2k

(indeed, α and β are ≤ k + 1 bits long); these αi, βi are the witnesses to QAP
equations:

∀i : αi · (1 − αi) = 0 c − a · b + 2k = α0 + α1 · 2 + . . . + αk · 2k

∀i : βi · (1 − βi) = 0 β = 2k − (c − a · b) = β0 + β1 · 2 + . . . + βk · 2k.

Similarly, note that �c�f ← �a�f/�b�f is correct if and only if 2ka− b · c ∈ [−b, b],
i.e., γ := b + 2ka − b · c ≥ 0 and δ := b − (2ka − b · c) ≥ 0. If b has bitlength
at most K (i.e., the represented number has absolute value ≤ 2K−k), then γ
and δ have at most K + 1 bits. As above, we prove correctness by determining
(K +1)-length bit decompositions of γ and δ and proving them correct. Proving
correctness of �c�f ← �a�/�b� is analogous.

Performance. Table 2 shows the performance of our proof-of-concept implemen-
tation for computing aggregate survival data and the logrank test (on a modern

Pinocchio-Based Adaptive zk-SNARKs 37

Table 2. Performance: computation/proving/verification; with/without MPC

Aggregate Computation (function): 0.0 s (w/o MPC)/0.1 s (w/MPC)

Computation (function+witness): 0.0 s (w/o MPC)/0.1 s (w/MPC)

BS=1 BS=25 BS=175

QAP degree: 3 QAP degree: 3 QAP degree: 57

Prover: 0.3 s/0.4 s Prover: 0.1 s/0.1 s Prover: 0.0 s/0.0 s

Verifier: 1.2 s/1.5 s Verifier: 0.2 s/0.2 s Verifier: 0.0 s/0.0 s

Logrank Computation (function): 0.2 s (w/o MPC) / 190.5 s (w/MPC)

Computation (function+witness): 0.6 s (w/o MPC)/235.2 s (w/MPC)

BS=1 BS=25 BS=175

QAP deg (block): 173 QAP deg (block): 4304 QAP deg (block): 30104

QAP deg (fin): 85 QAP deg (fin): 85 QAP deg (fin): 85

Prover: 13.9 s/78.5 s Prover: 16.2 s/81.0 s Prover: 9.8 s/73.5 s

Verifier: 3.9 s/4.9 s Verifier: 0.2 s/0.3 s Verifier: 0.0 s/0.0 s

laptop). As input, we used the “btrial” data set included in R’s “kmsurv” pack-
age (on which we indeed reproduce R’s survdiff result) of 175 data points.
Apart from having one data point per commitment, we also experiment with
having a “block size” of 25 or 175 data points. For the logrank test, we use one
QAP per block; larger blocks mean less work for the verifier (since there are
fewer proofs) but, in theory, more work for the prover (since the proving algo-
rithm is superlinear in the QAP size). For aggregation, we use one QAP per 25
data points or per commitment, whichever is more.

We time the performance of running the computation, producing the proof,
and verifying it, with or without MPC. As expected, MPC induces a large over-
head for the computation, especially for the logrank test (due to the many fixed-
point computations). MPC also incurs an overhead for proving: this is because
of the many exponentiations with |F|-sized secret shares rather than small wit-
nesses. Note that proving is faster than computing with MPC: the underlying
operations are slower [13], but the QAP proof is in effect on a verification circuit
that is smaller than the circuit of the computation itself [6]. Proving is faster
for block size 175 than block size 25, which is unexpected; this may be because
our FFT subroutine rounds up QAP degrees to the nearest power of two, which
is favourable in the 175-sized case but not in the 25-sized case. As expected,
verification is faster for larger block sizes. (The overhead of MPC here is due to
recombing the proof shares into one overall proof.)

7 Conclusion

In this work, we have given the first practical Pinocchio-based adaptive zk-
SNARK; applied it in the privacy-presering outsourcing setting; and presented
a proof-of-concept implementation. We mention a few promising directions for
follow-ups. Concerning our construction for making Pinocchio adaptive, it would

38 M. Veeningen

be interesting to see if it can be applied to make recent, even more efficient
zk-SNARKS (e.g., [9] in the generic group model) adaptive as well. Moreover,
apart from providing a non-adaptive zk-SNARK, Geppetto also introduces the
interesting idea of proof bootstrapping, where the verification procedure of the
zk-SNARK itself can be performed by means of a verifiable computation, so
multiple related proofs can be verified in constant time. Applying this technique
in our setting should combine our flexibility with their constant-time verification.

Concerning our privacy-preserving outsourcing framework, it is interesting
to see if, apart from secret sharing plus our SNARK, other appealing instanti-
ations are possible. Also, the combination of MPC and verifiable computation
raises the challenge to construct efficient QAPs for specific operations and build
efficient MPC protocols for computing their witnesses. We have presented zero
testing and fixed-point computations as examples, but the same idea is applica-
ble to many other operations as well. More generally, extending our zk-SNARK
prototype with more basic operations, and improving its user-friendliness, would
help bring the techniques closer to practice.

Acknowledgements. This work is part of projects that have received funding from
the European Union’s Horizon 2020 research and innovation programme under grant
agreement No. 643964 (SUPERCLOUD) and No. 731583 (SODA).

References

1. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: Proceedings S&P (2015)

2. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-40084-1 6

3. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: Proceedings
S&P, pp. 253–270 (2015)

4. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with
applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45611-8 28

5. de Hoogh, S.: Design of large scale applications of secure multiparty computa-
tion: secure linear programming. Ph.D. thesis, Eindhoven University of Technology
(2012)

6. de Hoogh, S., Schoenmakers, B., Veeningen, M.: Certificate validation in secure
computation and its use in verifiable linear programming. In: Pointcheval, D.,
Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 265–284.
Springer, Cham (2016). doi:10.1007/978-3-319-31517-1 14

7. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: adaptive verifiable computations on outsourced data. In: Pro-
ceedings CCS (2016)

http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1007/978-3-662-45611-8_28
http://dx.doi.org/10.1007/978-3-662-45611-8_28
http://dx.doi.org/10.1007/978-3-319-31517-1_14

Pinocchio-Based Adaptive zk-SNARKs 39

8. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-38348-9 37

9. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49896-5 11

10. Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 185–206. Springer, Cham (2016). doi:10.1007/978-3-319-31517-1 10

11. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings S&P, pp. 238–252 (2013)

12. Parno, B.: A note on the unsoundness of vntinyram’s snark. Cryptology ePrint
Archive, Report 2015/437 (2015). http://eprint.iacr.org/

13. Schoenmakers, B., Veeningen, M., Vreede, N.: Trinocchio: privacy-preserving out-
sourcing by distributed verifiable computation. In: Manulis, M., Sadeghi, A.-R.,
Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 346–366. Springer, Cham
(2016). doi:10.1007/978-3-319-39555-5 19

14. Veeningen, M.: Pinocchio-based adaptive zk-SNARKS and secure/correct adaptive
function evaluation. Cryptology ePrint Archive, Report 2017/013 (2017). http://
eprint.iacr.org/2017/013

http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-662-49896-5_11
http://dx.doi.org/10.1007/978-3-319-31517-1_10
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-319-39555-5_19
http://eprint.iacr.org/2017/013
http://eprint.iacr.org/2017/013

Revisiting and Extending the AONT-RS
Scheme: A Robust Computationally Secure

Secret Sharing Scheme

Liqun Chen1, Thalia M. Laing2(B), and Keith M. Martin2

1 University of Surrey, Guildford, UK
liqun.chen@surrey.ac.uk

2 Information Security Group, Royal Holloway,
University of London, Egham, UK

{thalia.laing,keith.martin}@rhul.ac.uk

Abstract. In 2010, Resch and Plank proposed a computationally secure
secret sharing scheme, called AONT-RS. We present a generalisation of
their scheme and discuss two ways in which information is leaked if used
to distribute small ciphertexts. We discuss how to prevent such leak-
age and provide a proof of computational privacy in the random oracle
model. Next, we extend the scheme to be robust and prove the robust
AONT-RS achieves computational privacy in the random oracle model
and computational recoverability under standard assumptions. Finally,
we compare the security, share size and complexity of the AONT-RS
scheme with Krawczyk’s SSMS scheme.

1 Introduction

A (t, n)−threshold secret sharing scheme describes how to distribute data
amongst n servers such that t are required to collaborate in order to recon-
struct the data. Any fewer than t servers learn nothing about the data. Secret
sharing is useful in distributed storage systems where data is stored across mul-
tiple servers. A user wishing to access the data must access a threshold number
of servers and combine the retrieved shares. This enables greater availability,
adds redundancy and offers security without the reliance on cryptographic keys.

In 2010, Resch and Plank proposed a dispersed storage system, called
AONT-RS [14], which blends an all-or-nothing transform (AONT) [15] with
Reed-Solomon (RS) coding [13]. The result is a computationally secure
(t, n)−threshold secret sharing scheme. The AONT-RS is a feature in the object
storage system sold by Cleversafe, a company recently acquired by IBM [7], who
renamed the product to IBM Cloud Object Storage. In 2016 the system was
rated the overall leader in the Gartner Critical Capabilities for Object Storage
Report [4].

We present a generalised version of the AONT-RS that enables users the
flexibility to choose a block cipher mode of operation and an Information Dis-
persal Algorithm (IDA). We specify (previously undefined) security properties
c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 40–57, 2017.
DOI: 10.1007/978-3-319-57339-7 3

Revisiting and Extending the AONT-RS Scheme 41

the building blocks of our generalised AONT-RS must satisfy and discuss infor-
mation leakage and prevention.

Resch and Plank claim the AONT-RS has integrity because they use a canary,
which enables an authorised user to confirm whether or not the correct data has
been recovered. However, the submission of an incorrect share will prevent the
correct data from being recovered. Although the user knows the recovered data
is wrong, they are unable to recover the correct data. To address this, we remove
the canary and extend the scheme to be robust by using commitment schemes,
as in [16]. This ensures that, even if a bounded number of servers submitted false
shares, the original data will be uniquely recovered.

Resch and Plank claim the AONT-RS achieves computational security but
no thorough security analysis is provided. We prove both the generalised and
robust AONT-RS achieve computational privacy in the random oracle (RO)
model, then prove the robust AONT-RS achieves computational recoverability
under standard assumptions.

We then compare the generalised AONT-RS with Krawczyk’s secret sharing
made short scheme (SSMS) [9]. This comparison is applicable to the robust
AONT-RS with a robust extension of SSMS by Bellare and Rogaway, called HK2
[16]. In our comparison, we consider the security, the share size and the number
of bitwise XORs required to distribute and recover data via both schemes.

Related Work. Shamir and Blakely independently introduced secret sharing
schemes in 1979 [2,17]. Shamir’s scheme is ideal and perfectly secure.

In 1994, Krawczyk published a paper focusing on computationally secure
schemes (CSS) in the non-robust setting [9] and proposed his SSMS scheme.
Krawczky also proposed goals for a robust CSS scheme, along with a candidate
solution. Previously, the CSS goal had been mentioned by Karnin et al. [8]. Prior
to Krawczyk’s work, robustness had only be studied in the information-theoretic
setting in [11,18]. Krawczyk’s motivation was to achieve shares smaller than were
possible in perfectly secure secret sharing schemes [8].

Krawczyk’s work was revisited in 2007 by Bellare and Rogaway [16], in which
they proposed formal definitions for a CSS and proved Krawczyk’s robust scheme
to be secure in the RO model. They then proposed a refined version of Kraw-
czyk’s scheme (called HK2), which achieves the robust CSS goals under standard
assumptions. Since Bellare and Rogaway’s work, based on our best knowledge,
there have been no new solutions for robust CSS schemes until Resch and Plank’s
AONT-RS scheme in 2011 [14], which is studied in detail here.

Contributions. Our contribution can be summarised as follows:

– We present a generalised version of the AONT-RS and highlight the (previ-
ously undefined) security properties each element of the scheme must have.

– We discuss and illustrate two examples of information leakage in both the
original and our AONT-RS scheme and discuss how to prevent this.

– We prove the AONT-RS achieves computational privacy in the RO model.

42 L. Chen et al.

– We extend AONT-RS to be robust and provide a proof of computational
privacy in the RO model and recoverability under standard assumptions.

– We compare the generalised AONT-RS scheme with Krawczyk’s SSMS. Our
comparison is applicable to the robust AONT-RS and HK2.

Organisation. In Sect. 2 we present notation and definitions. In Sect. 3 we
present a generalised version of the AONT-RS and discuss information leakage.
We then prove the generalised AONT-RS achieves computational privacy in the
RO model. In Sect. 4 we extend the AONT-RS to be robust and prove computa-
tional privacy in the RO model and recoverability under standard assumptions.
In Sect. 5 we introduce Krawczyk’s SSMS and compare it with the generalised
AONT-RS. We conclude in Sect. 6.

2 Preliminaries

In this section we introduce the definitions and notation used throughout.

2.1 Secret Sharing Schemes

Definition 1. Let n, t ∈ N with 2 ≤ t ≤ n and let P = {P1, . . . , Pn} be a set of n
players. A (t, n)−secret sharing scheme Π consists of two algorithms: Share and
Recover. Share is probabilistic and takes as input a secret s chosen from a secret
space S and outputs an n−vector S. Player Pi receives the share S[i]. Recover is
deterministic and takes as input shares and outputs some s′ ∈ {S∪⊥}. The secret
s should be recoverable by any set of at least t players, and private, meaning
any fewer than t players (called unauthorised sets) are unable to recover s.

A (t, n)−secret sharing scheme can either have perfect or computational secu-
rity. These security models can be defined by two security games [16] as in Fig. 1:
one defining privacy and the other recoverability. Note that if an algorithm A is
deterministic, we write x ← A(·). If the algorithm is probabilistic, then x

$←− A(·)
means to choose x according to the distribution induced by A.

In the privacy game Priv, for parameters t and n, the challenger chooses a
bit b. The adversary chooses secrets s0, s1 ∈ S and sends them to the challenger,
who inputs sb to Share, which outputs S. The adversary then makes up to t−1
Corrupt(i) queries for 1 ≤ i ≤ n and receives the share S[i]. The adversary then
outputs a guess b′ for b and wins if b′ = b.

Let A be an adversary playing the Priv game against a secret sharing scheme
Π. Call A a privacy adversary. Let Pr[PrivA] denote the probability A outputs
the correct guess b′ = b during finalise and define the advantage of A as

AdvPriv
Π (A) = 2 · Pr[PrivA] − 1. (1)

The recoverability game models an adversary’s ability to prevent the recovery
of s by deleting or altering shares. The set T denotes the players the adversary

Revisiting and Extending the AONT-RS Scheme 43

Game Priv

– Procedure Initialise(t, n)

b
$←− {0, 1}; j = 1

– Procedure Deal(s0, s1)
If s0, s1 /∈ S

Return ⊥
Else S

$←− Share(sb)
– Procedure Corrupt(i)

If j ≤ t − 1
Return S[i]; j = j + 1

Else halt.
– Procedure Finalise(b′)

Return b′ = b

Game Rec

– Procedure Initialise(t, n)
T ← ∅; j = 1

– Procedure Deal(s)
If s /∈ S

Return ⊥
Else S

$←− Share(s)
– Procedure Corrupt(i)

If j ≤ (n − t)
Return S[i]

j = j + 1; T ← T ∪ {i}
Else halt.

– Procedure Finalise(ST)
Return s �= s′ ← Recover(ST ∪ ST)

Fig. 1. Privacy and recoverability games for a (t, n)−secret sharing scheme.

corrupts. Let T = ∅. The adversary chooses and submits a secret s ∈ S to the
challenger, who inputs it to Share. The adversary then makes up to n−t queries
of the form Corrupt(i) for 1 ≤ i ≤ n and receives the share S[i] in return.
Each i is noted in T . To finalise, the adversary outputs a partially complete
n−vector ST , consisting of at most t altered (and the rest deleted) shares queried
during the corrupt procedure. This vector is completed by the challenger filling
the remaining t elements with valid shares noted in the vector ST . The vector
ST ∪ ST is then submitted to Recover. The adversary wins if s′ �= s.

Call adversary A playing the game Rec a recoverability adversary. Let
Pr[RecA] denote the probability s is not correctly recovered. Define the advan-
tage of A as

AdvRec
Π (A) = Pr[RecA]. (2)

Definition 2. A perfectly secure (t, n)−threshold scheme (PSS) is a
(t, n)−threshold scheme in which a privacy adversary and a recoverability adver-
sary restricted to only deleting shares both have an advantage of zero.

The size of the share S[i] must be at least the size of the secret [1]; if this
bound is met the scheme is ideal. This bound can be particularly problematic
if s is large or the storage available to each player is small. For the application
of AONT-RS, we will focus on distributing large amounts of data. Relaxing the
security to be computational can achieve smaller shares.

Definition 3. A computationally secure (t, n)−scheme (CSS) is a (t, n)−
threshold secret sharing scheme in which a privacy adversary has a negligible
advantage and a recoverability adversary restricted to only deleting (and not
corrupting) shares has an advantage of zero.

CSSs are less secure than PSSs but are able to achieve smaller shares. In
general, CSSs are sufficient for most applications [9].

44 L. Chen et al.

In PSS and CSS schemes, the recoverability adversary is limited to only
deleting, and not corrupting, shares. A robust scheme ensures the recovery of
the secret when the recoverability adversary is allowed to both corrupt and
delete a (bounded) number of shares.

Definition 4. A robust, computationally secure (t, n)−secret sharing scheme is
a (t, n)−secret sharing scheme in which a privacy adversary and a recoverability
adversary both have a negligible advantage at winning their respective games.

Ramp schemes further relax the security to achieve even smaller shares and
are defined information theoretically. Let S denote the discrete random variable
corresponding to the choice of s and let A denote the discrete random variable
corresponding to the set of shares given to the players in the set A ⊆ P.

Definition 5. A (t0, t1;n)−ramp scheme distributes a secret s such that any set
of at least t1 players can recover s and a set of t0 or fewer players reveals no
information about the secret. A (t0, t1;n)−ramp scheme is said to be linear if,
for any set of players A ⊆ P such that |A| = r, where t0 ≤ r ≤ t1,

H(S|A) =
t1 − r

t1 − t0
H(S). (3)

Note that in a (t0, t1;n)−linear ramp scheme, for every player after the initial
t0 players have contributed shares, a fixed amount of information is learnt about
s. This continues in a linear fashion until t1 players have contributed and s is
learnt completely. Observe that a (t, n)−PSS is a (t − 1, t;n)−ramp scheme.

2.2 Symmetric Key Encryption

Let E = (M,K, C,KenGen, Enc,Dec) be a symmetric key encryption scheme
with message space M, keyspace K, ciphertext space C and key generation,
encryption and decryption algorithms KeyGen,Enc and Dec.

Game Ind

– Procedure Initialise
k

$←− KeyGen{0, 1}λ; b
$←− {0, 1}

– Procedure Finalise(b′)
Return b′ = b

– Procedure Deal(M0, M1)
If M0 = M1, |M0| �= |M1|, or M0, M1 /∈ M

Return ⊥
Else, C

$←− Enck(Mb)
Return C

Fig. 2. Game defining indistinguishability in an encryption scheme E

Figure 2 defines the notion of indistinguishability in E [16]. Call adversary A
playing Ind an indistinguishability adversary. Let Pr[IndA] denote the probabil-
ity A outputs the correct guess b′. Define the advantage of A as

AdvInd
E (A) = 2 · Pr[IndA] − 1 (4)

and say E has indistinguishability if the advantage is negligible.
In Ind, A can repeat the deal procedure multiple times. We can limit A to

call the procedure only once; this A is called an ind-1 adversary.

Revisiting and Extending the AONT-RS Scheme 45

2.3 Commitment Schemes

Let CS be a commitment scheme with parameter generation algorithm ParGen,
commitment algorithm Ct and verification algorithm V f . Let M denote the
message to be committed to, H be a committal and R a decommittal. A com-
mitment scheme should satisfy the hiding and binding properties, defined in two
security games in Fig. 3 and described in [16]. Intuitively, a commitment scheme
allows a sender to commit to a message M and reveal it at a later date.

Call adversary A playing Hide against CS a hiding adversary. Let Pr[HideA]
be the probability A correctly guesses b′ = b. The advantage of A is

AdvHide
CS (A) = 2 · Pr[HideA] − 1. (5)

Say CS is ε(·)−hiding if AdvHide
CS (A) ≤ ε(q) for any adversary that makes at

most q queries during the deal procedure.
Call adversary A playing Bind a binding adversary. The advantage of A is

Advbind
CS (A) = Pr[BindA]. (6)

Game Hide

– Procedure Initialise
π

$←− ParGen; b
$←− {0, 1}

– Procedure Deal(M0, M1)
If M0, M1 /∈ M

Return ⊥
Else (H, R)

$←− Ct(π, Mb)
Return H

– Procedure Finalise(b′)
Return b′ = b

Game Bind

– Procedure Initialise
π

$←− ParGen
– Procedure Commit(M0)

If M0 /∈ M
Return ⊥.

Else (H, R0)
$←− Ct(π, M0)

Return (H, R0)
– Procedure Finalise(M1, R1)

If M1 /∈ M, return ⊥.
Return M0 �= M1 and

V f(H, M0, R0) = V f(H, M1, R1) = 1

Fig. 3. Games defining the hiding and binding security properties of CS.

2.4 Error Correcting Codes

An error correcting code (ECC) E is a method of encoding data with some
redundant information to ensure the original data can be recovered, even if a
number of errors occur during either data transmission or storage [10].

A code E of length n over a finite alphabet F is a subset of Fn. Elements of
E are called codewords. The size of E is |E| = m. The minimum distance d is
the minimum Hamming distance between any two distinct codewords.

Let E be a linear code, meaning that for all u,w ∈ E, we have u + w ∈ E,
where addition is modulo q with |F | = q. If u1, . . . , ut is a basis for E, then E
has dimension t. There are qt possible codewords and we call E a [n, t, d]−code.

46 L. Chen et al.

One important ECC is a maximum distance separable (MDS) code [10], which
is a linear code that meets the Singleton bound: d = n − t + 1. For any MDS
code, recovery of a codeword is possible from any t of the n symbols. Denote
such a code as (t, n)−ECC. A Reed Solomon (RS) code [13] is an MDS code.
A code where message string appears in the codeword is called systematic.

Let U $←− ShareECC(u) denote the distribution of a word u via a (t, n)−ECC,
resulting in a codeword represented by an n−vector U . The word u is recoverable
from any t elements of U via the deterministic algorithm RecoverECC .

2.5 Information Dispersal Algorithms

Information dispersal was first introduced by Rabin [12].

Definition 6. Let t, n ∈ N, t ≤ n. A (t, n)−information dispersal algo-
rithm (IDA) with message space M consists of two algorithms ShareIDA and
RecoverIDA. ShareIDA takes as input a message M ∈ M and outputs an
n−vector S. RecoverIDA takes as input elements of the vector S. If at least
t elements are submitted correctly to RecoverIDA, the algorithm outputs the
message M .

A (t, n)−IDA shares M between n players such that any t players can recover
M . This is equivalent to the recoverability property of a (t, n)−secret sharing
scheme. A (t, n)−secret sharing scheme satisfies the conditions of an IDA but
additionally guarantees privacy, which IDAs do not. IDAs are able to achieve
smaller share sizes by taking advantage of the lack of privacy.

Resch and Plank’s IDA. In the AONT-RS scheme, a systematic IDA, which
is a variant of an RS code [14], is specified. We refer to this as the systematic
RS IDA with algorithms ShareRS−IDA and RecoverRS−IDA.

Let F = GF (2ω) be a Galois field of characteristic 2. ShareRS−IDA is a
probabilistic algorithm that takes as input M and parses M into t words, treating
this as a t−vector, M ∈ F t. This vector is multiplied on the left by a public
n × t binary matrix G, where multiplication of elements b ∈ {0, 1} and d ∈ F is
defined as: {0, 1}×F → F , where 0× d = 0 ∈ F and 1× d = d ∈ F . The matrix
G is constructed such that the first t rows form the t× t identity matrix and any
t of the n rows are linearly independent; the last n − t rows can be generated in
any manner as long as this condition is satisfied. The resulting n vector is the
codeword vector G · M = V ∈ Fn. Each player receives the share V [i].

In order to recover M , t shares are submitted to RecoverRS−IDA and a
t−vector V ′ is created from these shares. A t× t matrix G′ is formed, consisting
of the t rows of G corresponding to the shares pooled. This matrix is inverted and
multiplied by V ′ to return (G′)−1 ·V ′ = M , from which M can be constructed.

It is known that an RS code, which is a [n, t, n− t+1]−code, is equivalent to
a (0, t;n)−linear ramp scheme [5]. Thus the systematic RS IDA used by Resch
and Plank is equivalent to a (0, t;n)−linear ramp scheme, as in Definition 5.

Revisiting and Extending the AONT-RS Scheme 47

3 The AONT-RS

In this section, we consider the Resch and Plank’s AONT-RS scheme [14]. We
present a generalised version, then discuss information leakage. Finally, we prove
the AONT-RS scheme achieves computational privacy in the RO model.

3.1 Generalising the AONT-RS

Resch and Plank propose a CSS in [14], which they call AONT-RS. It com-
bines an All or Nothing Transform (AONT) with an RS code. An AONT is an
encryption mode that allows the data to be learnt only if all of it is known [3].

Their scheme assumes the existence of a symmetric key encryption scheme
E operating on blocks of plaintext in CBC mode, a cryptographic hash function
H and the systematic RS IDA, as in Sect. 2.5. They assume the digest of the
hash function is of equal length to the key k use in E . They do not define what
security properties E must have. They also use a canary, which is a known, fixed
value concatenated with the plaintext. When a message is recovered, the user
can compare the recovered value with the known canary to verify correctness.

We observe that E requires ind-1 security and must be probabilistic, but
need not operate in CBC mode. We allow flexibility of the IDA, as long as it
is equivalent to a (0, t;n)−linear ramp scheme (which the systematic RS IDA
is). We remove the concept of the canary from the definition, noting that if an
incorrect message were recovered, a canary would not help recover the correct
M . Preventing M from being incorrectly recovered is discussed in Sect. 4.

Let Π denote our generalised AONT-RS scheme, with algorithms defined in
Fig. 4. From now on, AONT-RS will refer to algorithms in Fig. 4.

Procedure ShareAONT (M)

1. k
$←− KeyGen({0, 1}λ)

C
$←− Enck(M)

2. h = H(C); cd = h ⊕ k
3. V ← ShareIDA(C||cd)
4. Return V

Procedure RecoverAONT (M)

1. V ← RecoverIDA(V [0], . . . ,V [n − 1])
2. C||cd ← V
3. h = H(C); k = h ⊕ cd

4. M ← Deck(C)
5. Return M

Fig. 4. The dispersal and recovery algorithms defining the AONT-RS scheme.

On input M ∈ M, ShareAONT generates a key k of length λ, encrypts M
under k, then computes the hash of the ciphertext h = H(C). The digest h is
then XORed with k to give a value cd, which we call the difference value. The
difference value and C are concatenated and dispersed via an IDA.

To recover M , at least t players must pool their shares into a vector V . Using
the algorithm RecoverIDA, C||cd is recovered. The digest h = H(C) is calculated
and XORed with cd to recover k, which is used to decrypt C and return M .

48 L. Chen et al.

If E were not probabilistic, an adversary may recognise shares of known
ciphertexts and be able to predict C which, if cd is known, could leak information
about k. The scheme also requires ind-1 security; general indistinguishability is
not required as each time a new M is shared, a new encryption key k is generated.
So each key is only used to encrypt one message.

3.2 Information Leakage

Resch and Plank claim their system is secure because t−1 players are unable to
recover all of V , due to the security of the IDA. Without all of V , players are
unable to learn both C (required to compute h = H(C)) and cd and so learn
nothing about k and M . Learning either C or cd in isolation does not help the
adversary. In order to recover M , knowledge of both C and cd are needed.

It is necessary that an unauthorised set learn at most: some or all of cd and
some (but not all) of C, or none of cd and all of C. We show that, when C is a
short ciphertext (in relation to the security parameter λ and the threshold value
t), the adversary may be able to learn enough to leak information about k.

Learning C Completely and cd Partially. Consider the following example.
Let C, k ∈ {0, 1}128. Let there be n = 5 players P1, . . . , P5 and let t = 4. The
string C||cd would be parsed into four words to make the t−vector M , where
each fragment is 64 bits. Let c0 and c1 be the two elements that comprise C
and let cd,0 and cd,1 be the two halves of cd, each 64 bits. The vector M is then
multiplied on the left by the generator matrix G ∈ {0, 1}(5×4), which gives

G · M =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

G4,0 G4,1 G4,2 G4,3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

C0

C1

cd,0

cd,1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

C0

C1

cd,0

cd,1

x

⎞
⎟⎟⎟⎟⎠

,

where Gi,0
$←− {0, 1}, for i = {0, . . . , 3} are chosen such that any 4 rows of G are

linearly independent and x = G4,0 · C0 + G4,1 · C1 + G4,2 · cd,0 + G4,3 · cd,1.
Players P1, P2 and P3 are an unauthorised set, yet they could learn all of C

and cd,0. They could then compute H(C) = h and XOR the first half of h with
cd,0 to recover the first half of k. This reduces the security from 128 to 64 bits.

This attack can be prevented if cd is contained entirely in one share. So if
cd ∈ {0, 1}λ, then C should be such that C ∈ {0, 1}ω, where ω ≥ (t − 1)λ.

Learning C Partially and cd Completely. An alternative version of this
attack utilises the fact that the hash function H is deterministic.

Consider the following example. Assume an attacker knows all of cd and
all but one bit of C. They can construct two possibilities for C (C0 when the
unknown bit is 0, and C1 when it is 1) and compute the corresponding hashes,
h0 = H(C0) and h1 = H(C1). They can then compute two key candidates

Revisiting and Extending the AONT-RS Scheme 49

Procedure Initialise G0, G1, G2

k
$←− {0, 1}λ; b

$←− {0, 1}; k′ = k

Procedure Deal(x0, x1) G0, G1, G4, G5

C ← Enck(xb); H(C) = h;
h ⊕ k′ = cd

V ← ShareIDA(C||cd)
For i ← 1 to n do

(H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

Procedure Corrupt(i) G0, G5

X[i] ← R[i]V [i]S1[i]...Sn[i]
Return X[i]

Procedure Finalise(b′) G0 − G5

Return (b′ = b)

Procedure Initialise G3, G4, G5

k, k′ $←− {0, 1}λ; b
$←− {0, 1}

Procedure Deal(x0, x1) G2, G3

C ← Enck(xb); C ← ShareIDA(C||0)
For i ← 1 to n do

(H[i],R[i])
$←− Ct(C[i])

S[i] ← ShareECC(H[i])
H(C) = h; h ⊕ k′ = cd

V ← ShareIDA(C||cd)

Procedure Corrupt(i) G1, G2, G3, G4

R[i]
$←− DCt(H[i],V [i])

X[i] ← R[i]V [i]S1[i]...Sn[i]
Return X[i]

Fig. 5. Games G0 and G5 are used to prove Theorem 1, the privacy of AONT-RS. All
games G0 − G5 are used to prove Theorem 2, the privacy of the RAONT-RS.

k0 = cd ⊕ h0 and k1 = cd ⊕ h1 and decrypt the ciphertexts C0 and C1 with
the corresponding candidate keys to reveal two plaintext messages M0 and M1.
From these, the adversary can guess which plaintext message is likely to be the
true message and has thus learnt k. In general, if the adversary knows cd and all
but j bits of C, if j < λ this attack is quicker than brute force. We must ensure
an adversary is unable to learn at least λ bits of C if cd is known. This is true
if each M [i] ∈ {0, 1}λ, meaning that C ∈ {0, 1}ω, ω ≥ (t − 1)λ.

So both attacks can be prevented if k ∈ {0, 1}λ and C ∈ {0, 1}ω, where
ω ≥ (t − 1)λ. If C is too small, C should be padded with some random string.
This condition on the size of C is a necessary, but not sufficient, condition for
the AONT-RS scheme to be secure. To guarantee the security, we must make
additional assumptions on H, CS and E , as discussed next.

3.3 Proving the Privacy of AONT-RS

We now prove the AONT-RS achieves computational privacy in the RO model.

Theorem 1 (Privacy of the non-robust AONT-RS). Let A be a privacy
adversary against the AONT-RS scheme Π (as in Fig. 4) and let the internal
hash function H be indistinguishable from a RO. Let the ciphertext be C ∈
{0, 1}ω, where ω ≥ (t − 1)λ. Then there is an ind-1 adversary B attacking the
indistinguishability of E such that

AdvPriv
Π (A) ≤ AdvInd

E (B), (7)

where B makes only one query during the deal procedure of Game Ind and the
running time of B is that of A plus one execution of ShareAONT .

50 L. Chen et al.

Proof. The proof relies on games G0 and G5, as in Fig. 5. The figure shows
multiple procedures, indicating next to each in which games it is included. For
example G0 is defined by the procedures on the left hand side of the figure. The
advantage of the AONT-RS privacy adversary A can be defined as

AdvPriv
Π (A) = 2 · Pr[GA

0] − 1. (8)

Game G5 differs from G0 only because the key k used to encrypt M is different
to the value k′ used to compute cd = h⊕k′. We claim that Pr[GA

0] = Pr[GA
5], as

the hash function H is indistinguishable from a RO. Due to the IDA used and
the restriction that C = {0, 1}ω, where ω ≥ λ(t − 1), the adversary is always
missing either at least λ bits of C or all of cd. Thus the adversary can learn
either h or cd. If A learns h, h = c′

d ⊕ k′. If A learns cd, then cd = h′ ⊕ k′, for
some c′

d �= cd and h′ �= h. Thus Pr[GA
0] = Pr[GA

5] holds true.
We construct an adversary B attacking the privacy of E such that

2 · Pr[GA
5] − 1 ≤ AdvInd

E (B). (9)

Adversary B picks k′ $←− {0, 1}λ and runs A. A submits Deal(x0, x1) to B, who

queries x0, x1 to its challenger and receives C
$←− Enck(xb), where k is the key

generated by the challenger. Now B executes the rest of the Deal procedure of
G5 using k′; so B computes H(C) = h, h ⊕ k′ = cd and V ← ShareIDA(C||cd).
When A submits Corrupt(i), B responds with V [i]. When A outputs a bit b′,
B passes this onto their challenger. The advantage of B is 2 · Pr[b′ = b] − 1.

By combining (8), (9) and Pr[GA
0] = Pr[GA

5], we see that, as required,

AdvPriv
Π (A) ≤ AdvInd

E (B).

�

4 Extending AONT-RS to be Robust

In [16], Bellare and Rogaway extend Krawczyk’s SSMS [9] to be robust by using
commitment schemes. Their technique can be applied to the AONT-RS to make
it robust. We will call the resulting scheme the RAONT-RS.

Let E be an ind-1 secure encryption scheme. Assume the existence of a
(t, n)−ECC, an IDA equivalent to a (0, t;n)−linear ramp scheme, an ε(·)−hiding
commitment scheme CS and a hash function H that is indistinguishable from a
RO. Let ΠR denote the RAONT-RS scheme, with algorithms as in Fig. 6. Let
the ciphertext be C ∈ {0, 1}ω, where ω ≥ (t − 1)λ.

Intuitively, the scheme is the same as the AONT-RS. However, in addition to
being given the share V [i], each player is given a decommittal R[i] computed on
V [i] and fragments of committals H[i] computed on all shares V [i] distributed
via a (t, n)−ECC. Let the n-vector Si be the output after the committal H[i]
is dispersed via a (t, n)−ECC. Let Si[j] be the jth element of Si. These values
are used to verify each player’s share. Let ♦ denote an empty share.

Revisiting and Extending the AONT-RS Scheme 51

Procedure ShareRAONT(M)

1. k
$←− {0, 1}λ; C

$←− Enck(M)
2. h = H(C); cd = h ⊕ k
3. V ← ShareIDA(C||cd)
4. For i ← 1 to n do

(H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

5. For i ← 1 to n do
X[i] ← R[i]V [i]S1[i] . . .Sn[i]

6. Return X

Procedure RecoverRAONT(V)

1. For i ← 0 to n − 1 do
R[i]V [i]S1[i] . . .Sn[i] ← X[i]

2. For i ← 0 to n − 1 do
H[i] ← RecoverECC(Si, j)

3. For i ← 0 to n − 1 do
If X[i] �= ♦ and
V f(H[i],V [i],R[i]) = 0
then V [i] ← ♦

4. C||cd ← RecoverIDA(V)
5. h = H(C); k = h ⊕ cd

6. M ← Deck(C)
7. Return M

Fig. 6. Algorithms defining robust AONT-RS (RAONT-RS).

Unlike a canary, commitment schemes allow recovery of M even if false shares
are submitted. Furthermore, the commitment scheme highlights which servers
are corrupted and thus take any necessary action. However, it is noted that
commitment schemes requires more computation than the use of a canary. In
practise, both techniques could be combined; the canary could first be verified
and, only if the canary is incorrect, will the shares be individually verified.

4.1 Proof of Privacy

The RAONT-RS scheme ΠR can be proven to achieve computational privacy by
adapting the proof of privacy for the HK2 scheme by Bellare and Rogaway [16].

Theorem 2 (Privacy of RAONT-RS). Let A be a privacy adversary against
RAONT-RS ΠR and let H be indistinguishable from a RO. Let the ciphertext
be C ∈ {0, 1}ω, where ω ≥ (t − 1)λ. Assume Ct is ε(·)−hiding (as in Sect. 2.3),
then there is an ind-1 adversary B attacking the indistinguishability of E such
that

AdvPriv
ΠR

(A) ≤ AdvInd
E (B) · 4ε(n), (10)

where B makes only one query during the deal procedure of Game Ind and the
running time of B is that of A plus one execution of ShareRAONT .

Proof. The proof relies on games G0−G5, as in Fig. 5. The procedure Corrupt of
games G1−G4 refers to a probabilistic algorithm DCt that works as follows. On
input message M and committal H, it lets Ω(M,H) denote the set of all coins
ω such that Ct, on input M and coins ω, returns a pair whose first component
is H. If Ω(M,H) = ∅, then DCt returns ⊥. Else it picks ω at random from
Ω(M,H), runs Ct on input M and coins ω to get a pair (H,R) and returns R.
This algorithm is not necessarily efficiently implementable.

52 L. Chen et al.

The advantage of the RAONT-RS privacy adversary A can be defined as

AdvPriv
ΠR

(A) = 2 · Pr[GA
0] − 1. (11)

Game G1 differs from G0 only in the Corrupt procedure, which resamples
R[i] using DCt. Clearly,

Pr[GA
0] = Pr[GA

1] = Pr[GA
2] + (Pr[GA

1] − Pr[GA
2]). (12)

We construct an adversary D1 attacking the hiding property of CS such that

Pr[GA
1] − Pr[GA

2] = AdvHide
CS (D1). (13)

Adversary D1 acts as the challenger to A and wishes to use A’s advantage
to gain an advantage against the hiding property of CS. Adversary D1 picks
b

$←− {0, 1} and runs A. When A submits x0, x1 to D1, D1 generates k
$←− {0, 1}λ

and calculates C
$←− Enck(xb). D1 then computes H(C) = h and h ⊕ k = cd,

then calculates both V ← ShareIDA(C||cd) and C ← ShareIDA(C||0). For i,
1 ≤ i ≤ n, D1 queries C[i],V [i] (for V [i] �= C[i]) to its challenger. Let H[i]
denote the commitment value returned. Let Si ← ShareECC(H[i]). When A
makes a Corrupt(i) query to D1, D1 computes its reply according to the case
of the Corrupt procedure of games G1, G2; that is, D1 generates a decommittal
value R[i] for V [i] and the given H[i] and passes X[i] ← R[i]V [i]S1[i] . . .Sn[i]
to A. When A halts the corruption procedure and finalises with output b′, if
b′ = b, adversary D1 passes 1 to its challenger, guessing the commitment value
H[i] was computed on V [i], rather than C[i]. Otherwise, D1 submits 0.

Next, we have that

Pr[GA
2] = Pr[GA

3] +
(
Pr[GA

2] − Pr[GA
3]

)
, (14)

where G3 differs from G2 only in the initialise procedure which XORs the digest
h not with the encryption key k, but with a string k′. We claim that Pr[GA

2] =
Pr[GA

3]. because the hash function is indistinguishable from a RO. After A has
corrupted at most t shares, they learn at most either

– no information about cd and all of C, and so can learn h = H(C). In which
case h = k ⊕ cd = k′ ⊕ c′

d, where c′
d �= cd is some unknown string. Or

– all of cd, but missing at least λ bits of C. Then cd = k′ ⊕ h′ where h′ �= h is
unknown to A.

In either case, the adversary learns either h or cd and no information about k.
Thus the known value is the XOR of two unknown strings: changing one of these
strings does not affect the chances of A winning, thus Pr[GA

2] = Pr[GA
3].

Next, we have

Pr[GA
3] = Pr[GA

4] +
(
Pr[GA

3] − Pr[GA
4]

)
. (15)

Construct adversary D2, also attacking the hiding property of CS, such that

Pr[GA
3] − Pr[GA

4] = AdvHide
CS (D2). (16)

Revisiting and Extending the AONT-RS Scheme 53

Procedure Deal(x)

�
$←− [1, n]; k

$←− {0, 1}λ; C
$←− Enck(x)

H(c) = h; h ⊕ k = cd; V ← ShareIDA(C||cd)
For i ← 1 to n do

If i = �, then (H[�],R[�])
$←− Commit(V [i])

Else (H[i],R[i])
$←− Ct(V [i])

Si
$←− ShareECC(H[i])

For i ← 1 to n do
X[i] ← R[i]V [i]Si[i] . . .Sn[i]

Procedure Corrupt(i)
Return X[i]

Procedure Finalise(x′, j)
For i ← 1 to n do

R′[i]V ′[i]S′
1[i] . . .S

′
n[i] ← X ′[i]

Return (V ′[�],R′[�])

Fig. 7. Procedures used by adversary B to respond to A for Theorem 3.

The construction of D2 is similar to D1, but D2 generates k, k′ $←− {0, 1}λ,
encrypts xb under k as before and now calculates cd = h ⊕ k′.

Game G5 and G4 differ only during Corrupt. Clearly Pr[GA
4] = Pr[GA

5].
Let B be an ind-1 adversary attacking E , as in the proof of Theorem 1. The

advantage of B is as in (9).
Now, let D be the hiding-adversary that flips a fair coin and, if it lands head,

runs D1, otherwise D2. Clearly,

AdvHide
CS (D) =

1
2

(
AdvHide

CS (D1) + AdvHide
CS (D2)

)
. (17)

Since Ct is assumed to be ε(·)−hiding and D makes at most n queries, we
have that AdvHide

CS (D) ≤ ε(n). Combining this and (13), (16), (17) gives us
(
Pr[GA

1] − Pr[GA
2]

)
+

(
Pr[GA

3] − Pr[GA
4]

) ≤ 2ε(n).

By using Pr[GA
2] = Pr[GA

3] and Pr[GA
4] = Pr[GA

5] and substituting in the
advantages of adversaries A and B, we can simplify and rearrange to give

AdvPriv
ΠR

(A) ≤ AdvInd
E (B) · 4ε(n),

thus completing the proof. �

4.2 Proof of Robustness

The RAONT-RS scheme can be proven to be robust by adapting the proof by
Bellare and Rogaway [16].

Theorem 3 (Robustness of RAONT-RS). Let A be a recoverability adver-
sary against the RAONT-RS scheme ΠR. Then there is an adversary B attacking
the binding property of the commitment scheme CS such that

AdvRec
ΠR

(A) ≤ n · AdvBind
CS (B), (18)

where the running time of B is that of A plus overhead consisting of an execution
of the ShareRAONT and RecoverRAONT algorithms of ΠR.

54 L. Chen et al.

Proof. Let A be a recoverability adversary against ΠR. During Deal, A submits
x to B. Let k,C, h, cd,V ,H,S1, . . . ,Sn,X

$←− denote the quantities chosen by
ShareRAONT (x). Let A corrupt at most t−1 shares. Let (XT) denote the output
of A. Let k′, C ′, h′, c′

d,V
′,H ′,S′

1, . . . ,S
′
n,X ′ denote the quantities recovered

from RecoverRAONT with input X ′
T ∪ X ′

T
. Consider the following events:

E1: ∃ � ∈ [n] such that H[�] �= H ′[�]
E2: ∃ � ∈ T such that V [i] ∈ {♦,V [i]}
E3: cd �= c′

d
E4: C �= C ′

If C ′ = C and c′
d = cd, then the recovered secret x′ equals x. This is because

h′ = H(C ′) = H(C) = h and so c′
d ⊕ h′ = cd ⊕ h = k. Therefore

AdvRec
ΠR

(A) ≤ Pr[E3 ∪ E4] (19)
≤ Pr[E1 ∪ E2 ∪ E3 ∪ E4] (20)

= Pr[E1] + Pr[E1 ∩ E2] + Pr[E2 ∩ E3] + Pr[E2 ∩ E4]. (21)

We bound each addend in turn. Let E1,� be the event that H ′[�] = H[�]. Let
T be the set of indexes of the shares corrupted by A. If i /∈ T , then the submission
of X ′[i] and the other uncorrupted shares returns X[i]. Hence S′

�[i] = S�[i]. Note
that S� is an output of ShareECC(H[�]). Lemma 10 in [16] discusses perfect
recoverability and, when applied to ECCs, RecoverECC(S�) = H[�], meaning
that H ′[�] = H[�]. So Pr[E1,�] = 0. By the union bound

Pr[E1] ≤
n∑

t=1

Pr[E1,�] = 0. (22)

Now we construct adversary B such that

Pr[E1 ∪ E2] ≤ n · AdvBind
CS (B). (23)

Adversary B runs A, responding to its Deal and Corrupt calls via the procedures
in Fig. 7, where Ct is the committal algorithm of CS run by B and Commit is
a procedure of the Bind game that B plays with its challenger. When A halts
with output (X), B runs the finalise procedure.

Next, we claim both Pr[E2 ∩E3] = 0 and Pr[E2 ∩E4] = 0. As, if V ′[i] = V [i]
for all i, then C = C ′ and c′

d = cd. So now

AdvRec
ΠR

(A) = Pr[E1] + Pr[E1 ∩ E2] + Pr[E2 ∩ E3] + Pr[E2 ∩ E4] (24)

≤ n · AdvBind
CS (B), (25)

thus completing the proof. �

5 Comparing RAONT-RS and HK2

We briefly introduce Krawczyk’s SSMS scheme [9] and a robust extension, called
HK2 [16]. We then compare AONT-RS with SSMS. This comparison can also
be applied to the AONT-RS and HK2.

Revisiting and Extending the AONT-RS Scheme 55

5.1 The SSMS and HK2 Scheme

Krawczyk’s SSMS is a CSS [9]. It assumes an ind-1 secure encryption system, an
IDA and a (t, n)−PSS. Intuitively, SSMS takes as input a message M , generates

a key k and calculates C
$←− Enck(M). The ciphertext C is then shared amongst

the n participants via an IDA whilst k is shared via a (t, n)−PSS. A player’s
share is one element of C and one of k. Krawczyk then extended his scheme to
be robust in the RO model by using hash functions [9], which was proven to be
secure in the RO model in [16].

HK2 is a robust extension of SSMS [16] using commitment schemes. HK2
relies on the same assumptions as SSMS, but additionally assumes a (t, n)−ECC
and an ε()̇−hiding commitment scheme CS. Our extension of AONT-RS to
RAONT-RS used similar techniques as in the extension of SSMS to HK2; the
commitment scheme is added to SSMS and each player stores their share, along
with a decommittal and multiple fragments of committals. For a more detailed
description, the reader is directed to [16].

We chose to use commitment schemes to extend AONT-RS to be robust (as
was done in HK2) to achieve recoverability under standard assumptions. Instead,
hash functions could be used, as in [9], to achieve recoverability in the RO model.

5.2 Comparison

In [14], Resch and Plank only briefly compare AONT-RS to Krawczyk’s SSMS
[9]. They then conduct a performance comparison of the AONT-RS with Rabin’s
IDA [12] and Shamir’s PSS [17]. However, Rabin’s IDA has no security require-
ments, and would not be used to distribute data if there were any privacy con-
cerns, and Shamir’s PSS achieves perfect security, which would not be used to
share large data due to the bounds on the share sizes. Krawczyk’s SSMS achieves
computational security, which is a similar to AONT-RS. Thus we compare SSMS
with AONT-RS. Similarly, RAONT-RS can be compared with HK2.

We compare the security, share size and efficiency of AONT-RS with SSMS.
We exclude the contribution to the complexity made by E , as this is equal in both
schemes. The comparison is applicable to RAONT-RS and HK2, if we exclude
the contribution to the share size and efficiency from CS (which is equal in both).

For the comparison, we will assume both AONT-RS and SSMS use the sys-
tematic RS IDA and that SSMS uses an ideal PSS. Such PSSs include Shamir’s
PSS [17], or Chen et al. [6]. Let k ∈ {0, 1}λ.

Assume M is to be distributed and E is length preserving, so |C| = |M |.
Let C ∈ {0, 1}ω, and fix ω such that ω ≥ λ(t − 1). This is assumed to prevent
attacks described in Sect. 3.2 against the AONT-RS, and to ensure all schemes
are distributing a message of equal length, thereby allowing for a fair comparison.
It is noted that if ω < λ(t − 1), the AONT-RS will need to pad the message
to lengthen C, whereas SSMS can distribute C as is. However, as mentioned
previously, CSS schemes are often used when M is large, thus it is reasonable
to assume that ω ≥ λ(t − 1). To illustrate, we highlight an example presented
in [14]: they distribute a 4KB block of data using a 128 bit key amongst 16

56 L. Chen et al.

servers such that any 10 can recover the data. So n = 16, t = 10, λ = 128 and
C ∈ {0, 1}32000 with ω = 32000 >> λ(t − 1) = 1152.

Security. AONT-RS achieves computational privacy, assuming E is ind-1
secure, H is indistinguishable from a RO and the IDA is equivalent to a
(0, t;n)−linear ramp scheme. SSMS also assumes E is ind-1 secure and requires
a (t, n)−PSS and an IDA (with no privacy requirements).

As SSMS is secure under standard assumptions, whereas AONT-RS is only
secure in the RO model, SSMS is considered to be more secure.

Share Size. The share given to each player from the AONT-RS is
⌈

ω+λ
t

⌉
bits.

For SSMS, each share is
⌈

ω
t

⌉
+ λ bits.

The AONT-RS achieves smaller share sizes than SSMS when t ≥ 2 (which
is true in general). The ratio between the share sizes is larger when t is bigger.
The main contribution to the share size is from C, meaning the ratio between
the share sizes will be small if ω is large and large if ω is small (meaning ω is
close to λ(t − 1)).

Efficiency of Share. ShareAONT requires one hash computation and O(λ(n+
1) + nω) bitwise XORs (if multiplication is implemented via a look-up table).

In SSMS distribution of k via either [17] or [6] requires O(tnλ) bitwise XORs.
The distribution of C via the IDA requires O(nω) XORs. Thus distribution of
SSMS requires O(λ(tn) + nω) bitwise XORs.

AONT-RS requires fewer XORs than SSMS. For larger values of t, SSMS
requires more XORs, whereas the complexity of AONT-RS is independent of t.

Efficiency of Recover. Assume t players pool their shares. RecoverAONT

requires one hash function computation and O(t(ω + λ) + λ) bitwise XORs.
SSMS requires t(t − 1)

⌈
ω
t

⌉
bitwise XORs to recover C and either O(tnλ) (if

[6] is the chosen PSS), or O(t log2 tλ) (for Shamir’s PSS [17]) XORs to recover
k. The total efficiency is the sum of the recovery of C and k.

Generally, the AONT-RS requires fewer bitwise XORs and is dependent only
on t. Recovery of M using SSMS is dependent on the efficiency of the PSS used.

6 Conclusion

We generalised the AONT-RS and showed information is leaked when ciphertexts
are shorter than λ(t − 1). We proved the AONT-RS scheme has computational
privacy in the RO model. We extended the scheme to be robust and proved
it achieves computational privacy in the RO model and recoverability under
standard assumptions. Finally, we compared AONT-RS with SSMS, which is a
comparison that can be used to compare RAONT-RS with HK2. We showed the
(R)AONT-RS schemes achieve weaker security than SSMS/HK2 because their
proofs are in the RO model, whereas SSMS/HK2 are provable under standard
assumptions. However, by compromising security, (R)AONT-RS achieves smaller
shares and more efficient dispersal and recovery.

Revisiting and Extending the AONT-RS Scheme 57

References

1. Beimel, A.: Secret-Sharing schemes: A survey. In: Chee, Y.M., Guo, Z., Ling, S.,
Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp.
11–46. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20901-7 2

2. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceeding of the National
Computer Conference 1979, vol. 48, pp. 313–317 (1979)

3. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer,
Heidelberg (1999). doi:10.1007/3-540-48405-1 32

4. Chandrasekara, A., Bala, R., Landers, G.: Critical capabilities for object storage -
Gartner. Technical report (March 2016). https://www.gartner.com/doc/3269531/
critical-capabilities-object-storage (Accessed March 2017)

5. Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-
party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS,
vol. 4117, pp. 521–536. Springer, Heidelberg (2006). doi:10.1007/11818175 31

6. Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal (t, n)−threshold
schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
467–483. Springer, Cham (2016). doi:10.1007/978-3-319-48965-0 28

7. IBM. IBM Cloud Object Storage (2016). https://www.cleversafe.com/platform/
why-ibm-cloud-object-storage, Accessed 04 Sept 2016

8. Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE
Trans. Inf. Theory 29(1), 35–41 (1983)

9. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). doi:10.1007/
3-540-48329-2 12

10. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. Else-
vier, New York (1977)

11. McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Com-
mun. ACM 24(9), 583–584 (1981)

12. Rabin, M.O.: Efficient dispersal of information for security, load balancing, and
fault tolerance. J. ACM (JACM) 36(2), 335–348 (1989)

13. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. 8(2), 300–304 (1960)

14. Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dis-
persed storage systems. In: FAST-2011: 9th Usenix Conference on File and Storage
Technologies, pp. 191–202, February 2011

15. Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997). doi:10.
1007/BFb0052348

16. Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified
account of classical secret-sharing goals. In: Proceedings of the 14th ACM con-
ference on Computer and communications security, pp. 172–184. ACM (2007)

17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
18. Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(3),

133–138 (1989)

http://dx.doi.org/10.1007/978-3-642-20901-7_2
http://dx.doi.org/10.1007/3-540-48405-1_32
https://www.gartner.com/doc/3269531/critical-capabilities-object-storage
https://www.gartner.com/doc/3269531/critical-capabilities-object-storage
http://dx.doi.org/10.1007/11818175_31
http://dx.doi.org/10.1007/978-3-319-48965-0_28
https://www.cleversafe.com/platform/why-ibm-cloud-object-storage
https://www.cleversafe.com/platform/why-ibm-cloud-object-storage
http://dx.doi.org/10.1007/3-540-48329-2_12
http://dx.doi.org/10.1007/3-540-48329-2_12
http://dx.doi.org/10.1007/BFb0052348
http://dx.doi.org/10.1007/BFb0052348

Side-Channel Analysis

Climbing Down the Hierarchy:
Hierarchical Classification

for Machine Learning Side-Channel Attacks

Stjepan Picek1(B), Annelie Heuser2, Alan Jovic3, and Axel Legay4

1 KU Leuven ESAT/COSIC and imec, Kasteelpark Arenberg 10,
3001 Leuven-Heverlee, Belgium

stjepan@computer.org
2 IRISA/CNRS, Rennes, France

3 University of Zagreb, Faculty of Electrical Engineering and Computing,
Zagreb, Croatia

4 IRISA/Inria, Rennes, France

Abstract. Machine learning techniques represent a powerful paradigm
in side-channel analysis, but they come with a price. Selecting the appro-
priate algorithm as well as the parameters can sometimes be a difficult
task. Nevertheless, the results obtained usually justify such an effort.
However, a large part of those results use simplification of the data rela-
tion and in fact do not consider allthe available information. In this
paper, we analyze the hierarchical relation between the data and pro-
pose a novel hierarchical classification approach for side-channel analy-
sis. With this technique, we are able to introduce two new attacks for
machine learning side-channel analysis: Hierarchical attack and Struc-
tured attack. Our results show that both attacks can outperform machine
learning techniques using the traditional approach as well as the tem-
plate attack regarding accuracy. To support our claims, we give exten-
sive experimental results and discuss the necessary conditions to conduct
such attacks.

Keywords: Side-channel attacks · Profiled scenario · Machine learning
techniques · Hierarchical classification · Hierarchical attack · Structured
attack

1 Introduction

Side-channel attacks (SCAs) are capable of revealing secret keys on crypto-
graphic devices from unintentionally emitted information during computation,
like power consumption or electromagnetic emanation. To evaluate the worst
case security threat, so-called profiled attacks have to be conducted, which con-
sist of an additional profiling phase. In this phase, one has the full control over
the device to build additional advanced models, which are then exploited to
extract key-dependent information in the attacking phase.

c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 61–78, 2017.
DOI: 10.1007/978-3-319-57339-7 4

62 S. Picek et al.

Profiled attacks can be divided into two main approaches. First, there exist
the traditional methods like the template attack [1] and stochastic approach [2],
relying on the maximum-likelihood estimation. Recently, machine learning (ML)
techniques, adapted as side-channel attacks, have been proposed, which can be
beneficial in many scenarios. In particular, ML techniques have originally been
introduced to classify between two classes (i.e., a bit is set (= 1) or not (=
0)) [3,4]. The first extension to 9 Hamming weight (HW) classes for Support
Vector Machines (SVMs) has been given in [5]. Following this approach, recent
works studied ML techniques mostly using 9 (e.g., [6,7]) or up to 16 classes [8].

However, in most real-world applications, the measured leakage does not fol-
low the Hamming weight (HW) or the Hamming distance (HD) model. For
instance, the authors in [9] showed that the leakage of the DPAcontest v2
traces [10] using a Xilinx FPGA VirtexTM-5 [11] is highly “non-linear”, i.e.,
the HD does not apply. Instead, one should consider the output of the S-Box
itself as a sensitive variable, resulting in 256 classes (considering AES with 8-bit
words). Similarly, even when using an Atmel ATMega-163 smart-card as in the
DPAcontest v4 [12], the leakage model does not exactly follow the Hamming
weight. Thus, especially in a profiled scenario, to be able to capture more knowl-
edge on the leakage model, it is more advisable to use the S-Box output with
256 classes as a sensitive variable directly. Even more, considering 256 classes
yields direct information on the key as each class is related to only one key guess.
This is naturally not the case when considering 9 Hamming weight classes. For
instance, in the worst case when classifying into the Hamming weight class 4 we
have 70 corresponding key guesses. Therefore, in a low noise scenario an attacker
is clearly able to reveal the secret key within only one trace using 256 classes,
whereas this is not possible (on average1) when using HW classes.

1.1 Idea and Contributions

The more classes we have, the more instances (measurements) are necessary to
obtain high accuracies, i.e., high probability to classify each element to its class
correctly. Generally speaking one has either n+1 HW classes or 2n classes relat-
ing directly to the key guess where n is the number of bits of intermediate states

Fig. 1. Flat (standard) approach

1 Note that, an attacker could reveal the secret key with only one trace if it corresponds
to HW 0 or 8, which occurs with a probability of 2

256
.

Climbing Down the Hierarchy: Hierarchical Classification 63

and a key chunk2. Up to now in side-channel analysis, the class variables have
been seen in a flat hierarchy, where each label directly results in the classified
variables (see Fig. 1). Naturally, estimating 2n instead of n+1 classes may bring
statistical difficulties. When considering random classification, with 9 classes
there is 1/9 chance of a successful guess, while in the 256 classes scenario there
is 1/256 chance for a random hit. However, only considering the Hamming weight
classes instead of the value itself brings two drawbacks as discussed before: first,
it lowers the information about the secret key and second, it yields an imprecise
estimation of the leakage model. On the other hand, with the increase in the
number of classes, the computational complexity also rises. In general, for most
ML techniques (with the exception of decision tree based techniques), the com-
plexity for multi-class classification rises with O

(|Y|), where |Y| is the number
of classes. This is particularly critical when performing a proper tuning within
the profiling phase, which may become very complex in terms of computation
resources.

In this paper, in order to circumvent the problems arising when classifying
n + 1 or 2n directly, we propose to adapt a divide-and-conquer strategy, which
enables us to use as many classes as required from a side-channel leakage point
of view with a much lower complexity of resources and with a higher accuracy
compared to the standard approach. More precisely, our idea is to view the class
variables in a tree structure with additional intermediate nodes which are given
due to the natural clustering of the measured leakage.

A general illustration is given in Fig. 2, where we first divide into M nodes
and then directly into the leafs. Note that compared to the flat approach in
Fig. 1, the number of leaves does not change, but its depth does. Certainly, in
some scenarios due to the given structure of the leakage, it may be suitable to
include several layers of nodes resulting in a higher depth.

Fig. 2. Hierarchical approach

2 For simplicity we assume that one key chunk is of the same size as one intermediate
state chunk, however, this study can easily be extended for other scenarios as given
e.g. in DES.

64 S. Picek et al.

Fig. 3. Hierarchical approach considering HW classes as intermediate nodes

In the context of side-channel analysis, there is a simple hierarchy that one
could follow, which we detail next. However, we stress that the hierarchical app-
roach is not restricted to this specific scenario, but is rather a general concept. In
particular, one could adapt the approach of clustering side-channel measurements
by their similarity as introduced in [13] to build an appropriate tree structure. Note
that here we use a priori knowledge to build more accurate classifiers, i.e., use the
fact that we know (or can assume) the semantic hierarchy of the data.

First, we divide our measurements regarding the HW of the sensitive variable
resulting in 9 classes and then each of those classes is further divided into the
sensitive variable itself (leaf classes). Note that, since the HW of a 8-bit word
forms a binomial distribution, two classes (HW 0 and HW 8) cannot be divided
any further (i.e., these are already leaf classes), while the rest of the classes (HW
1 to HW 7) have various number of subclasses. In this case, using hierarchical
approach, the largest number of classes we need to handle at once is for the class
with the Hamming weight equal to 4, where there are 70 possible values. We give
a depiction of hierarchical model with the Hamming weight/sensitive variable
model in Fig. 3.

1.2 Road Map

This paper is organized as follows. In Sect. 2, we present basic information about
machine learning and the algorithms we use. Section 3 presents our underlying
setup and experimental results for tuning and testing phase for two powerful ML
techniques. Next, in Sect. 4, we give results for a realistic testing scenario as well
as a comparison with the template attack. In Sect. 5, we give a short discussion
on the performance of ML as well as some possible future research directions.
Finally, in Sect. 6, we conclude the paper.

2 Machine Learning Techniques

In this section, we briefly present machine learning techniques used in the paper.
In our experimental setup, we use four algorithms, where two are relatively
simple techniques, i.e., the Naive Bayes and the C4.5 decision tree, while the
other two, Support Vector Machines and Rotation Forest, are more complex.

Climbing Down the Hierarchy: Hierarchical Classification 65

Remark 1. Note that we do not claim that these techniques are optimal, however,
preliminary tests showed that both complex techniques had the highest accuracy
out of a large pool of tested ML techniques. The reason why we additionally
included two simple techniques will be discussed in Sect. 4.

2.1 Naive Bayes

The Naive Bayes classifier is a method based on the Bayesian rule which works
under a simplifying assumption: it assumes that the predictor features (points
in the measurement traces) are mutually independent given the target class.
Existence of highly-correlated features in a dataset can thus influence the learn-
ing process and reduce the number of successful predictions. Additionally, Naive
Bayes assumes normal distribution for predictor features. A Naive Bayes classi-
fier outputs posterior probabilities as a result of the classification procedure [14].
Note that the space complexity for Naive Bayes algorithm for both training and
testing phase is O

(|Y|Dv
)
, where |Y| is the number of classes, D is the number

of features, and v is the average number of values for a features. On the other
hand, time complexity for the training phase equals O

(
ND

)
and for the testing

phase is equal to O
(|Y|D)

. Here, N is the number of training examples.

2.2 Decision Tree - C4.5

C4.5 is the landmark decision tree algorithm developed by Quinlan [15]. It
is a divide-and-conquer algorithm that splits features at tree nodes using the
information-based gain ratio criterion. The node splits on further branches
if more information is gained (as measured by gain ratio) by the split than
by keeping all the instances at the node. The runtime of the algorithm is
O

(
D

) × N × log N where D is the number of features and N is the number
of instances [16]. The trees are first grown to full length and pruned afterwards
in order to avoid data overfitting.

2.3 Rotation Forest

Rotation Forest (RF) is a more recent decision tree ensemble method proposed
by Rodriguez et al. [17]. The ensemble is capable of both classification and
regression, depending on the base classifier where in most applications, C4.5
algorithm is used as the base learner [15]. The algorithm focuses on presenting
transformed data to the classifier by using a projection filter. The most common
projection filter and the one that has been shown to be the main factor for the
success of the ensemble is the principal component analysis (PCA) [18]. The
running time is the same as for C4.5 multiplied with the number of iterations.

2.4 Support Vector Machines

Support Vector Machine (SVM) is a kernel based machine learning family of
methods that are used to accurately classify both linearly separable and linearly

66 S. Picek et al.

inseparable data [19]. The basic idea when the data is not linearly separable
is to transform them to a higher dimensional space by using a transformation
kernel function. In this new space, the samples can usually be classified with a
higher accuracy. Many types of kernel functions have been developed, with the
most used ones being polynomial and radial-based. The computational complex-
ity of SVM with radial kernel is between linear and quadratic in the number of
instances. In this work, we investigate only the radial-based SVM. The most
significant parameters are the cost of the margin C and the radial kernel para-
meter γ. As a learning method for SVM, sequential minimal optimization (SMO)
type algorithm is used [20]. Because SMO is a binary classification algorithm,
for multi-class classification purposes it is adapted to perform N × (N − 1)/2
binary classifications, where N denotes the number of classes.

3 The Hierarchical Approach Under Test

3.1 Experimental Data

In order to ensure the reproducibility of our results, we use two publicly available
data sets for our study.

DPAcontest v2 [10]. This version of the contest provides 1 000 000 measurements
(in the template base) of an AES hardware implementation. Previous works
showed that the most suitable leakage model (when attacking the last round
of an unprotected hardware implementation) is the register writing in the last
round, i.e.,

Y (k∗) = Sbox−1[Cb1 ⊕ k∗]
︸ ︷︷ ︸
previous register value

⊕ Cb2︸︷︷︸
ciphertext byte

, (1)

where k∗ denotes the secret key, Sbox−1[·] denotes the inverse Sbox operation,
Cb1 and Cb2 are two ciphertext bytes, and the relation between b1 and b2 is
given through the inverse ShiftRows operation of AES. In particular, we choose
b1 = 12 resulting in b2 = 8 as it is one of the easiest bytes to attack3. For
our study, we selected 50 points of interest with the highest correlation between
Y (k∗) and data set. Furthermore, we select 100 000 measurements randomly to
conduct the subsequent experiments. Figure 4a shows the absolute correlation
between Y (k∗) and the measurements for our selected points. One can see that
the measurements are relatively noisy and the resulting SNR (signal-to-noise
ratio) lies between 0.0069 and 0.0096. To calculate the SNR, we use the model-
based approach where we assume a leakage model and X is the measurement we
calculate:

var(signal)
var(noise)

=
var(Y (k∗))

var(X − Y (k∗))
. (2)

3 See e.g., in the hall of fame on [10].

Climbing Down the Hierarchy: Hierarchical Classification 67

(a) DPAcontest v2 (b) DPAcontest v4

Fig. 4. Correlation between our model and the measurements

DPAcontest v4 [12]. The 4th version provides 100 000 measurements of a masked
AES software implementation. However, as the mask is known, one can easily
turn it into an unprotected scenario. Though, as it is a software implementation,
the most leaking operation is not the register writing, but the processing of the
S-box operation and we attack the first round. Accordingly, the leakage model
changes to

Y (k∗) = Sbox[Pb1 ⊕ k∗] ⊕ M︸︷︷︸
known mask

, (3)

where Pb1 is a plaintext byte and we choose b1 = 1. Figure 4b shows the absolute
correlation between Y (k∗) and the measurements for our selected points. Com-
pared to the measurements from version 2, there is much higher correlation and
naturally also SNR, which is between 0.1188 and 5.8577.

3.2 Training Phase and Parameter Tuning

Tuning represents an important phase in order to properly use ML techniques,
but unfortunately has often been ignored or underestimated in previous works on
machine learning side-channel attacks. For parameter tuning, we first randomly
selected the instances in a ratio of 2:1, where the total number of instances
equals 20 000 instances. Those instances are randomly selected out of the datasets
of 100 000 and 1 000 000 for DPAcontest v4 and DPAcontest v2, respectively.
Then, we take the bigger set as the training set (the set with the 2/3 of the
data) and the smaller set for testing (1/3 of the data). On the training set, we
conduct 10-fold cross-validation with all parameters considered. In the 10-fold
cross-validation, the original training sample is first randomly partitioned into
10 equal sized subsets. Then, a single subsample is selected to validate the data,
while the remaining 9 subsets are used for training. The cross-validation process
is repeated 10 times, where each of 10 subsamples is used once for validation.
The obtained results are then averaged to produce an estimate. All the results in
this section are presented as the percentage precision (accuracy) of the classifier.
Here, accuracy is defined as the ratio between the sum of true positive and true
negative records and sum of all records.

In our experiments we use Weka as the framework for conducting the ML
analysis [21]. We do not give details about the tuning phase but we note that

68 S. Picek et al.

we made a grid search where for the Rotation Forest algorithm we investigated
Iteration parameter in the range [10, 60] with a step of 10. For SVM, we experi-
mented with γ and C parameters, where we tested γ values in the range [10, 70]
with a step of 10 and C values in the range [0.1, 0.5] with a step of 0.1. Based on
our experiments, we select as the best performing combinations Rotation Forest
with 60 iterations and SVM with C = 70, γ = 0.5 for DPAcontest v4 scenario.
For DPAcontest v2, we select Rotation Forest with 60 iterations and SVM with
C = 50, γ = 0.4.

Considering our hierarchical approach and dividing first the measurements
into 9 HW classes, we conduct a tuning phase with Rotation Forest and SVM
for HW classes 1 to 7 (recall that it is not possible to divide HW classes 0 and
8 further into subclasses). We investigate the same parameter ranges as before,
but again omit tuning details, since they are straightforward to obtain (the best
obtained algorithms and parameters are given in the next section).

3.3 Testing Results

In this section we perform the testing on an independent set of traces to verify
the performances for classifying into 9 and 256 classes (see Table 1) and the
performance within each meta-class for the hierarchical approach (see Table 2).
The results are given in Accuracy/F-measure/AUC form. Here, the area under
the ROC curve is used to measure the accuracy and ROC curve is the ratio
between true positive rate and false positive rate. AUC close to 1 represents
a good test, while value close to 0.5 represents a random guessing. F-measure
is the harmonic mean of the precision and recall, where precision is the ratio
between true positive (TP - the number of examples predicted positive that are
actually positive) and predicted positive, while recall is the ratio between true
positives and actual positives [22]. All the values are given in percentages and
in parenthesis, we give the parameter combinations reaching those values.

Note that this represents an ideal test scenario, where each meta-class only
contains measurements from the correct HW class. Therefore, all the instances in
a meta-class really belong to that meta-class. The next section discusses a more
realistic attacking scenario where errors are propagated through the tree. For
the testing results for the hierarchical approach (i.e., looking at each subclass),
we only give the best obtained values. In addition to the best values, we give the
parameter combinations used to obtain those values.

4 Realistic Testing

The goal in this section is to attack the implementation with our new approaches
and assess their performance when compared to attacking immediately 256
classes. Here, we use 10 000 and 25 000 random measurements for all tests in
order to have a fair comparison. The traces are divided uniformly at random in
2:1 ratio where we use 2/3 of measurements for profiling and 1/3 for the testing.

Climbing Down the Hierarchy: Hierarchical Classification 69

Table 1. Testing results for 9 and 256 classes (Accuracy/F-measure/AUC)

DPAcontest v4 DPAcontest v2
Algorithm Rotation Forest SVM Rotation Forest SVM

9 classes

Value 94.1/94.1/99.6 95.5/95.5/98.9 25/19.8/50.2 23.67/19/50.1
(C = 70, γ = 0.5) (Iter. = 60)

256 classes

Value 26.7/24.3/50.9 27.8/28/96.9 0.36/0.4/50.4 0.45/0.4/51
(C = 70, γ = 0.5) (C = 50, γ = 0.4)

Table 2. Testing results for the hierarchical approach (Accuracy/F-measure/AUC)

Set DPAcontest v4 DPAcontest v2

HW1 69.6/68.9/91.1 (SVM, C = 4, γ = 0.6) 15.2/15.2/5.3 (RF, Iter. = 50)

HW2 67.8/57.5/96.3 (SVM, C = 10, γ = 0.7) 4.0/2.2/51.7 (SVM, C = 1, γ = 0.1)

HW3 49.5/49.4/97.3 (SVM, C = 10, γ = 0.9) 2.0/4/52.2 (SVM, C = 1, γ = 0.1)

HW4 46.4/46.4/97.5 (SVM, C = 20, γ = 0.8) 1.7/7/51.8 (SVM, C = 1, γ = 0.4)

HW5 49.9/50.1/97.3 (SVM, C = 10, γ = 1) 2.0/0.9/50.4 (SVM, C = 1, γ = 0.4)

HW6 57.7/58.0/96.3 (SVM, C = 10, γ = 0.7) 3.8/1.1/50.1 (SVM, C = 1, γ = 0.1)

HW7 74.5/74.6/92.2 (SVM, C = 4, γ = 0.7) 13.2/12.1/49 (SVM, C = 1, γ = 0.2)

The best results in all tables are highlighted with gray background color of a
cell.

Therefore, we investigate a number of cases here that all fall within three
categories:

1. Attacking directly all 256 classes.
2. Attacking 9 classes (i.e., the Hamming weight classes).
3. New attacks - Hierarchical attack and Structured attack.

4.1 Hierarchical Attack

In the Hierarchical attack, one first investigates how to classify measurements
into a (relatively) small number of classes, i.e., into subclasses (which can be
repeated several times) and then, in the second step, the obtained classification
results are further classified into leaves. However, since not all the measurements
are correctly classified in the first step, they need to be discarded (since they
belong to subclasses) and the total number of available measurements will be
consequently lower than the number of instances we begin with. Note that the
number of leafs is the same as if one considers the flat approach, but the classi-
fication method in each independent step considers a smaller number of classes.
With this approach, we are able not only to improve the accuracy, but also
to lower the computational and space complexity for the classification process.
Finally, since we are running independent experiments on each of the subclasses,

70 S. Picek et al.

it is also easy to parallelize the attack, which may not be an option when consid-
ering the flat approach. We give more algorithmic description of the hierarchical
attack in the following listing:

1. Find a hierarchical relation to explore.
2. Run a classifier for each level of subclasses.
3. Consider all instances classified above some threshold value as correctly clas-

sified (e.g., all instances that have a probability of more than 90% to be
correctly classified into certain subclass), otherwise discard.

4. For all instances kept in a subclass, run new classifier in order to find in which
subclass they belong (repeat until leaf class is reached).

In our case study we exploit the HW of an intermediate value (see Eqs. (1)
and (3)) and thus first divide into 9 HW classes. Then, we use the measurement
predictions from that phase to conduct an attack on the intermediate value itself
(leaf class).

4.2 Structured Attack

In addition to the Hierarchical attack, we introduce an attack combination of the
standard flat approach and our hierarchical approach, which we denote as the
Structured attack. Accordingly, we merge the information from both approaches
and even further improve the accuracy. This is due to a fact that, when attacking
with the flat approach, we expect that the final accuracy will be lower than for
the hierarchical attack, but there will be instances where the flat classification
classifies correctly, while hierarchical classification makes a wrong prediction.
This combination is of particular interest when the computing power and the
runtime complexity is of no importance, but only the accuracy of the attack. We
give a more precise listing for the Structured attack in the following:

1. Run classifier with the flat approach.
2. Run the Hierarchical attack.
3. Assign weight factors for each of the two aforesaid steps.
4. Combine results from flat and hierarchical approach. Similarly as in the Hier-

archical approach, set a threshold value that signifies which classification
guesses to take as true.

4.3 Attack Results and Comparison with Template Attack

In order to facilitate a better understanding of the obtained results, we also use
two simpler machine learning techniques - Naive Bayes and Decision Tree (C4.5).
The Naive Bayes algorithm does not have parameters one could tune and the
tuning phase for Decision Tree highlights that the default values of parameters
are the best. Therefore, we use aminimum amount of two instances per leaf
and a confidence factor for pruning equal to C = 0.25. It is important to state
that these two methods are extremely fast (especially the Naive Bayes) and we

Climbing Down the Hierarchy: Hierarchical Classification 71

consider it to be beneficially to run them always as a first indicator of what can
be expected from an ML approach. Recall, the parameter combinations for RF
and SVM algorithms used in this section are obtained in Sects. 3.2 and 3.3.

In Table 3, we present the results when working with 10 000 instances from
the DPAcontest v2 and the DPAcontest v4 using 9 classes. Next, in Table 4, we
present results for 10 000 instances using 256 classes. Note that the parameters
for ML techniques are as presented in Table 1. As in the previous scenario, we can
observe that SVM has the highest accuracy. Interestingly, Naive Bayes is more
efficient than Decision Tree when working with 256 classes, but for 9 classes
the situation is opposite. This is due to a jump of complexity appearing in the
Decision Tree when the number of classes is increased. However, here we observe
that Naive Bayes has the best accuracy when considering all 256 classes, which
is a somewhat surprising result. We believe that a more extensive tuning phase
for Rotation Forest and SVM would change this. However, we do not consider
this completely justified when considering the huge difference in the runtime
complexity between the Naive Bayes and these methods.

To rate the goodness of our achieved results, we additionally applied the tem-
plate attack (TA) [1] to the same set of traces as used in the realistic attacking
scenario and tested it for the standard approach of classifying 9 (see Tables 3
and 6) and 256 classes (see Tables 4 and 7) directly. TA is the most common
and well-studied profiled side-channel attack and it is considered as the most
powerful one from an information theoretic perspective given an infinite amount
of measurements. However, compared to ML techniques, recent works showed its
inferiority when, for example, the profiling set is not large enough or the attack
is provided with too many useless (without information) points of interest (fea-
tures) [23]. Actually, the attack principle is very close to the one of the Naive
Bayes, where the main difference is the consideration of the features along with
the measurements to be dependent. In particular, the Naive Bayes assumes inde-
pendence and thus considers a univariate normal distribution. On the contrary,
for TA the noise is considered dependent and thus a multivariate distribution is
taken. For more details, we refer interested readers to [1]. To be more efficient
and numerically stable, we applied the adaptation of using only one covariance
matrix instead of 9 or 256 as described in [24]. Note that, for all the algorithms,
we use the same datasets with the same feature selection process in order to
make it as fair as possible (and to avoid seeing differences in results stemming
from other than hierarchy causes, e.g. better feature selection).

The attack results of our new Hierarchical and Structured attack using 10 000
instances are given in Table 5. As both new attacks are considering the same leaf
classes as in Table 4, we can directly compare their results. We note that in this
set of experiments, we use the threshold value equal to 0.9, which represents that
only the measurements with a high output probability of belonging to a certain
class are taken as correctly classified. We can see that the Hierarchical SVM
outperforms regular SVM, but the Structured SVM is by far the most efficient
method for both the DPAcontest v4 and DPAcontest v2 scenario. We note that
the training phases for the Hierarchical and Structured attacks consist of training

72 S. Picek et al.

Table 3. Attack scenario with 9 classes, 10 000 instances

Algorithm # classes Parameters Training Testing

DPAcontest v4

Naive Bayes 9 - 66.8 65.9/66.0/91.2

Decision Tree 9 c = 0.25, M = 2 70.1 71.8/71.8/85.2

SVM 9 C = 70, γ = 0.5 90.9 91.39/91.4/98

17.67--9AT

DPAcontest v2

Naive Bayes 9 - 11.78 11/10.2/50.1

Decision Tree 9 c = 0.25, M = 2 19.36 20.58/20.4/50.7

Rotation Forest 9 Iter = 60 24.69 25.12/19.6/51.2

13.8--9AT

Table 4. Attack scenario with 256 classes, 10 000 instances

Algorithm # classes Parameters Training Testing

DPAcontest v4

Naive Bayes 256 - 18.5 17.0/16.3/93

Decision Tree 256 c = 0.25, M = 2 13.4 13.2/13.2/58.5

SVM 256 C = 70, γ = 0.5 30.4 27.8/28/96.9

91.02--652AT

DPAcontest v2

Naive Bayes 256 - 0.42 0.58/0.1/51.3

Decision Tree 256 c = 0.25, M = 2 0.28 0.36/0.3/49.9

SVM 256 C = 50, γ = 0.4 0.43 0.45/0.4/51

93.0--652AT

Table 5. Hierarchical and Structured attack, 10 000 instances

Algorithm # classes Parameters Training Testing

DPAcontest v4

Hierarchical attack 9/256 Table 2 38.23 31.36∗

Structured attack 9/256 Tables 1 and 2 - 33.7

DPAcontest v2

Hierarchical ML 9/256 Table 2 2.95 1.32∗∗

Structured ML 9/256 Tables 1 and 2 - 0.91

∗ From 3 016 correctly classified instances for 9 classes.
∗∗ From 829 correctly classified instances for 9 classes.

phases of the whole hierarchy (i.e., classes HW1 up to HW7) and therefore we
give here the median value of the training accuracies. Note that we had only
6 700 instances to train for the Hierarchical attack, which gives on average 26
traces per class. When conducting the Hierarchical attack, we cannot use the

Climbing Down the Hierarchy: Hierarchical Classification 73

Table 6. Attack scenario with 9 classes, 25 000 instances

Algorithm # classes Parameters Training Testing (Acc./F-
measure/AUC)

DPAcontest v4

Naive Bayes 9 - 70.01 67.85/67.9/91.7

Decision Tree 9 c = 0.25, M = 2 74.39 74.75/74.7/86.7

SVM 9 C = 70, γ = 0.5 93.83 94.32/94.3/98.6

58.77--9AT

DPAcontest v2

Naive Bayes 9 - 8.21 8.1/10.2/50.3

Decision Tree 9 c = 0.25, M = 2 19.43 20.26/20.2/50.7

Rotation Forest 9 Iter = 60 25.15 24.71/19.5/50.4

74.6--9AT

Table 7. Attack scenario with 256 classes, 25 000 instances

Algorithm # classes Parameters Training
(Acc.)

Testing (Acc./F-
measure/AUC)

DPAcontest v4

Naive Bayes 256 - 20.44 20.27/18.4/94.5

Decision Tree 256 c = 0.25, M = 2 15.38 16.23/16.2/60.5

SVM 256 C = 70, γ = 0.5 35.54 35.02/35.1/98.1

70.52--652AT

DPAcontest v2

Naive Bayes 256 - 0.65 0.5/0.1/50.8

Decision Tree 256 c = 0.25, M = 2 0.42 0.39/0.4/50

4.0--652AT

whole test set (i.e., 3 300 instances), since some of them are wrongly classified
when classifying into 9 classes. We give details about the available number of
instances in notes below the table. For instance, the remark “From 3 016 correctly
classified instances for 9 classes” means that after classifying into 9 classes, we
have 3 016 correctly classified instances. Then, when classifying into subclasses
we have only 3 016 instances in total and we see that in total 33.7% of those
instances are correctly classified into intermediate values. In Tables 6, 7, and 8, we
present results for 25 000 instances. When comparing the results achieved using
10 000 instances, we observe that the results of all attacks for the DPAcontest
v4 are improving, whereas for the higher noise scenario from DPAcontest v2,
the results are not changing noticeably when considering 9 and 256 classes (i.e.,
when working with standard ML techniques). Note that here we have on average
65 instances per class when training for hierarchical attack.

74 S. Picek et al.

Table 8. Hierarchical and Structured attack, 25 000 instances

Algorithm # classes Parameters Training Testing

DPAcontest v4

Hierarchical attack 9/256 Table 2 44.01 40.74∗

Structured attack 9/256 Tables 1 and 2 - 44.43

DPAcontest v2

Hierarchical ML 9/256 Table 2 2.92 1.69∗∗

Structured ML 9/256 Tables 1 and 2 - 0.92

∗ From 7 844 correctly classified instances for 9 classes.
∗∗ From 2 066 correctly classified instances for 9 classes.

5 Discussion

In our examples, when conducting the hierarchical approach, we consider an
extreme case: first dividing into 9 classes in accordance with the HW, and then
dividing into all values for the corresponding HW. For some classes (HW 0 and
8) the hierarchical approach does not make a difference, since it is not possible
to divide them any further. Contrary, for the Hamming weight class 4 contains
70 leaves, which is again a complex scenario. Therefore, one could instead use
sets of two (or any other number) values that are mapped to the same class. For
instance, in the Hamming weight class 4, values 23 and 27 can be grouped into
a subclass. Then, in the next step, one uses a binary classification for those two
values.

Using SVM with a flat classification, 256 classes, and measurements from the
DPAcontest v4 (10 000 instances), we correctly classify 917 out of 3 300 instances
(27.8%). When classifying into 9 classes, SVM reaches an accuracy of 91.4%,
which translates into 3 016 correctly classified instances. The Hierarchical attack
has an accuracy of 31.3%, which amounts to 945 instances that are correctly
classified. Although the difference between the flat and hierarchical approach is
small in this example, we note that we still improve the accuracy without using
any extra information and with only a small overhead from the computational
side. Even more so, when considering the Structured attack, the accuracy equals
33.7%, which is in total equal to 1 112 correctly classified instances. When com-
pared to the flat approach, this amounts to 21% more instances that are correctly
classified, which represents a significant improvement.

When considering the measurements of the DPAcontest v2, the classifica-
tion is much more difficult. Indeed, when classifying into 9 classes, the accuracy
is around 25% which results into 5 out of 9 classes having correctly classified
instances. Therefore, to significantly improve the accuracy of the Hierarchical
attack, we would need to use much more measurements. On the basis of the
results from Table 5, it could seem that the Hierarchical attack has better accu-
racy (1.32%) than the Structured attack (0.91%) but that is actually not true.
Indeed, when considering the Hierarchical attack, the accuracy can be calculated
only from the number of instances that are correctly classified into subclasses

Climbing Down the Hierarchy: Hierarchical Classification 75

(829 instances), which results in around 11 correctly classified instances. On the
other hand, the accuracy of 0.91% for the Structured attack must be taken on
the whole test set (3 300) which equals 30 correctly classified instances. There-
fore, we see that the Structured attack offers a significant improvement over all
other considered methods.

We emphasize that in order to obtain a fair comparison the Hierarchical
and Structured attack must be compared with the 256 classes scenario, and not
with the results from 9 classes. With the increase in the number of instances
to 25 000, the superior performance of the Hierarchical and Structured attacks
becomes even more apparent. For instance, when considering the measurements
of the DPAcontest v4, SVM with the flat approach and classifying 256 classes
has the accuracy of 35%, TA of 25%, and Structured attack of 44%.

On a more general level, we present here two novel attacks that are able to
significantly increase the efficiency of ML techniques when compared to related
work. Naturally, conducting the Hierarchical attack is more computationally
expensive than just attacking the Hamming weight classes, and the Structured
attack is even more expensive since one needs to use flat approach on all 256
classes as well as the Hierarchical attack. However, the increase in the number of
experiments is well compensated with the increased accuracy of those methods.
On the other hand, the hierarchical approach for ML techniques is beneficial from
the runtime complexity side, since using smaller number of classes decreases the
runtime of ML, while dividing experiments enables one to easily use parallel
computing. The process of making a hierarchy is here considered to be simple
and therefore its complexity is negligible. Naturally, this does not need always
to happen, which would make our attack more complex in accordance with the
process of finding the hierarchy.

When considering realistic settings, one does not know whether a classifier
correctly classified certain instances into subclasses. Therefore, it is necessary to
use a threshold which serves as a cut-off for all measurements below it. Naturally,
the value of such a threshold is a parameter that can be tuned and that differs
with respect to the underlying setting. For instance, measurements with smaller
levels of noise can have higher threshold values since it is expected that the
classifier will be able to classify certain instance with high probability of success.
However, we note that the threshold level is in the end to be set by the attacker,
with regards to how reliable he considers the classifier to be.

In this paper, we considered the HW of the intermediate value as a first level
in the hierarchy. However, we do not claim that this choice is optimal or should
be generally taken. Another approach would be to use the values of each bit of
the intermediate value as a level of hierarchy, e.g., all the measurements where
the first bit equals to 1 goes into one class and where the first bit equal to 0 into
other class. Then, each of those subclasses has 128 subclasses. A more general
approach would be, if some hierarchical structure is not readily observable, to
build a hierarchy with the automatic generation of subclasses, where algorithm
groups leaf classes by their similarity [13].

76 S. Picek et al.

Finally, we give several observations why the hierarchical attack might
improve the accuracy in some cases. The first reason is because we use a priori
knowledge about the dataset (i.e., we know the semantic hierarchy). Naturally,
this can also be a source of mistake, where the question is how severe would a
(slightly) wrong hierarchy influence the results. Since in our experiments, we use
only two levels of hierarchy, then consequently, the propagation of error in the
classification cannot go far. The second reason why hierarchical attacks improve
the accuracy over flat approach is that they can limit the model complexity and
constrain the expressiveness of a hypothetical class. We leave for future research
the experiments showing which reason has more influence on success in these
scenarios. Moreover, it would be interesting to explore how robust is the hier-
archical classification when the hierarchy does not model the data completely.
Still, we emphasize that the complexity of classification for each subclass and the
corresponding subclasses is lower than in the case of the flat classification (since
most of the algorithms have complexity increasing linearly with the number of
classes).

As future work, we are interested in exploring how hierarchical and struc-
tured approaches behave when using a larger number of instances. Moreover,
we observe that in the hierarchical approach, wrongly classified measurements
often exhibit some structure (e.g., the measurements belonging to one class are
dominantly classified as belonging to some other class) and we would like to
investigate the automatic generation of classes (similar to [25]). With such an
approach, we expect to find some new subclasses that can be used in the hier-
archical approach.

6 Conclusions

In this paper, we introduced the concept of hierarchical machine learning classi-
fication for side-channel analysis. Instead of attacking immediately the sensitive
variable or just the Hamming weight of it, we propose to use a divide-and-
conquer approach in a form of class hierarchy. To show the practicability of our
new approach, we conducted our analysis on two publicly available data sets from
the DPAcontest with different SNRs and made a comparisons to machine learn-
ing techniques and the template attack using the standard (flat) approach. Our
results show that, for both data sets, the Hierarchical and Structured attacks
outperform other ML approaches as well as the template attack. Aside from
the better accuracy with our hierarchical approach, an additional advantage is
also the lower computational complexity for ML techniques, which renders more
plausible such attacks when using realistic data sets with large number of mea-
surements and points in time.

Acknowledgments. S. Picek was supported in part by Croatian Science Foundation
under the project IP-2014-09-4882.

Climbing Down the Hierarchy: Hierarchical Classification 77

References

1. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

2. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). doi:10.1007/11545262 3

3. Lerman, L., Bontempi, G., Markowitch, O.: Side channel attack: an approach
based on machine learning. In: Second International Workshop on Constructive
SideChannel Analysis and Secure Design, Center for Advanced Security Research
Darmstadt, pp. 29–41 (2011)

4. Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, I., Vandewalle, J.:
Machine learning in side-channel analysis: a first study. J. Cryptographic Eng.
1, 293–302 (2011). doi:10.1007/s13389-011-0023-x

5. Heuser, A., Zohner, M.: Intelligent machine homicide. In: Schindler, W., Huss, S.A.
(eds.) COSADE 2012. LNCS, vol. 7275, pp. 249–264. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-29912-4 18

6. Lerman, L., Bontempi, G., Markowitch, O.: The bias-variance decomposition in
profiled attacks. J. Cryptographic Eng. 5(4), 255–267 (2015)

7. Lerman, L., Bontempi, G., Markowitch, O.: Power analysis attack: an approach
based on machine learning. IJACT 3(2), 97–115 (2014)

8. Lerman, L., Medeiros, S.F., Bontempi, G., Markowitch, O.: A machine learn-
ing approach against a masked AES. In: Francillon, A., Rohatgi, P. (eds.)
CARDIS 2013. LNCS, vol. 8419, pp. 61–75. Springer, Cham (2014). doi:10.1007/
978-3-319-08302-5 5

9. Heuser, A., Kasper, M., Schindler, W., Stöttinger, M.: A new difference method
for side-channel analysis with high-dimensional leakage models. In: Dunkelman, O.
(ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 365–382. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-27954-6 23

10. TELECOM ParisTech SEN research group: DPA Contest. 2nd edn. (2009–2010).
http://www.DPAcontest.org/v2/

11. Xilinx: Virtex-5 libraries guide for HDL designs. http://www.xilinx.com/support/
documentation/sw manuals/xilinx14 4/virtex5 hdl.pdf

12. TELECOM ParisTech SEN research group: DPA Contest. 4th edn. (2013–2014).
http://www.DPAcontest.org/v4/

13. de Almendra Freitas, C.O., Oliveira, L.S., Aires, S.B.K., Bortolozzi, F.: Metaclasses
and zoning mechanism applied to handwriting recognition. J. UCS 14(2), 211–223
(2008)

14. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach.
Learn. 29(2), 131–163 (1997)

15. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

16. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization.
In: Shavlik, J. (ed.) Fifteenth International Conference on Machine Learning, pp.
144–151. Morgan Kaufmann (1998)

17. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier
ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630
(2006)

http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/s13389-011-0023-x
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-319-08302-5_5
http://dx.doi.org/10.1007/978-3-319-08302-5_5
http://dx.doi.org/10.1007/978-3-642-27954-6_23
http://www.DPAcontest.org/v2/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/virtex5_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/virtex5_hdl.pdf
http://www.DPAcontest.org/v4/

78 S. Picek et al.

18. Kuncheva, L.I., Rodŕıguez, J.J.: An experimental study on rotation forest ensem-
bles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp.
459–468. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72523-7 46

19. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York
(1995)

20. Platt, J.: Fast training of support vector machines using sequential minimal opti-
mization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
Methods - Support Vector Learning. MIT Press (1998)

21. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

22. Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informed-
ness, markedness and correlation (2007)

23. Lerman, L., Poussier, R., Bontempi, G., Markowitch, O., Standaert, F.-X.: Tem-
plate attacks vs. machine learning revisited (and the curse of dimensionality in side-
channel analysis). In: Mangard, S., Poschmann, A.Y. (eds.) COSADE 2014. LNCS,
vol. 9064, pp. 20–33. Springer, Cham (2015). doi:10.1007/978-3-319-21476-4 2

24. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
doi:10.1007/978-3-319-08302-5 17

25. Whitnall, C., Oswald, E.: Robust profiling for DPA-style attacks. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 3–21. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48324-4 1

http://dx.doi.org/10.1007/978-3-540-72523-7_46
http://dx.doi.org/10.1007/978-3-319-21476-4_2
http://dx.doi.org/10.1007/978-3-319-08302-5_17
http://dx.doi.org/10.1007/978-3-662-48324-4_1

Multivariate Analysis Exploiting Static
Power on Nanoscale CMOS Circuits

for Cryptographic Applications

Milena Djukanovic1(B), Davide Bellizia2,
Giuseppe Scotti2, and Alessandro Trifiletti2

1 Faculty of Electrical Engineering, University of Montenegro, Podgorica, Montenegro
milenadj@ac.me

2 DIET, Università di Roma “La Sapienza”, Rome, Italy
{bellizia,scotti,trifiletti}@diet.uniroma1.it

Abstract. Latest nanometer CMOS technology nodes have highlighted
new issues in security of cryptographic hardware implementations. The
constant growth of the static power consumption has led to a new class
of side-channel attacks. Common attacks exploiting static power use an
univariate approach to recover information from cryptographic engines.
In our work, a multivariate approach based on information theoretic secu-
rity metrics is presented. The temperature-dependence helps to exploit
more information leakage from the hardware implementation. Starting
from a univariate analysis, mutual information reveals that increas-
ing the working temperature, the information leaked through the sta-
tic power side channel is increased as well. In this work a multivariate
analysis exploiting static power consumption is presented in which the
temperature-domain is used to extract more information. The use of
information theoretic approach allows to precisely quantify the amount
of information that can be leaked from a cryptographic hardware imple-
mentation. The perceived information shows taking advantage of the use
of more than one temperature, the security level can be decreased. The
improvement achieved using the presented approach is demonstrated on
a 40 nm CMOS implementation of the Present 80 crypto core.

Keywords: Side-channel attack · Static current · Cryptography ·
CMOS · Power analysis attack · Perceived information

1 Introduction

Side-channel attacks have proved to be one of the most important threats against
modern cryptographic implementations in the last two decades. The security
assessment of commercial products (such as smart cards) has implied new design
and evaluation of countermeasures in order to withstand up-to-date physical
attacks on hardware devices. Complex realization of cryptographic algorithms
do not always relate to the robustness in terms of security of their physical

c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 79–94, 2017.
DOI: 10.1007/978-3-319-57339-7 5

80 M. Djukanovic et al.

implementations, as shown by Kocher in 1996, demonstrating the possibility
to recover secret information by introducing a novel method for exploiting the
leaked information from the device - Side Channel Attack (SCA) [1].

The scaling of the CMOS technology, that is the basis of most present micro-
electronic devices, is a permanent trend since the introduction of integrated
circuits. Consequences of this scaling lead to faster growth of static power con-
sumption, having as a result new issues in hardware security. These issues refer
to static current increase [2] and process variations influence [3]. In the area
of modern cryptographic cores this leads to new expectations of being high-
performance, area efficient and low power [4]. Well defined procedure for exploit-
ing static current with “a-priori” model is given in [5,6] in the form of Leakage
Power Analysis (LPA) using the Pearson’s correlation coefficient as statistical
distinguisher. So far, Differential Power Analysis (DPA) and Correlation Power
Analysis (CPA) attacks have become a major threat to security of crypto cores
[7]. Their effectiveness is based on the possibility of finding correlation between
the dynamic power consumption and the data processed by a logic circuit.

The exploitability of the static power consumption as source of information
leakage has gained an increasingly importance in the scientific community. First
results of practical evaluation of the possibility to recover sensible information
using static power as side channel have been presented in [8]. Author introduced
experimental evaluation of static power consumption of three different Xilinx
FPGAs, built in three different technologies (65 nm, 45 nm and 28 nm), demon-
strating the feasibility of exploitability of static power in real devices. In [9],
authors extended previous results in order to assess if the exploitability of sta-
tic power consumption could provide a real benefits to the adversary, compared
to standard procedures that use to exploit dynamic power consumption. The
analysis carried out in [9] has pointed out that if the adversary has the control
over the clock signal of the device under attack, the static power consumption
is critical from a security point of view, since the adversary can strongly reduce
the noise on measurements of static power samples. Authors in [10] presented
a study of the vulnerability of several dual-rail pre-charged logic families in the
context of attacks exploiting static power. Simulated results on 40 nm implemen-
tations show that countermeasures conceived to protect cryptographic hardware
from dynamic power attack still exhibit a strong information leakage through
static power. The importance of this consideration is critical, since standard-cell
based gate-level (WDDL [11] and MDPL [12]) countermeasures are weaker in
terms of security performance compared to CMOS if static consumption is used
as side channel.

In this work, we evaluate the possibility to exploit information leaked through
static power consumption executing univariate and multivariate analysis. For
both analysis we use 4-bit PRESENT crypto-core and the full implementation
of the PRESENT-80 block cipher in order to extract information from a hard-
ware implementation of a cryptographic algorithm using static currents as source
of information leakage, according to previous works [13,14]. The possibility to
use more than one domain or dimension at a time (e.g. univariate case) leads us

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits 81

to more precise results (e.g. multivariate cases), even in the presence of process
variations of simulated lightweight crypto core. Results are evaluated on the base
of recently proposed information theoretic security metrics, that allow to pre-
cisely quantify the amount of information that can be extracted from hardware
implementations. The multivariate approach that we propose, highlights the pos-
sibility to increase the actual information leakage, overcoming issues related to
intra-die variations. Monte Carlo simulated chips are used to show the impact of
intra-die variations on the information leakage, and how our method is suitable
to precisely assess the security level of an implementation.

The remainder of the paper is organized as follows. In Sect. 2 the leakage phe-
nomena is described along with some security metrics which have been used for
validating the simulations of leakage data. Section 3 presents two case studies -
4-bit PRESENT crypto-core and full 40 nm CMOS lightweight implementation
of PRESENT-80 block cipher. In Sects. 4 and 5 are presented univariate and mul-
tivariate analysis of information leakage of two adopted study cases, respectively.
Suggestions for future work and conclusions are given in Sect. 6.

2 Background

The static current conducted by MOS transistors consists of three major sources:
inverse junction current, gate tunnel current and sub-threshold current. In up-
to-date technologies, the sub-threshold current is the most important leakage
contribution in a MOS transistor [15]. More specifically, the sub-threshold cur-
rent Ileak is given by:

Ileak = K
W

L
e

Vgs−(Vth−ηVds−γVbs)
nVT ·

(
1 − e

−Vds
VT

)
(1)

where Vth is the threshold voltage, VT is the thermal voltage, Vgs, Vds and Vbs

are operating voltages of the device. In [10], authors show the data-dependence
of the static current for basic cells in CMOS technology, comparing technologies
from 90 to 28 nm process.

Under the perspective of static power consumption exploitation, an adversary
measures the static power consumption of a device by storing the traces of the
absorbed current, and exploiting the dependence of the samples on internal data.
For assessing the resistance of a hardware implementation to the extraction of
information through static power, several security metrics have been adopted
in literature [9,10]. For our investigations we use both actual and information
theoretic security metrics.

– Signal-To-Noise Ratio (SNR). According to [16], it quantifies the physical
leakage of an hardware implementation, by means of the ratio of the variance
of the data-dependent component of a power trace (σ2

data), and the variance
of the noise, due to switching noise of uncorrelated and non-cryptographic
logics on-chip (σ2

sw,noise) and to electronic noise (σ2
el,noise).

SNR =
σ2
data

σ2
el,noise + σ2

sw,noise

(2)

82 M. Djukanovic et al.

– Measurements To Disclosure (MTD). In order to give an estimation of
the robustness of an implementation to a side-channel attack, it is useful to
find the minimum number of measurements that are necessary to recover the
secret key used by the hardware implementation [17,18].

– Mutual Information. Introduced in [19], the mutual information quantifies
how much information is leaked from a cryptographic implementation, by
means of Shannon entropy of a random variable X and the observed leakage L:

MI(X;L) = H[X] −
∑
x∈X

Pr(x)
∑
l∈L

Prchip(l/x) log2 Prchip(x/l) (3)

where H[X] is the entropy of the variable X, Pr(x) is the probability of
x ∈ X, and Prchip(x/l) is derived from Prchip(l/x) thanks to Bayes’ theorem.
The underlying assumption is based on the fact that the adversary has a
perfect knowledge about the distribution Prchip(l/x). So, it represents the
upper bound of the amount of information that can be extracted from a
hardware implementation in a given scenario.

– Perceived Information. The perceived information, presented in [20] and
defined in [21], captures the information about the secret variable X obtained
when observing leakage L, generated according to the probability distribution
Prchip(L/x), and interpreted with the model Prmodel(L/x):

P̂ I(X;L) = H[X] −
∑
x∈X

Pr(x)
∑
l∈L

Prchip(l/x) log2 Prmodel(x/l) (4)

The P̂ I(X;L) estimates how well the model Prmodel(L/x) is suitable for the
implementation under analysis, and how much information an adversary can
extract with this model, considering it non perfect. The use of this metric
allows to define the “average case” for the adversary, because assumptions
used in this case describe well a realistic attack scenario. In a real scenario,
we have:

P̂ I(X;L) ≤ MI(X;L) (5)

3 Case Study

In this work, we have used simulated static power measurements collected on
transistor-level designs of the PRESENT-80 block cipher [22]. The PRESENT-
80 block cipher is an ultra-lightweight algorithm which uses 80-bit key and 64-
bit plaintext. The encoding operation is made of 31 rounds of the following
paradigm:

– AddRoundKey. The round plaintext at i-th round is XORed with the most
significant 64-bit of round key at the i-th round.

– SubsLayer. 16 parallel 4×4 bit SBOXes perform non-linear function on the
output of the AddRoundKey layer.

– PermLayer. A linear permutation is performed on the output of the previous
layer.

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits 83

The last round omits the SubsLayer and PermLayer, and only the AddRoundKey
is performed. The 80-bit round key is computed at each round, and it is derived
from the original round key, as shown in [22].

The analysis presented in this work is performed with two case studies, that
use PRESENT-80 as reference. Both of them are designed with 40 nm CMOS
technology, provided by STMicroelectronics, with standard threshold voltage
option. The library used is provided with BSIM4 models, and with statistical
parameters, in order to better evaluate intra-die variations.

3.1 4-Bit PRESENT Crypto-Core

The PRESENT-80 algorithm can be easily implemented in a slice architecture.
The basic slice is composed by a 4-bit data-path. A 4-bit XOR combines input
vectors (e.g. plaintext and secret key), and the output feeds a single PRESENT
SBOX. The output register samples the 4-bit encrypted word. The block scheme
of the data-path is depicted in Fig. 1a.

3.2 Full Implementation of PRESENT-80 Block Cipher

In addition to the 4-bit PRESENT crypto-core, our analysis is performed also
on the full CMOS implementation. The design is intended to be a lightweight
implementation of the PRESENT-80 block cipher. We have used the iterative
loop architecture to design our cryptographic engine [22], as depicted in Fig. 1b,
in order to get an area-efficient architecture. The final ciphertext is captured at
the output of the AddRoundKey at the end of the last round. It has to be noticed
that the PermLayer has no combinational logic inside, and it does not provide
power consumption due to proper wiring to achieve the linear permutation.

3.3 Testbench

In this work, we present results based on simulated power traces collected on
Cadence Virtuoso environment. In a real experiment, an adversary has to be
able to measure the DC current after the target word is processed by the device
under analysis. The static current can be measured in several ways. In order to
retrieve the static consumption, a simple method is to sample the current drawn
at VDD pin of the cryptographic engine before the sampling edge of the clock
signal, after the target operation is computed/executed. Similarly, we can sample
the static current after stopping the clock signal. In this way, the measurement
procedure can exclude the presence of dynamic phenomena, and only the static
current is collected. We have chosen the latter way, in order to assess precisely
the amount of information that is leaked from a hardware implementation of
a cryptographic algorithm, considering only static phenomena. Measurements
are collected in the same way for both case studies. Power supply voltage is
kept constant at 1V, and clock frequency has been set to 10 MHz, according to
previous work [23,24].

84 M. Djukanovic et al.

R
E
G

R
E
G

CK

CK

SBOX
R
E
G

CK

pt

key

ct

4

4

4

4

4 4 4

VDD

Ileak

(a)

AddRound
Key

SubsLayer
(16xSBOX)

PermLayer

Key
Scheduler

C
K

C
K

C
K

key

plaintext

ciphertext

80

64

80

64

80

80

64

64

64 64 64

64

64 64

AddRound
Key

(b)

Fig. 1. Left: data path of the 4-bit PRESENT crypto-core. Right: RTL-level schematic
of the PRESENT-80 block cipher implementation using iterative looping architecture.

4 Univariate Analysis of Information Leakage

The univariate analysis is the simplest way to evaluate the possibility to exploit
information leaked through static power consumption. A univariate analysis is
based on the use of a single current sample, which is used as relevant for the infor-
mation leakage. From static currents point of view, all other samples within the
same clock cycle are redundant. Moreover, samples from different clock periods
are uncorrelated, and their cross-correlation is not useful to retrieve information,
because they are generated from different process, and, more in general, from
different data. If we consider a single sample, we have:

Pleak[j∗] = Pdata[j∗] + Pnoise[j∗] (6)

So, each static current sample can be considered as the sum of a data-
dependent component Pleak[j∗] and the extraction of a noise process Pnoise[j∗],
which can be assumed as uncorrelated and given by the combination of different
sources, as electronic noise, switching noise and quantization noise. The model
described by Eq. (6) is widely accepted in cryptographic literature, and it is rea-
sonably to consider the noise process as Gaussian distributed [16], as shown in
the following (Fig. 2):

Pnoise[j∗] ∼ N(0, σ2
noise) (7)

where σ2
noise is the variance of the noise process. Due to the presence of noise, a

static current sample can be considered as a Gaussian distributed random vari-
able. A large number of measurements have to be collected to recover informa-
tion, and filtering out the noise. Since simulated power traces are given noise-free
from Cadence Virtuoso, we added Gaussian white noise to simulation, accord-
ingly to previous work [10,19–21]. If we assume N(l|μx,N , σ2

x,N), the probability
distribution of the normal variable L evaluated on input vector x, using the same
formalism defined in [21], we can denote:

L(X,N) = Lsim(X,N) + N (8)

with N has zero mean and variance σ2
x,N .

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits 85

Fig. 2. Mean value of static currents measured on the 4-bit PRESENT crypto-core over
all Monte Carlo simulations’ chips. Results are shown regarding the input plaintext and
the working temperature.

4.1 4-Bit PRESENT Crypto-Core

Our analysis on the 4-bit PRESENT crypto-core has been carried out firstly as
univariate. The univariate analysis uses only one domain or dimension at a time.
In this case, the only domain we have used is the current sample magnitude.
In Eq. (1), we can notice a strong dependency of the static current from the
temperature. To completely characterize the behavior of the crypto-core in the
working temperature, we have analyzed its static power consumption in the
range 0–100 ◦C, with steps of 20 ◦C. As we can notice, the behavior of the static
current is in accordance to [15], and the simplified model shown in Eq. (1) holds
also in the presence of intra-die variations. In Table 1, averaged sample means
and standard deviations of static current measurements are shown.

Table 1. Averaged sample means and standard deviations results for the Monte Carlo
simulations of the 4-bit PRESENT crypto-core.

Temperature 0 ◦C 20 ◦C 40 ◦C 60 ◦C 80 ◦C 100 ◦C

μ 5,02 nA 11,85 nA 28,06 nA 62,52 nA 129,01 nA 248,27 nA

σ 0,19 nA 0,52 nA 1,25 nA 2,64 nA 5,12 nA 9,50 nA

It is common to adopt linear power model for hardware implementations.
Linear power models are based on the assumption that the power consumption
of a CMOS circuit is linear with a weighting function of the processed data (e.g.
Hamming Weight or Hamming Distance). In [6], a formulation of the simplest
attack procedure exploiting static power consumption is given using a simple
power model for m-bit slice implementation:

Istat,TOT = w · (IH − IL) + m · IL (9)

86 M. Djukanovic et al.

where IL and IH are the static current for a low level and high level in the
corresponding bit. The model is able to capture the linear dependence between
the static current and the Hamming Weight w of the target word x, which is
given by Eq. (10):

x = f(I, k) (10)

where I is the input vector (e.g. plaintext) and k is the secret key used by
the device under attack. The Pearson’s correlation coefficient is then used as
statistical distinguisher to estimate the correct key. The correlation coefficient
compares the actual consumption with estimated consumption, based on proper
assumptions on the value of the secret key k.

This procedure is also used as actual security metric, to evaluate the robust-
ness of a cryptographic hardware implementation to this class of side-channel
attacks. To better assess the amount of information leaked through the static
power consumption, we have used an information theoretic approach, as stated in
Sect. 2. The information theoretic approach does not use a-priori power model of
the device under analysis. In this context, the mutual information has been eval-
uated for each temperature on chip 0, as depicted in Fig. 3, according to Eq. (3).
Looking at Fig. 3, it has to be noticed that increasing the working temperature
mutual information curves shift to right, which means that the implementation
leaks more if the temperature is increased. We should remind that the mutual
information describes the amount of information that an adversary can extract
from the chosen side-channel, assuming that he/she has a perfect knowledge of
the chip’s behavior. So, from the adversary point of view, this is the best-case,
but it is only possible when the adversary has a perfect profile of the hardware
implementation. This position does not stand in practice, because, in general, an
adversary does not have this kind of knowledge. And, also with the possibility
that he/she can build a perfect profile of the static power consumption of the
device, this position will hold only if the profile is built and used to attack the
same chip. As we can notice, under this assumption, the amount of information

Fig. 3. Mutual information as function of noise standard deviation for the 4-bit
PRESENT crypto-core in the temperature range 0–100 ◦C.

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits 87

that can be extracted exploiting the static power consumption increases using
higher temperatures. If we consider 3.5 bit for 0 ◦C and compare with 3.5 bit for
100 ◦C, the noise standard deviation is two orders of magnitude higher, which
means that even in the presence of lower SNR, we can extract the same amount
of information. This result is important considering that only changing the work-
ing temperature of the device under analysis, the amount of information leaked
is strongly different. We should mention that also the temperature-dependence
of static current has strong effects on the information leakage, and, as a conse-
quence, on the possibility to get a successful attack.

4.2 Full Implementation of PRESENT-80 Block Cipher

To complete the univariate analysis, it is useful to analyze deeply the information
that can be extracted from the full implementation of the PRESENT-80 block
cipher. Also in this case, the same technology process has been used, with the
same threshold option. For the full implementation, intra-die variations have not
been taken into account. Static current samples are collected in the temperature
range 0–100 ◦C, with steps of 25 ◦C. Mean values of static current measurements
are plotted in Fig. 4. Similarly to the 4-bit case, it is necessary to evaluate the
information that can be exploited through static power. The security metric used
is again the mutual information. Results are shown in Fig. 5.

The temperature-dependence of the amount of the information leaked
through the chosen side-channel is strong also in the full-implementation. In the
range 25–100 ◦C, the mutual information exhibits a slower reduction between 4
and 3.5 bit, respect to 0 ◦C plot. At 0 ◦C, the slope of the mutual information is
very similar to slopes of mutual information plots depicted in Fig. 3 for the 4-bit
crypto-core.

Fig. 4. Mean value of static currents measured on the full implementation of the
PRESENT-80 crypto-core over all Monte Carlo simulations’ chips. Results are shown
regarding the input plaintext and the working temperature.

88 M. Djukanovic et al.

Fig. 5. Plot of mutual information of the full implementation of the PRESENT-80
block cipher in the temperature range 0–100 ◦C as function of the noise standard
deviation.

In order to better assess the concept of “exploitability” and its relation
with mutual information, the full implementation of the PRESENT-80 has
been attacked using the procedure shown in [6]. To simulate a real experiment,
Gaussian white noise has been added in Matlab. A SNR of −60 dB has been
used to perform simulated attack. The most significant nibble at the output of
the AddRoundKey at the first round has been chosen as target word, as shown in
Eq. (11). The number of measurements used has been limited to 100 k, to better
simulate a real scenario.

x63,62,61,60 = I63,62,61,60 ⊕ k80,79,78,77 (11)

Experiments have been repeated increasing the number of plaintext to get
the Measurement To Disclosure (MTD) as function of the working temperature.
Plots of correlation coefficients as function of the number of measurements col-
lected are shown in Fig. 6a–e. It has to be noticed that in the range 50–100 ◦C
the MTD is progressively reduced from 84 k to 19.1 k. For lower temperatures, it
is not possible to get a successful attack with 100 k. Using the same SNR, for 0–
25 ◦C, the procedure can not recover the correct key, within the given maximum
number of measurements (Table 2).

Table 2. Results of the MTD analysis on the full implementation in the range 0–100 ◦C.

Temperature 0 ◦C 25 ◦C 50 ◦C 75 ◦C 100 ◦C

MTD >100 k >100 k 84 k 72 k 19.1 k

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits 89

(a) (b)

(c) (d)

(e)

Fig. 6. Correlation coefficient as function of number of measurements used to perform
the attack on the full implementation of PRESENT-80. Plots (a)–(e) are referred to
working temperatures from 0 ◦C to 100 ◦C, respectively. Black bold lines are referred
to correlation coefficients of the correct key.

90 M. Djukanovic et al.

5 Multivariate Analysis: Can We Exploit More?

The multivariate analysis in the dynamic power exploitation is mainly devoted
to the use of two domains: dynamic current samples magnitude and the time. It
has been proven that in hardware implementations, there is a high correlation
(in time) between two neighboring points in a power trace [16]. In Sect. 3, we
considered a single static current sample as a Gaussian distributed random vari-
able for a given operation. This non-deterministic behavior is due to the presence
of noise, and, if we now consider using more than one sample, each character-
ized by its own Gaussian distribution, we have to move to multivariate analysis.
In our analysis we have used the static power consumption as side-channel, so,
instead using time as other domain to get a multivariate approach, we choose
to use the temperature as new domain. In Eq. (1), a strong dependence from
the temperature of the static current is shown, and analysis reported in Sect. 4
confirm the possibility to extract “more” information forcing the device under
analysis to work with higher temperatures.

Process variability of deep sub-micron technologies raises new issues in both
security and analysis of cryptographic implementations. In [21], experiments per-
formed on 20 prototype chips implemented in 65 nm CMOS process shown that
common strategy like DPA are no more effective to evaluate the level of security
of a device. As consequence of the strong dispersion of process parameters due
to intra-die and inter-die variations in nanometer technologies, static current
phenomena are even more variable. So, it is not easy to evaluate “how much
the implementation leaks”. To overcome this issue, we introduce the possibility
to get a multivariate approach to evaluation of cryptographic devices exploiting
static power consumption. Our approach is based on the possibility to perform
experiments on the device under analysis at different temperatures and combin-
ing results to extract as much information as possible. To study the impact of
intra-die variations on the amount of information that an adversary can extract,
we use 100 circuit samples generated by Monte Carlo simulation of the 4-bit
PRESENT crypto-core depicted in Fig. 1a. As reference, we have used the uni-
variate analysis performed on chips with a working temperature of 100 ◦C, which
shows the best mutual information behavior.

In this section, the use of the perceived information concept is necessary due
to the presence of intra-die variations. In fact, this approach allows us to estimate
the “average case” for the adversary, which uses one chip for profiling and uses
this information to extract sensible information on a similar one. The perceived
information is useful to evaluate how profiles that are built on a chip A are
good (or fit) actual power consumption of a chip B. In [21], authors show that
this scenario is perfectly captured by using the perceived information, and we
have chosen to follow this approach. In Fig. 7a, the distribution of the maximum
value of the perceived information using [60 ◦C; 100 ◦C] as temperature points
over all sample chips is shown. It has to be noticed that the distribution is
not symmetric, thus not normal, and this behavior can be demonstrated for
each possible combination of temperature points. To better estimate the typical
outcome of this distribution, we have chosen to use the median value instead of

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits 91

(a) (b)

Fig. 7. Left: distribution of the maximum value of the perceived information over 100
chips using [60 ◦C; 100 ◦C] as temperature points. Right: box-plot of the maximum
value of perceived information regarding the number of temperature points. Black dots
represent the median value for each case. The bottom and top of the boxes are referred
to first and third quartiles, respectively.

Fig. 8. Perceived information plot as function of the noise standard deviation for
chip 46.

the mean value, due to positive skewness [25]. The analysis of the maximum value
of the perceived information has been performed for each possible temperature
points combination, over all Monte Carlo simulation’s chips, and medians have
been evaluated and reported for best combinations of temperature points, from
1-point to 6-points, in the range 0–100 ◦C.

92 M. Djukanovic et al.

Table 3. Top: median values of maximum perceived information over 100 circuits
with intra-die variations. 1-point case is used as reference. Bottom: maximum values
of perceived information for chip 46.

(a)

No. of Temp. Points 1 2 3 4 5 6

median(max(PI(X;L)))[bit]0.51 0.73 0.72 0.69 0.69 0.69

Gain Factor 1 1.44 1.42 1.36 1.36 1.36

(b)

No. of Temp. Points 1 2 6

max(PI(X;L))[bit] 0.638 1.220 1.169

Gain Factor 1 1.912 1.832

Analyzing Table 3a, we could say that using more than one temperature, also
in the presence of intra-die variations, the amount of information extracted using
non perfect profiles can be 44% greater respect to the univariate analysis. This
result confirms the strengths of the multivariate approach exploiting information
from static power consumption. Moreover, focusing on a single chip, randomly
extracted from the Monte Carlo simulation’s set, the improvement in the max-
imum value of perceived information is of 91% if we consider 2 temperature
points, as shown in Table 3b. Looking at Fig. 8, it yields to twice information
extracted within the same noise standard deviation, which can assess a strong
increase in probability to get a successful attack within the same scenario.

6 Conclusion

A multivariate approach to exploit information leakage using static power dissipa-
tion is presented in this work, and this is the first time in cryptographic literature
that the temperature is used to expand dimensionality in static power analysis.
The analysis of the temperature-dependency of static current in a chip has led to
a complete univariate characterization using an information theoretic approach.
The use of the mutual information has shown that using higher temperature, the
possibility to get a successful experiment is increased significantly. This analy-
sis has been performed on 40 nm CMOS 4-bit data-path of the PRESENT block
cipher and on a full implementation of the PRESENT-80. Also the Leakage Power
Analysis presented in [6] is used and simulated attacks have been performed on the
full implementation to show the relationship between information theoretic and
actual security metrics. The MTD value can be significantly reduced using higher
temperature. With the aim of studying the effect of intra-die variations with an
information theoretic approach, the multivariate analysis has been applied inten-
sively on sample chips generated through Monte Carlo simulations. The use of
perceived information led to a complete characterization of the actual possibility

Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits 93

that an adversary can recover sensible information from a cryptographic imple-
mentation. With a population of 100 chips, the median of the distribution of the
maximum value of the P̂ I(X;L) is increased by 44% compared to the univariate
case. Focusing on a randomly picked chip, the increasing in the maximum value of
perceived information is of 91% using 2 temperatures, comparing the best result
obtained with 1-point analysis, which means that the multivariate approach can
lead to a strong reduction in the security level. The multivariate approach remarks
the possibility to recover sensible information using static power consumption as
side-channel.

References

1. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

2. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms
and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc.
IEEE 91(2), 305–327 (2003)

3. Alioto, M., Bongiovanni, S., Djukanovic, M., Scotti, G., Trifiletti, A.: Effective-
ness of leakage power analysis attacks on DPA-resistant logic styles under process
variations. IEEE Trans. Circuits Syst. I Regul. Papers 61(2), 429–442 (2014)

4. Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., Uhsadel, L.: A survey of
lightweight-cryptography implementations. IEEE Des. Test 24(6), 522–533 (2007)

5. Alioto, M., Giancane, L., Scotti, G., Trifiletti, A.: Leakage power analysis attacks:
well-defined procedure and first experimental results. In: 2009 International Con-
ference on Microelectronics - ICM, pp. 46–49 (2009)

6. Alioto, M., Giancane, L., Scotti, G., Trifiletti, A.: Leakage power analysis attacks:
a novel class of attacks to nanometer cryptographic circuits. IEEE Trans. Circuits
Syst. I 57(2), 355–367 (2010)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2

8. Moradi, A.: Side-channel leakage through static power. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 562–579. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44709-3 31

9. Pozo, S.M.D., Standaert, F., Kamel, D., Moradi, A.: Side-channel attacks from
static power: when should we care? In: Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition. DATE 2015, Grenoble, pp. 145–150,
9–13 March 2015

10. Bellizia, D., Bongiovanni, S., Monsurro, P., Scotti, G., Trifiletti, A.: Univariate
power analysis attacks exploiting static dissipation of nanometer CMOS VLSI cir-
cuits for cryptographic applications. IEEE Trans. Emerg. Topics Comput. PP(99),
1 (2016)

11. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure DPA
resistant ASIC or FPGA implementation. In: Proceedings Design, Automation
and Test in Europe Conference and Exhibition, vol. 1, pp. 246–251, February 2004

12. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without
routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 172–186. Springer, Heidelberg (2005). doi:10.1007/11545262 13

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-540-28632-5_2
http://dx.doi.org/10.1007/978-3-662-44709-3_31
http://dx.doi.org/10.1007/11545262_13

94 M. Djukanovic et al.

13. Bellizia, D., Scotti, G., Trifiletti, A.: Implementation of the present-80 block cipher
and analysis of its vulnerability to side channel attacks exploiting static power. In:
23rd International Conference Mixed Design of Integrated Circuits and Systems.
MIXDES 2016, pp. 211–216, June 2016

14. Bellizia, D., Djukanovic, M., Scotti, G., Trifiletti, A.: Template attacks exploiting
static power and application to CMOS lightweight crypto-hardware. Int. J. Circuit
Theory Appl. 45(2), 229–241 (2016)

15. Chandrakasan, A.P., Bowhill, W.J., Fox, F.: Design of High-Performance Micro-
processor Circuits, 1st edn. IEEE Press, New York (2000)

16. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Advances in Information Security. Springer, New York (2007)

17. Mangard, S.: Hardware countermeasures against DPA – a statistical analysis of
their effectiveness. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp.
222–235. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24660-2 18

18. Tiri, K., Hwang, D., Hodjat, A., Lai, B.-C., Yang, S., Schaumont, P., Verbauwhede,
I.: Prototype IC with WDDL and differential routing – DPA resistance assessment.
In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 354–365. Springer,
Heidelberg (2005). doi:10.1007/11545262 26

19. Macé, F., Standaert, F.-X., Quisquater, J.-J.: Information theoretic evaluation of
side-channel resistant logic styles. In: Paillier, P., Verbauwhede, I. (eds.) CHES
2007. LNCS, vol. 4727, pp. 427–442. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74735-2 29

20. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT
2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 26

21. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N., Kamel, D., Flandre, D.: A
formal study of power variability issues and side-channel attacks for nanoscale
devices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 109–
128. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20465-4 8

22. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

23. Bongiovanni, S., Centurelli, F., Scotti, G., Trifiletti, A.: Design and validation
through a frequency-based metric of a new countermeasure to protect nanometer
ics from side-channel attacks. J. Cryptogr. Eng. 5(4), 269–288 (2015)

24. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implemen-
tations for smart devices – security for 1000 gate equivalents. In: Grimaud, G.,
Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85893-5 7

25. Knight, K.: Mathematical Statistics. Texts in Statistical Science Series. Chapman
& Hall/CRC Press, Boca Raton (2000)

http://dx.doi.org/10.1007/978-3-540-24660-2_18
http://dx.doi.org/10.1007/11545262_26
http://dx.doi.org/10.1007/978-3-540-74735-2_29
http://dx.doi.org/10.1007/978-3-540-74735-2_29
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-20465-4_8
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-540-85893-5_7

Differential Bias Attack for Block Cipher Under
Randomized Leakage with Key Enumeration

Haruhisa Kosuge(B) and Hidema Tanaka

National Defense Academy of Japan, Yokosuka, Japan
{ed16005,hidema}@nda.ac.jp

Abstract. In the formal analysis of side-channel attacks, a theoreti-
cal model of side-channel information (leakage model) is supposed and
dedicated attacks for the model are considered. In ASIACRYPT2015,
a new leakage model for the analysis of block cipher was proposed by
Bogdanov et al. The model assumes an adversary who has leaked values
whose positions are unknown and randomly chosen from internal results
(random leakage model). They also proposed an attack, differential bias
attack for the model. This paper improves the security analysis on AES
under the random leakage model. In the previous method, the adver-
sary requires at least 234 chosen plaintexts, therefore, it is infeasible to
recover a secret key with a small number of data. However, there may be
an adversary who can recover the secret key using his computing power.
To consider the security against the adversary, we reestimate complex-
ity for the adversary given a small number of data. We propose another
hypothesis-testing method which can minimize the number of required
data. The reestimation of complexity shows that the proposed method
requires time complexity more than T > 260 because of time-data trade-
off, however, some attacks are feasible under T ≤ 280. In addition to
the above method, we apply key enumeration to differential bias attack,
and evaluate its efficiency by rank estimation. From the experimental
evaluation, we show that the success rate of the attack can be practical
if there is an advantageous restriction on the positions of leaked values.

Keywords: Block cipher · Side-channel attack · Formal security
analysis · Leakage model · AES · Differential bias attack · Key enu-
meration · Rank estimation

1 Introduction

1.1 Background

Conventionally, the security of symmetric-key cryptographic primitives is eval-
uated under the assumption that the adversary is given black-box access to
cryptosystems. However, such a model does not always ensure security of cryp-
tographic implementations for side-channel attacks. In the last two decades,
many attacks have been demonstrated by exploiting device-specific side channels.

c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 95–113, 2017.
DOI: 10.1007/978-3-319-57339-7 6

96 H. Kosuge and H. Tanaka

Due to such characteristic, the empirical evaluation of cryptographic devices is
important. In addition, the formal analysis of side-channel attacks has been
studied [6,11,18,19,21]. These works incorporate the side-channel information
into the security analysis and develop countermeasures to defeat common side-
channel attacks. Obviously, assumptions for the adversary are important in
formal analysis. In addition to black-box access (plaintexts and corresponding
ciphertexts), partial information about internal results of encryption process
leaks following a certain model (leakage model).

In ASIACRYPT2015, a new leakage model was proposed by Bogdanov and
Isobe [2]. The model assumes an adversary who has leaked values (bits or bytes
in AES) emitting from internal operations, however, the positions where leaked
bits/bytes come from are unknown and randomly chosen. We call the model
random leakage model. Note that the leaked values are outputs of AddRound-
key or subkeys of internal rounds. Also, they impose restrictions on the round
number and position of bits/bytes within the round (leakage range) to let the
adversary have an additional advantage. Software implementation seems to be
more relevant to the random leakage model than hardware implementation. In
software operations, parts of the secret data were copied to a different medium
such as swap space and the data remains undeleted after the operations. The
adversary may have access to the data, e.g., by physical access to the computer.
If he does not know where the data come from, the attack can be analyzed in
the random leakage model.

The same authors also proposed differential bias attack, which is feasible
under the random leakage model. The attack exploits truncated differential char-
acteristics that can be obtained by correct subkey guess, and recover subkeys
by applying hypothesis testing. Differential bias attack can break AES in the
practical time complexity such as T ≤ 260, however, the required data D is not
practical (D ≥ 234).

1.2 Contribution

This paper is intended as an improvement on the security analysis on AES
(especially AES-128: 128-bit key length and 10-round version of AES) under the
random leakage model. In the previous method [2], the adversary requires at
least 234 chosen plaintexts. Therefore, key recovery of AES-128 is infeasible for
the adversary given a small number of data, therefore, restriction on the number
of times to encrypt data by single key will easily prevent the attack. However,
it is a wrong assumption, since there is an adversary with a computing power
making up for the disadvantage. In order to evaluate the security against such
adversary, we reestimate complexity for the adversary given a small number of
data. We use a hypothesis-testing method that is also used in [2]. We consider
time-data tradeoff and minimize the number of required data.

In addition, we assume an adversary given smaller number of data than the
above attacks. For such adversary, we propose a new method which combines dif-
ferential bias attack and key enumeration [20]. Though there are some variations

Differential Bias Attack for Block Cipher Under Randomized Leakage 97

[3,5,15–17], we choose histogram-based key enumeration proposed by Poussier et
al. [17] for its simplicity, efficiency and preciseness. Also, we evaluate complexity
and success rate of the proposed attack by using histogram-based rank estima-
tion [10]. Note that we can substitute any key enumeration and rank estimation
algorithms for histogram-based ones.

We evaluate the results from both viewpoints of the adversary (of which
the goal is to recover the secret key) and the evaluator (of which the goal is to
analyze security of his cryptographic device). For the adversary (resp. evaluator),
we assume that the adversary can check 260 (resp. 280) key candidates of AES-
128 [12], and summarize the results as follows.

1. By minimizing the number of required data D in differential bias attack, we
show feasibility of the attacks under D ≤ 230. Because of time-data tradeoff,
the time complexity T increases to be T > 260. From the viewpoint of the
evaluator, some attacks are feasible (T ≤ 280) if leakages emit from advanta-
geous leakage ranges.

2. Applying key enumeration to differential bias attack, we propose a new
method for an adversary given a smaller number of data than the meth-
ods using hypothesis testing. We evaluate its success rate by increasing the
number of samples when restriction on the leakage range is the most advan-
tageous for the adversary. As a result, we confirm that the success rate is
practical under T ≤ 280 even if the number of samples q is less than the
one used in hypothesis-testing methods. Hence the adversary given smaller
number of data than the above methods is still a threat for the evaluator if
the leakage range is advantageous for him.

The above results indicate that differential bias attack is a practical threat from
the view point of the evaluator. Also, we should consider a situation that the
attack is used as a complement of other side-channel attacks for the reduction
of time complexity. As a countermeasure for differential bias attack, we insist on
the importance of intensive protection of crucial rounds such as second round of
AES (in addition to first round for other general side-channel attacks).

Notations. We use bold fonts for vectors, sans serif ones for functions, calli-
graphic ones for sets.

2 Previous Works

2.1 Leakage Model for Side-Channel Attacks

Recently, there is a trend to formally evaluate the security of cryptographic
devices [6,11,18,19,21]. We assume an adversary who has access to a physical
implementation of block ciphers and observes side channel leakage l emitting
from encrypting process (online phase). Afterward, the adversary attempts to
recover a secret key exploiting the data obtained in online phase with his com-
puting power (offline phase). As a realistic assumption, the leakage of sensitive
internal result v is expressed by a deterministic function δ (e.g. hamming weight)

98 H. Kosuge and H. Tanaka

and a noise b (e.g. Gaussian noise), i.e., l = δ(v)+ b [7]. In a different way, Dinur
and Shamir defined a leakage model which assumes an adversary who is given a
value of bit in internal operations where the position is fixed and the adversary
knows it [6]. In the similar way, Bogdanov and Isobe defined another leakage
model assuming that the position of leaked bit (or byte) is randomly-chosen and
unknown for the adversary [2]. We focus on the last model [2] and call it random
leakage model.

When a set of leakages LD is observed in encryption processes of D plaintexts
XD, we suppose a leaked variable l ∈ LD is a bit in bitwise random leakage model
or a byte in bytewise random leakage model, where the position of bit/byte is
unknown and randomly chosen from intermediate results of encryptions. Note
that the model resembles to one defined in probing attacks [11], however, the
model is simpler and dedicated to analysis of block ciphers.

We assume n-bit secret key k = (k0, k1, ..., kNs−1), where ki is a ns-bit subkey
(ns = n/Ns). Since AES-128 is under the consideration, the numbers are Ns = 16
and ns = 8. Let zr = (zr

0 , z
r
1 , ..., z

r
15) be an output state of AddRoundkey in

r-th round (r ∈ [1 : 10]), and x = (x0, x1, ..., x15) a plaintext. Also, we denote
kr = (kr

0, k
r
1, ..., k

r
15) as subkeys (expanded keys from the secret key k) added in r-

th round and k0(= k) is added in the initial AddRoundkey. In a byte λi, we denote
j-th bit as λi,j . Assuming the bitwise (resp. bytewise) random leakage model,
the adversary observes xi,j (resp. xi), zr

i,j (resp. zr
i) or kr

i,j (resp. kr
i) from an

encryption process. In [2], the authors impose restrictions on the round number r
(time) and the bit/byte position (i, j) (space). Because of the restrictions, given
data may become more advantageous for the adversary. We call two dimensional
range (time & space) as leakage range.

2.2 Differential Bias Attack [2]

Differential bias attack uses truncated differential characteristics to recover the
secret key as follows. Figures 1 and 2 show examples of truncated differential
characteristics. We denote y = (y0, y1, ..., y15) as an output of MixColumns of
1st round. A colored-cell is a probability-one non-zero difference, a white-cell
is a probability-one zero difference, and “?” denotes an unknown (zero/non-
zero) difference. The adversary chooses two different 4 bytes of (x0, x5, x10, x15)
which results in only one non-zero difference in (y0, y1, y2, y3) if a 32-bit sub-
key (k0, k5, k10, k15) is correctly guessed. Note that only one non-zero difference
means there are two 4 bytes such that their difference includes 1 non-zero byte
and 3 zero bytes. Then he inputs a pair of plaintexts x consisting of the above 4
bytes and 12 bytes with the same values. In the case of Fig. 1 (correct case), the
32-bit subkey is correctly guessed and there is only one non-zero difference in y.
In Fig. 2 (wrong case), the guessed subkey is wrong and there are four unknown
differences in y.

There is a bias between two distributions for differences of leakages for correct
and wrong cases. Let Pr[l ⊕ l′|correct] and Pr[l ⊕ l′|wrong] be probabilities when
the correct and wrong cases hold, where l and l′ are values of leaked bits/bytes.
As defined in Sect. 2.1, the values of l and l′ are ones of bits/bytes in x, zr

Differential Bias Attack for Block Cipher Under Randomized Leakage 99

Fig. 1. Truncated differential characteristic in correct case.

Fig. 2. Truncated differential characteristic in wrong case.

Algorithm 1. Previous method of differential bias attack with hypothesis
testing [2].

input XD and LD.
for i = 0 → 3 do

for k∗
i ∈ F

32
2 do

Initialize a likelihood ratio Λk∗
i

← 1.
while (1 − α)/β < Λk∗

i
< β/(1 − α) do

Choose yi and y′
i randomly where only 1 byte has a difference.

Obtain xi and x′
i which result in yi and y′

i when k∗
i is correct.

Choose two plaintexts x and x′ which contain xi and x′
i, respectively.

Acquire {lj}qs−1
j=0 and {l′j′}qs−1

j′=0 from LD corresponding to x and x′.
Compute Λk∗

i
= Λk∗

i
×∏j,j′ Pr[lj ⊕ l′j′ |correct]/Pr[lj ⊕ l′j′ |wrong].

end while
if β/(1 − α) ≤ Λk∗

i
then

k∗
i is added to a set of candidates Ki.

end if
end for

end for
Brute-force search for the correct key k∗ ∈ K(= K0 × K1 × K2 × K3).
return k∗

100 H. Kosuge and H. Tanaka

(r ∈ [1 : 10]) or kr (r ∈ [0 : 10]) if there is no restriction on the leakage range.
In z1 and z2, there are more probability-one zero difference in the correct case.
Therefore, Pr[l⊕ l′ = 0|correct] > Pr[l⊕ l′ = 0|wrong] holds for randomly chosen
l and l′. If a distribution for a subkey guess close to the one of correct case is
observed, the guessed key is a likely candidate.

In this way, differential bias attack takes a divide-and-conquer strategy on 32-
bit subkeys. The paper [2] adopts hypothesis testing to distinguish subkey can-
didates. The number of required samples determines efficiency of a test. Infor-
mation theory provides the expected number of samples [9]. Let D(p0 ‖ p1) =
∑

c p0(c) log p0(c)
p1(c)

be a discrimination of two distributions p0 and p1 obtained by a
sample. Suppose a test is to distinguish two distributions by obtaining q samples.
The expected number of samples to distinguish p0 and p1 is:

E[q] ≥
β · log

(
β

1−α

)
+ (1 − β) · log

(
1−β

α

)

D(p0 ‖ p1)
, (1)

where α is false positive rate and β is false negative rate [9,14]. When we use
information-theoretic optimal test, equality of Eq. (1) can be met. Formal distri-
butions for Pr[l ⊕ l′|correct] and Pr[l ⊕ l′|wrong] can be computed by counting
the number of bits/bytes with zero differences in leakage range and the discrim-
ination of two distributions is easily calculated. By setting error rates α and β,
the expected number of samples for the estimated discrimination is obtained. In
[2], the authors supposed α = β = 2−32. We show an example of differential bias
attack in Algorithm 1. Since there is no description on which test they use in [2],
we use sequential probability ratio test [22]. Note that we denote xi, ki and yi

as follows.

x0 = (x0, x5, x10, x15), k0 = (k0, k5, k10, k15), y0 = (y0, y1, y2, y3)
x1 = (x4, x9, x14, x3), k1 = (k4, k9, k14, k3), y1 = (y4, y5, y6, y7)
x2 = (x8, x13, x2, x7), k2 = (k8, k13, k2, k7), y2 = (y8, y9, y10, y11)
x3 = (x12, x1, x6, x11), k3 = (k12, k1, k6, k11), y3 = (y12, y13, y14, y15) (2)

Differential bias attack is feasible under chosen-plaintext, known-plaintext and
chosen-ciphertext settings. We only focus on chosen plaintext setting, since the
same discussions can apply to the other settings. The time complexity T and
the required data D are estimated by using the expected value of q as follows.

T = 4 · 232 · E[q]
q2s

· qs

10
+ (1 + 2−32 · (232 − 1))4 ≈ 230.68 · E[q]

qs
, (3)

D = 4 · 232 · qs, (4)

where qs is the number of leakages measured by encrypting plaintexts with the
same value. Since each encryption process leaks only one bit/byte, qs bits/bytes
are obtained by qs times encryption of the same plaintext. Using qs bits/bytes
leaked from different positions, we compute q2s times XOR operation and the

Differential Bias Attack for Block Cipher Under Randomized Leakage 101

complexity is estimated as qs/10 times of encryptions of AES-128 in [2]. Since the
expected number of samples is E[q], the operation iterates for E[q]/q2s different
chosen plaintexts.

2.3 Key Enumeration and Rank Estimation

Conventionally, side-channel attacks have focused on the online phase and try
to recover keys without much computation in the offline phase. However, we
need to consider computing power in order to suppose an adversary who can
recover the secret key with restricted side-channel information. Since the first
algorithm, optimal key enumeration, was proposed in SAC2012 [20], several stud-
ies have been made on the algorithm [3,5,15–17]. Key enumeration is used in
any side-channel attack if it takes divide-and-conquer strategy. When we can
obtain lists of posterior probabilities for all Ns subkeys after the measurement
(i.e. Pr[ki = k∗

i |XD,LD], where k∗
i is a guessed key and i ∈ [0 : Ns − 1]),

we can enumerate candidates of the secret key k with their joint probabilities∏
i Pr[ki = k∗

i |XD,LD] from the most likely one to the least likely one. In profiled
attacks such as template attack [4], lists of probabilities Pr[ki = k∗

i |XD,LD] are
directly obtained, however in non-profiled attacks (e.g. differential power analysis
[13]), one can make the probabilities by applying Bayesian extension [20].

By contrast, rank estimation is an evaluation tool for side-channel attacks
enhanced by key enumeration [21]. Some variations are developed [1,8,10] after
the first proposal in EUROCRYPT2013 [21], and there are tight connections
between key enumeration and rank estimation algorithms [17]. The algorithm is
to evaluate the rank of a correct key when the evaluator is given the posterior
probability of the correct key. The rank directly determines the time complexity
of the attack, since it indicates the number of key candidates to enumerate and
verify.

Even if the correct key is in the last rank (2128 − 1 in AES-128), we can
execute rank estimation in a realistic time. It is impossible for key enumeration
to achieve this efficiency, since it enumerates a huge number of key candidates.
However, an estimation error inevitably occurs. Each algorithm has a technique
to estimate upper and lower bounds for the estimated rank. Therefore, we need
to use a fast algorithm with tight bounds. Since histogram-based rank estimation
proposed by Glowacz et al. [10] satisfies the above criteria, we use the algorithm
to evaluate our proposed attack. Because of a connection to histogram-based
key enumeration proposed by Poussier et al. [17], histogram-based rank estima-
tion outputs time complexity of this key-enumeration algorithm. Therefore, we
consider an application of the histogram-based key enumeration in Sect. 4.

Histogram-based Rank Estimation [10]. Algorithm 2 shows the histogram-
based rank estimation. Note that the algorithm is also used in the histogram-
based key enumeration. In this case, Algorithm2 outputs a set of all histograms
H = {H0,H1, ...,HNs−1,H0:1,H0:2, ...,H0:Ns−1}. We obtain lists of log posterior
probabilities LPi = log(Pr[ki = k∗

i |XD,LD]). From the lists, histograms Hi with
equally-sized Nbin bins are constructed. The number of subkeys in the bin b,

102 H. Kosuge and H. Tanaka

0 2 4 6
0

2

4

6

8

b

H
0
(b

)

0 2 4 6
0

2

4

6

8

b

H
1
(b

)

0 5 10
0

20

40

60

b

H
0
:1

(b
)

Fig. 3. Examples of histograms [17].

i.e., Hi(b), is increased by 1 if there is a value LPi in the list such that b =
�LPi/Sbin	, where Sbin is the binsize. Note that the binsize is the length of
an interval of LPi included in a bin. We show an example of histograms in
Fig. 3, where H0:1 is a histogram constructed by the convolution of H0 and H1

(Nbin = 7). Convoluting histograms from H0 to Hi, we can construct H0:i (the
number of bins is i · Nbin − (i − 1)). Histogram-based rank estimation outputs
an estimated rank by using the last histogram H0:Ns−1 and the index of bin in
which the correct key may be included. Let b†(≥ 0) be such index, and it is
obtained by b† =

∑Ns−1
i=0 Hi(b

†
i), where b†

i denotes an index of a bin in which a
correct subkey ki is included.

There is an estimation error caused by the convolution of histograms, how-
ever, the rank can be lower and upper-bounded as follows [10]. Let {LPi}Ns−1

i=0 be
Ns lists of log posterior probabilities with their j-th elements denoted as LP

(j)
i ,

and a central value m
(j)
i . When the binsize is Sbin, we have (for ∀j):

|LP
(j)
i − m

(j)
i | ≤ Sbin

2
,

=⇒
∣
∣
∣
∣
∣

Ns−1∑

i=0

LP
(j)
i −

Ns−1∑

i=0

m
(j)
i

∣
∣
∣
∣
∣
≤ Sbin

2
· Ns =

Ns

2
· Sbin. (5)

Therefore, the difference between the actual sum of log probabilities and the
sum of central values is limited to �Ns/2 bins. Hence, we can limit the index of
the bin in which the correct key is actually included as:

Elower =
Ns·Nbin−Ns∑

b=b†+�Ns/2�
H0:Ns−1(b) (lower bound), (6)

Eupper =
Ns·Nbin−Ns∑

b=b†−�Ns/2�
H0:Ns−1(b) (upper bound). (7)

Histogram-based Key Enumeration [17]. We introduce the histogram-based
key enumeration in Algorithm 3. Note that size of(H) is the number of bins in H.
The algorithm uses a set of histograms H which is obtained from Algorithm2.
Also, it requires a list S which connects subkeys and their bins. We denote

Differential Bias Attack for Block Cipher Under Randomized Leakage 103

Algorithm 2. Histogram-based rank estimation [10, 17].
input {H0, H1, ..., HNs−1}.
Initialize a histogram H0:0 ← H0.
for i = 1 → Ns − 1 do

for b = 0 → i × Nbin − i do
for b′ = 0 → Nbin − 1 do

H0:i(b + b′) ← H0:i(b + b′) + H0:i−1(b) × Hi(b
′)

end for
end for

end for
(return H = {H0, H1, ..., HNs−1, H0:1, H0:2, ..., H0:Ns−1})
Compute estimated rank E ←∑Ns×Nbin−Ns

b=b† H0:Ns−1(b)
return E

Algorithm 3. Histogram-based key enumeration [17].
input H and S.
for bsum = bstart → bstop do

Decompose bin(Ns − 1, bsum, K)
end for
function Decompose bin(csh, bsum, K) � Recursively called.

if csh = 1 then
Initialize the index of bin as b ← size of(H0) − 1.
while (b ≥ 0) & (b + size of(H1) > bsum) do

if (H0(b) > 0) & (H1(bsum − b) > 0) then
Copy a set of subkeys in H0(b) to K0 and ones in H1(bbin − b) to K1.
for k ∈ K = K0 × K1 × ... × KNs−1 do

if k is compatible with plaintexts and ciphertexts then
return k (as the correct key)

end if
end for

end if
Decrease the index of bin as b ← b − 1.

end while
else

Initialize the index of bin as b ← size of(Hcsh) − 1
while (b ≥ 0) & (b + size of(H0:csh−1) > bsum) do

if (Hcsh(b) > 0) & (H0:csh−1(bsum − b) > 0) then
Copy a set of subkeys in the bin b of Hcsh to Kcsh ← Scsh(b).
Call Decompose bin(csh − 1, bsum − b, K) recursively.

end if
Decrease the index of bin as b ← b − 1.

end while
end if
return “failure” (correct key is not found)

end function

104 H. Kosuge and H. Tanaka

S = {{Si(b)}Nbin−1
b=0 |i ∈ [0 : Ns − 1]}, where {Si(b)}Nbin−1

b=0 is a list of Nbin sets
with their b-th element Si(b) is a set of subkeys in the bin b of histogram Hi.

As a setting, the adversary chooses an index of starting bin bstart and stop-
ping bin bstop of the last histogram H0:Ns−1. In most cases, he sets bstart =
size of(H0:Ns−1), since it is the bin in which the most likely candidates are
included. Also, the value of bstop is determined by his computing power (he can
check

∑bstop
b=bstart

H0:Ns−1(b) key candidates). The procedure consists of a recur-
sive call of a function Decompose bin and key validation inside the function. A
histogram H0:csh is decomposed into H0:csh−1 and Hcsh, and a set of subkeys in
a non-empty bin Scsh(b) is copied to Kcsh. From the last histogram H0:Ns−1 to
the first one H0:1, the decomposition is recursively executed to obtain a set of
key candidates K.

Compared to the optimal key enumeration [20], the histogram-based key
enumeration is suboptimal, since it can not enumerate candidates in the same
bin and there is an estimation error caused by the convolution. However, the time
complexity of the algorithm is negligible compared to the total key validation,
since the number of candidates |K| in each key verification is much more than
the number of times to call Decompose bin. In average, it equals |K| = T/(Ns ·
Nbin − (Ns − 1)), where T is the total number of keys to enumerate. Also, the
algorithm is easily parallelized.

3 Reestimation of Complexity by Time-Data Tradeoff

The previous method of differential bias attack [2] requires plenty of plaintexts
with leakages. The adversary requires at least 234 chosen plaintexts. Additionally,
he queries multiple leakages from the same chosen plaintext to reduce the time
complexity (see Eq. (3)). In this way, the previous method requires additional
data. Therefore, we can not evaluate security against more practical adversary.
We propose another method for differential bias attack which is feasible with a
smaller number of data in Sect. 3.1. The method adopts hypothesis testing in
the same manner as the previous one, however, there is a difference in the way
to obtain samples. Also, we compare two methods by varying the settings of
leakage range in Sect. 3.2.

3.1 New Hypothesis-Testing Method

To reconsider the number of data required to obtain E[q] samples (see Eq. (1))
for each key candidate, we exploit bijection of 32-bit functions composed of four
Sboxes and one MDS matrix. Let Fi be such function, i.e., yi = Fi(xi,ki). We
consider 32-bit values of a pair of plaintexts (xi,x′

i) and their outputs (yi,y
′
i)

(see Eq. (2)). We define a function DFi which outputs (yi,y
′
i) = DFi((xi,x′

i),ki).
When we regard ki as constant, DFi is a bijective function (DFi : (F32

2)2 →
(F32

2)2). From the fact, we derive a ratio of (xi,x′
i) such that yi ⊕ y′

i has only
one non-zero byte (we call condition of sample) as follows.

Differential Bias Attack for Block Cipher Under Randomized Leakage 105

First, we calculate the number of (yi,y
′
i) such that yi ⊕ y′

i has only one
non-zero byte. There are 28 · (28 − 1) possible values for a byte with non-zero
difference and 224 possible values for remaining 3 bytes with zero differences,
and there are 4 ways to choose the byte with non-zero difference. Therefore, the
number is calculated as 4 · 224 · 28 · (28 − 1). Next, we consider the number of
(xi,x′

i) such that (yi,y
′
i) has only one non-zero byte. Since DFi is bijective when

ki is constant, there is a unique (xi,x′
i) for each (yi,y

′
i). Therefore the number

of target pairs of (xi,x′
i) satisfying the condition of sample equals one of (yi,y

′
i).

Hence, we can calculate the ratio as:

4 · 224 · 28 · (28 − 1)
232 · (232 − 1)

≈ 2−22. (8)

The above discussion is applicable to all block ciphers in which there are bijective
components such as DFi.

Using Eq. (8), we propose an algorithm which can minimize the number of
required data in Algorithm4. Let d be the total number of different plaintexts,
there are d · (d − 1) differences xi ⊕ x′

i we can take. Among them, there are
d · (d − 1) · 2−22 pairs in which yi ⊕ y′

i has only one non-zero byte. Since it
requires E[q] samples which satisfies the above to distinguish two distributions,
d is estimated as follows.

d · (d − 1)
222

=
E[q]
q2s

⇒ d ≈ 211 · (E[q])
1
2

qs
(9)

The adversary chooses a pair of plaintexts from XD and checks whether or not
they satisfy the condition of sample for ki. Since the ratio is 2−22, it requires 222

times of execution of DFi (equivalent to twice 1-round encryptions) to obtain a
sample. When the number of required sample is E[q], the time complexity T and
the number of required data D of Algorithm 4 are estimated as (α = β = 232−1):

T = 232 · E[q]
q2s

· 222 · 2
10

· 4 + (1 + 2−32 · (232 − 1))4 ≈ 253.68 · E[q]
q2s

(10)

D = 211 · (E[q])
1
2

qs
· qs · 4 = 213 · (E[q])

1
2 (11)

Contrary to Eqs. (4) and (11) shows the minimum number of data. However,
there is a time-data tradeoff. The time complexity T increases because of redun-
dant computation of DFi (equivalent to 2 times 1-round encryption) to check
whether a pair of plaintexts satisfies the condition of sample.

3.2 Comparison to the Previous Method

We explain the difference between the previous and proposed methods. The
previous method requires chosen plaintexts which take all possible values in xi

to obtain all possible pairs of (yi,y
′
i) = DFi((xi,x′

i),ki) for any ki. Then, a
pair of plaintexts for any (yi,y

′
i) and ki can be deterministically found in the

106 H. Kosuge and H. Tanaka

Algorithm 4. New method of differential bias attack with hypothesis testing.
input XD and LD.
for i = 0 → 3 do

for k∗
i ∈ F

32
2 do

Initialize a likelihood ratio Λk∗
i

← 1.
for (x,x′) ∈ XD × XD do

if (yi,y
′
i) = DFi((xi,x

′
i),k

∗
i) has only one non-zero difference then

Acquire {lj}qs−1
j=0 and {l′j′}qs−1

j′=0 from LD corresponding to x and x′.
Λk∗

i
= Λk∗

i
×∏j,j′ Pr[lj ⊕ l′j′ |correct]/Pr[lj ⊕ l′j′ |wrong].

if Λk∗
i

≤ (1 − α)/β ∪ β/(1 − α) ≤ Λk∗
i
then

Terminate inner-most loop (for {x,x′} ∈ XD × XD do).
end if

end if
end for
if β/(1 − α) ≤ Λk∗

i
then

k∗
i is added to a set of candidates Ki.

end if
end for

end for
Brute-force search for the correct key k∗ ∈ K(= K0 × K1 × K2 × K3).
return k∗

list XD. However, the adversary has approximately 244 samples for each key
candidate from Eq. (8), and this is much more than the number required for the
attack (see Tables 1 and 2). As opposed to the previous method, the proposed
method aims to query the minimum number of chosen plaintexts sufficient for
the attack. Since the adversary does not have all possible pairs of (yi,y

′
i), he

should find pairs which satisfy the condition of sample and disregard the others.
This procedure increases time complexity.

Tables 1 and 2 show complexity of the previous and proposed methods in the
bitwise and bytewise random leakage models. We use the same leakage ranges
as described in [2] for the comparison. Obviously, there is a time-data tradeoff

Table 1. Complexity of bitwise random leakage model.

Leakage range E[q] qs Current work This work

Randomized parameters zri,j

Constant Variable T D T D

Space r = 1 ∀(i, j) 228.84 256 251.84 242.00 274.52 227.42

Space r = 2 ∀(i, j) 224.84 256 247.84 242.00 270.52 225.42

Space r = 3 ∀(i, j) 239.98 256 262.98 242.00 285.66 232.99

Time (i, j) r 219.90 11 247.44 237.46 265.58 222.95

Time (i, j) r (r �= 9) 219.36 10 247.04 237.32 265.04 222.68

Time (i, j) r (r �= 1, 2, 8, 9) 233.22 7 260.41 236.81 278.90 229.61

Time & space None (r, i, j) 238.04 256 × 11 257.58 245.46 283.72 232.02

Time & space None ∀(r, i, j) (r �= 9) 237.49 256 × 10 257.17 245.32 283.17 231.75

Time & space None ∀(r, i, j) (r �= 1, 2, 8, 9) 251.22 256 × 7 271.41 244.81 296.90 238.61

Differential Bias Attack for Block Cipher Under Randomized Leakage 107

Table 2. Complexity of bytewise random leakage model.

Leakage range E[q] qs Current work This work

Randomized parameters zri,j

Constant Variable T D T D

Space r = 1 ∀i 219.84 32 245.84 239.00 265.52 222.92

Space r = 2 ∀i 214.48 32 240.48 239.00 260.16 220.24

Space r = 3 ∀i 229.64 32 255.64 242.00 275.32 227.82

Time i r 215.62 11 243.16 237.46 261.30 220.81

Time i r (r �= 9) 215.52 10 243.19 237.32 261.20 220.76

Time i r (r �= 1, 2, 8, 9) 224.22 7 252.41 236.81 269.90 225.11

Time & space None (r, i) 224.04 16 × 11 246.58 242.45 269.72 225.02

Time & space None ∀(r, i) (r �= 9) 223.58 16 × 10 246.26 242.32 269.26 224.79

Time & space None ∀(r, i) (r �= 1, 2, 8, 9) 238.04 16 × 7 261.23 241.80 283.72 232.02

between them. We see the tables from both viewpoints of the adversary and
evaluator (see Sect. 1.2 for their definition). For the adversary (resp. evaluator),
we assume that the adversary can check 260 (resp. 280) key candidates [12].

In Tables 1 and 2, the proposed method is infeasible under T ≤ 260. There-
fore, the adversary should query as much data as possible to apply the previous
method. On the contrary, some attacks of the proposed method are feasible
under T ≤ 280, therefore, the evaluator needs to consider some countermea-
sure in addition to restrict online phase against the adversary. As mentioned
in [2], noise addition can be an effective countermeasure. When a probabil-
ity that an observed bit/byte is correct (not a noise) is π, E[q] increases as
E[q]′ = E[q] · (π2)−1. Therefore, time complexity and the required data for the
proposed method increases as T ′ = T · (π2)−1 and D′ = D · (π)−1.

4 Application of Key Enumeration and Rank Estimation

Differential bias attacks with hypothesis testing shown in Sects. 2.2 and 3.1 can
restrict key-candidate space into |K| = (1 + α · (232 − 1))4, and the success
rate of the attack is (1 − β)4. The methods are based on the assumption that
the adversary is given data sufficient to have small error rates α and β (e.g.
α = β = 2−32). Therefore, the adversary achieve the key-candidate space close
to 16 and the success rate close to 1. On this point, we also consider an attack
which may be feasible even when given data are not sufficient to have small
error rates. We apply histogram-based key enumeration [17] to differential bias
attack and evaluate its efficiency by histogram-based rank estimation [10]. We
show the specification of the algorithm in Sect. 4.1 and experimentally evaluate
its efficiency in Sect. 4.2.

4.1 Differential Bias Attack with Key Enumeration

First, the adversary makes a list of log posterior probabilities for each
subkey from random leakages and construct histograms {H0,H1, ...,HNs−1}

108 H. Kosuge and H. Tanaka

(see Sect. 2.3). Let IDFi be a function which outputs 1 if a difference of (yi,y
′
i) =

DFi((xi,x′
i),ki) has only one non-zero byte, and outputs 0 otherwise (IDFi checks

if (xi,x′
i) satisfy the condition of sample for ki). Using Bayes’ theorem, we can

compute a posterior probability of subkey candidate k∗
i as follows.

Pr[ki = k∗
i |XD,LD × LD] =

Pr[XD,LD × LD|ki = k∗
i] · Pr[ki = k∗

i]∑
k′
i
Pr[XD,LD × LD|ki = k′

i] · Pr[ki = k′
i]

=
Pr[XD,LD × LD|ki = k∗

i]∑
k′
i
Pr[XD,LD × LD|ki = k′

i]
(12)

Note that we assume that Pr[ki = k∗
i] is a uniform distribution (uniform prior).

Since the denominator is a normalizing constant, we only consider likelihood of
ki = k∗

i .

Pr[XD,LD × LD|ki = k∗
i] =

∏

(l,l′)

Pr[l ⊕ l′|ki = k∗
i]

=

⎛

⎝
∏

(l,l′)|IDFi
(xi,x′

i,k
∗
i)=0

Pr[l ⊕ l′| wrong]

⎞

⎠ ·
⎛

⎝
∏

(l,l′)|IDFi
(xi,x′

i,k
∗
i)=1

Pr[l ⊕ l′| correct]

⎞

⎠

=

⎛

⎝
∏

(l,l′)

Pr[l ⊕ l′| wrong]

⎞

⎠ ·
⎛

⎝
∏

(l,l′)|IDFi
(xi,x′

i,k
∗
i)=1

Pr[l ⊕ l′| correct]
Pr[l ⊕ l′| wrong]

⎞

⎠. (13)

Since
∏

(l,l′) Pr[l⊕l′| wrong] is constant for all subkey candidates, key-dependent

variable is
∏

(l,l′)|IDFi
(xi,x′

i,k
∗
i)=1

Pr[l⊕l′| correct]
Pr[l⊕l′| wrong] . From Eqs. (12) and (13), the pos-

terior probability can be expressed as follows.

Pr[ki = k∗
i |XD,LD×LD] ∝

∏

(l,l′)|IDFi
(xi,x′

i,k
∗
i)=1

Pr[l ⊕ l′| correct]
Pr[l ⊕ l′| wrong]

(14)

Hence, the posterior probability is obtained by likelihood ratio. From the poste-
rior probability, we obtain a list of log posterior probabilities:

log (Pr[ki = k∗
i |XD,LD×LD]) =

∑

(l,l′)|IDFi
(xi,x′

i,k
∗
i)=1

log
(

Pr[l ⊕ l′| correct]
Pr[l ⊕ l′| wrong]

)

+ const. (15)

Note that we can ignore the constant value in the construction of histograms.
Algorithm 5 shows an application of the histogram-based key enumeration

to differential bias attack. Computation of log likelihood ratios for all subkeys
requires the highest cost. The time complexity of the operation is calculated as
232 · d · (d − 1) · 2/10 · 4, where d is the number of different chosen plaintexts.
When we assume an adversary who can check 260 (resp. 280) key candidates, the
computation is feasible if d ≤ 214.66 (resp. d ≤ 224.66).

Differential Bias Attack for Block Cipher Under Randomized Leakage 109

Algorithm 5. Differential bias attack with histogram-based key enumeration.
input XD and LD.
for i = 0 → 3 do

for k∗
i ∈ F

32
2 do

Initialize a log likelihood ratio log(Λk∗
i
) ← 0.

for (x,x′) ∈ XD × XD do
if (yi,y

′
i) = DFi((xi,x

′
i),k

∗
i) has only one non-zero difference then

Acquire {li}qs−1
i=0 and {l′j}qs−1

j=0 from LD corresponding to x and x′.
log(Λk∗

i
) ← log(Λk∗

i
) +
∑

i,j log(Pr[li ⊕ l′j |correct]/Pr[li ⊕ l′j |wrong]).
end if

end for
Calculate a bin index b ← 	log(Λk∗

i
)/Sbin
.

Add k∗
i to the bin b of Hi as Si(b) ← Si(b) ∪ k∗

i .
Increase Hi(b) ← Hi(b) + 1.

end for
end for
Call Algorithm 2 H ← rank estimation(H0, H1, H2, H3).
Call Algorithm 3 k∗ ← key enumeration(H, S).
return k∗

Memory requirements for Algorithm5 become cumbersome, since it requires
a list of all 32-bit subkeys and their index of bins. We show the way to
practically implement the algorithm as follows. Using Eq. (15), a list of log
posterior probabilities for 32-bit subkey is obtained, and it requires S whose
size is more than 232 × 4 × 4 [byte]. Therefore, the adversary may decom-
pose a list for 32-bit subkey list into four lists for 8-bit subkeys. For exam-
ple, we decompose four 32-bit lists to sixteen 8-bit lists by marginalization, i.e.,
Pr[k∗

j |XD,LD × LD] =
∑

ki|kj=k∗
j
Pr[ki = k∗

i |XD,LD × LD]. When we decom-

pose a list of Ns log posterior probabilities {LP
(j)
i }Ns

i=1 (the binsize is Sbin) to
one of N ′

s = Ns × Np lists {dLP
(j′)
i′ }N ′

s

i′=1 (the binsize is dSbin), there may be an
error caused by the decomposition. Supposing that LP

(j)
i =

∑Np−1
i′=0 dLP

(j′)
i′ , we

have:
∣
∣
∣LP

(j)
i − m

(j)
i

∣
∣
∣ ≤ Sbin

2
,

∣
∣
∣dLP

(j′)
i′ − dm

(j′)
i′

∣
∣
∣ ≤ dSbin

2
,

=⇒
∣
∣
∣LP

(j)
i − m

(j)
i

∣
∣
∣ =

∣
∣
∣
∣
∣
∣

Np−1∑

i′=0

dLP
(j′)
i′ −

Np−1∑

i′=0

dm
(j′)
i′

∣
∣
∣
∣
∣
∣
≤ Np × dSbin

2
. (16)

Therefore, there is no error caused by the decomposition if an inequality
Sbin ≤ (Np ×dSbin) holds. In this case, we only consider the error caused by the
convolution of histograms shown in Eq. (5). When we execute rank estimation,
S is not required, therefore, the above decomposition is not necessary.

110 H. Kosuge and H. Tanaka

Algorithm 6. Parallelized rank estimation for differential bias attack.
for i = 0 → 3 do

for k∗
i ∈ F

32
2 in parallel do

for j = 0 → q − 1 do
Initialize a log likelihood ratio log(Λk∗

i
) ← 0.

Choose yi and y′
i randomly where only 1 byte has a difference.

Obtain xi and x′
i s.t. (yi,y

′
i) = DFi((xi,x

′
i),k

∗
i).

Choose two plaintexts x and x′ which contain xi and x′
i, respectively.

Choose l and l′ randomly corresponding to x and x′.
log(Λk∗

i
) ← log(Λk∗

i
) + log(Pr[l ⊕ l′|correct]/Pr[l ⊕ l′|wrong]).

end for
Calculate a bin index b ← 	log(Λk∗

i
)/Sbin
.

Increase Hi(b) ← Hi(b) + 1.
end for

end for
Call Algorithm 2 E ← rank estimation(H0, H1, H2, H3).
return E.

4.2 Experimental Evaluation

Contrary to the methods shown in Sects. 2.2 and 3.1, we can not estimate suc-
cess rate using error rates. Therefore, we should estimate it experimentally.
Algorithm 6 shows a procedure of the experiment and it is performed by CUDA
(version 6.00) implementation on GPGPU (NVIDIA Tesla K20Xm) platform in
order to parallelize the computation (“for k∗

i ∈ F
32
2 in parallel do” in Algo-

rithm6). Note that we simulate differential bias attack without actual data. For
all k∗

i , we encrypt q pairs of plaintexts, s.t., (yi,y
′
i) = DFi((xi,x′

i),k
∗
i), and

extract leakages from a leakage range randomly. After making four histograms
H0, H1, H2 and H3, we execute histogram-based rank estimation [10].

We estimate success rate changing the number of samples q. Because of con-
straints on execution time (time complexity is 232 · q · 4), we set q = 500 · i,
i ∈ {1 : 5}. Since q = 2500 at most, it is much smaller than all expected number
of samples E[q] in Tables 1 and 2. Therefore, we choose a leakage range which
requires less samples. From ones of the bytewise random leakage model shown in
Table 2, we choose one of the leakage ranges, space randomization of r = 2 (sec-
ond line). Note that a leaked byte is randomly chosen from z2i or k2

i (i ∈ [0 : 15]).
This setting is the most advantageous one for the adversary. For all q, we obtain
the upper bound of the estimated rank to estimate success rate for key-recovery
under T ≤ 280 and T ≤ 260.

First, we make a histogram H0:3 in condition that the correct key is unknown.
Next, we obtain a bin index of the correct key b† for 232 times by changing
plaintexts and position of leaked bytes randomly. Last, we count the number of
candidates in H0:3 such that

∑4·q−4
b=b† H0:3(b) ≤ 260 or 280 (we set Nbin = q) and

calculate its ratio (success rate). As mentioned in Sect. 3.2, we consider both
viewpoints of the evaluator (T ≤ 280) and the adversary (T ≤ 260). Figure 4
shows the results. Success rate is practical under T ≤ 280 (right graph) and

Differential Bias Attack for Block Cipher Under Randomized Leakage 111

0 1,000 2,000

0

0.2

0.4

q

su
cc

es
s

ra
te

0 1,000 2,000

0

0.2

0.4

q

su
cc

es
s

ra
te

Fig. 4. Success rate of the proposal attack under the leakage range r = 2 and T ≤ 260

(left) under T ≤ 280 (right).

q ≥ 1500 even if the number of samples q is smaller than E[q] = 214.48 used in
hypothesis-testing methods. Hence, the adversary given approximately E[q]/24

samples for all key candidates (214.48/1500 ≈ 24) is still a threat for the evaluator.
We confirm that success rate for the adversary to recover the secret key is

approximately equal to 0 under T ≤ 260, however, the attack can be practical
under T ≤ 280. The evaluator can have an effective security margin by evaluating
cryptographic devices by assuming the adversary with such computing power.

5 Conclusion

This paper improves the security analysis of AES-128 under the random leakage
model. More specifically, we generalize differential bias attack to be applicable
under less advantageous condition for the adversary. First, we reestimate com-
plexity for the adversary given smaller number of data by using new hypothesis-
testing method. Second, we apply key enumeration to differential bias attack.
Both results show that it is possible to recover the secret key under T ≤ 280

with much smaller number of data. It indicates that differential bias attack is
a practical threat from the view point of the evaluator. Also, the attack can
complement other side-channel attacks to reduce time complexity. In addition
to noise addition, intensive prevention of leakages from important rounds such
as second round of AES can be an effective countermeasure.

References

1. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. Cryptology ePrint Archive, report
2015/221 (2015)

2. Bogdanov, A., Isobe, T.: How secure is AES under leakage. In: Iwata, T., Cheon,
J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 361–385. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-48800-3 15

http://dx.doi.org/10.1007/978-3-662-48800-3_15

112 H. Kosuge and H. Tanaka

3. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast
and memory-efficient key recovery in side-channel attacks. In: Dunkelman, O.,
Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310–327. Springer, Cham (2016).
doi:10.1007/978-3-319-31301-6 19

4. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). doi:10.1007/3-540-36400-5 3

5. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm
for multi-dimensional side-channel attacks. Cryptology ePrint Archive, report
2015/1236 (2015)

6. Dinur, I., Shamir, A.: Side channel cube attacks on block ciphers. Cryptology
ePrint Archive, report 2009/127 (2009)

7. Doget, J., Prouff, E., Rivain, M., Standaert, F.X.: Univariate side channel attacks
and leakage modeling. J. Cryptogr. Eng. 1(2), 123–144 (2011)

8. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5 16

9. Fluhrer, S.R., McGrew, D.A.: Statistical analysis of the alleged RC4 keystream
generator. In: Goos, G., Hartmanis, J., Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 19–30. Springer, Heidelberg (2001). doi:10.1007/
3-540-44706-7 2

10. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48116-5 6

11. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 27

12. Kleinjung, T., Lenstra, A.K., Page, D., Smart, N.P.: Using the cloud to determine
key strengths. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol.
7668, pp. 17–39. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34931-7 3

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). doi:10.
1007/3-540-48405-1 25

14. Mantin, I.: Predicting and distinguishing attacks on RC4 keystream generator. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 491–506. Springer,
Heidelberg (2005). doi:10.1007/11426639 29

15. Manzoor, K., et al.: Efficient practical key recovery for side-channel attacks. Mas-
ter’s thesis, Aalto University, June 2014

16. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in paral-
lel after a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9453, pp. 313–337. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48800-3 13

17. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53140-2 4

18. Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel
attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.)
CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04138-9 8

http://dx.doi.org/10.1007/978-3-319-31301-6_19
http://dx.doi.org/10.1007/3-540-36400-5_3
http://dx.doi.org/10.1007/978-3-662-46800-5_16
http://dx.doi.org/10.1007/3-540-44706-7_2
http://dx.doi.org/10.1007/3-540-44706-7_2
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-662-48116-5_6
http://dx.doi.org/10.1007/978-3-540-45146-4_27
http://dx.doi.org/10.1007/978-3-642-34931-7_3
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/11426639_29
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-48800-3_13
http://dx.doi.org/10.1007/978-3-662-53140-2_4
http://dx.doi.org/10.1007/978-3-642-04138-9_8
http://dx.doi.org/10.1007/978-3-642-04138-9_8

Differential Bias Attack for Block Cipher Under Randomized Leakage 113

19. Schramm, K., Wollinger, T., Paar, C.: A new class of collision attacks and its
application to DES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 206–
222. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39887-5 16

20. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-35999-6 25

21. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 8

22. Wald, A.: Sequential tests of statistical hypotheses. In: Kotz, S., Johnson, N.L.
(eds.) Breakthroughs in Statistics, pp. 256–298. Springer, Heidelberg (1992)

http://dx.doi.org/10.1007/978-3-540-39887-5_16
http://dx.doi.org/10.1007/978-3-642-35999-6_25
http://dx.doi.org/10.1007/978-3-642-38348-9_8
http://dx.doi.org/10.1007/978-3-642-38348-9_8

Differential Cryptanalysis

Impossible Differential Cryptanalysis
of Reduced-Round SKINNY

Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada

youssef@ciise.concordia.ca

Abstract. SKINNY is a new lightweight tweakable block cipher family
proposed by Beierle et al. at CRYPTO 2016. SKINNY has 6 main vari-
ants where SKINNY-n-t is a block cipher that operates on n-bit blocks
using t-bit tweakey (key and tweak) where n = 64 or 128 and t = n, 2n,
or 3n. In this paper, we present impossible differential attacks against
reduced-round versions of all the 6 members of the SKINNY family in
the single-tweakey model. More precisely, using an 11-round impossi-
ble differential distinguisher, we present impossible differential attacks
against 18-round SKINNY-n-n, 20-round SKINNY-n-2n and 22-round
SKINNY-n-3n (n = 64 or 128). To the best of our knowledge, these are
the best attacks against these 6 variants in the single-tweakey model.

Keywords: Cryptanalysis · Impossible differential attacks · Tweakable ·
Block ciphers · SKINNY

1 Introduction

SKINNY [3] is a Substitution Permutation Network (SPN) family of tweakable
lightweight block ciphers proposed at CRYPTO 2016 by Beierle et al. It supports
two block lengths n = 64 or 128 and for each of them, the tweakey t can be either
n, 2n or 3n. This family of ciphers inherits the recent design trend of having an SPN
cipher with suboptimal internal components. More precisely, SKINNY uses a light
tweakey schedule along with a round function that consists of a compact S-box
and a sparse diffusion layer. However, these suboptimal components are arranged
such that tight security bounds are guaranteed. Indeed, using Mixed Integer Lin-
ear Programming (MILP), the designers of SKINNY provide high security bounds
against differential/linear attacks for all the SKINNY versions in both the single-
tweakey and related-tweakey models. Furthermore, SKINNY has a good perfor-
mance for round-based ASIC implementation as it requires a very small area using
serial ASIC. Moreover, the designers of SKINNY show that its ASIC threshold
implementation is very favorable to AES-128 threshold implementation [5]. Pro-
viding compact implementation and a high level of security with the existence of
the tweakey was feasible by generalizing the Superposition TWEAKEY (STK)
construction [7]. Lastly, being a tweakable block cipher allows SKINNY to be
employed into a higher level of operating modes such as SCT [11].
c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 117–134, 2017.
DOI: 10.1007/978-3-319-57339-7 7

118 M. Tolba et al.

The designers of SKINNY presented 16-round attacks against SKINNY-n-
n (n = 64 or 128) in the single-tweakey model utilizing 11-round impossible
differential distinguisher. To provoke public cryptanalysis of SKINNY, they have
announced a competition [2] against two particular variants of SKINNY, namely,
SKINNY-64-128 and SKINNY-128-128, in which they indicated that the best
known attack against SKINNY-64-128, in the single-tweakey model, is 18 rounds.
As a result, a handful of third-party analysis have been published [1,10,12].
However, these attacks are in the arguably weaker attack model, the related-
tweakey model, in which the attacker is assumed to have the ability to query the
encryption oracle with keys that have specific relations.

In this paper, we present impossible differential attacks against reduced-
round versions of all the 6 variants of SKINNY, namely, SKINNY-n-n, SKINNY-
n-2n and SKINNY-n-3n (n = 64 or 128). All these attacks utilize the same 11-
round impossible differential distinguisher. Then, we exploit the fact that the
tweakey additions are only performed on the first two rows of the state, along
with the MixColumns operation properties and the tweakey schedule relations,
to extend this distinguisher by 7, 9, 11 rounds to launch key-recovery attacks in
the single-tweakey model against 18, 20, 22 rounds of SKINNY-n-n, SKINNY-
n-2n and SKINNY-n-3n (n = 64 or 128), respectively. Specifically, we extend
the designers’ 11-round impossible differential distinguisher by 3, 3 and 3 rounds
above it and 4, 6 and 8 rounds below it to launch 18, 20 and 22 rounds attacks
against SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respec-
tively. The time, data and memory complexities of our attacks are presented in
Table 1.

Table 1. The time, data and memory complexities of our attacks.

Block cipher version # of rounds Time Data Memory

SKINNY-64-64 18 257.1 247.52 258.52

SKINNY-128-128 18 2116.94 292.42 2115.42

SKINNY-64-128 20 2121.08 247.69 274.69

SKINNY-128-256 20 2245.72 292.1 2147.1

SKINNY-64-192 22 2183.97 247.84 274.84

SKINNY-128-384 22 2373.48 292.22 2147.22

The rest of the paper is organized as follows. Section 2 provides the notations
used throughout the paper and a brief description of SKINNY. In Sect. 3, we
present the impossible differential distinguisher used in our attacks. The details
of our attacks are presented in Sects. 4, 5 and 6, respectively. Finally, the paper
is concluded in Sect. 7.

2 Specifications of SKINNY

The following notations are used throughout the rest of the paper:

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 119

– TKi: The round tweakey used in round i.
– ETKi: The equivalent round tweakey used in round i.
– xi: The input to the SubCells (SC) operation at round i.
– yi: The input to the AddRoundConstantTweakey (AK) operation at round i.
– y

′
i: The input to the AddRoundConstantEquivlantTweakey (AEK) operation

at round i.
– zi: The input to the ShiftRows (SR) operation at round i.
– wi: The input to the MixColumns (MC) operation at round i.
– xi[j]: The jth cell of xi, where 0 ≤ j < 16.
– xi[j · · · l]: The cells from j to l of xi, where j < l.
– xi[j, l]: The cells j and l of xi.
– xi[j][k]: The kth bit of the jth cell of xi.
– xi[j]{k, l,m}: The XOR of bits k, l,m of cell j of xi.
– xi[col : j]: The four cells in column j, e.g., xi[col : 0] = xi[0, 4, 8, 12].
– xi[SR−1[col : j]]: The four cells in column j after the SR−1 operation is

applied, e.g., xi[SR−1[col : 0]] = xi[0, 7, 10, 13].
– xi[col : j][k, l]: The jth and lth cells of column j of xi, e.g., xi[col : 0][0, 1] =

xi[0, 4].
– Δxi,Δxi[j]: The difference at state xi and cell xi[j], respectively.

The SKINNY family supports two block lengths of n = 64 and 128 bits.
In both versions, the internal state IS is represented as a 4 × 4 array of cells
such that one cell represents a nibble (when the block length n = 64) and a
byte (when the block length n = 128). While classical block ciphers have two
inputs, namely the plaintext and the key, and output the ciphertext, SKINNY
is a tweakable block cipher [7,9] that uses an input called the tweakey instead of
the key. Then, the user has the freedom to choose which part of the tweakey to
be assigned to the key and which part to be assigned to the tweak. This family of
block ciphers with block length n deploys three main tweakeys of lengths t = n
bits, t = 2n bits and t = 3n bits. Similar to the state, the tweakey state can be
represented as z 4 × 4 arrays of cells, i.e., we have arrays TK1 (in case z = 1),
TK1 and TK2 (in case z = 2), TK1 , TK2 , and TK3 (in case z = 3).

The encryption operation proceeds as follows. First, the plaintext m =
m0‖m1 ‖ · · · ‖m14‖m15 (where |mi| = n/16 = s-bit) is loaded into the internal
state IS row-wise as depicted in Fig. 1. Then, the tweakey input tk = tk0‖tk1‖ · · ·
‖tk16z−1 (where |tki| is s-bit as in the internal state) is loaded row-wise such that
TK1[i] = tki for 0 ≤ i ≤ 15 (in case z = 1), TK1[i] = tki,TK2[i] = tk16+i for
0 ≤ i ≤ 15 (in case z = 2) or TK1[i] = tki,TK2[i] = tk16+i,TK3[i] = tk32+i for
0 ≤ i ≤ 15 (in case z = 3). Finally, the internal state is updated by applying
the round function r times, where the number of rounds r depends on the block
length and the tweakey size as shown in Table 2.

As shown in Fig. 1, in each round, SKINNY applies five different oper-
ations, namely, SubCells, AddConstants, AddRoundTweakey, ShiftRows and
MixColumns. The cipher does not apply whitening tweakeys. Consequently,
parts of the first and last rounds do not add any security. In what follows,
we describe the five different operations that are employed in each round:

120 M. Tolba et al.

Table 2. Number of rounds for SKINNY-n-t, with n-bit state and t-bit tweakey state.

Block size n Tweakey size t

n 2n 3n

64 32 36 40

128 40 48 56

Fig. 1. The SKINNY round function

– SubCells (SC): A nonlinear bijective mapping applied on every cell of the
internal state, where 4-bit (in case n = 64) or 8-bit (in case n = 128) S-boxes
are applied.

– AddConstants (AC): A 4 × 4 round constant is XORed to the state. These
round constants are generated using a 6-bit affine LFSR. The details of gen-
erating the round constants can be found in [3].

– AddRoundTweakey (ART): The first and second rows of all the tweakey
arrays are XORed to the state. More precisely, for 0 ≤ i ≤ 7, we have:

• IS[i] = IS[i] ⊕ TK1[i], when z = 1,
• IS[i] = IS[i] ⊕ TK1[i] ⊕ TK2[i], when z = 2,
• IS[i] = IS[i] ⊕ TK1[i] ⊕ TK2[i] ⊕ TK3[i], when z = 3.

– ShiftRows (SR): The rows of the state are rotated as in AES but to the
right, i.e., the following permutation P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14,
15, 12] is applied.

– MixColumns (MC): Each column in the state is multiplied by a binary matrix
M , where M and its inverse M−1 are given as follows:

M =

⎛
⎜⎜⎝

1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

⎞
⎟⎟⎠ , M−1 =

⎛
⎜⎜⎝

0 1 0 0
0 1 1 1
0 1 0 1
1 0 0 1

⎞
⎟⎟⎠.

Tweakey Schedule. As depicted in Fig. 2, the tweakey arrays are updated
through tweakey schedule as follows. First all the tweakey arrays, i.e., TK1
(when z = 1), TK1,TK2 (when z = 2), or TK1,TK2,TK3 (when z = 3)
are permuted using a permutation PT such that PT = [9, 15, 8, 13, 10, 14,
12, 11, 0, 1, 2, 3, 4, 5, 6, 7]. Finally, each cell in the first and second rows of
TK2,TK3 (when z = 2 or z = 3) is updated using the LFSR operations shown
in Table 3, where x0 is the LSB of the cell.

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 121

Table 3. The SKINNY LFSR used in the tweakey schedule, where s denotes the cell
size in bits.

TK s LFSR

TK2 4 (x3 ‖ x2 ‖ x1 ‖ x0) → (x2 ‖ x1 ‖ x0 ‖ x3 ⊕ x2)

8 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0) → (x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0 ‖ x7 ⊕ x5)

TK3 4 (x3 ‖ x2 ‖ x1 ‖ x0) → (x0 ⊕ x3 ‖ x3 ‖ x2 ‖ x1)

8 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0) → (x0 ⊕ x6 ‖ x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1)

Fig. 2. The tweakey schedule

In our attack, we use AddKey (AK) operation which compromises the AC
and ART operations. Moreover, we swap the linear operations AK, MC ◦ SR,
and hence we use the equivalent subtweakey ETK instead of the subtweakey
TK such that ETKr+1 = MC ◦ SR(TKr).

3 An Impossible Differential Distinguisher of SKINNY

Impossible differential cryptanalysis was proposed independently by Biham,
Biryukov and Shamir [4] and Knudsen [8]. It exploits a (truncated) differential
characteristic of probability exactly 0 and thus acts as a distinguisher. Then, this
distinguisher is turned into a key-recovery attack by prepending and/or append-
ing additional rounds, which are usually referred to as the analysis rounds. The
keys involved in the analysis rounds which lead to the impossible differential are
wrong keys and thus are excluded. Miss-in-the-Middle is the general technique
used to construct impossible differentials, where a cipher E is split such that
E = E2 ◦ E1, and we try to find two deterministic differentials, the first one
covers E1 and has the form Δδ → Δγ, and the second covers E−1

2 , and has the
form Δβ → Δζ. When the intermediate differences Δγ,Δζ do not match, the
differential Δδ → Δβ that covers the whole cipher E holds with zero probability.

The designers of SKINNY exhaustively searched for the longest truncated
impossible differential that has one active cell in both Δδ and Δβ. They found
16 such truncated impossible differentials where each one covers 11 rounds. They
exploited one of these 16 impossible differentials, illustrated in Fig. 3, to attack
16-round SKINNY-n-n (n = 64 or 128). This distinguisher, which we reuse in
our attacks, states that a pair of messages that has only one active cell at x3[12]
cannot have only one active cell at x14[8]. The reason is that the active cell

122 M. Tolba et al.

Fig. 3. Impossible differential distinguisher of SKINNY

Δx3[12] results in 4 active cells and 12 unknown cells after 6 rounds, i.e., at
state x9. From the other side, the active cell Δx14[8] results in 4 inactive cells,
5 unknown cells and 7 active cells at state Y9 contradicting with the forward
differential at Δy9[15].

Our attacks depend on the following proposition:

Proposition 1 (Differential Property of the S-box). Given two nonzero differ-
ences Δi and Δo in F16 or F256, the equation: S(x) + S(x + Δi) = Δo has one
solution on average. This property also applies to S−1.

All our attacks use the same 11-round distinguisher, have 3 analysis rounds
on its top. They, however, differ in the analysis rounds appended below it. In
what follows, we describe our attack against SKINNY-64-128 in details and then
mention only the main differences for the other attacks.

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 123

4 Impossible Differential Key-Recovery Attack
on 20-Round SKINNY-n-2n (n = 64 or 128)

4.1 Impossible Differential Key-Recovery Attack
on SKINNY-64-128

In this section, we present the first published attack on 20-round SKINNY-64-
128 in the single-tweakey model. We use the notion of data structures to generate
enough pairs of messages to launch the attack. In the first three rounds, we use
the equivalent tweakey ETK instead of the tweakey TK. Therefore, the first
round has no tweakey, and hence we can build our structures at y

′
1. Then, we

propagate it backward linearly through MC−1, SR−1, and SC−1 to obtain the
corresponding plaintexts. Our utilized structure takes all the possible values in
7 nibbles y

′
1[3, 4, 5, 6, 9, 11, 14] while the remaining nibbles take a fixed value.

Thus, one structure generates 24×7 × (24×7 − 1)/2 ≈ 255 possible pairs. Hence,
we have 255 possible pairs of messages satisfying the plaintext differences. In
addition, we utilize the following pre-computation tables in order to efficiently
extract/filter the (equivalent) tweakey nibbles corresponding to the active state
nibbles involved in the analysis rounds, where the table Hl{(E)TKi[S]} (also
referred to as Hl) is used to extract/filter the (equivalent) tweakey used in round
i at cells belonging to the set S and H∗ is computed once and used to extract
all the tweakey nibbles of the last analysis round and those corresponding to
column 1 in round 18.

H1{TK18[2,6]}: For all the 224 possible values of Δz17[SR−1[col : 2][0, 1]],
z17[SR−1[col : 2]], compute Δy18[col : 2], y18[col : 2]. Then, store Δz17[SR−1[col :
2][0, 1]], z17[SR−1[col : 2]], y18[col : 2][0, 1] in H1 indexed by Δy18[col : 2], y18[col :
2][2, 3]. H1 has 224 rows and on average about 224/224 = 1 value in each row.

H2{TK18[0,4]}: For all the 228 possible values of Δz17[SR−1[col : 0][0, 2, 3]],
z17[SR−1[col : 0]], compute Δy18[col : 0], y18[col : 0]. Then, store Δz17[SR−1[col :
0][0, 2, 3]], z17[SR−1[col : 0]], y18[col : 0][0, 1] in H2 indexed by Δy18[col : 0],
y18[col : 0][2, 3]. H2 has 224 rows and on average about 228/224 = 24 values in
each row.

H3{TK18[3,7]}: For all the 228 possible values of Δz17[SR−1[col : 3][0, 1, 3]],
z17[SR−1[col : 3]], compute Δy18[col : 3], y18[col : 3]. Then, store Δz17[SR−1[col :
3][0, 1, 3]], z17[SR−1[col : 3]], y18[col : 3][0, 1] in H3 indexed by Δy18[col : 3],
y18[col : 3][2, 3]. H3 has 224 rows and on average about 228/224 = 24 values in
each row.

H4{TK17[0,4]}: For all the 220 possible values of Δz16[SR−1[col : 0][0]],
z16[SR−1[col : 0]], compute Δy17[col : 0][0, 1, 3], y17[col : 0]. Then, store
Δz16 [SR−1[col : 0][0]], z16[SR−1[col : 0]], y17[col : 0][0, 1] in H4 indexed by
Δy17[col : 0][0, 1, 3], y17[col : 0][2, 3]. H4 has 220 rows and on average about
220/220 = 1 value in each row.

124 M. Tolba et al.

Fig. 4. Impossible differential attack on 20-round SKINNY-n-2n

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 125

H5{TK17[2,3,6]}: From the properties of the MixColumns, we have
Δx16[0] = Δx16[8] = Δx16[12] = Δw15[8]. Therefore, for all the 240 possible
values for Δx16[8], x16[8, 12],Δw16[2, 7], w16[2, 6, 14], x17[3, 11], compute
w16[10, 15],Δy17[2, 3, 6, 10, 11, 14], y17[2, 3, 6, 10, 11, 14, 15] such that y17[15] =
SC([w16[15] ⊕ x17[3]), from the MixColumns operation. Then, store
Δz16[SR−1[col : 2][0, 2]],Δz16[SR−1[col : 3][1, 3]], z16[SR−1[col : 2]], z16[SR−1

[col : 3][3]], y17[2, 3, 6] in H5 indexed by Δy17[2, 3, 6, 10, 11, 14], y17[10, 11, 14, 15].
H5 has 240 rows and on average about 240/240 = 1 value in each row.

H6{TK17[1,5]}: For all the 224 possible values of Δz16[SR−1[col : 1][0, 3]], z16
[SR−1[col : 1]], compute Δy17[col : 1][0, 1, 3], y17[col : 1]. Then, store Δz16[SR−1

[col : 1][0, 3]], z16[SR−1[col : 1]], y17[col : 1][0, 1] in H6 indexed by Δy17[col :
1][0, 1, 3], y17[col : 1][2, 3]. H6 has 220 rows and on average about 224/220 = 24

values in each row.

H7{TK16[0]}: For all the 220 possible values of Δz15[SR−1[col : 0][2]], z15[SR−1

[col : 0]], compute Δy16[col : 0][0, 2, 3], y16[col : 0]. Then, store Δz15[SR−1[col :
0][2]], z15[SR−1[col : 0]], y16[col : 0][0] in H7 indexed by Δy16[col : 0][0, 2, 3], y16[
col : 0][2, 3]. H7 has 220 rows and on average about 220/220 = 1 value in each row.

H8{TK16[2]}: For all the 220 possible values of Δz15[SR−1[col : 2][0]], z15[SR−1

[col : 2]], compute Δy16[col : 2][0, 1, 3], y16[col : 2]. Then, store Δz15[SR−1[col :
2][0]], z15[SR−1[col : 2]], y16[col : 2][0, 1] in H8 indexed by Δy16[col : 2][0, 1, 3], y16[
col : 2][2, 3]. H8 has 220 rows and on average about 220/220 = 1 value in each row.

H9{TK15[2]}: From the properties of the MixColumns, we have Δx15[2] =
Δx15[10] = Δx15[14] = Δw14[10]. Therefore, for all the 24 possible differ-
ences for Δx15[2, 10], 28 possible values of x15[2, 10] and 24 possible values of
TK15[2], compute Δz15[2, 10], z15[2, 10]. Then, store Δz15[2] in H9 indexed by
Δz15[2, 10], z15[2, 10], TK15[2]. H9 has 220 rows and on average about 216/220 =
2−4 values in each row.

H10{ETK1[4,11,14]}: For all the 212 possible differences of Δw1[5, 9, 13], we
have only 24 valid differences that have exactly one difference in
Δy

′
2[13] and 3 zero differences in Δy

′
2[1, 5, 9]. Therefore, for all the 24 possi-

ble differences of Δw1[5, 9, 13], 212 possible values of w1[5, 9, 13] and 28 possible
values of ETK1[4, 14], compute Δy

′
1[4, 14], y

′
1[4, 14],Δx1[11], x1[11]. Then, store

Δw1[5, 9, 13], w1[5, 9, 13], x1[11] in H10 indexed by Δy
′
1[4, 14], y

′
1[4, 14],Δx1[11],

ETK1[4, 14]. H10 has 228 rows and on average about 224/228 = 2−4 values in each
row.

H11{ETK1[3,6,9]}: For all the 212 possible differences of Δw1[3, 7, 11], we have
only 24 valid differences that have exactly one difference in Δy

′
2[7] and 3 zero differ-

ences in Δy
′
2[3, 11, 15]. Therefore, for all the 24 possible differences of Δw1[3, 7, 11],

212 possible values of w1[3, 7, 11] and 24 possible values of ETK1[6], compute
Δy

′
1[6], y

′
1[6],Δx1[3, 9], x1[3, 9]. Then, store Δw1[3, 7, 11], w1[3, 7, 11], x1[3, 9] in

126 M. Tolba et al.

H11 indexed by Δx1[3, 9],Δy
′
1[6], y

′
1[6],ETK1[6]. H11 has 220 rows and on aver-

age about 220/220 = 1 value in each row.

H12{TK16[1]}: For all the 28 possible values of Δx16[1], x16[1], compute
Δy16[1], y16[1]. Then, store y16[1] in H12 indexed by Δy16[1]. H12 has 24 rows
and on average about 28/24 = 24 values in each row.

H13{ETK1[1,5]}: For all the 216 possible values of Δw1[6], w1[1, 6], ETK1[1, 5]
(ETK1[1] = ETK1[5], see Appendix A in the full version of this paper [13]), com-
pute Δy

′
1[5], y

′
1[1, 5]. Then, store Δw1[6], w1[1, 6] in H13 indexed by Δy

′
1[5], y

′
1[1, 5],

ETK1 [1]. H13 has 216 rows and on average about 216/216 = 1 value in each row.

H14{ETK2[7,10,13]}: From the properties of the MixColumns, we have
Δw2[4] = Δw2[8] = Δw2[12] = Δy

′
3[12]. Therefore, for all the 24 possible differ-

ences for Δw2[4, 8, 12], 212 possible values of w2[4, 8, 12] and 212 possible values
of ETK2[7, 10, 13], compute Δy

′
2[7, 10, 13], y

′
2[7, 10, 13]. Then, store Δy

′
2[10] in

H14 indexed by Δy
′
2[7, 10, 13], y

′
2[7, 13],ETK2[7, 10, 13]. H14 has 232 rows and on

average about 228/232 = 2−4 value in each row.

H∗: For all the 232 possible values of Δzi[SR−1[col : j]], zi[SR−1[col : j]], com-
pute Δyi+1[col : j], yi+1[col : j]. Then, store Δzi[SR−1[col : j]], zi[SR−1[col :
j]], yi+1[col : j][0, 1] in H∗ indexed by Δyi+1[col : j], yi+1[col : j][2, 3]. H∗ has
224 rows and on average about 232/224 = 28 values in each row.

Instead of guessing the tweakey nibbles involved in the analysis rounds as in
the general approach of impossible differential attacks, we use the above men-
tioned pre-computation tables to deduce the tweakey nibbles that lead a specific
pair of plaintext/ciphertext to the impossible differential and thus should be
excluded. The details of our attack are as follows:

1. Generate 2m structures as described above. Therefore, we have 2m+55 pairs
of messages generated using 2m+28 messages. Then, ask the encryption
oracle for their corresponding ciphertexts and decrypt them partially over
MC−1, SR−1 to compute z19.

2. Determine the number of possible values of TK19[0 : 7] that satisfy the last
round by performing the following steps for all the message pairs:

(a) Access H∗ for i = 18, j = 0 and compute TK19[0, 4] such that
TK19[0, 4] = y19[0, 4]⊕z19[0, 4]1. Therefore, we have 28 possible tweakeys
for TK19[0, 4].

(b) Access H∗ for i = 18, j = 1 and compute TK19[1, 5] such that
TK19[1, 5] = y19[1, 5] ⊕ z19[1, 5]. Therefore, we have 28+8=16 possible
tweakeys for TK19[0, 1, 4, 5].

1 TK19[0, 4] = y19[0, 4] ⊕ z19[0, 4] means that TK19[0] = y19[0] ⊕ z19[0], TK19[4] =
y19[4] ⊕ z19[4].

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 127

(c) Access H∗ for i = 18, j = 2 and compute TK19[2, 6] such that
TK19[2, 6] = y19[2, 6] ⊕ z19[2, 6]. Therefore, we have 216+8=24 possible
tweakeys for TK19[0, 1, 2, 4, 5, 6].

(d) Access H∗ for i = 18, j = 3 and compute TK19[3, 7] such that
TK19[3, 7] = y19[3, 7] ⊕ z19[3, 7]. Therefore, we have 224+8=32 possible
tweakeys for TK19[0 : 7].

3. Determine the number of possible values of TK18[0 : 7] that satisfy the next
to last round by performing the following steps for all the message pairs and
remaining tweakeys that satisfy the path until now:

(a) Access H1 and compute TK18[2, 6] such that TK18[2, 6] = y18[2, 6] ⊕
z18[2, 6]. Therefore, we have 232 possible tweakeys for TK19[0 : 7], TK18

[2 , 6].
(b) Access H2 and compute TK18[0, 4] such that TK18[0, 4] = y18[0, 4] ⊕

z18[0, 4]. Therefore, we have 232+4=36 possible tweakeys for TK19[0 : 7],
TK18[0, 2, 4, 6].

(c) Access H3 and compute TK18[3, 7] such that TK18[3, 7] = y18[3, 7] ⊕
z18[3, 7]. Therefore, we have 236+4=40 possible tweakeys for TK19[0 : 7],
TK18[0, 2, 3, 4, 6, 7].

(d) Access H∗ for i = 17, j = 1 and compute TK18[1, 5] such that
TK18[1, 5] = y18[1, 5] ⊕ z18[1, 5]. Therefore, we have 240+8=48 possible
tweakeys for TK19[0 : 7], TK18[0 : 7].

4. Determine the number of possible values of TK17[0 : 6] that satisfy the
eighteenth round by performing the following steps for all the message pairs
and remaining tweakeys that satisfy the path until now:

(a) Access H4 and compute TK17[0, 4] such that TK17[0, 4] = y17[0, 4] ⊕
z17[0, 4]. Therefore, we have 248 possible tweakeys for TK19[0 : 7],
TK18[0 : 7], TK17[0, 4].

(b) Access H5 and compute TK17[2, 3, 6] such that TK17[2, 3, 6] =
y17[2, 3, 6] ⊕ z17[2, 3, 6]. Therefore, we have 248 possible tweakeys for
TK19[0 : 7], TK18[0 : 7], TK17[0, 2, 3, 4, 6].

(c) Access H6 and compute TK17[1, 5] such that TK17[1, 5] = y17[1, 5] ⊕
z17[1, 5]. Therefore, we have 248+4=52 possible tweakeys for TK19[0 : 7],
TK18[0 : 7], TK17[0 : 6].

5. Determine the number of possible values of TK 16[0, 2] that satisfy the sev-
enteenth round by performing the following steps for all the message pairs
and remaining tweakeys that satisfy the path until now:

(a) Access H7 and compute TK16[0] such that TK16[0] = y16[0] ⊕ z16[0].
Therefore, we have 252 possible tweakeys for TK 19[0 : 7], TK18[0 :
7], TK17[0 : 6], TK16[0].

(b) Access H8 and compute TK16[2] such that TK16[2] = y16[2] ⊕ z16[2].
Therefore, we have 252 possible tweakeys for TK19[0 : 7], TK18[0 :
7], TK17[0 : 6], TK16[0, 2]2.

2 Note that instead of having TK16[6] that lead to the impossible differential distin-
guisher, we have x16[6] that result in the same impossible differential distinguisher.

128 M. Tolba et al.

6. The knowledge of TK19[6] and TK17[4] enables us to deduce TK15[2] (see
Appendix A in [13]). Hence, we determine the number of possible tweakey
values that satisfy the sixteenth round by performing the following steps for
all the message pairs and remaining tweakeys that satisfy the path until now:

(a) Access H9; and we will find 2−4 possible values in each row, i.e., we have 4-
bit filter on the remaining tweakeys. Therefore, we have 252−4=48 possible
tweakeys for TK19[0 : 7], TK18[0 : 7], TK17[0 : 6], TK16[0, 2] TK15[2].

7. The knowledge of TK18[2, 4] and TK16[0, 2] enables us to deduce ETK1[4, 6,
14]3 (see Appendix A in [13]). Hence, we determine the number of possible
values for ETK1[3, 9, 11] that satisfy the second round by performing the
following steps for all the message pairs and remaining tweakeys that satisfy
the path until now:

(a) Access H10 and compute ETK1[11] such that ETK1[11]= y
′
1[11] ⊕ x1[11];

we will find 2−4 possible values in each row, i.e., we have 4-bit filter on the
remaining tweakeys. Therefore, we have 248−4=44 possible tweakeys for
TK19[0 : 7], TK18[0 : 7], TK17[0 : 6], TK16[0, 2], TK15[2], ETK1[4, 6, 11,
14].

(b) Access H11 and compute ETK1[3, 9] such that ETK1[3, 9] = y
′
1[3, 9] ⊕

x1[3, 9]. Therefore, we have 244 possible tweakeys for TK19[0 : 7],TK18[0 :
7], TK17[0 : 6], TK16[0, 2], TK15[2], ETK1[3, 4, 6, 9, 11, 14].

8. Determine the number of possible values for TK16[1] that satisfy the seven-
teenth round by performing the following steps for all the message pairs and
remaining tweakeys that satisfy the path until now:

(a) Access H12 and compute TK16[1] such that TK16 = y16[1] ⊕ z16[1].
Therefore, we have 244+4=48 possible tweakeys for TK19[0 : 7],TK18[0 :
7], TK17[0 : 6] , TK16[0, 1, 2], TK15[2], ETK1[3, 4, 6, 9, 11, 14].

9. The knowledge of TK18[0] and TK16[1] enables us to deduce ETK1[1, 5]
(see footnote 3) (see Appendix A in [13]). Hence, we determine the number
of possible tweakey values that satisfy the second round by performing the
following steps for all the message pairs and remaining tweakeys that satisfy
the path until now:

(a) Access H13 and we will find 1 possible value in each row. Therefore, we
have 248 possible tweakeys for TK19[0 : 7], TK18[0 : 7], TK17[0 : 6] ,
TK16[0, 1, 2], TK15[2], ETK1[1, 3, 4, 5, 6, 9, 11, 14],.

10. The knowledge of TK19[0, 3, 7] and TK17[1, 3, 5] enables us to deduce
ETK2[7, 10, 13] (see Appendix A in [13]). Hence, we determine the num-
ber of possible tweakey values that satisfy the third round by performing the
following steps for all the message pairs and remaining tweakeys that satisfy
the path until now:

3 Note that ETK1[6] = ETK1[14] and ETK1[1] = ETK1[5].

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 129

(a) Access H14 and we will find 2−4 possible values in each row. Therefore, we
have 248−4=44 possible tweakeys for TK19[0 : 7], TK18[0 : 7], TK17[0 : 6],
TK16[0, 1, 2], TK15[2], ETK1[1, 3, 4, 5, 6, 9, 11, 14], ETK2[7, 10, 13].

Attack Complexity. As depicted in Fig. 4, we have 38 tweakey nibbles that are
involved in the analysis rounds. Thanks to the tweakey schedule, these 38 nibbles
take only 2116 possible values (see Appendix A in [13]). For each of the 2m+55

message pairs, we remove, on average, 244 out of 2116 possible values of these
tweakey nibbles. Therefore, the probability that a wrong tweakey is not discarded
with one pair is 1 − 244−116 = 1 − 2−72. Hence, after processing all the 2m+55

pairs, we have 2116(1 − 2−72)2
m+55 ≈ 2116 × (e−1)2

m+55−72 ≈ 2116 × 2−1.4×2m−17

remaining candidates for 116-bit of the tweakey. In order to determine the opti-
mal value of m that leads to the best computational complexity, we evaluate
the computational complexity of the attack as a function of m, as illustrated in
Table 4. Similar to AES [6], the SKINNY round function can be implemented
using 16 table lookups. As seen from Table 4, steps 5(a), 5(b) and 6(a) dominate
the time complexity of the attack, and hence in order to optimize the time com-
plexity of the attack we choose m = 19.69. Consequently, we have 2107 remaining
tweakey candidates for the 116-bit of the tweakey. Therefore, the tweakey can
be recovered by exhaustively searching the 2107 remaining tweakey candidates
with 212 remaining tweakey bits, that are not involved in the attack, using 2
plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is
2 × 2107 × 212 + 2120.15 = 2121.08 encryptions. The data complexity of the attack
can be determined from step 1 in which we generate 2m=19.69 structures. Hence,
the data complexity of the attack is 219.69+28=47.69 chosen plaintexts. The mem-
ory complexity of the attack is dominated by the memory that is required to
store 2m+55=74.69 pairs to exclude the wrong tweakeys, hence, it is 274.69.

4.2 Impossible Differential Key-Recovery Attack
on SKINNY-128-256

The only difference between SKINNY-64-128 and SKINNY-128-256 is the
tweakey schedule, more precisely, the LFSR operation. The above attack on
SKINNY-64-128 can be applied on SKINNY-128-256 while only considering that
the cell size s = 8. Therefore, one structure can generate 2111 pairs with 256 cho-
sen plaintexts. According to the tweakey schedule, the 38 bytes involved in the
attack have 2232 possible values (see Appendix B in the full version of this paper
[13]). In this attack, we exclude, on overage, 288 out of 2232 possible values of
the involved tweakey bytes for every message pair. Hence, the probability that
one wrong tweakey is not discarded is 1 − 288−232 = 1 − 2−144. Therefore, we
have 2232 × (1 − 2−144)2

m+111 ≈ 2232 × (e−1)2
m+111−144 ≈ 2232 × 2−1.4×2m−33

remaining candidates for 232-bit of the tweakey bytes, after processing all the
message pairs. In order to optimize the time complexity of the attack, we choose
m = 36.1. Consequently, we have 2220 remaining candidates for 232-bit of the
tweakey, and hence the tweakey can be recovered by exhaustively searching the
remaining candidates with 224 possible values, for the 24 bits of the tweakey that

130 M. Tolba et al.

Table 4. Time complexity of the different steps of the attack on 20-round SKINNY-
64-128, where NT denotes the number of tweakeys to be excluded.

Step Time complexity (in 20-round encryptions) NT m = 19.69

1 2m+28 - 247.69

2(a) 2m+55 × 1

16 × 20
≈ 2m+46.68 28 266.37

2(b) 2m+55 × 28 × 1

16 × 20
≈ 2m+54.68 216 274.37

2(c) 2m+55 × 216 × 1

16 × 20
≈ 2m+62.68 224 282.37

2(d) 2m+55 × 224 × 1

16 × 20
≈ 2m+70.68 232 290.37

3(a) 2m+55 × 232 × 1

16 × 20
≈ 2m+78.68 232 298.37

3(b) 2m+55 × 232 × 1

16 × 20
≈ 2m+78.68 236 298.37

3(c) 2m+55 × 236 × 1

16 × 20
≈ 2m+82.68 240 2102.37

3(d) 2m+55 × 240 × 1

16 × 20
≈ 2m+86.68 248 2106.37

4(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 248 2114.37

4(b) 2m+55 × 248 × 2

16 × 20
≈ 2m+95.68 248 2115.37

4(c) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 252 2114.37

5(a) 2m+55 × 252 × 1

16 × 20
≈ 2m+98.68 252 2118.37

5(b) 2m+55 × 252 × 1

16 × 20
≈ 2m+98.68 252 2118.37

6(a) 2m+55 × 252 × 1

16 × 20
≈ 2m+98.68 248 2118.37

7(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 244 2114.37

7(b) 2m+55 × 244 × 1

16 × 20
≈ 2m+90.68 244 2110.37

8(a) 2m+55 × 244 × 1

16 × 20
≈ 2m+90.68 248 2110.37

9(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 248 2114.37

10(a) 2m+55 × 248 × 1

16 × 20
≈ 2m+94.68 244 2114.37

are not involved in the attack, using 2 plaintext/ciphertext pairs. Therefore, the
total time complexity of the attack is 2× 2220 × 224 +236.1+111 × 2104 × 3

16×20
4=

2245 + 2244.36 = 2245.72. The data complexity of the attack is 2m+56=92.1 chosen
plaintexts; and the memory complexity is dominated by storing 2m+111=147.1

message pairs.

4 The second term is computed from step 5(a), 5(b) and 6(a).

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 131

5 Impossible Differential Key-Recovery Attack
on 18-Round SKINNY-n-n (n = 64 or 128)

The only difference between SKINNY-64-64 and SKINNY-128-128 is the cell size
s, where s = 4 (resp. s = 8) in case of SKINNY-64-64 (resp. SKINNY-128-128).
Therefore, we present the steps of the two attacks concurrently as a function
of s. This attack is applicable to the first 18 rounds of the 20-round attack on
SKINNY-n-2n, i.e., the ciphertext c = x18. Therefore, we use the same steps
used in the previous attack from step 4 to the end and the same precomputation
tables from H4 to the end with the following modifications:

– Each structure can generate 27×s×27×s−1 = 214×s−1 with 27×s chosen plain-
texts. Then, to apply the attack we take 2m structures to generate 2m+14×s−1

pairs, but we have 4 s-bit filter in the transition over MC−1 from the cipher-
text to w17. Therefore, we have 2m+14×s−1−4×s=m+10×s−1 remaining pairs to
launch the attack.

– The number of rows and entries in each table will be represented as a function
of s. For example, H6 has 25×s rows; and in each row, we have 2s entries.

– The modifications of the number of tweakeys to be excluded from step 4 to
the end are presented in Table 5.

– The relation of the tweakey cells can be found in Appendix C in the full
version of this paper [13].

Attack Complexity. We have 22 tweakey cells that are involved in the analysis
rounds where these 22 tweakey cells have only 213×s possible values (see Appen-
dix C in [13]). The probability that one wrong tweakey is not discarded with
one pair is 1−2−s−13×s = 1−2−14×s. Hence, after processing all the 2m+10×s−1

pairs, we have 213×s(1 − 2−14×s)2
m+10×s−1 ≈ 213×s × (e−1)2

m+10×s−1−14×s ≈
213×s ×2−1.4×2m−4×s−1

remaining candidates for 13×s-bit of the tweakey. Steps
5(a), 5(b) and 6(a) dominate the time complexity of the attack, as seen from
Table 5, and hence in order to optimize the time complexity of the attack we
choose m = 19.52 (resp. m = 36.42) in case of SKINNY-64-64 (resp. SKINNY-
128-128). Consequently, we have 244 (resp. 289) remaining tweakey candidates
for the 52-bit (resp. 104-bit) of the tweakey. Therefore, the tweakey can be recov-
ered by exhaustively searching the 244 (resp. 289) remaining tweakey candidates
with 212 (resp. 224) for the other tweakey bits, that are not involved in the
attack, using 1 plaintext/ciphertext pair. Therefore, the total time complexity
of the attack is 244 × 212 + 256.14 = 257.1 (resp. 289 × 224 + 2116.84 = 2116.94)
encryptions in case of SKINNY-64-64 (resp. SKINNY-128-128). The data com-
plexity of the attack can be determined from step 1 in which we generate
2m=19.52 (resp. 2m=36.42) structures. Hence, the data complexity of the attack
is 219.52+28=47.52 (resp. 236.42+56=92.42) chosen plaintexts in case of SKINNY-
64-64 (resp. SKINNY-128-128). The memory complexity is dominated by the
memory required to store the 258.52 (resp. 2115.42) pairs after the ciphertext fil-
tration and is estimated to be 258.52 (resp. 2115.42) in case of SKINNY-64-64
(resp. SKINNY-128-128).

132 M. Tolba et al.

6 Impossible Differential Key-Recovery Attack on
22-Round SKINNY-n-3n (n = 64 or 128)

SKINNY-64-192 differs from SKINNY-128-384 in the cell size s and the tweakey
schedule. As the tweakey schedule does not influence the attack procedure, we
present the two attacks as a function of s. The 20-round attack on SKINNY-n-2n
(n = 64 or 128) can be extended to 22-round attack on SKINNY-n-3n (n = 64 or
128) by appending 2 rounds, i.e., the ciphertext c = x22. Therefore, we can use
the same attack procedures of SKINNY-n-2n (n = 64 or 128) to attack SKINNY-
n-3n (n = 64 or 128) by repeating step 2 three times to extract the tweakey cells
TK19[0 : 7], TK20[0 : 7], TK21[0 : 7]. The details of the tweakey schedule can be
found in Appendix D in the full version of this paper [13]. Moreover, as in the
previous attack on 18-round SKINNY-n-n (n = 64 or 128), each structure can
generate 27×s × 27×s−1 = 214×s−1 with 27×s chosen plaintexts. Then, we take
2m structures to generate 2m+14×s−1 pairs using 2m+7×s chosen plaintexts.

Attack Complexity. The 54 tweakey cells that are involved in the analysis
rounds have only 245×s possible values. The probability that a wrong tweakey
is not discarded with one pair is 1 − 227×s−45×s = 1 − 2−18×s. Hence, after
processing all the 2m+14×s−1 pairs, we have 245×s(1 − 2−18×s)2

m+14×s−1 ≈
245×s × (e−1)2

m+14×s−1−18×s ≈ 245×s × 2−1.4×2m−4×s−1
remaining candidates

for 45 × s-bit of the tweakey. In order to optimize the time complexity of the

Table 5. Time complexity of the different steps of the attack on 18-round SKINNY-64-
64 and SKINNY-128-128, where NT denotes the number of tweakeys to be excluded.

Step Time Complexity (in 18-round encryptions) NT s = 4,m = 19.52 s = 8,m = 36.42

1 2m+7×s - 247.52 292.42

4(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 1 250.35 2107.25

4(b) 2m+10×s−1 × 2

16 × 18
≈ 2m+10×s−8.17 1 251.35 2108.25

4(c) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 2s 250.35 2107.25

5(a) 2m+10×s−1 × 2s × 1

16 × 18
≈ 2m+11×s−9.17 2s 254.35 2115.25

5(b) 2m+10×s−1 × 2s × 1

16 × 18
≈ 2m+11×s−9.17 2s 254.35 2115.25

6(a) 2m+10×s−1 × 2s × 1

16 × 18
≈ 2m+11×s−9.17 1 254.35 2115.25

7(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 2−s 250.35 2107.25

7(b) 2m+10×s−1 × 2−s × 1

16 × 18
≈ 2m+9×s−9.17 2−s 246.35 299.25

8(a) 2m+10×s−1 × 2−s × 1

16 × 18
≈ 2m+9×s−9.17 1 246.35 299.25

9(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 1 250.35 2107.25

10(a) 2m+10×s−1 × 1

16 × 18
≈ 2m+10×s−9.17 2−s a 250.35 2107.25

aAfter this step, we have 2−s tweakeys to be excluded for each message pair, i.e., we exclude 1

tweakey after processing 2s pairs.

Impossible Differential Cryptanalysis of Reduced-Round SKINNY 133

attack, we choose m = 19.84 (resp. m = 36.22) in case of SKINNY-64-192
(resp. SKINNY-128-384). Consequently, we have 2170 (resp. 2347) remaining
tweakey candidates for the 180-bit (resp. 360-bit) of the tweakey. Therefore,
the tweakey can be recovered by exhaustively searching the 2170 (resp. 2347)
remaining tweakey candidates with 212 (resp. 224) for the other tweakey bits,
that are not involved in the attack, using 3 (calculated from the unicity distance)
plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is
3 × 2170 × 212 + 2183.97 = 2184.79 (resp. 3 × 2347 × 224 + 2372.35 = 2373.48) encryp-
tions in case of SKINNY-64-192 (resp. SKINNY-128-384). The data complexity
of the attack is 219.84+28=47.84 (resp. 236.22+56=92.22) chosen plaintexts in case of
SKINNY-64-192 (resp. SKINNY-128-384). The memory complexity of the attack
is 274.84 (resp. 2147.22) in case of SKINNY-64-64 (resp. SKINNY-128-384).

7 Conclusion

In this work, we presented impossible differential attacks against reduced-round
versions of all the 6 SKINNY’s variants. All of these attacks use the same impos-
sible differential distinguisher that covers 11-round. We extended this 11-round
distinguisher by 7, 9 and 11 rounds to attack 18, 20 and 22 rounds of SKINNY-
n-n, SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respectively, exploiting
the properties of the MixColumns operation, the simple tweakey schedule and
the fact that the tweakey is only added to the first two rows of the state. The pre-
sented attacks are currently the best known ones on all the variants of SKINNY
in the single-tweakey model.

References

1. Ankele, R., Banik, S., Chakraborti, A., List, E., Mendel, F., Sim, S. M., Wang, G.:
Related-key impossible-differential attack on reduced-round SKINNY. Cryptology
ePrint Archive, Report 2016/1127 (2016). http://eprint.iacr.org/2016/1127

2. Beierle, C., Jean, J., Klbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: Skinny family of block ciphers: cryptanalysis competition
(2016)

3. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 123–153. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 5

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A more effi-
cient AES threshold implementation. In: Pointcheval, D., Vergnaud, D. (eds.)
AFRICACRYPT 2014. LNCS, vol. 8469, pp. 267–284. Springer, Cham (2014).
doi:10.1007/978-3-319-06734-6 17

6. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)

http://eprint.iacr.org/2016/1127
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/978-3-319-06734-6_17

134 M. Tolba et al.

7. Jean, J., Nikolić, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY

framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 274–288. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 15

8. Knudsen, L.: A 128-bit block cipher. Complexity 258(2), 216 (1998). NIST AES
Proposal

9. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. J. Cryptol. 24(3),
588–613 (2011)

10. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey
settings. Cryptology ePrint Archive, Report 2016/1108 (2016). http://eprint.iacr.
org/2016/1108

11. Peyrin, T., Seurin, Y.: Counter-in-tweak: authenticated encryption modes for
tweakable block ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS,
vol. 9814, pp. 33–63. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53018-4 2

12. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY
block cipher. Cryptology ePrint Archive, Report 2016/1120 (2016). http://eprint.
iacr.org/2016/1120

13. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis
of reduced-round skinny. Cryptology ePrint Archive, Report 2016/1115 (2016).
http://eprint.iacr.org/2016/1115

http://dx.doi.org/10.1007/978-3-662-45608-8_15
http://eprint.iacr.org/2016/1108
http://eprint.iacr.org/2016/1108
http://dx.doi.org/10.1007/978-3-662-53018-4_2
http://eprint.iacr.org/2016/1120
http://eprint.iacr.org/2016/1120
http://eprint.iacr.org/2016/1115

Impossible Differential Attack
on Reduced Round SPARX-64/128

Ahmed Abdelkhalek, Mohamed Tolba, and Amr M. Youssef(B)

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada

youssef@ciise.concordia.ca

Abstract. SPARX-64/128 is an ARX-based block cipher with 64-bit
block size and 128-bit key. It was published in ASIACRYPT 2016 as one
of the instantiations of a family of ARX-based block ciphers with prov-
able security against single-characteristic differential and linear crypt-
analysis. In this work, we present 12 and 13-round impossible distin-
guishers on SPARX-64/128 that can be used to attack 15 and 16-round
SPARX-64/128 with post-whitening keys, respectively. While the 15-
round attack starts from round 0, the 16-round one, exploiting the key
schedule, has to start from round 2.

Keywords: Block ciphers · Impossible differential · Miss-in-the-middle ·
SPARX

1 Introduction

SPARX is a family of ARX-based block ciphers that was published in
ASIACRYPT 2016 [6]. It was designed with the goal of putting forward a gen-
eral strategy for designing ARX-based symmetric-key primitives with provable
security against single-characteristic differential and linear cryptanalysis. As a
dual to the wide trail strategy [4] adopted by many S-box based block ciphers,
the designers proposed the long trail strategy. This strategy promotes the use of
a rather weak but large S-box, i.e., an ARX-based S-box, along with a very light
linear layer. Fostering the existence of long trails, that involve an uninterrupted
sequence of calls to the S-box interleaved with key additions, rather than having
maximum diffusion in each linear layer is at the core of this proposed strategy.
The long trail strategy allowed the designers to bound the maximum differential
and linear probabilities for any number of rounds of a block cipher designed fol-
lowing such strategy. SPARX-64/128 is a member of this family of block ciphers
following the long trail strategy with 64-bit block size and 128-bit key. The only
cryptanalysis of SPARX was done by its designers as they presented a 13-round
bit-based division property distinguisher that they used to launch an integral
attack against 15-round SPARX-64/128 [5]. No other attacks were given in the
short/full versions of the design paper.

c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 135–146, 2017.
DOI: 10.1007/978-3-319-57339-7 8

136 A. Abdelkhalek et al.

Impossible differential cryptanalysis that was independently proposed by
Biham et al. [3] and Knudsen [9] is one of the most powerful cryptanalytic
techniques. Firstly, we try to find a certain input difference that propagates
to a specific output difference with zero probability resulting in an impossible
differential distinguisher. In general, the input and output differences can be
truncated. Then, after finding the longest possible impossible differential, it is
used in a key recovery attack by prepending and/or appending a few additional
rounds which are usually called the analysis rounds. The attack proceeds as
follows: first, we collect pairs with certain plaintext and ciphertext differences.
Then, we guess some bits of the key material involved in the analysis rounds and
if one of the pairs satisfies the input and output differences of the impossible
differential under some subkey bits, then these subkey bits must be wrong. Thus,
we discard as many wrong keys as possible and do an exhaustive search on the
surviving ones along with the rest of the key. The early abort technique [10]
allows us to guess the involved key material on steps to discard the undesired
pairs as early as possible and therefore reduce the time complexity of the attack.

In this paper, we present a 12-round truncated impossible differential on
SPARX-64/128 that can be extended to a 13-round impossible differential with
a specific input difference and a truncated output difference. We use the 12-
round impossible differential to launch an impossible differential attack against
15-round SPARX-64/128 including the post-whitening key with data complex-
ity of 251 chosen plaintexts, time complexity of 294.1 15-round encryptions and
memory complexity of 243.5 64-bit blocks. Then, we use the 13-round impossible
differential to attack 16-round SPARX-64/128, including the post-whitening key,
starting from round 2 with data, time and memory complexities of 261.5 known
plaintexts, 294 16-round encryptions, and 261.5 64-bit blocks, respectively.

The remainder of the paper is organized as follows. In Sect. 2, the notations
used throughout the paper are given followed by the specification of SPARX-
64/128. Our impossible differentials are presented in Sect. 3. Afterwards, in
Sect. 4, we provide a detailed description of our impossible differential attacks
on SPARX-64/128. Finally, Sect. 5 concludes the paper.

2 Description of SPARX-64/128

Notations. The following notations are used throughout the paper:

– K: The master key.
– ki: The ith 16-bit of the key state, where 0 ≤ i ≤ 7.
– kj

i : The ith 16-bit of the key state after applying the key schedule permutation
j times, where 0 ≤ i ≤ 7 and 0 ≤ j ≤ 17 for SPARX-64/128.

– RK(a,i): The 32-bit round key used at branch a of round i where 0 ≤ i ≤ 24
and a = 0 (1) denotes the left (right) branch of SPARX-64/128.

– X(a,i) (Y(a,i)): The left (right) 16-bit input at branch a of round i where
0 ≤ i ≤ 24, a = 0 (1) denotes the left (right) branch of SPARX-64/128, and
the LSB of either X(a,i) or Y(a,i) is on the right.

Impossible Differential Attack on Reduced Round SPARX-64/128 137

– w: The number of 32-bit words, i.e., w = 2 for a 64-bit block and w = 4 for
a 128-bit master key.

– R3: The iteration of 3 rounds of SPECKEY with their corresponding key
additions.

– Lw: Linear mixing layer used in SPARX with w-word block size, thus L2

represents the linear mixing layer used in SPARX-64/128.
– �: Addition mod 216.
– ⊕: Bitwise XOR.
– ≪ q (≫ q): Rotation of a word by q bits to the left (right).
– ‖: Concatenation of bits.
– 0xabcd: A 16-bit number in hexadecimal representation.

2.1 Specifications of SPARX-64/128

SPARX [5,6] is a family of ARX-based Substitution-Permutation Network (SPN)
block ciphers. It follows the SPN design construction while using ARX-based S-
boxes instead of S-boxes based on look-up tables. ARX-based S-boxes form a
specific category of S-boxes that rely solely on addition, rotation and XOR oper-
ations to provide both non-linearity and diffusion. The SPARX family adopts
the 32-bit SPECKEY ARX-based S-box, shown in Fig. 1, which resembles one
round of SPECK-32 [1,2] with only one difference, that is, the key is added to
the whole 32-bit state instead of just half the state as in SPECK-32.

Fig. 1. The SPECKEY ARX-based S-box used in the SPARX family.

For a given member of the SPARX family whose block size is n bits, the
plaintext is divided into w = n/32 words of 32 bits each. Then, the SPECKEY
S-box (S), being applied to w words in parallel, is iterated r times interleaved by
the addition of independent subkeys. Then, a linear mixing layer (Lw) is applied
to ensure diffusion between the words. The structure made of a key addition

138 A. Abdelkhalek et al.

Fig. 2. SPARX structure

followed by S is called a round while the structure made of r rounds followed by
Lw is called a step, as depicted in Fig. 2. Thus, the ciphertext corresponding to
a given plaintext is generated by iterating such steps. The number of steps and
the number of rounds in each step depend on both the block size of the cipher
and the size of the key it utilizes.

SPARX-64/128 is the lightest member of this family operating on 64-bit
blocks using 128-bit keys. It uses 3 rounds in each step and iterates over 8
steps, i.e., the total number of rounds is 24. More precisely, in SPARX-64/128,
2 SPECKEY S-boxes (S) are iterated simultaneously 3-times, while being inter-
leaved by the addition of the round keys and then a linear mixing layer (L2) is
applied, as shown in Fig. 3a. The structure of L2 is depicted in the dotted square
in Fig. 3b.

Key Schedule. The 128-bit master key instantiates the key state, denoted
by k0

0‖k0
1‖k0

2‖k0
3‖k0

4‖k0
5‖k0

6‖k0
7. Then, the 3 × 32-bit round keys used in the left

branch of the first step are extracted. Afterwards, the permutation illustrated in
Fig. 4 is applied and then the 3× 32-bit round keys used in the right branch of the
first step are extracted. The application of the permutation and the extraction
of the keys are interleaved untill all the round keys encompassing the post-
whitening ones are generated. This means that, first, the round keys of a branch
of a given step j are generated and then the key state is updated. The following
observation on the key schedule is exploited in our attacks.

Observation: The last round key of a given step and the first round key of
the subsequent step can be deduced from one another. To clarify this point, we
consider the last round key of step 0 and the first round key of step 1. The
64-bit round key of the third round is k0

4‖k0
5, k

1
4‖k1

5 and the 64-bit round key of
the fourth round is k2

0‖k2
1, k

3
0‖k3

1. According to the key schedule: k2
0 = k1

6 = k0
4,

k2
1 = k1

7 � 2 = k0
5 � 2, k3

0 = k2
6 = k1

4 and k3
0 = k1

7 � 3 = k1
5 � 3.

Impossible Differential Attack on Reduced Round SPARX-64/128 139

Fig. 3. SPARX-64/128 structure

Fig. 4. SPARX-64/128 key schedule permutation, where the counter r is initialized
to 0.

Finally, it is to be noted that we measure the memory complexity of our
attacks in number of 64-bit blocks and the time complexity in terms of the
equivalent number of round-reduced encryptions.

3 Impossible Differentials of SPARX-64/128

A 12-round impossible differential is readily noticeable when considering
SPARX-64/128 to be a twisted variant of a Feistel construction where the two

140 A. Abdelkhalek et al.

halves undergo a keyed function before getting mixed and swapped. Indeed, as
depicted in Fig. 5, if the left branch of SPARX-64/128 at round i has a zero
difference while the right half has a nonzero difference, then after 2 steps (6
rounds), the input at the left branch must have a nonzero difference. From the
other direction, if the input of the right branch of round i + 12 has a nonzero
difference, i.e., Γ and the input of the left branch at that round has a differ-
ence L2(Γ), then after the linear transformation, the right branch will have a
zero difference which propagates unaltered for 2 complete steps (6 rounds) and
contradicts with the forward differential at the left branch.

Fig. 5. 12-round impossible differential SPARX-64/128

Impossible Differential Attack on Reduced Round SPARX-64/128 141

This 12-round truncated impossible differential can be extended to a 13-
round distinguisher with a specific input difference and truncated output dif-
ference. This is feasible by exploiting the fact that there exist differentials with
probability 1 for one SPECKEY round and one of these differentials is a fixed
point of L2. Particularly, if the input difference of the distinguisher is chosen to
be 0x8000 0x8000 then by propagating it backward through L2 we have the same
difference at both the right and left branches as an output for the S-box and this
output difference corresponds to the input difference 0x0040 0x0000 with prob-
ability 1. Hence, the input of the 13-round distinguisher is 0x0040 0x0000 and
0x0040 0x0000 while the output is still truncated in the form of L2(Γ) and Γ .

4 Impossible Differential Cryptanalysis of SPARX-64/128

The 12 and 13-round impossible distinguishers described above can be used to
attack 15 and 16-round SPARX-64/128, respectively. Both attacks include the
post-whitening key, however, the 16-round attack starts at round 2.

4.1 15-Round Impossible Differential Attack on SPARX-64/128

In this attack, we have chosen to place the 12-round distinguisher at the top, end
it with a specific difference that meets the constraint of L2(Γ) and Γ , and then
append 3 rounds that have a high probability as shown in Fig. 6. That specific
difference at the end of the distinguisher and the 3 analysis rounds were found
using Mixed Integer Linear Programming (MILP). Specifically, we have followed
the guidelines in [7] to create an MILP model that describes SPARX-64/128 and
solved it using the publicly available MILP optimizer Gurobi [8]. The detailed
procedure of the attack is described as follows.

Data Collection. We first choose 2m structures of plaintexts where in each
structure the left 32 bits of the plaintexts take a fixed value and the right 32 bits
take all the 232 possible values. Each structure includes about

(
232

2

) ≈ 263 pairs
of plaintexts, therefore we have 2m × 263 = 2m+63 pairs of plaintexts in total.
We encrypt these pairs and keep the ones whose ciphertext difference matches
the difference shown in Fig. 6. The probability of such ciphertext difference is
about 2−64, therefore the expected number of remaining pairs after this phase
is about 2m+63−64 = 2m−1.

Key Recovery. To verify if the pairs generated during the data collection phase
follow our 12-round impossible differential, we need to guess RK(0,15), RK(1,15),
RK(0,14), RK(1,14), and RK(0,13). However, as pointed out above, RK(0,15),
RK(1,15) are related to RK(0,14), RK(1,14). This means that these round keys
take 296 values only. The details of this phase are as follows.

Step 1. For all the ciphertext pairs obtained in the data collection phase, we
guess the 64-bit round keys RK(0,15) and RK(1,15), decrypt round 15
and check if the difference matches the one shown in Fig. 6. If it is not

142 A. Abdelkhalek et al.

Fig. 6. 15-round impossible differential attack on SPARX-64/128

the case, the pair is discarded. The probability of this event is 2−7 and
thus after this step the expected number of remaining pairs is about
2m−1−7 = 2m−8.

Step 2. We deduce RK(0,14) and RK(1,14) from the guessed RK(0,15) and
RK(1,15), decrypt round 14 and check if the difference is the expected
one according to Fig. 6. If it is not the case, the pair is discarded. The
probability of this event is 2−4 and therefore the expected number of
pairs surviving this step is about 2m−8−4 = 2m−12.

Step 3. We guess the 32-bit RK(0,13) and partially decrypt the left branch of
round 13 and check if the difference meets the impossible differential
difference. Once it is correct, we delete the 32-bit round key guesses of
RK(0,13) since such a differential is impossible; each round key guess that
proposes such a difference is a wrong key. After analyzing all the 2m−12

remaining pairs, we output the 96-bit round keys guess of RK(0,15),
RK(1,15), and RK(0,13) as a candidate. The probability that the pairs
pass this step is about 2−2, therefore the time complexity of this step is
the number of key guesses × 2 messages in each pair × the probability
that the key guess is excluded after sequentially testing it against all the
surviving pairs.

Impossible Differential Attack on Reduced Round SPARX-64/128 143

Table 1. Key recovery process of the attack on 15-round SPARX-64/128

Attack step Guessed keys # Surviving pairs Time complexity

1 RK(0,15) 2m−1−7 = 2m−8 264 × 2 × 2m−1 × 1/15 ≈ 2m+60.1

RK(1,15)

2 † 2m−8−4 = 2m−12 264 × 2 × 2m−8 × 1/15 ≈ 2m+53.1

3 RK(0,13) – 296×2×[1+(1−2−2)+(1−2−2)2

+ · · ·+(1−2−2)2
m−12

]×1/(2×15)

†: No additional key guesses needed, i.e., the round keys are deduced from the
previously guessed ones.

The steps of the key recovery phase are described in Table 1, whereas the
second column gives the round keys to be guessed in the corresponding round for
each attack step. The third column presents the number of surviving pairs after
each step, and the fourth column is the time complexity of each step measured
in 15-round encryption.

Attack Complexity. To balance the attack complexity between the different
phases, we take m = 19. This means that after analyzing all the remaining pairs,
there will be about 296 × (1 − 2−2)2

m−12
= 296 × (0.75)128 ≈ 242.9 remaining

candidates for the 96-bit round keys. Then, we guess the 32-bit RK(1,12) which
along with the surviving candidates allows us to recover the master key K via the
key schedule. Afterwards, we test each one of these master key candidates using
2 plaintext/ciphertext pairs to find the correct master key. The time complexity
of this exhaustive search step is 2 × 232 × 242.9 = 275.9. Therefore the time
complexity is dominated by step 3 of the attack and estimated to be 296 × 2 ×
(1/2−2) × (1/30) ≈ 294.1. The data complexity of the attack is 219+32 = 251

chosen plaintexts. The memory complexity of the attack is dominated by the
memory that is required to store the keys to be excluded, i.e., 242.9 × 96/64 ≈
243.5 64-bit blocks.

4.2 16-Round Impossible Differential Attack on SPARX-64/128

Although each round of SPARX-64/128 uses a 64-bit round key, there exists 3
specific rounds that contain only 296 bits of key information as exemplified by
the ones exploited in the previous attack. Nonetheless, any 4 rounds contain
at least 128 bits of key information. Therefore, our 16-round attack on SPARX-
64/128 has to start from round 2 and in this case, we use the 13-round impossible
differential and prepend 3 rounds on its top as shown in Fig. 7. Again, we have
used the Gurobi optimizer to find these 3 rounds after creating the MILP model
that describes them.

In this attack, we do not use data structures as they do not generate enough
pairs to launch the attack. Instead, we use known plaintexts and generate the
pairs we need probabilistically. Hence, if we have 261.5 known plaintexts, these
can generate

(
261.5

2

) ≈ 2122 pairs. Out of these pairs, we would have 2122−64 = 258

144 A. Abdelkhalek et al.

Fig. 7. 16-round impossible differential attack on SPARX-64/128

pairs that satisfy the plaintext difference shown in Fig. 7. Then, as the difference
at the end of the distinguisher is the difference in the ciphertext, we have to
filter the ciphertexts such as the right branch is a nonzero difference Γ and the
left branch difference is L2(Γ) which means that we have 258−32 = 226 proper
pairs.

In the key recovery phase which we perform on these 226 pairs, the 3 round
keys take 296 values only and they are guessed on steps to reduce the time
complexity of the attack as listed in Table 2. It is to be noted that, according
to the key schedule, RK(0,3), RK(1,3) are deduced from the guessed RK(0,2),
RK(1,2) and that RK(1,4) is deduced from RK(0,3).

After analyzing all the remaining pairs, there will be about 296 × (1−2−2)2
7

=
296 × (0.75)128 ≈ 242.9 remaining candidates for the 96-bit round keys. Then,
we guess the remaining 32 bits of the master key and test each one of these
master key candidates using 2 plaintext/ciphertext pairs to find the correct one.
The time complexity of this exhaustive search step is 2 × 232 × 242.9 = 275.9.
Therefore the time complexity is dominated by step 4 of the attack (see Table 2)
and estimated to be 296 × 2 × (1/2−2) × (1/32) = 294. The data complexity of
the attack is 261.5 known plaintexts. In this case, the memory complexity of the
attack is dominated by the hash table [11] that is used to store the plaintexts
while generating the required pairs, i.e., 261.5 64-bit blocks.

Impossible Differential Attack on Reduced Round SPARX-64/128 145

Table 2. Key recovery process of the attack on 16-round SPARX-64/128

Attack step Guessed keys # Surviving pairs Time complexity

1 RK(0,2) 226−8 = 218 264 × 2 × 226 × 1/16 = 287

RK(1,2)

2 † 218−9 = 29 264 × 2 × 218 × 1/16 = 279

3 † 29−2 = 27 264 × 2 × 29 × 1/(2 × 16) = 269

4 RK(0,4) – 296×2×[1+(1−2−2)+(1−2−2)2

+ · · · + (1 − 2−2)2
7
] × 1/(2 × 16)

†: No additional key guesses needed, i.e., the round keys are deduced from the
previously guessed ones.

5 Conclusion

In this paper, we have analyzed SPARX-64/128 against the impossible differ-
ential attack. We have presented 12 and 13-round impossible differential dis-
tinguishers that are used to attack 15 and 16-round SPARX-64/128 with the
post-whitening key, respectively. The (data complexity in chosen/known plain-
texts, time complexity in 15/16-round encryptions, memory complexity in 64-bit
blocks) of these attacks are (251, 294.1, 243.5) and (261, 294, 261.5), respectively.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013). http://eprint.iacr.org/2013/404

2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
SIMON and SPECK: block ciphers for the internet of things. Cryptology ePrint
Archive, Report 2015/585 (2015). http://eprint.iacr.org/2015/585

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 2

4. Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryp-
tography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg
(2001). doi:10.1007/3-540-45325-3 20

5. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: SPARX and LAX (Full Version).
Cryptology ePrint Archive, Report 2016/984 (2016). http://eprint.iacr.org/2016/
984

6. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53887-6 18

7. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search
algorithms for differential and linear trails for Speck. In: Peyrin, T. (ed.) FSE
2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-52993-5 14

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2015/585
http://dx.doi.org/10.1007/3-540-48910-X_2
http://dx.doi.org/10.1007/3-540-45325-3_20
http://eprint.iacr.org/2016/984
http://eprint.iacr.org/2016/984
http://dx.doi.org/10.1007/978-3-662-53887-6_18
http://dx.doi.org/10.1007/978-3-662-52993-5_14
http://dx.doi.org/10.1007/978-3-662-52993-5_14

146 A. Abdelkhalek et al.

8. Gurobi Optimization Inc.: Gurobi Optimizer Reference Manual (2016). http://
www.gurobi.com

9. Knudsen, L.: DEAL: A 128-bit block cipher (1998). NIST AES Proposal
10. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossible

differential cryptanalysis of reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-79263-5 24

11. Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossi-
ble differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.)
INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17401-8 20

http://www.gurobi.com
http://www.gurobi.com
http://dx.doi.org/10.1007/978-3-540-79263-5_24
http://dx.doi.org/10.1007/978-3-540-79263-5_24
http://dx.doi.org/10.1007/978-3-642-17401-8_20

Applications

Private Conjunctive Query over Encrypted Data

Tushar Kanti Saha1(B) and Takeshi Koshiba2

1 Division of Mathematics, Electronics, and Informatics,
Graduate School of Science and Engineering, Saitama University, Saitama, Japan

saha.t.k.512@ms.saitama-u.ac.jp
2 Faculty of Education and Integrated Arts and Sciences,

Waseda University, Tokyo, Japan
tkoshiba@waseda.jp

Abstract. In this paper, we propose an efficient protocol to process a
private conjunctive query over encrypted data in the cloud using the
somewhat homomorphic encryption (SwHE) scheme with a batch tech-
nique. In 2016, Cheon, Kim, and Kim (CKK) [IEEE Trans. Inf. Forensics
Security] showed conjunctive query processing over encrypted data using
search-and-compute circuits and an SwHE scheme and mentioned that
their scheme should be improved in performance. To improve the per-
formance of processing a private conjunctive query, we also propose a
new packing method to support an efficient batch computation for our
protocol using a few multiplications. Our implementation shows that our
protocol works more than 50 times as fast as the CKK protocol for con-
junctive query processing. In addition, the security level of our protocol
is better than the security level of the CKK protocol.

Keywords: Private · Conjunctive · Query processing · Encrypted ·
Data · Packing method · Homomorphic encryption

1 Introduction

The conjunctive query plays a significant role in accessing data of a big database.
Recent researches showed the importance of private conjunctive query over the
encrypted database [1–4]. In a database, when the predicate of a query contains
many conditions connected by ‘and/∧’ operator is called conjunctive query. For
example, suppose a health research institute wants to know the number of male
tuberculosis (TB) patients admitted to a hospital in 2015. The corresponding
SQL can be represented as select count(id) from mediRecord where sex = ‘M’
and diseases = ‘TB’ and year = ‘2015’. Finding the result of such query of
a client from thousand of records is a massive computational task. Therefore,
the database owner and users like to outsource this computation to some third
parties. Here neither database owner nor the user likes to reveal their information
to the third party.

On the contrary, after the development of cloud computing, outsource compu-
tation is being increased rapidly. At the same time, users want the security of their
c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 149–164, 2017.
DOI: 10.1007/978-3-319-57339-7 9

150 T.K. Saha and T. Koshiba

data along with the computation. Besides, secure computation has drawn users’
attention after Gentry’s ground-breaking work of fully homomorphic encryption
(FHE) in 2009 [5]. Generally, a homomorphic encryption scheme allows mean-
ingful computations like addition and multiplication on encrypted data without
decrypting. Moreover, FHE allows any number of multiplications and additions
on encrypted data. Gentry constructed the FHE scheme by applying the boot-
strapping technique in somewhat homomorphic encryption (SwHE). But the FHE
scheme is still far behind from practical use because of its speed [6]. Moreover,
Brakerski and Vaikuntanathan [8] proposed one more somewhat homomorphic
scheme using the ring learning with errors (ring-LWE) concept of Lyubashevsky
et al. [7]. In this paper, we use an SwHE scheme in [8] because it works faster than
the FHE and supports many additions and a few multiplications.

In this context, conjunctive query processing can be secured using SwHE.
In addition, the database owners and their users can outsource such massive
database computation to a third party like the cloud’. In 2016, Cheon et al.
[2] showed a private query processing technique over encrypted data using the
somewhat homomorphic encryption scheme of Brakerski et al. [9]. Here they
considered circuit-based computation of different types of queries and showed
their performances. They required about half an hour for executing a conjunctive
query over an encrypted database consisting of 10000 records which is impractical
in everyday use. In this paper, we take the challenge of performance improvement
given by Cheon et al. [2] only for conjunctive query processing. So we propose
an efficient method to answer private conjunctive query processing using SwHE.

1.1 Review of Recent Works

Here we review some recent works of the private conjunctive query using different
cryptographic schemes. In 2013, Boneh et al. [1] proposed a new method to
address private conjunctive query in the database. But their method required
set intersection operations which reveal more information to the users. In 2014,
Pappas et al. [11] showed a technique called ‘Blind Seer’ to support a rich query
set over private DBMS using Yao’s garbled circuits and oblivious transfer in the
semi-honest model. Then Fisch et al. [12] improved the security of Blind Seer
by adding malicious-client security. But both of them required a non-constant
round of communication for searching data using Yao’s garbled circuits. Besides,
Cheon et al. [2] showed a method of conjunctive query processing in 2016. Here
they provide privacy of the values in the predicate. But their performance can
be improved for some practical uses. They also used a machine with 192 GB
RAM which is impractical in cloud computing. Furthermore, another method
of evaluating private database query is proposed by Kim et al. [3]. Here they
reduced the communication cost of accessing m records required by previous
methods. But they did not specify the individual query performances. Moreover,
none of these aforementioned methods addressed conjunctive query with small
multiplication depth that can be achieved to minimize the total complexity of
the method. But they did not specify the individual query performances.

Private Conjunctive Query over Encrypted Data 151

1.2 Our Contribution

The conventional solution to the evaluation of a private conjunctive query with
k conditions in the predicate requires executing k sub-queries. Then the final
result can be calculated by taking the intersection of the results from the sub-
queries. For example, consider the conjunctive query like select count(id) from
record where αi = vi ∧ αi+1 = vi+1 ∧ · · · ∧ αk = vk which contains k condi-
tions in its predicate. So it can be computed by counting ‘id’ from the result
the k sub-queries with intersection as

⋂k
i=1 Q(αi = vi) where Q(αi = vi) =

{id| the attribute αi of id takes vi as the value}. If we outsource such computa-
tion to the cloud, then more information regarding records are disclosed to the
cloud. To solve the problem, we propose a different protocol using ring-LWE
based SwHE for providing security to the values in the predicate of a query.
Moreover, we also propose a packing method for SwHE to address the conjunc-
tive query in a few multiplications to make the protocol working faster.

Notations. In this paper, Z denotes the ring of integers. For a prime number
q, the ring of integer is denoted by Zq. In addition, Zn defines an n-dimensional
integer vector space. Besides, Z[x] denotes the ring of polynomials over inte-
gers. For a vector A = (a0, a1, . . . , an−1), the maximum norm of ‖A‖∞ is
defined as max |ai|. Let 〈A,B〉 denote the inner product between two vectors A
and B. Moreover, the function Enc(m, pk) = ct defines the encryption of mes-
sage m using the public key pk to produce the ciphertext ct. The ciphertexts
ctadd and ctmul denote homomorphic addition and multiplication of ciphertexts
ct = Enc(m, pk) and ct′ = Enc(m′, pk). Furthermore, s←χ denotes that s is
chosen from the Gaussian distribution χ. The distribution DZn,δ indicates the
n-dimensional discrete Gaussian distribution for some standard deviation δ > 0.
Besides, p, η, and m represent the total number of blocks, block size, and the
total number of records respectively where a block is a collection of records.

2 Security Tool

In this section, we review the asymmetric SwHE scheme in [10] which is a variant
of the security scheme in [8]. In 2011, Brakerski and Vaikunthanathan [8] proved
the correctness of this scheme.

2.1 Asymmetric SwHE Scheme

In 2015, Lauter et al. [10] showed a SwHE scheme which is a public key variant
of BV’s SwHE scheme [8]. For the SwHE scheme in [10], we need to consider
some parameters as follows.

– φ(x): is a cyclotomic polynomial where φ(x) = xn + 1.
– n: an integer which represents the lattice dimension of the ring Rq =

Zq[x]/φ(x). Here n also represents the degree of polynomials which is a power
of 2 such as 1024 or 2048.

152 T.K. Saha and T. Koshiba

– q: modulus q is an odd prime such that q ≡ 1(mod 2n) defining the ring
Rq = R/qR = Zq[x]/φ(x) which denotes a ciphertext space.

– t: an integer t < q, which defines the message space of the scheme as Rt =
Zt[x]/φ(x), the ring of integer polynomials modulo φ(x) and t.

– δ: is a parameter which defines a discrete Gaussian error distribution χ =
DZn,δ with an n-dimensional integer vector Z

n and a standard deviation δ
where δ = 4–8.

Now we can discuss the key generation, encryption, homomorphism, and decryp-
tion properties of SwHE scheme in [10] as follows:

Key Generation. Generate a ring element s ← χ for our secret key sk = s
where s ∈ R. We then sample a uniformly random element a1 ∈ Rq and an
error e ← χ where e ∈ R. Now we get the public key pair as pk = (a0, a1) with
a0 = a1s + te.

Encryption. For a given message m ∈ Rt and a public key pk = (a0, a1), the
encryption algorithm first samples u, f, g ← χ where u, f, and g are in R then
encryption can be defined by a ciphertext pair (c0, c1) = ct as follows.

Enc(m, pk) = (c0, c1) = (a0u + tg + m,−(a1u + tf)) (1)

Here, the plaintext m ∈ Rt is also in Rq because t < q.

Homomorphic Operations. Generally, homomorphic operations like addition
(�) and multiplication (�) are between two ciphertexts ct = (c0, . . . , cψ) and
ct′ = (c′

0, . . . , c
′
ω). So the homomorphic operations between two ciphertexts can

be defined as follows.
⎧
⎪⎨

⎪⎩

ctadd = ct � ct′ =
(
c0 + c′

0, . . . , cmax(ψ,ω) + c′
max(ψ,ω)

)

ctmul = ct � ct′ =
ψ+ω∑

i=0

ĉiz
i =

(α∑

i=0

ciz
i

)(β∑

j=0

c′
jz

j

)
(2)

where z denotes a symbolic variable such that {ct, ct′} ∈ Rq[z]. In addition, we
can also define the subtraction as similar to component-wise addition.

Decryption. For a fresh or homomorphically operated ciphertext ct =
(c0, . . . , cψ) and t ∈ Rt, general decryption can be defined as

Dec(ct, sk) = [m̃]q mod t (3)

where m̃ =
∑α

i=0 cis
i. For the secret key vector s = (1, s, s2, . . .), we can simply

rewrite Dec(ct, sk) = [ct, s]q mod t. For example, a fresh ciphertext ct = (c0, c1)
generated by (1) then we have

〈ct, s〉 = (a0u + tg + m) − s · (a1u + tf) = m + t · (ue + g − sf) (4)

Private Conjunctive Query over Encrypted Data 153

in the ring Rq since a0 − a1s = te. If the value m + t · (ue + g − sf) does not
wrap-around mod q (all errors e, f, g, u ← χ must be sufficiently small) then we
have [〈ct, s〉]q = m + t · (ue + g − sf) in the base ring R. Here, it is clear that
we can recover plaintext m by mod t operation. In addition, for two ciphertexts
ct1 and ct2, we clearly have the following by the homomorphic operation if no
wrap-around happens in the encrypted results after homomorphic operations.

{ 〈ct1 � ct2, s〉 = 〈ct1, s〉 + 〈ct2, s〉
〈ct1 � ct2, s〉 = 〈ct1, s〉 · 〈ct2, s〉 (5)

2.2 Security of SwHE Scheme

We can show the security of the SwHE scheme by the polynomial ring-LWE
assumption (ring-LWEn,q,χ) as done by Lauter et al. [10] for the given parameters
(n, q, t, δ). Let the ring Rq = Zq/φ(x) where φ(x) = (xn + 1) be the cyclotomic
polynomial of degree n. Let s ← χ = DZn,δ be a random ring element. The
assumption holds for any polynomial number of samples of the form

(ai, bi = ai · s + ei) ∈ (Rq)2

where ai is uniformly random in Rq and ei is drawn from the error distribution
χ. Here the ai’s are uniformly random in Rq and bi’s (bi = ai · s + ei) are
also uniform in Rq. Therefore, it is hard to distinguish (ai, bi) from a uniformly
random pair (ai, bi) ∈ (Rq)2. Besides, Lyubashevsky et al. [7] showed that the
ring-LWE assumption is reducible to the worst-case hardness of problems on
ideal lattices that is believed to be secure against the quantum computer.

Remark 1. In 2016, Castryck et al. [16] described the provably weak instances
of ring-LWE. But these kinds of weak instances do not affect this SwHE scheme.

2.3 Correctness of SwHE Scheme

The correctness of the SwHE scheme depends on how the decryption can recover
the original result from the ciphertext after some homomorphic operations. We
can write the decryption process as follows.

{
Dec(ctadd, sk) = Dec((ct � ct′), sk) = m + m′

Dec(ctmul, sk) = Dec((ct � ct′), sk) = m · m′ (6)

The above process is already described in Sect. 1.1 in [8]. Here, ciphertext ct
and ct′ comes from m ∈ Rq and m′ ∈ Rq respectively after encryption. The
encryption scheme in Sect. 2.1 is the presentation of SwHE and its holds if the
following lemma holds as shown in [13].

Lemma 1 (Condition for successful decryption). For a ciphertext ct,
the decryption Dec(ct, sk) recovers the correct result if 〈ct, s〉 ∈ Rq does not
wrap around mod q, namely, if the condition ‖〈ct, s〉‖∞ < q

2 is satisfied where
‖a‖∞ = max |ai| for an element a =

∑n−1
i=0 aix

i ∈ Rq. Specifically, for a fresh
ciphertext ct, the ∞-norm ‖〈ct, s〉‖∞ is given by ‖m+t(ue+g−sf)‖∞. Moreover,
for a homomorphically operated ciphertext, the ∞-norm can be computed by (5).

154 T.K. Saha and T. Koshiba

3 Private Conjunctive Query Protocol

In this section, we describe our protocol using a real-world scenario. Consider a
hospital (Charlie) has a little computation ability which is maintaining a data-
base of their admitted patients. Moreover, a government health research institute
(Alice) wants to know the number of male patients admitted to that hospital in
the last year who suffered from tuberculosis (TB). Aforementioned is a conjunc-
tive equality query request to Charlie from Alice. Here Alice poses little compu-
tation ability like key generation, encryption, and decryption. Besides, Charlie
cannot disclose his patients’ information to Alice. Therefore, they want to out-
source the computation to a third party like the cloud (Bob) without disclosing
the query and corresponding data to Bob. In this scenario, consider that Alice has
a conjunctive query with k equality conditions (select count(id) from record where
αi = vi and αi+1 = vi+1 and . . . and αk = vk where k > 1) in the predicate.
Here we consider only the security of values in the predicate. So the values of k
attributes {α1, . . . , αk} appeared in the predicate of the query is represented as a
set V = {v1, . . . , vk} where vi = (ai,0, . . . , ai,li−1) is considered as a binary vector
of length li with 1 ≤ i ≤ k. Furthermore, Charlie has m records {R1, . . . ,Rm}
in his patientRecord table of the hospital database with (k +λ) attributes. Here
we require only the k attributes {α1, . . . , αk} and their values in each record
required for our conjunctive query processing. Now each record is represented as
Rμ = {wμ,1 . . . , wμ,k} where each value wμ,i = (bμ,i,0, . . . , bμ,i,li−1) is considered
as a binary vector of the same length li with 1 ≤ μ ≤ m and 1 ≤ i ≤ k. To find
out the conjunctive equality of two sets V and Rμ, now we form a binary vector
from the set V as A = (vi, . . . , vk) by concatenating each binary vector in the set
V where vi = (ai,0, . . . , ai,li−1) with 1 ≤ i ≤ k. Similarly, we form another vec-
tor from the set Rμ as Bμ = (wμ,1, . . . , wμ,k) where wμ,i = (bμ,i,0, . . . , bμ,i,li−1)
with 1 ≤ i ≤ k. Here |A| = |Bμ| =

∑k
i=1 li = L. We can compute the conjunc-

tive equality between two sets V and Rμ by the following Hamming distance
computation.

Hμ =
k∑

i=1

li−1∑

j=1

|ai,j − bμ,i,j | =
k∑

i=1

li−1∑

j=1

(ai,j + bμ,i,j − 2ai,jbμ,i,j) (7)

Here, Hμ defines the Hamming distance between two binary vectors A and Bμ.
Moreover, if Hμ in Eq. (7) is 0 for some positions μ then we can say that A = Bμ;
otherwise A �= Bμ. In this way, Alice securely verifies her conjunctive equality
query with the help of Bob and counts the number of 0 for some positions μ to
find out total number of records for the given query. If we compute the Hamming
distance Hμ for all m records individually then the computation will be slow. So
we need a technique to increase the performance of our protocol.

3.1 Boosting Performance Using the Batch Technique

Batching is the process of executing a single instruction on multiple data. The
performance of our protocol can be increased by using this batch technique

Private Conjunctive Query over Encrypted Data 155

within our lattice dimension n that we call batch private conjunctive query
(BPCQ) protocol. Generally, a big database consists many tables where each
table contains numerous records. For our conjunctive query processing with
batch technique, if we compare all the values of a certain attribute of a par-
ticular table using a single computation then we will be required higher lattice
dimension n which requires more memory to compute. This high requirement of
memory may exceed usual capacity of a machine in the cloud. So we divide all
records of a table into blocks. For our given records, the total number of records
accessed within the lattice dimension n is η = �n/Lwhere L =

∑k
i=1 li. Fur-

thermore, we divide the total records m into p blocks as p = �m/η�. If we access
m-records of the Table one after another then it requires m-rounds communi-
cation between Charlie and Bob in the cloud. On the contrary, BPCQ protocol
able to access a block of records {R1, . . . ,Rη} at a time. Then it will reduce the
number of communication between Charlie and Bob. Here the batching tech-
nique allows us to reduce the communication complexity from m to �m/η�. Now
we can pack the η records of each block in a single polynomial to support batch
computation.

3.2 Batch Private Conjunctive Query Protocol

Here we call the protocol for secure batch processing of our conjunctive query
as batch private conjunctive query (BPCQ) protocol. To describe the BPCQ
protocol, we consider the same scenario as discussed in Sect. 3. Here, Charlie
has m records {R1, . . . ,Rm} in his patientRecord table. Let us consider a block
containing η records as βσ = {Rσ,1, . . . ,Rσ,η} where 1 ≤ σ ≤ p. For 1 ≤ d ≤ η
and 1 ≤ i ≤ k, each record is represented as Rσ,d = {wσ,d,1, . . . , wσ,d,k} where
wσ,d,i = (bσ,d,i,0, . . . , bσ,d,i,li−1). Consider the same query set V and vector A =
(vi, . . . , vk) where vi = (ai,0, . . . , ai,li−1) as in Sect. 3. Similarly, we form another
batch binary vector from all records for each block βσ as Bσ = (Bσ,1, . . . ,Bσ,η)
where Bσ,d = (wσ,d,1, . . . , wσ,d,k). Here |A| =

∑k
i=1 li = L and |Bσ| = η · L.

Here we can compute the conjunctive equality between two sets A and Bσ by
the multiple Hamming distance computation as

Hσ,d =
k∑

i=1

li−1∑

j=1

|ai,j − bσ,d,i,j | =
k∑

i=1

li−1∑

j=1

(ai,j + bσ,d,i,j − 2ai,jbσ,d,i,j) (8)

where 1 ≤ d ≤ η and 1 ≤ σ ≤ p. Here, Hσ,d defines the Hamming dis-
tance between two binary vectors A and Bσ,d where Bσ,d = (wσ,d,1, . . . , wσ,d,k)
is the d-th sub-vector of the block vector Bσ. Moreover, if Hσ,d in Eq. (8)
is 0 for some positions d in the block σ then we can say that A = Bσ,d;
otherwise A �= Bσ,d. In this way, Alice securely verifies her conjunctive
equality query with the help of Bob and counts the number of 0 for some
positions d in the σ-th block to find out total number of records for the
given query. Now we narrate our BPCQ protocol by the following steps.

156 T.K. Saha and T. Koshiba

Inputs: A = (vi, . . . , vk) where vi = (ai,0, . . . , ai,li−1) and Bσ = (Bσ,1, . . . ,
Bσ,η)
where Bσ,d = (wσ,d,1, . . . , wσ,d,k) for 1 ≤ σ ≤ p and 1 ≤ d ≤ η.
Output: |{(σ, d)|Bσ,d = A}|
BPCQ protocol:

1. Alice creates the public key and private key by herself and sends the public
key to Charlie through a secure channel. She also sends conjunctive attributes
information {α1, . . . , αk} to Charlie.

2. Then she forms a vector A = (vi, . . . , vk) using the k values appeared in the
predicate of her conjunctive query using a certain order and length where
vi = (ai,0, . . . , ai,li−1). Then she encrypts A using her public key and sends
it to Bob.

3. Charlie also forms another vector Bσ = (Bσ,1, . . . ,Bσ,η) from η records from
each block σ where Bσ,d = (wσ,d,1, . . . , wσ,d,k) and 1 ≤ σ ≤ p. He uses Alice’s
public key to encrypt Bσ and sends the value to Bob.

4. Bob does the secure computation of the batch equality tests as in Eq. (8)
and sends the encrypted result ct(Hσ,d) to Alice to find out the number of 0
appears for some positions d in the σ-block.

5. For 1 ≤ m ≤ k, Alice decrypts ct(Hσ,d) using her secret key and counts the
number of zero appears in the value ct(Hσ,d) for 1 ≤ σ ≤ p and 1 ≤ d ≤ η
and thus find out the total number of records.

Remark 2. Here our protocol is secure under the assumption that Bob is semi-
honest (also known as honest-but-curious), i.e., he always obeys the protocol but
tries to learn information from it.

3.3 Data Representation for Conjunctive Query Processing

Usually, data may have several dimensions depending on its presentation as
shown in Fig. 1. Here one-dimensional data contains a single value of a certain
attribute. For example, a data set containing sex of the patients of a hospital of a
particular disease in 2014 is an one-dimensional data as shown in Fig. 1(a). Here
one-dimensional data is not required for computing the conjunctive query. In
contrast, values of multi-dimensional data depend on several attributes. Again,
a data set representing sex of the patient of several diseases over several years
is a multi-dimensional data as shown in Fig. 1(b). For computing our conjunc-
tive query protocol, we need an efficient packing method to process the multi-
dimensional data using an SwHE.

3.4 Packing Method of Data

The packing method of data means binding many bits in a single polynomial.
Some packing methods has already been used in researches [10,13,14] to do

Private Conjunctive Query over Encrypted Data 157

(a) (b)

Fig. 1. (a) One-dimensional data and (b) Multi-dimensional data.

faster computation of their protocols using the SwHE scheme. Here we discuss
the existing packing methods, our packing method, and inner product property
of our packing method in the following sub-section.

Existing Packing Method. Since 2011, we have observed that several rese-
archers [10,13,14] have proposed some packing methods for secure homomorphic
computation in the cloud with practical implementations. In 2011, Lauter et al.
[10] used a packing method for encoding a long integer like 128 bits. They packed
an integer in a single polynomial of n degree. They divided the n-bit integer
into as an n-bit binary vector A = (a0, a1, . . . , an−1) and the polynomial was
represented as by the equation as follows.

Poly(A) =
∑n−1

i=0
aix

i

Here the vector A is encrypted as ctpack(A) = Enc(Poly(A), pk). Homomor-
phic operations may require several additions and multiplications. This pack-
ing method of n degree is useful for adding vectors like A = (a0, a1, . . . , an−1)
and B = (b0, b1, . . . , bn−1). But for multiplication, A and B, it increases the
polynomial degree greater than n. Since the degree is at most n, this packing
method can do d multiplications if the polynomials are reduced to n/d degree
polynomials.

In addition, an extension of the packing method in [10] was done by Yasuda
et al. [13] to facilitate the secure Hamming distance and Euclidean distance
computation using the inner product of two vectors A = (a0, a1, . . . , an−1) and
B = (b0, b1, . . . , bn−1) within the degree n. They proposed two different packing

158 T.K. Saha and T. Koshiba

methods to serve wider computations over packed ciphertext. So, the packing
methods for the integral vectors A and B of length n was represented by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Polya(A) =
n−1∑

i=0

aix
i

Polyb(B) = −
n−1∑

i=0

aix
n−i.

(9)

In these packing methods, the first method is quite similar to packing method
of [10], but main modification is done in the second method. However, all of
these packing methods are suitable for packing one-dimensional data. Here we
need to pack multi-dimensional data to process the conjunctive query. Besides,
we need to introduce a batching technique in the packing method to compute
the Hamming distance faster. In addition, we want to compute multiple Ham-
ming distance in Eq. (8) in a few multiplications. So a new packing method is
indispensable to pack the multi-dimensional data.

Our Packing Method. We require to pack multi-dimensional data as shown
in Fig. 1(b) to process conjunctive query in a few multiplications. To support
the batch computation, we need to compute the Hamming distance between
the query vector and each record of the σ-th block using one instruction. The
Eq. (8) contains multiple Hamming distance. To compute the multiple Ham-
ming distance, let us form an integer vector A = (vi, . . . , vk) ∈ Rt from the
set V of length L where vi = (ai,0, . . . , ai,li−1). Then we form another inte-
ger block vector Bσ = (Bσ,1, . . . ,Bσ,η) ∈ Rt of length η · L by taking each
record Rσ,d from the σ-th block where the length of each vector Bσ is η · L
and Bσ,d = (wσ,d,1, . . . , wσ,d,k). Here the multiple Hamming distance means the
distances between the vector A and each sub-vector in Bσ. So we need to define
another packing method than Eq. (9). Moreover, we know from [13] that the
secure inner product 〈A,Bσ〉 helps to compute the Hamming distance between
A and Bσ. Here we pack these integer vectors by some polynomials with the
highest degree(x) = n in such a way so that inner product 〈A,Bσ〉 does not
wrap-around a coefficient of x with any degrees. For the integer vectors A and
Bσ with n ≥ η · L and 1 ≤ σ ≤ p, the packing method of [13] in the same ring
R = Z[x]/(xn + 1) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Poly1(A) =
k∑

i=1

li−1∑

j=0

ai,jx
i·j

Poly2(Bσ) =
s∑

d=1

k∑

i=1

li−1∑

j=0

bσ,d,i,jx
d·L−i·j .

(10)

Here the multiplication of the above two polynomials helps the inner product
computations which in turn helps the multiple Hamming distances computation
between A and Bσ. Here each Hamming distance can be found as a coefficient
of x with different degrees.

Private Conjunctive Query over Encrypted Data 159

Inner Product Property. Consider the above two vectors A and Bσ again.
We already know that inner product of two vectors helps the Hamming distance
computation. So the polynomial multiplications of Poly1(A) and Poly2(B) in
the same base ring R can be represented as

(
k∑

i=1

li−1∑

j=0

ai,jx
i·j

)

×
(

s∑

d=1

k∑

i=1

li−1∑

j=0

bσ,d,i,jx
d·L−i·j

)

=
s∑

d=1

k∑

i=1

li−1∑

j=0

ai,jbσ,d,i,jx
d·L

=
s∑

d=1

〈A,Bσ,d〉xd·L + ToHD + ToLD. (11)

Here, A is the vector of length L and Bσ,d is the d-th sub-vector of Bσ with
the same length as A where 1 ≤ σ ≤ p and 1 ≤ d ≤ η. Moreover, the ToHD
(terms of higher degree) means deg(x) > d · L and the ToLD (terms of lower
degrees) means deg(x) < d ·L. The result in Eq. (11) shows that one polynomial
multiplication includes the multiple inner products of 〈A,Bσ,d〉. In addition, the
following proposition is needed to hold for computing the multiple inner products
over packed ciphertexts. Here we define the packed ciphertext of Polyi(A) ∈ R
with i = {1, 2} as

cti(A) = Enc(Polyi(A), pk) ∈ (Rq)2 (12)

Proposition 1. Let A = (vi, . . . , vk) ∈ Rt be an integer vector where vi =
(ai,0, . . . , ai,li−1) and |A| = L. In addition, Bσ = (Bσ,1, . . . ,Bσ,η) ∈ Rt be
another integer vector of length η · L where Bσ,d = (wσ,d,1, . . . , wσ,d,k). For
1 ≤ d ≤ η, the vector Bσ includes η sub-vectors where the length of each sub-
vector is L. If the ciphertext of A and Bσ can be represented as ct1(A) and
ct2(Bσ) respectively by Eq. (12) then under the condition of Lemma 1, decryption
of homomorphic multiplication ct1(A) � ct2(Bσ) ∈ (Rq)2 will produce a polyno-
mial of Rt with xd·L including coefficient 〈A,Bσ,d〉 =

∑s
d=1〈A,Bσ,d〉xd·L. Con-

sequently, we can say that homomorphic multiplication of ct1(A) and ct2(Bσ)
simultaneously computes the multiple inner products for 1 ≤ σ ≤ p and
1 ≤ d ≤ η.

4 Secure Computation of Private Conjunctive Query

We discuss secure computation of the batch private conjunctive query (BPCQ)
protocol (see Sect. 3 for details) in the following subsections.

4.1 Batch Private Conjunctive Query Protocol

We compute our batch private conjunctive query (BPCQ) protocol using the
SwHE scheme in Sect. 2 and the packing method in the previous section.

160 T.K. Saha and T. Koshiba

In addition, according to Eq. (8), we need to find out the values of the Hamming
distance Hσ,d for 1 ≤ σ ≤ p and 1 ≤ d ≤ η. Let us consider the same integer
vectors A and Bσ from which Hσ,d can be computed. Here, for 1 ≤ μ ≤ m, Hσ,d

is computed by the Hamming distance between A and Bσ using the arithmetic
computation as

Hσ,d =
k∑

i=1

li−1∑

j=1

(ai,j + bμ,i,j − 2ai,jbμ,i,j). (13)

Computation over Packed Ciphertext. For the two integer vectors A and
Bσ mentioned above, the Hamming distance Hσ,d in Eq. (13) can be computed by
the packing method in Eq. (10) and inner product property in Eq. (11). Moreover,
the packed ciphertext of the vectors A and Bσ is computed by the Eq. (12). Here
Hσ,d is computed as ct(Hσ,d) from the Proposition 1 and the packed ciphertext
vector ct1(A) ∈ Rq and ct2(Bσ) ∈ Rq. Due to the using of packed ciphertexts, we
require only three homomorphic multiplications and two homomorphic additions
to compute ct(Hσ,d) as follows.

ct1(A) � ct2(VB) � ct2(Bσ) � ct1(VL) � (−2ct1(A) � ct2(Bσ)) (14)

Here VB denotes an integer vector (1, . . . , 1) of length η · L and VL denotes
another integer vector (1, . . . , 1) of length L. The encrypted polynomial ct(Hσ,d)
includes the Hamming distances between the sub-vectors of A and sub-vectors of
Bσ. Here we need the Hamming distance Hσ,d in Eq. (13). Bob sends ct(Hσ,d) to
Alice for decryption. According to our Proposition 1 and BPCQ protocol, Alice
decrypts ct(Hσ,d) in the ring Rq using her secret key and extracts Hσ,d as a
coefficient of xd·L from the plaintext of ct(Hσ,d). Then Alice counts the number
of zero appears in the value of Hσ,d for some 1 ≤ σ ≤ p and 1 ≤ d ≤ η and thus
finds out the total number of records satisfying the conjunctive conditions in the
given query.

4.2 Solving Additional Information Leakage Problem

Here Alice can know some additional information from the computation of
ct(Hσ,d) than she requires due to sending encrypted polynomial ct(Hσ,d) to her.
But Alice needs to know only those coefficients which has degree xd·L. We solve
this problem by adding a random polynomial at the cloud (Bob) ends where
every coefficient is random except xd·L and the coefficient of xd·L is zero. Bob
adds a random polynomial r to ct(Hσ,d) for masking extra information since Alice
needs to check only the coefficient of xd·L from the large polynomial ct(Hσ,d)
produced by Bob. The random polynomial in the ring R can be represented by
the following equations as

r = r0 +
n/L∑

d=0

L−1∑

i=1

rd·L+ix
d·L+i.

Private Conjunctive Query over Encrypted Data 161

Here ct(Hσ,d) consists of three ciphertext components as ct(Hσ,d) = (c0, c1, c2). So
Bob adds r to the ciphertext as ct(H′

σ,d) = ct(Hσ,d)� r = (c0 � r, c1, c2). Here the
resulting ciphertext ct(H′

σ,d) contains all required information as a coefficient of
xd·L and hide all other coefficients using the randomization. In this way, ct(H′

σ,d)
does not leak any information to Alice except the coefficient of xd·L.

5 Performance Analysis

In this section, we experimented our BPCQ protocol and compared its perfor-
mances with conjunctive query results in [2]. Here our protocol scenario is differ-
ent from the scenario of Cheon et al. [2] protocol while both requires conjunctive
query processing. Here we describe the theoretical performance comparison, used
parameters of our experiments and their security levels. Here, we also discuss
the practical performance of our protocol using ring-LWE SwHE.

5.1 Theoretical Evaluation

Here we evaluate the multiplication depth of equality computation for Cheon et
al. [2] and our protocol. We use the Hamming distance computation to compute
the equality of data which is realized by Eq. (13). Here the encrypted compu-
tation of this Hamming distance required only three polynomial multiplications
as in Eq. (14). The method of Cheon et al. required a multiplication depth of
log μ for their equality circuit comparing two μ-bit integers whereas our method
required only log 3 due to using our packing method as shown in Table 1. In addi-
tion, our BPCQ protocol requires a communication complexity of O(m ·L log q).

Table 1. Theoretical performance comparison of our protocol

Operation Data size Depth of multiplication

Cheon et al. [2] Our method

Equality μ-bit log μ log 3

5.2 Experimental Settings

For our experiment, we considered the same database settings as referred in [2]
for Charlie in our protocol with a different protocol scenario. We also considered
the same conjunctive query with equality as a comparison operator. We show
the experimental setting of our used parameters in Table 2. Here the number of
equality conditions k appeared in the query are 2 and 4. Furthermore, we took
the data size 15–16-bits and block size η = 100. We also considered appropri-
ate values for the parameters (n, q, t, δ) of our security scheme as discussed in
Sect. 2 for successful decryption and achieving a certain security level. Here, we
need the lattice dimension to be greater than n ≥ η · �L for our BPCQ proto-
col as mentioned in Sect. 3.4. For this reason, we choose the lattice dimension

162 T.K. Saha and T. Koshiba

Table 2. Experimental parameter settings in BPCQ protocol

Index Parameters (n, t, q, δ) Data size Block size (η)

1 (3000, 2048, 61-bits, 8) 15 bits

2 (6000, 2048, 63-bits, 8) 15 bits

3 (3200, 2048, 61-bits, 8) 16 bits 100

4 (6400, 2048, 63-bits, 8) 16 bits

5 (3200, 2048, 61-bits, 8) 16 bits

6 (6400, 2048, 63-bits, 8) 16 bits

n=3000–6400. Furthermore, we set t = 2048 for our plaintext space Rt. Accord-
ing to the work in [10], we choose δ = 8 and value of q must be greater than
16n2t2δ4 = 24·222·222·212 = 260 for the ciphertext space Rq. Therefore, we fix our
parameters as (n, q, t, δ) = (3000–6400, 61–63-bits, 2048, 8). Following the same
computation procedure of Yasuda et al. [15], our parameters setting provides
at least 257-bit security level to protect our method from some distinguishing
attacks. In addition, NIST [17] defines different security levels for many security
algorithms and their corresponding validity periods. Furthermore, they notified
that a minimum strength of 112-bit level security has a security lifetime up to
2030. They also disclosed that a security algorithm with a minimum strength of
128-bit level security has a security lifetime beyond 2030.

5.3 Experimental Evaluation

Here we show the practical performance of our protocol in Table 3. Here, we
wrote the required code of our protocol in C programming language with Pari
library (version 2.7.5) [18]. Then we ran on a single machine configured with
one 3.6 GHz Intel core-i7 CPU and 8 GB RAM in Linux environment. Here we
also compared our private conjunctive query protocol performance with that of
Cheon et al. [2] for three different data set of 100, 1000, and 10000 records. Here
we use indexing as in the first column of Tables 2 and 3 to show the relation of

Table 3. Performance of the BPCQ protocol

Index m (k) Total time (seconds) Security level

Cheon et al. [2] Our method Cheon et al. [2] Our method

1 100 2 5.12 0.109 80 257

2 4 10.24 0.249 648

3 1000 2 51.63 1.281 281

4 4 101.86 1.828 698

5 10000 2 913.180 8.734 281

6 4 1788.19 19.124 698

Private Conjunctive Query over Encrypted Data 163

parameter settings and corresponding performances. However, our system used
less RAM than that of Cheon et al. [2]. From the Table 3, we can say that our
protocol worked more than 50 times as fast as the CKK protocol [2]. Here our
conjunctive query processing worked faster because of low multiplicative depth
of equality circuits and batch computation. As shown in Table 3, we achieved
257–698-bit security level for our protocol whereas Cheon et al. achieved only
80-bit security level.

6 Conclusions

In this paper, we proposed and implemented an efficient private conjunctive
query protocol over encrypted data which performs more than 50 times as fast
as the existing protocol using SwHE. While we compared our technique with the
method of Cheon et al. [2] in a different settings from theirs. However, both of
the protocols needed the conjunctive query processing. Here we have observed
from our computation time that if we would use the same settings then it will
not cost as much time as required by them. Moreover, we showed that our
equality protocol required less multiplicative depth than that of Cheon et al.
due to using our packing method. Besides, we believe that our packing method
is extendable to many new queries processing. In future work, we will consider all
types of queries (e.g. disjunctive and threshold queries) that are used for private
database query processing using our packing method along with SwHE.

Acknowledgment. This research is supported by KAKENHI Grant Numbers
JP26540002, JP-24106008, and JP16H0175.

References

1. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries
using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohas-
sel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38980-1 7

2. Cheon, J.H., Kim, M., Kim, M.: Optimized search-and-compute circuits and their
application to query evaluation on encrypted data. IEEE Trans. Inf. Forensics
Security 11(1), 188–199 (2016)

3. Kim, M., Lee, H.T., Ling, S., Wang, H.: On the efficiency of FHE-based private
queries. In: IACR Cryptology ePrint Archive 2015: 1176 (2015)

4. Kim, M., Lee, H.T., Ling, H., Ren, S.Q., Tan, B.H.M., Wang, H.: Better security
for queries on encrypted databases. In: IACR Cryptology ePrint Archive 2016: 470
(2016)

5. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on
Theory of Computing - STOC 2009, pp. 169–178. ACM, New York (2009)

6. Hu, Y.: Improving the efficiency of homomorphic encryption schemes. Ph.D. diss.,
Worcester Polytechnic Institute, Massachusetts (2013)

7. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

http://dx.doi.org/10.1007/978-3-642-38980-1_7
http://dx.doi.org/10.1007/978-3-642-13190-5_1

164 T.K. Saha and T. Koshiba

8. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22792-9 29

9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) Fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations in The-
oretical Computer Science Conference, pp. 309–325. ACM (2012)

10. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: ACM Workshop on Cloud Computing Security Workshop, CCSW
2011, pp. 113–124. ACM, New York (2011)

11. Pappas, V., Vo, B., Krell, F., Choi, S., Kolesnikov, V., Keromytis, A., Malkin, T.:
Blind Seer: a scalable private DBMS. In: 35th IEEE Symposium on Security and
Privacy 2014, pp. 359–374. IEEE Computer Society Press (2014)

12. Fisch, B.A., Vo, B., Krell, F., Kumarasubramanian, A., Kolesnikov, V., Malkin, T.,
Bellovin, S.M.: Malicious-client security in Blind Seer: a scalable private DBMS.
In: 36th IEEE Symposium on Security and Privacy, pp. 395–410. IEEE Computer
Society Press (2015)

13. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practi-
cal packing method in somewhat homomorphic encryption. In: Garcia-Alfaro,
J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.)
DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54568-9 3

14. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure statis-
tical analysis using RLWE-based homomorphic encryption. In: Foo, E., Stebila, D.
(eds.) ACISP 2015. LNCS, vol. 9144, pp. 471–487. Springer, Cham (2015). doi:10.
1007/978-3-319-19962-7 27

15. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pat-
tern matching using somewhat homomorphic encryption. In: ACM Workshop on
Cloud Computing Security Workshop, CCSW 2013, pp. 65–76. ACM, New York
(2013)

16. Castryck, W., Iliashenko, I., Vercauteren, F.: Provably weak instances of ring-LWE
revisited. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665,
pp. 147–167. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 6

17. Barker, E.: Recommendation for key management. In: NIST Special Publication
800–57 Part 1 Revision 4. NIST (2016)

18. The PARI Group, PARI/GP version 2.7.5, Bordeaux (2014). http://pari.math.
u-bordeaux.fr/

http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-54568-9_3
http://dx.doi.org/10.1007/978-3-319-19962-7_27
http://dx.doi.org/10.1007/978-3-319-19962-7_27
http://dx.doi.org/10.1007/978-3-662-49890-3_6
http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

Efficient Oblivious Transfer
from Lossy Threshold Homomorphic Encryption

Isheeta Nargis(B)

University of Calgary, Calgary, Canada
inargis@ucalgary.ca

Abstract. In this article, a new oblivious transfer (OT) protocol, secure
in the presence of erasure-free one-sided active adaptive adversaries is
presented. The new bit OT protocol achieves better communication com-
plexity than the existing bit OT protocol in this setting. The new bit
OT protocol requires fewer number of public key encryption operations
than the existing bit OT protocol in this setting. As a building block, a
new two-party lossy threshold homomorphic public key cryptosystem is
designed. It is secure in the same adversary model. It is of independent
interest.

Keywords: Oblivious transfer · Active adversary · One-sided adaptive
adversary · Threshold encryption · Lossy encryption · Public key encryp-
tion · Homomorphic encryption

1 Introduction

Oblivious transfer (OT) is one of the most critical problems in cryptography
since many applications can be designed based on the existence of a secure OT
protocol. In one-sided active adaptive adversary model for two-party computa-
tion, it is assumed that the adversary is active, adaptive and it can corrupt at
most one party [13]. This is a relaxation from the standard adaptive adversary
model for two-party computation, where the adversary can corrupt both par-
ties. This relaxed model is used to achieve more efficient protocols. Let n denote
the security parameter. Garay et al. [12] designed the most efficient OT protocol
secure against active adaptive adversaries. For string OT of size q bits, their pro-
tocol requires O(q) public key encryption (PKE) operations in the worst case.
Here, q is a polynomial of n. Hazay and Patra [13] designed an OT protocol for
one-sided active adaptive adversary model. For string OT of size q bits, their
protocol requires constant number of PKE operations in the expected case. So,
relaxing the notion of security has resulted in a protocol requiring significantly
smaller number of PKE operations, in the expected case. In the erasure-free
adaptive adversary model, it is assumed that the adversary can see all history of
a party when it corrupts that party.

Hazay and Patra [13] designed an OT protocol for one-sided active adap-
tive adversary model. The OT protocol of [13] requires O(n2) communication
c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 165–183, 2017.
DOI: 10.1007/978-3-319-57339-7 10

166 I. Nargis

complexity for bit OT. One research goal is to improve the communication com-
plexity in this setting.

Contribution of this Article. In this article, a new OT protocol secure against
erasure-free one-sided active adaptive adversaries is presented. The worst case
analysis is used as the measure of efficiency in this article. The new bit OT pro-
tocol needs O(n) communication complexity, which is a significant improvement
over the O(n2) communication complexity of the bit OT protocol of [13]. The bit
OT protocol of [13] requires O(n) PKE operations in the worst case, and the new
bit OT protocol needs a constant number of PKE operations in the worst case.
The OT protocol of [13] is secure in the universally composable (UC) frame-
work. The new OT protocol is secure according to the simulation-based security
definition of Canetti [5], which satisfies sequential composition.

As a building block, a new two-party lossy threshold homomorphic PKE
scheme is designed. This encryption scheme is of independent interest. It can be
used in other two-party protocols.

Techniques. Aumann and Lindell [1] designed an OT protocol secure against
covert static adversaries. The new OT protocol is designed by converting their
OT protocol. It is secure against erasure-free one-sided active adaptive adver-
saries. The new OT protocol achieves a much stronger notion of security than the
OT protocol of [1] in two senses. Firstly, the active adversary model is a stronger
security model than the covert adversary model [1]. Secondly, the adaptive adver-
sary model is more secure than the static adversary model [5]. The OT protocol
of [1] is modified in two ways. The protocol of [1] uses a traditional homomorphic
PKE scheme and the new OT protocol uses a two-party lossy threshold homo-
morphic PKE scheme. For verification, the protocol of [1] uses cut-and-choose
technique and the new OT protocol uses adaptive zero-knowledge arguments.

2 Background

Notation. Let n denote the security parameter. Let Zq = {0, 1, . . . , q−1} where
q is a prime. Let Z

∗
q = {1, 2, . . . , q − 1}. For all elements a and b �= 1 in group

G, the discrete logarithm of a in base b is denoted by logb(a). For a set R,

let r
$← R denote that r is selected uniformly at random from R. Let A be a

probabilistic polynomial-time algorithm. Let coins(A) denote the distribution of
the internal randomness of A. y ← A(x) means that y is computed by running

A on input x and randomness r where r
$← coins(A). Let Epk(m, r) denote the

result of encryption of plaintext m using encryption key pk and randomness r.
Let Dsk(c) denote the result of decryption of ciphertext c using decryption key
sk. Let Comμ(a, r) denote the commitment of secret a using commitment key μ
and randomness r.

The DDH Assumption. The decisional Diffie-Hellmann (DDH) assumption
for cyclic group G of order prime q says that, for random generator g ∈ G

∗

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 167

(G∗ denotes the generators of G), the tuples (g, ga, gb, gab) and (g, ga, gb, gc) are

computationally indistinguishable, where a, b, c
$← Zq.

Trapdoor Commitment Scheme. A trapdoor commitment scheme is a com-
mitment scheme such that a trapdoor is generated during the key generation.
With the trapdoor, one can efficiently compute a randomness to open a given
commitment to any value of choice. Without the trapdoor, the binding property
of the commitment scheme holds. Pedersen [18] designed a trapdoor commitment
scheme based on the DDH assumption. In Pedersen’s commitment scheme, the
commitment key is μ = gδ, and δ is the trapdoor.

Adaptive Zero-Knowledge Arguments. For definition of zero-knowledge
argument, see [15]. An adaptive zero-knowledge argument is a zero-knowledge
argument secure against adaptive adversaries. For definition of non-erasure
Σ-protocol, see [8,17].

Additive Homomorphic PKE Scheme. In an additive homomorphic PKE
scheme, one can efficiently compute an encryption c of (m1 + m2) from cipher-
texts c1 and c2 encrypting plaintexts m1 and m2, respectively. This is called
homomorphic addition and denoted by c = c1 +h m2. In an additive homomor-
phic PKE scheme, one can also efficiently compute an encryption c2 of (m1×m2)
from an encryption c1 of m1 and the plaintext m2. This is called homomorphic
multiplication by constant, and denoted by c2 = m2 ×h c1.

Randomizable PKE Scheme. In a randomizable PKE scheme, there exists
a probabilistic polynomial-time algorithm Blind, which, on input public key pk
and an encryption c of plaintext m, produces another encryption c1 of plaintext
m such that c1 is distributed identically to Epk(m, r) where r

$← Coins(E).

Lossy Encryption Scheme

Definition 1 (Lossy PKE Scheme [3]). A lossy PKE scheme is a tuple
(G,E,D) of probabilistic polynomial time algorithms such that keys generated
by G(1k, 1) and G(1k, 0) are called injective keys and lossy keys, respectively.
The algorithms must satisfy the following properties.

1. Correctness on Injective Keys: For all plaintexts m,

Pr

[
(pk, sk) ← G(1k, 1

)
; r $← coins(E) : Dsk

(
Epk(m, r)

)
= m

]
= 1.

2. Indistinguishability of Keys: The lossy public keys are computationally
indistinguishable from the injective public keys. If proj : (pk, sk) → pk is the
projection map, then {proj(KG(1k, 1))} c≡ {proj(KG(1k, 0))}.

3. Lossiness on Lossy Keys: If (pk�, sk�) ← G(1k, 0), then, for all m0,m1, the
distributions Epk�

(m0, R) and Epk�
(m1, R) are statistically indistinguishable.

168 I. Nargis

4. Openability: If (pk�, sk�) ← G(1k, 0) and r0
$← coins(E), then, for all

m0,m1, with overwhelming probability, there exists r1 ∈ coins(E) such that
Epk�

(m0, r0) = Epk�
(m1, r1). That is, there exists a (possibly inefficient) algo-

rithm Opener that can open a lossy ciphertext to any arbitrary plaintext with
all but negligible probability.

The semantic security of a lossy encryption scheme is implied by definition [3].

Security Model. The security of the new protocols are proved following the
simulation based security definition by Canetti [5].

3 Definition of Two-Party Lossy Threshold PKE Scheme

A definition of two-party lossy threshold PKE scheme secure against one-sided
active adaptive adversaries is presented below.

Definition 2 (Lossy Threshold PKE Scheme Secure against Erasure-Free One-
Sided Active Adaptive Adversaries). A lossy threshold PKE scheme secure
against erasure-free one-sided active adaptive adversaries for the set of
parties P = {P1, P2}, and security parameter n, is a 4-tuple (K,KG,E,ΠDEC)
having the following properties.

Key Space: The key space K is a family of finite sets (pk, sk1, sk2). pk is the
public key and ski is the secret key share of Pi. Let Mpk denote the message
space for public key pk.

Key Generation: There exists a probabilistic polynomial-time key generation
algorithm KG, which, on input (1n,mode), generates public output pk and
a list {vk, vk1, vk2} of verification keys, and secret output ski for Pi, where
(pk, sk1, sk2) ∈ K. By setting mode to zero and one, key in lossy mode and
injective mode can be generated, respectively. vk is called the verification key,
vki is called the verification key of Pi.

Encryption: There exists a probabilistic polynomial-time encryption algorithm
E, which, on input pk, m ∈ Mpk, r

$← coins(E), outputs an encryption
c = Epk(m, r) of m.

Decryption: There exists a two-party decryption protocol ΠDEC secure against
erasure-free one-sided active adaptive adversaries. On common public input
(c, pk, vk, vk1, vk2), and secret input ski for each Pi, i ∈ {1, 2}, where ski is
the secret key share of Pi for the public key pk (as generated by KG), and c is
an encrypted message, ΠDEC returns a message m, or the symbol ⊥ denoting
a decryption failure, as a common public output.

Lossy Encryption Properties: The encryption scheme is a lossy encryption
scheme according to Definition 1.

Threshold Semantic Security: Consider the following game G for an
erasure-free one-sided active adaptive adversary A.
G1. A may corrupt at most one party. If A corrupts Pi, then A learns the

history of Pi.

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 169

G2. The challenger executes algorithm KG. The challenger broadcasts the
public key and the verification keys. For each i ∈ {1, 2}, the challenger
sends ski to Pi. If there is a corrupted party Pi, then A learns ski.

G3. A adaptively makes the following types of queries.
1. Corruption query

A may corrupt a party, if no party was corrupted before. If A corrupts
Pi, then A learns ski and the history of Pi.

2. Decryption query
A selects a message m ∈ Mpk, and sends it to the challenger. The
challenger sends A the decryption shares and the validity proofs of P1

and P2, for an encryption of m.
A repeats step G3 as many times as it wishes.

G4. A selects two message m0 and m1 from Mpk, and sends them to the chal-
lenger. The challenger randomly selects a bit b, and sends an encryption
c of mb, to A.

G5. A repeats step G3 as many times as it wishes. A cannot request message
m0 or m1 in step G3(2).

G6. A outputs a guess bit b1.
A threshold encryption scheme is said to be semantically secure against
erasure-free one-sided active adaptive adversaries if, for any prob-
abilistic polynomial-time erasure-free one-sided active adaptive adversary,
b = b1 with probability only negligibly greater than 1

2 .

The verification keys are used for validity proofs in ΠDEC . During ΠDEC , each
party Pi uses validity proof such that Pi can convince the remaining party that
Pi performed its calculation in ΠDEC correctly, without disclosing its secret.
Note that A can only request for ciphertexts for which it knows the plaintext.
It is not like the chosen ciphertext attack (CCA) where the adversary can ask
for decryption shares for any chosen ciphertext. Step G3(2) is used in game G
to denote that, despite learning all the decryption shares and validity proofs
for several chosen plaintexts, the adversary still does not gain any advantage in
guessing the plaintext from the ciphertext.

Let FKG be the ideal functionality for the key generation. In a two-party
lossy threshold encryption scheme, there may exist a two-party distributed key
generation (DKG) protocol that computes FKG securely against erasure-free
one-sided active adaptive adversaries.

4 A New Two-Party Lossy Threshold Homomorphic
Encryption Scheme

In this section, a new two-party lossy threshold homomorphic public key encryp-
tion scheme ELTA2E = (K,KG,E,ΠDEC) is presented. The name ELTA2E
denotes an encryption scheme that is lossy, threshold, secure against adap-
tive adversaries, for two parties and based on the ElGamal encryption scheme.

170 I. Nargis

ELTA2E is based on the DDH assumption. All protocols of ELTA2E work in
the CRS model.1

Bellare and Yilek [4] designed a non-threshold lossy encryption scheme with
efficient Opener algorithm, based on the DDH assumption. Let EncLossy denote
their encryption scheme. ELTA2E is created by adding the threshold properties
to EncLossy.

One possible group G for ELTA2E is as follows. Safe primes are primes of
the form p = 2q + 1 where q is also a prime. On input n, using known methods
to generate safe primes, an n-bit safe prime p is generated, with generator g0 of
Z

∗
p. There is exactly one subgroup G of Z∗

p of order q. Let g be the generator of

G. g = g0
p−1

q = (g0)
2. (p, q, g) is the description of group G. Unless otherwise

specified, all computations are performed in group G. Pedersen commitment
scheme [18] is used as the trapdoor commitment scheme in ELTA2E.

KeyGeneration. Let the input be (1n,mode). Select α1, α2
$← Zq. Set α = (α1+

α2) mod q, h = gα, h1 = gα1 , h2 = gα2 . Select γ
$← Zq. Set j = gγ . If mode = 1,

then set � = gγα. If mode = 0, then select ρ
$← Zq \ {α}, and set � = gγρ. The

public key is pk = (q, g, j, h, �). The secret key shares are sk1 = α1, sk2 = α2. The
verification keys are vk = g, vk1 = h1, vk2 = h2.

Encryption. The encryption algorithm E works as follows. Let the plaintext
be m ∈ {0, 1}. Select randomness r = (s, t) $← Zq × Zq. Compute y = gsjt, and
z = hs�tgm. Return the ciphertext c = (y, z).

Protocol for Threshold Decryption. The threshold decryption protocol
ΠDEC works as follows. P1 sends ds1 = y(sk1). Adaptive zero-knowledge argu-
ment for equality of discrete logarithm is used as the validity proof in ΠDEC .
P1 proves that logy(ds1) = logvk(vk1). If P1 fails, then P2 aborts. P2 sends
ds2 = y(sk2). P2 proves that logy(ds2) = logvk(vk2). If P2 fails, then P1 aborts.
P1 and P2 compute w = z

ds1·ds2
. From w, P1 and P2 compute m where m ∈ {0, 1},

and gm = w in G. If there is no such value m, then P1 and P2 output ⊥, denoting
decryption failure.

It is also possible to perform private threshold decryption to just one party
Pk. In that case, P2−k sends ds2−k = y(sk2−k), and proves as above. Pk computes
dsk, then computes the output similarly.

Distributed Key Generation Protocol. ELTA2E has a DKG protocol
ΠDKG. The protocol ΠDKG is presented below.

Protocol ΠDKG.

CRS: μ ∈ Zp.
Group description: (p, q, g).
Input: (1n,mode).

1 In the common reference string (CRS) model, it is assumed that all parties have
access to a common string that is selected from some specified distribution.

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 171

1. P1 selects α1, γ1, β1, θ1
$← Zq. P1 sets sk1 = α1. P1 computes h1 = gα1 , j1 =

gγ1 . P1 computes commitments b1 = Comμ(h1, β1), c1 = Comμ(j1, θ1).
P1 sends (b1, c1).

2. P1 proves the knowledge of committed secret for commitments b1 and c1. If
P1 fails in any proof, then P2 aborts.

3. P2 selects α2, γ2
$← Zq. P2 sets sk2 = α2. P2 computes h2 = gα2 , j2 = gγ2 .

P2 sends (h2, j2).
4. P2 proves knowledge of discrete logarithm of h2 and j2. If P2 fails in any

proof, then P1 aborts.
5. P1 sends the openings (h1, β1) and (j1, θ1) of its commitments.
6. P2 verifies that b1 = Comμ(h1, β1), and c1 = Comμ(j1, θ1). If any of these

two equalities does not hold, then P2 aborts.
7. P1 and P2 set vk = g, vk1 = h1, vk2 = h2, h = h1h2, j = j1j2.

8. If mode = 0, then P1 selects τ1
$← Zq \ {α1}, and sets �1 = jτ1 .

If mode = 1, then P1 sets �1 = jα1 . P1 sends �1.
9. If mode = 1, then P1 proves that logj (�1) �= logvk (vk1).

If mode = 1, then P1 proves that logj (�1) = logvk (vk1).
If P1 fails, then P2 aborts.

10. P2 sends �2 = jα2 .
11. P2 proves that logj (�2) = logvk (vk2). If P2 fails, then P1 aborts.
12. P1 and P2 set � = �1�2, pk = (q, g, j, h, �).
13. P1 outputs (pk, sk1, (vk, vk1, vk2)).
14. P2 outputs (pk, sk2, (vk, vk1, vk2)).
The proofs in steps 2,4,9, and 11 are performed using adaptive zero-knowledge
arguments. The CRS μ is used as the commitment key for Pedersen commitment
scheme. The CRS μ also acts as the CRS for the zero-knowledge arguments. The
reason for using commitments in ΠDKG is to ensure that no party can affect the
distribution of the generated key.

Lemma 1. ELTA2E is additive homomorphic.

Proof. Homomorphic Addition. Let c1 = (gs1jt1 , hs1�t1gm1), and c2 =
(gs2jt2 , hs2�t2gm2) be two ciphertexts encrypting plaintexts m1 and m2, respec-
tively. c = c1 +h c2 = (gs1jt1 · gs2jt2 , hs1�t1gm1 · hs2�t2gm2) = (gs1+s2jt1+t2 ,
hs1+s2�t1+t2gm1+m2).

Homomorphic Multiplication by Constant. Let c1 = (y1, z1) = (gs1jt1 ,
hs1�t1gm1) be a ciphertext encrypting plaintext m1. Let m2 be a known plaintext.
c2 = c1 ×h m2 =

(
(gs1jt1)m2 , (hs1�t1gm1)m2

)
= (gs1m2jt1m2 , hs1m2�t1m2gm1m2).

ELTA2E is Randomizable. Let c = (y, z) = (gsjt, hs�tgm) be a cipher-
text encrypting plaintext m. The Blind function on input (pk, c) = ((q, g, j, h,−
�), (y, z)) works as follows. Select s1, t1

$← Zq×Zq. Set y1 = y·gs1jt1 , z1 = z·hs1�t1 .
Return c1 = (y1, z1).

172 I. Nargis

5 Security of the DKG Protocol ΠDKG

Canetti et al. [6] introduced the single inconsistent party (SIP) technique. At
the start of simulation, the identity of the single inconsistent party (SIP) is
generated uniformly at random. The view of any party except the SIP in the
simulation is computationally indistinguishable from its view in the real world.
The view of the adversary is independent from the choice of SIP. This technique
is used in the security proofs of ELTA2E. Let A be a one-sided active adaptive
adversary and Z be the environment. Let SDKG be the simulator for ΠDKG for
adversary A and environment Z. At start, SDKG selects I

$← {P1, P2} where I
denotes the identity of the SIP. If A corrupts I, then SDKG rewinds to the start
of simulation, generates a new I

$← {P1, P2}, and proceeds again. A corrupts at
most one party, so the probability of a randomly selected party I being corrupted
is at most 1

2 . The expected number of rewinds of SDKG is at most two, and the
simulation can be performed in expected polynomial time. To bound the running
time of SDKG to strictly polynomial time, simulation can continue running up to
n�1 steps where �1 is a constant. If SDKG does not halt within n�1 steps, then
SDKG fails. The probability of failure of SDKG is negligible.

Theorem 1. Provided that the DDH assumption holds, and trapdoor commit-
ment scheme and adaptive zero-knowledge arguments exist, protocol ΠDKG com-
putes FKG securely against erasure-free one-sided active adaptive adversaries.

Proof (Sketch). The main idea of the proof is given here. The full proof is available

in the full version [16]. At start, SDKG selects δ
$← Zq, and sets the CRS to μ = gδ.

Then, SDKG knows the trapdoor δ of the commitment key μ. The simulator SDKG

for the case where P1 is the SIP, works as follows. If A corrupts P2 after any step,
then SDKG corrupts P2 in the ideal world. If P2 fails in some proof, then P1 aborts
in the real world. In the ideal world, SDKG sends abortP2 to the trusted party and
halts. The trusted party sends abortP2 to P1, and P1 halts. If P2 does not fail in

any proof, then the following things happen. In step 1, SDKG selects α2, γ2
$← Zq,

computes h2 = gα1 , j2 = gγ2 , h1 = h
h2

, j1 = j
j2

. SDKG selects β1, θ1
$← Zq and

computes b1 = Comμ(h1, β1), c1 = Comμ(j1, θ1). By the hiding property of the
commitment scheme, the distribution of (b1, c1) in two worlds are identical. SDKG

honestly performs step 2. In step 3, if P2 is honest, then SDKG uses h2, j2 computed
in step 1. In step 4 and 11, if P2 is corrupted, SDKG acts as an honest verifier. If P2

passes the proofs, then SDKG extracts α2 and γ2 using the knowledge extractor
of the zero-knowledge argument, in step 4. If P2 is honest, then SDKG acts as an
honest prover in step 4 and 11. In step 5, SDKG computes ĥ1 = h

h2
, ĵ1 = j

j2
.

Using the trapdoor δ of the commitment key μ, SDKG computes β̂1, θ̂1 such that
b1 = Comμ(ĥ1, β̂1), and c1 = Comμ(ĵ1, θ̂1). SDKG uses (ĥ1, β̂1), (ĵ1, θ̂1) as the
message from P1. If A corrupts P2 before step 3, then, corrupted P2 sends h2 and
j2 in step 3. The value of h and j are fixed since they are part of the input of
SDKG. A sees that the openings of the commitments are consistent, and h = ĥ1h2

and j = ĵ1j2, as required. (ĥ1, ĵ1) is identically distributed to (h1, j1). If P2 is

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 173

honest up to step 3, then ĥ1 = h
h2

= h1, β̂1 = β1, ĵ1 = j1, θ̂1 = θ1. In step 6, P1

passes the verification tests in the ideal world. In step 7, SDKG sets vk = g, vk1 =
ĥ1, vk2 = h2, and uses (h, j) of the input. As argued earlier, these values in two
worlds are identically distributed. In step 8, SDKG computes �̂1 = �

j(α2) > � is

fixed in both worlds. The distribution of α2 in two worlds are identical. Then, �̂1
and �1 are identically distributed. In step 9, SDKG generates a proof transcript
using trapdoor δ. By definition of zero-knowledge argument, the proof transcript
in two worlds are computationally indistinguishable. If P2 is honest, then SDKG

honestly performs steps 10 and 11. In step 12, SDKG uses (�, pk) of input. In step
13, the output of honest P1 is (pk, vk, vk1, vk2, α1). Then, the output of the honest
P1 in two worlds are identically distributed. In step 14, if P2 is honest, then SDKG

sets (pk, vk, vk1, vk2, α2) as the output of P2. The distribution of sk2 in two worlds
are identical. The simulator for the case where P2 is the SIP is similar, so it is not
given separately.

6 Security of Encryption Scheme ELTA2E

Lemma 2. If the decisional Diffie-Hellman assumption holds, then ELTA2E is
a lossy encryption scheme. ELTA2E has an efficient (polynomial-time) Opener
algorithm.

Proof. Correctness of Decryption in the Injective Mode. In the injective
mode, pk = (q, g, j, h, �) = (q, g, gγ , gα, gα·γ) . Then, w = z

ds1·ds2
= z

ysk1 ·ysk2
=

z
yα1+α2 = z

yα = hs�tgm

(gsjt)α = (gα)s(gγα)tgm

(gs(gγ)t)α = gαs+αγt+m

gαs+αγt = gm.

Indistinguishability of Keys. In the injective mode, pk = (q, g, j, h, �) =
(q, g, gγ , gα, gγα). In the lossy mode, pk = (q, g, j, h, �) = (q, g, gγ , gα, gγρ). By
the DDH assumption, the public key in injective mode is computationally indis-
tinguishable from the public key in lossy mode.

Lossiness on Lossy Keys. Let pk = (q, g, j, h, �) = (q, g, gγ , gα, gγρ) be a lossy
public key. Encryption of a message m with randomness (s, t) is c = (y, z) =
(gs+γt, gαs+γρt · gm) . Since ρ �= α, (s+γt) and (αs+γρt) are linearly independent
combinations of s and t. Then, y and z are uniformly random group elements.

Efficient Opener Algorithm. Let pk = (q, g, j, h, �) = (q, g, gγ , gα, gγρ) be a
lossy public key. Let the corresponding secret key be sk = (γ, ρ, α). Let c = (y, z)
be an encryption of plaintext m with randomness r = (s, t). Then, c = (y, z) =
(gs+γt, gαs+γρt · gm) . Let m1 be the plaintext with which the ciphertext c has
to be opened. On input (pk, sk, (y, z),m, (s, t),m1), the algorithm Opener has
to find randomness r1 = (s1, t1) ∈ Zq × Zq such that s + γt = s1 + γt1, and
αs + γρt + m = αs1 + γρt1 + m1. These two equations are two linear equations
on the variables (s1, t1). The Opener algorithm solves these two equations to
find s1 and t1 in polynomial time.

174 I. Nargis

Lemma 3. Provided that the decisional Diffie-Hellman assumption holds, and
trapdoor commitment scheme and adaptive zero-knowledge arguments exist, the
encryption scheme ELTA2E achieves threshold semantic security in the pres-
ence of erasure-free one-sided active adaptive adversaries.

Proof (Sketch). The threshold semantic security is proved by reduction, following
the idea in [11]. The lossy encryption properties of EncLossy are proved in [4].
Since any lossy PKE scheme is semantically secure [3], EncLossy is semantically
secure. Assume that there exists a probabilistic polynomial-time one-sided active
adaptive adversary A1 that can break the semantic security of the two-party lossy
threshold encryption scheme ELTA2E. It is described how to construct a prob-
abilistic polynomial-time one-sided active adaptive adversary A2, using A1, that
can break the semantic security of the non-threshold lossy encryption scheme
EncLossy. As EncLossy is semantically secure, a contradiction is reached. To
convert A1 to A2, it is necessary to simulate the extra information that are
not available in the non-threshold lossy cryptosystem. The simulator is designed
using the SIP technique. The inputs of the simulator are the public key pk =
(q, g, j, h, �), the mode parameter mode, and the identity I of the single inconsis-
tent party. In step G1, if A1 corrupts a party Pi, then A2 corrupts Pi. A2 receives
the history of Pi from Z. In step G2, if P1 is the SIP, A2 simulates as follows. A2

selects α1, α2
$← Zq. A2 sets sk1 = α1, sk2 = α2, vk = g, vk2 = gα2 , vk1 = h

vk2
.

A2 sends ((pk, vk, vk1, vk2, sk1), (pk, vk, vk1, vk2, sk2)) to A1 in step G2. The
distribution of sk1, sk2 are identical in two worlds. A2 sets vk1 = h

vk2
. The value

of h is fixed and the distribution of vk2 in two worlds are identical. Therefore,
the distribution of vk1 in two worlds are identical. Here h = vk1 · vk2, so it is
consistent. If the adversary corrupts P2, then it sees that vk2 = gsk2 so every-
thing is consistent for P2. When P2 is the SIP, the simulation is similar and not
given separately. In step G3(1), if A1 corrupts a party Pi, then A2 corrupts Pi.
A2 receives ski and the history of Pi from Z. In step G3(2), A1 selects m ∈ Mpk

and sends m to A2. A2 computes cm = (ym, zm) = (gsjt, hs�tgm). cm is a valid
encryption of m. If P1 is the SIP, then A2 simulates the steps of protocol ΠDEC

as follows. In step 1, A2 computes ds1 = (ym)sk1 where sk1 is the secret key
share of P1 computed by A2 in step G2. As argued in step G2, the distribution
of sk1 in two worlds are identical. Then, the distribution of ds1 in two worlds are
identical. In step 2, A2 acts as an honest prover. In step 3, if P2 is honest, then
A2 computes ds2 = (ym)sk2 where sk2 is the secret key share of P2 computed
by A2 in step G2. Proof argument is similar to step 1. In step 4, if P2 is honest,
then A2 acts as an honest prover. If P2 is corrupted, then A2 acts as an honest
verifier. If P2 fails, then A2 sends abortP2 to the trusted party and halt. Then,
the trusted party sends abortP2 to P1 and honest P1 halts. Honest P1 aborts in
the real world. In step 5, A2 computes w = gm. The value of w is identical in two
worlds. In step 6, A2 uses m. The simulation of step G3(2) when P2 is the SIP
is similar. So, it is not given separately. In step G4, A1 chooses two plaintexts
m0,m1 ∈ Mpk and sends them to A2. A2 sends (m0,m1) to the challenger of

EncLossy. Then, the challenger of EncLossy selects b
$← {0, 1}, computes an

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 175

encryption c of mb and returns c to A2. A2 sends c to A1. Step G5 is similar to
step G3. In step G6, A1 returns a guess b1. A2 returns b1.

Theorem 2. Provided that the DDH assumption holds, and trapdoor com-
mitment scheme and adaptive zero-knowledge arguments exist, the encryption
scheme ELTA2E is a two-party lossy threshold encryption scheme secure against
erasure-free one-sided active adaptive adversaries.

Proof. By Lemma 2, ELTA2E satisfies the lossy encryption properties. By
Lemma 3, ELTA2E satisfies the threshold semantic security requirement given
in Definition 2. Then, ELTA2E is a two-party lossy threshold encryption scheme
secure against erasure-free one-sided active adaptive adversaries.

7 Oblivious Transfer Against One-Sided Active Adaptive
Adversaries

In this section, a new protocol ΠOTAA for bit OT is presented. Let FOT denote
the ideal functionality for OT. Let Fzk denote the ideal functionality for adaptive
zero-knowledge argument. The protocol ΠOTAA is presented below.

Protocol ΠOTAA.

CRS: μ
$← Zp.

Input of S : (x0, x1) ∈ {0, 1}2.
Input of R : σ ∈ {0, 1}.
Auxiliary Input: (n, p, q, g) where n is the security parameter, and (p, q, g)

is the representation of a group G for the encryption scheme ELTA2E =
(K,KG,E,ΠDEC).

1. S and R jointly generate an injective key for ELTA2E, by executing FKG

with input (1n, 1). Here, S and R acts as P1 and P2, respectively. Both parties
get the public key pk = (q, g, j, h, �), and the verification keys (vk, vk1, vk2).
S gets its secret key share sk1 and R gets its secret key share sk2.

2. R selects s0, t0, s1, t1
$← Zq. R computes c0 = Epk (1 − σ, (s0, t0)) , and c1 =

Epk (σ, (s1, t1)) . R sends (c0, c1).
3. R proves that one of (c0, c1) is an encryption of zero, without disclosing which

one. If R fails, then S aborts.
4. For each i ∈ {0, 1}, S and R perform the following steps.

(a) S computes di = xi ×h ci. S computes vi = Blind(pk, di). S sends vi.
(b) S proves correctness of homomorphic multiplication by constant. If S

fails, then R aborts.
5. For each i ∈ {0, 1}, S and R jointly perform private decryption of vi to R, as

follows.
(a) Let vi = (yi, zi). S sends ds1,i = (yi)

(sk1) .
(b) S proves that log(yi) (ds1,i) = log(vk)(vk1). If S fails, then R aborts.
(c) R performs the following steps.

176 I. Nargis

i. R computes ds2,i = (yi)
(sk2) .

ii. R computes θi = zi

ds1,i·ds2,i
.

iii. From θi, R computes wi where wi ∈ {0, 1} and gwi = θi in G.
6. R outputs wσ.
ΠOTAA works in the CRS model in the (Fzk,FKG)-hybrid world. One possibility
to generate the auxiliary inputs p, q, g is as follows. S generates the description
(p, q, g) of the group G for ELTA2E, using Bach’s algorithm [2]. S sends (p, q, g)
to R. R checks its validity. If the description is invalid, then S and R repeat the
same process. The proofs in steps 3, 4(b) and 5(b) are performed by adaptive
zero-knowledge arguments. The CRS μ acts as the CRS for functionality FKG

and all the zero-knowledge arguments. In step 3, R proves that one of c0 and
c1 encrypts zero, without disclosing which one. If R could set both ciphertexts
c0 and c1 to encryptions of one, then R could learn both x0 and x1 at step 5.
This proof is incorporated to prevent this type of cheating by R. In step 4, S
computes di = xi ×h ci, vi = Blind(di). S sends vi. R knows the ciphertext ci.
The Blind function is included so that new randomness is added to the result
di. Then, R cannot learn the constant xi after seeing vi.

Correctness of Protocol ΠOTAA. If S and R both follow the protocol, then
the following events occur. S and R generate an injective key for ELTA2E.
R honestly computes c0 and c1. cσ encrypts one, and c1−σ encrypts zero.
R passes the proof in step 3. S honestly performs step 4, and passes the proofs.
vσ encrypts xσ and v1−σ encrypts zero. In step 5, S and R honestly perform two
private decryption processes. By the “correctness on injective keys” property of
ELTA2E, wσ = xσ and w1−σ = 0. Therefore, R learns xσ.

Extension to String OT. In a string OT, S has a pair of bit strings of length
q as input: (x0, x1) =

({
x1
0, x

2
0, . . . , x

q
0

}
,
{
x1
1, x

2
1, . . . , x

q
1

})
. Here q is a polyno-

mial of n. R has input σ ∈ {0, 1}. The output of R is xσ =
{
x1

σ, x2
σ, . . . , xq

σ

}
and S does not get any output. The bit OT protocol ΠOTAA is extended to a
string OT protocol as follows. In step 4, for each i ∈ {0, 1}, j ∈ {1, 2, . . . , q}, S
computes vj

i = xj
i ×h ci. In step 5, for each i ∈ {0, 1}, j ∈ {1, 2, . . . , q}, S and R

jointly perform private decryption of vj
i to R, so R obtains result wj

i . R outputs{
w1

σ, w2
σ, . . . , wq

σ

}
.

8 Security of Protocol ΠOTAA

The following theorem describes the security of protocol ΠOTAA.

Theorem 3. Assume that the DDH assumption holds and there exists a trapdoor
commitment scheme and adaptive zero-knowledge arguments. Assume that there
exists a two-party lossy threshold public key cryptosystem which is secure against
erasure-free one-sided active adaptive adversaries, is additive homomorphic, ran-
domizable, and has an efficient (polynomial-time) Opener algorithm. Then, proto-
col ΠOTAA is a protocol for oblivious transfer secure under sequential composition,
in the presence of erasure-free one-sided active adaptive adversaries.

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 177

Proof. Let A be an erasure-free one-sided active adaptive adversary and Z be
the environment. Let SOT be the simulator for protocol ΠOTAA for adversary
A and environment Z. The security is proved using the SIP technique. The full
security proof is available in the full version [16]. The main intuition behind the
security is described for two cases below. In both cases, at start, SOT selects
δ

$← Zq, and sets the CRS to μ = gδ. SOT stores δ as the trapdoor of the
commitment key μ.

Case 1: Security for the case where S is the SIP
In step 1, SOT generates a lossy key pair of ELTA2E as follows. SOT selects
α1, α2

$← Zq. SOT sets α = (α1+α2) mod q, h = gα. SOT selects γ
$← Zq. SOT sets

j = gγ . SOT selects ρ
$← Zq \ {α}, and sets � = gγρ. SOT sets pk = (q, g, j, h, �).

SOT stores the corresponding secret key sk = (α, γ, ρ). SOT generates the lossy
key pair in a similar way to the way the key generation algorithm KG of ELTA2E
generates a lossy key pair. That means, the distribution of the key pair (pk, sk) is
identically distributed to a lossy key pair generated by algorithm KG. The rea-
son for generating the components of the keys, without using algorithm KG is as
follows. When SOT generates the values, it can obtain the values of α, γ and ρ.
The secret key sk = (α, γ, ρ) is necessary to use the efficient Opener algorithm of
ELTA2E. If protocol ΠDKG is used to implement step 1, then SOT uses the simu-
lator SDKG of protocol ΠDKG on input (pk, 0, P1). That means SOT invokes sim-
ulator SDKG on input public key pk, mode parameter set to zero to denote lossy
mode, and the identity I of the SIP set to P1. By Theorem 1, the message that
SDKG generates in the hybrid world is computationally indistinguishable from
the message that A views during the execution of ΠDKG in the real world. In the
real world, an injective key pair is used. Since A corrupts at most one party, A
cannot learn the secret key shares of both parties. So, A cannot learn the secret
key. By the “indistinguishability of keys” property of ELTA2E, the public key
in the hybrid world is computationally indistinguishable from the public key in
the real world. If R is honest, then SOT computes c0, c1 based on σ = 0 in step
2. By threshold semantic security of ELTA2E, the distribution of c0, c1 in two
worlds are computationally indistinguishable. If A corrupts R after step 2, then
A cannot replace the input σ as the value of σ is already fixed by the message
supplied up to step 2. SOT corrupts R in the hybrid world and receives its input
σ from Z. SOT sends σ to the trusted party of FOT , and receives back its out-
put xσ. If R is corrupted, then SOT acts as an honest verifier in step 3. If R fails,
then SOT sends abortR to the trusted party and halts. The trusted party sends
abortR to S and S halts. In this case, honest S aborts in the real world. If R passes,
then SOT extracts the plaintexts of c0 and c1 by using the knowledge extractor
of the zero-knowledge arguments. From these plaintexts, SOT learns the possi-
bly modified input σ1 of corrupted R. SOT sends σ1 to the trusted party of FOT ,
and receives back its output xσ1 . SOT sets σ = σ1 and the output of R to xσ1 .
In the real world, the generated key pair is injective, so A cannot open a cipher-
text encrypting one to be a ciphertext encrypting zero. In the hybrid world, SOT

generates a lossy key pair. Since A corrupts at most one party, A cannot learn

178 I. Nargis

the secret key. Without the knowledge of the secret key, A cannot use the effi-
cient Opener algorithm as the efficient Opener algorithm requires the secret key
as one of its inputs. That means in the hybrid world, A cannot open a cipher-
text encrypting one to be a ciphertext encrypting zero in polynomial time. That
means the result of the zero-knowledge argument will be identical in both worlds.
If σ = 0, then SOT performs no additional updates in step 3, since SOT calcu-
lated c0, c1 based on σ = 0. If σ = 1, then, in step 3, SOT computes randomness
ŝ0, t̂0, ŝ1, t̂1 using the efficient Opener algorithm, such that c0 = Epk(0, (ŝ0, t̂0))
and c1 = Epk(1, (ŝ1, t̂1)). SOT supplies ŝ0, t̂0, ŝ1, t̂1 as the randomness for step 2.
Since SOT knows the secret key of the lossy key pair, algorithm Opener produces
output in polynomial time. By the “openability” property of ELTA2E, the gen-
erated randomness is consistent. In step 4(a), SOT selects x̂i

$← {0, 1}, computes
di = x̂i ×h ci, v̂i = Blind(pk, di). By threshold semantic security of ELTA2E,
the distribution of vi in two worlds are computationally indistinguishable. Cor-
rectness of decryption does not hold for a lossy key for ELTA2E. So, SOT sets
wσ = xσ, w1−σ = 0. SOT computes θi = gwi , ds2,i = (vyi)

sk2 , d̂s1,i = vzi

θi·ds1,i
. In

the real world, A receives ds1,i = (yi)
sk1 . Since S is honest, so A does not know

sk1. By the DDH assumption, the distribution of ds1,i in two worlds are compu-
tationally indistinguishable. The proofs of step 3 and step 4(b) do not work for a
lossy key for ELTA2E. If R is honest, then SOT generates a proof transcript for
steps 3, 4(b), and 5(b) using the trapdoor δ. By definition of zero-knowledge argu-
ment, the proof transcripts in two worlds are computationally indistinguishable.
If R is honest, then SOT honestly performs step 5(c). If R is corrupted, then, in
the hybrid world, A obtains wi. In the real world, A obtains wi due to the “cor-
rectness on injective keys” property of ELTA2E. If R is corrupted, then A will
obtain the same value xσ in step 6 in the hybrid world that it obtains in the real
world. In an OT protocol, S has no output. So trivially, the output of the honest
party S is identical (an empty string) in both worlds. If A corrupts R after any
substep of step 4 or 5, then SOT performs the same steps if A corrupts R after
step 3.

Case 2: Security for the case where R is the SIP
In step 1, SOT performs similar to step 1 in case 1. If ΠDKG is used to generate the
key, then, SOT uses the simulator SDKG of protocol ΠDKG on input (pk, 0, P2).
SOT computes c0, c1 based on σ = 0 in step 2. Proof argument is similar to step
2 of case 1. In step 4, if S is honest, then SOT selects x̂i

$← {0, 1}, computes d̂i =
x̂i ×h ci, v̂i = Blind(d̂i). Proof argument is similar to step 4 of case 1. If S is cor-
rupted, then SOT acts as an honest verifier in steps 4(b) and 5(b). If S fails in any
proof, then SOT sends abortS to the trusted party and halts. In this case, honest R
aborts in the real world. If S passes, then SOT extracts the possibly replaced input
x̃i by using the knowledge extractor of the zero-knowledge argument. If S is hon-
est, then SOT generates proof transcripts for steps 4(b) and 5(b) using trapdoor
δ. By definition of zero-knowledge argument, the proof transcript in two worlds
are computationally indistinguishable. If A corrupts S after step 4, then SOT cor-
rupts S in the hybrid world, and receives its input (x0, x1) from Z. In this case,

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 179

A cannot replace the input (x0, x1) as the value of (x0, x1) is already fixed by the
message sent up to step 4. SOT sets (x̃0, x̃1) to (x0, x1). If x̂i �= x̃i, then SOT com-
putes randomness for the ciphertexts transmitted so far and the value of x̃i, using
the efficient Opener algorithm. By the “openability” property of ELTA2E, the
randomness generated is consistent. Since SOT knows the secret key, the Opener
algorithm produces output in polynomial-time. SOT sets wσ = x̃σ, w1−σ = 0. If
S is honest, then SOT computes θi = gwi , ds2,i = (yi)

sk2 , d̂s1,i = zi

θi·ds2,i
. In step

6, SOT sends (x̃0, x̃1) to the trusted party of FOT . Let σ be the input of honest
R. Then the trusted party sends the output x̃σ to R. In the real world, honest R
outputs the value x̃σ, by the “correctness on injective keys” property of ELTA2E.
Then, the output of the honest party R is identical in two worlds. If A corrupts R
after any substep of step 3, 4 or 5, then SOT performs the same steps if A corrupts
R after step 3(a).

9 Efficiency and Comparison with Related Work

Efficiency. In ELTA2E, a ciphertext c ∈ G × G. G is a subgroup of Z∗
p and

p is an n-bit prime. The size of ciphertext is 2n. The size of Pedersen com-
mitment [18] is n. It is possible to use protocol ΠDKG for implementing step
1 of ΠOTAA. The communication complexity of ΠDKG is 50n. The total com-
munication complexity of ΠOTAA (including the communication complexity of
ΠDKG) is 101n ∈ O(n). In step 2, R performs two encryption operations of
ELTA2E. In step 5, S performs two homomorphic multiplication by constant
and two Blind function evaluations. One homomorphic multiplication by con-
stant and one Blind function together is similar in computational complexity of
one encryption operation of ELTA2E. So, the total number of PKE operation
of ΠOTAA is 4, in the worst case. For string OT of length n, the communication
complexity is (38n2 + 98n), and the number of PKE operations is (2n + 2), in
the worst case.

Comparison with Related Work. Hazay and Patra [13] designed an OT
protocol for erasure-free one-sided active adaptive adversaries. Their protocol
for bit OT requires (288n2 + 100n + 16) ∈ O(n2) communication complexity.
Protocol ΠOTAA needs 101n ∈ O(n) communication complexity. The worst case
number of PKE operations of the protocol of [13] for bit OT is (16n+6) ∈ O(n).
The worst case number of PKE operations of ΠOTAA is constant (only four).

For OT of strings of size n, the OT protocol of [13] requires (288n2+110n+16)
communication complexity and (16n+6) PKE operations in the worst case. For
OT of strings of size n, protocol ΠOTAA requires (38n2 + 98n) communication
complexity and (2n + 2) PKE operations in the worst case. For string OT of
size n, protocol ΠOTAA requires seven times less communication complexity and
eight times less PKE operations than the OT protocol of [13].

180 I. Nargis

10 Efficiency of the OT Protocol by Hazay and Patra [13]

In this section, the main factor of the complexity of the OT protocol by Hazay
and Patra [13] is described. They have different efficiency for polynomial-size
message space and exponential-size message space, with respect to the secu-
rity parameter n. Here, the efficiency of bit OT, which falls in the category of
polynomial-size message space, is described.

The OT protocol of [13] uses a non-committing encryption (NCE) scheme
secure against one-sided active adaptive adversaries. They designed a protocol
ΠOSC that for this purpose. ΠOSC uses the somewhat non-committing encryp-
tion (SNCE) of [12]. The SNCE protocol of [12] uses the non-committing encryp-
tion scheme (NCE) of [10]. There was another more recent NCE scheme [7] which
is error-free but requires more communication complexity and computational
complexity than the NCE of [10,21]. The NCE scheme of [10] uses a subroutine
named attempt. In [Theorem 2 [10]], it is mentioned that the NCE scheme of
[10] has to repeat 4n calls of attempt in order to ensure that the probability of
failure of subroutine attempt remains negligible in n. That means, the worst case
number of repeats of attempt is 4n. Each call of attempt has communication cost
(12n + 1). The communication complexity of the NCE scheme of [10] is O(n2)
for message size of one bit. Each call of attempt uses one encryption operation of
a simulatable public key encryption scheme, so the number of PKE operations
for attempt is 1. Then, the NCE scheme of [10] needs 4n PKE operations in
the worst case. The communication complexity of the SNCE protocol of [12],
with equivocality parameter � = 2, is O(n2). It uses the NCE protocol of [10]
for sending an index i ∈ {1, . . . , �}. As mentioned in [12], the expected number
of PKE operations for this step is O(log �). In the worst case, this step requires
4n ∈ O(n) PKE operations. The OT protocol of [13] uses a zero-knowledge proof
that uses a constant number of PKE operations. The communication complexity
of the bit OT protocol of [13] is O(n2). The number of PKE operations of the
bit OT of [13], in the worst case, is O(n).

Hazay and Patra claims that their OT protocol needs a constant number
of PKE operations [Theorem 2 [13]]. One possibility is that they were counting
one encryption of the NCE scheme ΠOSC secure against one-sided adaptive
adversaries (or one encryption of the dual-mode encryption scheme of [19]), each
of them as a single PKE operation. But the encryption scheme ΠOSC uses other
PKE schemes (the non-committing encryption scheme for the sender (NCES)
of [3], the non-committing encryption scheme for the receiver (NCER) of [14]
and the SNCE scheme of [12]) as its subroutines inside its implementation. The
notion of atomic PKE scheme is necessary for the analysis of the number of
PKE operations. An atomic PKE scheme denotes a PKE scheme that does not
use any other PKE scheme as a subroutine in its implementation. To get the
actual number of PKE scheme of a protocol, it should be counted that how many
operations of atomic PKE scheme are invoked inside that protocol.

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 181

11 Adaptive Zero Knowledge Arguments

In this section, the adaptive zero-knowledge arguments used in the protocols are
described. First, the non-erasure Σ-protocols for the corresponding relations are
presented. Then, it is described how to convert them to adaptive zero-knowledge
arguments.

Scnorr [20] suggested a non-erasure Σ-protocol for knowledge of discrete
logarithm [8]. A non-erasure Σ-protocol for equality of discrete logarithm is given
in [8]. Damg̊ard [8] presented a non-erasure Σ-protocol for proving knowledge of
committed secret for Pedersen commitment scheme.

If mode = 0, then, in step 10 of ΠDKG, P1 has to prove that logj(�1) �=
logvk(vk1). This can be called a proof for inequality of discrete logarithm. Let
the common input be

(
x1, x2, y1, y2

)
=

(
(y1)

w1 mod p, (y2)
w2 mod p, y1, y2

)
. The

prover P knows witness w1, w2 ∈ Zq such that w1 �= w2. A new non-erasure Σ-
protocol for proving the inequality of discrete logarithm is designed. P chooses
r

$← Zq. P computes a1 = (y1)
r mod p, a2 = (y2)

r mod p. P sends a = (a1, a2).

V chooses a challenge e
$← Zq and sends it. P computes z1 = r+ew1 mod q, z2 =

r + ew2 mod q. P sends (z1, z2). V accepts if and only if (y1)
z1 = a1(x1)

e mod
p, (y2)

z2 = a1(x2)
e mod p, (y1)

z2 �= a1(x1)
e mod p, and (y2)

z1 �= a2(x2)
e mod p.

A new non-erasure Σ-protocol, for proving multiplication correct for
ELTA2E, is designed. P computes c2 = m2 ×h c1, c3 = Blind(pk, c2). Let
(s3, t3) be the randomness used in the Blind function. Let the common input
be x = (c1, c3) = ((b1, d1), (b3, d3)). Then, b3 = (b1)

m2gs3jt3 , d3 = (d1)
m2hs3�t3 .

P knows witness (m2, s3, t3) ∈ G × G × G. The Σ-protocol is as follows. P

chooses r1, r2, r3
$← Zq, sets a1 = (b1)

r1gr2jr3 mod p, a2 = (d1)
r1hr2�r3 mod p.

P sends a = (a1, a2). V chooses a challenge e
$← Zq and sends it. P sets

z1 = r + em2 mod q, z2 = r2 + es3 mod q, z3 = r3 + et3 mod q. P sends
z = (z1, z2, z3). V accepts if and only if (b1)

z1gz1jz3 = a1(b3)
e mod p, and

(d1)
z1hz1�z3 = a2(d3)

e mod p.
Proving that a given ciphertext c = (x, y) is an encryption of zero is equiv-

alent to prove that logg(x) = logh(y). For proving that one of two given
ciphertexts encrypts zero without disclosing which one, the OR-construction of
Σ-protocols [8] is performed.

Converting Σ-Protocol to Adaptive Zero-Knowledge Argument.
Damg̊ard [9] described how to convert a Σ-protocol ΠΣR for a given relation R
to a zero-knowledge proof ΠR

AdZKA for the same relation. This conversion works
in the CRS model and needs a trapdoor commitment scheme. The CRS μ is used
as the commitment key. P computes its first message a of ΠΣR, selects ra

$← Zp,

computes c = Comμ(a, ra), and sends c. V selects e
$← {0, 1}t, and sends e. P

computes its second message z of ΠΣR, and sends (a, z, ra) to V . V checks that
(a, e, z) is an accepting conversation for ΠΣR, and also that Comμ(a, ra) = c.
The security proof of this type of zero-knowledge proof against adaptive adver-
saries is given in [[17] Chap. 5]. When a trapdoor commitment scheme is used in

182 I. Nargis

a zero-knowledge proof, it only achieves computational soundness. By definition,
the resulting system is a zero-knowledge argument.

12 Future Work

One future research work is to design an efficient two-party computation protocol
for one-sided active adaptive adversary model, using the new efficient oblivious
transfer protocol. Another research direction is to design efficient oblivious trans-
fer protocol for the fully adaptive adversary model, that is, when the adversary
may corrupt both parties at some point.

References

1. Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for
realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)

2. Bach, E.: Analytic Methods in the Analysis and Design of Number-Theoretic Algo-
rithms. Massachusetts Institute of Technology, Cambridge (1985)

3. Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryp-
tion and commitment secure under selective opening. In: Joux, A. (ed.) EURO-
CRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-01001-9 1

4. Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack.
Cryptology ePrint Archive, Report 2009/101 (2009). http://eprint.iacr.org/

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

6. Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security
for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 98–116. Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 7

7. Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing
encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.)
ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10366-7 17

8. Damg̊ard, I.: On Σ-protocols. www.cs.au.dk/∼ivan/Sigma.pdf
9. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:

Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). doi:10.1007/3-540-45539-6 30

10. Damg̊ard, I., Nielsen, J.B.: Improved non-committing encryption schemes based
on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS,
vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 27

11. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting
or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,
Heidelberg (2001). doi:10.1007/3-540-45472-1 7

12. Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption
and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03356-8 30

http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://dx.doi.org/10.1007/978-3-642-01001-9_1
http://eprint.iacr.org/
http://dx.doi.org/10.1007/3-540-48405-1_7
http://dx.doi.org/10.1007/978-3-642-10366-7_17
www.cs.au.dk/~ivan/Sigma.pdf
http://dx.doi.org/10.1007/3-540-45539-6_30
http://dx.doi.org/10.1007/3-540-44598-6_27
http://dx.doi.org/10.1007/3-540-45472-1_7
http://dx.doi.org/10.1007/978-3-642-03356-8_30
http://dx.doi.org/10.1007/978-3-642-03356-8_30

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption 183

13. Hazay, C., Patra, A.: One-sided adaptively secure two-party computation. In:
Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 368–393. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54242-8 16

14. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: intro-
ducing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000). doi:10.1007/
3-540-45539-6 16

15. Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge argu-
ments for NP using any one-way permutation. J. Cryptol. 11, 87–108 (1998)

16. Nargis, I.: Efficient oblivious transfer from lossy threshold homomorphic encryp-
tion. Cryptology ePrint Archive, Report 2017/235 (2017). http://eprint.iacr.org/
2017/235

17. Nielsen, J.B.: On protocol security in the cryptographic model. Ph.D. thesis, Uni-
versity of Aarhus (2004)

18. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). doi:10.1007/3-540-46766-1 9

19. Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and com-
posable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 554–571. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85174-5 31

20. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

21. Zhu, H., Araragi, T., Nishide, T., Sakurai, K.: Adaptive and composable non-
committing encryptions. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol.
6168, pp. 135–144. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14081-5 9

http://dx.doi.org/10.1007/978-3-642-54242-8_16
http://dx.doi.org/10.1007/3-540-45539-6_16
http://dx.doi.org/10.1007/3-540-45539-6_16
http://eprint.iacr.org/2017/235
http://eprint.iacr.org/2017/235
http://dx.doi.org/10.1007/3-540-46766-1_9
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://dx.doi.org/10.1007/978-3-642-14081-5_9

Privacy-Friendly Forecasting for the Smart Grid
Using Homomorphic Encryption

and the Group Method of Data Handling

Joppe W. Bos1, Wouter Castryck2,3(B),
Ilia Iliashenko2, and Frederik Vercauteren2,4

1 NXP Semiconductors, Leuven, Belgium
2 imec-Cosic, Department of Electrical Engineering, KU Leuven, Leuven, Belgium

wouter.castryck@kuleuven.be
3 Laboratoire Paul Painlevé, Université de Lille-1, Villeneuve-d’Ascq, France

4 Open Security Research, Shenzhen, China

Abstract. While the smart grid has the potential to have a positive
impact on the sustainability and efficiency of the electricity market, it
also poses some serious challenges with respect to the privacy of the con-
sumer. One of the traditional use-cases of this privacy sensitive data is
the usage for forecast prediction. In this paper we show how to com-
pute the forecast prediction such that the supplier does not learn any
individual consumer usage information. This is achieved by using the
Fan-Vercauteren somewhat homomorphic encryption scheme. Typical
prediction algorithms are based on artificial neural networks that require
the computation of an activation function which is complicated to com-
pute homomorphically. We investigate a different approach and show
that Ivakhnenko’s group method of data handling is suitable for homo-
morphic computation.

Our results show this approach is practical: prediction for a small
apartment complex of 10 households can be computed homomorphically
in less than four seconds using a parallel implementation or in about half
a minute using a sequential implementation. Expressed in terms of the
mean absolute percentage error, the prediction accuracy is roughly 21%.

1 Introduction

One of the promising solutions to cope with current and future challenges of elec-
tricity supply is the smart grid. With the prospect of having a positive impact on
the sustainability, reliability, flexibility, and efficiency many countries around the
world are investing significantly in such smart grid solutions. The deployment
of smart meters is already well underway. For example, in the United Kingdom

This work was supported by the European Commission under the ICT programme
with contract H2020-ICT-2014-1 644209 HEAT, and through the European Research
Council under the FP7/2007-2013 programme with ERC Grant Agreement 615722
MOTMELSUM.

c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 184–201, 2017.
DOI: 10.1007/978-3-319-57339-7 11

Privacy-Friendly Forecasting for the Smart Grid 185

the large energy suppliers were operating over 400, 000 smart gas and electric-
ity meters, representing 0.9% of all the domestic meters operated by the large
suppliers in 2014 [9]. This development is expected to continue and intensify:
the EU third energy package has as an objective to replace at least 80% of elec-
tricity meters with smart meters by 2020 [15]. This change will fundamentally
re-engineer the (electricity) service industry.

The replacement of the classical meters with their smart variants has advan-
tages for both the consumer and industry. Some of the key benefits include giving
consumers the information to gain control over their energy consumption, low-
ering the cost for managing the supply of energy across industry, and producing
detailed consumption information data from these smart meters which in turn
enable a wide range of services [9]. It is expected that the meters have an update
rate of every 15 min at least [14]. When generating such a large amount of con-
sumer data a lot of privacy sensitive information is being disclosed. There are
various initiatives (e.g. [32,37]) which stress and outline the importance of hav-
ing solutions for the smart grid where privacy protecting mechanisms are already
built-in by design.

This work is concerned with enhancing the privacy of the smart meter read-
ings in the setting of forecast prediction: energy suppliers need to forecast in
order to buy energy generation contracts that cover their clients. Moreover, to
ensure network capacity the network operators require longer term forecast-
ing [10,23,37]. This forecasting is typically done by taking as input the (aggre-
gated) data from a number of households. Based on this consumption data,
together with other variables such as the date and the current temperature and
weather, a forecast is computed to predict the short, medium, or long term con-
sumption. The energy providers or network operators only need to know the
desired forecast information based on their (potentially proprietary) forecasting
algorithm and model. There is no need to observe the individual consumer data.

We investigate the potential of fully homomorphic encryption (FHE) to real-
ize this goal. The notion of FHE was introduced in the late 1970s [34] and a con-
crete instantiation was found in 2009 by Gentry [19]. FHE allows an untrusted
party to carry out arbitrary computation on encrypted data without learning
anything about the content of this data. Currently, the Fan-Vercauteren (FV)
FHE scheme [16] is regarded as the best choice with respect to security and prac-
tical performance. See Sect. 4 for a more detailed description of the FV scheme.
Additively homomorphic encryption schemes [31] and other tools have been pro-
posed to enhance the privacy in the setting of computing detailed billing in the
context of the smart grid [13,18,24,25,30,33]. However, these approaches cannot
be directly used in the setting of prediction algorithms since these more complex
algorithms need to compute both additions and multiplications.

One popular class of algorithms which are used for prediction are based on arti-
ficial neural networks. One of the main ingredients in these forecasting algorithms
is the computation of the so-called activation function, in practice it is common
to use a sigmoid function where the logistic function t �→ 1/(1 + e−t) is a popular
choice. However, computing such a sigmoid function homomorphically is far from

186 J.W. Bos et al.

practical. One possible way to proceed is to simply ignore the sigmoidality require-
ment and to proceed with a truncated Taylor series approximating this function
or, more generally, to use any non-linear polynomial function which is simple.
This was investigated by Livni et al. [26] regardless of cryptographic applications.
Recent work by Xie et al. [39] and Dowlin et al. [12] suggests to apply the same
approach to homomorphically encrypted data. However, by computing artificial
neural networks in this fashion it becomes just an organized manner of fitting a
polynomial through the given data set. In this paper we investigate an older tool for
realizing this goal. Namely, we show that Ivakhnenko’s group method of data han-
dling (GMDH) which was proposed back in 1970 [22] is a perfect match for being
computed homomorphically. Moreover, a recent comparison analysis between dif-
ferent forecasting methods [36] showed that GMDH produced significantly more
accurate results compared to the other methods considered.

We show that GMDH can be implemented homomorphically using the recent
fixed point approach from [6,11]. Using a five-layered network (one input layer,
three hidden layers and an output node) we are able to homomorphically pre-
dict the next half-hour energy consumption for an apartment complex of 10
households. Our software implementation results indicate that this requires less
than four seconds using a parallel implementation or about half a minute using
a sequential implementation while the prediction accuracy expressed using the
mean absolute percentage error (MAPE, see Sect. 3 for a definition) is only 21%.
This shows that privacy preserving forecasting using homomorphic encryption
is indeed practical.

2 The Smart Grid and Privacy Concerns

The authors of [35] define the smart grid as “an electricity network that can
cost efficiently integrate the behavior and actions of all users connected to it –
generators, consumers and those that do both – in order to ensure economically
efficient, sustainable power system with low losses and high levels of quality and
security of supply and safety”. This paper is concerned with the cryptographic
solutions to privacy concerns within the smart grid. Within this scope we assume
that the meters are protected against various types of side-channel attacks such
that no secret data can be retrieved from the device when it is operating (e.g. key
extraction). Moreover, we assume that the smart metering device acts honestly in
accordance with the implementation or protocol given to it. These assumptions
avoid the usual security threats and leave us with the privacy related concerns
which we aim to address.

In the early 1990s, Hart showed a non-intrusive approach where by monitor-
ing the electric load one can observe the individual appliances turning on and
off [20]. Hence, detailed smart meter readings, which are expected to be gen-
erated at least every 15 min in the context of the smart grid (cf. [14]), can be
used to derive various privacy sensitive information about a house-hold or even
an apartment complex. In order to grasp where the main privacy challenges are
in smart metering it is good to understand how and when the meter readings

Privacy-Friendly Forecasting for the Smart Grid 187

are used in practice by the various parties involved. As identified by the survey
paper [23], which in turn has collected this information from the privacy impact
assessment by NIST [37] and the enumeration of data uses by the consultation
of the British Department of Energy and Climate Change [10], the key usages of
smart meter readings include the usage for load monitoring and forecasting and
smart billing.

There has been a significant amount of work related to privacy-preserving
smart billing solutions for the smart grid. One line of research allows complex
non-linear tariff policies where the bill is computed and sent along with a zero-
knowledge proof to ensure that the computations are correct [30,33]. Another
approach is based on privacy-friendly aggregation schemes (e.g. using additively
homomorphic encryption schemes such as the Paillier scheme [31]) where one can
compute a function on the ciphertexts which corresponds to adding the plain-
texts [13,18,24,25]. Such approaches heavily rely on the fact that only aggrega-
tion of the results is required. As soon as more complex operations need to be
computed (such as a large number of multiplications) one has to look for other
solutions.

One example where more operations are performed is in the setting of load
monitoring and forecasting. There are many different forecasting approaches
(see e.g. the survey paper [21] on this topic and the references therein). One of
the popular and well-studied techniques is using artificial neural networks (see
e.g. [1,17]). In the next section we describe how such neural networks operate,
analyze the challenges they pose when being evaluated in the encrypted domain,
and discuss how this naturally leads to considering the group method of data
handling as an alternative forecasting tool.

3 Neural Networks versus the Group Method
of Data Handling

Over time, artificial neural networks (ANNs) have manifested themselves among
the most popular and reliable prediction tools for various purposes, including
load forecasting. For our preliminary discussion, it suffices to think of an ANN
as a real-valued function f : Rn0 → R that arises as the composition of a number
of ‘neurons’ νij : Rni−1 → R, organized in layers i = 1, . . . , r, as depicted in
Fig. 1. Each neuron is of the form

νij : Rni−1 → R : (x1, x2, . . . , xni−1) �→ g

(
ni−1∑
k=1

wijkxk − bij

)

for weights and biases wijk, bij ∈ R and some fixed sigmoidal activation function
g : R → R, such as the logistic function t �→ 1/(1 + e−t). The global shape of
the network is decided in advance, and the goal is to determine the weights
wijk and the biases bij such that f approximates an unknown target function
f̃ : Rn0 → R, in our case load prediction, as well as possible. This is done during
a so-called supervised learning phase. One starts from a reasonable guess, after

188 J.W. Bos et al.

which the network’s performance is assessed by feeding to it a number of input-
output pairs of f̃ , taken from a given data set, and measuring the error. During
a process called backpropagation, which is based on the chain rule for derivation,
the weights and biases are then modified repeatedly, in the hope of converging
to values that minimize the error.

The backpropagation method requires the activation function g to have a nice
and easy derivative, while at the same time it should be sigmoidal, i.e. its graph
should have the typical step-like activation shape, allowing the ANNs to do what
they were designed for: to simulate computation in (an area of) the human brain.
Unfortunately, the class of such functions does not contain examples that are
easy to evaluate homomorphically. A natural attempt would be to use a Taylor
approximation to the logistic function or to one of its known alternatives, but
such approximations become highly non-sigmoidal away from the origin.

One way out is simply to ignore the sigmoidality requirement and to proceed
with this truncated Taylor series, or more generally to replace g by any simple
non-linear polynomial function, the easiest choice being t �→ t2. This has been
investigated by Livni et al. [26] for reasons of computational efficiency, regardless
of cryptographic applications. Recent work by Xie et al. [39] and Dowlin et al. [12]
suggested to apply the same approach to homomorphically encrypted data. The
resulting neural networks were named ‘crypto-nets’.

Fig. 1. Design of an Artificial Neural Network (ANN).

However in this way the ANN just becomes an organized way of fitting a
polynomial through the given data set. There exist older and simpler predic-
tion tools that do this. In this paper we study one of the oldest such tools,
namely Ivakhnenko’s group method of data handling (GMDH) from 1970 [22].
Besides being suited for applications using homomorphic encryption, one par-
ticular feature is that its performance in the context of load forecasting enjoys a
large amount of existing literature, at times even with results that are superior
to ANNs. Indeed, a comparison analysis between different forecasting methods
from 2008 [36] showed that GMDH produced significantly more accurate results
compared to the other methods considered.

Privacy-Friendly Forecasting for the Smart Grid 189

The basic version of GMDH works as follows, although many variations are
possible (and seem to deserve a further analysis). The goal is to approximate
our target function f̃ : Rn0 → R with a truncated Wiener series

a0 +
n0∑
i=1

aixi +
n0∑
i=1

n0∑
j=i

aijxixj +
n0∑
i=1

n0∑
j=i

n0∑
k=j

aijkxixjxk + . . . ,

which is also called a Kolmogorov-Gabor polynomial. The idea is to approach
this by a finite superposition of quadratic polynomials

νij : R2 → R : (x, y) �→ bij0 + bij1x + bij2y + bij3xy + bij4x
2 + bij5y

2

along a diagram of the kind depicted in Fig. 2. One can think of this as some
sort of ANN, and indeed the diagram is sometimes called a ‘polynomial neural
network’. As a first main difference, however, note that the wiring is incomplete:
each neuron has two inputs only.

Fig. 2. Network-like illustration of the group method of data handling.

Also the learning phase is quite different from the one in conventional ANNs.
Here the goal is to determine the coefficients bijk of the quadratic polynomials
νij , but also the concrete structure of the network, which is not fixed in advance.
Indeed, one decides beforehand on the number of layers r and the number of neu-
rons ni in each layer, but the wiring between these is defined during the learning
process. Recall that each node can have only two inputs, so the following con-
straint should be satisfied: ni ≤ (

ni−1
2

)
. In order to prevent exponential growth

of the number of neurons, the left hand side will in general be much smaller than
the right hand side. As to which combinations end up being chosen, one first
considers all possible combinations and then removes the

(
ni−1
2

) − ni worst neu-
rons with respect to their error performance, in the sense explained below, while
at the same time determining the coefficients bijk of the surviving neurons. One
then proceeds with the next layer. In particular, there is no backpropagation.
The node with the smallest error performance will be assigned as an output for
the whole network; this may in fact be different from what was initially foreseen

190 J.W. Bos et al.

to become the output neuron. One sometimes applies the rule that if at some
point all nodes in layer i perform worse than the best performing node in layer
i − 1, then the algorithm stops, and the latter node is assigned as the output.

To assess the error performance of a neuron, while at the same time deter-
mining the coefficients of the corresponding quadratic polynomial, one uses a
given data set of correct input-output pairs for f̃ . Additionally, an error (or
loss) function should be set up beforehand. Throughout this paper we use the
Mean Squared Error (MSE) function

MSE((yforecast
1 , . . . , yforecast

n), (yactual
1 , . . . , yactual

n)) =
1
n

n∑
i=1

(yforecast
i − yactual

i)2,

but there are a couple of other standard choices, such as the Mean Absolute
Error (MAE) and the Mean Absolute Percentage Error (MAPE):

1
n

n∑
i=1

∣∣yforecast
i − yactual

i

∣∣ resp.
100
n

n∑
i=1

∣∣∣∣yforecast
i − yactual

i

yactual
i

∣∣∣∣ .

For each neuron νij the data set is randomly split into a learning set and a test
set. This is done to avoid overfitting, where the network learns too much about
the inherent noise always being present in real-world data. The learning set is
used to determine the coefficients bijk, by choosing them such that the error is
as small as possible. In the case of MSE this can be achieved by linearization of
the quadratic polynomial and applying the least squares method. The test set is
then used to assess the performance of the neuron.

4 The Fan-Vercauteren SHE Scheme

In this section we briefly describe a simplified version of the FV scheme [16],
which we will present in its somewhat homomorphic encryption (SHE) form,
meaning that it is suitable only for computations up to a given depth, thereby
avoiding very expensive noise reduction operations (i.e. bootstrapping). It con-
cerns a scale-invariant SHE scheme based on the hardness of the ring version
of the learning with errors problem (RLWE) [27]. It works in the polynomial
ring R = Z[X]/(f(X)) with f(X) = Xd + 1 and d = 2n. For an integer N we
denote with RN the reduction of R modulo N . Abusing notation, elements of R
will often be identified with their unique representant in Z[X] of degree at most
d−1, and similarly elements of RN are identified with their unique representant
inside {

αd−1X
d−1 + αd−2X

d−2 + . . . + α0

∣∣ αi ∈ (−N/2, N/2] for all i
}

,

but this should cause no confusion. For an element a ∈ R or a ∈ Z[X] we write
[a]N do denote its reduction inside the above set of representants.

The plaintext space in the FV scheme is given by the ring Rt for some small
integer modulus t > 1, while a ciphertext is given by a pair of ring elements in Rq

Privacy-Friendly Forecasting for the Smart Grid 191

where q > 1 is a much larger modulus. The key generation and the encryption
operations in the FV scheme require sampling from two probability distributions
defined on R, denoted χkey and χerr. The security of the scheme is determined
by the degree d of f , the size of q, and by the probability distributions. Typically
χkey and χerr are coefficient-wise discrete Gaussian distributions centered around
0 and having a small standard deviation, but in practice one often samples the
coefficients of the key from a uniform distribution on a narrow set like {−1, 0, 1}.
We remark that the errors are sampled coefficient-wise because R is a ring of
2-power cyclotomic integers: for more general rings one should proceed with the
more complicated joint distribution described in [28]. The RLWE distribution
on Rq × Rq is then constructed as follows: first choose a fixed element s ← χkey,
and then generate samples of the form (a, b) with a ← Rq uniformly random
and b = [−(as + e)]q with e ← χerr. (The minus sign is not standard but makes
a better fit with the discussion below.) The decision RLWE problem is then
to distinguish between the RLWE distribution and the uniform distribution on
Rq × Rq. The search RLWE problem is to retrieve s from polynomially many
samples. Both problems are believed to be very hard for an appropriate choice
of parameters.

By construction, for a RLWE sample (a, b) we have that e = −[as + b]q
and therefore that the right-hand side has small coefficients, with overwhelm-
ing probability. Furthermore note that the sample can be easily re-randomized
without knowledge of s as follows: choose u ← χkey and e1, e2 ← χerr and form
the new sample as (ua+ e1, ub+ e2). In the encryption scheme below, the public
key will consist of a single RLWE sample, which will be re-randomized during
encryption. The new RLWE sample will then be used as an additive mask to
encrypt a message m ∈ Rt. Before we present the FV scheme, we first describe
some subroutines that are required in the algorithm:

– WordDecompw,q(a): This function is used to decompose a ring element a ∈ Rq

in base w by splicing each coefficient of a. For u = �logw(q)�, it returns ai ∈ R
with coefficients in (−w/2, w/2], such that a =

∑u
i=0 aiw

i.
– PowersOfw,q(a): This function scales an element a ∈ Rq by the different

powers of w. It is defined as PowersOfw,q(a) = (awi)u
i=0.

These two functions can be used to perform a polynomial multiplication in Rq

through an inner product: 〈WordDecompw,q(a), PowersOfw,q(b)〉 = a · b. This
expression has advantage in reducing the noise during homomorphic multiplica-
tions, as the first vector contains small elements only.

The FV scheme consists of an encryption scheme augmented with additional
functions Add, Mult, and ReLin to compute homomorphically on encrypted data.

1. ParamsGen(λ): For a given security parameter λ, choose a degree d = 2n and
thus a polynomial f(X) = Xd + 1, moduli q and t and distributions χerr

and χkey. Also choose the base w for WordDecompw,q(·). Return the system
parameters (d, q, t, χerr, χkey, w).

2. KeyGen(d, q, t, χerr, χkey, w): Sample the secret key s ← χkey, sample a ← Rq

uniformly at random, and sample e ← χerr. Compute b = [−(as + e)]q.

192 J.W. Bos et al.

The public key is the pair pk = (b, a) and the secret key is sk = s. The scheme
uses another key rlk called relinearization key in the function ReLin below.
Define � = u+1 = �logw(q)�+1, sample a vector a ← R�

q uniformly at random,
sample e ← χ�

err, and let rlk = ([PowersOfw,q(s2)− (e+a ·s)]q,a) ∈ R�
q ×R�

q.
3. Encrypt(pk,m): First encode the input message m ∈ Rt into a polynomial

Δm ∈ Rq with Δ = �q/t�. Next sample the error polynomials e1, e2 ← χerr,
sample u ← χkey, and compute the two polynomials c0 = Δm + bu + e1 ∈ Rq

and c1 = au+ e2 ∈ Rq. The ciphertext is the pair of polynomials c = (c0, c1).
4. Decrypt(sk, c): First compute the polynomial m̃ = [c0 + sc1]q. Then recover

the plaintext message m by a decoding the coefficients of m̃ by scaling down
by Δ and rounding.

5. Add(c1, c2): For two ciphertexts c1 = (c1,0, c1,1) and c2 = (c2,0, c2,1), return
c = (c1,0 + c2,0, c1,1 + c2,1) ∈ Rq × Rq.

6. Mult(c1, c2, rlk): Compute c̃mult = (c0, c1, c2) where c0 = � t
q · c1,0 · c2,0�,

c1 = � t
q ·(c1,0·c2,1+c1,1·c2,0)�, and c2 = � t

q ·c1,1·c2,1� and apply relinearization.
7. ReLin(c̃mult, rlk): Write rlk = (b,a) and c̃mult = (c0, c1, c2), then compute a

relinearized ciphertext as c′ = (c′
0, c

′
1) as ([c0+〈WordDecompw,q(c2),b〉]q, [c1+

〈WordDecompw,q(c2),a〉]q).
Given an FV ciphertext c = (c0, c1), we can write [c0 + c1s]q = Δm + e, where
e is called the noise inside the ciphertext. Every operation on ciphertexts causes
the noise to increase. It is clear that when the noise gets too large, in particular
if ‖e‖∞ > Δ/2, correct decryption will fail, where ‖·‖∞ denotes the maximal
absolute value of the coefficients.

From now on we assume that χerr is a coefficient-wise discrete Gaussian
with standard deviation σ and that χkey samples the coefficients uniformly from
{−1, 0, 1}. With overwhelming probability Berr = 6σ and Bkey = 1 are upper
bounds on the absolute values of the coefficients of their respective samples.
Therefore we can use V = Berr(1+2dBkey) = Berr(1+2d) as an upper bound on
the noise of the input ciphertexts. When doing arithmetic the noise is affected in
the following way. Firstly, adding ciphertexts c1 and c2 corresponds to adding the
noises, potentially augmented by a carryover γ satisfying ‖γ‖∞ < t, as explained
in [16]. Secondly, multiplying a ciphertext c by an unencrypted scalar (Δα, 0)
for some α ∈ Rt corresponds to multiplying the noise by α, again with some
carryover γ. For use below, fix an integer λ ≥ 1 and assume that the coefficients
of α are in {−1, 0, 1} with at most λ of them being non-zero. Then in a similar
way one sees that ‖γ‖∞ < �λ/2� · t. Thirdly, multiplying two ciphertexts c1 and
c2 whose noise coefficients are bounded by E results in a ciphertext whose noise
coefficients are at most

2 · E · t · d · (d + 1) + 8 · t2 · d2 + � · Berr · w · d/2

in absolute value, by [16, Lemmas 2 and 3].
Now assume that we wish to evaluate a GMDH network f : Rn0

t → Rt

having r hidden layers in a fresh component-wise encryption of an n0-tuple
(x1, x2, . . . , xn0) ∈ Rn0

t . For the moment just think of this as a Kolmogorov-
Gabor polynomial that we evaluate in the encrypted domain along a diagram

Privacy-Friendly Forecasting for the Smart Grid 193

of the kind depicted in Fig. 2; the purpose of this will become clear in the next
section. The network parameters bijk are assumed to be small public scalars
along the lines mentioned above: the coefficients are in {−1, 0, 1} and at most λ
of them are non-zero. Define A1 = 6 · λ · t · d · (d + 1) + 2 · λ and

A2 = 3/2 · λ · � · Berr · w · d + 24 · t2 · d2 + 5 · (�λ/2� + 1) · t.

One verifies that homomorphically evaluating a node ν1j : Rn0
t → Rn1

t from the
first layer causes the noise coefficients to grow to at most A1 ·V +A2. Recursively
applying this formula yields the upper bound Ar+1

1 ·V +(Ar+1
1 −1) ·A2/(A1 −1)

on the absolute values of the noise coefficients that are present in the output of
the entire network f .

The parameters of the FV scheme are not only determined by the noise
growth, but also by the security requirements. It is easy to see that when d and
σ/q grow, amounting to larger polynomials and more noise in the ciphertexts,
then RLWE becomes harder. A precise security analysis is beyond the scope of
this paper, but to derive our security estimates we closely follow the work by
Albrecht, Player and Scott [3] and the open source LWE-estimator implemented
by Albrecht [2]. In particular, the LWE-estimator allows one to estimate the
concrete hardness of the LWE problem given the dimension d, the modulus
q and the standard deviation σ. Note that the actual tool takes as input the
parameter α =

√
2πσ/q, instead of σ directly.

For the design reasons explained in Sect. 6 we will take r = 3, λ = 9, while
for compatibility reasons with the software library FV-NFLlib [7] we wish to
take w = 232 and log2 q an integral multiple of 62. Targetting a security level
of 80 bits, we can address the restrictions coming from both the noise growth
and the security considerations by using the parameter set d = 4096, q � 2186

and σ = 102 (corresponding to α = 256/q). These parameters will be used
throughout the remainder of the paper and allow for usage of all plaintext moduli
t ≤ 396. Note that one ciphertext takes up 186 kB space.

5 Representing Fixed-Point Numbers in Plaintext Space

Our final goal is to evaluate a trained GMDH network in the encrypted domain
using the FV scheme. As explained in the previous section, the plaintext space
is of the form Rt, which is the reduction modulo a certain integer t > 1 of R =
Z[X]/(Xd+1), where d = 2n for some n ∈ Z>0. Therefore an important task is to
encode the input values x1, x2, . . . , xn0 ∈ R, as well as the coefficients bijk ∈ R,
as elements of Rt. This should be done in such a way that real additions and
multiplications agree with the corresponding operations in the ring Rt, up to a
certain depth of computation. Dowlin et al. [11] proposed two ways of addressing
this issue, which were revisited in a recent paper by Costache et al. [6], who
showed them to be essentially equivalent, and also provided lower bounds on t
and d guaranteeing that the arithmetic in R is indeed compatible with that in
Rt to the extent desired. We briefly recall their main conclusions, adapted to
our setting.

194 J.W. Bos et al.

On the real number side, we use fixed-point arithmetic. We assume that
the xi’s and the bijk’s are given in balanced ternary expansion to some finite
precision, that is, they are of the form

b�1−1b�1−2 . . . b0 . b−1b−2 . . . b−�2 (1)

with bi ∈ {−1, 0, 1} for i = −�2, . . . , �1 − 1. This should be read as

b�1−13�1−1 + b�1−23�1−2 + . . . + b030 + b−13−1 + b−23−2 + . . . + b−�23
−�2 .

As usual we say that (1) has �1 integral digits and �2 fractional digits; throughout
we assume that �1 ≥ 1 and �2 ≥ 0. In order to encode (1) as an element of Rt

one simply replaces the base 3 by X. This yields

b�1−1X
�1−1+b�1−2X

�1−2+ . . .+b0X
0+b−1X

−1+b−2X
−2+ . . .+b−�2X

−�2 , (2)

which one can rewrite as

b�1−1X
�1−1 + b�1−2X

�1−2 + . . .+ b0X
0 + b−1X

d−1 + b−2X
d−2 + . . .+ b−�2X

d−�2 ,

using the relation Xd ≡ −1.
To decode a given element of Rt one first considers its unique repre-

sentant inside
{

αd−1X
d−1 + αd−2X

d−2 + . . . + α0

∣∣ αi ∈ (−t/2, t/2] for all i
}
,

after which one replaces all suitably high powers Xi by −Xi−d, and one evaluates
the resulting Laurent polynomial at 3. The outcome is a rational number whose
denominator is a power of 3, so it can be easily rewritten in balanced ternary
expansion. For simplicity we think of ‘suitably high’ as i > d/2, although to
improve the bound on d in Lemma 1 below, a more careful (but easy) estima-
tion should be made, that takes into account the lengths of the integral and
fractional parts of the fixed-point numbers involved.

Clearly, the ring operations in Rt are compatible with fixed-point arith-
metic on the real number side as long as they do not involve ‘wrapping around’
modulo t and/or modulo Xd + 1. (In the latter case this means that neither
the terms of high degree nor the terms of low degree are allowed to cross the
separation point Xd/2.) Thus t and d should be taken large enough to ensure
this, for which Costache et al. elaborated concrete lower bounds. We will not
explicitly rely on these bounds, but rather apply the underlying ideas to obtain
a more implicit statement. For all integers � ≥ 0, λ ≥ 0, r ≥ −1 we define
d�,λ,r := 2r+1� + (2r+1 − 1)λ. Moreover for all �1 ≥ 1, λ1 ≥ 1, �2 ≥ 0, λ2 ≥ 0, r ≥
−1 we introduce a polynomial D�1,λ1,�2,λ2,r(X) ∈ Z[X], which is recursively
defined by putting D�1,λ1,�2,λ2,−1(X) = 1 + X + X2 + . . . + X�1+�2−1 and for
r ≥ 0 letting D�1,λ1,�2,λ2,r(X) be X2d�2,λ2,r−1 +2Xd�2,λ2,r−1D�1,λ1,�2,λ2,r−1(X)+
3D�1,λ1,�2,λ2,r−1(X)2 multiplied with 1 + X + X2 + . . . + Xλ1+λ2−1. We then
define c�1,λ1,�2,λ2,r = ‖D�,λ,r(X)‖∞ where as before ‖·‖∞ denotes the maximal
absolute value of the coefficients. Note that deg D�,λ,r(X) = d�1+�2−1,λ1+λ2−1,r.
This all looks a bit cumbersome but the idea underlying these definitions should
become apparent from the proof below.

Privacy-Friendly Forecasting for the Smart Grid 195

Lemma 1. Suppose that the input values x1, x2, . . . , xn0 resp. the coefficients
bijk are given by balanced ternary expansions of at most �1 resp. λ1 integral
digits and �2 resp. λ2 fractional digits. Let xout be the evaluation of our GMDH
network at the xi’s, obtained by using fixed-point arithmetic. Let φ(X) ∈ Rt

be the evaluation of our GMDH network at the encodings of the xi’s (using
the encodings of the bijk’s as coefficients), obtained by using the respective ring
operations in Rt. If

t ≥ 2 · c�1,λ1,�2,λ2,r and d ≥ 2 · max{d�1+�2−1,λ1+λ2−1,r, d�2,λ2,r + 1}
then φ(X) decodes to xout.

Proof. Consider the evaluation of our GMDH network when carried out in
Z[X,X−1], using encodings of the form (2). We claim that the outcome is
of the form X−mg(X) with m ≤ d�2,λ2,r and g(X) ∈ Z[X] of degree at
most d�1+�2−1,λ1+λ2−1,r and having coefficients bounded (in absolute value) by
c�1,λ1,�2,λ2,r. This claim clearly implies the lemma.

The key observation is that if one replaces all inputs by X−�2 + X−�2+1 +
X−�2+2 + . . . + X�1−1 while replacing all encoded bijk’s by X−λ2 + X−λ2+1 +
X−λ2+2 + . . . + Xλ1−1 then these quantities can only increase, by the triangle
inequality for the absolute value. By induction on r, it is easy to show that the
corresponding evaluation is precisely X−d�2,λ2,r · D�1,λ1,�2,λ2,r(X), from which
the claim follows. �

These bounds are easy to compute in practice, using a computer algebra package.
For example with �1 = 4, �2 = 1, λ1 = 1, λ2 = 8 and r = 3, we obtain the bounds

t ≥ 93659577705415581454099599864654 ≈ 2106.207 and d ≥ 368. (3)

This concrete choice of parameters will reoccur later in the paper.
One sees that the obtained bound on t is very large, which is problematic for a

direct application of the FV scheme: remember from the previous section that we
need t ≤ 396. To address this issue we follow an idea mentioned in [4, Sect. 5.5],
namely to decompose the plaintext space using the Chinese Remainder Theorem
(CRT). That is, if one lets t be a large enough product of small mutually coprime
numbers t1, t2, . . . , tm then we have the well-known ring isomorphism

Rt → Rt1 × Rt2 × . . . × Rtm
: g(X) �→ (g(X) mod t1, . . . , g(X) mod tm).

Instead of evaluating our GMDH network directly in Rt, we can work in each of
the Rti

’s separately, simply by reducing things modulo ti. The outcomes can then
be combined very efficiently in order to end up in Rt again. As a consequence it
suffices to carry out the FV scheme using the much smaller plaintext spaces Rti

,
although one needs to do it for each i separately. For the above example, the 13
mutually coprime numbers 269, 271, 277, 281, 283, 285, 286, 287, 289, 293, 307,
311 and 313 multiply together to t = 95059483533087812461171515276210 ≈
2106.229, which indeed satisfies the bound from (3). Thus it suffices to work with
R269, R271, . . . , R313.

196 J.W. Bos et al.

Fig. 3. The MAPE when forecasting the power consumption for the next half hour
when using a varying number of aggregated households.

6 Prediction Approach for the Smart Grid

6.1 Prediction Model: Apartment Complexes

It is known that it is intrinsically difficult to make accurate short-term predic-
tions based on data from one household when using an artificial neural net-
work [38], and the same volatile behaviour is to be expected when following a
GMDH approach. In order to confirm this, we designed and trained for each
value of n = 1, . . . , 100 a GMDH network that predicts the energy consumption
during the next half hour for n aggregated households. This was done along
the design criteria (and using the data set) described in Sect. 6.2 below. The
observed prediction qualities, expressed in terms of the mean absolute percent-
age error (MAPE), are given in Fig. 3. One sees that the results for one household
are particularly bad, showing a MAPE of over 158%. However, the results start
to improve significantly when using aggregated measurements of 10 households:
here the MAPE is slightly above 20%, while it drops to 7% for n = 100. These
observations are well in line with the ones for ANNs [38]. Due to this volatile
nature we decided to aim for aggregated prediction, albeit for a low number of
households. More precisely, we chose n = 10, which matches small apartment
complexes in rural areas.

The cryptographic setting we have in mind is that the individual meter read-
ings are homomorphically encrypted by the smart meter or gateway, and then
sent to a third party who will perform homomorphic computations. Our security
assumption is that the third party is honest but curious: it runs the protocol
and computations as specified (i.e. it evaluates the GMDH network), but it
will try to learn as much as possible about its inputs and outputs. The third
party has received the concrete parameters (such as the coefficients bijk) of a
trained GMDH network from the final party who wants to know the consumption
prediction (e.g. the electricity supplier or the network operator). After homo-
morphically aggregating the data per 10 households, the third party obtains
the encrypted inputs x1, x2, . . . , xn0 on which the GMDH network is evaluated

Privacy-Friendly Forecasting for the Smart Grid 197

homomorphically. The result is an encrypted forecast, which is then forwarded
to the final party, who is able to decrypt using the private cryptographic key cor-
responding to the public key which is installed in the smart meters. The second
security assumption we have to make is that the third party does not collude
with the final party, since otherwise the third party could simply forward the
encrypted individual meter readings.

6.2 Design of the Network

As explained in Sect. 3 the exact layout of our GMDH network is determined
during a learning phase, for which we need access to some real smart meter data.
We used the data that was collected through the Irish smart metering electricity
customer behaviour trials [5] which ran in 2009 and 2010 with over 5,000 Irish
homes and businesses participating. The data consists of electricity consumed
during 30 min intervals (in kW). Per household there are 25, 728 electricity mea-
surements for a total of 536 days. We use the measurements of the first year as
training data and the remaining half year to validate and measure how good the
network is performing.

An important balancing act is to find a network layout that minimizes the
number of layers (and therefore the multiplicative depth of the prediction algo-
rithm) while at the same time preserving a reasonable prediction accuracy,
preferably comparable to [38]. Through some trial and error the simplest GMDH
network we found to meet these requirements consists of r = 3 hidden layers with
n1 = 8, n2 = 4 and n3 = 2 nodes, respectively. As input layer a set of n0 = 51
nodes is used, where 48 nodes represent the half hour measurements that were
made during the previous 24 h. The remaining 3 inputs correspond to the tem-
perature, the month, and the day of the week. The single output node ν4,1 then
returns the predicted electricity consumption for the next half hour.

Let f̃ : R51 → R denote the function that we want to approximate, for
which a set of m input-output pairs ((xi1, xi2, . . . , xin0), y

actual
i)i=1,...,m, with

yactual
i = f̃(xi1, xi2, . . . , xin0), is given through the Irish data set. As explained

in Sect. 3 these are used to inductively determine the coefficients bijk, while at
the same time selecting the best performing nodes. Assuming that layer i − 1
was dealt with, for node νij this is done by minimizing the quantity

MSE
(
(fij(x11, . . . , x1n0), . . . , fij(xm1, . . . , xmn0)) , (yactual

1 , . . . , yactual
m)

)
,

where fij : R51 → R denotes the function obtained from the network by tem-
porarily considering νij as an output node. The minimization can be done using
standard linear regression. The useful feature of this approach is that one can
apply L2-regularization and kill two birds with one stone. On the one hand reg-
ularization helps to avoid the overfitting problem, while on the other hand it
allows to control the magnitude of the bijk’s. In this way one can achieve that
νij is a quadratic polynomial function with small coefficients and a reasonable
MSE. We would like to point out that while we use MSE in the learning phase,
the quality of the eventually resulting GMDH network is measured in terms

198 J.W. Bos et al.

of MAPE, in order to allow for a meaningful comparison with the forecasting
results reported upon in the scientific literature.

As outlined in Sect. 5 we carry out fixed-point arithmetic using balanced
ternary expansions, rather than binary expansions. To represent the input values
x1, x2, . . . , xn0 we use 1 fractional digit and, since the maximal data value is
27.265, at most 4 integral digits. The coefficients bijk are represented using 1
integral and 8 fractional digits. With these choices we attain basically the same
average MAPE around 21% as in the floating point setting: a further increase of
the precision does not give any significant improvement, although it gradually
makes the fixed-point MSE converge to the floating-point one.

6.3 Benchmark Results

In order to assess the practical performance and verify the correctness of our
selected parameters we implemented the privacy-preserving homomorphic fore-
casting approach as introduced in this paper. Our implementation (which will
be made publicly avaiable soon) uses the FV-NFLlib software library [7] which
implements the FV homomorphic encryption scheme which in turn uses the
NFLlib software library (as described in [29] and released at [8]) for comput-
ing polynomial arithmetic. Our presented benchmark figures are obtained when
running the implementation on an average laptop equipped with an Intel Core
i5-3427U CPU (running at 1.80 GHz).

Let us recall and summarize the exact forecasting setting and the parame-
ters we selected for the implementation. It is our goal to predict the energy
consumption for the next half hour of an apartment complex of 10 households
while not revealing any energy consumption information to the party computing
on this data using the GMDH approach as outlined in Sect. 3. Inherent to this
approach we expect a MAPE which is slightly over 20% (see Sect. 6.1). In order
to work efficiently with real numbers we use the fixed-point representation with
the parameters as outlined in Sect. 5, using the CRT approach for decomposing
plaintext space. We use the FV scheme for the homomorphic computation with
the parameters as presented in Sect. 4. Hence, we target a security level of 80 bits
and use the ring R2186 = Z2186 [X]/(X212 + 1) along with a standard deviation
of 102. This means a ciphertext size of 186 kB. Recall that the coefficients bijk

are not being encrypted, which limits the noise growth when carrying out scalar
multiplications.

As outlined in Sect. 6.2 the layout of our network consists of an input layer
of 51 nodes, three hidden layers of 8, 4 and 2 nodes respectively and a single

Table 1. The time (in ms) to compute the various basic (homomorphic) operations
for our selected parameters.

op enc dec key gen add mul scalar mul

ms 2.1 5.8 77 0.1 33 29

Privacy-Friendly Forecasting for the Smart Grid 199

output node. Remember that when building a new layer the learning algorithm
excludes nodes corresponding to node pairs from the previous layer. So not
all nodes of the resulting GMDH network affect on the final output and thus
can be ignored during evaluation. Each node performs 8 multiplications out
of which 5 are by polynomial coefficients and 5 additions. Since there are at
most 15 nodes being evaluated this means computing 120 multiplications (out
of which 75 by polynomial coefficients) and 75 additions. Table 1 summarizes
the performance cost (expressed in milliseconds) for the various basic building
blocks used in our homomorphic prediction algorithm. As can be seen from
this table, and this is confirmed by running the entire forecasting algorithm in
practice, the average computation of the prediction over 100 aggregated datasets
is around 2.5 s depending on the node wiring. However, as explained in Sect. 5,
this process has to be repeated 13 times for the CRT approach. In practice, the
entire forecasting can be computed in half a minute. Due to the embarrassingly
parallel nature of the CRT approach, a parallel implementation can compute
this in less than 4 s or 2.5 s on average.

7 Conclusions and Future Work

We have shown that Ivakhnenko’s group method of data handling from the
1970s is very suitable for homomorphic computation. This seems to be a better
method with respect to the applicability to implement prediction homomorphi-
cally compared to the related artificial neural network based approaches in this
cryptographic setting. We have studied this prediction approach in the setting
of enhancing the privacy of the consumer for forecasting in the smart grid. Our
privacy-preserving implementation of this approach to homomorphically forecast
for 10 households shows is that this can be computed in less than four seconds
for parallel and in half a minute for a sequential implementation.

We would like to point out that this approach has applications beyond the
scope of just the smart grid. Other areas which need reliable prediction algo-
rithms but work with privacy sensitive data can directly benefit as well. Exam-
ples include computing on financial data or biometric data.

References

1. Ahmad,A.,Hassan,M.,Abdullah,M.,Rahman,H.,Hussin, F.,Abdullah,H., Saidur,
R.:A reviewonapplications ofANNandSVMfor building electrical energy consump-
tion forecasting. Renew. Sustain. Energ. Rev. 33, 102–109 (2014)

2. Albrecht, M.: Complexity estimates for solving LWE (2000–2004).
https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py

3. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptology 9(3), 169–203 (2015)

4. Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based
fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS,
vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45239-0 4

https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
http://dx.doi.org/10.1007/978-3-642-45239-0_4

200 J.W. Bos et al.

5. Commission for Energy Regulation: Electricity smart metering customer behaviour
trials (CBT) findings report. Technical Report CER11080a (2011). http://www.
cer.ie/docs/000340/cer11080(a)(i).pdf

6. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
schemes. In: SAC 2016. LNCS. Springer (2016)

7. CryptoExperts: FV-NFLlib (2016). https://github.com/CryptoExperts/FV-
NFLlib

8. CryptoExperts, INP ENSEEIHT, and Quarkslab: NFLlib (2016). https://github.
com/quarkslab/NFLlib

9. Department of Energy & Climate Change: Smart metering implementation pro-
gramme. Technical Report Third Annual Report on the Roll-out of Smart Meters
(2014). https://www.gov.uk/government/uploads/system/uploads/attachment
data/file/384190/smip smart metering annual report 2014.pdf

10. Department of Energy, Climate Change: Smart metering implementation pro-
gramme - data access, privacy. https://www.gov.uk/government/uploads/system/
uploads/attachment data/file/43043/4933-data-access-privacy-con-doc-smart-
meter.pdf

11. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Manual for using homomorphic encryption for bioinformatics. Technical report,
Technical report MSR-TR-2015-87, Microsoft Research (2015)

12. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing,
J.: Cryptonets: applying neural networks to encrypted data with high throughput
and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) International Conference on
Machine Learning, vol. 48, pp. 201–210. JMLR.org (2016)

13. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power con-
sumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS
2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31284-7 33

14. European Commission: Commission recommendation of 9 on preparations for the
roll-out of smart metering systems. Official Journal of the European Union (2012).
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32012H0148

15. European Commission: Benchmarking smart metering deployment in the EU-27
with a focus on electricity. Technical Report 365, June 2014. http://eur-lex.europa.
eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0356&from=EN

16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR
Cryptology ePrint Archive 2012, 144 (2012)

17. Koo, B.G., Lee, S.W., Kim, W., Park, J.H.: Comparative study of short-term elec-
tric load forecasting. In: Conference on Intelligent Systems, Modelling and Simu-
lation, pp. 463–467, January 2014

18. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic
encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM
2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22444-7 15

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Sympo-
sium on Theory of Computing - STOC 2009, pp. 169–178. ACM (2009)

20. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–
1891 (1992)

21. Hernandez, L., Baladron, C., Aguiar, J.M., Carro, B., Sanchez-Esguevillas, A.J.,
Lloret, J., Massana, J.: A survey on electric power demand forecasting: future
trends in smart grids, microgrids and smart buildings. IEEE Commun. Surv. Tuto-
rials 16(3), 1460–1495 (2014)

http://www.cer.ie/docs/000340/cer11080(a)(i).pdf
http://www.cer.ie/docs/000340/cer11080(a)(i).pdf
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/CryptoExperts/FV-NFLlib
https://github.com/quarkslab/NFLlib
https://github.com/quarkslab/NFLlib
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/384190/smip_smart_metering_annual_report_2014.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/384190/smip_smart_metering_annual_report_2014.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/43043/4933-data-access-privacy-con-doc-smart-meter.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/43043/4933-data-access-privacy-con-doc-smart-meter.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/43043/4933-data-access-privacy-con-doc-smart-meter.pdf
http://dx.doi.org/10.1007/978-3-642-31284-7_33
http://dx.doi.org/10.1007/978-3-642-31284-7_33
http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32012H0148
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0356&from=EN
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0356&from=EN
http://dx.doi.org/10.1007/978-3-642-22444-7_15
http://dx.doi.org/10.1007/978-3-642-22444-7_15

Privacy-Friendly Forecasting for the Smart Grid 201

22. Ivakhnenko, A.: Heuristic self-organization in problems of engineering cybernetics.
Automatica 6(2), 207–219 (1970)

23. Jawurek, M., Kerschbaum, F., Danezis, G.: Privacy technologies for smart grids -
a survey of options. Technical Report MSR-TR-2012-119, November 2012. http://
research.microsoft.com/apps/pubs/default.aspx?id=178055

24. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the
smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794,
pp. 175–191. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22263-4 10

25. Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homo-
morphic encryption. In: Smart Grid Communication, pp. 327–332. IEEE (2010)

26. Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of train-
ing neural networks. In: Advances in Neural Information Processing Systems, pp.
855–863 (2014)

27. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5 1

28. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 35 (2013). Article 43

29. Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint,
T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS,
vol. 9610, pp. 341–356. Springer, Cham (2016). doi:10.1007/978-3-319-29485-8 20

30. Molina-Markham, A., Shenoy, P.J., Fu, K., Cecchet, E., Irwin, D.E.: Private mem-
oirs of a smart meter. In: Ruzzelli, A.G. (ed.) Workshop on Embedded Sensing
Systems for Energy-Efficiency in Buildings, pp. 61–66. ACM (2010)

31. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

32. Recommendation to the European Commission: Essential regulatory requirements
and recommendations for data handling, data safety, and consumer protection.
Technical Report version 1.0 (2011). https://ec.europa.eu/energy/sites/ener/files/
documents/Recommendations

33. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Workshop on Privacy
in the Electronic Society, WPES 2011, pp. 49–60. ACM (2011)

34. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. Found. Secure Comput. 4(11), 169–180 (1978)

35. Smart Grid Coordination Group: Smart grid information security, Novem-
ber 2012. http://ec.europa.eu/energy/sites/ener/files/documents/xpert group.1
security.pdf

36. Srinivasan, D.: Energy demand prediction using GMDH networks. Neurocomput-
ing 72(1), 625–629 (2008)

37. The Smart Grid Interoperability Panel - Smart Grid Cybersecurity Committee:
Guidelines for smart grid cybersecurity: volume 1 - smart grid cybersecurity strat-
egy, architecture, and high-level requirements. Technical Report NISTIR 7628 Rev
1 (2014). http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7628r1.pdf

38. Veit, A., Goebel, C., Tidke, R., Doblander, C., Jacobsen, H.-A.: Household elec-
tricity demand forecasting: benchmarking state-of-the-art methods. In: Conference
on future energy systems, pp. 233–234. ACM (2014)

39. Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K.E., Naehrig, M.:
Crypto-nets: neural networks over encrypted data. CoRR, abs/1412.6181 (2014)

http://research.microsoft.com/apps/pubs/default.aspx?id=178055
http://research.microsoft.com/apps/pubs/default.aspx?id=178055
http://dx.doi.org/10.1007/978-3-642-22263-4_10
http://dx.doi.org/10.1007/978-3-642-13190-5_1
http://dx.doi.org/10.1007/978-3-319-29485-8_20
http://dx.doi.org/10.1007/3-540-48910-X_16
https://ec.europa.eu/energy/sites/ener/files/documents/Recommendations
https://ec.europa.eu/energy/sites/ener/files/documents/Recommendations
http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group.1_security.pdf
http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group.1_security.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2014/NIST.IR.7628r1.pdf

Number Theory

On Indifferentiable Hashing into the Jacobian
of Hyperelliptic Curves of Genus 2

Michel Seck1, Hortense Boudjou2, Nafissatou Diarra1(B),
and Ahmed Youssef Ould Cheikh Khlil1

1 Department of Mathematics-Informatics,
Cheikh Anta Diop University, Dakar, Senegal

{michel.seck,nafissatou.diarra,ahmed.youssef}@ucad.edu.sn
2 Maroua University, Maroua, Cameroon

hortense boudjou@yahoo.fr

Abstract. Many authors have studied the problem of constructing
indifferentiable and deterministic hash functions into elliptic and hyper-
elliptic curves with well-distributed encodings. In this work, we have
designed three encodings suitable for indifferentiable hashing for the fol-
lowing hyperellitic curves of genus 2: H1 : y2 = F1(x) = x5 +ax4 + cx2 +
dx, H

2 : y2 = F2(x) = x5 + bx3 +dx+e; H
3 : y2 = F3(x) = x5 +ax4 +e.

Since they are well-distributed, our encodings can be used to design
indifferentiable and deterministic hash functions into the Jacobian of
these hyperelliptic curves, using the technique developed by Farashahi
et al. in 2013 (J. Math. Comput). Because of square rooting steps, these
new encodings have the same asymptotic complexity as the work of
Kammerer et al. at Pairing 2010, namely O(log2+◦(1) q).

Keywords: Indifferentiable deterministic hashing · Injective encod-
ing · Elliptic curve-based cryptography · Jacobian · Elligator · Random
bit-string

1 Introduction

Elliptic curves based cryptography offers services that combine high speed, high
security and small space consumption. It is thus increasingly desired by the
designers of cryptographic protocols. Typically in the identity-based schemes,
most often the identity of the user is associated to a point on the (hyper)elliptic
curve, like in Franklin and Boneh’s encryption scheme [2] for the particular
case of supersingular curves. Also, when using a protocol that needs a hash
function, we need to be able to encode on the group attached to the curve,
namely the group of points of an elliptic curve or the Jacobian of an hyperelliptic
curve. For the case of elliptic curves, there exist many deterministic encodings
[1,5,7,9,12,17] and constructions of hash functions based on well-distributed
encodings [3,6,8,18]. In 2007, Ulas [19] designed deterministic encodings for the
family of hyperelliptic curves of the form y2 = xn +ax+b or y2 = xn +ax2 +bx,

c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 205–222, 2017.
DOI: 10.1007/978-3-319-57339-7 12

206 M. Seck et al.

where n ≥ 5. Ulas’s encoding is based on Skalba equalities and requires to
compute a square root in Fq. A simplified version of Ulas’s encoding was later
proposed by Brier et al. in [3] in CRYPTO 2010, where they also explain how
to construct hash functions indifferentiable from random oracles and based on
deterministic encodings over elliptic curves (like Icart’s function [12] or SWU’s
algorithm [19]).

In 2010, Kammerer et al. [13] proposed new encodings for some models of
hyperelliptic curves, including y2 = (x3 +3ax+2)2 +8bx3 over the field Fq, with
q ≡ 2 mod 3. Farashahi et al. [8] have proposed another technique based on
character sums which established the indifferentiability of hash functions based
on the existence of deterministic well-distributed encodings into Jacobians of
hyperelliptic curves, with application on the hyperelliptic curve proposed by
Kammerer et al. [13]. In the case of odd hyperelliptic curves(which are curves
defined by y2 = f(x) with f(−x) = −f(x)), Fouque and Tibouchi using the
technique of Farashahi et al. [8], have proposed an explicit method to obtain ele-
ments of the Jacobian with injective well-distributed encodings on the associated
hyperelliptic curves.

Contributions: It is well-known that cryptography based on hyperelliptic curves
relies on hashing into the Jacobian of the underlying curve. And to do this, one
needs to be able to compute a point of the curve in deterministic polynomial
time. Our main contribution in this paper is the construction of deterministic
encodings for three families of hyperelliptic curves that were not covered by
the previous works. Moreover, we show that each of these encodings is 2 : 1,
invertible under some conditions and can be extended to all Fq. Once this was
done, and using the definitions of Farashahi et al. [8], we show how one can use
these new almost-injective encodings to construct indifferentiable hash functions
into the Jacobian of the hyperelliptic curves Hi, i = 1, 2, 3.

Note that all these encodings can be computed in O(log2+◦(1) q) operations
over Fq.

2 Preliminaries

Let q be an odd prime power.

1. The quadratic character is the function χ defined by χ : Fq → Fq : u �→
χ(u) = u(q−1)/2 and verifying: χ(u) = 1 if u is a non-zero square; χ(u) = −1
if u is a non-square; and χ(u) = 0 if u = 0. The following properties are also
verified: χ(uv) = χ(u) · χ(v) for any u, v ∈ Fq; χ(a2) = 1 for any a ∈ F

∗
q ;

and if q ≡ 3 mod 4, χ(−1) = −1, χ(χ(u)) = χ(u), for any u ∈ Fq. If q ≡ 1
mod 4, then χ(−1) = 1.

2. Let q ≡ 3 mod 4 and let A be the set of quadratic residues over the finite
field Fq. Define the square root function

√· on A as follows:
√· : A → Fq : a �→ √

a = a(q+1)/4

Then
√

a is called the principal square root of a. Also note that if q is an
odd prime, one can take

√
A = {0, 1, . . . , (q − 1)/2}.

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 207

3 Almost-Injective and Invertible Encodings into Three
Families of Hyperellitic Curves

In this section, we propose 3 almost-injective encodings for hyperelliptic curves
following the technique of Elligator [1] for elliptic curves. All our encodings are
almost-injective in the following sense:

Let φi : Fq → H
i for (i = 1, 2 or 3) be an encoding verifying:

– φi(r) = φi(−r), ∀r ∈ F
∗
q ;

– and #φ−1
i (φi(r)) = 2, ∀r ∈ F

∗
q , where #φ−1

i (φi(r) denotes the number of
elements of the set φ−1

i (φi(r).

So for a subset S ⊂ Fq verifying S
⋂

(−S) = {0}, the encoding φi : S → H
i is

an injective one, that we call an almost-injective encoding.
To our knowledge, this paper is not covered by the previous works (summa-

rized in the introduction) on how to encode into hyperelliptic curves. Note that
in [8], the encoding works for odd hyperelliptic curves. In [3,13,19], the encodings
are not almost-injective. All the encodings we propose here are almost-injective
and can be used for non-odd hyperelliptic curves. Furthermore, in Sect. 4, we
prove that our encodings are well-distributed; hence they can be used for indif-
ferentiable hashing.

3.1 An Almost-Injective Encoding on H
1

Let us consider the family of hyperelliptic curves H
1 over Fq (q = pn where p is

a prime, with p = char(Fq)
= 2, 5), given by the equation:

H
1 : y2 = F1(x) = x5 + ax4 + cx2 + dx with 8ad2 + c3 = 0 where a, c, d ∈ F

∗
q .

Let u be a parameter such that χ(u) = −1 and define the set

R1 =
{

r ∈ F
∗
q , ur2c2 + 4d2
= 0;

− d − c2

2d
ur2 + d(

ur2c2

4d2
+ 1)3
= −16d4(ur2c2

4d2 + 1)4

c4

}

.

Input : The hyperelliptic curve H
1 and r an element of R1.

Output: A point (x, y) on H
1.

v := −2d(ur2c2

4d2 + 1)
c

;

ε := χ(v5 + av4 + cv2 + dv);

x :=
v

2
(
vc + ε(vc + 4d)

vc + 2d
);

y := −ε
√

x5 + ax4 + cx2 + dx;
return (x, y).

Algorithm 1. Hashing-1-Genus2-Encoding

208 M. Seck et al.

Definition 1. In the situation of Algorithm1 the encoding function for H
1 is

the function φ1 : R1 → H
1 : r �→ φ1(r) = (x, y). The map φ1 is extending at 0

by φ1(0) = (0, 0).

Theorem 1. Algorithm1 computes a deterministic almost-injective encoding
φ1 : R1 → H

1 : r �→ φ1(r) = (x, y), in time O(log2+◦(1)q), where S1 = Fq \ R1

is a subset of Fq of at most 10 elements.

Proof. 1. v exists and is nonzero since cd
= 0 and ur2c2+4d2
= 0 by hypothesis.
2. ε
= 0 if F1(v(r2))
= 0. Since v = v(r2)
= 0, using the definition of v and the

condition 8ad + c3 = 0 we have:

ε
= 0

⇔
(
− 2d(ur2c2

4d2
+1)

c

)4

+ a
(
− 2d(ur2c2

4d2
+1)

c

)3

+ c
(
− 2d(ur2c2

4d2
+1)

c

)
+ d
= 0

⇔ 16d4(ur2c2

4d2
+1)4

c4 − 8ad3(ur2c2

4d2
+1)3

c3 − 2d
(

ur2c2

4d2 + 1
)

+ d
= 0

⇔ 16d4(ur2c2

4d2
+1)4

c4 + d
(

ur2c2

4d2 + 1
)3 − c2

2dur2 − d
= 0

⇔ − d − c2

2dur2 + d
(

ur2c2

4d2 + 1
)3
= − 16d4(ur2c2

4d2
+1)4

c4 ,

which is true by definition of R1.
3. We have x = v

2

(vc+ε(vc+4d)
vc+2d

)
. Note that ε
= 0 by (2). Let us verify that x

exists and is nonzero.

– x exists if and only if vc + 2d
= 0 ⇔ v
= − 2d
c ⇔ − 2d

(
ur2c2

4d2
+1

)

c
= − 2d
c ⇔

r
= 0 which is true by definition of R1.
– Since x = v (if ε = 1) or x =

−2d
c v

v+ 2d
c

(if ε = −1) and v
= 0 by (1), then
x
= 0.

4. We have x = v
2

(vc+ε(vc+4d)
vc+2d

)
. Note that ε
= 0 by (2).

– If ε = 1 then x = v and F1(v) is a nonzero square.
Hence, y = −ε

√
x5 + ax4 + cx2 + dx = −ε

√
v5 + av4 + cv2 + dv is well

defined and is nonzero.
– If ε = χ(v5 + av4 + cv2 + dv) = −1 then x =

−2d
c v

v+ 2d
c

and

x
5
+ ax

4
+ cx

2
+ dx =

(−2d
c

v

v+2d
c

)5

+ a

(−2d
c

v

v+2d
c

)4

+ c

(−2d
c

v

v+2d
c

)2

+ d

(−2d
c

v

v+2d
c

)

=
(−2d

c
)5

(v+2d
c

)5

(
v5(1 − ac

2d − c4

16d3

)
+ v4(−a − c3

4d2

)
+ v3(− 3c2

2d + 3c2
2d

)
+ v2(−c + 2c) + dv

)

=
((− 2d

c
)5

(v+2d
c

)5

)
(v5 + av4 + cv2 + dv),

since 8ad2 + c3 = 0.

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 209

Therefore χ(x5 + ax4 + cx2 + dx) = χ((− 2d
c)(v + 2d

c))χ(v5 + av4 + cv2 +
dv)) = χ(u)χ(r2)χ(v5+av4+cv2+dv) = (−1)(1)(−1) = 1, since r
= 0 in
R1. Hence x5 + ax4 + cx2 + dx is a nonzero square, thus y is well defined
and is nonzero. �

Lemma 1. In the situation of Theorem1 and Definition 1, we have φ1(r) =
φ1(−r), ∀r ∈ R1 and #(φ−1

1 (φ1(r))) = 2, ∀r ∈ R1.

Proof. – We have φ1(r) = (x, y) with x := v
2

(vc+ε(vc+4d)
vc+2d

)
and v :=

− 2d(ur2c2

4d2
+1)

c . Since v = v(r2) then φ1(r) = φ1(−r).
– Let r, r′ ∈ R1 such that φ1(r) = φ1(r′). As in Algorithm 1 for r (resp r′)

define v, ε, x, y (resp v′, ε′, x′, y′). Since x = x′ and y = y′ then −ε
√

F1(x) =
−ε′√F1(x). Hence ε = ε′. From x = x′ we deduce that v = v′ (for ε = ε′ = 1
and ε = ε′ = −1) thus r2 = r′2. Which implies that r′ = ±r. �

Input : The Hyperelliptic curve H
1 and (x, y) ∈ H

1.
Output: r̄ such that φ1(r̄) = (x, y), r̄ ∈ R1 or ⊥ (which means that

“(x, y) is not in φ1(R1)”).
if −2cdu(x + 2d/c) is a non-zero square then

if y =
√

f(x) then
r̄ := 2d

c

√
− 2d

cu(x+ 2d
c)

;

else
if y = −√

f(x) then

r̄ :=
√

− 2d
cu (x + 2d

c);

end
end
return r̄;

else
return ⊥.

end
Algorithm 2. Hashing-1-Genus2-Inverting

Theorem 2. In the situation of Theorem1 and Definition 1, Algorithm2 defines
the decoding function of φ1. Furthermore, Im(φ1) is the set of (x, y) ∈ H

1 veri-
fying −2cdu(x + 2d/c) is a nonzero square in Fq.

Proof. 1. Fix r ∈ R1, pose φ1(r) = (x, y). As defined in R1, r
= 0 then (x, y) is
defined in Theorem 1.

– If y ∈
√

F2
q then x =

−2d
c v

v+ 2d
c

= 0 since v
= 0, thus y
= 0 and −2cdu
(
x +

2d
c

)
= −2cdu

(− 2d
c v

v+ 2d
c

+ 2d
c

)
= −2cdu

(− 2d
c v

v+ 2d
c

)
− 4d2u = 4d2u

(
v

v+ 2d
c

− 1
)

=
16d4

c2r2 is a nonzero square.

210 M. Seck et al.

– If y /∈
√

F2
q then x = v
= 0 thus y
= 0 and − 2d

cu

(
x + 2d

c

)
= − 2d

cu

(
v +

2d
c

)
= − 2d

cu

(
− 2d(ur2c2

4d2
+1)

c + 2d
c

)
= 4d2

c2u

(
ur2c2

4d2

)
+ 4d2

c2u − 4d2

c2u = r2. Thus

−2dcu
(
x + 2d

c

)
= u2r2c2 is a nonzero square.

Assume that (x, y) ∈ H
1 and that −2cdu

(
x + 2d

c

)
is a nonzero square. Let

show that (x, y) ∈ φ1(R1).
Since −2cdu(x + 2d

c) is a nonzero square, then r̄ is defined and nonzero.
Define v, ε, x, y as in the algorithm of Theorem 1.

If y ∈
√
F2

q then r̄2 = − (2d)3

c3u(x+ 2d
c)

so ur̄2 =
− 23d3

c3

(x+ 2d
c)

hence, we have v =
− 2d

c x

(x+ 2d
c)

. After some computations, using 8ad2 + c3 = 0, we deduce that: v5 +

av4 + cv2 + dv =
(− 2d

c

x+ 2d
c

)5

(x5 + ax4 + cx2 + dx).

Therefore χ(v5 + av4 + cv2 + dv) = χ
(− 2d

c

(x+ 2d
c)

· (x5 + ax4 + cx2 + dx)
)

=

χ
(−2dc(x + 2d

c)
) · χ(x5 + ax4 + cx2 + dx) = χ(u)χ(x5 + ax4 + cx2 + dx) =

−1 ·1 = −1, since −2dcu
(
x+ 2d

c

)
and x5+ax4+cx2+dx are nonzero square.

We deduce that ε = χ(v5 + av4 + cv2 + dv) = −1. Thus, we have x =
− 2d

c v

(v+ 2d
c)

= x and y = −ε
√

F1(x) =
√

F1(x) = y.

Otherwise, if y /∈
√
F2

q, i.e., y = −√
F1(x) then r̄2 = − 2d

cu

(
x + 2d

c

)
so

ur̄2c2 + 4d2 = −2cdx so v = x and F1(v) = F1(x). Thus ε = 1. Consequently
x = v = x and y = −ε

√
F1(x) = −√

F1(x) = y.
Since for all v, we have v5+av4+cv2+dv
= 0, then −d− c2

2dur2+d
(

ur2c2

4d2 +1
)3
=

− 16d4(ur2c2

4d2
+1)4

c4 , thus r̄ ∈ R1.
2. Follows from the above proof. �
Remark 1 (Extension to Fq).

– If q = 1 mod 4, and F1(x)
x = x4 + ax3 + cx + d don’t have a root which is

square, then φ1 is defined in Fq.
– If q = 3 mod 4, and F1(x)

x = x4 + ax3 + cx + d don’t have a root which is

square, then φ1 is defined in Fq \
{

±
√

−4d2

c2u

}
. We can extend φ1 at ±

√
−4d2

c2u

as follows. Since a = −c3

8d2 , choose d or c such that −2d
c is a square, therefore

F1

(−2d
c

)
is a square, thus we can put φ1

(
±

√
−4d2

c2u

)
=

(
−2d

c ,
√

F1

(−2d
c

))
.

3.2 An Almost-Injective Encoding on H
2

Let Fq be a finite field with char(Fq) = p
= 2, 5, q = pn is an odd prime power.
We assume that q ≡ 1 mod 8 or q ≡ 7 mod 8, then 2 is a square.

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 211

Let s ∈ F
∗
q such that 7s2 + 20s − 100 = 0:

– If p
= 7 and “q ≡ 1 mod 8 or q ≡ 7 mod 8”, we have Δs = 3200 = 2×42102

which is a square, then s =
−10 ± 20

√
2

7
.

– If p = 7 and “q ≡ 1 mod 8 or q ≡ 7 mod 8”, then s = 5.

Let w ∈ F
∗
q be an arbitrary parameter.

Let H2 : y2 = F2(x) = x5 + bx3 +dx+ e, with b = sw2, d = sw4

2 , e = s−10
10 w5

be an hyperelliptic curve of genus 2 over Fq with the previous conditions on q.
Let u be a parameter such that χ(u) = −1 and define the set

R2 =
{

r ∈ F
∗
q , [ur2(−50 − 35s) − 1]5 + s[ur2(−50 − 35s) − 1]3

+
s

2
ur2(−50 − 35s)
= 2s + 5

5

}

Input: The hyperellitic curve H
2, an element r ∈ R2

Output: A point (x, y) on H
2

v := w[ur2(−50 − 35s) − 1];
ε := χ(v5 + v3 + dv + e);

x :=
1 + ε

2
v +

1 − ε

2

(
w(−v + w)

v + w

)

;

y := −ε
√

x5 + bx3 + dx + e;
return (x, y).

Algorithm 3. Hashing-2-Genus2-Encoding

Definition 2. In the situation of Algorithm3, the encoding function for the
hyperelliptic curve H

2 is the function φ2 : R2 → H
2 : r �→ φ2(r) = (x, y).

Theorem 3. Algorithm3 computes a deterministic almost-injective encoding
φ2 : R2 → H

2 : r �→ φ2(r) = (x, y), in time O(log2+◦(1)q), where S2 = Fq \ R2

is a subset of Fq of at most 10 elements.

Proof. 1. Since v = w[ur2(−50 − 35s) − 1] we have v5 + bv3 + dv + e =
w5[ur2(−50−35s)−1]5+bw3[ur2(−50−35s)−1]3+dw[ur2(−50−35s)−1]+e.
Now, using b = sw2, d = sw4

2 , e = s−10
10 w5, we deduce that v5 + bv3 +dv +e
=

0 ⇔ [ur2(−50−35s)−1]5+s[ur2(−50−35s)−1]3+ s
2ur2(−50−35s)− 2s+5

5
= 0
which is true by definition of R2. Therefore ε = χ(v5 + bv3 + dv + e)
= 0.

2. x is well defined since v + w = 0 ⇔ r = 0 and 0 /∈ R2

3. Let us prove that F2(x) is nonzero square
– ε = 1 i.e. F2(v) is a nonzero square and x = v then F2(x) is a nonzero

square.
– ε = −1, we have x =

(
w(−v+w)

v+w

)
and

F2(x) = ω5(−v+ω)5+bω3(−v+ω)3(v+ω)2+dω(−v+ω)(v+ω)4+e(v+ω)5

(v+ω)5 .

212 M. Seck et al.

Using b = sw2, d = sw4

2 and e = s−10
10 w5 in F2(x), after some computa-

tions, yields, the following:

F2(x) = v5(−7ω5 s
5−2ω5)+v3(2ω7s−20ω7)+v(ω9s−10ω9)+8ω10 s

5
(v+ω)5 .

Denote α5 = (−7ω5 s
5 − 2ω5), α3 = (2ω7s − 20ω7), α1 = (ω9s − 10ω9)

and α0 = 8ω10 s
5 then F2(x) = α5

(v+ω)5

[
v5 + α3

α5
v3 + α1

α5
v + α0

α5

]
.

We have:

α3

α5
=

2ω7s − 20ω7

−7ω5 s
5 − 2ω5

=
ω7(2s − 20)

ω5

5 (−7s − 10)
=

ω2(10s − 100)
−7s − 10

.

Now 7s2+20s−100 = 0 ⇒ 10s−100 = −7s2−10. So α3
α5

= w2(−7s2−10s)
−7s−10 =

sw2 = b.

α1

α5
=

ω9s − 10ω9

−7ω5 s
5 − 2ω5

=
ω9(5s − 100)
ω5(−7s − 10)

=
ω4 10s−100

2

−7s − 10
=

ω4 −7s2−10s
2

−7s − 10

= sω4

2 = d.

α0

α5
=

8ω10 s
5

−7ω5 s
5 − 2ω5

=
8ω10s

ω5(−7s − 10)
=

8sω5

−7s − 10
.

Now 7s2 + 20s − 100 = 0 =⇒ −7s2 − 20s + 100 = 0 =⇒ −7s2 − 80s +
60s + 100 = 0 =⇒ −7s2 + 60s + 100 = 80s =⇒ (−7s − 10)(s − 10) =
80s = 10 × 8s =⇒ s−10

10 = 8s
−7s−10 . So we have α0

α5
= e.

Thus, we have χ(F2(x)) = χ(α5)χ(v+ω))χ(F2(v)) = −χ(α5(v+w)) since
F2(v) is a nonzero non-square.

But, we have α5(v + w) = ω5 −10−7s
5

(
wur2(−50 − 35s)

)
= uw6r2(−10 −

7s)2 = u
(
rw3(−10 − 7s)

)2. Since r
= 0 in R2, then χ(α5(v + w)) =
χ(u) = −1. Hence χ(F2(x)) = 1, therefore F2(x) is a nonzero square, we
deduce that y = −ε

√
F2(x) is well-defined. �

Lemma 2. In the situation of Theorem3 and Definition 2, we have φ2(r) =
φ2(−r), ∀r ∈ R2 and #(φ−1

2 (φ2((r))) = 2, ∀r ∈ R2.

Proof. Similar to the proof of Lemma 1. �

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 213

Input : The Hyperelliptic curve H
2 and (x, y) ∈ H

2.
Output: r̄s.t. ψ(r̄) = (x, y), r̄ ∈ R2 or ⊥ (which means that “(x,y) is

not in φ2(R2)”).
if uw(x + w)(−50 − 35s) is a non-zero square then

if y =
√

f(x) then

r̄ :=
√

2w
u(x+w)(−50−35s) ;

else
if y = −√

f(x) then

r̄ :=
√

x+w
uw(−50−35s) ;

end
end
return r̄;

else
return ⊥.

end
Algorithm 4. Hashing-2-Genus2-Inverting

Theorem 4. In the situation of Theorem3 and Definition 2, Algorithm4 defines
the decoding function of φ2. Furthermore, Im(φ2) is the set of (x, y) ∈ H1 veri-
fying χ(uw(x + w)(−50 − 35s)) = 1.

Proof. 1. – Assume that x, y ∈ Im(φ2).
• If ε = 1 then x = v. Hence x + w = 0 ⇔ v + w = 0 ⇔ r = 0 but we

know that 0 /∈ R2.
Now, we have uw(x + w)(−50 − 35s) = uw(v + w)(−50 − 35s) =
uw[ur2w(−50 − 35s)](−50 − 35s) = u2w2r4(−50 − 35s)2.

• If ε = −1 then x = w(−v+w)
v+w =, Hence x+w = 0 ⇔ −vw+w2

v+w = −w ⇔
w = 0 but we know that w ∈ F

∗
q .

Now we have uw(x+w)(−50−35s) = uw[w(−v+w)
v+w +w](−50−35s) =

uw
v+w (2w2)(−50 − 35s) = 2w2

r2 , since v + w = uwr2(−50 − 35s) by
Theorem 3, 2 is a square when q ≡ 1 mod 8 or q ≡ 7 mod 8.

We conclude that uw(x + w)(−50 − 35s) is a nonzero square.
– Conversely assume that uw(x + w)(−50 − 35s) is a nonzero square in Fq.

Let us prove that (x, y) ∈ Im(φ2). Put r̄ =
√

x+w
uw(−50−35s) if y /∈

√
F2

q and

r̄ =
√

2w
u(x+w)(−50−35s) if y ∈

√
F2

q. By above assumptions x+w
uw(−50−35s)

and 2w
u(x+w)(−50−35s) are well-defined and are nonzero square, then r̄ is

always well-defined.
Now, we are going to prove that r̄ ∈ R2 and (x, y) ∈ Im(φ2).
Define v̄, ε̄, x̄, ȳ as in Algorithm 3.
If y /∈

√
F2

q then r̄ =
√

x+w
uw(−50−35s) =⇒ v̄ = w[ur̄2(−50 − 35s) −

1] = w[x+w
w − 1] = x. So we have ε̄ = χ(v̄5 + bv̄3 + dv̄ + e) = χ(x5 +

214 M. Seck et al.

bx3 + dx + e) = 1. Hence x̄ = 1+ε̄
2 v̄ + 1−ε̄

2

(
ω(−v̄+ω)

v̄+ω

)
= v̄ = x and

ȳ = −ε̄
√

x5 + bx3 + dx + e = −√
x5 + bx3 + dx + e = y.

Now if y ∈
√

F2
q then r̄ =

√
2w

u(x+w)(−50−35s) , since v̄ = w[ur̄2(−50 −
35s) − 1] then v̄ = w w−x

x+w .
Now, after some computations, we have:

ε̄ = χ(v̄5 + bv̄3 + dv̄ + e) = χ
((−7ω5 s

5−2ω5

(x+ω)5

)
(x5 + bx3 + dx + e)

)

= χ(5w(x + w)(−7s − 10) = −1

because uw(x + w)(−50 − 35s) is a nonzero square and χ(u) = −1.
Since ε̄ = −1 then x̄ = ω(−v̄+ω)

v̄+ω = x and ȳ = −ε̄
√

x5 + bx3 + dx + e =√
x5 + bx3 + dx + e = y. In both cases we have x̄ = x and ȳ = y.
Since for all v, we have v5 + bv3 + dv + e
= 0, then [ur̄2(−50 − 35s) −

1]5 + s[ur̄2(−50−35s)−1]3 + s
2 [ur̄2(−50−35s)−1]
= 2s+5

5 , thus r̄ ∈ R2.
2. Follows from the above proof. �
Remark 2 (Extension to Fq).

– We propose to extend φ2 at 0 as follows. Recall that b = sw2, d = sw4

2 , e =
s−10
10 w5. Since F2(−w) = −w5−sw5− sw5

4 + s−10
10 w5 =

(−1−s− s
2+ s−10

10

)
w5 =

−14s−11
10 w5. Now choose w such that f(−w) is a nonzero square and put

φ2(0) = (−w,
√

F2(−w)).
– Let Z2 be the set of roots of F2(x) = x5+bx3+cx+e which are square. If Z2 is

not empty, with the above choice, we put F2(±t) = (−w,−√
F2(−w)) ∀t/t2 ∈

S2.

3.3 An Almost-Injective Encoding on H
3

Let q = 5n be a power of 5 and u ∈ F
∗
q be a nonzero square. Let w ∈ F

∗
q be

an arbitrary parameter and H
3 be an hyperelliptic curve of genus 2 given by

H
3 : y2 = F3(x) = x5 + ax4 + e over Fq where a ∈ F

∗
q and e = 4aw4.

Let u be a parameter such that χ(u) = −1 and define the set

R3 =
{
r ∈ F

∗
q , w(1 − ur2)5 + a(1 − ur2)4 + 4a
= 0

}
.

Input: The hyperelliptic curve H
3, an element r ∈ R3.

Output: A point (x, y) on H
3

v = v(r2) := w(1 − ur2);
ε := χ(v5 + av4 + 4aw4);

x :=
1 + ε

2
v +

1 − ε

2

(−wv

v − w

)

;

y := −ε
√

x5 + ax4 + 4aw4;
return (x, y).

Algorithm 5. Hashing-3-Genus2-Encoding

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 215

Definition 3. In the situation of Algorithm5, the encoding function for the
hyperelliptic curve H

3 is the function φ3 : R3 → H
3 : r �→ φ3(r) = (x, y).

Theorem 5. Algorithm5 computes a deterministic almost-injective encoding
φ3 : R3 → H where S3 = Fq \ R3 is a subset of size at most 10.

Proof. – x is well-defined since v − w = 0 ⇔ v = w ⇔ w − wur2 = w ⇒ w = 0
or r = 0, which is impossible.

– Since v = w(1 − ur2), by definition of R2, we have v5 + av4 + 4aw4 =
w4

[
w(1 − ur2)5 + a(1 − ur2) + 4a

]
= 0. So ε
= 0.
– Now let us prove that F3(x) is a nonzero square.

• If ε = 1, we have x = v and χ(F3(v)) = 1. Consequently F3(v) is a
nonzero non-square.

• If ε = −1, then F3(v) is a nonzero non-square and x = −wv
v−w . So if we

replace x by its value in x5+ax4+4aw4, we have after some computations
χ(F3(x)) = χ

(
−w5

(v−w)5

)
χ(F3(v)). Since χ(F3(v)) = −1, then χ(F3(x)) =

−χ
(−w

v−w

)
= −χ

(−w(w − uwr2 − w)
)

= −χ(uw2r2) = −χ(u) = 1. Thus
F3(x) is a nonzero square. �

Lemma 3. In the situation of Theorem5 and Definition 3, we have φ3(r) =
φ3(−r), ∀r ∈ R3 and #(φ−1

3 (φ3(r))) = 2, ∀r ∈ R3.

Proof. Similar to the proof of Lemma 4. �

Input : The Hyperelliptic curve H
3 and (x, y) ∈ H

3.
Output: r̄s.t. φ3(r̄) = (x, y), r̄ ∈ R3 or ⊥ (which means that “(x,y) is

not in φ3(R3)”).
if y =

√
f(x) then

if uw(w + x) is a nonzero square then

r̄ =
√

w

u(w + x)
; return r̄;

else
return ⊥

end
else

if uw(w − x) is a nonzero square then

r̄ =
√

w − x

uw
; return r̄;

else
return ⊥

end
end

Algorithm 6. Hashing-3-Genus2-Inverting

216 M. Seck et al.

Theorem 6. In the situation of Theorem5 and Definition 3, Algorithm6 defines
the decoding function of φ3. Furthermore, Im(φ3) is the set of (x, y) ∈ H3 veri-
fying χ(uw(w − x)) = 1 if y /∈

√
F2

q and χ(uw(w + x)) = 1 y ∈
√

F2
q.

Proof. 1. (a) Assume that (x, y) ∈ Im(φ3), there exists r̄ such that φ3(r̄) =
(x, y) by Theorem 5.

– y /∈ √
Fq ⇒ ε = 1 then x = v. Since v = w(1 − ur2) and r
= 0, then

(w − x)uw = (w − v)uw = wur2uw = uw2r2 is a nonzero square.
– y ∈ √

Fq ⇒ ε = −1 then x = −wv
v−w . Since v = w(1 − ur2) and r
= 0,

then uw(w + x) = 1
r2 is a nonzero square.

(b) Conversely suppose that uw(w−x) is a square and w−x
= 0 if y /∈ √
Fq,

and uw(w + x) is a square and w + x
= 0 if y ∈ √
Fq. Now our goal

is to show that r̄ is defined and φ4(r̄) = (x, y). Define v̄, ε̄, x̄, ȳ as in
Algorithm 4. They are two cases.

– The first case: y /∈
√
F2

q. In this case we have r̄ =
√

w−x
uw . Then r̄ is

well-defined since uw(w −x) is a square and r̄
= 0 since w −x
= 0 by
hypothesis. So v̄ = w − uwr̄2 = w − uw

(
w−x
uw

)
= w − w + x = x; so

ε̄ = χ(v̄5 +av̄4 +4aw4) = χ(x̄5 +ax̄4 +4aw4) = 1, which implies that

x̄ = 1+ε̄
2 v̄ +

1 − ε̄

2

(
−wv̄
v̄−w

)
= v̄ = x and ȳ = −ε̄

√
f(x̄) = −√

F3(x) =
y.

– The second case is that y ∈
√
F2

q. Then r̄ =
√

w
u(w+x) is well-defined

since uw(w+x) is a square and r̄
= 0 since w(w+x)
= 0 by hypothesis,
so v̄ = w − uwr̄2 = w − uw

(
w

u(x+w)

)
= wx

w+x .

We have v̄5 + av̄4 + 4aw4 = (wx)5+a(wx)4(w+x)+4aw4(w+x)5

(w+x)5 . Hence

ε̄ = χ(v̄5 + av̄4 + 4aw4) = χ
(

w5

(x+w)5 (x5 + ax4 + 4aw4)
)

=

χ
(

w5

(x+w)5

)
χ(F3(x)) = χ(w(w + x)) = χ(u) = −1 because uw(w + x)

and F3(x) are nonzero squares. So we have x̄ = 1+ε̄
2 v̄ + 1−ε̄

2

(
−wv̄
v̄−w

)
=

−wv̄
v̄−w =

−w2x
w+x

wx
w+x−w = −w2x

−w2 = x and ȳ = −ε̄
√

F3(x̄) =
√

F3(x) = y.

Since for all v, we have v5+av4+e
= 0, then w(1−ur2)5+a(1−ur2)4+4a
=
0, thus r̄ ∈ R3.

2. Follows from the above proof. �
Remark 3 (Extension to F5n).

– As for φ2, we propose to extend φ3 at 0 as follows. Recall that e = 4aw4.
Since F3(w) = w5. Now choose w = z2 then F3(w) is a nonzero square. We
put φ3(0) = (w,

√
F3(w)).

– Let Z3 be the set of roots of F3(x) = x5+ax4+4aw4 which are square. If Z3 is
not empty, with the above choice, we put F3(±t) = (w,−√

F3(w)) ∀t/t2 ∈ Z3.

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 217

4 Applications to the Jacobian

4.1 General Framework on Indifferentiable Hashing into the
Jacobian

Well-Distributed Encodings
Consider an encoding function F into a curve C, and J the Jacobian of C.
Assume that C has an Fq−rational point O, so that one can fix an embedding
C → J, sending a point P to the degree 0 divisor (P) − (O). The regularity
properties of function F⊗s of the form below can be derived formally from the
behavior of F . F⊗s : (Fq)s → J(Fq), (t1, . . . , ts) �→ F (t1) + . . . F (ts).

Then Farashahi et al. showed with their technique that hash function con-
structions of the general form:

H(m) = F (h1(m)) + . . . F (hs(m))

are well-behaved as soon as s is greater than the genus of the target curve (that
is s ≥ 3 for genus 2).

Let χq be any character χq of the abelian group J(Fq). Let us introduce the
character sums

S(χq) =
∑

t∈Fq

χq(F (t)). (1)

Definition 4 (well-distributed, [8]). Let C be a smooth projective curve over
a finite field Fq, J its Jacobian, F a function Fq → C(Fq) and B a positive
constant. F is B-well-distributed if for any nontrivial character χq of J(Fq), the
following holds:

|S(χq)| ≤ B
√

q.

F is well-distributed if it is B-well-distributed for some B bounded independently
of the security parameter.

Lemma 4 (statistical distance). If F : Fq → C(Fq) is a B-well-distributed
encoding into a curve C, then for all D ∈ J(Fq), the statistical distance between the
distribution defined by F⊗s and the uniform distribution on J(Fq) is bounded as:

∑

D∈J(Fq)

∣
∣
∣
∣
Ns(D)

qs
− 1

#J(Fq)

∣
∣
∣
∣ ≤ Bs

qs/2

√
#J(Fq).

where Ns(D) denote the number of preimages of D under F⊗s: Ns(D) = #
{
(t1,

. . . , ts) ∈ (Fq)s|D = F (t1) + . . . F (ts)
}
.

Proof. See [8]. �
Character Sums on Curves
Let χq denote an Artin character on C. Let us introduce the character sums
SC(χq) =

∑
P∈C(Fq)

χq(P).

218 M. Seck et al.

Lemma 5. If χq is any nontrivial character on C of genus g, then

|SC(χq)| ≤ (2g − 2 + deg(f(χq)))
√

q.

Lemma 6. Let h : C → C be a non constant morphism of curves, and χq be
any nontrivial character of J(Fq), where J is the Jacobian of C. Assume that h
does not factor through a nontrivial unramified morphism Z → C. Then:

∣
∣
∣
∣
∣
∣

∑

P∈C(Fq)

χq(h(P))

∣
∣
∣
∣
∣
∣
≤ (2g − 2)

√
q

where g is the genus of C. Furthermore, if q is odd and ϕ is a non constant
rational function on C:

∣
∣
∣
∣
∣
∣

∑

P∈C(Fq)

χq(h(P))
(

ϕ(P)
q

)
∣
∣
∣
∣
∣
∣
≤ (2g − 2 + 2deg ϕ)

√
q.

Proof. See [8]. �
Now let us use φi to construct well-behaved hash functions to Ji(Fq) the

jacobian of Hi. We will follow the technique of Farashahi et al. [8].

4.2 Indifferentiable Hashing into the Jacobian of Hi, 1 ≤ i ≤ 3

We focus first on the case of the encoding φ1 to hyperelliptic curve H
1 : y2 =

F1(x) = x5 + ax4 + cx2 + dx with 8ad2 + c3 = 0 where a, c, d ∈ F
∗
q over

q = 7 mod 8, as defined in the Subsect. 3.1.
From Theorem 1, we have the following:

y /∈
√

F∗2
q ⇐⇒ r2 := −2d

cu

(

x +
2d

c

)

(1*)

y ∈
√

F∗2
q ⇐⇒ r2 := −8d3

c3u

1
(
x + 2d

c

) (2*)

By Algorithm 3, the encoding function for the hyperelliptic curve H
1 is the func-

tion φ1 : R1 → H
1 : r �→ φ1(r) = (x, y), where

R1 =
{

r ∈ F
∗
q , ur2c2 + 4d2
= 0;

− d − c2

2d
ur2 + d

(ur2c2

4d2
+ 1

)3

= −16d4(ur2c2

4d2 + 1)4

c4

}

.

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 219

Theorem 7. Assume that q = 3 mod 4. Let φ1 be the encoding function
described above. For any nontrivial character χ of J1(Fq), the character sum
S(χ) given by (1) satisfies

|Sφ1(χ)| ≤ 32
√

q + 119.

Proof. Put S1 = Fq \R1. Since q ≡ 7(mod 8) then y ∈
√

F∗2
q ⇔ χq(y) = 1 and

y /∈
√
F∗2

q , y
= 0 ⇔ χq(y) = −1. By Eqs. (1*) and (2*) we define the following

coverings h1,j : C1,j → H1, j = 0, 1 of the smooth projective curves. As in [8],the
rational function r on the C1,j allows to have a morphism g1,j : C1,j → P

1 such
that any point in R1 has exactly two preimages (which are conjugate under
y → −y) in one of the two curves C1,j , j = 0, 1.

Since q ≡ 3(mod 4), then y or −y is a square therefore only one of the
previous preimages verify χ(y) = (−1)j over C1,j . Let P ∈ Cj(Fq) be that
preimage.

Then, φ1(r) = h1,j(P). Let us show that φ1 is a well-distributed encoding.
Denote by J1 the Jacobian of H1, and fix an embedding H1 → J1. We can assume
that S1 is a subset of P1 and put S1,j = g−1

1,j (S1 ∪ ∞).
For all r ∈ R1, the character sum Sφ1(χ) can be written as:

∑

r∈R1

χ(φ1(r)) =
∑

P∈C10(Fq)\S10
χq(y)=+1

χ(h10(P)) +
∑

P∈C11(Fq)\S11
χq(y)=−1

χ(h11(P))

Observe that:
∑

P∈C1,j(Fq)

χ(h1,j(P)) ·
(

1+(−1)jχq(y)

2

)
=

∑

P∈C1,j(Fq)

χq(y)=(−1)j

χ(h1,j(P)) + 1
2

∑

P∈C1,j(Fq)

χq(y)=0

χ(h1,j(P))

The expression 1
2

∑
P∈C1,j(Fq),χq(y)=0 χ(h1,j(P)) contains at most 2 · 5 = 10

elements. Let us compute:

∑

P∈C1,j(Fq)

χq(y)=(−1)j

χ(h1,j(P)) =
∑

P∈C1,j(Fq)

χ(h1,j(P)) ·
(

1+(−1)jχq(y)

2

)
− 1

2

∑

P∈C1,j(Fq)

χq(y)=0

χ(h1,j(P)).

By the Eisenstein criterion h0 and h1 are totally ramified over points in H1

such that x = − 2d
c , so they cannot factor through any unramified covering of

H1. Therefore by Lemma 6.
∣
∣
∣
∣
∣
∣

∑

P∈Cj(Fq)

χ(hj(P)).
(

1 + (−1)jχ(y)
2

)
∣
∣
∣
∣
∣
∣
≤ (2gCj

− 2 + deg(y))
√

q.

Let us compute gCj
the genus of Cj .

deg(y) = [Fq(x, y, r) : Fq(x, y)] · [Fq(x, y) : Fq(y)] = 2 · 5 = 10.

220 M. Seck et al.

Now h1,j : Cj → H1 is only ramified at points with x = − 2d
c . Therefore by

the Riemann-Hurwitz formula, we get 2gCj
− 2 = 2(2(2) − 2) + 2.(2 − 1) = 6:

thus the curves Cj are of genus 4.
Instead of Riemann-Hurwitz formula, we can compute gCj

by birational
equivalence. For example with C0 we have x = N

r2 − 2d
c where N = − 8d3

uc3 , then
from y2 = x5 +ax4 + cx2 +dx we can have the following relation λ2 = r10y2 and
λ2 = g(r) = (N − 2d

c r2)5 + ar2(N − 2d
c r2)4 + cr6(N − 2d

c r2)2 + dr8(N − 2d
c r2)

where g is a polynomial of degree 10, hence C0 is hyperelliptic of genus 4 as
desired [note that the leading coefficient of g is F1(−2d

c) and for the extension

of the encoding φ1 at ±
√

−4d2

uc2 , we have chosen d or c such that F1(−2d
c) is a

nonzero square and put φ1(0) = (−w,
√

F1(−2d
c))].

Now, we need to compute deg(y) the degree of y as a rational function on
Cj . We have: deg(y) = [Fq(x, y, r) : Fq(x, y)] · [Fq(x, y) : Fq(y)] = 2 · 5 = 10.

Thus: ∣
∣
∣
∣
∣
∣

∑

P∈Cj(Fq)

χ(hj(P)) ·
(

1 + (−1)jχ(y)
2

)
∣
∣
∣
∣
∣
∣
≤ 16

√
q.

Therefore using the previous formulas, we have
∣
∣
∣
∣
∣

∑

r∈R2

χ(φ2(r))

∣
∣
∣
∣
∣
≤ (16

√
q + #S10 + 5) + (16

√
q + #S11 + 5)

= (32
√

q + 10 + #S10 + #S11).

Thus |Sφ2(χ)| ≤ 32
√

q+10+#S10+#S11+#S1. We have #S1 = 1+2 ·10 = 21.
Since g1,j is a map of degree 2, #S1,j ≤ 2(#S + 1) ≤ 44.

Then
|Sφ2(χ)| ≤ 32

√
q + 10 + 44 + 44 + 21 = 32

√
q + 119

as desired.
In other words, φ1 is a (32 + 119q−1/2)-well-distributed encoding. �

Theorem 8. Assume that q = 3 mod 4. Let J1(Fq) be the jacobian of H1. For
any D ∈ J1(Fq), let N3(D) denote the number of preimage of D under φ⊗3

2 .
The statistical distance between the distribution defined by φ⊗3

2 and the uni-
form distribution in J1(Fq) is bounded by:

∑

D∈J1(Fq)

∣
∣
∣
∣
N3(D)

q3
− 1

#J1(Fq)

∣
∣
∣
∣ ≤ (32 + 119q−1/2)3

q3/2

√
#J1(Fq).

Proof. Follows from the above Theorem 7 and the proof in [8]. �
Therefore, the distribution defined by φ⊗3

2 on J1(Fq) is statistically indistin-
guishable from the uniform distribution. In particular, the following construc-
tion:

m �→ H(m) = φ2(h1(m)) + φ2(h2(m)) + φ2(h3(m)) ∈ J1(Fq)

On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves 221

is indifferentiable from a random oracle when h1, h2, h3 are seen as random
oracles to Fq.

Indifferentiable hashing into the Jacobian of Hi for 2 ≤ i ≤ 3
As above we have the following theorem:

Theorem 9. Assume that q = 7 mod 8. Let Ji(Fq) be the jacobian of Hi, for
2 ≤ i ≤ 3. Let ψi for 2 ≤ i ≤ 3 be the encoding functions described above.
For any nontrivial character χ of Ji(Fq), the character sum Sψi

(χ) given by (1)
satisfies |Sψi

(χ)| ≤ 32
√

q + 119, for 2 ≤ i ≤ 3.

5 Conclusion

In this paper, we have designed new encodings into the Jacobian of three fam-
ily of hyperelliptic curves. These encodings, which are not covered by the pre-
vious works in this domain, have some interesting properties, such as almost-
injectivity. This can be used to design efficient and indifferentiable hash functions
into the Jacobian of the underlying curves. Nevertheless, even if one can use our
encodings in order to encode a message into the Jacobian, it would be interesting
to decide whether or not these special families of hyperelliptic curves are suitable
for cryptographic concerns.

References

1. Daniel, J., Bernstein, M., Hamburg, A., Krasnova, T.L.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Gligor, V., Yung, M.
(eds.) CCS. ACM (2013)

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
doi:10.1007/3-540-44647-8 13

3. Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.: Efficient
indifferentiable hashing into ordinary elliptic curves. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7 13

4. Mac Kenzie, P.: An efficient two-party public key cryptosystem secure against
adaptive chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol.
2567, pp. 47–61. Springer, Heidelberg (2003). doi:10.1007/3-540-36288-6 4

5. Fouque, P.-A., Joux, A., Tibouchi, M.: Injective encodings to elliptic curves. In:
Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol. 7959, pp. 203–218. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39059-3 14

6. Fouque, P.-A., Tibouchi, M.: Deterministic encoding and hashing to odd hyperel-
liptic curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol.
6487, pp. 265–277. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17455-1 17

7. Farashahi, R.R.: Hashing into Hessian curves. Int. J. Appl. Crypt. 3(2), 139–147
(2014)

8. Farashahi, R.R., Fouque, P.-A., Shparlinski, I.E., Tibouchi, M., Voloch, J.F.: Indif-
ferentiable deterministic hashing to elliptic and hyperelliptic curves. Math. Com-
put. 82(281), 491–512 (2013)

http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-642-14623-7_13
http://dx.doi.org/10.1007/978-3-642-14623-7_13
http://dx.doi.org/10.1007/3-540-36288-6_4
http://dx.doi.org/10.1007/978-3-642-39059-3_14
http://dx.doi.org/10.1007/978-3-642-17455-1_17

222 M. Seck et al.

9. Hamburg, M.: Decaf: eliminating cofactors through point compression. In: Pro-
ceedings of the 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
16–20 August 2015

10. Haneda, M., Kawazoe, M., Takahashi, T.: Suitable curves for genus-4 HCC over
prime fields: point counting formulae for hyperelliptic curves of type y2=x2k+1+ax.
In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP
2005. LNCS, vol. 3580, pp. 539–550. Springer, Heidelberg (2005). doi:10.1007/
11523468 44

11. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002). doi:10.1007/3-540-46035-7 31

12. Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO
2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03356-8 18

13. Kammerer, J.-G., Lercier, R., Renault, G.: Encoding points on hyperelliptic curves
over finite fields in deterministic polynomial time. In: Joye, M., Miyaji, A., Otsuka,
A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 278–297. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-17455-1 18

14. Menezes, A.J., Wu, Y.-H., Zuccherato, R.J.: An elementary introduction to hyper-
elliptic curves. In: Koblitz, N. (ed.) Algebraic Aspects of Cryptography. Algorithms
and Computation in Mathematics, vol. 3, pp. 155–178. Springer, Heidelberg (1998)

15. Möller, B.: A public-key encryption scheme with pseudo-random ciphertexts. In:
Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol.
3193, pp. 335–351. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30108-0 21

16. Satoh, T.: Generating genus two hyperelliptic curves over large characteristic finite
fields. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 536–553.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 31

17. Shallue, A., Woestijne, C.E.: Construction of rational points on elliptic curves over
finite fields. In: Hess, F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076,
pp. 510–524. Springer, Heidelberg (2006). doi:10.1007/11792086 36

18. Tibouchi, M.: Hachage vers les courbes elliptiques et cryptanalyse de schémas RSA.
Thèse de doctorat de l’Université Paris-Diderot-Luxembourg, Septembre 2011

19. Ulas, M.: Rational points on certain hyperelliptic curves over finite fields. Bull.
Pol. Acad. Sci. Math. 55(2), 97–104 (2007)

http://dx.doi.org/10.1007/11523468_44
http://dx.doi.org/10.1007/11523468_44
http://dx.doi.org/10.1007/3-540-46035-7_31
http://dx.doi.org/10.1007/978-3-642-03356-8_18
http://dx.doi.org/10.1007/978-3-642-03356-8_18
http://dx.doi.org/10.1007/978-3-642-17455-1_18
http://dx.doi.org/10.1007/978-3-540-30108-0_21
http://dx.doi.org/10.1007/978-3-642-01001-9_31
http://dx.doi.org/10.1007/11792086_36

Cryptanalysis of Some Protocols
Using Matrices over Group Rings

Mohammad Eftekhari(B)

LAMFA, CNRS UMR 7352, Université de Picardie – Jules Verne,
33 rue Saint-Leu, 80039 Amiens, France
mohamed.eftekhari@u-picardie.fr

Abstract. We address a cryptanalysis of two protocols based on the
supposed difficulty of discrete logarithm problem on (semi) groups of
matrices over a group ring. We can find the secret key and break entirely
the protocols.

Keywords: Key exchange · Symmetric groups · Representation of
algebras

1 Introduction

The Diffie-Hellman key agreement protocol is the first published practical solu-
tion to the key distribution problem, allowing two parties that have never met to
exchange a secret key over an open channel. It uses the cyclic group F

∗
q , where Fq

is the finite field of q elements. The security of this protocol is based on the dif-
ficulty of computing discrete logarithms (DL) in the group F

∗
q . There are several

algorithms for computing discrete logarithms, some of them are subexponential
when applied to F

∗
q .

It is important to search for easily implementable groups, for which the DL
problem is hard and there is no known subexponential time algorithm for com-
puting DL. The group of points over Fq of an elliptic curve is such a group. In [8],
the group of invertible matrices with coefficients in a finite field was considered
for such a key exchange. In [6], using the Jordan form it was shown that the dis-
crete logarithm problem on such matrices can be reduced to the same problem
over some small extensions of the finite base field.

In [4], the authors consider the semigroup of matrices (3-by-3 matrices) over
the group ring F7[S5], where S5 is the group of permutation of {1, 2, 3, 4, 5}.
The security of this protocol is based on the supposed difficulty of the discrete
logarithm problem in the (semi) group of matrices with coefficients in F7[S5].

Moreover in [5], the authors propose the same semigroup as a platform for
the Cramer-Shoup cryptosystem which is a generalization of ElGamal’s protocol.
Here the security is based on the supposed difficulty of the discrete logarithm
problem in the group of invertible 3-by-3 matrices with coefficients in F7[S5].

In [1,2,7] a cryptanalysis of [4] is proposed. Their methods are somehow
different. In [1], the problem of discrete logarithm in a semigroup is reduced
c© Springer International Publishing AG 2017
M. Joye and A. Nitaj (Eds.): AFRICACRYPT 2017, LNCS 10239, pp. 223–229, 2017.
DOI: 10.1007/978-3-319-57339-7 13

224 M. Eftekhari

to the same problem in a subgroup of the same semigroup. In [2] one uses a
slight modification of Shor’s quantum algorithm to find the period of a singular
matrix (there is no notion of order for such a matrix) and thereby solving the
discrete logarithm problem in semigroups. In [7], Mat3(F7[S5]) is embedded in
Mat360(F7) and then one uses the same procedure as in [6] (adapted to singular
matrices). The conclusion of all three papers above is that using a quantum
computer one can break the key exchange protocol of [4].

In contrast to the above analysis we use the irreducible representations of
the group S5; then using the fact that the algebra F7[S5] is semi-simple, we
give an isomorphism between this algebra and an algebra of block matrices with
coefficients in F7. Then we use this isomorphism to give an isomorphism between
Mat3(F7[S5]), and still another algebra of block matrices over F7. To do so, we
combine the same blocks of the first isomorphism.

This way we reduce the discrete logarithm problem over Mat3(F7[S5]), to the
same problem over block matrices with coefficients in F7. The maximum size of a
block is 18, reducing dramatically the computations. Now we can apply the same
procedure (eventually modified for singular matrices) as in [4], to each block and
resolve the problem of discrete logarithm entirely (using actual computers) and
find the secret key. So the conclusion is that the platform proposed in [4] and
[5] are simply insecure.

The rest of this paper is organized as follows. Section 2, will be devoted to the
irreducible representations of S5. In Sect. 3, we explain the isomorphism between
matrices with coefficients in F7[S5], and block matrices with coefficients in F7,
and show that the protocols proposed in [4,5] can be broken. In Sect. 4, we give
an example to illustrate our analysis. Finally we conclude with some remarks in
Sect. 5.

2 Irreducible Representations of S5

For our purpose, it will be easier to use the following presentation of S5. We
note W := (12) and Z := (12345). The group S5 is defined by generators W,Z
and relations T , where T is the following set of relations:

W 2 = id

Z5 = id

(ZW)4 = id

WZ−1WZW = Z−1WZWZ−1WZ

[W,Z−2WZ2] = id

[W,Z−3WZ3] = id

The group S5 has two distinct representations of dimension one (namely the
trivial one and the signature), two non isomorphic irreducible representations of
dimension four, two non isomorphic irreducible representations of dimension five,
and one irreducible representation of dimension six. We give the images of the

Cryptanalysis of Some Protocols Using Matrices over Group Rings 225

generators Z and W by these representations, and one can verify the relations
T , for the images, thereby proving that one defines morphisms from S5 to matrix
groups. One can compare the trace of these morphisms with the character table
of S5 to be sure we obtain all the irreducible representations of S5.

To construct these representations one can follow the general description of
[3], using Young polytabloids, to construct the Specht modules which give the
irreducible representation of S5.

W = (12) �−→ A1 ⊕ A′
1 ⊕ A4 ⊕ A′

4 ⊕ A5 ⊕ A′
5 ⊕ A6

where

A1 = 1; A′
1 = −1; A4 =

⎛
⎜⎜⎝

−1 0 0 −1
0 −1 0 1
0 0 −1 −1
0 0 0 1

⎞
⎟⎟⎠ ; A′

4 =

⎛
⎜⎜⎝

1 0 0 1
0 1 0 −1
0 0 1 1
0 0 0 −1

⎞
⎟⎟⎠

A5 =

⎛
⎜⎜⎜⎜⎝

−1 0 1 0 −1
0 −1 −1 0 0
0 0 1 0 0
0 0 0 −1 −1
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

; A′
5 =

⎛
⎜⎜⎜⎜⎝

1 0 −1 0 1
0 1 1 0 0
0 0 −1 0 0
0 0 0 1 1
0 0 0 0 −1

⎞
⎟⎟⎟⎟⎠

A6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0 1 0 1 0
0 −1 −1 0 0 1
0 0 1 0 0 0
0 0 0 −1 −1 −1
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

Z = (12345) �−→ B1 ⊕ B′
1 ⊕ B4 ⊕ B′

4 ⊕ B5 ⊕ B′
5 ⊕ B6

where

B1 = 1; B′
1 = 1; B4 =

⎛
⎜⎜⎝

0 0 0 1
−1 0 0 −1
0 −1 0 1
0 0 −1 −1

⎞
⎟⎟⎠ ; B′

4 =

⎛
⎜⎜⎝

0 0 0 1
−1 0 0 −1
0 −1 0 1
0 0 −1 −1

⎞
⎟⎟⎠

B5 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

⎞
⎟⎟⎟⎟⎠

; B′
5 =

⎛
⎜⎜⎜⎜⎝

0 0 −1 −1 −1
0 0 0 1 0
0 0 0 −1 −1
1 0 −1 −1 0
0 1 1 1 1

⎞
⎟⎟⎟⎟⎠

; B6 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 −1 0 −1 0
0 1 1 0 0 −1
0 0 0 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

3 Cryptanalysis of Protocols

In [4] the authors propose the Diffie-Hellman key exchange using 3-by-3 matrices
over F7[S5]. So Alice and Bob, take a public matrix M ∈ Mat3(F7[S5]) which

226 M. Eftekhari

may be non-invertible. Alice chooses a secret integer n, computes Mn and sends
it to Bob. Bob chooses a secret integer n′, computes Mn′

and sends it to Alice.
Every party can now compute the common key Mnn′

.
In [5], they use the same platform for the Cramer-Shoup cryptosystem which

we do not recall. We underline only that there is a public key M as above, and
during the protocol among other data sent, there is Mn where n is the secret
key. So if we are able to give a solution for the discrete logarithm problem in the
case of M ∈ Mat3(F7[S5]), in both cases the platform proposed is not secure.
That is what we are going to explain.

As 7 does not divide |S5| = 120, the algebra F7[S5] is semi-simple and
Maschke’s theorem asserts that this algebra is isomorphic to a direct sum of
matrix algebras (over F7), in other words it is isomorphic to an algebra of
block matrices over F7. Let us denote by f this isomorphism. To be of any
use for our purpose, we have to make precise this isomorphism explicitly. The
F7-linear extension (to F7[S5]) of the morphism of S5 using the irreducible
representations of S5 given on generators W = (12), Z = (12345) in Sect. 2,
gives the isomorphism f between F7[S5] and its image. So for any element
x =

∑120
i=1 aixi ∈ F7[S5], ai ∈ F7 and xi ∈ S5 we can compute its image as

a direct sum of matrices with coefficients in F7. Note that this decomposition is
a special case of Wedderburn’s theorem asserting that every semi-simple algebra
can be decomposed as a direct sum of all its distinct simple submodules.

Up to now we have represented a matrix M ∈ Mat3(F7[S5]) as a matrix with
coefficients in F7 by replacing each coefficient Mij of M by f(Mij). For example
M11 is replaced by

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
a′
1

a4
a′
4

a5
a′
5

a6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

where ai, a
′
i are block matrices with coefficients in F7 and the indexes denote the

size of the block.
Let us denote by A,B,C,E, F,G,H, I, J the block matrices corresponding to

M11,M12,M13,M21,M22,M23,M31,M32,M33. Then B is a block matrix which
we represent the same way as A by denoting b1, b

′
1, b4, b

′
4, . . . its blocks. We use

the same notations for C,D, It is an easy computation to prove that there
is a natural isomorphism between matrices

⎛
⎝
A B C
D E F
H I J

⎞
⎠

Cryptanalysis of Some Protocols Using Matrices over Group Rings 227

and the block matrix whose first block is obtained by composing (side by side)
the first blocks of A,B,C,D, . . . , namely

⎛
⎝
a1 b1 c1
d1 e1 f1
h1 i1 j1

⎞
⎠ ,

which gives a 3 × 3 matrix over F7.
The second block is obtained by composing the second blocks of

A,B,C,D, . . . , namely ⎛
⎝
a′
1 b′

1 c′
1

d′
1 e′

1 f ′
1

h′
1 i′1 j′

1

⎞
⎠ ,

and so on.
To sum up, we represent the matrix M ∈ Mat3(F7[S5]) by a block matrix in

F7 whose blocks are of size 3, 3, 12, 12, 15, 15, 18. We represent also the matrix
Mn by a block matrix with the same size 3, 3, 12, 12, 15, 15, 18 in F7. Now we
can apply the same techniques as in [6], namely write the Jordan form of each
block in some small extension base F7α and find the secret key n. Note that for
singular blocks, we need a slight modification of the procedure of [6], as proposed
in [7].

4 An Example

We use the notations of Sects. 2 and 3.
Let us denote e the identity element of S5.
Let

M =

⎛
⎝

2e + W + S 3e + WS e + S2

5e + 2SWS e + W + S3 S
W + S2 2e + S e + W

⎞
⎠ ∈ F7[S5]

and N = Mn (n is unknown) two given matrices. Our goal is to find l ∈ N such
that M l = N .

We represent every coefficient of M as a block matrix as follows:

2e+W + S = (2A1) + (A1 ⊕A′
1 ⊕A4 ⊕A′

4 ⊕A5 ⊕A′
5 ⊕A6) + (B1 ⊕B′

1 ⊕B4 ⊕
B′

4 ⊕ B5 ⊕B′
5 ⊕B6) = (2A1 +A1 +B1) ⊕ (A′

1 +B′
1) ⊕ (A4 +B4) ⊕ A′

4 +B′
4) ⊕

(A5 +B5) ⊕ (A′
5 +B′

5) ⊕ (A6 +B6) = (4) ⊕ (0) ⊕ (A4 +B4) ⊕ (A′
4 +B′

4) ⊕ (A5 +
B5) ⊕ (A′

5 + B′
5) ⊕ (A6 + B6).

3e+WS = (3A1) + (A1B1 ⊕A′
1B

′
1 ⊕ (A4B4 ⊕A′

4B
′
4 ⊕A5B5 ⊕A′

5B
′
5 ⊕A6B6) =

(3A1 + A1B1) ⊕ (A′
1B

′
1) ⊕ A4B4) ⊕ (A′

4B
′
4) ⊕ (A5B5) ⊕ (A′

5B
′
5) ⊕ (A6B6) =

(4) ⊕ (−1) ⊕ (A4B4) ⊕ (A′
4B

′
4) ⊕ (A5B5) ⊕ (A′

5B
′
5) ⊕ (A6B6).

228 M. Eftekhari

e + S2 = (2) ⊕ (1) ⊕ B2
4 ⊕ B′2

4 ⊕ B2
5 ⊕ B′2

5 ⊕ B2
6 .

5+2SWS = (0)⊕(2)⊕2B4A4B4⊕2B′
4A

′
4B

′
4⊕2B5A5B5⊕2B′

5A
′
5B

′
5⊕2B6A6B6.

e+W+S3 = (3)⊕(0)⊕(A4+B3
4)⊕(A′

4+B′3
4)⊕(A5+B3

5)⊕(A′
5+B′3

5)⊕(A6+B3
6).

S = (1) ⊕ (−1) ⊕ B4 ⊕ B′
4 ⊕ B5 ⊕ B′

5 ⊕ B6.

W +S2 = (2)⊕(2)⊕(A4+B2
4)⊕(A′

4+B′2
4)⊕(A5+B2

5)⊕(A′
5+B′2

5)⊕(A6+B2
6).

2e + S = (3) ⊕ (1) ⊕ B4 ⊕ B′
4 ⊕ B5 ⊕ B′

5 ⊕ B6.

e + W = (2) ⊕ (1) ⊕ A4 ⊕ A′
4 ⊕ A5 ⊕ A′

5 ⊕ A6.

So far we have represented M by a matrix whose coefficients are block matrices as
above with coefficients in F7. It is straightforward that this matrix is isomorphic
to the block matrix we form as follows:

Take the first component of each coefficients to form the matrix

M1 =

⎛
⎝

4 4 2
0 3 1
2 3 2

⎞
⎠ ,

then take the second component of each coefficient to form the matrix

M ′
1 =

⎛
⎝

2 −1 1
2 0 −1
2 1 1

⎞
⎠ .

Take the third component of the coefficients to obtain

M4 =

⎛
⎝

A4 + B4 A4B4 B2
4

2B4A4B4 A4 + B3
4 B4

A4 + B − 42 B4 A4

⎞
⎠

Note that this matrix is of size 12. Continuing this way we obtain another matrix
of size 12 which we denote by M ′

4, two matrices of size 15 denoted by M5 and
M ′

5 and a last matrix of size 18 denoted by M6. We have M = M1 ⊕ M ′
1 ⊕

M4 ⊕ M ′
4 ⊕ M5 ⊕ M ′

5 ⊕ M6.
We do the same operation on matrix N = Mn to express it as a block matrix

of the same size as above. Now we can separately work on corresponding blocks
of M and N of the same size, computing the characteristic polynomials, Jordan
forms... as suggested in [6], and reduce the discrete logarithm problem to the one
on some small extension of the field F7. It may happen that some block is not
invertible. We can still compute the Jordan forms and with a slight modification
as suggested in [7] finish the work.

Note that the size of blocks in the above decomposition of M are the product
of the size of M as a matrix with coefficients in F7[S5] (namely 3) and the degrees

Cryptanalysis of Some Protocols Using Matrices over Group Rings 229

of irreducible representations of S5. So if we replace the group S5 by some other
finite group G and the field F7 by Fp, such that Fp[G] is a semi-simple algebra,
the same procedure works. In fact representations of finite groups are very well
known (techniques for constructing the irreducible representations will be differ-
ent). If n1, n2, . . . , nk are the degrees of all distinct irreducible representations
of G we know that |G| = n2

1 + n2
2 + . . . n2

k and each nj divides |G| and even
more... (see [9]), such that these degrees are small enough comparing to |G|, and
a matrix M ∈ Fp[G] of size 3 for example, will be decomposed in block matrices
with coefficients in Fp and sizes 3n1, 3n2, . . . , 3nk.

5 Conclusion

We showed that using matrices with coefficients in F7[S5] as a platform for Diffie-
Hellman key exchange is not secure. One may wonder if replacing F7 by F2,F3 or
F5 give something essentially different. In fact in these cases the group algebra
is not semi-simple anymore and Wedderburn’s theorem cannot be applied. But
these new algebras are not far from being semi simple; in fact they differ from
being semi simple by a nilpotent radical, and the quotient is semi simple and
then the same procedure as explained in Sect. 2 can be applied. To sum up we
believe that no secure cryptographic protocol can be based upon these algebras.

Furthermore replacing the group S5 by some other finite group G, can be
cryptanalyzed the same way using the irreducible representations of G.

References

1. Banin, M., Tsaban, B.: A reduction of semigroup DLP to classic DLP. Des. Codes
Crypt. 81, 75–82 (2006)

2. Childs, A., Ivanyos, G.: Quantum computation of discrete logarithms in semigroups.
J. Math. Cryptology 8(4), 405–416 (2014)

3. James, G.D.: The Representation Theory of the Symmetric Groups, vol. 682.
Springer, Heidelberg (1978). SLN

4. Kahrobaei, D., Koupparis, C., Shpilrain, W.: Public key exchange using matrices
over group rings. G.C.C. 5(1), 97–115 (2013)

5. Kahrobaei, D., Koupparis, C., Shpilrain, W.: A CCA secure cryptosystem using
matrices over group rings. Amer. Math. Soc. Contemp. Math. 633, 73–80 (2015)

6. Menezes, A.J., Wu, Y.-H.: The discrete logarithm problem in GLn(Fq). ARS Com-
binatorica 47, 23–32 (1997)

7. Myasnikov, A., Ushakov, A.: Quantum algorithm for discrete logarithm problem for
matrices over finite group rings.

8. Odonne, R., Varadharajan, D., Sanders, P.: Public key distribution in matrix rings.
Electron. Lett. 20, 386–387 (1984)

9. Serre, J.P.: Représentations linéaires des groupes finis. Hermann, Paris (1967)

Author Index

Abdelkhalek, Ahmed 117, 135

Bellizia, Davide 79
Bos, Joppe W. 184
Boudjou, Hortense 205

Castryck, Wouter 184
Chen, Liqun 40

Diarra, Nafissatou 205
Djukanovic, Milena 79

Eftekhari, Mohammad 223

Heuser, Annelie 61

Iliashenko, Ilia 184

Jovic, Alan 61

Khlil, Ahmed Youssef Ould Cheikh 205
Koshiba, Takeshi 149
Kosuge, Haruhisa 95

Laing, Thalia M. 40
Legay, Axel 61

Martin, Keith M. 40
Mohamed, Mohamed Saied Emam 3

Nargis, Isheeta 165

Petzoldt, Albrecht 3
Picek, Stjepan 61

Saha, Tushar Kanti 149
Scotti, Giuseppe 79
Seck, Michel 205

Tanaka, Hidema 95
Tolba, Mohamed 117, 135
Trifiletti, Alessandro 79

Veeningen, Meilof 21
Vercauteren, Frederik 184

Youssef, Amr M. 117, 135

	Preface
	Organization AFRICACRYPT 2017
	Contents
	Cryptographic Schemes
	RingRainbow -- An Efficient Multivariate Ring Signature Scheme
	1 Introduction
	2 Ring Signatures
	3 Multivariate Cryptography
	3.1 The Rainbow Signature Scheme
	3.2 Multivariate Ring Signature Schemes

	4 Our Ring Signature Scheme
	4.1 Security

	5 Parameters
	6 Alternative Construction of a Multivariate Ring Signature Scheme
	6.1 Unforgeability

	7 Reduction of Public Key Size
	8 Implementation and Efficiency Results
	9 Discussion
	10 Conclusion
	References

	Pinocchio-Based Adaptive zk-SNARKs and Secure/Correct Adaptive Function Evaluation
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Tools, Notation, and Complexity Assumptions
	2.2 Adaptive zk-SNARKs in the CRS Model
	2.3 The Pinocchio zk-SNARK Construction from

	3 Adaptive zk-SNARKs Based on Pinocchio
	4 Smaller Proofs and Comparison to Literature
	5 Secure/Correct Adaptive Function Evaluation
	5.1 Our Construction
	5.2 Efficient Instantiation Using Secret Sharing and Our zk-SNARK

	6 Prototype and Distributed Medical Research Case
	6.1 Prototype of Our zk-SNARK and Adaptive Trinocchio
	6.2 Application to Medical Survival Analysis

	7 Conclusion
	References

	Revisiting and Extending the AONT-RS Scheme: A Robust Computationally Secure Secret Sharing Scheme
	1 Introduction
	2 Preliminaries
	2.1 Secret Sharing Schemes
	2.2 Symmetric Key Encryption
	2.3 Commitment Schemes
	2.4 Error Correcting Codes
	2.5 Information Dispersal Algorithms

	3 The AONT-RS
	3.1 Generalising the AONT-RS
	3.2 Information Leakage
	3.3 Proving the Privacy of AONT-RS

	4 Extending AONT-RS to be Robust
	4.1 Proof of Privacy
	4.2 Proof of Robustness

	5 Comparing RAONT-RS and HK2
	5.1 The SSMS and HK2 Scheme
	5.2 Comparison

	6 Conclusion
	References

	Side-Channel Analysis
	Climbing Down the Hierarchy: Hierarchical Classification for Machine Learning Side-Channel Attacks
	1 Introduction
	1.1 Idea and Contributions
	1.2 Road Map

	2 Machine Learning Techniques
	2.1 Naive Bayes
	2.2 Decision Tree - C4.5
	2.3 Rotation Forest
	2.4 Support Vector Machines

	3 The Hierarchical Approach Under Test
	3.1 Experimental Data
	3.2 Training Phase and Parameter Tuning
	3.3 Testing Results

	4 Realistic Testing
	4.1 Hierarchical Attack
	4.2 Structured Attack
	4.3 Attack Results and Comparison with Template Attack

	5 Discussion
	6 Conclusions
	References

	Multivariate Analysis Exploiting Static Power on Nanoscale CMOS Circuits for Cryptographic Applications
	1 Introduction
	2 Background
	3 Case Study
	3.1 4-Bit PRESENT Crypto-Core
	3.2 Full Implementation of PRESENT-80 Block Cipher
	3.3 Testbench

	4 Univariate Analysis of Information Leakage
	4.1 4-Bit PRESENT Crypto-Core
	4.2 Full Implementation of PRESENT-80 Block Cipher

	5 Multivariate Analysis: Can We Exploit More?
	6 Conclusion
	References

	Differential Bias Attack for Block Cipher Under Randomized Leakage with Key Enumeration
	1 Introduction
	1.1 Background
	1.2 Contribution

	2 Previous Works
	2.1 Leakage Model for Side-Channel Attacks
	2.2 Differential Bias Attack [2]
	2.3 Key Enumeration and Rank Estimation

	3 Reestimation of Complexity by Time-Data Tradeoff
	3.1 New Hypothesis-Testing Method
	3.2 Comparison to the Previous Method

	4 Application of Key Enumeration and Rank Estimation
	4.1 Differential Bias Attack with Key Enumeration
	4.2 Experimental Evaluation

	5 Conclusion
	References

	Differential Cryptanalysis
	Impossible Differential Cryptanalysis of Reduced-Round SKINNY
	1 Introduction
	2 Specifications of SKINNY
	3 An Impossible Differential Distinguisher of SKINNY
	4 Impossible Differential Key-Recovery Attack on 20-Round SKINNY-n-2n (n=64 or 128)
	4.1 Impossible Differential Key-Recovery Attack on SKINNY-64-128
	4.2 Impossible Differential Key-Recovery Attack on SKINNY-128-256

	5 Impossible Differential Key-Recovery Attack on 18-Round SKINNY-n-n (n=64 or 128)
	6 Impossible Differential Key-Recovery Attack on 22-Round SKINNY-n-3n (n=64 or 128)
	7 Conclusion
	References

	Impossible Differential Attack on Reduced Round SPARX-64/128
	1 Introduction
	2 Description of SPARX-64/128
	2.1 Specifications of SPARX-64/128

	3 Impossible Differentials of SPARX-64/128
	4 Impossible Differential Cryptanalysis of SPARX-64/128
	4.1 15-Round Impossible Differential Attack on SPARX-64/128
	4.2 16-Round Impossible Differential Attack on SPARX-64/128

	5 Conclusion
	References

	Applications
	Private Conjunctive Query over Encrypted Data
	1 Introduction
	1.1 Review of Recent Works
	1.2 Our Contribution

	2 Security Tool
	2.1 Asymmetric SwHE Scheme
	2.2 Security of SwHE Scheme
	2.3 Correctness of SwHE Scheme

	3 Private Conjunctive Query Protocol
	3.1 Boosting Performance Using the Batch Technique
	3.2 Batch Private Conjunctive Query Protocol
	3.3 Data Representation for Conjunctive Query Processing
	3.4 Packing Method of Data

	4 Secure Computation of Private Conjunctive Query
	4.1 Batch Private Conjunctive Query Protocol
	4.2 Solving Additional Information Leakage Problem

	5 Performance Analysis
	5.1 Theoretical Evaluation
	5.2 Experimental Settings
	5.3 Experimental Evaluation

	6 Conclusions
	References

	Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption
	1 Introduction
	2 Background
	3 Definition of Two-Party Lossy Threshold PKE Scheme
	4 A New Two-Party Lossy Threshold Homomorphic Encryption Scheme
	5 Security of the DKG Protocol DKG
	6 Security of Encryption Scheme ELTA2E
	7 Oblivious Transfer Against One-Sided Active Adaptive Adversaries
	8 Security of Protocol OTAA
	9 Efficiency and Comparison with Related Work
	10 Efficiency of the OT Protocol by Hazay and Patra
	11 Adaptive Zero Knowledge Arguments
	12 Future Work
	References

	Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling
	1 Introduction
	2 The Smart Grid and Privacy Concerns
	3 Neural Networks versus the Group Method of Data Handling
	4 The Fan-Vercauteren SHE Scheme
	5 Representing Fixed-Point Numbers in Plaintext Space
	6 Prediction Approach for the Smart Grid
	6.1 Prediction Model: Apartment Complexes
	6.2 Design of the Network
	6.3 Benchmark Results

	7 Conclusions and Future Work
	References

	Number Theory
	On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves of Genus 2
	1 Introduction
	2 Preliminaries
	3 Almost-Injective and Invertible Encodings into Three Families of Hyperellitic Curves
	3.1 An Almost-Injective Encoding on H1
	3.2 An Almost-Injective Encoding on H2
	3.3 An Almost-Injective Encoding on H3

	4 Applications to the Jacobian
	4.1 General Framework on Indifferentiable Hashing into the Jacobian
	4.2 Indifferentiable Hashing into the Jacobian of Hi, 1i3

	5 Conclusion
	References

	Cryptanalysis of Some Protocols Using Matrices over Group Rings
	1 Introduction
	2 Irreducible Representations of S5
	3 Cryptanalysis of Protocols
	4 An Example
	5 Conclusion
	References

	Author Index

