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Abstract A theory of electrocatalysis developed in our group is presented and

related to other theories of electrochemical electron transfer. As an example, the

theory is applied to the first step in oxygen reduction on silver in alkaline media. It

is shown, that this step occurs in the outer sphere mode.

1 Introduction

In the first approximation, scientists can be grouped into two classes: specialists,

who work in a small field that they analyze profoundly, and generalists, who cover a

broad area, and are less concerned with small details. Prof. John O’M. Bockris was

a generalist, and, what is more important, a generalist with a vision. The breadth

of his work is exemplified by his large number of publications, and by his seminal

books on Surface Electrochemistry [1] andQuantum Electrochemistry [2] (both with

S. Khan), each encompassing between 500 and 100 pages. His textbook on Modern

Electrochemistry [3] (with K.N. Reddy) educated generations of electrochemists,

and contrasts in style and spirit with the equally influential Electrochemical Methods
by Bard and Faulkner [4]. As early as 1976, he presented his vision of the hydrogen

economy based on solar energy and electrochemical energy conversion, which he

later published as a book [5]; he returned to this topic in several of his later books

aimed at a general audience. When he presented his ideas, he was a lonely prophet,

but now, about 50 years later, they belong to the mainstream.

The theory of electrocatalysis was among the many topics on which he worked.

At that time, the theory of electrochemical reactions was limited to outer sphere elec-

tron transfer, and he pointed out correctly, that these could not be applied to catalytic

reactions. Throughout his life he worked on various topics of electrocatalysis. Obvi-

ously this is not the place to review his work, but we would like to draw attention to

one of his early works, together with Brian Conway, entitled: Electrolytic hydrogen
evolution kinetics and its relation to electronic and adsorptive properties of metals
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[6],which discusses in an intelligent way the relation between the kinetics and the

energy of adsorption of hydrogen, and related quantities. It precedes the works of

Gerischer [7] and Parsons [8] on volcano plots by about a year, and the standard work

by Trasatti [9] by 15 years. Nowadays, the most cited work on this topic seems to be

the article by Nørskov et al. [10], who provided DFT data for this venerable topic.

Conway and Bockris did not only discuss the Sabatier principle, but made the useful

distinction between sp and d metals, and furthermore pointed out the importance of

the filling of the d band, which at that time was called d character—all these topics

were rediscovered at the beginning of this millennium. In addition, they discussed

current-potential relationships in terms of potential energy curves for the transition

of the proton. Unfortunately, the extensive work of Bockris and his school on elec-

trocatalysis never resulted in a quantitative theory, because the computational tools

were missing at that time, and even the experimental values were not very reliable.

In this chapter, we review our own theory of electrocatalysis, which, we are sure,

John O’M. Bockris would have approved, because it is based on the type of molecular

description which he favored during his lifetime.

2 Elements for a Theory of Electrocatalysis

Before presenting our own theory, we would like to discuss a few concepts pertinent

to electrocatalysis. The first quantitative theory for electrochemical reactions was

for outer sphere electron transfer. It came in two flavors: The work of Levich, Dogo-

nadze, and their school [11, 12] was primarily based on perturbation theory and weak

interactions. The theories of Marcus [13] and Hush [14], which preceded the Soviet

works, concern the weakly adiabatic limit, in which the interaction between the reac-

tant and the electrode is strong enough to make the reaction adiabatic, but so weak

that it does not affect the reaction barrier. A characteristic feature of the latter class

of reactions is that the rate does not depend on the electrode material [15, 16]. Nei-

ther version is applicable to electrocatalysis, where the interactions are strong, and

where often the rate on various materials can vary over eight orders of magnitudes

[1]. Already in 1986, I had proposed a version of electron transfer theory based on

Green’s functions [17], which could be applied to interactions of arbitrary strengths,

but in absence of a way to calculate strong electronic interactions this did not result

in a theory of electrocatalysis. Nowadays, with density functional theory we have

the computational means to calculate such interactions. So one essential aspect of

theories of electrocatalysis is, that they must be able to treat strong interactions, and

this will usually imply that DFT plays an important role.

However, even though the classical electron transfer theories cannot be applied

to electrocatalysis, we must not forget the most important lesson that they taught

us, the role of solvent reorganization. By definition, all electrochemical reactions

involve charge transfer, and thus at least one of the reactants changes its charge,

and hence its solvation. The accompanying changes in solvation energy are usually

of the order of a few electron volts; in the case of the discharge of the proton it
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reaches about 11.3 eV! The concomitant energy of solvent reorganization makes

an important contribution to the activation energy—indeed, in outer sphere electron

transfer it alone determines the barrier height—and fluctuations of the solvent trigger

the reaction. Therefore theories of electrocatalysis must contain an explicit treatment

of the solvent, which must include statistical fluctuations. A simple model of a water

bilayer at zero temperature is not enough.

As a reacting ion moves toward an electrode surface, its energy of solvation

changes. The magnitude of this effect depends on the ion under consideration; for

small ions such as Ag
+

and Li
+

, which fit well into the structure of water, it is quite

small [18], while it can be appreciable for larger ions like I
−

[19]. In any case, it is

an effect which must be considered. If both the reactant and the product are solvated,

we require the energy of solvation as a function of position for both of them.

Finally, a rather trivial point: electrochemical reactions are governed by the elec-

trode potential, which determines the rate, the activation energy, and even the direc-

tion. Since so far there is no consistent way to include the electrode potential in DFT

calculations, a treatment that is based on DFT alone lacks a fundamental aspect.

3 Our Model for Electrocatalytic Reactions

We have presented our theory for electrocatalytic reactions in various publications

[20–22], where we also give the mathematical details. Here we want to demonstrate

the various effects that enter, and present our model Hamiltonian step by step. In

order to focus on the main points, we present the version where spin plays no role,

such as in the Volmer reaction or in the deposition of monovalent ions like Ag
+

. Thus

we consider one orbital labeled a on the reactant, and a continuum of states k on the

metal. Generally, the index k runs both over the sp band and the d band of the metal.

Denoting electronic energies by 𝜖, and the operator for the occupation number by n,

the electronic terms without interactions are:

H1 = 𝜖ana +
∑

k
𝜖knk (1)

Electron exchange between reactant and electron is effected by a combination of

annihilation c and creation operators c∗ for the electronic states:

H2 =
∑

k

(
Vkc∗kca + V∗

k c
∗
ack

)
(2)

The first term transfers an electron from the reactant to the metal state k with an

amplitude of Vk, the second term effects the reverse process. The sum H1 + H2
describes the spinless version of the Anderson–Newns theory [23, 24].

Next we introduce the coupling with the solvent. Electron transfer theory dis-

tinguishes between two kinds of modes: slow modes, which in the case of water
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correspond to the motion of the molecular dipole moment, and the fast modes, which

correspond to the electronic polarizability of the molecule, and which follow any

charge transfer almost instantaneously. Electron transfer is triggered by thermal fluc-

tuations of the slow modes, which are described as a bath of harmonic oscillators—

in fact, any other model based on a harmonic approximation gives identical results.

There is an infinite number of such oscillator modes, but in the harmonic approxi-

mation the minima for the initial state, the activated state, and the final states lie on

a straight line, and this can be used to define a single solvent coordinate q; details

are given in Ref. [25]. It is convenient to normalize q in such a way that the minima

occur at integral values. Specifically, we normalize q in such a way that a solvent

configuration characterized by q would be in equilibrium with a charge number of

−q on the reactant. For simplicity, we assume that the initial state with ⟨na⟩ = 0
carries unit positive charge, and the final state is an adsorbed neutral atom, whose

energy of solvation we neglect. Then the corresponding terms in our Hamiltonian

are:

Hsol = 𝜆q2 + 2(z − na)𝜆q (3)

The first term describes the slow solvent modes when the charge on the reactant is

zero; the second term is a linear coupling of these modes with the charge. 𝜆 is the

energy of reorganization familiar from Marcus theory, and z is the charge number of

the reactant when the orbital a is empty. We have left out the kinetic energy, since it

plays no role in the determination of the saddle point. To be specific, we discuss the

case where z = 1, so that the reaction is the transfer of one electron to a cation.

Since we neglect the solvation of the final state, the interaction with the fast sol-

vent modes affects only the energies of the initial state i, which is the cation. We

denote the corresponding solvation energy by Gi
fast , and it contributes a term:

Hfast = (1 − na)ΔGi
fast (4)

As a reactant approaches the electrode, its solvation energy changes; this effect

can be obtained by molecular dynamics simulations, and the corresponding change

is called the potential of mean force (pmf). In terms of the notation of Marcus theory,

the potentials of mean force correspond to work terms, so we denote them by wi and

wf , and introduce a term nawf + (1 − na)wi. Since in the case considered here the

final state is an adsorbed atom, wf = 0; however, we shall first keep this term in order

to show the correspondence with Marcus theory for the case of weak interactions.

Finally we include the electrode potential 𝜙, which simply shifts the energy of

the ion, and gives a term (1 − na)e0𝜙. Collecting the various terms gives:

H = (𝜖a − e0𝜙 − ΔGi
fast + wf − wi − 2𝜆q)na + 𝜆q2 + 2𝜆q

+ ΔGi
fast + wi +

∑

k
𝜖knk +

∑

k
(Vkc∗kca + V∗

k c
∗
ack) (5)
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In the limit of weak interactions, the coupling to the metal has no effect on the energy,

and we should retrieve Marcus theory. In this case, the initial state with ⟨na⟩ = 0 has

its minimum at q = −1, with an energy:

Gi = wi − 𝜆 + ΔGi
fast = ΔGsol + wi (6)

where we have used the fact that −𝜆 is the slow part of the total solvation energy

ΔGsol. The interpretation is obvious: the only energy is the solvation energy modified

by the work term.

In the final state ⟨na⟩ = 1, the minimum is at q = 0, with an energy:

Gf = 𝜖a − e0𝜙 + wf (7)

This is the electronic energy shifted by the electrode potential, plus the work term.

This gives the following free energy difference for the electron transfer step:

ΔGel = 𝜖a − e0𝜙 + wf − ΔGi
sol − wi (8)

The free energy difference for the overall reaction does not contain the work terms:

ΔG = 𝜖a − e0𝜙 − ΔGi
sol (9)

The energy of activation is easily obtained calculating the value of q where the

energies for the two states are equal. This results in the Marcus expression [13] for

the reaction rate, which we will discuss below when we relate our theory to other

works.

3.1 Density of States

When the reactant is far from the electrode, its valence level is sharp and character-

ized solely by its energy 𝜖a. However, when it approaches the surface, it begins to

interact with the electronic states of the metal, with which it can exchange electrons.

Consequently the valence level is no longer sharp, but characterized by a density
of states (DOS). In the simplest case, which we shall discuss below, this takes on

the shape of a Lorentzian, and the DOS can be considered as a consequence of the

lifetime broadening.

The mathematical analysis of our model in based on the consideration of the

Green’s function, which is defined as G(z) = 1
z−H

, where z is the energy variable and

H the Hamiltonian of Eq. (5). The calculations are facilitated if we split the Hamil-

tonian in two parts: The non-interactive part H0, which comprises all of the terms of

Eq. (5) except the last sum, which in the interacting part denoted by V . The Green’s

function can then be obtained via the identity:
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G(z) = G0(z) + G(z)VG0(z), (10)

where G0(z) is the Green’s function pertaining to the Hamiltonian H0.

The density of states can be calculated exactly from the Green’s function, and

expressed in terms of the two so-called chemisorption functions which describe the

interaction [26]:

Δ(𝜖) = 𝜋

∑

k
|Vk|2𝛿(𝜖 − 𝜖k) Λ(𝜖) = 1

𝜋


∫

Δ(𝜖′)
𝜖 − 𝜖

′ d𝜖
′
, (11)

where  denotes the principle part. The corresponding density of states of the reac-

tant is:

𝜌a(𝜖) =
1
𝜋

Δ
[
𝜖 − (𝜖a − Λ − 2𝜆q)

]2 + Δ2
, (12)

where we have collected the terms that modify 𝜖a:

𝜖a = 𝜖a − e0𝜙 − ΔGi
fast + wf − wi (13)

In the simplest case, which we shall discuss in more detail below, Δ and Λ are con-

stant. In this case the density of states 𝜌a(𝜖) takes the form of a Lorentzian of width

Δ, whose center has been shifted by Λ. In addition, the center fluctuates with the

solvent coordinate q. In the general case, Δ and Λ depend on the energy 𝜖, and the

form is more complicated.

The occupancy of the valence state a is obtained by integrating the DOS up to the

Fermi level EF:

⟨na⟩ =
∫

EF

−∞
𝜌a(𝜖) d𝜖 (14)

From now on, we shall set EF = 0. The electronic part of the energy is obtained by

multiplying the DOS with the energy 𝜖 and integrating again to the Fermi level:

Eel =
∫

0

−∞
𝜖 𝜌a(𝜖) d𝜖 (15)

3.2 Wide Band Approximation

As already mentioned, in the simplest case Δ does not depend on the energy; in this

case Λ = 0. This is known as the wide band approximation, because physically it

corresponds to the interaction of the reactant with a wide, structureless band of the

electrode. The integrals in Eqs. (14) and (15) can be performed explicitly. This gives

for the occupancy:
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⟨n⟩ = 1
𝜋

arccot
𝜖a − 2𝜆q

Δ
(16)

This simple approximation can be used to nicely explain a basic effect of catalysis

due to the width Δ of the reactant’s DOS. For this purpose, we ignore the fast sol-

vation and the work terms for the moment—they become important for quantitative

calculations on real systems—and focus on electron transfer and solvent reorganiza-

tion. Then the energy can be written as a function of the solvent coordinate q:

E(q) = 𝜆q2 + 2𝜆q + (𝜖a − 2𝜆q)⟨n⟩ + Δ
2𝜋

ln
[
𝜖a − 2𝜆q

]2 + Δ2

𝜖
2
a + Δ2 (17)

It is easy to verify that equilibrium occurs for 𝜖a = −𝜆, and this is the case we shall

now consider. The corresponding free energy curve has been examined in detail in

[17]. For not too strong interactions, for Δ < 2𝜆∕𝜋, the curve has two minima corre-

sponding to the initial and the final state, separated by a maximum at the transition

state. The corresponding energy of activation is:

Eact = 𝜆∕4 + Δ
2𝜋

ln Δ2

𝜆
2 + Δ2 (18)

For Δ → 0, we recover the Marcus result of 𝜆∕4; for finite values of Δ, the argu-

ment of the logarithmic term is smaller than unity, and hence this terms decreases

the energy of activation. The reason can be visualized in Fig. 1: According to Eq. 15,

the electronic energy is obtained by integrating 𝜖𝜌a(𝜖) up to the Fermi level. At the

activated state, the DOS is centered directly at the Fermi level, which is the energy

at which the electron transfer takes place. For a sharp DOS, i.e., for Δ ≈ 0, the elec-

tronic energy at the saddle point would be equal to EF, and hence equal zero with our

Fig. 1 DOS for the initial, the activated, and the final state for the case of equilibrium; parameter:

𝜆 = 0.5 eV. The shaded portion of the DOS for the transition state reduces the energy of activation.

After [25]
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choice of reference energy. For a finite width Δ, the shaded part which lies below the

Fermi level contributes to the energy of the activated state. Obviously, it is smaller

than zero, and the lower, the greater Δ. In this way, a strong interaction with the

metal lowers the activation energy, and thus catalyzes the reaction. We shall meet

the same effect when we discuss electrocatalysis in real system.

4 Relation to Other Theories

4.1 Marcus Theory

Marcus theory corresponds to the weakly adiabatic case: The interaction with the

metal is strong enough, to make the electron transfer adiabatic, but too weak to have

an effect on the activation energy. The latter is easily derived by calculating the inter-

section point between energy curves of the initial (⟨na⟩ = 0) and the final (⟨na⟩ = 1)

states, both considered as a function of the solvent coordinate q. The result is:

Eact = wi +
(𝜆 + ΔG + wf − wi)2

4𝜆
(19)

which is familiar from Marcus theory. The properties of the metal and its interaction

with the reactant do not enter; so there is no catalysis. Indeed, experimental results

show that in this case the rate is independent of the nature of the metal [15, 16]. We

shall not discuss the pre-exponential factor, which is usually obtained from Kramers

theory [27].

4.2 Levich and Dogonadze Theory

The first quantum mechanical theory of electrochemical electron transfer was devel-

oped by the Soviet group led by Levich and Dogonadze [11]. In essence, it is based

on a Hamiltonian like ours, but without the work terms. However, the interacting part

V is considered as weak and treated by first-order perturbation theory. A systematic

perturbation theory can be based on an iteration of Eq. (10), which results in a series

in terms of V:

G(z) = G0(z) + G0(z)VG0(z) + G0VG0(z)VG0(z) +⋯ (20)

In the first-order perturbation only the first two terms are retained. As a conse-

quence, the width Δ and the shift Λ do not figure in the theory. The standard proce-

dure is to perform a Fourier transform, from which Fermi’s golden rule is obtained

after some calculations. The final expression for the rate constant contains the same

energy of activation as Marcus theory, though without the work terms. However, the
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pre-exponential factor contains the matrix element of Vif between the initial and final

states, and is given by |Vif |2∕h. The element Vif has the meaning of an effective value

of Vk.

In Marcus theory as well as in ours the reactant shares its electrons with the metal.

In contrast, in perturbation theory electron transfer is a rare event, and the theory

traces the transition of a single electron with a definite energy. Thus one obtains an

energy resolved rate W(𝜖) for the transfer an electron of an energy 𝜖, to the metal,

and a corresponding expression for the reverse direction. Since electron transfer from

the reactant can only occur to empty levels, the total rate kr of reduction is obtained

by multiplying with the probability of finding an empty level, and integrating over

energy:

ka =
∫

[1 − f (𝜖)]Wa(𝜖, 𝜂) d𝜖, (21)

where we have expressed the fact that the rate depends on the overpotential 𝜂 as well;

f (𝜖) is the Fermi–Dirac distribution. The index ‘a’ indicates that this is the rate for

the anodic reaction, which is the oxidation. The energy resolved rate takes the form:

Wa(𝜖, 𝜂) ∝ (4𝜋𝜆kT)−1∕2 exp−
(𝜆 − 𝜖 + e0𝜂)2

4𝜆kT
(22)

The term (−𝜖 + e0𝜂) is the free energy for the transfer of an electron of energy

𝜖 to the electrode. Thus, the energy of activation is given by the Marcus expres-

sion of Eq. (19), but without the work terms. The pre-exponential factor contains

the perturbation |Vif |2, and a factor which converts normal concentrations to surface

concentrations [25].

For the cathodic reaction, the free energy of the reaction in the energy resolved

rate takes the opposite sign:

Wc(𝜖, 𝜂) ∝ (4𝜋𝜆kT)−1∕2 exp−
(𝜆 + 𝜖 − e0𝜂)2

4𝜆kT
(23)

and this has to be multiplied with the probability to find an occupied state on the

metal from which the electron can be transferred:

ka =
∫

f (𝜖)Wc(𝜖, 𝜂) d𝜖 (24)

4.3 Gerischer’s Theory

Gerischer’s theory [28] is essentially a re-interpretation of the theories of Marcus

and of Levich and Dogonadze. Just like the latter, it considers electron exchange with

specific energy levels 𝜖. For the anodic direction, we introduce the electronic density
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of states 𝜌e(𝜖) of the electrode; the product 𝜌e(𝜖)[1 − f (𝜖)] is then the probability of

finding an empty state on the electrode. The term:

Wred(𝜖, 𝜂) = (4𝜋𝜆kT)−1∕2 exp−
(𝜆 − 𝜖 + e0𝜂)2

4𝜆kT
(25)

is then interpreted as the density of reduced states of the reactant. Apart from the

pre-exponential factor, this is the same as the energy reduced rate of Eq. (22) given

above. The total rate is then obtained by multiplying the density of empty states on

the electrode with the density of reduced states of the reactant, and integrating over

energy:

ka =
∫

𝜌e(𝜖)[1 − f (𝜖)]Wred(𝜖, 𝜂)d𝜖 (26)

Since at room temperature the Fermi–Dirac distribution is almost a step function, in

practice the integral is taken from the Fermi level to the top of the conduction band;

the upper limit can be extended to infinity, since the integrand drops off rapidly for

high energies.

Similarly, the density of oxidized states of the reactants is introduced as:

Wox(𝜖, 𝜂) = (4𝜋𝜆kT)−1∕2 exp−
(𝜆 + 𝜖 − e0𝜂)2

4𝜆kT
(27)

and the cathodic rate is given by:

ka =
∫

𝜌e(𝜖)f (𝜖)Wox(𝜖, 𝜂)d𝜖 (28)

electronic
energy

electronic
energy

Wox
Wox

Wred

Wred

-e0Fermi level Fermi level

Fig. 2 Densities of reduced and oxidized states at equilibrium (left) and after the application of a

cathodic overpotential (right). After [25]
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In practice, the integral goes from minus infinity to the Fermi level. Gerischer’s

theory is for adiabatic transitions, since the perturbation |Vif | does not enter into

the rate equation. On the other hand, it uses the concept of electron exchange with

specific energy levels of the metal. Equations (26) and (28) have a nice graphical

representation shown in Fig. 2. In this picture, the application of an overpotential

simply shifts the densities of states of the redox couple with respect to the Fermi

level of the metal. This model has the further advantage that it can be readily applied

to semiconductors. Equations (26) and (28) stay the same, but the electronic density

of states 𝜌e(𝜖) of the electrode now has a band gap.

5 Application to Real Systems: Oxygen Reduction
in Alkaline Media

We now return to our theory of electrocatalysis as presented in Sect. 2, and show how

it can be applied to real systems, where simple approximations like the wide band

approximation do not hold. For this purpose, we need a number of quantities, which

we obtain from DFT and from molecular dynamics. We start with the parameters

that relate to the interaction of the reactant with the metal. As a concrete example,

we chose the first step in oxygen reduction on Ag(100) in alkaline media [29], which

occurs according to:

O2 + e− → O−
2 (29)

The reasons for choosing this particular reaction are the following: The rate of reac-

tion (29) is very similar on a variety of electrode materials. It has therefore been sug-

gested, that it occurs by an outer sphere mechanism, in which neither the reactant nor

the product are adsorbed [30]. On the basis of our theory, we have recently shown

that on Au(100) it indeed occurs in the outer sphere mode [31]. However, gold is

special in that the oxygen molecule is not adsorbed on the surface. In contrast, silver

is much more reactive to oxygen; in the vacuum the molecule adsorbs with an energy

of about −0.4 eV [32]. We therefore want to investigate, if the reaction mechanism

on Ag(100) is inner or outer sphere.

5.1 Interaction with the Metal

The parameters for the interaction with the metal can be determined by DFT. Cal-

culations for a slab of metal performed with one of the common packages yield the

electronic structure of the metal surface. For most metal of interest, this consists of

a sp- and a d band. Usually, it is a good approximation to assume that the interaction

of the reactant is constant for each band. Therefore we can write:

Δ = 𝜋|Vsp|2𝜌sp(𝜖) + 𝜋|Vd|2𝜌d(𝜖), (30)
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top view side view

Fig. 3 Configuration of O2 adsorbed on Ag(100). After [29]

where 𝜌sp(𝜖) and 𝜌d(𝜖) are the electronic densities of states of the metal sp and d
bands. The function Λ(𝜖) is then obtained by integration according to Eq. (11). In

addition, we need the energy 𝜖a of the reactant. In order to construct the free energy

surface for the reaction, we require these three parameters as a function of the dis-

tance. For this purpose, we perform DFT calculations for the O2 molecule in front

of the Ag(100) surface at various distances. This gives us the energy as a function

of the distance, and also the densities of states of the molecule. In order to obtain

Vsp, Vd and 𝜖a for a given distance, we fit the theoretical density of states as given

by Eq. (12), taken at q = 0, to the DOS obtained by DFT. The technical details are

given in [29].

In our example, the approaching O2 molecule has two empty antibonding spin

orbitals; only the one which is directed perpendicularly to the metal surface inter-

acts with the silver surface. As it approaches Ag(100), it becomes partially filled,

and acquires a charge of about −0.7 e0 when it is adsorbed. The configuration of the

adsorbed molecule is shown in Fig. 3. As an example of the fitting procedure, we

show the DOS when the molecule is adsorbed, and the theoretical DOS according

to Eq. (12) with the fitted values in Fig. 4. The fit is excellent, and this is true for

larger separations as well. We must admit that the fitting procedure does not always

work quite as well as in this example. In a few cases, for example, for the adsorp-

tion of OH on Pt(111), we have to introduce an energy dependence of the coupling

constants [33].

5.2 Solvent and Work Terms

The energy of reorganization and the work terms are obtained from the energies of

solvation of the reactant and the product. The bulk values of these energies are known
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Fig. 4 DOS of the O2
antibonding orbital that

binds to the Ag(100) surface;

the full curve has been

obtained by DFT, the dashed
curve by fitting. The fitted

parameters are: |Vsp|2 = 0.96
eV

2
, |Vd|2 = 0.09 eV

2
,

𝜖a = −0.33 eV. After [29]
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from experiment; as these particles approach the electrode surface they lose a part of

their solvation sheets. The concomitant change in energy is known as the potential
of mean fore (pmf), and can be obtained by molecular dynamics. For the details, we

refer to the literature [29, 33].

We have calculated the pmf of both the molecule and the anion for the approach

to the Ag(100). As expected, both increase toward the surface, as their hydration

becomes weaker—see Fig. 5. This effect is stronger for the molecule, where the pmf

begins to rise at about 6 Å, than for the anion, where it even has a slight minimum

near 5 Å before it starts to rise. Considering that the hydration energy of the anion

is about −3.9 eV, the rise in energy toward the surface is moderate.

The energy of solvation must be split into two parts: the slow part, which deter-

mines the energy of reorganization, and the fast part, which enters into the work

terms. For this purpose, we note that the Marcus expression for the energy of reor-

ganization is related to the energy of solvation, as given by Born’s theory, by the

relation:

𝜆 = −
1∕𝜖∞ − 1∕𝜖s
1 − 1∕𝜖s

ΔGsol, (31)
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where 𝜖∞ is the optical dielectric constant of the solvent, and 𝜖s the static constant.

For aqueous solutions, 𝜆 is about one half of the absolute value of the energy of

solvation.

5.3 The First Step in Oxygen Reduction on Ag(100)

We now have the ingredients which we need to calculate the free energy surface for

reaction (1). In Fig. 6 we present the surface for the potential, when the reaction is

in equilibrium in the outer sphere. As usual, we have plotted the free energy as a

function of the distance d of the reactant from the surface and of the solvent coor-

dinate [25]. A quick reminder: The solvent coordinate characterizes the state of the

solvent; it takes on the value q, when the solvent would be in equilibrium with a

reactant of charge −q. At d = 5 Å and q = 0, we see a minimum that corresponds

to the uncharged O2 molecule; toward the bulk of the solution this extends into a

valley. We have chosen the energy zero such that the energy is zero at this minimum.

Likewise at large distances, but at q = 1, lies the minimum for the anion; again this

extends into a valley toward the bulk, but it does have a real shallow minimum which

corresponds to the slight minimum in the pmf observed in Fig. 5. These two minima

are separated by a saddle point with an energy of 0.5 eV. A transition between these

minima corresponds to an outer sphere electron transfer, so according to Marcus
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Fig. 6 Free energy surface for the reaction O2 + e− → O−
2 on Ag(100). The electrode potential is

for equilibrium in the outer sphere mode. After [29]
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theory [13], its activation energy should correspond to 𝜆∕4, where 𝜆 is the energy of

reorganization. As we have argued above [20, 21], in aqueous solutions 𝜆 is half the

absolute value of the energy of hydration (−3.9 eV in the bulk), so this activation

energy agrees with Marcus theory. We note that close to the surface, 𝜆 decreases a

little as the absolute value of energy of solvation becomes smaller in accord with the

pmf for the anion.

Right on the electrode surface, at q = 1, there is a third minimum corresponding

to the adsorbed state. Due to the effect of solvation, which favors charged particles,

its charge is−1, somewhat lower than for the adsorbed state in the vacuum. Its energy

is practically the same as that of the other two minima. This is the result of a com-

pensation effect: The interaction with the metal lowers the energy by 0.4 eV, but the

pmf is higher than that in the bulk by about 0.5 eV (see Fig. 5). A little bit of extra

energy is gained by the change in the charge. The saddle point that separates the ionic

state in the bulk from the one at the surface has an activation energy of about 0.4 eV.

Within the accuracy of our calculations, this is of the same order of magnitude as

the saddle point for the outer sphere step.

We have also performed calculations for a cathodic overpotential of 𝜂 = 0.2 V

making the reduction more favorable. The effect on the outer sphere pathway is

straightforward: The energy of the ion is lowered by −e0𝜂, that of the molecule is

unchanged, and the saddle point is lowered by the order of 0.1 V, giving a transfer

coefficient of 𝛼 ≈ 0.5. The effect on the rest of the surface requires a model for the

variation of the potential near the surface. We have chosen a simple model in which

the effect of the overpotential decays linearly between d = 5.1 Å, and the electrode

surface, where its effect vanishes. However, the qualitative conclusions are inde-

pendent of the details of this decay. The corresponding surface is shown in Fig. 7.

Since the effect of the overpotential vanishes right on the surface, the energy of the

adsorbed state is unchanged, and is now higher than that of the anion in the solution.

Blizanac et al. [34] have performed a thorough investigation of oxygen reduc-

tion on single crystal silver in alkaline solutions. They observed onset potentials of

the order of 0.9 V RHE, which is compatible with an outer sphere mechanism. The

onset potential should be close to the potential at which the outer sphere transfer is in

equilibrium. From the temperature dependence of the currents, they determined the

activation energies. For an electrode potential of 0.8 V RHE, which translates into

an overpotential of about 0.1 V for the outer sphere reaction, they observed activa-

tion energies of the order of 0.3 eV, which are quite compatible with our theoretical

values. The measured transfer coefficients are close to 0.5, in agreement with our

results and typical for an outer sphere mechanism.

Thus our results suggest the following pathway: At equilibrium, the first step in

oxygen reduction takes place in the outer sphere mode. The energy of the adsorbed

species is about the same as that of the anion in solution, so the two species can inter-

change. The direct pathway from O2 to the adsorbed anion is not favorable because

of the strong rise of the pmf of the molecule near the surface (see Fig. 5). Application

of a cathodic overpotential favors the anion in the solution, so that the adsorbed state

becomes less favorable.
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of 𝜂 = 0.2 V. After [29]

6 Conclusions

In this article, we have briefly reviewed the theory of electrocatalysis as developed

in our group. It is related to older theories for outer sphere electron transfer. The

new feature is that we have developed the theory so that it applicable to strong inter-

actions between the electrode and the reactants, and are able to extract the system

parameters from DFT calculations and molecular dynamics. As an example, we have

presented recent results for oxygen reduction in alkaline media. For applications to

other reactions, in particular to hydrogen evolution, we refer to our published works

[20–22].

So far, we have mainly performed model calculations for the case where a single

atom or molecule reacts. Obviously, the application of our method becomes more

complicated when the number of reactants is larger. We have taken first step in this

direction in our investigation of the Heyrovsky reaction on Ag(111) [35].
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