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Abstract This chapter deals with the concept of “hydrogen economy”, which was
introduced by John O.M’ Bockris in 1972. We summarize the fundamental prin-
ciples and the progress for the reactions relevant to the hydrogen economy, namely
the hydrogen and oxygen evolution for water electrolyzers, and the hydrogen
oxidation and oxygen reduction for fuel cells. The activity of each reaction can be
correlated to a single descriptor, i.e. the adsorption energy of a key reaction
intermediate, following a volcano-type relationship. Highly active materials can be
prepared with the aid of modern computational and experimental tools. Neverthe-
less, to develop catalysts that are substantially more active and reach the perfor-
mance of ideal catalysts, the focus must be placed on materials that can break the
energetic scaling relations between intermediates. The systems of choice are acidic
water electrolyzers or fuel cells, using noble metals for the catalytic material,
despite the great progress made in the field of alkaline systems. However, to realize
the concept of hydrogen economy on a large scale, the electrode material for either
reaction must combine activity, stability and abundance.

1 Introduction

In Jules Verne’s 1874 novel “The mysterious island”, the engineer Cyrus Smith
explains to his fellow prisoners his belief that “water will one day be employed as
fuel, that hydrogen and oxygen which constitute it, used singly or together,

I. Katsounaros
Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen-Nürnberg (HI ERN),
91058 Erlangen, Germany
e-mail: i.katsounaros@fz-juelich.de

M.T.M. Koper (✉)
Leiden Institute of Chemistry, Leiden University, PO Box 9502,
2300RA Leiden, The Netherlands
e-mail: m.koper@lic.leidenuniv.nl

© Springer International Publishing AG 2017
K. Uosaki (ed.), Electrochemical Science for a Sustainable Society,
DOI 10.1007/978-3-319-57310-6_2

23



will furnish an inexhaustible source of heat and light, of an intensity of which coal
is not capable” [1]. One hundred years later, in a letter to Science, John O’M.
Bockris gave a scientific outlook to these words by introducing the term “hydrogen
economy”: Bockris’ vision for a paradigm shift in meeting the increasing global
energy needs with hydrogen acting as the primary energy carrier [2]. Bockris used
the term “economy” to emphasize the energetic, economic, ecological and societal
aspects of his idea. In brief, this concept was originally based on converting the
plentiful and inexpensive electrical energy delivered by nuclear stations to chemical
energy, by splitting water and thereby producing hydrogen in onsite water elec-
trolyzers. After transportation to distribution stations and to final locations (houses,
factories, vehicles, trains, aircrafts, etc.), the produced hydrogen would be used in
an onsite fuel cell to deliver electrical energy. The advantages of Bockris’ concept
were obvious: the rapidly increasing energy demand would be met at a lower cost
without polluting the environment, while the dependence on fossil fuels would
become minimal.

When Verne was writing his book, he was probably aware of two independent
observations which set the scientific stage for the “hydrogen economy”: In 1789,
the Dutch Adriaan Paets van Troostwijk and the German-Dutch Johan Rudolph
Deiman observed that gas bubbles form on two gold wires immersed in water, when
they are connected to an electrostatic generator, and they realized that they had
“split” water into hydrogen and oxygen [3]. Fifty years later, in 1839, the British Sir
William Grove described in a letter to the Philosophical Magazine how he was able
to produce electricity by connecting two platinum wires, immersed in an acidic
solution through two glass tubes, one filled with hydrogen and one with oxygen [4].
The observation that oxygen and hydrogen can recombine by producing electricity
was actually mentioned a few months before Grove’s publication, by the German
Christian Friedrich Schönbein [5]. In principle, Van Troostwijk and Deiman were
the first ones to split water into its components, while Grove and Schönbein had
prepared the first, very primitive fuel cell.

The original concept of Bockris in 1972 included the utilization of nuclear
energy for supplying the necessary energy to produce H2 via water splitting and to
set the hydrogen economy in motion. In the years that followed, however, a
modification of this idea became necessary: the Chernobyl accident in 1986 raised
severe concerns for the use of nuclear power, and concomitantly, there was a boost
in the interest for the exploitation of renewable energy sources. Therefore, the
modern interpretation of the “hydrogen economy” concept involves the utilization
of renewable instead of nuclear energy, as the first step to split water and generate
hydrogen. It is evident, however, that the central idea of John Bockris to use
hydrogen as the primary means of storing and transporting energy remained
unaltered. In fact, the concept of “hydrogen economy” is nowadays at the focus of
academic, technological and industrial interest and plays a key role in the research
conducted in the fields of electrochemistry, (electro-)chemical engineering, mate-
rials science, computational chemistry and others.
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The focus in this chapter is the core of the ‘hydrogen economy’ principle,
namely the electrochemical reactions of hydrogen and oxygen evolution for the
water electrolyzers, and the hydrogen oxidation and oxygen reduction reaction for
the low-temperature hydrogen–air fuel cells. We will (i) demonstrate the funda-
mental principles that govern the above mentioned reactions, (ii) summarize the
important progress that was made in the field over the last decades, and (iii) discuss
the future prospects towards the realization of Bockris’ and Verne’s vision.

2 Water Electrolyzers and Fuel Cells—The Basic
Principle

In water electrolysis cells (water electrolyzers) the oxygen evolution reaction
(OER) occurs at the anode (positive electrode) and the hydrogen evolution reaction
(HER) occurs at the cathode (negative electrode) (see Scheme 1, left). Inversely in a
hydrogen–air fuel cell, the hydrogen oxidation reaction (HOR) takes place at the
anode (negative electrode) and the oxygen reduction reaction (ORR) occurs at the
cathode (positive electrode) (see Scheme 1, right). The overall reaction occurring in
a water electrolyzer (forward reaction, left-to-right) or in a hydrogen–oxygen fuel
cell (back reaction, right-to-left) is described by (1):

2H2O⇌O2 + 2H2. ð1Þ

At standard conditions, the Gibbs free energy of the forward non-spontaneous
water splitting reaction is +474.4 kJ per 1 mol of O2 evolved. Thus, water splitting
can take place only with the supply of electrical energy, i.e. by applying a potential
of at least 1.229 V between the two electrodes. The Gibbs free energy of the reverse
spontaneous reaction is equal but of opposite sign.

Scheme 1 Principle of operation of water electrolyzers (left) and hydrogen–oxygen fuel cells
(right) under acidic conditions
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2.1 Fundamentals of the ORR and the OER

The oxygen reduction and the reverse water oxidation are multi-step processes and
involve the transfer of up to four electrons [6]:

O2 + 4H+ + 4e− ⇄ 2H2O EO2 ̸H2O = +1.229V vsRHE ð2Þ

where E is the standard equilibrium potential of the reaction with respect to the
reversible hydrogen reference electrode (RHE). Such multi-electron processes
proceed sequentially through the formation of several intermediates. Depending on
the followed mechanism, reaction intermediates can be *OOH, *O, *OH, *HOOH
or dissolved H2O2, where the asterisk denotes adsorbed species. The distinction
between the mechanisms is based on the number of proton/electron transfer steps
that precede the O–O bond cleavage (for the ORR) or formation (for the OER)
[7–9]. The only possible intermediate of the overall reaction (2) that can desorb is
hydrogen peroxide [10]:

O2 + 2H+ +2e− ⇄H2O2 EO2 ̸H2O2 = + 0.695V vsRHE ð3Þ

H2O2 + 2H+ + 2e− ⇄ 2H2O EH2O2 ̸H2O = +1.709V vsRHE. ð4Þ

The participation of H2O2 in the reaction sequence remains debateable. The
standard equilibrium potentials shown in (3) and (4) are calculated for a solution
with the standard activity of H2O2 equal to one. Thus, in thermodynamic terms it
cannot be excluded that a small amount of H2O2 forms as an intermediate from the
ORR at potentials more positive than +0.695 VRHE or from the OER at potentials
less positive than +1.709 VRHE [10]. Indeed, the comparison between the O2 and
H2O2 reduction shows that the two reactions follow the same trends in different
electrolytes or surfaces (low- and high-index Pt facets), indicating that the ORR is
likely to proceed through an H2O2-mediated pathway [11–13]. Similar studies on
the oxidation of H2O2 under conditions relevant to the OER are not known.

The ideal catalyst would carry out both reactions at the reversible potential, i.e.
at +1.23 VRHE. This would be achieved only if there was no uphill step during
either the ORR or the OER at this potential; namely, if the difference in the free
energy of the species involved in each step was zero [14]. Real catalysts, however,
deviate from the ideal scenario. Density functional theory (DFT) calculations allow
the calculation of the free energies of the species [14] and show that there are three
endothermic steps for the ORR, i.e. OOH* formation, *O hydrogenation and *OH
desorption (see the black diagram from left-to-right in Fig. 1), while the OER is
associated with the strongly endothermic *O + *OH recombination (see black
diagram from right-to-left). These calculations are made for Pt(111) at the reversible
potential (+1.23 VRHE). To render all steps exothermic for each individual reaction
an overpotential is required, i.e. a potential as low as +0.78 VRHE for the ORR and
as high as +2.55 VRHE for the OER (Fig. 1). The comparison between the solid and
dashed diagrams shows the deviation of free energies for Pt(111) from the ideal
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catalyst. The description above includes the assumption that the ORR and the OER
proceed via the same intermediates, i.e. *OOH, *O and *OH. It must be mentioned,
however, that Fig. 1 shows a unified scheme for the ORR and the OER for an
oxygen-free Pt(111) surface, and thus it must be assessed only qualitatively because
the OER for instance takes place on an oxide-covered surface.

The deviation of real catalysts from the ideal performance is imposed by the
scaling relations between the free energies of adsorption of the ORR or OER
intermediates that hold for metal surfaces [15, 16]. The free energies of adsorption
of *OOH, *O and *OH on (111) surfaces at a given potential, E, are related to each
other through the following equations [14]:

ΔGE
*OOH + 3×E

� �
=0.53 × ΔGE

*O + 2×E
� �

+3.33 eV ð5Þ

ΔGE
*OH + 1×E

� �
=0.50 × ΔGE

*O + 2×E
� �

+0.04 eV. ð6Þ

The factors multiplied by the potential, E, represent the number of electrons
required to form the respective species from water, i.e. 1 for *OH, 2 for *O and 3
for *OOH. Scaling relations also apply for metal oxides with the expressions being
slightly different than for (111) metal surfaces [17]:

ΔGE
*OOH + 3×E

� �
=0.64 ΔGE

*O + 2×E
� �

+ 2.40 eV ð7Þ

ΔGE
*OH + 1×E

� �
=0.61 ΔGE

*O + 2×E
� �

− 0.58 eV. ð8Þ

Therefore, independent of the nature of the metal or metal oxide, the difference
ΔG*OOH −ΔG*OH will be ca. (3.29 – 2 ×E) eV for (111)-metals or (2.98 – 2×E)
eV for metal oxides, which is 0.83 or 0.52 eV higher than what is required for the

Fig. 1 Free energy diagram
for the ORR (left-to-right) or
the OER (right-to-left) for a
bare Pt(111) surface (solid
diagram) or an ideal catalyst
(dashed diagram), at the
reversible potential (1.23 V),
and at a potential for which all
steps become exothermic
(+0.78 V for the ORR or
+2.55 V for the OER). All
free energies are expressed
with respect to the free energy
of liquid water. Reproduced
from [14] with permission
from Elsevier
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ideal catalyst for either the ORR or the OER, respectively. These differences are
fixed for all metal or metal oxide surfaces, respectively, as long as (i) the reaction
intermediates involved are the same and (ii) adsorbates bind in the same way, i.e.
through the same atom. The thermodynamic limitations introduced by scaling
relations can in principle be avoided using catalysts that bind the intermediates on
different sites, as this would allow tuning the adsorption energy of one adsorbate
independently of the other [15].

The scaling relations allow the derivation of standard equilibrium potentials as a
function of a single free energy of adsorption, e.g. the ΔGO:

• For ORR on (111) surfaces, assuming an O2 → *OOH → *O + *OH
2*OH → H2O pathway:

EO2 ̸*OOH =
1
eo

× ΔGO +1.59ð Þ ð9Þ

E*OOH ̸*OH =
1
eo

× 0.03ΔGO +3.29ð Þ ð10Þ

E*OH ̸H2O =
1
eo

× 0.50ΔGO +0.04ð Þ. ð11Þ

• For the OER on metal oxides, assuming an H2O → *OH → *O →
*OOH → O2 pathway:

E*OH ̸H2O =
1
eo

× 0.61ΔGO − 0.58ð Þ ð12Þ

E*O ̸*OH =
1
eo

× 0.39ΔGO + 0.58ð Þ ð13Þ

E*OOH ̸*O =
1
eo

× − 0.36ΔGO +2.40ð Þ ð14Þ

EO2 ̸*OOH =
1
eo

× − 0.64+ 2.52ð Þ. ð15Þ

Thus, the ΔG*O can be used as a single descriptor for the construction of
thermodynamic volcano-type plots. For example, Fig. 2 shows the standard equi-
librium potentials for the various steps of the ORR or the OER [15]. Note that
contrary to Fig. 1 which was drawn for Pt(111) for both reactions, here the vol-
canoes are constructed for metal (111) and for metal oxide surfaces for the ORR
and the OER, respectively. The thick curves in Fig. 2 represent the onset potential
for each reaction, and the volcano develops by a change in the
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potential-determining step1 as the metal–oxygen bond becomes weaker from left to
right. For instance, on the left-hand side of the volcano (strong *O binding) the
ORR is limited by *OH desorption while on the right-hand side (weak *O binding)
the potential-determining step is the formation of *OOH. The optimum catalyst, i.e.
at the top of the volcano, achieves a compromise between strong and weak *O
binding. For the OER, there are four potential-determining steps depending on the
free energy of adsorption for *O, but the most relevant ones near the top of the
volcano are the O–O bond formation for strong *O binding (left-hand side) and the
*OH dehydrogenation for weak *O binding (right-hand side). For both reactions,
the top of the volcano is accompanied with a deviation from the reversible potential,
i.e. with an overpotential, which cannot be avoided when a metal or a metal oxide
surface is used for the ORR or the OER, respectively, as long as the above scaling
relations are satisfied.

The volcano plot in Fig. 2, derived purely based on thermodynamics, is in
principle different from an (experimental) volcano plot that has an activity term on
the vertical axis and is thus based on kinetics. However, the EPDS is a reliable
measure of the overall reaction rate, as long as a relation between the activation

Fig. 2 Thermodynamic volcano plots for the ORR on metal (111) surfaces and for the OER for
metal oxides, as derived from the solution of Eqs. (9)–(15). The thick curves represent the
potential at which the free energy of all steps of the respective reaction is negative.
The potential-determining step is denoted in the figure legends. The ORR was assumed to follow
the O2 → *OOH → *O + *OH → 2*OH → H2O pathway, and the OER the H2O → *OH
*O → *OOH → O2 pathway. The dashed curve represents the standard potential for the
O2/H2O couple. Reproduced from [15] with permission from Elsevier

1The potential-determining step, EPDS, is the reaction step with the most unfavourable equilibrium
potential, i.e. the step that determines at which potential all reaction steps will become exothermic
[18].
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energy and the reaction energy (Brønsted–Evans–Polanyi principle [19]) applies.
Therefore, thermodynamic volcanoes are typically in good, qualitative agreement
with kinetic volcanoes.

3 Oxygen Evolution Reaction

The oxygen evolution takes place on oxide surfaces. The oxide may undergo redox
transitions depending on the potential, which makes it more complicated to
rationalize structure–activity relationships. Trasatti summarized the early efforts to
develop activity descriptors for the OER and showed that the experimental OER
activity for some rutile- or spinel-type oxides follows a volcano-type relationship,
with the descriptor being the standard enthalpy of the lower-to-higher
transition [20].

Rutile-type oxides of precious metals have attracted most of the interest in acidic
electrolytes, because they are supposed to be more stable toward dissolution
compared to oxides of non-noble metals. The activity of precious metal oxides in
acid increases in the order Au < Pt < Pd < Rh < Ir < Ru [21]. The same activity
trend is also observed for nanoparticulate catalysts [22]. The activities of RuO2 and
IrO2 are lower in alkaline compared to acid; however, RuO2 remains the most
active material with the IrO2 following [23]. These activity trends are consistent
with the *O binding energy on the metal oxides; for example RuO2 and IrO2 bind O
with nearly the optimal adsorption energy [24]. One important feature of the OER
on noble metal oxide surfaces is that the mechanism of the reaction seems to be
different among the oxides. Differential electrochemical mass spectrometry
(DEMS) studies using isotope-labelled oxide (18O) at the surface and non-labelled
H2
16O for the electrolyte showed that the metal oxide can participate in the O2

formation on some surfaces (e.g. gold or ruthenium oxide) [25, 26], while on others
O2 forms only from water adsorbed at the surface (e.g. platinum oxide) [27].

All noble metal oxides are unstable towards dissolution under the highly oxi-
dizing potentials of the OER. The combination of electrochemistry with online
elemental analysis of the electrolyte has shown that the dissolution of precious
metals and their oxides must be distinguished between steady and transient dis-
solution, i.e. during potentiostatic or potentiodynamic conditions respectively [21].
Transient dissolution occurs mostly during the reduction of the metal oxide, and to
a lesser extent during the reverse oxidative transition, but always during changes in
the metal or metal oxide state. On the contrary, steady dissolution occurs with a
constant rate at a fixed potential or current. IrO2 and RuO2 exhibit transient dis-
solution, while the steady dissolution (relevant for the OER) is very pronounced for
RuO2 only (see Fig. 3), due to the oxidation of the rutile-type RuO2 phase to RuO4

[28, 29]. The same trend is maintained also in alkaline solution, where the absolute
dissolution rates are actually higher compared to acidic for either IrO2 or RuO2

[30, 31]. Therefore, despite its slightly higher overpotential for the OER, IrO2 is the
state-of-the-art catalyst for the OER because of its better stability compared to
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RuO2. One other approach to combine the higher activity of RuO2 and the better
stability of IrO2 has been to use mixed ruthenium–iridium oxides [32, 33].

By decreasing the particle size of nanoparticulate RuO2 or IrO2 catalysts, not
only the surface-to-volume ratio but also the area-normalized OER activity
increases [34–36]. This trend has been attributed to the higher proportion of less
active ordered planes at larger particles [34–36]. Therefore, in terms of
mass-normalized activity the goal for RuO2 or IrO2 catalysts is to decrease the
particle size. The stability, however, of the state-of-the-art IrO2 catalysts decreases
with decreasing the particle size [36].

Because of the amount of precious iridium needed for IrO2 catalysts, approaches
to reduce the iridium content by mixing it with another non-noble material have
been explored. For instance, Nd3IrO7 or Pb2(PbxIr2-x)O7-y were found to be about
as active as IrO2 in strongly alkaline solutions [37]. Double perovskites based on
iridium and a second metal oxide, such as Ba2NdIrO6, can combine up to three
times improved OER activity in acid and three times lower noble metal content
compared to state-of-the-art IrO2, while the stability of these materials is compa-
rable to IrO2 [38].

However, the main approach to replace expensive and scarce noble metals has
been to develop catalysts based entirely on non-noble transition metals. In acidic
solutions, IrO2 clearly outperforms these materials which are additionally not stable
(see Fig. 4). Therefore, the electrolyte for non-noble OER catalysts typically needs
to be neutral or alkaline, since the dissolution of the electrode is minimal and the
OER activity similar to that of IrO2 in this medium (see Fig. 4). Neutral elec-
trolytes, however, are expected to face issues of lower conductivity and local pH
changes even for strongly buffered solutions. Different classes of such materials

Fig. 3 Online monitoring of the dissolution rate of polycrystalline Ru, Ir and Pt during (left):
potential ramps from 0.05 to 1.5 VRHE with 2 mV s−1 and (right): galvanostatic polarization from
0.05 to 1.6 mA cm−2. Electrolyte: 0.1 M H2SO4. Reproduced from [21] with permission from
Wiley
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have been investigated; for example, rutile-type Co-, Ni- and Mn-based oxides, the
activity of which increases in 0.1 M KOH in the order MnOx < NiOx < CoOx and
they are somewhat less active compared to IrOx [39, 40]. This activity trend is
explained in terms of the oxygen binding energy of the materials [24]. Interestingly,
the activity of mixed oxides such as NiCoOx, NiFeOx, CoFeOx, etc. is higher than
the activity of the individual metal oxides, almost approaching that of IrO2 in the
same solution [40]. Other interesting classes of materials are spinel- or
perovskite-type electrodes. The first systematic investigations on spinels such as
NiCo2O4, NiLa2O4, Co3O4, etc. were made by Tseung and by Trasatti in alkaline
solutions [41–43]. Early studies on ABO3 perovskites (A: a lanthanide, B: a
first-row transition metal) were carried out by Bockris, who tried to identify the
parameters that control the electrocatalytic activity. Bockris proposed that the
rate-determining step is the desorption of OH and hypothesized that the OER
activity of perovskites follows a volcano-type relationship where the activity
descriptor is the adsorption energy of OH on the transition metal used in the
perovskite [44, 45]. The analysis of Bockris already allowed the early prediction of

Fig. 4 Plots of catalytic activity, stability, and electrochemically active surface area for OER
electrocatalysts in acidic (top) and alkaline (bottom) solutions. The x-axis and y-axis show the
overpotential required to achieve 10 mA cm−2 per geometric area at time t = 0 and t = 2 h. The
diagonal dashed line is the expected response for a stable catalyst. The unshaded white region
highlights the region where the overpotential to achieve 10 mA cm−2 at time t = 0 and 2 h
is < 0.5 V. Note the break and change in scale in both axes at overpotentials > 0.5 V. Reprinted
from Ref. [40] with permission from the American Chemical Society

32 I. Katsounaros and M.T.M. Koper



some active perovskites, such as LaNiO3 or LaCoO3 [45]. Using molecular orbital
principles, Shao-Horn and co-workers [46] first derived a volcano-type relationship
for a series of perovskite-type oxides of first-row transition metals and then pre-
dicted that Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) will be located at the top of this vol-
cano. The very high activity of this material was verified experimentally, and it is
by 10 times higher than the state-of-the-art IrO2 in alkaline solution. The same
group later showed that the BSCF particles in fact undergo quick amorphization
during the oxygen evolution, which leads to an activity increase [47].

Another approach, finally, is the so-called “in situ formed” catalysts. Starting
from a neutral, phosphate-buffered Co2+-containing solution and an indium tin
oxide (ITO) substrate, Kanan and Nocera showed that oxygen is evolved at positive
bias, probably through the oxidation of Co2+ to Co3+, precipitation of Co3+–
HPO4

2– on the ITO, and consequent oxidation of Co3+ to Co4+. The in situ grown
film on the ITO is active for the OER and the formed Co4+ is reduced to Co2+, so a
new catalysis round can start [48].

4 Oxygen Reduction Reaction

Of all the monometallic catalysts, platinum exhibits the highest activity for the
ORR, being located closest to the top of the volcano [49]. The trends in the ORR
activity for model low- and high-index single-crystal surfaces depend on the
electrolyte, which highlights the importance of the structure-sensitive adsorption of
electrolyte ions on platinum. In particular, the ORR activity increases in the order
(100) < (111) ≈ (110) in HClO4, (111) < (100) < (110) in H2SO4 and
(100) < (110) < (111) in KOH [50–53]. The activity of (111) increases by the
introduction of (111) or (100) steps in HClO4 and H2SO4, but has the opposite
effect in KOH [13, 54]. On the other hand, the activity of (100) is not influenced by
the introduction of (111) or (110) steps in HClO4 and H2SO4, but increases in KOH
[13, 54]. The sensitivity of the ORR activity on the surface atom arrangement
indicates that the platinum activity can be tuned by finding the appropriate surface
geometry. Indeed, high-index facets are more active than the low-index crystals in
HClO4, with Pt(331) and Pt(221) being the most active of all [51].

To enhance the utilization of platinum atoms in a real system, the ratio of surface
to bulk atoms (surface-to-volume ratio) needs to increase using for instance finely
dispersed platinum nanoparticles on a high-surface-area support. However, the
decrease of the particle size does not merely increase the surface-to-volume ratio: the
properties of surface atoms at nanoscale are different than in extended surfaces due to
structural and electronic effects. The origin of such effects lies in the size- and
shape-dependent distribution of surface atoms to various short- and long-range ter-
races and to different steps and defect sites [55–57]. To develop design rules for ORR
catalysts from pure platinum, the impact of surface atom arrangement must be
rationalized, e.g. by the introduction of activity descriptors that include
structure-sensitive parameters such as the generalized coordination numbers [58, 59].
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If the particles are represented as truncated octahedra, then the ratio of surface
atoms on (111) and (100) terraces decreases for smaller particles [60, 61]. This is
predicted to decrease the area-normalized activity toward the ORR, especially in the
size range 2–10 nm (particle size effect) [60, 61]. Such a prediction has been
confirmed experimentally only when uniformly defined ultrathin catalyst layers are
prepared; such layers prevent any O2 diffusion limitations within the catalyst layer
[62, 63]. The mass-normalized activity is a trade-off between the better Pt utiliza-
tion and the lower reaction rate by decreasing the particle size. Thus, the
mass-normalized activity is maximized at ca. 3 nm [63, 64], which is the typical
size for state-of-the-art carbon-supported Pt catalysts for the ORR.

The orientation of surface atoms can be also altered by the nanostructure shape.
For instance, nanoparticles with dominant (100) terraces (e.g. cubic particles) are
more active in H2SO4 but those with dominant (111) terraces (e.g. cubooctahedral
or tetrahedral particles) are more active in HClO4 and KOH. This is consistent with
the fact that Pt(100) is more active than Pt(111) only in H2SO4 [65, 66].
Nanoparticles that exhibit a high proportion of high-index facets are in general
much more active than particles of a similar size [67–69], which is attributed to the
higher activity of high- versus low-index facets. The stability of shape-controlled
nanoparticles under the ORR conditions is however an issue, especially for those
enclosed by high-index facets, and eventually these particles reshape due to
degradation issues that will be discussed below [70, 71].

Even though the ORR takes place at potentials below +1.0 VRHE, the biggest
challenge currently for Pt-based ORR catalysts is their exposure to potentials at
which the catalyst or the catalyst support is unstable [72]. The cathode transiently
experiences potentials as high as 1.4 V during start-up or shut-down of the fuel cell,
as a result of the reverse-current decay mechanism [73]. Since the long-term per-
formance is affected by processes during the entire operation, from start-up to
regular load to shut-down, assessing the stability of ORR catalysts for a potential up
to 1.5 V represents better the conditions in a fuel cell. Platinum dissolves mostly
transiently, i.e. during the reduction of the metal oxide. Apart from metal disso-
lution, real ORR catalysts can suffer from other degradation mechanisms which are
induced by the catalyst exposure to highly positive potentials [74, 75]: (i) particle
migration and coalescence, (ii) dissolution of platinum from small particles and
redeposition at larger particles (Ostwald ripening) and (iii) corrosion of the support
which enhances particle mobility and detachment. The above mechanisms, which
may take place in parallel [75], eventually result in a loss of platinum surface
area. In addition, the dissolved platinum from the cathode may be reduced by
hydrogen that permeates through the membrane, forming a large “Pt band” on the
membrane [76].

A particularly interesting class of platinum materials that are aimed to mitigate
stability issues are the “nanostructured thin-film” (NSTF) electrocatalysts innovated
by 3M. They consist of non-conductive organic crystalline whiskers as the support,
on which an ultrathin layer of platinum is deposited [77]. The polycrystalline
thin-film catalyst morphology and the absence of a conventional conductive
high-surface-area carbon support allow the NSTF catalysts to combine a
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polycrystalline-like surface-normalized ORR activity, with a low amount of noble
material required and an improved stability, since they are free from issues such as
support corrosion, Pt particle migration and coalescence, etc. [77, 78]. However, the
catalyst morphology introduces also disadvantages, such as the higher susceptibility
to flooding at low temperature of operation, which decreases limiting currents and
makes water management more complicated.

Returning to the volcano plot, the problem with platinum is that it binds oxygen
a bit too strongly, i.e. it is located at the left side of the ORR volcano in Fig. 2 [79,
80]. In a series of patents from the United Technologies Corporation (UTC) in
1980s, it was disclosed that binary or ternary PtCr, PtV or PtCrCo alloys are more
active for the ORR than pure platinum [81–85]. Since then, the strategy to weaken
the Pt–O bond to move closer to the top of the volcano has been to use such Pt–M
catalysts, where M is a late transition metal such as Cu, Ni, Co, Fe, etc. (see Fig. 2)
[79, 86–91] or alloys with more than one alloying element [92–94]. Alloying
platinum leads to a modification of the surface electronic properties, even though
the atoms of the alloying metal are not present at the surface as they are not stable
under the ORR conditions when in contact with the electrolyte. The enhancing
effect of the alloying metal atoms to the intrinsic ORR activity has been attributed
to bonding interactions between surface Pt and sub-surface M atoms (electronic or
ligand effect), and to the compressed arrangement of the surface Pt atoms due to the
shorter M–M interatomic distance below the surface (geometric or strain effect)
[89, 91]. Even though it is hard to decouple the two effects, the consequence of both
is to alter the chemisorption properties of the surface Pt atoms, and the alloying
metal atoms have a stronger impact when they are located closer to the surface (see
Fig. 5) [90, 91, 95, 96]. Therefore, ideally the alloying M metal must be located in
the second layer.

Fig. 5 Left Polarization curves for the ORR on polycrystalline platinum (grey curve),
skeleton-Pt3Fe (blue dashed curve) and skin-Pt3Fe (red curve), in 0.1 M HClO4 at 50 mV s−1.
Right Volcano-type plots of the experimentally measured ORR activity for various skin-Pt3M
surfaces at a temperature of 333 K. Reproduced from Ref. [91] with permission from the Nature
Publishing Group
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The activity enhancement for bimetallic Pt surfaces may depend strongly on the
surface atom arrangement: for Pt3Ni-skin

2 surfaces in HClO4, the ORR activity
increases by ca. 9 times for the Pt3Ni(111) versus Pt(111) and by only 2–2.5 times
for Pt3Ni(100) versus Pt(100) or for Pt3Ni(110) versus Pt(110) [97]. This alters the
order in which the ORR activity increases, from Pt3Ni-skin(100) to Pt3Ni-skin(110)
to Pt3Ni-skin(111) in HClO4 (compare with Pt(100) < Pt(111) ≈ Pt(100) in the
same solution) [97].

The situation is rather complex for nanoparticulate bimetallic catalysts, when the
goal is to obtain the maximum possible activity enhancement. The preparation
method and the post-treatment can have a significant impact on parameters such as
the size or the shape of the nanostructure, porosity, alloy composition, etc., which in
turn influence the ORR performance. As expected from the findings on extended
bimetallic surfaces described above, the ORR activity enhancement depends
strongly on the shape of the nanostructure. The ORR activity on carbon-supported
octahedral Pt3Ni particles (i.e. with a high ratio of (111) terraces) is by ca. 7 times
higher than the commercial Pt/C catalyst, whereas cubic Pt3Ni particles (i.e. with a
high ratio of (100) terraces) show little enhancement [98].

To increase platinum utilization, to decrease the amount of noble metal needed,
and to maximize the alloying effect, the approach that gained the largest interest is
the synthesis of nanostructures with a pure Pt shell and a Pt–M core, so-called core–
shell materials. The Pt shell is supposed additionally to protect the non-noble M
metal atoms in the core, where M is typically a late transition metal such as Cu, Co,
Ni, etc. However, as it will be described below, this is not really the case.
Nanostructures with a highly ordered core are more active and stable than disor-
dered particles [99–103] with the explanation being still under debate. For a
detailed description of the methods for the preparation of core–shell structures the
interested reader is referred to relevant reviews [104, 105]. In the following, we will
briefly mention only the two main preparation methods:

In dealloying, the less noble metal atoms of a bimetallic alloy are rapidly and
selectively dissolved. Classical dealloying involves the selective dissolution of the
less noble metal, i.e. of the metal with the least positive standard reduction potential
[106, 107]. The Strasser group showed that core–shell nanoparticles can be pre-
pared by an “electrochemical dealloying” process, in which an M-rich platinum
alloy precursor, e.g. PtCu3, is subject to cycling within a potential region where M
is unstable [89, 108, 109]. The interesting feature of dealloyed core–shell particles
is that the resulting structure and its activity/stability can be controlled by param-
eters such as the initial alloy composition, the dealloying or post-treatment con-
ditions, the size of the particle precursor, etc. [109].

2Pt-skeleton is the surface that remains after the dissolution of M metal atoms from Pt–M alloys
exposed to oxidizing conditions. Pt-skin is the surface which consists of a pure topmost atomic Pt
layer.
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Another method of core–shell preparation is based on the spontaneous galvanic
replacement of the non-noble material at the surface of the core by platinum. This
can be achieved using PdM (e.g. PdCu, PdCo) cores which result in a PdCu@Pt or
PdCo@Pt core–shell structure. Adzic and co-workers pioneered a more elegant
method of galvanic replacement, the so-called monolayer method; a copper
monolayer, formed by underpotential deposition on the surface of an M metal core,
is spontaneously oxidized by platinum ions which are reductively deposited. This
results in a core–shell structure with a monolayer of platinum enclosing an M core.
The metal core M can be Pd, Au, Ir, or even bimetallic such as PdNi. The method
was originally developed on model single-crystalline “cores” and extended to
nanostructured electrodes [90, 110–112].

Except for core–shell structures, other interesting approaches for the preparation
of bimetallic materials include alloys based on 3M’s NSTF technology (e.g. Pt3Ni7-
NSTF) [113] or the Pt3Ni-skin nanoframes [114]; the latter enhance the ORR
activity by 16 times compared to standard Pt/C catalysts.

The stability of bimetallic electrodes is an important issue, which limits their
application in real systems. The dissolution of platinum removes Pt surface atoms
from the protective shell, leading to the exposure of the otherwise protected
non-noble metal atoms to the electrolyte [115]. This eventually results in the dis-
solution of the alloying metal atoms from the first atomic layers and the thickening
of the protective Pt shell, so the enhancing effect from alloying decays with time.
Even worse is the fact that the dissolved metal ions deteriorate the fuel cell per-
formance further. For example, copper ions can be reduced and deposited at the
anode of the fuel cell [116], while nickel or cobalt ions can be deposited on the
membrane [113, 117].

DFT calculations predicted that alloys of platinum with rare earths (e.g. Pt3Y and
Pt3Sc) will be not only more active, but also more stable than pure platinum or other
Pt alloys [80]. The argumentation is based on the higher (more negative) enthalpy
for alloy formation of such alloys compared to those with late transition metals,
which is likely to render the diffusion of the alloying metal to the surface kinetically
more difficult [80, 118]. The correlation between the enthalpy for alloy formation
and the kinetic barrier for diffusion of the alloying element has been demonstrated
in a later publication [119]. The higher activity of model Pt5M alloys (M: a rare
earth or alkaline earth element such as Sc, Y, La, etc.) for the ORR was evidenced
experimentally by the Chorkendorff group and was attributed to strain
[118, 120–122]. The same group also showed the enhanced activity with nanos-
tructured electrodes [123, 124]. Long-term accelerated degradation tests on such
catalysts indeed showed that the selective dissolution of the second metal is slower;
however, there is still an activity loss with time and a concomitant thickening of the
platinum shell, for either extended or nanostructured surfaces [120, 125].

Due to the high cost and the limited crustal abundance of platinum, extensive
efforts to find alternative catalysts have been made. A good alternative to platinum
would exhibit high activity for the ORR, low cost, sufficient abundance and sta-
bility under the operation conditions of a fuel cell.
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Among other monometallic surfaces, mostly palladium has been considered as a
potential candidate. Palladium is the metal closest to platinum in the volcano plot
and its price is lower. For flame-annealed palladium single-crystal electrodes, the
ORR activity increases in the order Pd(110) < Pd(111) < < Pd(100) [126]. The
trend may be different for Pd(hkl) crystals annealed by other methods, e.g. inductive
heating [127]. Overall, the problems with palladium are that (i) its activity must still
increase to compete with platinum, (ii) it is significantly more susceptible to dis-
solution than Pt [21] and (iii) it is still a rather scarce metal, so a large-scale
technology would increase the demand and the price for Pd substantially.

Other approaches include the use of noble metal-free catalysts, such as
chalcogenides, oxides, carbides, nitrides, etc. [128]. The activity of such materials,
however, remains low compared to platinum. The most promising way to replace
platinum with catalysts free of noble metals is a class of materials noted generally as
Me–Nx/Cy, where Me is a transition metal, for example, iron (Fig. 6) [129]. The
first report on such materials showed that cobalt phthalocyanine can reduce O2 in
acidic solution; [130] later it was shown that also other Me–N4 chelates can catalyse
the reaction in either acid or alkaline [131, 132]. The activity of those catalysts was
decreasing with time because of catalyst decomposition by the formed H2O2 but
thermal treatment improves the stability of the catalyst likely by making it more
active for H2O2 decomposition [133, 134]. It has been, however, questionable
whether the metal centre is still a component of the active site or if the pyrolysis
results in a new catalyst, consisting of nitrogen and carbon [135–138]. Yeager and
co-workers showed later that it is not necessary to use Me–N4 chelates as the
precursor, but the catalyst can also be synthesized at high temperature by mixing a
Me salt with a carbon–nitrogen source [139], while Dodelet and co-workers showed
that the sources of carbon and nitrogen can be also different [140].

Fig. 6 ORR polarization curves for Fe–N–C catalysts and a Pt/C benchmark catalyst, recorded at
room temperature in O2-saturated pH 1 electrolyte at a rotation rate of 1,600 rpm. The current was
corrected for the background current measured in N2-saturated electrolyte. The potential was
corrected for the Ohmic drop. The catalyst loadings were 818 μgFe-N-C cm−2 or 16 μgPt cm−2. The
subscript shows the wt% Fe in the catalyst precursor, i.e. prior to any pyrolysis; Fe0.5-900 and
Fe0.5-950 were obtained after pyrolysis of Fe0.5 at 900 °C or 950 °C, respectively. Reproduced
from Ref. [129] with permission from the Nature Publishing Group
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The above progress indicated that (i) an important parameter for this class of
materials is the density of Me–N4 sites per unit volume, independent of whether
they serve as the active sites or as the precursors for the generation of active sites
after pyrolysis and (ii) the design of catalyst can be tailored by the careful choice of
the transition metal, the nitrogen, and the carbon source as these can be indepen-
dently added, as well as by following appropriate treatment procedures.

Following this notion, the Dodelet group synthesized a very active Fe–N/C cat-
alyst by increasing substantially the density of active sites [141]. They used initially a
mixture of a highly (micro)porous carbon support, a pore filler and ferrous acetate,
which was subject to ball milling to force the pore filler and the iron precursor into the
pores, and then was pyrolyzed first in Ar and then in NH3 to generate the Fe–N4

moieties on the carbon support. The high density of such moieties makes this catalyst
active for the ORR, so the activity reaches the ca. 90% of the activity of Pt/C [141].
The Zelenay group used heteroatom polymer precursors such as polypyrrole (PPy) or
polyaniline (PANI) as the template for nitrogen and carbon, aiming to a uniform
distribution and high density of Me–N4 sites. They initially showed that Co–PPy/C
catalyst exhibits respectable stability and activity without any pyrolysis step [142].
Later, they synthesized pyrolyzed Fe-, Co- and FeCo-PANI/C catalysts with activity
that almost matches the one of Pt/C and promising stability which was proposed to be
due to a graphitized carbon phase [143].

The ORR activity and selectivity on Me–N4 chelates (where Me: Fe, Mn, Co) is
related to the binding energy of O2, which in turn follows the redox potential for the
Me(III)/Me(II) transition [144]. Catalysts with weak O2 binding (i.e. positive redox
potential) reduce O2 to H2O2 and the onset potential shifts more positive in the RHE
scale by making the solution more alkaline. On the other hand, catalysts with strong
O2 binding (i.e. negative redox potential) reduce O2 to H2O2 and the onset potential
is independent of the pH in the RHE scale.

Overall, the progress made in the last ten years in ORR catalysis with non-noble
metals is impressive [128, 145]; however, the issue of stability and long-term
performance remains. In fact, non-noble metal catalysts also suffer from degrada-
tion when they are exposed to potentials above 0.9 V in acidic solutions. The main
origin of degradation is the oxidation of carbon, which leads to the destruction the
ORR-active FeNxCy sites, while iron leaching from iron particles occurs already at
lower potentials (<0.7 V) without though affecting the ORR activity [146].

5 Fundamentals of the HER and the HOR

The hydrogen evolution and the reverse oxidation reaction involve the transfer of
two electrons:

2H+ + 2e− ⇄H2 E = 0VvsRHE. ð16Þ
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The generally accepted mechanism for the HER/HOR involves the following
three elementary steps [147]:

H+ + * + e− ⇄Hads Volmer step ð17Þ

Hads + H+ + e− ⇄H2 Heyrovsky step ð18Þ

or

2Hads ⇄H2 + 2* Tafel step. ð19Þ

Thus, both reactions involve the intermediate formation of Hads, the binding
energy of which can be used as a descriptor for the construction of volcano plots
(Fig. 7), following a similar analysis as for the OER/ORR. The ideal catalyst for
both reactions adsorbs hydrogen with ΔG*H = 0, meaning that the energy of *H is
the same as that of H2 and H+. In that case, there are no uphill or downhill steps
during any of the two electron transfer steps in the corresponding energy diagram,
and thus this ideal case is associated with zero overpotential. If the binding is too
strong (ΔGH < 0), then the two reactions are associated with overpotential, because
the Heyrovsky/Tafel step limits the HER and the Volmer step limits the HOR. The
opposite occurs for too weak *H binding (ΔGH > 0).

6 Hydrogen Evolution Reaction

Trasatti has provided the most traditional expression of a kinetic volcano for the HER
[148], using the M–H bond energy as the activity descriptor. Platinum and other
Pt-group metals are located near or at the top of the volcano. In the interpretation of

Fig. 7 Thermodynamic
volcano plots for the HER and
the HOR, with the energy of
hydrogen adsorption as the
descriptor, assuming a
Volmer-Tafel/Heyrovsky
pathway. Reproduced from
[15] with permission from
Elsevier
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such an expression, however, one should take into account that the energies of *H
adsorption were calculated for bare metal surfaces, which is not really representative
of the conditions during the HER on all metals [149].

In fact, platinum catalyses the HER in acidic solutions with a very high rate, so
that the current is entirely limited by H+ diffusion [150, 151]. Therefore, conven-
tional RDE measurements cannot be used to estimate the kinetics of the HER on
platinum [151]. Moreover, no significant impact of the surface structure was found
for the HER on low-index Pt single crystals in acid [152]. The development of
platinum-free HER catalysts in acid has been explored to replace platinum in acid
electrolyzers, with sulfides, carbides or phosphides being the most promising
materials [153].

Contrary to acidic solutions, platinum is not as good a catalyst in alkaline (see
Fig. 8) [151]. The reaction is structure sensitive on Pt, which also contrasts with
acidic solutions, with the activity increasing in the order Pt(111) < Pt(100) < Pt
(110) [154]. The reason for the observed structure sensitivity only in alkaline
solutions and for the lower reaction rate compared to acid is still unknown [155].
The lower activity of Pt in alkaline solution implies higher cell voltage in an
alkaline electrolyzer, thus other catalysts must be developed to carry out the
reaction in alkaline solutions as fast as platinum does in acid. Nickel is a
state-of-the-art catalyst for the HER in alkaline solution [156]; however, the catalyst
deactivates and the cell voltage increases in the long term [157], which has been
attributed to the formation of hydrides [158]. One approach has been to modify
platinum with Ni(OH)2 clusters, which was found to increase the HER activity in
alkaline compared to pure Pt by a factor of 8 [155]. The promoting effect of this
modification was attributed to the enhancement of water splitting by Ni(OH)2,
while *H recombination still occurs on platinum, in a reaction that proceeds in a
bifunctional manner.

Fig. 8 HOR/HER polarization curves on polycrystalline platinum in 0.1 M HClO4 (a) and 0.1 M
KOH (b) at 1600 rpm. Solid black curves represent the voltammograms before iR-correction
(ERDE), dotted-red lines after iR-correction (iR-free) and dashed black curves the Nernstian
diffusion overpotential. Reprinted from Ref. [151] with permission from the Electrochemical
Society
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7 Hydrogen Oxidation Reaction

Platinum catalyses also the HOR with a very high rate in acid, so that the current is
entirely limited by H2 diffusion [150, 151]. The reaction is so fast that the current is
fully preserved even when the surface of platinum is covered by a surface modifier
such as calix[4]arene to a coverage of 98% [159]. Similar to the HER, the high
reaction rate makes it impossible to correctly measure kinetics for the HOR with
RDE measurements. Following the concept of the “floating electrode”3 which
allows extremely high mass transport rates of a gaseous reactant, Kucernak and
co-workers managed to record HOR curves with limited hydrogen mass transport
limitations [160], and the measured current densities were in the order of 0.5 A
cmPt

−2 (Fig. 9).
Similar to the HER, the HOR deviates from the ideal Nernstian behaviour in

alkaline solutions on platinum [151]. Indeed, the reaction is structure sensitive only
in alkaline media, with the activity increasing in the order Pt(111) ≈ Pt(100) << Pt
(110) at low positive overpotential [154]. At high potentials, the inhibition from the
adsorption of oxygenated species is stronger for Pt(100) and weaker for Pt(111)
[154]. The lower rate of the HOR in alkaline solution implies that a higher amount
of Pt (about 100 times) is required in an alkaline fuel cell to achieve the same

Fig. 9 HOR polarization curves using a “floating electrode” with a 2.2 μg cm−2 Pt/C catalyst
exposed to H2, run in 4.0 M HClO4, at 10 mV s−1. The inset shows the comparison of the floating
electrode measurement with the HOR on polycrystalline platinum using an RDE (6800 rpm) in
0.5 M HClO4. Reprinted from Ref. [160] with permission from the Royal Society of Chemistry

3The “floating electrode” is a three-electrode setup that consists of a porous gas diffusion working
electrode floating on an aqueous electrolyte. The reference and counter electrodes are immersed
into the solution. The reactant gas is supplied to the catalyst surface sites from the gas phase, on
top of the floating catalyst layer. The gaseous diffusion leads to extremely fast mass transport of
reactant gases to the catalyst layer.
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performance as for an acidic fuel cell. Nickel-based catalysts are the only materials
to date, to be successful in achieving HOR activities comparable to platinum in
alkaline solutions [161].

8 Summary

In conclusion, the electrocatalysis community has developed a good understanding
of the reactions involved in the hydrogen economy; the HER and OER for water
electrolyzers, and the HOR and ORR for fuel cells. The activity of each reaction on
different surfaces follows a volcano-type relationship where the adsorption energy
of a key reaction intermediate can be used as the descriptor, for example, *H for
HOR and HER and *O for ORR and OER. The highest activity is obtained for a
catalyst that exhibits moderate *H or *O binding, accordingly. However, for
reactions involving more than one intermediate (and typically involving more than
two electron and proton transfers), such as ORR and OER, energetic scaling
relations between intermediates (specifically *O, *OH and *OOH) limit the extent
to which a reversible catalyst with a very small overpotential can be achieved.
A minimal overpotential of ca. 0.25–0.3 V for both ORR and OER appears very
difficult to overcome. Computational and experimental tools offer today the
opportunity to prepare highly active materials that approach the performance of the
optimal catalyst predicted by current models. However, future models and com-
putational methods should focus on materials that can break the energetic scaling
relations between intermediates, to develop catalysts with significantly enhanced
properties compared to the current state-of-the-art electrocatalysts.

Despite the massive efforts that have been devoted to the development of
materials that operate in alkaline environments and with lower/no noble metal
content, the best systems remain to be acidic water electrolyzers or fuel cells, using
Pt for the HER, the HOR and the ORR, and IrO2 for the OER. However, such
systems can be a solution only for the small scale: to realize Bockris’ hydrogen
economy on a large scale we need to find a combination of materials for the two
electrodes that are abundant and but also stable in the long term. This is today the
biggest challenge, as it will decrease the cost per device, but will also massively
increase the number of devices that can be used worldwide.
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