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Abstract. Timed bisimulation is an important technique which can be
used for reasoning about behavioral equivalence between different com-
ponents of a complex real-time system. The verification of timed bisimu-
lation is a difficult and challenging problem because the state explosion
caused by both functional and timing constraints must be taken into
account. Timed bisimulation was shown decidable for Timed Automata
(TA). Distributed TA and TA with Independent Clocks (icTA) were
introduced to model Distributed Real-time Systems. They are a variant
of TA with local clocks that may not run at the same rate. In this paper,
we first propose to extend the theory of Timed Labeled Transition Sys-
tems to Multi-Timed Labeled Transition Systems, and relate them by an
extension of timed bisimulation to multi-timed bisimulation. We prove
the decidability of multi-timed bisimulation and present an EXPTIME
algorithm for deciding whether two icTA are multi-timed bisimilar. For
multi-timed bisimilarity, an extension of the standard refinement algo-
rithm is described.

1 Introduction

Distributed Real-Time Systems (DTS) are increasing with the scientific and
technological advances of computer networks. The high demand for computer
networks has caused the development of new complex applications which benefit
from the high performance and resources offered by modern telecommunica-
tions networks. Current researches in the area of DTS have emerged from the
need to specify and analyze the behavior of these systems, where both distrib-
uted behavior and timing constraints are present. Formal verification methods,
such as model checking, have been used to verify the correctness of complex
DTS. Model checking over DTS becomes rapidly intractable because the state
space often grows exponentially with the number of components considered. A
technique to reduce the state space is to merge states with the same behav-
iour. For untimed systems, the notion of bisimulation [13] is classically used to
this end, and its natural extension for real-time systems, timed bisimulation, was
already shown decidable for Timed Automata (TA) [2,12]. A timed automaton is
a finite automaton augmented with real-valued clocks, represented as variables
that increase at the same rate as time progresses. TA assume perfect clocks:
all clocks have infinite precision and are perfectly synchronized. In this paper,
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we study two variants of TA called Distributed Timed Automata (DTA) and
Timed Automata with Independent Clocks (icTA) proposed by [1,11,16] to
model DTS, where the clocks are not necessarily synchronized. TA have been
used to model DTS such as Controller Area Network [14] and WirelessHART
Networks [10]. But, TA, icTA and timed bisimulation are based on a sequential
semantics of a Timed Labelled Transition Systems (TLTS), i.e., a run of a TLTS
is given by a sequence of actions and timestamps.

Unfortunately, a sequential semantics does not describe completely the
behavior of the DTS, because interactions between processes with their associ-
ated local clocks that are running at the same rate and distribution of the actions
over the components are not considered. Also, model-checking and bisimulation
equivalence algorithms have been implemented in tools [19,20] for the sequen-
tial semantics used by the model (e.g., TA, TLTS, etc.). In contrast, behavioral
equivalences for DTS have only been introduced in [3]. It is, however, not clear
whether such equivalences agree with the distributed timed properties in DTS.
Therefore, we propose an alternative semantics to the classical sequential seman-
tics for TLTS and icTA: specifically, a run of a system in our alternative semantics
is given by the sequences of pairs (action, tuples of timestamps). We propose an
alternative semantics in order to be able to consider a semantics which expresses
the distribution of the actions and timestamps over the components. With this
alternative, it becomes possible to analyze the local behavior of the components
independently, thus enhancing the expressiveness of the TLTS (and icTA). We
introduce Multi-Timed Labelled Transition Systems (MLTS), an extension of
classical TLTS in order to cope with the notion of multiple local times, and we
propose efficient algorithms using refinement techniques [17].

Contributions. One of our main contributions is to incorporate a alternative
semantics over sequential semantics for TLTS and icTA. Also, we extend the clas-
sical theory of timed bisimulation with the notion multi-timed bisimulation and
their corresponding decision algorithms. We also present two algorithms: (i) a
forward reachability algorithm for the parallel composition of two icTA, which
will help us to minimize the state space exploration by our second algorithm, and
(ii) a decision algorithms for multi-timed bisimulation using the zone-based tech-
nique [5]. Multi-timed bisimulation is a relation over local clocks (and processes),
and cannot be computed with the standard partition refinement algorithm [17].
Instead, our algorithm successively refines a set of zones such that ultimately
each zone contains only multi-timed bisimilar pairs of states. Furthermore, we
show that our algorithm is EXPTIME-complete. Since TA are a special variant
of icTA, our work conservatively extends the expressiveness of TA and TLTS;
and since timed bisimulation over TA [19,20] can be regarded as a special case
of multi-timed bisimulation, our decision algorithms could potentially be used
to analyze complex DTS.

Structure of the Paper. After recalling preliminary notions in Sect. 2, we
introduce our alternative semantics for icTA in Sect. 3, based on multi-timed
words consumed by MLTS. Section 4 deals with bisimulation: we first define
multi-timed bisimulation, by adapting the classical definition to MLTS, then
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show its decidability by exhibiting an EXPTIME algorithm. Finally, Sect. 5 com-
pares our work with existing contributions, and Sect. 6 concludes. Due to space
constraints, some proofs are not given here, but stay available in a Technical
Report available online [15].

2 Preliminaries

We describe in this section the notations needed for formally defining Timed
Labelled Transition Systems (TLTS) and Timed Automata TA.

Timed Words. The set of all finite words over a finite alphabet of actions Σ
is denoted by Σ∗. Let N, R and R≥0 respectively denote the sets of natural,
real and nonnegative real numbers. A timed word [2] over Σ is a finite sequence
θ = ((σ1, t1), (σ2, t2) . . . (σn, tn)) of actions paired with nonnegative real numbers
(i.e., (σi, ti) ∈ Σ × R≥0) such that the timestamped sequence t = t1 · t2 · · · tn is
nondecreasing (i.e., ti ≤ ti+1). We sometimes define θ as the pair θ = (σ, t) with
σ ∈ Σ∗ and t a sequence of timestamps with the same length.

Clocks. A clock is a real positive variable that increases with time. Let X be
a finite set of clock names. A clock constraint φ ∈ Φ(X) is a conjunction of
comparisons of a clock with a natural constant c: with x ∈ X, c ∈ N, and
∼ ∈ {<, >, ≤, ≥, =}, φ is defined by

φ ::= true | x ∼ c | φ1 ∧ φ2

A clock valuation ν ∈ R
X
≥0 over X is a mapping ν : X → R≥0. For a time value

t ∈ R≥0, we note ν + t the valuation defined by (ν + t)(x) = ν(x) + t. Given a
clock subset Y ⊆ X, we note ν[Y → 0] the valuation defined as follows: ν[Y ← 0]
(x) = 0 if x ∈ Y and ν[Y ← 0](x) = ν(x) otherwise. The projection of ν on Y,
written ν
Y, is the valuation over Y containing only the values in ν of clocks
in Y.

Timed Automata (TA). A TA is a tuple B = (Σ,X, S, s0,→ta, I, F ) where
Σ is a finite alphabet, X a clock set, S a set of locations with s0 ∈ S the initial
location and F ⊆ S the set of (sink) final states, →ta⊆ S ×Σ ×Φ(X)×2X ×S is
the automaton’s transition relation, I : S → Φ(X) associates to each location a
clock constraint as invariant. For a transition (s, φ, a, Y, s′) ∈→ta, we classically

write s
φ,a,Y−−−−→ s′ and call s and s′ the source and target location, φ is the guard,

a the action or label, Y the set of clocks to be reset. During the execution of a
TA B, a state is a pair (s, ν) ∈ S × R

X
≥0, where s denotes the current state with

its accompanying clock valuation ν, starting at s0, ν0 where ν0 maps each clock
to 0. We only consider legal states, i.e. states that satisfy ν � I(s) (i.e. valuations
that map clocks to values that satisfy the current state’s invariant).

Timed Transition System (TLTS). The transition system TLTS(B) generated
by B is defined by TLTS(B) = (Q, q0, Σ,→tlts), where Q is a set of legal states
over B with initial state q0 = (s0, ν0), Σ a finite alphabet and →tlts ⊆ Q ×
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(Σ � R≥0) × Q is the TLTS transition relation defined by: (a) Delay transition:

(s, ν) t−→ (s, ν + t) for some t ∈ R≥0, iff ν + t � I(s), (b) Discrete transition:

(s, ν) a−→ (s′, ν′), iff s
φ,a,Y−−−−→ s′, ν � φ, ν′ � ν[Y → 0] and ν′ � I(s′).

3 An Alternative Semantics for DTA

In this section, we define an alternative semantics (which we will call multi-timed
semantics) for icTA as opposed to the mono-timed semantics of [1]. The main
problem with the semantics of [1] is that they use the reference time. The benefits
of this new definition are threefold. First, the multi-timed semantics preserves
the untimed language of the icTA. Second, the multi-timed semantics can work
with multi-timed words. Third, the region equivalence defined in [1] could form
a finite time-abstract bisimulation on the multi-timed semantics. Hence, the
multi-timed semantics allows to build a region automaton that accepts exactly
Untime(L(A)) for all icTA A [1]. Thus, we extend TLTS and icTA to their multi-
timed version.

3.1 Multi-timed Actions

Let Proc be a non-empty set of processes, then, we denote by R
Proc
≥0 the set of

functions from Proc to R, that we call tuples. A tuple d ∈ R
Proc
≥0 is smaller that

d′, noted, d < d′ iff ∀i ∈ Proc di ≤ d′
i and ∃i ∈ Proc di < d′

i. A Monotone
Sequence of Tuples (MST) is a sequence d = d1d2 · · ·dn of tuples of RProc

≥0 where:
∀j ∈ 1 · · · n − 1, dj ≤ dj+1. A multi-timed word on Σ is a pair θ = (σ,d) where
σ = σ1σ2 . . . σn is a finite word σ ∈ Σ∗, and d = d1d2 . . .dn is a MST of the
same length. This is the analog of a timed word (or multi-timed action) [2]. A
multi-timed word can equivalently be seen as a sequence of pairs in Σ × R

Proc
≥0 .

3.2 Multi-timed Labeled Transition Systems

Our multi-timed semantics is defined in terms of runs that record the state and
clock values at each transition points traversed during the consumption of a
multi-timed word. Instead of observing actions at a global time, a multi-timed
word allows to synchronise processes on a common action that may occur at a
specific process time.

Definition 1 (Multi-timed Labelled Transition System). A Multi-Timed
Labelled Transition System (MLTS) over a set of processes Proc is a tuple M =
(Q, q0, Σ,→mlts) such that: (i) Q is a set of states. (ii) q0 ∈ Q is the initial
state. (iii) Σ is a finite alphabet. (v) →mlts⊆ Q × (Σ � R

Proc
≥0 ) × Q is a set of

transitions.

The transitions from state to state of a MLTS are noted in the following way:
(i) A transition (q, a, q′) is denoted q a−→ q′ and is called a discrete transition, if
a ∈ Σ and (q, a, q′) ∈→mlts, (ii) A transition (q,d, q′) is denoted q d−→ q′ and is
called a delay transition, if d ∈ R

Proc
≥0 and (q,d, q′) ∈→mlts.
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Fig. 1. Multi-timed and Timed Labelled Transition Systems

A run of M can be defined as a finite sequence of moves, where discrete
and continuous transitions alternate: ρ = q0

d1−→ q′
0

a1−→ q1
d2−→ q′

1
a2−→ q2 . . .

qn−1
dn−1−−−→ q′

n−1

an−1−−−→ qn, where ∀0 ≤ i ≤ n − 1, qi ∈ Q,∀j ≤ n −
1,dj ∈ R

Proc
≥0 , q′

j ∈ Q and aj ∈ Σ. The multi-timed word of ρ is θ =
((a1, t1), (a2, t2) . . . , (an, tn)), where ti =

∑i
j=1 dj . A multi-timed word θ is

accepted by M iff there is a maximal initial run whose multi-timed word is
θ. The language of M, denoted L(M), is defined as the set of multi-timed words
accepted by some run of M. Note that MLTS are a proper generalisation of
TLTS: each TLTS can be seen as a MLTS with a single process and conversely.

For example, consider the two transition systems in Fig. 1: a MLTS on the left
(M1) and two TLTS on the right (M2 and M3) with the finite input alphabet
Σ = {a, b, c}. In brief, M2 and M3 could be considered as the projection of M1

on the case of process 1 and 2.

3.3 A Multi-timed Semantics for icTA

DTA [1,11] consist of a number of local timed automata. In [1], DTA are not
much studied. Instead, their product is first computed, giving rise to the class
of icTA (A = (B, π), where B is a TA and π is a function maps each clock to a
process).

Given π : X → Proc, a clock valuation ν : X → R≥0 and d ∈ R
Proc
≥0 : the

valuation ν +π d is defined by (ν +π d)(x) = ν(x)+dπ(x) for all x ∈ X. A Rate is
a tuple τ = (τq)q∈Proc of local time functions. Each local time function τq maps
the reference time to the time of process q, i.e., τq : R≥0 −→ R≥0. The functions
τq must be continuous, strictly increasing, divergent, and satisfy τq(0) = 0. The
set of all these tuples τ is denoted by Rates.

The operational semantics of an icTA has been associated to a sequential
semantics. A run of an icTA A for τ ∈ Rates with a sequential semantics as a
sequence (s1, ν1)

t1,a1−−−→ (s2, ν2)
t2,a2−−−→ (s2, ν3) . . . (sn−1, νn−1)

tn−1,an−1−−−−−−−→ (sn, νn)
where ∀1 ≤ i ≤ n, si ∈ S and ∀j ≤ n − 1, tj ∈ R≥0 and aj ∈ Σ. Here, we want
to associate operational semantics of a icTA to a MLTS.
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Fig. 2. (a) An icTA M, (b) An counter example of Multi-timed bisimulation

Definition 2. Let A be an icTA and τ ∈ Rates. Our multi-timed semantics of
the icTA A is given by a MLTS over Proc, denoted by MLTS(A, τ) = (Q, q0,
Σ,→mlts). The set of states Q consists of triples composed of a location, a clock
valuation and lastly the reference time: Q = {(s, ν, t) ∈ S×R

X
≥0×R≥0 | ν |= I(s)}.

The starting state is q0 = (s0, ν0, 0), where ν0 is the valuation that assigns 0 to
all the clocks. Σ is the alphabet of A. The transition relation →mlts is defined by:

(i) A transition (qi,d, q′
i) is denoted qi

d−→ q′
i, and is called a delay transition,

where qi = (si, νi, ti), q′
i = (si, νi +π d, ti+1), d = τ(ti+1) − τ(ti) and ∀t ∈

[ti, ti+1] : νi +π (τ(t) − τ(ti)) |= I(si).
(ii) A transition (qi, a, qi+1) is denoted qi

a−→ qi+1, and is called a discrete
transition, where qi = (si, νi, ti), qi+1 = (si+1, νi+1, ti+1), a ∈ Σ, there exists
a transition (si, a, φ, Y, si+1) ∈→ic, such that νi |= φ, νi+1 = νi[Y → 0],
νi+1 |= I(si+1), ti = ti+1.

In Definition 2, we have introduced a multi-timed semantics for icTA, follow-
ing ideas of [1]. A run of an icTA A for τ ∈ Rates with our multi-timed semantics
is an initial path in MLTS(A, τ) where discrete and continuous transition alter-
nate. A multi-timed word is accepted by A for τ ∈ Rates iff it is accepted by
MLTS(A, τ).

Example 1. The Fig. 2(a) shows an icTA M with the finite input alpha-
bet Σ = {a, b, c, d}, the set of processes Proc = {p, q}, the set of clocks
X = {xp, yq} and τ = (2t, t) i.e. τp(t) = 2t and τq(t) = t. A run of M
on multi-timed word θ = ((a, (2.0, 1.0))(b, (3.0, 1.5))(c, (4.2, 2.1))(d, (6.0, 3.0)))

is given by ρ (S0, [xp = 0.0, yq = 0.0], 0.0)
(2.0,1.0)−−−−−→ (S0, [xp = 2.0, yq =

1.0], 1.0) a−−→ (S1, [xp = 2.0, yq = 0.0], 1.0)
(1.0,0.5)−−−−−→ (S1, [xp = 3.0, yq = 1.5],

1.5) b−−→ (S2, [xp = 3.0, yq = 1.5], 1.5)
(1.2,0.6)−−−−−→ (S2, [xp = 4.2, yq = 1.1], 2.1)

c−−→ (S1, [xp = 4.2, yq = 0.0], 2.1)
(1.8,0.9)−−−−−→ (S1, [xp = 6.0, yq = 0.9], 3.0) c−−→

(S0, [xp = 0.0, yq = 0.9], 3.0).

4 Multi-timed Bisimulation

From a distributed approach, a DTS consist of several processes with their asso-
ciated local clocks that are not running at the same rate. Thus, in order to
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formalize preservation of distributed timed behavior, we extend the classical
definition of timed bisimulation [9] towards a multi-timed semantics. Our motiva-
tion for extending the classical definition of timed bisimulation is twofold: first,
efficient algorithms checking for timed and time-abstract bisimulation have been
discovered [12,19]. Nonetheless, these algorithms are based on sequential seman-
tics (i.e., TLTS and TA). Second, verifying the preservation of distributed timed
behavior in DTS could be used to master the combinatorial explosion of the size
of the model due to the composition of the processes.

4.1 Strong Multi-timed Bisimulation

Let M1 and M2 be two MLTS over the same set of actions Σ and processes Proc.
Let QM1 (resp., QM2) be the set of states of M1 (resp., M2). Let R be a binary
relation over QM1

× QM2
. We say that R is a strong multi-timed bisimulation

whenever the following transfer property holds (note that technically this is
simply strong bisimulation over Σ � R

Proc
≥0 ):

Definition 3. A strong multi-timed bisimulation over MLTS M1, M2 is a
binary relation R ⊆ QM1 × QM2 such that, for all qM1

RqM2
, the following

holds:

(i) For every a ∈ Σ and for every discrete transition qM1

a−−→M1 q′
M1

, there
exists a matching discrete transition qM2

a−−→M2 q′
M2

such that q′
M1

Rq′
M2

and symmetrically.
(ii) For every d = (d1, . . . , dn) ∈ R

Proc
≥0 , for every delay transition qM1

d−−→M1

q′
M1

, there exists a matching delay transition qM2

d−−→M2 q′
M2

such that
q′
M1

Rq′
M2

and symmetrically.

Two states qM1
and qM2

are multi-timed bisimilar, written qM1
≈ qM2

, iff
there is a multi-timed bisimulation that relates them. M1 and M2 are multi-
timed bisimilar, written M1 ≈ M2, if there exists a multi-timed bisimulation
relation R over M1 and M2 containing the pair of initial states.

As a consequence of Definition 3, the notion of multi-timed bisimulation
extends to icTA and we have the following definition:

Definition 4. Let A and B be two icTA. We say the automata A and B
are multi-timed bisimilar, denoted A ≈ B, iff ∀ τ ∈ Rates MLTS(A, τ) ≈
MLTS(B, τ).

When there is only one process, the multi-timed bisimulation is the usual timed
bisimulation. Consider the two icTA Ap (top) and Aq (bottom) in Fig. 2(b)
with the alphabet Σ = {a}, the set of processes Proc = {p, q}, the set of clocks
X = {xp, yq} and τ = (t2, 3t) i.e. τp(t) = t2 and τq(t) = 3t. Ap and Aq in Fig. 2(b)
depicts an icTA. Ap performs nondeterministically the transition with the guard
xp ≤ 2, the action a, resets clock xp to 0 and enters location s1. Similarly, Aq

performs nondeterministically the transitions with the guard yq ≤ 2, the action
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a, resets clock yq to 0 and enters location t1. We will show that these icTA are not
multi-timed bisimilar (Definition 3) ever if their underling TA are bisimilar (and
ever isomorphic): We have (S0, [xp = 0], 0) in MLTS(Ap, τp) and (T0, [yq = 0], 0)

since Ap can run the delay transition (S0, [xp = 0], 0)
(1,3)−−−→ (S0, [xp = 1.0], 1)

and Aq in MLTS(Aq, τq). We have (S0, [xp = 0], 0) �≈ (T0, [yq = 0], 0) can only

match this transition with (T0, [yq = 0], 0)
(1,3)−−−→ (T0, [yq = 3], 1). From these

states MLTS(Ap, τp) can fire a while MLTS(Aq, τq) cannot.

4.2 Decidability

Inspired by [12], we show that for given icTA A, B, checking whether A ≈ B is
decidable via a suitable zone graph [12]. In order to define the notion of clock
zone over a set of clocks X, we need to consider the set Φ+(X) of extended clock
constraints.

Definition 5. A clock constraint φ is a conjunction of comparisons of a clock
with a constant c, given by the following grammar, where φ ranges over Φ+(X),
xi, xj ∈ X, c ∈ N, and ∼ ∈ {<, >, ≤, ≥, =}:

φ ::= true | xi ∼ c | xi − xj ∼ c | φ1 ∧ φ2.

A clock constraint of the form xi − xj ∼ c is called diagonal constraint and
xi, xj must belong to the same process. The notion of satisfaction of a clock
constraint φ ∈ Φ+(X) by a valuation is given by the clause ν |= xi − xj ∼ c iff
ν(xi) − ν(xj) ∼ c.

Informally, a clock zone Z is a conjunction of extended clock constraints φ ∈
Φ+(X) with inequalities of clock differences and its semantics is the set of clock
valuations that satisfy it [[Z]] = {ν | ν |= φ}. We omit the semantics brackets
([[Z]]) when obvious. For any clock zones Z, Z ′ and finite set of clocks X, the
semantics of the intersection, clock reset, inverse clock reset, time successor and
time predecessor events on clock zone can be defined as: (i) Z ∩ Z ′ = {ν | ν ∈
Z ∧ ν ∈ Z ′}, (ii) Z ↓X= {ν[X → 0] | ν ∈ Z }, (iii) Z ↑X= {ν | ν[X → 0] ∈
Z }, (iv) Z ↑= {ν +π d | ν ∈ Z and d ∈ R

Proc
>0 }, (v) Z ↓= {ν −π d | ν ∈

Z and d ∈ R
Proc
>0 }.

A zone graph [12] is similar to a region graph [2] with the difference that each
node consists of pair (called a zone) of a location s and a clock zone Z (i.e., q =
(s,Z)). For q = (s,Z), we write (s′, ν) ∈ q if s = s′ and ν ∈ Z, indicating
that a state is included in a zone. Analogously, we can write (s,Z) ⊆ (s′,Z ′) to
indicate that s = s′ and Z ⊆ Z ′. We will use the notation Action(e) to denote
the action a of the edge e. Furthermore, we extend the zone operations for an
icTA A in the following way:

Definition 6. Let q = (s,Z) be a zone and e = (s, a, φ, Y, s′) ∈ →icta

be a transition of A, then post(Z, e)={ν′|∃ν ∈ Z,∃τ ∈ Rates,∃t ∈ R≥0,

(s, ν, t) e−→mlts(A,τ) (s′, ν′, t)} is the set of valuations that q can reach by tak-
ing the transition e.
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Definition 7. Let q = (s,Z ′) be a zone and e = (s, a, φ, Y, s′) ∈ →icta

be a transition of A, then pred(Z ′, e)={ν|∃ν′ ∈ Z ′,∃τ ∈ Rates,∃t ∈ R≥0,

(s, ν, t) e−→mlts(A,τ) (s′, ν′, t)} is the set of valuations that q can reach by exe-
cuting the transition e.

Intuitively, the zone (s′, post(Z, e)) describes the discrete successor of the
zone (s,Z) under the transition e, and the zone (s, pred(Z ′, e)) describes the
discrete predecessor of the zone (s′,Z ′) under the transition e.

Definition 8 (Multi-timed Zone Graph). Given an icTA A = (Σ,X,S,
s0, →icta, I,F, π), its symbolic multi-timed zone graph (ZG(A)) is a transition
system ZG(A) = (Q, q0, (Σ∪{↑}),→ZG), where: (i) Q consists of pairs q = (s,Z)
where s ∈ S, and Z ∈ Φ+(X) is a clock zone with Z ⊆ I(s). (ii) q0 ∈ Q is the
initial zone q0 = (s0,Z0) with Z0 = �

∧
x∈X x = 0�. (iii) Σ is the set of labels of

A. (iv) →ZG ⊆ Q×(→icta ∪{↑})×Q is a set of transitions, where each transition
in ZG(A) is a labelled by a transition e = (s, a, φ, Y, s′) ∈ →icta, where s and s′

are the source and target locations, φ is a clock constraint defining the guard of
the transition, a is the action of the edge and Y is the set of clocks to be reset
by the transition in the icTA A. For each e ∈ Σ, transitions are defined by the
rules:

(i) For every e=(s, a, φ, Y, s′) and clock zone Z, there exists a discrete transition
(q, e, q′), where q = (s,Z) e−→ZG q′ = (s′, post(Z, e)) if post(Z, e) �= ∅.

(ii) For a clock zone Z, there exists a delay transition (q, ↑, q′), where q =

(s,Z)
↑−→ZG q′ = (s,Z ′) and Z ′ = Z ↑ ∩ I(s).

Note that ↑ is used here as a symbol to represent symbolic positive delay transi-
tions. Only the reachable part is constructed.

Lemma 1. Let (s,Z) be a zone and e = (s, a, φ, Y, s′) ∈→icta be a transition of
an icTA A, then Z ↑, Z ↑x, Z ↓, post(Z, e) and pred(Z ′, e) are also zones.

Multi-timed Zone Graph Algorithm: In Algorithm 1, we build a reachable
multi-timed zone graph (ZG(A ‖ B)) for the parallel composition of two icTA
(A and B). Algorithm 1 build a multi-timed zone graph, starting with the pair
(s0,Z0) (s0 initial location of the automaton A with Z0 = �

∧
x∈X x = 0� rep-

resents the initial zone). However, the multi-timed zone graph can be infinite,
because constants used in zones may grow for ever. Therefore, we use a technique
called extrapolation abstraction (Extra+

LU(s)
(LU -bound)) [4,7], where L is the

maximal lower bound and U is the maximal upper bounds. For every location
s of a ZG(A), there are bound functions LU and the symbolic zone graph using
Extra+

LU(s)
. Then, we build zones of the form qZG = (s,Extra+

LU(s)
(post(Z, e)).

Lemma 2 (Completeness). Let θ = (s0, ν0, t0)
d0,a0−−−→ (s1, ν1, t1)

d1,a1−−−→ . . .
dn−1,an−1−−−−−−−→ (sn, νn, tn) be a run of MLTS(A, τ), for some τ ∈ Rates. Then, for
any state (si, νi, ti) where 0 ≤ i ≤ n, there exists a symbolic zone (si,Zi) added
in Q such that νi ∈ Zi.
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The above lemma tells that the Algorithm 1 over-approximates reachability.
Now, we can establish the termination of the Algorithm 1, because there
are finitely many Extra+

LU(s)
zones. Here, we will use Algorithm 1 to over-

approximate the co-reachable state space of the two icTA A and B, on the
strongly synchronized product of A and B. The time complexity of this algo-
rithm is given in terms of the number of clocks, the number of clocks and the
number of transitions of the icTA: O(|S| × | →icTA | × |X|2)) where |S| represent
the number of states in the icTA A, |X| the number of clocks in A and | →icTA |
the number of transitions in A.

Algorithm 1. Reachable Multi-timed Zone Graph with subsumption

Input : An icTA C = (Σ,X,S, s0, →icta, I,F, π).
Output: A reachable zone graph ZG(C) = (Q, q0, Σ, →ZG).

1 // s ∈ S is a location of C, Z1≤i≤3 are clock zones.
2 // TZG is a set of transitions (i.e. →ZG= TZG), EZG is a set of labels.
3 // D and Q are a set of pairs S × Z, D is the set of open states.
4 Function BuildSymbZoneGraph(C)
5 q0 = (s0, Z0) such that for all x ∈ X and ν ∈ Z0, ν(x) = 0 ;
6 Q, D ← {q0}, TZG ← ∅, M ← ∅ ;
7 while D �= ∅ do
8 Choose and Remove (s, Z1) from D ;

9 for each transition e = (s, a, φ, Y, s′) ∈→icta such that Z1 ∧ φ �= ∅ do
10 // Z2 is the successor

11 Z2 ← Extra+
LU(s)

(post(Z1, e)) ;

12 EZG ← EZG ∪ {e} ;

13 if exists (s′, Z3) ∈ Q such that Z2 ⊆ Z4 then

14 TZG ← TZG ∪ {(s, Z1)
e−→ZG (s′, Z3)} ;

15 else

16 TZG ← TZG ∪ {(s, Z1)
e−→ZG (s′, Z2)} ;

17 Q ← Q ∪ {(s′, Z2)}, D ← D ∪ {(s′, Z2)} ;

18 end

19 end
20 Z2 ← Z1 ↑ ∧ I(s) ;
21 if exists (s, Z3) ∈ Q such that Z2 ⊆ Z3 then

22 TZG ← TZG ∪ {(s, Z1)
↑−→ZG (s, Z3)} ;

23 else

24 TZG ← TZG ∪ {(s, Z1)
↑−→ZG (s′, Z2)} ;

25 Q ← Q ∪ {(s, Z2)}, D ← D ∪ {(s, Z2)} ;

26 end

27 end
28 return (Q, q0, Σ, →ZG) ;

29 end

Refinement Algorithm: Now, we describe a refinement algorithm with sig-
nature to compute the multi-timed bisimulation from their zone graph of
their strong product ZG(ZG(A ‖ B)). The passage of arbitrary local times are
abstracted by time elapse ↑ transitions from a zone to successor zones, and dis-
crete transitions. Essentially, our algorithm is based on the refinement technique
[6,17,19]. The state space Q of ZG(A ‖ B) is divided in zones that initially
over-approximate the co-reachable states of A and B. Algorithm 2 starts from
an initial set of zones Π0 and successively refines these sets such that ultimately
each zone contains only bisimilar state pairs.



62 J. Ortiz et al.

The runs of a zone graph involve a sequence of moves with discrete and
time-elapse ↑ transitions. The refinement algorithm has thus to deal with the
following difficulties: when taking a ↑ transition, where the clocks in different
processes are not perfectly synchronous, it should take into consideration that the
time elapse traverses continuously diagonal, almost vertical and horizontal time
successor zones. Conversely, when the clocks belonging to the same process (i.e.,
perfectly synchronous), the time elapsing traverses only continuously diagonal
time successor zones. Thus, the time refinement operator presented in [19] is
not applicable within our Algorithm2. Figure 3 presents an example: (a) a time
elapsing traversing the clock regions 1 to 3 for synchronous clocks, (b) a time
elapsing traversing continuously diagonal, almost horizontal and vertical time
successor zones for asynchronous clocks.

Fig. 3. (a) A time elapsing traversing 0 to 3, (b) Multi-timed time successors.

The discrete refinement operator presented in [19] is also not applica-
ble within our Algorithm 2. Therefore, our algorithm adopts the idea of the
signature-based technique [6], which assigns states to equivalence blocks accord-
ing to a characterizing signature. In each refinement iteration, the set of zones
are refined according to a signature. The algorithm in [6], cannot be applied in
our setting in a straightforward way, due to its untimed characteristic, while in
our case, the time and discrete characteristics should be considered. Based on
[6], we introduce a signature refinement operator which refine the set of zones
until a fixed point is reached, which is the complete multi-timed bisimulation.
Thus, we introduce the timed and discrete predecessor operators.

Definition 9. Let q = (s,Z) and q′ = (s,Z ′) be two zones, then: TimePred↑(Z,
Z ′) = {ν ∈ Z | ∃ d ∈ R

Proc
>0 , ∃ τ ∈ Rates, ∃ t, t′′ ≥ 0, t ≤ t′′ and ∀t′, t ≤ t′ ≤

t′′, and d = τ(t′′)− τ(t), (ν +π d) ∈ Z ′, and d′ = τ(t′)− τ(t) then (ν +π d′) ∈
(Z ∪ Z ′)} is the set of valuations in the zone Z from which a valuation of Z ′

can be reached through the elapsing of time, without entering any other zones
besides Z and Z ′ (i.e., Z ∪ Z ′).

The TimePred↑(Z,Z ′) operator refines Z selecting the states that can
reach Z ′.
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Lemma 3. Let q = (s,Z), q′ = (s,Z ′) ∈ Q be two zones, then TimePred↑
(Z,Z ′) is a clock zone.

We use as signature of a state (s, ν) the set of outgoing transitions from
(s′, ν′). Then, a refinement of a zone can be computed by grouping states that
have the same signature. The resulting set of zones then represents the multi-
timed bisimulation relation: two states (s, ν) and (s′, ν′) are multi-timed bisimilar
iff they are in the same zone with similar outgoing transitions. Formally, this is
captured in the following definition:

Definition 10. Let q = (s,Z) be a zone, then the signature of a state (s, ν) ∈
q formed by the set of labels of all the edges starting from (s, ν) is defined as:

ActionSigPredq(s, ν) = {(Action(e)) | ∃Z ′, ∃ ν′ ∈ Z ′, (s, ν)
Action(e)−−−−−−→icTA

(s′, ν′)}. Also, the signature of the zone q is defined as: ActionSig(q) =
⋃

(s,ν)∈q

ActionSigPredq(s, ν).

ActionSigPredq(s, ν) operator is used to compute the signatures of a state into
a zone. Our Algorithm 2 consists of two steps: The initial phase, is responsible for
keeping a pair of states in q into zones so that every pair of states (i.e., ((sA, sB),
(νA, νB))) from the same zone q have the same signature ActionSigPredq

(sA, νA) = ActionSigPredq(sB, νB). The refinement phase, consists of comput-
ing the timed predecessors (see Definition 11 below) and the discrete signature
predecessors (see Definition 12 below) until a stable set of zones is reached. Stable
zone are a multi-timed bisimulation relation if every pair of states of every zone
in the set have the same signature with respect to every computed refinement.
A detailed explication about building a stable zones follows:

– Initial phase: Let Π0 = Q be the initial set of zones, where Q is given by Algo-
rithm1. After the initial phase, the set Π contains zones consisting of states
with unique signatures, ActionSigPredq(sA, νA) = ActionSigPredq(sB, νB).

– Refinement phase: An existing set of zones are iteratively refined until all
zones becomes stable simultaneously with respect to all their timed predeces-
sors and discrete predecessors. For simplicity, we will write (s,Z) to denote
the pairs ((sA, sB),Z).

Definition 11. Let Π be a set of zones and q = (s,Z), q′ = (s′,Z ′) be two
zones in Π. Then for the delay transitions, the refinement function is defined as
follows:

TimeRefine(Z,Π) = {TimePred↑(Z,Z ′) | Z ′ ∈ Π, q
↑−→Π q′}.

Definition 12. Let Π be a set of zones and q = (s,Z), q′ = (s′,Z ′) be two
zones in Π. Let q = (s,Z) be the currently examined zone and ActionSig(q) be
the signatures of the set of states into the zone q. Let eA and eB be the transitions
of the icTAs A and B. Then the refinement of a zone q is defined as follows:

DiscreteSigRefine(Z,Π) =
⋂

a∈ActionSig(q)((
⋂

{eA|Action(eA)=a}
⋃

{eB|Action(eB)=a}
pred(Z ′, (eA, eB)))∩(

⋂
{eB | Action(eB)=a}

⋃
{eA | Action(eA)=a} pred(Z ′, (eA, eB)))).
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Lemma 4. Let (s,Z) be a class of Π and let e be an edge of the ZG(C), then
each of TimeRefine(Z,Π) and DiscreteSigRefine(Z,Π) forms a partition of Z in
zones.

The correctness of the Algorithm 2 follows from the algorithm in [6,17]. The
definition TimeRefine(Z,Π) above to generate a finer set of zones, which deals
with delay transitions. The definition of DiscreteSigRefine(Z,Π), generate also
a finer set of zones and distinguishes the states with discrete transitions. Ter-
mination is ensured by Lemma 4. Algorithm 2 describes the main steps of the
decision procedure for multi-timed bisimulation checking. It is based on the func-
tion BuildSymbZoneGraph (i.e., Algorithm 1). The function PartitionZoneGraph
returns stable set of zones Π. Given a set of zones Π, the Algorithm 2 computes
the states ((sA, sB),Z) from Π that are bisimilar up to the desired initial state
((s0A, s0B),Z0).

Algorithm 2. The partition refinement algorithm for a reachable ZG

Input : A ZG(C) = (Q = QA × QB, q0 = (q0A, q0B), Σ = ΣA ∪ ΣB, →ZG), Π.
Output: A coarsest partition Π.

1 // q ∈ Q is a zone of ZG(C), Π is a set of zones, Z, Z′ are clock zones.
2 // Q is a set of pairs S × Z.
3 Function PartitionZoneGraph(ZG(C), Π)
4 // Phase I - Get the input partition Π

5 Π′ ← Π ;
6 Repeat
7 // Phase II - Refine Π′ by delay transitions:

8 for each zone (or block) Z ∈ Π′ do
9 Π′ ← TimeRefine(Z, Π′) ;

10 end

11 // Phase III - Refine Π′ by discrete transitions:

12 for each zone (or block) Z ∈ Π′ do
13 Π′ ← DiscreteSigSplit(Z, Π′) ;
14 end

15 Until Π′ does not change;

16 Return Π′ ;

17 end

Proposition 1. Let q = (s,Z) be a zone. Let (sA, νA) and (sB, νB) be two states
in q, then (sA, νA) ≈ (sB, νB) iff ((sA, sB), νA ∪ νB) ∈ Z.

Theorem 1. Deciding multi-timed bisimulation between two icTA is EXPTIME-
complete.

An example of the zone graph, partition and multi-timed bisimulation com-
puted by our algorithms can be found in Fig. 4. The Fig. 4(a) shows two icTA
A and B with the finite input alphabet Σ = {a, b}, the set of processes Proc =
{p, q}, the set of clocks X = {xp, yq} and τp > τq. The Fig. 4(b) shows the zone
graph computed by Algorithm1. The Fig. 4(c) shows the multi-timed bisimula-
tion for A and B.
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Fig. 4. (a) Composition of icTAs; (b) Zone graph; (c) bisimulation

5 Related Work

Because TA are a general-purpose formalism, several implementations and exten-
sions have been considered. For example, Puri [18] studied the semantics of
robustness timed automata where clocks can drift in a bounded way, i.e. clocks
may grow at independent rates in the interval 1 ± ε. Krishnan [11] considered
asynchronous distributed timed automata, where clocks evolve independently in
each component. Akshay et al. concentrate on the untimed language of DTA. In
a previous work [16], we suggested a model that has the same expressive power
as event clock automata [2], but without studied possible simulation algorithms.

The notion of bisimulation for TA is studied in various contributions
[4,8,9,19,20]. Cerans [9] gives a proof of decidability for timed bisimulation.
Several techniques are used in the literature for providing algorithms capable of
checking (bi-)simulation: Weise and Lenzkes [20] rely on a zone-based algorithm
for weak bisimulation over TA, but no implementation is provided; Bulychev
et al. [8] study timed simulation for simulation-checking games, for which an
implementation is available from [4]; region construction for timed bisimulation
was also considered by Akshay et al. [1], but never implemented; and more closely
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to our work, Tripakis and Yovine proposed a time-abstract bisimulation over TA
in [19]. Krishnan [11] and our previous work [16] manipulated clock drifts as well
for manipulating DTA, but without considering bisimulation.

6 Conclusions

Bisimulation is a common technique to reduce the state space explosion issue
encountered during model-checking of real-time systems. To enable the appli-
cation of this technique for DTS modelled by icTA, we proposed an alternative
semantics for capturing the execution of icTA, based on multi-timed words run-
ning over Multi-Timed Labelled Transition Systems. We extended the notion
of bisimulation to such structures, and proposed an EXPTIME algorithm for
checking decidability. We are now studying how to efficiently implement such
structures and decidability algorithm, and plan to compare their performance
against classical work as proposed in [4,19].
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back. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–
539. Springer, Heidelberg (1995). doi:10.1007/3-540-60246-1 158

13. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

14. Monot, A., Navet, N., Bavoux, B.: Impact of clock drifts on CAN frame response
time distributions. In: ETFA, Toulouse, France (2011)

15. Ortiz, J., Schobbens, P.-Y.: Extending timed bisimulation for distributed timed
systems. Technical report, University of Namur (2016). http://www.info.fundp.ac.
be/∼jor/Multi-TimedReport/

16. Ortiz, J., Legay, A., Schobbens, P.-Y.: Distributed event clock automata. In:
Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA
2011. LNCS, vol. 6807, pp. 250–263. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22256-6 23

17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

18. Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998).
doi:10.1007/BFb0055349

19. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Form. Methods Syst. Des. 18(1), 25–68 (2001)

20. Weise, C., Lenzkes, D.: Efficient scaling-invariant checking of timed bisimulation.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 177–188.
Springer, Heidelberg (1997). doi:10.1007/BFb0023458

http://dx.doi.org/10.1007/3-540-60246-1_158
http://www.info.fundp.ac.be/~jor/Multi-TimedReport/
http://www.info.fundp.ac.be/~jor/Multi-TimedReport/
http://dx.doi.org/10.1007/978-3-642-22256-6_23
http://dx.doi.org/10.1007/978-3-642-22256-6_23
http://dx.doi.org/10.1007/BFb0055349
http://dx.doi.org/10.1007/BFb0023458

	Multi-timed Bisimulation for Distributed Timed Automata
	1 Introduction
	2 Preliminaries
	3 An Alternative Semantics for DTA
	3.1 Multi-timed Actions
	3.2 Multi-timed Labeled Transition Systems
	3.3 A Multi-timed Semantics for icTA

	4 Multi-timed Bisimulation
	4.1 Strong Multi-timed Bisimulation
	4.2 Decidability

	5 Related Work
	6 Conclusions
	References


