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Abstract. Proof witnesses are proof artifacts showing correctness of
programs wrt. safety properties. The recent past has seen a rising interest
in witnesses as (a) proofs in a proof-carrying-code context, (b) certificates
for the correct functioning of verification tools, or simply (c) exchange
formats for (partial) verification results. As witnesses in all theses sce-
narios need to be stored and processed, witnesses are required to be as
small as possible. However, software verification tools – the prime sup-
pliers of witnesses – do not necessarily construct small witnesses.

In this paper, we present a formal account of proof witnesses. We
introduce the concept of weakenings, reducing the complexity of proof
witnesses while preserving the ability of witnessing safety. We develop a
weakening technique for a specific class of program analyses, and prove
it to be sound. Finally, we experimentally demonstrate our weakening
technique to indeed achieve a size reduction of proof witnesses.
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1 Introduction

In the past years, automatic verification of programs with respect to safety prop-
erties has reached a level of maturity that makes it applicable to industrial-size
programs. The annual software verification competition SV-COMP [4] demon-
strates the advances of program verification, in particular its scalability. Software
verification tools prove program correctness, most often for safety properties
written into the program in the form of assertions. When the verification tool
terminates, the result is typically a yes/no answer optionally accompanied by
a counterexample. While this is the obvious result a verification tool should
deliver, it became clear in recent years that all the information computed about
a program during verification is too valuable to just be discarded at the end.
Such information should better be stored in some form of proof.

Proofs are interesting for several reasons: (A) Proofs can be used in a proof-
carrying code (PCC) context [25] where a program is accompanied by its proof
of safety. Verifying this proof allows to more easily recheck the safety of the
program, e.g., when its provider is untrusted. (B) A proof can testify that the
verification tool worked correctly, and checking the proof gives confidence in its
soundness [5]. (C) Verification tools are sometimes unable to complete proving
(e.g., due to timeouts). A proof can then summarize the work done until the
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tool stopped (see e.g. [6]) so that other tools can continue the work. All these
scenarios use proofs as witnesses of the (partial) correctness of the program.

For these purposes, witnesses need to be small. If the witness is very large,
the gain of having a witness and thus not needing to start proving from scratch
is lost by the time and memory required to read and process the witness. Our
interest is thus in compact proof witnesses. However, the proof artifacts that
software verification tools produce are often even larger than the program itself.

Large proofs are a well-known problem in PCC approaches (e.g. [1,2,22,24,
26,29]). To deal with the problem, Necula and Lee [24] (who employ other types
of proofs than automatic verification tools produce) use succinct representations
of proofs. A different practice is to store only parts of a proof and recompute
the remaining parts during proof validation like done by Rose [28] or Jakobs
[22]. An alternative approach employs techniques like lazy abstraction [9,20]
to directly construct small proofs. Further techniques as presented by Besson
et al. [2] and Seo et al. [29] try to remove irrelevant information from proofs that
are fixpoints. The latter two approaches have, however, only looked at proofs
produced by path-insensitive program analyses.

In this paper, we first of all present a formal account of proof witnesses.
We do so for verification tools generating for the safety analysis some form of
abstract state space of the program, either by means of a path insensitive or a
path sensitive analysis. We call this abstract reachability graph in the sequel, fol-
lowing the terminology for the software verification tool CPAchecker [8]. We
formally state under what circumstances proof witnesses can actually soundly
testify program safety. Based on this, we study weakenings of proof witnesses,
presenting more compact forms of proofs while preserving being a proof witness.
Next, we show how to compute weakenings for a specific category of program
analyses. Finally, we experimentally show our weakening technique to be able to
achieve size reduction of proof witnesses. To this end, we evaluated our weak-
ening technique on 395 verification tasks taken from the SV-COMP [3] using
explicit-state software model checking as analysis method for verification. Next
to proof size reduction, we also evaluate the combination of our approach with
lazy refinement [9] plus examine its performance in a PCC setting [22].

2 Background

Witnesses are used to certify safety of programs. In this section, we start with
explaining programs and their semantics. For this presentation, we assume to
have programs with assignments and assume statements (representing if and
while constructs) and with integer variables only1. We distinguish between
boolean expressions used in assume statements, and abbreviate assume bexpr
simply by bexpr, and arithmetic expressions aexpr used in assignments. The set
Ops contains all these statements, and the set Var is the set of variables occuring
in a program. Following Configurable Software Verification [7] – the technique
the tool CPAchecker, in which we integrated our approach, is based on –,
1 Our implementation in CPAchecker [8] supports programs written in C.
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0: r:=0;

1: c:=1;

2: if (i==0) {

3: r:=1;

4: c:=c+1; }

5: c:=c+1;

6: if (r==1)

7: assert(c==3)

8:
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Fig. 1. Program isZero (i input variable) and its control-flow automaton

we model a program by a control-flow automaton (CFA) P = (L,ECFA, �0, Lerr).
The set L represents program locations, �0 is the initial program location, and
ECFA ⊆ L × Ops × L models the control-flow edges. The set Lerr ⊆ L of error
locations defines which locations are unsafe to reach. In the program, these safety
properties are written as assert statements. Note that all safety properties can
be encoded this way [23], and that we assume that all properties of interest are
encoded at once.

Figure 1 gives a small (completely artificial) program called isZero (which we
use later for explanation) and its control-flow automaton. Here, location �e is
the only error location. The program is called isZero since it tests whether the
input i is zero (which is recorded as value 1 in r). The assertion checks whether
the number of assignments to r or checks on r is 3 when r is 1. This number is
accumulated in the variable c.

The semantics of a program P = (L,ECFA, �0, Lerr) is defined by a labeled
transition system (L × C,ECFA,→) made up of a set of concrete states C plus
locations L, the labels ECFA (the control-flow edges of the program) and a
transition relation → ⊆ (L × C) × ECFA × (L × C). We write (�, c) e→ (�′, c′)
for ((�, c), e, (�′, c′)) ∈ →. A concrete state in C is a mapping c : Var → Z.

A transition (�, c)
(�,op,�′)−−−−−→ (�′, c′) is contained in the transition relation → if

either op ≡ bexpr, c(bexpr) = true2 and ∀v ∈ Var : c(v) = c′(v), or op ≡
x := aexpr, c′(x) = c(aexpr), and ∀v ∈ Var \ {x} : c(v) = c′(v). We call
(�0, c0)

e1→ (�1, c1) · · · en→ (�n, cn) a path of P if (�i, ci)
ei→ (�i+1, ci+1), 1 ≤ i < n,

is a transition in TP . The set of all paths, i.e. (partial) program executions,
2 To get c(bexpr) substitute the variables v occurring in bexpr by c(v) and apply

standard integer arithmetic.
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of program P is denoted by pathsP . Finally, a program is safe if no program
execution reaches an error location, i.e., ∀(�0, c0)

e1→ (�1, c1) · · · en→ (�n, cn) ∈
pathsP : �n /∈ Lerr.
We build our technique for witness compaction on top of the configurable program
analysis (CPA) framework of Beyer et al. [7] which allows to specify customized,
abstract interpretation based program analyses. The advantage of using CPAs
is that our results are not just valid for one analysis, but for a whole range of
various analyses (namely those specifiable as CPAs). A CPA for a program P is
a four-tuple A = (D,�,merge, stop) containing

1. an abstract domain D = (C,A, �·�) consisting of a set C of concrete states,
a complete lattice A = (A,�,⊥,
,�,�) on a set of abstract states A and a
concretization function �·� : A → 2C , with

��� = C and �⊥� = ∅,
∀a, a′ ∈ A : a 
 a′ implies �a� ⊆ �a′�,

∀a, a′ ∈ A : �a� ∪ �a′� ⊆ �a � a′�, ∀a, a′ ∈ A : �a � a′� ⊆ �a� ∩ �a′�,

2. a transfer function � ⊆ A × ECFA → A defining the abstract semantics:
∀a ∈ A, e ∈ ECFA s.t. �(a, e) = a′

{c′ | c ∈ �a� ∧ ∃�, �′ : (�, c) e→ (�′, c′)} ⊆ �a′�,

3. a merge operator merge and a termination check operator stop steering the
construction of the abstract state space, and satisfying (a) ∀a, a′ ∈ A : a′ 

merge(a, a′) and (b) ∀a ∈ A,S ⊆ A : stop(a, S) =⇒ ∃a′ ∈ S : a 
 a′. Both
of these operators will play no role in the following, and are thus not further
discussed here.

Based on a given analysis A, an abstract state space of a given program is
then constructed in the form of an abstract reachability graph (ARG). To this
end, the initial abstract state a0 ∈ A is fixed to be �, and the root of the ARG
becomes (�0, a0). The ARG is then further constructed by examining the edges
of the CFA and computing successors of nodes under the transfer function of the
analysis A. The stop operator fixes when to end such an exploration. An ARG
for a program P = (L,ECFA, �0, Lerr) is thus a graph G = (N,EARG , root) with
nodes being pairs of locations and abstract values, i.e., N ⊆ L × A and edges
EARG ⊆ N × ECFA × N . We say that two nodes n1 = (�1, a1) and n2 = (�2, a2)
are location equivalent, n1 =loc n2, if �1 = �2. We lift the ordering on elements in
A to elements in L × A by saying that (�1, a1) 
 (�2, a2) if �1 = �2 and a1 
 a2.
We write n

e→ n′, e ∈ ECFA, if (n, e, n′) ∈ EARG , and n
e� n′ if n = (�, a),

n′ = (�′, a′), e = (�, op, �′) ∈ ECFA and a
e� a′.

3 Proof Witnesses and Weakenings

Abstract reachability graphs represent overapproximations of the state space of
the program. They are used by verification tools for inspecting safety of the
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program: if no error location is reachable in the ARG, it is also unreachable
in the program, and the tool can then testify safety. Thus, ARGs are excellent
candidates for proof witnesses. However, our definition of an ARG only fixes the
syntactical appearance and allows ARGs that are not necessarily proper proof
witnesses (and real overapproximations), e.g., our definition allows that an ARG
could simply have ignored the exploration of certain edges in the CFA.

Definition 1. An ARG G constructed by an analysis A is a proof witness for
program P if the following properties hold:

Rootedness. The root node root (�0,�),
Soundness. All successor nodes are covered:

∀n ∈ N : n
e� n′ implies ∃n′′ : n

e→ n′′ ∧ n′ 
 n′′,

Safety. No error nodes are present: ∀(�, ·) ∈ N : � /∈ Lerr.

(Sound) verification tools construct ARGs which are indeed proof witnesses
(unless the program is not safe). When such an ARG is used as a proof wit-
ness, safety of the program can then be checked by validating the above three
properties for the ARG. Such checks are often less costly than building a new
ARG from scratch. This makes proof witnesses excellent candidates for proofs
in a proof-carrying code setting.

Proposition 1. If an ARG G is a proof witness for program P , then P is safe.

However, ARGs are often unnecessarily complex witnesses. They often store
information about program variables that is either too detailed or even not
needed at all. Our interest is thus in finding smaller witnesses. In terms of
the analysis, too much detail means that the information stored for program
locations is unnecessarily low in the lattice ordering 
. We build our compaction
technique on the following assumption about the size of witnesses.

Assumption. The weaker (i.e., the higher in the lattice ordering) the
abstract values stored for program locations, the more compact the
witness.

As an example justifying this assumption take the weakest element �: as it
represents the whole set of concrete states, it brings us no specific information at
all and can thus also be elided from a witness. This assumption is also taken in
the work of Besson et al. [2]. We base the following approach on the assumption –
which our experiments also confirm – and define weakenings for proof witnesses.

Definition 2. A function w : L × A → L × A is a weakening function for a
domain D = (C,A, �·�) and program P = (L,ECFA, �0, Lerr) if it satisfies the
following two properties:

– (�, a) 
 w(�, a) (weakening),
– w(�, a) =loc (�, a) (location preserving).
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A weakening function for D and P is consistent with the transfer function if the
following holds:

– for all e ∈ ECFA, n ∈ L × A: w(n) e� implies n
e�,

– for all n1 ∈ L × A: if w(n1) = n′
1 and n′

1
e� n′

2, then for n2 s.t. n1
e� n2:

n′
2 
 w(n2).

While formally being similar to widenings [13] used in program analysis dur-
ing fixpoint computation, weakenings serve a different purpose. And indeed,
widening functions are too limited for being weakenings as they do not take the
program under consideration into account.

Weakening functions are applied to ARGs just by applying them to all nodes
and edges: for an ARG G, w(G) = (w(N), w(E), w(root)), where w(E) =
{(w(n1), e, w(n2)) | (n1, e, n2) ∈ EARG}. Note that w(root) = root since the
root already uses the top element in the lattice.

Theorem 1. If an ARG G is a proof witness for program P and w is a weak-
ening function for D and P consistent with the transfer function, then w(G) is
a proof witness for program P as well.

Proof. We use the following notation: G = (N,E, root) is the ARG, w(G) =
(w(N), w(E), w(root)) = (N ′, E′, root′) its weakening. We need to show the
three properties of proof witnesses to be valid in w(G).

Soundness. The most interesting property is soundness. We need to show that
∀n′

1
e� n′

2, n
′
1 ∈ N ′, there is an n′

3 ∈ N ′ : n′
1

e→ n′
3 ∧ n′

2 
 n′
3.

Let n1 ∈ N be the node with w(n1) = n′
1.

w(n1)
e� n′

2

⇒ { w consistent with transfer function }
∃n̂ : n1

e� n̂

⇒ { soundness of G }
∃n2 ∈ N : n1

e→ n2 ∧ n̂ 
 n2

⇒ { construction of G′ }
w(n1)

e→ w(n2) in G′

⇒ { w consistent with transfer function }
n′
2 
 w(n2)

Thus, choose n′
3 := w(n2).

Rootedness, Safety. Both follow by w being a weakening function, and w(G)
being constructed by applying w on all nodes of the ARG.

4 Variable-Separate Analyses

The last section introduced proof witnesses, and showed that we get a smaller,
yet proper proof witness when using a weakening consistent with the transfer



Compact Proof Witnesses 395

function. Next, we show how to define such weakening functions for a specific
sort of program analyses A. In the following, we study analyses that use map-
pings of program variables to abstract values as its abstract domain D. We call
such analyses variable-separate because they separately assign values to vari-
ables. Examples of variable-separating analyses are constant propagation and
explicit-state model checking (both assigning concrete values to variables), inter-
val analysis (assigning intervals to variables), sign analysis (assigning signs to
variables), or arithmetical congruence (assigning a congruence class c̄m to vari-
ables, i.e., variable value is congruent to c modulo m).

Definition 3. A variable-separate analysis consists of a base domain
(B,�B ,⊥B, 
B ,�B ,�B) that is a complete lattice equipped with an evaluation
function evalB on variable-free expressions such that

– evalB(bexpr) ∈ 2{true,false} \ ∅ and
– evalB(aexpr) ∈ B,

for vars(aexpr) = vars(bexpr) = ∅.
B is lifted to the variable-separate analysis with domain A = BVar where

– a1 
A a2 is obtained by pointwise lifting of 
B:
∀v ∈ Var : a1(v) 
B a2(v),

– expression evaluation is obtained by replacing variables with their values:
a(expr) = evalB(expr[v �→ a(v) | v ∈ vars(expr)]),

– a1
bexpr� a2 if true ∈ a1(bexpr) and

a2 = a1 �
�

a∈A,true∈a(bexpr)

a,

– a1
x:=aexpr� a2 if a2(y) = a1(y) for y �= x and a2(x) = a1(aexpr).

Note that the execution of an assume statement (bexpr) further constrains
the successor state to those satisfying bexpr. The analysis uses the meet operator
� for this. As an example analysis in our experiments, we use explicit-state model
checking [15]. It tracks precise values of variables, however, if combined with lazy
refinement [9] it does not track all but just some variables, and therefore does
not plainly build the complete state space of a program.

Example 1. Explicit-state model checking uses the flat lattice B = Z ∪ {�,⊥}
with ⊥ 
 b and b 
 � for all b ∈ B, all other elements are incomparable.
The operators � and � are the least upper bound and greatest lower bounds
operators, respectively. Assigning � to a variable amounts to not tracking the
value of that variable or the analysis failed to determine a precise, concrete
value. The evaluation function computes the usual arithmetic semantics (denoted
�expr�), except on � elements (which can appear in expressions when variables
are instantiated according to an abstract value).

evalB(bexpr) �
{

true if ∃zi ∈ Z : �bexpr[�i �→ zi]� = true
false if ∃zi ∈ Z : �bexpr[�i �→ zi]� = false



396 M.-C. Jakobs and H. Wehrheim

Here, we write �expr[�i �→ zi]� for replacing all � occurrences in expr by (pos-
sibly different) elements from Z.

evalB(aexpr) =

{
�aexpr� if no � in aexpr

� else

Figure 2 shows the ARG computed for program isZero when using explicit-
state model checking without lazy refinement. We directly elide variables which
are mapped to � as these will not be stored in a proof witness.

�0

�1, r : 0

�2, c : 1, r : 0

�2, c : 1, i : 0, r : 0

�4, c : 1, i : 0, r : 1

�5, c : 2, i : 0, r : 1

�6, c : 3, i : 0, r : 1

�7, c : 3, i : 0, r : 1

�8, c : 3, i : 0, r : 1

�5, c : 1, r : 0

�6, c : 2, r : 0

�8, c : 2, r : 0

r:=0

c:=1

i==0 ¬(i==0)

r:=1

c:=c+1

c:=c+1

c:=c+1

r==1

¬(r==1)

c==3

Fig. 2. ARG of program isZero using
explicit-state model checking

�0

�1, r : 0

�2, c : 1, r : 0

�2, c : 1

�4, c : 1, r : 1

�5, c : 2, r : 1

�6, c : 3, r : 1

�7, c : 3

�8

�5, r : 0

�6, r : 0

�8

r:=0

c:=1

i==0 ¬(i==0)

r:=1

c:=c+1

c:=c+1

c:=c+1

r==1

¬(r==1)

c==3

Fig. 3. Weakened witness of program
isZero

For variable-separate analyses, we obtain weakenings by computing the set
of variables relevant at an ARG node. This is similar to the computation of live
variables [27], where, however, the variables to be tracked are tailored towards
not introducing new paths in the weakening that were not present in the ARG.
The computation of relevant variables has similiarities with program slicing [30]
as we compute backward dependencies of variables. For (�, a) ∈ N , we define

− init(�, a) := {v ∈ vars(op) | ∃e = (�, op, �′) ∈ ECFA, (�, a) � e�},

− trans(�,op,�′)(V�′) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(V�′ \ {x}) ∪ vars(aexpr)
if op ≡ x := aexpr ∧ x ∈ V�′

V�′ ∪ vars(bexpr)
if op ≡ bexpr ∧ vars(bexpr) ∩ V�′ �= ∅

V�′ else

The definition of init aims at keeping those variables for which the ARG
has already determined that a syntactically possible outgoing edge is seman-
tically impossible; the definition of trans propagates these sets backwards via
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dependencies. Together, this gives rise to a family of equations (rel(�,a))(�,a)∈N

for the nodes in the ARG:
rel(�,a) =

(
init(�, a) ∪

⋃
(
(�,a),e,(�′,a′)

)
∈EARG

transe(rel(�′,a′))
)

\ {v ∈ Var | a(v) = �}

Note that we remove all variables from this set that are assigned � in a, since
no knowledge from previous nodes is required to compute this information. We
use (Rel(�,a))(�,a)∈N to stand for the smallest solution to this equation system
that can be computed by a fixpoint computation starting with the emptyset of
relevant variables for all nodes3.

Definition 4. Let (Rel(�,a))(�,a)∈N be the family of relevant variables. We define
the weakening wrt. Rel for nodes (�, a) ∈ N as

weakenRel(�, a) := (�, a′) with a′(v) =
{�B if v /∈ Rel(�,a)

a(v) else

For all (�, a) /∈ N , we set weaken(�, a) := (�, a).

Figure 3 shows the weakened ARG for program isZero. We see that in several
abstract states fewer variables have to be tracked. Due to init, the weakened
ARG tracks variables r and c at locations �6 and �7. Furthermore, it tracks those
values required to determine the values of these variables at those locations.

The key result of this section states that this construction indeed defines a
weakening function consistent with the transfer function.

Theorem 2. Let G be an ARG of program P constructed by a variable-separate
analysis, (Reln)n∈N the family of relevant variables. Then weakenRel is a weak-
ening function for G consistent with �.

This theorem follows from the following observations and lemmas: (a) (�, a) 
A

weakenRel(�, a) follows from �B being the top element in the lattice B, and (b)
weakenRel(�, a) =loc (�, a) by definition of weaken.

Lemma 1. Let n∈N be an ARG node, e∈ECFA an edge. Then weakenRel(n) e�
implies n

e�.

Proof. Let e = (�, op, �′), op = bexpr, n = (�, a) (otherwise the CFA would
already forbid an edge), weaken(�, a) = (�, a′). Proof by contraposition.

(�, a) � e�
⇒ { definition of init }
init(�, a) = vars(bexpr)
⇒ { definition of Rel }

init(�, a) \ {v ∈ Var | a(v) = �} ⊆ Rel(�,a)
⇒ { definition of weaken }
a′(bexpr) = a(bexpr) �� true

⇒ { definition of transfer function }
(�, a′) � e�

3 The fixpoint exists as we have a finite number of variables Var .
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Lemma 2. Let n1 ∈ N be a node of the ARG. If weaken(n1) = n′
1 and n1

e� n2,
then ∀n′

2 such that n′
1

e� n′
2 we get n′

2 
 weaken(n2).

Proof. Let n1 = (�1, a1), n2 = (�2, a2), n′
1 = (�1, a′

1), n
′
2 = (�2, a′

2), e =
(�1, op, �2). Let furthermore V2 = Rel(�2,a2) and V1 = Rel(�1,a1).

Case 1. op ≡ x := aexpr.

– x ∈ V2: Then by definition of Rel, vars(aexpr) \ {v ∈ Var | a1(v) = �} ⊆ V1.
We have to show n′

2 
 weaken(n2). We first look at x.

a′
2(x)

= { def. � }
a′
1(aexpr)

= { def. weaken, vars(aexpr) \ {v ∈ Var | a1(v) = �} ⊆ V1 }
a1(aexpr)

= { def. � }
a2(x)


 { def. weaken }
weaken(a2)(x)

Next y �= x, y ∈ V1.
a′
2(y)

= { definition �, y �= x }
a′
1(y)

= { def. weaken }
a1(y)

= { def. � }
a2(y)


 { def. weaken }
weaken(a2)(y)

Next y �= x, y /∈ V1. Note that by definition of Rel, y /∈ V2, hence a′
1(y) =

�B = weaken(a2)(y).
– x /∈ V2: We have a′

2(x) 
 weaken(a2)(x) since weaken(a2)(x) = �B by defini-
tion of weaken. The case for y �= x is the same as for x ∈ V2.

Case 2. op ≡ bexpr. Similar to case 1, using the fact that if a1(y) = a′
1(y) then

(a1 �
�

a∈A,true∈a(bexpr)

a)(y) = (a′
1 �

�

a∈A,true∈a(bexpr)

a)(y).
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5 Experiments

The last section has introduced a technique for computation of weakenings. Next,
we experimentally evaluate this weakening technique for the explicit-state model
checking analysis. In our experiments, we wanted to study three questions:

Q1. Does weakening reduce the size of proof witnesses?
Q2. Does explicit-state model checking with lazy refinement [9] benefit from

weakening?
Q3. Do PCC approaches benefit from ARG weakenings?

To explain question 2: Lazy refinement already aims at “lazily” including
new variables to be tracked, i.e., as few as possible. The interesting question
is thus whether our weakenings can further reduce the variables. For question
3, we employed an existing ARG-based PCC technique [22]. To answer these
questions, we integrated our ARG weakening within the tool CPAchecker [8]
and evaluated it on category Control Flow and Integer Variables of the SV-
COMP [3]. We excluded all programs that were not correct w.r.t. the specified
property, or for which the verification timed out after 15 min, resulting in 395
programs (verification tasks) in total. For explicit-state model checking with and
without lazy refinement we used the respective standard value analyses provided
by CPAchecker. Both analyses generate ARGs.

We run our experiments within BenchExec [10] on an Intel R© Xeon E3-1230
v5 @ 3.40 GHz and OpenJDK 64-Bit Server VM 1.8.0 121 restricting each task
to 5 of 33 GB. To re-execute our experiments, start the extension of BenchExec
bundled with CPAchecker4 with pcc-slicing-valueAnalysis.xml.

Q1. We measure the size reduction of the proof witness for explicit-state model
checking by the number of variable assignments v �→ Z stored in the weak-
ened ARG divided by the number of these assignments in the original ARG (1
thus means “same number of variables”, <1 = “fewer variables”, >1 = “more
variables”). In the left of Fig. 4, we see the results where the x-axis lists the
verification tasks and the y-axis the size reduction. For the original ARG, the
number of variable assignments was between 10 and several millions. Our exper-
iments show that we always profit from ARG weakening. On average the proof
size is reduced by about 60%.

Q2. The right part of Fig. 4 shows the same comparison as the diagram in the
left, but for ARGs constructed by lazy refinement. Lazy refinement already tries
to track as few variables as possible, just those necessary for proving the desired
property. Still, our approach always reduces the proof size, however, not as much
as before (which was actually expected).

Q3. Last, we used the weakenings within the PCC framework of [22]. This uses
ARGs to construct certificates of program correctness. Although the certificate
stores only a subset of the ARG’s nodes, the comparison of the number of variable

4 https://svn.sosy-lab.org/software/cpachecker/trunk/ rv 24405.

https://svn.sosy-lab.org/software/cpachecker/trunk/
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Fig. 4. Comparison of number of variable assignments in original and weakened ARG
for explicit-state model checking without (left) and with lazy refinement (right)

Fig. 5. Comparison of validation times for certificates from original and weakened ARG
constructed by explicit-value state model checking with and without lazy refinement

assignments still looks similar to the graphics in Fig. 4. Thus, we in addition
focused on the effect of our approach on certificate validation. Figure 5 shows
the speed-up, i.e., the validation time for the certificate from the original ARG
divided by the same time for the certificate from the weakened ARG, both for
analyses with and without lazy refinement. In over 70% (50% for lazy refinement)
of the cases, the speed-up is greater than 1, i.e., checking the certificate from the
weakened ARG is faster. On average, checking the certificate constructed from
the weakened ARG is 27% (21% for lazy refinement) faster.

All in all, the experiments show that weakenings can achieve more compact
proof witnesses, and more compact witnesses help to speed up their processing.

6 Conclusion

In this paper, we presented an approach for computing weakenings of proof
witnesses produced by software verification tools. We proved that our weakenings
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preserve the properties required for proof witnesses. We experimentally evaluated
the technique using explicit-state model checking. The experiments show that
the weakenings can significantly reduce the size of witnesses. Weakenings can
thus successfully be applied in all areas in which proof witnesses are employed.
In the future, we plan for more experiments with other program analyses.

Related Work. Our computation of relevant variables is similar to the com-
putation of variables in slicing [30] or cone-of-influence reduction. Our “slicing
criterion” and the dependencies are tailored towards the purpose of preserving
properties of proof witnesses.

A number of other approaches exist that try to reduce the size of a proof.
First, succinct representations [24,26] were used in PCC approaches. Later,
approaches have been introduced, e.g. in [1,22,28], that store only a part of the
original proof. Our approach is orthogonal to these approaches. In the exper-
iments we combined our technique with one such approach (namely [22]) and
showed that a combination of proof reduction and weakenings is beneficial.

A large number of techniques in verification already try to keep the generated
state space small by the analysis itself (e.g. symbolic model checking [12] or
predicate abstraction [19]). Giacobazzi et al. [17,18] describe how to compute
the coarsest abstract domain, a so called correctness kernel, which maintains the
behavior of the current abstraction. Further techniques like lazy refinement [9,20]
and abstraction slicing [11] (used in the certifying model checker SLAB [14])
try to reduce the size of the explored state space during verification, and thus
reduce the proof size. In our experiments, we combined our technique with lazy
refinement for explicit-state model checking [9] and showed that our technique
complements lazy refinement.

Two recent approaches aim at reducing the size of inductive invariants com-
puted during hardware verification [16,21]. While in principle our ARGs can be
transformed into inductive invariants and thus these approaches would theoret-
ically be applicable to software verification techniques constructing ARGs, it is
not directly straightforward how to encode arbitrary abstract domains of sta-
tic analyses as SAT formulae. We see thus our technique as a practically useful
reduction technique for proof witnesses of software verifiers constructing ARGs.

We are aware of only two techniques [2,29] which also replace abstract states
in a proof by more abstract ones. Both weaken abstract interpretation results,
while we look at ARGs. Besson et al. [2] introduce the idea of a weakest fixpoint,
explain fixpoint pruning for abstract domains in which abstract states are given
by a set of constraints and demonstrate it with a polyhedra analysis. Fixpoint
pruning repeatedly replaces a set of constraints – an abstract state – by a subset
of constraints s.t. the property can still be shown. In contrast, we directly com-
pute how to “prune” our abstract reachability graph. Seo et al. [29] introduce the
general concept of an abstract value slicer. An abstract value slicer consists of
an extractor domain and a backtracer. An extractor from the extractor domain
is similar to our weaken operator and the task of the backtracer is related to the
task of trans. In contrast to us, they do not need something similar to init since
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their abstract semantics never forbids successor nodes (and they just consider
path-insensitive analyses).

Summing up, none of the existing approaches can be used for proofs in the
form of abstract reachability graphs.
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