
Floating-Point Format Inference
in Mixed-Precision

Matthieu Martel(B)

Laboratoire de Mathématiques et Physique (LAMPS),
Université de Perpignan Via Domitia, Perpignan, France

matthieu.martel@univ-perp.fr

Abstract. We address the problem of determining the minimal preci-
sion on the inputs and on the intermediary results of a program contain-
ing floating-point computations in order to ensure a desired accuracy on
the outputs. The first originality of our approach is to combine forward
and backward static analyses, done by abstract interpretation. The back-
ward analysis computes the minimal precision needed for the inputs and
intermediary values in order to have a desired accuracy on the results,
specified by the user. The second originality is to express our analysis
as a set of constraints made of first order predicates and affine integer
relations only, even if the analyzed programs contain non-linear com-
putations. These constraints can be easily checked by an SMT Solver.
The information collected by our analysis may help to optimize the for-
mats used to represent the values stored in the floating-point variables
of programs. Experimental results are presented.

1 Introduction

Issues related to numerical accuracy are almost as old as computer science. An
important step towards the design of more reliable numerical software was the
definition, in the 1980’s, of the IEEE754 Standard for floating-point arithmetic
[2]. Since then, work has been carried out to determine the accuracy of floating-
point computations by dynamic [3,17,29] or static [11,13,14] methods. This work
has also been motivated by a few disasters due to numerical bugs [1,15].

While existing approaches may differ strongly each other in their way of
determining accuracy, they have a common objective: to compute approxima-
tions of the errors on the outputs of a program depending on the initial errors on
the data and on the roundoff of the arithmetic operations performed during the
execution. The present work focuses on a slightly different problem concerning
the relations between precision and accuracy. Here, the term precision refers to
the number of bits used to represent a value, i.e. its format, while the term accu-
racy is a bound on the absolute error |x − x̂| between the represented x̂ value
and the exact value x that we would have in the exact arithmetic.

We address the problem of determining the minimal precision on the inputs
and on the intermediary results of a program performing floating-point computa-
tions in order to ensure a desired accuracy on the outputs. This allows compilers
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 230–246, 2017.
DOI: 10.1007/978-3-319-57288-8 16

Floating-Point Format Inference in Mixed-Precision 231

to select the most appropriate formats (for example IEEE754 half, single, dou-
ble or quad formats [2,23]) for each variable. It is then possible to save memory,
reduce CPU usage and use less bandwidth for communications whenever distrib-
uted applications are concerned. So, the choice of the best floating-point formats
is an important compile-time optimization in many contexts. Our approach is
also easily generalizable to the fixed-point arithmetic for which it is important
to determine data formats, for example in FPGAs [12,19].

The first originality of our approach is to combine a forward and a backward
static analysis, done by abstract interpretation [8,9]. The forward analysis is
classical. It propagates safely the errors on the inputs and on the results of the
intermediary operations in order to determine the accuracy of the results. Next,
based on the results of the forward analysis and on assertions indicating which
accuracy the user wants for the outputs at some control points, the backward
analysis computes the minimal precision needed for the inputs and intermediary
results in order to satisfy the assertions. Not surprisingly, the forward and back-
ward analyses can be applied repeatedly and alternatively in order to refine the
results until a fixed-point is reached.

The second originality of our approach is to express the forward and backward
transfer functions as a set of constraints made of propositional logic formulas and
relations between affine expressions over integers (and only integers). Indeed,
these relations remain linear even if the analyzed program contains non-linear
computations. As a consequence, these constraints can be easily checked by a
SMT solver (we use Z3 in practice [4,21]). The advantage of the solver appears
in the backward analysis, when one wants to determine the precision of the
operands of some binary operation between two operands a and b, in order to
obtain a certain accuracy on the result. In general, it is possible to use a more
precise a with a less precise b or, conversely, to use a more precise b with a less
precise a. Because this choice arises at almost any operation, there is a huge
number of combinations on the admissible formats of all the data in order to
ensure a given accuracy on the results. Instead of using an ad-hoc heuristic, we
encode our problem as a set of constraints and we let a well-known, optimized
solver generate a solution.

This article is organized as follows. We briefly introduce some elements of
floating-point arithmetic, a motivating example and related work in Sect. 2. Our
abstract domain as well as the forward and backward transfer functions are intro-
duced in Sect. 3. The constraint generation is presented in Sect. 4 and experi-
mental results are given in Sect. 5. Finally, Sect. 6 concludes.

2 Preliminary Elements

In this section we introduce some preliminary notions helpful to understand
the rest of the article. Elements of floating-point arithmetic are introduced in
Sect. 2.1. Further, an illustration of what our method does is given in Sect. 2.2.
Related work is discussed in Sect. 2.3.

232 M. Martel

2.1 Elements of Floating-Point Arithmetic

We introduce here some elements of floating-point arithmetic [2,23]. First of all,
a floating-point number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s · m · βe−p+1 (1)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the significand, 0 ≤ di < β,
0 ≤ i ≤ p − 1, p is the precision and e is the exponent, emin ≤ e ≤ emax.

A floating-point number x is normalized whenever d0 �= 0. Normalization
avoids multiple representations of the same number. The IEEE754 Standard also
defines denormalized numbers which are floating-point numbers with d0 = d1 =
. . . = dk = 0, k < p − 1 and e = emin. Denormalized numbers make underflow
gradual [23]. The IEEE754 Standard defines binary formats (with β = 2) and
decimal formats (with β = 10). In this article, without loss of generality, we
only consider normalized numbers and we always assume that β = 2 (which
is the most common case in practice). The IEEE754 Standard also specifies a
few values for p, emin and emax which are summarized in Fig. 1. Finally, special
values also are defined: nan (Not a Number) resulting from an invalid operation,
±∞ corresponding to overflows, and +0 and −0 (signed zeros).

Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15
Binary32 Single precision 24 8 −126 +127
Binary64 Double precision 53 11 −1122 +1223
Binary128 Quadruple precision 113 15 −16382 +16383

Fig. 1. Basic binary IEEE754 formats.

The IEEE754 Standard also defines five rounding modes for elementary oper-
ations over floating-point numbers. These modes are towards −∞, towards +∞,
towards zero, to the nearest ties to even and to the nearest ties to away and
we write them ◦−∞, ◦+∞, ◦0, ◦∼e

and ◦∼a
, respectively. The semantics of the

elementary operations � ∈ {+, −, ×, ÷} is then defined by

f1 �◦ f2 = ◦(f1 � f2) (2)

where ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼e
, ◦∼a

} denotes the rounding mode. Equation (2)
states that the result of a floating-point operation �◦ done with the rounding
mode ◦ returns what we would obtain by performing the exact operation � and
next rounding the result using ◦. The IEEE754 Standard also specifies how the
square root function must be rounded in a similar way to Eq. (2) but does not
specify the roundoff of other functions like sin, log, etc.

We introduce hereafter two functions which compute the unit in the f irst
place and the unit in the last place of a floating-point number. These functions

Floating-Point Format Inference in Mixed-Precision 233

are used further in this article to generate constraints encoding the way roundoff
errors are propagated throughout computations. The ufp of a number x is

ufp(x) = min
{
i ∈ N : 2i+1 > x

}
= �log2(x)�. (3)

The ulp of a floating-point number which significand has size p is defined by

ulp(x) = ufp(x) − p + 1. (4)

The ufp of a floating-point number corresponds to the binary exponent of its most
significant digit. Conversely, the ulp of a floating-point number corresponds to
the binary exponent of its least significant digit. Note that several definitions of
the ulp have been given [22].

2.2 Overview of Our Method

Let us consider the program of Fig. 2 which implements a simple linear filter. At
each iteration t of the loop, the output yt is computed as a function of the current
input xt and of the values xt−1 and yt−1 of the former iteration. Our program
contains several annotations. First, the statement require accuracy(yt, 10) on
the last line of the code informs the system that the programmer wants to
have 10 accurate binary digits on yt at this control point. In other words, let
yt = d0.d1 . . . dn · 2e for some n ≥ 10, the absolute error between the value v
that yt would have if all the computations where done with real numbers and
the floating-point value v̂ of yt is less than 2e−11 : |v − v̂| ≤ 2e−9.

Note that accuracy is not a property of a number but a number that states
how closely a particular floating-point number matches some ideal true value.

xt−1 :=[1.0 ,3.0]#16;
xt :=[1.0 ,3.0]#16;
yt−1 :=0.0;
while(c) {

u:=0.3 * yt−1;
v:=0.7 * (xt + xt−1);
yt:=u + v;
yt−1:=yt;

};
require_accuracy(yt ,10);

x
|9|
t−1 :=[1.0 ,3.0]

|9|; x
|9|
t :=[1.0 ,3.0]|9|;

y
|10|
t−1 :=0.0

|10|;
while(c) {

u|10| :=0.3|10| *|10| y
|10|
t−1;

v|10| :=0.7|11| *|10| (x
|9|
t +|10| x

|9|
t−1);

y
|10|
t :=u|10| +|10| v|10|;

y
|10|
t−1:=y

|10|
t ; };

require_accuracy(yt ,10);

x
|16|
t−1 :=[1.0 ,3.0]

|16|;

x
|16|
t :=[1.0 ,3.0]|16|;

y
|52|
t−1 :=0.0

|52|;

u|52| :=0.3|52| *|52| y
|52|
t−1;

v|15| :=0.7|52| *|15| (x
|16|
t +|16| x

|16|
t−1);

y
|15|
t :=u|52| +|15| v|15|;

y
|15|
t−1:=y

|15|
t ;

x
|9|
t−1 :=[1.0 ,3.0]

|9|; x
|9|
t :=[1.0 ,3.0]|9|;

y
|8|
t−1 :=0.0

|8|;

u|10| :=0.3|8| *|10| y
|8|
t−1;

v|10| :=0.7|11| *|10| (x
|9|
t +|10| x

|9|
t−1);

y
|10|
t :=u|10| +|10| v|10|;

y
|10|
t−1:=y

|10|
t ;

require_accuracy(yt ,10);

Fig. 2. Top left: initial program. Top right: annotations after analysis. Bottom left:
forward analysis (one iteration). Bottom right: backward analysis (one iteration).

234 M. Martel

Fig. 3. Example of forward addition: 3.0#16+ 1.0#16= 4.0#17.

For example, using the basis β = 10 for the sake of simplicity, the floating-point
value 3.149 represents π with an accuracy of 3. It itself has a precision of 4. It
represents the real number 3.14903 with an accuracy of 4.

An abstract value [a, b]p represents the set of floating-point values with p
accurate bits ranging from a to b. For example, in the code of Fig. 2, the vari-
ables xt−1 and xt are initialized to the abstract value [1.0, 3.0]16 thanks to the
annotation [1.0,3.0]#16. Let Fp be the of set of all floating-point numbers with
accuracy p. This means that, compared to exact value v computed in infinite
precision, the value v̂ = d0.d1 . . . dn · 2e of Fp is such that |v − v̂| ≤ 2e−p+1.
By definition, using the function ufp introduced in Eq. (3), for any x ∈ Fp the
roundoff error ε(x) on x is bounded by ε(x) < 2ulp(x) = 2ufp(x)−p+1. Concerning
the abstract values, intuitively we have the concretization function

γ([a, b]p) = {x ∈ Fp : a ≤ x ≤ b}. (5)

These abstract values are special cases of the values used in other work [18]
in the sense that, in the present framework, the errors attached to floating-point
numbers have form [−2u, 2u] for some integer u instead of arbitrary intervals with
real bounds. Restricting the form of the errors enables one to simplify drastically
the transfer functions for the backward analysis and the generation of constraints
in Sect. 4. In this article, we focus on the accuracy of computations and we omit
other problems related to runtime-errors [3,5]. In particular, overflows are not
considered and we assume that any number with p accurate digits belongs to Fp.
In practice, a static analysis computing the ranges of the variables and rejecting
programs which possibly contain overflows is done before our analysis.

In our example, xt and xt−1 belong to [1.0, 3.0]16 which means, by definition,
that these variables have a value v̂ ranging in [1.0, 3.0] and such that the error
between v̂ and the value v that we would have in the exact arithmetic is bounded
by 2ufp(x)−15. Typically, in this example, this information would come from the
specification of the sensor related to x. By default, the values for which no
accuracy annotation is given (for instance the value of yt−1 in the example
of Fig. 2) are considered as exact numbers rounded to the nearest in double
precision. In this format numbers have 53 bits of significand (see Fig. 1). The
last bit being rounded, these numbers have 52 accurate bits in our terminology

Floating-Point Format Inference in Mixed-Precision 235

and, consequently, by default values belong to F52 in our framework. Based on
the accuracy of the inputs, our forward analysis computes the accuracy of all the
other variables and expressions. The program in the left bottom corner of Fig. 2
displays the result of the forward analysis on the first iteration of the loop. Let

→⊕
denote the forward addition (all the operations used in the current example are
formally defined in Sect. 3). For example, the result of xt + xt−1 has 16 accurate
digits since

→⊕(1.0#16, 1.0#16) = 2.0#16,
→⊕(1.0#16, 3.0#16) = 4.0#17,

→⊕(3.0#16, 1.0#16) = 4.0#17,
→⊕(3.0#16, 3.0#16) = 6.0#16.

This is illustrated in Fig. 3 where we consider the addition of these values

at the bit level. For the result of the addition
→
� between intervals, we take the

most pessimistic accuracy:
→
�([1.0,3.0]#16,[1.0,3.0]#16) = [2.0,6.0]#16.

The backward analysis is performed after the forward analysis and takes
advantage of the accuracy requirement at the end of the code (see the right
bottom corner of Fig. 2 for an unfolding of the backward analysis on the first
iteration of the loop). Since, in our example, 10 bits only are required for yt,
the result of the addition u+v also needs 10 accurate bits only. By combining
this information with the result of the forward analysis, it is then possible to
lower the number of bits needed for one of the operands. Let

←⊕ be the backward
addition. For example, for xt+xt−1 in the assignment of v, we have:

←⊕(2.0#10, 1.0#16) = 1.0#8,
←⊕(2.0#10, 3.0#16) = -1.0#8,

←⊕(6.0#10, 1.0#16) = 5.0#9,
←⊕(6.0#10, 3.0#16) = 3.0#8.

Conversely to the forward function, the interval function now keeps the
largest accuracy arising in the computation of the bounds:

←
�([2.0,6.0]#10,[1.0,3.0]#16) = [1.0,3.0]#9.

volatile half xt−1, xt;
half u, v, yt;
float yt−1, tmp;
yt−1 :=0.0;
while(c) {

u:=0.3 * yt−1;
tmp:=xt + xt−1;
v:=0.7 * tmp;
yt:=u + v;
yt−1:=yt;

};

Fig. 4. Final program with
generated data types for the
example of Fig. 2.

By processing similarly on all the elementary
operations and after computation of the loop fixed
point, we obtain the final result of the analysis dis-
played in the top right corner of Fig. 2. This infor-
mation may be used to determine the most appro-
priate data type for each variable and operation, as
shown in Fig. 4. To obtain this result we generate a
set of constraints corresponding to the forward and
backward transfer functions for the operations of
the program. There exists several ways to handle
a backward operation: when the accuracy on the
inputs x and y computed by the forward analy-
sis is too large wrt. the desired accuracy on the
result, one may lower the accuracy of either x or
y or both.

236 M. Martel

Since this question arises at each binary operation, we would face to a huge
number of combinations if we decided to enumerate all possibilities. Instead,
we generate a disjunction of constraints corresponding to the minimization of
the accuracy of each operand and we let the solver search for a solution. The
control flow of the program is also encoded with constraints. For a sequence
of statements, we relate the accuracy of the former statements to the accuracy
of the latter ones. Each variable x has three parameters: its forward, backward
and final accuracy, denoted accF (x), accB(x) and acc(x) respectively. We must
always have

0 ≤ accB(x) ≤ acc(x) ≤ accF (x). (6)

For the forward analysis, the accuracy of some variable may decrease when
passing to the next statement (we may only weaken the pre-conditions). Con-
versely, in the backward analysis, the accuracy of a given variable may increase
when we jump to a former statement in the control graph (the post-conditions
may only be strengthened). For a loop, we relate the accuracy of the variables
at the beginning and at the end of the body, in a standard way.

The key point of our technique is to generate simple constraints made of
propositional logic formulas and of affine expressions among integers (even if the
floating-point computations in the source code are non-linear). A static analysis
computing safe ranges at each control point is performed before our accuracy
analysis. Then the constraints depend on two kinds of integer parameters: the ufp
of the values and their accuracies accF , accB and acc. For instance, given control
points �1, �2 and �3, the set C of constraints generated for 3.0#16�1 +�3 1.0#16�2 ,
assuming that we require 10 accurate bits for the result are:

C =

⎧
⎨

⎩

accF (�1) = 16, accF (�2) = 16, r�3 = 2 − max(accF (�1) − 1, accF (�2)),

(1 − accF (�1)) = accF (�2) ⇒ i�3 = 1, (1 − accF (�1)) 	= accF (�2) ⇒ i�3 = 0,

accF (�3) = r�3 − i�3 , accB(�3) = 10
accB(�1) = 1 − (2 − accB(�3)), accB(�2) = 1 − (2 − accB(�3))

⎫
⎬

⎭
.

For the sake of conciseness, the constraints corresponding to Eq. (6) have been
omitted in C. For example, for the forward addition, the accuracy accF (�3) of
the result is the number of bits between ufp(3.0 + 1.0) = 2 and the ufp u of the
error which is

u = max
(
ufp(3.0) − accF (�1), ufp(1.0) − accF (�2)

)
+ i

= max
(
1 − accF (�1), 0 − accF (�2)

)
+ i,

where i = 0 or i = 1 depending on some condition detailed later. The constraints
generated for each kind of expression and command are detailed in Sect. 4.

2.3 Related Work

Several approaches have been proposed to determine the best floating-point for-
mats as a function of the expected accuracy on the results. Darulova and Kuncak
use a forward static analysis to compute the propagation of errors [11]. If the

Floating-Point Format Inference in Mixed-Precision 237

computed bound on the accuracy satisfies the post-conditions then the analysis
is run again with a smaller format until the best format is found. Note that
in this approach, all the values have the same format (contrarily to our frame-
work where each control-point has its own format). While Darulova and Kuncak
develop their own static analysis, other static techniques [13,29] could be used
to infer from the forward error propagation the suitable formats. Chiang et al.
[7] have proposed a method to allocate a precision to the terms of an arithmetic
expression (only). They use a formal analysis via Symbolic Taylor Expansions
and error analysis based on interval functions. In spite of our linear constraints,
they solve a quadratically constrained quadratic program to obtain annotations.

Other approaches rely on dynamic analysis. For instance, the Precimonious
tool tries to decrease the precision of variables and checks whether the accuracy
requirements are still fulfilled [24,27]. Lam et al. instrument binary codes in
order to modify their precision without modifying the source codes [16]. They
also propose a dynamic search method to identify the pieces of code where the
precision should be modified. Finally, another related research axis concerns the
compile-time optimization of programs in order to improve the accuracy of the
floating-point computation in function of given ranges for the inputs, without
modifying the formats of the numbers [10,26].

3 Abstract Semantics

In this section, we give a formal definition of the abstract domain and transfer
functions presented informally in Sect. 2. The domain is defined in Sect. 3.1 and
the transfer functions are given in Sect. 3.2.

3.1 Abstract Domain

Let Fp be the set floating-point numbers with accuracy p (we assume that the
error between x ∈ Fp and the value that we would have in the exact arithmetic
is less than 2ufp(x)−p+1) and let Ip be the set of all intervals of floating-point
numbers with accuracy p. As mentioned in Sect. 2.2, we assume that no overflow
arises during our analysis and we omit to specify the lower and upper bounds of
Fp. An element i� ∈ Ip, denoted i� = [f, f]p, is then defined by two floating-point
numbers and an accuracy p. We have

Ip 	 [f, f]p = {f ∈ Fp : f ≤ f ≤ f} and I =
⋃

p∈N

Ip. (7)

Our abstract domain is the complete lattice D� = 〈I,�,�,
,⊥I,�I〉 where ele-
ments are ordered by [a, b]p � [c, d]q ⇐⇒ [a, b] ⊆ [c, d] and q ≤ p. In other words,
[a, b]p is more precise than [c, d]q if it is an included interval with a greater accu-
racy. Let ◦r,m(x) denote the rounding of x at precision r using the rounding
mode m. Then the join and meet operators are defined by

238 M. Martel

[a, b]p
 [c, d]q = [◦r,−∞(u), ◦r,+∞(v)]r with r = min(p, q), [u, v] = [a, b] ∪ [c, d] (8)

and
[a, b]p � [c, d]q = [u, v]r with r = max(p, q), [u, v] = [a, b] ∩ [c, d]. (9)

In addition, we have ⊥I = ∅+∞ and �I = [−∞,+∞]0 and we have [a, b]p

[c, d]q = ⊥I whenever [a, b] ∩ [c, d] = ∅. Let α : ℘(F) → I be the abstraction
function which maps a set of floating-point numbers X with different accuracies
pi, 1 ≤ i ≤ n to a value of I. Let xmin = min(X), xmax = max(X) and
p = min {q : x ∈ X and x ∈ Fq} the minimal accuracy in X. We have,

α(X) = [◦p,−∞
(
min(X)

)
, ◦p,+∞

(
max(X)

)
]p where p = min {q : X∩Fq �= ∅}. (10)

Let γ : I → ℘(F) and i� = [a, b]p. The concretization function γ(i�) is defined as:

γ(i�) =
⋃

q≥p

{x ∈ Fq : a ≤ x ≤ b}. (11)

Using the functions α and γ of Eqs. (10) and (11), we define the Galois connection
〈℘(F),⊆,∪,∩, ∅,F〉 −−−→←−−−

α

γ 〈I,�,�,
,⊥I,�I〉 [8].

3.2 Transfer Functions

In this section, we introduce the forward and backward transfer functions for
the abstract domain D� of Sect. 3.1. These functions are defined using the unit
in the f irst place of a floating-point number introduced in Sect. 2.1. First, we
introduce the forward transfer functions corresponding to the addition

→⊕ and
product

→⊗ of two floating-point numbers x ∈ Fp and y ∈ Fq. The addition and
product are defined by

→⊕ (xp, yq) = (x + y)r where r = ufp(x + y) − ufp
(
ε(xp) + ε(yq)

)
, (12)

→⊗(xp, yq) = (x×y)r where r = ufp(x×y)−ufp
(
y ·ε(xp)+x·ε(yq)+ε(xp)·ε(yq)

)
. (13)

In Eqs. (12) and (13), x + y and x × y denote the exact sum and product of the
two values. In practice, this sum must be done with enough accuracy in order
to ensure that the result has accuracy r, for example by using more precision
than the accuracy of the inputs. The errors on the addition and product may
be bounded by e+ = ε(xp) + ε(yq) and e× = y · ε(xp) + x · ε(yq) + ε(xp) ·
ε(yq), respectively. Then the most significant bits of the errors have weights
ufp(e+) and ufp(e×) and the accuracies of the results are ufp(x+y)−ufp(e+) and
ufp(x × y) − ufp(e×), respectively.

We introduce now the backward transfer functions
←⊕ and

←⊗. We consider
the operation between xp and yq whose result is zr. Here, zr and yq are known
while xp is unknown. We have

←⊕(zr, yq) = (z − y)p where p = ufp(z − y) − ufp
(
ε(zr) − ε(yq)

)
, (18)

Floating-Point Format Inference in Mixed-Precision 239

←⊗(zr, yq) = (z ÷ y)p where p = ufp(z ÷ y) − ufp

(
y · ε(zr) − z · ε(yq)

y · (y + ε(yq))

)
. (19)

The correctness of the backward product relies on the following arguments.
Let ε(x), ε(y) and ε(z) be the exact errors on x, y and z respectively. We have
ε(z) = x · ε(y)+ y · ε(x)+ ε(x) · ε(y) and then ε(x) · (y + ε(y)) = ε(z)−x · ε(y) =

ε(z) − z
y · ε(y). Finally, we conclude that ε(x) =

y · ε(zr) − z · ε(yq)
y · (y + ε(yq))

.

We end this section by extending the operations to the values of the abstract
domain D� of Sect. 3.1. First, let p ∈ N, let m ∈ {−∞,+∞,∼e,∼a, 0} be a
rounding mode and let ◦p,m : F → Fp be the rounding function which returns the

roundoff of a number at precision p using the rounding mode m. We write
→
� and

←
� the forward and backward addition and

→
� and

←
� the forward and backward

products on D�. These functions are defined in Fig. 5. The forward functions
→
�

and
→
� take two operands [x, x]p and [y, y]q and return the resulting abstract

value [z, z]r. The backward functions take three arguments: the operands [x, x]p
and [y, y]q known from the forward pass and the result [z, z]r computed by the

backward pass [20]. Then
←
� and

←
� compute the backward value [x′, x′]p′ of

the first operand. The backward value of the second operand can be obtained by
inverting the operands [x, x]p and [y, y]q. An important point in these formulas is
that, in forward mode, the resulting intervals inherit from the minimal accuracy
computed for their bounds while, in backward mode, the maximal accuracy
computed for the bounds is assigned to the interval.

→
� [x, x]p, [y, y]q

)
= [◦r,−∞(z), ◦r,+∞(z)]r with

⎧⎨
⎩

zr1
=

→⊕(xp, y
q
),

zr2 =
→⊕(xp, yq), r = min(r1, r2).

(14)

→
� [x, x]p, [y, y]q

)
= [◦r,−∞(z), ◦r,+∞(z)]r with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ar1 =
→⊗(xp, y

q
), br2 =

→⊗(xp, yq),

cr3 =
→⊗(xp, y

q
), dr4 =

→⊗(xp, yq),

z = min(ar1 , br2 , cr3 , dr4),
z = max(ar1 , br2 , cr3 , dr4),
r = min (r1, r2, r3, r4).

(15)

←
� [x, x]p, [y, y]q, [, z]r

)
= [x

′
, x′]p′ with

⎧⎪⎨
⎪

ur1
=

←⊕(zr, yq), ur2 =
←⊕(zr, y

q
),

x′ = max(u, x), x′ = min(u, x),
p′ = max(r1, r2) .

(16)

←
� [x, x]p, [y, y]q, [z, z]r

)
= [x

′
, x′]p′ with

ar1 =
←⊗(zr, y

q
), br2 =

←⊗(zr, yq),

cr3 =
←⊗(zr, y

q
), dr4 =

←⊗(zr, yq),

u = min(ar1 , br2 , cr3 , dr4),
u = max(ar1 , br2 , cr3 , dr4),

x′ = max(u, x), x′ = min(u, x),
p′ = max (r1, r2, r3, r4).

(17)

Fig. 5. Forward and backward transfer functions for the addition and product on D�.

240 M. Martel

4 Constraint Generation

In this section, we introduce our system of constraints. The transfer functions of
Sect. 3 are not directly translated into constraints because the resulting system
would be too difficult to solve, containing non-linear constraints among non-
integer quantities. Instead, we reduce the problem to a system of constraints
made of linear relations between integer elements only. Sections 4.1 and 4.2 intro-
duce the constraints for arithmetic expressions and programs, respectively.

4.1 Constraints for Arithmetic Expressions

In this section, we introduce the constraints generated for arithmetic expressions.
As mentioned in Sect. 2, we assume that a range analysis is performed before
the accuracy analysis and that a bounding interval is given for each variable and
each value at any control point of the input programs.

Let us start with the forward operations. Let xp ∈ Fp and yq ∈ Fq and let

us consider the operation
→⊕(xp, yq) = zr. We know from Eq. (12) that r+ =

ufp(x + y) − ufp(ε+) with ε+ = ε(xp) + ε(yq). We need to over-approximate ε+
in order to ensure r+. Let a = ufp(x) and b = ufp(b). We have ε(x) < 2a−p+1

and ε(y) < 2b−p+1 and, consequently, ε+ < 2a−p+1 + 2b−p+1. We introduce the

function ι defined by ι(u, v) =
{

1 if u = v,
0 otherwise

. We have

ufp(ε+) < max(a − p + 1, b − q + 1) + ι(a − p, b − q)
≤ max(a − p, b − q) + ι(a − p, b − q)

and we conclude that

r+ = ufp(x + y) − max(a − p, b − q) − ι(a − p, b − q). (20)

Note that, since we assume that a range analysis has been performed before the
accuracy analysis, ufp(x + y), a and b are known at constraint generation time.
For the forward product, we know from Eq. (13) that r× = ufp(x × y) − ufp(ε×)
with ε× = x ·ε(yq)+y ·ε(xp)+ε(xp) ·ε(yq). Again, let a = ufp(x) and b = ufp(b).
We have, by definition of ufp, 2a ≤ x < 2a+1 and 2b ≤ y < 2b+1. Then ε×
may be bound by

ε× < 2a+1 · 2b−q+1 + 2b+1 · 2a−p+1 + 2a−p+1 · 2b−q+1

= 2a+b−q+2 + 2a+b−p+2 + 2a+b−p−q+2.

Since a + b − p − q + 2 < a + b − p + 2 and a + b − p − q + 2 < a + b − q + 2, we
may get rid of the last term of the former equation and we obtain that

ufp(ε×) < max(a + b − p + 2, a + b − q + 2) + ι(p, q)
≤ max(a + b − p + 1, a + b − q + 1) + ι(p, q).

Floating-Point Format Inference in Mixed-Precision 241

We conclude that

r× = ufp(x × y) − max(a + b − p + 1, a + b − q + 1) − ι(p, q). (21)

Note that, by reasoning on the exponents of the values, the constraints resulting
from a product become linear. We consider now the backward transfer functions.
If

←⊕(zr, yq) = xp+ then we know from Eq. (18) that p+ = ufp(z − y) − ufp(ε+)
with ε+ = ε(zr) − ε(y − q). Let c = ufp(z), we over-approximate ε+ using the
relations ε(zr) < 2c−r+1 and ε(yq) > 0. So, ufp(ε+) < c − r + 1 and

p+ = ufp(z − y) − c + r (22)

Finally, for the backward product, using Eq. (19) we know that if
←⊗(zr, yq) =

xp× then p× = ufp(x) − ufp(ε×) with ε× = y·ε(z)−z·ε(y)
y·(y+ε(y)) . Using the relations

2b ≤ y < 2b+1, 2c ≤ z < 2c+1, ε(y) < 2b−q+1 and ε(z) < 2c−r+1, we deduce that
y · ε(z)− z · ε(y) < 2b+c−r+2 − 2b+c−q+1 and that 1

y·(y+ε(y))
< 2−2b. Consequently,

ε× < 2−2b · (2b+c−r+2 − 2b+c−q+1) ≤ 2c−b−r+1 − 2c−b−q and it results that

p× = ufp(x) − max(c − b − r + 1, c − b − q). (23)

4.2 Systematic Constraint Generation

To explain the constraint generation, we use the simple imperative language of
Eq. (24) in which a unique label � ∈ Lab is attached to each expression and
command to identify without ambiguity each node of the syntactic tree.

e ::= c#p� | x� | e
�1
1 +� e

�2
2 | e

�1
1 −� e

�2
2 | e

�1
1 ×� e

�2
2

c ::= x:=�e�1 | c
�1
1 ; c

�2
2 | if� e�0 then c

�1
1 else c

�2
2

| while� e�0 do c
�1
1 | require accuracy(x,n)�

(24)

As in Sect. 2, c#p denotes a constant c with accuracy p and the statement
require accuracy(x,n)� indicates that x must have at least accuracy n at con-
trol point �. The set of identifiers occurring in the source program is denoted Id.
Concerning the arithmetic expressions, we assign to each label � of the expres-
sion three variables in our system of constraints, accF (�), accB(�) and acc(�)
respectively corresponding to the forward, backward and final accuracies and we
systematically generate the constraints 0 ≤ accB(�) ≤ acc(�) ≤ accF (�).

For each control point in an arithmetic expression, we assume given a range
[�, �] ⊆ F, computed by static analysis and which bounds the values possibly
occurring at Point � at run-time. Our constraints use the unit in the first place
ufp(�) and ufp(�) of these ranges. Let Λ : Id → Id×Lab be an environment which
relates each identifier x to its last assignment x�: Assuming that x :=�e�1 is the
last assignment of x, the environment Λ maps x to x� (we will use join operators
when control flow branches will be considered). Then E [e] Λ generates the set of
constraints for the expression e in the environment Λ. These constraints, defined
in Fig. 6, are derived from equations of Sect. 4.1. For commands, labels are used

242 M. Martel

E[c#p
�
]Λ = {accF (�) = p}

E[x
�
]Λ = {accF (�) = accF (Λ(x)), accB(�) = accB(Λ(x))}

E[e�1
1 +

�
e

�2
2]Λ = C[e

�1
1]Λ ∪ C[e

�2
2]Λ ∪ F+(�1, �2, �) ∪ O+(�1, �2, �)

E[e�1
1 ×�

e
�2
2]Λ = C[e

�1
1]Λ ∪ C[e

�2
2]Λ ∪ F×(�1, �2, �) ∪ O×(�1, �2, �)

O+(�1, �2, �) =

∣∣∣∣∣∣
B+(�1, �2, �) ∪ B+(�2, �1, �)
∪ acc(�1) ≤ accF (�1) ∧ acc(�2) ≥ accB(�2)

)
∨ acc(�2) ≤ accF (�2) ∧ acc(�1) ≥ accB(�1)

)}

O×(�1, �2, �) =

∣∣∣∣∣∣
B×(�1, �2, �) ∪ B×(�2, �1, �)
∪ acc(�1) ≤ accF (�1) ∧ acc(�2) ≥ accB(�2)

)
∨ acc(�2) ≤ accF (�2) ∧ acc(�1) ≥ accB(�1)

)}

F+(�1, �2, �) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r� = ufp(�) − max(�1 − accF (�1), �2 − accF (�2)),

r� = ufp(�) − max(�1 − accF (�1), �2 − accF (�2)),

i
�
= ufp(�1) − accF (�1) = ufp(�2) − accF (�2)

)
? 1 : 0,

i� = ufp(�1) − accF (�1) = ufp(�2) − accF (�2)
)
? 1 : 0,

accF (�) = min(r� − i�, r� − i�)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

B+(�1, �2, �) =

{
s�1 = ufp(�1) − (ufp(�) − accB(�)),

s�1 = ufp(�1) − (ufp(�) − accB(�)), accB(�1) = max(s�1 , s�1)

}

F×(�1, �2, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪

r�
1 = ufp(�1 × �2) − max

(
ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

r�
2 = ufp(�1 × �2) − max ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

r�
3 = ufp(�1 × �2) − max

(
ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

r�
4 = ufp(�1 × �2) − max

(
ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

i� = (accF (�1) = accF (�2))? 1 : 0, accF (�) = min
(

r�
1 − i�, r�

2 − i�, r�
3 − i�, r�

4 − i�
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪

B×(�1, �2, �) =

s
�1
1 = ufp(�1) − max

(
ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

s
�1
2 = ufp(�1) − max ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

s
�1
3 = ufp(�1) − max

(
ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

s
�1
4 = ufp(�1) − max

(
ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

accB(�1) = max(s
�1
1 , s

�1
2 , s

�1
3 , s

�1
4)

Fig. 6. Constraint generation for arithmetic expressions.

C[x :=� e�1] Λ = (C, Λ[x �→ x�])

where C =
(

E[e�1] Λ
)

∪
{
accF (x�) = accF (�1), accB(x�) = accB(�1)

}

C[c�1
1 ; c

�2
2] Λ = (C1 ∪ C2, Λ2) where (C1, Λ1) = C[c1] Λ, (C2, Λ2) = C[c2] Λ1

C[while�
e

�0 do c
�1] Λ = (C1 ∪ C2, Λ

′
) where

∣∣∣∣∣∣∣∣∣∣

(C1, Λ1) = C[c�1
1] Λ′, ∀x ∈ Id, Λ′(x) = x�,

C2 =
⋃

x∈Id

⎧⎪⎪⎨
⎪⎪⎩

accF (x�) ≤ accF (Λ(x)),

accF (x�) ≤ accF (Λ1(x)),

accB(x�) ≥ accB(Λ(x)),

accB(x�) ≥ accB(Λ1(x))

⎫⎪⎪⎬
⎪⎪⎭

C[if� e�0 then c�1 else c�2] Λ = (C1 ∪ C2 ∪ C3, Λ′)

where
(C1, Λ1) = C[c�1

1] Λ, (C2, Λ2) = C[c�1
1] Λ, ∀x ∈ Id, Λ′(x) = x�,

C3 =
⋃

x∈Id

accF (x�) = min accF (Λ1(x)), accF (Λ2(x))
)
,

accB(x�) = max accB(Λ1(x)), accB(Λ2(x))
)

C[require accuracy(x,n)
�
] Λ = accB(Λ(x)) = n

Fig. 7. Constraint generation for commands.

to distinguish many assignments of the same variable or to implement joins in
conditions and loops. Given a command c and an environment Λ, C[c] Λ returns
a pair (C,Λ′) made of a set C of constraints and of a new environment Λ′. C is

Floating-Point Format Inference in Mixed-Precision 243

defined by induction on the structure of commands in Fig. 7. These constraint
join values at control flow junctions and propagate the accuracies as described in
Sect. 2. In forward mode, accuracy decreases while in backward mode accuracy
increases (we weaken pre-conditions and strengthen post-conditions).

5 Experimental Results

In this section we present some experimental results obtained with our pro-
totype. Our tool generates the constraints defined in Sect. 4 and calls the
Z3 SMT solver [21] in order to obtain a solution. Since, when they exist,
solutions are not unique in general, we add an additional constraint related
to a cost function ϕ to the constraints of Figs. 6 and 7. The cost function
ϕ(c) of a program c computes the sum of all the accuracies of the variables
and intermediary values stored in the control points of the arithmetic expres-
sions, ϕ(c) =

∑
x∈Id, �∈Lab acc(x

�) +
∑

�∈Lab acc(�). Then, by binary search,
our tool searches the smallest integer P such that the system of constraints
(C[c] Λ⊥) ∪ {ϕ(c) ≤ P} admits a solution (we aim at using an optimizing solver
in future work [6,25,28]). In our implementation we assume that, in the worst
case, all the values are in double precision, consequently we start the binary
search with P ∈ [0, 52 × n] where n is the number of variables and intermediary
values stored in the control points. When a solution is found for some P , a new
iteration of the binary search is run with a smaller P . Otherwise, a new iteration
is run with a larger P .

We consider three sample codes displayed in Fig. 8. The first program com-

putes the determinant det(M) of a 3 × 3 matrix M =
(

a b c
d e f
g h i

)
. We have

det(M) = (a · e · i + d · h · c + g · b · f) − (g · e · c + a · h · f + d · b · i). The

matrix coefficients belong to the ranges
(

[−10.1, 10.1] [−10.1, 10.1] [−10.1, 10.1]
[−20.1, 20.1] [−20.1, 20.1] [−20.1, 20.1]
[−5.1, 5.1] [−5.1, 5.1] [−5.1, 5.1]

)
and

we require that the variable det containing the result has accuracy 10 which
corresponds to a fairly rounded half precision number. By default, we assume
that in the original program all the variables are in double precision. Our tool
infers that all the computations may be carried out in half precision.

The second example of Fig. 8 concerns the evaluation of a degree 9 polynomial
using Horner’s scheme: p(x) = a0 +

(
x × (

a1 + x × (a2 + . . .)
))

. The coefficients
ai, 0 ≤ i ≤ 9 belong to [−0.2, 0.2] and x ∈ [−0.5, 0.5]. Initially all the variables
are in double precision and we require that the result is fairly rounded in single
precision. Our tool then computes that all the variables may be in single precision
but p which must remain in double precision. Our last example is a proportional
differential controller. Initially the measure m is given by a sensor which sends
values in [−1.0, 1.0] and which ensures an accuracy of 32. All the other variables
are assumed to be in double precision. As shown in Fig. 8, many variables may
fit inside single precision formats.

For each program, we give in Fig. 9 the number of variables of the constraint
system as well as the number of constraints generated. Next, we give the total

244 M. Martel

a:=b:=c:=[-10.1 ,10.1];
d:=e:=f:=[-20.1 ,20.1];
g:=h:=i:=[-5.1 ,5.1];
det :=(a * e * i +
d * h * c + g * b * f)

- (g * e * c +
a * h * f + d * b * i);

require_accuracy
(det ,10);

a|5|:=b|5|:=c|6|:=[-10.1 ,10.1]|6|;
d|5|:=e|5|:=f|6|:=[-20.1 ,20.1]|6|;
g|5|:=h|5|:=i|6|:=[-5.1 ,5.1]|6|;
det|10|:=(a|5|*|6|e|5|*|8|i|6|+|9|

d|5|*|6|h|5|*|8|c|6|+|9|g|5|*|6|b|5|*|8|f|6|)
-|10|(g|5|*|6|e|5|*|8|c|6|+|9|

a|5|*|6|h|5|*|8|f|6|+|9|d|5|*|6|b|5|*|8|i|6|);
require_accuracy(det ,10);

half a,b,c,d,e;
half f,g,h,i,det;
//init a,b,c,d,e,
// f,g,h and i
det :=(a * e * i +

d * h * c +
g * b * f)

- (g * e * c +
a * h * f +
d * b * i);

a:=array
(10 ,[-0.2 ,0.2]#53);

x:=[0.0 ,0.5]#53;
p:=0.0; i:=0;
while(i<10) {

p:=p * x + a[i];
};
require_accuracy(p ,23);

a|23|:=array (10 ,[-0.2 ,0.2]|23|);
x|23| :=[0.0 ,0.5]|23|;
p|23| :=0.0|23|; i := 0;
while(i<10) {

p|24|:=p|23|*|23|x|23|+|24|a[i]|23|;
};
require_accuracy(p,23);

float a[10];
float x,tmp;
double p;
// init a and x
p:=0.0; i:=0;
while(i<10) {

tmp:=p * x;
p:=tmp + a[i];};

m:=[-1.0 ,1.0]#32;
kp :=0.194; kd :=0.028;
invdt :=10.0; c:=0.5;
e0 :=0.0;
while (true) {

e:=c - m;
p:=kp * e;
d:=kd*invdt*(e-e0);
r:=p + d;
e0:=e;

};
require_accuracy(r,23);

m|21|:=[-1.0 ,1.0]|21|;
kp|21| :=0.194|21|;kd|20| :=0.028|20|;
invdt|20| :=10.0|20|;
c|21| :=0.5|21|;e0|21| :=0.0|21|;
while (true) {

e|21|:=c|21|-|21|m|22|;
p|22|:=kp|21|*|22|e|21|;
d|23|:=kd|20|*|22| invdt|20|

*|23|(e|21|-|22|e0|21|);
r|23|:=p|22|+|23|d|23|;e0|21|:=e|21|;};

require_accuracy(r ,23);

volatile float m;
float kp ,kd,p,d,r;
float invdt ,c,e0;
double e,tmp;
kp :=0.194; kd :=0.028;
invdt :=10.0; c:=0.5;
e0:=0.0 ;
while (true) {

e:=c-m;p:=kp*e;
tmp:=e - e0;
d:=kd * invdt;
d:=d * tmp;
r:=p + d; e0:=e;};

Fig. 8. Examples of mixed-precision inference. Source programs, inferred accuracies
and formats. Top: 3×3 determinant. Middle: Horner’s scheme. Bottom: a PD controller.

Program #Var. #Constr. Time(s) #Bits-Init. #Bits-Optim. Z3-Calls
Linear filter 239 330 0.31 1534 252 12
Determinant 604 775 0.45 2912 475 14

Horner 129 179 0.18 884 346 11
PD Controller 388 530 0.49 2262 954 12

Fig. 9. Measures of efficiency of the analysis on the codes of Figs. 2 and 8.

execution time of the analysis (including the generation of the system of con-
straints and the calls to the SMT solver done by the binary search). Then we
give the number of bits needed to store all the values of the programs, assuming
that all the values are stored in double precision (column #Bits-Init.) and as
computed by our analysis (column #Bits-Optim.) Finally, the number of calls
to the SMT solver done during the binary search is displayed. Globally, we can
observe that the numbers of variables and constraints are rather small and very
tractable for the solver. This is confirmed by the execution times which are very
short. The improvement, in the number of bits needed to fulfill the requirements,
compared to the number of bits needed if all the computations are done in double
precision, ranges from 57% to 83% which is very important.

Floating-Point Format Inference in Mixed-Precision 245

6 Conclusion

We have defined a static analysis which determines the floating-point formats
needed to ensure a given accuracy. This analysis is done by generating a set of
linear constraints between integer variables only, even if the programs contain
non-linear computations. These constraints are easy to solve by a SMT solver.

Our technique can be easily extended to other language structures. For exam-
ple, since all the elements of an array must have the same type, we just need
to join all the elements in a same abstract value to obtain a relevant result.
Similarly, functions are also easy to manage since only one type per argument
and returned value need. Our analysis is built upon a range analysis performed
before. Obviously, the precision of this analysis impacts the precision of the
floating-point format determination and the inference of sharp ranges given by
relational domains, improves the quality of the results. In future work, we aim
at exploring the use a solver based on optimization modulo theories [6,25,28]
instead of the non-optimizing solver coupled to a binary search used presently.

References

1. Patriot missile defense: Software problem led to system failure at Dhahran, Saudi
Arabia. Technical Report GAO/IMTEC-92-26, General Accounting office (1992)

2. ANSI/IEEE: IEEE Standard for Binary Floating-Point Arithmetic (2008)
3. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-point exceptions.

In: POPL 2013, pp. 549–560. ACM (2013)
4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-

ories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 825–885. IOS Press (2009)

5. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis by abstract interpretation of embedded critical software. ACM SIG-
SOFT Softw. Eng. Notes 36(1), 1–8 (2011)

6. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

7. Chiang, W., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
maric, Z.: Rigorous floating-point mixed-precision tuning. In: POPL, pp. 300–315.
ACM (2017)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252. ACM Press (1977)

9. Cousot, P., Cousot, R.: A gentle introduction to formal verification of computer
systems by abstract interpretation. NATO Science Series III: Computer and Sys-
tems Sciences, pp. 1–29. IOS Press (2010)

10. Damouche, N., Martel, M., Chapoutot, A.: Intra-procedural optimization of
the numerical accuracy of programs. In: Núñez, M., Güdemann, M. (eds.)
FMICS 2015. LNCS, vol. 9128, pp. 31–46. Springer, Cham (2015). doi:10.1007/
978-3-319-19458-5 3

11. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Symposium on Principles
of Programming Languages, POPL 2014, pp. 235–248. ACM (2014)

http://dx.doi.org/10.1007/978-3-662-46681-0_14
http://dx.doi.org/10.1007/978-3-319-19458-5_3
http://dx.doi.org/10.1007/978-3-319-19458-5_3

246 M. Martel

12. Gao, X., Bayliss, S., Constantinides, G.A.: SOAP: structural optimization of arith-
metic expressions for high-level synthesis. In: International Conference on Field-
Programmable Technology, pp. 112–119. IEEE (2013)

13. Goubault, E.: Static analysis by abstract interpretation of numerical programs and
systems, and FLUCTUAT. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 1–3. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 1

14. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-18275-4 17

15. Halfhill, T.R.: The truth behind the Pentium bug. Byte, March 1995
16. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., LeGendre, M.P.: Automatically

adapting programs for mixed-precision floating-point computation. In: Supercom-
puting, ICS 2013, pp. 369–378. ACM (2013)

17. Lamotte, J.L., Chesneaux, J.M., Jézéquel, F.: CADNA C: a version of CADNA for
use with C or C++ programs. Comput. Phys. Commu. 181(11), 1925–1926 (2010)

18. Martel, M.: Semantics of roundoff error propagation in finite precision calculations.
High.-Order Symb. Comput. 19(1), 7–30 (2006)

19. Martel, M., Najahi, A., Revy, G.: Code size and accuracy-aware synthesis of fixed-
point programs for matrix multiplication. In: Pervasive and Embedded Computing
and Communication Systems, pp. 204–214. SciTePress (2014)

20. Miné, A.: Inferring sufficient conditions with backward polyhedral under-
approximations. Electr. Notes Theor. Comput. Sci. 287, 89–100 (2012)

21. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

22. Muller, J.M.: On the definition of ulp(x). Technical report 2005–09, Laboratoire
d’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon (2005)

23. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser Boston, Boston (2010)

24. Nguyen, C., Rubio-Gonzalez, C., Mehne, B., Sen, K., Demmel, J., Kahan, W.,
Iancu, C., Lavrijsen, W., Bailey, D.H., Hough, D.: Floating-point precision tuning
using blame analysis. In: International Conference on Software Engineering (ICSE).
ACM (2016)

25. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). doi:10.1007/11814948 18

26. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: PLDI, pp. 1–11. ACM (2015)

27. Rubio-Gonzalez, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 27:1–27:12. ACM (2013)

28. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Log. 16(2), 12:1–12:43 (2015)

29. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic Taylor expansions. In: Bjørner,
N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham
(2015). doi:10.1007/978-3-319-19249-9 33

http://dx.doi.org/10.1007/978-3-642-38856-9_1
http://dx.doi.org/10.1007/978-3-642-18275-4_17
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/11814948_18
http://dx.doi.org/10.1007/978-3-319-19249-9_33

	Floating-Point Format Inference in Mixed-Precision
	1 Introduction
	2 Preliminary Elements
	2.1 Elements of Floating-Point Arithmetic
	2.2 Overview of Our Method
	2.3 Related Work

	3 Abstract Semantics
	3.1 Abstract Domain
	3.2 Transfer Functions

	4 Constraint Generation
	4.1 Constraints for Arithmetic Expressions
	4.2 Systematic Constraint Generation

	5 Experimental Results
	6 Conclusion
	References

