
Clark Barrett
Misty Davies
Temesghen Kahsai (Eds.)

9th International Symposium, NFM 2017
Moffett Field, CA, USA, May 16–18, 2017
Proceedings

NASA
Formal MethodsLN

CS
 1

02
27

Fo
rm

al
 M

et
ho

ds

 123

Lecture Notes in Computer Science 10227

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK Takeo Kanade, USA
Josef Kittler, UK Jon M. Kleinberg, USA
Friedemann Mattern, Switzerland John C. Mitchell, USA
Moni Naor, Israel C. Pandu Rangan, India
Bernhard Steffen, Germany Demetri Terzopoulos, USA
Doug Tygar, USA Gerhard Weikum, Germany

Formal Methods
Subline of Lectures Notes in Computer Science

Subline Series Editors

Ana Cavalcanti, University of York, UK

Marie-Claude Gaudel, Université de Paris-Sud, France

Subline Advisory Board

Manfred Broy, TU Munich, Germany

Annabelle McIver, Macquarie University, Sydney, NSW, Australia

Peter Müller, ETH Zurich, Switzerland

Erik de Vink, Eindhoven University of Technology, The Netherlands

Pamela Zave, AT&T Laboratories Research, Bedminster, NJ, USA

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Clark Barrett • Misty Davies
Temesghen Kahsai (Eds.)

NASA
Formal Methods
9th International Symposium, NFM 2017
Moffett Field, CA, USA, May 16–18, 2017
Proceedings

123

Editors
Clark Barrett
Stanford University
Palo Alto, CA
USA

Misty Davies
NASA Ames Research Center
Moffett Field, CA
USA

Temesghen Kahsai
NASA Ames Research Center
Moffett Field, CA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-57287-1 ISBN 978-3-319-57288-8 (eBook)
DOI 10.1007/978-3-319-57288-8

Library of Congress Control Number: 2017937299

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-9522-3084

Preface

The NASA Formal Methods (NFM) Symposium is a forum to foster collaboration
between theoreticians and practitioners from NASA, academia, and industry, with the
goal of identifying challenges and providing solutions to achieving assurance in mis-
sion- and safety-critical systems. Examples of such systems include advanced sepa-
ration assurance algorithms for aircraft, next-generation air transportation, autonomous
rendezvous and docking for spacecraft, autonomous on-board software for unmanned
aerial systems (UAS), UAS traffic management, autonomous robots, and systems for
fault detection, diagnosis, and prognostics. The topics covered by the NASA Formal
Methods Symposia include: model checking, theorem proving, SAT and SMT solving,
symbolic execution, automated testing and verification, static and dynamic analysis,
model-based development, runtime verification, software and system testing, safety
assurance, fault tolerance, compositional verification, security and intrusion detection,
design for verification and correct-by-design techniques, techniques for scaling formal
methods, formal methods for multi-core GPU-based implementations, generation,
specification, and validation of requirements, human–machine interaction analysis,
certification, and applications of formal methods in systems development.

This volume contains the papers presented at NFM 2017, the 9th NASA Formal
Methods Symposium, held at the NASA Ames Research Center, Moffett Field, CA,
during May 16–18, 2017. Previous symposia were held in Minneapolis, MN (2016),
Pasadena, CA (2015), Houston, TX (2014), Moffett Field, CA (2013), Norfolk, VA
(2012), Pasadena, CA (2011), Washington, DC (2010), and Moffett Field, CA (2009).
The series started as the Langley Formal Methods Workshop, and was held under that
name in 1990, 1992, 1995, 1997, 2000, and 2008. Papers were solicited for NFM 2017
under two categories: regular papers describing fully developed work and complete
results, and short papers describing tools, experience reports, or work in progress with
preliminary results. The symposium received 77 submissions for review (60 regular
papers and 17 short papers) out of which 31 were accepted for publication (23 regular
papers and eight short papers). These submissions went through a rigorous reviewing
process, where each paper was first independently reviewed by at least three reviewers
and then subsequently discussed by the Program Committee.

In addition to the refereed papers, the symposium featured five invited presentations:
“Formal Methods for the Informal World,” by Michael Wagner, Senior Commercial-
ization Specialist at the Robotics Institute at Carnegie Mellon University, Pittsburgh,
PA; “Agile Aerospace at Planet,” by Ben Haldeman, Technologist and Program
Manager at Planet, San Francisco, CA; “Moving Fast with High Reliability: Static
Analysis at Uber,” by Manu Sridharan, Senior Software Engineer at Uber, Palo Alto,
CA; “Challenges in Designing for the Next Era of Human Space Exploration,” by
Jason Crusan, Director of the Advanced Exploration Systems Division within the
Human Exploration and Operations Mission Directorate at NASA, Washington, DC;
and “A Tour of Formal Methods in Support of Aerospace Products Development,” by

Alexandre Arnold, Research Engineer at Airbus. The symposium also featured a panel
that discussed how to make more real problems and case studies from NASA and the
aerospace industry available to researchers.

The organizers are grateful to the authors for submitting their work to NFM 2017
and to the invited speakers for sharing their insights. NFM 2017 would not have been
possible without the collaboration of the outstanding Program Committee and addi-
tional reviewers, the support of the Steering Committee, the efforts of the staff at the
NASA Ames Research Center, and the general support of the NASA Formal Methods
community. The NFM 2017 website can be found at: https://ti.arc.nasa.gov/events/
nfm-2017.

May 2017 Clark Barrett
Misty Davies

Temesghen Kahsai

VI Preface

https://ti.arc.nasa.gov/events/nfm-2017
https://ti.arc.nasa.gov/events/nfm-2017

Organization

Program Committee

Ella Atkins University of Michigan, USA
Domagoj Babic Google, USA
Julia Badger NASA Johnson Space Center, USA
Clark Barrett Stanford University, USA
Kirstie Bellman The Aerospace Corporation, USA
Dirk Beyer LMU Munich, Germany
Nikolaj Bjorner Microsoft Research, USA
Kalou Cabrera Castillos LAAS-CNRS, France
Alessandro Cimatti FBK-IRST, Italy
Misty Davies NASA Ames Research Center, USA
Ewen Denney Stinger Ghaffarian Technologies and NASA Ames

Research Center, USA
Dino Distefano Facebook, UK
Eric Feron Georgia Institute of Technology, USA
Pierre-Loic Garoche ONERA, France
Patrice Godefroid Microsoft Research, USA
Alwyn Goodloe NASA Langley Research Center, USA
Alberto Griggio FBK-IRST, Italy
Aarti Gupta Princeton University, USA
Arie Gurfinkel University of Waterloo, Canada
John Harrison Intel Corporation, USA
Klaus Havelund Jet Propulsion Laboratory, California Institute

of Technology, USA
Kelly Hayhurst NASA Langley Research Center, USA
Mats Heimdahl University of Minnesota, USA
Mike Hinchey Lero-the Irish Software Engineering Research Centre,

Ireland
Susmit Jha SRI International, USA
Rajeev Joshi Laboratory for Reliable Software, Jet Propulsion

Laboratory, USA
Dejan Jovanović SRI International, USA
Temesghen Kahsai NASA Ames Research Center/CMU, USA
Gerwin Klein Data61, CSIRO, Australia
Daniel Kroening University of Oxford, UK
Wenchao Li Boston University, USA
Lowry Michael NASA Ames Research Center, USA
Jorge A Navas SRI International, USA
Natasha Neogi NASA Langley Research Center, USA
Meeko Oishi University of New Mexico, USA

Lee Pike Galois, Inc., USA
Zvonimir Rakamaric University of Utah, USA
Murali Rangarajan The Boeing Company, USA
Kristin Yvonne Rozier Iowa State University, USA
Lael Rudd Draper, USA
Philipp Ruemmer Uppsala University, Sweden
Neha Rungta Amazon Web Services, USA
John Rushby SRI International, USA
Sriram Sankaranarayanan University of Colorado, Boulder, USA
Martin Schäf SRI International, USA
Cesare Tinelli The University of Iowa, USA
Christoph Torens German Aerospace Center, Institute of Flight Systems,

Germany
Virginie Wiels ONERA/DTIM, France

Additional Reviewers

Backeman, Peter
Backes, John
Bittner, Benjamin
Blackshear, Sam
Calderón Trilla, José Manuel
Cattaruzza, Dario
Chowdhury, Omar
Cohen, Raphael
Dangl, Matthias
Dimjasevic, Marko
Elliott, Trevor
Erkok, Levent
Galea, John
Gay, David
Gross, Kerianne

Hamon, Arnaud
He, Shaobo
Hendrix, Joe
Howar, Falk
Luckow, Kasper
Mattarei, Cristian
Mercer, Eric
Mote, Mark
Mukherjee, Rajdeep
Poetzl, Daniel
Reynolds, Andrew
Sanchez, Huascar
Sun, Youcheng
Tkachuk, Oksana
Zeljić, Aleksandar

VIII Organization

Contents

An Automata-Theoretic Approach to Modeling Systems and Specifications
over Infinite Data . 1

Hadar Frenkel, Orna Grumberg, and Sarai Sheinvald

Learning from Faults: Mutation Testing in Active Automata Learning 19
Bernhard K. Aichernig and Martin Tappler

Parametric Model Checking Timed Automata Under
Non-Zenoness Assumption . 35

Étienne André, Hoang Gia Nguyen, Laure Petrucci, and Jun Sun

Multi-timed Bisimulation for Distributed Timed Automata 52
James Ortiz, Moussa Amrani, and Pierre-Yves Schobbens

Auto-Active Proof of Red-Black Trees in SPARK. 68
Claire Dross and Yannick Moy

Analysing Security Protocols Using Refinement in iUML-B 84
Colin Snook, Thai Son Hoang, and Michael Butler

On Learning Sparse Boolean Formulae for Explaining AI Decisions 99
Susmit Jha, Vasumathi Raman, Alessandro Pinto, Tuhin Sahai,
and Michael Francis

Event-Based Runtime Verification of Temporal Properties
Using Time Basic Petri Nets . 115

Matteo Camilli, Angelo Gargantini, Patrizia Scandurra,
and Carlo Bellettini

Model-Counting Approaches for Nonlinear Numerical Constraints 131
Mateus Borges, Quoc-Sang Phan, Antonio Filieri,
and Corina S. Păsăreanu

Input Space Partitioning to Enable Massively Parallel Proof 139
Ashlie B. Hocking, M. Anthony Aiello, John C. Knight,
and Nikos Aréchiga

Compositional Model Checking of Interlocking Systems for Lines
with Multiple Stations . 146

Hugo Daniel Macedo, Alessandro Fantechi, and Anne E. Haxthausen

http://dx.doi.org/10.1007/978-3-319-57288-8_1
http://dx.doi.org/10.1007/978-3-319-57288-8_1
http://dx.doi.org/10.1007/978-3-319-57288-8_2
http://dx.doi.org/10.1007/978-3-319-57288-8_3
http://dx.doi.org/10.1007/978-3-319-57288-8_3
http://dx.doi.org/10.1007/978-3-319-57288-8_4
http://dx.doi.org/10.1007/978-3-319-57288-8_5
http://dx.doi.org/10.1007/978-3-319-57288-8_6
http://dx.doi.org/10.1007/978-3-319-57288-8_7
http://dx.doi.org/10.1007/978-3-319-57288-8_8
http://dx.doi.org/10.1007/978-3-319-57288-8_8
http://dx.doi.org/10.1007/978-3-319-57288-8_9
http://dx.doi.org/10.1007/978-3-319-57288-8_10
http://dx.doi.org/10.1007/978-3-319-57288-8_11
http://dx.doi.org/10.1007/978-3-319-57288-8_11

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 163
Benjamin F. Jones and Lee Pike

Improved Learning for Stochastic Timed Models
by State-Merging Algorithms . 178

Braham Lotfi Mediouni, Ayoub Nouri, Marius Bozga,
and Saddek Bensalem

Verifying Safety and Persistence Properties of Hybrid Systems
Using Flowpipes and Continuous Invariants . 194

Andrew Sogokon, Paul B. Jackson, and Taylor T. Johnson

A Relational Shape Abstract Domain. 212
Hugo Illous, Matthieu Lemerre, and Xavier Rival

Floating-Point Format Inference in Mixed-Precision 230
Matthieu Martel

A Verification Technique for Deterministic Parallel Programs. 247
Saeed Darabi, Stefan C.C. Blom, and Marieke Huisman

Systematic Predicate Abstraction Using Variable Roles 265
Yulia Demyanova, Philipp Rümmer, and Florian Zuleger

specgen: A Tool for Modeling Statecharts in CSP 282
Brandon Shapiro and Chris Casinghino

HYPRO: A C++ Library of State Set Representations for Hybrid
Systems Reachability Analysis . 288

Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf,
and Stefan Kowalewski

Asm2C++: A Tool for Code Generation from Abstract State Machines
to Arduino . 295

Silvia Bonfanti, Marco Carissoni, Angelo Gargantini,
and Atif Mashkoor

SPEN: A Solver for Separation Logic . 302
Constantin Enea, Ondřej Lengál, Mihaela Sighireanu,
and Tomáš Vojnar

From Hazard Analysis to Hazard Mitigation Planning:
The Automated Driving Case . 310

Mario Gleirscher and Stefan Kugele

Event-B at Work: Some Lessons Learnt from an Application to a Robot
Anti-collision Function . 327

Arnaud Dieumegard, Ning Ge, and Eric Jenn

X Contents

http://dx.doi.org/10.1007/978-3-319-57288-8_12
http://dx.doi.org/10.1007/978-3-319-57288-8_13
http://dx.doi.org/10.1007/978-3-319-57288-8_13
http://dx.doi.org/10.1007/978-3-319-57288-8_14
http://dx.doi.org/10.1007/978-3-319-57288-8_14
http://dx.doi.org/10.1007/978-3-319-57288-8_15
http://dx.doi.org/10.1007/978-3-319-57288-8_16
http://dx.doi.org/10.1007/978-3-319-57288-8_17
http://dx.doi.org/10.1007/978-3-319-57288-8_18
http://dx.doi.org/10.1007/978-3-319-57288-8_19
http://dx.doi.org/10.1007/978-3-319-57288-8_20
http://dx.doi.org/10.1007/978-3-319-57288-8_20
http://dx.doi.org/10.1007/978-3-319-57288-8_21
http://dx.doi.org/10.1007/978-3-319-57288-8_21
http://dx.doi.org/10.1007/978-3-319-57288-8_22
http://dx.doi.org/10.1007/978-3-319-57288-8_23
http://dx.doi.org/10.1007/978-3-319-57288-8_23
http://dx.doi.org/10.1007/978-3-319-57288-8_24
http://dx.doi.org/10.1007/978-3-319-57288-8_24

Reasoning About Safety-Critical Information Flow Between Pilot
and Computer. 342

Seth Ahrenbach

Compositional Falsification of Cyber-Physical Systems
with Machine Learning Components . 357

Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia

Verifying a Class of Certifying Distributed Programs. 373
Kim Völlinger and Samira Akili

Compact Proof Witnesses. 389
Marie-Christine Jakobs and Heike Wehrheim

Qualification of a Model Checker for Avionics Software Verification 404
Lucas Wagner, Alain Mebsout, Cesare Tinelli, Darren Cofer,
and Konrad Slind

SpeAR v2.0: Formalized Past LTL Specification and Analysis
of Requirements . 420

Aaron W. Fifarek, Lucas G. Wagner, Jonathan A. Hoffman,
Benjamin D. Rodes, M. Anthony Aiello, and Jennifer A. Davis

Just Formal Enough? Automated Analysis of EARS Requirements 427
Levi Lúcio, Salman Rahman, Chih-Hong Cheng, and Alistair Mavin

Author Index . 435

Contents XI

http://dx.doi.org/10.1007/978-3-319-57288-8_25
http://dx.doi.org/10.1007/978-3-319-57288-8_25
http://dx.doi.org/10.1007/978-3-319-57288-8_26
http://dx.doi.org/10.1007/978-3-319-57288-8_26
http://dx.doi.org/10.1007/978-3-319-57288-8_27
http://dx.doi.org/10.1007/978-3-319-57288-8_28
http://dx.doi.org/10.1007/978-3-319-57288-8_29
http://dx.doi.org/10.1007/978-3-319-57288-8_30
http://dx.doi.org/10.1007/978-3-319-57288-8_30
http://dx.doi.org/10.1007/978-3-319-57288-8_31

An Automata-Theoretic Approach to Modeling
Systems and Specifications over Infinite Data

Hadar Frenkel1(B), Orna Grumberg1, and Sarai Sheinvald2

1 Department of Computer Science, The Technion, Haifa, Israel
hfrenkel@cs.technion.ac.il

2 Department of Software Engineering, ORT Braude Academic College,

Karmiel, Israel

Abstract. Data-parameterized systems model finite state systems over
an infinite data domain. VLTL is an extension of LTL that uses
variables in order to specify properties of computations over infinite
data, and as such VLTL is suitable for specifying properties of data-
parameterized systems. We present Alternating Variable Büchi Word
Automata (AVBWs), a new model of automata over infinite alphabets,
capable of modeling a significant fragment of VLTL. While alternat-
ing and non-deterministic Büchi automata over finite alphabets have
the same expressive power, we show that this is not the case for infi-
nite data domains, as we prove that AVBWs are strictly stronger than
the previously defined Non-deterministic Variable Büchi Word Automata
(NVBWs). However, while the emptiness problem is easy for NVBWs,
it is undecidable for AVBWs. We present an algorithm for translating
AVBWs to NVBWs in cases where such a translation is possible. Addi-
tionally, we characterize the structure of AVBWs that can be translated
to NVBWs with our algorithm, and identify fragments of VLTL for which
a direct NVBW construction exists. Since the emptiness problem is cru-
cial in the automata-theoretic approach to model checking, our results
give rise to a model-checking algorithm for a rich fragment of VLTL and
systems over infinite data domains.

1 Introduction

Infinite data domains become increasingly relevant and wide-spread in real-life
systems, and are integral in communication systems, e-commerce systems, large
databases and more. Systems over infinite data domains were studied in several
contexts and especially in the context of datalog systems [4] and XML docu-
ments [5,7], that are the standard of web documents.

Temporal logic, particularly LTL, is widely used for specifying properties of
ongoing systems. However, LTL is unable to specify computations that handle
infinite data. Consider, for example, a system of processes and a scheduler. If
the set of processes is finite and known in advance, we can express and verify
properties such as “every process is eventually active”. However, if the system
is dynamic, in which new processes can log in and out, and the total number of
processes is unbounded, LTL is unable to express such a property.
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 1–18, 2017.
DOI: 10.1007/978-3-319-57288-8 1

2 H. Frenkel et al.

VLTL (LTL with variables) [11] extends LTL with variables that range over
an infinite domain, making it a natural logic for specifying ongoing systems
over infinite data domains. For the example above, a VLTL formula can be
ϕ1 = ∀x : G (loggedIn(x) → F (active(x))), where x ranges over the process
IDs. Thus, the formula specifies that for every process ID, once it is logged in,
it will eventually be active. Notice that this formula now specifies this prop-
erty for an unbounded number of processes. As another example, the formula
ϕ2 = G∃x(send(x)∧F receive(x)), where x ranges over the message contents (or
message IDs), specifies that in every step of the computation, some message is
sent, and this particular message is eventually received. Using variables enables
handling infinitely many messages along a single computation.

In the automata-theoretic approach to model checking [18,19], both the system
and the specification are modeled by automata whose languages match the set of
computations of the system and the set of satisfying computations of the formula.
Model-checking is then reduced to reasoning about these automata. For ongoing
systems, automata over infinite words, particularly nondeterministic and alter-
nating Büchi automata (NBWs and ABWs, respectively) are used [18]. Thus,
for ongoing systems with infinite data and VLTL, a similar model is needed,
capable of handling infinite alphabets. In [10,11], the authors suggested non-
deterministic variable Büchi word automata (NVBWs), a model that augments
NBWs with variables, and used it to construct a model-checking algorithm for a
fragment of VLTL that is limited to ∃-quantifiers that appear only at the head
of the formula.

The emptiness problem for NVBWs is NLOGSPACE-complete. Since the
emptiness problem is crucial for model checking, NVBWs are an attractive
model. However, they are quite weak. For example, NVBWs are unable to model
the formula ϕ2 above.

In this work, we present a new model for VLTL specifications, namely alter-
nating variable Büchi word automata (AVBWs). These are an extension of
NVBWs, which we prove to be stronger and able to express a much richer frag-
ment of VLTL. Specifically, we show that AVBWs are able to express the entire
fragment of ∃∗-VLTL, which is a fragment of VLTL with only ∃-quantifiers,
whose position in the formula is unrestricted.

We now elaborate more on NVBWs and AVBWs. As mentioned, an NVBW
A uses variables that range over an infinite alphabet Γ. A run of A on a word
w assigns values to the variables in a way that matches the letters in w. For
example, if a letter a.8 occurs in w, then a run of A may read a.x, where x is
assigned 8. In addition, the variables may be reset at designated states along
the run, and so a.x can be later used for reading another letter a.5, provided
that x has been reset. Resetting then allows reading an unbounded number
of letters using a fixed set of variables. Another component of NVBWs is an
inequality set E , that allows restricting variables from being assigned with the
same value. Our new model of AVBWs extends NVBWs by adding alternation.
An alternating automaton may split its run and continue reading the input along
several different paths simultaneously, all of which must accept.

An Automata-Theoretic Approach to Modeling Systems and Specifications 3

There is a well-known translation from LTL to ABW [18]. Thus, AVBWs
are a natural candidate for modeling VLTL. Indeed, as we show, AVBWs are
able to express all ∃∗-VLTL, following a translation that is just as natural as
the LTL to ABW translation. Existential quantifiers (anywhere) in the formula
are translated to corresponding resets in the automaton. Moreover, unlike the
finite alphabet case, in which NBWs and ABWs are equally expressive, in the
infinite alphabet case alternation proves to be not only syntactically stronger
but also semantically stronger, as we show that AVBWs are more expressive
than NVBWs.

As we have noted, our goal is to provide a model which is suitable for a
model-checking algorithm for VLTL, and that such a model should be easily
tested for emptiness. However, we show that the strength of AVBWs comes with
a price, and their emptiness problem is unfortunately undecidable. To keep the
advantage of ease of translation of VLTL to AVBWs, as well as the ease of using
NVBWs for model-checking purposes, we would then like to translate AVBWs
to NVBWs, in cases where such a translation is possible. This allows us to enjoy
the benefit of both models, and gives rise to a model-checking algorithm that is
able to handle a richer fragment of VLTL than the one previously studied.

We present such a translation algorithm, inspired by the construction of [14].
As noted, such a translation is not always possible. Moreover, we show that there
is no algorithm that is both sound and complete, even if we restrict completeness
to require returning “no translation possible”. Our algorithm is then sound but
incomplete, and we present an example for which it will not halt. However, we
give a characterization for AVBWs for which our algorithm does halt, relying
on the graphical structure of the underlying automaton. The essence of the
characterization is that translatable AVBWs do not have a cycle that contains
a reset action which leads to an accepting state. Consider once again ϕ2 =
G∃x(send .x ∧ F receive.x). Here, we keep sending messages that must arrive
eventually. However, there is no bound on when they will arrive. Since this is a
global requirement, there must be some cycle that verifies it, and such cycles are
exactly the ones that prevent the run of the translation algorithm from halting.

The importance of our algorithm and structural characterization is a twofold:
(1) given an AVBW A, one does not need to know the semantics of A in order
to know if it is translatable, and to automatically translate A to an equivalent
NVBW; and (2) Given a general ∃∗-VLTL formula, one can easily construct an
equivalent AVBW A, use our characterization to check whether it is translatable,
and continue with the NVBW that our translation outputs.

In addition to the results above, we also study fragments of ∃∗-VLTL that
have a direct construction to NVBWs, making them an “easy” case for modeling
and model checking.

Related Work. Other models of automata over infinite alphabets have been
defined and studied. In [13] the authors define register automata over infinite
alphabets, and study their decidability properties. [16] use register automata
as well as pebble automata to reason about first order logic and monadic sec-
ond order logic, and to describe XML documents. [3] limit the number of

4 H. Frenkel et al.

variables and use extended first order logic to reason about both XML and
some verification properties. In [4] the authors model infinite state systems as
well as infinite data domains, in order to express some extension of monadic first
order logic. Our model is closer to finite automata over infinite words than the
models above, making it easier to understand. Moreover, due to their similar-
ity to ABWs, we were able to construct a natural translation of ∃∗-VLTL to
AVBWs, inspired by [18]. We then translate AVBWs to NVBWs. Our construc-
tion is consistent with [14] which provides an algorithm for translating ABWs
to NBWs. However, in our case additional manipulations are needed in order to
handle the variables and track their possible assignments.

The notion of LTL over infinite data domains was studied also in the field of
runtime verification (RV) [1,2,8]. Specifically, in [1], the authors suggest a model
of quantified automata with variables, in order to capture traces of computations
with different data values. The purpose in RV is to check whether a single given
trace satisfies the specification. Moreover, the traces under inspection are finite
traces. This comes into play in [1] where the authors use the specific data values
that appear on such a trace in order to evaluate satisfiability. In [2] the authors
suggest a 3-valued semantics in order to capture the uncertainty derived from
the fact that traces are finite. Our work approaches infinite data domains in
a different manner. Since we want to capture both infinite data domains and
infinite traces, we need a much more expressive model, and this is where AVBWs
come into play.

2 Preliminaries

Given a finite set of directions D, a D-tree T is a set T ⊆ D∗. The root of T
is the empty word ε. A node x of T is a word over D that describes the path
from the root of T to x. That is, for a word d = d1, d2, · · · , dn there is a path in
the tree π = ε, d1, d1d2, · · · , d1d2 · · · dn such that every word d′di is a successor
of the previous word d′. For a word w · x ∈ D∗ where w ∈ D∗ and x ∈ D, if
w · x ∈ T then w ∈ T , i.e. the tree is prefix closed. A successor of a node w ∈ T
is of the form w · x for x ∈ D.

Given a set L, an L-labeled D-tree is a pair 〈T, f〉 where T is a D-tree, and
f : T → L is a labeling function that labels each node in T by an element of L.

A non-deterministic Büchi automaton over infinite words (NBW) [6] is a
tuple B = 〈Σ, Q, q0, δ, α〉 where Σ is a finite alphabet; Q is a finite set of states;
q0 ∈ Q is the initial state; α ⊆ Q is a set of accepting states; and δ : Q×Σ → 2Q

is the transition function. For a word ρ ∈ Σω, we denote by ρi the letter of ρ in
position i.

A run of B on a word ρ ∈ Σω is an infinite sequence of states q0, q1, q2, · · · ∈
Qω, that is consistent with δ, i.e., q0 is the initial state and ∀i > 0 : qi ∈
δ(qi−1, ρi). A run of B is accepting if it visits some state of α infinitely often.
We say that B accepts a word ρ if there exists an accepting run of B on ρ. The
language of B, denoted L(B), is the set of words accepted by B.

An alternating Büchi automaton over infinite words (ABW) [15] is a tuple
BA = 〈Σ, Q, q0, δ, α〉 where Σ, Q, q0 and α are as in NBW. The transition relation

An Automata-Theoretic Approach to Modeling Systems and Specifications 5

is δ : Q×Σ → B+(Q), where B+(Q) is the set of positive boolean formulas over
the set of states, i.e. formulas that include only the boolean operators ∧ and ∨1.
For example, if δ(q, a) = (q1 ∧ q2) ∨ q3, then, by reading a from q, the ABW
BA moves to either both q1 and q2, or to q3. We assume that δ is given in a
disjunctive normal form (DNF).

A run of an ABW is a Q-labeled Q-tree. Disjunctions are equivalent to non-
deterministic choices, and so every disjunct induces a tree. A conjunction induces
a split to two or more successors. For example, δ(q, a) = (q1 ∧ q2) ∨ q3 induces
two trees. In the first, q has two successors, q1 and q2. In the second tree the only
successor of q is q3. A run is accepting if every infinite path in the corresponding
tree visits a state from α infinitely often, and every finite path ends with true .
The notions of acceptance and language are as in NBWs.

We say that an automaton (either NBW or ABW) is a labeled automaton if
its definition also includes a labeling function L : Q → L for its states, where
L is a set of labels. We use this notion to conveniently define variable automata
later on.

We assume that the reader is familiar with the syntax and semantics of LTL.
Variable LTL, or VLTL, as defined in [11], extends LTL by augmenting

atomic propositions with variables. Let AP be a set of parameterized atomic
propositions, let X be a finite set of variables, and let x̄ be a vector of variables.
Then, the formulas in VLTL are over AP × X, thus allowing the propositions
to carry data from an infinite data domain. We inductively define the syntax
of VLTL.

– For every a ∈ AP and x ∈ X the formulas a.x and ¬a.x are VLTL formulas2.
– For a VLTL formula ϕ(x̄) and x ∈ X, the formulas ∃xϕ(x̄) and ∀xϕ(x̄)

are in VLTL.
– If ϕ1(x̄) and ϕ2(x̄) are VLTL formulas, then so are ϕ1(x̄)∨ϕ2(x̄); ϕ1(x̄)∧ϕ2(x̄);
Xϕ(x̄); Fϕ1(x̄); Gϕ1(x̄); ϕ1(x̄)Uϕ2(x̄); and ϕ1(x̄)Vϕ2(x̄), where V is the
release operator, which is the dual operator of U .

Given an alphabet Γ, an assignment θ : X → Γ, and a word ρ ∈ (2AP×Γ)ω, we
denote ρ �θ ϕ(x̄) if ρ � ϕ(x̄)[x̄←θ(x̄)] under the standard semantics of LTL. For
example, for ρ = {p.1}ω it holds that ρ �θ G p.x for θ(x) = 1.

We denote ρ �θ ∃xϕ(x̄) if there exists an assignment x ← d to the variable x
such that ρ �θ ϕ(x̄)[x←d], where �θ is as defined before. We denote ρ �θ ∀xϕ(x̄)
if for every assignment x ← d to the variable x, it holds that ρ �θ ϕ(x̄)[x←d].

We say that a formula ϕ is closed if every occurrence of a variable in ϕ is
under the scope of a quantifier. Notice that the satisfaction of closed formulas
is independent of specific assignments. For a closed formula ϕ over x̄, we then
write ρ � ϕ(x̄).

The logic ∃∗-VLTL is the set of all closed VLTL formulas in negation normal
form (NNF) that only use the ∃-quantifier. Note that the ∃-quantifier may appear

1 In particular, the negation operator is not included.
2 The semantics of ¬a.x is regarding a specific value. I.e., if x = d then a.d does not

hold, but a.d′ for d �= d′ may hold.

6 H. Frenkel et al.

anywhere in the formula. The logic ∃∗
pnf -VLTL is the set of all ∃∗-VLTL formulas

in prenex normal form, i.e., ∃-quantifiers appear only at the beginning of the
formula.

The language of a formula ϕ, denoted L(ϕ), is the set of computations that
satisfy ϕ.

We now define non-deterministic variable Büchi automata over infinite words
(NVBWs). Our definition is tailored to model VLTL formulas, and thus is slightly
different from the definition in [10]. Specifically, the alphabet consists of subsets
of AP × X, where AP is a finite set of parameterized atomic propositions.

An NVBW is a tuple A = 〈B,Γ,E 〉, where B = 〈2AP×X , Q, q0, δ, reset , α〉
is a labeled NBW, X is a finite set of variables, reset : Q → 2X is a labeling
function that labels each state q with the set of variables that are reset at q, the
set E ⊆ {xi �= xj |xi, xj ∈ X} is an inequality set over X, and Γ is an infinite
alphabet.

A run of an NVBW A = 〈B,Γ,E 〉 on a word ρ ∈ (2AP×Γ)ω, where ρ =
ρ1ρ2 · · · is a pair 〈π, r〉 where π = (q0, q1, q2, · · ·), is an infinite sequence of
states, and r = (r0, r1, · · ·) is a sequence of mappings ri : X → Γ such that:

1. There exists a word z ∈ (2AP×X)ω such that ∀i : ri(zi) = ρi and π is a run
of B on z. We say that z is a symbolic word that is consistent on 〈π, r〉 with
the concrete word ρ.

2. The run respects the reset actions: for every i ∈ N, x ∈ X, if x /∈ reset (qi)
then ri(x) = ri+1(x).

3. The run respects E : for every i ∈ N and for every inequality (xm �= xl) ∈ E
it holds that ri(xl) �= ri(xm).

A run 〈π, r〉 on ρ is accepting if π is an accepting run of B on a symbolic word
z that corresponds to ρ on 〈π, r〉, i.e. π visits α infinitely often. The notion of
acceptance and language are as in NBWs.

Intuitively, a run of an NVBW A on a word ρ assigns each occurrence of a
variable a letter from Γ. A variable can “forget” its value only if a reset action
occurred. The inequality set E prevents from certain variables to be assigned
with the same value.

We say that an NVBW A expresses a formula ϕ if L(A) = L(ϕ).

Example 1. Consider the concrete word ρ = {send .1}, ({send .2, rec.1}, {send .1,
rec.2})ω. In an NVBW A, a corresponding symbolic word can be z = {send .x1},
({send .x2, rec.x1}, {send .x1, rec.x2})ω. If A includes reset actions for x1 and
x2 in every even state in some path of A, then another concrete word consis-
tent with z can be ρ′ = {send .1}, {send .2, rec.1}, {send .3, rec.4}, {send .4, rec.3},
{send .5, rec.6}, · · · , since the values of x1 and x2 can change at every even state.

3 Variable Automata: Non-determinism Vs. Alternation

In Sect. 5 we show that NVBWs are useful for model checking in our setting,
since they have good decidability properties. In particular, there is a polyno-
mial construction for intersection of NVBWs, and their emptiness problem is

An Automata-Theoretic Approach to Modeling Systems and Specifications 7

NLOGSPACE-complete [10]. In Sect. 4 we describe a translation of ∃∗
pnf -VLTL

formulas to NVBWs. We now show that NVBWs are too weak to express all
VLTL formulas, or even all ∃∗-VLTL formulas. It follows that ∃∗-VLTL is strictly
more expressive than ∃∗

pnf -VLTL. Nevertheless, we use NVBWs for model check-
ing at least for some fragments of ∃∗-VLTL.

Before discussing the properties of variable automata, we first give some moti-
vation for their definition, as given in Sect. 2. In particular, we give motivation
for the reset labeling function and for E , the inequity set.

Example 2. We begin with resets. Consider the ∃∗-VLTL formula ϕ1 =
G∃x(a.x). One possible computation satisfying ϕ1 is ρ = a.1, a.2, a.3, · · · . No
NVBW with a finite number of variables can read ρ, unless some variable is
reassigned. The reset action allows these reassignments.

Example 3. To see the necessity of the inequality set E , consider the ∃∗-VLTL
formula ϕ2 = ∃x(G¬a.x). We can use a variable x to store a value that never
appears along the computation with a. Imposing inequality restrictions on x
with all other variables makes sure that the value assigned to x does not appear
along the computation via assignments to other variables. Note that if the logic
does not allow negations at all, the inequality set is not needed.

3.1 NVBWs Are Not Expressive Enough for ∃∗-VLTL

We first show that NVBWs cannot express every ∃∗-VLTL formula.

Lemma 1. The formula ϕG ∃ = G∃x(b.x ∧ F a.x) cannot be expressed by an
NVBW.

Proof. Consider the following word ρ over AP = {a, b} and Γ = N.

ρ = {a.1, b.1}, {a.2, b.2}, {a.2, b.3}, {a.3, b.4}, .., {a.4, b.8}.., {a.(k + 1), b.2k}, · · ·
i.e., b.(i) occurs in ρi, and a.(i+1) occurs for the first time in ρ2i and continues

until ρ2i+1−1.
It is easy to see that ρ satisfies ϕG ∃ since at step t for x = t we have that b.t
holds, and at some point in the future, specifically at step 2t−1, the proposition
a.t will hold.

Assume, by way of contradiction, that A is an NVBW with m variables that
expresses ϕG ∃. Then over a sub-word with more than m values for b, one variable
must be reset and used for two different values. We can then create a different
computation in which the value that was “forgotten” never appears with a, thus
not satisfying ϕG ∃, but accepted by A, a contradiction.
�

Not only ∃-quantifiers are problematic for NVBWs. NVBWs cannot handle
∀-quantifiers, even in PNF. The proof of the following Lemma is almost identical
to the proof of Lemma 1.

Lemma 2. The formula ϕ = ∀x : G (a.x → F b.x) cannot be expressed by an
NVBW.

8 H. Frenkel et al.

3.2 Alternating Variable Büchi Automata

In Sect. 3.1 we have shown that NVBWs are not expressive enough, even when
considering only the fragment of ∃∗-VLTL. We now introduce alternating vari-
able Büchi automata over infinite words (AVBW), and show that they can
express all of ∃∗-VLTL. We study their expressibility and decidability properties.

Definition 1. An AVBW is a tuple A = 〈BA,Γ,E 〉 where BA = 〈2AP×X , Q, q0,
δ, reset , α〉 is a labeled ABW, X is a finite set of variables, reset : Q → 2X is
a labeling function that labels every state q with the set of variables that are
reset at q, the set E is an inequality set, and Γ is an infinite alphabet. We only
allow words in which a proposition a.γ for γ ∈ Γ appears at most once in every
computation step, i.e., no word can contain both a.γ and a.γ′ for γ �= γ′ at the
same position.

A run of an AVBW A on a word ρ ∈ (2AP×Γ)ω is a pair 〈T, r〉 where T is a
Q-labeled Q-tree and r labels each node t of T by a function rt : X → Γ such
that:

1. The root of T is labeled with q0.
2. For each path π on T there exists a symbolic word zπ ∈ (2AP×X)ω such that

rπi
((zπ)i) = ρi.

3. The run respects δ: for each node t ∈ T labeled by q of depth i on path π, the
successors of t are labeled by q1, · · · , qt iff one of the conjuncts in δ(q, (zπ)i)
is exactly

∧
j=1..t qj .

4. The run respects the reset actions: if t′ is a child node of t labeled by q and
x /∈ reset (q), then rt(x) = rt′(x).

5. The run respects E : for every (xi �= xj) ∈ E and for every node t ∈ T it
holds that rt(xi) �= rt(xj).

Intuitively, much like in NVBWs, the variables in every node in the run tree
are assigned values in a way that respects the resets and the inequality set.

A run 〈T, r〉 on ρ is accepting if every infinite path π is labeled infinitely often
with states in α. The notion of acceptance and language are as usual. Note that
the same variable can be assigned different values on different paths.

Just like ABWs, AVBWs are naturally closed under union and intersection.
However, unlike ABWs, they are not closed under complementation. We prove
this in Sect. 3.4.

3.3 AVBWs Can Express All of ∃∗-VLTL

We now show that AVBWs can express ∃∗-VLTL. Together with Lemma 1, we
reach the following surprising theorem.

Theorem 1. AVBWs are strictly more expressive than NVBWs.

This is in contrast to the finite alphabet case, where there are known algo-
rithms for translating ABWs to NBWs [14].

An Automata-Theoretic Approach to Modeling Systems and Specifications 9

Theorem 2. Every ∃∗-VLTL ϕ formula can be expressed by an AVBW Aϕ.

We start with an example AVBW for ϕG ∃ = G∃x(b.x∧F a.x) from Lemma 1.

Example 4. Let A = 〈B,N, ∅〉 where B = 〈2AP×{x1,x2,x3}, {q0, q1}, q0, δ, reset ,
{q0}〉.
– reset(q0) = {x1, x2}, reset(q1) = {x2, x3}
– δ(q0, {b.x1}) = δ(q0, {a.x2, b.x1}) = q0 ∧ q1

δ(q0, {b.x1, a.x1}) = true
δ(q1, {b.x2}) = δ(q1, {a.x2}) = δ(q1, {a.x2, b.x3}) = q1

δ(q1, {a.x1}) = δ(q1, {a.x1, b.x2}) = true

Intuitively, q0 makes sure that at each step there is some value with which b
holds. The run then splits to both q0 and q1. The state q1 waits for a with the
same value as was seen in q0 (since x1 is not reset along this path, it must be the
same value), and uses x2, x3 to ignore other values that are attached to a, b. The
state q0 continues to read values of b (which again splits the run), while using
x2 to ignore values assigned to a. See Fig. 1 for a graphic representation of A.

We now proceed to the proof of Theorem 2.

Proof. Let ϕ be an ∃∗-VLTL formula. We present an explicit construction
of Aϕ, based on the construction of [18] and by using resets to handle the
∃-quantifiers, and inequalities to handle negations. First, we rename the vari-
ables in ϕ and get an equivalent formula ϕ′, where each existential quantifier
bounds a variable with a different name. For example, if ϕ = ∃x(a.xU ∃x(b.x))
then ϕ′ = ∃x1(a.x1 U∃x2(b.x2)). Let sub(ϕ) denote all sub-formulas of ϕ and let
var(ϕ) denote the set of variables that appear in ϕ.

Let Aϕ = 〈B,Γ,E 〉 where B = 〈2AP×X , Q, q0 = ϕ′, δ, reset , α〉 and where

– X = var(ϕ′) ∪ {xp|p ∈ AP}

Fig. 1. The AVBW A described in Example 4 and an example of a run. The double
arch between transitions represents an “and” in δ.

10 H. Frenkel et al.

– Q = sub(ϕ′)
– ∀q ∈ Q : {xp|p ∈ AP} ⊆ reset(q) and, for q = ∃x1, · · · ,∃xnη, we have

{x1, · · · , xn} ⊆ reset(q).
– E = {x �= x′|x′ ∈ X,∃a : ¬a.x ∈ sub(ϕ′)}.
– α consists of all states of the form η Vψ.

The set of states Q consists of all sub-formulas of ϕ′. Intuitively, at every
given point there is an assignment to the variables, that may change via resets.
If an accepting run of A on ρ visits a state ψ, then the suffix of ρ that is read
from ψ satisfies ψ under the current assignment to the variables. The set of
variables X consists of all variables in ϕ′, as well as a variable xp for every
atomic proposition p ∈ AP . The additional variables enable the run to read and
ignore currently irrelevant inputs. For example, for ϕ = ∃xF (b.x∧a.x), we want
to read (and ignore) values of a and b until a.γ ∧ b.γ occurs with some γ.

Let A be a subset of AP × X (recall that B is defined over the alphabet
2AP×X). We define δ as follows.

– δ(a.x,A) = true if a.x ∈ A and δ(a.x,A) = false if a.x /∈ A
– δ(¬a.x,A) = true if a.x /∈ A and δ(¬a.x,A) = false if a.x ∈ A
– δ(η ∧ ψ,A) = δ(η,A) ∧ δ(ψ,A).
– δ(η ∨ ψ,A) = δ(η,A) ∨ δ(ψ,A)
– δ(X η,A) = η
– δ(ηUψ,A) = δ(ψ,A) ∨ (δ(η,A) ∧ ηUψ)
– δ(η Vψ,A) = δ(η ∧ ψ,A) ∨ (δ(ψ,A) ∧ η Vψ)
– δ(∃xη,A) = δ(η,A)

Note that since we only use formulas in NNF, we define δ for both “and”
and “or”, as well as for U (until) and V (release) operators.

Correctness. It can be shown that a word ρ is accepted from a state ψ with a
variable assignment r iff ρ |=r ψ. We elaborate on how the construction handles
the ∃-quantifier and negations.

The ∃-quantifier is handled by resetting the variables under its scope. Indeed,
according to the semantics of ∃, for ψ of the form ∃x : ψ′, the suffix of ρ holds if
ψ′ holds for some assignment to x. Resetting x allows the run to correctly assign
x in a way that satisfies ψ′. Notice also that from this point on, due to the
∃ quantifier, the previous value assigned to x may be forgotten.

Recall that we only allow negations on atomic propositions. We handle these
negations with inequalities. If ¬a.x is a sub-formula of ϕ, then we do not want
the value assigned to x to appear with a when reading a from state ¬a.x. Thus,
all variables that a can occur with from state ¬a.x must be assigned different
values from the value currently assigned to x. We express this restriction with
the inequality set E .
�

An Automata-Theoretic Approach to Modeling Systems and Specifications 11

3.4 AVBWs Are Not Complementable

As mentioned before, unlike ABWs, AVBWs are not complementable. To prove
this, we show that ∀∗-VLTL cannot generally be expressed by AVBWs. Since
negating an ∃∗-VLTL formula produces a ∀∗-VLTL formula, the result follows.

Theorem 3. There is no AVBW that expresses ϕ∀ = ∀xF a.x.

Proof. Obviously, if the alphabet is not countable, then it cannot be enumerated
by a computation. However, the claim holds also for countable alphabets. Assume
by way of contradiction that there exists an AVBW A that expresses ϕ∀ for
Γ = N. Then A accepts w = a.0a.1a.2 · · · . Since the variables are not sensitive
to their precise contents but only to inequalities among the values, it is easy to
see that the accepting run of A on w can also be used to read w1 = a.1a.2 · · · ,
in which the value 0 never occurs.
�
The negation of the above ϕ∀ is in ∃∗-VLTL, thus there is an AVBW that
expresses it.

Corollary 1. AVBWs are not complementable.

Corollary 2. ∀∗-VLTL is not expressible by AVBWs.

3.5 Variable Automata: From AVBW to NVBW

The emptiness problem for NVBWs is NLOGSPACE-complete [10]. In the con-
text of model checking, this is an important property. We now show that for
AVBWs, the emptiness problem is undecidable.

Lemma 3. The emptiness problem for AVBWs is undecidable.

Proof. According to [17], the satisfiability problem for ∃∗-VLTL is undecidable.
The satisfiability of a formula ϕ is equivalent to the nonemptiness of an automa-
ton that expresses ϕ. Since we have showed that every ∃∗-VLTL formula can be
expressed by an AVBW, the proof follows.
�
Since the emptiness problem for NVBWs is easy, we are motivated to translate
AVBWs to NVBWs in order to model check properties that are expressed by
AVBWs. In particular, it will enable us to model check ∃∗-VLTL properties. This,
however, is not possible in general since AVBWs are strictly more expressive than
NVBWs (Theorem 1).

In this section we present an incomplete algorithm, which translates an inter-
esting subset of AVBWs to equivalent NVBWs. We later give a structural char-
acterization for AVBWs that can be translated by our algorithm to NVBWs.

3.5.1 From AVBW to NVBW
Our algorithm is inspired by the construction of [14] for translating ABW to
NBW. In [14] the states of the NBW are of the form 〈S,O〉 where S is the set

12 H. Frenkel et al.

of the states the ABW is currently at, and O is the set of states from paths
that “owe” a visit to an accepting state. While running the NBW on a word ρ,
accepting states are removed from O, until O = ∅. Thus, when O = ∅, all paths
have visited an accepting state at least once. Now, O is again set to be S, and a
new round begins. The accepting states of the NBW are states of the form 〈S, ∅〉.

Here, we wish to translate an AVBW A to an NVBW A′. For simplicity, we
assume that E = ∅. The changes for the case where E �= ∅ are described later.

In our case, the variables make the translation harder, and as shown before,
even impossible in some cases. In addition to S,O we must also remember which
variables are currently in use, and might hold values from previous states. In our
translation, the states of the NVBW are tuples containing S,O and the sets of
variables in use. Since AVBWs allow different paths to assign different values to
the same variable, the translation to an NVBW must allocate a new variable for
each such assignment. We also need to release variables that were reset in the
AVBW, in order to reuse them in the NVBW to avoid defining infinitely many
variables. Since we need to know which variables are in use at each step of a run
of A, we dynamically allocate both the states and the transitions of A′.

Thus, δ′, the transition function of A′, is defined dynamically during the run
of our algorithm, as do the states of A′. Moreover, since each path may allocate
different values to the same variable, it might be the case that the same variable
holds infinitely many values (from different paths). Such a variable induces an
unbounded number of variables in A′. Our algorithm halts when no new states
are created, and since the fresh variables are part of the created states, creating
infinitely many such variables causes our algorithm not to halt. Therefore, the
algorithm is incomplete.

Algorithm AVBWtoNVBW: Let A = 〈BA,Γ,E 〉 be an AVBW, where BA =
〈2X , Q, q0, δ, reset , α〉. For simplicity we assume that BA is defined over the
alphabet 2X instead of 2AP×X . Recall that we assume that δ(q,X ′) is in
DNF for all q ∈ Q,X ′ ⊆ X. Let A′ = 〈B′,Γ,E ′〉 be an NVBW where
B′ = 〈2Z , Q′, q′

0, δ
′, reset ′, α′〉, and3:

– Z = {zi|i = 0..k} is the set of variables. k can be finite or infinite, according
to the translation. If |Z| < ∞ then the AVBW is translatable to an NVBW.

– Q′ ⊆ 2Q×2X×Z × 2Q×2X×Z

. The states of A′ are pairs 〈S,O〉. Each of S,O
is a set of pairs of type 〈q, fq〉 where q ∈ Q, and fq : X → Z is a mapping
from the variables of A to the variables of A′. At each state we need to know
how many different values can be assigned to a variable x ∈ X by A, and
create variables zi ∈ Z accordingly, in order to keep track of the different
values of x.

– q′
0 = 〈{(q0, ∅)}, ∅〉. The initial state of A′ is the initial state of A with no

additional mappings.
– α′ = 2Q×2X×Z × ∅. The accepting states of A′ are states for which O = ∅, i.e.,

all paths in A have visited an accepting state.

3 Comments to the algorithm are given in gray.

An Automata-Theoretic Approach to Modeling Systems and Specifications 13

1. Preprocessing: For each q ∈ Q: if there is no accepting state or true reachable
from q then replace q with false. This is in order to remove loops that may
prevent halting, but, in fact, are redundant since they do not lead to an
accepting state.

2. Initiation: set S = {〈q0, ∅〉}, O = ∅, Qnew = {〈S,O〉}, Qold = ∅, vars = ∅, Z =
∅. The purpose of S,O is as explained above; Qnew, Qold keep track of the
changes in the states that the algorithm creates, in order to halt when no
new states are created; vars holds variables of Z that are currently in use.

3. We iteratively define δ′(〈S,O〉,X ′) for 〈S,O〉 ∈ Qnew, as long as new states
are created, i.e. while Qnew �⊆ Qold

(a) Set: S′ = O′ = ∅, Z ′ = ∅, Zreset = ∅. The purpose of Zreset is to reset fresh
variables, in order to reduce the number of states; at each step, Z ′ holds
the variables in Z which label the current edge (and are the image of
the variables in X which label the corresponding edges in A). The group
Zreset is initialized at every iteration of the algorithm.

(b) Qold = Qold ∪ {〈S,O〉}
(c) Qnew = Qnew \ {〈S,O〉}
(d) For each 〈q, fq〉 ∈ S and X ′ ⊆ X, let Pq ⊆ Q be a minimal set of states

with Pq � δ(q,X ′).
i. Create a state 〈p, fp〉 for each p ∈ Pq. The function fp is initialized

to fp(x) = fq(x) for x /∈ reset(p). I.e., every successor state p of q
remembers the same assignments to variables as in q, but releases the
assignments to variables that were reset in p.

ii. For x ∈ X ′ with x ∈ dom(fq), update Z ′ = Z ′ ∪ {fq(x)}
iii For each x ∈ X ′ with x /∈ dom(fq), let i ∈ N be the minimal index

for which zi /∈ vars.
A. Add to fp the mapping fp(x) = zi if x /∈ reset(p).
B. Update vars = vars ∪ {zi}, Z ′ = Z ′ ∪ {zi}, Zreset = Zreset ∪ {zi},

Z = Z ∪{zi}. zi may already be in Z, if it was introduced earlier.
iv. Define SPq

= {〈p, fp〉}p∈Pq

v. If O �= ∅: define OPq
= SPq

if 〈q, fq〉 ∈ O. I.e., add to O′ only succes-
sors states of states from O.

vi. If O = ∅: define OPq
= SPq

(e) Define S′ =
⋃

〈q,fq〉∈S SPq
, O′ = (

⋃
〈q,fq〉∈O OPq

) \ {〈p, fp〉}p∈α

(f) Add {zi|zi ∈ Zreset} to the reset function of previous state, 〈S,O〉. I.e.,
reset ′(〈S,O〉) = reset ′(〈S,O〉) ∪ {zi|zi ∈ Zreset}.

(g) Define 〈S′, O′〉 ∈ δ′(〈S,O〉, Z ′)
(h) Update Qnew = Qnew ∪ {〈S′, O′〉}
(i) If for zi ∈ vars it holds that for all 〈S,O〉 ∈ Qnew , for all 〈p, fp〉 ∈ S we

have zi /∈ range(fq), then:
i. vars = vars \ {zi}.
ii. add zi to reset ′(〈S′, O′〉)

Here we release variables of Z that are no longer in use. The way to do
so is to reset them, thus A′ can assign them a new value, and to delete
them from vars so they can be in use in following transitions.

4. Set Q′ = Qold

14 H. Frenkel et al.

To handle cases where E �= ∅, instead of mapping x to any unmapped vari-
able zi ∈ Z, each variable x may be mapped only to a unique set {zxi

}i∈Ix .
Then, we define E ′ = {zxi

�= zx′
j
|i ∈ Ix, j ∈ Ix′ , (x �= x′) ∈ E}. Notice that this

does not change the cardinality of Z.

3.5.2 A Structural Characterization of Translatable AVBWs
In order to define a structural characterization, we wish to refer to an AVBW A
as a directed graph GA whose nodes are the states of A. There is an edge from
q to q′ iff q′ is in δ(q,A) for some A ⊆ X. For example, if δ(q, x) = q1 ∨ (q2 ∧ q3)
then there are edges from q to q1, q2 and q3.

Definition 2. An x-cycle in an AVBW A is a cycle q0, q1, · · · , qk, qk+1 where
qk+1 = q0, of states in GA such that:

1. For all 1 ≤ i ≤ k + 1 it holds that qi is in δ(qi−1, A) for some A ⊆ X.
2. There exists 1 ≤ i ≤ k +1 such that qi is in δ(qi−1, A) for A ⊆ X and x ∈ A.

i.e. there is an edge from one state to another on the cycle, labeled x.

Theorem 4. Assume the preprocessing of stage 1 in the algorithm has been
applied, resulting in an AVBW A. Algorithm AVBWtoNVBW halts on A and
returns an equivalent NVBW iff for every x-cycle C in GA one of the following
holds:

1. For every q on C it holds that x /∈ reset(q).
2. For every state q on a path from the initial state to C with q1 ∧ q2 ∈ δ(q,A)

for x ∈ A, such that q1 is on the cycle C and q2 leads to an accepting state,
it holds that every x-cycle C′ �= C on a path from q2 to an accepting state
contains a state q′ with x ∈ reset(q′).

Proof. First, notice that Algorithm AVBWtoNVBW halts iff Z is of a finite size,
i.e., the number of variables it produces is finite.

For the first direction we show that running AVBWtoNVBW on an AVBW A
with the above properties results in an NVBW with Z of a finite size. In each of
the two cases, we can bound the distance between two reset actions for the same
variable, or between a reset action and an accepting state, along every possible
run. This, since we can bound the length of the longest path from a state on an
x-cycle to an accepting state. Thus all variables in X induce a finite number of
variables in Z.

For the other direction, since 1–2 do not hold, there exists a state q that leads
both to an x-cycle C on which x is reset, and to an x-cycle C′ with no reset(x),
on a way to an accepting state. While running our algorithm, a new mapping
x → zi is introduced at every visit to reset(x) on C. At the same time, zi cannot
be removed from vars, because of the visits to C′, which does not reset x, and
thus its value must be kept. Therefore, the algorithm continuously creates new
assignments x → zj for j �= i. Thus vars contains an unbounded set of variables.
The fact that there is a path to an accepting state is needed in order for this
cycle to “survive” the preprocessing.
�

An Automata-Theoretic Approach to Modeling Systems and Specifications 15

3.5.3 Completeness and Soundness
As we mentioned before, no translation algorithm from AVBWs to NVBWs can
be both sound and complete, and have a full characterization of inputs for which
the algorithm halts. We now prove this claim.

Theorem 5. There is no algorithm E that translates AVBWs into NVBWs such
that all the following hold.

1. Completeness - for every A that has an equivalent NVBW, E(A) halts and
returns such an equivalent NVBW.

2. Soundness - If E(A) halts and returns an NVBW A′, then A′ is equivalent to A.
3. There is a full characterization of AVBWs for which E halts.

Proof. As we have shown in Lemma 3, the emptiness problem of AVBWs is unde-
cidable. Assume there is a translation algorithm E as described in Theorem 5.
Then consider the following procedure. Given an AVBW A, if E halts, check if
E(A) is empty. If E does not halt on input A, we know it in advance due to
the full characterization. Moreover, we know that L(A) is not empty (otherwise,
since E is complete, E would halt on A, since there is an NVBW for the empty
language). Hence, a translation algorithm as described in Theorem 5 gives us a
procedure to decide the emptiness problem for AVBWs, a contradiction.
�

For our algorithm, we have shown a full characterization for halting. Now
we prove that our algorithm is sound, and demonstrate its incompleteness by
an example of an AVBW for the empty language, for which our algorithm does
not halt.

Theorem 6. Algorithm AVBWtoNVBW is sound.

Proof. First we show that the definition of E ′ is correct. Indeed, every (zxi
�=

zx′
j
) ∈ E ′ is derived from (x �= x′) ∈ E , and each zxi

is induced from only one
variable, x ∈ X. Therefore, E ′ preserves exactly the inequalities of E . Now,
reset ′ is defined according to reset such that if zi is induced from x, and x is
reset in a state q then zi is reset in states that include q. Therefore reset ′ allows
fresh values only when reset does. The correctness of the rest of the construction
follows from the correctness of [14] and from the explanations in the body of the
algorithm.
�
Example 5. Incompleteness of the algorithm Let A = 〈B,Γ, ∅〉 where B =
〈{a.x, b.x}, {q0, q1}, q0, δ, reset , {q0}〉 and reset(q0) = {x}, reset(q1) = ∅. The
definition of δ is: δ(q0, {a.x}) = q0 ∧ q1, δ(q1, {a.x}) = q1, δ(q1, {b.x}) = true.
The language of A is empty, since in order to reach an accepting state on the
path from q1, the input must be exactly {b.i} for some i ∈ Γ, but the cycle of
q0 only allows to read {a.j}, without any b.i. Although there is an NVBW for
the empty language, our algorithm does not halt on A: it keeps allocating new
variables to x, thus new states are created and the algorithm does not reach a
fixed point.

16 H. Frenkel et al.

4 Fragments of ∃∗-VLTL Expressible by NVBWs

We now present several sub-fragments of ∃∗-VLTL with a direct NVBW
construction.

We can construct an NVBW for ∃∗-VLTL formula in prenex normal form,
denoted ∃∗

pnf -VLTL. The construction relies on the fact that variables cannot
change values throughout the run. Since every ∃∗

pnf -VLTL formula is expressible
with an NVBW, together with Lemma 1, we have the following corollary.

Corollary 3. ∃∗-VLTL is stronger than ∃∗
pnf -VLTL.4.

Another easy fragment is ∃∗-(X ,F)-VLTL, which is ∃∗-VLTL with only the
X ,F temporal operators, similar to the definitions of [9]. ∃ and X ,F are inter-
changeable. Thus, every ∃∗-(X ,F)-VLTL formula is equivalent to an ∃∗

pnf -VLTL,
which has a direct construction to an NVBW.

A direct construction from VLTL to NVBWs exists also for ∃∗-VLTL for-
mulas in which all quantifiers are either at the beginning of the formula, or
adjacent to a parameterized atomic proposition. This extends the construction
for ∃∗

pnf -VLTL by adding resets to some of the states.

5 Model Checking in Practice

The model-checking problem over infinite data domains asks whether an NVBW
AM accepts a computation that satisfies an ∃∗-VLTL formula ϕ, which specifies
“bad” behaviors. If ϕ is one of the types mentioned in Sect. 4, we can build an
equivalent NVBW Aϕ for ϕ. For a general ϕ, we build an equivalent AVBW A
according to Sect. 3.3 and if the structure of A agrees with the structural con-
ditions of Theorem 4, we translate A to an equivalent NVBW Aϕ according to
Sect. 3.5.1. Now, if Aϕ exists, the intersection Aϕ ∩ AM includes all computa-
tions of AM that are also computations of Aϕ. Checking the emptiness of the
intersection decides whether AM has a “bad” behavior that satisfies ϕ.

6 Conclusions and Future Work

We defined AVBWs, a new model of automata over infinite alphabets that
describes all ∃∗-VLTL formulas. We showed that AVBWs, unlike ABWs, are
not complementable and are stronger than NVBWs. Nevertheless, we presented
an algorithm for translating AVBWs to NVBWs when possible, in order to
preform model checking. Moreover, we defined a structural characterization of
translatable AVBWs. Finally, we presented the full process of model checking a
model M given as an NVBW against an ∃∗-VLTL formula. A natural extension
of our work is to use the techniques presented in this paper in order to preform
model checking for VCTL [12] formulas as well.
4 In [17] the authors conjecture without proof that the formula G∃x : a.x does not

have an equivalent in PNF. In Lemma 1 we showed G∃x(b.x ∧ F a.x) does not have
an equivalent NVBW, thus it does not have an equivalent ∃∗

pnf -VLTL formula. This
is a different formula from G ∃x : a.x, but the conclusion remains the same.

An Automata-Theoretic Approach to Modeling Systems and Specifications 17

References

1. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32759-9 9

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14:1–14:64 (2011)

3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable
logic on words with data. In: 21st IEEE Symposium on Logic in Computer Science
(LICS 2006), 12–15, Seattle, WA, USA, Proceedings, pp. 7–16. IEEE Computer
Society, 2006, August 2006

4. Bouajjani, A., Habermehl, P., Jurski, Y., Sighireanu, M.: Rewriting systems with
data. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 1–22.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74240-1 1

5. Brambilla, M., Ceri, S., Comai, S., Fraternali, P., Manolescu, I.: Specification and
design of workflow-driven hypertexts. J. Web Eng. 1(2), 163–182 (2003)

6. J. R. Buechi. On a decision method in restricted second-order arithmetic. In Inter-
national Congress on Logic, Methodology, and Philosophy of Science, pp. 1–11.
Stanford University Press, (1962)

7. Ceri, S., Matera, M., Rizzo, F., Demaldé, V.: Designing data-intensive web appli-
cations for content accessibility using web marts. Commun. ACM 50(4), 55–61
(2007)

8. Colin, S., Mariani, L.: Run-time verification. In: Broy, M., Jonsson, B., Katoen,
J.-P., Leucker, M., Pretschner, A. (eds.) Model-Based Testing of Reactive Sys-
tems. LNCS, vol. 3472, pp. 525–555. Springer, Heidelberg (2005). doi:10.1007/
11498490 24

9. Emerson, E.A., Halpern, J.Y.: “sometimes” and “not never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)

10. Grumberg, O., Kupferman, O., Sheinvald, S.: Variable Automata over Infi-
nite Alphabets. In: Dediu, A.-H., Fernau, H., Mart́ın-Vide, C. (eds.) LATA
2010. LNCS, vol. 6031, pp. 561–572. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13089-2 47

11. Grumberg, O., Kupferman, O., Sheinvald, S.: Model checking systems and specifi-
cations with parameterized atomic propositions. In: Chakraborty, S., Mukund, M.
(eds.) ATVA 2012. LNCS, pp. 122–136. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33386-6 11

12. Grumberg, O., Kupferman, O., Sheinvald, S.: A game-theoretic approach to
simulation of data-parameterized systems. In: Cassez, F., Raskin, J.-F. (eds.)
ATVA 2014. LNCS, vol. 8837, pp. 348–363. Springer, Cham (2014). doi:10.1007/
978-3-319-11936-6 25

13. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994)

14. Miyano, S., Hayashi, T.: Alternating finite automata on omega-words. Theor. Com-
put. Sci. 32, 321–330 (1984)

15. Muller, D., Schupp, P.E.: Alternating automata on infinite objects, determinacy
and Rabin’s theorem. In: Nivat, M., Perrin, D. (eds.) LITP 1984. LNCS, vol. 192,
pp. 99–107. Springer, Heidelberg (1985). doi:10.1007/3-540-15641-0 27

16. Neven, F., Schwentick, T., Vianu, V.: Towards regular languages over infinite alpha-
bets. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp.
560–572. Springer, Heidelberg (2001). doi:10.1007/3-540-44683-4 49

http://dx.doi.org/10.1007/978-3-642-32759-9_9
http://dx.doi.org/10.1007/978-3-540-74240-1_1
http://dx.doi.org/10.1007/11498490_24
http://dx.doi.org/10.1007/11498490_24
http://dx.doi.org/10.1007/978-3-642-13089-2_47
http://dx.doi.org/10.1007/978-3-642-13089-2_47
http://dx.doi.org/10.1007/978-3-642-33386-6_11
http://dx.doi.org/10.1007/978-3-642-33386-6_11
http://dx.doi.org/10.1007/978-3-319-11936-6_25
http://dx.doi.org/10.1007/978-3-319-11936-6_25
http://dx.doi.org/10.1007/3-540-15641-0_27
http://dx.doi.org/10.1007/3-540-44683-4_49

18 H. Frenkel et al.

17. Song, F., Wu, Z.: Extending temporal logics with data variable quantifications.
In: Raman, V., Suresh, S.P. (eds.) 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 15–17, 2014,
New Delhi, India, vol. 29 of LIPIcs, pp. 253–265. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2014, December 2014

18. Vardi, M.Y.: An automata-theoretic approach to linear temporal logic. In: Moller,
F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266.
Springer, Heidelberg (1996). doi:10.1007/3-540-60915-6 6

19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of the Symposium on Logic in
Computer Science (LICS 1986), Cambridge, Massachusetts, USA, June 16–18, pp.
332–344. IEEE Computer Society (1986)

http://dx.doi.org/10.1007/3-540-60915-6_6

Learning from Faults: Mutation Testing
in Active Automata Learning

Bernhard K. Aichernig and Martin Tappler(B)

Institute of Software Technology, Graz University of Technology, Graz, Austria
{aichernig,martin.tappler}@ist.tugraz.at

Abstract. System verification is often hindered by the absence of for-
mal models. Peled et al. proposed black-box checking as a solution to
this problem. This technique applies active automata learning to infer
models of systems with unknown internal structure.

This kind of learning relies on conformance testing to determine
whether a learned model actually represents the considered system. Since
conformance testing may require the execution of a large number of tests,
it is considered the main bottleneck in automata learning.

In this paper, we describe a randomised conformance testing approach
which we extend with fault-based test selection. To show its effectiveness
we apply the approach in learning experiments and compare its perfor-
mance to a well-established testing technique, the partial W-method.
This evaluation demonstrates that our approach significantly reduces
the cost of learning – in one experiment by a factor of more than twenty.

Keywords: Conformance testing · Mutation testing · FSM-based test-
ing · Active automata learning · Minimally adequate teacher framework

1 Introduction

Since Peled et al. [21] have shown that active automata learning can provide
models of black-box systems to enable formal verification, this kind of learning
has turned into an active area of research in formal methods. Active learning of
automata in the minimally adequate teacher (MAT) framework, as introduced by
Angluin [2], assumes the existence of a teacher. In the non-stochastic setting, this
teacher must be able to answer two types of queries, membership and equivalence
queries. The former corresponds to a single test of the system under learning
(SUL) to check whether a sequence of actions can be executed or to determine the
outputs produced in response to a sequence of inputs. Equivalence queries on the
other hand correspond to the question whether a hypothesis model produced by
the learner represents the SUL. The teacher either answers affirmatively or with
a counterexample showing non-equivalence between the SUL and the hypothesis.

The first type of query is simple to implement for learning black-box sys-
tems. It generally suffices to reset the system, execute a single test and record

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 19–34, 2017.
DOI: 10.1007/978-3-319-57288-8 2

20 B.K. Aichernig and M. Tappler

observations. Equivalence queries however, are more difficult to implement.
Peled et al. [21], as one of the first to combine learning and formal verifica-
tion, proposed to implement these queries via conformance testing. In particular,
they suggested to use the conformance testing algorithm by Vasilevskii [30] and
Chow [6].

This method is also referred to as W-method and there exist optimisations of
it, like the partial W-method [11] or an approach by Lee and Yannankakis [16],
but all have the same worst-case complexity [4]. All three methods share two
issues. They require a fixed upper bound on the number of states of the black-
box system which is generally unknown. Additionally, the size of the constructed
test suite is exponential in this bound. Therefore, implementing the equivalence
oracle can be considered “the true bottleneck of automata learning” [4].

In practice, there is limited time for testing and thereby also for learning. The
ZULU challenge [7] addressed this issue by limiting the number of tests to be exe-
cuted [12]. More concretely, competitors learned finite automata from a limited
number of membership queries without explicit equivalence queries. Equivalence
queries thus had to be approximated through clever selection of membership
queries. This led to a different view of the problem: rather than “trying to prove
equivalence”, the new target was “finding counterexamples fast” [12].

In this paper we propose an implementation of equivalence queries based
on mutation testing [15], more specifically on model-based mutation testing [1].
This approach follows the spirit of the ZULU challenge by trying to minimise
the number of tests for executing equivalence queries. We use a combination of
random testing, to achieve high variability of tests, and mutation analysis, to
address coverage appropriately. To illustrate the effectiveness of our approach,
which has been implemented based on the LearnLib library [14], we will mainly
compare it to the partial W-method [11] and show that the cost of testing can be
significantly reduced while still learning correctly. In other words, our method
reliably finds counterexamples with less testing. In addition to that, we also
compare it to purely random testing and to an effective implementation of a
randomised conformance testing method described by Smeenk et al. [26].

We target systems which can be modelled with a moderately large number of
states, i.e. with up to fifty states. This restriction is necessary, because mutation
analysis is generally a computationally intensive task for large systems. Nev-
ertheless, there exists a wealth of non-trivial systems, such as implementations
of communication protocols, which can be learned nonetheless. The rest of this
paper is structured as follows. Section 2 discusses related work and Sect. 3 intro-
duces preliminaries. The main parts, the test-suite generation approach and its
evaluation, are presented in Sects. 4 and 5. We conclude the paper in Sect. 6.
The implementation used in our evaluation is available at [27].

2 Related Work

We address conformance testing in active automata learning. Hence, there is a
relationship to the W-method [6,30] and the partial W-method [11], two con-
formance testing methods implemented in LearnLib [14]. However, we handle

Learning from Faults 21

fault coverage differently. By generating tests to achieve transition coverage, we
also test for “output” faults, but do not check for “transfer” faults. Instead we
present a fault model directly related to the specifics of learning in Sect. 4.3.

We combine model-based mutation testing and random testing, which we
discussed in previous work [1]. Generally, random testing is able to detect a
large number of mutants fast, such that only a few subtle mutants need to be
checked with directed search techniques. While we do not aim at detecting all
mutants, i.e. we do not apply directed search, this property provides a certain
level of confidence. By analysing mutation coverage of random tests, we can
guarantee that detected mutations do not affect the learned model.

Howar et al. noted that it is necessary to find counterexamples with few tests
for automata learning to be practically applicable [12]. We generally follow this
approach. Furthermore, one of the heuristics described in [12] is based on Rivest
and Schapire’s counterexample processing [23], similar to the fault model dis-
cussed in Sect. 4.3. More recent work in this area has been performed by Smeenk
et al. [26], who implemented a partly randomised conformance testing technique.
In order to keep the number of tests small, they applied a technique to determine
an adaptive distinguishing sequence described by Lee and Yannakakis [17]. With
this technique and domain-specific knowledge, they succeeded in learning a large
model of industrial control software. The same technique has also been used to
learn models of Transmission Control Protocol (TCP) implementations [10].

3 Preliminaries

3.1 Mealy Machines

We use Mealy machines because they are well-suited to model reactive systems
and they have successfully been used in contexts combining learning and some
form of verification [10,18,24,28]. In addition to that, the Java-library Learn-
Lib [14] provides efficient algorithms for learning Mealy machines.

Basically, Mealy machines are finite state automata with inputs and outputs.
The execution of such a Mealy machine starts in an initial state and by execut-
ing inputs it changes its state. Additionally, exactly one output is produced in
response to each input. Formally, Mealy machines can be defined as follows.

Definition 1. A Mealy machine M is a 6-tuple M = 〈Q, q0, I, O, δ, λ〉 where

– Q is a finite set of states
– q0 is the initial state,
– I/O is a finite set of input/output symbols,
– δ : Q × I → Q is the state transition function, and
– λ : Q × I → O is the output function.

We require Mealy machines to be input-enabled and deterministic. The for-
mer demands that outputs and successor states must be defined for all inputs
and all states, i.e. δ and λ must be surjective. A Mealy machine is deterministic
if it defines at most one output and successor state for every pair of input and
state, i.e. δ and λ must be functions in the mathematical sense.

22 B.K. Aichernig and M. Tappler

Notational Conventions. Let s, s′ ∈ S∗ be two sequences of input/output sym-
bols, i.e. S = I or S = O, then s·s′ denotes the concatenation of these sequences.
The empty sequence is represented by ε. The length of a sequence is given by |s|.
We implicitly lift single elements to sequences, thus for e ∈ S we have e ∈ S∗

with |e| = 1. As a result, the concatenation s · e is also defined.
We extend δ and λ to sequences of inputs in the standard way. Let s ∈ I∗

be an input sequence and q ∈ Q be a state, then δ(q, s) = q′ ∈ Q is the state
reached by executing s starting in state q. For s ∈ I∗ and q ∈ Q, the output
function λ(q, s) = t ∈ O∗ returns the outputs produced in response to s executed
in state q. Furthermore, let λ(s) = λ(q0, s). For state q the set acc(q) = {s ∈
I∗|δ(q0, s) = q} contains the access sequences of q, i.e. the sequences leading to
q. Note that other authors define a unique access sequence s ∈ I∗ for each q [13].

Finally we need a basis for determining whether two Mealy machines are
equivalent. Equivalence is usually defined with respect to outputs [10], i.e. two
deterministic Mealy machines are equivalent if they produce the same outputs
for all input sequences. A Mealy machine 〈Q1, q01, I, O, δ1, λ1〉 is equivalent to
another Mealy machine 〈Q2, q02, I, O, δ2, λ2〉 iff ∀s ∈ I∗ : λ1(q01, s) = λ2(q02, s).
A counterexample to equivalence is thus an s ∈ I∗ such that λ1(q01, s) �=
λ2(q02, s).

3.2 Active Automata Learning

We consider learning in the minimally adequate teacher (MAT) framework [2].
Algorithms in this framework infer models of black-box systems, also referred to
as SULs, through interaction with a so-called teacher.

Minimally Adequate Teacher Framework. The interaction is carried out
via two types of queries posed by the learning algorithm and answered by a
MAT. These two types of queries are usually called membership queries and
equivalence queries. In order to understand these basic notions of queries con-
sider that Angluin’s original L∗ algorithm is used to learn a deterministic finite
automaton (DFA) representing a regular language known to the teacher [2].
Given some alphabet, the L∗ algorithm repeatedly selects strings and asks mem-
bership queries to check whether these strings are in the language to be learned.
The teacher may answer either yes or no.

After some queries the learning algorithm uses the knowledge gained so far
and forms a hypothesis, i.e. a DFA consistent with the obtained information
which should represent the regular language under consideration. The algorithm
presents the hypothesis to the teacher and issues an equivalence query in order
to check whether the language to be learned is equivalent to the language repre-
sented by the hypothesis automaton. The response to this kind of query is either
yes signalling that the correct DFA has been learned or a counterexample to
equivalence. Such a counterexample is a witness showing that the learned model
is not yet correct, i.e. it is a word from the symmetric difference of the language
under learning and the language accepted by the hypothesis.

Learning from Faults 23

After processing a counterexample, learning algorithms start a new round of
learning. The new round again involves membership queries and a concluding
equivalence query. This general mode of operation is used by basically all algo-
rithms in the MAT framework with some adaptations. These adaptations may
for instance enable the learning of Mealy machines as described in the following.

Learning Mealy Machines. Margaria et al. [18] and Niese [20] were one of
the first to infer Mealy-machine models of reactive systems using an L∗-based
algorithm. Another L∗-based learning algorithm for Mealy machines has been
presented by Shahbaz and Groz [25]. They reuse the structure of L∗, but substi-
tute membership queries for output queries. Instead of checking whether a string
is accepted, they provide inputs and the teacher responds with the corresponding
outputs. For a more practical discussion, consider the instantiation of a teacher.
Usually we want to learn the behaviour of a black-box SUL of which we only
know the interface. Hence, output queries are conceptually simple: provide inputs
to the SUL and observe produced outputs. However, there is a slight difficulty
hidden. Shahbaz and Groz [25] assume that outputs are produced in response
to inputs executed from the initial state. Consequently, we need to have some
means to reset a system. As discussed in the introduction, we generally cannot
check for equivalence. It is thus necessary to approximate equivalence queries,
e.g., via conformance testing as implemented in LearnLib [14]. To summarise, a
learning algorithm for Mealy machines relies on three operations:

reset: resets the SUL
output query: performs a single test executing inputs and recording outputs
equivalence query: conformance testing between SUL and hypothesis.

As shown in Fig. 1, the teacher is usually a component communicating with the
SUL. An equivalence query results in a positive answer if all conformance tests
pass, i.e. the SUL produces the same outputs as the hypothesis. If there is a
failing test, the corresponding input sequence is returned as counterexample.

Due to the incompleteness of testing, learned models may be incorrect. If,
e.g., the W-method [6,30] is used for testing, the learned model may be incorrect
if assumptions placed on the maximum number of states of the SUL do not hold.

Fig. 1. The interaction between SUL, teacher and learning algorithm (based on [26]).

24 B.K. Aichernig and M. Tappler

Algorithm 1. The test-case generation algorithm.

1: state ← s0h
2: test ← ε
3: if coinFlip(0.5) then
4: test ← rSeq(I, linfix)
5: state ← δ(state, test)
6: end if
7: loop
8: rS ← rSel(Sh) � (rS, rI) defines
9: rI ← rSel(I) � a transition

10: p ← path(state, rS)
11: if p �= None then
12: rSteps ← rSeq(I, linfix)

13: test ← test · p · rI · rSteps
14: state ← δ(δ(rS , rI), rSteps)
15: if |test | > maxSteps then
16: break
17: else if coinFlip(pstop) then
18: break
19: end if
20: else if ¬coinFlip(pretry) then
21: break
22: end if
23: end loop

4 Test-Suite Generation

We had shown previously “that by adding mutation testing to a random testing
strategy approximately the same number of bugs were found with fewer test
cases” [1]. Motivated by this, we developed a simple and yet effective test-suite
generation technique. The test-suite generation has two parts, (1) generating a
large set of tests T and (2) selecting a subset Tsel ⊂ T to be run on the SUL.

4.1 Test-Case Generation

The goal of the test-case generation is to achieve high coverage of the model
under consideration combined with variability through random testing. The test-
case generation may start with a random walk through the model and then
iterates two operations. First, a transition of the model is chosen randomly and
a path leading to it is executed. If the transition is not reachable, another target
transition is chosen. Second, another short random walk is executed. These two
operations are repeated until a stopping criterion is reached.

Stopping. Test-case generation stops as soon as the test has a length greater
than a maximum number of steps maxSteps. Alternatively, it may also stop
dependent on probabilities pretry and pstop. The first one controls the probability
of continuing in case a selected transition is not reachable while the second one
controls the probability of stopping prematurely.

Random Functions. The generation procedure uses three random functions.
A function coinFlip defined for p ∈ [0, 1] by P(coinFlip(p) = true) = p and
P(coinFlip(p) = false) = 1 − p. The function rSel selects a single sample from
a set according to a uniform distribution, i.e. ∀e ∈ S : P(rSel(S) = e) = 1

|S| .
The function rSeq takes a set S and a bound b ∈ N and creates a sequence of
length l ≤ b consisting of elements from S chosen via rSel , whereby l is chosen
uniformly from [0..b].

Learning from Faults 25

We assume a given Mealy machine Mh = 〈Sh, s0h, I, O, λh, δh〉 in the follow-
ing. Algorithm 1 realises the test-case generation based on Mh. As additional
inputs, it takes stopping parameters and linfix ∈ N, an upper bound on the num-
ber of steps executed between visiting two transitions. The function path returns
a path leading from the current state to another state. Currently, this is imple-
mented via breadth-first exploration but other approaches are possible as long
as they satisfy path(s, s′) = None iff �i ∈ I∗ : δ(s, i) = s′ and path(s, s′) = i ∈ I∗

such that δ(s, i) = s′, where None /∈ I denotes that no such path exists.

4.2 Test-Case Selection

To account for variations in the quality of randomly generated tests, not all
generated tests are executed on the SUL, but rather a selected subset. This
selection is based on coverage, e.g. transition coverage.

For the following discussion, assume that a set of tests Tsel of fixed size nsel

should be selected from a previously generated set T to cover elements from
a set C. In a simple case, C can be instantiated to the set of all transitions,
i.e. C = Sh × I as (s, i) ∈ Sh × I uniquely identifies a transition because of
determinism. The selection comprises the following three steps:

1. The coverage of single test cases is analysed, i.e. each test case t ∈ T is
associated with a set Ct ⊆ C covered by t.

2. The actual selection has the objective of optimising the overall coverage of C.
We greedily select test cases until either the upper bound nsel is reached, all
elements in C are covered, or we do not improve coverage. More formally:

1: Tsel ← ∅
2: while |Tsel| < nsel ∧ C �= ∅ do
3: topt ← argmint∈T |C \ Ct|
4: if C ∩ Ctopt = ∅ then
5: break � no improvement

6: end if
7: Tsel ← Tsel ∪ {topt}
8: C ← C \ Ctopt

9: end while

3. If nsel tests have not yet been selected, then further tests are selected which
individually achieve high coverage. For that t ∈ T \Tsel are sorted in descend-
ing size of Ct and the first nsel − |Tsel| tests are selected.1

4.3 Mutation-Based Selection

A particularly interesting selection criterion is mutation-based selection. The
choice of this criterion is motivated by the fact that model-based mutation testing
can effectively be combined with random testing [1]. Generally, in this fault-based
test-case generation technique, known faults are injected into a model creating
so-called mutants. Test cases are then generated which distinguish these mutants
from the original model and thereby test for the corresponding faults.
1 Note that more sophisticated test suite reduction/prioritisation strategies could be

used. However, this is beyond the scope of this paper.

26 B.K. Aichernig and M. Tappler

Thus, in our case we alter the hypothesis Mh, creating a set of mutants
MSmut. The objective is now to distinguish mutants from the hypothesis, i.e. we
want tests that show that mutants are observably different from the hypothesis.
Hence, we can set C = MSmut and Ct = {Mmut ∈ MSmut | λh(t) �= λmut(t)}.

Type of Mutation. The type of faults injected into a model is governed by
mutation operators, which basically map a model to a set of mutated models
(mutants). There is a variety of operators for programs [15] and also finite-state
machines [9]. As an example, consider a mutation operator change output which
changes the output of each transition and thereby creates one mutant per tran-
sition. Since there is exactly one mutant that can be detected by executing each
transition, selection based on such mutants is equivalent to selection with respect
to transition coverage. Hence, mutation can simulate other coverage criteria. In
fact, for our evaluation we implemented transition coverage via mutation.

Blindly using all available mutation operators may not be effective. Fault-
based testing should rather target faults likely to occur in the considered appli-
cation domain [22]. Thus, we developed a family of mutation operators, called
split-state operators, directly addressing active automata learning.

Split-State Operator Family. There are different ways to process counterex-
amples in the MAT framework, such as by adding all prefixes to the used data
structures [2]. An alternative technique due to Rivest and Schapire [23] takes
the “distinguishing power” of a counterexample into account. The basic idea is
to decompose a counterexample into a prefix u, a single action a and a suffix
v such that v is able to distinguish access sequences in the current hypothesis.
In other words, the distinguishing sequence v shows that two access sequences,
which were hypothesised to lead to the same state, actually lead to observably
nonequivalent states. This knowledge is then integrated into the data structures.

Since it is an efficient form of processing counterexamples, adaptations of it
have been used in other learning algorithms such as the TTT algorithm [13].
This algorithm makes the effect of this decomposition explicit. It splits a state
q reached by an access sequence derived from u and a. The splitting further
involves (1) adding a new state q′ reached by another access sequence derived
from u and a (which originally led to q) and (2) adding sequences to the internal
data structures which can distinguish q and q′.

The development of the split-state family of mutation operators is motivated
by the principle underlying the TTT and related algorithms. Basically, we collect
pairs (u, u′) of access sequences of a state q, add a new state q′ and redirect u′

to q′. Furthermore, we add transitions such that q′ behaves the same as q except
for a distinguishing sequence v. Example 1 illustrates this mutation operator.

Example 1. (Split State Mutation). A hypothesis produced by a learning algo-
rithm may be of the form shown in Fig. 2a. Note that not all edges are shown
in the figure and dashed edges represent sequences of transitions. The access
sequences acc(qh3) of qh3 thus include i · i1 and i

′ · i′1. A possible correspond-
ing black-box SUL is shown in Fig. 2b. In this case, the hypothesis incorrectly

Learning from Faults 27

Fig. 2. Demonstration of split state.

assumes that i · i1 and i
′ · i′1 lead to the same state. We can model a transfor-

mation from the hypothesis to the SUL by splitting qh3 and qh4 and changing
the output produced in the new state qm

′
4 as indicated in Fig. 2b. State qh4 has

to be split as well to introduce a distinguishing sequence of length 2 while still
maintaining determinism. A test case covering the mutation is i

′ · i′1 · i2 · i.

A mutant models a SUL containing two different states q and q′ which are
assumed to be equivalent by the hypothesis. By executing a test covering a
mutant Mmut, we either find an actual counterexample to equivalence between
SUL and hypothesis or prove that the SUL does not implement Mmut. Hence, it
is possible to guarantee that the SUL possesses certain properties. This is similar
to model-based mutation testing in general, where the absence of certain faults,
those modelled by mutation operators, can be guaranteed [1].

Split state is a family of mutation operators as the effectiveness of the app-
roach is influenced by several parameters, such that the instantiation of para-
meters can be considered a unique operator. The parameters are:

Max. number of sequences nacc: an upper bound on the number of mutated
access sequences leading to a single state.

Length of distinguishing sequences k: for each splitting operation we cre-
ate |I|k mutants, one for each sequence of length k. Note that this requires
the creation of k new states. Coverage of all mutants generated with length
k implies coverage of all mutants with length l < k.

Split at prefix flag: redirecting a sequence u′ · a from q to q′ usually amounts
to changing δ(δ(s0h, u′), a) = q to δ(δ(s0h, u′), a) = q′. However, if the other
access sequence in the pair is u · a with δ(s0h, u′) = δ(s0h, u), this is not pos-
sible because it would introduce non-determinism. This flag specifies whether
the access sequence pair (u · a, u′ · a) is ignored or whether further states are
added to enable redirecting u′ · a. We generally set it to true.

Efficiency Considerations. While test-case generation can efficiently be
implemented, mutation-based selection is computationally intensive. It is neces-
sary to check which of the mutants is covered by each test case. Since the number
of mutants may be as large as |S| ∗ nacc ∗ |I|k, this may become a bottleneck.

Consequently, cost reduction techniques for mutation [15] need to be con-
sidered. We reduce execution cost by avoiding the explicit creation of mutants.

28 B.K. Aichernig and M. Tappler

Essentially only the difference to the hypothesis is stored and executed. Since
this does not solve the problem completely, mutant reduction techniques need
to be considered as well. Jia and Harman identify four techniques to reduce the
number of mutants [15]. We use two of them: Selective Mutation applies only a
subset of effective mutation operators. In our case, we apply only one mutation
operator. With Mutant Sampling only a subset of mutants is randomly selected
and analysed while the rest is discarded.

In essence, the choice of the bound on the number of access sequences, the
number of selected tests, the sample size, etc. needs to take the cost of executing
tests on the SUL into account. Thus, it is tradeoff between the cost of mutation
analysis and testing, as a more extensive analysis can be assumed to produce
better tests and thereby require fewer test executions. Additionally, the number
of mutants may be reduced as follows.

Mutation analysis of executed tests: we keep track of all tests executed on
the SUL. Prior to test-case selection, these test cases are examined to deter-
mine which mutants are covered by the tests. These mutants can be discarded
because we know for all executed tests t and covered mutants Mmut that
λh(t) = λsul(t) and λh(t) �= λmut(t) which implies λsul(t) �= λmut(t), i.e. the
mutants are not implemented by the SUL. This extension prevents unneces-
sary coverage of already covered mutants and reduces the number of mutants
to be analysed. This takes the iterative nature of learning into account as
suggested in [12] in the context of equivalence testing.

Adapting to learning algorithm: by considering the specifics of a learning
algorithm, the number of access sequences could be reduced. For instance
in discrimination-tree-based approaches [13], it would be possible to create
mutants only for access sequences S stored in the discrimination tree and for
their extensions S · I. However, this has not been implemented yet.

5 Evaluation

In the following, we evaluate two variations of our new test-suite generation
approach. We will refer to test-case generation with transition-coverage-based
selection as transition coverage. The combination with mutation-based selection
will be referred to as split state. We compare these two techniques to alterna-
tives in the literature: the partial W-method [11] and the random version of the
approach discussed in [26] available at [19]. We refer to the latter as random
L & Y. Note that this differs slightly from [10,26] in which also non-randomised
test, i.e. complete up to some bound, were generated.

We evaluate the different conformance testing methods based on two case
studies from the domain of communication protocols. The examined systems
are given in Table 1. This table includes the number of states and inputs of the
true Mealy machine model and a short description of each system. Due to space
limitations, we refer to other publications for in-depth descriptions.

Learning from Faults 29

Table 1. A short description of examined systems.

System # States # Inputs Short description

TCP server (Ubuntu) 57 12 Models of TCP server/client
implementations from three different
vendors have been learned and
analysed by Fiterău-Broştean
et al. [10]. We simulated the server
model of Ubuntu available at [29].

MQTT broker (emqtt [8]) 18 9 Model of an MQTT [3] broker
interacting with two clients. We
discussed the learning setup in [28].

5.1 Measurement Setup

To objectively evaluate randomised conformance testing, we investigate the prob-
ability of learning the correct model with a limited number of interactions with
the SUL, i.e. only a limited number of tests may be executed. We generally base
the cost of learning on the number of executed inputs rather than on the num-
ber of tests/resets. This decision follows from the observation that resets in the
target application area, protocols, can be done fast (simply start a new session),
whereas timeouts and quiescent behaviour cause long test durations [24,28]. Note
that we take previously learned models as SULs. Their simulation ensures fast
test execution which enables a thorough evaluation.

To estimate the probability of learning the correct models, we performed each
learning run 50 times and calculated the relative frequency of learning the correct
model. In the following, we refer to such a repetition as a single experiment.
Note that given the expected number of states of each system, we can efficiently
determine whether the correct model has been learned, since learned models are
minimal with respect to the number of states [2].

In order to find a lower limit on the number of tests required by each method
to work reliably, we bounded the number of tests executed for each equiva-
lence query and gradually increased this bound. Once all learning runs of an
experiment succeeded we stopped this procedure. For learning with the par-
tial W-method [11] we gradually increased the depth parameter implemented in
LearnLib [14] until we learned the correct model. Since this method does not
use randomisation, we did not run repeated experiments and report the mea-
surement results for the lowest possible depth-parameter value.

As all algorithms can be run on standard notebooks, we will only exemplarily
comment on runtime. For a fair comparison, we evaluated all equivalence-testing
approaches in combination with the same learning algorithm, i.e. L∗ with Rivest
and Schapire’s counterexample-handling implemented by LearnLib 0.12 [14].

TCP – Ubuntu. The number of tests and steps required to reliably learn the
Ubuntu TCP-server are given in Table 2. In order to perform these experiments,
we generated 100,000 tests and selected the number of tests given in the first line

30 B.K. Aichernig and M. Tappler

Table 2. Performance measurements for learning an Ubuntu TCP-server-model.

Transition
coverage

Split state Partial
W-method

Random
L & Y

Bound on # equivalence
tests/depth parameter

10,000 4,000 2 46,000

Mean # tests [equivalence] 12,498 4,786 793,939 71,454

Mean # steps [equivalence] 239,059 138,840 7,958,026 823,623

Mean # tests [membership] 9,633 10,017 13,962 11,445

Mean # steps [membership] 127,684 129,214 147,166 136,827

of Table 2 to perform each equivalence query. For the partial W-method this line
includes the depth-parameter value. Note that the mean values of tests/steps
represent the numbers summed over all rounds of learning (but averaged over
50 runs), while the bound on the number of tests applies to only a single round.
The test-case generation with Algorithm 1 has been performed with parameters
maxSteps = 40, pretry = 0.9, pstop = 0.1, and linfix = 6. The chosen parameters
for split state selection are nacc = 100 (max. access sequences per state) and
k = 2 (length of distinguishing sequence). Additionally, we performed mutant
sampling by first reducing the number of mutants to one quarter of the original
mutants and then to 10,000 if necessary.

We see in the table that the average number of tests and steps required
for membership queries is roughly the same for all techniques. This is what we
expected as the same learning algorithm is used in all cases, but the numbers
shall demonstrate that techniques requiring less tests do not trade membership
for equivalence tests. With this out of the way, we can concentrate on equiva-
lence testing. We see that split state pays off in this experiment with transition
coverage requiring 1.7 times as many steps. The average cost of test selection is
104 seconds for split state and 4 seconds for transition coverage. However, con-
sidering the large savings in actual test execution, split state performs better.

We also evaluated random L & Y with a middle sequence of expected
length 4 (similar to [10]). For this setup, random L & Y requires signifi-
cantly more steps and tests than both alternatives. There may be more suitable
parameters, however, which would improve the performance of random L & Y.
Nevertheless, the model structure of Ubuntu’s TCP-server seems to be beneficial
for our approach.

All randomised approaches outperformed the partial W-method. In particu-
lar split state is able to reduce the number of test steps by a factor of 57. Taking
the membership queries into account, the overall cost of learning is reduced by
a factor of about 22. The relative gap between tests, a reduction by a factor of
166, is even larger. This is an advantage of our approach as we can flexibly con-
trol test length and thereby account for systems with expensive resets. Purely
random testing is not a viable choice in this case. An experiment with 1,000,000
tests per equivalence query succeeded in learning correctly in only 4 of 50 runs.

Learning from Faults 31

MQTT – emqtt. The number of tests and steps required to reliably learn
models of the emqtt broker are given in Table 3. In order to perform these exper-
iments, we used largely the same setup and the same sampling strategy as for
the TCP experiments, but generated only 10,000 tests as a basis for selection.
Furthermore, we set pretry = 0.95, pstop = 0.05, linfix = 6, nacc = 300, and k = 3.

In Table 3, we see a similarly large improvement with respect to the partial
W-method. The partial W-method requires about 52 times as many test steps as
split state. Other than that, we see that the improvement of split state over tran-
sition coverage is not as drastic as for the Ubuntu TCP-server and testing with
random L & Y also performs well. Figure 3 depicts the learning performance
of the three different approaches and undirected random testing. It shows the
dependency between the average number of equivalence-test steps and the esti-
mated probability Pest(correct) of learning the correct model. The graph shows
that significantly more testing is required by random testing.

Table 3. Performance measurements for learning an emqtt-broker model.

Transition
coverage

Split state Partial
W-method

Random
L & Y

Bound on # equivalence
tests/depth parameter

275 125 2 1100

Mean # tests [equivalence] 345 182 72,308 1,679

Mean # steps [equivalence] 13,044 7,755 487,013 11,966

Mean # tests [membership] 1,592 1,623 1,808 1,683

Mean # steps [membership] 12,776 13,160 11,981 12,005

0 5 10 15 20 25 30 35 40

·103

0

0.5

1

mean # equivalence-test steps

P
e
st

(c
o
rr
ec
t)

random

random L & Y

split state

transition coverage

Fig. 3. Average number of equivalence-test steps required to reliably learn the correct
emqtt-broker model.

Discussion and Threats to Validity. The results shown above suggest that
transition coverage and especially split state perform well. However, the perfor-
mance depends on the system structure. There are systems for which transition

32 B.K. Aichernig and M. Tappler

coverage performs slightly better with regard to the required number of steps
than split state, as the latter favours longer tests. In these cases, split state may
simply add no value because transition coverage already performs well.

For the TCP-server case study, we report effectiveness superior to that of ran-
dom L & Y. The performance of our technique depends on the concrete instan-
tiation of more parameters than the performance of random L & Y. Finding
suitable parameters is thus more difficult for our approach and relative perfor-
mance gains may decrease for unsuitable choices. Additionally, random L & Y
generates tests much more efficiently than split state. Split-state mutation analy-
sis is only feasible for moderate-sized models, whereas random L & Y has suc-
cessfully been applied for learning of a system with more than 3,000 states [26].
Mutation-based test-case selection would be hindered by the large number of
mutants and tests forming the basis for selection – to our experience the number
of tests should be increased with model size. More concretely, applying the tech-
nique to systems with significantly more than 100 states would likely not pay off.
Aggressive mutant sampling would be necessary, rendering the mutation-based
selection less effective. Without sampling, the decreased testing duration would
not compensate for the cost of mutation analysis.

6 Conclusion

We presented a simple test-case generation technique which accompanied with
appropriate test-case selection yields effective test suites. In particular, we fur-
ther motivated and described a fault-based test selection approach with a fault
model tailored towards learning. First experiments showed it is possible to reli-
ably learn system models with a significantly lower number of test cases as com-
pared to complete conformance testing with, e.g., the partial W-method [11].

A potential drawback of our approach, especially of split-state-based test
selection, is the large number of parameters, which according to our experience
heavily influence learning performance. Additionally, mutation-based selection
applies mutant sampling, thus it is of interest to determine the influence of sam-
pling and whether corresponding observations made for program mutation [15]
also hold for FSM mutation. Nevertheless, alternative mutant reduction tech-
niques are not entirely exhausted. As indicated in Sect. 4.3, information stored
by learning algorithms could help to reduce the number of mutants.

We conclude that mutation-based test-suite generation is a promising tech-
nique for conformance testing in active automata learning. Despite initial suc-
cess, we believe that it could show its full potential for testing more expressive
types of models like extended finite state machines [5]. This would enable the
application of more comprehensive fault models. Finally, alternatives to the sim-
ple greedy test-selection may also provide benefits.

Acknowledgment. This work was supported by the TU Graz LEAD project
“Dependable Internet of Things in Adverse Environments”. We would also like to
thank the developers of LearnLib and of the test-case generator available at [19].

Learning from Faults 33

References

1. Aichernig, B.K., Brandl, H., Jöbstl, E., Krenn, W., Schlick, R., Tiran, S.: Killing
strategies for model-based mutation testing. Softw. Test. Verif. Reliab. 25(8), 716–
748 (2015)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Banks, A., Gupta, R. (eds.): MQTT Version 3.1.1. OASIS Standard, October
2014. Latest version: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.
1-os.html

4. Berg, T., Grinchtein, O., Jonsson, B., Leucker, M., Raffelt, H., Steffen, B.: On
the correspondence between conformance testing and regular inference. In: Cerioli,
M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 175–189. Springer, Heidelberg (2005).
doi:10.1007/978-3-540-31984-9 14

5. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

6. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans.
Softw. Eng. 4(3), 178–187 (1978)

7. Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: an interactive learning competi-
tion. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP 2009.
LNCS (LNAI), vol. 6062, pp. 139–146. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14684-8 15

8. emqtt. http://emqtt.io/. Accessed 29 Nov 2016
9. Fabbri, S., Delamaro, M.E., Maldonado, J.C., Masiero, P.C.: Mutation analysis

testing for finite state machines. In: ISSRE 1994, pp. 220–229. IEEE (1994)
10. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and

model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). doi:10.
1007/978-3-319-41540-6 25

11. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603
(1991)

12. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - lessons learned in the
ZULU challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415,
pp. 687–704. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16558-0 55

13. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-
roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.)
RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). doi:10.1007/
978-3-319-11164-3 26

14. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib. In: Kroening, D.,
Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham
(2015). doi:10.1007/978-3-319-21690-4 32

15. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

16. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines -
a survey. Proc. IEEE 84(8), 1090–1123 (1996)

17. Lee, D., Yannakakis, M.: Testing finite-state machines: state identification and
verification. IEEE Trans. Comput. 43(3), 306–320 (1994)

18. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model gener-
ation for legacy reactive systems. In: Ninth IEEE International High-Level Design
Validation and Test Workshop 2004, pp. 95–100. IEEE Computer Society (2004)

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://dx.doi.org/10.1007/978-3-540-31984-9_14
http://dx.doi.org/10.1007/978-3-642-14684-8_15
http://dx.doi.org/10.1007/978-3-642-14684-8_15
http://emqtt.io/
http://dx.doi.org/10.1007/978-3-319-41540-6_25
http://dx.doi.org/10.1007/978-3-319-41540-6_25
http://dx.doi.org/10.1007/978-3-642-16558-0_55
http://dx.doi.org/10.1007/978-3-319-11164-3_26
http://dx.doi.org/10.1007/978-3-319-11164-3_26
http://dx.doi.org/10.1007/978-3-319-21690-4_32

34 B.K. Aichernig and M. Tappler

19. Moerman, J.: Yannakakis - test-case generator. https://gitlab.science.ru.nl/
moerman/Yannakakis. Accessed 30 Nov 2016

20. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Dort-
mund University of Technology (2003)

21. Peled, D., Vardi, M.Y., Yannakakis, M.: Black box checking. In: Wu, J., Chanson,
S.T., Gao, Q. (eds.) FORTE XII/PSTV XIX 1999. IFIP AICT, vol. 28, pp. 225–
240. Springer, Boston (1999). doi:10.1007/978-0-387-35578-8 13

22. Pretschner, A.: Defect-based testing. In: Dependable Software Systems Engineer-
ing, NATO Science for Peace and Security Series, D: Information and Communi-
cation Security, vol. 40, pp. 224–245. IOS Press (2015)

23. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

24. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: USENIX
Security 15, pp. 193–206. USENIX Association (2015)

25. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-05089-3 14

26. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata
learning to embedded control software. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). doi:10.1007/
978-3-319-25423-4 5

27. Tappler, M.: mut-learn - randomised mutation-based equivalence testing. https://
github.com/mtappler/mut-learn. Accessed 07 Dec 2016

28. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication
via active automata learning. In: ICST 2017. IEEE Computer Society (2017)

29. TCP models. https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/
cav-aec/models. Accessed 14 Nov 2016

30. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 9(4), 653–665 (1973)

https://gitlab.science.ru.nl/moerman/Yannakakis
https://gitlab.science.ru.nl/moerman/Yannakakis
http://dx.doi.org/10.1007/978-0-387-35578-8_13
http://dx.doi.org/10.1007/978-3-642-05089-3_14
http://dx.doi.org/10.1007/978-3-642-05089-3_14
http://dx.doi.org/10.1007/978-3-319-25423-4_5
http://dx.doi.org/10.1007/978-3-319-25423-4_5
https://github.com/mtappler/mut-learn
https://github.com/mtappler/mut-learn
https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/models
https://gitlab.science.ru.nl/pfiteraubrostean/tcp-learner/tree/cav-aec/models

Parametric Model Checking Timed Automata
Under Non-Zenoness Assumption

Étienne André1, Hoang Gia Nguyen1(B), Laure Petrucci1, and Jun Sun2

1 LIPN, CNRS UMR 7030, Université Paris 13, Sorbonne Paris Cité,
Villetaneuse, France

hoanggia.nguyen@lipn.univ-paris13.fr
2 ISTD, Singapore University of Technology and Design, Singapore, Singapore

Abstract. Real-time systems often involve hard timing constraints and
concurrency, and are notoriously hard to design or verify. Given a model
of a real-time system and a property, parametric model-checking aims at
synthesizing timing valuations such that the model satisfies the property.
However, the counter-example returned by such a procedure may be
Zeno (an infinite number of discrete actions occurring in a finite time),
which is unrealistic. We show here that synthesizing parameter valuations
such that at least one counterexample run is non-Zeno is undecidable for
parametric timed automata (PTAs). Still, we propose a semi-algorithm
based on a transformation of PTAs into Clock Upper Bound PTAs to
derive all valuations whenever it terminates, and some of them otherwise.

1 Introduction

Timed automata (TAs) [1] are a popular formalism for real-time systems model-
ing and verification, providing explicit manipulation of clock variables. Real-time
behavior is captured by clock constraints on system transitions, setting or reset-
ting clocks, etc. TAs have been studied in various settings (such as planning [19])
and benefit from powerful tools such as Uppaal [21] or PAT [24].

Model checking TAs consists of checking whether there exists an accepting
cycle (i. e. a cycle that visits infinitely often a given set of locations) in the
automaton made of the product of the TA modeling the system with the TA
representing a violation of the desired property (often the negation of a property
expressed, e. g. in CTL). However, such an accepting cycle does not necessarily
mean that the property is violated: indeed, a known problem of TAs is that
they allow Zeno behaviors. An infinite run is non-Zeno if it takes an unbounded
amount of time; otherwise it is Zeno. Zeno runs are infeasible in reality and
thus must be pruned during system verification. That is, it is necessary to check
whether a run is Zeno or not so as to avoid presenting Zeno runs as counterexam-
ples. The problem of checking whether a timed automaton accepts at least one

This work is partially supported by the ANR national research program PACS
(ANR-14-CE28-0002).

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 35–51, 2017.
DOI: 10.1007/978-3-319-57288-8 3

36 É. André et al.

non-Zeno run, i. e. the emptiness checking problem, has been tackled previously
(e. g. [11,15,16,25–27]).

It is often desirable not to fix a priori all timing constants in a TA: either
for tuning purposes, or to evaluate robustness when clock values are imprecise.
For that purpose, parametric timed automata (PTAs) extend TAs with parame-
ters [2]. Although most problems of interest are undecidable for PTAs [3], some
(semi-)algorithms were proposed to tackle practical parameter synthesis (e. g.
[4,9,18,20]). We address here the synthesis of parameter valuations for which
there exists a non-Zeno cycle in a PTA; this is highly desirable when perform-
ing parametric model-checking for which the parameter valuations violating the
property should not allow only Zeno-runs. As far as the authors know, this is
the first work on parametric model checking of timed automata with the non-
Zenoness assumption. Just as for TAs, the parametric zone graph of PTAs (used
in e. g. [4,17,18]) cannot be used to check whether a cycle is non-Zeno. Therefore,
we propose here a technique based on clock upper bound PTAs (CUB-PTAs), a
subclass of PTAs satisfying some syntactic restriction, and originating in CUB-
TAs for which the non-Zeno checking problem is most efficient [27]. In contrast
to regular PTAs, we show that synthesizing valuations for CUB-PTAs such that
there exists an infinite non-Zeno cycle can be done based on (a light extension
of) the parametric zone graph. We make the following technical contributions:

1. We show that the parameter synthesis problem for PTAs with non-Zenoness
assumption is undecidable.

2. We show that any PTA can be transformed into a finite list of CUB-PTAs;
3. We develop a semi-algorithm to solve the non-Zeno synthesis problem using

CUB-PTAs, implemented in IMITATOR and validated using benchmarks.

Outline. Section 2 recalls the necessary preliminaries. Section 3 shows the unde-
cidability of non-Zeno-Büchi emptiness. We then present the concept of CUB-
PTAs (Sect. 4), and show how to transform a PTA into a list of CUB-PTAs.
Zeno-free parametric model-checking of CUB-PTA is addressed in Sect. 5, and
experiments reported in Sect. 6. Finally, Sect. 7 concludes and gives perspectives
for future work.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i. e. real-
valued variables that evolve at the same rate. A clock valuation is a function
w : X → R≥0. We write X = 0 for

∧
1≤i≤H xi = 0. Given d ∈ R≥0, w+d denotes

the valuation such that (w + d)(x) = w(x) + d, for all x ∈ X.
We assume a set P = {p1, . . . , pM} of parameters, i. e. unknown constants. A

parameter valuation v is a function v : P → Q≥0. A strictly positive parameter
valuation is a valuation v : P → Q>0.

In the following, we assume � ∈ {<,≤} and �� ∈ {<,≤,≥, >}. Throughout
this paper, lt denotes a linear term over X ∪ P of the form

∑
1≤i≤H αixi +

Parametric Model Checking Timed Automata 37

∑
1≤j≤M βjpj + d, with αi, βj , d ∈ N. Similarly, plt denotes a parametric linear

term over P , that is a linear term without clocks (αi = 0 for all i). A constraint C
(i. e. a convex polyhedron) over X ∪P is a set of inequalities of the form lt �� lt ′,
with lt , lt ′ two linear terms. We denote by true (resp. false) the constraint that
corresponds to the set of all possible (resp. the empty set of) valuations. Given a
parameter valuation v, v(C) denotes the constraint over X obtained by replacing
each parameter p in C with v(p). Likewise, given a clock valuation w, w(v(C))
denotes the expression obtained by replacing each clock x in v(C) with w(x).
We say that v satisfies C, denoted by v |= C, if the set of clock valuations
satisfying v(C) is non-empty. We say that C is satisfiable if ∃w, v s.t. w(v(C))
evaluates to true. We define the time elapsing of C, denoted by C↗, as the
constraint over X and P obtained from C by delaying all clocks by an arbitrary
amount of time. Given R ⊆ X, we define the reset of C, denoted by [C]R, as the
constraint obtained from C by resetting the clocks in R, and keeping the other
clocks unchanged. We denote by C↓P the projection of C onto P , i. e. obtained
by eliminating the clock variables using existential quantification.

A guard g is a constraint over X ∪ P defined by inequalities of the form
x �� plt . We assume w.l.o.g. that, in each guard, given a clock x, at most one
inequality is in the form x�plt , that is a clock has a single upper bound (or none).
A non-parametric guard is a guard over X, i. e. with inequalities x �� z, with
z ∈ N. A parametric zone C is a constraint over X ∪ P defined by inequalities
of the form xi − xj �� plt . A parametric constraint K is a constraint over P
defined by inequalities of the form plt �� plt ′, with plt , plt ′ two parametric linear
terms. We use the notation v |= K to indicate that valuating parameters p with
v(p) in K evaluates to true. We denote by
 (resp. ⊥) the parametric constraint
that corresponds to the set of all possible (resp. the empty set of) parameter
valuations. Given two parametric constraints K1 and K2, we write K1 ⊆ K2

whenever for all v, v |= K1 ⇒ v |= K2.

Definition 1. A PTA A is a tuple A = (Σ,L, l0,X, P,K0, I, E), where: (i) Σ
is a finite set of actions, (ii) L is a finite set of locations, (iii) l0 ∈ L is the
initial location, (iv) X is a set of clocks, (v) P is a set of parameters, (vi) K0 is
the initial parameter constraint, (vii) I is the invariant, assigning to every l ∈ L
a guard I(l), (viii) E is a set of edges e = (l, g, a,R, l′) where l, l′ ∈ L are the
source and target locations, a ∈ Σ, R ⊆ X is a set of clocks to be reset, and g is
a guard.

The initial constraint K0 is used to constrain some parameters (as in, e. g.
[4,17]); in other words, it defines a domain of valuation for the parameters. For
example, given two parameters pmin and pmax, we may want to ensure that
pmin ≤ pmax. Given A = (Σ,L, l0,X, P,K0, I, E), we write A.K0 as a shortcut
for the initial constraint of A. In addition, given K ′

0, we denote by A(K ′
0) the

PTA where A.K0 is replaced with K ′
0.

Observe that, as in [27], we do not define accepting locations. In our work,
we are simply interested in computing valuations for which there is a non-Zeno
cycle. A more realistic parametric model checking approach would require addi-
tionally that the cycle is accepting, i. e. it contains at least one accepting location.

38 É. André et al.

However, this has no specific theoretical interest, and would impact the read-
ability of our exposé.

Given a parameter valuation v |= A.K0, we denote by v(A) the non-
parametric TA where all occurrences of a parameter pi have been replaced
by v(pi).

Definition 2 (Concrete semantics of a TA). Given a PTA A = (Σ,L, l0,
X, P,K0, I, E), and a parameter valuation v, the concrete semantics of v(A) is
given by the timed transition system (S, s0,→), with S = {(l, w) ∈ L × R

H
≥0 |

w(v(I(l))) is true}, s0 = (l0,0), and → consists of the discrete and (continuous)
delay transition relations:

– discrete transitions: (l, w) e→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists e = (l, g,
a,R, l′) ∈ E, w′ = [w]R, and w(v(g)) is true.

– delay trans.: (l, w) d→ (l, w + d), with d ∈ R≥0, if ∀d′ ∈ [0, d], (l, w + d′) ∈ S.

A (concrete) run is a sequence r = s0α0s1α1 · · · snαn · · · s.t. ∀i, (si, αi,
si+1) ∈ →. We consider as usual that concrete runs strictly alternate delays
di and discrete transitions ei and we thus write concrete runs in the form

r = s0
(d0,e0)→ s1

(d1,e1)→ · · · . We refer to a state of a run starting from the
initial state of a TA A as a concrete state of A. Note that when a run is finite, it
must end with a concrete state. Given a concrete state s = (l, w), we say that s
is reachable (or that v(A) reaches s) if s belongs to a run of v(A). By extension,
we say that l is reachable in v(A), if there exists a concrete state (l, w) that is
reachable.

An infinite run is said to be Zeno if it contains an infinite number of discrete
transitions within a finite delay, i. e. if the sum of all delays di is bounded.

Symbolic Semantics. Let us recall the symbolic semantics of PTAs (as in
e. g. [4,18]). A symbolic state is a pair s = (l, C) where l ∈ L is a location,
and C its associated parametric zone. The initial symbolic state of A is s0 =(
l0, ({0} ∧ I(l0))↗ ∧ I(l0) ∧ K0

)
. That is, the initial state corresponds to all

clocks equal to 0 followed by time-elapsing, intersected with the initial invariant
and the initial parameter constraint. The symbolic semantics relies on the Succ
operation. Given a symbolic state s = (l, C) and an edge e = (l, g, a,R, l′),
Succ(s, e) = (l′, C ′), with C ′ =

(
[(C ∧ g)]R

)↗. The Succ operation is effectively
computable, using polyhedra operations: note that the successor of a parametric
zone C is a parametric zone. A symbolic run of a PTA is an alternating sequence
of symbolic states and edges starting from the initial symbolic state, of the
form s0

e0⇒ s1
e1⇒ · · · em−1⇒ sm, such that for all i = 0, . . . , m − 1, we have

ei ∈ E, and si+1 = Succ(si, ei). The symbolic semantics is often given in the
form of a parametric zone graph, i. e. symbolic states of A and transitions (s, e, s′)
whenever s′ = Succ(s, e). Given a symbolic run (l0, C0)

e0⇒ (l1, C1)
e1⇒ · · · en−1⇒

(ln, Cn) · · · , its untimed support is the sequence l0e0l1 · · · en−1ln · · · . Two runs
(symbolic or concrete) are equivalent if they have the same untimed support.

Let us recall a lemma relating concrete and symbolic runs.

Parametric Model Checking Timed Automata 39

Lemma 1. Let A be a PTA, and let r be a symbolic run of A reaching (l, C).
Let v |= A.K0. There exists an equivalent concrete run in v(A) iff v |= C↓P .

Proof. From [17, Propositions 3.17 and 3.18]. �

Given a symbolic run r reaching (l, C), we call the concrete runs associated
with r the concrete runs equivalent to r in v(A), for all v |= C↓P .

Problems. In this paper, we aim at addressing the following two problems.
non-Zeno emptiness problem:
Input: A PTA A
Problem: Is the set of parameter valuations v for which there exists a non-
Zeno infinite run in v(A) empty?

non-Zeno synthesis problem:
Input: A PTA A
Problem: Synthesize the set of parameter valuations v for which there exists
an infinite non-Zeno run in v(A).

3 Undecidability of the Non-Zeno Emptiness Problem

As reachability is undecidable for PTAs [2], it is unsurprising that the existence
of a valuation for which there exists a non-Zeno infinite run is undecidable too.

Theorem 1. The non-Zeno emptiness problem is undecidable for PTAs.

Proof. By reduction from the halting problem of a deterministic 2-counter-
machine, which is undecidable [22]. We encode a 2-counter machine (2CM) using
PTAs, following an encoding in [8]. This encoding is such that the location lhalt
encoding the halting state of the 2CM is reachable iff the 2CM halts, and for
valuations of the (unique) parameter v such that v(p) is larger than or equal to
the maximum value of the counters along the (unique) run of the machine. Then,
since this encoding is such that for any parameter valuation, the encoding stops
after v(p) discrete steps, the encoding has no infinite run for any valuation.

Then, from the location encoding the halting location (i. e. lhalt), we add a
transition resetting x to a new location lf . This location has a self-loop guarded
with x = 1 and resetting x (where x is any of the four clocks used in the
encoding in [8]). Hence whenever lhalt is reachable, there is an infinite non-Zeno
run looping on lf . That is, there is an infinite non-Zeno run iff the 2CM halts.

�

Since the emptiness problem is undecidable, the synthesis problem becomes
intractable. In the remainder of this paper, we will devise a semi-algorithm to
address non-Zeno synthesis, i. e. an algorithm that computes the exact solution
if it terminates. Otherwise, we compute an under-approximation of the result.

40 É. André et al.

4 CUB-Parametric Timed Automata

It has been shown (e.g. [11,25]) that checking whether a run of TA is infeasible
based on the symbolic semantics alone. In [27], the authors identified a subclass
of TAs called CUB-TAs for which non-Zenoness checking based on the symbolic
semantics is feasible. Furthermore, they show that an arbitrary TA can be trans-
formed into a CUB-TA. Based on their work, we first show that arbitrary PTAs
can be transformed into a parametric version of CUB-TAs, and then solve the
non-Zeno synthesis problem based on parametric CUB-TAs.

As defined in [27], a clock upper bound is either ∞ or a pair (n,�) where
n ∈ Q (recall that � is either < or ≤). We write (n1,�1) = (n2,�2) to denote
n1 = n2 and �1 = �2; (n1,�1) ≤ (n2,�2) to denote n1 < n2, or if n1 = n2, then
either �2 is ≤ or both �1 and �2 are <. Further, we write (n,�) > d where d
is a constant to denote n > d. We define min((n,�1), (m,�2)) to be (n,�1) if
(n,�1) ≤ (m,�2), and (m,�2) otherwise. Given a clock x and a non-parametric
guard g, we write ub(g, x) to denote the upper bound of x given g. Formally,

ub(g, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(n,�) if g is x � n
∞ if g is x > n or x ≥ n
∞ if g is x′ �� n and x′ �= x
∞ if g is true
min(ub(g1, x), ub(g2, x)) if g is g1 ∧ g2

Definition 3. A TA is a CUB-TA if for each edge (l, g, a,R, l′), for all clocks
x ∈ X, we have (i) ub(I(l), x) ≤ ub(g, x), and (ii) if x /∈ R, then ub(I(l), x) ≤
ub(I(l′), x).

Intuitively, every clock in a CUB-TA has a non-decreasing upper bound along
any path until it is reset.

4.1 Parametric Clock Upper Bounds

Let us define clock upper bounds in a parametric setting. A parametric clock
upper bound is either ∞ or a pair (plt ,�).

Given a clock x and a guard g, we denote by pub(g, x) the parametric upper
bound of x given g. This upper bound is a parametric linear term. Formally,

pub(g, x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(plt ,�) if g is x � plt
∞ if g is x > plt or x ≥ plt
∞ if g is x′ �� plt and x′ �= x
∞ if g is true
min(pub(g1, x), pub(g2, x)) if g is g1 ∧ g2

Recall that, in each guard, given a clock x, at most one inequality is in the form
x � plt . In that case, at most one of the two terms is not ∞ and therefore the
minimum is well-defined (with the usual definition that min(plt ,∞) = plt).1

1 Note that if a clock has more than a single upper bound in a guard, then the
minimum can be encoded as a disjunction of constraints, and our results would still
apply with non-convex constraints (that can be implemented using a finite list of
convex constraints).

Parametric Model Checking Timed Automata 41

We write (plt1,�1) ≤ (plt2,�2) to denote the constraint
{

plt1 < plt2 if �1 = ≤ and �2 = <
plt1 ≤ plt2 otherwise.

That is, we constrain the first parametric clock upper bound to be smaller
than or equal to the second one, depending on the comparison operator.

Given two parametric clock upper bounds pcub1 and pcub2, we write pcub1 ≤
pcub2 to denote the constraint

⎧
⎨

⎩

(plt1,�1) ≤ (plt2,�2) if pcub1 = (plt1,�1) and pcub2 = (plt2,�2)

 if pcub2 = ∞
⊥ otherwise.

This yields an inequality constraining the first parametric clock upper bound
to be smaller than or equal to the second one.

4.2 CUB Parametric Timed Automata

We extend the definition of CUB-TAs to parameters as follows:

Definition 4. A PTA is a CUB-PTA if for each edge (l, g, a,R, l′), for all clocks
x ∈ X, the following conditions hold: (i) A.K0 ⊆ (

pub(I(l), x) ≤ pub(g, x)
)
, and

(ii) if x /∈ R, then A.K0 ⊆ (
pub(I(l), x) ≤ pub(I(l′), x)

)
.

Hence, a PTA is a CUB-PTA iff every clock has a non-decreasing upper
bound along any path before it is reset, for all parameter valuations satisfying
the initial constraint A.K0 .

Note that, interestingly enough, the class of hardware circuits modeled using
a bi-bounded inertial delay2 fits into CUB-PTAs (for all parameter valuations).

Example 1. Consider the PTA A in Fig. 1a s.t. A.K0 =
. Then A is not CUB:
for x, the upper bound in l0 is x ≤ 1 whereas that of the guard on the transition
outgoing l0 is x ≤ p. (1,≤) ≤ (p,≤) yields 1 ≤ p. Then,
 �⊆ (

1 ≤ p
)
; for

example, p = 0 does not satisfy 1 ≤ p.

Consider again the PTA A in Fig. 1a, this time assuming that A.K0 = (p =
1 ∧ 1 ≤ p′ ∧ p′ ≤ p′′). This PTA is a CUB-PTA. (The largest constraint K0

making this PTA a CUB will be computed in Example 2.) ��
Lemma 2. Let A be a CUB-PTA. Let v |= A.K0. Then v(A) is a CUB-TA.

Proof. Let v |= A.K0. Let e = (l, g, a,R, l′) be an edge. Given a clock x ∈ X,
from Definition 4, we have that v |= (

pub(I(l), x) ≤ pub(g, x)
)
, and therefore

v(pub(I(l), x)) ≤ v(pub(g, x)). This matches the first case of Definition 3. The
second case (x /∈ R) is similar. �

2 This model assumes that, after the change of a signal in the input of a gate, the
output changes after a delay which is modeled using a parametric closed interval.

42 É. André et al.

Fig. 1. Examples of PTAs to illustrate the CUB concept

Algorithm 1. CUBdetect(A)
Input: PTA A = (Σ, L, l0, X, P, K0, I, E)
Output: A constraint K ensuring the PTA is a CUB-PTA

1 K ← K0

2 foreach edge (l, g, a, R, l′) do
3 foreach clock x ∈ X do
4 K ← K ∧ (pub(I(l), x) ≤ pub(g, x)

)

5 if x /∈ R then K ← K ∧ (pub(I(l), x) ≤ pub(I(l′), x)
)

6 return K

4.3 CUB PTA Detection

Given an arbitrary PTA, our approach works as follows. Firstly, we check
whether it is a CUB-PTA for some valuations. If it is, we proceed to the syn-
thesis problem, using the cycle detection synthesis algorithm (Sect. 5); however,
the result may be partial, as it will only be valid for the valuations for which
the PTA is CUB. This incompleteness may come at the benefit of a more effi-
cient synthesis. If it is CUB for no valuation, it has to be transformed into an
equivalent CUB-PTA (which will be considered in Sect. 4.4).

Our procedure to detect whether a PTA is CUB for some valuations is given
in Algorithm 1. For each edge in the PTA, we enforce the CUB condition on each
clock by constraining the upper bound in the invariant of the source location
to be smaller than or equal to the upper bound of the edge guard (line 4).
Additionally, if the clock is not reset along this edge, then the upper bound of
the source location invariant should be smaller than or equal to that of the target
location (line 5). If the resulting set of constraints accepts parameter valuations
(i. e. is not empty), then the PTA is a CUB-PTA for these valuations.

Example 2. Consider again the PTA A in Fig. 1a, assuming that A.K0 =
.
This PTA is CUB for 1 ≤ p ∧ 1 ≤ p′ ∧ p′ ≤ p′′.

Consider the PTA A in Fig. 1b, with A.K0 =
. When handling location l0
and clock x, line 4 yields A.K =
 ∧ [(p,≤) ≤ (1,≤)] = p ≤ 1 and then, from
line 5, A.K = p ≤ 1 ∧ [(p,≤) ≤ (p,<)] = p ≤ 1 ∧ p < p = ⊥. Hence, there is no
valuation for which this PTA is CUB. ��
Proposition 1. Let K = CUBdetect(A). Then A(K) is a CUB-PTA.

Proof. From the fact that Algorithm1 gathers constraints to match Definition 4.
�

Parametric Model Checking Timed Automata 43

4.4 Transforming a PTA into a Disjunctive CUB-PTA

In this section, we show that an arbitrary PTA can be transformed into an
extension of CUB-PTAs (namely disjunctive CUB-PTA), while preserving the
symbolic runs.

For non-parametric TAs, it is shown in [27] that any TA can be transformed
into an equivalent CUB-TA. This does not lift to CUB-PTAs.

Example 3. No equivalent CUB-PTA exists for the PTA in Fig. 2b where K0 =

. Indeed, the edge from l1 to l2 (resp. l3) requires p1 ≤ p2 (resp. p1 > p2). It is
impossible to transform this PTA into a PTA where K0 (which is
) is included
in both p1 ≤ p2 and p1 > p2. ��

Therefore, in order to overcome this limitation, we propose an alternative
definition of disjunctive CUB-PTAs. They can be seen as a union (as defined in
the timed automata patterns of, e. g. [13]) of CUB-PTAs.

Definition 5. A disjunctive CUB-PTA is a list of CUB-PTAs.
Given a disjunctive CUB-PTA A1, . . . ,An, with Ai = (Σi, Li, l

i
0,Xi, Pi,K

i
0,

Ii, Ei), the PTA associated with this disjunctive PTA is A = (
⋃

i Σi,
⋃

i Li ∪
{l0}, l0,

⋃
i Xi,

⋃
i Pi,

⋃
i K

i
0,

⋃
i Ii, E), where E =

⋃
i Ei∪E′ with E′ =

⋃
i(l0,K

i
0,

ε,X, li0).

Basically, the PTA associated with a disjunctive CUB-PTA is just an addi-
tional initial location that connects to each of the CUB-PTAs initial locations,
with its initial constraint on the guard.3

Example 4. In Fig. 2d (without the dotted, blue elements), two CUB-PTAs are
depicted, one (say A1) on the left with locations superscripted by 1, and one (say
A2) on the right superscripted with 2. Assume A1.K0 is p1 ≤ p2 and A2.K0 is
p1 > p2. Then the full Fig. 2d (including dotted elements) is the PTA associated
with the disjunctive CUB-PTA made of A1 and A2. ��

The key idea behind the transformation from a TA into a CUB-TA in [27]
is as follows: whenever a location l is followed by an edge e and a location l′ for
which ub(g, x) < ub(l, x) or ub(l′, x) < ub(l, x) for some x if x /∈ R, otherwise
ub(g, x) < ub(l, x), location l is split into two locations: one (say l1) with a
“decreased upper bound”, i. e. x�ub(l′, x), that is then connected to l′; and one
(say l2) with the same invariant as in l, and with no transition to l′. Therefore,
the original behavior is maintained. Note that this transformation induces some
non-determinism (one must non-deterministically choose whether one enters l1
or l2, which will impact the future ability to enter l′) but this has no impact on
the existence of a non-Zeno cycle.

Here, we extend this principle to CUB-PTAs. A major difference is that,
in the parametric setting, comparing two clock upper bounds does not give a
3 A purely parametric constraint (e. g. p1 > p2∧p3 = 3) is generally not allowed by the

PTA syntax, but can be simulated using appropriate clocks (e. g. p1 > x > p2 ∧p3 =
x′ = 3). Such parametric constraints are allowed in the input syntax of IMITATOR.

44 É. André et al.

Fig. 2. Examples: detection of and transformation into CUB-PTAs

Boolean answer but a parametric answer. For example, in a TA, (2,≤) ≤ (3, <)
holds (this is true), whereas in a PTA (p1,≤) ≤ (p2, <) denotes the constraint
p1 < p2. Therefore, the principle of our transformation is that, whenever we
have to compare two parametric clock upper bounds, we consider both cases:
here either p1 < p2 (in which case the first location does not need to be split) or
p1 ≥ p2 (in which case the first location shall be split). This yields a finite list of
CUB-PTAs: each of these CUB-PTAs consists in one particular ordering of all
parametric linear terms used as upper bounds in guards and invariants. (In prac-
tice, in order to reduce the complexity, we only define an order on the parametric
linear terms the comparison of which is needed during the transformation.)

Example 5. Let us transform the PTA in Fig. 2a: if p1 ≤ p2 then the PTA is
already CUB, and l1 does not need to be split. This yields a first CUB-PTA,
depicted on the left-hand side of Fig. 2d. However, if p1 > p2, then l1 needs to
be split into l21

′ (where time cannot go beyond p2) and into l21 (where time can
go beyond p2, until p1), but the self-loop cannot be taken anymore (otherwise
the associated guard makes the PTA not CUB). This yields a second CUB-PTA,
depicted on the right-hand side of Fig. 2d. Both make a disjunctive CUB-PTA
equivalent to Fig. 2a.

Similarly, we give the transformation of Fig. 2b in Fig. 2e. ��

5 Zeno-Free Cycle Synthesis in CUB-PTAs

Taking a disjunctive CUB-PTA as input, we show in this section that synthesiz-
ing the parameter valuations for which there exists at least one non-Zeno cycle
(and therefore an infinite non-Zeno run) reduces to an SCC (strongly connected
component) synthesis problem.

Parametric Model Checking Timed Automata 45

First, we define a light extension of the parametric zone graph as follows. The
extended parametric zone graph of a PTA A is identical to its parametric zone
graph, except that any transition (s, e, s′) is replaced with (s, (e, b), s′), where b
is a Boolean flag which is true if time can potentially elapse between s and s′.
In practice, b can be computed as follows, given s = (l, C) and edge e:

1. add a fresh extra clock x0 to the constraint C, i. e. compute C ∧ x0 = 0
2. compute the successor s′ = (l′, C ′) of (l, C ∧ x0 = 0) via edge e
3. check whether C ′ ⇒ x0 = 0: if so, then b = false; otherwise b = true.

Introducing such a clock is cheap: the check is not expensive, and the extra clock
does not impact the size of the parametric zone graph: x0 is 0 in all nodes of
the zone graph and can be eliminated from the memory, therefore not requiring
more space nor extra states.

In contrast to non-parametric TAs, the flag b does not necessarily mean that
time can necessarily elapse for all parameter valuations. Consider the example
in Fig. 2c. After taking one loop, we have that x0 ≤ p: therefore, x0 is not
necessarily 0, and b is true. But consider v such that v(p) = 0: then in l1 time
can never elapse. However, we show in the following lemma that the flag b does
denote time elapsing for strictly positive parameters.

Lemma 3. Let (l, C)
e,b⇒ (l′, C ′) be a transition of the extended parametric zone

graph of a PTA A. Then, for any strictly positive parameter valuation in C ′↓P ,
there exists an equivalent transition in v(A) in which time can elapse.

Proof. First note that, for any v |= C ′↓P , an equivalent concrete transition exists
in v(A), from Lemma 1. Now, since b is true, the extra clock x0 in the state of the
extended parametric zone graph corresponding to (l, C ′) is either unbounded,
or bounded by some parametric linear term plt . If it is unbounded, then time
can elapse for any valuation, and the lemma holds trivially. Assume x0 ≤ plt for
some plt . As our parameters are strictly positive, then for any valuation v, v(plt)
evaluates to a strictly positive rational, and therefore time can elapse along this
transition in v(A). �

Definition 6. An infinite symbolic run r is non-Zeno if all its associated con-
crete runs are non-Zeno.

In the remainder of this section, given an edge e = (l, g, a,R, l′), e.R denotes
that the clocks in R reset along e.

The following theorem states that an infinite symbolic run is non-Zeno iff the
time can (potentially) elapse along infinitely many edges and, whenever a clock
is bounded from above, then eventually either this clock is reset or it becomes
unbounded.

Theorem 2. Let r = s0
(e0,b0)⇒ s1

(e1,b1)⇒ · · · be an infinite symbolic run of the
extended parametric zone graph of a CUB-PTA A. r is non-Zeno if and only if

∗ there exist infinitely many k such that bk = true; and

46 É. André et al.

� for all x ∈ X, for all i ≥ 0, given si = (li, Ci), if pub(li, x) �= ∞, there exists
j such that j ≥ i and x ∈ ej .R or pub(lj , x) = ∞.

We now show that synthesizing parameter valuations for which there exists
a non-Zeno infinite run reduces to an SCC searching problem.

First, given an SCC scc, we denote by scc.K the parameter constraint asso-
ciated with scc, i. e. C↓P , where (l, C) is any state of the SCC.4

Theorem 3. Let A be a CUB-PTA of finite extended parametric zone graph G.
Let v be a strictly positive parameter valuation. v(A) contains a non-Zeno infinite
run if and only if G contains a reachable SCC scc such that v |= scc.K and

† scc contains a transition s
(e,b)⇒ s′ such that b = true; and

‡ for every clock x in X, given s = (l, C), if pub(l, x) �= ∞ for some state s
in scc, there exists a transition in scc with label (e, b) such that x ∈ e.R.

Therefore, from Theorem 3, synthesizing valuations yielding an infinite sym-
bolic run reduces to an SCC searching problem in the extended parametric
zone graph. Then, we need to test each SCC against two conditions: whether
it contains a transition which can be locally delayed (i. e. whether it contains
a transition where b = true); and whether every clock having an upper bound
other than ∞ at some state is reset along some transition in the SCC. Then,
for all SCCs matching these two conditions, we return the associated parameter
constraint.

We give in Algorithm 2 an algorithm synthNZ to solve the non-Zeno synthe-
sis problem for CUB-PTAs. synthNZ simply iterates on the SCCs, and gathers
their associated parameter constraints whenever they satisfy the conditions in
Theorem 3.

Algorithm 2. CUB-PTA non-Zeno synthesis algorithm synthNZ(A)
Input: CUB-PTA A and its extended parametric zone graph G
Output: constraint KNZ for which there is a non-Zeno infinite run

1 KNZ ← ⊥ while there are un-visited states in G do
2 find a new SCC scc;
3 mark all states in scc as visited;
4 if scc satisfies † and ‡ then
5 KNZ ← KNZ ∨ scc.K ;

6 return KNZ ;

If G is finite, then the correctness and completeness of synthNZ immedi-
ately follow from Theorem 3. If only an incomplete part of G is computed (e. g.
by bounding the exploration depth, or the number of explored states, or the
4 Following a well-known result for PTAs, all symbolic states belonging to a same

cycle in a parametric zone graph have the same parameter constraint.

Parametric Model Checking Timed Automata 47

execution time) then only the ⇐ direction of Theorem 3 holds: in that case,
the result of synthNZ is correct but non-complete, i. e. it is a valid under-
approximation. In the context of parametric model checking, knowing which
parameter valuations violate the property is already very helpful to the designer,
as it helps to discard unsafe valuations, and to refine the model.

6 Experiments

We implemented our algorithms in IMITATOR [5].5 The Parma Polyhedra
Library (PPL) [10] is integrated inside the core of IMITATOR in order to solve
mainly linear inequality system problems. Experiments were run on an Intel
Core 2 Duo P8600 at 2.4 GHz and 4 GiB of memory.

We compare three approaches: (1) A cycle detection synthesis without
the non-Zenoness assumption (called synthCycle). The result may be an over-
approximation of the actual result, as some of the parameters synthesized may
yield only Zeno cycles. If synthCycle does not terminate, its result is an under-
approximation of an over-approximation, therefore considered as potentially
invalid; that is, there is no guarantee of correctness for the synthesized constraint.
(2) Our CUB-detection (Algorithm 1) followed by synthesis (Algorithm 2): the
result may be under-approximated, as only the valuations for which the PTA
is CUB are considered. (3) Our CUB-transformation (CUBtrans) followed by
synthesis (Algorithm 2) on the resulting disjunctive CUB-PTA. If the algorithm
terminates, then the result is exact, otherwise it may be under-approximated.

We consider various benchmarks: protocols (CSMA/CD, Fischer [2], RCP,
WFAS), hardware circuits (And-Or, flip-flop), scheduling problems (Sched5), a
networked automation system (simop) and various academic benchmarks.

We give from left to right in Table 1 the case study name and its number
of clocks, parameters and locations. For synthCycle, we give the computation
time (TO denotes a time-out at 3600 s), the constraint type (⊥,
 or another
constraint) and the validity of the result: if synthCycle terminates, the result is
an over-approximation, otherwise it is potentially invalid. For CUBdetect (resp.
CUBtrans) we give the detection (resp. transformation) time, the total time
(including synthNZ), the result, and whether it is an under-approximation or
an exact result. We also mention whether CUBdetect outputs that all, none or
some valuations make the PTA CUB; and we give the number of locations in the
transformed disjunctive CUB-PTA output by CUBtrans. The percentage is used
to compare the number of valuations (comparison obtained by discretization)
output by the algorithms, with CUBtrans as the basis (as the result is exact).

The toy benchmark CUBPTA1 is a good illustration: CUBtrans terminates
after 0.073 s (and therefore its result is exact) with some constraint. CUBdetect
is faster (0.015 s) but infers that only some valuations are CUB and analyzes

5 For experimental data including source and binary, see http://imitator.fr/static/
NFM17.

http://imitator.fr/static/NFM17
http://imitator.fr/static/NFM17

48 É. André et al.

Table 1. Experimental comparison of the three algorithms

Model synthCycle CUBdetect CUBtrans

Name
#
X

#
P

#
L

t (s) Result Appr.
Detec
t (s)

Total
t (s)

CUB
for

Result Appr.
Trans
t (s)

Total
t (s)

#L
CUB

Result Appr.

CSMA/CD 3 3 28 TO � invalid? 0.013 0.013 ⊥ - - 0.300 TO 74 � exact

Fischer 2 4 13 TO � invalid? 0.003 0.003 ⊥ - - 0.012 TO 20 � exact

RCP 6 5 48 TO Some invalid? 0.013 0.013 ⊥ - - 0.348 TO 71 ⊥ under

WFAS 4 2 10 TO
Some
102%

invalid? 0.009 0.009 ⊥ - - 0.246 1848 40
Some
100%

exact

AndOr 4 4 27 TO
Some
166%

invalid? 0.012 0.012 ⊥ - - 0.059 TO 34
Some
100%

under

Flip-flop 5 2 52 0.058 ⊥ exact 0.002 0.086 � ⊥ exact 0.010 0.972 58 ⊥ exact

Sched5 21 2 153 190 ⊥ exact 0.051 0.051 ⊥ - - 1.180 TO 180 ⊥ under

simop 8 2 46 TO ⊥ invalid? 0.012 0.012 ⊥ - - 0.219 TO 81 ⊥ under

train-gate 5 9 11 TO ⊥ invalid? 0.000 TO Some ⊥ under 0.059 TO 23 ⊥ under

coffee 2 3 4 TO
Some
100%

invalid? 0.000 TO Some
Some
100%

under 0.012 TO 10
Some
100%

under

CUBPTA1 1 3 2 0.006
�

208%
over 0.000 0.015 Some

Some
69%

under 0.006 0.073 6
Some
100%

exact

JLR13 2 2 2 TO ⊥ invalid? 0.000 TO � ⊥ under 0.000 TO 3 ⊥ under

only these valuations; the synthesized result is only 69% of the expected result.
In contrast, synthCycle is much faster (0.006 s) but obtains too many valuations
(208% of the expected result) as it infers many Zeno valuations.

Let us discuss the results. First, synthCycle almost always outputs a possi-
bly invalid result (neither an under- nor an over-approximation), which justi-
fies the need for techniques handling non-Zeno assumptions. In only one case
(CUBPTA1), it outputs a non-trivial over-approximation. In two cases, it hap-
pens to give an exact answer, as the over-approximation of ⊥ necessarily means
that ⊥ is the exact result. In contrast, CUBtrans gives an exact result in five
cases, a non-trivial under-approximation in two cases; the five remaining cases
are a disappointing result in which ⊥ is output as an under-approximation. By
studying the model manually, we realized that some non-Zeno cycles actually
exist for some valuations, but our synthesis algorithm was not able to derive
them. Only in one of these cases (Sched5), synthCycle outputs a more interesting
result than CUBtrans.

The transformation is relatively reasonable both in terms of added locations
(in the worst case, there are 40 instead of 10 locations, hence four times more, for
WFAS) and in terms of transformation time (the worst case is 1.2 s for Sched5).
Our experiments do not allow us to fairly compare the time of synthCycle (with-
out non-Zenoness) and synthNZ (with non-Zenoness assumption) as, without
surprise due to the undecidability, most analyses do not terminate. Only two
benchmarks terminate for both algorithms, but are not significant (<1 s).

Note that flip-flop is a hardware circuit modeled using a bi-bounded inertial
delay, and is therefore CUB for all valuations.

An interesting benchmark is WFAS, for which our transformation procedure
terminates whereas synthCycle does not. Therefore, we get an exact result while
the traditional procedure cannot produce any valuable output.

Parametric Model Checking Timed Automata 49

As a conclusion, CUBdetect seems to be faster but less complete than
CUBtrans. As for CUBtrans, its result is almost always more valuable than
synthCycle, and therefore is the most interesting algorithm.

7 Conclusion

We proposed a technique to synthesize valuations for which there exists a non-
Zeno infinite run in a PTA. By adding accepting states, this allows for parametric
model checking with non-Zenoness assumption. Our techniques rely on a trans-
formation to a disjunctive CUB-PTA (or in some cases on a simple detection
of the valuation for which the PTA is already CUB), and then on a dedicated
cycle synthesis algorithm. We implemented our techniques in IMITATOR and
compared our algorithms on a set of benchmarks.

Future Works. Our technique relying on CUB-PTAs extends the technique of
CUB-TAs: this technique is shown in [27] to be the most efficient for performing
non-Zeno model checking for TAs. However, for PTAs, other techniques (such
as yet to be defined parametric extensions of strongly non-Zeno TAs [26] or
guessing zone graph [16]) could turn more efficient and should be investigated.

In addition, parametric stateful timed CSP (PSTCSP) [7] is a formalism for
which the CUB assumption seems to be natively verified. Therefore, studying
non-Zeno parametric model checking for PSTCSP, as well as transforming PTAs
into PSTCSP models, would be an interesting direction of research.

Studying the decidability of the underlying decision problem should be done
for famous subclasses of PTAs constraining the use of parameters (namely L/U-
PTAs, L-PTAs and U-PTAs [17]) as well as for new semantic subclasses that
we recently proposed and that benefit from decidability results (namely integer-
point PTAs and reset-PTAs [6]).

An interesting future will be to design a multi-core extension of our non-Zeno
synthesis algorithm; this could be done by reusing parallel depth first search
algorithms for finding cycles [14].

Finally, combining our synthesis algorithms with IC3 [12], as well as extend-
ing them to hybrid systems [23] is also of high practical interest.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC,
pp. 592–601. ACM (1993)

3. André, É.: What’s decidable about parametric timed automata? In: Artho, C.,
Ölveczky, P.C. (eds.) FTSCS 2015. CCIS, vol. 596, pp. 52–68. Springer, Cham
(2016). doi:10.1007/978-3-319-29510-7 3

4. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for para-
metric timed automata. IJFCS 20(5), 819–836 (2009)

http://dx.doi.org/10.1007/978-3-319-29510-7_3

50 É. André et al.

5. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for ana-
lyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.)
FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32759-9 6

6. André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed
automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol.
10009, pp. 400–416. Springer, Cham (2016). doi:10.1007/978-3-319-47846-3 25

7. André, É., Liu, Y., Sun, J., Dong, J.S.: Parameter synthesis for hierarchical con-
current real-time systems. Real-Time Syst. 50(5–6), 620–679 (2014)

8. André, É., Markey, N.: Language preservation problems in parametric timed
automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS,
vol. 9268, pp. 27–43. Springer, Cham (2015). doi:10.1007/978-3-319-22975-1 3

9. Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C.-H., Ruess, H.: Compositional
parameter synthesis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A.
(eds.) FM 2016. LNCS, vol. 9995, pp. 60–68. Springer, Cham (2016). doi:10.1007/
978-3-319-48989-6 4

10. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)

11. Bowman, H., Gómez, R.: How to stop time stopping. Formal Aspects Comput.
18(4), 459–493 (2006)

12. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
FMCAD, pp. 165–168. IEEE (2013)

13. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed automata patterns. IEEE
Trans. Softw. Eng. 34(6), 844–859 (2008)

14. Evangelista, S., Laarman, A., Petrucci, L., van de Pol, J.: Improved multi-
core nested depth-first search. In: Chakraborty, S., Mukund, M. (eds.) ATVA
2012. LNCS, vol. 7561, pp. 269–283. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33386-6 22

15. Gómez, R., Bowman, H.: Efficient detection of Zeno runs in timed automata. In:
Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp.
195–210. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75454-1 15

16. Herbreteau, F., Srivathsan, B., Walukiewicz, I.: Efficient emptiness check for timed
Büchi automata. Formal Methods Syst. Des. 40(2), 122–146 (2012)

17. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model
checking of timed automata. JLAP 52–53, 183–220 (2002)

18. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed
automata. Trans. Softw. Eng. 41(5), 445–461 (2015)

19. Khatib, L., Muscettola, N., Havelund, K.: Mapping temporal planning constraints
into timed automata. In: TIME, pp. 21–27. IEEE Computer Society (2001)

20. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata.
Trans. Petri Nets Models Concurr. 5, 141–159 (2012)

21. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. STTT 1(1–2),
134–152 (1997)

22. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc.,
Upper Saddle River (1967)

23. Schupp, S., Ábrahám, E., Chen, X., Makhlouf, I.B., Frehse, G., Sankaranarayanan,
S., Kowalewski, S.: Current challenges in the verification of hybrid systems. In:
Berger, C., Mousavi, M.R. (eds.) CyPhy 2015. LNCS, vol. 9361, pp. 8–24. Springer,
Cham (2015). doi:10.1007/978-3-319-25141-7 2

http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-319-47846-3_25
http://dx.doi.org/10.1007/978-3-319-22975-1_3
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/978-3-319-48989-6_4
http://dx.doi.org/10.1007/978-3-642-33386-6_22
http://dx.doi.org/10.1007/978-3-642-33386-6_22
http://dx.doi.org/10.1007/978-3-540-75454-1_15
http://dx.doi.org/10.1007/978-3-319-25141-7_2

Parametric Model Checking Timed Automata 51

24. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 59

25. Tripakis, S.: Verifying progress in timed systems. In: Katoen, J.-P. (ed.) ARTS
1999. LNCS, vol. 1601, pp. 299–314. Springer, Heidelberg (1999). doi:10.1007/
3-540-48778-6 18

26. Tripakis, S., Yovine, S., Bouajjani, A.: Checking timed Büchi automata emptiness
efficiently. Formal Methods Syst. Des. 26(3), 267–292 (2005)

27. Wang, T., Sun, J., Wang, X., Liu, Y., Si, Y., Dong, J.S., Yang, X., Li, X.: A sys-
tematic study on explicit-state non-Zenoness checking for timed automata. IEEE
Trans. Softw. Eng. 41(1), 3–18 (2015)

http://dx.doi.org/10.1007/978-3-642-02658-4_59
http://dx.doi.org/10.1007/3-540-48778-6_18
http://dx.doi.org/10.1007/3-540-48778-6_18

Multi-timed Bisimulation for Distributed
Timed Automata

James Ortiz, Moussa Amrani(B), and Pierre-Yves Schobbens

Computer Science Faculty, University of Namur, Namur, Belgium
{james.ortizvega,moussa.amrani,pierre-yves.schobbens}@unamur.be

Abstract. Timed bisimulation is an important technique which can be
used for reasoning about behavioral equivalence between different com-
ponents of a complex real-time system. The verification of timed bisimu-
lation is a difficult and challenging problem because the state explosion
caused by both functional and timing constraints must be taken into
account. Timed bisimulation was shown decidable for Timed Automata
(TA). Distributed TA and TA with Independent Clocks (icTA) were
introduced to model Distributed Real-time Systems. They are a variant
of TA with local clocks that may not run at the same rate. In this paper,
we first propose to extend the theory of Timed Labeled Transition Sys-
tems to Multi-Timed Labeled Transition Systems, and relate them by an
extension of timed bisimulation to multi-timed bisimulation. We prove
the decidability of multi-timed bisimulation and present an EXPTIME
algorithm for deciding whether two icTA are multi-timed bisimilar. For
multi-timed bisimilarity, an extension of the standard refinement algo-
rithm is described.

1 Introduction

Distributed Real-Time Systems (DTS) are increasing with the scientific and
technological advances of computer networks. The high demand for computer
networks has caused the development of new complex applications which benefit
from the high performance and resources offered by modern telecommunica-
tions networks. Current researches in the area of DTS have emerged from the
need to specify and analyze the behavior of these systems, where both distrib-
uted behavior and timing constraints are present. Formal verification methods,
such as model checking, have been used to verify the correctness of complex
DTS. Model checking over DTS becomes rapidly intractable because the state
space often grows exponentially with the number of components considered. A
technique to reduce the state space is to merge states with the same behav-
iour. For untimed systems, the notion of bisimulation [13] is classically used to
this end, and its natural extension for real-time systems, timed bisimulation, was
already shown decidable for Timed Automata (TA) [2,12]. A timed automaton is
a finite automaton augmented with real-valued clocks, represented as variables
that increase at the same rate as time progresses. TA assume perfect clocks:
all clocks have infinite precision and are perfectly synchronized. In this paper,
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 52–67, 2017.
DOI: 10.1007/978-3-319-57288-8 4

Multi-timed Bisimulation for Distributed Timed Automata 53

we study two variants of TA called Distributed Timed Automata (DTA) and
Timed Automata with Independent Clocks (icTA) proposed by [1,11,16] to
model DTS, where the clocks are not necessarily synchronized. TA have been
used to model DTS such as Controller Area Network [14] and WirelessHART
Networks [10]. But, TA, icTA and timed bisimulation are based on a sequential
semantics of a Timed Labelled Transition Systems (TLTS), i.e., a run of a TLTS
is given by a sequence of actions and timestamps.

Unfortunately, a sequential semantics does not describe completely the
behavior of the DTS, because interactions between processes with their associ-
ated local clocks that are running at the same rate and distribution of the actions
over the components are not considered. Also, model-checking and bisimulation
equivalence algorithms have been implemented in tools [19,20] for the sequen-
tial semantics used by the model (e.g., TA, TLTS, etc.). In contrast, behavioral
equivalences for DTS have only been introduced in [3]. It is, however, not clear
whether such equivalences agree with the distributed timed properties in DTS.
Therefore, we propose an alternative semantics to the classical sequential seman-
tics for TLTS and icTA: specifically, a run of a system in our alternative semantics
is given by the sequences of pairs (action, tuples of timestamps). We propose an
alternative semantics in order to be able to consider a semantics which expresses
the distribution of the actions and timestamps over the components. With this
alternative, it becomes possible to analyze the local behavior of the components
independently, thus enhancing the expressiveness of the TLTS (and icTA). We
introduce Multi-Timed Labelled Transition Systems (MLTS), an extension of
classical TLTS in order to cope with the notion of multiple local times, and we
propose efficient algorithms using refinement techniques [17].

Contributions. One of our main contributions is to incorporate a alternative
semantics over sequential semantics for TLTS and icTA. Also, we extend the clas-
sical theory of timed bisimulation with the notion multi-timed bisimulation and
their corresponding decision algorithms. We also present two algorithms: (i) a
forward reachability algorithm for the parallel composition of two icTA, which
will help us to minimize the state space exploration by our second algorithm, and
(ii) a decision algorithms for multi-timed bisimulation using the zone-based tech-
nique [5]. Multi-timed bisimulation is a relation over local clocks (and processes),
and cannot be computed with the standard partition refinement algorithm [17].
Instead, our algorithm successively refines a set of zones such that ultimately
each zone contains only multi-timed bisimilar pairs of states. Furthermore, we
show that our algorithm is EXPTIME-complete. Since TA are a special variant
of icTA, our work conservatively extends the expressiveness of TA and TLTS;
and since timed bisimulation over TA [19,20] can be regarded as a special case
of multi-timed bisimulation, our decision algorithms could potentially be used
to analyze complex DTS.

Structure of the Paper. After recalling preliminary notions in Sect. 2, we
introduce our alternative semantics for icTA in Sect. 3, based on multi-timed
words consumed by MLTS. Section 4 deals with bisimulation: we first define
multi-timed bisimulation, by adapting the classical definition to MLTS, then

54 J. Ortiz et al.

show its decidability by exhibiting an EXPTIME algorithm. Finally, Sect. 5 com-
pares our work with existing contributions, and Sect. 6 concludes. Due to space
constraints, some proofs are not given here, but stay available in a Technical
Report available online [15].

2 Preliminaries

We describe in this section the notations needed for formally defining Timed
Labelled Transition Systems (TLTS) and Timed Automata TA.

Timed Words. The set of all finite words over a finite alphabet of actions Σ
is denoted by Σ∗. Let N, R and R≥0 respectively denote the sets of natural,
real and nonnegative real numbers. A timed word [2] over Σ is a finite sequence
θ = ((σ1, t1), (σ2, t2) . . . (σn, tn)) of actions paired with nonnegative real numbers
(i.e., (σi, ti) ∈ Σ × R≥0) such that the timestamped sequence t = t1 · t2 · · · tn is
nondecreasing (i.e., ti ≤ ti+1). We sometimes define θ as the pair θ = (σ, t) with
σ ∈ Σ∗ and t a sequence of timestamps with the same length.

Clocks. A clock is a real positive variable that increases with time. Let X be
a finite set of clock names. A clock constraint φ ∈ Φ(X) is a conjunction of
comparisons of a clock with a natural constant c: with x ∈ X, c ∈ N, and
∼ ∈ {<, >, ≤, ≥, =}, φ is defined by

φ ::= true | x ∼ c | φ1 ∧ φ2

A clock valuation ν ∈ R
X
≥0 over X is a mapping ν : X → R≥0. For a time value

t ∈ R≥0, we note ν + t the valuation defined by (ν + t)(x) = ν(x) + t. Given a
clock subset Y ⊆ X, we note ν[Y → 0] the valuation defined as follows: ν[Y ← 0]
(x) = 0 if x ∈ Y and ν[Y ← 0](x) = ν(x) otherwise. The projection of ν on Y,
written ν
Y, is the valuation over Y containing only the values in ν of clocks
in Y.

Timed Automata (TA). A TA is a tuple B = (Σ,X, S, s0,→ta, I, F) where
Σ is a finite alphabet, X a clock set, S a set of locations with s0 ∈ S the initial
location and F ⊆ S the set of (sink) final states, →ta⊆ S ×Σ ×Φ(X)×2X ×S is
the automaton’s transition relation, I : S → Φ(X) associates to each location a
clock constraint as invariant. For a transition (s, φ, a, Y, s′) ∈→ta, we classically

write s
φ,a,Y−−−−→ s′ and call s and s′ the source and target location, φ is the guard,

a the action or label, Y the set of clocks to be reset. During the execution of a
TA B, a state is a pair (s, ν) ∈ S × R

X
≥0, where s denotes the current state with

its accompanying clock valuation ν, starting at s0, ν0 where ν0 maps each clock
to 0. We only consider legal states, i.e. states that satisfy ν � I(s) (i.e. valuations
that map clocks to values that satisfy the current state’s invariant).

Timed Transition System (TLTS). The transition system TLTS(B) generated
by B is defined by TLTS(B) = (Q, q0, Σ,→tlts), where Q is a set of legal states
over B with initial state q0 = (s0, ν0), Σ a finite alphabet and →tlts ⊆ Q ×

Multi-timed Bisimulation for Distributed Timed Automata 55

(Σ � R≥0) × Q is the TLTS transition relation defined by: (a) Delay transition:

(s, ν) t−→ (s, ν + t) for some t ∈ R≥0, iff ν + t � I(s), (b) Discrete transition:

(s, ν) a−→ (s′, ν′), iff s
φ,a,Y−−−−→ s′, ν � φ, ν′ � ν[Y → 0] and ν′ � I(s′).

3 An Alternative Semantics for DTA

In this section, we define an alternative semantics (which we will call multi-timed
semantics) for icTA as opposed to the mono-timed semantics of [1]. The main
problem with the semantics of [1] is that they use the reference time. The benefits
of this new definition are threefold. First, the multi-timed semantics preserves
the untimed language of the icTA. Second, the multi-timed semantics can work
with multi-timed words. Third, the region equivalence defined in [1] could form
a finite time-abstract bisimulation on the multi-timed semantics. Hence, the
multi-timed semantics allows to build a region automaton that accepts exactly
Untime(L(A)) for all icTA A [1]. Thus, we extend TLTS and icTA to their multi-
timed version.

3.1 Multi-timed Actions

Let Proc be a non-empty set of processes, then, we denote by R
Proc
≥0 the set of

functions from Proc to R, that we call tuples. A tuple d ∈ R
Proc
≥0 is smaller that

d′, noted, d < d′ iff ∀i ∈ Proc di ≤ d′
i and ∃i ∈ Proc di < d′

i. A Monotone
Sequence of Tuples (MST) is a sequence d = d1d2 · · ·dn of tuples of RProc

≥0 where:
∀j ∈ 1 · · · n − 1, dj ≤ dj+1. A multi-timed word on Σ is a pair θ = (σ,d) where
σ = σ1σ2 . . . σn is a finite word σ ∈ Σ∗, and d = d1d2 . . .dn is a MST of the
same length. This is the analog of a timed word (or multi-timed action) [2]. A
multi-timed word can equivalently be seen as a sequence of pairs in Σ × R

Proc
≥0 .

3.2 Multi-timed Labeled Transition Systems

Our multi-timed semantics is defined in terms of runs that record the state and
clock values at each transition points traversed during the consumption of a
multi-timed word. Instead of observing actions at a global time, a multi-timed
word allows to synchronise processes on a common action that may occur at a
specific process time.

Definition 1 (Multi-timed Labelled Transition System). A Multi-Timed
Labelled Transition System (MLTS) over a set of processes Proc is a tuple M =
(Q, q0, Σ,→mlts) such that: (i) Q is a set of states. (ii) q0 ∈ Q is the initial
state. (iii) Σ is a finite alphabet. (v) →mlts⊆ Q × (Σ � R

Proc
≥0) × Q is a set of

transitions.

The transitions from state to state of a MLTS are noted in the following way:
(i) A transition (q, a, q′) is denoted q a−→ q′ and is called a discrete transition, if
a ∈ Σ and (q, a, q′) ∈→mlts, (ii) A transition (q,d, q′) is denoted q d−→ q′ and is
called a delay transition, if d ∈ R

Proc
≥0 and (q,d, q′) ∈→mlts.

56 J. Ortiz et al.

Fig. 1. Multi-timed and Timed Labelled Transition Systems

A run of M can be defined as a finite sequence of moves, where discrete
and continuous transitions alternate: ρ = q0

d1−→ q′
0

a1−→ q1
d2−→ q′

1
a2−→ q2 . . .

qn−1
dn−1−−−→ q′

n−1

an−1−−−→ qn, where ∀0 ≤ i ≤ n − 1, qi ∈ Q,∀j ≤ n −
1,dj ∈ R

Proc
≥0 , q′

j ∈ Q and aj ∈ Σ. The multi-timed word of ρ is θ =
((a1, t1), (a2, t2) . . . , (an, tn)), where ti =

∑i
j=1 dj . A multi-timed word θ is

accepted by M iff there is a maximal initial run whose multi-timed word is
θ. The language of M, denoted L(M), is defined as the set of multi-timed words
accepted by some run of M. Note that MLTS are a proper generalisation of
TLTS: each TLTS can be seen as a MLTS with a single process and conversely.

For example, consider the two transition systems in Fig. 1: a MLTS on the left
(M1) and two TLTS on the right (M2 and M3) with the finite input alphabet
Σ = {a, b, c}. In brief, M2 and M3 could be considered as the projection of M1

on the case of process 1 and 2.

3.3 A Multi-timed Semantics for icTA

DTA [1,11] consist of a number of local timed automata. In [1], DTA are not
much studied. Instead, their product is first computed, giving rise to the class
of icTA (A = (B, π), where B is a TA and π is a function maps each clock to a
process).

Given π : X → Proc, a clock valuation ν : X → R≥0 and d ∈ R
Proc
≥0 : the

valuation ν +π d is defined by (ν +π d)(x) = ν(x)+dπ(x) for all x ∈ X. A Rate is
a tuple τ = (τq)q∈Proc of local time functions. Each local time function τq maps
the reference time to the time of process q, i.e., τq : R≥0 −→ R≥0. The functions
τq must be continuous, strictly increasing, divergent, and satisfy τq(0) = 0. The
set of all these tuples τ is denoted by Rates.

The operational semantics of an icTA has been associated to a sequential
semantics. A run of an icTA A for τ ∈ Rates with a sequential semantics as a
sequence (s1, ν1)

t1,a1−−−→ (s2, ν2)
t2,a2−−−→ (s2, ν3) . . . (sn−1, νn−1)

tn−1,an−1−−−−−−−→ (sn, νn)
where ∀1 ≤ i ≤ n, si ∈ S and ∀j ≤ n − 1, tj ∈ R≥0 and aj ∈ Σ. Here, we want
to associate operational semantics of a icTA to a MLTS.

Multi-timed Bisimulation for Distributed Timed Automata 57

Fig. 2. (a) An icTA M, (b) An counter example of Multi-timed bisimulation

Definition 2. Let A be an icTA and τ ∈ Rates. Our multi-timed semantics of
the icTA A is given by a MLTS over Proc, denoted by MLTS(A, τ) = (Q, q0,
Σ,→mlts). The set of states Q consists of triples composed of a location, a clock
valuation and lastly the reference time: Q = {(s, ν, t) ∈ S×R

X
≥0×R≥0 | ν |= I(s)}.

The starting state is q0 = (s0, ν0, 0), where ν0 is the valuation that assigns 0 to
all the clocks. Σ is the alphabet of A. The transition relation →mlts is defined by:

(i) A transition (qi,d, q′
i) is denoted qi

d−→ q′
i, and is called a delay transition,

where qi = (si, νi, ti), q′
i = (si, νi +π d, ti+1), d = τ(ti+1) − τ(ti) and ∀t ∈

[ti, ti+1] : νi +π (τ(t) − τ(ti)) |= I(si).
(ii) A transition (qi, a, qi+1) is denoted qi

a−→ qi+1, and is called a discrete
transition, where qi = (si, νi, ti), qi+1 = (si+1, νi+1, ti+1), a ∈ Σ, there exists
a transition (si, a, φ, Y, si+1) ∈→ic, such that νi |= φ, νi+1 = νi[Y → 0],
νi+1 |= I(si+1), ti = ti+1.

In Definition 2, we have introduced a multi-timed semantics for icTA, follow-
ing ideas of [1]. A run of an icTA A for τ ∈ Rates with our multi-timed semantics
is an initial path in MLTS(A, τ) where discrete and continuous transition alter-
nate. A multi-timed word is accepted by A for τ ∈ Rates iff it is accepted by
MLTS(A, τ).

Example 1. The Fig. 2(a) shows an icTA M with the finite input alpha-
bet Σ = {a, b, c, d}, the set of processes Proc = {p, q}, the set of clocks
X = {xp, yq} and τ = (2t, t) i.e. τp(t) = 2t and τq(t) = t. A run of M
on multi-timed word θ = ((a, (2.0, 1.0))(b, (3.0, 1.5))(c, (4.2, 2.1))(d, (6.0, 3.0)))

is given by ρ (S0, [xp = 0.0, yq = 0.0], 0.0)
(2.0,1.0)−−−−−→ (S0, [xp = 2.0, yq =

1.0], 1.0) a−−→ (S1, [xp = 2.0, yq = 0.0], 1.0)
(1.0,0.5)−−−−−→ (S1, [xp = 3.0, yq = 1.5],

1.5) b−−→ (S2, [xp = 3.0, yq = 1.5], 1.5)
(1.2,0.6)−−−−−→ (S2, [xp = 4.2, yq = 1.1], 2.1)

c−−→ (S1, [xp = 4.2, yq = 0.0], 2.1)
(1.8,0.9)−−−−−→ (S1, [xp = 6.0, yq = 0.9], 3.0) c−−→

(S0, [xp = 0.0, yq = 0.9], 3.0).

4 Multi-timed Bisimulation

From a distributed approach, a DTS consist of several processes with their asso-
ciated local clocks that are not running at the same rate. Thus, in order to

58 J. Ortiz et al.

formalize preservation of distributed timed behavior, we extend the classical
definition of timed bisimulation [9] towards a multi-timed semantics. Our motiva-
tion for extending the classical definition of timed bisimulation is twofold: first,
efficient algorithms checking for timed and time-abstract bisimulation have been
discovered [12,19]. Nonetheless, these algorithms are based on sequential seman-
tics (i.e., TLTS and TA). Second, verifying the preservation of distributed timed
behavior in DTS could be used to master the combinatorial explosion of the size
of the model due to the composition of the processes.

4.1 Strong Multi-timed Bisimulation

Let M1 and M2 be two MLTS over the same set of actions Σ and processes Proc.
Let QM1 (resp., QM2) be the set of states of M1 (resp., M2). Let R be a binary
relation over QM1

× QM2
. We say that R is a strong multi-timed bisimulation

whenever the following transfer property holds (note that technically this is
simply strong bisimulation over Σ � R

Proc
≥0):

Definition 3. A strong multi-timed bisimulation over MLTS M1, M2 is a
binary relation R ⊆ QM1 × QM2 such that, for all qM1

RqM2
, the following

holds:

(i) For every a ∈ Σ and for every discrete transition qM1

a−−→M1 q′
M1

, there
exists a matching discrete transition qM2

a−−→M2 q′
M2

such that q′
M1

Rq′
M2

and symmetrically.
(ii) For every d = (d1, . . . , dn) ∈ R

Proc
≥0 , for every delay transition qM1

d−−→M1

q′
M1

, there exists a matching delay transition qM2

d−−→M2 q′
M2

such that
q′
M1

Rq′
M2

and symmetrically.

Two states qM1
and qM2

are multi-timed bisimilar, written qM1
≈ qM2

, iff
there is a multi-timed bisimulation that relates them. M1 and M2 are multi-
timed bisimilar, written M1 ≈ M2, if there exists a multi-timed bisimulation
relation R over M1 and M2 containing the pair of initial states.

As a consequence of Definition 3, the notion of multi-timed bisimulation
extends to icTA and we have the following definition:

Definition 4. Let A and B be two icTA. We say the automata A and B
are multi-timed bisimilar, denoted A ≈ B, iff ∀ τ ∈ Rates MLTS(A, τ) ≈
MLTS(B, τ).

When there is only one process, the multi-timed bisimulation is the usual timed
bisimulation. Consider the two icTA Ap (top) and Aq (bottom) in Fig. 2(b)
with the alphabet Σ = {a}, the set of processes Proc = {p, q}, the set of clocks
X = {xp, yq} and τ = (t2, 3t) i.e. τp(t) = t2 and τq(t) = 3t. Ap and Aq in Fig. 2(b)
depicts an icTA. Ap performs nondeterministically the transition with the guard
xp ≤ 2, the action a, resets clock xp to 0 and enters location s1. Similarly, Aq

performs nondeterministically the transitions with the guard yq ≤ 2, the action

Multi-timed Bisimulation for Distributed Timed Automata 59

a, resets clock yq to 0 and enters location t1. We will show that these icTA are not
multi-timed bisimilar (Definition 3) ever if their underling TA are bisimilar (and
ever isomorphic): We have (S0, [xp = 0], 0) in MLTS(Ap, τp) and (T0, [yq = 0], 0)

since Ap can run the delay transition (S0, [xp = 0], 0)
(1,3)−−−→ (S0, [xp = 1.0], 1)

and Aq in MLTS(Aq, τq). We have (S0, [xp = 0], 0) �≈ (T0, [yq = 0], 0) can only

match this transition with (T0, [yq = 0], 0)
(1,3)−−−→ (T0, [yq = 3], 1). From these

states MLTS(Ap, τp) can fire a while MLTS(Aq, τq) cannot.

4.2 Decidability

Inspired by [12], we show that for given icTA A, B, checking whether A ≈ B is
decidable via a suitable zone graph [12]. In order to define the notion of clock
zone over a set of clocks X, we need to consider the set Φ+(X) of extended clock
constraints.

Definition 5. A clock constraint φ is a conjunction of comparisons of a clock
with a constant c, given by the following grammar, where φ ranges over Φ+(X),
xi, xj ∈ X, c ∈ N, and ∼ ∈ {<, >, ≤, ≥, =}:

φ ::= true | xi ∼ c | xi − xj ∼ c | φ1 ∧ φ2.

A clock constraint of the form xi − xj ∼ c is called diagonal constraint and
xi, xj must belong to the same process. The notion of satisfaction of a clock
constraint φ ∈ Φ+(X) by a valuation is given by the clause ν |= xi − xj ∼ c iff
ν(xi) − ν(xj) ∼ c.

Informally, a clock zone Z is a conjunction of extended clock constraints φ ∈
Φ+(X) with inequalities of clock differences and its semantics is the set of clock
valuations that satisfy it [[Z]] = {ν | ν |= φ}. We omit the semantics brackets
([[Z]]) when obvious. For any clock zones Z, Z ′ and finite set of clocks X, the
semantics of the intersection, clock reset, inverse clock reset, time successor and
time predecessor events on clock zone can be defined as: (i) Z ∩ Z ′ = {ν | ν ∈
Z ∧ ν ∈ Z ′}, (ii) Z ↓X= {ν[X → 0] | ν ∈ Z }, (iii) Z ↑X= {ν | ν[X → 0] ∈
Z }, (iv) Z ↑= {ν +π d | ν ∈ Z and d ∈ R

Proc
>0 }, (v) Z ↓= {ν −π d | ν ∈

Z and d ∈ R
Proc
>0 }.

A zone graph [12] is similar to a region graph [2] with the difference that each
node consists of pair (called a zone) of a location s and a clock zone Z (i.e., q =
(s,Z)). For q = (s,Z), we write (s′, ν) ∈ q if s = s′ and ν ∈ Z, indicating
that a state is included in a zone. Analogously, we can write (s,Z) ⊆ (s′,Z ′) to
indicate that s = s′ and Z ⊆ Z ′. We will use the notation Action(e) to denote
the action a of the edge e. Furthermore, we extend the zone operations for an
icTA A in the following way:

Definition 6. Let q = (s,Z) be a zone and e = (s, a, φ, Y, s′) ∈ →icta

be a transition of A, then post(Z, e)={ν′|∃ν ∈ Z,∃τ ∈ Rates,∃t ∈ R≥0,

(s, ν, t) e−→mlts(A,τ) (s′, ν′, t)} is the set of valuations that q can reach by tak-
ing the transition e.

60 J. Ortiz et al.

Definition 7. Let q = (s,Z ′) be a zone and e = (s, a, φ, Y, s′) ∈ →icta

be a transition of A, then pred(Z ′, e)={ν|∃ν′ ∈ Z ′,∃τ ∈ Rates,∃t ∈ R≥0,

(s, ν, t) e−→mlts(A,τ) (s′, ν′, t)} is the set of valuations that q can reach by exe-
cuting the transition e.

Intuitively, the zone (s′, post(Z, e)) describes the discrete successor of the
zone (s,Z) under the transition e, and the zone (s, pred(Z ′, e)) describes the
discrete predecessor of the zone (s′,Z ′) under the transition e.

Definition 8 (Multi-timed Zone Graph). Given an icTA A = (Σ,X,S,
s0, →icta, I,F, π), its symbolic multi-timed zone graph (ZG(A)) is a transition
system ZG(A) = (Q, q0, (Σ∪{↑}),→ZG), where: (i) Q consists of pairs q = (s,Z)
where s ∈ S, and Z ∈ Φ+(X) is a clock zone with Z ⊆ I(s). (ii) q0 ∈ Q is the
initial zone q0 = (s0,Z0) with Z0 = �

∧
x∈X x = 0�. (iii) Σ is the set of labels of

A. (iv) →ZG ⊆ Q×(→icta ∪{↑})×Q is a set of transitions, where each transition
in ZG(A) is a labelled by a transition e = (s, a, φ, Y, s′) ∈ →icta, where s and s′

are the source and target locations, φ is a clock constraint defining the guard of
the transition, a is the action of the edge and Y is the set of clocks to be reset
by the transition in the icTA A. For each e ∈ Σ, transitions are defined by the
rules:

(i) For every e=(s, a, φ, Y, s′) and clock zone Z, there exists a discrete transition
(q, e, q′), where q = (s,Z) e−→ZG q′ = (s′, post(Z, e)) if post(Z, e) �= ∅.

(ii) For a clock zone Z, there exists a delay transition (q, ↑, q′), where q =

(s,Z)
↑−→ZG q′ = (s,Z ′) and Z ′ = Z ↑ ∩ I(s).

Note that ↑ is used here as a symbol to represent symbolic positive delay transi-
tions. Only the reachable part is constructed.

Lemma 1. Let (s,Z) be a zone and e = (s, a, φ, Y, s′) ∈→icta be a transition of
an icTA A, then Z ↑, Z ↑x, Z ↓, post(Z, e) and pred(Z ′, e) are also zones.

Multi-timed Zone Graph Algorithm: In Algorithm 1, we build a reachable
multi-timed zone graph (ZG(A ‖ B)) for the parallel composition of two icTA
(A and B). Algorithm 1 build a multi-timed zone graph, starting with the pair
(s0,Z0) (s0 initial location of the automaton A with Z0 = �

∧
x∈X x = 0� rep-

resents the initial zone). However, the multi-timed zone graph can be infinite,
because constants used in zones may grow for ever. Therefore, we use a technique
called extrapolation abstraction (Extra+

LU(s)
(LU -bound)) [4,7], where L is the

maximal lower bound and U is the maximal upper bounds. For every location
s of a ZG(A), there are bound functions LU and the symbolic zone graph using
Extra+

LU(s)
. Then, we build zones of the form qZG = (s,Extra+

LU(s)
(post(Z, e)).

Lemma 2 (Completeness). Let θ = (s0, ν0, t0)
d0,a0−−−→ (s1, ν1, t1)

d1,a1−−−→ . . .
dn−1,an−1−−−−−−−→ (sn, νn, tn) be a run of MLTS(A, τ), for some τ ∈ Rates. Then, for
any state (si, νi, ti) where 0 ≤ i ≤ n, there exists a symbolic zone (si,Zi) added
in Q such that νi ∈ Zi.

Multi-timed Bisimulation for Distributed Timed Automata 61

The above lemma tells that the Algorithm 1 over-approximates reachability.
Now, we can establish the termination of the Algorithm 1, because there
are finitely many Extra+

LU(s)
zones. Here, we will use Algorithm 1 to over-

approximate the co-reachable state space of the two icTA A and B, on the
strongly synchronized product of A and B. The time complexity of this algo-
rithm is given in terms of the number of clocks, the number of clocks and the
number of transitions of the icTA: O(|S| × | →icTA | × |X|2)) where |S| represent
the number of states in the icTA A, |X| the number of clocks in A and | →icTA |
the number of transitions in A.

Algorithm 1. Reachable Multi-timed Zone Graph with subsumption

Input : An icTA C = (Σ,X,S, s0, →icta, I,F, π).
Output: A reachable zone graph ZG(C) = (Q, q0, Σ, →ZG).

1 // s ∈ S is a location of C, Z1≤i≤3 are clock zones.
2 // TZG is a set of transitions (i.e. →ZG= TZG), EZG is a set of labels.
3 // D and Q are a set of pairs S × Z, D is the set of open states.
4 Function BuildSymbZoneGraph(C)
5 q0 = (s0, Z0) such that for all x ∈ X and ν ∈ Z0, ν(x) = 0 ;
6 Q, D ← {q0}, TZG ← ∅, M ← ∅ ;
7 while D �= ∅ do
8 Choose and Remove (s, Z1) from D ;

9 for each transition e = (s, a, φ, Y, s′) ∈→icta such that Z1 ∧ φ �= ∅ do
10 // Z2 is the successor

11 Z2 ← Extra+
LU(s)

(post(Z1, e)) ;

12 EZG ← EZG ∪ {e} ;

13 if exists (s′, Z3) ∈ Q such that Z2 ⊆ Z4 then

14 TZG ← TZG ∪ {(s, Z1)
e−→ZG (s′, Z3)} ;

15 else

16 TZG ← TZG ∪ {(s, Z1)
e−→ZG (s′, Z2)} ;

17 Q ← Q ∪ {(s′, Z2)}, D ← D ∪ {(s′, Z2)} ;

18 end

19 end
20 Z2 ← Z1 ↑ ∧ I(s) ;
21 if exists (s, Z3) ∈ Q such that Z2 ⊆ Z3 then

22 TZG ← TZG ∪ {(s, Z1)
↑−→ZG (s, Z3)} ;

23 else

24 TZG ← TZG ∪ {(s, Z1)
↑−→ZG (s′, Z2)} ;

25 Q ← Q ∪ {(s, Z2)}, D ← D ∪ {(s, Z2)} ;

26 end

27 end
28 return (Q, q0, Σ, →ZG) ;

29 end

Refinement Algorithm: Now, we describe a refinement algorithm with sig-
nature to compute the multi-timed bisimulation from their zone graph of
their strong product ZG(ZG(A ‖ B)). The passage of arbitrary local times are
abstracted by time elapse ↑ transitions from a zone to successor zones, and dis-
crete transitions. Essentially, our algorithm is based on the refinement technique
[6,17,19]. The state space Q of ZG(A ‖ B) is divided in zones that initially
over-approximate the co-reachable states of A and B. Algorithm 2 starts from
an initial set of zones Π0 and successively refines these sets such that ultimately
each zone contains only bisimilar state pairs.

62 J. Ortiz et al.

The runs of a zone graph involve a sequence of moves with discrete and
time-elapse ↑ transitions. The refinement algorithm has thus to deal with the
following difficulties: when taking a ↑ transition, where the clocks in different
processes are not perfectly synchronous, it should take into consideration that the
time elapse traverses continuously diagonal, almost vertical and horizontal time
successor zones. Conversely, when the clocks belonging to the same process (i.e.,
perfectly synchronous), the time elapsing traverses only continuously diagonal
time successor zones. Thus, the time refinement operator presented in [19] is
not applicable within our Algorithm2. Figure 3 presents an example: (a) a time
elapsing traversing the clock regions 1 to 3 for synchronous clocks, (b) a time
elapsing traversing continuously diagonal, almost horizontal and vertical time
successor zones for asynchronous clocks.

Fig. 3. (a) A time elapsing traversing 0 to 3, (b) Multi-timed time successors.

The discrete refinement operator presented in [19] is also not applica-
ble within our Algorithm 2. Therefore, our algorithm adopts the idea of the
signature-based technique [6], which assigns states to equivalence blocks accord-
ing to a characterizing signature. In each refinement iteration, the set of zones
are refined according to a signature. The algorithm in [6], cannot be applied in
our setting in a straightforward way, due to its untimed characteristic, while in
our case, the time and discrete characteristics should be considered. Based on
[6], we introduce a signature refinement operator which refine the set of zones
until a fixed point is reached, which is the complete multi-timed bisimulation.
Thus, we introduce the timed and discrete predecessor operators.

Definition 9. Let q = (s,Z) and q′ = (s,Z ′) be two zones, then: TimePred↑(Z,
Z ′) = {ν ∈ Z | ∃ d ∈ R

Proc
>0 , ∃ τ ∈ Rates, ∃ t, t′′ ≥ 0, t ≤ t′′ and ∀t′, t ≤ t′ ≤

t′′, and d = τ(t′′)− τ(t), (ν +π d) ∈ Z ′, and d′ = τ(t′)− τ(t) then (ν +π d′) ∈
(Z ∪ Z ′)} is the set of valuations in the zone Z from which a valuation of Z ′

can be reached through the elapsing of time, without entering any other zones
besides Z and Z ′ (i.e., Z ∪ Z ′).

The TimePred↑(Z,Z ′) operator refines Z selecting the states that can
reach Z ′.

Multi-timed Bisimulation for Distributed Timed Automata 63

Lemma 3. Let q = (s,Z), q′ = (s,Z ′) ∈ Q be two zones, then TimePred↑
(Z,Z ′) is a clock zone.

We use as signature of a state (s, ν) the set of outgoing transitions from
(s′, ν′). Then, a refinement of a zone can be computed by grouping states that
have the same signature. The resulting set of zones then represents the multi-
timed bisimulation relation: two states (s, ν) and (s′, ν′) are multi-timed bisimilar
iff they are in the same zone with similar outgoing transitions. Formally, this is
captured in the following definition:

Definition 10. Let q = (s,Z) be a zone, then the signature of a state (s, ν) ∈
q formed by the set of labels of all the edges starting from (s, ν) is defined as:

ActionSigPredq(s, ν) = {(Action(e)) | ∃Z ′, ∃ ν′ ∈ Z ′, (s, ν)
Action(e)−−−−−−→icTA

(s′, ν′)}. Also, the signature of the zone q is defined as: ActionSig(q) =
⋃

(s,ν)∈q

ActionSigPredq(s, ν).

ActionSigPredq(s, ν) operator is used to compute the signatures of a state into
a zone. Our Algorithm 2 consists of two steps: The initial phase, is responsible for
keeping a pair of states in q into zones so that every pair of states (i.e., ((sA, sB),
(νA, νB))) from the same zone q have the same signature ActionSigPredq

(sA, νA) = ActionSigPredq(sB, νB). The refinement phase, consists of comput-
ing the timed predecessors (see Definition 11 below) and the discrete signature
predecessors (see Definition 12 below) until a stable set of zones is reached. Stable
zone are a multi-timed bisimulation relation if every pair of states of every zone
in the set have the same signature with respect to every computed refinement.
A detailed explication about building a stable zones follows:

– Initial phase: Let Π0 = Q be the initial set of zones, where Q is given by Algo-
rithm1. After the initial phase, the set Π contains zones consisting of states
with unique signatures, ActionSigPredq(sA, νA) = ActionSigPredq(sB, νB).

– Refinement phase: An existing set of zones are iteratively refined until all
zones becomes stable simultaneously with respect to all their timed predeces-
sors and discrete predecessors. For simplicity, we will write (s,Z) to denote
the pairs ((sA, sB),Z).

Definition 11. Let Π be a set of zones and q = (s,Z), q′ = (s′,Z ′) be two
zones in Π. Then for the delay transitions, the refinement function is defined as
follows:

TimeRefine(Z,Π) = {TimePred↑(Z,Z ′) | Z ′ ∈ Π, q
↑−→Π q′}.

Definition 12. Let Π be a set of zones and q = (s,Z), q′ = (s′,Z ′) be two
zones in Π. Let q = (s,Z) be the currently examined zone and ActionSig(q) be
the signatures of the set of states into the zone q. Let eA and eB be the transitions
of the icTAs A and B. Then the refinement of a zone q is defined as follows:

DiscreteSigRefine(Z,Π) =
⋂

a∈ActionSig(q)((
⋂

{eA|Action(eA)=a}
⋃

{eB|Action(eB)=a}
pred(Z ′, (eA, eB)))∩(

⋂
{eB | Action(eB)=a}

⋃
{eA | Action(eA)=a} pred(Z ′, (eA, eB)))).

64 J. Ortiz et al.

Lemma 4. Let (s,Z) be a class of Π and let e be an edge of the ZG(C), then
each of TimeRefine(Z,Π) and DiscreteSigRefine(Z,Π) forms a partition of Z in
zones.

The correctness of the Algorithm 2 follows from the algorithm in [6,17]. The
definition TimeRefine(Z,Π) above to generate a finer set of zones, which deals
with delay transitions. The definition of DiscreteSigRefine(Z,Π), generate also
a finer set of zones and distinguishes the states with discrete transitions. Ter-
mination is ensured by Lemma 4. Algorithm 2 describes the main steps of the
decision procedure for multi-timed bisimulation checking. It is based on the func-
tion BuildSymbZoneGraph (i.e., Algorithm 1). The function PartitionZoneGraph
returns stable set of zones Π. Given a set of zones Π, the Algorithm 2 computes
the states ((sA, sB),Z) from Π that are bisimilar up to the desired initial state
((s0A, s0B),Z0).

Algorithm 2. The partition refinement algorithm for a reachable ZG

Input : A ZG(C) = (Q = QA × QB, q0 = (q0A, q0B), Σ = ΣA ∪ ΣB, →ZG), Π.
Output: A coarsest partition Π.

1 // q ∈ Q is a zone of ZG(C), Π is a set of zones, Z, Z′ are clock zones.
2 // Q is a set of pairs S × Z.
3 Function PartitionZoneGraph(ZG(C), Π)
4 // Phase I - Get the input partition Π

5 Π′ ← Π ;
6 Repeat
7 // Phase II - Refine Π′ by delay transitions:

8 for each zone (or block) Z ∈ Π′ do
9 Π′ ← TimeRefine(Z, Π′) ;

10 end

11 // Phase III - Refine Π′ by discrete transitions:

12 for each zone (or block) Z ∈ Π′ do
13 Π′ ← DiscreteSigSplit(Z, Π′) ;
14 end

15 Until Π′ does not change;

16 Return Π′ ;

17 end

Proposition 1. Let q = (s,Z) be a zone. Let (sA, νA) and (sB, νB) be two states
in q, then (sA, νA) ≈ (sB, νB) iff ((sA, sB), νA ∪ νB) ∈ Z.

Theorem 1. Deciding multi-timed bisimulation between two icTA is EXPTIME-
complete.

An example of the zone graph, partition and multi-timed bisimulation com-
puted by our algorithms can be found in Fig. 4. The Fig. 4(a) shows two icTA
A and B with the finite input alphabet Σ = {a, b}, the set of processes Proc =
{p, q}, the set of clocks X = {xp, yq} and τp > τq. The Fig. 4(b) shows the zone
graph computed by Algorithm1. The Fig. 4(c) shows the multi-timed bisimula-
tion for A and B.

Multi-timed Bisimulation for Distributed Timed Automata 65

Fig. 4. (a) Composition of icTAs; (b) Zone graph; (c) bisimulation

5 Related Work

Because TA are a general-purpose formalism, several implementations and exten-
sions have been considered. For example, Puri [18] studied the semantics of
robustness timed automata where clocks can drift in a bounded way, i.e. clocks
may grow at independent rates in the interval 1 ± ε. Krishnan [11] considered
asynchronous distributed timed automata, where clocks evolve independently in
each component. Akshay et al. concentrate on the untimed language of DTA. In
a previous work [16], we suggested a model that has the same expressive power
as event clock automata [2], but without studied possible simulation algorithms.

The notion of bisimulation for TA is studied in various contributions
[4,8,9,19,20]. Cerans [9] gives a proof of decidability for timed bisimulation.
Several techniques are used in the literature for providing algorithms capable of
checking (bi-)simulation: Weise and Lenzkes [20] rely on a zone-based algorithm
for weak bisimulation over TA, but no implementation is provided; Bulychev
et al. [8] study timed simulation for simulation-checking games, for which an
implementation is available from [4]; region construction for timed bisimulation
was also considered by Akshay et al. [1], but never implemented; and more closely

66 J. Ortiz et al.

to our work, Tripakis and Yovine proposed a time-abstract bisimulation over TA
in [19]. Krishnan [11] and our previous work [16] manipulated clock drifts as well
for manipulating DTA, but without considering bisimulation.

6 Conclusions

Bisimulation is a common technique to reduce the state space explosion issue
encountered during model-checking of real-time systems. To enable the appli-
cation of this technique for DTS modelled by icTA, we proposed an alternative
semantics for capturing the execution of icTA, based on multi-timed words run-
ning over Multi-Timed Labelled Transition Systems. We extended the notion
of bisimulation to such structures, and proposed an EXPTIME algorithm for
checking decidability. We are now studying how to efficiently implement such
structures and decidability algorithm, and plan to compare their performance
against classical work as proposed in [4,19].

References

1. Akshay, S., Bollig, B., Gastin, P., Mukund, M., Narayan Kumar, K.: Distributed
timed automata with independently evolving clocks. In: Breugel, F., Chechik, M.
(eds.) CONCUR 2008. LNCS, vol. 5201, pp. 82–97. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-85361-9 10

2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994)

3. Balaguer, S., Chatain, T.: Avoiding shared clocks in networks of timed automata.
In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 100–114.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32940-1 9

4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006)

5. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-27755-2 3

6. Blom, S., Orzan, S.: A distributed algorithm for strong bisimulation reduction of
state spaces. Electr. Notes Theor. Comput. Sci. 68(4), 523–538 (2002)

7. Bouyer, P.: Forward analysis of updatable timed automata. Form. Methods Syst.
Des. 24(3), 281–320 (2004)

8. Bulychev, P., Chatain, T., David, A., Larsen, K.G.: Efficient on-the-fly algorithm
for checking alternating timed simulation. In: Ouaknine, J., Vaandrager, F.W.
(eds.) FORMATS 2009. LNCS, vol. 5813, pp. 73–87. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04368-0 8

9. Čerāns, K.: Decidability of bisimulation equivalences for parallel timer processes.
In: Bochmann, G., Probst, D.K. (eds.) CAV 1992. LNCS, vol. 663, pp. 302–315.
Springer, Heidelberg (1993). doi:10.1007/3-540-56496-9 24

10. De Biasi, M., Snickars, C., Landernäs, K., Isaksson, A.: Simulation of process
control with WirelessHART networks subject to clock drift. In: COMPSAC (2008)

11. Krishnan, P.: Distributed timed automata. In: Workshop on Distributed Systems
(1999)

http://dx.doi.org/10.1007/978-3-540-85361-9_10
http://dx.doi.org/10.1007/978-3-642-32940-1_9
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-642-04368-0_8
http://dx.doi.org/10.1007/3-540-56496-9_24

Multi-timed Bisimulation for Distributed Timed Automata 67

12. Laroussinie, F., Larsen, K.G., Weise, C.: From timed automata to logic — and
back. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 529–
539. Springer, Heidelberg (1995). doi:10.1007/3-540-60246-1 158

13. Milner, R.: Communication and Concurrency. Prentice Hall, Upper Saddle River
(1989)

14. Monot, A., Navet, N., Bavoux, B.: Impact of clock drifts on CAN frame response
time distributions. In: ETFA, Toulouse, France (2011)

15. Ortiz, J., Schobbens, P.-Y.: Extending timed bisimulation for distributed timed
systems. Technical report, University of Namur (2016). http://www.info.fundp.ac.
be/∼jor/Multi-TimedReport/

16. Ortiz, J., Legay, A., Schobbens, P.-Y.: Distributed event clock automata. In:
Bouchou-Markhoff, B., Caron, P., Champarnaud, J.-M., Maurel, D. (eds.) CIAA
2011. LNCS, vol. 6807, pp. 250–263. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22256-6 23

17. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.
16(6), 973–989 (1987)

18. Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998).
doi:10.1007/BFb0055349

19. Tripakis, S., Yovine, S.: Analysis of timed systems using time-abstracting bisimu-
lations. Form. Methods Syst. Des. 18(1), 25–68 (2001)

20. Weise, C., Lenzkes, D.: Efficient scaling-invariant checking of timed bisimulation.
In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 177–188.
Springer, Heidelberg (1997). doi:10.1007/BFb0023458

http://dx.doi.org/10.1007/3-540-60246-1_158
http://www.info.fundp.ac.be/~jor/Multi-TimedReport/
http://www.info.fundp.ac.be/~jor/Multi-TimedReport/
http://dx.doi.org/10.1007/978-3-642-22256-6_23
http://dx.doi.org/10.1007/978-3-642-22256-6_23
http://dx.doi.org/10.1007/BFb0055349
http://dx.doi.org/10.1007/BFb0023458

Auto-Active Proof of Red-Black Trees
in SPARK

Claire Dross(B) and Yannick Moy

AdaCore, 75009 Paris, France
dross@adacore.com

Abstract. Formal program verification can guarantee that a program
is free from broad classes of errors (like reads of uninitialized data and
run-time errors) and that it complies with its specification. Tools such
as SPARK make it cost effective to target the former in an industrial
context, but the latter is much less common in industry, owing to the
cost of specifying the behavior of programs and even more the cost of
achieving proof of such specifications. We have chosen in SPARK to rely
on the techniques of auto-active verification for providing cost effective
formal verification of functional properties. These techniques consist in
providing annotations in the source code that will be used by automatic
provers to complete the proof. To demonstrate the potential of this app-
roach, we have chosen to formally specify a library of red-black trees in
SPARK, and to prove its functionality using auto-active verification. To
the best of our knowledge, this is the most complex use of auto-active
verification so far.

1 Introduction

Formal program verification allows programmers to guarantee that the programs
they write have some desired properties. These properties may simply be that the
program does not crash or behave erratically, or more complex critical properties
related to safety or security. Being able to guarantee such properties will be
essential for high assurance software as requirements are increasingly complex
and security attacks more pervasive.

SPARK is a subset of the Ada programming language targeted at safety- and
security-critical applications. GNATprove is a tool that analyzes SPARK code
and can prove absence of run-time errors and user-specified properties expressed
as contracts. GNATprove is based on modular deductive verification of programs,
analyzing each function in isolation based on its contract and the contracts
of the functions it calls. The main benefit of this approach is that it allows
using very precise semantics of programming constructs and powerful automatic
provers. The main drawback is that top-level specifications are not sufficient.

Work partly supported by the Joint Laboratory ProofInUse (ANR-13-LAB3-0007,
http://www.spark-2014.org/proofinuse) and project VECOLIB (ANR-14-CE28-
0018) of the French national research organization.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 68–83, 2017.
DOI: 10.1007/978-3-319-57288-8 5

http://www.spark-2014.org/proofinuse

Auto-Active Proof of Red-Black Trees in SPARK 69

Programmers need to provide many intermediate specifications in the form of
additional contracts, loop invariants and assertions.

Providing the right intermediate specifications is a difficult art, but progress
has been achieved in recent years through a method known as auto-active verifi-
cation. Various languages and tools now provide features for effective auto-active
verification. SPARK is among these. In this paper, we explore the capabilities of
auto-active verification for automatically proving complex algorithms. We have
chosen to target red-black trees because they are well-known, commonly used
in practice, and yet sufficiently complex that no implementation of imperative
red-black trees has been formally verified using auto-active verification. Our
implementation of red-black trees, with all the code for auto-active verification,
is publicly available in the repository of SPARK.1

2 Preliminaries

2.1 SPARK 2014

SPARK is a subset of the Ada programming language targeted at safety- and
security-critical applications. SPARK builds on the strengths of Ada for creat-
ing highly reliable and long-lived software. SPARK restrictions ensure that the
behavior of a SPARK program is unambiguously defined, and simple enough
that formal verification tools can perform an automatic diagnosis of confor-
mance between a program specification and its implementation. The SPARK
language and toolset for formal verification have been applied over many years
to on-board aircraft systems, control systems, cryptographic systems, and rail
systems [18].

In the versions of SPARK up to SPARK 2005, specifications are written as
special annotations in comments. Since version SPARK 2014 [17], specifications
are written as special Ada constructs attached to declarations. In particular, var-
ious contracts can be attached to subprograms: data flow contracts, information
flow contracts, and functional contracts (preconditions and postconditions, intro-
duced respectively by Pre and Post). An important difference between SPARK
2005 and SPARK 2014 is that functional contracts are executable in SPARK
2014, which greatly facilitates the combination of test and proof. The definition
of the language subset is motivated by the simplicity and feasibility of formal
analysis and the need for an unambiguous semantics. Tools are available that
provide flow analysis and proof of SPARK programs.

Flow analysis checks correct access to data in the program: correct access to
global variables (as specified in data and information flow contracts) and correct
access to initialized data. Proof is used to demonstrate that the program is free
from run-time errors such as arithmetic overflow, buffer overflow and division-by-
zero, and that the functional contracts are correctly implemented. GNATprove
is the tool implementing both flow analysis and proof of SPARK code.

1 https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/red
black trees.

https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/red_black_trees
https://github.com/AdaCore/spark2014/tree/master/testsuite/gnatprove/tests/red_black_trees

70 C. Dross and Y. Moy

2.2 Auto-Active Verification

The term auto-active verification was coined in 2010 by researcher Rustan
Leino [15] to characterise tools where user input is supplied before VC gener-
ation [and] therefore lie between automatic and interactive verification (hence
the name auto-active). This is in contrast to fully automatic verifiers for which
the specification is fixed and interactive verifiers for which the user input is sup-
plied after VC generation, which is the typical case when the reasoning engine
is an interactive proof assistant. Auto-active verification is at the center of the
academic formal program verification toolsets Dafny [14], the Eiffel Verification
Environment (EVE) [9], Why3 [8] as well as the industrial formal program ver-
ification toolsets Frama-C2 and SPARK3.

In all these toolsets, auto-active verification consists in a set of specification
features at the level of the source language, and a set of tool capabilities to
interact with users at the level of the source code. The specification features
consist at least in constructs to specify function contracts (preconditions and
postconditions) and data invariants, as well as specialized forms of assertions
(loop invariants and loop variants, assumptions and assertions). All the toolsets
mentioned above also support ghost code, a feature to instrument code for ver-
ification. Ghost functions are also called lemmas when their main purpose is
to support the proof of a property that is later used at the point where the
function is called. See [12] for a comparison of how ghost code differs between
Why3, Frama-C and SPARK. Various tool capabilities facilitate user interac-
tion at source level: fast running time that exploits multiprocessor architectures
and minimizes rework between runs, the ability to trade running time for more
verification power, feedback from the toolset when verification is unsuccessful
(counterexamples in particular).

Auto-active verification in the above toolsets has been used to fully verify
algorithms, libraries and even full applications: examples include a container
library in Eiffel [19], distributed systems in Dafny [10], secure execution of apps
in Dafny [11], binary heaps in Why3 [21], allocators in SPARK [5].

2.3 Red-Black Trees

Red-black trees are a kind of self-balancing binary search trees. Nodes in the tree
are colored red or black, and balance is maintained by ensuring that two prop-
erties are preserved: (1) a red node can only have black children, and (2) every
path from the root to a leaf has the same number of black nodes. The conse-
quence of these two properties is that the path from the root to a leaf can be at
most twice as long as the path from the root to another leaf.

Implementations of red-black trees are used in the Linux kernel (in C) and
standard container libraries for various languages (C++ STL, Java.util, Ada).
The insertion and deletion algorithms work by inserting or deleting the node
as in a binary search tree, which may violate properties (1) and (2) above, and
2 http://frama-c.com/.
3 http://www.adacore.com/sparkpro/.

http://frama-c.com/
http://www.adacore.com/sparkpro/

Auto-Active Proof of Red-Black Trees in SPARK 71

then restoring the balance by working their way up on the path from the root
to the point of insertion or deletion. At every node on this path, the algorithms
may rotate the subtree, which consists in a local rearrangement of nodes to
restore properties (1) and (2). These algorithms are sufficiently complex that no
implementation of imperative red-black trees has been formally verified in Dafny,
Eiffel or Why3. See Sect. 5 for a list of the closest works, including some using
auto-active verification. We are following the algorithm from Cormen et al. [4]
for insertion in a red-black tree. We did not implement the deletion algorithm,
which would be very similar to insertion. In the same way, we did not verify that
every branch in a red-black tree contains the same number of black nodes.

3 Red-Black Trees in SPARK

3.1 Invariants and Models

Implementing red-black trees correctly from the pseudo-code algorithm in a text-
book is straightforward, but understanding why the algorithm is correct is tricky,
and thus the implementation is hard to verify formally. The main point of com-
plexity is that it forces one to reason about different levels of properties all at
once. Instead, we have divided the implementation into three distinct parts, each
one concerned with one property level: binary trees, search trees and red-black
trees. Binary trees maintain a tree structure on the underlying memory. Search
trees build on binary trees by associating values to tree nodes and maintain the
order of values in the tree. Red-black trees build on search trees and enforce
balancing using the classical red-black tree coloring mechanism.

The property enforced at each level is expressed in a type invariant. In
SPARK, the invariant may be temporarily violated inside the implementation of
the functions that operate on the type, but are guaranteed to hold for external
users of objects of that type. More precisely, functions that operate on a type
can assume the invariant on entry and must restore it on exit (which leads to
verification conditions in SPARK).

Binary Trees: As explained in Sect. 3.2, binary trees are implemented as arrays,
using the representation described in Fig. 1. Each node contains a reference to its
left and right children, if any, as well as a reference to its parent and a position,
which may be Top for the root, Right or Left otherwise depending on the node
position with respect to its parent. The invariant of binary trees states that
values of these fields are consistent across the tree. For example, the left child of
a node has position Left and the node as parent.

To reason about the tree structure at a higher level, we provide a model (an
abstract representation) of binary trees which makes explicit the access paths
from the root to every node in the tree. It associates a sequence of directions,
namely Right or Left, with each node in the binary tree, corresponding to the
path from the root to the node. As the underlying array also contains unused cells
that do not correspond to tree nodes, an additional boolean encodes whether the
node belongs to the tree. Figure 2 gives the model of the binary tree presented

72 C. Dross and Y. Moy

Fig. 1. (from left to right) Representation of nodes in binary trees. Example of a binary
tree, for readability, parents and positions are not represented. A higher level view of
the same binary tree.

Fig. 2. Example of model of a binary tree.

in Fig. 1. In this example, all the nodes belong to the tree except the last one.
The access paths written below each node can be used to reconstruct easily the
high level view of the tree.

Search Trees: The invariant of search trees states that the value stored in each
node of the tree is larger than all the values stored in the subtree rooted at its
left child and smaller than all the values stored in the subtree rooted at its right
child. It is given in Fig. 3, together with an example of values that would fit the

(for al l I in I ndex Type ⇒
(for al l J in I ndex Type ⇒

(i f Model (T) (I) . Reachab le
and Model (T) (J) . Reachab le
and Model (T) (I) . Path < Model (T) (J) . Path

then (i f Get (Model (T) (J) . Path ,
Length (Model (T) (I) . Path) + 1) = L e f t

then Va lues (J) < Va lues (I)
else Va lues (J) > Va lues (I)))))

Fig. 3. Type invariant of search trees. For a search tree T, Model (T) returns the model
of the underlying binary tree of T. For each index I in the underlying array, if Model

(T) (I).Reachable is true then I is reachable in T and Model (T) (I).Path is the
sequence of directions corresponding to the path from the root of T to I. < stands for
prefix order on paths.

Auto-Active Proof of Red-Black Trees in SPARK 73

tree from Fig. 1. To express this invariant, we use the model of the underlying
binary tree. The value stored at node J belonging to the subtree rooted at node
I (where path inclusion from the root is used to determine that J belongs to
the subtree rooted at node I) is smaller (resp. greater) than the value stored at
node I if J belongs to the subtree rooted at the left (resp. right) child of I.

Red-Black Trees: The invariant of red-black trees states that a red node can
only have black children. It is given in Fig. 4. An example of colors that would
fit the tree from Fig. 3 is also given in Fig. 4. This corresponds to property (1)
of red-black trees as presented in Sect. 2.3. Verifying property (2) would require
implementing a new inductive model function over binary trees, like the one we
defined for reachability. As it would be very similar to the work presented here,
and would essentially double the effort, we did not attempt it.

(for al l I in I ndex Type ⇒
(i f Parent (T . St ruc t , I) = Empty

or else T . Co lo r (Parent (T . St ruc t , I)) = Red
then T . Co lo r (I) = Black))

Fig. 4. Type invariant of red-black trees. (Color figure online)

3.2 Implementation

Our implementation of red-black trees differs on two accounts from the straigh-
forward implementation of the algorithm. First, as stated above, we used an array
as the underlying memory for trees, instead of dynamically allocating nodes. This
is to comply with a restriction of SPARK which does not allow pointers, but only
references and addresses. The rationale for this restriction is that pointers make
automatic proof very difficult due to possible aliasing. Hence trees are bounded
by the size of the underlying array. As the algorithm for balancing red-black
trees requires splitting and merging trees, we had the choice of either copying
arrays for generating new trees, or sharing the same array between disjoint trees
(coming from the splitting of a unique tree). For obvious efficiency reasons, we
chose the latter. Hence we are defining a type Forest for possibly representing
disjoint binary trees sharing the same underlying array.

The other distinguishing feature of our implementation is the layered design.
Each module defining a type with an invariant also needs to provide functions for
manipulating objects of the type while preserving their invariant. As an example,
binary trees are not updated by direct assignments in the implementation of
search trees, but using two new functions, Extract and Plug, which split and
merge disjoint trees while preserving the forest invariant.

74 C. Dross and Y. Moy

At the next layer, search trees are defined as records with two components:
a binary tree along with an additional array of values. For search trees, we only
need to consider forests that hold one tree identified through its root. Only
intermediate values will hold true forests with multiple roots, while the tree is
being rotated. The module defining search trees provides basic set functions,
namely inserting a value into the tree and testing a value for membership in
the tree. It also provides balancing functions for the upper layer of red-black
trees. They allow rotating nodes of a search tree to the left or to the right
while preserving the order between values. An example of such a rotation is
given in Fig. 5. Defining these balancing functions inside the implementation
of search trees rather than inside the implementation of red-black trees allows
keeping all order-related concerns in the search tree layer. Indeed, balancing
functions do not preserve balance, as they are to be called on unbalanced trees,
but they do preserve order. Note that implementing the balancing functions at
this level avoids the need for lifting low-level tree handling functions such as
Plug and Extract at the next layer. All the functions defined on search trees
are implemented using functions over binary trees.

Fig. 5. Example of application of Right Rotate.

Red-black trees are implemented in the same way as search trees by adding
an array of colors to a search tree and using balancing functions to rebalance
the tree after an insertion.

3.3 Specification

Functional specifications of the insertion and membership functions that operate
on red-black trees consist in simple contracts (preconditions and postconditions)
presented in Fig. 6. These contracts use a model function Values that returns
the set of values in the tree. Mem returns true if and only if the element is in the
tree and Insert adds a new element in the tree.

The most complex specifications have to do with the four properties to main-
tain over red-black trees:

1. A red-black tree is always a valid binary tree (we can navigate it from the
root in the expected way).

Auto-Active Proof of Red-Black Trees in SPARK 75

function Va lues (T : Rbt) return Va lue Se t with
Post ⇒ (i f S i z e (T) = 0 then I s Empty (Values ’ R e s u l t)) ;

function Mem (T : Rbt ; V : Natu ra l) return Boolean with
Post ⇒ Mem’ Re su l t = Mem (Va lues (T) , V) ;

procedure I n s e r t (T : in out Rbt ; V : Natu ra l) with
Pre ⇒ S i z e (T) < Max ,
Post ⇒ (i f Mem (T’Old , V) then Va lues (T) = Va lues (T’Old)

else I s Add (Va lues (T’Old) , V , Va lue s (T))) ;

Fig. 6. Specification of red-black trees.

2. There is no memory leak (if we have inserted fewer than Max elements, there
is still room enough in the data structure to insert a new element).

3. The values stored in the tree are ordered (it is a valid search tree).
4. The tree stays balanced (we only verify this property partially, that is, that

red nodes can only have black children).

As already discussed, each property is specified at the most appropriate layer.
The first property is enforced at the level of binary trees. The invariant on binary
trees (see Sect. 3.1) ensures that the fields of a node (Parent, Position, Left, and
Right) are consistent. This is not enough to ensure that all the allocated nodes
in the forest belong to well-formed binary trees though, as it does not rule out
degenerate, root-less, cyclic structures that would arise from linking the root of
a binary tree as the child of one of its leafs. Still, this is enough to ensure that
red-black trees are always well formed, as red-black trees always have a root.
Note that the fact that every node in the forest is part of a well formed binary
tree is ensured at the level of binary trees by enforcing that such degenerate
structures can never be created in the contracts of functions operating on binary
trees.

The second property is enforced at the level of search trees. It is specified as
a postcondition of every function operating on search trees. Figure 7 shows the
part of the postcondition of Right Rotate ensuring that it has not introduced
any dangling node. It uses the function Model described in Sect. 3.1 to reason
about node reachability.

procedure R igh t Ro ta t e (T : in out Sea rch Tree ; I : I ndex Type) with
Post ⇒

−− The s i z e o f the t r e e i s p r e s e r v e d
S i z e (T) = S i z e (T) ’Old

−− Nodes i n the t r e e a r e p r e s e r v e d
and (for al l J in I ndex Type ⇒

Model (T) (J) . Reachab le = Model (T’Old) (J) . Reachab le) ;

Fig. 7. Postcondition of Right Rotate dealing with absence of memory leaks.

The third and fourth properties are expressed in the type invariant of respec-
tively search trees and red-black trees as explained in Sect. 3.1.

76 C. Dross and Y. Moy

Apart from these top-level specifications, many more specifications are
needed on subprograms at lower layers (binary trees and search trees) in order
to be able to prove the properties at higher layers (respectively search trees
and red-black trees). This is inherent to the modular style of verification sup-
ported by GNATprove. For example, as Right Rotate on search trees calls Plug
and Extract on binary trees, the contracts for these functions need to provide
enough information to verify both the absence of memory leaks as stated in the
postcondition of Right Rotate and the preservation of the order of values as
stated in the invariant of search trees.

3.4 Proof Principles

Verifying our implementation of red-black trees has proved to be challenging,
and above the purely automatic proving capabilities of GNATprove. There are
several reasons for this:

– The imperative, pointer-based implementation of red-black trees makes it dif-
ficult to reason about disjointness of different trees/subtrees in the forest.

– Reasoning about reachability in the tree structure involves inductive proofs,
which automatic provers are notoriously bad at.

– Reasoning about value ordering involves using transitivity relations, to deduce
that ordering for two pairs of values (X,Y) and (Y,Z) can be extended to the
pair (X,Z). This requires in general to find a suitable intermediate value Y ,
which usually eludes automatic provers.

– The size of the formulas to verify, number of verification conditions, and num-
ber of paths in the program are large enough to defy provers scalability.

To work around these limitations, we used auto-active verification techniques,
which, as described in Sect. 2.2, can guide automatic provers without requiring
a proof assistant. We explain some of these techniques in this section.

Intermediate Lemmas: One of the classical techniques in manual proof consists
in factoring some useful part of a proof in an intermediate lemma so that it can
be verified independently and used as many times as necessary. In auto-active
verification, this can be done by introducing a procedure with no output, which,
when called, will cause the deductive engine to verify its precondition and assume
its postcondition. In Fig. 8, we show an intermediate lemma which can be used

procedure Pro v e Mode l D i s t i n c t (F : Fo r e s t ; T1 , T2 : I ndex Type) with
−− Trees r oo t ed at d i f f e r e n t i n d e x e s i n the f o r e s t a r e d i s j o i n t .

Pre ⇒ T1 �= T2
and then Va l i d Roo t (F , T1)
and then Va l i d Roo t (F , T2) ,

Post ⇒ (for al l I in I ndex Type ⇒
(not Model (F , T1) (I) . Reachab le

or not Model (F , T2) (I) . Reachab le)) ;

Fig. 8. Intermediate lemma stating disjointness of trees in a forest.

Auto-Active Proof of Red-Black Trees in SPARK 77

to verify that two trees of a single forest with different roots are disjoint. A caller
of this function will have to verify that T1 and T2 are different valid roots in F
and as a consequence we know that there can be no node reachable from both
roots in F. Naturally, the lemma is not assumed, its actual proof is performed
when verifying the procedure Prove Model Distinct.

Reasoning by Induction: Though some automatic provers are able to discharge
simple inductive proofs, inductive reasoning still requires manual interaction in
most cases. In auto-active style, an inductive proof can be done using loop invari-
ants. GNATprove splits the verification of a loop invariant in two parts. First,
it verifies that the invariant holds in the first iteration of the loop and then that
it holds in any following iteration knowing that it held in the previous one. This
behavior is exactly what we want for a proof by induction. For example, Fig. 9
demonstrates how the intermediate lemma presented in Fig. 8 can be verified
using a loop to perform an induction over the size of the path from the root T1
to any node reachable from T1 in F. The loop goes from 1 to the maximum size
of any branch in the forest F. We have written the property we wanted to prove
as a loop invariant. To verify this procedure, GNATprove will first check that
the invariant holds in the first iteration of the loop, that is, that T1 itself cannot
be reached from T2. Then, it will proceed by induction to show that this holds
for any node reachable from T1 in F.

procedure Pro v e Mode l D i s t i n c t
(F : Fo r e s t ; T1 , T2 : I ndex Type) i s

begin
for N in I ndex Type loop

pragma Loop Invariant
(for al l I in I ndex Type ⇒

(i f Model (F , T1) (I) . Reachab le
and Length (Model (F , T1) (I) . Path) < N

then not Model (F , T2) (I) . Reachab le)) ;
end loop ;

end Pro v e Mode l D i s t i n c t ;

Fig. 9. Proof by induction over the path length from the root to a node in the tree.

Providing Witnesses: When reasoning about value ordering, it is common to
use transitivity. For example, when searching for a value in a search tree, we
only compare the requested value with values stored along a single path in the
tree, that is, the path where it was expected to be stored. All other values are
ruled out by transitivity of the order relation: if value X is not found on this
path, it cannot be equal to another value Z in the tree, as X and Z are on two
opposite sides of the value Y at the root of the subtree containing both X and
Z. Unfortunately, due to how they handle universal quantification, automatic
provers used in GNATprove are usually unable to come up with the appropriate
intermediate value to use in the transitivity relation. To achieve the proofs, we
provided provers with the appropriate term whenever necessary. For example,
function Find Root in Fig. 10 computes the first common ancestor of two nodes
in a search tree.

78 C. Dross and Y. Moy

function Find Root (F : Fo r e s t ; R, I , J : I ndex Type) return I ndex Type with
Post ⇒

−− The node r e t u r n e d i s i n the t r e e
Model (F , R) (Find Root ’ R e s u l t) . Reachab le

−− The node r e t u r n e d i s on the path o f I
and Model (F , R) (Find Root ’ R e s u l t) . Path ≤ Model (F , R) (I) . Path

−− The node r e t u r n e d i s on the path o f J
and Model (F , R) (Find Root ’ R e s u l t) . Path ≤ Model (F , R) (J) . Path

−− The common an c e s t o r o f I and J i s e i t h e r I , o r J , o r an an c e s t o r
−− node such tha t the paths o f I and J d i v e r g e at t h i s p o i n t .
and (I = Find Root ’ R e s u l t

or else J = Find Root ’ R e s u l t
or else Get (Model (F , R) (I) . Path ,

Length (Model (F , R) (Find Root ’ R e s u l t) . Path) + 1)
�= Get (Model (F , R) (J) . Path ,

Length (Model (F , R) (Find Root ’ R e s u l t) . Path) + 1)) ;

Fig. 10. Function that computes a witness for transitivity applications.

3.5 Ghost Code

In this experiment, we made an extensive use of ghost code, that is, code meant
only for verification, that has no effect on the program behavior. We used it
for two different purposes. The first use of ghost code is for specifying complex
properties about our algorithms, in particular through model functions. As ghost
code can be executed in SPARK, these ghost model functions can be used to
produce complex test oracles that can be exercised in the test campaign.

The second use of ghost code in our experiment is for auto-active verification.
In particular, the procedures used to encode intermediate lemmas are ghost, as
they have no effect. What is more, we strived to keep all verification-only code
inside ghost procedures so that it can be removed by the compiler and will
not slow down the execution of the program. It is all the more important since
the code is very inefficient, involving multiple loops and model constructions.
As functional behaviors are complex, coming up with contracts for these ghost
procedures can be painful, and produce huge, hard to read specifications. To
alleviate this problem, we can benefit from a feature of GNATprove which inlines
local subprograms with no contracts, allowing the proof to go through with less
annotation burden. In this way, we can choose, on a case-by-case basis, if it is
worthwhile to turn a chunk of auto-active proof into an intermediate lemma with
its own contract, allowing for a modular verification, or if we prefer to have the
tool automatically inline the proof wherever we call the ghost procedure.

4 Development and Verification Data

All the execution times and verification times reported in this section were
obtained on a Core i7 processor with 2,8 GHz and 16 GB RAM.

The code implementing the core algorithm for red-black trees, even when
split in three modules for binary trees, search trees and red-black trees, is quite

Auto-Active Proof of Red-Black Trees in SPARK 79

small, only 286 lines overall. But this code only accounts for 14% of the total
lines of code, when taking into account contracts (22%) and more importantly
ghost code (64%). Table 1 summarizes the logical lines of code as counted by the
tool GNATmetric. It took roughly two weeks to develop all the code, contracts
and ghost code to reach 100% automatic proof.

Table 1. Number of lines of code for operational code, contracts and ghost code.

Code Contracts Ghost Total

Binary trees 92 (10%) 250 (28%) 548 (62%) 890

Search trees 127 (12%) 188 (17%) 780 (71%) 1095

Red-black trees 67 (52%) 18 (14%) 45 (35%) 130

Total 286 (14%) 456 (22%) 1373 (64%) 2115

There are few simple top-level contracts for red-black trees (see Table 2).
Many more contracts and assertions are needed for auto-active verification, in
the form of subprogram contracts, type invariants, type default initial condi-
tions, loop invariants and intermediate assertions which split the work between
automatic provers and facilitate work of individual provers.

Table 2. Number of conjuncts (and-ed subexpressions) in contracts on types, on sub-
programs, in loop invariants and in assertions. Numbers in parentheses correspond to
conjuncts for contracts on externally visible subprograms.

On types On subprograms On loops Assertions Total

Binary trees 10 155 (73) 42 12 219

Search trees 2 138 (60) 20 68 228

Red-black trees 2 4 (4) 8 10 24

Total 14 297 (177) 70 90 471

Taking both tables into account, it is clear that verification of search trees
was the most costly in terms of overall efforts, with a large part of ghost code
(71%) and many intermediate assertions needed (68 conjuncts). Verification of
red-black trees on the contrary was relatively straighforward, with less ghost
code than operational code (35% compared to 52%) and few intermediate asser-
tions needed (10 conjuncts). This matches well the cognitive effort required to
understand the correction of search trees compared to red-black trees. Note that
the verification of red-black trees would probably have needed roughtly the same
effort as binary trees if the second propery of red-black trees had been consid-
ered. Overall, ghost code accounts for a majority (64%) of the code, which can
be explained by the various uses of ghost code to support automatic proof as
described in Sect. 3.4.

80 C. Dross and Y. Moy

The automatic verification that the code (including ghost code) is free of run-
time errors and that it respects its contracts takes less than 30 min, using 4 cores
and two successive runs of GNATprove at proof levels 2 and 3. As automatic
provers CVC4, Z3 and Alt-Ergo are called in sequence on unproved Verification
Conditions (VCs), it is not surprising that CVC4 proves a majority of VCs
(3763), while Z3 proves 103 VCs left unproved by CVC4 and Alt-Ergo proves
the last 3 remaining VCs, for a total of 3869 VCs issued from 2414 source code
checks (1185 run-time checks, 231 assertions and 998 functional contracts).

As the code has been fully proved to be free of run-time errors and that all
contracts have been proved, it is safe to compile it with no run-time checks, and
only the precondition on insertion in red-black trees activated (since this might
be violated by an external call). Disabling run-time checks is done through a
compiler switch (-gnatp) and only enabling preconditions in red-black trees is
done through a configuration pragma in the unit. Inserting one million integers
in a red-black tree from 1 to 1 million leads to a violation of the balancing in
999,998 cases, which requires 999,963 left rotations and no right rotations. The
running time for performing these 1 million insertions is 0.65 s without run-time
checks, and 0.70 s with run-time checks (which are few due to the use of Ada
range types for array indexes), or 0.65µs (respectively 0.70µs) per insertion.

Enabling all contracts and assertions at run-time is also possible during tests.
Here, ghost code is particularly expensive to run, as constructing the model
for a binary tree is at worst quadratic in the size of the tree, and contracts
contain quantifications on the maximal size of the tree that call functions which
themselves quantify over the same size in their own contracts or code. In addition,
the expensive operation of constructing the model is performed repeatedly in
contracts, as SPARK does not yet provide a let-expression form. As a result,
inserting one element in a tree of size one takes 2 min.

5 Related Work

There have been several previous attempts at verifying red-black trees implemen-
tations. In particular, red-black trees are used in the implementation of ordered
sets and maps in the standard library of the Coq proof assistant [1,7]. As part of
these libraries, the implementations have been proven correct using interactive
proofs in Coq. These implementations notably differ from our work because they
are written in a functional style, using recursive data types instead of pointers
and recursive functions instead of loops. Similar libraries are provided for the
Isabelle proof assistant [13]. Functional implementations of red-black trees have
also been verified outside of proof assistants, using characteristic formulas [3],
or in the Why3 programming language as part of VACID-0 competition [16].
This last implementation differs from the previous ones in that it is mostly
auto-active, even if it uses Coq for a few verification conditions.

Verifying imperative implementations of red-black trees is more challenging
as it involves reasoning about the well-formedness of the tree structure, which
comes for free in the functional implementations. As part of VACID-0, attempts

Auto-Active Proof of Red-Black Trees in SPARK 81

have been made at verifying red-black trees in C using VCC and in Java using
KeY [2]. Both attempts seem to have been left in preliminary stages though.

More recently, imperative implementations of red-black trees in C and Java
have been verified using more specialized logics. Enea et al. obtained an auto-
matic verification of a C implementation of red-black trees using separation logic,
a logic specialized for the verification of heap manipulating programs [6]. In the
same way, Stefănescu et al. were able to verify several implementations of red-
black trees in particular in Java and C using matching logic [20]. As used in this
work, matching logic provides a very precise, low-level view of the heap structure,
allowing for powerful proofs on this kind of programs. Both works use specialized
tools, which are specifically designed for verifying low-level, heap manipulating
programs but which have never been used, to the best of our knowledge, to verify
higher-level software.

6 Conclusion

In this article, we have explained how, using auto-active techniques, we could
achieve formal verification of key functional properties of an imperative imple-
mentation of red-black trees in SPARK. This is not an example of what should
be a regular use of the SPARK toolset but rather a successful demonstration of
how far we can go using such technology.

However, the techniques presented on this example can be reused with signifi-
cant benefits on a much smaller scale. In particular, we have shown that inductive
proofs can be achieved rather straightforwardly using auto-active reasoning. The
multi-layered approach, using type invariants and model functions to separate
concerns, can also be reused to reason about complex data structures.

To popularize the use of auto-active techniques, we are also working on inte-
grating simple interactive proof capabilities in GNATprove. This would allow
applying the same techniques in a simpler, more straightforward way, and also
to avoid polluting the program space with ghost code which is never meant to
be executed.

Acknowledgements. We would like to thank our colleague Ben Brosgol and the
anonymous reviewers for their useful comments.

References

1. Appel, A.W.: Efficient verified red-black trees (2011). https://www.cs.princeton.
edu/∼appel/papers/redblack.pdf

2. Bruns, D.: Specification of red-black trees: showcasing dynamic frames, model fields
and sequences. In: Wolfgang, A., Richard, B. (eds.) 10th KeY Symposium (2011)

3. Charguéraud, A.: Program verification through characteristic formulae. ACM Sig-
plan Not. 45(9), 321–332 (2010)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridege (2009)

https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf

82 C. Dross and Y. Moy

5. Dross, C., Moy, Y.: Abstract software specifications and automatic proof of refine-
ment. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS,
vol. 9707, pp. 215–230. Springer, Cham (2016). doi:10.1007/978-3-319-33951-1 16

6. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separa-
tion logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 80–96. Springer, Cham (2015). doi:10.1007/
978-3-319-24953-7 7

7. Filliâtre, J.-C., Letouzey, P.: Functors for proofs and programs. In: Schmidt, D.
(ed.) ESOP 2004. LNCS, vol. 2986, pp. 370–384. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24725-8 26

8. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-37036-6 8. https://hal.inria.fr/hal-00789533

9. Furia, C.A., Nordio, M., Polikarpova, N., Tschannen, J.: AutoProof: auto-active
functional verification of object-oriented programs. Int. J. Softw. Tools Technol.
Transfer 1–20 (2016). http://dx.doi.org/10.1007/s10009-016-0419-0

10. Hawblitzel, C., Howell, J., Kapritsos, M., Lorch, J.R., Parno, B., Roberts, M.L.,
Setty, S., Zill, B.: IronFleet: proving practical distributed systems correct. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015, pp.
1–17. ACM, New York (2015). http://doi.acm.org/10.1145/2815400.2815428

11. Hawblitzel, C., Howell, J., Lorch, J.R., Narayan, A., Parno, B., Zhang, D., Zill, B.:
Ironclad apps: end-to-end security via automated full-system verification. In: Pro-
ceedings of the 11th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI 2014, pp. 165–181. USENIX Association, Berkeley (2014). http://
dl.acm.org/citation.cfm?id=2685048.2685062

12. Kosmatov, N., Marché, C., Moy, Y., Signoles, J.: Static versus dynamic verifica-
tion in Why3, Frama-C and SPARK 2014. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2016. LNCS, vol. 9952, pp. 461–478. Springer, Cham (2016). doi:10.1007/
978-3-319-47166-2 32. https://hal.inria.fr/hal-01344110

13. Lammich, P., Lochbihler, A.: The isabelle collections framework. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14052-5 24

14. Leino, K.R.M.: Dafny: an automatic program verifier for functional correct-
ness. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol.
6355, pp. 348–370. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17511-4 20.
http://dl.acm.org/citation.cfm?id=1939141.1939161

15. Leino, K.R.M., Moskal, M.: Usable auto-active verification. In: Usable Verification
Workshop (2010). http://fm.csl.sri.com/UV10/

16. Leino, K.R.M., Moskal, M.: VACID-0: verification of ample correctness of invariants
of data-structures, edition 0 (2010)

17. McCormick, J.W., Chapin, P.C.: Building High Integrity Applications with
SPARK. Cambridge University Press, Cambridge (2015)

18. O’Neill, I.: SPARK - a language and tool-set for high-integrity software develop-
ment. In: Boulanger, J.L. (ed.) Industrial Use of Formal Methods: Formal Verifi-
cation. Wiley, Hoboken (2012)

19. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. In:
Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 414–434. Springer,
Cham (2015). doi:10.1007/978-3-319-19249-9 26

http://dx.doi.org/10.1007/978-3-319-33951-1_16
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-540-24725-8_26
http://dx.doi.org/10.1007/978-3-642-37036-6_8
https://hal.inria.fr/hal-00789533
http://dx.doi.org/10.1007/s10009-016-0419-0
http://doi.acm.org/10.1145/2815400.2815428
http://dl.acm.org/citation.cfm?id=2685048.2685062
http://dl.acm.org/citation.cfm?id=2685048.2685062
http://dx.doi.org/10.1007/978-3-319-47166-2_32
http://dx.doi.org/10.1007/978-3-319-47166-2_32
https://hal.inria.fr/hal-01344110
http://dx.doi.org/10.1007/978-3-642-14052-5_24
http://dx.doi.org/10.1007/978-3-642-17511-4_20
http://dl.acm.org/citation.cfm?id=1939141.1939161
http://fm.csl.sri.com/UV10/
http://dx.doi.org/10.1007/978-3-319-19249-9_26

Auto-Active Proof of Red-Black Trees in SPARK 83

20. Stefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program ver-
ifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pp. 74–91. ACM (2016)

21. Tafat, A., Marché, C.: Binary heaps formally verified in Why3. Research report
7780, INRIA, October 2011. http://hal.inria.fr/inria-00636083/en/

http://hal.inria.fr/inria-00636083/en/

Analysing Security Protocols Using
Refinement in iUML-B

Colin Snook(B), Thai Son Hoang, and Michael Butler

ECS, University of Southampton, Southampton, U.K.
{cfs,t.s.hoang,mjb}@ecs.soton.ac.uk

Abstract. We propose a general approach based on abstraction and
refinement for constructing and analysing security protocols using for-
mal specification and verification. We use class diagrams to specify con-
ceptual system entities and their relationships. We use state-machines
to model the protocol execution involving the entities’ interactions. Fea-
tures of our approach include specifying security principles as invariants
of some abstract model of the overall system. The specification is then
refined to introduce implementable mechanisms for the protocol. A glu-
ing invariant specifies why the protocol achieves the security principle.
Security breaches arise as violations of the gluing invariant. We make use
of both theorem proving and model checking techniques to analyse our
formal model, in particular, to explore the source and consequence of the
security attack. To demonstrate the use of our approach we explore the
mechanism of a security attack in a network protocol.

Keywords: Virtual LAN · Security · Event-B · iUML-B

1 Introduction

Ensuring security of protocols is a significant and challenging task in the context
of autonomous cyber-physical systems. In this paper, we investigate the use of
formal models of protocols in order to discover and analyse possible security
threats. In particular, we are interested in the role of formal models in identify-
ing security flaws, exploring the nature of attacks that exploit these flaws and
proposing measures to counter flaws in systems that are already deployed.

Our contribution is a general approach based on abstraction and refine-
ment for constructing and analysing security protocols. The approach is suitable
for systems containing multiple conceptual entities (for example, data packets,
devices, information tags, etc.). We use class diagrams to specify the relation-
ships between entities and state-machines to specify protocols involved in their
interactions. Security principles are defined as constraints on the system entities
and their relationships. We use refinements of these models, to gradually intro-
duce implementation details of the protocols that are supposed to achieve these
security properties. The use of abstract specification and refinement allows us to
separate the security properties from the protocol implementation. In particular,
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 84–98, 2017.
DOI: 10.1007/978-3-319-57288-8 6

Analysing Security Protocols Using iUML-B 85

possible security flaws are detected as violations of the gluing invariants that link
the abstract and concrete models. Further analysis helps to pinpoint the origin
and nature of attacks that could exploit these flaws. The approach has been
developed within the Enable-S3 project [4] which aims to provide cost-efficient
cross-domain verification and validation methods for autonomous cyber-physical
systems. Within Enable-S3, we are applying the approach on case studies in the
avionics and maritime domains. The case-studies involve secure authentication
and communications protocols as part of larger autonomous systems.

We illustrate our approach with an analysis of Virtual Local Area Network
(VLAN) operation including the principle of tagging packets. We explore a
known security flaw of these systems, namely double tagging. We use the Event-B
method and iUML-B class diagrams and state-machines as the modelling tool.

The rest of the paper is structured as follows. Section 2 gives some background
on the case study, the methods and tools that we use. The main content of the
paper is in Sect. 3 describing the development using iUML-B and analysis of the
VLAN model. Finally, we summarise our approach in Sect. 4 and conclude in
Sect. 5. For more information and resources, we refer the reader to our website:
http://eprints.soton.ac.uk/id/eprint/403533. The website contains the Event-B
model of the VLAN.

2 Background

2.1 VLAN Tagging

A Local Area Network (LAN) consists of devices that communicate over physi-
cal data connections that consist of multiple steps forming routes via interme-
diate network routing devices called switches. The ‘trunk’ connections between
switches are used by multiple routes. A VLAN restricts communication so that
only devices that share the same VLAN as the sender, can receive the commu-
nication thus providing a way to group devices irrespective of physical topology.
In order to achieve this, switches attach a tag to message packets in order to
identify the sender’s VLAN. The tag is removed before being sent to the receiv-
ing device. Typically, a system uses one VLAN identity to represent a default
VLAN. This is known as the native VLAN. A packet intended for the native
VLAN does not require tagging. The IEEE 802.1Q standard [6] is the most com-
mon protocol for ethernet-based LANs and includes a system for VLAN tagging
and associated handling procedures. The standard permits multiple VLAN tags
to be inserted so that the network infrastructure can use VLANs internally as
well as supporting client VLAN tagging. A well-known security attack exploits
double tagging by hiding a tag for a supposedly inaccessible VLAN behind a tag
for the native VLAN. The receiving switch sees the unnecessary native VLAN
tag and removes it before sending the packet on to the next switch. This switch
then sees the tag for the inaccessible VLAN and routes the packet accordingly
so that the packet infiltrates the targeted VLAN. Double tagging attacks can be
avoided by not using (i.e. de-configuring) the native VLAN.

http://eprints.soton.ac.uk/id/eprint/403533

86 C. Snook et al.

2.2 Event-B

Event-B [1] is a formal method for system development. Main features of Event-
B include the use of refinement to introduce system details gradually into the
formal model. An Event-B model contains two parts: contexts and machines.
Contexts contain carrier sets, constants, and axioms constraining the carrier
sets and constants. Machines contain variables v , invariants I(v) constraining
the variables, and events. An event comprises a guard denoting its enabled-
condition and an action describing how the variables are modified when the
event is executed. In general, an event e has the following form, where t are
the event parameters, G(t , v) is the guard of the event, and v := E(t , v) is the
action of the event1.

e =̂ any t where G(t , v) then v := E(t , v) end (1)

A machine in Event-B corresponds to a transition system where variables rep-
resent the states and events specify the transitions. Contexts can be extended
by adding new carrier sets, constants, axioms, and theorems. Machine M can
be refined by machine N (we call M the abstract machine and N the con-
crete machine). The state of M and N are related by a gluing invariant J(v ,w)
where v ,w are variables of M and N, respectively. Intuitively, any “behaviour”
exhibited by N can be simulated by M, with respect to the gluing invariant
J . Refinement in Event-B is reasoned event-wise. Consider an abstract event e
and the corresponding concrete event f. Somewhat simplifying, we say that e is
refined by f if f′s guard is stronger than that of e and f′s action can be simu-
lated by e′s action, taking into account the gluing invariant J . More information
about Event-B can be found in [5]. Event-B is supported by the Rodin platform
(Rodin) [2], an extensible toolkit which includes facilities for modelling, verifying
the consistency of models using theorem proving and model checking techniques,
and validating models with simulation-based approaches.

2.3 iUML-B

iUML-B [8–10] provides a diagrammatic modelling notation for Event-B in the
form of state-machines and class diagrams. The diagrammatic models are con-
tained within an Event-B machine and generate or contribute to parts of it. For
example a state-machine will automatically generate the Event-B data elements
(sets, constants, axioms, variables, and invariants) to implement the states while
Event-B events are expected to already exist to represent the transitions. Tran-
sitions contribute further guards and actions representing their state change, to
the events that they elaborate. An existing Event-B set may be associated with
the state-machine to define its instances. In this case the state-machine is ‘lifted’
so that it has a value for every instance of the associated set. State-machines are
typically refined by adding nested state-machines to states.

1 Actions in Event-B are, in the most general cases, non-deterministic [5].

Analysing Security Protocols Using iUML-B 87

Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier set, con-
stant, or variable) and generate constraints on those elements. For the VLAN
we use class diagrams extensively to model the sets of entities and their rela-
tionships and we use state-machines to constrain the sequences of events and to
declare state dependant invariant properties.

(a) Class diagram (b) State-machine

Fig. 1. Example iUML-B diagrams

Figure 1 shows an abstract example of an iUML-B model to illustrate the
features we have used in the VLAN. We give the corresponding translation into
Event-B in Fig. 2. In Fig. 1a, there are three classes; CLS1 ,CLS2 , which elab-
orate carrier sets, and CLS2 , which is a sub-class of CLS1 and elaborates a
variable. An attribute or association of a class can have a combination of the
following properties: surjective, injective, total, and functional. Attributes attr1
of CLS1 and attr3 of CLS3 are total and functional, while attr2 of CLS2 is
functional. An injective association rel defined between CLS1 and CLS2 elabo-
rates a constant. Figure 1b shows an example of a state-machine, which is lifted
to the carrier set CLS1 for its instances. This is also the instances set for the
class CLS1 and a state of the state-machine is named after its variable sub-class,
CLS3 . Further sub-states S1 and S2 are modelled as variable subsets of CLS3 .
The state of an instance is represented by its membership of these sets. The
state-machine transitions are linked to the same events as the methods of CLS3 .
Hence the state-machine constrains the invocation of class methods for a partic-
ular instance of the class. The contextual instance is modelled as a parameter
this CLS3 which can be used in additional guards and actions in both the class
diagram and the state-machine.

The transition c, from the initial state to S1 also enters parent state CLS3
and therefore represents a constructor for the class CLS3 . The class method c is

88 C. Snook et al.

sets : CLS1 ,CLS2 constants : attr1 , attr2 , rel

axioms :
rel ∈ CLS1 CLS2

attr1 ∈ CLS1 → N

attr2 ∈ CLS2 → Z

variables :

CLS3 ,

S1 ,

S2

attr3

invariants :
CLS3 ⊆ CLS1

S1 ⊆ CLS3

S2 ⊆ CLS3

partition(CLS3 ,S1 ,S2)

attr3 ∈ CLS3 → BOOL

∀this CLS3 ·(this CLS3 ∈ S2) ⇒
(attr3 (this CLS3) = FALSE)

INITIALISATION : begin
CLS3 := ∅

S1 := ∅

S2 := ∅

attr3 := ∅

end

c :
any this CLS2 , this CLS3 where
this CLS2 ∈ CLS2

this CLS3 /∈ CLS3

rel(this CLS3) = this CLS2
then
S1 := S1 ∪ {this CLS3}
CLS3 := CLS3 ∪ {this CLS3}
attr3 := attr3 − {this CLS3 → FALSE}
end

e :
any this CLS3 , b where
this CLS3 ∈ CLS3

this CLS3 ∈ S1

b ∈ BOOL

attr2 (rel(this CLS3)) > 0
then
S1 := S1 \ {this CLS3}
S2 := S2 ∪ {this CLS3}
attr3 (this CLS3) := b
end

Fig. 2. Event-B translation of the iUML-B example

also defined as a constructor and automatically generates an action to initialise
the instance of attr3 with its defined initial value. The same event c is also
given as a method of class CLS2 in order to generate a contextual instance
this CLS2 which is used in an additional (manually entered) guard to define
a value for the association rel of the super-class. The transition and method
e is a normal method of class CLS3 , which is available when the contextual
instance exists in CLS3 and S1 , and changes state by moving the instance
from S1 to S2 . The other guards and actions shown in this event concerning
parameter b and attribute attr2 , have been added as additional guards and
actions of the transition or method. These are not shown in the diagram as they
are entered using the diagram’s properties view. The state invariant shown in
state S2 applies to any instance while it is in that state. The Event-B version of
the invariant is quantified over all instances and an antecedent added to represent
the membership of S2 . In the rest of this paper we do not explain the translation
to Event-B.

Analysing Security Protocols Using iUML-B 89

2.4 Validation and Verification

Consistency of Event-B models is provided via means of proof obligations, e.g.,
invariant preservation by all events. Proof obligations can be discharged auto-
matically or manually using the theorem provers of Rodin. Another important
tool for validation and verification of our model is ProB [7]. ProB provides
model checking facility to complement the theorem proving technique for verify-
ing Event-B models. Features of the ProB model checker include finding invariant
violations and deadlock for multiple refinement levels simultaneously. Further-
more, ProB also offers an animator enabling users to validate the behaviour of
the models by exploring execution traces. The traces can be constructed interac-
tively by manual selection of events or automatically as counter-examples from
the model checker. Here, an animation trace is a sequence of event execution
with parameters’ value. The animator shows the state of the model after each
event execution in the trace.

3 Development

In this section, we discuss the development of the model. The model consists of
three refinement levels. The abstract level captures the essence of the security
property which is proven for the abstract representation of events that make
new packets and move them around the network. The first refinement introduces
some further detail of the network system and is proven to be a valid refinement
of the first model. That is, it maintains the security property. Both of these
first levels are un-implementable because they refer directly to a conceptual
property of a packet which is the VLAN that the packet was intended for. In
reality it is not possible to tell from a raw packet, which VLAN it was originally
created for. The second refinement introduces tagging as a means to implement
a record of this conceptual property. The refinement models nested tagging and
the behaviour of a typical switch which, apart from tagging packets depending
on their source, also removes tags for the native LAN. The automatic provers are
unable to prove that removing tags satisfies the gluing invariant. This is the well-
known security vulnerability to double tagging attacks. Adding a constraint to,
effectively, disallow the native LAN from being configured as a VLAN, allows
the provers to discharge this proof obligation. This corresponds to the usual
protective measure against double tagging attacks.

3.1 M0: An Abstract Model of VLAN Security

We aim to make the first model minimally simple while describing the essential
security property. We use a class diagram (Fig. 3) to introduce some ‘given’ sets
for data packets (class PKT) and VLANs (class VLAN). The constant asso-
ciation PV describes the VLAN that each packet is intended for. (Note that
this is a conceptual relationship representing an intention and hence the imple-
mentation cannot access it). We abstract away from switches and devices and

90 C. Snook et al.

Fig. 3. Abstract model of VLAN security requirement

introduce a set of nodes, class NODE , to represent both. The communications
topology is given by the constant association, Route, which maps nodes to nodes
in a many to many relationship.

The set of VLANs that a particular node is allowed to see, is given by the
constant association nv . For now this is a many to many relationship but in
later refinements we will find that, while switches are allowed to see all VLANs,
devices may only access the packets of one VLAN.

The class pkt represents the subset of packets that currently exist (whereas,
PKT represented all possible packets that might exist currently or in the past or
future). A packet that exists, always has exactly one owner node. The method
makePacket takes a non-existing packet from PKT and adds it to pkt and ini-
tialises the new packet’s owner to the contextual node instance. The method
movePacket changes the owner of an existing packet to a new node that is non-
deterministically selected from the nodes that the current owner node is directly
linked to via Route.

The class invariant, sec inv, in class pkt describes the security property2:

∀this pkt·this pkt ∈ pkt ⇒ PV (this pkt) ∈ nv [{owner(this pkt)}] , (2)

i.e., the VLAN for which this packet is intended, belongs to the VLANs that its
owner is allowed to see. For this invariant to hold we need to restrict the method
movePacket so that it only moves packets to a new owner that is allowed to see
the VLAN of the packet. For now we do this with a guard, PV (p) ∈ nv [{n}],
where p is the packet and n is the destination node. However, this guard must be
replaced in later refinements because it refers directly to the conceptual property
PV and is therefore not implementable. We also ensure that makePacket only
creates packets with a PV value that its maker node is allowed to see.

2 A concise summary of the Event-B mathematical notation can be found at http://
wiki.event-b.org/images/EventB-Summary.pdf.

http://wiki.event-b.org/images/EventB-Summary.pdf
http://wiki.event-b.org/images/EventB-Summary.pdf

Analysing Security Protocols Using iUML-B 91

We use a state-machine (Fig. 3) to constrain the sequence of events that
can be performed on a packet. The state-machine is lifted to the set PKT of
all packets, At this stage we only require that makePacket is the initial event
that brings a packet into existence, and this can be followed by any number of
movePacket events.

3.2 M1: Introducing Switches and Devices

In M0, to keep things simple we did not distinguish between switches and devices.
However, they have an important distinction since switches are allowed to see all
VLAN packets. The design will utilise this distinction so we need to introduce
it early on. In M1 (Fig. 4) we introduce two new classes, Switch and Device, as
subtypes of NODE .

Since switches are implicitly associated with all VLANS (i.e. trusted), we
do not need to model which VLANs they are allowed to access. Therefore, we
replace nv with a functional association dv whose domain (source) is restricted
to Device. It is a total function, rather than a relation, because a device has
access to exactly one VLAN and again we model this as a constant function
since we do not require it to vary.

Switches are not allowed to create new packets so we move makePacket to
Device. Since, when moving a packet, the destination kind affects the security
checks, we split movePacket into two alternatives: movePacketToSwitch which
does not need any guard concerning PV and movePacketToDevice where we
replace the guard, PV (p) ∈ nv [{n}], with PV (p) = dv(n) to reflect the data
refinement. Note however, that the new guard still refers to PV .

Fig. 4. First refinement of VLAN introducing switches and devices

92 C. Snook et al.

The refinement introduces the need for some further constraints on the
sequence of events for a particular package. We introduce sub-states atDevice
and atSwitch (Fig. 4) to show that a packet can only be moved to a device from
a switch. Note that these states could be derived from owner (hence the invari-
ants in states atDevice and atSwitch) however, the state diagram helps visualise
the process relative to a packet which will become more significant in the next
refinement level.

3.3 M2: Introducing Tagging

We can now introduce the tagging mechanism that allows switches to know
which VLAN a packet is intended for. Our aim is that, in this refined model,
switches should not use the PV relationship other than for proving that the tag
mechanism achieves an equivalent result. We introduce a new given set, TAG ,
(Fig. 5) which has a total functional association TV with VLAN . This function

Fig. 5. Second refinement of VLAN introducing tagging

Analysing Security Protocols Using iUML-B 93

represents the VLAN identifier within a tag, which is part of the implementation,
i.e., guards that reference TV are implementable. We add a variable partial
function association, tag , from pkt to TAG , which represents the tagging of a
packet.

In typical LAN protocols, already tagged packets can be tagged again to allow
switches to use VLANs for internal system purposes. Although, for simplification,
we omit this internal tagging, we allow tags to be nested so that we can model
a double tagging attack by a device. Therefore we model nested tags with a
variable partial functional association, nestedTag from TAG to itself. When a
packet arrives at a switch from a device, the switch can tell which VLAN it
belongs to from the port that it arrived on. However, for simplicity, we avoid
introducing ports in this refinement. Instead we model this information via a
variable functional association from from pkt to NODE . Hence a switch can
determine which VLAN a packet, p, is for via dv(from(p)). Port configuration
could easily be introduced in a subsequent refinement without altering the main
points of this article. A significant behaviour of switches that relates to security
is how they deal with packets for the native VLAN. Therefore, in the Event-B
context for M2, we introduce a specific instance of VLAN called NativeVLAN .

The behaviour (Fig. 5) is refined to add procedures for handling tagged pack-
ets. State atSwitch is split into three sub-states, RCVD for packets that have
just been received from a device, TAGD for packets from a device that have
been successfully processed and REJECTED for packets that are found to be
invalid. A device may now send an untagged packet to a switch (transition
movePacketToSwitch untagged) and allow the switch to determine appropriate
tagging, or it may tag the packet itself (transition movePacketToSwitch tagged)
in which case the switch will check the tag. In the latter case the tag may be
valid or invalid and may have nested tags.

After receiving a packet, p, at the state RCVD , the new owner switch
processes it by taking one of the following transitions:

– addTag : if p is not already tagged, a tag,tg , such that TV (tg) = dv(from(p)),
is added and the packet is accepted by moving it to state TAGD .

– alreadyTagged : if p is already tagged correctly (i.e., TV (tg) = dv(from(p)))
and not tagged as the native VLAN (i.e. TV (tg) �= NativeVLAN) the packet
is accepted as is.

– removeNativeTag : if p is correctly tagged for the native VLAN (i.e., TV (tg) =
dv(from(p)) = NativeVLAN), the tag is removed and the packet is accepted.
The tag is removed in such as way as to leave p tagged with a nested tag if
any.

– reject : if p is incorrectly tagged (i.e., TV (tg) �= dv(from(p))), it is rejected
by moving it to state REJECTED which has no outgoing transitions.

After processing packet, p, the switch can either pass it on to another switch
or, if available, pass it to a device via one of the following transitions:

– movePacketToDevice untagged : if p is not tagged, and the switch is connected
to a device, n, on the native VLAN (i.e. dv(n) = NativeVLAN),

94 C. Snook et al.

– movePacketToDevice tagged : if p is tagged and the switch is connected to
a device, n, which is on the VLAN indicated by the tag (i.e. dv(n) =
TV (tag(p))).

It is these two transitions that refine movePacketToDevice, which need to
establish the security invariant using tags rather than the unimplementable
guard concerning PV . This has been done as indicated above by the conditions
on dv(n). It can been seen by simple substitution, that the state invariants of
TAGD enable the prover to establish that the new guards are at least as strong as
the abstract one (PV (p) = dv(n)). We also need to prove that these state invari-
ants are satisfied by the incoming transitions of state TAGD . A state invariant
PV (p) = dv(from(p)) is added to RCVD in order to allow the prover to estab-
lish this. Again, this can be checked using simple substitutions of the guards
of addTag, alreadyTagged and removeNativeTag using this state invariant. The
other two state invariants for RCVD are merely to establish well-definedness of
the function applications. The state invariants of state RCVD are clearly estab-
lished by the actions of incoming transitions movePacketToSwitch untagged and
movePacketToSwitch tagged.

3.4 Analysis

We analyse the protocol using both theorem proving and model checking tech-
niques. Given the model in Sect. 3.3, the automatic provers discharge all proof
obligations except for one. The prover cannot establish that the transition
removeNativeTag establishes the state-invariant

p ∈ dom(tag) ⇒ TV (tag(p)) = PV (p) (3)

of state TAGD . In general, a failed invariant preservation proof identifies the
property (the invariant) that may be at risk and the transition (event) that may
violate it. We say ‘may’ because lack of proof does not necessarily indicate a
problem. It can be a result of insufficient prover power. We therefore use the
ProB model checker to confirm the problem.

As with any model checker, we instantiate the context of the system, in this
case, the network topology. The network topology under consideration can be
seen in Fig. 6. The switches, i.e., SWCH1 and SWCH2 have access to all VLANs,
namely, VLAN1 , and VLAN2 . The native VLAN NativeVLAN is defined to be

SWCH1 SWCH2

DVCE1

VLAN1

DVCE2

VLAN2

DVCE3

VLAN2

DVCE4

VLAN1

Fig. 6. Network topology for analysis

Analysing Security Protocols Using iUML-B 95

VLAN1 . Devices DVCE1 ,DVCE4 belong to VLAN1 and devices DVCE2 and
DVCE3 both belong to VLAN2 . We define two packets PK1 and PK2 where
PK1 is intended for VLAN1 and PK2 is for VLAN2 , i.e.,

PV = {PK1 �→ VLAN1 ,PK2 �→ VLAN2} .

Finally, we define two tags TAG1 , and TAG2 corresponding to VLAN1
and VLAN2 , respectively. A tag with nested tag is numbered accordingly, for
example, TAG12 is for VLAN1 and has an inner tag for VLAN2 . Our subsequent
analysis is based on this particular setting.

Firstly, we want to identify whether the state-invariant (3) can indeed be
violated. We model check the whole refinement-chain from M0 to M2. ProB
indeed identifies a counter-example trace which leads to the violation of the
invariant as follow.

. . .

−→ makePacket(PK1 ,DVCE1) (4)
−→ movePacketToSwitch tagged(PK1 ,SWCH1 ,TAG12 ,DVCE1) (5)
.

−→ removeNativeTag(PK1 ,SWCH1) (6)

In the trace, DVCE1 creates PK1 (4) before moving it to SWCH1 with
tag TAG12 (5). When SWCH1 removes the native tag TAG12 from PK1 (6),
resulting in TAG2 , the state-invariant (3) becomes invalid since PK1 is intended
for VLAN1 , but it is now tagged with TAG2 , which is identified for VLAN2 .

However, the violation could be caused by an unnecessarily strong gluing
invariant. To verify whether the security invariant (2) is indeed violated in M2,
we model check M2 without M0 and M1 but with the security invariant copied
from M0 to M2 in place of the gluing invariant. Once again, ProB returns a
counter-example trace which is an extension of the previous trace, i.e.,

. . .

−→ makePacket(PK1 ,DVCE1) (7)
−→ movePacketToSwitch tagged(PK1 ,SWCH1 ,TAG12 ,DVCE1) (8)
.

−→ removeNativeTag(PK1 ,SWCH1) (9)
.

−→ moveUntaggedPacketToDevice tagged(DVCE2 ,PK1 ,SWCH1) (10)

After removing the native tag of PK1 (9), the packet is moved from SWCH1
to DVCE2 (10). At this time, PK1 has arrived to a device (DVCE2) which does
not have permission to receive any packet for VLAN1 .

96 C. Snook et al.

Note that there are three different points in the process leading to the security
breach:

– the point where the security attack is initiated (8),
– the point where the design assumptions are violated and (9),
– the point where the security is breached (10).

Coming back to the original failed invariant preservation proof obligation,
we can now confirm that it is indeed possible for the invariant to be violated3.
Examination of the pending goal that the prover is attempting to prove reveals
more detail about the problem.

TV (({p} × nestedTag [tag [{p}]])(p)) = PV (p),

It shows that the prover has replaced the packet’s tag with its nested tag in
the design property, and is attempting to show that the VLAN of the nested tag
is also for the correct VLAN for the packet. From the theorem prover, therefore,
we know that

– the switch’s procedure of removing the native tag causes a problem,
– the problem is that the nested tag becomes the packets main tag and does not

necessarily indicate the correct VLAN.

When a constraint, NativeVLAN /∈ ran(dv), i.e., no device can be configured
to use the native VLAN, is added to the model the proof obligation is immedi-
ately discharged since the guard of the transition removeNativeTag can easily be
shown to be false. This constraint corresponds to the recommended protective
action to prevent double tagging attacks.

Overall, the theorem provers can identify the security flaw in a design or pro-
tocol. They do not need to find an example attack but can pinpoint the exact
nature of the flaw directly. This is because proof obligations are generated from
the actions of individual events. While the provers indicates the nature of the vio-
lation of the design assumption, they do not reveal the complete sequence from
attack to security breach. The model-checker, while being restricted to exam-
ple instantiations, is able to illustrate the process from initial attack through to
security breach.

4 Summary of Approach

To summarise, our approach is as follows:

1. Create an iUML-B Class diagram model of the entities and relationships
that are essential concepts of the system. Add a state-machine to model the
required behaviour of the system. Only model sufficient concepts to express
the security property. Do not model the mechanism that implements the
security.

3 This is because removing the native tag may reveal an invalid nested tag (the known
security flaw exploited by double tagging attacks).

Analysing Security Protocols Using iUML-B 97

2. Express the security property as an invariant over the entities in the model.
Make sure that the model preserves the invariant.

3. Refine the iUML-B model (possibly over several iterations) to introduce the
mechanism that will ensure the system is secure. Do not constrain the behav-
iour of elements unless the security system has control over this behaviour.
That is, allow attacks to occur within the model.

4. Animate each refinement level to ensure that the model behaves in a use-
ful way. This is important to validate that our formal model captures the
behaviour of the real system.

5. If any POs are not proven check the type of PO and the goal to see whether
there is a mistake in the model. Correct the model as necessary.

6. If unproven POs remain for the gluing invariant, this may mean that the
security mechanism has a flaw. Analyse the problem as follows:

– Examine the PO. Note the event that it relates to and examine the goal of the
prover. This can often be used to interpret what is going wrong or whether a
manual proof is possible.

– Run the model-checker to establish that there really is a problem. If the model
checker can not find a trace to the violation, a manual proof may be possible.

– Remove the gluing invariant and copy the security property invariant from
the abstract model and run the model checker (without previous refinement
levels). If it does not find a trace that violates the security property, the gluing
invariant may be too strong.

– If a trace to the security property is found there is a flaw in the protocol. The
trace can be examined to analyse the nature of the attack, the flaw in the
security mechanism and how it leads to the security violation.

In the example presented in this paper, the abstract model (step 1) M0 was
developed in Sect. 3.1, and the security invariant (step 2) was introduced in the
same section. The refinement process (step 3) involved an intermediate refine-
ment M1 in Sect. 3.2 and a final refinement M2 in Sect. 3.3. At each refinement
level, animation with ProB (step 4) and examination of unproven POs (step 5),
helped us to arrive at a correct and useful model. A security flaw was detected
and analysed (step 6) as described in Sect. 3.4.

5 Conclusion

Our investigation into a known example of a security vulnerability indicates that
formal modelling with strong verification tools can be extremely beneficial in
understanding security problems. The tools at our disposal include an automatic
theorem prover as well as a model checker. In our previous work on safety-critical
systems we have found that these tools exhibit great synergy and this is also the
case when analysing security protocols.

We use iUML-B class diagrams and state-machines as a diagrammatic repre-
sentation of the Event-B formalism. The diagrams help us create, visualise and
communicate the models leading to a better understanding of the systems.

98 C. Snook et al.

Although we use animation to informally validate system behaviour, we have
not yet done any rigorous analysis of liveness properties. A future aim of our
research is to incorporate liveness reasoning into our approach.

This refinement-based approach can be applied to any problem that involves
sets of entities that are interacting in some way via a procedure or protocol.
For example, an authentication protocol such as Needham-Schroder could be
modelled abstractly as a class of agents sending messages and receiving them
with property perceived sender based on an actualSender. This could then be
refined to replace direct references to the actual sender, with encrypted nonces.

Finally, we envisage that without refinement, formulating the gluing invariant
that links the specification to the implementation would, in general, be challeng-
ing. Here the role of the gluing invariant is essential as its violation helps the
designer to identify the point where the design assumptions are offended, causing
the actual security breach. A similar observation has been made in [3].

Acknowledgement. This work is funded by the Enable-S3 Project, http://www.
enable-s3.eu.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. Butler, M.: On the use of data refinement in the development of secure communi-
cations systems. Form. Asp. Comput. 14(1), 2–34 (2002)

4. Enable-S3 consortium. Enable-S3 project website. http://www.enable-s3.eu.
Accessed 04 Dec 2016

5. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013)

6. IEEE. 802.1Q-2014 - Bridges and Bridged Networks. http://www.ieee802.org/1/
pages/802.1Q-2014.html. Accessed 02 Dec 2016

7. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Softw. Tools Technol. Transf. (STTT) 10(2), 185–203 (2008)

8. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.
Model. 14(4), 1557–1580 (2015)

9. Colin, S.: iUML-B statemachines. In: Proceedings of the Rodin Workshop 2014,
pp. 29–30, Toulouse, France (2014). http://eprints.soton.ac.uk/365301/

10. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML. ACM
Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006)

http://www.enable-s3.eu
http://www.enable-s3.eu
http://www.enable-s3.eu
http://www.ieee802.org/1/pages/802.1Q-2014.html
http://www.ieee802.org/1/pages/802.1Q-2014.html
http://eprints.soton.ac.uk/365301/

On Learning Sparse Boolean Formulae
for Explaining AI Decisions

Susmit Jha(B), Vasumathi Raman, Alessandro Pinto, Tuhin Sahai,
and Michael Francis

United Technologies Research Center, Berkeley, USA
jha@csl.sri.com, {pintoa,sahait,francism}@utrc.utc.com

Abstract. In this paper, we consider the problem of learning Boolean
formulae from examples obtained by actively querying an oracle that
can label these examplesz as either positive or negative. This problem
has received attention in both machine learning as well as formal meth-
ods communities, and it has been shown to have exponential worst-case
complexity in the general case as well as for many restrictions. In this
paper, we focus on learning sparse Boolean formulae which depend on
only a small (but unknown) subset of the overall vocabulary of atomic
propositions. We propose an efficient algorithm to learn these sparse
Boolean formulae with a given confidence. This assumption of sparsity
is motivated by the problem of mining explanations for decisions made
by artificially intelligent (AI) algorithms, where the explanation of indi-
vidual decisions may depend on a small but unknown subset of all the
inputs to the algorithm. We demonstrate the use of our algorithm in auto-
matically generating explanations of these decisions. These explanations
will make intelligent systems more understandable and accountable to
human users, facilitate easier audits and provide diagnostic information
in the case of failure. The proposed approach treats the AI algorithm
as a black-box oracle; hence, it is broadly applicable and agnostic to
the specific AI algorithm. We illustrate the practical effectiveness of our
approach on a diverse set of case studies.

1 Introduction

The rapid integration of robots and other intelligent agents into our industrial
and social infrastructure has created an immediate need for establishing trust
between these agents and their human users. The long-term acceptance of AI will
depend critically on its ability to explain its actions, provide reasoning behind its
decisions, and furnish diagnostic information in case of failures. This is particu-
larly true for systems with close human-machine coordination such as self-driving
cars, care-giving and surgical robots. Decision-making and planning algorithms
central to the operation of these systems currently lack the ability to explain
the choices and decisions that they make. It is important that intelligent agents
become capable of responding to inquiries from human users. For example, when

S. Jha—The author is currently at SRI International.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 99–114, 2017.
DOI: 10.1007/978-3-319-57288-8 7

100 S. Jha et al.

riding in an autonomous taxi, we might expect to query the AI driver using ques-
tions similar to those we would ask a human driver, such as “why did we not
take the Bay Bridge”, and receive a response such as “there is too much traffic
on the bridge” or “there is an accident on the ramp leading to the bridge or in
the middle lane of the bridge.” These explanations are essentially propositional
formulae formed by combining the user-observable system and the environment
states using Boolean connectives.

Even though the decisions of intelligent agents are the consequence of algo-
rithmic processing of perceived system and environment states [24,30], the
straight-forward approach of reviewing this processing is not practical. First,
AI algorithms use internal states and intermediate variables to make decisions
which may not be observable or interpretable by a typical user. For example,
reviewing decisions made by the A* planning algorithm [20] could reveal that
a particular state was never considered in the priority queue. But this is not
human-interpretable, because a user may not be familiar with the details of how
A* works. Second, the efficiency and effectiveness of many AI algorithms relies on
their ability to intelligently search for optimal decisions without deducing infor-
mation not needed to accomplish the task, but some user inquiries may require
information that was not inferred during the original execution of the algorithm.
Third, artificial intelligence is often a composition of numerous machine learn-
ing and decision-making algorithms, and explicitly modelling each one of these
algorithms is not practical. Instead, we need a technique which can treat these
algorithms as black-box oracles, and obtain explanations by observing their out-
put on selected inputs. These observations motivate us to formulate the problem
of generating explanations as an oracle-guided learning of Boolean formula where
the AI algorithm is queried multiple times on carefully selected inputs to gener-
ate examples, which in turn are used to learn the explanation.

Given the observable system and environment states, S and E respectively,
typical explanations depend on only a small subset of elements in the overall
vocabulary V = S ∪ E, that is, if the set of state variables on which the expla-
nation φ depends is denoted by support(φ) ⊆ V , then |support(φ)| << |V |.
This support or its exact size is not known a priori. Thus, the explanations
are sparse formulae over the vocabulary V . The number of examples needed to
learn a Boolean formula is exponential in the size of the vocabulary in the general
case [8,18,19]. Motivated by the problem of learning explanations, we propose an
efficient algorithm that exploits sparsity to efficiently learn sparse Boolean for-
mula. Our approach builds on recent advances in oracle-guided inductive formal
synthesis [16,17]. We make the following three contributions:

– We formulate the problem of finding explanations for decision-making AI algo-
rithms as the problem of learning sparse Boolean formulae.

– We present an efficient algorithm to learn sparse Boolean formula where the
size of required examples grows logarithmically (in contrast to exponentially
in the general case) with the size of the overall vocabulary.

– We illustrate the effectiveness of our approach on a set of case-studies.

Sparse Boolean Learning for Explainable AI 101

2 Motivating Example

We now describe a motivating example to illustrate the problem of providing
human-interpretable explanations for the results of an AI algorithm. We consider
the A* planning algorithm [20], which enjoys widespread use in path and motion
planning due to its optimality and efficiency. Given a description of the state
space and transitions between states as a weighted graph where weights are used
to encode costs such as distance and time, A* starts from a specific node in the
graph and constructs a tree of paths starting from that node, expanding paths
in a best-first fashion until one of them reaches the predetermined goal node. At
each iteration, A* determines which of its partial paths is most promising and
should be expanded. This decision is based on the estimate of the cost-to-go to
the goal node. We refer readers to [20] for a detailed description of A*. Typical
implementations of A* use a priority queue to perform the repeated selection
of intermediate nodes. The algorithm continues until some goal node has the
minimum cost value in the queue, or until the queue is empty (in which case no
plan exists). Figure 1 depicts the result of running A* on a 50×50 grid, where
cells that form part of an obstacle are colored red. The input map (Fig. 1(a))
shows the obstacles and free space. A* is run to find a path from lower right
corner to upper left corner. On the output map (Fig. 1(b)), cells on the returned
optimal path are colored dark blue. Cells which ever entered A*’s priority queue
are colored light cyan, and those that never entered the queue are colored yellow.

Fig. 1. (a) Input map to A* (b) Output showing final path and internal states of A*
(Color figure online)

Consider the three cells X, Y, Z marked in the output of A* in Fig. 1(b). An
observer might want to enquire why points X, Y or Z were not selected for the
optimal path generated by A*. Given the output and logged internal states of the
A* algorithm, we know that Y was considered as a candidate cell and discarded
due to non-optimal cost whereas X was never even considered as a candidate.
But, this is not a useful explanation because a non-expert observing the behavior
of a robot cannot be expected to understand the concept of a priority queue, or

102 S. Jha et al.

the details of how A* works. Looking at point Z, we notice that neither X nor
Z was ever inserted into the priority queue; hence, both were never considered
as candidate cells on the optimal path. When responding to a user query about
why X and Z were not selected in the optimal path, we cannot differentiate
between the two even if all internal decisions and states of the A* algorithm
were logged. So, we cannot provide the intuitively expected explanation that Z
is not reachable due to certain obstacles, while X is reachable but has higher
cost than the cells that were considered. This is an example of a scenario where
providing explanation requires new information that the AI algorithm might not
have deduced while solving the original decision making problem.

3 Problem Definition

The class of AI algorithms used in autonomous systems include path planning
algorithms, discrete and continuous control, computer vision and image recog-
nition algorithms. All of these algorithms would be rendered more useful by the
ability to explain themselves. Our goal is to eventually develop an approach to
generate explanations for the overall system, but we focus on individual compo-
nents in this paper rather than the overall system. For example, the path planner
for a self-driving car takes inputs from machine learning and sensor-fusion algo-
rithms, which in turn receive data from camera, LIDAR and other sensors. The
processed sensor data often has semantic meaning attached to it, such as detec-
tion of pedestrians on the road, presence of other cars, traffic distribution in
a road network, and so on. Given this semantic information, the reason for a
particular path being selected by the path planner is often not obvious: this is
the sort of explanation we target to generate automatically.

A decision-making AI algorithm Alg can be modelled as a function that
computes values of output variables out given input variables in, that is,

Alg : in → out

The outputs are decision variables, while the inputs include environment and
system states as observed by the system through the perception pipeline. While
the decision and state variables can be continuous and real valued, the inquiries
and explanations are framed using predicates over these variables, such as com-
parison of a variable to some threshold. Let the vocabulary of atomic predicates
used in the inquiry from the user and the provided explanation from the system
be denoted by V. We can separate the vocabulary V into two subsets: VQ used
to formulate the user inquiry and VR used to provide explanations.

VQ = {q1, q2, . . . qm},VR = {r1, r2, . . . rn} where qi, ri : in ∪ out → Bool

Intuitively, V is the shared vocabulary that describes the interface of the
AI algorithm and is understood by the human-user. For example, the inquiry
vocabulary for a planning agent may include propositions denoting selection of a
waypoint in the path, and the explanation vocabulary may include propositions

Sparse Boolean Learning for Explainable AI 103

denoting presence of obstacles on a map. An inquiry φQ from the user is an
observation about the output (decision) of the algorithm, and can be formulated
as a Boolean combination of predicates in the vocabulary VQ. Hence, we can
denote it as φQ(VQ) where the predicates in VQ are over the set in ∪ out, and
the corresponding grammar is:

φQ := φQ ∧ φQ | φQ ∨ φQ |¬φQ | qi where qi ∈ VQ

Similarly, the response φR(VR) is a Boolean combination of the predicates in the
vocabulary VR where the predicates in VR are over the set in ∪ out, and the
corresponding grammar is:

φR := φR ∧ φR | φR ∨ φR | ¬φR | ri where ri ∈ VR

Definition 1. Given an AI algorithm Alg and an inquiry φQ(VQ), φR(VR) is a
necessary and sufficient explanation when φR(VR) ⇐⇒ φQ(VQ) where VR,VQ

are predicates over in∪ out as explained earlier, and out = Alg(in). φR(VR) is
a sufficient explanation when φR(VR) ⇒ φQ(VQ).

If the algorithm out = Alg(in) could be modelled explicitly in appropriate
logic, then the above definition could be used to generate explanations for a
given inquiry using techniques such as satisfiability solving. However, such an
explicit modelling of these algorithms is currently outside the scope of existing
logical deduction frameworks, and is impractical for large and complicated AI
systems even from the standpoint of the associated modelling effort. The AI
algorithm Alg is available as an executable function; hence, it can be used as an
oracle that can provide an outputs for any given input. This motivates oracle-
guided learning of the explanation from examples using the notion of confidence
associated with it.

Definition 2. Given an AI algorithm Alg and an inquiry φQ(VQ), φR(VR) is
a necessary and sufficient explanation with confidence κ when Pr(φR(VR) ⇐⇒
φQ(VQ)) ≥ κ where VR,VQ are predicates over in ∪ out as explained earlier,
out = Alg(in) and 0 ≤ κ ≤ 1. φR(VR) is a sufficient explanation with confidence
κ when Pr(φR(VR) ⇒ φQ(VQ)) ≥ κ.

The oracle used to learn the explanation is implemented using the AI algo-
rithm. It runs the AI algorithm on a given input ini to generate the decision
output outi, and then marks the input as a positive example if φQ(outi) is true,
that is, the inquiry property holds on the output. It marks the input as a nega-
tive example if φQ(outi) is not true. We call this an introspection oracle, and it
marks each input as either positive or negative.

Definition 3. An introspection oracle OφQ,Alg for a given algorithm Alg and
inquiry φQ takes an input ini and maps it to a positive or negative label, that is,
OφQ,Alg : in → {⊕,
}.
OφQ,Alg(ini) = ⊕ if φQ(VQ(outi)) and OφQ,Alg(ini) = � if ¬φQ(VQ(outi)), where

outi = Alg(ini), and VQ(outi) is the evaluation of the predicates in VQ on outi

104 S. Jha et al.

We now formally define the problem of learning Boolean formula with spec-
ified confidence κ given an oracle to label examples.

Definition 4. The problem of oracle-guided learning of Boolean formula from
examples is to identify (with confidence κ) the target Boolean function φ over
a set of atomic propositions V by querying an oracle O that labels each input
ini (which is an assignment to all variables in V) as positive or negative {⊕,
}
depending on whether φ(ini) holds or not, respectively.

We make the following observations which relates the problem of finding
explanations for decisions made by AI algorithms to the problem of learning
Boolean formula.

Observation 1. The problem of generating explanation φR for the AI algorithm
Alg and an inquiry φQ is equivalent to the problem of oracle-guided learning of
Boolean formula using oracle OφQ,Alg as described in Definition 4.

φ[ri] denotes the restriction of the Boolean formula φ by setting ri to true
in φ and φ[ri] denotes the restriction of φ by setting ri to false. A predicate ri

is in the support of the Boolean formula φ, that is, ri ∈ support(φ) if and only
if φ[ri] �= φ[ri].

Observation 2. The explanation φR over a vocabulary of atoms VR for the
AI algorithm Alg and a user inquiry φQ is a sparse Boolean formula, that is,
|support(φR)| << |VR|.

These observations motivate the following problem definition for learning
sparse Boolean formula.

Definition 5. Boolean function φ is called k-sparse if |support(φR)| ≤ k. The
problem of oracle-guided learning of k-sparse Boolean formula from examples is
to identify (with confidence κ) the target k-sparse Boolean function φ over a
set of atomic propositions V by querying an oracle O that labels each input ini

(which is an assignment to all variables in V) as positive or negative {⊕,
}
depending on whether φ(ini) holds or not, respectively.

Further, the explanation of decisions made by an AI algorithm can be gen-
erated by solving the problem of oracle-guided learning of k-sparse Boolean for-
mula. In the following section, we present a novel approach to efficiently solve
this problem.

4 Learning Explanations as Sparse Boolean Formula

Our proposed approach to solve the k-sparse Boolean formula learning problem
has two steps:

1. In the first step, we find the support of the explanation, that is, support
(φR) ⊆ VR. This is accomplished using a novel approach which requires a
small number of runs (logarithmic in |VR|) of the AI algorithm Alg.

Sparse Boolean Learning for Explainable AI 105

2. In the second step, we find the Boolean combination of the atoms in VφR

which forms the explanation φR. This is accomplished by distinguishing input
guided learning of propositional logic formula which we have earlier used for
the synthesis of programs [16].

Before delving into details of the above two steps, we introduce addi-
tional relevant notations. Recall that the vocabulary of explanation is VR =
{r1, r2, . . . , rn}. Given any two inputs in1 and in2, we define the difference
between them as follows.

diff(in1, in2) = {i | ri(in1) �= ri(in2)}.

Next, we define a distance metric d on inputs as the size of the difference set,
that is,

d(in1, in2) = |diff(in1, in2)|
Intuitively, d(in1, in2) is the Hamming distance between the n-length vectors
that record the evaluation of the atomic predicates ri in VR. We say that two
inputs in1, in2 are neighbours if and only if d(in1, in2) = 1. We also define a
partial order � on inputs as follows:

in1 � in2 iff ri(in1) ⇒ ri(in2) for all 1 ≤ i ≤ n

Given an input in and a set J ⊆ {1, 2, . . . , n}, a random J-preserving muta-
tion of in, denoted mutset(in, J), is defined as:

mutset(in, J) = {in′|in′ ∈ in and rj(in′) = rj(in) for all j ∈ J}

Finding the Support: We begin with two random inputs in1, in2 on which
the oracle OφQ,Alg returns different labels, say it returns positive on in1 and
negative on in2 without loss of generality. Finding such in1, in2 can be done by
sampling the inputs and querying the oracle until two inputs disagree on the
outputs. The more samples we find without getting a pair that disagree on the
label, the more likely it is that the Boolean formula being used by the oracle to
label inputs is a constant (either true or false). We later formalize this as a
probabilistic confidence. Given the inputs in1, in2, we find J = diff(in1, in2) =
{i1, i2, . . . , il} on which the inputs differ with respect to the vocabulary VR =
{r1, r2, . . . , rn}. We partition J into two subsets J1 = {i1, i2, . . . , i�l/2�} and
J2 = {i�l/2�+1, i�l/2�+2, . . . , il}. The two sets J1 and J2 differ in size by at most
1. The set of inputs that are halfway between the two inputs w.r.t the Hamming
distance metric d defined earlier is given by the set bisect(in1, in2) defined as:

bisect(in1, in2) = {in′| ∀j ∈ J1 rj(in′) iff rj(in1),∀j ∈ J2 rj(in′) iff rj(in2)}

Satisfiability solvers can be used to generate an input in′ from bisect(in1, in2).
The oracle OφQ,Alg is run on in′ to produce the corresponding label. This label

106 S. Jha et al.

will match either the label for the input in1 or that of the input in2. We discard
the input whose label matches in′ to produce the next pair of inputs, that is,

introspect(in1, in2) =
{

(in1, in
′) if OφQ,Alg(in′) �= OφQ,Alg(in2)

(in′, in2) if OφQ,Alg(in′) �= OφQ,Alg(in1)

where in′ ∈ bisect(in1, in2)

Starting from an initial pair of inputs on which OφQ,Alg produces different labels,
we repeat the above process, considering a new pair of inputs at each iteration
until we have two inputs in1, in2 that are neighbours, with diff(in1, in2) = {j}.
Hence, rj ∈ VR is in the support of the explanation φR. We add this to the set
of variables VφR

. We repeat the above process to find the next variable to add to
the support set. For example, consider a 2-sparse Boolean formula x1 ∨ x2 over
the vocabulary set x1, x2, x3, x4, x5. Given two random samples (T, F, T, F, F) and
(F, F, F, T, T) - the first is labelled positive by oracle O and the second is negative.
The diff set is {1, 3, 4, 5} and the bisect produces a new example (T, F, T, T, T)
which is labelled positive. So, the next pair is (T, F, T, T, T) and (F, F, F, T, T). The
bisect now produces new example (T, F, F, T, T) which is labelled positive. Now,
the diff set is a singleton set {1}. So, x1 is in the support set of φR. This is
repeated to find the full support {x1, x2}. The efficiency of the introspection
process to obtain each variable is summarized in Lemma 1.

Lemma 1. The introspective search for each new variable rj ∈ VφR
takes at

most O(ln n) queries to OφQ,Alg.

Proof. The size of the difference set J = diff(in1, in2) for any inputs in1, in2 is
at most n for a vocabulary φR of size n. The i-th call to introspect reduces the
size of the difference set as follows: |J(i)| ≤ |J(i − 1)|/2 + 1. Thus, the number
of calls to introspect before the difference set is singleton and the two inputs
are neighbours, obtained by solving the above recurrence equation, is O(ln n).

This introspective search for variables in the support set VφR
is repeated till

we cannot find a pair of inputs in1, in2 on which the oracle produces different
outputs. We check this condition probabilistically using Lemma2.

Lemma 2. If m random samples in1, in2, . . . , inm from mutset(in, J) produce
the same output as input ‘in’ for the oracle OφQ,Alg where φR is k-sparse, then
the probability that all mutations in′ ∈ mutset(in, J) produce the same output is
at least κ, where m = 2k ln(1/(1 − κ)).

Proof. If all the mutations in′ ∈ mutset(in, J) do not produce the same output,
then the probability of the Oracle OφQ,Alg differing from the output of in for
any random sample in′ is at least 1/2k since the size of the set mutset(in, J) is
at most s = 2k. So,

(1 − 1/s)m ≥ 1 − κ ⇐ e(−1/s)m ≥ 1 − κ (since 1 − x ≤ e−x)
⇔ (−1/s)m ≥ ln(1 − κ) ⇔ m ≤ s ln(1/(1 − κ))

Sparse Boolean Learning for Explainable AI 107

We can now define sample(OφQ,Alg, in, J, κ) that samples m = 2k ln(1/(1 − κ))
inputs from the set mutset(in, J) and generates two inputs on which the oracle
OφQ,Alg disagrees and produces different outputs. If it cannot find such a pair
of inputs, it returns ⊥. The overall algorithm for finding the support of the
explanations φR with probability κ is presented in Algorithm 1.1 using the oracle
OφQ,Alg. It is a recursive algorithm which is initially called with a randomly
generated input in and an empty set J . Notice that the support of a sufficient
explanation can be found by making the recursive call on only one of the two
inputs, that is, getSupport(OφQ,Alg, in1, J, κ) or getSupport(OφQ,Alg, in2, J, κ)
instead of both.

Algorithm 1.1. Introspective computation of VφR
: getSupport(OφQ,Alg, in, J, κ)

if sample(OφQ,Alg, in, J, κ) = ⊥ then
return {} // The J-restricted Boolean formula is constant with probability κ.

else
(in1, in2) ⇐ sample(OφQ,Alg, in, J, κ)
while |diff(in1, in2)| �= 1 do

in1, in2 ⇐ introspect(in1, in2)
ri is the singleton element in diff(in1, in2), J ⇐ J ∪ {i}
return {ri} ∪ getSupport(OφQ,Alg, in1, J, κ) ∪ getSupport(OφQ,Alg, in2, J, κ)

Theorem 1. The introspective computation of the support set VφR
of variables

of the k-sparse Boolean formula φR defined over the vocabulary of size n using
at most O(2k ln(n/(1 − κ))) examples.

Proof. Each variable in VφR
can be found using an introspective search that

needs at most O(ln n) examples according to Lemma 1. So, the while loop in
Algorithm 1.1 makes at most O(ln n) queries. In Lemma 2, we showed that the
maximum number of examples needed for sample is O(2k ln(1/(1 − κ)). The
recursion is repeated at most O(2k) times. Thus, the overall algorithms needs at
most O(22k (ln(1/(1 − κ)) + lnn)), that is, O(22k ln(n/(1 − κ))) examples.

Learning Boolean Formula φR: Learning a Boolean formula that forms the
explanation φR for the given query φQ is relatively straight-forward once the vari-
ables VφR

which form the support of the Boolean formula have been identified.
Efficient techniques have been developed to solve this problem in the context of
program synthesis, and we adopt a technique based on the use of distinguishing
inputs proposed by us in [16]. The algorithm starts with a single random input
in1. The oracle OφQ,Alg is queried with the example and it is marked positive or
negative depending on the label returned by the oracle. A candidate explanation
φc

R is generated which is consistent with the positive and negative examples seen
so far. Then, the algorithm tries to find an alternative consistent explanation φa

R.
If such an alternate explanation φa

R cannot be found, the algorithm terminates
with φc

R as the final explanation. If φa
R is found, we find an input which distin-

guishes φc
R and φa

R and query the oracle with this new input in order to mark

108 S. Jha et al.

it as positive or negative. This refutes one of the two explanation formulae Rc

and Ra. We keep repeating the process until we converge to a single Boolean
formula. Algorithm 1.2 summarizes this learning procedure.

Theorem 2. The overall algorithm to generate k-sparse explanation φR for a
given query φQ takes O(2k ln(n/(1 − κ))) queries to the oracle, that is, the
number of examples needed to learn the Boolean formula grows logarithmically
with the size of the vocabulary n.

Algorithm 1.2. Learning φR given the vocabulary VφR
and oracle OφQ,Alg

Randomly sample an input in0

if OφQ,Alg(in0) = ⊕ then

E+ ⇐ E+ ∪ {in0}
else

E− ⇐ E− ∪ {in0}
φc

R = Boolean formula consistent with E+, E−

while Alternative φa
R consistent with E+, E− exists do

Generate distinguishing input in that satisfies (φc
R ∧ ¬φa

R) ∨ (φa
R ∧ ¬φc

R)
if OφQ,Alg(in) = ⊕ then

E+ ⇐ E+ ∪ {in}
else

E− ⇐ E− ∪ {in}
φc

R = Boolean formula consistent with E+, E−

return φc
R

Proof. The first-step to compute the support set VφR
of the explanation φR takes

O(2k ln(n/(1−κ))) queries and after that, the learning of explanation φR takes
O(2k) queries. So, the total number of queries needed is O(2k ln(n/(1 − κ))).

Thus, our algorithm adopts a binary search like procedure using the Ham-
ming distance metric d to find the support of the Boolean formula over a vocab-
ulary of size n using a number of examples that grow logarithmically in n. After
the support has been found, learning the Boolean formula can be accomplished
using the formal synthesis based approach that depends only on the size of the
support set and not on the vocabulary size n. Algorithms that do not exploit
sparsity have been previously shown to need examples that grow exponentially
in n [18,19] in contrast to the logarithmic dependence on n of the algorithm pro-
posed here. The proposed algorithm is very effective for sparse Boolean formula,
that is, k << n, which is often the case with explanations.

5 Experiments

We begin by describing the results on the motivating example of A* presented
in Sect. 2. The vocabulary is VQ = {onij for each cell i, j in the grid} where

Sparse Boolean Learning for Explainable AI 109

onij denotes the decision that i, j-th cell was selected to be on the final path,
and ¬onij denotes the decision that the i, j-th cell was not selected to be on
the final path. The vocabulary VR = {obstij} for each cell i, j in the grid
where obstij denotes that the cell i, j has an obstacle and ¬obstij denote that
the cell i, j is free. The explanation query is: “Why were no points in 25 ≤
i ≤ 50, j = 40 (around z) not considered on the generated path?” The inquiry
framed using VQ is

∧
25≤i≤50 ¬(oni,40). A sufficient explanation for this inquiry is

obst42,32 ∧ obst37,32 with κ set to 0.9. This is obtained in 2 min 4 s (48 examples).
The second query is for the area around x:

∧
0≤i≤20 ¬(oni,44) and the sufficient

explanation obtained is obst2,17∧obst2,18 in 2 min 44 s (57 examples). The third
query for area around y is

∧
0≤i≤5 ¬(oni,5) and the corresponding explanation is

obst4,17 ∧ obst4,18 which was obtained in 1 min 48 s (45 examples). Given the
177 obstacles, a naive approach of enumerating all possible explanations would
require 1.9 × 10153 runs of A* which is clearly infeasible in each of these three
cases. Even if we assumed that the number of explanations is 2 (but did not
know which two variables are in the support set), there are more than 15, 000
cases to be considered.

Fig. 2. Execution of reactive strategy for particular sequence of door closings. Each
Robot i is initially assigned to goal Area i, but they can swap if needed to achieve the
global goal (each marked Area must eventually get one robot). Brown lines indicate
closed doors preventing the robots’ motion. Time steps depicted are 0, 3, 4 and 24.
(Color figure online)

Explaining Reactive Strategy [26]: We also applied our approach to a reac-
tive switching protocol for multi-robot systems generated according to the app-
roach described in [26]. The task involves 4 robots operating in the workspace
depicted in Fig. 2. In the beginning, each robot is assigned the corresponding area

110 S. Jha et al.

to surveil (i.e. Robot i is assigned to Area i). Starting from their initial positions,
they must reach this region. However, in response to the opening and closing of
doors in the environment at each time step, they are allowed to swap goals. As
can be seen from the Fig. 2, robots 1 and 2 swap goals because the top door
closes, and robots 3 and 4 swap goals because the bottom door is closed. They
stand by these decisions even though the doors later reopen. The simulation
takes 24 time steps for all the robots to reach their final goals. The vocab-
ulary is VQ = {finalij for each robot i and area j}, where finalij denotes
that robot i ended up in area j. The vocabulary VR = {doortop,t, doorbot,t,
doorleft,t, doorright,t}, where doortop,t denotes that the door between the top
and middle row of areas is closed at time t, doorleft,t denotes that the door
between the left and middle column of areas is closed at time t, etc. We pose the
query,“Why did Robot 1 end up in Area 2?”, i.e. final12. Starting with the orig-
inal input sequence and one in which no door-related events occur, the generated
explanation is doorbot,3, which is obtained in 0.76 s, and 7 introspective runs
of the protocol on mutated inputs (door activity sequences). The second query
was, “Why did Robot 3 not end up in Area 3?”, or ¬final33. This took 0.61 s
and 6 runs to generate”, doortop,4. Given that there are 4 doors and 24 time
steps, a naive approach of enumerating all possible explanations would require
(24)24 = 7.9 × 1028 runs of the reactive protocol.

Explaining Classification Error in MNIST [21]: MNIST database of
scanned images of digits is a common benchmark used in literature to evaluate
image classification techniques. MNIST images were obtained by normalization
of original images into greyscale 28×28 pixel image. We consider a k-NN clas-
sifier for k = 9 as the machine learning technique. Some of the test images are
incorrectly identified by this technique and we show one of these images in Fig. 3
where 4 is misidentified as 9. We deploy our technique to find explanations for
this error. The k-NN classifier uses voting among the k-nearest neighbours to
label test data. We show the nearest neighbour with label ‘9’ to the misclassified
image in the figure below. This image of 4 had 6 neighbours which were labelled
‘9’. The oracle for generating explanations works as follows: If the number of
neighbours of the image labelled ‘9’ decreases from 6 (even if the final label from
the k-NN classifier does not change), the oracle marks the image as positive,
and negative, otherwise. The vocabulary of explanation is formed by 4×4 pixel
blocks (similar to superpixels in [29]) being marked completely dark or clear
(this corresponds to predicate abstraction of greyscale pixels). The set of atomic
propositions in the support of the explanation is illustrated in the third figure
by manually picking assignment values to support variables for purpose of illus-
tration. The last two figures show images which are filtered by two conjunctions
in the generated explanation. The generation of the explanation took 3 min 48 s
and required 58 examples where we initialized the algorithm with the images of
4 and 9 in the figure below.

Sparse Boolean Learning for Explainable AI 111

Fig. 3. Left to right: Misclassified image of ‘4’, closest image of ‘9’, changing all pix-
els corresponding to support of explanations, changing pixels for one of the sufficient
explanation, changing pixels for another sufficient explanation

6 Related Work

Our approach relies on learning logical explanations in the form of sparse
Boolean formula from examples that are obtained by carefully selected introspec-
tive simulations of the decision-making algorithm. The area of active learning
Boolean formula from positive and negative examples has been studied in liter-
ature [1,18] in both exact and probably approximately correct (PAC) setting.
Exact learning Boolean formula [3,19] requires a number of examples exponen-
tial in the size of the vocabulary. Under the PAC setting, learning is guaran-
teed to find an approximately correct concept given enough independent sam-
ples [2,23,25]. It is known that k-clause conjunctive normal form Boolean formula
are not PAC learnable with polynomial sample-size, even though monomials and
disjunctive normal form representations are PAC learnable [8,25]. Changing the
representation from CNF to DNF form can lead to exponential blow-up. In con-
trast, we consider only sparse Boolean formula and our goal is to learn the exact
Boolean formula with probabilistic confidence, and not its approximation. Effi-
cient learning techniques exist for particular classes of Boolean formulae such as
monotonic and read-one formulae [12,15], but explanations do not always take
these restricted forms, and hence, our focus on sparse Boolean formulae is better
suited for this context.

Another related research area is the newly emerged field of formal synthesis,
which combines induction and deduction for automatic synthesis of systems from
logical or black-box oracle specifications [16]. Unlike active learning, formal syn-
thesis is also concerned with defining techniques for the generation of interesting
examples and not just its inductive generalization, much like our approach. While
existing formal synthesis techniques have considered completion of templates by
inferring parameters [4,28,32], composition of component Boolean functions or
uplifting to bitvector form [7,13,16,35], inferring transducers and finite state-
machines [5,6,11], and synthesis of invariants [31,33], our work is the first to
consider sparsity as a structural assumption for learning Boolean formulae.

The need for explanations of AI decisions to increase trust of decision-making
systems has been noted in the literature [22]. Specific approaches have been
introduced to discover explanations in specific domains such as MDPs [9], HTNs
[14] and Bayesian networks [36]. Explanation of failure in robotic systems by

112 S. Jha et al.

detecting problems in the temporal logic specification using formal requirement
analysis was shown to be practically useful in [27]. Inductive logic program-
ming [10] has also been used to model domain-specific explanation generation
rules. In contrast, we propose a domain-independent approach to generate expla-
nations by treating the decision-making AI algorithm as an oracle. Domain-
independent approaches have also been proposed in the AI literature for detect-
ing sensitive input components that determine the decision in a classification
problem [29,34]. While these approaches work in a quantitative setting, such as
measuring sensitivity from the gradient of a neural network classifier’s ouput,
our approach is restricted to the discrete, qualitative setting. Further, we not
only detect sensitive inputs (support of Boolean formulae) but also generate the
explanation.

7 Conclusion and Future Work

We proposed a novel algorithm that uses a binary-search like approach to first
find the support of any sparse Boolean formula followed by a formal synthesis
approach to learn the target formula from examples. We demonstrate how this
method can be used to learn Boolean formulae corresponding to the explanation
of decisions made by an AI algorithm. This capability of self-explanation would
make AI agents more human-interpretable and decrease the barriers towards
their adoption in safety-critical applications of autonomy. We identify two dimen-
sions along which our work can be extended. First, our approach currently uses
a predicate abstraction to Boolean variables for learning explanations. We plan
to extend our technique to a richer logical language such as signal temporal logic
for explanations involving real values. Second, we need to extend our approach
to infer multiple valid explanations in response to an inquiry. This work is a first
step towards using formal methods, particularly, formal synthesis to aid artificial
intelligence by automatically generating explanations of decisions made by AI
algorithms.

References

1. Abouzied, A., Angluin, D., Papadimitriou, C., Hellerstein, J.M., Silberschatz, A.:
Learning and verifying quantified boolean queries by example. In: ACM Sympo-
sium on Principles of Database Systems, pp. 49–60. ACM (2013)

2. Angluin, D., Computational learning theory: survey and selected bibliography. In:
ACM Symposium on Theory of Computing, pp. 351–369. ACM (1992)

3. Angluin, D., Kharitonov, M.: When won’t membership queries help? In: ACM
Symposium on Theory of Computing, pp. 444–454. ACM (1991)

4. Bittner, B., Bozzano, M., Cimatti, A., Gario, M., Griggio, A.: Towards pareto-
optimal parameter synthesis for monotonie cost functions. In: FMCAD, pp. 23–30,
October 2014

5. Boigelot, B., Godefroid, P.: Automatic synthesis of specifications from the dynamic
observation of reactive programs. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol.
1217, pp. 321–333. Springer, Heidelberg (1997). doi:10.1007/BFb0035397

http://dx.doi.org/10.1007/BFb0035397

Sparse Boolean Learning for Explainable AI 113

6. Botinčan, M., Babić, D., Sigma*: Symbolic learning of input-output specifications.
In: POPL, pp. 443–456 (2013)

7. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. FMSD 43(1), 93–120 (2013)

8. Ehrenfeucht, A., Haussler, D., Kearns, M., Valiant, L.: A general lower bound on
the number of examples needed for learning. Inf. Comput. 82(3), 247–261 (1989)

9. Elizalde, F., Sucar, E., Noguez, J., Reyes, A.: Generating explanations based on
Markov decision processes. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.)
MICAI 2009. LNCS (LNAI), vol. 5845, pp. 51–62. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-05258-3 5

10. Feng, C., Muggleton, S.: Towards inductive generalisation in higher order logic. In:
9th International Workshop on Machine learning, pp. 154–162 D (2014)

11. Godefroid, P., Taly, A.: Automated synthesis of symbolic instruction encodings
from i/o samples. SIGPLAN Not. 47(6), 441–452 (2012)

12. Goldsmith, J., Sloan, R.H., Szörényi, B., Turán, G.: Theory revision with queries:
Horn, read-once, and parity formulas. Artif. Intell. 156(2), 139–176 (2004)

13. Gurfinkel, A., Belov, A., Marques-Silva, J.: Synthesizing safe bit-precise invariants.
In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 93–108.
Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 7

14. Harbers, M., Meyer, J.-J., van den Bosch, K.: Explaining simulations through self
explaining agents. J. Artif. Soc. Soc. Simul. 13, 10 (2010)

15. Hellerstein, L., Servedio, R.A.: On PAC learning algorithms for rich boolean func-
tion classes. Theoret. Comput. Sci. 384(1), 66–76 (2007)

16. Jha, S., Seshia, S.A.: A theory of formal synthesis via inductive learning. Acta
Informatica, pp. 1–34 (2017)

17. Jha, S., A. Seshia, and A. Tiwari. Synthesis of optimal switching logic for hybrid
systems. In: EMSOFT, pp. 107–116. ACM (2011)

18. Kearns, M., Li, M., Valiant, L.: Learning boolean formulas. J. ACM 41(6), 1298–
1328 (1994)

19. Kearns, M., Valiant, L.: Cryptographic limitations on learning boolean formulae
and finite automata. Journal of the ACM (JACM) 41(1), 67–95 (1994)

20. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge
(2006)

21. Lecun, Y., Cortes, C.: The MNIST database of handwritten digits. http://yann.
lecun.com/exdb/mnist/

22. Lee, J., Moray, N.: Trust, control strategies and allocation of function in human-
machine systems. Ergonomics 35(10), 1243–1270 (1992)

23. Mansour, Y.: Learning boolean functions via the fourier transform. In: Theoretical
Advances in Neural Computation and Learning, pp. 391–424 (1994)

24. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers Inc., San Francisco (2004)

25. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J.
ACM (JACM) 35(4), 965–984 (1988)

26. Raman, V.: Reactive switching protocols for multi-robot high-level tasks. In:
IEEE/RSJ, pp. 336–341 (2014)

27. Raman, V., Lignos, C., Finucane, C., Lee, K.C.T., Marcus, M.P., Kress-Gazit, H.:
Sorry Dave, I’m afraid i can’t do that: explaining unachievable robot tasks using
natural language. In: Robotics: Science and Systems (2013)

28. Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-
guided quantifier instantiation for synthesis in SMT. In: Kroening, D., Păsăreanu,
C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp. 198–216. Springer, Cham (2015).
doi:10.1007/978-3-319-21668-3 12

http://dx.doi.org/10.1007/978-3-642-05258-3_5
http://dx.doi.org/10.1007/978-3-642-54862-8_7
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.1007/978-3-319-21668-3_12

114 S. Jha et al.

29. Ribeiro, M.T., Singh, S., Guestrin, C.: Why Should I Trust You?: Explaining the
predictions of any classifier. In: KDD, pp. 1135–1144 (2016)

30. Russell, J., Cohn, R.: OODA Loop. Book on Demand, Norderstedt (2012)
31. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using

ideal fixed points. In: HSCC, pp. 221–230 (2010)
32. Sankaranarayanan, S., Miller, C., Raghunathan, R., Ravanbakhsh, H., Fainekos, G.:

A model-based approach to synthesizing insulin infusion pump usage parameters
for diabetic patients. In: Annual Allerton Conference on Communication, Control,
and Computing, pp. 1610–1617, October 2012

33. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. FMSD 32(1), 25–55 (2008)

34. Štrumbelj, E., Kononenko, I.: Explaining prediction models and individual predic-
tions with feature contributions. KIS 41(3), 647–665 (2014)

35. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp.
54–70. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 4

36. Yuan, C., Lim, H., Lu, T.-C.: Most relevant explanation in bayesian networks. J.
Artif. Intell. Res. (JAIR) 42, 309–352 (2011)

http://dx.doi.org/10.1007/978-3-662-49674-9_4

Event-Based Runtime Verification of Temporal
Properties Using Time Basic Petri Nets

Matteo Camilli1(B), Angelo Gargantini2, Patrizia Scandurra2,
and Carlo Bellettini1

1 Department of Computer Science, Università degli Studi di Milano, Milan, Italy
{camilli,bellettini}@di.unimi.it

2 Department of Management, Information and Production Engineering (DIGIP),
Università degli Studi di Bergamo, Bergamo, Italy

{angelo.gargantini,patrizia.scandurra}@unibg.it

Abstract. We introduce a formal framework to provide an efficient
event-based monitoring technique, and we describe its current imple-
mentation as the MahaRAJA software tool. The framework enables the
quantitative runtime verification of temporal properties extracted from
occurring events on Java programs. The monitor continuously evaluates
the conformance of the concrete implementation with respect to its for-
mal specification given in terms of Time Basic Petri nets, a particular
timed extension of Petri nets. The system under test is instrumented by
using simple Java annotations on methods to link the implementation
to its formal model. This allows a separation between implementation
and specification that can be used for other purposes such as formal
verification, simulation, and model-based testing. The tool has been suc-
cessfully used to monitor at runtime and test a number of benchmarking
case-studies. Experiments show that our approach introduces bounded
overhead and effectively reduces the involvement of the monitor at run
time by using negligible auxiliary memory. A comparison with a number
of state-of-the-art runtime verification tools is also presented.

Keywords: Runtime verification · Formal methods @ runtime · Timing
analysis · Temporal properties · Petri nets

1 Introduction

Software systems are increasingly employed in most domains and activities,
including safety critical ones. Therefore, the society increasingly relies on soft-
ware, and unreliable or unpredictable behavior is becoming less and less toler-
ated. As a consequence, over the past years, the validation of software systems
has become an increasingly important and active research area.

Event-based runtime verification [1] is the monitoring of running programs to
verify the occurring events against the requirements. A particularly challenging
aspect is the monitoring of temporal properties in the presence of strict time

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 115–130, 2017.
DOI: 10.1007/978-3-319-57288-8 8

116 M. Camilli et al.

constraints. In fact, monitoring at runtime introduces overheads on the System
Under Test (SUT) that may affect the correctness of the verified properties.

In this paper, we introduce a formal event-based runtime verification frame-
work and we describe its current implementation as a Java software tool, so
called MahaRAJA1. This framework enables the monitoring of Java programs,
by evaluating the conformance of the concrete implementation with respect to
its formal specification given in terms of Time Basic (TB) Petri nets [2] (or sim-
ply TB nets), a powerful temporal extension of Petri nets (PNs) for modeling
concurrent/distributed systems with real-time constraints.

Although descriptive formalisms are very popular in runtime verification
[3], the adoption of operational specifications, like in our approach, offers some
advantages with respect to declarative specifications [4,5]. They are usually eas-
ier to write, visualize, understand, and allow for step-wise model refinement [6].
Moreover, although other operational formalisms such as timed-automata [7] or
finite-state-machines [8] support the modeling of temporal or behavioral aspects,
PNs-based approaches can be more concise and easier to use [9]. Furthermore,
aspects such as messaging, communication protocols, which are commonly used
in concurrent or distributed systems, can be difficult to model with the language
primitives of timed-automata [10,11]. Finally, despite several state-based, logic-
based, and event-based notations have been used for runtime verification [1], our
work is the first attempt (to the best of our knowledge) exploiting the expres-
siveness of the TB nets for verifying temporal properties at runtime.

The MahaRAJA framework requires the SUT to be instrumented by using
simple Java annotations on methods, in order to link the implementation to its
formal model. Then, at runtime, the execution of the events of interest triggers
the conformance verification of temporal properties. Rather than using heavy
offline computation to predict the generation rate of possibly invalid events to
estimate the maximum detection latency [12], we use an online approach that
focuses on maintaining the analysis as lightweight as possible. MahaRAJA
operates on and in conjunction with the SUT and it performs data collection
and processing asynchronously with the SUT execution. The monitor and the
SUT run concurrently on separated CPU cores using a buffer-based mechanism
for communication. Our approach tries to bound the cost of executing the SUT
instrumentation by having a bounded number of instructions executed upon
the generation of possible invalid events. This runtime verification procedure is
highly scalable because it does not depend on the size of the entire state space
(often far larger than the model size [13]). It operates using just an occurring
event and the 1-step reachability set of the current model’s state, thus using
limited extra memory.

The tool has been applied to a number of benchmarking case studies [14]
and we experimentally evaluated the runtime overhead, making it possible for
a system designer to reason about the timing constraints of the SUT. The
experiments show that MahaRAJA introduces limited monitoringoverhead and

1 Monitoring at Runtime of temporAl properties on Java Applications.

Event-Based Runtime Verification of Temporal Properties 117

limited detection latency, thereby opening up the possibility to adopt a fast
failing approach or implement a self-healing procedure [15] in a latency-aware
adaptation setting.

The paper is organized as follows. Section 2 introduces the proper background
on TB nets. Section 3 introduces the formalization of our technique and Sect. 4
describes our current software implementation. Section 5 introduces our exper-
imental evaluation of the runtime overhead, making it possible for a system
designer to reason about the timing constraints of the SUT. Section 6 compares
our monitoring framework with a number of state-of-the-art runtime verifica-
tion tools, thus showing both advantages and disadvantages of our framework.
Finally, Sect. 7 presents our conclusion and future directions of our work.

2 Background on Time Basic Nets

This section briefly introduces the TB nets formalism by means of a running
example, i.e., the timed producer/consumer (P/C) model reported in Fig. 1.

TB nets are a formal model for distributed systems with real-time constraints.
This modeling formalism is more expressive then other temporal extensions of
PNs and it supports both time and functional extensions in a semantically clear
and rigorous way [2]. Thus it represents an effective formal model to deal with
specification of highly concurrent systems with real-time constraints.

The structure of a TB net [2,16] is a bipartite graph N = (P, T, F), where
P is the finite set of places (i.e., system state variables), T is the finite set of
transitions (i.e., events causing state changes), F ⊆ (P × T) ∪ (T × P) is the
flow relation. The pre/post-sets of t ∈ T are •t= {p ∈ P : (p, t) ∈ F} and
t•={p ∈ P : (t, p) ∈ F}, respectively.

P2

P1

Buffer

Produce

C2

Consuming

CTask

Consume-e

PRODUCER CONSUMER

PTask
C1

Consume-s

Initial marking: m0 : P1{T0}, C1{T0}, T0 = 0

Time functions:
PTask [P1 + 1000, P1 + 2500]
Produce [P2, P2 + 1000]
Consume-s [C1, C1 + 1000]
Consume-e [max(Buffer, Consuming+1000), max(Buffer, Consuming+1000) + 5000]
CTask [C2 + 1000, C2 + 2000]

Fig. 1. Producer-consumer TB net model.

118 M. Camilli et al.

The P/C example describes two processes that asynchronously interact
through the place Buffer. After producing (respectively, consuming), the two
processes perform some local activity (i.e., PTask and CTask).

In TB nets, tokens are enriched by timestamps recording their creation time.
Each place can contain a multiset (bag) of tokens2. A marking (i.e., a represen-
tation of the system state) is a mapping m : P → Bag(R≥0), that associates
time-stamps to tokens in places (e.g., m0 in Fig. 1).

Time constraints are associated with transitions: two (linear or linearizable)
functions associated to each transition t define the lower and the upper bounds
([lb, ub]t) of the interval of real values representing its possible firing times (e.g.,
[P1 + 1000, P1 + 2500] associated with PTask). Tokens produced by the atomic
firing of a transition are time-stamped with the same value. The actions of
removing and creating tokens are performed instantaneously.

A binding of t is a function bt : •t → R≥0 that represents a set of time-stamps
possibly causing t to be fired. The numerical interval fbt : [lb(bt), ub(bt)] holds
the possible firing times for bt and it is evaluated by replacing each occurrence
of a place p (free variable) with bt(p).

For instance, consider the transition Consume-e and the following binding:
bConsume-e: {Buffer → 2000, Consuming → 2500}. According to the time function
of Consume-e, the firing times range over [3500, 8500].

Starting from the marking m, a binding bt is enabled if and only if fbt �= ∅.
A firing instance of t is a pair (bt, τ) composed of an enabled binding and a real
value τ ∈ fbt . The firing of t results in a new marking m′:

∀p ∈ P,m′(p) = m(p) − ibt(p) + oτ
t (p)

where ibt(p) is 1 · bt(p) if p ∈ •t, the null bag otherwise, oτ
t (p) is 1 · τ if p ∈ t•,

the null bag otherwise, and +,− operators are extended to bags. This is denoted

m
(bt,τ)−→ m′.
For instance, the binding bConsume-s: {C1 → 0} is enabled in the marking m0.

Thus, the firing instance (bConsume-s, 450) is valid. The firing process produces a
new marking m1. In particular, it withdraws the token from place C1 and it puts
a fresh new token, time-stamped with the value 450, into Consuming.

The interval fbt can be interpreted in two different ways. The weak seman-
tics states that t can fire at any instant in fbt . The strong semantics instead
states that t must fire at any instant in fbt , unless it is disabled by a conflicting
transition fired before the upper bound of fbt (refer to [2] for the details). Our
running example adopts a strong semantics.

The marking mn is reachable from m0 if and only if there exists a path σ
(sequence of firing instances and markings) such that:

σ = m0

(bt0 ,τ0)

−−−−→ m1

(bt1 ,τ1)

−−−−→ m2, . . . ,mn−1

(btn−1 ,τn−1)

−−−−−−−−→ mn

The transitions associated with the enabled bindings in m are called enabled
transitions and they are denoted by enab(m).
2 b ∈ Bag(X) is a map X → N, formally expressed as a weighted sum of X elements.

Event-Based Runtime Verification of Temporal Properties 119

3 Event-Based Runtime Verification

This section introduces the formalization of our event-based monitoring app-
roach. In order to abstract the behavior of a running program P, let us introduce
the observable components of P, so called action methods.

Definition 1 (Action method). Given a program P, an action method is
a subroutine performing a specific task, such that its execution is observed at
runtime.

The action methods are the events of interest that we want to observe and
verify with respect to the expected behavior provided in terms of a TB net formal
specification. During the execution of P, we extract temporal information from
the action methods depending on their own action time.

Definition 2 (Action time). Given a program P and a set of action methods
A, the action time function Γ maps action methods in A to a non empty set of
elements in T = {initial, final}.

Intuitively, the action time determines the moment (i.e., time instant) at
which we want to observe the action methods. Γ (a) = {initial}, implies that
a is observed at its own invocation time. The temporal information extracted
from the execution of a is a timestamp representing the initial time. Similarly, if
Γ (a) = {final}, a is observed at its own final time; if Γ (a) = {initial, final},
a is observed both at invocation and termination time.

Given the observable components and the action time function, we use the
notion of timed trace to abstract the behavior of a running real-time system.

Definition 3 (Timed trace). Given a program P and a set of action methods
A = {a0, a1, . . . , am}, a timed trace is a finite sequence of events π = e0, e1, . . . , en,
such that each event e ∈ π is a triplet 〈a, g, v〉, where:

– a ∈ A is the action method that triggers the event. We denote it with α(e).
– g ∈ Γ (a) is the moment associated with the event. We denote it with γ(e).
– v ∈ R>0 is the timestamp associated with the event. We denote it with ρ(e).

As an example, consider the code excerpts reported in Fig. 2. They represent
a Java implementation of the Producer and the Consumer, respectively, in a
simple producer-consumer program. The Consumer calls the consume method
that retrieves and removes a Data object from the Buffer, waiting if necessary
until an element becomes available. Then it performs some additional tasks using
the new element through the consumerTask method. The Producer creates a
new Data object through the producerTask method and then it pushes the
element into the Buffer.

The set of action methods is defined as A = {produce, producerTask, con-
sume, consumerTask}, while the action type function is Γ : {produce → {final},
producerTask → {final}, consumerTask → {initial}, consume → {initial,
final}}.

120 M. Camilli et al.

The rationale behind the Γ function is explained by means of the following
example. Both the produce (Fig. 2, line 8) and the producerTask (line 12) action
methods maps to {final} action time. In fact, the two action methods affect
the behavior of the program at the end of their own execution: the producerTask
method creates a new data element that becomes available at the end of the
method execution; the produce puts the new data element into the buffer data
structure and then terminates itself. Therefore, we want to observe only the final
time of these action methods. Instead, the consumerTask action method (Fig. 2,
line 13) processes the new data by launching an external asynchronous task. In
this case we are just interested in knowing whether the external task is called in
due time. Therefore, the consumerTask maps to {initial} action time. Finally,
the execution of the consume action method (Fig. 2, line 8) causes the program
to wait until a new element becomes available, which is consumed and returned
at the end of the method execution. Hence, for each (multiple) execution of the
consume action method, we want to observe both the initial and the final time.
In fact, we may want to check that the consumer does not wait for available data
more than a specific time limit.

The execution of the producer-consumer program can generate, for instance,
the timed trace π reported in (1).

π = e0 : 〈consume, initial, 450〉,
e1 : 〈producerTask , final, 1100〉,
e2 : 〈produce, final, 1205〉,
e3 : 〈consume, final, 1650〉,
e4 : 〈consumerTask , initial, 2886〉.

(1)

It is worth noting that consume occurs twice in π. In fact, the Γ function maps
the consume action method both to initial and final, thus its own execution
generates two different events timestamped with the initial and the final time,
respectively.

Fig. 2. Java implementation of the Producer and Consumer.

Event-Based Runtime Verification of Temporal Properties 121

Another important observation is that the program can perform inside the
action methods different nested methods calls not belonging to A, therefore these
are not observed at runtime. This allows us to build timed traces with different
levels of granularity.

The construction of a timed trace is formalized as follows.

Definition 4 (Timed trace construction). Given a running program P, the
set of action methods A and the action time function Γ , the timed trace π is
constructed from the execution of each a ∈ A such that:

∀g ∈ Γ (a), 〈a, g, v〉 ∈ π,

where v is the timestamp associated with the moment g.

The timed trace constructed following Definition 4 includes only the events
of interest defined by the action methods and the action time function.

To formalize the conformance relation between a running program P and its
formal specification, let us introduce first the notion of action method mapping.

Definition 5 (Action method mapping function). Given a TB net struc-
ture (P, T,E) and the set of action methods A associated with the program P,
the action method mapping function Λ associates each element a ∈ A and each
moment g ∈ Γ (a) to a transition Λ(a, g) ∈ T .

We use this mechanism to bind action methods in the implementation to
transitions in the model. This way, the conformance verification can be per-
formed by checking that all the events of a timed trace correspond to feasible
firing transitions in the formal specification. The formalization is reported below:

Definition 6 (Path Conformance). Given a timed trace π and an execution
path σ of a TB net model, there exists a conformance relation between π and σ
iff. for each ei ∈ π, there exists mi ∈ σ such that:

(i) Λ(α(ei), γ(ei)) = ti (i.e., ei is mapped to transition ti)
(ii) ρ(ei) ∈ fbti

(i.e., the timestamp of ei belongs to the firing times of ti)

Definition 7 (Model Conformance). Given a timed trace π and a TB net
model N and the Λ function, there is a conformance relation between π and N
iff. there exists a feasible execution path σ of N , such that π conforms to σ,
according to Λ.

For example consider the timed trace π introduced in (1) and the following
definition of the mapping function Λ :

Λ(producerTask , final) = PTask Λ(produce, final) = Produce
Λ(consume, initial) = Consume-s Λ(consume, final) = Consume-e
Λ(consumerTask , initial) = CTask

In this case, there exists a conformance relation between π and the producer-
consumer TB net reported in Fig. 1. In fact, from the initial marking m0 the

122 M. Camilli et al.

transition Consume-s is enabled with the following binding bConsume-s: {P1 → 0}.
The timestamp ρ(e0) = 450 belongs to fbConsume−s

: [0, 1000], thus we observe a
valid event, and we can compute the next marking m1, reachable from m0 by
firing the Consume-s transition at time 450.

m1 : P1{T0},Consuming{T1};T0 = 0, T1 = 450.

The transition PTask is enabled from m1 by the binding bPTask: {P1 → 0}.
The timestamp 1100, associated with the second event e1 belongs to fbPTask :
[1000, 2500], thus we observe a valid event, and we can compute the next marking
m2, reachable from m1 by firing the PTask transition at time 1100.

m2 : P2{T1},Consuming{T0};T0 = 450, T1 = 1100.

And so forth, until we process the last action method. The complete path σ,
such that π conforms to σ is:

m0

(bConsume-s,450)−−−−−−−−→ m1

(bPTask,1100)−−−−−−−−→ m2

(bProduce,1205)−−−−−−−−→ m3

(bConsume-e,1650)−−−−−−−−→ m4

(bCTask,2886)−−−−−−−−→ m5

4 The MahaRAJA Framework

We implemented the runtime verification technique presented in the previous
section as a Java library3. The main component of the library is the Monitor,
i.e., a system that observes and analyzes an executing SUT (Java program) in
order to verify its correctness by comparing the observed behavior (i.e., ordered
timed trace) with an expected behavior (i.e., feasible execution path) of the TB
model given in input as a PNML file [18]. The model can be easily generated
using a graphical user interface that allows the user to create and edit arbitrary
complex TB net models through simple drag and drop gestures.

The input program is linked to the formal specification exploiting the mech-
anism of Java annotations to map action methods to corresponding transitions
(i.e., the mapping function introduced in Definition 5). The Monitor is executed
in a separated thread and is composed of the following modules: the Observer,
the Analyzer and the Executor.

The Observer module makes use of AspectJ [19] to observe code execution
and trigger the verification of the conformance relation, performed by the Ana-
lyzer component. The framework defines a set of annotations4 used to define
the Γ action type function and the Λ action methods mapping function. The
following annotations were inserted into the producer-consumer program:

3 The source code, binaries, and some runnable examples can be found at [17].
4 They are recorded in class files by the compiler and retained by the virtual machine

at run time, so they can be read reflectively by the Observer component.

Event-Based Runtime Verification of Temporal Properties 123

Algorithm 1. Conformance verification procedure
1: function verify(m, e)
2: conformance = False
3: if Λ(e) ∈ enab(m) then
4: τ = ρ(e)
5: for all 〈bt, fbt 〉 ∈ enab(m) s.t. t = Λ(e) do

6: if τ ∈ fbt then

7: m′ = computeNext(m, t, τ)
8: addNext(m′)
9: conformance = True
10: end if
11: end for
12: end if
13: return conformance
14: end function

As an example, the @AroundType annotation maps the consume action
method to {initial, final} action times, thus observable both before and after
its own execution. For each invocation we observe two events: the first event is
bound to the trI transition; the second event is bound to the trF transition.

The execution of the methods annotated by @BeforeType, @AfterType and
@AroundType are handled by @Before, @After and @Around AspectJ advice
types [19], respectively, to generate the proper inital and/or final observable
events. The Observer module inspects the execution of the SUT by using the
facilities of AspectJ and generate observable events into the event queue by
injecting additional code upon the execution of the action methods.

The Analyzer module incrementally builds the timed trace π through the ver-
ification procedure reported in Algorithm1. For each occurring event e, extracted
from the event queue, the Analyzer launches the verification procedure, passing
as argument the current marking m ∈ σ and the current event e. Thus, it verifies
that in the input model, the transition t, retrieved by applying the Λ function,
is enabled from the current marking m (line 3) and the time ρ(e) belongs to fbt

(line 6). If this condition holds, the Executor component updates the trace σ
(line 7) creating a new reachable marking with the proper timestamp ρ(e).

It is worth noting that, given an event e and a reachable marking m, there
can be multiple enabled bindings for the transition t (line 5). In this case, for
each binding, we compute a new reachable marking m′ and we put it into the
reachability set (line 8) representing all the valid next steps of σ. During the
construction of the σ path, for each event e it is fundamental to maintain the
entire 1-step reachability set for the transition t (instead of a single reachable
marking), in order to avoid false alarms (i.e., unreal inconsistencies between
the code and its specification) during the conformance checking. The Verify
function is executed for each marking in the reachability set. If there does not
exist any marking in the reachability set such that the verification procedure
is successful, the Analyzer does not verify the conformance relation between π
and σ, thus a conformance failure exception is thrown. This exception contains
useful information about the throwing action method, along with the timestamp
associated to this event and the set of enabled bindings (i.e., the expected events).
The Analyzer module do not need to store the full history of both π and σ, thus

124 M. Camilli et al.

it requires limited extra memory. Moreover, the verification procedure is scalable
with respect to the SUT size, in fact its own time complexity (i.e., O(|enab(m)|))
does not depend on either the model size or the entire state space, but just on
the number of enabled bindings in the current marking.

To alleviate possible burst of the monitoring overhead, our framework makes
use of the Java Thread Affinity [20] library to separate the execution of
the SUT and the Monitor into different isolated CPU cores, decreasing the
latency caused by suspending and resuming important running tasks. Moreover,
MahaRAJA let the user define a tolerance that should be set to the expected
monitor invocation overhead. The tolerance allows two levels of risk to be defined:
warning and error corresponding to a timing constraint violation respectively
in- and outside the tolerance range. By default the tolerance is disabled, in fact,
its definition involves the evaluation of the monitor invocation overhead, which
is not an easy task and it strictly depends on the underlying hardware/software
environment.

In order to help the user to increase the confidence about the correctness of
the SUT, the MahaRAJA software tool can be used in conjunction with JUnit
to generate different monitored test cases. This way, the user can integrate our
runtime verification technique with assertions on variables and on specific goal
conditions, given in terms of time constraint (i.e., a logical predicate formed by
linear inequalities involving timestamps) on the observed timed trace [17].

The next section introduces our experimental results that could also be used
as a guide to evaluate the runtime overhead in order to reason about the timing
constraints of the SUT.

5 Experimental Validation

We validated the MahaRAJA framework by collecting data at runtime and per-
forming a testing activity on a number of real-time benchmarking examples [14]
summarized in Table 1: a simple producer-consumer (P/C) application, a cruise-
control (CC) system, an automated teller machine (ATM) software system, an
elevator (EL) controller and a factory (FA) automation distributed system.

Table 1. Case studies.

Case study |P | |T | SLOC Tasks Frequency

P/C 5 4 208 3 4,19

CC 11 16 1185 4 2,65

ATM 12 25 1409 3 1,57

EL 18 24 1231 5 1,12

FA 14 12 996 10 1,09

The model size is reported in terms of number of places (|P |) and number of
transitions (|T |). The SLOC column reflects the source lines of code number in

Event-Based Runtime Verification of Temporal Properties 125

the corresponding Java SUT. The tasks column contains the number of parallel
threads (or process in case of distributed computing) composing the SUT. The
frequency column reports the average number of monitor invocations per second.

The monitoring process ran in parallel with the SUT in a machine equipped
with a Intel Xeon E5-2630 at 2.30 GHz CPU, 32 GB of RAM, the Ubuntu 14.04.3
LTS (GNU/Linux 3.13.0-39-generic x86 64) operating system with a completely
fair scheduler [21], and the Java HotSpot 1.8 64-Bit Server virtual machine
using the Garbage-First (G1) collector tuned to avoid full runs5. Data about
runtime overhead is reported in this section. They were extracted from program
executions monitoring ∼106 events. The runtime overhead has been assessed
considering the following metrics.

– Monitoring Overhead: The monitoring overhead is caused by the AspectJ
instrumentation (AJO) and the monitor invocation overhead (MIO). Table 2
reports the average values (in μs) of these two different components, for each
running case study. The average AJO values, introduced by the invocation
of AspectJ advices, strictly depend on the byte code generated from the
annotated program by using the ajc compiler [19]. Generally, we observed a
lower AJO within @Before advices (i.e., events with initial action time)
and a higher AJO within @Arounde advices (i.e., events with both initial
and final action time). The order of magnitude of the measured AJO values
is approximately 10µs (see Table 2).
The MIO (i.e., the time required to enqueue an occurring event into the event
queue) does not depend on the action time. In general, both the MIO and the
AJO have the same order of magnitude, but the average MIO is 50% lower.
Thus, the overhead introduced by AspectJ dominates the overall monitoring
overhead. Although the distribution of the MIO values for different programs
are very similar, a different monitor invocation frequency (e.g., the CC fre-
quency is 47% lower than the P/C one) impacts on the average MIO. For
instance, the average P/C MIO is lower then the average CC MIO (approxi-
mately 16% lower).

– Jitter: The Jitter represents the deviance between the monitoring overhead
values. The results reported in Table 2 show that the order of magnitude of
the AJO jitter and the MIO jitter is the same (approximately 10µs). We
found that the AJO jitter, for all the action method types, is approximately
43% lower than the MIO jitter. While the AJO jitter strictly depends on the
behavior of AspectJ at runtime, the MIO jitter depends on the state of the
Monitor during the execution of the action methods. In fact, a suspended
Monitor causes a burst of the MIO due to the time required by resuming it,
during the enqueuing of an acton method into an empty event queue.

– Detection latency: Bounding the detection latency (DL) makes it possi-
ble for the Monitor to quickly recognize a conformance failure, thus making
the SUT able to promptly react to a degraded situation though a recovery
procedure.

5 Additional information about the configurations of MahaRAJA and the JVM is
available at [17].

126 M. Camilli et al.

Table 2 reports the average DL in μs. Our experience indicates the follow-
ing trend: the higher the frequency is, the lower the DL is. This behavior is
caused by the overhead of resuming a suspended Monitor thread. In fact, a
low frequency implies an empty event queue almost all the execution time
long. In this case, it is very likely to observe the Monitor resumption upon
an incoming event. Therefore, although different programs lead to similar DL
distribution, lower monitor invocation frequency results in more scattered DL
values. The results obtained from our experiments show that MahaRAJA
reacts to a conformance failure with a DL of the order of 1 ms.

– Memory Overhead: The memory overhead is the space used by the Java
virtual machine to run and maintain the Monitor component. Table 2 shows
that MahaRAJA requires negligible auxiliary memory (few KBytes on aver-
age). Gathered data shows that this value is related to the monitor invocation
frequency: the higher is the frequency, the higher is the memory overhead. In
fact, a high frequency implies the accumulation of events into the event queue.

Table 2. Monitoring overhead experiments results.

Case study P/C CC ATM EL FA

AJO (µs) Before 43.8 48.5 45.0 44.5 50.1

After 59.0 51.5 47.4 52.3 52.8

Around 53.4 53.8 53.1 61.4 58.3

AJO Jitter (µs) Before 28.2 30.9 36.6 37.1 33.0

After 27.2 24.8 19.6 20.6 20.3

Around 22.8 12.5 26.2 27.6 34.5

MIO (µs) 28.0 23.6 24.0 23.0 24.1

MIO Jitter (µs) 45.5 45.4 44.8 50.4 45.7

DL (µs) 874.7 1221.9 1243.9 1274.4 1335.6

Memory (KB) 10838 5302 3503 2083 1734

6 Related Work and Comparative Evaluation

This section mentions the main approaches in the field of event-based runtime
verification, and reports also a qualitative comparative evaluation of these tools
for the runtime verification of Java programs. A preliminary quantitative com-
parison is available at [17].

CoMA [22] is a formal specification-based software tool that can continu-
ously monitor the behaviors of a target Java program and recognize undesirable
behaviors in the implementation with respect to its formal specification given
in terms of Abstract State Machines (ASMs). Java PathExplorer (JPaX) [23] is
a system for monitoring the execution of Java programs. The system extracts

Event-Based Runtime Verification of Temporal Properties 127

an execution trace (as a sequence of events) from a running program and veri-
fies that the trace satisfies certain (past and future) LTL properties. Monitored
bytecode is instrumented (by using JTrek) and an observer can check during run-
time that the properties are never violated. The Java Monitoring and Check-
ing (MaC) architecture [24] supplies two different specification languages: the
Primitive Event Definition Language (PEDL) and Meta Event Definition Lan-
guage (MEDL) allowing for a separation between the definition of the primitive
events of a system and the system properties. Instrumented programs send an
event stream to the event recognizer to identify higher-level activities, which are
in turn processed to find property violations. HAWK [25] is a programming-
oriented extension of the rule-based EAGLE logic [26] that has been shown
capable of defining and implementing a range of finite trace monitoring logics,
including future and past time temporal logic, extended regular expressions, and
state machines. It is implemented as a Java library able to perform monitoring
through a state-by-state comparison, avoiding to store the entire input trace.

Larva [27] is an event-based runtime verification monitoring tool for temporal
and contextual properties of Java programs. The technique implemented in Larva
makes use of dynamic communicating automata with timers and events (DATE)
to describe properties of systems.

Monitored-oriented programming (MOP) [3] allows the source code of the
SUT to be annotated with formal property specifications that can be written in
any supported formalism. The formal specifications are translated in the target
programming language. Thus, the obtained monitoring code can be used either
at runtime or offline by checking traces recorded by probes. In this case, the
violation handling mechanism is itself part of the design of the SUT, rather than
an additional component on top of the system.

The analysis technique in [12] tries to estimate the rate of possible invalid
occurring events and the maximum detection latency to realize predictable mon-
itoring schemas. However, this is not always applicable due to different patterns
in the occurrence of monitored events for different execution scenarios of the
SUT [28]. An alternative approach used to decrease the monitoring overhead
is time-triggered monitoring [28,29] which makes use of periodic sampling of
the SUT state and different strategies to reduce the monitoring overhead by
dynamically adjusting the sampling period.

Table 3 reports a comparative evaluation between MahaRAJA and some
representative state-of-the-art runtime verification software tools. The following
key features have been taken into account (for a more general comparison see [1]):

– formalism: it represents the formalism used to specify the SUT;
– operational/descriptive: it represents whether the tool uses a operational or

descriptive formalism;
– state/event-based : state-based monitoring approaches rely on a state-by-state

comparison, where a state stores the relevant data about the SUT;
– exceptions: it represents whether or not the user can express properties which

include exception handling;
– real-time: it refers to the ability to verify quantitative temporal properties;

128 M. Camilli et al.

Table 3. Features comparison of different Java runtime monitoring tools.

Tool MahaRAJA Coma Larva Java-MOP Java-MaC Hawk JPaX

Formalism TB nets ASMs DATEs variousa PEDL, MEDL LTL, PLTL LTL, PLTL

O/Db O O O O, D D D D

S/Ec E S E E E E E

Exceptions � ✗ � ✗ ✗ ✗ ✗

Real-time � ✗ � ✗ � ✗ ✗

Variables ✗ � � � � ✗ ✗

Self-awareness � � � � � ✗ �
Testing � ✗ ✗ � ✗ ✗ ✗

aDepending on the plug-in: Finite State Machines, Regular Expressions, Context Free Grammar,

PLTL, LTL, String Rewriting Systems. bOperational/Descriptive formalism. cState/Event-based

approach.

– variables: it refers to the ability of monitoring value changes of variables;
– self-awareness: it refers to the capability of the monitoring system to return

feedback to the SUT upon failure;
– testing : it represents the possibility to use the facilities of the monitoring

framework to write test cases.

The results of our comparative evaluation show for each selected monitor-
ing tool, the explicit support for the considered features. As we can see, the
MahaRAJA framework has some interesting features, not directly supported
by other tools. For instance, it allows both the runtime verification and testing of
quantitative temporal properties. MahaRAJA does not support the monitoring
of variables (Coma, Larva, Java-MOP and Java-MaC have this feature).

7 Conclusion

We presented an event-based runtime verification approach and its supporting
tool MahaRAJA to verify temporal properties on Java programs. The proposed
framework adopts TB nets to represent the desired behavior of the SUT, includ-
ing real-time requirements. The designer annotates the source code to link Java
methods to transitions of the model. Then, MahaRAJA exploits AspectJ to
observe code execution and trigger the conformance verification at runtime. The
usefulness of the approach has been assessed by monitoring a number of real-
time benchmarking case-studies to discover both modeling and implementation
faults. MahaRAJA focuses on the monitoring of timed events and its main
limitation is that it does not support the monitoring of variables, although they
can be easily checked during testing activity using MahaRAJA in conjunction
with JUnit. Nonetheless, we believe that our approach represents a viable tech-
nique for checking temporal properties of Java programs with respect to their
formal specifications. Our experience shows that the monitoring overhead can
be numerically evaluated and we found AspectJ as the major bottleneck. For
this reason, we plan to replace AspectJ with other efficient bytecode transfor-
mation techniques [30]. The auxiliary memory used by the instrumentation is

Event-Based Runtime Verification of Temporal Properties 129

negligible and a preliminary quantitative comparison with other representative
state-of-the-art runtime verification software tools individuates MahaRAJA as
the less invasive [17]. The detection latency is also limited, thus allowing for a
prompt recover after a failure.

The quantitative evaluation lead us to consider MahaRAJA as a viable
light-weight pluggable tool to support the verification at runtime of real-time
self-adaptive systems [15,31]. We will explore this last topic in our future work.

References

1. Delgado, N., Gates, A.Q., Roach, S.: A taxonomy and catalog of runtime software-
fault monitoring tools. IEEE Trans. Softw. Eng. 30(12), 859–872 (2004)

2. Ghezzi, C., Mandrioli, D., Morasca, S., Pezzè, M.: A unified high-level Petri net
formalism for time-critical systems. IEEE Trans. Softw. Eng. 17, 160–172 (1991)

3. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based framework for
software development and analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.)
ICFEM 2004. LNCS, vol. 3308, pp. 357–372. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30482-1 31

4. Arcaini, P., Gargantini, A., Riccobene, E.: Combining model-based testing and
runtime monitoring for program testing in the presence of nondeterminism. In:
2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 178–187, March 2013

5. Liang, H., Dong, J.S., Sun, J., Wong, W.E.: Software monitoring through formal
specification animation. Innov. Syst. Softw. Eng. 5(4), 231–241 (2009)

6. Felder, M., Gargantini, A., Morzenti, A.: A theory of implementation and refine-
ment in timed Petri nets. Theoret. Comput. Sci. 202(12), 127–161 (1998)

7. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools.
Springer, Heidelberg (2004)

8. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Log. 1(1), 77–111 (2000)

9. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. Technical report, Cambridge, MA, USA (1974)

10. Iglesia, D.G.D.L., Weyns, D.: MAPE-K formal templates to rigorously design
behaviors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 15:1–
15:31 (2015)

11. Lee, W.J., Cha, S.D., Kwon, Y.R.: Integration and analysis of use cases using
modular Petri nets in requirements engineering. IEEE Trans. Softw. Eng. 24(12),
1115–1130 (1998)

12. Zhu, H., Dwyer, M.B., Goddard, S.: Predictable runtime monitoring. In: Proceed-
ings of the 2009 21st Euromicro Conference on Real-Time Systems, ser. ECRTS
2009, pp. 173–183. IEEE Computer Society, Washington, DC (2011)

13. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). doi:10.
1007/3-540-65306-6 21

14. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with
UML, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2000)

15. Camilli, M., Gargantini, A., Scandurra, P.: Specifying and verifying real-time self-
adaptive systems. In: 2015 IEEE 26th International Symposium on Software Reli-
ability Engineering (ISSRE), pp. 303–313, November 2015

http://dx.doi.org/10.1007/978-3-540-30482-1_31
http://dx.doi.org/10.1007/978-3-540-30482-1_31
http://dx.doi.org/10.1007/3-540-65306-6_21
http://dx.doi.org/10.1007/3-540-65306-6_21

130 M. Camilli et al.

16. Bellettini, C., Capra, L.: Reachability analysis of time basic Petri nets: a time
coverage approach. In: Proceedings of the 13th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, ser. SYNASC 2011, pp.
110–117. IEEE Computer Society, Washington, DC (2011)

17. Maharaja framework. http://camilli.di.unimi.it/maharaja/. Accessed Dec 2016
18. Hillah, L.M., Kordon, F., Petrucci, L., Trèves, N.: PNML framework: an extend-

able reference implementation of the Petri net markup language. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 318–327. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13675-7 20

19. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–354. Springer, Heidelberg (2001). doi:10.1007/3-540-45337-7 18

20. Chronicle Software: Java Thread Affinity Library (2016). http://chronicle.
software/products/thread-affinity/. Accessed Jan 2016

21. Li, T., Baumberger, D., Hahn, S.: Efficient and scalable multiprocessor fair schedul-
ing using distributed weighted round-robin. SIGPLAN Not. 44(4), 65–74 (2009)

22. Arcaini, P., Gargantini, A., Riccobene, E.: CoMA: conformance monitoring of
Java programs by abstract state machines. In: Khurshid, S., Sen, K. (eds.) RV
2011. LNCS, vol. 7186, pp. 223–238. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29860-8 17

23. Havelund, K., Roşu, G.: An overview of the runtime verification tool Java PathEx-
plorer. Formal Methods Syst. Des. 24(2), 189–215 (2004)

24. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time
assurance approach for Java programs. Form. Methods Syst. Des. 24(2), 129–155
(2004)

25. d’Amorim, M., Havelund, K.: Event-based runtime verification of Java programs.
SIGSOFT Softw. Eng. Notes 30(4), 1–7 (2005)

26. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24622-0 5

27. Colombo, C., Pace, G.J., Schneider, G.: Dynamic event-based runtime monitoring
of real-time and contextual properties. In: Cofer, D., Fantechi, A. (eds.) FMICS
2008. LNCS, vol. 5596, pp. 135–149. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03240-0 13

28. Bonakdarpour, B., Navabpour, S., Fischmeister, S.: Time-triggered runtime veri-
fication. Formal Methods Syst. Des. 43(1), 29–60 (2013)

29. Navabpour, S., Bonakdarpour, B., Fischmeister, S.: Path-aware time-triggered run-
time verification. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp.
199–213. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35632-2 21

30. Mastrangelo, L., Hauswirth, M.: JNIF: Java native instrumentation framework.
In: Proceedings of the International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages, and Tools, ser.
PPPJ 2014, pp. 194–199. ACM, New York (2014)

31. de Lemos, R., Garlan, D., Ghezzi, C., Giese, H.: Software engineering for self-
adaptive systems: assurances (Dagstuhl Seminar 13511). Dagstuhl Rep. 3(12), 67–
96 (2014). http://drops.dagstuhl.de/opus/volltexte/2014/4508

http://camilli.di.unimi.it/maharaja/
http://dx.doi.org/10.1007/978-3-642-13675-7_20
http://dx.doi.org/10.1007/3-540-45337-7_18
http://chronicle.software/products/thread-affinity/
http://chronicle.software/products/thread-affinity/
http://dx.doi.org/10.1007/978-3-642-29860-8_17
http://dx.doi.org/10.1007/978-3-642-29860-8_17
http://dx.doi.org/10.1007/978-3-540-24622-0_5
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-03240-0_13
http://dx.doi.org/10.1007/978-3-642-35632-2_21
http://drops.dagstuhl.de/opus/volltexte/2014/4508

Model-Counting Approaches for Nonlinear
Numerical Constraints

Mateus Borges1(B), Quoc-Sang Phan2, Antonio Filieri1,
and Corina S. Păsăreanu2,3

1 Imperial College London, London, UK
m.borges@ic.ac.uk

2 Carnegie Mellon University Silicon Valley, Mountain View, USA
3 NASA Ames, Mountain View, USA

Abstract. Model counting is of central importance in quantitative rea-
soning about systems. Examples include computing the probability that
a system successfully accomplishes its task without errors, and measur-
ing the number of bits leaked by a system to an adversary in Shannon
entropy. Most previous work in those areas demonstrated their analysis
on programs with linear constraints, in which cases model counting is
polynomial time. Model counting for nonlinear constraints is notoriously
hard, and thus programs with nonlinear constraints are not well-studied.
This paper surveys state-of-the-art techniques and tools for model count-
ing with respect to SMT constraints, modulo the bitvector theory, since
this theory is decidable, and it can express nonlinear constraints that
arise from the analysis of computer programs. We integrate these tech-
niques within the Symbolic Pathfinder platform and evaluate them on
difficult nonlinear constraints generated from the analysis of crypto-
graphic functions.

Keywords: Model counting modulo theories · Bitvector arithmetic ·
Nonlinear constraints · Cryptographic functions

1 Introduction

Model counting is of central importance in quantitative reasoning, with appli-
cations in probabilistic inference [7,8], reliability analysis [11], and quantita-
tive information flow [2,3,23,24]. Most previous work in those areas was per-
formed on programs with linear constraints, using model counting tools such
as Latte [18]. Model counting for nonlinear constraints is notoriously hard, and
thus programs with nonlinear constraints are not well-studied (with only lim-
ited support for floating-point values abstracted as real numbers [4]). In this
paper we survey state-of-the-art model counting techniques and tools for SMT
(satisfiability modulo theories) constraints modulo the bitvector theory, since
this theory is decidable and it can express the nonlinear constraints that arise
naturally from the analysis of computer programs. Our work is motivated by
a security project [1] that aims to develop automated quantitative information
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 131–138, 2017.
DOI: 10.1007/978-3-319-57288-8 9

132 M. Borges et al.

flow analysis techniques for complex applications, including cryptographic func-
tions that are very difficult to analyze. The bitvector theory is particularly useful
for these functions which typically use operations on bitvector values.

We integrate the surveyed techniques within Symbolic PathFinder (SPF) [25]
and evaluate them on difficult nonlinear constraints generated using symbolic
execution. Although we restrict our evaluation to cryptographic functions, our
study should be relevant to anybody interested in quantitative reasoning over
complex, nonlinear systems.

1.1 Symbolic Execution and SPF

SPF performs symbolic execution over Java byte code programs. Symbolic execu-
tion [14] is a systematic analysis technique that executes a program on symbolic,
rather than concrete, input values and computes the effects of the program as
functions of these symbolic inputs. The result of symbolic execution is a set of
symbolic paths, each with a path condition PC, which is a conjunction of con-
straints over the symbolic inputs that characterizes all the inputs that follow
that path. All the PCs are disjoint by construction.

1.2 Quantification of Information Leaks

Perfect software security is hard to achieve. Systems often leak information to
an adversary who can observe different aspects of program behavior. Research
on quantitative information flow aims at quantifying (in number of bits) the
expected leakage.

A program can be viewed as a probabilistic function that maps a high security
input h and a low security input l to an observable output o. An adversary tries
to guess h by providing l and observing the output. The leakage of the program
P is defined as the mutual information between the secret h and the public
output o [19]: Leakage(P) = H(o) − H(o|h), where H(x) denotes the classical
Shannon entropy of a random variable x, measuring the “uncertainty” about x.
For a deterministic program P , there is no uncertainty about o when h is given.
Therefore H(o|h) = 0. The entropy can thus be computed as: Leakage(P) =
H(o) = −∑

i=1,m p(oi) log2(p(oi)) .
Intuitively, the leakage gives an estimate on the number of bits in the secret

that an adversary can infer by observing the output of the program. If this
estimate is small (or zero) then the program can be considered safe. In [2],
Backes et al. combined model checking and model counting to compute the
leakage when the observable is an output variable. In a similar setting, we used
symbolic execution (SPF) combined with Latte to compute an upper bound on
the leakage [23].

More recently [3,24], we used SPF and Latte to compute the leakage when
the observables are non-functional characteristics of program executions, i.e.
side-channels, such as time consumed, number of memory accessed or pack-
ets transmitted over a network. In this model, a symbolic path identified by
PCi leads to a concrete observable oi. Assuming the secret input has uniform

Model-Counting Approaches for Nonlinear Numerical Constraints 133

distribution, which means the adversary has no prior knowledge about it, the
probability of observing oi can be computed using SPF and model counting as
follows: p(oi) =

∑
cost(PC j)=oi

�(PC j)/�D, where �(PC j) is the number of solu-
tions (computed with model counting) of constraint PC j and #D is the size of
the input domain D assumed to be (possibly very large but) finite.

In all the previous work mentioned above, Latte was used to perform model
counting; it implements the polynomial time Barvinok algorithm to count models
for a system of linear integer inequalities. However Latte cannot handle nonlinear
constraints. In this paper we study approaches for the fixed-width bitvector
theory, which can represent such constraints. In the following, we use the term
“bitvector” and “word” interchangeably.

2 Model Counting Techniques and Tools

In this section we evaluate several tool-supported approaches for counting the
models of bitvector constraints. These approaches can be classified according to
two orthogonal dimensions: exact vs approximate and bit-level vs word-level.

Exact techniques count the exact number of models for a given constraint.
Approximate techniques only explore a portion of the solution space, carefully
selected to provide probabilistic guarantees on the accuracy (0 < ε < 1) and
confidence (0<δ<1) of the result. In particular, they guarantee that Pr

(
(1−ε)c≤

c∗ ≤ (1 + ε)c
) ≥ 1− δ, where c∗ is the approximate result and c is the exact

(unknown) count. Other randomized approaches not providing formal guarantees
(e.g., [26,31]) are not considered in this study.

Bit-level Approaches address the model counting problem for propositional
(SAT) formulas, i.e., #SAT. Model counting for bit vector formulas can be per-
formed as follows. A bitvector formula is first converted to a propositional for-
mula using bit blasting to generate an equivalent Boolean circuit based on bit-
level behavior of bitvector operations. This Boolean circuit is interpreted as a
propositional logic problem and converted in conjunctive normal form (CNF);
at this point #SAT approaches can be used to count the number of models.
While the procedure is general, the conversion of Boolean circuits into CNF is
usually based on the Tseitin transformation [30], which introduces additional
Boolean variables in the process. While this transformation guarantees a model
for the CNF form is also a model for the initial problem, the introduction of
additional variables may lead to different model counts. For this reason, in this
paper we use only #SAT tools supporting projection, i.e., able to project the
solution space only on the variables appearing in the Boolean circuit, ignoring
the ones introduced by Tseitin transformation.

We found five tools for #SAT that support projection and can thus be used in
our setting for bitvector counting: SharpCDCL, All-SAT, SharpSAT and Dsharp,
which compute exact solutions, and ApproxMC-p, which produces approximate
solutions.

134 M. Borges et al.

– SharpCDCL [15] is an enumeration-based approach; it iteratively invokes the
SAT solver to produce at each iteration a new model, keeping trace of the set
of models and their number.

– All-SAT [13] and SharpSAT [28] extend the DPLL algorithm to count the
number of solutions of a SAT problem. They both use caching mechanisms and
use constraint propagation for pruning the DPLL, which avoid the exhaustive
exploration of subtrees containing no solutions.

– Dsharp [20] reuses the algorithmic core of SharpSAT, adapting it to work with
a deterministic Decomposable Negation Normal Form (d-DNNF) representa-
tion of the SAT problem. d-DNNF provides a more compact representation of
the constraints in memory that, according to [20], may better support model
counting.

– ApproxMC-p [16] takes as input accuracy and confidence targets and produce
an approximate count which deviates from the exact count by at most a factor
1 ± ε with probability at least 1 − δ. The approach uses universal hash func-
tions to perform a uniform sampling within the domain. The ratio between
the number of models for this sample and the sample size is used as an esti-
mate of the ratio of models over the entire problem domain. The samples is
automatically decided to achieve ε and δ.

Word-Level Approaches aim to avoid the cost of bit blasting by defining
counting procedures that operate directly on SMT variables and operations. We
investigate a recent tool that provides an approximate counting procedure for
bitvectors: SMTApproxMC [7]. SMTApproxMC uses word-level hashing func-
tions to sample a finite number of candidate models and then an SMT solver to
check how many of these candidate models satisfy the constraint. The number
of models found within the sample are used to build a robust statistical estima-
tor achieving the desired probabilistic guarantees. SMTApproxMC can avoid bit
blasting whenever the SMT solver can check a constraint without it (e.g., for
linear constraints); however, for nonlinear constraints (all the subjects of this
study), SMTApproxMC requires bit blasting.

Chistikov et al. [8] also extend the hashing-based approach used for #SAT
(e.g., in [16]) to counting for SMT problems. Hashing functions allow to uni-
formly sample candidate solutions. Statistics on the sample are used to estimate
the total number of models. However, no tool is available and, according to [7],
SMTApproxMC is faster.

A related approach is implemented in the MathSAT solver [9], which provides
a functionality, called All-SMT, that given a set of Boolean variables VI , it can
enumerate all the models of the problem projected on VI . The source code of the
tool is not available, nor a technical description of the All-SMT feature, thus we
do not know the details of the counting algorithm it implements but can only
report its execution time. Our own All-SMT solver aZ3 [21,22] is less efficient
than MathSAT, so we do not include its experiment results here.

Other Approaches. We have also investigated other techniques for model
counting: blocking-clause enumeration, BDD-based enumerations, counting with
Gröbner bases and a brute-force enumeration that we use as baseline.

Model-Counting Approaches for Nonlinear Numerical Constraints 135

Blocking clause enumeration make the solver find all the models for a problem
by iteratively adding the negation of already found models to the initial problem.
The iteration terminates when no more solutions can be found. Intuitively, this
method can work only for complex problems with few models. We implemented
it on top of Z3 SMT solver [10] to practically confirm this intuition.

BDD-based enumeration represents a propositional formula as a binary deci-
sion diagram and then counts the paths from its root to the leaf representing the
Boolean constant “true”. We implemented a prototype based on the BDD library
CUDD [27], which builds a BDD corresponding to a constraint bitblasted with
Z3. Unfortunately, for all the subjects in this study the execution time exceeded
the timeout of 1 h.

Gröbner bases are used in computational algebra to reason about polynomials
over finite fields. Boolean variables and and operators from propositional logic
can be mapped into corresponding variables and functions over polynomials.
Each zero of such polynomials corresponds to exactly one model of the initial
propositional formula [12,29]. Algebraic solvers can be used to find those zeroes.
We implemented this technique using PolyBoRi [5], but its execution timed out
for all the subjects.

Finally, we also implemented as a reference a brute force approach which
encodes the constraints as bitwise operations on unsigned integers in C. The
mapping is straightforward from the smtlib representation. The program iterates
over the entire domain and count the number of models for a constraint. We
compiled the C sources using level 1 optimization in GCC.

3 Evaluation

Subjects. We study modular exponentiation (modPow(b, e,m) = be mod m)
and modular multiplication (modMul(x, y) = x ∗ y mod m) implementations.
These are core routines for most public-key cryptographic systems, most notably
RSA. In the past, some implementations have been found vulnerable to side chan-
nel attacks [6,17], mostly as effect of optimizations. Our goal is to localize side
channels by quantifying information leaks with symbolic execution and model
counting (see Sect. 1).

For our experiments, we analyzed a set of randomly selected path conditions
from two different implementations of the modular operations (the source code is
given in the appendix). The first implementation (subjects a-* in the following),
taken from [24], optimizes modPow with a reduction step at each iteration, but
uses a naive implementation of modMul. We analyze the program with the
same configurations from [24]: the modulus m can be either 1717, 834443, or
1964903306; both the base b and exponent e are symbolic, with b≤m and e≤31.

The second implementation (benchmarks b-*) is more realistic as it uses
Java’s BigInteger class to encode large messages and secrets (this example was
provided to us by DARPA at a recent engagement) and uses fast multiplication.
Here modulus m is fixed with a 1536-bit value; the base b is also a concrete
1532-bit value; the exponent e is symbolic BigInteger with 40 bits. We analyze
both modPow and modMul, where both x and y are symbolic 24-bit BigInteger.

136 M. Borges et al.

Subject a-1 a-2 a-3 a-4 a-5 a-6 a-7 b-1 b-2 b-3 b-4

N. Ops 11 26 15 37 121 57 117 250 243 1428 1428

Domain Size 10K 10K 10K 25M 25M 59B 59B 4T 4T 32B 32B

N. Solutions 1.7K 7 1.7K 208K 109K 80M 77M 2B 66B 1 1

N. CNF clauses 40K 78K 58K 67K 114K 58K 78K 2K 2K 2K 2K

Execution time

BitBlasting 15s 30s 24s 25s 44s 23s 30s 1s 1s 1s 2s

SharpCDCL 1s 1s 1s 43m - - - - - 1s 1s

All-SAT 1s 8s 2s 31m∗ 59m∗ 15m∗ 19m∗ - - 1s 1s

SharpSAT 5s 2s 11s 29m 53m - - 1s 1s 1s 1s

Dsharp 12m 32s 22m - - - - 1s 1s 1s 1s

ApproxMC (f) 4s 2s 5s 16s 32s 1m 1m 4s 5s 1s 1s

ApproxMC (p) 4s 2s 6s 2m 5m 21m 24m 16s 25s 1s 1s

SMTapproxMC (f) 6m 15m 8m - - - - - - 2m 2m

SMTapproxMC (p) - 15m - - - - - - - 2m 2m

MathSAT 2s 2s 5s 38m 54m - - - - 1s 1s

Z3-BC 12s 3s 18s - - - - - - 1s 1s

Brute Force 1s 1s 1s 1s 1s 8m 8m - - 2m 2m

Fig. 1. Execution time comparison.

Experimental Results. Figure 1 summarizes the performance of the different
tools. The results indicate that enumeration-based techniques perform well for
complex problem with few solutions (SharpCDCL, Z3-BC). Exact techniques
based on DPLL (All-SAT and SharpSAT) scale better than enumeration, but
fail for the subjects involving complex constraints over large domains, like a-6
and a-7 which have approximately 58k and 78k CNF clauses over a domain of
59B points. Notably, All-SAT produced the correct count only for the first three
subjects. For all the others (marked with ∗), it significantly under-approximated
the count. However, the most recent release dates back to 2004 and the tool is
not maintained, making difficult to get the tool fixed.

The performance of approximate methods (ApproxMC and SMTApproxMC)
depends on the required accuracy ε and confidence δ. The correct counts and
the approximate ones are shown in a table in the appendix. We run the tools
with two different settings: (f) ε = 0.5, δ = 0.05 and (p) ε = 0.1, δ = 0.05.
SMTApproxMC provides a bad performance on our subjects; this is however
expected since its internal solver is required to bit blast our nonlinear constraints
for each query. From our experience, low-accuracy approximate methods can
be used for a preliminary assessment of the number of solutions: if the coarse
approximate count is small, exact methods may then be used for an exact solu-
tion. Similarly, if the count is close to the domain size, it is possible to count
exactly the models of the negation of the problem (which should be only a few).
If the count is far from its extreme values (0 and domain size) or if the problem
is particularly complex (>50k CNF clauses on our subjects), exact counters will
probably fail if the domain is large and a more precise approximate solution can
be pursued.

Model-Counting Approaches for Nonlinear Numerical Constraints 137

Not surprisingly, the brute force approach is faster than model counting tools
when the domain size is small enough (<109), but it is not a viable solution for
larger problems.

4 Conclusion

We surveyed model counting techniques that are applicable to complex nonlinear
constraints. We restricted our study to techniques and tools that are capable of
providing formal guarantees on the results. Our survey suggests that that the
most promising techniques use approximate model counting and bit-level hash-
ing, however the performance of the tools can degrade when increased precision
is required. SMT-based model counting is still a very young research area, but its
relevance for quantitative analysis can be an effective driver for its development,
as program verification has effectively driven the development in SMT solving.

Acknowledgement. This work was funded in part by the National Science Founda-
tion (NSF Grant Nos. CCF-1319858, CCF-1549161) and also by DARPA under agree-
ment number FA8750-15-2-0087. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. Mateus Borges is funded by an Imperial College PhD Scholarship.

References

1. ISSTAC: Integrated Symbolic Execution for Space-Time Analysis of Code. http://
www.cmu.edu/silicon-valley/research/isstac

2. Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification of
information leaks. In: SP 2009, pp. 141–153 (2009)

3. Bang, L., Aydin, A., Phan, Q.S., Păsăreanu, C.S., Bultan, T.: String analysis for
side channels with segmented oracles. In: FSE 2016, pp. 193–204. ACM (2016)

4. Borges, M., Filieri, A., d’Amorim, M., Păsăreanu, C.S., Visser, W.: Compositional
solution space quantification for probabilistic software analysis. In: PLDI, pp. 123–
132. ACM (2014)

5. Brickenstein, M., Dreyer, A.: PolyBoRi: a framework for gröbner-basis computa-
tions with boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009)

6. Brumley, D., Boneh, D.: Remote timing attacks are practical. In: SSYM 2003, pp.
1–1. USENIX Association (2003)

7. Chakraborty, S., Meel, K.S., Mistry, R., Vardi, M.Y.: Approximate probabilistic
inference via word-level counting. In: AAAI 2016, pp. 3218–3224 (2016)

8. Chistikov, D., Dimitrova, R., Majumdar, R.: Approximate counting in SMT and
value estimation for probabilistic programs. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 320–334. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46681-0 26

9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 7

10. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidel-
berg (2008). doi:10.1007/978-3-540-78800-3 24

http://www.cmu.edu/silicon-valley/research/isstac
http://www.cmu.edu/silicon-valley/research/isstac
http://dx.doi.org/10.1007/978-3-662-46681-0_26
http://dx.doi.org/10.1007/978-3-662-46681-0_26
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-540-78800-3_24

138 M. Borges et al.

11. Filieri, A., Păsăreanu, C.S., Visser, W.: Reliability analysis in symbolic pathfinder.
In: ICSE, pp. 622–631. IEEE Press (2013)

12. Gao, S.: Counting zeros over finite fields using Gröbner bases. Master’s thesis,
Carnegie Mellon University (2009)

13. Grumberg, O., Schuster, A., Yadgar, A.: Memory efficient all-solutions SAT solver
and its application for reachability analysis. In: Hu, A.J., Martin, A.K. (eds.)
FMCAD 2004. LNCS, vol. 3312, pp. 275–289. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30494-4 20

14. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

15. Klebanov, V., Manthey, N., Muise, C.: SAT-based analysis and quantification of
information flow in programs. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio,
P.R. (eds.) QEST 2013. LNCS, vol. 8054, pp. 177–192. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-40196-1 16

16. Klebanov, V., Weigl, A., Weisbarth, J.: Sound probabilistic #SAT with projection.
In: QAPL 2016, pp. 15–29 (2016)

17. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). doi:10.1007/3-540-68697-5 9

18. Loera, J.A.D., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point count-
ing in rational convex polytopes. J. Symb. Comput. 38(4), 1273–1302 (2004)

19. Malacaria, P.: Algebraic foundations for quantitative information flow. Math.
Struct. Comput. Sci. 25, 404–428 (2015)

20. Muise, C., McIlraith, S.A., Beck, J.C., Hsu, E.I.: Dsharp: fast d-DNNF compila-
tion with sharpSAT. In: Kosseim, L., Inkpen, D. (eds.) AI 2012. LNCS (LNAI), vol.
7310, pp. 356–361. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30353-1 36

21. Phan, Q.S.: Model counting modulo theories. Ph.D. thesis, Queen Mary University
of London (2015)

22. Phan, Q.S., Malacaria, P.: All-solution satisfiability modulo theories: applications,
algorithms and benchmarks. In: ARES 2015, pp. 100–109 (2015)

23. Phan, Q.S., Malacaria, P., Păsăreanu, C.S., d’Amorim, M.: Quantifying informa-
tion leaks using reliability analysis. In: SPIN 2014, pp. 105–108. ACM (2014)

24. Păsăreanu, C.S., Phan, Q.S., Malacaria, P.: Multi-run side-channel analysis using
Symbolic Execution and Max-SMT. In: CSF 2016, pp. 387–400, June 2016

25. Păsăreanu, C.S., Visser, W., Bushnell, D., Geldenhuys, J., Mehlitz, P., Rungta, N.:
Symbolic PathFinder: integrating symbolic execution with model checking for Java
bytecode analysis. Autom. Softw. Eng. 20, 1–35 (2013)

26. Rubinstein, R.: Stochastic enumeration method for counting NP-hard problems.
Methodol. Comput. Appl. Probab. 15(2), 249–291 (2013)

27. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0 (2015)
28. Thurley, M.: sharpSAT – Counting models with advanced component caching and

implicit BCP. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp.
424–429. Springer, Heidelberg (2006). doi:10.1007/11814948 38

29. Tran, Q., Vardi, M.Y.: Groebner bases computation in boolean rings for symbolic
model checking. In: MOAS, pp. 440–445. ACTA Press (2007)

30. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Siekmann, J.H., Wrightson, G. (eds.) Automation of Reasoning: 2: Classical Papers
on Computational Logic, pp. 466–483. Springer, Heidelberg (1983)

31. Wei, W., Selman, B.: A new approach to model counting. In: Bacchus, F., Walsh, T.
(eds.) SAT 2005. LNCS, vol. 3569, pp. 324–339. Springer, Heidelberg (2005). doi:10.
1007/11499107 24

http://dx.doi.org/10.1007/978-3-540-30494-4_20
http://dx.doi.org/10.1007/978-3-540-30494-4_20
http://dx.doi.org/10.1007/978-3-642-40196-1_16
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/978-3-642-30353-1_36
http://dx.doi.org/10.1007/11814948_38
http://dx.doi.org/10.1007/11499107_24
http://dx.doi.org/10.1007/11499107_24

Input Space Partitioning to Enable Massively
Parallel Proof

Ashlie B. Hocking1(B), M. Anthony Aiello1, John C. Knight1,
and Nikos Aréchiga2

1 Dependable Computing, Charlottesville, VA, USA
{ben.hocking,tony.aiello,john.knight}@dependablecomputing.com

2 Toyota InfoTechnology Center, Mountain View, VA, USA
narechiga@us.toyota-itc.com

Abstract. Real-world applications often include large, empirically
defined discrete-valued functions. When proving properties about these
applications, the proof naturally breaks into one case per entry in the
first function reached, and again into one case per entry in the next func-
tion, and continues splitting. This splitting yields a combinatorial explo-
sion of proof cases that challenges traditional proof approaches. While
each proof case represents a mathematical path from inputs to outputs
through these functions, the full set of cases is not available up front,
preventing a straightforward application of parallelism. Here we describe
an approach that slices the input space, creating a partition based on
pre-computed mathematical paths such that each slice has only a small
number of proof cases. These slices are amenable to massively parallel
proof. We evaluate this approach using an example model of an adap-
tive cruise control, where proofs are conducted in a highly parallel PVS
environment.

1 Introduction

Real-world applications from many domains, such as embedded control sys-
tems in the automotive domain, depend upon large discrete-valued functions
(DVFs) [3,4]. Frequently, these systems operate on physical processes for which
no sufficiently accurate analytic models are known. For example, the air-fuel
ratio of an internal-combustion engine must be accurately and precisely con-
trolled to maximize fuel efficiency and minimize pollutants [5,7]. Since there are
factors for which no sufficiently general and accurate analytic models exist, the
values used are determined empirically and represented in the control system as
DVFs.

Attempting to prove theorems representing safety properties for applications
including DVFs results in a large number of proof cases. When multiple DVFs are
combined mathematically, the number of proof cases multiplies combinatorially.
For realistic applications, merely running a theorem prover sequentially on the
proof cases may take decades — even moderate-size examples require months.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 139–145, 2017.
DOI: 10.1007/978-3-319-57288-8 10

140 A.B. Hocking et al.

Model
Input Space
Partitioning

Slicing
Script

Model
Slices

PVS
Theories

ParaPVS ProofsSimulink2PVS

Fig. 1. Overview of the parallelization process

Two approaches to solving this problem naturally arise: (1) replace the DVFs
with suitable abstractions and (2) exploit the parallelism inherent in the proof
cases to reduce wall-clock time. This paper focuses on exploiting parallelism.

Mathematical interactions amongst distinct DVFs prevent trivial enumera-
tion of proof cases up-front, inhibiting straightforward application of parallelism.
Our approach, shown in Fig. 1, enables parallelism by carefully partitioning the
input space of the application, yielding proof slices with small and approxi-
mately equal numbers of proof cases. We then apply simple optimizations across
all slices, significantly reducing the per-slice proof time. Finally, we use a custom
tool to invoke the theorem prover in parallel and generate tailored proof reports.

We applied our approach to a Simulink model for an example adaptive cruise
control system in which the DVFs are represented as lookup tables (LUTs). The
approach, which relies on our Simulink2PVS tool [2], yields a 67,000% speedup
as compared to sequential proof of the 74,170 proof cases.

2 Input Space Partitioning and Parallel Proof

Proving proof cases in parallel is an obvious approach to dealing a large number
of proof cases [1]. If N proof cases can be completed in parallel, then the total
speedup is up to a factor of N. Moreover, if N equals the number of proof cases,
then the total time required is the time required to prove the slowest proof cases.

Unfortunately, the complete set of proof cases is not available up-front, espe-
cially when proof cases arise from the interactions amongst entries in multiple
DVFs. An obvious solution is to partition the input space of the application,
yielding proof slices that each contain a subset of the proof cases. A näıve par-
titioning might yield proof slices with input intervals of the same size.

Such a partitioning, however, is unlikely to result in small and equal numbers
of proof cases per proof slice. Mathematical interactions amongst entries in the
discrete-valued functions may lead to large numbers of proof cases for some
slices and small numbers of proof cases for other slices, dramatically reducing
the efficacy of parallelization. The input space must be carefully partitioned so
that the proof slices have a small and equal number of proof cases. Our approach
to generating proof slices is shown in Fig. 2.

1. A map of DVF domain intervals is created for each DVF in the application.
For LUTs, these intervals correspond to breakpoints delineating the table
data.

Input Space Partitioning to Enable Massively Parallel Proof 141

Map DVF domain
intervals

Trace back to
application inputs

inputs
affect

multiple
DVFs?

Use intersection
of DVF domain

intervals

collapse
input domain

intervals?

Yes

No

Use collapsed
intervals

Yes

No

Start

Stop

1

2
3

4

Fig. 2. Proof slice generation

2. The DVF domain intervals are traced back through the application to inputs,
to create input domain intervals that form the basis of the input space par-
titioning. This process requires careful consideration of interactions among
inputs. For example, if two inputs are added before entering a DVF, each
input domain’s upper and lower bounds must be considered. For the smaller
input domain, the input domain interval size is governed by the smallest DVF
domain interval size. For a given pair of input domain intervals, the DVF
domain intervals relevant are those between the sum of the lower bounds and
the sum of the upper bounds.

3. Often each input does not affect only one DVF. When multiple DVFs are
affected by an input, the intersection of domain intervals is used. For example,
if one input directly feeds into two DVFs where the first has breakpoints [0,
3, 9, 12] and the second has breakpoints [0, 4, 9, 12], then the input domain
intervals are 0–3, 3–4, 4–9, and 9–12.

4. Input domain intervals are analyzed to determine if they should be collapsed.
For example, if there are three input domain intervals such that the first
and last create 1 proof case and the middle input domain interval creates 2
proof cases (for a total of 4 proof cases), combining the first and second input
domain intervals might still only yield 2 proof cases. This process reduces the
total number of proof slices without changing the maximum number of proof
cases per slice.

We instantiated this process for the example Simulink model shown in Fig. 3.
The result of the input-space partitioning is captured in a Matlab script that
generates slices of the original Simulink model. Simulink2PVS is executed for

142 A.B. Hocking et al.

1

Out Target
Acceleration

(m/s^2)

1-D T(u)

Set Distance (m)

2-D T(u)
u1

u2

Target Acceleration (m/s^2)

Error (m)

3-D T(u)
u1

u2

u3

Projected relative distance
after 0.01s (m)

>= 0

Compare
To Zero

2

Out maintain
safe distance

Maintains safe
distance

1

Distance (m)

2

Speed (m / s)

3

Relative
Speed (m/s) 3

Out Projected
Rel. Dist (m)

Set Distance

Preceeding Vehicle Relative Speed

Distance

Fig. 3. Hypothetical model of an adaptive cruise control system

each model slice, resulting in a set of PVS theories where each theory represents
a single proof slice.

To support running PVS in a highly parallel environment, we created a new
tool called ParaPVS that: (a) manages the parallel PVS processes based upon
control input, (b) generates custom reports, and (c) can limit the proof to a
random subset of the cases (input slices).

3 Reducing Per-Slice Proof Time

Mechanical theorem provers like PVS [6] are often applied to complex proofs.
In these applications, the time required for automatic decision procedures to
complete the proof is important, but is not a primary goal of the analyst. Instead,
the primary goal is completing the proof; much of the time required is identifying
a sequence of steps that enable the decision procedures to complete the proof.
Once the proof is completed, optimization of the proof steps is not beneficial.

In our parallel application of PVS to proof slices, however, the per-slice proof
time is important. Proving N proof slices in parallel offers up to a factor N
speedup. Reducing the per-slice proof time by a factor of M offers up to a factor
N × M speedup. In our experience, moreover, M can be a significant factor.

We explored two approaches to reduce per-slice proof time: (1) tailor the
proof steps for each proof slice to reduce the time taken by automated decision
procedures; and (2) increase the efficiency of the DVF representations.

To tailor the proof for each proof slice, we first used ParaPVS to complete
proofs for a random sampling of proof slices. The initial proofs were completed
automatically, e.g., by using PVS strategy (grind). We then analyzed results
of a random sampling and manually developed more efficient proof strategies
for the proof obligations that required the most time. While there is a time
cost associated with this process (∼1 day), this cost is expected to be roughly
constant. These proof strategies always terminate in calls to automatic decision
procedures, ensuring that they are generally applicable across all proof slices.

Input Space Partitioning to Enable Massively Parallel Proof 143

Additionally, we identified an inefficiency in the DVF representation. For a
generic DVF, the PVS specification describes the output of the DVF when the
input is outside the breakpoints and also when the input is between the break-
points. When the input space is partitioned, however, most of the resulting proof
slices do not have inputs that lie outside the given breakpoints. To accommo-
date this, Simulink2PVS was modified to only specify the relevant breakpoint
intervals given any lower and upper bounds present on the input data.

4 Case Study

We assess the performance of our approach by application to the model shown
in Fig. 3 [8]. This model has three DVFs represented as a 1-D, 2-D and 3-D
LUT. The proof of the safety property for this model (that the projected relative
distance is non-negative) requires that a total of 74,170 proof cases be completed.

Ideally, the baseline for our assessment would be sequential proof of the safety
property for this model. Unfortunately, PVS cannot complete this proof because
the number of lines of text in the sequent grows exponentially as the composition
of DVFs is expanded, quickly resulting in a sequent that cannot be manipulated.

To provide a baseline, we first applied our input-space partitioning approach,
generating a total of 26,880 proof slices. Our input-space partitioning approach
is much more efficient than a uniform input-space partitioning approach that
generates the same number of proof slices, as shown in Fig. 4. Our approach
yields an average of 2.75 cases per slice and a total of 74,170 proof cases, whereas
the uniform approach yields 16.04 and a total of over 430,000 proof cases, many
of which are contained in more than one slice and are therefore redundant.

We then used ParaPVS to complete the proofs for all proof slices, using 44
PVS processes in parallel. All experiments were performed on a PowerEdge R730
Server with two 22-core 2.2 GHz Xeon hyper-threaded processors and 256 GB of
main memory. The result was 98.4 days of CPU time, which we take as our
baseline for further comparison. Table 1 presents our results; speedup in the

(a) Uniform Input-Space Partioning (b) Tailored Input-Space Partitioning

proof cases per sliceproof cases per slice

pr
oo

f s
lic

es

pr
oo

f s
lic

es

Fig. 4. Input-space partitioning comparison

144 A.B. Hocking et al.

Table 1. Timing results

Baseline

(44 Processes)

Hyper-threading (HT)

(88 Processes)

HT + Imp strategies HT + Imp strategies

& representation

CPU time 98.4 days 173.6 days 18.3 days 13.2 days

Elapsed time 53.7 h 47.6 h 4.87 h 3.52 h

Avg time per slice 316.3 s 558.2 s 59.0 s 42.7 s

Speedup 4,400% 4,960% 48,500% 67,000%

table is the ratio of elapsed time to the baseline CPU time of 98.4 days, where
CPU time is the sum of the amount of time spent by each process.

Using ParaPVS to complete 88 proof slices in parallel takes advantage of
the test platform’s hyper-threading, results in only a 1.13× speedup due to
a diminishing return of increasing parallelism without additional computation
resources. Applying the first per-slice optimization — proof-strategy improve-
ment — yields a 9.78× speedup. Applying the second per-slice optimization —
DVF-representation improvement — yields a 1.38× speedup. In total, the proof
time is reduced from nearly 100 days to about 3.5 h, a 67,000% speedup.

5 Conclusion

This paper presents a novel approach to dealing with large numbers of proof
cases: enabling parallelism through careful partitioning of the application input
space, reducing the per-slice proof time, and leveraging a tool for parallel invo-
cation of a theorem prover. Our results demonstrate a speedup of 67,000%.

For moderate-size examples, this approach works; we expect the approach
to scale to handle proofs with up to 108 proof cases. Further speedup can
be achieved by leveraging additional parallelism. Some real-world examples we
have seen, however, have proofs with on the order of 1030 or more proof cases.
These proofs require additional techniques, such as replacement of the DVFs
with abstractions that are simple enough to enable efficient proof, yet accurate
enough to prove the property of interest. This approach is the subject of ongoing
research.

References

1. Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In: IJCAI, vol. 2009, pp. 443–448 (2009)

2. Hocking, A.B., Aiello, M.A., Knight, J.C., Aréchiga, N.: Proving critical properties
of Simulink models. In: 2016 IEEE 17th International Symposium on High Assur-
ance Systems Engineering (HASE), pp. 189–196. IEEE (2016)

3. Hocking, A.B., Aiello, M.A., Knight, J.C., Shiraishi, S., Yamaura, M., Aréchiga, N.:
Proving properties of simulink models that include discrete valued functions. Tech-
nical report, SAE Technical Paper (2016)

Input Space Partitioning to Enable Massively Parallel Proof 145

4. Jeannin, J.B., Ghorbal, K., Kouskoulas, Y., Gardner, R., Schmidt, A., Zawadzki, E.,
Platzer, A.: Formal verification of ACAS X, an industrial airborne collision avoid-
ance system. In: Proceedings of the 12th International Conference on Embedded
Software, pp. 127–136. IEEE Press (2015)

5. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Benchmarks for model
transformations and conformance checking. In: 1st International Workshop on
Applied Verification for Continuous and Hybrid Systems (ARCH) (2014)

6. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: combining spec-
ification, proof checking, and model checking. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 411–414. Springer, Heidelberg (1996). doi:10.1007/
3-540-61474-5 91

7. Wu, C.W., Chen, R.H., Pu, J.Y., Lin, T.H.: The influence of air-fuel ratio on engine
performance and pollutant emission of an si engine using ethanol-gasoline-blended
fuels. Atmos. Environ. 38(40), 7093–7100 (2004)

8. Yamaura, M., Aréchiga, N., Shiraishi, S.: SimulinkVerificationBenchmark. https://
github.com/Toyota-ITC-SSD/SimulinkVerificationBenchmark

http://dx.doi.org/10.1007/3-540-61474-5_91
http://dx.doi.org/10.1007/3-540-61474-5_91
https://github.com/Toyota-ITC-SSD/SimulinkVerificationBenchmark
https://github.com/Toyota-ITC-SSD/SimulinkVerificationBenchmark

Compositional Model Checking of Interlocking
Systems for Lines with Multiple Stations

Hugo Daniel Macedo1,2(B), Alessandro Fantechi1,3, and Anne E. Haxthausen1

1 DTU Compute, Technical University of Denmark, Lyngby, Denmark
aeha@dtu.dk

2 Department of Engineering, Aarhus University, Aarhus, Denmark
hdm@eng.au.dk

3 DINFO, University of Florence, Firenze, Italy
alessandro.fantechi@unifi.it

Abstract. In the railway domain safety is guaranteed by an interlocking
system which translates operational decisions into commands leading to
field operations. Such a system is safety critical and demands thorough
formal verification during its development process. Within this context,
our work has focused on the extension of a compositional model check-
ing approach to formally verify interlocking system models for lines with
multiple stations. The idea of the approach is to decompose a model of
the interlocking system by applying cuts at the network modelling level.
The paper introduces an alternative cut (the linear cut) to a previously
proposed cut (border cut). Powered with the linear cut, the model check-
ing approach is then applied to the verification of an interlocking system
controlling a real-world multiple station line.

Keywords: Railway interlocking · Compositional verification · Model
checking

1 Introduction

A railway is a mechanised means of mass movement where diverse vehicles take
paths on a shared space/network of tracks. Its main feature is guidance by
mechanical contact of wheels on rails. Switch points are introduced to dynami-
cally change the network topology allowing a vehicle to change tracks. Another
distinctive feature is the poor braking response time given the physical proper-
ties of wheel on rail rolling friction. Such features impose hard restrictions on
traffic, vehicle movements, and network configuration.

To regulate traffic, a railway signalling system [14] is deployed as an infor-
mation processing/transmission control loop. The system monitors the status of

H.D. Macedo and A.E. Haxthausen—The authors’ research, conducted at DTU
Compute, was funded by the RobustRailS project granted by Innovation Fund
Denmark.
A. Fantechi—The author’s research was funded by Villum Fonden.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 146–162, 2017.
DOI: 10.1007/978-3-319-57288-8 11

Compositional Model Checking of Interlocking Systems for Lines 147

vehicles and track elements issuing network re-configuration and vehicle dispatch
commands. The usually deployed monitoring scheme assumes that the network
under control is divided into sections with train detection equipment and the
existence of additional track side elements such as signals. The status (occupied
or clear) of train detection sections, position of points, and configuration of track
side elements (e.g. the setting of signals) is relayed to the control system. Issued
decisions are then transmitted back to each element affecting its configuration
(e.g.: issuing a change in point position) and vehicle movements (e.g.: sending
dispatch commands to trains through signals).

The technology/operation mode of signalling systems ranges from basic
human communication, for instance telecommunications between stakeholders
(human controllers, station masters, and vehicle operators), to advanced automa-
tion where computers are responsible for the whole control loop. Usually the
different systems are used heterogeneously through a network. Several of the
recent railway disasters were due to signalling system failures1 in networks lack-
ing automated control.

Automated systems require railway engineers/architects to define the appro-
priate operation requirements, for instance in the form of routes: each prescribing
the path and the required network configuration for safe train traversal along
that path. When the system issues a dispatch route command, the network must
be reconfigured to comply with such requirements. In addition, the system must
ensure the required configuration is maintained during the traversal. And above
all, the command must not lead to a safety violation. For that purpose an inter-
locking system takes the responsibility of safely transform each dispatch decision
into the control commands that must be executed before a proceed command to
a train is issued.

Such responsibility demands for standards in the development of the software
controlling interlocking systems. The standard CENELEC 50128 [1] labels such
software with the highest safety integrity level (SIL4), and highly recommends
the usage of formal methods and formal verification in its development process.
However, full formal verification of interlocking systems demands heavy if not
infeasible computational resources2, a phenomenon known as the state explo-
sion problem. The pioneering research in model checking and in applying model
checking to the domain of railways [3–5,7,9,20] has developed techniques allow-
ing the verification of models of the interlocking systems controlling larger and
highly-complex networks. For example, abstraction techniques can be applied at
the domain modelling level before the model checking is performed [9]. Other
very efficient techniques applied for real world railways are bounded model check-
ing [8] and k-induction [19]. The state explosion problem can also be tamed using
techniques that allow a compositional approach to the model checking task [10]:
the model checker must prove that assumptions imply the guarantees of each

1 For instance the July 2016 rural Southern-Italy head-on train collision would have
been prevented if automated train detection equipment had been in place.

2 A model of the interlocking for a fairly simple network may lead to the potential
inspection of an astronomical number of states (e.g. in the order of 1051 [11]).

148 H.D. Macedo et al.

contract of the component. The authors report that this technique allowed the
verification of a real world station.

Pursuing the same goal, in a previous work [11] we described a compositional
approach to the verification of safety properties of models of interlocking systems
controlling lines with multiple stations. The approach was developed in the con-
text of the RobustRailS research project3 extending an automated method for
the formal verification of the new Danish interlocking systems [17–19]. The idea
in our previous work was based on the observation that decomposing a network
at specific points which satisfy a given topological configuration (called border
cut, see Fig. 1) generates sub-models corresponding to a complete partition of
disjoint, connected components of the state space. It is therefore straightforward
to combine the results of checking each sub-model to compute the result of check-
ing the monolithic model. This is the case as the routes that can be set inside
one sub-model are completely independent from those in the other sub-model.

b15 b14 t14
Station A

 t13
Station B

Fig. 1. Border cut dividing the network topology into two parts.

We have then realised that the border cut configuration does not occur in
some real world networks, but instead a similar configuration (that we call linear
cut, see Sect. 3.1), in which the routes of the two sub-models partially overlap,
is frequent. Inspired by the already cited compositional approach [10], where a
similar route overlap is taken into account, we have modified our compositional
approach to consider linear cut configurations as the points at which to cut
a network into sub-models. This requires a finer analysis of the interferences
between sub-models, but again we show that checking each sub-model allows
the result of checking the monolithic model to be computed, with significant
verification time savings.

The exposition of our results is structured as follows: in Sect. 2 we recall some
principles of railway interlocking systems and present the RobustRailS verifica-
tion method and toolkit on the top of which we have built our compositional
approach; in Sect. 3 we present our approach using a divide-and-conquer strat-
egy: we introduce the linear cut and explain how our method first uses this to
divide a network into sub-networks, then generates sub-models and finally con-
quer the model checking results for these. The soundness and completeness of
the approach is proved in Sect. 4, and in Sect. 5 we report on the results given
3 In Denmark, in the years 2009–2021, new interlocking systems that are compati-

ble with the standardised European Train Control System (ETCS) Level 2 [2] will
be deployed in the entire country within the context of the Danish Signalling Pro-
gramme. In the context of the RobustRailS project accompanying the signalling
programme on a scientific level, the approach is applied to the new systems.

Compositional Model Checking of Interlocking Systems for Lines 149

by the application of our compositional approach to a typical example and to
a real-world line that nearly reached the capacity bounds of the adopted tools
when proved as a whole. In both cases the results show that significant gains
in verification effort can be achieved. Section 6 summarises the achieved results
and discusses possible future extensions and improvements of the work presented
here, especially in the direction of addressing interlocking systems that control
large stations.

2 The New Danish Route-Based Interlocking Systems

In this section we introduce briefly the new Danish interlocking systems and the
domain terminology. The subsequent Sect. 2.1 explains different components of a
specification of an interlocking system which is compatible with ERTMS/ETCS
Level 2 [2], and Sect. 2.2 explains how the safety properties are verified.

2.1 Specification of Interlocking Systems

The specification of a given route-based interlocking system I = (N,R) consists
of two components: (N) a railway network, and (R) an interlocking table.

Railway Networks. A railway network in ETCS Level 2 consists of a number
of track and track-side elements of different types4: linear sections, points, and
marker boards. Figure 2 shows an example layout of a railway network having
six linear sections (b10,t10,t12,t14,t20,b14), two points (t11,t13), and eight
marker boards (mb10, . . . , mb21). These terms, and their functionality within
the railway network, will be explained in more detail in the next paragraphs.

Fig. 2. An example railway network layout.

A linear section is a section with up to two neighbours: one in the up end,
and one in the down end. For example, the linear section t12 in Fig. 2 has t13
and t11 as neighbours at its up end and down end, respectively. In Danish
railway’s terminology, up and down denote the directions in which the distance
from a reference location is increasing and decreasing, respectively. The reference
location is the same for both up and down, e.g., an end of a line. For simplicity,
in the examples and figures in the rest of this article, the up (down) direction is
assumed to be the left-to-right (right-to-left) direction.

4 Here we only show types that are relevant for the work presented in this article.

150 H.D. Macedo et al.

A point can have up to three neighbours: one at the stem, one at the plus
end, and one at the minus end, e.g., point t11 in Fig. 2 has t10, t12, and t20
as neighbours at its stem, plus, and minus ends, respectively. The ends of a
point are named so that the stem and plus ends form the straight (main) path,
and the stem and minus ends form the branching (siding) path. A point can
be switched between two positions: PLUS and MINUS. When a point is in the
PLUS (MINUS) position, its stem end is connected to its plus (minus) end, thus
traffic can run from its stem end to its plus (minus) end and vice versa. It is not
possible for traffic to run from plus end to minus end and vice versa.

Linear sections and points are collectively called (train detection) sections,
as they are provided with train detection equipment used by the interlocking
system to detect the presence of trains. Note that sections are bidirectional, i.e.,
trains are allowed to travel in both directions (but not at the same time).

Along each linear section, up to two marker boards (one for each direction)
can be installed. A marker board can only be seen in one direction and is used
as reference location (for the start and end of routes) for trains going in that
direction. For example, in Fig. 2, marker board mb13 is installed along section
t12 for travel direction up. Contrary to legacy systems, there are no physical sig-
nals in ETCS Level 2, but interlocking systems have a virtual signal associated
with each marker board. Virtual signals play a similar role as physical signals in
legacy systems: a virtual signal can be OPEN or CLOSED, respectively, allowing
or disallowing traffic to pass the associated marker board. However, trains (more
precisely train drivers) do not see the virtual signals, as opposed to physical
signals. Instead, the aspect of virtual signals (OPEN or CLOSED) is communi-
cated to the onboard computer in the train via a radio network. For simplicity,
the terms virtual signals, signals, and marker boards are used interchangeably
throughout this paper.

Interlocking Tables. An interlocking system constantly monitors the status of
track-side elements, and sets them to appropriate states in order to allow trains
travelling safely through the railway network under control. The new Danish
interlocking systems are route-based. A route is a path from a source signal to a
destination signal in the given railway network. A route is called an elementary
route if there are no signals that are located between its source signal and its
destination signal, and that are intended for the same direction as the route.

In railway signalling terminology, setting a route denotes the process of allo-
cating the resources – i.e., sections, points, and signals – for the route, and then
locking it exclusively for only one train when the resources are allocated.

An interlocking table specifies the elementary routes in the given railway
network and the conditions for setting these routes. The specification of a route
r and conditions for setting r include the following information, that will be
needed while verifying the expected properties:

– src(r) – the source signal of r,
– dst(r) – the destination signal of r,
– path(r) – the list of sections constituting r’s path from src(r) to dst(r),

Compositional Model Checking of Interlocking Systems for Lines 151

– overlap(r) – a list of the sections in r’s overlap5, i.e., the buffer space after
dst(r) that would be used in case trains overshoot the route’s path,

– points(r) – a map from points6 used by r to their required positions,
– signals(r) – a set of protecting signals used for flank or front protection [14]

for the route, and
– conflicts(r) – a set of conflicting routes which must not be set while r is set.

Table 1 shows an excerpt of an interlocking table for the network shown in
Fig. 2. Each row of the table corresponds to a route specification. The column
names indicate the information of the route specifications that these columns
contain. As can be seen, one of the routes has id 1a, goes from mb10 to mb13
via three sections t10, t11 and t12 on its path, and has no overlap. It requires
point t11 (on its path) to be in PLUS position, and point t13 (outside its path)
to be in MINUS position (as a protecting point). The route has mb11, mb12 and
mb20 as protecting signals, and it is in conflict with routes 1b, 2a, 2b, 3, 4, 5a,
5b, 6b, and 7.

Table 1. Excerpt of the interlocking table for the network of Fig. 2. The overlap column
is omitted as it is empty for all routes. (p = PLUS, m = MINUS)

Id src dst path points signals conflicts

1a mb10 mb13 t10;t11;t12 t11:p;t13:m mb11;mb12;mb20 1b;2a;2b;3;4;5a;5b;6b;7

..

7 mb20 mb11 t11;t10 t11:m mb10;mb12 1a;1b;2a;2b;3;5b;6a

2.2 The RobustRailS Verification Method and Toolkit

This section describes shortly the RobustRailS verification method and toolkit
that we use as verification technology. For detailed information, see [6,16–19].

The method for modelling and verifying railway interlocking systems is a
combination of formal methods and a domain-specific language (DSL) to express
network diagrams and interlocking tables. According to this, a toolkit consisting
of the following components is provided.

– An editor and static checker [6] for editing and checking that a DSL speci-
fication I = (N,R) (describing an interlocking system) follows certain well-
formedness rules.

5 An overlap section is needed when, for the short distance of a marker board to the
end of the section, there is the concrete danger that a braking train stops after the
end of the section, e.g. in adverse atmospheric conditions.

6 These points include points in the path and overlap, and points used for flank and
front protection. Sometimes it is required to protect tracks occupied by a train from
another train not succeeding to brake in due space. For details about flank and front
protection, see [14].

152 H.D. Macedo et al.

– The bounded model checker of RT-Tester [12,15] which we use for performing
k-induction proofs as explained in [19].

– Generators transforming a DSL specification I = (N,R) of an interlocking
model into inputs to the model checker:

• a behavioural model mI (a Kripke structure) of the interlocking system
and its environment, defining the state space and possible state transi-
tions, and

• the required safety properties given as a state invariant (expressing that
there are no hazards like train collisions). The invariant is a conjunction
of high-level safety properties H over the variables of the interlocking
system model. An H-property is satisfied by an interlocking specification
I, written as H(I), if it is valid in the model of the interlocking system mI .
H(I) is valid in the model mI can be written as mI |= ∀e : EN · PH(e),
where EN is either the subset of all linear sections or all point sections in
N and PH(e) is a section property related to H.

For details of the models and properties, see [19].

The tools can be used to verify the design of an interlocking system in the
following steps:

1. A DSL specification of the configuration data (a network layout and its cor-
responding interlocking table) is constructed in the following order:
(a) first the network layout,
(b) and then the interlocking table (this is either done manually or generated

automatically from the network layout).
2. The static checker verifies whether the configuration data is statically well-

formed according to the static semantics [18] of the DSL.
3. The generators instantiate a generic behavioural model and generic safety

properties with the well-formed configuration data to generate the model
input of the model checker and the safety properties.

4. The generated model instance is then checked against the generated proper-
ties by the bounded model checker performing a k-induction proof.

The static checking in step (2) is intended to catch errors in the network layout
and interlocking table, while the model checking in step (4) is intended to catch
safety violations in the control algorithm of the instantiated model.

The tool-chain associated with the method has been implemented using the
RT-tester framework [12,15]. The bounded model checker in RT-tester uses the
SONOLAR SMT solver [13] to compute counterexamples showing the violations
of the base case or induction step. Using this SMT solver rather than a SAT
solver allowed us to use very efficient bit-vector operations.

As proof technique in step 4, we used k-induction as this was the most promis-
ing (cf. the comparison with other techniques in [19]), however, our compositional
method could also be used in combination with other proof techniques.

Compositional Model Checking of Interlocking Systems for Lines 153

3 Method

We now proceed to describe the details of how we use the locality features of
railway networks to verify large interlocking systems in a compositional manner.
The idea is to decompose the model into smaller models that are separately veri-
fied for safety properties, and to show that under given conditions such separate
verifications are enough to guarantee that the whole network satisfies the safety
properties as well. We show that a multi-station interlocking system satisfies
such conditions if a suitable (and natural) divide strategy is applied. The strat-
egy provides a completely automated method to verify this class of interlocking
systems.

3.1 Linear Cuts on Multiple Station Lines

The typical pattern of a railway is a line connecting multiple stations. Without
loss of generality, we can consider a line, denoted A �� B, corresponding to a
network diagram consisting of two stations denoted by A and B, interconnected
by one or several linear sections. More complex multi-station layouts can be
obtained by concatenation of such elementary lines.

To divide multiple station lines we search for an interface I, which we define
as a linear section7 with an up and down marker board subject to certain condi-
tions described further below. A cut is then applied producing two sub-networks:

– The A network defined as the A station and the interface I. An entry marker
board is added on the up (B) side of this network.

– The B network defined as the B station and the interface I. An entry marker
board is added on the down (A) side of this network.

With the required configuration of marker boards on the interface and the addi-
tion of entry marker boards, the two sub-networks fulfil the required marker
board configuration at borders of a railway network.

T3 T2
A station

 P2
B station

Fig. 3. The multiple station line pattern where sections T2 and T3 connect two stations
A and B.

T2 P2

Fig. 4. Resulting A network.

T3 T2

Fig. 5. Resulting B network.
7 The extension of the interface to divide networks with parallel tracks is straightfor-

ward and defines the interface as a set I of linear sections dividing a network into
disjoint and valid connected sub-networks.

154 H.D. Macedo et al.

For example in Fig. 3 we depict a highlight of a line network diagram in
which T2 connects two stations A and B. In the example A contains element
P2 and its down neighbours and B contains elements T3 and its up neighbours.
Linear section T2 configures a candidate to a linear cut, which results in the
two networks illustrated in Figs. 4 and 5, where the linear section (T2) is kept
in both as it defines the interface I.

To guarantee that the compositional approach (to be described in next sub-
section) is sound, the interface I must satisfy the following linear cut conditions
(LCCs):

1. there is an up marker board on the upper part of the interface section I and
a down marker board on the down part;

2. the two networks (A and B) resulting from the cut described above must only
have I in common;

3. no flank/front protection requirements for routes in the up (down) sub-
network B (A) depends on elements outside B (A), except for routes in down
(up) direction with destination marker board mounted in I (i.e. routes that
end at the entrance of the A (B) station).

3.2 A Compositional Model Checking Approach

In the division process a network is inspected in search for regions that present
candidate patterns to be cut, that is, linear sections of the form T2 of Fig. 3. The
search is then recursively applied to the created sub-networks, until either no
more suitable cut points can be found or the sub-networks produced are already
sufficiently small.

The linear cut allows to automate the compositional verification of multi-
station interlocking systems by dividing the network in sub-networks by means
of four steps:

1. Search the network for suitable interfaces satisfying the LCCs. For each inter-
face instantiate the A �� B pattern and divide recursively the network into
sub-networks as described in Subsect. 3.1.

2. For each of the resulting sub-networks Ni, complete the specification of a
sub-interlocking system using the interlocking table generator mentioned in
item 1 of Sect. 2.2. The resulting specifications are called the Ni interlocking
specifications.

3. Statically check each of the resulting Ni specifications and generate the mod-
els mNi

(called the Ni models) and properties to be verified using the checker
and generator mentioned in item 2 and item 3, respectively, of Sect. 2.2.

4. Verify the mNi
models following item 4 of Sect. 2.2.

4 Soundness and Completeness of the Approach

To prove that the decomposition approach is sound and complete one needs
to show that the result of checking any of the high-level safety properties H

Compositional Model Checking of Interlocking Systems for Lines 155

(as defined in Subsect. 2.2) for the A and B sub-models implies the result of
checking the same property H for the A �� B monolithic model, and vice versa.
(The extension to more than one sub-model is then straightforward). First we
prove soundness and then completeness.

4.1 Soundness

Soundness can be rephrased in terms of H’s related invariant PH. If the invariant
holds for every section in the A interlocking specification and for every section
in the B interlocking specification we can conclude the whole interlocking spec-
ification A �� B satisfies H, meaning its related invariant PH holds for every
section in the A �� B interlocking specification.

Given that H-properties are universal quantifications over the sets of lin-
ear/point sections8, a natural strategy to produce such a proof is to decom-
pose the property in terms of the disjoint sets of sections defining the A and
B stations, and the interface I. That is, the H related property PH holds for
every section in the A �� B network, if PH holds for every section of the net-
work containing the A station, for the interface section I, and for every section
of the network containing the B station. In mathematical terms, if we denote
by EA the set of sections of an interlocking specification A, it corresponds to
rewrite the formulation of the satisfiability of H by the model of A �� B, i.e.
mA��B |= ∀e : EA��B · PH(e), into:

mA��B |= (∀e : A · PH(e)) ∧ PH(I) ∧ (∀e : B · PH(e)) (1)

The aforementioned rewrite leads one to decompose the proof into three lemmas.
The first two relate the local properties satisfied by A �� B and A and similarly
by A �� B and B.

Lemma 1. Consider a line interlocking specification with A and B stations sat-
isfying the A �� B pattern, the A and B interlocking specifications resulting
from the application of a linear cut, a high-level safety property H and its related
invariant PH. We relate the outcome of evaluating H(A) and H(A �� B) through
the following implication:

mA��B |= ∀e : A · PH(e) ⇐ mA |= ∀e : A · PH(e)

Proof. By contradiction. Let us assume that in mA the property PH holds for
every section in A and there is a section e in A such that PH(e) does not hold in
the mA��B model. Then, as detailed in [19], there is a state s of mA��B, where
PH(e) is false, reachable from the initial state by a sequence of transitions (trace)
that we denote as t∗. The state s is characterised by an assignment of values
to a vector of variables referring to the elements (sections, signals etc.) of the
network. Due to the linear cut definition, such variables refer to elements that

8 In the following, for simplicity, we just quantify over the whole set of sections of a
network, intending that we are referring either only to point or only to linear sections
according to the nature of H.

156 H.D. Macedo et al.

are in the A or in the B network. Any transition in t∗ changes such assignments:
following t∗ we can find in mA a corresponding trace t∗′ that makes the same
changes to the variables in the state vector of mA, skipping those transitions in
t∗ that do not change variables in mA. The trace t∗′ therefore ends in a reachable
state s′ in which the assignments to variables in mA are the same of those of s,
and hence PH(e) does not hold, contradicting the hypothesis.

Lemma 2. The dual case of Lemma 1. Given by substitution of the interlocking
specification A by B, H(A) by H(B) and A by B.

The two lemmas above allow us to transfer checking results on the sections of
the two stations A and B to the check of the whole line; however, we still miss
the contribution of the interface section, which is copied in both the A and B
networks. The next lemma has this purpose.

Lemma 3. (Interfacing lemma) Consider the A �� B interlocking specification,
the A interlocking specification and the B interlocking specification resulting from
applying a linear cut, a high-level safety property H and its related invariant PH.
For the interface I ∈ EA ∩ EB we have:

mA��B |= PH(I) ⇐ mA |= PH(I) ∧ mB |= PH(I)

Proof. By contradiction. Assume PH(I) is true in both the mA and mB models,
but false in the mA��B model. Furthermore assume s is the state of mA��B
falsifying PH(I). Thus, there is a trace t∗ in mA��B leading from the model’s
initial state to the variable assignment in s. Similarly to what said for Lemma
1 it is then possible to form a trace t∗′ in mA and a trace t∗′′ in mB from the
initial states to two states s′ and s′′ such that the state vector has an assignment
falsifying PH(I) in s′ or s′′. Thus arriving at a contradiction.

Given the proofs of Lemmas 1, 2, and 3, one is in the position to relate the
result of the monolithic checking of the A �� B interlocking specification with
the results of the compositional approach in which the A and B interlocking
specifications are checked.

Theorem 1. (Soundness) Consider the A �� B interlocking specification, the
A and B interlocking specifications resulting from the application of a linear cut,
and a high-level safety property H. Then

H(A �� B) ⇐ H(A) ∧ H(B)

which means that if H is satisfied by A and by B, one can conclude that it is
satisfied by A �� B.
Proof. Assume H(A) ∧ H(B) is true, our goal is to prove H(A �� B), i.e. (cf.
Formula (1)): mA��B |= (∀e : A · PH(e)) ∧ PH(I) ∧ (∀e : B · PH(e)) which is
equivalent to:

mA��B |= (∀e : A · PH(e)) ∧ mA��B |= PH(I) ∧ mA��B |= (∀e : B · PH(e))

Compositional Model Checking of Interlocking Systems for Lines 157

Applying Lemma 1, Lemma 2, and Lemma 3, one obtains:

mA |= (∀e : A · PH(e)) ∧ mA |= PH(I) ∧ mB |= PH(I) ∧ mB |= (∀e : B · PH(e))

which is equivalent to: H(A) ∧ H(B).

4.2 Completeness

The following theorem states that the method is complete.

Theorem 2. (Completeness) Consider the A �� B interlocking specification,
the A and B interlocking specifications resulting from the application of a linear
cut at an interface I, and a high-level safety property H. Assume that for each
internal section b of A �� B which appears as a border section in one of the
subnetworks A/B (i.e. b is an B/A neighbour to I), there exists a finite trace
prefix in mA��B leading a train to b from some outer border of the B/A network
without changing any of the variables that only exist in mA/mB. Then

H(A �� B) ⇒ H(A) ∧ H(B)

which means that if H is dissatisfied by A or by B, one can conclude that it is
dissatisfied by A �� B.
Proof. Assume that H is dissatisfied by A/B, and let t be the associated counter
example (trace). t can now be lifted to a counter example tA��B in mA��B by
first extending the states of t with the additional variables of mA��B mapped
to their initial states, and then, if the t trace involves a train entering I from
the border b at the B/A side of I, this extended trace should be preceded by a
trace prefix from mA��B leading the train to b from some outer border of B/A
without changing any of the variables that only exist in mA/mB.

5 Experiments

In this section we present the results of applying our decomposition approach
to an invented line (A �� B) with two stations and to a real world case study
with eight stations. Both lines exhibit the pattern of a line with multiple stations
which cannot be divided using the border cut defined in our previous work [11].

5.1 Experimental Approach

For each of the case studies, we put the method described in Sect. 3.2 in practice
by first obtaining sub-networks (in XML format) according to the divide strategy.
Then for each sub-network, we use the RobustRailS verification tool [17–19] to
generate a model instance and safety properties, and then to verify that the
generated safety properties hold in the model.

158 H.D. Macedo et al.

We also use the RobustRailS verification tool to monolithically verify the
railway network (without decomposing it) such that we can compare verifica-
tion metrics for the compositional approach with verification metrics for the
monolithic approach.

While verifying each instance we measure (in seconds) the real time taken
to obtain the verification result and what was the total memory (in MB) used
by the verification tool. In addition we collect some statistics about the network
and model instances as presented in Tables 2 and 3. Such statistics provide a
basis for complexity comparison and include: the number of linear and point
sections, the number of marker boards (signals), routes, and the potential state
space dimension (in logarithmic scale).

All the experiments for both case studies have been performed on a machine
with an Intel(R) Xeon(R) CPU E5-1650 @ 3.6 GHz, 125 GB RAM, and running
Linux 4.4.0–47.x86 64 kernel.

5.2 Two Stations Case Study

Let us consider as an example the railway line of Fig. 6 denoted A �� B. In it
we find two stations: the set of elements A = {T1, P1, A1, A2, P2} defines the
A station, whereas the set B = {T3, P3, B1, B2, P4, T4} defines the B station.
The linear section T2 connects A and B.

. . .
T1d

T1u

A2d

A1d
A2u

A1u

T2d

T1b T1 A1

A2

2P1P T2
T2u

B2d

B1d
B2u

B1u

T4d

T4u

. . .
T3 P3 B1

B2

P4 T4 T4b

Fig. 6. A �� B Network

The RobustRailS tool allows the automatic generation of interlocking tables
from a given network layout, and for the A �� B network it generates 24 routes.
A thorough inspection of the table shows that routes can be categorised into
three blocks, partitioning the network into two disjoint networks and a common
interface (linear section T2). The inspection of the A �� B route table reveals
that it makes sense to divide the A �� B network into two networks, choosing
the linear section T2 as an interface between a network containing the A station
and a network containing the B station.

As planned, we have verified the model both compositionally and mono-
lithically; Table 2 shows the verification metrics, first separately for the A and
B networks. The metrics for the compositional analysis (A + B) are obtained
by summing the corresponding metrics for the networks, except for the state
space and the memory usage, which are calculated as the respective maximum
between the two sub-networks. The table also shows the verification metrics for
the monolithic analysis of the network (A �� B).

Compositional Model Checking of Interlocking Systems for Lines 159

Table 2. Verification metrics for the A �� B case study.

Linears Points Signals Routes log10(|S|) Time Memory

A 6 2 9 13 38 10 186

B 7 2 9 13 41 16 234

A + B 13 4 18 26 41 26 234

A �� B 10 4 14 24 68 68 556

In all cases the verification tool succeeded to verify the safety properties. As
it can be observed the verification time and memory usage of the compositional
analysis (A + B) is, as expected, much better than for the monolithic analysis
of (A �� B): The verification time is approximately three times faster and the
memory usage (234 MB) is more than halved.

Moreover, if the verification for the A and B networks were run in parallel, our
compositional approach would achieve a running time of just 16 s. Even though
memory consumption would increase in this case, the parallelisation would still
use less memory resources (the sum of individual memory usages: 420 MB) than
the monolithic case (556 MB).

5.3 EDL: The Real World Case Study

The EDL is the first regional line in Denmark to be commissioned in the Danish
Signalling Programme. The line spreads over 55 km from the station in Roskilde
to Næstved’s station, with 8 small to medium sized stations, and the statistics
shown in Table 3 gives insight into its composition.

With the definition of the linear cut it is now directly possible to cut the EDL
network into eight sub-networks, each corresponding to an EDL station. Six of
the sub-networks (Gadstrup, Havdrup, Herfølge, Tureby, Haslev, and Holme-
Olstrup) are of fairly similar complexity, while two (L. Skensved and Køge)
are more complex. With such a division we decompose the verification of the
interlocking system for EDL into the separate verification of the eight stations.

As in the A �� B case study, the verification tool succeeded to verify the
safety properties for the eight sub-interlocking systems and the verification met-
rics show that for the compositional analysis (see the entry Compositional in
Table 3) the verification time is approximately a third (approx. 1.5 h) of that
for the monolithic analysis (approx. 4 h). Furthermore, the compositional analy-
sis uses less than half of the memory resources (9243 MB) because we only need
as much as the maximum value of memory used to verify each sub-interlocking.
Although we are still far from the memory bounds of the used machine in this
experiment, such memory reduction is important when checking real world inter-
locking systems where a single station with a complex network may quickly
exhaust the amount of memory available. As already discussed, if run in parallel
our compositional approach would achieve a much better running time. Even
though memory consumption would increase, the parallelisation would only use

160 H.D. Macedo et al.

Table 3. Verification metrics for the EDL case study.

Linears Points Signals Routes log10(|S|) Time Memory

Gadstrup 14 3 16 21 73 62 567

Havdrup 10 2 12 14 51 19 264

L. Skensved 15 3 16 21 75 72 616

Køge 58 23 62 75 337 5170 9243

Herfølge 6 2 10 14 39 13 210

Tureby 6 2 10 14 39 11 203

Haslev 10 2 12 14 51 14 256

Holme-Ol 12 2 16 20 63 22 352

Compositional 131 39 154 193 337 5383 9243

EDL 110 39 126 179 651 14352 22476

roughly 50% (the sum of the individual memory usages: 11711 MB) of the mem-
ory resources than the monolithic case. The parallel verification time is domi-
nated by the time to verify the Køge station, which is the largest of the network:
actually, the internal layouts of the stations do not present candidates for linear
cuts, so they are not further decomposed in this approach.

6 Conclusion

We have presented a compositional approach to the problem of model checking
large railway interlocking systems. This approach, built on top of tools provid-
ing support for efficient verification of this kind of systems, is tailored to the
characteristics of multi-station interlocking systems, that is, systems that con-
trol a line connecting several stations. The approach extends our previous work
[11], by a new, realistic division process which can be applied in cases where
the previous, simpler approach is not applicable. The approach has successfully
been applied to a real world line with eight stations in which case it achieved
significant improvements in verification time and memory usage compared to
the previous non compositional verification process.

In order to compositionally address more general network layouts the linear
cut concept put forward in this paper needs to be generalised. An immediate
extension is to combine it with the border cut concept introduced in our previous
work [11]: such interesting strategy should not demand any special efforts beyond
the practicalities involved. But the generalisation of the concepts to the appli-
cation to interlocking systems controlling large stations, which exhibit highly
complex and densely connected networks, requires a novel cut concept, which
is the subject of some of our new, ongoing work. In that case the main source
of difficulty stems from the fact that a division of a large station into smaller
areas implies that some routes have to go through the operated cuts, a situation
that is not exhibited by the multiple station lines we have addressed till now.

Compositional Model Checking of Interlocking Systems for Lines 161

Actually, we have seen that the interface elements in the linear cut have the
destination signals of routes coming from both sides of the interface: in the cut
the added markerboard behaves as an abstraction of the removed subnetwork.
We are currently studying a similar abstraction principle to support the more
complex cut configuration required to address large station interlocking systems.

Another topic for future work could be to formalise the proofs done in Sect. 4
by using a proof assistant like Coq or Isabelle.

Acknowledgement. The authors would like to express their gratitude to Jan Peleska
and Linh Hong Vu with whom Anne Haxthausen developed the RobustRailS verifica-
tion method and tools used in the presented work.

References

1. CENELEC European Committee for Electrotechnical Standardization. EN
50128:2011 - Railway applications - Communications, signalling and processing
systems - Software for railway control and protection systems (2011)

2. European Railway Agency. ERTMS - System Requirements Specification - UNISIG
SUBSET-026, April 2014. http://www.era.europa.eu/Document-Register/Pages/
Set-2-System-Requirements-Specification.aspx

3. Ferrari, A., Magnani, G., Grasso, D., Fantechi, A.: Model checking interlocking
control tables. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2010 - For-
mal Methods for Automation and Safety in Railway and Automotive Systems, pp.
107–115. Springer, Heidelberg (2010)

4. Hvid Hansen, H., Ketema, J., Luttik, B., Mousavi, M.R., Pol, J., Santos, O.M.:
Automated verification of executable UML models. In: Aichernig, B.K., Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 225–250. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25271-6 12

5. Haxthausen, A.E., Bliguet, M., Kjær, A.A.: Modelling and verification of relay
interlocking systems. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop
2008. LNCS, vol. 6028, pp. 141–153. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12566-9 8

6. Haxthausen, A.E., Østergaard, P.H.: On the use of static checking in the verifica-
tion of interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 266–278. Springer, Cham (2016). doi:10.1007/978-3-319-47169-3 19

7. Haxthausen, A.E., Peleska, J., Kinder, S.: A formal approach for the construction
and verification of railway control systems. Form. Asp. Comput. 23(2), 191–219
(2011)

8. Haxthausen, A.E., Peleska, J., Pinger, R.: Applied bounded model checking for
interlocking system designs. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS,
vol. 8368, pp. 205–220. Springer, Cham (2014). doi:10.1007/978-3-319-05032-4 16

9. James, P., Moller, F., Nguyen, H.N., Roggenbach, M., Schneider, S., Treharne, H.:
Techniques for modelling and verifying railway interlockings. Int. J. Softw. Tools
Technol. Transf. 16(6), 685–711 (2014)

10. Limbrée, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of railway inter-
locking - compositional approach with OCRA. In: Lecomte, T., Pinger, R.,
Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 134–149. Springer,
Cham (2016). doi:10.1007/978-3-319-33951-1 10

http://www.era.europa.eu/Document-Register/Pages/Set-2-System-Requirements-Specification.aspx
http://www.era.europa.eu/Document-Register/Pages/Set-2-System-Requirements-Specification.aspx
http://dx.doi.org/10.1007/978-3-642-25271-6_12
http://dx.doi.org/10.1007/978-3-642-12566-9_8
http://dx.doi.org/10.1007/978-3-642-12566-9_8
http://dx.doi.org/10.1007/978-3-319-47169-3_19
http://dx.doi.org/10.1007/978-3-319-05032-4_16
http://dx.doi.org/10.1007/978-3-319-33951-1_10

162 H.D. Macedo et al.

11. Macedo, H.D., Fantechi, A., Haxthausen, A.E.: Compositional verification of multi-
station interlocking systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS,
vol. 9953, pp. 279–293. Springer, Cham (2016). doi:10.1007/978-3-319-47169-3 20

12. Peleska, J.: Industrial-strength model-based testing - state of the art and current
challenges. In: Petrenko, A.K., Schlingloff, H. (eds.) 8th Workshop on Model-Based
Testing, Rome, Italy, vol. 111, Electronic Proceedings in Theoretical Computer
Science, pp. 3–28. Open Publishing Association (2013)

13. Peleska, J., Vorobev, E., Lapschies, F.: Automated test case generation with SMT-
solving and abstract interpretation. In: Bobaru, M., Havelund, K., Holzmann, G.J.,
Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 298–312. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-20398-5 22

14. Theeg, G., Vlasenko, S.V., Anders, E.: Railway Signalling & Interlocking: Interna-
tional Compendium. Eurailpress, Hamburg (2009)

15. Verified Systems International GmbH. RT-Tester Model-Based Test Case and Test
Data Generator - RTT-MBT - User Manual (2013). http://www.verified.de

16. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for railway
interlocking systems. In: Schnieder, E., Tarnai, G. (eds.) FORMS/FORMAT 2014–
10th Symposium on Formal Methods for Automation and Safety in Railway and
Automotive Systems, pp. 200–209. Institute for Traffic Safety and Automation
Engineering, Technische Universität Braunschweig (2014)

17. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of inter-
locking systems featuring sequential release. In: Artho, C., Ölveczky, P.C. (eds.)
Formal Techniques for Safety-Critical Systems. Communications in Computer and
Information Science, vol. 476, pp. 223–238. Springer International Publishing,
Cham (2015)

18. Vu, L.H.: Formal development and verification of railway control systems. In the
context of ERTMS/ETCS Level 2. Ph.D. thesis, Technical University of Denmark,
DTU Compute (2015)

19. Linh Hong, V., Haxthausen, A.E., Peleska, J.: Formal modelling and verification
of interlocking systems featuring sequential release. Sci. Comput. Program. 133,
91–115 (2017)

20. Winter, K.: Symbolic model checking for interlocking systems. In: Flammini, F.
(ed.) Railway Safety, Reliability, and Security: Technologies and Systems Engineer-
ing. IGI Global (2012)

http://dx.doi.org/10.1007/978-3-319-47169-3_20
http://dx.doi.org/10.1007/978-3-642-20398-5_22
http://www.verified.de

Modular Model-Checking of a Byzantine
Fault-Tolerant Protocol

Benjamin F. Jones(B) and Lee Pike

Galois, Inc., Portland, OR 97204, USA
{bjones,leepike}@galois.com

Abstract. With proof techniques like IC3 and k-induction, model-
checking scales further than ever before. Still, fault-tolerant distributed
systems are particularly challenging to model-check given their large
state spaces and non-determinism. The typical approach to controlling
complexity is to construct ad-hoc abstractions of faults, message-passing,
and behaviors. However, these abstractions come at the price of divorc-
ing the model from its implementation and making refactoring difficult.
In this work, we present a model for fault-tolerant distributed system
verification that combines ideas from the literature including calendar
automata, symbolic fault injection, and abstract transition systems, and
then use it to model-check various implementations of the Hybrid Oral
Messages algorithm that differ in the fault model, timing model, and
local node behavior. We show that despite being implementation-level
models, the verifications are scalable and modular, insofar as isolated
changes to an implementation require isolated changes to the model and
proofs. This work is carried out in the SAL model-checker.

1 Introduction

Fault-tolerant distributed systems are famously complex, yet are the backbone
of life-critical systems, such as commercial avionics. Consequently, this class of
systems demands high-assurance of correct design and implementation. Formal
verification can help provide that assurance.

The verification of this class of systems has usually been at the algorithmic
level, eliding details about a concrete implementation. Historically, it has relied
on formal models verified by interactive theorem-proving [1–4]. If formal verifica-
tion is to be introduced into the workflow of system designers, though, we need
more automated methods that scale for implementation-level models. (Mostly)
automated proof techniques are required to reduce the need for specialized ver-
ification expertise. We also need programmatic verification of implementations.
System designers create software and hardware implementations to test, simu-
late, and deploy. Discrepancies between implementations and algorithmic models
can arise if the latter is abstracted too much from the former [5], particularly if
those abstractions are ad-hoc and system specific. Furthermore, as implementa-
tions are modified to explore the design space, it is easy for the formal model
and the implementation to become inconsistent, so the verification is no longer
about the system deployed.
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 163–177, 2017.
DOI: 10.1007/978-3-319-57288-8 12

164 B.F. Jones and L. Pike

There are at least two classes of abstractions that separate protocol-level
models of fault-tolerant distributed algorithms from their implementations. One
is to intertwine the environmental model with the system description. For exam-
ple, the behaviors of nodes are naturally specified as a transition system in
which transitions are guarded by the node’s fault state. But faults are part of
the environment; an implementation does not typically use its own fault status
to choose actions! Another class of abstractions is used to simplify models. For
example, message passing might be abstracted with shared state, or a node’s
local behavior is elided and instead, the output is constrained by a specification
of the behavior.

In this paper, we present a fault-tolerant distributed systems model, and
use that model to verify several variant implementations of the Byzantine fault-
tolerant Hybrid Oral Messages algorithm (OMH) [3]. The model combines var-
ious ideas from the literature to build scalable and modular formal models
suitable for infinite-state model-checking, and it reduces the need for ad-hoc
abstractions and optimizations. In Sect. 2, we present the important aspects
of the model, including calendar automata, originally developed by Dutertre
and Sorea [6], symbolic fault-injection, and abstract transition systems for
verification.

We use the model to verify implementation-level models of OMH in which
message passing is explicit, nodes are not forced to execute strictly synchro-
nously, and voting is explicit. In short, the models corresponds closely with an
implementation of the algorithm. In Sect. 3, we first describe OMH, then an
implementation of it that uses the Boyer-Moore Fast Majority Vote algorithm
(Fast MJRT) [7]. We then describe a set of modular invariants, such that the
invariants only concern specific aspects of the model (e.g., faults, local node
behavior, or the passage of time). The verification is interesting in its own right,
as it is the first fully parametric (on the number of nodes) model-checked imple-
mentation of the algorithm.

In Sect. 4, we first show that despite being implementation-level, the model is
scalable. Developing invariants requires some user guidance, and isolated changes
to an implementation should require isolated modifications to the model and
proof. To demonstrate this, we modify the OMH implementation along the
dimensions of faults (by adding an omissive-asymetric fault type [8]), time (by
making a time-triggered model), and local behavior (by changing the majority
vote to a mid-value selection) and show that in each case, the modifications are
small and modular.

Our primary contributions are (1) a model-checking verification of an OMH
implementation, and (2) demonstrating that our modeling paradigm allows for
modular verification. Additionally, the idea of symbolic fault injection (Sect. 2.2)
is novel.

Finally, in Sect. 5 we describe related work, and we make concluding remarks
in Sect. 6.

The models and experiments reported herein can be found online.1

1 https://github.com/GaloisInc/mmc-paper.

https://github.com/GaloisInc/mmc-paper

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 165

2 Formal Model

Here we describe our formal model specialized for fault-tolerant distributed sys-
tems. The model draws on three principal abstractions: calendar automata, sym-
bolic fault injection, and abstract transition systems; we describe each below.

2.1 Calendar Automata

Real-time system verification in general-purpose model-checkers requires an
explicit formalism of real-time progression. Trying to encode real-time clocks
directly is difficult; in particular, one must avoid Zeno’s paradox in which no
progress is made because state transitions simply update real-valued variables
by an infinite sequence of decreasing amounts whose sum is finite. To avoid
this problem, Dutetre and Sorea developed calendar automata [6], which is itself
inspired by event calendars used in discrete-event simulation. Rather than encod-
ing “how much time has passed since the last event”, it encodes “how far into
the future is the next scheduled event”, and a real-valued variable representing
the current time is updated to the next event time.

Define a set of events e0, e1, . . . , en ∈ E. For now, we do not define events;
intuitively, an event is a set of state variables (shortly, we will associate events
with messages sent in a distributed system). When an event is enabled, the
transitions over events are enabled; otherwise, the variables stutter (maintain
the same value).

An event calendar {(e0, t0), (e1, t1), . . . , (en, tn)} is a set of ordered pairs
(ei, ti) called calendar events where ei ∈ E is an event and ti ∈ R is a timeout,
the time at which the event is scheduled. We denote element (ei, ti) of an event
calendar by ci.

Let cal be an event calendar and ci, cj ∈ cal be calendar events. Define an
ordering on calendar events such that ci ≤ cj iff ti ≤ tj , and min(cal) = {ci|∀cj ∈
cal, ci ≤ cj} are the minimum elements of cal.

Let a transition system M = (S, I,→), be a set of states S, a set of initial
states I ⊆ S, and a transition relation →⊆ S × S. We implicitly assume a
set of state variables such that each state σ ∈ S is a total function that maps
state variables to values. We sometimes prime a state to denote that it satisfies
the transition relation: σ → σ′. We also sometimes use a variable assignment
notation to describe what state variables are specifically updated: e.g., σ′ =
σ[v := v + 1].

We distinguish two special state variables in a transition system: (1) now ∈ R

denotes the current time in the state, and (2) cal is an event calendar.
The following laws must hold of a transition system M implementing a cal-

endar automaton:

1. Time is initialized to be less than or equal to every calendar timeout: ∀σ ∈ I,
∀(ei, ti) ∈ σ(cal), σ(now) ≤ ti.

2. In all states, if the current time is strictly less than every calendar event,
then the only enabled transition is a time progress update: ∀σ ∈ S, ∀(ei, ti) ∈
σ(cal), if σ(now) < ti, then ∀σ′ such that σ → σ′, σ′ = σ[now := min(cal)].

166 B.F. Jones and L. Pike

3. In all states, if the current time equals a timeout, then the only transitions
enabled are calendar event updates associated with the timeout: ∀σ ∈ S,
∃(ei, ti) ∈ σ(cal) such that σ(now) = ti implies ∀σ′ such that σ → σ′,
σ′(now) = σ(now), σ′(cj) = σ(cj) for all cj ∈ σ(cal) such that cj �= ci
(recalling that by convention, ci = (ei, ti)), and ci /∈ σ′(cal).

From the definitions, it follows that in every state, the timeouts are never in
the past, and that time is monotonic:

Lemma 1 (Future timeouts). ∀σ ∈ S, (ei, ti) ∈ σ(cal), σ(now) ≤ ti.

Lemma 2 (Monotonic time). ∀σ, σ′ ∈ S, if σ → σ′, then σ′(now) ≥ σ(now).

Proofs of these two lemmas are straightforward and omitted.
In a distributed system, it is convenient to distinguish global actions and

local actions. Global actions are principally interprocess communication, while
local actions are those carried out by each process to update its local state and
produce new messages to broadcast. While both global and local actions can
both be modeled as events in a calendar automata, doing so is generally overkill
and complicates the model. From the global perspective, individual processes
can update their local state atomically.

Again, following Dutetre and Sorea, we associate calendar events with chan-
nels in a distributed system [6]. Specializing calendars to message passing
does not lose generality since all external communication from an individual
process can be abstracted as message passing. Furthermore, fault models can be
abstracted to act over channels rather than processes [9]. The calendar intro-
duces real-time constraints on when processes send and receive messages.

Assume processes are indexed from a finite set Id . A channel from process i
to j is an ordered pair (i, j). Fix a set of messages Msg . Given a channel and a
timeout, let send be a relation on messages sent on a channel at a given time:

send ⊆ Id × Id × R × Msg

So send(i, j, t,m) holds iff i sends to j message m at time t. Likewise, let

recv ⊆ Id × Id × R × Msg

be a relation on messages received on a channel at a time, so that recv(i, j, t,m)
holds iff the message m received by j from i at time t.

In the absence of faults, we require that messages received were previ-
ously sent and not previously received: if (i, j, t,m) ∈ recv, then ∃t′ such
that (i, j, t′,m) ∈ recv where t′ < t, and ¬∃t′′ such that t′ < t′′ < t and
(i, j, t′′,m) = (i, j, t,m). (We address faults in Sect. 2.2.)

Then an event calendar for sending and receiving messages on channels is
the union of the send and recv relations.

The event of receiving a message initiates a process to update its local tran-
sition system and generate additional messages to send. When the process is
updating its local transition system, the event calendar is paused. That is, updat-
ing an event (i, j, t,m) ∈ recv also includes updating j’s transition system.

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 167

2.2 Symbolic Fault Injection: A Synchronous Kibitzer

The typical approach to modeling faults is to add new state variables to each
process representing its fault state. Then a node chooses actions based on its
fault state. As a simple example, we might define a node that sends a good
message if it is non-faulty and a bad message otherwise. In pseudo-code using
guarded commands, its definition might look like the following:

node:

health: Fault_Type;

faulty(health) --> send(bad_msg);

non_faulty(health) --> send(good_msg);

But this approach mixes the specification of a node’s behavior with the fault
model, an aspect of the environment. Generally, nodes do not contain state
variables assigned to their faults, or use their fault-status to determine their
behavior!2 The upshot is that combining faults and node state divorces the
specification from its implementation.

A second difficulty with model-checking fault-tolerant systems in general
is that modeling faults requires adding state and non-determinism. The minimum
number of additional states that must be introduced may depend non-obviously
on other aspects of the fault model, specific protocol, and system size. Such con-
straints lead to “meta-model” reasoning, such as the following, in which Rushby
describes the number of data values that a particular protocol model must include
to model the full range of Byzantine faults (defined later in this section):

To achieve the full range of faulty behaviors, it seems that a faulty source
should be able to send a different incorrect value to each relay, and this
requires n different values. It might seem that we need some additional
incorrect values so that faulty relays can exhibit their full range of behav-
iors. It would certainly be safe to introduce additional values for this pur-
pose, but the performance of model checking is very sensitive to the size of
the state space, so there is a countervailing argument against introducing
additional values. A little thought will show that Hence, we decide
against further extension to the range of values [10].

The second problem is the most straightforward to solve. In infinite-state
model-checking, we can use either the integers or the reals as the datatype for
values. Fault-tolerant voting schemes, such as a majority vote or mid-value selec-
tion (see Sect. 3), require only equality, or a total order, respectively, to be defined
for the data.

The solution to the first problem is more involved. Our solution is to
introduce what we call a synchronous kibitzer that symbolically injects faults
into the model. The kibitzer decomposes the state and transitions associated
with the fault model from the system itself. For the sake of concreteness in

2 There are exceptions; for example, benign faults may be detected by a node itself
(e.g., in a built-in-test).

168 B.F. Jones and L. Pike

describing the synchronous kibitzer, we introduce a particular fault model, the
hybrid fault model of Thambidurai and Park [11]. This fault model distinguishes
Byzantine, symmetric, and manifest faults. It applies to broadcast systems in
which a process is expected to broadcast the same value to multiple receivers. A
Byzantine (or arbitrary) fault is one in which a process that is intended to broad-
cast the same value to other processes may instead broadcast arbitrary values to
different receivers (including no value or the correct value). A symmetric fault
is one in which a process may broadcast the same, but incorrect, value to other
processes. Finally, a manifest (or benign) fault is one in which a process’s broad-
cast fault is detectable by the receivers; e.g., by performing a cyclic redundancy
check (CRC) or because the value arrives outside of a predetermined window.

Define a set of fault types

Faults = {none, byz, sym,man}.

As in the previous section, let Id be a finite set of process indices, and let the
variable

faults : Id → Faults

range over possible mappings from processes to faults.
The hybrid fault model assumes a broadcast model of communication.

A broadcast : Id → 2Id → R → Msg → 2E takes a sender, a set of receivers, a
real-time, and a message to send each receiver, and returns a set of calendar events:

broadcast(i, R, t,m) = {m|j ∈ R and send(i, j, t) = m}
With this machinery, we can define the semantics of faults by constraining

the relationship between a message broadcast and the values received by the
recipients. For a nonfaulty process that broadcasts, every recipient receives the
sent message, and for symmetric faults, there is no requirement that the messages
sent are the ones received, only that every recipient receives the same value:

nonfaulty constraint =
∀i, j ∈ Id , t ∈ R

faults(i) = none

implies recv(i, j, t) = send(i, j, t)

sym constraint =
∀i, j, k ∈ Id , t ∈ R

(faults(i) = sym

and broadcast(i, {j, k}, t,m))
implies recv(i, j, t) = recv(i, k, t)

Byzantine faults are left completely unconstrained.
Thus, faults can be modeled solely in terms of their effects on sending and

receiving messages. A node’s specification does not have to depend on its fault
status directly.

If the faults mapping is a constant, then faults are permanently but non-
deterministically assigned to nodes. However, we can easily model transient faults
in which nodes are faulty temporarily by making faults a state variable that

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 169

is updated non-deterministically. Whether we model permanent or transient
faults, a maximum fault assumption (MFA) describes the maximum number of
faults permitted in the system. The faults mapping can be non-deterministically
updated during execution while satisfying the MFA using a constraint such as
faults ∈ {f |mfa(f)}, where the MFA is defined by the function mfa.

2.3 Abstract Transition Systems

Due to the sheer size of implementation-level models, manually examining coun-
terexamples is tedious. To scale up verification, we use abstract transition sys-
tems (also known as disjunctive invariants) [12,13]. In this context, an abstract
transition system, relative to a given transition system M = (S, I,→), is a set
of state predicates A1, . . . , An over S and a transition system M∗ = (S∗, I∗,�)
such that:

1. S∗ = {a1, . . . , an} is a set of “abstract states” which correspond one-to-one
with the state predicates Ai.

2. ∀s ∈ I, ∃i : ai ∈ I∗ ∧ Ai(s).
3. ∀ai ∈ S∗ ∀σ, σ′ : Ai(σ) ∧ σ → σ′ =⇒ Ak1(σ

′) ∨ . . . ∨ Akm
(σ′) where

{ak1 , . . . , akm
} are the abstract states to which M∗ may transition from ai.

For verification purposes, it is important to note that if M and M∗ satisfy
the requirements above, then A1 ∨ . . . ∨ An is an inductive invariant of M. We
may use such an invariant freely as a powerful assumption in the proof of other
invariants (see Sect. 3.3).

The use of abstract transition systems not only allows us to scale proofs far-
ther, but also to improve traceability and debugging while developing a model.
In models like the ones described in Sect. 4.2 where there are on the order of 100
state variables and counterexample traces could be 30 steps long, the designer
can be easily lost trying to identify the essence. In such cases, the values of the
abstract predicates can serve to focus the designer’s attention on one particular
mode of the system where the counter example is taking place. At the present
we do not have a good method for synthesizing the predicates A1, . . . , An auto-
matically for general systems; they must be supplied by the user.

3 Modeling and Verification for Oral Messages

The Hybrid Oral Messages (OMH) algorithm [3] is a variant of the classic Oral
Messages (OM(m)) algorithm [14], originally developed by Thambidurai and
Park [11] to achieve distributed consensus in the presence of a hybrid fault
model. However, OMH had a bug, as originally formulated, which was corrected
and the mended algorithm was formally verified by Lincoln and Rushby using
interactive theorem-proving [3].

First, we briefly describe the algorithm, sketch our instantiation of the model
for the particular protocol in Sect. 2, then describe it’s invariants.

170 B.F. Jones and L. Pike

3.1 OMH(m) Algorithm

OMH is a recursive algorithm that proceeds in rounds of communication. Here
we give a recursive specification for OMH(m), parameterized by the number of
rounds, m. Consider a finite set of nodes N . Distinguish one node as the general,
g, and the remaining nodes L = N \{g} as the lieutenants. We assume the iden-
tity of any general or lieutenant cannot be spoofed. Broadcast communication
proceeds in rounds. Denote any message that is detectably faulty (e.g., fails a
CRC) or is absent, by ERR. Additionally, in the algorithm, nodes report on val-
ues they have previously received. In doing so, nodes must differentiate reporting
ERR from an ERR itself. Let R denote that an error is being reported. Finally,
let V be a special, designated value.

The algorithm is recursively defined for m ≥ 0:

– OMH(0): g broadcasts a value to each lieutenant and the lieutenants return
the value received (or ERR).

– OMH(m), m > 0:
1. g broadcasts a value to each lieutenant, l.
2. Let lv be the value received by l ∈ L from g. Then for each l, execute

OMH(m−1), assigning l to be the general and L\{l} to be the lieutenants.
l sends lv, or R if lv = ERR.

3. For each lieutenant l ∈ L, remove all ERR values received in Step 2 from
executing OMH(m − 1). Compute the majority value over the remaining
values, or V if there is no majority. If the majority value is R, return E.

In particular, OMH(1) includes two rounds of broadcast communication: one
in which the general broadcasts, and one in which the lieutenants exchange their
values.

OMH is designed to ensure validity and agreement properties under suitable
hypotheses on the number and type of faults in the system. Validity states that
if the general is nonfaulty, then every lieutenant outputs the value sent by the
general. Agreement states that each lieutenant outputs the same value. More
formally, Let li, lj denote the outputs of lieutenants i, j ∈ L, respectively, and
let v be the value the general broadcasts:

∀ i. li = v (Validity) ∀ i, j. li = lj (Agreement)

We described a hybrid fault model in Sect. 2.2. Under that fault model, valid-
ity and agreement hold if 2a + 2s + b + 1 ≥ n, where n is the total number of
nodes, a is the number of Byzantine (or asymmetric) faults, s is the number of
symmetric faults, and b is the number of benign faults. Additionally, the number
of rounds m must be greater or equal to the number of Byzantine faults, a [3,11].

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 171

3.2 Model Sketch

We have implemented OMH(1) (as well as the variants described in Sect. 4.2) in
the Symbolic Analysis Laboratory (SAL) [15]. SAL contains a suite of model-
checkers. In our work, we use infinite-state (SMT-based) k-induction [6].

We follow Rushby [10] in “unrolling” the communication among lieutenants
into two sets of logical nodes: relays and receivers. Relays encode the lieutenants’
Step 2 of the OMH algorithm, in which they rebroadcast the values received from
the general after filtering manifestly bad messages, while the receivers encode
the voting step. We refer to the general as the source. The unrolling shows
that a generalization of the original algorithm holds: the number of relays and
receivers need not be the same. We model communication through one-way,
typed channels. The source broadcasts a message to each relay which, in turn,
each broadcast their messages to all receivers.

The relays and receivers explicitly send and receive messages and store them
in local buffers as needed. In addition, the receivers implement the Fast MJRY
algorithm [7].

Our SAL model defines seven transition systems in total: clock, source,
relay (parametrized over an ID), receiver (parametrized over an ID),
observer, abstractor, and abstract monitor. The first four of these are com-
posed asynchronously, in an intermediate system we label system, and share
access to a global calendar consisting of event slots (message, time), one for each
channel in the system. The clock transition system is responsible for updating
a global variable t (called now in Sect. 2.1) representing time according to the
rules for calendar automata.

The asynchronous composition of the system relaxes the original specification
of the algorithm considerably. For example, in our implementation, a receiver
may receive a message from one relay before another relay has received a message
from the source. We only require that all relays and receivers have executed
before voting. With a general asynchronous model, it is easy to refine it further;
for example, we refine it to a time-triggered model in Sect. 4.2.

The observer is a synchronous observer [16] that encodes the validity and
agreement properties as synchronously-composed transition systems. State vari-
ables denoting validity and agreement are set to be false if the receivers have
completed their vote but the respective properties do not hold.

Finally, the abstractor and abstract monitor encode an abstract transi-
tion system for the system, as described in Sect. 2.3.

3.3 Invariants

To make the proof scalable, we specify inductive invariants to be used by SAL’s
k-induction engine. There are 11 invariants, falling into five categories:

1. Calendar automata: Lemmas relating to the calendar automata model. These
include lemmas such as time being monotonic, channels missing messages if
there is no calendar event, and only nodes associated with a calendar event
may execute their local transition systems.

172 B.F. Jones and L. Pike

calendar (1)
receiver

local behavior (2)

faults (5) ATS (1) voting (2)

Fig. 1. Invariant classification and dependencies.

2. Abstract transition sytem (ATS): Lemmas relating the ATS states to the
implementation states.

3. Receiver local behavior : Lemmas describing the modes of behavior of the
receivers. The major modes of their behavior are receiving messages, then
once it has filled its buffer, it votes, and after voting returns the result. An
additional lemma notes that the messages currently received plus missing
messages equals the total number of expected messages.

4. Faults: Lemmas characterizing the effect of a fault in a single broadcast.
Examples include lemmas stating that if a node receives a faulty message,
some “upstream” node in the communication path was faulty. Another exam-
ple is that the faults of messages latched by a node in its buffer match the
faults ascribed to the sender in the calendar event.

5. Voting : Lemmas proving that the Fast MJRTY algorithm implements a
majority vote, if one exists. These lemmas are nearly verbatim transcriptions
from the journal proofs for the algorithm [7].

The proof structure is shown in Fig. 1. The number of lemmas per category
are shown in parentheses. Arrows denote dependencies. For example, the ATS
lemmas depend on both the calendar automata and receiver state-machine lem-
mas. As can be seen, the proof structure is modular. The calendar lemmas are
general and independent of any particular protocol or fault model. Similarly,
lemmas about the internal behavior of a receiver is independent of the global
protocol behavior. It is also independent of the effect of faults on the system—
the only “knowledge” of faults that receiver has is whether a fault is benign or
not. Lemmas about the behavior of faults in the system are also independent of
the particular protocol being modeled. Likewise, lemmas about the particular
voting algorithm used depend only on the receiver’s internal behavior. Only the
ATS depends on both calendar-specific and local state-machine results, since it
is an abstraction of the entire system implementation. Recall, however, that the
ATS is a convenience for debugging and can be elided.

4 Experimental Results

Here we present two classes of experimental results. First, we demonstrate the
scalability results of the verification, despite the low-level modeling. Then we
describe modularity results, demonstrated by making modifications to the model
and re-validating the model.

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 173

4.1 Scalability

We present benchmarks in Fig. 2. The benchmarks were performed on a server
with Intel Xeon E312xx (Sandy Bridge) CPUs. The table provides execution
times in seconds, with a timeout limit of one hour, for verifying the model, given
a selected number of relays and receivers. The voting logic is in the receivers, so
they have substantially more state than the relays, and dominate the execution
time. The execution times sums the execution times for verifying each of the
eleven lemmas individually, as well as the final agreement and validity theorems.
Each proof incurs the full startup, parsing, type-checking, and model-generation
time of SAL. Observe the theorems hold even in the degenerate cases of one
relay or one receiver.

Receivers
1 2 3 4 5 6 7 8 9 10

Relays

1 7 9 12 15 21 25 32 40 54 74
2 17 14 21 30 42 53 74 99 144 -
3 21 22 40 50 81 102 155 279 - -
4 27 34 59 99 141 237 1114 - - -
5 22 94 125 335 T 1406 - - - -
6 36 132 2966 844 2457 - - - - -
7 83 487 T T - - - - - -
8 298 T T - - - - - - -
9 1428 T - - - - - - - -
10 T - - - - - - - - -

Fig. 2. Benchmark of full proof computation time for OMH(1) implementation. Times
are in seconds with a timeout (T) limit of one hour. Dashes (‘-’) denote no benchmark
was run.

As a point of comparison, Rushby presents an elegant high-level model of
OM(1), also in SAL [10]. For small numbers of relays/receivers, the verification
of Rushby’s model is much faster, likely due to making only one call to SAL.
However, for six relays and two receivers, it takes 449 seconds and timeouts (at
one hour) for seven relays and two receivers. Checking Rushby’s model requires
use of symbolic, BDD-based model-checking techniques which are well-known to
scale poorly. On the other hand, our model requires the use of k-induction which
scales well, but requires (inductive) invariants to be provided.

4.2 Modular Verification

To demonstrate the modularity of the modelling and verification approach, in
this section, we explore variants to the model and report the effort required to
implement the modifications and repair the proofs. The results are summarized
in Fig. 3 and sketched below. In the table, for each modification, we report how
much of the model must be modified. We report on four aspects of the system:

174 B.F. Jones and L. Pike

which transition systems are modified (as described in Sect. 3.2), how many
definitions have to be added or modified, the number of invariants that have to
be added or modified, and which invariant classes (as defined in Sect. 3.3) those
lemmas belong to. We modify the implementation along the axes of faults, time,
and local node behavior.

Transition
systems
(7 total)

Definitions
(58 total)

Invariants
(11 total)

Invariant
classes
(5 total)

Omissive
Asymmetric Faults

none 1 new, 2
modified

2 modified faults

Time-Triggered
Messaging

source, relays,
receivers,
ATS

3 new 2 modified, 3
modified

calendar,
faults

Mid-Value Selection receivers 4 new, 3
modified

2 modified ATS, voting

Fig. 3. Refactoring effort for protocol modifications, measured by which portions of
the model have to be modified.

Omissive Asymmetric Faults. Removing faults already described by the fault
model is easy. Recall that in our model faults do not appear in the system
specification and only operate on the calendar. Removing a fault from the system
requires only setting the number of a particular kind of faults to zero in the
maximum fault assumption.

Adding new kinds of faults requires more work but is still modular. Consider
adding omissive asymmetric faults, a restriction of Byzantine faults in which
a broadcaster either sends the correct value or a benign fault [8], to the fault
model. Doing so requires modifying none of transition systems, because of the
synchronous kibitzer. We add a new uninterpreted function definition for omis-
sive asymmetric faults, then modify the type of faults, and their effect on the
calendar. Two invariants, both in the class of invariants cover faults, are extended
to cover the cases where a sender is omissive asymmetric.

Time-Triggered Messaging. A time-triggered distributed system is one in which
nodes are independently clocked, but clock constraints allow the model to appear
as if it is executing synchronously [17].

Changing the model to be time-triggered principally requires making the
source, relays, and receivers driven explicitly by the passage of time (we do not
model clock drift or skew). As well, a “receive window” is defined at which mes-
sages from non-faulty nodes should be received. Messages received outside the
window are marked as coming from manifest-faulty senders. The model requires
three new definitions to encode nondeterministic message delay and two are
small helper functions. The guards in the relays and receivers are modified to
latch messages received outside the receive windows as being manifest faults.

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 175

The ATS definition is modified to track the times in the calendar, not just the
messages. Two new calendar invariants are introduced, stating that the calen-
dar messages are either empty, or their time-stamps fall within the respective
message windows. Then, three invariants classifying faults are relaxed to allow
for the possibility of faulty nodes sending benign messages.

Mid-Value Selection. Our OMH(1) model leverages a majority vote in order
to tolerate faults. Another choice for the fault masking algorithm used is mid-
value selection. This choice is common in applications involving hardware, signal
selection, or cases where information about congruence is useful. To implement
mid-value selection in our model, we allow messages sent to take values in R and
the receiver transition system is modified in two ways. First, a second buffer is
introduced which will hold the sorted contents of the main buffer once voting has
commenced. Second, a mid-value select function is called on the sorted buffer
and the result is stored as the receiver’s vote. The only invariants needing mod-
ification were the ATS definition (to account for the values stored by the new
buffer and the relation between it and the main buffer) and the voting invariant.

4.3 Proof Effort Remarks

The lemmas described in Sect. 3.3 are constructed by-hand and represent multi-
ple days of effort, but that effort includes both model and protocol construction
and generalization as well as verification. The counterexamples returned by SAL
are very useful for strengthening invariants, but tedious to analyze—a model with
five relays and two receivers contains 90 state variables, and there are known
counterexamples to models that size [3]. Once we developed the synchronously-
composed ATS observer, the verification effort was sped up considerably.

The invariants are surprisingly modular. One benefit of a model-checking
based approach is that it is automated to rerun a proof of a theorem omit-
ting lemmas to see if the proof still holds. This allowed us to explore reducing
dependencies between invariants related to different aspects of the system.

The modifications to the implementation described in Sect. 4.2 took at most
hours to develop. Moreover, most of the invariants do not concern the specific
protocol modeled at all, and we hypothesize that for completely different fault-
tolerance protocols, only the modeling aspects related to the protocol behavior
and local node behavior would change, and the invariant structure would remain
modular.

Moreover, we are agnostic about how lemmas are discovered. As techniques
like IC3 scale, they may be discovered automatically. k-induction in infinite-
state model-checking blurs the lines between interactive and automated theorem
proving. IC3 can even be strengthened using k-induciton [18].

5 Related Work

The Oral Messages algorithm and its variants and its variants have a long history
of formal verification. OM(1) was verified in both the PVS and ACL2 interac-
tive theorem-provers [2]. Also in ACL2, an implementation of a circuit design to

176 B.F. Jones and L. Pike

implement OM(1) is given [1]; the low-level model most closely relates to our level
of detail. A refinement-based verification approach is used, and OM(1) is special-
ized to a fixed number of nodes. Bokor et al. describe a message-passing model for
synchronous distributed algorithms that is particularly amenable to partial-order
reduction for explicit-state model-checking [19]. The model is efficient for up to
five nodes, but results are not presented beyond that. Very recently, Jovanović
and Dutertre use a “flattened” high-level model of OM(1) as a benchmark for
IC3 augmented with k-induction [18].

Moreover, our work is heavily influenced by previous verifications of fault-
tolerant and real-time systems in SAL [6,10,13].

6 Conclusions

This work fits within a larger project, in collaboration with Honeywell Labs, to
build an architectural domain-specific language (ADSL) for specifying and veri-
fying distributed fault-tolerant systems. The ADSL should be able to synthesize
both software and/or hardware implementations as well as formal models for
verification. Before building such an ADSL, we needed a scalable general formal
model to which to compile, leading to the work presented in this paper. We
hypothesize that the ADSL will make refactoring even easier, and we can gen-
erate invariants or invariant templates useful for verification. Indeed, we have
developed a preliminary ADSL that generates C code as well as formal models
in SRI’s Sally [18], to be described in a future paper.3

Beyond building an ADSL, another avenue of research is producing a formal
proof that a software implementation satisfies the node specification in our for-
mal model. While our model of node behavior is low-level, there are gaps. For
example, our work is in SAL’s language of guarded commands [15] and needs
to be either refined or verified to be equivalent to a software implementation’s
semantics. Another aspect is that behavior related to networking, serialization,
etc. is left abstract, implicit in the send and recv functions.

Acknowledgments. This work is partially supported by NASA contract
#NNL14AA08C. We are indebted to our collaborators Brendan Hall and Srivatsan
Varadarajan at Honeywell Labs, and to Wilfredo Torres-Pomales at NASA Langley for
their discussions and insights. Additionally, we acknowledge that this work is heavily
inspired by a series of papers authored by John Rushby.

References

1. Bevier, W.R., Young, W.D.: The proof of correctness of a fault-tolerant cir-
cuit design. Computational Logic Inc., Technical report 57 (1990). http://
computationallogic.com/reports/index.html

2. Young, W.D.: Comparing verification systems: interactive consistency in ACL2.
IEEE Trans. Softw. Eng. 23(4), 214–223 (1997)

3 https://github.com/GaloisInc/atom-sally.

http://computationallogic.com/reports/index.html
http://computationallogic.com/reports/index.html
https://github.com/GaloisInc/atom-sally

Modular Model-Checking of a Byzantine Fault-Tolerant Protocol 177

3. Lincoln, P., Rushby, J.: A formally verified algorithm for interactive consistency
under a hybrid fault model. In: 23rd Fault Tolerant Computing Symposium, pp.
402–411. IEEE Computer Society (1993)

4. Owre, S., Rushby, J., Shankar, N., von Henke, F.: Formal verification for fault-
tolerant architectures: prolegomena to the design of PVS. IEEE Trans. Software
Eng. 21(2), 107–125 (1995)

5. Chandra, T.D., Griesemer, R., Redstone, J.: Paxos made live: an engineering per-
spective. In: ACM Symposium on Principles of Distributed Computing (PODC),
pp. 398–407. ACM (2007)

6. Dutertre, B., Sorea, M.: Modeling and verification of a fault-tolerant real-time
startup protocol using calendar automata. In: Lakhnech, Y., Yovine, S. (eds.)
FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 199–214. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30206-3 15

7. Boyer, R.S., Moore, J.S.: MJRTY-a fast majority vote algorithm. In: Boyer, R.S.
(ed.) Automated Reasoning. Automated Reasoning Series, vol. 1, pp. 105–117.
Springer, Dordrecht (1991)

8. Azadmanesh, M.H., Kieckhafer, R.M.: Exploiting omissive faults in synchronous
approximate agreement. IEEE Trans. Comput. 49(10), 1031–1042 (2000)

9. Pike, L., Maddalon, J., Miner, P., Geser, A.: Abstractions for fault-tolerant dis-
tributed system verification. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.)
TPHOLs 2004. LNCS, vol. 3223, pp. 257–270. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-30142-4 19

10. Rushby, J.: SAL tutorial: analyzing the fault-tolerant algorithm OM(1). Com-
puter Science Laboratory, SRI International, Menlo Park, CA, CSL Technical note.
http://www.csl.sri.com/users/rushby/abstracts/om1

11. Thambidurai, P., Park, Y.-K.: Interactive consistency with multiple failure modes.
In: Symposium on Reliable Distributed Systems, pp. 93–100. IEEE (1988)

12. Rushby, J.: Verification diagrams revisited: disjunctive invariants for easy verifi-
cation. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
508–520. Springer, Heidelberg (2000). doi:10.1007/10722167 38

13. Dutertre, B., Sorea, M.: Timed systems in SAL. In: SRI International, Menlo Park,
CA, SDL Technical report SRI-SDL-04-03, July 2004

14. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382–401 (1982)

15. Bensalem, S., Ganesh, V., Lakhnech, Y., Muñoz, C., Owre, S., Rueß, H., Rushby, J.,
Rusu, V., Säıdi, H., Shankar, N., Singerman, E., Tiwari, A.: An overview of SAL.
In: NASA Langley Formal Methods Workshop, pp. 187–196 (2000)

16. Rushby, J.: The versatile synchronous observer. In: Iida, S., Meseguer, J., Ogata, K.
(eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 110–128. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54624-2 6

17. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer, Philadelphia (1997)

18. Javanović, D., Dutertre, B.: Property-directed k-induction. In: Formal Methods in
Computer Aided Design (FMCAD) (2016)

19. Bokor, P., Serafini, M., Suri, N.: On efficient models for model checking message-
passing distributed protocols. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/FORTE
-2010. LNCS, vol. 6117, pp. 216–223. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13464-7 17

http://dx.doi.org/10.1007/978-3-540-30206-3_15
http://dx.doi.org/10.1007/978-3-540-30142-4_19
http://dx.doi.org/10.1007/978-3-540-30142-4_19
http://www.csl.sri.com/users/rushby/abstracts/om1
http://dx.doi.org/10.1007/10722167_38
http://dx.doi.org/10.1007/978-3-642-54624-2_6
http://dx.doi.org/10.1007/978-3-642-13464-7_17
http://dx.doi.org/10.1007/978-3-642-13464-7_17

Improved Learning for Stochastic Timed Models
by State-Merging Algorithms

Braham Lotfi Mediouni(B), Ayoub Nouri, Marius Bozga, and Saddek Bensalem

Université Grenoble Alpes, CNRS, VERIMAG, 38000 Grenoble, France
braham-lotfi.mediouni@univ-grenoble-alpes.fr

Abstract. The construction of faithful system models for quantitative
analysis, e.g., performance evaluation, is challenging due to the inherent
systems’ complexity and unknown operating conditions. To overcome
such difficulties, we are interested in the automated construction of sys-
tem models by learning from actual execution traces. We focus on the
timing aspects of systems that are assumed to be of stochastic nature.
In this context, we study a state-merging procedure for learning stochas-
tic timed models and we propose several enhancements at the level of
the learned model structure and the underlying algorithms. The results
obtained on different examples show a significant improvement of timing
accuracy of the learned models.

1 Introduction

A necessary condition for a successful system design is to rely on faithful models
that reflect the actual system behavior. In spite of the long experience designers
have on building system models, their construction remains a challenging task,
especially with the increasing complexity of recent systems. For performance
models, this is even harder because of the inherent complexity and the induced
stochastic behavior that is usually combined with time constraints.

Machine Learning (ML) is an active field of research where new algorithms
are constantly developed and improved in order to address new challenges and
new classes of problems (see [13] for a recent survey). Such an approach allows
to automatically build a model out of system observations, i.e., given a learning
sample S, a ML algorithm infers an automaton that, in the limit1, represents
the language L of the actual system [2]. We believe that ML can be used to
automatically build system models capturing performance aspects, especially
the timing behavior and the stochastic evolution. Those system models may be
useful for documenting legacy code, and for performing formal analyses in order
to enhance the system performance, or to integrate new functionalities [11].

Despite the wide development of ML techniques, only few works were inter-
ested in learning stochastic timed models [9,10,12,14]. In this paper, we study
the RTI+ algorithm [14] and we propose improvements that enhance its accu-
racy. This algorithm learns a sub-class of timed automata [1] augmented with
1 By considering a sufficient number of observations [4].

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 178–193, 2017.
DOI: 10.1007/978-3-319-57288-8 13

Improved Learning for Stochastic Timed Models 179

probabilities, called Deterministic Real-Time Automata (DRTA). Given a timed
learning sample S (traces of timestamped actions of the system), the algorithm
starts by building a tree representation of S, called Augmented Prefix Tree
Acceptor (APTA). Then, based on statistical tests, it performs state-merging
and splitting operations until no more operations are possible. In this algo-
rithm, clock constraints are captured as time intervals over transitions and are
built in a coarse fashion. These time intervals are actually considered to be the
largest possible, which makes the learning procedure converge faster. However,
this introduces a lot of generalization in the built APTA, by allowing timing
behaviors that are not part of the actual system language L. Furthermore, we
identified that such behaviors cannot be refined during the learning process. The
learned model is thus not accurate from a timing point of view.

In this work, we propose a more accurate learning procedure by investigating
better compromises between the time generalization introduced in the APTA
and its size (and consequently its learning time). We introduce three new APTA
models representing different levels of time generalization; the first model is the
exact representation of the learning sample, i.e., with no generalization, while the
two others introduce some generalization which is less than the original RTI+.
We implemented the new variants of the RTI+ algorithm and validated them on
different examples. The obtained results show that the learned models are more
accurate than the original implementation, albeit the learning time is generally
higher.

Outline. In Sect. 2, we discuss some related works on learning stochastic timed
models. Section 3 introduces notations and key definitions used in the rest of
the paper. We recall the RTI+ learning algorithm and study underlying time
representation issues in Sect. 4. In Sect. 5, we present the three improvements we
propose for RTI+ and discuss them. Section 6 presents experiments and results
of the improved algorithms. Conclusions are drawn in Sect. 7.

2 Related Works

In the literature, several algorithms have been proposed for automata learning
[2,3,7,14], mostly in the deterministic case. In the last decades, an increasing
interest has been shown for learning probabilistic models, partly due to the suc-
cess of verification techniques such as probabilistic and statistical model checking
[5,6]. Despite this development, only few works considered the problem of learn-
ing stochastic timed models [9,10,12,14].

Most of the algorithms proposed in this setting are based on the state-merging
procedure made popular by the Alergia algorithm [3]. Moreover, many of them
consider Continuous-Time Markov Chains (CTMCs) as the underlying model.
For instance, in [12], an algorithm is proposed for model-checking black-box
systems. More recently, the AAlergia algorithm [8], initially proposed for learning
Discrete-Time Markov Chains and Markov Decision Processes, was extended to

180 B.L. Mediouni et al.

learn CTMCs [9]. This work is an extension of Alergia to learn models having
timed in/out actions.

Other algorithms such as RTI+ [14] and BUTLA [7] focus on learning timed
automata augmented with probability distributions on discrete transitions and
uniform probabilities over timing constraints. Both follow a state-merging pro-
cedure but consider different statistical tests for checking states compatibility.

In [10], authors focus on learning more general stochastic timed models,
namely Generalized Semi-Markov Processes, following the same state-merging
procedure. This algorithm relies on new statistical clocks estimators, in addition
to the state compatibility criterion used in Alergia.

3 Background

Let Σ be a finite alphabet, Σ∗ the set of words over Σ and ε the empty word.
Let T be a time domain and T

∗ the set of time sequences over T. In our work,
we consider integer time values, i.e., T ⊆ N. For a set of clocks C, let CC(C)
denote the set of clock constraints over C. Let I be the intervals domain, where
I ∈ I is an interval of the form [a; b], a, b ∈ T such that a ≤ b, and represents
the set of integer values between a and b. Let ω be an untimed word over Σ and
τ a time sequence over T. We write ω ≤ ω′ (resp. τ ≤ τ ′) whenever ω (resp. τ)
is a prefix of ω′ (resp. τ ′). We also write ωu (resp. τv) for the concatenation of
ω (resp. τ) and u ∈ Σ∗ (resp. v ∈ T

∗). |ω| (resp. |τ |) is the size of ω (resp. τ).

3.1 Deterministic Real-Time Automata (DRTA)

A Real-Time Automaton (RTA) is a timed automaton with a single clock that
is systematically reset on every transition.

Definition 1 (Real-Time Automaton (RTA)). An RTA is a tuple A =
〈Σ,L, l0, C, T, inv〉 where: (1) Σ is the alphabet, (2) L is a finite set of locations,
(3) l0 ∈ L is the initial location, (4) C = {c} contains a single clock, (5) T
⊆ L × Σ × CC(C) × C × L is a set of edges with a systematic reset of the clock
c, (6) inv : L −→ CC(C) associates invariants to locations.

For more convenience, transitions are denoted as l
σ,I−−→ l′, where σ ∈ Σ and

I ∈ I is a time interval including both transition guards and location invariants.
For simplicity, we also omit the systematic reset.

An RTA is deterministic (DRTA) if, for each location l and a symbol σ,
the timing constraints of any two transitions starting from l and labeled with
σ are disjoint, i.e., ∀l ∈ L,∀σ ∈ Σ,∀t1, t2 ∈ T, t1 = 〈l, σ, I1, l1〉 and t2 = 〈l, σ,
I2, l2〉, (I1∩I2
= ∅) ⇔ (t1 = t2). A DRTA generates timed words over Σ×T. Each
timed word is a sequence of timed symbols (ω, τ)=(σ1, τ1)(σ2, τ2)...(σm, τm),
representing an untimed word ω together with a time sequence τ . A set of n timed
words constitute a learning sample S = {(ω, τ)i, i ∈ [1;n], ω ∈ Σ∗, τ ∈ T

∗}. We
denote by T

S the set of time values appearing in S.

Improved Learning for Stochastic Timed Models 181

A Prefix Tree Acceptor (PTA) is a tree representation of the learning sample
S where locations represent prefixes of untimed words in S. Timing information
is captured in a PTA in form of intervals I ∈ I over transitions. This structure
is called Augmented PTA (APTA). In the latter, each transition l

σ,I−−→ l′ is
annotated with a frequency that represents the number of words in S having l′ as
a prefix. An APTA can be seen as an acyclic DRTA annotated with frequencies.
Let N : T −→ N be this annotation function. Given a DRTA A, a pair (A,N)
is an annotated DRTA, denoted DRTA+.

3.2 Stochastic Interpretation of a DRTA

A DRTA starts at the initial location l0 with probability 1. It moves from a
location to another using transitions in T . At each location l, a transition is
chosen among the set of available transitions Tl. Selecting a transition consists
of choosing a timed symbol (σi, τi). A probabilistic strategy ϕ that associates a
probability function to each location l over the set of transitions Tl is used to
make this choice: ϕ : L×T −→ [0, 1], such that Σt∈Tl

ϕ(l, t) = 1,∀l ∈ L. For the

chosen transition l
σ,I−−→ l′, the choice of the time value is done uniformly over

the time interval I. Figure 1 shows an example where two transitions labeled A
and B are possible from location 1. The strategy ϕ associates probability 0.6
to A and 0.4 to B. Then, uniform choices on the associated time intervals are
performed.

Fig. 1. Probabilistic strategy with uniform choice

4 The RTI+ Learning Procedure

RTI+ [14] is a state-merging algorithm for learning DRTA models from a sample
of timed words. The algorithm first builds a PTA then reduces it by merging
locations having similar behaviors, according to a given compatibility criterion.
Compared to other state-merging algorithms, RTI+ relies on a time-split oper-
ation to identify the different timed behaviors and to split them into disjoint
ones. The algorithm is able to learn a stochastic DRTA, i.e., a DRTA+ where
the strategy is obtained from the associated annotation function N .

182 B.L. Mediouni et al.

4.1 Building the APTA

The timed learning sample is represented as an APTA where all the time intervals
span over T. Initially, the built APTA only contains a root node consisting of the
empty word ε. RTI+ proceeds by adding a location in the tree for each prefix of
untimed words in S. Then, a transition labeled with σ is created from location
l to location l′ if the prefix of l′ is obtained by concatenating the prefix of l and
symbol σ. Finally, transitions are augmented with the largest time constraint
[0;max(TS)], where max(TS) = Max{a ∈ T

S}. The annotation function N is
built at the same time and represents transitions frequencies. In this work, we
denote this construction as generalized-bound APTA.

Definition 2 (Generalized-bound APTA). A generalized-bound APTA is
a DRTA+ (〈Σ,L, l0, C, T, inv〉,N) where:

– L = {ω ∈ Σ∗ | ∃(ω′, τ ′) ∈ S, ω ≤ ω′}, l0 = ε,
– T contains transitions of the form t = 〈ω, σ, [0;max(TS)], ω′〉 s.t. ωσ = ω′,

and N (t) = |{(ω′u, τ) ∈ S, u ∈ Σ∗}|.

4.2 The Learning Process

The learning process aims to identify the DRTA+ that represents the target
language while reducing the size of the initial APTA. At each iteration, the
algorithm first tries to identify the timing behavior of the system, by using time-
split operations. The second step consists of merging compatible locations that
show similar stochastic and timed behaviors. Locations that are not involved in
merge or split operations are marked as belonging to the final model (promote
operation). The algorithm proceeds by initially marking the root of the APTA
as part of the final model and its successors as candidate locations. The latter
will be considered for time-split, merge or promote operations.

Time-Split Operation. For a given transition t = 〈l, σ, [a; b], l′〉 ∈ T , splitting
t at a specific time value c ∈ [a; b] consists of replacing t by two transitions t1
and t2 with disjoint time intervals [a; c] and [c+1; b], respectively. This operation
alters the subtree of l′ such that the corresponding timed words that used to
trigger transition t with time values in [a; c] (resp. [c + 1; b]) are reassigned to
the subtree pointed by transition t1 (resp. t2).2

Merge Operation. Given a marked location l (belongs to the final model)
and a candidate location l′, this operation is performed by first redirecting the
transitions targetting l′, to l and then by folding the subtree of l′ on l (see
footnote 2).

2 For further details, see: http://www-verimag.imag.fr/∼nouri/drta-learning/Appendi
ce.pdf.

http://www-verimag.imag.fr/~nouri/drta-learning/Appendice.pdf
http://www-verimag.imag.fr/~nouri/drta-learning/Appendice.pdf

Improved Learning for Stochastic Timed Models 183

4.3 Compatibility Evaluation

The compatibility criterion used in RTI+ is the Likelihood Ratio (LR) test. Intu-
itively, this criterion measures a distance between two hypotheses with respect
to specific observations. In our case, the considered hypotheses are two DRTA+

models: H with m transitions and H ′ with m′ transitions (m < m′), where H
is the model after a merge operation (resp. before a split) and H ′ is the model
before a merge (resp. after a split). The observations are the traces of S.

We define the likelihood function that estimates how S is likely to be gen-
erated by each model (H or H ′). It represents the product of the probability
to generate each timed word in S3. Note that the ith timed word (ω, τ)i in S
corresponds to a unique path pi in the DRTA+. The probability to generate
(ω, τ)i is the product of the probabilities of each transition in pi = s1s2...s|ω|:

f((ω, τ)i,H) =
|ω|−1∏

j=1

π((ωj , τj)i, sj)

Where π((ωj , τj)i, sj) corresponds to the probability to transit from the location
sj to sj+1 in H with the jth timed symbol (ωj , τj)i. Given a learning sample S
of size n, the likelihood function of H is Likelihood(S,H) =

∏n
i=1 f((ω, τ)i,H).

The likelihood ratio is then computed as follows

LR =
Likelihood(S,H)
Likelihood(S,H ′)

Let Y be a random variable following a χ2 distribution with m′ − m degrees
of freedom, i.e., Y � χ2(m′ − m). Then, y = −2ln(LR) is asymptotically χ2

distributed. In order to evaluate the probability to obtain y or more extreme
values, we compute the p-value pv = P (Y ≥ y). If pv < 0.05, then we conclude
that H and H ′ are significantly different, with 95% confidence.

The compatibility criterion concludes that a time-split operation is accepted
whenever it identifies a new timing behavior, that is, the model after split is
significantly different from the model before split (pv < 0.05). In constrast, a
merge is rejected whenever the model after merge is significantly different from
the model before merge since the merged locations are supposed to have similar
stochastic and timed behaviors.

4.4 Shortcomings

The RTI+ algorithm relies on the generalized-bound APTA as initial representa-
tion of the learning sample S. As pointed out before, this kind of APTA augments
an untimed PTA with the largest possible time intervals, without considering the
values that concretely appear in S. This introduces an initial generalization that
leads the APTA to accept words that do not actually belong to S and might

3 Since the timed words in S are generated independently.

184 B.L. Mediouni et al.

not belong to the target language L. In Example 1, we show that this initial
generalization cannot be refined later in the learning process. More concretely,
we observe that the time intervals that do not appear in S are not isolated and
removed from the DRTA+.

Example 1. Let us consider the following learning sample S = {(A,5)(B,5);
(A,4)(A,3); (A,3)(B,5); (B,1)(A,5); (B,3)(B,5); (B,5)(A,1)}. The left-hand model
in Fig. 2 presents the initial DRTA+ (H) of S on which we evaluate a time-split
operation. The latter is expected to identify the empty interval [0; 2] on tran-
sition t = 〈1, A, [0; 5], 2〉, since no timed word in S takes this transition with
time values in [0; 2]. The right-hand figure represents the model assuming a split
of transition t at time value 2 (H ′). The LR test returns pv = 1 which leads
to reject the time-split operation, and hence, the empty interval [0; 2] is not
identified during the learning process.

Fig. 2. Identifying empty intervals with time-split operation

The generalized-bound APTA introduces empty time intervals that cannot
be removed during the learning process. To overcome this issue, we propose, in
the next section, new representations of the learning sample S.

5 Learning More Accurate Models

A faithful representation of the learning sample consists of building an APTA
that accepts only words in S by taking into account the time values. This can be
done at different granularities, which results on different tradeoffs between the
introduced initial generalization and the APTA size. We propose three differ-
ent APTA models denoted unfolded, constructive-bound and tightened-bound
APTAs.

Improved Learning for Stochastic Timed Models 185

5.1 Unfolded APTA

This APTA model fits perfectly the traces in S, that is, accepts exactly the
timed words in S. Hence, it does not introduce any initial generalization. To
build such a model, we need to consider both symbols and time values. The
APTA initially contains the empty word. Locations are added for every timed
prefix and corresponding transitions are created such that each transition only
accepts a single time value, i.e., time intervals are equalities of the form [a; a] ∈ I.

Definition 3 (Unfolded APTA). An unfolded APTA is a DRTA+ where:

– L = {(ω, τ) ∈ Σ∗ × T
∗| ∃(ω′, τ ′) ∈ S, ω ≤ ω′, τ ≤ τ ′},

– T contains transitions of the form t = 〈(ω, τ), σ, [a; a], (ω′, τ ′)〉 such that: (1)
ωσ = ω′, (2) τa = τ ′, and N (t) = |{(ω′u, τ ′v) ∈ S, u ∈ Σ∗, v ∈ T

∗}|.

5.2 Constructive-Bound APTA

A more compact representation of S compared to the unfolded APTA can be
obtained by reducing the size of the initial APTA. At each location, a reduction
of the number of transitions is performed by grouping all the contiguous time
values for the same symbol into a single transition where the time interval I is
the union of the different time intervals.

Definition 4 (Constructive-bound APTA). A constructive-bound APTA
is a DRTA+ where:

– L = {(ω, {Ii}|ω|
i=1), ω ∈ Σ∗, Ii ∈ I | ∀i ∈ [1; |ω|],∀c ∈ Ii,∃(ω′, τ ′) ∈ S,∀j <

i, τ ′
j ∈ Ij , c = τ ′

i , ω ≤ ω′} ∪ {l0 = (ε, ∅)},
– T contains transitions of the form t = 〈(ω, {Ii}|ω|

i=1), σ, I, (ω′, {I ′
i}|ω′|

i=1)〉 such
that: (1) ωσ = ω′, (2) ∀i ∈ [1; |ω|], Ii = I ′

i and I ′
|ω′| = I ′

|ω|+1 = I, and
N (t) = |{(ω′u, τ ′v) ∈ S,∀i ∈ [1; |ω′|], τ ′

i ∈ I ′
i, u ∈ Σ∗, v ∈ T

∗}|.
In Definition 4, each location corresponds to a subset of timed words that have
a common untimed prefix where each symbol (of the prefix) apprears with con-
tiguous time values. A location is labeled by the given untimed prefix ω and the
sequence of intervals {Ii}|ω|

i=1 corresponding to each symbol of ω. Ii is the interval
grouping the contiguous time values for the symbol σi of ω. All time values of
these intervals are present in at least one timed word in S. A transition is added
between locations l and l′ such that: (1) the concatenation of the untimed prefix
relative to l and symbol σ produces the untimed prefix relative to l′, and (2)
adding I to the interval sequence of l gives the interval sequence of l′.

5.3 Tightened-Bound APTA

The minimal size of APTA is obtained by allowing the minimal number of tran-
sitions from each location. This minimal number is obtained by assigning at
most one transition for each symbol of Σ. The initial generalization is reduced

186 B.L. Mediouni et al.

(compared to the generalized-bound APTA) by identifying the minimum (resp.
the maximum) time value tmin (resp. tmax) among all the time values for each
location l and symbol σ. Then, a single transition is created from l with symbol
σ and a time interval [tmin; tmax]. We call this APTA model a tightened-bound
APTA. It has the same structure as the generalized-bound APTA but with
tighter bounds. The time interval [tmin; tmax] of each transition is computed
locally depending on the corresponding timed words in S.

Definition 5 (Tightened-bound APTA). A tightened-bound APTA is a
DRTA+ where:

– L = {ω ∈ Σ∗ | ∃(ω′, τ ′) ∈ S, ω ≤ ω′}, l0 = ε,
– T contains transitions of the form t = 〈ω, σ, [tmin; tmax], ω′〉 such that: (1)

ωσ = ω′, (2) tmin =Min{τ|ω′| | (ω′u, τ)∈S}, (3) tmax =Max{τ|ω′| | (ω′u, τ)∈
S}, and N (t) = |{(ω′u, τ) ∈ S}|, where u ∈ Σ∗.

5.4 Evaluation

In this section, we discuss the proposed APTA models with respect to their abil-
ity to faithfully represent S and to their size. We consider the following sample
S = {(A,5)(B,5); (A,4)(A,3); (A,3)(B,5); (B,3)(A,5); (B,3)(B,5); (B,1)(A,1)}.
Figure 3 depicts the three types of APTAs representing S.

1

2 3B [5;5]
(1)

4 5

6 7

8 9

11

10 12B [5;5]
(1)

A [5;5]
(1)

A [3;3]
(1)

B [5;5]
(1)

A [1;1]
(1)

(a) Unfolded

1

3

2
4

5 6

8
7

9

B [1;1]
(1)

A [1;1]
(1)

(b) Constructive-bound

1

2

3

4

5

6

7

(c) Tightened-bound

Fig. 3. The three APTA models for the sample S

Initial Generalization. The unfolded APTA does not introduce any initial
generalization (Fig. 3a). The constructive-bound APTA is a more compact rep-
resentation of S compared to the unfolded APTA with less generalization than
the generalized-bound APTA. Some generalization is introduced due to the pos-
sible combination of grouped time values. In other words, the time values of the
time intervals appear in S, but the language generated by the APTA overapprox-
imates S since it accepts more time sequences. For instance, in Fig. 3b, the timed
word (A,3)(A,3) is accepted although not in S. This is due to the combination
of time values coming from the timed words (A,4)(A,3) and (A,3)(B,5).

Improved Learning for Stochastic Timed Models 187

Fig. 4. Generalization introduced by
the different APTAs

The tightened-bound APTA introduces
two kinds of generalization. The first is due
to the combination of grouped time val-
ues, as for the constructive-bound APTA.
The second one is caused by the presence
of empty intervals. An example is given
in Fig. 3c where transitting from the root
is possible using the timed symbol (B,2)
which is not in S. This latter general-
ization is similar to the one we pointed
out for the generalized-bound APTA albeit
with more restrictive time intervals, since
the empty intervals [0; tmin −1] and [tmax +
1;max(TS)] are initially removed. The rela-
tionship between these models and the gen-
eralization they introduce is summarized
in Fig. 4.

APTA Size. In terms of the size of initial representation, the unfolded APTA
is the largest. The APTA size depends on the size of Σ and T

S . The worst case
is encountered when all the traces in S are of the same length N and when S
contains all the combinations of symbols and time values. The resulting complete
tree, in this case, represents the upper bound on the exponential number of
locations and can be expressed as

MaxSize(unfolded) =
1 − (|Σ| × |TS |)N+1

1 − (|Σ| × |TS |)
This maximum number of locations is reduced in the constructive-bound

APTA by grouping contiguous time values. However, this improvement is mean-
ingless in the case where all the time values are disjoint. For a given interval
[0;max(TS)], the maximum number of disjoint intervals is encountered when all
the time values are disjoint and is equal to (max(TS)+ 1) div 2. The worst case
number of locations of a complete tree of depth N + 1 is

MaxSize(constructive) =
1 − (|Σ| × ((max(TS) + 1) div 2))N+1

1 − (|Σ| × ((max(TS) + 1) div 2))

The number of locations, in this case, is highly dependent on the size of Σ and
less on the size of TS . This latter can be removed by allowing only one interval
for each symbol at each location. This is the case of the generalized-bound APTA
and the tightened-bound APTA which return the minimum number of locations.

6 Experiments

In this section, we evaluate the learned model according to its ability to accept
the words belonging to L and to reject the others. This gives insight into how

188 B.L. Mediouni et al.

accurate the learned model is. A C++ implementation of the proposed algo-
rithms and the considered examples can be found in http://www-verimag.imag.
fr/∼nouri/drta-learning. The same page also contains additional materials such
as algorithms and formal definitions of the elementary operations, in addition to
a discussion about the proposed models’ accuracy.

6.1 Evaluation Procedure

The accuracy of the learned model can be quantified using two metrics: the
precision and the recall. The precision is calculated as the proportion of words
that are correctly recognized (true positives) in the learned model H ′ over all the
words recognized by H ′, while the recall represents the proportion of words that
are correctly recognized in H ′ over all the words recognized by the initial model
H. The precision and the recall can be combined in a single metric called F1
score. A high F1 score corresponds to a high precision and recall, and conversely.

Precision(H ′,H) =
|{(ω, τ) ∈ Σ∗ × T

∗ | (ω, τ) ∈ L(H) ∧ (ω, τ) ∈ L(H ′)}|
|L(H ′)|

Recall(H ′,H) =
|{(ω, τ) ∈ Σ∗ × T

∗ | (ω, τ) ∈ L(H) ∧ (ω, τ) ∈ L(H ′)}|
|L(H)|

F1 score(H ′,H) = 2 × prec(H ′,H) × recall(H ′,H)
prec(H ′,H) + recall(H ′,H)

Based on these metrics, we distinguish four degrees of generalization for the
learned models (see Fig. 5):

1. The maximum F1 score is obtained when the exact target language L(H) is
learned.

2. A precision of 1 and a recall strictly lower than 1 characterize an under-
approximation, i.e., the learned model H ′ recognizes a subset of words of
L(H).

3. A recall of 1 and a precision strictly lower than 1 characterize an over-
approximation, i.e., the learned model H ′ accepts all the words of L(H) in
addition to extra words not in L(H).

4. A precision and a recall strictly lower than 1 characterize a cross-
approximation, i.e., L(H ′) contains only a subset of words in L(H) plus
additional words not in L(H).

Our experimental setup shown in Fig. 6, consists of three modules responsible
for trace generation, model learning and model evaluation. Since we are trying
to evaluate how accurate the learning algorithm is, the initial model H, designed
as a DRTA+, is only known by the trace generator and the model evaluator,
while the model learner has to guess it. The trace generator produces a timed
learning sample S and a test sample. The latter contains timed traces that do
not appear in S. This sample is used to evaluate the learned model with respect
to new traces that were not used during the learning phase.

http://www-verimag.imag.fr/~nouri/drta-learning
http://www-verimag.imag.fr/~nouri/drta-learning

Improved Learning for Stochastic Timed Models 189

Fig. 5. Degrees of generalization of the learned language L(H ′) with respect to the
target language L(H)

Trace
Generator

Model
Learner

Model
Evaluator

Initial model H

Learning
sample’s size n

Test
sample’s size n’

Learning sample

APTA
Type

Learned model H’

Test sample

Precision Recall

F1_score

Fig. 6. Experimental setup to validate the improved learning procedure

6.2 Benchmarks

We run our experimental setup on three examples, namely, Periodic A, Periodic
A-B and CSMA/CD communication medium model.

Periodic A is a synthetic periodic task A that executes for 1 to 3 time units in
a period of 5 time units. The goal of this benchmark is to check if the algorithm
is able to learn the periodicity and the duration of a single task. Two less con-
strained variants of this model are also considered. In both of them, we remove
the periodicity of the task by setting a predefined waiting time of 5 time units
after the task A finishes. In the first variant, called aperiodic contiguous-time
(ap cont A), the execution time of the task A can take contiguous time values in
[1; 3]. In the second one, called aperiodic disjoint (ap dis A), the execution time
takes the disjoint time values 0, 2 and 4. Our goal is to check if the algorithm is
able to detect the unused time values 1 and 3.

Periodic A-B consists of two sequential tasks A and B, taking execution time
values, respectively, in intervals [1;3] and [1;2] with a periodicity of 5 time units.
In this example, the learning algorithm is faced with dependencies between clock
constraints for the task A, the task B and their periodicities, which is a more
complex setting.

190 B.L. Mediouni et al.

Freestart

Busy1

Busy2

CD

Send1
[0; tmax]

Send2
[0; tmax]

Collide
[0;λ − 1]

End1
[λ; tmax]

Collide
[0;λ − 1]

End2
[λ; tmax]

Notify

[0; 0]

Fig. 7. CSMA/CD communication
medium model for a 2-station network

CSMA/CD communication Medium Model
is a media access control protocol for single-
channel networks that solves data collision
problems. We focus on the CSMA/CD
communication medium model for a
2-station network presented in [5]. Figure 7
represents the underlying CSMA/CD
communication medium model where λ
represents the propagation time. We
assume that tmax is the maximum time
elapsing between two consecutive events.

6.3 Results

Experiments have been done on the described examples using a learning sample
of size 200 and a test sample of size 1000.

The Synthetic Examples. Table 1 summerizes the results for periodic A
(and variants) and periodic A-B. Since all the learned models have a 100%
recall, only the precision is discussed in the sequel. The obtained results show
that the original RTI+ learns an over-approximating model with a poor precision
for all the considered examples. In contrast, as shown by the F1 score, the exact
model is learned using the unfolded APTA for periodic A and its variants.
Both the constructive and the tightened-bound APTAs do not learn the exact
periodic A model (although more accurate than RTI+). They actually fail to
identify the periodicity of task A. For ap cont A, the constructive and the
tightened-bound APTAs learn the exact model. However, for ap dis A, the
constructive-bound approach learns the exact model, while the tightened-bound
one returns a model with a low precision since it does not detect the unused
time values 1 and 3.

For the periodic A-B example, none of the variants was able to learn an
accurate model: the obtained precision is at most 2.27% (using the constructive-
bound APTA). They all fail to capture dependencies over clock constraints.
Nevertheless, the precision is still better than the original RTI+ (0.18%).

Figure 8 shows the impact of bigger time periods in the periodic A example
on the quality of the learned model (Fig. 8a) and the learning time (Fig. 8b).
We observe that increasing the period makes it more difficult to learn accurate
models; Increasing the period decreases the precision as shown in Fig. 8a and
increases the learning time as shown in Fig. 8b. For instance, the original RTI+
with generalized-bound APTA is quite fast but its precision tends to zero. Using
constructive and tightened-bound APTAs improves the precision with a simi-
lar learning time. Finally, relying on the unfolded APTA produces very precise
models but induces an important learning time when the period exceeds 15 time
units.

Improved Learning for Stochastic Timed Models 191

Table 1. Accuracy results for the synthetic benchmarks with the four APTAs

Benchmark Periodic A Ap dis A Ap cont A Periodic AB

Generalized-bound Precision 11% 0.8% 0.6% 0.18%

Recall 100% 100% 100% 100%

F1 score 0.1982 0.0159 0.0119 0.0036

Unfolded Precision 100% 100% 100% 1.97%

Recall 100% 100% 100% 100%

F1 score 1.0000 1.0000 1.0000 0.0386

Constructive-bound Precision 16.4% 100% 100% 2.27%

Recall 100% 100% 100% 100%

F1 score 0.2818 1.0000 1.0000 0.0444

Tightened-bound Precision 16.9% 3.01% 100% 2.18%

Recall 100% 100% 100% 100%

F1 score 0.2891 0.0584 1.0000 0.0427

10 20 30

0%

20%

40%

60%

80%

100%

Period range (time units)

P
re

ci
si

o
n

(%
)

Unfolded

Constructive

Generalized

Tightened

(a) Precision of the learned model

10 20 30

0

0.5

1

1.5

2

2.5

Period range (time units)

E
x
ec

u
ti

o
n

ti
m

e
(s

)

Unfolded

Constructive

Generalized

Tightened

(b) Learning time

Fig. 8. Impact of varying the task A period on the precision/the learning time

The CSMA/CD Example. Table 2 summerizes the experiments done on
CSMA/CD. On the one hand, one can notice that RTI+, like in the previ-
ous cases, learns an over-approximating model with a poor precision (6.20%)
but in a short time (∼6 s). Moreover, the generalized-bound APTA, initially
having 2373 locations, is reduced to a final model with only 4 locations which
represents a high reduction. On the other hand, the proposed APTAs produce
significantly different models that cross-approximate the original CSMA/CD.
For instance, the tightened-bound APTA learns a very precise model (93.70%).
However, the model is obtained in more than 8 hours and has 370 locations.
Using the constructive-bound APTA gives a model with less precision (85.80%)
in a lower execution time (∼3 h). Finally, the unfolded APTA gives a model with

192 B.L. Mediouni et al.

Table 2. Experimental results for CSMA/CD using the four APTA models

APTA type Precision Recall F1 score Time APTA size DRTA size Reduction

Generalized 6.20% 100.00% 0.1168 ∼6 s 2373 4 99.83%

Unfolded 49.40% 96.70% 0.6539 ∼9 min 3586 19 99.47%

Constructive 85.80% 52.00% 0.6475 ∼3 h 2652 207 92.19%

Tightened 93.70% 49.90% 0.6512 ∼8 h 2373 370 84.41%

a 49.40% precision and a 96.70% recall, which corresponds to the best F1 score
(0.6539). Furthermore, compared to constructive and tightened-bound APTAs,
the learning time for the unfolded APTA is lower (∼9 min). Hence, we conclude
that, for this example, the unfolded APTA provides a good tradeoff between
accuracy and learning time.

7 Conclusion

In this work, we proposed different variants of the RTI+ algorithm for learning
models with both stochastic and timed behaviors. We formally defined three
APTA models with different levels of generalization and representation sizes.
We validated our proposal by performing different experiments that showed
that using the new APTA variants provides more accurate models regarding
the time behaviors. However, we observed that a higher learning time is gener-
ally required, depending on the desired accuracy. In the future, we are planning
to improve our algorithms to better handle models with dependencies over clock
constraints such as in the periodic A-B example. We are investigating a new
compatibility criterion that takes into account such dependencies and that is
able to isolate empty time intervals.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol.
862, pp. 139–152. Springer, Heidelberg (1994). doi:10.1007/3-540-58473-0 144

4. De la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, Cambridge (2010)

5. Kwiatkowska, M., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

6. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G.,
Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16612-9 11

http://dx.doi.org/10.1007/3-540-58473-0_144
http://dx.doi.org/10.1007/978-3-642-16612-9_11

Improved Learning for Stochastic Timed Models 193

7. Maier, A., Vodencarevic, A., Niggemann, O., Just, R., Jaeger, M.: Anomaly detec-
tion in production plants using timed automata. In: 8th International Conference
on Informatics in Control, Automation and Robotics. pp. 363–369 (2011)

8. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
probabilistic automata for model checking. In: 2011 Eighth International Confer-
ence on Quantitative Evaluation of Systems (QEST), pp. 111–120. IEEE (2011)

9. Mao, H., Chen, Y., Jaeger, M., Nielsen, T.D., Larsen, K.G., Nielsen, B.: Learning
deterministic probabilistic automata from a model checking perspective. Mach.
Learn. 105(2), 255–299 (2016)

10. de Matos Pedro, A., Crocker, P.A., de Sousa, S.M.: Learning stochastic timed
automata from sample executions. In: Margaria, T., Steffen, B. (eds.) ISoLA
2012. LNCS, vol. 7609, pp. 508–523. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34026-0 38

11. Nouri, A., Bozga, M., Molnos, A., Legay, A., Bensalem, S.: ASTROLABE: a rig-
orous approach for system-level performance modeling and analysis. ACM Trans.
Embed. Comput. Syst. 15(2), 31:1–31:26 (2016)

12. Sen, K., Viswanathan, M., Agha, G.: Learning continuous time markov chains from
sample executions. In: Proceedings of the First International Conference on The
Quantitative Evaluation of Systems, pp. 146–155. QEST 2004, IEEE Computer
Society, Washington, DC (2004)

13. Verwer, S.E., Eyraud, R., De La Higuera, C.: PAutomaC: a probabilistic automata
and hidden markov models learning competition. Mach. Learn. 96(1–2), 129–154
(2014)

14. Verwer, S.E.: Efficient identification of timed automata: theory and practice. Ph.D.
thesis, TU Delft, Delft University of Technology (2010)

http://dx.doi.org/10.1007/978-3-642-34026-0_38
http://dx.doi.org/10.1007/978-3-642-34026-0_38

Verifying Safety and Persistence Properties
of Hybrid Systems Using Flowpipes

and Continuous Invariants

Andrew Sogokon1(B) , Paul B. Jackson2 , and Taylor T. Johnson1

1 Institute for Software Integrated Systems, Vanderbilt University,
Nashville, TN, USA

{andrew.sogokon,taylor.johnson}@vanderbilt.edu
2 Laboratory for Foundations of Computer Science, University of Edinburgh,

Edinburgh, Scotland, UK
Paul.Jackson@ed.ac.uk

Abstract. We propose a method for verifying persistence of nonlin-
ear hybrid systems. Given some system and an initial set of states, the
method can guarantee that system trajectories always eventually evolve
into some specified target subset of the states of one of the discrete modes
of the system, and always remain within this target region. The method
also computes a time-bound within which the target region is always
reached. The approach combines flow-pipe computation with deductive
reasoning about invariants and is more general than each technique alone.
We illustrate the method with a case study concerning showing that
potentially destructive stick-slip oscillations of an oil-well drill eventu-
ally die away for a certain choice of drill control parameters. The case
study demonstrates how just using flow-pipes or just reasoning about
invariants alone can be insufficient. The case study also nicely shows the
richness of systems that the method can handle: the case study features
a mode with non-polynomial (nonlinear) ODEs and we manage to prove
the persistence property with the aid of an automatic prover specifically
designed for handling transcendental functions.

1 Introduction

Hybrid systems combine discrete and continuous behaviour and provide a very
general framework for modelling and analyzing the behaviour of systems such
as those implemented in modern embedded control software. Although a num-
ber of tools and methods have been developed for verifying properties of

This material is based upon work supported by the UK Engineering and Physical
Sciences Research Council under grants EPSRC EP/I010335/1 and EP/J001058/1,
the National Science Foundation (NSF) under grant numbers CNS 1464311 and
CCF 1527398, the Air Force Research Laboratory (AFRL) through contract number
FA8750-15-1-0105, and the Air Force Office of Scientific Research (AFOSR) under
contract number FA9550-15-1-0258.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 194–211, 2017.
DOI: 10.1007/978-3-319-57288-8 14

http://orcid.org/0000-0002-5849-7991
http://orcid.org/0000-0003-3863-8336
http://orcid.org/0000-0001-8021-9923

Verifying Safety and Persistence Properties of Hybrid Systems 195

hybrid systems, most are geared towards proving bounded-time safety prop-
erties, often employing set reachability computations based on constructing
over-approximating enclosures of the reachable states of ordinary differential
equations (e.g. [7,13,14,21]). Methods capable of proving unbounded-time safety
properties often rely (explicitly or otherwise) on constructing continuous invari-
ants (e.g. [25,42], and referred to in short as invariants). Such invariants may
be thought of as a generalization of positively invariant sets (see e.g. [5]) and
which are analogous to inductive invariants used in computer science to reason
about the correctness of discrete programs using Hoare logic.

We argue in this paper that a combined approach employing bounded time
reachability analysis and reasoning about invariants can be effective in prov-
ing persistence and safety properties in non-polynomial (nonlinear) hybrid sys-
tems. We illustrate the combined approach using a detailed case study with
non-polynomial ODEs for which neither approach individually was sufficient to
establish the desired safety and persistence properties.

Methods for bounded time safety verification cannot in general be applied to
prove safety for all time and their accuracy tends to degrade for large time
bounds, especially for nonlinear systems. Verification using invariants, while
a powerful technique that can prove strong properties about nonlinear sys-
tems, relies on the ability to find invariants that are sufficient for proving the
unbounded time safety property. In practice, many invariants for the system can
be found which fall short of this requirement, often for the simple reason that
they do not include all the initial states of the system. We show how a combined
approach employing both verification methods can, in some cases, address these
limitations.

Contributions

In this paper we (I) show that bounded time safety verification based on flowpipe
construction can be naturally combined with invariants to verify persistence and
unbounded time safety properties, addressing some of the limitations of each
verification method when considered in isolation. (II) To illustrate the approach,
we consider a simplified torsional model of a conventional oil well drill string that
has been the subject of numerous studies by Navarro-López et al. [34]. (III) We
discuss some of the challenges that currently stand in the way of fully automatic
verification using this approach. Additionally, we provide a readable overview of
the methods employed in the verification process and the obstacles that present
themselves when these methods are applied in practice.

2 Safety and Persistence for Hybrid Automata

2.1 Preliminaries

A number of formalisms exist for specifying hybrid systems. The most popular
framework at present is that of hybrid automata [3,19], which are essentially

196 A. Sogokon et al.

discrete transition systems in which each discrete state represents an operating
mode inside which the system evolves continuously according to an ODE under
some evolution constraint. Additionally, transition guards and reset maps are
used to specify the discrete transition behaviour (i.e. switching) between the
operating modes. A sketch of the syntax and semantics of hybrid automata is as
follows.

Definition 1 (Hybrid automation [26]). Formally, a hybrid automaton is
given by (Q,V ar, f, Init, Inv, T,G,R), where

• Q = {q0, q1, . . . , qk} is a finite set of discrete states (modes),
• V ar = {x1, x2, . . . , xn} is a finite set of continuous variables,
• f : Q × R

n → R
n gives the vector field defining continuous evolution inside

each mode,
• Init ⊂ Q × R

n is the set of initial states,
• Inv : Q → 2R

n

gives the mode invariants constraining evolution for every
discrete state,

• T ⊆ Q × Q is the transition relation,
• G : T → 2R

n

gives the guard conditions for enabling transitions,
• R : T → 2R

n×R
n

gives the reset map.

A hybrid state of the automaton is of the form (q,x) ∈ Q × R
n. A hybrid

time trajectory is a sequence (which may be finite or infinite) of intervals τ =
{Ii}N

i=0, for which Ii = [τi, τ
′
i] for all i < N and τi ≤ τ ′

i = τi+1 for all i. If the
sequence is finite, then either IN = [τN , τ ′

N] or IN = [τN , τ ′
N). Intuitively, one

may think of τi as the times at which discrete transitions occur. An execution
(or a run or trajectory) of a hybrid automaton defined to be (τ, q, ϕi

t(x)), where
τ is a hybrid time trajectory, q : 〈τ〉 → Q (where 〈τ〉 is defined to be the set
{0, 1, . . . , N} if τ is finite and {0, 1, . . . } otherwise) and ϕi

t(x) is a collection of
diffeomorphisms ϕi

t(x) : Ii → R
n such that (q(0), ϕ0

0(x)) ∈ Init , for all t ∈ [τi, τ
′
i)

ẋ = f(q(i), ϕi
t(x)) and ϕi

t(x) ∈ Inv(i). For all i ∈ 〈τ〉 \ {N} it is also required
that transitions respect the guards and reset maps, i.e. e = (q(i), q(i + 1)) ∈ T ,
ϕi

τ ′
i
(x) ∈ G(e) and (ϕi

τ ′
i
(x), ϕi+1

τi+1
(x)) ∈ R(e).

We consider MTL1 formulas satisfied by trajectories. The satisfaction relation
is of form ρ |=p φ, read as “trajectory ρ at position p satisfies temporal logic
formula φ”, where positions on a trajectory are identified by pairs of form (i, t)
where i ≤ N and time t ∈ It. We use the MTL modality �Iφ which states
that formula φ always holds in time interval I in the future. Formally, this
can be defined as ρ |=p �Iφ ≡ ∀p′ ≥ p s.t. (p′.2 − p.2) ∈ I. ρ |=p′

φ, where
(i′, t′) ≥ (i, t) ≡ i′ > i∨(i′ = i∧t′ ≥ t). Similarly we can define the modality ♦Iφ
which states that formula φ eventually holds at some time in the time interval
I in the future. An MTL formula is valid for a given hybrid automaton if it
is satisfied by all trajectories of that automaton starting at position (0, 0). For
clarity when writing MTL formulas, we assume trajectories are not restricted to

1 Metric Temporal Logic; see e.g. [22].

Verifying Safety and Persistence Properties of Hybrid Systems 197

start in Init states and instead introduce Init predicates into the formulas when
we want restrictions.

Alternative formalisms for hybrid systems, such as hybrid programs [41],
enjoy the property of having a compositional semantics and can be used to
verify properties of systems by verifying properties of their parts in a theorem
prover [15,44]. Other formal modelling frameworks for hybrid systems, such as
Hybrid CSP [24], have also found application in theorem provers [60,62].

2.2 Bounded Time Safety and Eventuality

The bounded-time safety verification problem (with some finite time bound t > 0)
is concerned with establishing that given an initial set of states Init ⊆ Q × R

n

and a set of safe states Safe ⊆ Q × R
n, the state of the system may not leave

Safe within time t along any valid trajectory τ of the system. In the absence of
closed-form solutions to the ODEs, this property may be established by verified
integration, i.e. by computing successive over-approximating enclosures (known
as flowpipes) of the reachable states in discrete time steps. Bounded-time reach-
ability analysis can be extended to full hybrid systems by also computing/over-
approximating the discrete reachable states (up to some finite bound on the
number of discrete transitions).

A number of bounded-time verification tools for hybrid systems have been
developed based on verified integration using interval enclosures. For instance,
iSAT-ODE, a verification tool for hybrid systems developed by Eggers et al. [13]
relies on the verified integration tool VNODE-LP by Nedialkov [37] for com-
puting the enclosures. Other examples include dReach, a reachability analysis
tool for hybrid systems developed by Kong et al. [21], which uses the CAPD
library [1]. Over-approximating enclosures can in practice be very precise for
small time horizons, but tend to become conservative when the time bound is
large (due to the so-called wrapping effect, which is a problem caused by the
successive build-up of over-approximation errors that arises in interval-based
methods; see e.g. [38]). An alternative verified integration method using Taylor
models was introduced by Makino and Berz (see [4,38]) and can address some of
these drawbacks, often providing tighter enclosures of the reachable set. Imple-
mentations of the method have been reported in COSY INFINITY, a scientific
computing tool by Makino and Berz [29]; VSPODE, a tool for computing vali-
dated solutions to parametric ODEs by Lin and Stadtherr [23]; and in Flow∗, a
bounded-time verification for hybrid systems developed by Chen et al. [7].

Because flowpipes provide an over-approximation of the reachable states at
a given time, verified integration using flowpipes can also be used to reason
about liveness properties such as eventuality, i.e. when a system is guaranteed
to eventually enter some target set having started off at some point in an initial
set. The bounded-time safety and eventuality properties may be more concisely
expressed by using MTL notation, i.e. by writing Init → �[0,t] Safe, and Init →
♦[0,t] Target, where Init describes the initial set of states, Safe ⊆ Q×R

n is the set
of safe states and Target ⊆ Q×R

n is the target region which is to be eventually
attained.

198 A. Sogokon et al.

Remark 2. The bounded time eventuality properties we consider in this paper
are more restrictive than the general (unbounded time) case. For instance, con-
sider a continuous 2-dimensional system governed by ẋ1 = x2, ẋ2 = 0 and con-
fined to evolve in the region where x2 > 0. If one starts this system inside a state
where x1 = 0, it will eventually evolve into a state where x1 = 1 by following the
solution, however one may not put a finite bound on the time for this to happen.
Thus, while x1 = 0 → ♦[0,∞) x1 = 1 is true for this system the bounded time
eventuality property x1 = 0 → ♦[0,t] x1 = 1, will not hold for any finite t > 0.

2.3 Unbounded Time Safety

A safety property for unbounded time may be more concisely expressed using
an MTL formula:

Init → �[0,∞) Safe.

A proof of such a safety assertion is most commonly achieved by finding an
appropriate invariant, I ⊆ Q×R

n, which contains no unsafe states (i.e. I ⊆ Safe)
and such that the state of the system may not escape from I into an unsafe state
along any valid trajectory of the system. Invariance is a special kind of safety
assertion and may be written as I → �[0,∞) I. A number of techniques have been
developed for proving invariance properties for continuous systems without the
need to compute solutions to the ODEs [17,25,41,49,53,58].

2.4 Combining Unbounded Time Safety with Eventuality to Prove
Persistence

In linear temporal logic, a persistence property states that a formula is ‘eventu-
ally always’ true. For instance, using persistence one may express the property
that a system starting in any initial state always eventually reaches some target
set and then always stays within this set. Using MTL notation, we can write
this as:

Init → ♦[0,∞) �[0,∞) Target.

Persistence properties generalize the concept of stability. With stability one is
concerned with showing that the state of a system always converges to some
particular equilibrium point. With persistence, one only requires that the system
state eventually becomes always trapped within some set of states.

In this paper we are concerned with a slightly stronger form of persistence,
where one ensures that the target set is always reached within some specified
time t:

Init → ♦[0,t] �[0,∞) Target.

We observe that a way of proving this is to find a set I ⊆ Target such that:

1. Init → ♦[0,t] I holds, and
2. I is an invariant for the system.

Verifying Safety and Persistence Properties of Hybrid Systems 199

This fact can be stated more formally as a rule of inference:

(Persistence)
Init → ♦[0,t] I I → �[0,∞) I I → Target

Init → ♦[0,t] �[0,∞) Target
.

Previous Sects. 2.2 and 2.3 respectively surveyed how the eventuality premise
Init → ♦[0,t] I and invariant premise I → �[0,∞) I can be established by a
variety of automated techniques. In Sect. 5 we explore automation challenges
further and remark on ongoing work addressing how to automatically generate
suitable invariants I.

2.5 Using Persistence to Prove Safety

Finding appropriate invariants to prove unbounded time safety as explained
above in Sect. 2.3 can in practice be very difficult. It might be the case that
invariants I ⊆ Safe for the system can be found, but also ensuring that Init ⊆ I
is infeasible. Nevertheless it might be the case that one of these invariants I is
always eventually reached by trajectories starting in Init and all those trajecto-
ries are contained within Safe. In such cases, Safe is indeed a safety property of
the system when starting from any point in Init. More precisely, if one can find
an invariant I as explained above in Sect. 2.4 to show the persistence property:
Init → ♦[0,t] �[0,∞) Safe, and further one can show for the same time bound t
that: Init → �[0,t] Safe, then one has: Init → �[0,∞) Safe. As a result, one may
potentially utilize invariants that were by themselves insufficient for proving the
safety property.

Remark 3. The problem of showing that a state satisfying �[0,∞) Safe is reached
in finite time t, while ensuring that the formula �[0,t] Safe also holds (i.e. states
satisfying ¬Safe are avoided up to time t) is sometimes called a reach-avoid
problem [61].

Even if one’s goal is to establish bounded-time rather than unbounded-time
safety properties, this inference scheme could still be of use, as it could signifi-
cantly reduce the time bound t needed for bounded time reachability analysis.
In practice, successive over-approximation of the reachable states using flow-
pipes tends to become conservative for large values of t. In highly non-linear
systems one can realistically expect to compute flowpipes only for very mod-
est time bounds (e.g. in chaotic systems flowpipes are guaranteed to ‘blow up’,
but invariants may still sometimes be found). Instead, it may in some cases be
possible to prove the safety property by computing flowpipes up to some small
time bound, after which the system can be shown to be inside an invariant that
implies the safety property for all times thereafter.

3 An Example Persistence Verification Problem

Stick-slip oscillations are commonly encountered in mechanical engineering in
the context of modelling the effects of dynamic friction. Informally, the phenom-
enon manifests itself in the system becoming “stuck” and “unstuck” repeatedly,

200 A. Sogokon et al.

which results in unsteady “jerky” motions. In engineering practice, stick-slip
oscillations can often degrade performance and cause failures when operating
expensive machinery [36]. Although the problem of demonstrating absence of
stick-slip oscillations in a system is primarily motivated by safety considera-
tions, it would be misleading to call this a safety verification problem. Instead,
the problem may broadly be described as that of demonstrating that the sys-
tem (in finite time) enters a state in which no stick-slip motion is possible and
remains there indefinitely. Using MTL one may write:

Init → ♦[0,t] �[0,∞) Steady,

where Steady describes the states in which harmful oscillations cannot occur. The
formula may informally be read as saying that “from any initial configuration,
the system will eventually evolve within time t into a state region where it is
always steady”.

As an example of a system in which eventual absence of stick-slip oscillations
is important, we consider a well-studied [34] model of a simplified conventional
oil well drill string. The system can be characterized in terms of the following
variables: ϕr, the angular displacement of the top rotary system; ϕb, the angular
displacement of the drilling bit; ϕ̇r, the angular velocity of the top rotary system;
and ϕ̇b, the angular velocity of the drilling bit. The continuous state of the
system x (t) ∈ R

3 can be described in terms of these variables, i.e. x (t) =
(ϕ̇r, ϕr − ϕb, ϕ̇b)T . The system has two control parameters: Wob giving the
weight applied on the drilling bit, and u = Tm giving the surface motor torque.
The dynamics is governed a non-linear system of ODEs ẋ = f(x), given by:

ẋ1 =
1
Jr

(
− (ct + cr)x1 − ktx2 + ctx3 + u

)
, (1)

ẋ2 = x1 − x3, (2)

ẋ3 =
1
Jb

(
ctx1 + ktx2 − (ct + cb)x3 − Tfb

(x3)
)
. (3)

The term Tfb
(x3) denotes the friction modelling the bit-rock contact and is

responsible for the non-polynomial non-linearity. It is given by

WobRb

(
μcb

+ (μsb
− μcb

)e
− γb

νf
|x3|)

sgn(x3),

where sgn(x3) = x3
|x3| if x3 �= 0 and sgn(x3) ∈ [−1, 1] if x3 = 0. Constants used

in the model [34] are as follows: cb = 50Nms/rad, kt = 861.5336Nm/rad, Jr =
2212 kg m2, Jb = 471.9698 kg m2, Rb = 0.155575m, ct = 172.3067Nms/rad,
cr = 425Nms/rad, μcb = 0.5, μsb = 0.8, γb = 0.9, νf = 1 rad/s. Even though
at first glance the system looks like a plain continuous system with a single set
of differential equations, it is effectively a hybrid system with at least 3 modes,
where the drilling bit is: “rotating forward” (x3 > 0), “stopped” (x3 = 0), and
“rotating backward” (x3 < 0). A sub-mode of the stopped mode models when
the drill bit is stuck. In this sub-mode, the torque components on the drill bit

Verifying Safety and Persistence Properties of Hybrid Systems 201

due to ct, cb and kt are insufficient to overcome the static friction WobRbμcb
,

and sgn(x3) is further constrained so as to ensure ẋ3 = 0.
Once the drill is in operation, so-called stick-slip oscillations can cause dam-

age when the bit repeatedly becomes stuck and unstuck due to friction in the
bottom hole assembly. In the model this behaviour would correspond to the
system entering a state where x3 = 0 repeatedly. The objective is to verify the
eventual absence of stick-slip oscillations in the system initialised at the origin
(i.e. at rest) for some given choice of the control parameters Wob and u. Pre-
vious work by Navarro-López and Carter [34] explored modelling the simplified
model of the drill as a hybrid automaton and simulated the resulting models in
Stateflow and Modelica.

Fig. 1. Simulations can exhibit stabilization with positive bit angular velocity and
stick-slip bit motion.

Simulations, such as those obtained in [34], using different models and con-
trol parameters for the drill can suggest stick-slip oscillations or their absence
(illustrated in Fig. 1) in a particular model, however the task of verifying their
eventual absence cannot be adequately addressed with simulation alone. In prac-
tice however, simulation is incredibly useful in providing some degree of confi-
dence in the overall result, which is very important to know before attempting
verification.

A simulation of the system with a concrete choice for the control parameters
Wob = 50, 000N and u = 6, 000Nm, shown as a trajectory in the 3-dimensional
state space in Fig. 3a, suggests that the system does not exhibit stick-slip oscilla-
tions, because the trajectory is observed to start at the origin, escape the surface
(x3 = 0)2 and stabilize around a point where the angular velocity of the drilling
bit is positive (x3 > 0).

4 Verifying Persistence

The property of interest, i.e. the eventual absence of stick-slip oscillation that
we observe in the simulation, may be phrased as the following formula in metric
2 The system exhibits sliding behaviour on a portion of this surface known as the
sliding set. See [34].

202 A. Sogokon et al.

temporal logic: x1 = 0∧x2 = 0∧x3 = 0 → ♦[0,t] �[0,∞) x3 > 0, which informally
asserts that the system initialised at the origin will eventually (diamond modal-
ity) enter a state where it is always (box modality) the case that x3 > 0. In the
following sections we describe a method for proving this assertion. Following our
approach, we break the problem down into the following two sub-problems:

1. Finding an appropriate invariant I in which the property �[0,t] x3 > 0
holds. For this we employ continuous/positive invariants, discussed in the
next section.

2. Proving that the system reaches a state in the set I in finite time when
initialised at the origin, i.e. x1 = 0 ∧ x2 = 0 ∧ x3 = 0 → ♦[0,t] I.3

4.1 Continuous Invariant

Finding continuous invariants that are sufficient to guarantee a given property
is in practice remarkably difficult. Methods for automatic continuous invariant
generation have been reported by numerous authors [16,18,25,30,49,52–54,59,
63], but in practice often result in “coarse” invariants that cannot be used to
prove the property of interest, or require an unreasonable amount of time due
to their reliance on expensive real quantifier elimination algorithms.

Stability analysis (involving a linearisation; see [56] for details) can be used
to suggest a polynomial function V : Rn → R, given by

V (x) = 50599.6 − 14235.7x1 + 1234.22x2
1 − 4351.43x2 + 342.329x1x2

+ 288.032x2
2 − 3865.81x3 + 367.657x1x3 + 18.2594x2x3 + 241.37x2

3,

for which we can reasonably conjecture that V (x) ≤ 1400 defines a positively
invariant set under the flow of our non-linear system. Geometrically, this repre-
sents an ellipsoid that lies above the surface defined by x3 = 0 in the state space
(see Fig. 3b). In order to prove the invariance property, it is sufficient to show
that the following holds:4

∀ x ∈ R
3. V (x) = 1400 → ∇V · f(x) < 0. (4)

Unfortunately, in the presence of non-polynomial terms5 a first order sentence
will in general not belong to a decidable theory [51], although there has recently
been progress in broadening the scope of the popular CAD algorithm [9] for
real quantifier elimination to work with restricted classes of non-polynomial
problems [57].

In practice, this conjecture is easily proved in under 5 s using MetiTarski,
an automatic theorem prover, developed by L.C. Paulson and co-workers at the
University of Cambridge, designed specifically for proving universally quantified
first order conjectures featuring transcendental functions (such as sin, cos, ln, exp,
etc). The interested reader may find more details about the MetiTarski system
in [2,40].
3 Files for the case study are available online. http://www.verivital.com/nfm2017.
4 Here ∇ denotes the gradient of V , i.e. the vector of partial derivatives (∂V

∂x1
, . . . , ∂V

∂xn
).

5 E.g. those featured in the right-hand side of the ODE, i.e. f(x).

http://www.verivital.com/nfm2017

Verifying Safety and Persistence Properties of Hybrid Systems 203

Remark 4. Although Wolfram’s Mathematica 10 computer algebra system also
provides some functionality for proving first-order conjectures featuring non-
polynomial expressions using its Reduce[] function, we were unable (on our
system6) to prove conjecture (4) this way after over an hour of computation,
after which the Mathematica kernel crashed.

The automatic proof of conjecture (4) obtained using MetiTarski (provided
we trust the system) establishes that V (x) ≤ 1400 defines a positively invariant
set, and thus we are guaranteed that solutions initialised inside this set remain
there at all future times. In order to be certain that no outgoing discrete tran-
sitions of the hybrid system are possible when the system is evolving inside
V (x) ≤ 1400, we further require a proof of the following conjecture featuring
only polynomial terms:

∀ x ∈ R
3. V (x) ≤ 1400 → x3 > 0. (5)

An automatic proof of this conjecture may be obtained using an implementation
of a decision procedure for first-order real arithmetic.

4.2 Verified Integration

In order to show that the system does indeed enter the positively invariant
ellipsoid V (x) ≤ 1400 in finite time, it is not sufficient to observe this in a
simulation (as in Fig. 3b), which is why we use a tool employing verified inte-
gration based on Taylor models. Flow∗ (implemented by Chen et al. [7]) is a
bounded-time safety verification tool for hybrid systems that computes Taylor
models to analyze continuous reachability. The tool works by computing succes-
sive over-approximations (flowpipes) of the reachable set of the system, which
are internally represented using Taylor models (but which may in turn be over-
approximated by a bounding hyper-box and easily rendered).

Figure 2a shows the bounding boxes of solution enclosures computed from the
point initial condition at the origin using Flow∗ with adaptive time steps and
Taylor models of order 13, a time bound of 12.7 and the same control parameters
used in the simulation (i.e. u = 6, 000Nm, Wob = 50, 000N). We observe that
once solutions escape to the region where x3 > 0, they maintain a positive x3

component for the duration of the time bound.
The last flowpipe computed by Flow∗ for this problem can be bounded inside

the hyper-rectangle BoundBox characterized by the formula

BoundBox ≡ 39
10

≤ x1 ≤ 4 ∧ 51
10

≤ x2 ≤ 26
5

∧ 7
2

≤ x3 ≤ 37
10

.

Once more, using a decision procedure for real arithmetic, we can check that the
following sentence is true:

∀ x ∈ R
3. BoundBox → V (x) ≤ 1400.

If we are able to establish the following facts:
6 Intel i5-2520M CPU @ 2.50 GHz, 4GB RAM, running Arch Linux kernel 4.2.5-1.

204 A. Sogokon et al.

 0

 1

 2

 3

 4

 5

 6

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x3

x1

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9

x3

x2

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x2

x1

(a) Verified integration up to time t = 12.7
from a point initial condition at the origin.

 0

 1

 2

 3

 4

 5

 6

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x3

x1

 0

 1

 2

 3

 4

 5

 6

-1 0 1 2 3 4 5 6 7 8 9

x3

x2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

x2

x1

(b) Verified integration up to time t = 12.2
from an interval initial condition.

Fig. 2. Verified integration using Flow∗.

1. I → �[0,∞) I (I is a continuous invariant),
2. I → Steady (inside I, there are no harmful oscillations), and
3. Init → ♦[0,t] I (the system enters the region I in finite time),

then we can conclude that Init → ♦[0,t] �[0,∞) Steady is also true and the
system does not exhibit harmful stick-slip oscillations when started inside Init.
By taking Init to be the origin x1 = 0 ∧ x2 = 0 ∧ x3 = 0, I to be the positively
invariant sub-level set V (x) ≤ 1400 and Steady to be x3 > 0, we are able to
conclude the temporal property:

x1 = 0 ∧ x2 = 0 ∧ x3 = 0 → ♦[0,t] �[t,∞) x3 > 0.

Verifying Safety and Persistence Properties of Hybrid Systems 205

(a) Simulation showing stabilization with posi-
tive bit angular velocity.

(b) Simulation showing eventual entry into an
ellipsoidal invariant.

Fig. 3. Simulation of the hybrid system initialised at the origin with Wob = 50, 000N
and u = 6000 Nm. The trajectory is contained by the flowpipes shown in Fig. 2a and
is observed to enter the positively invariant ellipsoid V (x) ≤ 1400, illustrating the
persistence property of eventual absence of stick-slip oscillations.

Verified integration using Taylor models also allows us to consider sets of
possible initial conditions, rather than initial points (illustrated in Fig. 2b). This
is useful when there is uncertainty about the system’s initial configuration; how-
ever, in practice this comes with a significant performance overhead for verified
integration.

5 Outlook and Challenges to Automation

Correctness of reachability analysis tools based on verified integration is a sound-
ness critical to the overall verification approach, which makes for a strong case in
favour of using formally verified implementations. At present few are available,
e.g. see recent work by Immler [20] which presented a formally verified contin-
uous reachability algorithm based on adaptive Runge-Kutta methods. Verified
implementations of Taylor model-based reachability analysis algorithms for con-
tinuous and hybrid systems would clearly be very valuable. One alternative to
over-approximating reachable sets of continuous systems using flowpipes is based
on simulating the system using a finite set of sampling trajectories and employs
sensitivity analysis to address the coverage problem. This technique was explored
by Donzé and Maler in [10]. A similar approach employing matrix measures has
more recently been studied by Maidens and Arcak [27,28].

As an alternative to using verified integration, a number of deductive methods
are available for proving eventuality properties in continuous and hybrid systems
(e.g. [42,55]). These approaches can be much more powerful since they allow one
to work with more general classes of initial and target regions that are necessarily
out of scope for methods based on verified integration (e.g. they can work with

206 A. Sogokon et al.

initial sets that are unbounded, disconnected, etc.) Making effective use of the
deductive verification tools currently in existence typically requires significant
input and expertise on part of the user (finding the right invariants being one of
the major stumbling blocks in practice), in stark contrast to the near-complete
level of automation offered by tools based on verified integration. Methods for
automatic continuous invariant generation are crucial to the mechanization of the
overall verification approach. Progress on this problem would be hugely enabling
for non-experts and specialists alike, as it would relieve them from the task of
manually constructing appropriate invariants, which often requires intuition and
expertise. Work in this area is ongoing (see e.g. [25,43,54]). Indeed, progress on
this problem is also crucial to providing a greater level of automation in deductive
verification tools.

6 Related Work

Combining elements of qualitative and quantitative reasoning7 to study the
behaviour of dynamical systems has previously been explored in the case of
planar systems by Nishida et al. [39]. The idea of combining bounded-time reach-
ability analysis with qualitative analysis in the form of discrete abstraction was
investigated by Clarke et al. in [8]. Similar ideas are employed by Carter [6] and
Navarro-López in [35], where the concept of deadness is introduced and used
as a way of disproving liveness properties. Intuitively, deadness is a formaliza-
tion of an idea that inside certain regions the system cannot be live, i.e. some
desired property may never become true as the system evolves inside a “dead-
ness region”. These ideas were used in a case study [6, Chap. 5] also featuring the
drill system studied in [34], but with a different set of control parameters and in
which the verification objective was to prove the existence of a single trajectory
for which the drill eventually gets “stuck”, which is sufficient to disprove the
liveness (oscillation) property.

Region stability is similar to our notion of persistence [45], which requires all
trajectories to eventually reach some region of the state space. Sound and com-
plete proof rules for establishing region stability have been explored and auto-
mated [47], as have more efficient encodings of the proof rule that scale better in
dimensionality [31]. However, all algorithms we are aware of for checking region
stability require linear or simpler (timed or rectangular) ODEs [11,31,45–48].
Strong attractors are basins of attraction where every state in the state space
eventually reaches a region of the state space [45]. Some algorithms do not check
region stability, but actually check stronger properties such as strong attraction,
that imply region stability [45]. In contrast to these works, our method checks
the weaker notion of persistence for nonlinear ODEs.

She and Ratschan studied methods of proving set eventuality in continu-
ous systems under constraints using Lyapunov-like functions [50]. Duggirala and

7 E.g. numerical solution computation with “qualitative” features, such as invariance
of certain regions.

Verifying Safety and Persistence Properties of Hybrid Systems 207

Mitra also employed Lyapunov-like function concepts to prove inevitability prop-
erties in hybrid systems [12]. Möhlmann et al. developed Stabhyil [33], which can
be applied to nonlinear hybrid systems and checks classical notions of Lyapunov
stability, which is a strictly stronger property than persistence. In [32] Möhlmann
et al. extended their work and applied similar ideas, using information about
(necessarily invariant) sub-level sets of Lyapunov functions to terminate reach-
ability analysis used for safety verification. Prabhakar and Soto have explored
abstractions that enable proving stability properties without having to search
for Lyapunov functions, albeit these are not currently applicable to nonlinear
systems [48]. In summary, in contrast to other works listed above, our approach
enables proving persistence properties in conjunction with safety properties for
nonlinear, non-polynomial hybrid systems and does not put restrictions on the
form or the type of the invariant used in conjunction with bounded time reach-
ability analysis.

7 Conclusion

This paper explored a combined technique for safety and persistence verifica-
tion employing continuous invariants and reachable set computation based on
constructing flowpipes. The approach was illustrated on a model of a simplified
oil well drill string system studied by Navarro-López et al., where the verifica-
tion objective is to prove absence of damaging stick-slip oscillations. The system
was useful in highlighting many of the existing practical challenges to applying
and automating the proposed verification method. Many competing approaches
already exist for verifying safety in hybrid systems, but these rarely combine
different methods for reachability analysis and deductive verification, which our
approach combines. We demonstrate that a combination of different approaches
can be more practically useful than each constituent approach taken in isolation.

Acknowledgements. The authors wish to thank to the anonymous reviewers for
their careful reading and valuable suggestions for improving this paper.

References

1. CAPD library. http://capd.ii.uj.edu.pl/
2. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-

valued special functions. J. Autom. Reason. 44(3), 175–205 (2010)
3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algo-

rithmic approach to the specification and verification of hybrid systems. In: Gross-
man, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991–1992. LNCS, vol.
736, pp. 209–229. Springer, Heidelberg (1993). doi:10.1007/3-540-57318-6 30

4. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential
algebraic methods on high-order Taylor models. Reliab. Comput. 4(4), 361–369
(1998)

5. Blanchini, F.: Set invariance in control. Automatica 35(11), 1747–1767 (1999)

http://capd.ii.uj.edu.pl/
http://dx.doi.org/10.1007/3-540-57318-6_30

208 A. Sogokon et al.

6. Carter, R.A.: Verification of liveness properties on hybrid dynamical systems. Ph.D.
thesis, University of Manchester, School of Computer Science (2013)

7. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 18

8. Clarke, E.M., Fehnker, A., Han, Z., Krogh, B.H., Ouaknine, J., Stursberg, O.,
Theobald, M.: Abstraction and counterexample-guided refinement in model check-
ing of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)

9. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp.
134–183. Springer, Heidelberg (1975). doi:10.1007/3-540-07407-4 17

10. Donzé, A., Maler, O.: Systematic simulation using sensitivity analysis. In: Bempo-
rad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 174–189.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71493-4 16

11. Duggirala, P.S., Mitra, S.: Abstraction refinement for stability. In: Proceedings of
2011 IEEE/ACM International Conference on Cyber-Physical Systems, ICCPS,
pp. 22–31, April 2011

12. Duggirala, P.S., Mitra, S.: Lyapunov abstractions for inevitability of hybrid sys-
tems. In: HSCC, pp. 115–124. ACM, New York (2012)

13. Eggers, A., Ramdani, N., Nedialkov, N.S., Fränzle, M.: Improving the SAT mod-
ulo ODE approach to hybrid systems analysis by combining different enclosure
methods. Softw. Syst. Model. 14(1), 121–148 (2015)

14. Frehse, G., Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 30

15. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). doi:10.1007/978-3-319-21401-6 36

16. Ghorbal, K., Platzer, A.: Characterizing algebraic invariants by differential radical
invariants. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413,
pp. 279–294. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 19

17. Ghorbal, K., Sogokon, A., Platzer, A.: A hierarchy of proof rules for checking
differential invariance of algebraic sets. In: D’Souza, D., Lal, A., Larsen, K.G.
(eds.) VMCAI 2015. LNCS, vol. 8931, pp. 431–448. Springer, Heidelberg (2015).
doi:10.1007/978-3-662-46081-8 24

18. Gulwani, S., Tiwari, A.: Constraint-based approach for analysis of hybrid systems.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 190–203. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-70545-1 18

19. Henzinger, T.A.: The Theory of Hybrid Automata, pp. 278–292. IEEE Computer
Society Press, Washington, DC (1996)

20. Immler, F.: Verified reachability analysis of continuous systems. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 37–51. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46681-0 3

21. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 15

22. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990)

http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.1007/3-540-07407-4_17
http://dx.doi.org/10.1007/978-3-540-71493-4_16
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-319-21401-6_36
http://dx.doi.org/10.1007/978-3-642-54862-8_19
http://dx.doi.org/10.1007/978-3-662-46081-8_24
http://dx.doi.org/10.1007/978-3-540-70545-1_18
http://dx.doi.org/10.1007/978-3-662-46681-0_3
http://dx.doi.org/10.1007/978-3-662-46681-0_15

Verifying Safety and Persistence Properties of Hybrid Systems 209

23. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value problems for paramet-
ric ODEs. Appl. Numer. Math. 57(10), 1145–1162 (2007)

24. Liu, J., Lv, J., Quan, Z., Zhan, N., Zhao, H., Zhou, C., Zou, L.: A calculus for
hybrid CSP. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 1–15. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-17164-2 1

25. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polynomial
dynamical systems. In: EMSOFT, pp. 97–106. ACM (2011)

26. Lygeros, J., Johansson, K.H., Simić, S.N., Zhang, J., Sastry, S.S.: Dynamical prop-
erties of hybrid automata. IEEE Trans. Autom. Control 48(1), 2–17 (2003)

27. Maidens, J.N., Arcak, M.: Reachability analysis of nonlinear systems using matrix
measures. IEEE Trans. Autom. Control 60(1), 265–270 (2015)

28. Maidens, J.N., Arcak, M.: Trajectory-based reachability analysis of switched non-
linear systems using matrix measures. In: CDC, pp. 6358–6364, December 2014

29. Makino, K., Berz, M.: Cosy infinity version 9. Nucl. Instrum. Methods Phys. Res.,
Sect. A 558(1), 346–350 (2006)

30. Matringe, N., Moura, A.V., Rebiha, R.: Generating invariants for non-linear hybrid
systems by linear algebraic methods. In: Cousot, R., Martel, M. (eds.) SAS
2010. LNCS, vol. 6337, pp. 373–389. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-15769-1 23

31. Mitrohin, C., Podelski, A.: Composing stability proofs for hybrid systems. In:
Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 286–
300. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24310-3 20

32. Möhlmann, E., Hagemann, W., Theel, O.: Hybrid tools for hybrid systems – prov-
ing stability and safety at once. In: Sankaranarayanan, S., Vicario, E. (eds.) FOR-
MATS 2015. LNCS, vol. 9268, pp. 222–239. Springer, Cham (2015). doi:10.1007/
978-3-319-22975-1 15

33. Möhlmann, E., Theel, O.: Stabhyli: a tool for automatic stability verification of
non-linear hybrid systems. In: HSCC, pp. 107–112. ACM (2013)

34. Navarro-López, E.M., Carter, R.: Hybrid automata: an insight into the discrete
abstraction of discontinuous systems. Int. J. Syst. Sci. 42(11), 1883–1898 (2011)

35. Navarro-López, E.M., Carter, R.: Deadness and how to disprove liveness in hybrid
dynamical systems. Theor. Comput. Sci. 642(C), 1–23 (2016)

36. Navarro-López, E.M., Suárez, R.: Practical approach to modelling and controlling
stick-slip oscillations in oilwell drillstrings. In: Proceedings of the 2004 IEEE Inter-
national Conference on Control Applications, vol. 2, pp. 1454–1460. IEEE (2004)

37. Nedialkov, N.S.: Interval tools for ODEs and DAEs. In: SCAN (2006)
38. Neher, M., Jackson, K.R., Nedialkov, N.S.: On Taylor model based integration of

ODEs. SIAM J. Numer. Anal. 45(1), 236–262 (2007)
39. Nishida, T., Mizutani, K., Kubota, A., Doshita, S.: Automated phase portrait

analysis by integrating qualitative and quantitative analysis. In: Proceedings of
the 9th National Conference on Artificial Intelligence, pp. 811–816 (1991)

40. Paulson, L.C.: MetiTarski: past and future. In: Beringer, L., Felty, A. (eds.)
ITP 2012. LNCS, vol. 7406, pp. 1–10. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32347-8 1

41. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008)

42. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput. 20(1), 309–352 (2010)

43. Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as
fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–
189. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 17

http://dx.doi.org/10.1007/978-3-642-17164-2_1
http://dx.doi.org/10.1007/978-3-642-15769-1_23
http://dx.doi.org/10.1007/978-3-642-15769-1_23
http://dx.doi.org/10.1007/978-3-642-24310-3_20
http://dx.doi.org/10.1007/978-3-319-22975-1_15
http://dx.doi.org/10.1007/978-3-319-22975-1_15
http://dx.doi.org/10.1007/978-3-642-32347-8_1
http://dx.doi.org/10.1007/978-3-642-32347-8_1
http://dx.doi.org/10.1007/978-3-540-70545-1_17

210 A. Sogokon et al.

44. Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-71070-7 15

45. Podelski, A., Wagner, S.: Model checking of hybrid systems: from reachability
towards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol.
3927, pp. 507–521. Springer, Heidelberg (2006). doi:10.1007/11730637 38

46. Podelski, A., Wagner, S.: Region stability proofs for hybrid systems. In: Raskin,
J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 320–335.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75454-1 23

47. Podelski, A., Wagner, S.: A sound and complete proof rule for region stabil-
ity of hybrid systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 750–753. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-71493-4 76

48. Prabhakar, P., Garcia Soto, M.: Abstraction based model-checking of stability of
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 280–295. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 20

49. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24743-2 32

50. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of Lyapunov-like functions. SIAM J. Control Optim.
48(7), 4377–4394 (2010)

51. Richardson, D.: Some undecidable problems involving elementary functions of a
real variable. J. Symb. Logic 33(4), 514–520 (1968)

52. Sankaranarayanan, S.: Automatic invariant generation for hybrid systems using
ideal fixed points. In: HSCC, pp. 221–230 (2010)

53. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constructing invariants for hybrid
systems. FMSD 32(1), 25–55 (2008)

54. Sogokon, A., Ghorbal, K., Jackson, P.B., Platzer, A.: A method for invariant gener-
ation for polynomial continuous systems. In: Jobstmann, B., Leino, K.R.M. (eds.)
VMCAI 2016. LNCS, vol. 9583, pp. 268–288. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-49122-5 13

55. Sogokon, A., Jackson, P.B.: Direct formal verification of liveness properties in
continuous and hybrid dynamical systems. In: Bjørner, N., de Boer, F. (eds.)
FM 2015. LNCS, vol. 9109, pp. 514–531. Springer, Cham (2015). doi:10.1007/
978-3-319-19249-9 32

56. Sogokon, A., Jackson, P.B., Johnson, T.T.: Verifying safety and persistence proper-
ties of hybrid systems using flowpipes and continuous invariants. Technical report,
Vanderbilt University (2017)

57. Strzeboński, A.W.: Cylindrical decomposition for systems transcendental in the
first variable. J. Symb. Comput. 46(11), 1284–1290 (2011)

58. Taly, A., Tiwari, A.: Deductive verification of continuous dynamical systems. In:
Kannan, R., Kumar, K.N. (eds.) FSTTCS. LIPIcs, vol. 4, pp. 383–394. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Wadern (2009)

59. Tiwari, A.: Generating box invariants. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 658–661. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78929-1 58

http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/978-3-540-71070-7_15
http://dx.doi.org/10.1007/11730637_38
http://dx.doi.org/10.1007/978-3-540-75454-1_23
http://dx.doi.org/10.1007/978-3-540-71493-4_76
http://dx.doi.org/10.1007/978-3-540-71493-4_76
http://dx.doi.org/10.1007/978-3-642-39799-8_20
http://dx.doi.org/10.1007/978-3-540-24743-2_32
http://dx.doi.org/10.1007/978-3-662-49122-5_13
http://dx.doi.org/10.1007/978-3-662-49122-5_13
http://dx.doi.org/10.1007/978-3-319-19249-9_32
http://dx.doi.org/10.1007/978-3-319-19249-9_32
http://dx.doi.org/10.1007/978-3-540-78929-1_58
http://dx.doi.org/10.1007/978-3-540-78929-1_58

Verifying Safety and Persistence Properties of Hybrid Systems 211

60. Wang, S., Zhan, N., Zou, L.: An improved HHL prover: an interactive theo-
rem prover for hybrid systems. In: Butler, M., Conchon, S., Zäıdi, F. (eds.)
ICFEM 2015. LNCS, vol. 9407, pp. 382–399. Springer, Cham (2015). doi:10.1007/
978-3-319-25423-4 25

61. Xue, B., Easwaran, A., Cho, N.J., Fränzle, M.: Reach-avoid verification for non-
linear systems based on boundary analysis. IEEE Trans. Autom. Control (2016)

62. Zhao, H., Yang, M., Zhan, N., Gu, B., Zou, L., Chen, Y.: Formal verification of a
descent guidance control program of a lunar lander. In: Jones, C., Pihlajasaari, P.,
Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 733–748. Springer, Cham (2014).
doi:10.1007/978-3-319-06410-9 49

63. Zhao, H., Zhan, N., Kapur, D.: Synthesizing switching controllers for hybrid sys-
tems by generating invariants. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories
of Programming and Formal Methods. LNCS, vol. 8051, pp. 354–373. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39698-4 22

http://dx.doi.org/10.1007/978-3-319-25423-4_25
http://dx.doi.org/10.1007/978-3-319-25423-4_25
http://dx.doi.org/10.1007/978-3-319-06410-9_49
http://dx.doi.org/10.1007/978-3-642-39698-4_22

A Relational Shape Abstract Domain

Hugo Illous1,2(B), Matthieu Lemerre1, and Xavier Rival2

1 CEA, LIST, Software Reliability and Security Laboratory,
P.C. 174, 91191 Gif-sur-Yvette, France

{hugo.illous,matthieu.lemerre}@cea.fr
2 Inria Paris/CNRS/École Normale Supérieure/PSL Research University,

Paris, France
xavier.rival@ens.fr

Abstract. Static analyses aim at inferring semantic properties of pro-
grams. While many analyses compute an over-approximation of reach-
able states, some analyses compute a description of the input-output
relations of programs. In the case of numeric programs, several analyses
have been proposed that utilize relational numerical abstract domains to
describe relations. On the other hand, designing abstractions for relations
over memory states and taking shapes into account is challenging. In this
paper, we propose a set of novel logical connectives to describe such rela-
tions, which are inspired by separation logic. This logic can express that
certain memory areas are unchanged, freshly allocated, or freed, or that
only part of the memory was modified. Using these connectives, we build
an abstract domain and design a static analysis that over-approximates
relations over memory states containing inductive structures. We imple-
ment this analysis and report on the analysis of a basic library of list
manipulating functions.

1 Introduction

Generally, static analyses aim at computing semantic properties of programs.
Two common families of analyses are reachability analyses, that compute an
over-approximation for the set of reachable states of programs, and relational
analyses, that compute an over-approximation for the relations between input
and output states. In general, sets of states are easier to abstract than state
relations, which often makes reachability analyses simpler to design. On the
other hand, abstracting relations brings several advantages:

– First, state relations allow to make the analyses modular [3,6,10,17,22] and
compositional. Indeed, to analyze a sequence of two sub-programs, relational
analyses can simply analyze each sub-program separately, and compose the
resulting state relations. When sub-programs are functions, relational analyses
may analyze each function separately, and compute one summary per function,
so that the analysis of a function call does not require re-analyzing the body
of the function, which is an advantage for scalability.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 212–229, 2017.
DOI: 10.1007/978-3-319-57288-8 15

A Relational Shape Abstract Domain 213

– Second, some properties can be expressed on state relations but not on
sets of states, which makes relational analyses intrinsically more expressive.
For example, contract languages [1,21] let functions be specified by formulas
that may refer both to the input and to the output states. Such properties
cannot be expressed using abstractions of sets of states, thus are beyond the
scope of reachability analyses.

In general, the increased expressiveness of relational analyses requires more
expressive abstractions. Let us discuss, as an example the case of numeric pro-
grams. A common way to express relations between input and output states
consists in defining for each variable x a primed version x′ that describes the
value of x in the output state whereas the non primed version denotes the value
of x in the input state. In this context, non-relational numerical abstract domain
such as intervals [8] cannot capture any interesting relation between input and
output states. On the other hand, relational numerical abstract domains such as
convex polyhedra [7] can effectively capture relations between input and output
states, as shown in [22]: for instance, when applied to a program that increments
x by one, this analysis can infer the relation x′ = x + 1.

In the context of programs manipulating complex data structures, relational
analysis could allow to compute interesting classes of program properties. For
instance, such analyses could express and verify that some memory areas were
not physically modified by a program. Reachability analyses such as [5,15,24]
cannot distinguish a program that inputs a list and leaves it unmodified from
a program that inputs a list, copies it into an identical version and deallocates
it, whereas a relational analysis could. More generally, it is often interesting to
infer that a memory region is not modified by a program.

Separation logic [23] provides an elegant description for sets of states and is at
the foundation of many reachability analyses for heap properties. In particular,
the separating conjunction connective ∗ expresses that two regions are disjoint
and allows local reasoning. On the other hand, it cannot describe state relations.

In this paper, we propose a logic inspired by separation logics and that can
describe such properties. It provides connectives to describe that a memory
region has been left unmodified by a program fragment, or that memory states
can be split into disjoint sub-regions that undergo different transformations. We
build an abstract domain upon this logic, and apply it to design an analysis for
programs manipulating simple list or tree data structures. We make the following
contributions:

– In Sect. 2, we demonstrate the abstraction of state relations using a specific
family of heap predicates;

– In Sect. 4, we set up a logic to describe heap state relations and lift it into an
abstract domain that describe concrete relations defined in Sect. 3;

– In Sect. 5, we design static analysis algorithms to infer heap state relations
from abstract pre-condition;

– In Sect. 6, we report on experiments on basic linked data structures (lists and
trees);

– Finally, we discuss related works in Sect. 7 and conclude in Sect. 8.

214 H. Illous et al.

2 Overview and Motivating Example

We consider the example code shown in Fig. 1, which implements the insertion
of an element inside a non empty singly linked list containing integer values.
When applied to a pointer to an existing non empty list and an integer value,
this function traverses it partially (based on a condition on the values stored in
list elements —that is elided in the figure). It then allocates a new list element,
inserts it at the selected position and copies the integer argument into the data
field. For instance, Fig. 2(a) shows an input list containing elements 0, 8, 6, 1
and an output list where value 9 is inserted as a new element in the list. We
observe that all elements of the input list are left physically unmodified except
the element right before the insertion point. We now discuss abstractions of the
behaviors of this program using abstractions for sets of states and abstractions
for state relations.

Fig. 1. A list insertion program

Reachability Analysis. First, we consider an abstraction based on separation
logics with inductive predicates as used in [5,15]. We assume that the predicate
list(α) describes heap regions that consist of a well-formed linked list starting at
address α (α is a symbolic variable used in the abstraction to denote a concrete
address). This predicate is intuitively defined by induction as follows: it means
either the region is empty and α is the null pointer, or the region is not empty,
and consists of a list element of address α and with a next field containing a
value described by symbolic variable β and a region that can be described by
list(β). Thus, the valid input states for the insertion function can be abstracted
by the abstract state shown in the top of Fig. 2(b). The analysis of the function
needs to express that the insertion occurs somewhere in the middle of the list.
This requires a list segment predicate listseg(α, α′), that is defined in a similar
way as for list: it describes region that stores a sub list starting at address α and
the last element of which has a next field pointing to address α′ (note that the
empty region can be described by listseg(α, α)). Using this predicate, we can
now also express an abstraction for the output states of the insertion function:
the abstract state shown in the bottom of Fig. 2(b) describes the states where

A Relational Shape Abstract Domain 215

the new element was inserted in the middle of the structure (the list starts with a
segment, then the predecessor of the inserted element, then the inserted element,
and finally the list tail). We observe that this abstraction allows to express and to
verify that the function is memory safe, and returns a well-formed list. Indeed, it
captures the fact that no null or dangling pointer is ever dereferenced. Moreover,
all states described by the abstract post-condition consist of a well-formed list,
made of a segment, followed by two elements and a list tail. On the other hand,
it does not say anything about the location of the list in the output state with
respect to the list in the input state. More precisely, it cannot capture the fact
that the elements of addresses a0, a1, a3 are left unmodified physically. This is
a consequence of the fact that each abstract state in Fig. 2(b) independently
describes a set of concrete heaps.

input:

0 8 6 1
0x0

output:

0 8 6 1
0x0

9

a0

a0

a1

a1

a2

a2

a3

a3a4
l

l

v

v

= 9

= 9

(a) Concrete input and output

input:
list

α

output:
listseg list

α α′ β

. . . 9

a4
l

l

v

v

= 9

= 9

(b) State abstraction

relation:

listseg list

α α′ β

. . . 9

a4
l
v = 9

Part common to input and output:
Old state (input only):
New state (output only):

in black
in red
in blue

(c) Relational abstraction

Fig. 2. Abstractions (Color figure online)

Relational Analysis. To abstract state relations instead of sets of states, we now
propose to define a new structure in Fig. 2(c), that partially overlays the abstrac-
tions of input and output states. First, we observe that the tail of the list is not
modified at all, thus, we describe it with a single predicate Id(list(β)), that
denotes pairs made of input state and an output state, that are physically equal
and can both be described by list(β). The same kind of predicate can be used to
describe that the initial segment has not changed between the two states. Sec-
ond, we need to define a counterpart for separating conjunction at the relation
level. Indeed, the effect of the insertion function can be decomposed as its effect
on the initial segment (which is left unchanged), its effect on the tail (which is
also left unchanged) and its effect on the insertion point (where a new element is
allocated and a next pointer is modified). This relation separating conjunction is
noted ∗R. To avoid confusion, from now on, we write ∗S for the usual separating
conjunction. Last, the insertion function allocates a new element and modifies
the value of the next field of an existing element. To account for this, we need
a new connective [· ��� ·] which is applied to two abstract states: if h�

0,h
�
1 are

abstract heaps (described by formulas in the usual separation logic with induc-
tive predicates), then [h�

0 ��� h�
1] describes the transformation of an input state

216 H. Illous et al.

described by h�
0 into an output state described by h�

1. This is presented with dif-
ferent colors in the figure. In Sect. 4, we formalize this logics and the abstraction
that it defines. The analysis by forward abstract interpretation [8] starts with
the identity relation at function entry, and computes relations between input
and output states step by step. The analysis algorithms need to unfold induc-
tive predicates to materialize cells (for instance to analyze the test at line 4),
and to fold inductive predicates in order to analyze loops. In addition to this,
it also needs to reason over Id, [· ��� ·] and ∗R predicates, and perform opera-
tions similar to unfolding and folding on them. Section 5 describes the analysis
algorithms.

3 Concrete Semantics

Before defining the abstraction, we fix notations for concrete states and
programs.

We let X denote the set of program variables and V denote the set of values
(that includes the set of numeric addresses). A field ∈ F (noted as next, data, . . .)
denotes both field names and offsets. A memory state σ ∈ M is a partial function
from addresses to values. We write dom(σ) for the domain of σ, that is the
set of addresses for which it is defined. Additionally, if σ0, σ1 are such that
dom(σ0) ∩ dom(σ1) = ∅, we let σ0 � σ1 be the memory state obtained by
merging σ0 and σ1 (its domain is dom(σ0) ∪ dom(σ1)). If ai is an address and
vi a value, we write [a0 �→ v0; . . . ; an �→ vn] the memory state where ai contains
vi (with 0 ≤ i ≤ n).

In the following, we consider simple imperative programs, that include basic
assignments, allocation and deallocation statements and loops (although our
analysis supports a larger language, notably with conditionals and unstructured
control flow). Programs are described by the grammar below:

L ::= x (x ∈ X) | L -> f (f ∈ F) l-values
E ::= v (v ∈ V) | L | E ⊕ E (⊕ ∈ {+,−,≤, . . .}) expressions
P ::= L = E; | L = new({f0, . . .}); | free(L); | P; P | while(E)P programs

We assume the semantics of a program P is defined as a function [[P]] that maps
a set of input states into a set of output states (thus [[P]] : P(M) −→ P(M)). We
do not provide a full formal definition for [[P]] as it is classical. Given a program
P, we define its relational semantics [[P]]R : M → M × M by:

∀M ⊆ M, [[P]]R(M) = {(σ0, σ1) | σ0 ∈ M ∧ σ1 ∈ [[P]]({σ0})}

In the following, we define an analysis to compute an over-approximation
for [[P]]R.

4 Abstraction

In this section, we first define abstract states, that describe sets of memory states
(as in [5]), and then we set up abstract state relations, that describe binary

A Relational Shape Abstract Domain 217

relations over memory states. Although our analysis and implementation support
more general inductive predicates (such as trees and others), we consider only
list inductive predicates in the body of the paper, for the sake of simplicity.

Abstract States. We assume a countable set A = {α, β, . . .} of symbolic addresses
that abstract values and heap addresses. An abstract state σ� consists of an
abstract heap h� with a conjunction of numerical constraints such as equali-
ties and disequalities. An abstract heap is a separating conjunction of region
predicates that abstract separate memory regions [23] (as mentioned above, sep-
arating conjunction is denoted by ∗S). A node n ∈ N is either a variable address
&x or a symbolic address α. A region predicate is either emp describing an
empty region, or a points-to predicate n · f �→ n′ (that describes a heap memory
cell at the base address n with the possibly null offset f and with the content
n′), or a summary predicate list(n) describing a list structure or listseg(n,n′)
for a (possibly empty) list segment from address n to n′. The list predicate is
defined by induction as follows:

list(n) ::= emp ∧ n = 0x0
∨ n · next �→ αn ∗S n · data �→ αd ∗S list(αn) ∧ n �= 0x0

Segment predicate listseg stands for the segment version of list and describes
a list without a tail; it can also be defined by induction. We write unfold−→ for
the unfolding relation that syntactically transforms an instance of an inductive
predicate into any of the disjuncts of that predicate.

Definition 1 (Abstract state). Abstract heaps and abstract states are
defined by the grammar below:

c� ::= n � 0x0 (� ∈ {=, �=}) | n = n′ | c� ∧ c�

h�(∈ H) ::= emp | n · f �→ n′ | list(n) | listseg(n,n′) | h� ∗S h�

σ�(∈ Σ) ::= h� ∧ c� n(∈ N) ::= α (α ∈ A) | &x (x ∈ X)

We now define the meaning of abstract heaps and abstract states using con-
cretization functions [8], that associate to abstract elements the set of concrete
elements they describe. To concretize an abstract heap, we also need to define
how the nodes are bound into concrete values in concrete memories. We call
valuation a function ν that maps nodes into concrete values and addresses.

Definition 2 (Concretization of abstract states). The concretization func-
tion γC maps a numeric constraint into a set of valuations whereas γH and γΣ

respectively map an abstract heap and an abstract state into a set of pairs made
of memory state and a valuation. They are defined by induction as follows:

γC(n � 0x0) = {ν | ν(n) � 0x0}
γC(n = n′) = {ν | ν(n) = ν(n′)} γC(c�

0 ∧ c�
1) = γC(c�

0) ∩ γC(c�
1)

γH(n · f �→ n′) = {[ν(n) + f �→ ν(n′)], ν)} γH(emp) = {([], ν)}
γH(ind) =

⋃
{γΣ(σ�) | ind unfold−→ σ�} if ind is list(n) or listseg(n,n′)

γH(h�
0 ∗S h�

1) = {(σ0 � σ1, ν) | (σ0, ν) ∈ γH(h�
0) ∧ (σ1, ν) ∈ γH(h�

1)}
γΣ(h� ∧ c�) = {(σ, ν) | (σ, ν) ∈ γH(h�) ∧ ν ∈ γC(c�)}

218 H. Illous et al.

Example 1 (Abstract state). The abstract pre-condition of the program of Fig. 1
is &l �→ α ∗S list(α) ∗S &v �→ β.

Abstract Relations. An abstract heap relation describes a set of pairs made of an
input memory state σi and an output memory state σo. Abstract heap relations
are defined by the following connectives:

– the identity relation Id(h�) describes pairs of memory states that are equal
and are both abstracted by h�; this corresponds to the identity transformation;

– the transformation relation [h�
i ��� h�

o] describes pairs corresponding to the
transformation of a memory state abstracted by h�

i into a memory state
abstracted by h�

o;
– the relation separating conjunction r�

0 ∗R r�
1 of two heap relations r�

0, r
�
1 denotes

a transformation that can be described by combining independently the trans-
formations described by r�

0 and r�
1 on disjoint memory regions.

Definition 3 (Abstract relations). The syntax of abstract heap relations
and abstract state relations are defined by the grammar below:

r�(∈ R) ::= Id(h�) | [h� ��� h�] | r� ∗R r� ρ�(∈ Π) ::= r� ∧ c�

The concretization of relations also requires using valuations as it also needs to
define the concrete values that nodes denote. It thus returns triples made of two
memory states and a valuation.

Definition 4 (Concretization of abstract relations). The concretization
functions γR, γΠ respectively map an abstract heap relation and an abstract state
relation into elements of M × M × (N −→ V). They are defined by:

γR(Id(h�)) = {(σ, σ, ν) | (σ, ν) ∈ γH(h�)}
γR([h�

i ��� h�
o]) = {(σi, σo, ν) | (σi, ν) ∈ γH(h�

i) ∧ (σo, ν) ∈ γH(h�
o)}

γR(r�
0 ∗R r�

1) = {(σi,0 � σi,1, σo,0 � σo,1, ν) |
(σi,0, σo,0, ν) ∈ γR(r�

0) ∧ dom(σi,0) ∩ dom(σo,1) = ∅
∧ (σi,1, σo,1, ν) ∈ γR(r�

1) ∧ dom(σi,1) ∩ dom(σo,0) = ∅}
γΠ(r� ∧ c�) = {(σi, σo, ν) | (σi, σo, ν) ∈ γR(r�) ∧ ν ∈ γC(c�)}

We remark that ∗R is commutative and associative.

Example 2 (Expressiveness). Let r�
0 = Id(list(n)) and r�

1 = [list(n) ��� list(n)].
We observe that r�

0 describes only the identity transformation applied to a pre-
condition where n is the address of a well-formed list, whereas r�

1 describes any
transformation that inputs such a list and also outputs such a list, but may
modify its content, add or remove elements, or may modify the order of list
elements (except for the first one which remains at address n). This means that
γR(r�

0) ⊂ γR(r�
1).

More generally, we have the following properties:

A Relational Shape Abstract Domain 219

Theorem 1 (Properties). Let h�,h�
0,h

�
1,h

�
i,0,h

�
i,1,h

�
o,0,h

�
o,1 be abstract heaps.

Then, we have the following properties

1. γR(Id(h�
0 ∗S h�

1)) = γR(Id(h�
0) ∗R Id(h

�
1))

2. γR(Id(h�)) ⊆ γR([h� ��� h�]) (the opposite inclusion may not hold, as observed
in Example 2);

3. γR([h�
i,0 ��� h�

o,0] ∗R [h�
i,1 ��� h�

o,1]) ⊆ γR([(h�
i,0 ∗S h�

i,1) ��� (h�
o,0 ∗S h�

o,1)])
(the opposite inclusion may not hold).

Example 3 (Abstract state relation). The effect of the insertion function of Fig. 1
can be described by the abstract state relation Id(h�

0) ∗R [h�
1 ��� h�

2] ∗R [emp ���
h�
3], where h�

0 = &l �→ α0 ∗S &v �→ β ∗S listseg(α0, α1) ∗S list(α2) ∗S α1 ·
data �→ β2) (preserved region), h�

1 = α1 · next �→ α2, h�
2 = α1 · next �→ α

(modified region) and h�
3 = α · next �→ α2 ∗S α · data �→ β (new region).

5 Analysis Algorithms

We now propose a static analysis to compute abstract state relations as described
in Definition 3. It proceeds by forward abstract interpretation [8], starting from
the abstract relation Id(h�) where h� is a pre-condition, supplied by the user.

More generally, the analysis of a program P is a function [[P]]�R that inputs
an abstract state relation describing a previous transformation T done on the
input before running P and returns a relation describing that transformation T
followed by the execution of P. Thus, [[P]]�R should meet the following soundness
condition:

∀ρ� ∈ Π, ∀(σ0, σ1) ∈ γΠ(ρ�), ∀σ2 ∈ M,

(σ1, σ2) ∈ [[P]]R =⇒ (σ0, σ2) ∈ γΠ([[P]]�R(ρ�))

5.1 Basic Abstract Post-conditions

We start with the computation of abstract post-condition for assignments, allo-
cation and deallocation, on abstract relations that do not contain inductive pred-
icates. As an example, we consider the analysis of an assignment L = E, starting
from an abstract pre-condition relation r�. To compute the effect of this assign-
ment on r�, the analysis should update it so as to reflect the modification of L
in the output states of the pairs denoted by r�. We first consider the case where
r� is a transformation relation.

Case of a Transformation Relation. We assume r� = [h�
0 ��� h�

1]. Then, if h�
2 is

an abstract state that describes the memory states after the assignment L = E,
when it is executed on a state that is in γH(h�

1), then a valid definition for
[[L = E]]�R(r�) is [h�

0 ��� h�
2]. An algorithm for computing such a h�

2 can be found
in [5]. It first evaluates L into a points-to predicate n · f �→ n′ describing the cell
that L represents, then evaluates E into a node n′′ describing the value of the

220 H. Illous et al.

right hand side and finally replaces n ·f �→ n′ with n ·f �→ n′′. As a consequence,
we have the following definitions for the two main cases of assignments:

[[x = y -> f]]�R([h�
0 ��� (h�

1 ∗S &x �→ α0 ∗S &y �→ α1 ∗S α1 · f �→ α2)])
= [h�

0 ��� (h�
1 ∗S &x �→ α2 ∗S &y �→ α1 ∗S α1 · f �→ α2)]

[[x -> f = y]]�R([h�
0 ��� (h�

1 ∗S &x �→ α0 ∗S α0 · f �→ α1 ∗S &y �→ α2)])
= [h�

0 ��� (h�
1 ∗S &x �→ α0 ∗S α0 · f �→ α2 ∗S &y �→ α2)]

Case of a Separating Conjunction Relation. We now assume that r� = r�
0 ∗R r�

1.
If the assignment can be fully analyzed on r�

0 (i.e., it does not read or modify
r�
1), then the following definition provides a sound transfer function, that relies

on the same principle as the Frame rule [23] for separation logic:

if [[L = E]]�R(r�
0) is defined, then [[L = E]]�R(r�

0 ∗R r�
1) = [[L = E]]�R(r�

0) ∗R r�
1

When L = E writes in r�
0 and reads in r�

1, we get a similar definition as above.
For instance:

[[x = y -> f]]�R([h�
0 ��� (&x �→ α0)] ∗R [h�

1 ��� (&y �→ α1 ∗S α1 · f �→ α2)])
[h�

0 ��� (&x �→ α2)] ∗R [h�
1 ��� (&y �→ α1 ∗S α1 · f �→ α2)]

Case of an Identity Relation. We now assume that r� = Id(h�). As observed
in Theorem 1, γΠ(Id(h�)) ⊆ γΠ([h� ��� h�]). We derive from the previous two
paragraphs and from this principle the following definitions:

[[x = y -> f]]�R(Id(h� ∗S &x �→ α0 ∗S &y �→ α1 ∗S α1 · f �→ α2))
= Id(h� ∗S &y �→ α1 ∗S α1 · f �→ α2) ∗R [(&x �→ α0) ��� (&x �→ α2)]

[[x -> f = y]]�R(Id(h� ∗S &x �→ α0 ∗S α0 · f �→ α1 ∗S &y �→ α2))
= Id(h� ∗S &x �→ α0 ∗S &y �→ α2) ∗R [(α0 · f �→ α1) ��� (α0 · f �→ α2)]

Other Transfer Functions. Condition tests boil down to numeric constraints
intersections. The analysis of allocation needs to account for the creation of
cells in the right side of relations whereas deallocation needs to account for the
deletion of cells that were present before. Thus, for instance:

[[x = new({f0, . . . , fn})]]�R(r� ∗R [h� ��� (&x �→ α)])
= r� ∗R [h� ��� (&x �→ β)] ∗R [emp ��� (β · f0 �→ β0 ∗S . . . ∗S β · fn �→ βn)]

where β, β0, . . . , βn are fresh
[[free(x)]]�R(r� ∗R Id(&x �→ α ∗S α · f0 �→ α0) ∗R [h�

i ��� (h�
o ∗S α · f1 �→ α1)])

= r� ∗R Id(&x �→ α) ∗R [(α · f0 �→ α0) ��� emp] ∗R [h�
i ��� h�

o]

5.2 Materialization and General Abstract Post-conditions

In Sect. 5.1, we considered only abstract states without inductive predicates,
to first provide a simpler definition of abstract post-conditions. We now lift

A Relational Shape Abstract Domain 221

this restriction. For example, the analysis of the program in Fig. 1 starts with
Id(&l �→ α ∗S list(α) ∗S &v �→ β), and then has to analyze a reading of
l -> next.

If we consider an abstract state relation of the form [h� ��� list(n)], and an
assignment that reads or writes a field at base address n, the inductive predi-
cate list(n) should first be unfolded [5]: before the post-condition operators of
Sect. 5.1 can be applied, this predicate first needs to be substituted with the
disjunction of cases it is made of, as defined in Sect. 4. This process is known in
reachability shape analyses as a technique to materialize cells [5,15,24]. It results
in disjunctive abstract states. For instance, the concretization of the abstract
state relation [h� ��� list(n)] is included in the union of the concretizations of
[h� ��� emp] ∧ n = 0x0 and [h� ��� (n · next �→ αn ∗S n · data �→ αd ∗S

list(αn))] ∧ n �= 0x0). This disjunctive abstract states allows to analyze a read
or write into a field at address n.

However, this naive extension of unfolding may be imprecise here. Let us
consider the unfolding at node n in the abstract state relation [n · next �→ α ∗S

n · data �→ β ��� list(n)]. The above technique will generate two disjuncts,
including one where n = 0x0. However, n cannot be equal to the null pointer
here, since n is the base address of a regular list element in the left side of
the [. ��� .] abstract relation. Therefore, unfolding should take into account
information in both sides of abstract relations for the sake of analysis precision.

In the following, we let unfoldΣ(n, σ�) denote the set of disjuncts produced
by unfolding an inductive predicate at node n in abstract state σ�, if any. For
instance, unfoldΣ(n, list(n)) is {(emp ∧ n = 0x0), (n·next �→ αn ∗S n·data �→
αd ∗S list(αn) ∧ n �= 0x0)}. If there is no inductive predicate attached to node
n in σ�, we let unfoldΣ(α, σ�) = {σ�}. This operator is sound in the sense that,
γΣ(σ�) is included in ∪{γΣ(σ�

u) | σ�
u ∈ unfoldΣ(n, σ�)}.

Using unfoldΣ, we define the function unfoldΠ that performs unfolding at
a given node and in an abstract state relation as follows:

– unfoldΠ(n, Id(h�)) = {Id(h�
u) ∧ c�

u | (h�
u ∧ c�

u) ∈ unfoldΣ(n,h�)};
– if the node n carries inductive predicate in r�

0 then unfoldΠ(n, r�
0 ∗R r�

1) =
{(r�

0,u ∗R r�
1) ∧ c�

0,u | (r�
0,u ∧ c�

0,u) ∈ unfoldΠ(n, r�
0)};

– unfoldΠ(n, [h�
i ��� h�

o]) = {[h�
i,u ��� h�

o,u] ∧ (c�
i,u ∧ c�

o,u) | (h�
i,u ∧ c�

i,u) ∈
unfoldΣ(n,h�

i) ∧ (h�
o,u ∧ c�

o,u) ∈ unfoldΣ(n,h�
o)};

– unfoldΠ(n, r� ∧ c�) = {r�
u ∧ (c� ∧ c�

u) | (r�
u ∧ c�

u) ∈ unfoldΠ(n, r�)}.

We note that conjunctions of numerical constraints over node may yield to unfea-
sible elements being discarded in the last two cases: for instance, in the [· ��� ·]
case, unfolding will only retain disjuncts where both sides of the arrow express
compatible conditions over n.

We can prove by case analysis that this unfolding operator is sound:

γΠ(ρ�) ⊆
⋃

{γΠ(ρ�
u) | ρ�

u ∈ unfoldΠ(n, ρ�)}

222 H. Illous et al.

Example 4 (Abstract state relation unfolding and post-condition). Let us con-
sider the analysis of the insertion function of Fig. 1. This function should be
applied to states where l is a non null list pointer (the list should have at least one
element), thus, the analysis should start from Id(&l �→ α ∗S list(α)) ∧ α �= 0x0
(in this example, we omit v for the sake of concision). Before the loop entry,
the analysis computes the abstract state relation Id(&l �→ α ∗S list(α)) ∗R

[emp ��� (&c �→ α)] ∧ α �= 0x0. To deal with the test c−>next != NULL (and
the assignment c = c−>next), the analysis should materialize the cell at node
α. This unfolding is performed under the Id connective, and produces:

Id(&l �→ α ∗S α · next �→ α0 ∗S α · data �→ β0 ∗S list(α0))
∗R [emp ��� (&c �→ α)] ∧ α �= 0x0

In turn, the effect of the condition test and of the assignment in the loop body
can be precisely analyzed from this abstract state relation.

5.3 Folding and Lattice Operations

Like classical shape analyses [5,15], our analysis needs to fold inductive pred-
icates so as to (conservatively) decide inclusion and join abstract states. We
present folding algorithms in the following paragraphs.

Conservative Inclusion Checking. Inclusion checking is used to verify logi-
cal entailment, to check the convergence of loop iterates, and to support the
join/widening algorithm. It consists of a conservative function isleH over abstract
states and a conservative function isleR over abstract state relations, that either
return true (meaning that the inclusion of concretizations holds) or false (mean-
ing that the analysis cannot conclude whether inclusion holds).

Their definition relies on a conservative algorithm, that implements a proof
search, based on the rules shown in Fig. 3 (for clarity, we omit the numer-
ical constraints inclusion checking). In this system of rules, if h�

0 �H h�
1

(resp., r�
0 �R r�

1), then γH(h�
0) ⊆ γH(h�

1) (resp., γR(r�
0) ⊆ γR(r�

1)). The rules
(�=), (�seg) and (�∗S

) are specific to reasoning of abstract states, and are
directly inspired from [5] (they allow to reason over equal abstract regions,
over segments, and over separating conjunction). The rule (�unfold) allows to
reason by unfolding of inductive predicates, at the level of relations. Finally,
the rules (�Id), (����−intro), (�Id−weak), (�∗R

) and (����−weak) allow to derive
inclusion over abstract state relations, and implement the properties observed in
Theorem 1. The proof search algorithm starts from the goal to prove and attempt
to apply these rules so as to complete an inclusion derivation. We observe that
abstract states are equivalent up to a renaming of the internal nodes (the nodes
that are not of the form &x), thus, the implementation also takes care of this
renaming, although the rules of Fig. 3 do not show it, as this issue is orthogonal
to the reasoning over abstract state relations which is the goal of this paper
(indeed, this requires complex renaming functions that are made fully explicit
in [5]). The rules can be proved sound one by one, thus they define a sound
inclusion checking procedure:

A Relational Shape Abstract Domain 223

Fig. 3. Inclusion checking rules

Theorem 2 (Soundness of inclusion checking). If h�
0,h

�
1 ∈ H and r�

0, r
�
1 ∈ R

then:
isleH(h�

0,h
�
1) = true =⇒ γH(h�

0) ⊆ γH(h�
1)

isleR(r�
0, r

�
1) = true =⇒ γR(r�

0) ⊆ γR(r�
1)

Example 5 (Inclusion checking). Let us consider the following abstract state
relations, and discuss the computation of isleR(r�

0, r
�
1):

r�
0 = Id(n · next �→ α0 ∗S list(α0)) ∗R [n · data �→ α1 ��� n · data �→ α2]

r�
1 = [list(n) ��� list(n)]

Using first rule (�Id−weak) then rule (����−weak), this goal gets reduced into
checking the inclusion [h�

0 ��� h�
1] �R r�

1, where h�
0 = n·next �→ α0 ∗S list(α0) ∗S

n · data �→ α1 and h�
1 = n · next �→ α0 ∗S list(α0) ∗S n · data �→ α2. In turn, this

inclusion follows from rule (�unfold).

Join/Widening Operators. In the following, we define abstract operators widH,
widR that respectively operate over abstract states and abstract state relations,
and compute an over-approximation for concrete unions. They also ensure ter-
mination and serve as widening. The algorithm to compute these two functions
heavily relies on the inclusion checking that was discussed in the previous para-
graph. Indeed, the widening functions compute results that are more approxi-
mate than their arguments. To achieve this, they search for syntactic patterns
in their arguments and produce outputs that inclusion checking proves more
general. This process is performed region by region on both arguments of the
widening, as formalized in [5, Fig. 7]. We discuss in the following a list of such
widening rules:

224 H. Illous et al.

– when both arguments of widening are equal to a same base predicate, widening
is trivial, and returns the same base predicate, thus for instance:

widH(n · f �→ α,n · f �→ α) = n · f �→ α

widH(list(α), list(α)) = list(α)

– when applied to two abstract relations that consist of the same connective, the
widening functions simply calls themselves recursively on the sub-components:

widR(Id(h�
0), Id(h

�
1)) = Id(widH(h�

0,h
�
1))

widR([h�
i,0 ��� h�

o,0], [h
�
i,1 ��� h�

o,1]) = [widH(h�
i,0,h

�
i,1) ��� widH(h�

o,0,h
�
o,1)]

widR(r�
0,0 ∗R r�

0,1, r
�
1,0 ∗R r�

1,1) = widR(r�
0,0, r

�
1,0) ∗R widR(r�

0,1, r
�
1,1)

– when applied to an Id(·) predicate and another abstract relation, widening
first tries to maintain the Id(·) predicate, and, if this fails, tries to weaken it
into an [· ��� ·] predicate:

if isleH(h�
0,h

�) = true then,

widR(Id(h�
0), r

�) =
{
Id(h�) if isleR(r�, Id(h�)) = true
[h� ��� h�] otherwise, if isleR(r�, [h� ��� h�]) = true

– when applied to an [· ��� ·] predicate, the widening tries to weaken the other
argument accordingly:

if isleH(h�
i,0,h

�
i) = true and isleH(h�

o,0,h
�
o) = true

and isleR(r�, [h�
i ��� h�

o]) = true then,
widR([h�

i,0 ��� h�
o,0], r

�) = [h�
i ��� h�

o]

Each of these operations is sound, and the results computed by widening are
also sound:

Theorem 3 (Soundness of widening). If h�
0,h

�
1 ∈ H and r�

0, r
�
1 ∈ R then:

γH(h�
0) ∪ γH(h�

1) ⊆ γH(widH(h�
0,h

�
1)) γR(r�

0) ∪ γR(r�
1) ⊆ γR(widR(r�

0, r
�
1))

Furthermore, termination of widening follows from an argument similar to [5].

Example 6 (Widening). We consider the analysis of the program of Fig. 1, and
more specifically, the widening after the first abstract iteration over the loop:

widR(Id(&l �→ α ∗S list(α) ∗S &v �→ β) ∗R [emp ��� &c �→ α],
Id(&l �→ α ∗S α · data �→ αd ∗S α · next �→ αn ∗S list(αn) ∗S &v �→ β)

∗R [emp ��� &c �→ αn])
= Id(&l �→ α ∗S listseg(α, α′) ∗S list(α′) ∗S &v �→ β) ∗R [emp ��� &c �→ α′]

This abstract widening performs some generalization and introduces a list seg-
ment inductive predicate, that over-approximates an empty segment in the left
argument, and a segment of length one. It also involves some renaming of sym-
bolic nodes (as observed in the previous paragraph, the concretization of an
abstract states is unchanged under symbolic nodes renaming).

A Relational Shape Abstract Domain 225

5.4 Analysis

The abstract semantics [[.]]�R relies on the abstract operations defined in Sect. 5.1,
on the unfolding of Sect. 5.2 to analyze basic statements, and on the folding
operations defined in Sect. 5.3 to cope with control flow joins and loop invariants
computation. Soundness follows from the soundness of the basic operations.

Theorem 4 (Soundness). The analysis is sound in the sense that, for all pro-
gram P and for all abstract state relation ρ�:

∀(σ0, σ1) ∈ γΠ(ρ�), ∀σ2 ∈ M, (σ1, σ2) ∈ [[P]]R =⇒ (σ0, σ2) ∈ γΠ([[P]]�R(ρ�))

6 Experimental Evaluation

In this section, we report on the implementation of our analysis and try to
evaluate:

1. whether it can prove precise and useful relational properties, and
2. how it compares with a more classical reachability shape analysis.

Our implementation supports built-in inductive predicates to describe singly
linked lists and binary trees. It provides both the analysis described in this paper,
and a basic reachability shape analysis in the style of [5], and supporting the same
inductive predicates. It was implemented as a Frama-C [19] plugin consisting of
roughly 7800 lines of OCaml. We have ran both the reachability shape analysis
and relational shape analysis on series of small programs manipulating lists and
trees listed in Table 1. These tests are selected to test specifically the relational
domain (and not a full analysis). This allows us to not only assess the results of
the analysis computing abstract state relations, but also to compare them with
an analysis that infers abstract states.

First, we discuss whether the analysis computing abstract state relations
computes the expected relations, that describes the most precisely the transfor-
mation implemented by the analyzed function. As an example, in the case of
an insertion at the head of a list, we expect the abstract relation below, that
expresses that the body of the list was not modified:

[&l �→ α ��� &l �→ β] ∗R [emp ��� β · next �→ α ∗S β · data �→ δ] ∗R Id(list(α))

We observe that the state relation computed in all test cases except the list
reverse and map are the most precise. For example, with the function map that
traverses a list and modifies only its data fields, the relation obtained is:

Id(&l �→ α) ∗R [(listseg(α, β)) ��� (listseg(α, β))]

This relation shows that both input and output lists start at the address α and
end at the address β. This is not enough to prove that the lists contain the same
addresses linked in the same order.

226 H. Illous et al.

Table 1. Experiment results (sll: singly linked lists; tree: binary trees; time in mil-
liseconds averaged over 1000 runs on a laptop with Intel Core i7 running at 2.3GHz,
with 16GB RAM, for the reachability and relational analyses; the last column states
whether the relational shape analysis computed the expected abstract relation)

Structure Function Time (in ms) Loop
iterations

Relational
property

Reach Relat.

sll allocation 0.53 1.27 2 Yes

sll deallocation 0.34 0.99 2 Yes

sll traversal 0.53 0.83 2 Yes

sll insertion (head) 0.32 0.33 0 Yes

sll insertion (random pos) 1.98 2.75 2 Yes

sll insertion (random) 2.33 3.94 2 Yes

sll reverse 0.52 2.36 2 Partial

sll map 0.66 1.17 2 Partial

tree allocation 0.94 2.21 2 Yes

tree search 1.06 1.76 2 Yes

Second, we compare the runtime of the relational analysis and of the reach-
ability analysis. We observe that the slow-down is at most 4× (reverse), and is
about 2× in most cases. An exception is the list head insertion, which incurs no
slowdown. This is due to the fact this analysis does not require computing an
abstract join. While these test cases are not large, these results show that the
analysis computing abstract state relations has a reasonable overhead compared
to a classical analysis, yet it computes stronger properties. Furthermore, it would
be more adapted to a modular interprocedural analysis.

7 Related Works

Our analysis computes an abstraction of the relational semantics of programs so
as to capture the effect of a function or other blocks of code using an element
of some specifically designed abstract domain. This technique has been applied
to other abstractions in the past, and often applied to design modular static
analyses [10], where program components can be analyzed once and separately.
For numerical domains, it simply requires duplicating each variable into two
instances respectively describing the old and the new value, and using a rela-
tional domain to the inputs and outputs. For instance, [22] implements this idea
using convex polyhedra and so as to infer abstract state relations for numerical
programs. It has also been applied to shape analyses based on Three Valued
Logic [24] in [17]. This work is probably the closest to ours, but it relies on a
very different abstraction using a TVLA whereas we use a set of abstract pred-
icates based on separation logic. It uses the same variable duplication trick as

A Relational Shape Abstract Domain 227

mentioned above. Our analysis also has a notion of overlaid old/new predicates,
but these are described heap regions, inside separation logic formulas. Desyn-
chronized separation [11] also introduces a notion of overlaid state in separation
logic, but does not support inductive predicates as our analysis does. Instead, it
allows to reason on abstractions of JavaScript open objects seen as dictionaries.
Also, [13,14] can express relations between heaps in different states using tempo-
ral logic extensions and automatas. In the context of functional languages, [18]
allows to write down relations between function inputs and outputs, and relies
on a solver to verify that constraints hold and [25] computes shape specifications
by learning. Modular analyses that compute invariants by separate analysis of
program components [4,6,12] use various sorts of abstractions for the behavior of
program components. A common pattern is to use tables of couples made of an
abstract pre-condition and a corresponding abstract post-condition, effectively
defining a sort of cardinal power abstraction [9]. This technique has been used
in several shape analyses based on separation logic [2,3,16,20]. We believe this
tabular approach could benefit from abstractions of relations such as ours to
infer stronger properties, and more concise summaries.

8 Conclusion

In this paper, we have introduced a set of logical connectives inspired by separa-
tion logic, to describe state relations rather than states. We have built upon this
logic an abstract domain, and a static analysis based on abstract interpretation
that computes conservative state relations. Experiments prove it effective for the
analysis of basic data structure library functions.

Acknowledgements. We thank Arlen Cox for fruitful discussions, and Francois
Berenger, Huisong Li, Jiangchao Liu and the anonymous reviewers for their comments
on an earlier version of this paper. This work has received funding from the European
Research Council under the EU’s seventh framework programme (FP7/2007-2013),
grant agreement 278673, Project MemCAD, and from Bpifrance, grant agreement
P3423-189738, FUI Project P-RC2.

References

1. Baudin, P., Filliâtre, J.-C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI C specification language (2008)

2. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Footprint analysis: a
shape analysis that discovers preconditions. In: Nielson, H.R., Filé, G. (eds.) SAS
2007. LNCS, vol. 4634, pp. 402–418. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74061-2 25

3. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Symposium on Principles of Programming Languages
(POPL), pp. 289–300. ACM (2009)

http://dx.doi.org/10.1007/978-3-540-74061-2_25
http://dx.doi.org/10.1007/978-3-540-74061-2_25

228 H. Illous et al.

4. Castelnuovo, G., Naik, M., Rinetzky, N., Sagiv, M., Yang, H.: Modularity in lat-
tices: a case study on the correspondence between top-down and bottom-up analy-
sis. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 252–274.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48288-9 15

5. Chang, B.-Y.E., Rival, X.: Relational inductive shape analysis. In: Symposium on
Principles of Programming Languages (POPL), pp. 247–260. ACM (2008)

6. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: Sympo-
sium on Principles of Programming Languages (POPL), pp. 133–146. ACM (1999)

7. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Symposium on Principles of Programming Languages (POPL),
pp. 84–97. ACM (1978)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Symposium
on Principles of Programming Languages (POPL) (1977)

9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
Symposium on Principles of Programming Languages (POPL). ACM (1979)

10. Cousot, P., Cousot, R.: Modular static program analysis. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 159–179. Springer, Heidelberg (2002). doi:10.1007/
3-540-45937-5 13

11. Cox, A., Chang, B.-Y.E., Rival, X.: Desynchronized multi-state abstractions for
open programs in dynamic languages. In: Vitek, J. (ed.) ESOP 2015. LNCS, vol.
9032, pp. 483–509. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46669-8 20

12. Dillig, I., Dillig, T., Aiken, A., Sagiv, M.: Precise and compact modular proce-
dure summaries for heap manipulating programs. In: Conference on Programming
Language Design and Implementation (PLDI), pp. 567–577. ACM (2011)

13. Distefano, D., Katoen, J.-P., Rensink, A.: Who is pointing when to whom? In:
Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 250–262.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 21

14. Distefano, D., Katoen, J.-P., Rensink, A.: Safety and liveness in concurrent pointer
programs. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever, W.-P. (eds.) FMCO
2005. LNCS, vol. 4111, pp. 280–312. Springer, Heidelberg (2006). doi:10.1007/
11804192 14

15. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation
logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
287–302. Springer, Heidelberg (2006). doi:10.1007/11691372 19

16. Gulavani, B.S., Chakraborty, S., Ramalingam, G., Nori, A.V.: Bottom-up shape
analysis. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 188–204.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-03237-0 14

17. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interpro-
cedural shape analysis. ACM Trans. Program. Lang. Syst. (TOPLAS) 32(2), 5
(2010)

18. Kaki, G., Jagannathan, S.: A relational framework for higher-order shape analysis.
In: International Colloquium on Function Programming, pp. 311–324. ACM (2014)

19. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Form. Asp. Comput. 27(3), 573–609 (2015)

20. Le, Q.L., Gherghina, C., Qin, S., Chin, W.-N.: Shape analysis via second-order bi-
abduction. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 52–68.
Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 4

21. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a java modeling language. In: Formal
Underpinnings of Java Workshop (at OOPSLA 1998), pp. 404–420 (1998)

http://dx.doi.org/10.1007/978-3-662-48288-9_15
http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/3-540-45937-5_13
http://dx.doi.org/10.1007/978-3-662-46669-8_20
http://dx.doi.org/10.1007/978-3-540-30538-5_21
http://dx.doi.org/10.1007/11804192_14
http://dx.doi.org/10.1007/11804192_14
http://dx.doi.org/10.1007/11691372_19
http://dx.doi.org/10.1007/978-3-642-03237-0_14
http://dx.doi.org/10.1007/978-3-319-08867-9_4

A Relational Shape Abstract Domain 229

22. Popeea, C., Chin, W.-N.: Inferring disjunctive postconditions. In: Okada, M.,
Satoh, I. (eds.) ASIAN 2006. LNCS, vol. 4435, pp. 331–345. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-77505-8 26

23. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Sym-
posium on Logics in Computer Science (LICS), pp. 55–74. IEEE (2002)

24. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. (TOPLAS) 24(3), 217–298 (2002)

25. Zhu, H., Petri, G., Jagannathan, S.: Automatically learning shape specifications.
In: Conference on Programming Language Design and Implementation (PLDI),
pp. 491–507. ACM (2016)

http://dx.doi.org/10.1007/978-3-540-77505-8_26

Floating-Point Format Inference
in Mixed-Precision

Matthieu Martel(B)

Laboratoire de Mathématiques et Physique (LAMPS),
Université de Perpignan Via Domitia, Perpignan, France

matthieu.martel@univ-perp.fr

Abstract. We address the problem of determining the minimal preci-
sion on the inputs and on the intermediary results of a program contain-
ing floating-point computations in order to ensure a desired accuracy on
the outputs. The first originality of our approach is to combine forward
and backward static analyses, done by abstract interpretation. The back-
ward analysis computes the minimal precision needed for the inputs and
intermediary values in order to have a desired accuracy on the results,
specified by the user. The second originality is to express our analysis
as a set of constraints made of first order predicates and affine integer
relations only, even if the analyzed programs contain non-linear com-
putations. These constraints can be easily checked by an SMT Solver.
The information collected by our analysis may help to optimize the for-
mats used to represent the values stored in the floating-point variables
of programs. Experimental results are presented.

1 Introduction

Issues related to numerical accuracy are almost as old as computer science. An
important step towards the design of more reliable numerical software was the
definition, in the 1980’s, of the IEEE754 Standard for floating-point arithmetic
[2]. Since then, work has been carried out to determine the accuracy of floating-
point computations by dynamic [3,17,29] or static [11,13,14] methods. This work
has also been motivated by a few disasters due to numerical bugs [1,15].

While existing approaches may differ strongly each other in their way of
determining accuracy, they have a common objective: to compute approxima-
tions of the errors on the outputs of a program depending on the initial errors on
the data and on the roundoff of the arithmetic operations performed during the
execution. The present work focuses on a slightly different problem concerning
the relations between precision and accuracy. Here, the term precision refers to
the number of bits used to represent a value, i.e. its format, while the term accu-
racy is a bound on the absolute error |x − x̂| between the represented x̂ value
and the exact value x that we would have in the exact arithmetic.

We address the problem of determining the minimal precision on the inputs
and on the intermediary results of a program performing floating-point computa-
tions in order to ensure a desired accuracy on the outputs. This allows compilers
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 230–246, 2017.
DOI: 10.1007/978-3-319-57288-8 16

Floating-Point Format Inference in Mixed-Precision 231

to select the most appropriate formats (for example IEEE754 half, single, dou-
ble or quad formats [2,23]) for each variable. It is then possible to save memory,
reduce CPU usage and use less bandwidth for communications whenever distrib-
uted applications are concerned. So, the choice of the best floating-point formats
is an important compile-time optimization in many contexts. Our approach is
also easily generalizable to the fixed-point arithmetic for which it is important
to determine data formats, for example in FPGAs [12,19].

The first originality of our approach is to combine a forward and a backward
static analysis, done by abstract interpretation [8,9]. The forward analysis is
classical. It propagates safely the errors on the inputs and on the results of the
intermediary operations in order to determine the accuracy of the results. Next,
based on the results of the forward analysis and on assertions indicating which
accuracy the user wants for the outputs at some control points, the backward
analysis computes the minimal precision needed for the inputs and intermediary
results in order to satisfy the assertions. Not surprisingly, the forward and back-
ward analyses can be applied repeatedly and alternatively in order to refine the
results until a fixed-point is reached.

The second originality of our approach is to express the forward and backward
transfer functions as a set of constraints made of propositional logic formulas and
relations between affine expressions over integers (and only integers). Indeed,
these relations remain linear even if the analyzed program contains non-linear
computations. As a consequence, these constraints can be easily checked by a
SMT solver (we use Z3 in practice [4,21]). The advantage of the solver appears
in the backward analysis, when one wants to determine the precision of the
operands of some binary operation between two operands a and b, in order to
obtain a certain accuracy on the result. In general, it is possible to use a more
precise a with a less precise b or, conversely, to use a more precise b with a less
precise a. Because this choice arises at almost any operation, there is a huge
number of combinations on the admissible formats of all the data in order to
ensure a given accuracy on the results. Instead of using an ad-hoc heuristic, we
encode our problem as a set of constraints and we let a well-known, optimized
solver generate a solution.

This article is organized as follows. We briefly introduce some elements of
floating-point arithmetic, a motivating example and related work in Sect. 2. Our
abstract domain as well as the forward and backward transfer functions are intro-
duced in Sect. 3. The constraint generation is presented in Sect. 4 and experi-
mental results are given in Sect. 5. Finally, Sect. 6 concludes.

2 Preliminary Elements

In this section we introduce some preliminary notions helpful to understand
the rest of the article. Elements of floating-point arithmetic are introduced in
Sect. 2.1. Further, an illustration of what our method does is given in Sect. 2.2.
Related work is discussed in Sect. 2.3.

232 M. Martel

2.1 Elements of Floating-Point Arithmetic

We introduce here some elements of floating-point arithmetic [2,23]. First of all,
a floating-point number x in base β is defined by

x = s · (d0.d1 . . . dp−1) · βe = s · m · βe−p+1 (1)

where s ∈ {−1, 1} is the sign, m = d0d1 . . . dp−1 is the significand, 0 ≤ di < β,
0 ≤ i ≤ p − 1, p is the precision and e is the exponent, emin ≤ e ≤ emax.

A floating-point number x is normalized whenever d0 �= 0. Normalization
avoids multiple representations of the same number. The IEEE754 Standard also
defines denormalized numbers which are floating-point numbers with d0 = d1 =
. . . = dk = 0, k < p − 1 and e = emin. Denormalized numbers make underflow
gradual [23]. The IEEE754 Standard defines binary formats (with β = 2) and
decimal formats (with β = 10). In this article, without loss of generality, we
only consider normalized numbers and we always assume that β = 2 (which
is the most common case in practice). The IEEE754 Standard also specifies a
few values for p, emin and emax which are summarized in Fig. 1. Finally, special
values also are defined: nan (Not a Number) resulting from an invalid operation,
±∞ corresponding to overflows, and +0 and −0 (signed zeros).

Format Name p e bits emin emax

Binary16 Half precision 11 5 −14 +15
Binary32 Single precision 24 8 −126 +127
Binary64 Double precision 53 11 −1122 +1223
Binary128 Quadruple precision 113 15 −16382 +16383

Fig. 1. Basic binary IEEE754 formats.

The IEEE754 Standard also defines five rounding modes for elementary oper-
ations over floating-point numbers. These modes are towards −∞, towards +∞,
towards zero, to the nearest ties to even and to the nearest ties to away and
we write them ◦−∞, ◦+∞, ◦0, ◦∼e

and ◦∼a
, respectively. The semantics of the

elementary operations � ∈ {+, −, ×, ÷} is then defined by

f1 �◦ f2 = ◦(f1 � f2) (2)

where ◦ ∈ {◦−∞, ◦+∞, ◦0, ◦∼e
, ◦∼a

} denotes the rounding mode. Equation (2)
states that the result of a floating-point operation �◦ done with the rounding
mode ◦ returns what we would obtain by performing the exact operation � and
next rounding the result using ◦. The IEEE754 Standard also specifies how the
square root function must be rounded in a similar way to Eq. (2) but does not
specify the roundoff of other functions like sin, log, etc.

We introduce hereafter two functions which compute the unit in the f irst
place and the unit in the last place of a floating-point number. These functions

Floating-Point Format Inference in Mixed-Precision 233

are used further in this article to generate constraints encoding the way roundoff
errors are propagated throughout computations. The ufp of a number x is

ufp(x) = min
{
i ∈ N : 2i+1 > x

}
= �log2(x)�. (3)

The ulp of a floating-point number which significand has size p is defined by

ulp(x) = ufp(x) − p + 1. (4)

The ufp of a floating-point number corresponds to the binary exponent of its most
significant digit. Conversely, the ulp of a floating-point number corresponds to
the binary exponent of its least significant digit. Note that several definitions of
the ulp have been given [22].

2.2 Overview of Our Method

Let us consider the program of Fig. 2 which implements a simple linear filter. At
each iteration t of the loop, the output yt is computed as a function of the current
input xt and of the values xt−1 and yt−1 of the former iteration. Our program
contains several annotations. First, the statement require accuracy(yt, 10) on
the last line of the code informs the system that the programmer wants to
have 10 accurate binary digits on yt at this control point. In other words, let
yt = d0.d1 . . . dn · 2e for some n ≥ 10, the absolute error between the value v
that yt would have if all the computations where done with real numbers and
the floating-point value v̂ of yt is less than 2e−11 : |v − v̂| ≤ 2e−9.

Note that accuracy is not a property of a number but a number that states
how closely a particular floating-point number matches some ideal true value.

xt−1 :=[1.0 ,3.0]#16;
xt :=[1.0 ,3.0]#16;
yt−1 :=0.0;
while(c) {

u:=0.3 * yt−1;
v:=0.7 * (xt + xt−1);
yt:=u + v;
yt−1:=yt;

};
require_accuracy(yt ,10);

x
|9|
t−1 :=[1.0 ,3.0]

|9|; x
|9|
t :=[1.0 ,3.0]|9|;

y
|10|
t−1 :=0.0

|10|;
while(c) {

u|10| :=0.3|10| *|10| y
|10|
t−1;

v|10| :=0.7|11| *|10| (x
|9|
t +|10| x

|9|
t−1);

y
|10|
t :=u|10| +|10| v|10|;

y
|10|
t−1:=y

|10|
t ; };

require_accuracy(yt ,10);

x
|16|
t−1 :=[1.0 ,3.0]

|16|;

x
|16|
t :=[1.0 ,3.0]|16|;

y
|52|
t−1 :=0.0

|52|;

u|52| :=0.3|52| *|52| y
|52|
t−1;

v|15| :=0.7|52| *|15| (x
|16|
t +|16| x

|16|
t−1);

y
|15|
t :=u|52| +|15| v|15|;

y
|15|
t−1:=y

|15|
t ;

x
|9|
t−1 :=[1.0 ,3.0]

|9|; x
|9|
t :=[1.0 ,3.0]|9|;

y
|8|
t−1 :=0.0

|8|;

u|10| :=0.3|8| *|10| y
|8|
t−1;

v|10| :=0.7|11| *|10| (x
|9|
t +|10| x

|9|
t−1);

y
|10|
t :=u|10| +|10| v|10|;

y
|10|
t−1:=y

|10|
t ;

require_accuracy(yt ,10);

Fig. 2. Top left: initial program. Top right: annotations after analysis. Bottom left:
forward analysis (one iteration). Bottom right: backward analysis (one iteration).

234 M. Martel

Fig. 3. Example of forward addition: 3.0#16+ 1.0#16= 4.0#17.

For example, using the basis β = 10 for the sake of simplicity, the floating-point
value 3.149 represents π with an accuracy of 3. It itself has a precision of 4. It
represents the real number 3.14903 with an accuracy of 4.

An abstract value [a, b]p represents the set of floating-point values with p
accurate bits ranging from a to b. For example, in the code of Fig. 2, the vari-
ables xt−1 and xt are initialized to the abstract value [1.0, 3.0]16 thanks to the
annotation [1.0,3.0]#16. Let Fp be the of set of all floating-point numbers with
accuracy p. This means that, compared to exact value v computed in infinite
precision, the value v̂ = d0.d1 . . . dn · 2e of Fp is such that |v − v̂| ≤ 2e−p+1.
By definition, using the function ufp introduced in Eq. (3), for any x ∈ Fp the
roundoff error ε(x) on x is bounded by ε(x) < 2ulp(x) = 2ufp(x)−p+1. Concerning
the abstract values, intuitively we have the concretization function

γ([a, b]p) = {x ∈ Fp : a ≤ x ≤ b}. (5)

These abstract values are special cases of the values used in other work [18]
in the sense that, in the present framework, the errors attached to floating-point
numbers have form [−2u, 2u] for some integer u instead of arbitrary intervals with
real bounds. Restricting the form of the errors enables one to simplify drastically
the transfer functions for the backward analysis and the generation of constraints
in Sect. 4. In this article, we focus on the accuracy of computations and we omit
other problems related to runtime-errors [3,5]. In particular, overflows are not
considered and we assume that any number with p accurate digits belongs to Fp.
In practice, a static analysis computing the ranges of the variables and rejecting
programs which possibly contain overflows is done before our analysis.

In our example, xt and xt−1 belong to [1.0, 3.0]16 which means, by definition,
that these variables have a value v̂ ranging in [1.0, 3.0] and such that the error
between v̂ and the value v that we would have in the exact arithmetic is bounded
by 2ufp(x)−15. Typically, in this example, this information would come from the
specification of the sensor related to x. By default, the values for which no
accuracy annotation is given (for instance the value of yt−1 in the example
of Fig. 2) are considered as exact numbers rounded to the nearest in double
precision. In this format numbers have 53 bits of significand (see Fig. 1). The
last bit being rounded, these numbers have 52 accurate bits in our terminology

Floating-Point Format Inference in Mixed-Precision 235

and, consequently, by default values belong to F52 in our framework. Based on
the accuracy of the inputs, our forward analysis computes the accuracy of all the
other variables and expressions. The program in the left bottom corner of Fig. 2
displays the result of the forward analysis on the first iteration of the loop. Let

→⊕
denote the forward addition (all the operations used in the current example are
formally defined in Sect. 3). For example, the result of xt + xt−1 has 16 accurate
digits since

→⊕(1.0#16, 1.0#16) = 2.0#16,
→⊕(1.0#16, 3.0#16) = 4.0#17,

→⊕(3.0#16, 1.0#16) = 4.0#17,
→⊕(3.0#16, 3.0#16) = 6.0#16.

This is illustrated in Fig. 3 where we consider the addition of these values

at the bit level. For the result of the addition
→
� between intervals, we take the

most pessimistic accuracy:
→
�([1.0,3.0]#16,[1.0,3.0]#16) = [2.0,6.0]#16.

The backward analysis is performed after the forward analysis and takes
advantage of the accuracy requirement at the end of the code (see the right
bottom corner of Fig. 2 for an unfolding of the backward analysis on the first
iteration of the loop). Since, in our example, 10 bits only are required for yt,
the result of the addition u+v also needs 10 accurate bits only. By combining
this information with the result of the forward analysis, it is then possible to
lower the number of bits needed for one of the operands. Let

←⊕ be the backward
addition. For example, for xt+xt−1 in the assignment of v, we have:

←⊕(2.0#10, 1.0#16) = 1.0#8,
←⊕(2.0#10, 3.0#16) = -1.0#8,

←⊕(6.0#10, 1.0#16) = 5.0#9,
←⊕(6.0#10, 3.0#16) = 3.0#8.

Conversely to the forward function, the interval function now keeps the
largest accuracy arising in the computation of the bounds:

←
�([2.0,6.0]#10,[1.0,3.0]#16) = [1.0,3.0]#9.

volatile half xt−1, xt;
half u, v, yt;
float yt−1, tmp;
yt−1 :=0.0;
while(c) {

u:=0.3 * yt−1;
tmp:=xt + xt−1;
v:=0.7 * tmp;
yt:=u + v;
yt−1:=yt;

};

Fig. 4. Final program with
generated data types for the
example of Fig. 2.

By processing similarly on all the elementary
operations and after computation of the loop fixed
point, we obtain the final result of the analysis dis-
played in the top right corner of Fig. 2. This infor-
mation may be used to determine the most appro-
priate data type for each variable and operation, as
shown in Fig. 4. To obtain this result we generate a
set of constraints corresponding to the forward and
backward transfer functions for the operations of
the program. There exists several ways to handle
a backward operation: when the accuracy on the
inputs x and y computed by the forward analy-
sis is too large wrt. the desired accuracy on the
result, one may lower the accuracy of either x or
y or both.

236 M. Martel

Since this question arises at each binary operation, we would face to a huge
number of combinations if we decided to enumerate all possibilities. Instead,
we generate a disjunction of constraints corresponding to the minimization of
the accuracy of each operand and we let the solver search for a solution. The
control flow of the program is also encoded with constraints. For a sequence
of statements, we relate the accuracy of the former statements to the accuracy
of the latter ones. Each variable x has three parameters: its forward, backward
and final accuracy, denoted accF (x), accB(x) and acc(x) respectively. We must
always have

0 ≤ accB(x) ≤ acc(x) ≤ accF (x). (6)

For the forward analysis, the accuracy of some variable may decrease when
passing to the next statement (we may only weaken the pre-conditions). Con-
versely, in the backward analysis, the accuracy of a given variable may increase
when we jump to a former statement in the control graph (the post-conditions
may only be strengthened). For a loop, we relate the accuracy of the variables
at the beginning and at the end of the body, in a standard way.

The key point of our technique is to generate simple constraints made of
propositional logic formulas and of affine expressions among integers (even if the
floating-point computations in the source code are non-linear). A static analysis
computing safe ranges at each control point is performed before our accuracy
analysis. Then the constraints depend on two kinds of integer parameters: the ufp
of the values and their accuracies accF , accB and acc. For instance, given control
points �1, �2 and �3, the set C of constraints generated for 3.0#16�1 +�3 1.0#16�2 ,
assuming that we require 10 accurate bits for the result are:

C =

⎧
⎨

⎩

accF (�1) = 16, accF (�2) = 16, r�3 = 2 − max(accF (�1) − 1, accF (�2)),

(1 − accF (�1)) = accF (�2) ⇒ i�3 = 1, (1 − accF (�1)) 	= accF (�2) ⇒ i�3 = 0,

accF (�3) = r�3 − i�3 , accB(�3) = 10
accB(�1) = 1 − (2 − accB(�3)), accB(�2) = 1 − (2 − accB(�3))

⎫
⎬

⎭
.

For the sake of conciseness, the constraints corresponding to Eq. (6) have been
omitted in C. For example, for the forward addition, the accuracy accF (�3) of
the result is the number of bits between ufp(3.0 + 1.0) = 2 and the ufp u of the
error which is

u = max
(
ufp(3.0) − accF (�1), ufp(1.0) − accF (�2)

)
+ i

= max
(
1 − accF (�1), 0 − accF (�2)

)
+ i,

where i = 0 or i = 1 depending on some condition detailed later. The constraints
generated for each kind of expression and command are detailed in Sect. 4.

2.3 Related Work

Several approaches have been proposed to determine the best floating-point for-
mats as a function of the expected accuracy on the results. Darulova and Kuncak
use a forward static analysis to compute the propagation of errors [11]. If the

Floating-Point Format Inference in Mixed-Precision 237

computed bound on the accuracy satisfies the post-conditions then the analysis
is run again with a smaller format until the best format is found. Note that
in this approach, all the values have the same format (contrarily to our frame-
work where each control-point has its own format). While Darulova and Kuncak
develop their own static analysis, other static techniques [13,29] could be used
to infer from the forward error propagation the suitable formats. Chiang et al.
[7] have proposed a method to allocate a precision to the terms of an arithmetic
expression (only). They use a formal analysis via Symbolic Taylor Expansions
and error analysis based on interval functions. In spite of our linear constraints,
they solve a quadratically constrained quadratic program to obtain annotations.

Other approaches rely on dynamic analysis. For instance, the Precimonious
tool tries to decrease the precision of variables and checks whether the accuracy
requirements are still fulfilled [24,27]. Lam et al. instrument binary codes in
order to modify their precision without modifying the source codes [16]. They
also propose a dynamic search method to identify the pieces of code where the
precision should be modified. Finally, another related research axis concerns the
compile-time optimization of programs in order to improve the accuracy of the
floating-point computation in function of given ranges for the inputs, without
modifying the formats of the numbers [10,26].

3 Abstract Semantics

In this section, we give a formal definition of the abstract domain and transfer
functions presented informally in Sect. 2. The domain is defined in Sect. 3.1 and
the transfer functions are given in Sect. 3.2.

3.1 Abstract Domain

Let Fp be the set floating-point numbers with accuracy p (we assume that the
error between x ∈ Fp and the value that we would have in the exact arithmetic
is less than 2ufp(x)−p+1) and let Ip be the set of all intervals of floating-point
numbers with accuracy p. As mentioned in Sect. 2.2, we assume that no overflow
arises during our analysis and we omit to specify the lower and upper bounds of
Fp. An element i� ∈ Ip, denoted i� = [f, f]p, is then defined by two floating-point
numbers and an accuracy p. We have

Ip 	 [f, f]p = {f ∈ Fp : f ≤ f ≤ f} and I =
⋃

p∈N

Ip. (7)

Our abstract domain is the complete lattice D� = 〈I,�,�,
,⊥I,�I〉 where ele-
ments are ordered by [a, b]p � [c, d]q ⇐⇒ [a, b] ⊆ [c, d] and q ≤ p. In other words,
[a, b]p is more precise than [c, d]q if it is an included interval with a greater accu-
racy. Let ◦r,m(x) denote the rounding of x at precision r using the rounding
mode m. Then the join and meet operators are defined by

238 M. Martel

[a, b]p
 [c, d]q = [◦r,−∞(u), ◦r,+∞(v)]r with r = min(p, q), [u, v] = [a, b] ∪ [c, d] (8)

and
[a, b]p � [c, d]q = [u, v]r with r = max(p, q), [u, v] = [a, b] ∩ [c, d]. (9)

In addition, we have ⊥I = ∅+∞ and �I = [−∞,+∞]0 and we have [a, b]p

[c, d]q = ⊥I whenever [a, b] ∩ [c, d] = ∅. Let α : ℘(F) → I be the abstraction
function which maps a set of floating-point numbers X with different accuracies
pi, 1 ≤ i ≤ n to a value of I. Let xmin = min(X), xmax = max(X) and
p = min {q : x ∈ X and x ∈ Fq} the minimal accuracy in X. We have,

α(X) = [◦p,−∞
(
min(X)

)
, ◦p,+∞

(
max(X)

)
]p where p = min {q : X∩Fq �= ∅}. (10)

Let γ : I → ℘(F) and i� = [a, b]p. The concretization function γ(i�) is defined as:

γ(i�) =
⋃

q≥p

{x ∈ Fq : a ≤ x ≤ b}. (11)

Using the functions α and γ of Eqs. (10) and (11), we define the Galois connection
〈℘(F),⊆,∪,∩, ∅,F〉 −−−→←−−−

α

γ 〈I,�,�,
,⊥I,�I〉 [8].

3.2 Transfer Functions

In this section, we introduce the forward and backward transfer functions for
the abstract domain D� of Sect. 3.1. These functions are defined using the unit
in the f irst place of a floating-point number introduced in Sect. 2.1. First, we
introduce the forward transfer functions corresponding to the addition

→⊕ and
product

→⊗ of two floating-point numbers x ∈ Fp and y ∈ Fq. The addition and
product are defined by

→⊕ (xp, yq) = (x + y)r where r = ufp(x + y) − ufp
(
ε(xp) + ε(yq)

)
, (12)

→⊗(xp, yq) = (x×y)r where r = ufp(x×y)−ufp
(
y ·ε(xp)+x·ε(yq)+ε(xp)·ε(yq)

)
. (13)

In Eqs. (12) and (13), x + y and x × y denote the exact sum and product of the
two values. In practice, this sum must be done with enough accuracy in order
to ensure that the result has accuracy r, for example by using more precision
than the accuracy of the inputs. The errors on the addition and product may
be bounded by e+ = ε(xp) + ε(yq) and e× = y · ε(xp) + x · ε(yq) + ε(xp) ·
ε(yq), respectively. Then the most significant bits of the errors have weights
ufp(e+) and ufp(e×) and the accuracies of the results are ufp(x+y)−ufp(e+) and
ufp(x × y) − ufp(e×), respectively.

We introduce now the backward transfer functions
←⊕ and

←⊗. We consider
the operation between xp and yq whose result is zr. Here, zr and yq are known
while xp is unknown. We have

←⊕(zr, yq) = (z − y)p where p = ufp(z − y) − ufp
(
ε(zr) − ε(yq)

)
, (18)

Floating-Point Format Inference in Mixed-Precision 239

←⊗(zr, yq) = (z ÷ y)p where p = ufp(z ÷ y) − ufp

(
y · ε(zr) − z · ε(yq)

y · (y + ε(yq))

)
. (19)

The correctness of the backward product relies on the following arguments.
Let ε(x), ε(y) and ε(z) be the exact errors on x, y and z respectively. We have
ε(z) = x · ε(y)+ y · ε(x)+ ε(x) · ε(y) and then ε(x) · (y + ε(y)) = ε(z)−x · ε(y) =

ε(z) − z
y · ε(y). Finally, we conclude that ε(x) =

y · ε(zr) − z · ε(yq)
y · (y + ε(yq))

.

We end this section by extending the operations to the values of the abstract
domain D� of Sect. 3.1. First, let p ∈ N, let m ∈ {−∞,+∞,∼e,∼a, 0} be a
rounding mode and let ◦p,m : F → Fp be the rounding function which returns the

roundoff of a number at precision p using the rounding mode m. We write
→
� and

←
� the forward and backward addition and

→
� and

←
� the forward and backward

products on D�. These functions are defined in Fig. 5. The forward functions
→
�

and
→
� take two operands [x, x]p and [y, y]q and return the resulting abstract

value [z, z]r. The backward functions take three arguments: the operands [x, x]p
and [y, y]q known from the forward pass and the result [z, z]r computed by the

backward pass [20]. Then
←
� and

←
� compute the backward value [x′, x′]p′ of

the first operand. The backward value of the second operand can be obtained by
inverting the operands [x, x]p and [y, y]q. An important point in these formulas is
that, in forward mode, the resulting intervals inherit from the minimal accuracy
computed for their bounds while, in backward mode, the maximal accuracy
computed for the bounds is assigned to the interval.

→
� [x, x]p, [y, y]q

)
= [◦r,−∞(z), ◦r,+∞(z)]r with

⎧⎨
⎩

zr1
=

→⊕(xp, y
q
),

zr2 =
→⊕(xp, yq), r = min(r1, r2).

(14)

→
� [x, x]p, [y, y]q

)
= [◦r,−∞(z), ◦r,+∞(z)]r with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ar1 =
→⊗(xp, y

q
), br2 =

→⊗(xp, yq),

cr3 =
→⊗(xp, y

q
), dr4 =

→⊗(xp, yq),

z = min(ar1 , br2 , cr3 , dr4),
z = max(ar1 , br2 , cr3 , dr4),
r = min (r1, r2, r3, r4).

(15)

←
� [x, x]p, [y, y]q, [, z]r

)
= [x

′
, x′]p′ with

⎧⎪⎨
⎪

ur1
=

←⊕(zr, yq), ur2 =
←⊕(zr, y

q
),

x′ = max(u, x), x′ = min(u, x),
p′ = max(r1, r2) .

(16)

←
� [x, x]p, [y, y]q, [z, z]r

)
= [x

′
, x′]p′ with

ar1 =
←⊗(zr, y

q
), br2 =

←⊗(zr, yq),

cr3 =
←⊗(zr, y

q
), dr4 =

←⊗(zr, yq),

u = min(ar1 , br2 , cr3 , dr4),
u = max(ar1 , br2 , cr3 , dr4),

x′ = max(u, x), x′ = min(u, x),
p′ = max (r1, r2, r3, r4).

(17)

Fig. 5. Forward and backward transfer functions for the addition and product on D�.

240 M. Martel

4 Constraint Generation

In this section, we introduce our system of constraints. The transfer functions of
Sect. 3 are not directly translated into constraints because the resulting system
would be too difficult to solve, containing non-linear constraints among non-
integer quantities. Instead, we reduce the problem to a system of constraints
made of linear relations between integer elements only. Sections 4.1 and 4.2 intro-
duce the constraints for arithmetic expressions and programs, respectively.

4.1 Constraints for Arithmetic Expressions

In this section, we introduce the constraints generated for arithmetic expressions.
As mentioned in Sect. 2, we assume that a range analysis is performed before
the accuracy analysis and that a bounding interval is given for each variable and
each value at any control point of the input programs.

Let us start with the forward operations. Let xp ∈ Fp and yq ∈ Fq and let

us consider the operation
→⊕(xp, yq) = zr. We know from Eq. (12) that r+ =

ufp(x + y) − ufp(ε+) with ε+ = ε(xp) + ε(yq). We need to over-approximate ε+
in order to ensure r+. Let a = ufp(x) and b = ufp(b). We have ε(x) < 2a−p+1

and ε(y) < 2b−p+1 and, consequently, ε+ < 2a−p+1 + 2b−p+1. We introduce the

function ι defined by ι(u, v) =
{

1 if u = v,
0 otherwise

. We have

ufp(ε+) < max(a − p + 1, b − q + 1) + ι(a − p, b − q)
≤ max(a − p, b − q) + ι(a − p, b − q)

and we conclude that

r+ = ufp(x + y) − max(a − p, b − q) − ι(a − p, b − q). (20)

Note that, since we assume that a range analysis has been performed before the
accuracy analysis, ufp(x + y), a and b are known at constraint generation time.
For the forward product, we know from Eq. (13) that r× = ufp(x × y) − ufp(ε×)
with ε× = x ·ε(yq)+y ·ε(xp)+ε(xp) ·ε(yq). Again, let a = ufp(x) and b = ufp(b).
We have, by definition of ufp, 2a ≤ x < 2a+1 and 2b ≤ y < 2b+1. Then ε×
may be bound by

ε× < 2a+1 · 2b−q+1 + 2b+1 · 2a−p+1 + 2a−p+1 · 2b−q+1

= 2a+b−q+2 + 2a+b−p+2 + 2a+b−p−q+2.

Since a + b − p − q + 2 < a + b − p + 2 and a + b − p − q + 2 < a + b − q + 2, we
may get rid of the last term of the former equation and we obtain that

ufp(ε×) < max(a + b − p + 2, a + b − q + 2) + ι(p, q)
≤ max(a + b − p + 1, a + b − q + 1) + ι(p, q).

Floating-Point Format Inference in Mixed-Precision 241

We conclude that

r× = ufp(x × y) − max(a + b − p + 1, a + b − q + 1) − ι(p, q). (21)

Note that, by reasoning on the exponents of the values, the constraints resulting
from a product become linear. We consider now the backward transfer functions.
If

←⊕(zr, yq) = xp+ then we know from Eq. (18) that p+ = ufp(z − y) − ufp(ε+)
with ε+ = ε(zr) − ε(y − q). Let c = ufp(z), we over-approximate ε+ using the
relations ε(zr) < 2c−r+1 and ε(yq) > 0. So, ufp(ε+) < c − r + 1 and

p+ = ufp(z − y) − c + r (22)

Finally, for the backward product, using Eq. (19) we know that if
←⊗(zr, yq) =

xp× then p× = ufp(x) − ufp(ε×) with ε× = y·ε(z)−z·ε(y)
y·(y+ε(y)) . Using the relations

2b ≤ y < 2b+1, 2c ≤ z < 2c+1, ε(y) < 2b−q+1 and ε(z) < 2c−r+1, we deduce that
y · ε(z)− z · ε(y) < 2b+c−r+2 − 2b+c−q+1 and that 1

y·(y+ε(y))
< 2−2b. Consequently,

ε× < 2−2b · (2b+c−r+2 − 2b+c−q+1) ≤ 2c−b−r+1 − 2c−b−q and it results that

p× = ufp(x) − max(c − b − r + 1, c − b − q). (23)

4.2 Systematic Constraint Generation

To explain the constraint generation, we use the simple imperative language of
Eq. (24) in which a unique label � ∈ Lab is attached to each expression and
command to identify without ambiguity each node of the syntactic tree.

e ::= c#p� | x� | e
�1
1 +� e

�2
2 | e

�1
1 −� e

�2
2 | e

�1
1 ×� e

�2
2

c ::= x:=�e�1 | c
�1
1 ; c

�2
2 | if� e�0 then c

�1
1 else c

�2
2

| while� e�0 do c
�1
1 | require accuracy(x,n)�

(24)

As in Sect. 2, c#p denotes a constant c with accuracy p and the statement
require accuracy(x,n)� indicates that x must have at least accuracy n at con-
trol point �. The set of identifiers occurring in the source program is denoted Id.
Concerning the arithmetic expressions, we assign to each label � of the expres-
sion three variables in our system of constraints, accF (�), accB(�) and acc(�)
respectively corresponding to the forward, backward and final accuracies and we
systematically generate the constraints 0 ≤ accB(�) ≤ acc(�) ≤ accF (�).

For each control point in an arithmetic expression, we assume given a range
[�, �] ⊆ F, computed by static analysis and which bounds the values possibly
occurring at Point � at run-time. Our constraints use the unit in the first place
ufp(�) and ufp(�) of these ranges. Let Λ : Id → Id×Lab be an environment which
relates each identifier x to its last assignment x�: Assuming that x :=�e�1 is the
last assignment of x, the environment Λ maps x to x� (we will use join operators
when control flow branches will be considered). Then E [e] Λ generates the set of
constraints for the expression e in the environment Λ. These constraints, defined
in Fig. 6, are derived from equations of Sect. 4.1. For commands, labels are used

242 M. Martel

E[c#p
�
]Λ = {accF (�) = p}

E[x
�
]Λ = {accF (�) = accF (Λ(x)), accB(�) = accB(Λ(x))}

E[e�1
1 +

�
e

�2
2]Λ = C[e

�1
1]Λ ∪ C[e

�2
2]Λ ∪ F+(�1, �2, �) ∪ O+(�1, �2, �)

E[e�1
1 ×�

e
�2
2]Λ = C[e

�1
1]Λ ∪ C[e

�2
2]Λ ∪ F×(�1, �2, �) ∪ O×(�1, �2, �)

O+(�1, �2, �) =

∣∣∣∣∣∣
B+(�1, �2, �) ∪ B+(�2, �1, �)
∪ acc(�1) ≤ accF (�1) ∧ acc(�2) ≥ accB(�2)

)
∨ acc(�2) ≤ accF (�2) ∧ acc(�1) ≥ accB(�1)

)}

O×(�1, �2, �) =

∣∣∣∣∣∣
B×(�1, �2, �) ∪ B×(�2, �1, �)
∪ acc(�1) ≤ accF (�1) ∧ acc(�2) ≥ accB(�2)

)
∨ acc(�2) ≤ accF (�2) ∧ acc(�1) ≥ accB(�1)

)}

F+(�1, �2, �) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r� = ufp(�) − max(�1 − accF (�1), �2 − accF (�2)),

r� = ufp(�) − max(�1 − accF (�1), �2 − accF (�2)),

i
�
= ufp(�1) − accF (�1) = ufp(�2) − accF (�2)

)
? 1 : 0,

i� = ufp(�1) − accF (�1) = ufp(�2) − accF (�2)
)
? 1 : 0,

accF (�) = min(r� − i�, r� − i�)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

B+(�1, �2, �) =

{
s�1 = ufp(�1) − (ufp(�) − accB(�)),

s�1 = ufp(�1) − (ufp(�) − accB(�)), accB(�1) = max(s�1 , s�1)

}

F×(�1, �2, �) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪

r�
1 = ufp(�1 × �2) − max

(
ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

r�
2 = ufp(�1 × �2) − max ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

r�
3 = ufp(�1 × �2) − max

(
ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

r�
4 = ufp(�1 × �2) − max

(
ufp(�1) + ufp(�2) − accF (�1), ufp(�1) + ufp(�2) − accF (�2)

)
,

i� = (accF (�1) = accF (�2))? 1 : 0, accF (�) = min
(

r�
1 − i�, r�

2 − i�, r�
3 − i�, r�

4 − i�
)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪

B×(�1, �2, �) =

s
�1
1 = ufp(�1) − max

(
ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

s
�1
2 = ufp(�1) − max ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

s
�1
3 = ufp(�1) − max

(
ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

s
�1
4 = ufp(�1) − max

(
ufp(�) − ufp(�2) + 1 − accB(�), ufp(�) − ufp(�2) − accF (�2)

)
,

accB(�1) = max(s
�1
1 , s

�1
2 , s

�1
3 , s

�1
4)

Fig. 6. Constraint generation for arithmetic expressions.

C[x :=� e�1] Λ = (C, Λ[x �→ x�])

where C =
(

E[e�1] Λ
)

∪
{
accF (x�) = accF (�1), accB(x�) = accB(�1)

}

C[c�1
1 ; c

�2
2] Λ = (C1 ∪ C2, Λ2) where (C1, Λ1) = C[c1] Λ, (C2, Λ2) = C[c2] Λ1

C[while�
e

�0 do c
�1] Λ = (C1 ∪ C2, Λ

′
) where

∣∣∣∣∣∣∣∣∣∣

(C1, Λ1) = C[c�1
1] Λ′, ∀x ∈ Id, Λ′(x) = x�,

C2 =
⋃

x∈Id

⎧⎪⎪⎨
⎪⎪⎩

accF (x�) ≤ accF (Λ(x)),

accF (x�) ≤ accF (Λ1(x)),

accB(x�) ≥ accB(Λ(x)),

accB(x�) ≥ accB(Λ1(x))

⎫⎪⎪⎬
⎪⎪⎭

C[if� e�0 then c�1 else c�2] Λ = (C1 ∪ C2 ∪ C3, Λ′)

where
(C1, Λ1) = C[c�1

1] Λ, (C2, Λ2) = C[c�1
1] Λ, ∀x ∈ Id, Λ′(x) = x�,

C3 =
⋃

x∈Id

accF (x�) = min accF (Λ1(x)), accF (Λ2(x))
)
,

accB(x�) = max accB(Λ1(x)), accB(Λ2(x))
)

C[require accuracy(x,n)
�
] Λ = accB(Λ(x)) = n

Fig. 7. Constraint generation for commands.

to distinguish many assignments of the same variable or to implement joins in
conditions and loops. Given a command c and an environment Λ, C[c] Λ returns
a pair (C,Λ′) made of a set C of constraints and of a new environment Λ′. C is

Floating-Point Format Inference in Mixed-Precision 243

defined by induction on the structure of commands in Fig. 7. These constraint
join values at control flow junctions and propagate the accuracies as described in
Sect. 2. In forward mode, accuracy decreases while in backward mode accuracy
increases (we weaken pre-conditions and strengthen post-conditions).

5 Experimental Results

In this section we present some experimental results obtained with our pro-
totype. Our tool generates the constraints defined in Sect. 4 and calls the
Z3 SMT solver [21] in order to obtain a solution. Since, when they exist,
solutions are not unique in general, we add an additional constraint related
to a cost function ϕ to the constraints of Figs. 6 and 7. The cost function
ϕ(c) of a program c computes the sum of all the accuracies of the variables
and intermediary values stored in the control points of the arithmetic expres-
sions, ϕ(c) =

∑
x∈Id, �∈Lab acc(x

�) +
∑

�∈Lab acc(�). Then, by binary search,
our tool searches the smallest integer P such that the system of constraints
(C[c] Λ⊥) ∪ {ϕ(c) ≤ P} admits a solution (we aim at using an optimizing solver
in future work [6,25,28]). In our implementation we assume that, in the worst
case, all the values are in double precision, consequently we start the binary
search with P ∈ [0, 52 × n] where n is the number of variables and intermediary
values stored in the control points. When a solution is found for some P , a new
iteration of the binary search is run with a smaller P . Otherwise, a new iteration
is run with a larger P .

We consider three sample codes displayed in Fig. 8. The first program com-

putes the determinant det(M) of a 3 × 3 matrix M =
(

a b c
d e f
g h i

)
. We have

det(M) = (a · e · i + d · h · c + g · b · f) − (g · e · c + a · h · f + d · b · i). The

matrix coefficients belong to the ranges
(

[−10.1, 10.1] [−10.1, 10.1] [−10.1, 10.1]
[−20.1, 20.1] [−20.1, 20.1] [−20.1, 20.1]
[−5.1, 5.1] [−5.1, 5.1] [−5.1, 5.1]

)
and

we require that the variable det containing the result has accuracy 10 which
corresponds to a fairly rounded half precision number. By default, we assume
that in the original program all the variables are in double precision. Our tool
infers that all the computations may be carried out in half precision.

The second example of Fig. 8 concerns the evaluation of a degree 9 polynomial
using Horner’s scheme: p(x) = a0 +

(
x × (

a1 + x × (a2 + . . .)
))

. The coefficients
ai, 0 ≤ i ≤ 9 belong to [−0.2, 0.2] and x ∈ [−0.5, 0.5]. Initially all the variables
are in double precision and we require that the result is fairly rounded in single
precision. Our tool then computes that all the variables may be in single precision
but p which must remain in double precision. Our last example is a proportional
differential controller. Initially the measure m is given by a sensor which sends
values in [−1.0, 1.0] and which ensures an accuracy of 32. All the other variables
are assumed to be in double precision. As shown in Fig. 8, many variables may
fit inside single precision formats.

For each program, we give in Fig. 9 the number of variables of the constraint
system as well as the number of constraints generated. Next, we give the total

244 M. Martel

a:=b:=c:=[-10.1 ,10.1];
d:=e:=f:=[-20.1 ,20.1];
g:=h:=i:=[-5.1 ,5.1];
det :=(a * e * i +
d * h * c + g * b * f)

- (g * e * c +
a * h * f + d * b * i);

require_accuracy
(det ,10);

a|5|:=b|5|:=c|6|:=[-10.1 ,10.1]|6|;
d|5|:=e|5|:=f|6|:=[-20.1 ,20.1]|6|;
g|5|:=h|5|:=i|6|:=[-5.1 ,5.1]|6|;
det|10|:=(a|5|*|6|e|5|*|8|i|6|+|9|

d|5|*|6|h|5|*|8|c|6|+|9|g|5|*|6|b|5|*|8|f|6|)
-|10|(g|5|*|6|e|5|*|8|c|6|+|9|

a|5|*|6|h|5|*|8|f|6|+|9|d|5|*|6|b|5|*|8|i|6|);
require_accuracy(det ,10);

half a,b,c,d,e;
half f,g,h,i,det;
//init a,b,c,d,e,
// f,g,h and i
det :=(a * e * i +

d * h * c +
g * b * f)

- (g * e * c +
a * h * f +
d * b * i);

a:=array
(10 ,[-0.2 ,0.2]#53);

x:=[0.0 ,0.5]#53;
p:=0.0; i:=0;
while(i<10) {

p:=p * x + a[i];
};
require_accuracy(p ,23);

a|23|:=array (10 ,[-0.2 ,0.2]|23|);
x|23| :=[0.0 ,0.5]|23|;
p|23| :=0.0|23|; i := 0;
while(i<10) {

p|24|:=p|23|*|23|x|23|+|24|a[i]|23|;
};
require_accuracy(p,23);

float a[10];
float x,tmp;
double p;
// init a and x
p:=0.0; i:=0;
while(i<10) {

tmp:=p * x;
p:=tmp + a[i];};

m:=[-1.0 ,1.0]#32;
kp :=0.194; kd :=0.028;
invdt :=10.0; c:=0.5;
e0 :=0.0;
while (true) {

e:=c - m;
p:=kp * e;
d:=kd*invdt*(e-e0);
r:=p + d;
e0:=e;

};
require_accuracy(r,23);

m|21|:=[-1.0 ,1.0]|21|;
kp|21| :=0.194|21|;kd|20| :=0.028|20|;
invdt|20| :=10.0|20|;
c|21| :=0.5|21|;e0|21| :=0.0|21|;
while (true) {

e|21|:=c|21|-|21|m|22|;
p|22|:=kp|21|*|22|e|21|;
d|23|:=kd|20|*|22| invdt|20|

*|23|(e|21|-|22|e0|21|);
r|23|:=p|22|+|23|d|23|;e0|21|:=e|21|;};

require_accuracy(r ,23);

volatile float m;
float kp ,kd,p,d,r;
float invdt ,c,e0;
double e,tmp;
kp :=0.194; kd :=0.028;
invdt :=10.0; c:=0.5;
e0:=0.0 ;
while (true) {

e:=c-m;p:=kp*e;
tmp:=e - e0;
d:=kd * invdt;
d:=d * tmp;
r:=p + d; e0:=e;};

Fig. 8. Examples of mixed-precision inference. Source programs, inferred accuracies
and formats. Top: 3×3 determinant. Middle: Horner’s scheme. Bottom: a PD controller.

Program #Var. #Constr. Time(s) #Bits-Init. #Bits-Optim. Z3-Calls
Linear filter 239 330 0.31 1534 252 12
Determinant 604 775 0.45 2912 475 14

Horner 129 179 0.18 884 346 11
PD Controller 388 530 0.49 2262 954 12

Fig. 9. Measures of efficiency of the analysis on the codes of Figs. 2 and 8.

execution time of the analysis (including the generation of the system of con-
straints and the calls to the SMT solver done by the binary search). Then we
give the number of bits needed to store all the values of the programs, assuming
that all the values are stored in double precision (column #Bits-Init.) and as
computed by our analysis (column #Bits-Optim.) Finally, the number of calls
to the SMT solver done during the binary search is displayed. Globally, we can
observe that the numbers of variables and constraints are rather small and very
tractable for the solver. This is confirmed by the execution times which are very
short. The improvement, in the number of bits needed to fulfill the requirements,
compared to the number of bits needed if all the computations are done in double
precision, ranges from 57% to 83% which is very important.

Floating-Point Format Inference in Mixed-Precision 245

6 Conclusion

We have defined a static analysis which determines the floating-point formats
needed to ensure a given accuracy. This analysis is done by generating a set of
linear constraints between integer variables only, even if the programs contain
non-linear computations. These constraints are easy to solve by a SMT solver.

Our technique can be easily extended to other language structures. For exam-
ple, since all the elements of an array must have the same type, we just need
to join all the elements in a same abstract value to obtain a relevant result.
Similarly, functions are also easy to manage since only one type per argument
and returned value need. Our analysis is built upon a range analysis performed
before. Obviously, the precision of this analysis impacts the precision of the
floating-point format determination and the inference of sharp ranges given by
relational domains, improves the quality of the results. In future work, we aim
at exploring the use a solver based on optimization modulo theories [6,25,28]
instead of the non-optimizing solver coupled to a binary search used presently.

References

1. Patriot missile defense: Software problem led to system failure at Dhahran, Saudi
Arabia. Technical Report GAO/IMTEC-92-26, General Accounting office (1992)

2. ANSI/IEEE: IEEE Standard for Binary Floating-Point Arithmetic (2008)
3. Barr, E.T., Vo, T., Le, V., Su, Z.: Automatic detection of floating-point exceptions.

In: POPL 2013, pp. 549–560. ACM (2013)
4. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-

ories. In: Handbook of Satisfiability. Frontiers in Artificial Intelligence and Appli-
cations, vol. 185, pp. 825–885. IOS Press (2009)

5. Bertrane, J., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Rival, X.:
Static analysis by abstract interpretation of embedded critical software. ACM SIG-
SOFT Softw. Eng. Notes 36(1), 1–8 (2011)

6. Bjørner, N., Phan, A.-D., Fleckenstein, L.: νZ - an optimizing SMT solver. In:
Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46681-0 14

7. Chiang, W., Baranowski, M., Briggs, I., Solovyev, A., Gopalakrishnan, G., Raka-
maric, Z.: Rigorous floating-point mixed-precision tuning. In: POPL, pp. 300–315.
ACM (2017)

8. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages, pp. 238–252. ACM Press (1977)

9. Cousot, P., Cousot, R.: A gentle introduction to formal verification of computer
systems by abstract interpretation. NATO Science Series III: Computer and Sys-
tems Sciences, pp. 1–29. IOS Press (2010)

10. Damouche, N., Martel, M., Chapoutot, A.: Intra-procedural optimization of
the numerical accuracy of programs. In: Núñez, M., Güdemann, M. (eds.)
FMICS 2015. LNCS, vol. 9128, pp. 31–46. Springer, Cham (2015). doi:10.1007/
978-3-319-19458-5 3

11. Darulova, E., Kuncak, V.: Sound compilation of reals. In: Symposium on Principles
of Programming Languages, POPL 2014, pp. 235–248. ACM (2014)

http://dx.doi.org/10.1007/978-3-662-46681-0_14
http://dx.doi.org/10.1007/978-3-319-19458-5_3
http://dx.doi.org/10.1007/978-3-319-19458-5_3

246 M. Martel

12. Gao, X., Bayliss, S., Constantinides, G.A.: SOAP: structural optimization of arith-
metic expressions for high-level synthesis. In: International Conference on Field-
Programmable Technology, pp. 112–119. IEEE (2013)

13. Goubault, E.: Static analysis by abstract interpretation of numerical programs and
systems, and FLUCTUAT. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS,
vol. 7935, pp. 1–3. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 1

14. Goubault, E., Putot, S.: Static analysis of finite precision computations. In: Jhala,
R., Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 232–247. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-18275-4 17

15. Halfhill, T.R.: The truth behind the Pentium bug. Byte, March 1995
16. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., LeGendre, M.P.: Automatically

adapting programs for mixed-precision floating-point computation. In: Supercom-
puting, ICS 2013, pp. 369–378. ACM (2013)

17. Lamotte, J.L., Chesneaux, J.M., Jézéquel, F.: CADNA C: a version of CADNA for
use with C or C++ programs. Comput. Phys. Commu. 181(11), 1925–1926 (2010)

18. Martel, M.: Semantics of roundoff error propagation in finite precision calculations.
High.-Order Symb. Comput. 19(1), 7–30 (2006)

19. Martel, M., Najahi, A., Revy, G.: Code size and accuracy-aware synthesis of fixed-
point programs for matrix multiplication. In: Pervasive and Embedded Computing
and Communication Systems, pp. 204–214. SciTePress (2014)

20. Miné, A.: Inferring sufficient conditions with backward polyhedral under-
approximations. Electr. Notes Theor. Comput. Sci. 287, 89–100 (2012)

21. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

22. Muller, J.M.: On the definition of ulp(x). Technical report 2005–09, Laboratoire
d’Informatique du Parallélisme, Ecole Normale Supérieure de Lyon (2005)

23. Muller, J.M., Brisebarre, N., de Dinechin, F., Jeannerod, C.P., Lefèvre, V.,
Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arith-
metic. Birkhäuser Boston, Boston (2010)

24. Nguyen, C., Rubio-Gonzalez, C., Mehne, B., Sen, K., Demmel, J., Kahan, W.,
Iancu, C., Lavrijsen, W., Bailey, D.H., Hough, D.: Floating-point precision tuning
using blame analysis. In: International Conference on Software Engineering (ICSE).
ACM (2016)

25. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). doi:10.1007/11814948 18

26. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: PLDI, pp. 1–11. ACM (2015)

27. Rubio-Gonzalez, C., Nguyen, C., Nguyen, H.D., Demmel, J., Kahan, W., Sen, K.,
Bailey, D.H., Iancu, C., Hough, D.: Precimonious: tuning assistant for floating-
point precision. In: International Conference for High Performance Computing,
Networking, Storage and Analysis, pp. 27:1–27:12. ACM (2013)

28. Sebastiani, R., Tomasi, S.: Optimization modulo theories with linear rational costs.
ACM Trans. Comput. Log. 16(2), 12:1–12:43 (2015)

29. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-
tion of floating-point round-off errors with symbolic Taylor expansions. In: Bjørner,
N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham
(2015). doi:10.1007/978-3-319-19249-9 33

http://dx.doi.org/10.1007/978-3-642-38856-9_1
http://dx.doi.org/10.1007/978-3-642-18275-4_17
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/11814948_18
http://dx.doi.org/10.1007/978-3-319-19249-9_33

A Verification Technique for Deterministic
Parallel Programs

Saeed Darabi(B), Stefan C.C. Blom, and Marieke Huisman

University of Twente, Enschede, The Netherlands
{s.darabi,s.c.c.blom,M.Huisman}@utwente.nl

Abstract. A commonly used approach to develop parallel programs is
to augment a sequential program with compiler directives that indicate
which program blocks may potentially be executed in parallel. This paper
develops a verification technique to prove correctness of compiler direc-
tives combined with functional correctness of the program. We propose
syntax and semantics for a simple core language, capturing the main
forms of deterministic parallel programs. This language distinguishes
three kinds of basic blocks: parallel, vectorized and sequential blocks,
which can be composed using three different composition operators:
sequential, parallel and fusion composition. We show that it is sufficient
to have contracts for the basic blocks to prove correctness of the compiler
directives, and moreover that functional correctness of the sequential pro-
gram implies correctness of the parallelized program. We formally prove
correctness of our approach. In addition, we define a widely-used subset
of OpenMP that can be encoded into our core language, thus effectively
enabling the verification of OpenMP compiler directives, and we discuss
automated tool support for this verification process.

1 Introduction

A common approach to handle the complexity of parallel programming is to
write a sequential program augmented with parallelization compiler directives
that indicate which part of code might be parallelized. A parallelizing compiler
consumes the annotated sequential program and automatically generates a par-
allel version. This approach is often called deterministic parallel programming, as
the parallelization of a deterministic sequential program augmented with correct
compiler directives is always deterministic. Deterministic parallel programming
is supported by different languages and libraries such as OpenMP [18] and is
often used for financial and scientific applications [3,11,16,19].

Although it is relatively easy to write parallel programs in this way, care-
less use of compiler directives can easily introduce data races and consequently
non-deterministic program behaviour. This paper proposes a static technique
to prove that parallelization as indicated by the compiler directives does not
introduce such non-determinism. Moreover it also shows how our technique
reduces functional verification of the parallelized program to functional veri-
fication of the sequential program. We develop our verification technique over
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 247–264, 2017.
DOI: 10.1007/978-3-319-57288-8 17

248 S. Darabi et al.

a core deterministic parallel programming language called PPL (for Parallel
Programming Language). To show practical usability of our approach, we present
how a commonly used subset of OpenMP can be encoded into PPL and then be
verified in our approach. We also discuss tool support for this process.

In essence, PPL is a language for the composition of code blocks. We identify
three kinds of basic blocks: a parallel block, a vectorized block and a sequential
block. Basic blocks are composed by three binary block composition operators:
sequential composition, parallel composition and fusion composition where the
fusion composition allows two parallel basic blocks to be merged into one. An
operational semantics for PPL is presented.

Our verification technique requires each basic block to be specified by an
iteration contract [6] that describes which memory locations are read and written
by a thread. Moreover, the program itself should be specified by a global contract.
To verify the program, we show that the block compositions are memory safe (i.e.
data race free) by proving that for all independent iterations (i.e. the iterations
that might run in parallel) all accesses to shared memory are non-conflicting,
meaning that they are disjoint or they are read accesses. If all block compositions
are memory safe, then it is sufficient to prove that the sequential composition of
all the basic blocks w.r.t. program order is memory safe and functionally correct,
to conclude that the parallelized program is functionally correct.

The main contributions of this paper are the following:

– A core language, PPL, and an operational semantics which captures the main
forms of parallelization constructs in deterministic parallel programming.

– A verification approach for reasoning about data race freedom and functional
correctness of PPL programs.

– A soundness proof that all verified PPL programs are indeed data race free
and functionally correct w.r.t. their contracts.

– Tool support that addresses the complete process of encoding of OpenMP into
PPL and verification of PPL programs.

This paper is organized as follows. After some background information, Sect. 3
explains syntax and semantics of PPL. Section 4 presents our verification tech-
nique for reasoning about PPL programs and also discusses soundness of our
verification approach. Section 5 explains how our approach is applied to verifica-
tion of OpenMP programs. Finally, we conclude with related and future work.

2 Background

We present some background information on OpenMP, Permission-based Sepa-
ration Logic and the notion of iteration contract.

2.1 OpenMP

This section illustrates the most important OpenMP features by an example. We
verify this example later in Sect. 5 where the program contract and the iteration

A Verification Technique for Deterministic Parallel Programs 249

Fig. 1. OpenMP example

contracts are added. The example in Fig. 1 is a sequential C program augmented
by OpenMP compiler directives (pragmas). The pivotal parallelization annota-
tion in OpenMP is omp parallel which determines the parallelizable code block
(called parallel region). Threads are forked upon entering a parallel region and
joined back into a single thread at the end of the region.

The example shows a parallel region with three for-loops L1, L2, and L3.
The loops are marked as omp for meaning that they are parallelizable (i.e.
their iterations are allowed to be executed in parallel). To precisely define the
behaviour of threads in the parallel region, omp for annotations are extended by
clauses. For example the combined use of the nowait and schedule(static) clauses
indicates that it is safe to fuse the parallel loops L1 and L2, meaning that the
corresponding iterations of L1 and L2 are executed by the same thread without
waiting. The clause nowait implies that it is safe to eliminate the implicit barrier
at the end of omp for. The clause schedule(static) ensures that the OpenMP
compiler assigns the same thread to corresponding iterations of the loops. In
OpenMP all variables which are not local to a parallel region are considered as
shared by default unless they are explicitly declared as private (using private
clause) when they are passed to a parallel region.

2.2 Permission-Based Separation Logic

Our verification technique is based on Permission-based Separation Logic [7,10].
Separation logic [21] is an extension of Hoare logic [14], originally proposed
to reason about pointer programs. Separation logic is also suited for modular
verification of concurrent programs [17]: two threads working on disjoint parts
of the heap do not interfere and thus can be verified in isolation.

The basis of our specification language is a separation logic for C [22], extended
with fractional permissions [7,10] to denote the right to either read from or write
to a location. Any fraction in the interval (0, 1) denotes a read permission, while 1
denotes a write permission. Permissions can be split and combined, but soundness
of the logic prevents the sum of the permissions for a location over all threads
to exceed 1. This guarantees that if permission specifications can be verified, the
program is data race free. The set of permissions that a thread holds are often

250 S. Darabi et al.

called its resources. In earlier work, we have shown that this logic is suitable to
reason about kernel programs [5] and parallel loops [6].

Formulas F in our logic are built from first-order logic formulas b, permission
predicates Perm(l, f), conditional expressions (·?· : ·), separating conjunction �,
and universal separating conjunction � over a finite set I. The syntax of formulas
is formally defined as follows:

F ::= b | Perm(l, f) | b?F : F | F � F | �i∈IF (i)

where b is a side-effect free boolean expression, l is a side-effect free expression of
type location, and f is a side-effect free expression of type fraction. The semantics
of formulas is given in the extended version of this paper [12].

2.3 Iteration Contract

An iteration contract specifies the variables read and written by one iteration
of the loop. In [6], we prove that if the iteration contract can be proven cor-
rect without any further specifications, the iterations are independent and the
loop is parallelizable. If a loop has dependences, we can add additional specifi-
cations that capture these dependences, and describe how resources are trans-
ferred to another iteration of the loop. For example the iteration contract of
L1 consists of: a precondition Perm(c[i], 1) �Perm(a[i], 1/4) and a post-condition
Perm(c[i], 1) �Perm(a[i], 1/4) �(c[i]==a[i]).

3 Syntax and Semantics of Deterministic Parallelism

This section presents the abstract syntax and semantics of PPL, our core lan-
guage for deterministic parallelism.

3.1 Syntax

Figure 2 presents the PPL syntax. The basic building block of a PPL program is a
block. Each block has a single entry point and a single exit point. Blocks are com-
posed using three binary composition operators: parallel composition ||, fusion

Fig. 2. Abstract syntax for parallel programming language

A Verification Technique for Deterministic Parallel Programs 251

composition ⊕ and sequential composition �. The entry block of the program is
the outermost block. Basic blocks are: a parallel block Par (N) S; a vectorized
block Vec (N) V; and a sequential block S, where N is a positive integer variable
that denotes the number of parallel threads, i.e., the block’s parallelization level,
S is a sequence of statements and V is a sequence of guarded assignments b ⇒ ass.
We assume a restricted syntax for fusion composition such that its operands are
parallel basic blocks with the same parallelization levels. Each basic block has
a local read-only variable tid ∈ [0 . . .N) called thread identifier where N is the
block’s parallelization level. We generalize the term iteration to refer to the com-
putations of a single thread in a basic block. So a parallel or vectorized block with
parallelization level N has N iterations. For simplicity, but without loss of gen-
erality, threads have access to a single shared array which we refer to as heap.
We assume all memory locations in the heap are allocated initially. A thread
may update its local variables by performing a local computation (v := e), or
by reading from the heap (v := mem(e)). A thread may update the heap by
writing one of its local variables to it (mem(e) := v).

3.2 Semantics

The behaviour of PPL programs is described using a small step operational
semantics. Throughout, we assume existence of the finite domains: VarName,
the set of variable names, Val, the set of all values, which includes the memory
locations, Loc, the set of memory locations and [0 . . .N) for thread identifiers.
We write ++ to concatenate two statement sequences (S ++ S). To define the
program state, we use the following definitions.

h ∈ Heap
Δ
= Loc → Val heap, modeled as a single shared array

γ ∈ Store
Δ
= VarName → Val program store, accessible to all threads

σ ∈ PrivateMem
Δ
= VarName → Val private memory, accessible to a single thread

Now we define BlockState. We distinguish various kinds of block states: an
initial state Init, composite block states ParC and SeqC, a state in which a parallel
basic block should be executed Par, a local state Local in which a vectorized or
a sequential basic block should be executed, and a terminated block state Done.

EB ∈ BlockState
Δ=

Init(Block)| initial block states
ParC(EB,EB)| SeqC(EB,Block)| composite block states
Par(LS)| parallel basic block states
Local(LS)| thread local states
Done terminated block state

The Init state consists of a block statement Block. The ParC state consists of
two block states, and the SeqC state contains a block state and a block statement
Block; they capture all the states that a parallel composition and a sequential
composition of two blocks might be in, respectively. The basic block state Par
captures all the states that a parallel basic block Par (N) S might be in during its
execution. It contains a mapping LS ∈ [0 . . .N) → LocalState, that maps each

252 S. Darabi et al.

thread to its local state, which models the parallel execution of the threads.
There are three kinds of local states: a vectorized state Vec, a sequential state
Seq, and a terminated sequential state Done.

LS ∈ LocalState
Δ=

Vec(Σ,E,V, σ,S)| vectorized basic block states
Seq(σ,S)| sequential basic block states
Done terminated sequential basic block states

The Vec block state captures all states that a vectorized basic block Vec (N) V
might be in during its execution. It consists of Σ ∈ [0 . . .N) → PrivateMem,
which maps each thread to its private memory, the body to be executed V, a
private memory σ, and a statement S. As vectorized blocks may appear inside
a sequential block, keeping σ and S allows continuation of the sequential basic
block after termination of the vectorized block. To model vectorized execution,
the state contains an auxiliary set E ⊆ [0 . . .N) that models which threads have
already executed the current instruction. Only when E equals [0 . . .N), the next
instruction is ready to be executed. Finally, the Seq block state consists of private
memory σ and a statement S.

We model the program state as a triple of block state, program store and
heap (EB, γ, h) and thread state as a pair of local state and heap (LS, h). The
program store is constant within a block and it contains all global variables (e.g.
the initial address of arrays). To simplify our notation, each thread receives a
copy of the program store as part of its private memory when it initializes. The
operational semantics is defined as a transition relation between program states:
→p⊆ (BlockState × Store × Heap) × (BlockState × Store × Heap), (Fig. 3), using
an auxiliary transition relation between thread local states →s⊆ (LocalState ×
Heap) × (LocalState×Heap), (Fig. 4), and a standard transition relation →ass⊆
(PrivateMem×S×Heap)×(PrivateMem×Heap) to evaluate assignments, (Fig. 5).
The semantics of expression e and boolean expression b over private memory σ,
written E�e�σ and B�b�σ respectively, is standard and not discussed any further.
We use the standard notation for function update: given a function f : A → B,
a ∈ A, and b ∈ B:

f [a := b] = x �→
{

b , x = a
f(x), otherwise

Program execution starts in a program state (Init(Block), γ, h) where Block is
the program’s entry block. Depending on the form of Block, a transition is made
into an appropriate block state, leaving the heap unchanged. The evaluation of
a ParC state non-deterministically evaluates one of its block states (i.e. EB1 or
EB2), evaluation of a sequential block is done by evaluating the local state. The
evaluation of a SeqC state evaluates its block state EB step by step when this
evaluation is done, the subsequent block is initiated.

The evaluation of a parallel basic block is defined by the rules Par Step and
Par Done. To allow all possible interleavings of the threads in the block’s thread
pool, each thread has its own local state LS, which can be executed indepen-
dently, modeled by the mapping LS. A thread in the parallel block terminates

A Verification Technique for Deterministic Parallel Programs 253

F
ig
.
3
.
O

p
er

a
ti

o
n
a
l
se

m
a
n
ti

cs
fo

r
p
ro

g
ra

m
ex

ec
u
ti

o
n

254 S. Darabi et al.

F
ig
.
4
.
O

p
er

a
ti

o
n
a
l
se

m
a
n
ti

cs
fo

r
th

re
a
d

ex
ec

u
ti

o
n

A Verification Technique for Deterministic Parallel Programs 255

Fig. 5. Operational semantics for assignments

if there is no more statement to be executed and a parallel block terminates if
all threads executing the block are already terminated.

The evaluation of sequential basic block’s statements as defined in Fig. 4 is
standard except when it contains a vectorized basic block. A sequential basic
block terminates if there is no instruction left to be executed (Seq Done). The
execution of a vectorized block (defined by the rules Init Vec, Vec Step, Vec
Sync and Vec Done in Fig. 4) is done in lock-step, i.e. all threads execute the
same instruction and no thread can proceed to the next instruction until all are
done, meaning that they all share the same program counter. As explained, we
capture this by maintaining an auxiliary set, E, which contains the identifier of
the threads that have already executed the vector instruction (i.e. the guarded
assignment b ⇒ ass). When a thread executes a vector instruction, its thread
identifier is added to E (rules Vec Step). The semantics of vector instructions
(i.e. guarded assignments) is the semantics of assignments if the guard evaluates
to true and it does nothing otherwise. When all threads have executed the current
vector instruction, the condition E = dom(Σ) holds, and execution moves on to
the next vector instruction of the block (with an empty auxiliary set) (rule Vec
Sync). The semantics of assignments as defined in Fig. 5 is standard and does
not require further discussion.

4 Verification Approach

This section discusses our verification technique for reasoning about PPL pro-
grams, as well as soundness of our verification approach.

4.1 Verification

For the verification of PPL programs, we assume that each basic block is speci-
fied by an iteration contract. We distinguish two kinds of formulas in an iteration
contract: resource formulas (in permission-based separation logic) and functional
formulas (in first-order logic). For an individual basic block if its iteration con-
tract is proven correct, then the basic block is data race free and it is functionally
correct w.r.t. its iteration contract. To verify the correctness of the program,
using standard permission-based separation logic rules, the contracts of all com-
posite blocks should be given. However, our verification approach requires only
the basic blocks to be specified at the cost of an extra proof obligation that
ensures that the heap accesses of all iterations which are not ordered sequen-
tially are non-conflicting (i.e. they are disjoint or they are read accesses). If
this condition holds, correctness of the PPL program can be derived from the

256 S. Darabi et al.

correctness of a linearised variant of the program. The rest of this section dis-
cusses the formalization of our approach.

To verify a program, we require each basic block of the program to be spec-
ified by an iteration contract which consists of: a resource contract rc(i), and
a functional contract fc(i), where i is the block’s iteration variable. The func-
tional contract consists of a precondition P(i), and a postcondition Q(i). We
also require the program to be globally specified by a contract G which consists
of the program’s resource contract RCP and the program’s functional contract
FCP with the program’s precondition PP and the program’s postcondition QP .

Let P be the set of all PPL programs and P ∈ P be an arbitrary PPL program
assuming that each basic block in P is identified by a unique label. We define
BP = {b1 , b2 , . . . , bn}, as the finite set of basic block labels of the program P.
For a basic block b with parallelization level m, we define a finite set of iteration
labels Ib = {0 b , 1 b , . . . , (m − 1)b} where ib indicates the i th iteration of the
block b. Let IP =

⋃
b∈BP Ib be the finite set of all iterations of the program P.

To state our proof rule, we first define the set of all iterations which are not
ordered sequentially, the incomparable iteration pairs, IP

⊥ as:

IP
⊥ = {(ib1 , jb2)|ib1 , jb2 ∈ IP ∧ b1 	= b2 ∧ ib1 ⊀e jb2 ∧ jb2 ⊀e ib1}

where ≺e⊆ IP × IP is the least partial order which defines an extended happens-
before relation. The extension addresses the iterations which are happens-before
each other because their blocks are fused. We define ≺e based on two partial
orders over the program’s basic blocks: ≺⊆ BP × BP and ≺⊕⊆ BP × BP . The
former is the standard happens-before relation of blocks where they are sequen-
tially composed by � and the latter is an happens-before relation w.r.t. fusion
composition ⊕. They are defined by means of an auxiliary partial order gen-
erator function G(P, δ) : P × {�,⊕} → BP × BP such that: ≺= G(P, �) and
≺⊕= G(P,⊕). We define G as follows:

G(P, δ) =

⎧⎨
⎩

G ∪ {(b′, b′′)|b′ ∈ BP′ ∧ b′′ ∈ BP′′}, if P = P ′ • P ′′ ∧ δ = •
G, if P = P ′ • P ′′ ∧ δ �= •
∅, if P ∈ {Par(N) S, S}

where G = G(P ′, δ) ∪ G(P ′′, δ).
The function G computes the set of all iteration pairs of the input program P

which are in relation w.r.t. the given composition operator δ. This computation
is basically a syntactical analysis over the input program. Now we define the
extended partial order ≺e as:

∀ib, jb′ ∈ IP .ib ≺e jb′ ⇔ (b ≺ b′) ∨ (
(b ≺⊕ b′) ∧ (i = j)

)

This means that the iteration ib happens-before the iteration j b
′

if b happens-
before b′ (i.e. b is sequentially composed with b′) or if b is fused with b′ and i
and j are corresponding iterations in b and b′.

We extend the program logic that we introduced in [6] with the proof rule
b-linearise. We first define the block level linearisation (b-linearisation for

A Verification Technique for Deterministic Parallel Programs 257

Fig. 6. Proof rule for b-linearisation reduction of PPL programs.

short) blin : P → P� as a program transformation which substitutes all non-
sequential compositions by a sequential composition. We define P� as a subset
of P in which only sequential composition � is allowed as composition operator.

Figure 6 presents the rule b-linearise. In the rule, rcb(i) and rcb′(j) are
the resource contracts of two different basic blocks b and b′ where ib ∈ Ib and
jb′ ∈ Ib′ . Application of the rule results in two new proof obligations. The first
ensures that all heap accesses of all incomparable iteration pairs (the iterations
that may run in parallel) are non-conflicting (i.e. all block compositions in P are
memory safe). This reduces the correctness proof of P to the correctness proof
of its b-linearised variant blin(P) (the second proof obligation). Then the second
proof obligation is discharged in two steps: (1) proving the correctness of each
basic block against its iteration contract (using the proof rule introduced in [6])
and (2) proving the correctness of blin(P) against the program contract.

4.2 Soundness

Next we show that a PPL program with provably correct iteration contracts and
a global contract that is provable in our logic extended with the rule b-linearise
is indeed data race free and functionally correct w.r.t. its specifications. To show
this, we prove soundness of the b-linearise rule, as well as data race freedom of
all verified programs.

For the soundness proof, we show that for each program execution there
exists a corresponding b-linearised execution with the same functional behaviour
(i.e. they end in the same terminal state if they start in the same initial state)
if all independent iterations are non-conflicting. From the rule’s assumption,
we know that if the precondition holds for the initial state of the b-linearised
execution (which is also the initial state of the program execution) then its
terminal state satisfies the postcondition. As both executions end in the same
terminal state, the postcondition thus also holds for the program execution.
To prove that there exists a matching b-linearised execution for each program
execution, we first show that any valid program execution can be normalized
w.r.t. program order and second that any normalized execution can be mapped to
a b-linearised execution. To formalize this argument, we first define: an execution,
an instrumented execution, and a normalized execution.

We assume all program’s blocks including basic and composite blocks have
a block label and program’s statements are labelled by the label of the block to
which they belong. Also there exists a total order over the block labels.

Definition 1 (Execution). An execution of a program P is a finite sequence of
state transitions Init(P), γ, h →∗

p Done, γ, h′.

258 S. Darabi et al.

To distinguish between valid and invalid executions, we instrument our oper-
ational semantics with heap masks. A heap mask models the access permis-
sions to every heap location. It is defined as a map from locations to fractions
π : Loc → Frac where Frac is the set of fractions ([0, 1]). Any fraction (0, 1) is
read and 1 is write permission. The instrumented semantics ensures that each
transition has sufficient access permissions to the heap locations that it accesses.
We first add a heap mask π to all block state constructors (Init, ParC, SeqC
and so on) and local state constructors (Vec, Seq and Done). Then we extend
the operational semantics rules such that in each block initialization state with
heap mask π an extra premise should be discharged, which states that there
are n ≥ 2 heap masks π1, . . . , πn, one for each newly initialized state such that
Σn

i πi ≤ π. The heap masks are carried along by the computation and termina-
tion transitions without any extra premises, while in the termination transitions
heap masks of the terminated blocks are forgotten as they are not required after
termination. As an example, we provide the instrumented versions of the rules
Init ParC, ParC Done, rdsh, and wrsh.

π1 + π2 ≤ π

[Init ParC]

Init(Block1||Block2, π), γ, h →p,i ParC(Init(Block1, π1), Init(Block2, π2), π), γ, h

[ParC Done]

ParC(Done(π1), Done(π2), π), γ, h →p,i Done(π), γ, h

l = E�e�σ π(l) > 0

[rdsh]

σ, v := mem(e), h, π →ass,i σ[v := h(l)], h, π

l = E�e�σ π(l) = 1

[wrsh]

σ, mem(e) := v, h, π →ass,i σ, h[l := v], π

where →p,i and →ass,i denote program and assignment transition relations in the
instrumented semantics respectively. If a transition cannot satisfy its premises
it blocks.

Definition 2 (Instrumented Execution). An instrumented execution of a pro-
gram P is a finite sequence of state transitions Init(P, π), γ, h →∗

p,i Done(π), γ, h′

where the set of all instrumented executions of P is written as IEP .

Lemma 1. Assuming that (1) � ∀(ib, jb′
) ∈ IP

⊥.RCP → rcb(i) � rcb′(j) and (2)
∀b ∈ BP .{�i∈[0...Nb)rcb(i)}Blockb{�i∈[0...Nb)rcb(i)} are valid for a program P
(i.e. every basic block in P respects its iteration contract), for any execution E
of the program P, there exists a corresponding instrumented execution.

Proof. Given an execution E, we assign heap masks to all program states that
the execution E might be in. The program’s initial state is assigned by a heap
mask π ≤ 1. Assumption (1) implies that all iterations which might run in par-
allel are non-conflicting which implies that for all Init ParC transitions, there
exist π1 and π2 such that π1 + π2 ≤ π′ where π′ is the heap mask of the state in
which Init ParC evaluates. In all computation transitions the successor state
receives a copy of the heap mask of its predecessor. Assumption (2) implies that
all iterations of all parallel and vectorized basic blocks are non-conflicting. This
implies that for an arbitrary Init Par or Init Vec transition which initializes a

A Verification Technique for Deterministic Parallel Programs 259

basic block b, there exists π1, . . . , πn such that Σn
i πi ≤ πb holds in b’s initializa-

tion transition and in all computation transitions of an arbitrary iteration i of
the block b the premises of rdsh and wrsh transitions is satisfiable by πi. ��
Lemma 2. All instrumented executions of a program P are data race free.

Proof. The proof proceeds by contradiction. Assume that there exists an instru-
mented execution that has a data race. Thus, there must be two parallel threads
such that one writes to and the other one reads from or writes to a shared heap
location e. Because all instrumented executions are non-blocking, the premises of
all transitions hold. Therefore, π1(e) = 1 holds for the first thread, and π2(e) > 0
for the second thread either it writes or reads. Also because the program starts
with one single main thread, both threads should have a single common ancestor
thread z such that πx(e) + πy(e) ≤ πz(e) where x and y are the ancestors of the
first and the second thread respectively. A thread only gains permission from
its parent; therefore π1(e) + π2(e) ≤ πz(e) holds. Permission fractions are in the
range [0, 1] by definition, therefore π1(e) + π2(e) ≤ 1 holds. This implies that if
π1(e) = 1, then π2(e) ≤ 0 which is a contradiction. ��

A normalized execution is an instrumented execution that respects the pro-
gram order, which is defined using an auxiliary labelling function L : T → B

all
P ×L

where T is the set of all transitions, L is the set of labels {I, C, T}, and B
all
P is

the set of block labels (including both composite and basic block labels).

L(t) =

⎧⎨
⎩

(LB(block), I), if t initializes a block block

(LB(s), C), if t computes a statement s

(LB(block),T), if t terminates a block block

where LB returns the label of each block or statement in the program. We assume
the precedence order I < C < T over L. We say transition t with label (b, l) is
less than t′ with label (b′, l′) if (b ≤ b′) ∨ (b > b′ → (l′ = T ∧ b ∈ LBsub(b′)))
where LBsub(b) returns the label set of all blocks of which b is composed.

Definition 3 (Normalized Execution). An instrumented execution labelled by L
is normalized if the labels of its transitions are in non-decreasing order.

We transform an instrumented execution to a normalized one by safely commut-
ing the transitions whose labels do not respect the program order.

Lemma 3. For each instrumented execution of a program P, there exists a nor-
malized execution such that they both end in the same terminal state.

Lemma 4. For each normalized execution of a program P, there exists a b-
linearised execution blin(P), such that they both end in the same terminal state.

The extended version of this paper [12] presents the proofs of Lemmas 3 and 4.

Definition 4 (Validity of Hoare Triple). The Hoare triple {RCP � PP}P{RCP �
QP} is valid if for any execution E (i.e. Init(P), γ, h →∗

p Done, γ, h′) if γ, h, π �
RCP � PP is valid in the initial state of E, then γ, h′, π � RCP � QP is valid in
its terminal state.

260 S. Darabi et al.

The validity of γ, h, π � RCP � PP and γ, h′, π � RCP � QP is defined by the
semantics of formulas presented in the extended version of this paper [12].

Theorem 1. The rule b-linearise is sound.

Proof. Assume (1). � ∀(ib, jb′
) ∈ IP

⊥.RCP → rcb(i) � rcb′(j) and (2). � {RCP �
PP} blin(P){RCP � QP}. From assumption (2) and the soundness of the pro-
gram logic used to prove it [6], we conclude (3). ∀b ∈ BP .{�i∈[0...Nb)rcb(i)}Blockb

{�i∈[0...Nb)rcb(i)}. Given a program P, implication (3), assumption (1) and,
Lemma 1 imply that there exists an instrumented execution IE for P. Lemma 3
and Lemma 4 imply that there exists an execution E′ for the b-linearised vari-
ant of P, blin(P), such that both IE and E′ end in the same terminal state.
The initial states of both IE and E′ satisfy the precondition {RCP � PP}. From
assumption (2) and the soundness of the program logic used to prove it [6],
{RCP � QP} holds in the terminal state of E′ which thus also holds in the ter-
minal state of IE as they both end in the same terminal state. ��
Finally, we show that a verified program is indeed data race free.

Proposition 1. A verified program is data race free.

Proof. Given a program P, with the same reasoning steps mentioned in the
Theorem 1, we conclude that there exists an instrumented execution IE for P.
From Lemma 2 all instrumented executions are data race free. Thus, all execu-
tions of a verified program are data race free. ��

5 Verification of OpenMP Programs

Finally, this section discusses the practical applicability of our approach, by
showing how it can be used for verification of OpenMP programs. We demon-
strate this in detail on the OpenMP program presented in Sect. 2.1. More
OpenMP examples are available online1. Below we precisely identify a commonly
used subset of OpenMP programs that can be verified in our approach.

We verify OpenMP programs in the following three steps: (1) specifying
the program (i.e. providing an iteration contract for each loop and writing the
program contract for the outermost OpenMP parallel region), (2) encoding of the
specified OpenMP program into its PPL counterpart (carrying along the original
OpenMP specifications), (3) checking the PPL program against its specifications.
Steps two and three have been implemented as part of the VerCors toolset [4,23].
The details of the encoding algorithm are discussed in the extended version of
this paper [12].

Figure 7 shows the required contracts for the example discussed in Sect. 2.1.
There are four specifications. The first one is the program contract which is
attached to the outermost parallel block. The others are the iteration contracts
of the loops L1, L2 and L3. The requires and ensures keywords indicate pre

1 See the online version of the VerCors toolset at http://www.utwente.nl/vercors/.

http://www.utwente.nl/vercors/

A Verification Technique for Deterministic Parallel Programs 261

Fig. 7. Required contracts for verification of the running OpenMP example

and post-conditions of each contract and the context keyword is a shorthand for
both requiring and ensuring the same predicate. We use ∗∗ and \forall∗ to denote
separating conjunction � and universal separating conjunction �i∈I receptively.
Before verification, we encode the example into the following PPL program P:

/∗@ Program Contract @∗/

P

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
Par(L) /*@IC1@*/ c[i]=a[i];
︸ ︷︷ ︸

B1

⊕Par(L) /*@IC2@*/ c[i]=c[i]+b[i];
︸ ︷︷ ︸

B2

)

||
B3︷ ︸︸ ︷

Par(L) /*@IC3@*/ d[i]=a[i]*b[i];

Program P contains three parallel basic blocks B1,B2 and B3 and is verified
by discharging two proof obligations: (1) ensures that all heap accesses of all
incomparable iteration pairs (i.e. all iteration pairs except the identical itera-
tions of B1 and B2) are non-conflicting implying that the fusion of B1 and B2

and parallel composition of B1 ⊕ B2 and B3 are memory safe (2) consists of
first proving that each parallel basic block by itself satisfies its iteration contract
∀b ∈ {1, 2, 3}.{�i∈[0...L)ICb(i)}Bb {�i∈[0...L)ICb(i)}, and second proving the cor-
rectness of the b-linearised variant of P against its program contract {RCP � PP}
B1 � B2 � B3{RCP � QP}.

We have implemented a slightly more general variant of PPL in the tool
that supports variable declarations and method calls. To check the first proof
obligation in the tool we quantify over pairs of blocks which allows the number
of iterations in each block to be a parameter rather than a fixed number.

Captured Subset of OpenMP. We define a core grammar which captures a
commonly used subset of OpenMP [1]. This defines also the OpenMP programs
that can be encoded into PPL and then verified using our approach. Figure 8
presents the OMP grammar which supports the OpenMP annotations: omp par-
allel, omp for, omp simd, omp for simd, omp sections, and omp single. An OMP

262 S. Darabi et al.

Fig. 8. OpenMP core grammar

program is a finite and non-empty list of Jobs enclosed by omp parallel. The
body of omp for, omp simd, and omp for simd, is a for-loop. The body of omp
single is either an OMP program or it is a sequential code block SpecS. The omp
sections block is a finite list of omp section sub-blocks where the body of each
omp section is either an OMP program or it is a sequential code block SpecS.

6 Related Work

Botincan et al. propose a proof-directed parallelization synthesis which takes
as input a sequential program with a proof in separation logic and outputs a
parallelized counterpart by inserting barrier synchronizations [8,9]. Hurlin uses
a proof-rewriting method to parallelize a sequential program’s proof [15]. Com-
pared to them, we prove the correctness of parallelization by reducing the par-
allel proof to a b-linearised proof. Moreover, our approach allows verification of
sophisticated block compositions, which enables reasoning about state-of-the-art
parallel programming languages (e.g. OpenMP) while their work remains rather
theoretical.

Raychev et al. use abstract interpretation to make a non-deterministic pro-
gram (obtained by naive parallelization of a sequential program) deterministic
by inserting barriers [20]. This technique over-approximates the possible pro-
gram behaviours which ends up in a determinization whose behaviour is implied
by a set of rules which decide between feasible schedules rather than the behav-
iour of the original sequential program. Unlike them, we do not generate any
parallel program. Instead we prove that parallelization annotations can safely
be applied and the parallelized program is functionally correct and exhibits the
same behaviour as its sequential counterpart. Barthe et al. synthesize SIMD code
given pre and postconditions for loop kernels in C++ STL or C# BCL [2]. We
alternatively enable verification of SIMD loops, by encoding them into vector-
ized basic blocks. Moreover, we address the parallel or sequential composition of
those loops with other forms of parallelized blocks.

Dodds et al. introduce a higher-order variant of Concurrent Abstract Pred-
icates (CAP) to support modular verification of synchronization constructs for
deterministic parallelism [13]. Their proofs use nested region assertions and
higher-order protocols, but they do not address the semantic difficulties intro-
duced by these features which make their reasoning unsound.

A Verification Technique for Deterministic Parallel Programs 263

7 Conclusion and Future Work

We have presented the PPL language which captures the main forms of deter-
ministic parallel programming. Then, we proposed a verification technique to
reason about data race freedom and functional correctness of PPL programs.
We illustrated the practical applicability of our technique by discussing how a
commonly used subset of OpenMP can be encoded into PPL and then verified.

As future work, we plan to look into adapting annotation generation tech-
niques to automatically generate iteration contracts, including both resource
formulas and functional properties. This will lead to fully automatic verification
of deterministic parallel programs. Moreover, our technique can be extended
to address a larger subset of OpenMP programs by supporting more complex
OpenMP patterns for scheduling iterations and omp task constructs. We also
plan to identify the subset of atomic operations that can be combined with our
technique that allows verification of the widely-used reduction operations.

References

1. Aviram, A., Ford, B.: Deterministic OpenMP for race-free parallelism. In: HotPar
2011, Berkeley, CA, USA, p. 4 (2011)

2. Barthe, G., Crespo, J.M., Gulwani, S., Kunz, C., Marron, M.: From relational
verification to SIMD loop synthesis. In: ACM SIGPLAN Notices, vol. 48, pp. 123–
134 (2013)

3. Berger, M.J., Aftosmis, M.J., Marshall, D.D., Murman, S.M.: Performance of a
new CFD flow solver using a hybrid programming paradigm. J. Parallel Distrib.
Comput. 65(4), 414–423 (2005)

4. Blom, S., Huisman, M.: The VerCors tool for verification of concurrent programs.
In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 127–
131. Springer, Cham (2014). doi:10.1007/978-3-319-06410-9 9

5. Blom, S., Huisman, M., Mihelčić, M.: Specification and verification of GPGPU
programs. Sci. Comput. Program. 95, 376–388 (2014)

6. Blom, S., Darabi, S., Huisman, M.: Verification of loop parallelisations. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 202–217. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46675-9 14

7. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL, pp. 259–270 (2005)

8. Botincan, M., Dodds, M., Jagannathan, S.: Resource-sensitive synchronization
inference by abduction. In: POPL, pp. 309–322 (2012)

9. Botinčan, M., Dodds, M., Jagannathan, S.: Proof-directed parallelization synthesis
by separation logic. ACM Trans. Program. Lang. Syst. 35, 1–60 (2013)

10. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). doi:10.1007/
3-540-44898-5 4

11. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: Workload Charac-
terization, IISWC 2009, pp. 44–54 (2009)

12. Darabi, S., Blom, S.C.C., Huisman, M.: A verification technique for deterministic
parallel programs (extended version). Technical report TR-CTIT-17-01, Centre for
Telematics and Information Technology, University of Twente (2017)

http://dx.doi.org/10.1007/978-3-319-06410-9_9
http://dx.doi.org/10.1007/978-3-662-46675-9_14
http://dx.doi.org/10.1007/3-540-44898-5_4
http://dx.doi.org/10.1007/3-540-44898-5_4

264 S. Darabi et al.

13. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: ACM SIGPLAN Notices, pp. 259–270 (2011)

14. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10),
576–580 (1969)

15. Hurlin, C.: Automatic parallelization and optimization of programs by proof rewrit-
ing. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 52–68. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-03237-0 6

16. Jin, H.-Q., Frumkin, M., Yan, J.: The OpenMP implementation of NAS parallel
Benchmarks and its performance (1999)

17. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.
375(1–3), 271–307 (2007)

18. OpenMP Architecture Review Board: OpenMP API specification for parallel pro-
gramming. http://openmp.org/wp/. Accessed 28 Nov 2016

19. LLNL OpenMP Benchmarks. https://asc.llnl.gov/CORAL-benchmarks/. Accessed
28 Nov 2016

20. Raychev, V., Vechev, M., Yahav, E.: Automatic synthesis of deterministic con-
currency. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp.
283–303. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 16

21. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Logic
in Computer Science, pp. 55–74. IEEE Computer Society (2002)

22. Tuch,H., Klein, G., Norrish,M.: Types, bytes, and separation logic. In: Hofmann, M.,
Felleisen, M. (eds.) POPL, pp. 97–108. ACM (2007)

23. VerCors project homepage, 28 September 2016. http://www.utwente.nl/vercors/

http://dx.doi.org/10.1007/978-3-642-03237-0_6
http://openmp.org/wp/
https://asc.llnl.gov/CORAL-benchmarks/
http://dx.doi.org/10.1007/978-3-642-38856-9_16
http://www.utwente.nl/vercors/

Systematic Predicate Abstraction Using
Variable Roles

Yulia Demyanova1, Philipp Rümmer2(B), and Florian Zuleger1

1 Vienna University of Technology, Vienna, Austria
demy@forsyte.at

2 Uppsala University, Uppsala, Sweden
philipp.ruemmer@it.uu.se

Abstract. Heuristics for discovering predicates for abstraction are an
essential part of software model checkers. Picking the right predicates
affects the runtime of a model checker, or determines if a model checker
is able to solve a verification task at all. In this paper we present
a method to systematically specify heuristics for generating program-
specific abstractions. The heuristics can be used to generate initial
abstractions, and to guide abstraction refinement through templates pro-
vided for Craig interpolation. We describe the heuristics using variable
roles, which allow us to pick domain-specific predicates according to the
program under analysis. Variable roles identify typical variable usage pat-
terns and can be computed using lightweight static analysis, for instance
with the help of off-the-shelf logical programming engines. We imple-
mented a prototype tool which extracts initial predicates and templates
for C programs and passes them to the Eldarica model checker in the form
of source code annotations. For evaluation, we defined a set of heuristics,
motivated by Eldarica’s previous built-in heuristics and typical verifica-
tion benchmarks from the literature and SV-COMP. We evaluate our
approach on a set of more than 500 programs, and observe an overall
increase in the number of solved tasks by 11.2%, and significant speedup
on certain benchmark families.

1 Introduction

Analysis tools, in particular software model checkers, achieve automation by
mapping systems with infinite state space to finite-state abstractions that can be
explored exhaustively. One of the most important classes of abstraction is predi-
cate abstraction [13], defined through a set of predicates capturing relevant data
or control properties in a program. Picking the right predicates, either upfront or
dynamically during analysis [5], is essential in this setting to ensure rapid conver-
gence of a model checker, and is in practice achieved through a combination of
“systematic” methods (for CEGAR, in particular through Craig interpolation)
and heuristics. For instance, SLAM extracts refinement predicates from coun-
terexamples using domain-specific heuristics [16]; YOGI uses machine learning

Y. Demyanova and F. Zuleger were supported by the Austrian National Research
Network S11403-N23 (RiSE) of the Austrian Science Fund (FWF).

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 265–281, 2017.
DOI: 10.1007/978-3-319-57288-8 18

266 Y. Demyanova et al.

to choose the default set of heuristics for picking predicates [19]; CPAchecker
uses domain types to decide whether to represent variables explicitly or using
BDDs [2], and to choose refinement predicates [4]; and Eldarica uses heuris-
tics to guide the process of Craig interpolation [18]. Similar heuristics can be
identified in tools based on abstract interpretation, among others.

The goal of the present paper is to systematise the definition of abstraction
heuristics, and this way enable easier and more effective adaptation of analysis
tools to specific domains. In order to effectively construct program abstractions,
it is essential for an analysis tool to have (semantic) information about vari-
ables and data-structures used in the program. We propose a methodology in
which heuristics are defined with the help of variable roles [9], which are features
capturing typical variable usage patterns and which can be computed through
lightweight static analysis. Knowledge about roles of variables can be used to
generate problem-specific parameters for model checkers, or other analysis tools,
and thus optimise the actual later analysis process.

As a case study, we describe how variable roles can be used to infer code anno-
tations for the CEGAR-based model checker Eldarica [20]. Eldarica has two
main parameters controlling the analysis process: initial predicates for predicate
abstraction, and templates guiding Craig interpolation during counterexample-
based refinement [18]. Both parameters can be provided in the form of source-
code annotations. We focus on the analysis of C programs defined purely over
integer scalar variables, i.e., not containing arrays, pointers, heap-based data
structures and bitvectors. By manually inspecting a (small) sample of such pro-
grams from SV-COMP [3], we were able to identify a compact set of relevant
variable roles, and of heuristics for choosing predicates and templates based on
those roles. To evaluate the effectiveness of the heuristics, we compared the per-
formance of Eldarica (with and without the heuristics), and of other model
checkers on a set of over 500 programs taken from the literature and SV-COMP.
We observe an increase in the number of solved tasks by 11.2% when using our
heuristics, and speedups on certain benchmark families.

Contributions of the paper are: 1. We introduce a methodology for defining
abstraction heuristics using variable roles; 2. we define 8 roles and correspond-
ing heuristics for efficiently analysing C programs with scalar variables; 3. we
implement our approach and perform an extensive experimental evaluation.

Related Work. Patterns of variable usage were studied in multiple disciplines,
e.g. in teaching programming languages [21] (where the patterns were called
variable roles), in type systems for inferring equivalence relations for types [22],
and others. In [9] a set of patterns, also called variable roles, was defined using
data-flow analysis, based on a set of C benchmarks1. In [7,8] variable roles were
used to build a portfolio solver for software verification. Similarly to variable
roles, code patterns recognised with light-weight static analyses are used in the
bug-finding tool Coverity [11] to devise heuristics for ranking possible bugs.
Domain types in CPAChecker [4] can be viewed as a restricted class of variable

1 http://ctuning.org/wiki/index.php/CTools:CBench.

http://ctuning.org/wiki/index.php/CTools:CBench

Systematic Predicate Abstraction Using Variable Roles 267

roles. Differently from this work, where variable roles guide the generation of
interpolants, the domain types are used in [4] to choose the “best” interpolant
from a set of generated interpolants. In addition, our method generates role-
based initial predicates, while the method of [4] does not.

There has been extensive research on tuning abstraction refinement tech-
niques, in such a way that convergence of model checkers is ensured or improved.
This research in particular considers various methods of Craig interpolation,
and controls features such as interpolant strength, interpolant size, the number
of distinct symbols in interpolants, or syntactic features like the magnitude of
coefficients; for a detailed survey we refer the reader to our previous work [18].

1.1 Introductory Examples of Domain-Specific Abstraction

We introduce our approach on two examples. These and all further examples
in this paper are taken from the benchmarks of the software competition SV-
COMP’16 [3]. We simplified some of the examples for demonstration purposes.

1 extern char nondet_char();

2 void main() {

3 int id1 = nondet_char();

4 int id2 = nondet_char();

5 int id3 = nondet_char();

6 int max1=id1, max2=id2, max3=id3;

7 int i=0, cnt=0;

8

9 assume(id1!=id2 && id1!=id3 &&

10 id2!=id3);

11

12 while (1) {

13 if (max3 > max1) max1 = max3;

14 if (max1 > max2) max2 = max1;

15 if (max2 > max3) max3 = max2;

16

17 if (i == 1) {

18 if (max1 == id1) cnt++;

19 if (max2 == id2) cnt++;

20 if (max3 == id3) cnt++;

21 }

22 if (i>=1) assert(cnt==1);

23 i++;

24 }

25 }

(1) Roles input, dynamic enumeration
and extremum

1 extern int nondet_int();

2 int main() {

3 int n = nondet_int();

4 int k, i, j;

5

6 for (k=0,i=0; i<n; i++,k++);

7 for (j=n; j>0; j--,k--) {

8 assert(k > 0);

9 }

10 return 0;

11 }

(2) Role local counter

Fig. 1. Motivation examples illustrating variable roles.

Motivation Example 1. The code in Fig. 1.1 initializes variables max1, max2
and max3 to id1, id2 and id3 respectively, which are in turn initialized
non-deterministically. The assume statement at lines 9–10 is an Eldarica-
specific directive, which puts a restriction that control reaches line 12 only if

268 Y. Demyanova et al.

id1!=id2 && id1!=id3 && id2!=id3 evaluates to true. In the loop the value
max{id1,id2,id3}, which is the maximum of id1, id2 and id3 is calculated: At
the first iteration, max1 is assigned the value max{id1,id3}, and max2 and max3
are assigned the value max{id1,id2,id3}. After the second iteration max1, max2
and max3 all store the value max{id1,id2,id3}. Since id1, id2 and id3 have
distinct values, only one of the conditions in lines 18–20 evaluates to true. The
assertion checks that the value of exactly one of variables max1, max2 and max3
remains unchanged after two iterations, namely maxi, where i=arg max

j
{idj}.

It takes Eldarica 27 CEGAR iterations and 19 sec to prove the program
safe. However, for 88 out of 108 original programs from SV-COMP with this
pattern in category “Integers and Control Flow”, of which the code in Fig. 1.1 is
a simplified form2, Eldarica does not give an answer within the time limit of
15 min. Predicate abstraction needs to generate for these programs from 116 to
996 predicates, depending on the number of values, for which the maximum is
calculated. Since predicates are added step-wise in the CEGAR loop, checking
these benchmarks is time consuming. We therefore suggest a method of gener-
ating the predicates upfront.

In order to prove that exactly one condition in lines 18–20 evaluates to true
and cnt is incremented by one, predicate abstraction needs to track the val-
ues assigned to variables max1, max2 and max3 with 9 predicates: max1==id1,
max1==id2, max1==id3, etc. Additionally, in order to precisely evaluate condi-
tions in lines 13–15, abstraction needs to track the ordering of variables id1, id2
and id3 with 6 predicates which compare variables id1, id2 and id3 pairwise:
id1<id2, id1>id2, and so on.

To generate the above mentioned 15 predicates our algorithm uses the fol-
lowing variable roles. Variable is input if it is assigned a return value of an
external function call. This pattern is often used in SV-COMP to initialize
variables non-deterministically, e.g. id1=nondet char(), where variables id1,
id2, id3 are inputs. Variables which are assigned only inputs are run-time ana-
logues of compile-time enumerations. A variable is dynamic enumeration if it
is assigned only constant values or input variables, i.e. variables max1, max2
and max3 are dynamic enumerations. For each dynamic enumeration x which
takes values v1,. . .,vn, our algorithm generates n equality predicates: x==v1, . . .,
x==vn.

Variable x is extremum if it is used in the pattern if(comp expr)x = y,
where comp expr is a comparison operator > or < applied to y and some expres-
sion expr, e.g. y>expr. For every variable x which is both dynamic enumeration
and extremum, our algorithm generates pairwise comparisons for all pairs of
input values v1,. . .,vn assigned to x, e.g. v1<v2, v1>v2, and so on.

Eldarica proves the program in Fig. 1.1 annotated with the 15 predicates
in 8 sec and 0 CEGAR iterations, and it takes Eldarica from 21 to 858 sec
(and from 0 to 4 CEGAR iterations) to prove 53 programs from SV-COMP with

2 E.g. seq-mthreaded/pals opt-floodmax.3 true-unreach-call.ufo.BOUNDED-6.

pals.c.

Systematic Predicate Abstraction Using Variable Roles 269

this pattern annotated analogously. For the remaining 55 benchmarks with this
pattern from SV-COMP the number of abstract states becomes too large for
Eldarica to be checked within the time limit.

Motivation Example 2. The code in Fig. 1.2 increments variables i and k in
the loop at line 6 until i reaches n, and decrements variables j and k in the loop
at lines 7–9 until j reaches 0. The assertion checking that the value of variable k
remains positive in the loop can be proven using the predicates k>=i and k>=j.
These predicates are difficult to find, e.g., the baseline version of Eldarica [20]
keeps generating a sequence of pairs of predicates (i<=1,k<=1), (i<=2,k<=2),
etc. As demonstrated by this example, heuristics are needed to guide interpo-
lation towards finding suitable refinement predicates. The community has sug-
gested various heuristics for the above example, e.g., the most recent version of
Eldarica [18] proves the program safe in 5 sec and 6 CEGAR iterations.

We suggest to generate predicate templates demand-driven from the code
under analysis. For the above example, we propose a heuristic which tracks
the dependencies between loop counters: The heuristic searches for variables x
assigned in a loop in a statement matching the pattern x=x+expr, where expr is
an arbitrary expression. For each pair x1 and x2 of such variables the heuristic
generates a predicate template x1-x2. This template restricts the search space of
the interpolation solver to predicates of the form x1-x2>=n, n ∈ N. To formalise
the heuristic we introduce the following role: local counter is a variable assigned
in a loop in a statement x=x+expr, where expr is an arbitrary expression. Note
that we do not restrict expr to be a constant, in contrast to induction vari-
ables [1], since the heuristic is a trade-off between generality and computational
cost and performs well in practice.

Methodology for Choosing Roles. To choose roles and role-based predicates
and templates, we investigated benchmarks of the competition SV-COMP’16
from categories “Integers and Control Flow” and “Loops” and loop invariant
generation benchmarks (appr. 30 benchmarks altogether) on which Eldarica
did not give an answer within the time limit of 15 min. We manually inspected
the code of these benchmarks and annotated the benchmarks with a minimum
set of predicates and templates so that Eldarica checks the benchmarks within
the time limit. We then derived new variable roles which captured specific code
patterns in which the annotated variables were used.

2 Predicate Abstraction and Refinement

We outline the algorithm implemented by predicate abstraction-based software
model checkers, in particular the Eldarica tool [20] used as test-bed. As the core
procedure, Eldarica applies predicate abstraction [13] and counterexample-
guided abstraction refinement [5] to check the satisfiability of Horn constraints
expressing safety properties of a software program [14,15,20]. The procedure has
two main parameters that can be used to tune the abstraction process:

270 Y. Demyanova et al.

– initial predicates Π0 for predicate abstraction (see Sect. 2.1);
– interpolation templates T that guide Craig interpolation towards mean-

ingful predicates during abstraction refinement (see Sect. 2.2).

The pair (Π0, T) can be computed with the help of variable roles, as outlined
in the previous section. It is important to note that neither parameter has any
effect on soundness of a model checker, only termination is affected.

2.1 Solving Horn Clauses with Predicate Abstraction

A Horn clause is a formula of the form ϕ ∧ B1 ∧ · · · ∧ Bn → H, with con-
straint ϕ, body literals B1 ∧ · · · ∧ Bn containing uninterpreted relation symbols,
and head literal H. Eldarica has a C/C++ front-end that translates software
programs to sets HC of Horn clauses. In this setting, relation symbols represent
state invariants Inv c associated with a control location c of a program, and Horn
clauses express 1. pre-conditions Pre(s̄) → Invc(s̄) for program entry points c;
2. Floyd-style inductiveness conditions T (s̄, s̄′) ∧ Invc(s̄) → Inv c′(s̄′), for transi-
tions between control locations c, c′; and 3. safety assertions ¬P (s̄) ∧ Inv c(s̄) →
false for control locations c. The translation from software programs to Horn
clauses HC is defined such that the program is safe if and only if the clauses HC
are satisfiable, i.e., if and only if the predicates Inv c can be interpreted in such
a way that all clauses become valid.

Model checkers like HSF [14] or Eldarica [20] construct solutions of Horn
clauses in disjunctive normal form by building an abstract reachability graph
(ARG) over a set of given predicates. For this, a Horn solver maintains a mapping
Π : R → Pfin(For) from relation symbols p ∈ R to finite sets of predicates. The
solver starts from some initial mapping Π = Π0; for instance, mapping every
relation symbol to an empty set of predicates. The solver will then attempt to
construct a closed ARG by means of fixed-point computation, which can either
succeed (in which case a solution of the Horn clauses has been derived), or
fail because some assertion clause ϕ ∧ p1(t̄1) ∧ · · · ∧ pn(t̄n) → false is violated
during the construction. In the latter case, a connected acyclic ARG fragment
can be extracted that leads from entry clauses (clauses ϕ → H without relation
symbols in the body) to the violated assertion clause. A theorem prover is then
used to verify that the counterexample is genuine; spurious counterexamples are
eliminated by generating additional predicates by means of Craig interpolation,
leading to an extended mapping Π = Π1 and refined abstraction.

2.2 Craig Interpolation with Templates

Predicate abstraction-based model checkers rely on theorem provers to find suit-
able interpolants, or interpolants containing the right predicates, in a generally
infinite lattice of interpolants for every extracted counterexample (represented
as acyclic ARG fragments). Eldarica uses interpolation abstraction [18] as a
semantic way to guide the interpolation procedure towards “good” interpolants;
in this method, interpolation queries are instrumented to restrict the symbols

Systematic Predicate Abstraction Using Variable Roles 271

that can occur in interpolants, ranking the interpolants with the help of tem-
plates. It has previously been shown that interpolation abstraction can signifi-
cantly improve the performance of Horn solvers [18].

In the scope of this paper, we focus on templates in the form of terms. As an
example, consider the binary interpolation query A∧B with A = (x = 1∧y = 2)
and B = (x > y). The interpolation problem has multiple solutions I (with the
property that A ⇒ I and B ⇒ ¬I), including I1 = (x = 1∧y = 2) and I2 = (y =
x + 1). In a software model checker, clearly I2 is preferable, since it abstracts
from concrete values of the variables. Interpolation abstraction can be used to
distinguish between I1 and I2, by preventing theorem provers, e.g., to compute I1
as an interpolant. For this, template terms are used to capture the expressions
that an interpolant might contain. In the example, given templates {x, y}, a
theorem prover could compute either of I1, I2; with the template {x − y}, a
theorem prover could return (x − y = −1) ≡ I2, but no longer I1.

In Eldarica, software programs can be annotated to express preference of
certain interpolants. For instance, line 4 of the code in Fig. 1.2 can be annotated
to express that the differences i-k and j-k are preferred templates:

4 int k, /*@ terms_tpl {i-k} @*/ i, /*@ term_tpl{j-k} @*/ j;

Annotations are attached to variable declarations, and are then applied when
computing interpolants at control points in the scope of the variable. If no inter-
polant can be constructed using this template, a conventional interpolant will be
used. Besides manual annotation, Eldarica also has a set of inbuilt heuristics
to choose meaningful templates automatically [18].

3 Role-Based Predicates and Templates

Specification Language for Roles. In this section we describe a framework for
the specification and computation of role-based initial predicates and predicate
templates. Roles are usage patterns of variables, we introduce and formalize
them as data-flow analyses in our previous work [9]. Here we re-formulate roles
as logic queries on the control-flow graph (CFG) of a program. We choose logic
programming as a formalism for two reasons: first, its notation is well known,
and second, we can use of-the-shelf logic engines for the computation of roles.
Specifically, we use the syntax and standard fixed point semantics of Datalog.

Preliminaries on Datalog. A rule in Datalog is of the form A0:-L1, . . . ,Ln.
The head of a rule A0 is an atom. The body of a rule {Li} is a set of literals,
and each literal Li is of the form A or not A for an atom A, where the connective
not corresponds to default negation. An atom takes boolean values and is of
the form 1. p(t1, . . . , tm), or 2. t0=f(t1, . . . , tk), or 3. t1 op t2, where p
is a predicate symbol, f is a function symbol, tj are term symbols and op is a
comparison operator (e.g. >, !=, etc.). Atom t0=f(t1, . . . , tk) always evaluates
to true and assigns to term t0 the result of function f(t1, . . . , tk). Each term
tj is a constant symbol (i.e. a function symbol with arity 0), a variable, or an

272 Y. Demyanova et al.

integer. Predicate and function symbols start with a small letter, and variables
start with a capital letter. A rule is evaluated as follows: if every literal Li in the
body evaluates to true, then the atom A0 in the head evaluates to true. A rule
with empty body is called a fact.

1 for(i=0; i<n; i++);

(a) Source code

1 sequence_stmt(1).
2 stmt1(1,2).
3 stmt2(1,5).
4 assign_stmt(2).
5 lhs_expr(2,3).
6 rhs_expr(2,4).
7 var(3).
8 name(3,"i").
9 const_literal(4).

10 text(4,"0").
11 while_stmt(5).
12 cond(5,6).
13 body(5,8).
14 bop(6).

15 opcode(6,"<").
16 lhs_expr(6,3).
17 rhs_expr(6,7).
18 var(7).
19 name(7,"n").
20 assign_stmt(8).
21 lhs_expr(8,3).
22 rhs_expr(8,9).
23 bop(9).
24 opcode(9,"+").
25 lhs_expr(9,3).
26 rhs_expr(9,10).
27 const_literal(10).
28 text(15,"1").

(b) Logic program (c) Control flow graph

Fig. 2. Translation of C code to a logic program

Translation of C Code to a Logic Program. We assume a C program to
be given as a logic program, where each node and edge in the control-flow graph
is translated to one or more facts in the logic program. For example, the code
in Fig. 2a is translated to a logic program in Fig. 2b (see the CFG in Fig. 2c). In
particular, the loop condition i<n is represented with nodes 6, 3 and 7 in the
CFG and lines 7–8 and 14–19 in the logic program. Below we will denote a node
corresponding to variable x in the control-flow graph with nodex.

We define roles local counter, extremum, input and dynamic enumeration
in Fig. 3. Specifically, in Fig. 3a we define role local counter which is used to
generate templates, and in Fig. 3b we define roles which are used to generate
initial predicates. Due to the lack of space we introduce the remaining roles and
the generated predicates and templates informally in Table 1. We explain the
definitions of roles in Sect. 3.1, and the generation of predicates and templates
for these roles in Sect. 3.2.

3.1 Definition of Roles

Role Local Counter. Role local counter (line 2–4 in Fig. 3) is defined in the
scope of one loop. The set of variables to which this role is ascribed is encoded
with a binary relation local cnt with a parameter corresponding to the resp.
loop statement WhileStmt. The parameter is needed, because we later define a
template for pairs of local counters, such that the counters have the same para-
meter. A variable X is ascribed role local counter if there is a loop statement

Systematic Predicate Abstraction Using Variable Roles 273

1 % local counter

2 local_cnt(X,WhileStmt):- while_stmt(WhileStmt),

3 sub_stmt(WhileStmt,AsgnStmt), assigned(X,SumExpr,AsgnStmt),

4 bop(SumExpr), opcode(SumExpr,"+"), operand(SumExpr,X).

5

6 % difference templates for local counters

7 tpl(TplStr):-local_cnt(X,WhileStmt),local_cnt(Y,WhileStmt),

8 X!=Y, name(X,Xname), name(Y,Yname), TplStr=@concat(Xname,"-",Yname).

(a) Role local counter and templates.

1 % extremum

2 extremum(X):- if_stmt(IfStmt), condition(IfStmt,Cond), bop(Cond),

3 opcode(Cond,Opcode), strict_rel_opcode(Opcode), operand(Cond,Y),

4 var(Y), assigned(X,Y,AsgnStmt), then(IfStmt,AsgnStmt).

5

6 % input

7 input(X):- assigned(X,CallExpr,AsgnStmt), call_expr(CallExpr),

8 function(CallExpr,Func), not body(Func).

9

10 % dynamic enumerations

11 dyn_enum(X):- var(X), not not_dyn_enum(X).

12 % the complement of dyn_enum

13 not_dyn_enum(X):- assigned(X,Y,AsgnStmt), var(Y), not_dyn_enum(Y).

14 not_dyn_enum(X):- assigned(X,Expr,AsgnStmt), not var(Expr),

15 not dyn_enum_expr(Expr).

16 % cases for dynamic enumerations

17 dyn_enum_expr(Expr):- const_literal(Expr).

18 dyn_enum_expr(Expr):- input(Expr).

19

20 % predicates for dynamic enumerations

21 pred(PredStr):- dyn_enum(X), assigned(X,Y), var(Y),

22 name(X,Xname), name(Y,Yname), PredStr=@concat(Xname,"==",Yname).

23

24 % ordering predicates for dynamic enumerations

25 pred(PredStr):- extremum(X), dyn_enum(X), assigned(X,Y),

26 var(Y), assigned(X,Z), var(Z), Y!=Z, name(Y,Yname),

27 name(Z,Zname), PredStr=@concat(Yname,"<",Zname).

(b) Roles dynamic enumeration, input and extremum, and initial predicates.

Fig. 3. Simplified specification of roles and role-based templates and initial predicates.

WhileStmt, in the body of which X is assigned the sum of X and some other
expression. Term sub stmt(Stmt,SubStmt) encodes that in the control flow
graph SubStmt is a descendant of Stmt. Term assigned(X,Expr,AsgnStmt)
encodes that variable X is assigned expression Expr in statement AsgnStmt.
Term operand(Expr,Bop) encodes that Expr is an operand of binary operator
Bop. For example, for code in Fig. 2a the evaluation of the rule derives the fact

274 Y. Demyanova et al.

Table 1. Informal description of remaining roles with examples.

Role
name

Description of role Π/ T Example

Code Generated
predicates Π
/templates T

Assertion
condition

1 Variable is used in pattern
assert(expr)

Π = {expr} assert(

cnt==1)

Π ={cnt==1}

2 Statement assert(expr)

is nested in an if

statement with condition
cond

Π = {cond} if(x<1)

assert(0)

Π = {x<1}

Parity
variable

3 Variable x is used in
remainder operator x%c

T = {x%c} x%2 T ={x%2}

4 Variable x is incremented
in a loop by constant c,
s.t. c!=1

T = {x%c} for(i=0;i<n;

i+=2)

T ={x%2}

Loop
iterator

5 Variable x is modified in a
loop and is used in the
loop condition cond

Π = {cond} while(i<n)

i++

Π = {i<n}

6 In addition to 5), cond
matches pattern
expr1!=expr2

Π =
{expr1<expr2,
expr1>expr2}

for(i=0;

i!=n;i++)

Π =
{i<n, i>n}

7 In addition to 5), cond
matches pattern
expr1<expr2 (resp.
expr1>expr2) and loop
iterator is changed by 1 in
the loop

Π =
{expr1<=expr2}
(resp.
{expr1>=expr2})

for(i=0;i<n;

i++)

Π = {i<=n}

Loop
bound

8 Variable bnd is compared
to loop iterator it in loop
condition: it◦bnd, where
◦ ∈{<,<=,>,>=,!=,==};
and bnd is assigned in
statement bnd=expr

Π =
{bnd<=expr,
bnd>=expr}

n=k-2;

for(i;i<n;

i++);

Π = {n<=k-2,
n>=k-2}

local cnt(3) for node nodei=3. For clarity we omit rules for terms sub stmt,
assigned, operand and a rule for the case when the counter is decremented.

Role Extremum. Role extremum (lines 2–4) is ascribed to variable X, denoted
with term extremum(X), if there is an if statement IfStmt, the condition Cond
of which is a binary operator greater-than or less-than (encoded with term
strict rel opcode(Opcode)), s.t. Cond contains a variable Y which is assigned
to X in the body of IfStmt. For example, for code if (max3>max1) max1=max3
(line 13 in Fig. 1.1), the result of evaluating the rule is extremum(nodemax1).
Relation strict rel opcode(Opcode) encodes that its parameter is a greater-
than or less-than operator.

Role Input. Role input (lines 7–8) is ascribed to variable X if X is assigned
the result of a call CallExpr to a function Func, the body of which is not

Systematic Predicate Abstraction Using Variable Roles 275

defined (encoded with atom not body(Func)). For example, for the C code
id1=nondet char() where nondet char() is defined as an external function
(lines 1 and 3 in Fig. 1.1), evaluation of the rule derives fact input(nodeid1).

Role Dynamic Enumeration. Role dynamic enumeration (lines 11–18) is
defined via its complement not dyn enum (line 11). Fact not dyn enum(X) is
generated if variable X is assigned an expression Expr which does not belong
to relation dyn enum expr (lines 14–15). The unary relation dyn enum expr
includes constant literals and input variables (lines 17–18). For example,
for code in Fig. 1.1 evaluation of rules derives facts dyn enum(nodemax1),
dyn enum(nodemax2) and dyn enum(nodemax3).

3.2 Role-Based Predicates and Templates

Our algorithm generates initial predicates Πroles = {p | pred(p)} and templates
Troles = {t | tpl(t)}, where pred(p) and tpl(t) are the facts derived by the
logic program (see line 7 in Fig. 3a and lines 21–22 and 25–27 in Fig. 3b). We
now describe the role-based initial predicates and templates in detail.

Local Counter. For every pair of local counters X and Y s,t. X and Y are modified
in loop WhileStmt, a template X-Y is derived (lines 7–8). For example, for code
in Fig. 1.2 the evaluation of the rule derives templates i-k and j-k.

Dynamic Enumeration. For every pair of a dynamic enumeration X and input
Y, s.t. Y is assigned to X, predicate X==Y is derived (lines 21–22). Term @concat
encodes a call to a function which concatenates its parameters. For example,
for code in Fig. 1.1 the evaluation of the rule derives predicates max1==id1,
max2==id2 and max3==id3.

Input Variables. For every pair of input variables Y and Z, s.t. both Y and Z
are assigned to dynamic enumeration and extremum X, predicate Y<Z is derived
(lines 25–27). For example, for code in Fig. 1.1 the evaluation of rules derives
predicates id1<id2, id1>id2, id1<id3, id1>id3, id2<id3 and id2>id3.

4 Evaluation

We implemented our approach in a prototype tool and evaluated the tool on
altogether 549 C benchmarks3.

Benchmarks. Table 2 lists the benchmarks and gives their characteristics.
Specifically, the benchmarks contain (listed in the same order as in Table 2):

1. Benchmarks of the competition SV-COMP’16 from the “Integers and Control
Flow” category. We excluded the Recursive sub-category and 75 benchmarks
which contain C structures and arrays;

3 The tool, the set of used benchmarks and the results of our evaluation are available
at http://forsyte.at/software/demy/nfm17.tar.gz.

http://forsyte.at/software/demy/nfm17.tar.gz

276 Y. Demyanova et al.

Table 2. Characteristics of the benchmarks

Name Number of files Size, KLOC

Total Safe Unsafe

1 SV-COMP CFI 234 91 143 226.4

2 SV-COMP Loops 95 68 27 6.5

3 VeriMAP 153 133 20 13.2

4 Llreve 21 16 5 0.6

5 HOLA 46 46 0 1.4

Total 549 354 195 248.0

Table 3. Eldarica configu-
rations. TEld denotes the tem-
plates generated by built-in
heuristics of Eldarica.

Name Π0 T

Eld ∅ ∅
Eld+B ∅ TEld

Eld+R Πroles Troles

Eld+BR Πroles Troles ∪ TEld

2. Benchmarks from the Loops category of SV-COMP’16 (we excluded 50 bench-
marks for same reasons);

3. Benchmarks of the verification tool VeriMAP4. We excluded 234 duplicate
benchmarks contained in SV-COMP CFI, and 2 benchmarks, for which the
transition relations cannot be expressed with Presburger arithmetic;

4. Simplified versions5 of the benchmarks of tool llrêve for automated program
equivalence checking [12];

5. Loop invariant generation benchmarks of the verication tool HOLA [10].

Tools for Comparison. We evaluate the following configurations of Eldar-
ica: without interpolation abstraction (to which we refer by Eld), with templates
(Eld+B), with roles (Eld+R), and with a combination of templates and roles
(Eld+BR). Table 3 lists different choices for the parameters Π0 and T described
in Sect. 2. As a baseline we also compare Eldarica to SMT solvers Z3 [6] and
Spacer [17]. We could not compare to the duality engine of Z3 because of a
bug in duality, which was not fixed by the time of paper submission. Finally,
we compare Eldarica to the model checker CPAchecker, which is not based
on Horn clauses. CPAchecker has very successfully participated in the soft-
ware competition in the recent years and thus provides an interesting choice for
comparison.

Experimental Setup. We performed our experiments on 2.0GHz AMD
Opteron PC (31GB RAM, 64KB L1 cache, 512KB L2 cache). We did not restrict
the number of cores on which the tasks were performed. We report the wall-clock
time measured using the date shell utility. For evaluation we set the value of
timeout for all tools to 15 min, which is the value of the timeout in the SV-COMP
competition. We put no memory limit on the tools.

Overall Improvement of Eldarica. The results of our evaluation are repre-
sented in Fig. 4, which shows the number of solved and unsolved tasks, with safe
4 http://map.uniroma2.it/vcgen/benchmark320.tar.gz.
5 Original benchmarks are accessible at http://formal.iti.kit.edu/projects/improve/

reve and https://www.matul.de/reve.

http://map.uniroma2.it/vcgen/benchmark320.tar.gz
http://formal.iti.kit.edu/projects/improve/reve
http://formal.iti.kit.edu/projects/improve/reve
https://www.matul.de/reve

Systematic Predicate Abstraction Using Variable Roles 277

and unsafe tasks counted separately. Specifically, Fig. 4a gives a summary for all
benchmarks, and Figs. 4b-4f show detailed results for each benchmark. In the bar
plots on top of each bar is the mean runtime of the respective tool, calculated
without timeouts. The times for Eld+R include the times for computing roles:
the mean and median time of annotating a program for all benchmarks amount
to 3.8 sec and 0.8 sec resp. We observe that the best configuration of Eldarica is
Eld+R, which solves the highest number of tasks for every benchmark separately
and for all benchmarks. The second best configuration for most benchmarks is
Eld+B. Overall Eld+R solves 11.2% more tasks than Eld+B: 4.6% more safe
and 6.6% more unsafe tasks. We conclude that the configuration Eld+R improves
on the previous configurations of Eldarica (Eld and Eld+B).

Comparison of Runtimes. Overall, the runtime of Eld+R is comparable to the
runtime of other Eldarica’s configurations, but for the benchmarks SV-COMP
CFI we observe a significant speedup of Eld+R, as shown in Fig. 5. SV-COMP
CFI is a specific family of benchmarks because of their big size and a large
number of enumeration variables, see e.g. the code in Fig. 1.1. Note that in Fig. 5
we compare Eld+R to Eld, which is the second best configuration, because for
these benchmarks no heuristics are needed. The speedup of Eld+R for SV-COMP
CFI is caused by a considerable decrease in the number of CEGAR iterations. To
demonstrate this, we evaluate the configuration Eld+B with the timeout value
of one hour (denoted as Eld+BH in Fig. 4c). We observe that Eld+BH solves
12.8% more unsafe and 9.0% more safe tasks than Eld+B. To conclude, Eld+R
does not increase the runtime on all benchmarks, and even shows a significant
speedup for the family of benchmarks from SV-COMP CFI.

Comparison of Roles with Eldarica’s Previous Heuristics. A comparison
of Eld+R to Eld+B shows that all but one benchmarks solved by old configura-
tions of Eldarica can also be solved by Eld+R. The one benchmark not solved by
Eld+R requires a predicate relating three variables in an equality, which accord-
ing to our experience does not fall into frequently used patterns. Moreover, as
Fig. 4 shows, the configuration Eld+BR, which combines roles and old heuristics
of Eldarica, solves 3% less tasks than Eld+R. One possible reason for the slow-
down (and consequently the lower number of solved benchmarks) of Eld+BR are
redundant predicates generated by built-in heuristics of Eldarica. These results
confirm that our framework not only describes new heuristics but also captures
all previous heuristics of Eldarica.

Improvement on Unsafe Benchmarks. Surprisingly, the initial predicates
also help to solve more unsafe benchmarks, as Fig. 4c shows. In principle, these
predicates can be found by Eld+B with a higher value of runtime, as demon-
strated by the configuration Eld+BH. We conclude that when variable roles are
used, the number of solved unsafe tasks does not decrease in general and even
increases for SV-COMP CFI benchmarks.

278 Y. Demyanova et al.

Proved
UNSAFE

Proved
SAFE

TO
UNSAFE

TO
SAFE

Not
Supported

CP
Ac

he
ck
er Z3

Sp
ac
er El

d

El
d+

B

El
d+

R

El
d+

BR
0%

20%

40%

60%

80%

100%
47.7s51.1s 52.0s54.1s17.1s 38.1s23.9s

14 7
71

118 98 82 58 27 27

16

122
115

103
93

62 65

277

203
230

257 293

325 325

185

92 99 107 105 135 132

(a) Summary for all benchmarks
CP

Ac
he
ck
er Z3

Sp
ac
er El

d

El
d+

B

El
d+

R

El
d+

BR
0%

20%

40%

60%

80%

100%
10.9s10.4s 10.2s11.2s12.7s 20.4s3.5s

7 4

22

32
26

21
12

1 1

6

5

5

6

6

6 6

46

32
40

47
56

67 67

21 19 20 21 21 21 21

(b) SV-COMP Loops benchmark

CP
Ac

he
ck
er Z3

Sp
ac
er El

d

El
d+

B

El
d+

R

El
d+

BR

El
d+

BH
0%

20%

40%

60%

80%

100%
456s124s133s 169s160s17.8s 136s90s

37
65 62

40 44
23 24 34

2

95 89

82 84

54 57
6854

26 29
51 47

68 67
57

141

48 54 61 59
89 86 75

(c) SV-COMP CFI benchmark
CP

Ac
he
ck
er Z3

Sp
ac
er El

d

El
d+

B

El
d+

R

El
d+

BR
0%

20%

40%

60%

80%

100%
6.1s5.5s 6.0s4.5s17.2s 0.3s0.3s

6 13 7 14
2 2 2

2

127 120 126 119
131 131 131

18 20 20 20 20 20 20

(d) VeriMAP benchmark

CP
Ac

he
ck
er Z3

Sp
ac
er El

d

El
d+

B

El
d+

R

El
d+

BR
0%

20%

40%

60%

80%

100%
15.0s9.7s 11.6s6.5s19.3s 0.4s0.5s

6
8

3

7

1

10
8

13

9

16 15 16

5 5 5 5 5 5 5

(e) Llreve benchmark
CP

Ac
he
ck
er Z3

Sp
ac
er El

d

El
d+

B

El
d+

R

El
d+

BR
0%

20%

40%

60%

80%

100%
15.3s14.8s 21.1s10.8s19.6s 0.3s11.4s

7
3

6

22

21

15

3 2 2

40

17
22

31

43 44 44

(f) HOLA benchmark

Fig. 4. Bar plots comparing the percentage of proved tasks for CPAchecker, Z3, Spacer
and different Eldarica configurations. Inside each bar is the percentage of the resp.
answers. On top of each bar is the mean runtime computed without timeouts (for
solved tasks).

Systematic Predicate Abstraction Using Variable Roles 279

1 10 100 1,000

1

10

100

1,000

Eld+R (CEGAR iterations)

E
ld

(C
E
G
A
R

it
e
ra

ti
o
n
s)

SAFE

UNSAFE

10 100 1,000

10

100

1,000

Eld+R (sec)

E
ld

(s
e
c
)

SAFE

UNSAFE

Fig. 5. Scatter plots comparing the number of CEGAR iterations and runtime, both
in logarithmic scale, of configurations Eld+R and Eld for benchmark SV-COMP CFI.
The mean runtime of Eld+R is 1.5 times smaller than that of Eld, and the average
number of CEGAR iterations of Eld+R is 19.0 times smaller than that of Eld, the four
values calculated on the tasks solved by both Eld and Eld+R.

Comparison of Eldarica to SMT Solvers. We compare Eldarica to SMT
solvers Z3 and Spacer6. We note that a small number of tasks in benchmarks
SV-COMP Loops and HOLA cannot be processed by Z3 and Spacer because of
existential quantifiers in the SMT translation, which is not in the fragment han-
dled by the PDR engine of Z3. We denote these benchmarks as “Not Supported”
in Fig. 4. We observe that, on one hand, all configurations of Eldarica outper-
form both Z3 and Spacer in the number of solved tasks, in particalar Eld+R
solves 30% more tasks than Z3. We note, however, that our method for guiding
predicate abstraction uses the structure of a program, which is not preserved on
the level of SMT formulae. On the other hand, the mean runtime of Z3 is 2.0
times lower than the mean runtime of Eld+R. To conclude, Eldarica outperforms
Z3 and Spacer in the number of solved tasks, but loses in speed.

Comparison of Eldarica to CPAChecker. Finally, we compare Eldarica to
the model checker CPAchecker. We observe that on safe and unsafe tasks the
tools show complementary strengths. In particular, CPAchecker proves more
tasks unsafe than Eldarica on CFI benchmarks, and on other benchmark sets
shows comparable to Eldarica results. For safe benchmarks, however, on all
benchmark sets CPAchecker can prove fewer programs safe than the Eldar-
ica configurations Eld+B, Eld+R and Eld+BR. To conclude, Eldarica with
interpolation abstraction outperforms CPAchecker on safe benchmarks, while
CPAchecker performs better on a family of unsafe benchmarks.

6 We evaluate the default configuration of Z3 without command-line options. To exe-
cute Spacer, we use the command-line option fixedpoint.xform.slice=false.

280 Y. Demyanova et al.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles. Techniques. Addison
Wesley, Boston (1986)

2. Apel, S., Beyer, D., Friedberger, K., Raimondi, F., Rhein, A.: Domain types:
abstract-domain selection based on variable usage. In: Bertacco, V., Legay, A.
(eds.) HVC 2013. LNCS, vol. 8244, pp. 262–278. Springer, Cham (2013). doi:10.
1007/978-3-319-03077-7 18

3. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

4. Beyer, D., Löwe, S., Wendler, P.: Refinement selection. In: Fischer, B., Geldenhuys,
J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 20–38. Springer, Cham (2015). doi:10.
1007/978-3-319-23404-5 3

5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

6. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

7. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software metrics
for benchmarking of verification tools. In: Kroening, D., Păsăreanu, C.S. (eds.)
CAV 2015. LNCS, vol. 9206, pp. 561–579. Springer, Cham (2015). doi:10.1007/
978-3-319-21690-4 39

8. Demyanova, Y., Pani, T., Veith, H., Zuleger, F.: Empirical software met-
rics for benchmarking of verification tools. Int. J. Form. Methods Syst. Des.,
1–28 (2017). doi:10.1007/s10703-016-0264-5. http://link.springer.com/article/10.
1007%2Fs10703-016-0264-5

9. Demyanova, Y., Veith, H., Zuleger, F.: On the concept of variable roles and its use
in software analysis. In: Formal Methods in Computer-Aided Design (FMCAD),
pp. 226–230. IEEE (2013)

10. Dillig, I., Dillig, T., Li, B., McMillan, K.: Inductive invariant generation via abduc-
tive inference. ACM SIGPLAN Not. 48, 443–456 (2013). ACM

11. Engler, D., Chen, D.Y., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
a general approach to inferring errors in systems code. In: Operating Systems
Principles (SOSP), vol. 35. ACM (2001)

12. Felsing, D., Grebing, S., Klebanov, V., Rümmer, P., Ulbrich, M.: Automating
regression verification. In: Automated software engineering (ASE), pp. 349–360.
ACM (2014)

13. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). doi:10.
1007/3-540-63166-6 10

14. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: Programming Language Design and Implemen-
tation (PLDI), pp. 405–416. ACM (2012)

15. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31612-8 13

16. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. (CSUR)
41(4), 21 (2009)

http://dx.doi.org/10.1007/978-3-319-03077-7_18
http://dx.doi.org/10.1007/978-3-319-03077-7_18
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-319-23404-5_3
http://dx.doi.org/10.1007/978-3-319-23404-5_3
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-21690-4_39
http://dx.doi.org/10.1007/978-3-319-21690-4_39
http://dx.doi.org/10.1007/s10703-016-0264-5
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10703-016-0264-5
http://springerlink.bibliotecabuap.elogim.com/article/10.1007%2Fs10703-016-0264-5
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-642-31612-8_13

Systematic Predicate Abstraction Using Variable Roles 281

17. Komuravelli, A., Gurfinkel, A., Chaki, S., Clarke, E.M.: Automatic abstraction in
SMT-based unbounded software model checking. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 846–862. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 59

18. Leroux, J., Rümmer, P., Subotić, P.: Guiding craig interpolation with domain-
specific abstractions. Acta Inform. 53, 1–38 (2016)

19. Nori, A.V., Rajamani, S.K.: An empirical study of optimizations in YOGI. In:
Software Engineering (ICSE), vol. 1, pp. 355–364. ACM (2010)

20. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 24

21. Sajaniemi, J.: An empirical analysis of roles of variables in novice-level procedural
programs. In: Human-Centric Computing Languages and Environments (HCC),
pp. 37–39. IEEE (2002)

22. Van Deursen, A., Moonen, L.: Type inference for COBOL systems. In: Reverse
Engineering (RE), pp. 220–230. IEEE (1998)

http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-39799-8_59
http://dx.doi.org/10.1007/978-3-642-39799-8_24

specgen: A Tool for Modeling Statecharts in CSP

Brandon Shapiro1 and Chris Casinghino2(B)

1 Brandeis University, Waltham, MA 02453, USA
bts8394@brandeis.edu

2 Draper Laboratory, Cambridge, MA 02140, USA
ccasinghino@draper.com

Abstract. We present specgen, a tool for translating statecharts to the
Communicating Sequential Processes language (CSP), where they may
be explored and verified using FDR, the CSP model checker. We build
on earlier algorithms for translating statecharts to CSP by supporting
additional features, simplifying the generated models, and implementing
a practical tool for statecharts built in Enterprise Architect, a commer-
cially available modeling environment. We demonstrate the tool on a
standard example.

1 Introduction

Statecharts are a widely-used technique for graphically representing the high-
level behavior of complex systems. Since their introduction by Harel [5], support
for various versions of statecharts has been implemented in many commercial
tools, including Enterprise Architect and Simulink Stateflow. As the use of stat-
echarts has become widespread, so too have techniques for formally verifying
their behavior. Classic examples include modeling via translation to SPIN [10]
or to SMV [2].

This paper presents specgen, a tool for translating statecharts to Communi-
cating Sequential Processes (CSP). This makes it possible to explore and verify
the behavior of a statechart using FDR, the CSP model checker [4]. CSP and
FDR have been used for modeling and formal verification for decades, in both
academia and industry [8,9,11].

Translating statecharts to CSP has two main advantages. First, CSP is a
rich, expressive language for writing specifications. We may leverage FDR to
check these specifications and to interactively explore the behavior of the trans-
lated systems. Second, statecharts are themselves a convenient way to represent
specifications for more complex systems already implemented in CSP. For exam-
ple, the second author has also implemented a tool, called cspgen, to translate
imperative programs from C source or LLVM IR to CSP [1]. The typical use

This work was sponsored by DARPA/AFRL Contract FA8750-12-C-0261. The views,
opinions and/or findings expressed are those of the authors and should not be inter-
preted as representing the official views or policies of the Department of Defense or
the U.S. Government.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 282–287, 2017.
DOI: 10.1007/978-3-319-57288-8 19

specgen: A Tool for Modeling Statecharts in CSP 283

of cspgen involves taking code written by a domain expert and translating it
to CSP, then developing specifications to be checked by FDR. As the domain
expert is typically unfamiliar with CSP, statecharts provide an intuitive, graph-
ical common language for these specifications. Having a tool like specgen to
automatically convert the graphical specification to CSP makes this possible.

The specgen tool builds on previous work for modeling statecharts in
CSP [12]. We have added support for several additional statechart features and
designed a new, simplified algorithm by using new CSP language constructs, as
described in Sect. 3. The tool supports statecharts developed with Enterprise
Architect and is the first practical implementation of any such translation. The
specgen distribution also includes several examples, described in Sect. 2, and is
available freely under a permissive open-source license [14].

2 The Dining Philosophers: An Example

To illustrate the use of specgen, we consider the classic dining philosophers
problem [7]. Our distribution of specgen includes this example, implemented as a
statechart in Enterprise Architect, for 2, 3 and 4 philosophers [14]. Figure 1 shows
statecharts representing Philosopher 2 and Fork 2 from the four philosopher
system. We elide the full system for space—it consists of four philosophers and
forks, similar to those shown, as parallel substates of one top-level node.

We begin our explanation with the statechart for Fork 2. Conceptually, it
keeps track of which philosopher has permission to use the fork at any time. It
begins in the state Free, indicating that the fork is not in use and may be claimed
by either philosopher. Transitions to the Phil2Holds2 and Phil3Holds2 states are
guarded by the constraints In(WaitingRight2) and In(WaitingLeft3) respectively.
This ensures these transitions are not taken until the relevant philosopher is in

Fig. 1. Statecharts for one philosopher and fork

284 B. Shapiro and C. Casinghino

the state where he is waiting on this fork, so the ownership of the fork is not
given to a philosopher until he wants it.

The system also includes four variables, f1, . . . , f4, one for each fork. Intu-
itively, the value in these variables indicates which philosopher, if any, currently
has permission to use a given fork. Thus, the transition from state Free2 to state
Phil3Holds2 sets variable f2 to 3. These variables are set by the forks, and used
by guards in the philosophers. For example, consider node WaitingLeft2 in Phil2.
This node models the state where Philosopher 2 is waiting to pick up his left
fork (Fork 1). The guard on this transition prevents it from being taken unless
f1 = 2, indicating that Philosopher 2 has permission to use Fork 1. Similarly, the
transition from Eating2 to ReplacedRight2 is guarded by the requirement that f2
is not 2, indicating that Philosopher 2 no longer has permission to use his right
fork. The semantics of statecharts require that all available transitions are taken
immediately, ensuring that Fork 2 and Philosopher 2 remain synchronized here.

Finally, we consider the edge from Sitting2 back to Standing2, which is labeled
with the completion event complete(Sitting2). In statecharts, events are named
triggers that are often used to represent external events. During execution, a set
of enabled events is provided as input, and an edge labeled with an event may
only be taken if the event is currently enabled. Completion events are special
events that are enabled when a node terminates, rather than by input. A node is
considered to have terminated when all of its concurrent subnodes have reached
states with no out-edges. Here, the event label prevents the philosopher from
standing until he is done eating.

It is worth noting that this example is not intended to represent the most
efficient or natural implementation of the dining philosophers as a statechart.
Rather, we have designed it to highlight several features supported by the tool.

2.1 The Generated Model

When run on an Enterprise Architect statechart like the one described above,
specgen produces several files containing CSP definitions, including a top-level
process RunSystem that models the statechart’s behavior. The behavior of a CSP
process is most easily described by finite “traces” of observable events. In the
case of RunSystem, the relevant observable events include:

– transition.N.E, indicating a transition between nodes. Here N is the name of
the node that contains the transition, and E is the name of the edge itself.
Typically, specgen will generate node names that match the name given in
the statechart if all nodes have unique names, and will otherwise pick a name
based on the full path of a node. Edges are given names like Node1__Node2,
indicating a transition from Node1 to Node2.

– tock, indicating the completion of a “step” of the statechart. According to
the semantics of statecharts, a step comprises a single transition in every
currently-running subchart that can make one.

– read.x.n and write.x.n, indicating reads or writes of a value n in variable x.
– writeerror.x, indicating that the statechart has a race condition where two

parallel subcharts attempted to write to the variable x in the same step.

specgen: A Tool for Modeling Statecharts in CSP 285

2.2 Finding the Deadlock

The most obvious property to check in the dining philosophers example is dead-
lock freedom. In our CSP scripts, this property is stated:

assert RunSystem \ {| tock |} :[deadlock free]

The \ (“hiding”) operator here is used to hide the tock events of RunSystem.
A statechate continues to take “steps”, represented by these events, even if no
subchart can make a transition. Intuitively, to detect the deadlock, we must
inform FDR that the mere passage of time does not count as progress.

Asking FDR to check this property results in an assertion failure, as expected.
Indeed, because the semantics of statecharts require each parallel process to make
a transition in each step if able to, this system will always deadlock. FDR also
displays the trace that leads to the deadlock. For the three philosopher system,
this trace ends with the events:

transition.Sitting2.WaitingLeft2__WaitingRight2 ,

transition.Sitting3.WaitingLeft3__WaitingRight3 ,

transition.Sitting1.WaitingLeft1__WaitingRight1

We see that the last three events are each philosopher transitioning to his
WaitingRight node, indicating that each philosopher has picked up his left fork
and is waiting on his right fork.

2.3 More Complicated Properties

FDR, more generally, supports checking refinement between two CSP processes.
This enables the use of CSP as a rich specification language for properties more
interesting than deadlock. Our distribution of specgen includes many worked
examples. For the dining philosophers system in particular, we show how to verify
that changing the order in which a philosopher picks up his forks eliminates
the deadlock, and include a detailed explanation of how to check the property
“after sitting, no philosopher stands without eating”. We also show how to check
for race conditions in variable writes, and include several other statecharts to
demonstrate a variety of properties.

2.4 Performance

The time to find the deadlock in FDR is summarized in the table below, orga-
nized by the number of philosophers in the system:

Philosophers 2 3 4

Time 2.0 s 6.0 s 117 s

These times are the averages of 5 runs performed on an Intel Xeon E5-2630 v3.
The machine had 32 GB of RAM, but all tests consumed less than 6 GB.

Predictably, the time to find the deadlock grows exponentially with the
number of philosophers. Checking these translated statecharts is slower than
checking more natural implementations of the dining philosophers in CSP,

286 B. Shapiro and C. Casinghino

because accurately modeling the semantics of statecharts involves substantial
coordination overhead and additional features like per-node timers. As stat-
echarts offer the advantage of wider accessibility, we believe this overhead is
sometimes justified.

3 Translation Enhancements

As mentioned in the introduction, specgen builds on an earlier algorithm for mod-
eling statecharts in CSP, by Roscoe and Wu [12]. In addition to providing a prac-
tical implementation, we have improved on that paper’s translation by including
support for two additional statechart features (the “in” guards and completion
events described in Sect. 2) and exploiting a newer FDR feature to simplify the
generated models. The remainder of this section describes this simplification.

The biggest challenge in modeling statecharts in CSP is representing priority.
In CSP, a process may select freely among its available actions, but in statecharts
certain transitions may be favored over others. For example, nodes must be
allowed to take an “idle” step if and only if no transitions are available. Also,
transitions out of a state may be favored over transitions within that state when
both are available, or vice versa—classic Statemate semantics [6] favor outer
transitions while UML favors inner ones [3]. (In specgen we have followed [12]
in modeling Statemate, but it would be straightforward to prefer the alternate
order, which is more common today).

Roscoe and Wu’s translation models these instances of priority with a subtle
renaming and synchronization scheme [13]. Happily, modern versions of FDR
include a new feature that specgen uses to simplify this: prioritise. This
function takes as arguments a process P and an ordered list evs of sets of events.
If P may perform events from different sets in evs, then prioritise(P,evs)
may perform only events from the first set that contains any of P’s events.
Combining prioritise with interrupts, where a CSP process may be preempted
by certain events, also allowed for a simplified encoding of “promoted” actions in
statecharts. These actions allow an inner node to transition directly to an outer
node, terminating its parallel siblings.

4 Conclusion and Future Work

This paper has described specgen, a tool for translating statecharts to CSP.
We demonstrated the use of the tool on a common example, illustrating how
to analyze the behavior of a statechart by model-checking its translation with
FDR (Sect. 2). Many more examples are available with the specgen distribution,
which is available as open-source software [14]. The translation used by the tool
is inspired by earlier work by Roscoe and Wu [12], which has been improved and
extended (Sect. 3).

We are interested in expanding on this work in several directions. First, the
generated model can likely be further optimized for model-checking speed in
FDR. In particular, the use of inductive compression [13] to reduce the state
space created by hidden control events seems particularly promising. Second, it

specgen: A Tool for Modeling Statecharts in CSP 287

would be interesting to compare our tool directly with other systems for verifying
statecharts. Lastly, while the translation is intended to faithfully model one ver-
sion of statechart semantics, it would be reassuring to formalize and mechanically
verify this property with an interactive theorem prover like Coq or Isabelle/HOL.

While specgen is intended as a prototype, we have found it to work surpris-
ingly well on a variety of examples. Readers are encouraged to download the
implementation and give it a try.

Acknowledgments. The authors thank Neil Brock, Thomas Gibson-Robinson, Colin
O’Halloran and Cody Roux for their advice on this project, and the anonymous review-
ers for their helpful feedback.

References

1. Casinghino, C.: cspgen (2016). https://github.com/draperlaboratory/cspgen
2. Chan, W., Anderson, R.J., Beame, P., Burns, S., Modugno, F., Notkin, D., Reese,

J.D.: Model checking large software specifications. IEEE Trans. Softw. Eng. 24(7),
498–520 (1998)

3. Eshuis, R., Wieringa, R.: Requirements-level semantics for UML statecharts. In:
Fourth International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems, pp. 121–140. Kluwer Academic Publishers (2000)

4. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.W.: FDR3 — a
modern refinement checker for CSP. In: Ábrahám, E., Havelund, K. (eds.) TACAS
2014. LNCS, vol. 8413, pp. 187–201. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54862-8 13

5. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gramm. 8(3), 231–274 (1987)

6. Harel, D., Naamad, A.: The statemate semantics of statecharts. ACM Trans. Softw.
Eng. Methodol. 5(4), 293–333 (1996)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall Inc., Upper
Saddle River (1985)

8. Lawrence, J.: Practical application of CSP and FDR to software design. In: Abdal-
lah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Sequential Processes.
The First 25 Years. LNCS, vol. 3525, pp. 151–174. Springer, Heidelberg (2005).
doi:10.1007/11423348 9

9. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6(1–2), 53–84 (1998)

10. Mikk, E., Lakhnech, Y., Siegel, M., Holzmann, G.J.: Implementing statecharts in
PROMELA/SPIN. In: Proceedings of the Second IEEE Workshop on Industrial
Strength Formal Specification Techniques. IEEE Computer Society (1998)

11. Mota, A., Sampaio, A.: Model-checking CSP-Z: strategy, tool support and indus-
trial application. Sci. Comput. Program. 40, 59–96 (2001)

12. Roscoe, A.W., Wu, Z.: Verifying statemate statecharts using CSP and FDR. In:
Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp. 324–341. Springer,
Heidelberg (2006). doi:10.1007/11901433 18

13. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer, New York
(2010)

14. Shapiro, B., Casinghino, C.: specgen (2016). https://github.com/draperlaborato
ry/specgen

https://github.com/draperlaboratory/cspgen
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/978-3-642-54862-8_13
http://dx.doi.org/10.1007/11423348_9
http://dx.doi.org/10.1007/11901433_18
https://github.com/draperlaboratory/specgen
https://github.com/draperlaboratory/specgen

HYPRO: A C++ Library of State Set
Representations for Hybrid Systems

Reachability Analysis

Stefan Schupp(B), Erika Ábrahám, Ibtissem Ben Makhlouf,
and Stefan Kowalewski

RWTH Aachen University, Aachen, Germany

Abstract. In this tool paper we introduce HyPro, our free and open-
source C++ programming library, which offers implementations for the
most prominent state set representations used by flowpipe-construction-
based reachability analysis techniques for hybrid systems.

1 Introduction

As hybrid systems with mixed discrete-continuous behaviour are often safety-
critical applications, a rising interest in their safety verification resulted in the
development of powerful tools implementing different approaches to determine
the set of system states that are reachable from a given set of initial states.
Besides approaches based on, e.g., theorem proving or SMT solving, flowpipe-
construction-based reachability analysis is a well established method, which over-
approximates the set of reachable states of a hybrid system by a union of state
sets, each of them being represented by a geometric object of a certain shape (like
boxes, polytopes, or zonotopes) or symbolically (like support functions or Taylor
models). Hybrid systems reachability analysis tools like, e.g., Cora [1], Flow* [2],
HyCreate [7], HyReach [8], SoapBox [5], and SpaceEx [3] implement different
techniques using different geometric or symbolic state set representations, each
of them having individual strengths and weaknesses.

The implementation of novel reachability analysis algorithms that use some
geometric or symbolic state set representations is still effortful, as datatypes for
the underlying state set representations need to be implemented first. In this
paper we report on the first release of our free and open-source C++ library
HyPro, providing implementations for the most prominent state set represen-
tations. Our aim is to offer assistance for the rapid implementation of new
algorithms by encapsulating all representation-related issues and allowing the
developers to focus on higher-level algorithmic aspects.

The HyPro library specifies a unified interface for different representa-
tions, which supports all operations required in reachability analysis as well
as conversion methods between the different representations. Besides own

This work was supported by the German Research Council (DFG) in the context of
the HyPro project.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 288–294, 2017.
DOI: 10.1007/978-3-319-57288-8 20

HyPro: A C++ Library for State Set Representations 289

implementations for state set representations, the library also offers approaches
towards wrapping other existing libraries implementing a certain state set rep-
resentation.

After some preliminaries in Sect. 2, we describe in Sect. 3 the structure and
usage of our library and provide some experimental evaluation in Sect. 4.

2 Hybrid Systems Reachability Analysis

Reachability analysis aims at the computation of the set of states that are reach-
able in some system from a given set of initial states. Reachability analysis is
often used for safety verification by showing that the set of reachable states does
not intersect with a pre-defined set of unsafe states.

We are interested in reachability analysis for hybrid automata [6], a pop-
ular modelling formalism for hybrid systems. Intuitively, they extend discrete
automata models, whose nodes resp. transitions model the states (control modi)
resp. state changes (jumps) of the discrete part of the system, by addition-
ally modelling the evolution of continuous quantities (flowpipe) between discrete
state changes through ordinary differential equation (ODE) systems.

As the reachability problem for hybrid automata is in general undecid-
able, over-approximative bounded reachability analysis can be used to over-
approximate reachability along such paths that satisfy some upper bounds on the
time elapse between two consecutive jumps (time horizon) and on the number
of jumps (jump depth). Due to the over-approximation, we can prove bounded
safety in case of an empty intersection of the reachable state set with the unsafe
state set, but no conclusive answer can be given if this intersection is not empty.

Fig. 1. Flowpipe-construction-based
reachability analysis (guard satisfy-
ing sets in red, jump successor in
green). (Color figure online)

Flowpipe-construction-based reachabil-
ity analysis approaches iteratively com-
pute successors of a given initial state set.
To over-approximate flowpipes, they divide
a given time horizon into time segments
and over-approximate the states reachable
within each time segment by a state set,
thus “paving” the flowpipe with state sets.
For computing jump successors, they deter-
mine the intersections of those “paving”
state sets with the guards of jumps that exit
the current control modus, and apply the
jumps’ reset transformations to those inter-
sections (see Fig. 1).

3 The HYPRO Library

The library is published at https://github.com/hypro/hypro. In the following
we describe its components (see Fig. 2) and its usage. For more details we refer
to the online documentation and the user’s guide accessible on the above page.

https://github.com/hypro/hypro

290 S. Schupp et al.

Fig. 2. HyPro class structure.

Arithmetic Computations. HyPro is templated in the number type and makes
use of boost and the following external libraries:

– cln, gmp (optional): exact number types cl RA and mpq class;
– CArL: number-type-templated (cl RA or mpq class) exact arithmetic com-

putations, number type conversion;
– Eigen3: number-type-templated matrix computations; when instantiated with
double, conservativeness is not assured;

– PPL (optional): efficient but inexact computations with polytopes;
– glpk: linear optimiser using either floating-point or exact arithmetic, however,

its interface does not support the exchange of exact numbers, thus the results
are not provably correct;

– SMT-RAT, SoPlex and Z3 (optional): exact linear optimisers; SMT-RAT and
SoPlex support mpq class in their interfaces, but not Z3, therefore we need
to convert mpq class-numbers to strings when calling Z3;

– log4cplus (optional): logger functionalities.

Currently, HyPro can be instantiated with inexact (double) or exact (cl RA,
mpq class) number types; Eigen3 will be instantiated the same way. When
inexact, all representations as well as Eigen3 use the double number type, thus
we cannot guarantee over-approximative results; however, as exact optimisa-
tion is extremely important for meaningful results for most representations, we
still guarantee exact optimisation through a combination of inexact glpk with
an exact optimiser if available (see Fig. 3). When using an exact number type,
HyPro assures conservative results if one of the modules SMT-RAT, SoPlex or
Z3 are available and if PPL is not used; as glpk is faster than the other opti-
misers but its interface is inexact, we use the same approach as for the double
representation shown in Fig. 3, but run glpk in exact modus.

HyPro: A C++ Library for State Set Representations 291

Fig. 3. Increased efficiency by combining inexact and exact computations.

State Set Representations. To implement the computations described in the pre-
vious section, we need a suitable data type (representation) that supports the
storage of state sets (subsets of Rn) and certain operations on them. The choice
of the state set representation is highly relevant, as it strongly influences both
computational effort and precision. Our library offers state-set representation
by boxes, (convex) polytopes [10] in vertex (V) as well as in halfspace (H) rep-
resentation, support functions [9] and zonotopes [4]. For these representations,
we provide all operations needed for the reachability analysis of linear hybrid
automata (hybrid automata specified using linear conditions and resets, and
linear ODEs): linear transformation, Minkowski sum, intersection, union, and
test for emptiness. All the above representations implement a common interface
specifying these operations, extended with some additional convenience func-
tions (e.g., functions for determining the dimension of a set or functionalities for
output). Some representations also extend this interface with individual func-
tions, only relevant for that representation (e.g., order reduction functions for
zonotopes).

We additionally provide a module for orthogonal polyhedra, but it is partial
as we found no proper way to compute the Minkowski sum and linear transfor-
mation. We thank Xin Chen who contributed with a further module for Taylor
models; however, as Taylor-model-based reachability analysis requires different
operations, this module does not implement the global HyPro interface.

Conversion. None of the state set representations is generally optimal in terms
of both computational effort and precision in reachability analysis. Switching
between representations, although mostly expensive, can pay off during the
analysis, for instance to improve the precision of the computed state sets locally.
This feature allows for the implementation of backtracking mechanisms and fast
look-ahead strategies in a dynamic reachability analysis approach. HyPro imple-
ments easy-to-use (exact or over-approximating) conversion operations for all
included state set representations; this converter is a template parameter and
thus exchangeable by the user, if more specialised methods are desired.

Reduction Techniques. The size of state set representations usually strongly
increases during the analysis due to more complex shapes (e.g., when comput-
ing Minkowski sum) and number representations (e.g., when computing linear
transformation). For boxes and polytopes, HyPro provides efficient and conser-
vative over-approximating number reduction techniques. For zonotopes we offer
a conservative order-reduction algorithm to limit the number of generators. For
support functions we reduce the operational tree of the object.

292 S. Schupp et al.

Additional Datastructures and Utility Functions. We provide a data type for
hybrid automata, a parser for Flow*-like syntax, utility functions such as a
plotter which creates gnuplot or TikZ output files for state set visualisation,
logging mechanisms to trace executions, and an exemplary reachability analysis
algorithm among various other examples showing how to use the library.

Usage. We illustrate the usage of the HyPro library on some simple examples
based on the double number type (where also Eigen3 objects are instantiated
with double); for further details see the examples folder and the user’s guide.

We can create a state set {x ∈ R
n|Ax ≤ b} represented by an H-polytope p

by specifying an Eigen3 matrix A, representing the constraints (row-wise) and
an Eigen3 vector b representing the constant parts, as follows:

HPolytope<double> p = HPolytope<double>(A, b);

The Minkowski sum p of two H-polytopes p1 and p2 can be computed by:

HPolytope<double> p = p1.minkowskiSum(p2);

A box containing a set V of points of type std::vector<Point<double> > can
be converted to a polytope in the H-representation using the Converter class:

HPolytope<double> p = Converter::toHPolytope(Box<double>(V));

To plot an object (per default in the first two dimensions), we can report its
vertices to the singleton class Plotter, and create a gnuplot file using the
method plot2d():

Plotter<double>::getInstance().addObject(p.vertices());

Plotter<double>::getInstance().plot2d();

Future Work. Currently we focus on efficiency-related improvements for the pre-
sented representations, including the better exploitation of inexact arithmetic.
Long-term plans address also extensions with further representations. Regarding
efficiency, naturally, we cannot compete with well-established special-purpose
libraries like PPL and polymake for polytope computations. Additionally to
PPL, we work on the development of further wrappers for third-party libraries.
Last but not least, as representation-related parameter settings are currently
global and static, we work on the support of representation- and object-specific
settings.

4 Experimental Evaluation

Using our library we implemented a simple reachability analysis algorithm for
linear hybrid systems, and used it to evaluate the efficiency of our library
on three commonly known benchmarks: (1) the bouncing ball (BBall) models
the bouncing of an elastic ball dropped from a predefined height (parameters:
time step δ = 0.01, time horizon T = 3); (2) the rod reactor (Rod) models
the temperature controller of a nuclear power plant and its cooling dynamics

HyPro: A C++ Library for State Set Representations 293

Table 1. Benchmark results with runtimes in seconds (TO for ≥ 20 minutes). Dashes
indicate that a tool does not support this kind of state set representation.

mpq class double SpaceEx

glpk glpk+SMT-
RAT

glpk+Z3 glpk glpk+SMT-
RAT

glpk+Z3 LGG STC

Box BBall 0.1 0.1 0.1 0.002 0.002 0.03 0.003 0.01

Rod 63.8 64.8 65.1 0.01 0.06 0.02 0.02 0.2

5D SW 0.3 0.3 0.3 0.02 0.02 0.02 0.02 0.03

HPoly BBall 1.2 1.1 8.7 0.2 0.7 4.9 - -

Rod 24.3 21.3 136.5 4.8 16.1 131 - -

5D SW 54.8 TO TO 4.3 TO TO - -

VPoly BBall 1.8 1.5 6.0 TO (0.7) (5.5) - -

Rod 100.2 98.7 171.5 TO (0.3) (2.6) - -

5D SW TO TO TO TO TO TO - -

PPL BBall 0.07 0.07 0.08 0.05 0.06 0.06 - -

Rod 2.7 2.6 2.9 1.8 1.9 1.9 - -

5D SW TO TO TO TO TO TO - -

SF BBall 0.6 2.0 15.6 0.02 1.1 43.8 0.2 0.03

Rod 72.8 101.6 1125.8 0.4 54.4 609.6 1.1 0.9

5D SW 270.6 279.8 411.1 0.04 2.6 319.3 0.8 0.2

Zono BBall TO TO TO 0.006 0.007 0.006 - -

Rod 4.8 4.9 4.9 0.02 0.02 0.02 - -

5D SW 3.8 3.9 3.9 0.004 0.004 0.004 - -

(δ = 0.01, T = 17); (3) the switching 5D linear system (5D SW) is an artificially
created benchmark in 5 dimensions with planar guards (δ = 0.001, T = 0.2).

All experiments were carried on an Intel Core i7 (4×4 GHz) CPU with 16 GB
RAM. Table 1 shows the results when using mpq class (exact) and double (inex-
act) number types, and as representations boxes (Box), H-polytopes (HPoly),
V-polytopes which are converted to H-polytopes for intersection computation
(VPoly), polytope representation by the PPL library (PPL), support functions
(SF) and zonotopes (Zono). For both mpq class and double, we distinguish
glpk only in exact resp. inexact modus, and glpk+SMT-RAT and glpk+Z3 com-
bining glpk with an exact solver as in Fig. 3. Inexact-arithmetic results that
we (manually) detected to be under-approximating are put in parenthesis; this
occurred for VPoly due to inexact Eigen3computations. For comparison, we
present SpaceEx results using support functions (SF) as well as SF with box
templates (Box); note that SpaceEx uses double representation and glpk.

Due to space limitation, we discuss only some timing issues. At least on these
few examples, HyPro in inexact glpk-only modus is competitive with SpaceEx.
A higher computational effort can be observed for exact arithmetic, most promi-
nently for SF, which highly relies on optimisation; the longer running times for

294 S. Schupp et al.

glpk+Z3 (wrt. SMT-RAT) are due to the string-based interface communication
overhead. For 5D SW, the initial set is a single point. Zonotopes, performing
well on small initial sets, deliver very good results here.

References

1. Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using
reachability analysis. IEEE Trans.Robot. 30(4), 903–918 (2014)

2. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044,
pp. 258–263. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 18

3. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 30

4. Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidel-
berg (2005). doi:10.1007/978-3-540-31954-2 19

5. Hagemann, W., Möhlmann, E., Rakow, A.: Verifying a PI controller using SoapBox
and Stabhyli: experiences on establishing properties for a steering controller. In:
Proceedings of ARCH 2014. EPiC Series in Computer Science, vol. 34. EasyChair
(2014)

6. Henzinger, T.: The theory of hybrid automata. In: Proceedings of LICS 1996, pp.
278–292. IEEE Computer Society Press (1996)

7. HyCreate. http://stanleybak.com/projects/hycreate/hycreate.html
8. HyReach. https://embedded.rwth-aachen.de/doku.php?id=en:tools:hyreach
9. Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support

functions. Nonlinear Anal.: Hybrid Syst. 4(2), 250–262 (2010)
10. Ziegler, G.M.: Lectures on Polytopes, vol. 152. Springer Science & Business Media,

New York (1995)

http://dx.doi.org/10.1007/978-3-642-39799-8_18
http://dx.doi.org/10.1007/978-3-642-22110-1_30
http://dx.doi.org/10.1007/978-3-540-31954-2_19
http://stanleybak.com/projects/hycreate/hycreate.html
https://embedded.rwth-aachen.de/doku.php?id=en:tools:hyreach

Asm2C++: A Tool for Code Generation
from Abstract State Machines to Arduino

Silvia Bonfanti1,2(B), Marco Carissoni1, Angelo Gargantini1,
and Atif Mashkoor2

1 Università degli Studi di Bergamo, Bergamo, Italy
{silvia.bonfanti,angelo.gargantini}@unibg.it,

m.carissoni1@studenti.unibg.it
2 Software Competence Center Hagenberg GmbH,

Hagenberg im Mühlkreis, Austria
atif.mashkoor@scch.at

Abstract. This paper presents Asm2C++, a tool that automatically
generates executable C++ code for Arduino from a formal specifica-
tion given as Abstract State Machines (ASMs). The code generation
process follows the model-driven engineering approach, where the code
is obtained from a formal abstract model by applying certain transforma-
tion rules. The translation process is highly configurable in order to cor-
rectly integrate the underlying hardware. The advantage of the Asm2C++

tool is that it is part of the Asmeta framework that allows to analyze,
verify, and validate the correctness of a formal model.

1 Introduction

The Abstract State Machines (ASM) method [4] is a formal method that is used
to guide the rigorous development of software and embedded systems seamlessly
from their informal requirements. The ASM method follows a design process
based on the refinement principle that allows to capture all details of the system
design by a sequence of refined models till the desired level of detail. It combines
validation (by simulation and testing) and verification methods at any desired
level of detail. The final step of this refinement process consists in realizing the
implementation, generally code that is compiled and deployed on the real system.
Performing this last step manually increases costs, limits the reuse of a formal
specification, is error prone as some faults can be introduced in the code writing
process, and can be a barrier for a wider adoption of ASMs. For these reasons,
we have devised a methodology supported by the Asm2C++ tool that is able to
generate the desired source code from ASMs. In this paper, we target Arduino1

that is a widespread platform for rapid prototyping of embedded systems and

This work is partially supported by the Austrian Ministry for Transport, Innovation
and Technology, the Federal Ministry of Science, Research and Economy, and the
Province of Upper Austria in the frame of the COMET center SCCH.

1 https://www.arduino.cc/.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 295–301, 2017.
DOI: 10.1007/978-3-319-57288-8 21

https://www.arduino.cc/

296 S. Bonfanti et al.

supports C++. It is also suitable for learning the design of embedded systems
due to its low cost.

The ultimate aim of the paper is to show the implementation of the model-
driven engineering (MDE) paradigm through ASMs: requirements models are
platform independent, there is a clear distinction between platform-specific
details and original user and system requirements, the code generation process is
seamless and automatic, and last but not least, the rigorous quality and correct-
ness assurance is embedded in the development process. As an additional goal,
we aim at producing a code which is readable such that the code instructions can
be easily traced back to the specification concepts and constructs. Although this
may decrease the code efficiency, we believe that it increases the maintainability
and the usability of the Asm2C++ tool.

The paper is organized as follows: In Sect. 2, we present the ASM method-
ology. The process of code generation is presented in Sect. 3 and by means of a
simple example, we illustrate some basic concepts of the proposed translation
in Sect. 4. Section 5 presents some related work and Sect. 6 concludes the paper
with some future work.

2 Abstract State Machine Methodology

The ASM method guides the development of software from requirements cap-
ture to code generation through several steps. Figure 1 shows the process of
the ASM-based development. This method is supported by the Asmeta (ASM
mETAmodeling) framework2 [3] which provides a set of tools to help a developer
in various development activities. The modelling process is based on refinement,
i.e., it starts from an abstract model and adds further details to capture the
complete system behaviour described in the requirements document. The correct
refinement between two models is automatically proved using the ASMRefProver
tool. If a model becomes complex, it is difficult to understand the behaviour only
by the textual specification. For this reason, the visualizer AsmetaVis provides
a visual notation that helps in the navigation of the model.

Modelling
Editor AsmetaL - AsmEE

Visualizer AsmetaVis

Refinement prover
AsmRefProver

ASM 0 ASM 1 ASM
final

Validation and verification At
 a

ny

le
ve

l

Code Generator

Asm2C++ Arduino Code

Conformance Checking
Model-Based Testing

ATGT
Runtime Verification

CoMA

Validation Property Verification
Model Checking
AsmetaSMV

Model Review
AsmetaMA

Interactive Simulation
AsmetaS

Scenarios
AsmetaV

Fig. 1. ASM process: from requirements to code

2 http://asmeta.sourceforge.net/.

http://asmeta.sourceforge.net/

Asm2C++: A Tool for Code Generation 297

The validation and verification (V&V) activities are well-integrated in the
process, as shown in Fig. 1, and can be applied to any refined machine. The val-
idation of a model can be achieved in multiple ways: either through the model
simulator AsmetaS, through the model validator AsmetaV or through the model
reviewer AsmetaMA. The simulator AsmetaS allows to perform two type of simula-
tions: interactive simulation (the user inserts the values of parameters by choice)
and random simulation (the tool randomly chooses the values that depends on
the environment). The model validator AsmetaV takes scenarios as input files
that contain the expected system behaviours. The scenarios are executed to check
whether the machine runs correctly. The model reviewer AsmetaMA performs sta-
tic analysis, it determines whether a model has sufficient quality attributes (e.g.,
minimality, completeness, consistency). The verification tool AsmetaSMV verifies
whether the properties, derived from the requirements document, comply with
the behaviour of the model. When the final model is available, the Arduino
code is automatically generated using the Asm2C++ tool (see Sect. 3). When an
actual code of the system implementation is available, conformance checking is
possible. It is divided in model-based testing (to check the conformance offline)
and runtime verification (to check the conformance online). The former uses the
ATGT tool that automatically generates from ASM models tests cases which can
be used to test any programming language. The latter, using the CoMA tool, can
be used to perform runtime verification: the machine code is checked during the
execution.

The language used by Asm2C++ is UASM (Unified Syntax for Abstract State
Machine) [2], the new ASM syntax developed by the ASM community to unify
various ASMs dialects.

3 Code Generation Process

The translation process shown in Fig. 2 generates the runnable C++ code for
Arduino starting from a UASM specification that we assume verified and vali-
dated. The first step of the transformation process consists in parsing the textual

Parse
Generate

ASM Runner
Code

Generate
C++ Code

HW
Integration
Code .cpp

ASM Runner
Code .ino

C++ Code
.cpp & .h

UASM
model

JavaObjects

UASM
specification

.uasm
Merge Arduino

Project

Code Generator

Generate
Template

Template
Configuration

.u2c
User Change

Complete
Configuration

.u2c

Generate HW
Code

Integrate
Hardware

Fig. 2. Transformation process: from specification to code

298 S. Bonfanti et al.

specification and producing the UASM model, which is given to the code gener-
ator. The code generator performs three activities: (1) Generate C++ Code (2)
Generate ASM Runner Code (3) Integrate Hardware. The result is merged as
an Arduino project.

The first activity translates the ASM model into C++ code. The code is
composed of a header (.h) that contains the translation of the ASM signature
and a source (.cpp) file that defines how the ASM evolves by translating each
ASM rule to a C++ method.

The second activity generates the Arduino code that defines the running
policy according to the ASM execution divided in four iterative steps: acquire
inputs, perform the main rule, update state, and release outputs. The output,
the ASM Runner, is an .ino file that is the default extension for the Arduino
C++ code.

The third activity integrates all HW-related aspects into the project: Arduino
board version, I/O devices connections, Arduino-specific libraries that must be
included, and any other HW-dependent information. The tool automatically
generates a template configuration file (with .u2c extension). According to the
HW configuration, the user edits this file which is used to generate the HW
integration file. This is a C++ source file that works as an adapter between the
generated code and the hardware. The output files are finally merged together
to compose the Arduino project.

Asm2C++ is built on top of Xtext [6], a framework for the development of
domain-specific languages, which provides facilities for parsing and code gener-
ation and is fully compatible with the Eclipse Modeling Framework. The code
generator has been developed as a model-to-text (M2T) transformation. The
transformation was realized by means of Xtend, a Java dialect provided by the
Xtext framework with features for code generation. The listing below shows the
translation scheme for the SeqBlock rule of the ASM method. A SeqBlock is a
list of rules which are executed sequentially and is translated as a list of C++
instructions enclosed by curly brackets. In Xtend syntax, the content within ''' '''
symbols is a template string, while the code inside � � brackets is a variable
part of the template expression that will be translated according to the rules
parameter.

override String caseSeqBlock(SeqBlock rules) {

return ''' { �translateRules(rules.getRules())� } '''
}

The detailed information about the Asm2C++ tool can be found at http://
asmeta.sourceforge.net/download/asm2c++.html.

4 Illustrative Example

Asm2C++ has been used to implement a small case study. The system is a control
panel to be placed on the car dashboard that enables the driver to interact with

http://asmeta.sourceforge.net/download/asm2c++.html
http://asmeta.sourceforge.net/download/asm2c++.html

Asm2C++: A Tool for Code Generation 299

various car functionalities. The panel is responsible for controlling the follow-
ing functionalities: 1. Switching on/off the system 2. Climate control 3. Smart
headlights activation 4. Radio system. Code examples 1 to 4 in Fig. 4 focus on
functionality 1 to show some translation rules. The ASM is translated in the
CarPanel class, where domains, functions and rules become respectively data
types, properties and methods. As shown in Code 3, the runner cyclically calls
four CarPanel methods: 1. Acquire inputs from sensors (getInputs) 2. Perform
the main rule (r Main) 3. Update the ASM state (updateState) 4. Set outputs
to actuators (setOutputs). Parallel execution is translated as described in [7],
where controlled functions are duplicated and the state is updated only after
the main rule.

Fig. 3. CarPanel

The implementation process followed the methodology
described in Sect. 2. We first defined a ground model that was
progressively refined. When the model reached the last refine-
ment step, we generated the runnable Arduino code. Along this
process, we proved liveness properties with the model checker
and executed some scenarios with the AsmetaV tool. In order to
check the compliance between the specification and the code,
we ran the same scenarios on the Arduino code, obtaining the
same behavior as for the ASM simulation. The real system is
shown in Fig. 3.

asm CarPanelFinal
enum Switch = {OFF, ON}
controlled carState −> Switch
initially OFF
monitored carButton −> Switch
...
rule r Main =
if carState = OFF then
r SwitchOnCar

else if carButton = ON then
carState := OFF

else
par
r Menu
r Headlights
r SetTemperature
...
endpar

endif
endif
...

Code (1) UASM

Code (2) CarPanel.h

class CarPanel{
enum Switch {OFF, ON};
Switch carState[2],carButton;
public:
void getInputs();
void r Main();
void updateState();
void setOutputs();
...

};
#include ”CarPanel.h”
CarPanel carPanel;
...
void loop(){
carPanel.getInputs();
carPanel.r Main();
carPanel.updateState();
carPanel.setOutputs();

}

Code (3) ASM runner

#include ”CarPanel.h”

// main rule
void CarPanel::r Main(){
if (carState[0] == OFF)
r SwitchOnCar();

else if (carButton == ON)
carState[1] = OFF;

else{
r Menu();
r Headlights();
r SetTemperature();
...

}
}
// apply the update set
// to the current state
void CarPanel::updateState(){
carState[0]=carState[1];

}
...

Code (4) CarPanel.cpp

Fig. 4. Snippets from model and code

300 S. Bonfanti et al.

5 Related Work

Automatic code generation from formal specifications is available as a part of
tool support for several formal methods. SCADE3 and MATLAB/Simulink4 pro-
vide this feature as a commercial off-the-shelf solution. The formal method B [1],
on the other hand, provides this facility in the form of the Atelier B platform5,
that comes with code generators for different target languages, including C,
C++, Java, and Ada, and its Community Edition is freely available without any
restriction. EventB2Java is another tool that generates executable code imple-
mented as a plug-in of the Rodin platform [5].

As best of our knowledge, there is no state of the art, reusable and publicly
available tool for the ASM method that is capable of automatically generat-
ing programming language code from formal specifications written in the ASM
method. In the past, [7] introduced a compilation scheme to transform an ASM
specification (written in ASM-SL) into C++ code, but this work was done within
a company setting. Although some of the key results of the proposed compilation
scheme were useful for our work as mentioned in Sect. 4.

6 Conclusions and Future Work

We have presented Asm2C++, a tool that is able to generate C++ from formal
specifications written as ASMs. This work follows the MDE paradigm: source
code is obtained from requirements models by applying a set of M2T transfor-
mations. We have already successfully tried the tool with students of advanced
programming courses to teach them rapid prototyping and designing of embed-
ded devices.

In the future, we plan to extend the tool with an automatic test cases gener-
ator. From the ASM specification, a series of tests could be automatically gener-
ated which would be executed on the Arduino board. This would test both the
system and the translation from the specification to the code. As, currently, the
conformance relation between the specification and the code is coarsely defined,
we also intend to formally specify and prove the correctness of the code trans-
formation process.

References

1. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York (1996)

2. Arcaini, P., Bonfanti, S., Dausend, M., Gargantini, A., Mashkoor, A., Raschke, A.,
Riccobene, E., Scandurra, P., Stegmaier, M.: Unified syntax for abstract state
machines. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ
2016. LNCS, vol. 9675, pp. 231–236. Springer, Cham (2016). doi:10.1007/
978-3-319-33600-8 14

3 http://www.esterel-technologies.com/products/scade-suite/.
4 https://www.mathworks.com/products/simulink/.
5 http://www.atelierb.eu/en/.

http://dx.doi.org/10.1007/978-3-319-33600-8_14
http://dx.doi.org/10.1007/978-3-319-33600-8_14
http://www.esterel-technologies.com/products/scade-suite/
https://www.mathworks.com/products/simulink/
http://www.atelierb.eu/en/

Asm2C++: A Tool for Code Generation 301

3. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process for
engineering a toolset for a formal method. Softw.: Pract. Exp. 41, 155–166 (2011)

4. Börger, E., Stark, R.F.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, New York (2003)

5. Cataño, N., Rivera, V.: EventB2Java: a code generator for event-B. In: Rayadurgam,
S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171. Springer, Cham
(2016). doi:10.1007/978-3-319-40648-0 13

6. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM International Conference Companion on
OOPSLA, pp. 307–309. ACM (2010)

7. Schmid, J.: Compiling abstract state machines to C++. JUCS 7(11), 1068–1087
(2001)

http://dx.doi.org/10.1007/978-3-319-40648-0_13

SPEN: A Solver for Separation Logic

Constantin Enea1, Ondřej Lengál2(B), Mihaela Sighireanu1,
and Tomáš Vojnar2

1 Univ. Paris Diderot, IRIF CNRS UMR 8243, Paris, France
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence,

Brno, Czech Republic
lengal@fit.vutbr.cz

Abstract. Spen is a solver for a fragment of separation logic (SL)
with inductively-defined predicates covering both (nested) list struc-
tures as well as various kinds of trees, possibly extended with data.
The main functionalities of Spen are deciding the satisfiability of a for-
mula and the validity of an entailment between two formulas, which
are essential for verification of heap manipulating programs. The solver
also provides models for satisfiable formulas and diagnosis for invalid
entailments. Spen combines several concepts in a modular way, such as
boolean abstractions of SL formulas, SAT and SMT solving, and tree
automata membership testing. The solver has been successfully applied
to a rather large benchmark of various problems issued from program
verification tools.

1 Introduction

For analyzing programs with dynamic memory, separation logic (SL) is an estab-
lished and fairly popular logic introduced by Reynolds et al. [11]. The high
expressivity of SL, its ability to generate compact proofs, and its support for
local reasoning motivated development of many tools for automatic reasoning
about programs with complex dynamic linked data structures. These tools aim
at establishing memory safety properties and/or inferring shape properties of
the heap. The tools often build on (semi-)decision procedures for checking sat-
isfiability and entailment problems in SL.

Our tool Spen1 provides (semi-)decision procedures for the most commonly
considered symbolic heaps fragment of SL, extended with user-defined inductive
predicates to specify data structures of an unbounded size. Because unrestricted
definitions of inductive predicates make the entailment problem for the fragment
undecidable [3], only semi-decision procedures have been proposed, e.g., in [2,4].
Iosif et al. [10] identified a rather large class of inductive definitions for which the
entailment problem is decidable, although with a high complexity. Spen focuses
on a smaller class of inductive definitions that is, however, expressive enough to
specify complex dynamic data structures, such as skip lists, lists of circular lists,
AVL trees, or binary search trees.
1 https://github.com/mihasighi/spen.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 302–309, 2017.
DOI: 10.1007/978-3-319-57288-8 22

https://github.com/mihasighi/spen

SPEN: A Solver for Separation Logic 303

The chosen class of inductive definitions enables the design of efficient (semi-)
decision procedures for satisfiability and entailment [6,8]. The key idea used for
satisfiability checking in Spen is to exploit the semantics of restricted induc-
tive definitions and of separating conjunction to build an equisatisfiable boolean
abstraction of the formula. For entailment checking, the idea is to reduce the
problem of checking ϕ ⇒ ψ to the problem of checking a set of simple entail-
ments where the right-hand side is an inductive predicate atom. The com-
positionality of this reduction leads to high efficiency (the simple entailments
can be checked independently) and to a capability to provide fine diagnosis for
invalid entailments.

The current version of Spen improves on the ones reported in [6,8] in several
directions. First, we introduced caching of constructions and results obtained
from checking simple entailments in order to increase its efficiency. Second, the
wrappers calling the SAT and SMT solvers have been refined to generate smaller
formulas and to exploit the incrementality feature of underlying solvers. Third,
we improved the diagnosis produced by Spen. For satisfiability checking, Spen
now provides either a model of a satisfiable formula or an unsatisfiable core; for
entailment checking, Spen provides a proof witness for valid entailments and a
diagnostic information otherwise.

Spen has been successfully tested on a quite large benchmark. The first
version of Spen participated in the SL-COMP’14 contest [15] where it won one
of its divisions and was second in another one. The later extensions now allow
Spen to handle a richer fragment than those considered in the competition.
Moreover, the improvements above lead to better execution times (e.g., by 10%
within the SL-COMP’14 division won by the first version of Spen and by 30%
on the division where Spen was the second).

Spen is not the only solver for SL. The existing solvers differ in the fragment
considered (Cyclist [2], Slide [9]) and/or the techniques used (Asterix [12],
Dryad [14], GRASShopper [13], Sleek [4]). A detailed comparison with these
solvers is beyond the scope of this paper—we refer the reader to the survey
in [6,8,15].

2 Logic Fragment

Spen deals with decision problems in a fragment of SL, denoted as SLID, that
combines the symbolic heaps fragment of SL [1] with user-defined inductive pred-
icates describing various kinds of lists (possibly nested, cyclic, or equipped with
skip links) or trees, possibly extended with data constraints.

Syntax: We write X,Y,Z to denote location variables, d to denote data variables,
and x, y, z for both kinds of variables. We use the vector notation �x to abbreviate
tuples. We denote by ρ the tuples built from pairs of field labels and variables
that specify structured values. We assume a finite set P = {P1, . . . , Pn} of pred-
icate symbols, each with an associated arity, and a special location variable nil.

304 C. Enea et al.

A symbolic heap formula ψ is a formula of the form ∃�x · Π ∧ Σ where Π is a
pure formula and Σ is a spatial formula with the following syntax:

Π : := X = Y | X �= Y | Δ | Π∧ Π Σ : := emp | X �→ ρ | P (X,�x) | Σ∗Σ

Here, Δ is a constraint over data variables. We let it unspecified, though Spen
presently supports the first-order theory over multisets of integers with integer
linear constraints. The spatial atoms (i.e., the empty heap, the heap cell allocated
at X, resp. the heap region shaped by some predicate P ∈ P) are composed by
the separating conjunction “∗”. An SLID formula ϕ is a set of symbolic heaps
interpreted as a disjunction ∨iψi.

Predicates P ∈ P are defined by a set of inductive rules of the form ψ ⇒
P (X,�x) where (X,�x) is a tuple of distinct variables including all free variables
in the symbolic heap ψ (the rule body). X is called the root node of the heap
segment defined by P . A rule is called a base rule if its spatial part is emp, i.e.,
an empty heap; otherwise, it is an inductive rule.

Fragments: Spen considers a restricted class of inductive rules such that the
defined predicates specify (possibly empty) heap segments connecting (by loca-
tion fields) the root location X with all locations in the heap or nil. The restric-
tions have been defined formally in [6,8]. They mainly require, for each inductive
predicate P , the presence of a unique base rule and inductive rules where the
root X points to a memory cell that contains at least one field from which
another heap specified by P starts. The fragment defined in [6], called SLIDL , can
describe various kinds of lists that can be singly- or doubly-linked, cyclic, nested,
and can have skip links. It does not permit data constraints and inductive tree
structures. On the other hand, the fragment SLIDD defined in [8] permits data
constraints and can describe tree structures of bounded width, such as sorted
list segments, AVL trees, binary search trees, but not nested cyclic lists.

Decision Problems: For both fragments above, Spen considers the problems
of checking satisfiability of a formula, i.e., checking whether |= ϕ holds, and
the validity of an entailment ϕ ⇒ ϕ′ where the symbolic heaps of ϕ′ can be
quantified only over data variables. A simple example of an entailment problem
in SLIDL considered by Spen is:

∃Y,W. X �= Z ∧ X �→ {(next, Y)}∗sll(Y,W)∗W �→ {(next, Z)} ?⇒ sll(X, Z),

which, intuitively, checks whether a composition of two memory cells specified
by the points-to atoms X �→ {(next, Y)} and W �→ {(next, Z)} and the predicate
atom sll(Y,W) describes a set of heaps that are all also models of the predicate
sll(X, Z) defining an acyclic singly-linked list segment between X and Z.

SPEN: A Solver for Separation Logic 305

3 Satisfiability Checking

Spen

{P1, . . . , Pn}, ψ

Parsing and typing

PiPi ψ

Boolean abstraction

B[ψ]

Normalization

sat

ψ′

Build shape
+ data model

Build
unsat core

unsat

SAT solver

unsat core
of B[ψ]

SMT solver

unsat core of ψ

model of ψ

Fig. 1. Spen workflow for satisfiability checking

Given a set of inductive defini-
tions P and a symbolic heap ψ,
the procedures for checking satis-
fiability in Spen follow the work-
flow given in Fig. 1. The satisfi-
ability checking of an SLID for-
mula ϕ makes a classic use of this
basic procedure. The crux of the
procedures for both fragments is
the definition of a boolean for-
mula B[ψ], called boolean abstrac-
tion, such that the data-free part
of ψ is satisfiable iff B[ψ] is satis-
fiable [6,7].

Once the boolean abstraction
B[ψ] is computed, Spen queries a
SAT solver (currently, minisat2)
for the satisfiability of B[ψ]. If
B[ψ] is unsatisfiable, Spen can
return an unsatisfiable core of ψ, deduced from an unsatisfiable core of B[ψ].
If B[ψ] is satisfiable and ψ ∈ SLIDL , Spen has the option of returning a model of
ψ obtained from a model of B[ψ] by unfolding predicate atoms corresponding
to non-empty heap segments. The unfolding of predicate atoms is done twice
to emphasize the non-emptiness of the segment. For ψ ∈ SLIDD , the satisfiability
checking continues by constructing a formula Δψ that conjuncts the data part of
ψ with the data parts obtained by unfolding the non-empty heap segments given
by the model of B[ψ]. To check the satisfiability of Δψ, Spen queries an SMT
solver for the theory of multisets with integer data (currently, Spen implements
a wrapper for the UFLIA theory of z3 [5]).

If the boolean abstraction B[ψ] is satisfiable, it is then used to normalize the
spatial part of ψ, which is a step used by entailment checking too. This process
saturates the pure part of ψ with (dis-)equalities between locations variables and
removes predicate atoms that correspond to empty heap segments, producing
a normalized formula ψ′.

4 Entailment Checking

To check the validity of an entailment ϕ1 ⇒ ϕ2, Spen uses a sound procedure to
deal with disjunctive formulas: it checks that for every disjunct ψ1 in ϕ1, there is
a disjunct ψ2 of ϕ2 such that ψ1 ⇒ ψ2. The procedure for deciding the validity
of entailments between symbolic heaps follows the workflows given in Figs. 2 and
3 (the theoretical foundations were established in [6,8]). The two formulas are
first checked for satisfiability and normalized using the procedures from Sect. 3.
2 Available at http://minisat.se.

http://minisat.se

306 C. Enea et al.

Spen

{P1, . . . , Pn}, ψ1 ⇒ ψ2

Parsing and typing

ψ1
PiPi

Build tree
automata

ψ2

Boolean abstraction

B[ψ1] B[ψ2]

Normalization &
building SL graphs

G[ψ1] G[ψ2]

TAi

Solving
simple entl.

Reduction to
simple entl.

SAT solver

⎧⎪⎨
⎪⎩

Proof witness

or failure
diagnostics

Vata tree
automata library

Fig. 2. Spen workflow for entailment in SLID
L

If one of the two formulas is
unsatisfiable, then the validity
of the entailment can be already
determined, e.g., if ψ1 is unsat-
isfiable then the entailment is
valid. When both formulas are
satisfiable, Spen offers two dif-
ferent procedures tuned for each
fragment of SLID.

For the fragment SLIDL , Spen
reduces the entailment problem
ψ1 ⇒ ψ2 to a set of entailment
queries of the form ψ1[a] ⇒ a,
called simple entailments, where
ψ1[a] is a sub-formula of ψ1

and a is a (points-to or induc-
tive) spatial atom of ψ2 (there
will be one such entailment for
each spatial atom a in ψ2). Intu-
itively, the sub-formula ψ1[a]
describes the region of a heap modelled by ψ1 that should satisfy a. The pro-
cedures for computing ψ1[a] and testing simple entailments use an intermediary
graph representation of symbolic heap formulas, called an SL-graph and denoted
G[ψ]. Basically, nodes of G[ψ] represent sets of aliased variables according to the
pure part of ψ, and edges represent dis-equalities and spatial atoms of ψ, e.g., a
spatial atom P (X,Y, �x) is represented by a directed edge from X to Y labeled
by P (�x). Thus, when a is a predicate atom P (X,Y, �x), ψ1[a] is obtained from the
SL-graph of ψ1 by selecting the edges reachable from X and co-reachable from
Y . The graph selected for ψ1[a] is transformed into a tree t1, which is tested for
membership in the language of a tree automaton built from the rules defining P
for the atom a = P (X,Y, �x).

Spen

{P1, . . . , Pn}, ψ1 ⇒ ψ2

Parsing and typing

ψ1
PiPi

Build
lemmas

ψ2

Boolean abstraction

B[ψ1] B[ψ2]

Normalization

Proof search

SAT solver

SMT solver

⎧⎪⎨
⎪⎩

Proof witness

or failure
diagnostics

Fig. 3. Spen workflow for entailment in SLID
D

For the fragment SLIDD , Spen
implements a proof search strategy
for the entailment problem ψ1 ⇒
∃�d. ψ2. The strategy computes a
sequence of formulas ∃�d1. ψ1

1 , . . . ,

∃�dn. ψn
1 such that (1) ∃�di. ψi

1 ⇒
∃�di+1. ψi+1

1 and (2) ∃�dn. ψn
1 is

syntactically equivalent to ∃�d. ψ2.
The entailments in point (1) are
obtained by applying the induc-
tive rules and lemmas obtained
automatically thanks to restriction
required on inductive definitions.
The procedure requires to check

SPEN: A Solver for Separation Logic 307

Table 1. Experimental results on an Intel(R) Core(TM) i7-2600 CPU at 1.60 GHz

Fragments Benchmark Size Time [s] SL-COMP’14 results

SLID
L SLID

D SpenL SpenD Time [s] StarExec/solver

� � sll0 sat 110 11.20 11.28 (I) 1.06/Asterix, (II) 3.27/Spen

� � sll0 entl 292 34.45 34.94 (I) 2.98/Asterix, (II) 7.58/Spen

� � FDB entl 43 1.08 1.00 (I) 0.61/Spen, (II) 43.65/Sleek

� FDB entl+ 55 0.65 — —

entailments between data constraints, which is done using the previously men-
tioned wrapper to the SMT solver.

For both procedures, when the input entailment ψ1 ⇒ ∃�d. ψ2 holds, Spen
has the option of providing a proof witness that either indicates the fact that
ψ1 is unsatisfiable or it consists of the normalized forms of ψ1 and ψ2 and the
mapping of sub-formulas in ψ1 to atoms of ψ2. When the input entailment is
not valid and the procedure terminates, Spen provides a diagnosis that explains
why the entailment fails.

5 Experimental Results

Spen has been applied to a benchmark of 578 problems (available in the repos-
itory), 90% obtained from verification conditions of iterative programs on com-
plex dynamic data structures. The remaining problems are crafted to test the
capabilities of the solver. Tables 1 and 2 provide an overview of results obtained
by Spen on this benchmark.

The benchmark of SLIDL problems includes three divisions of SL-COMP’14:
satisfiability and entailment problems for acyclic singly linked lists (sll0 sat
resp. sll0 entl), and entailment checking for formulas describing more
complicated types of linked lists, e.g., doubly-linked lists, skip lists, and nested
lists (FDB entl). Spen spends less than 0.05 s on 90% of the problems with the
maximum time of 0.5 s; these times include calls to a SAT solver. The benchmark
FDB entl+ includes the problems not in the SL-COMP’14 benchmark (e.g., for-
mulas describing lists of cyclic lists). The reported times in the last column have
been obtained in 2014 on the StarExec3 platform.

Table 2. Results for SLID
D

Benchmark Size Time [s]
sll0 sorted 16 0.45
BST 45 1.67
AVL 22 1.21
RBT 21 3.61

The benchmark of SLIDD problems (see
Table 2) includes verification conditions for prov-
ing the correctness of iterative procedures
(delete, insert, search) over recursive data struc-
tures storing integer data: sorted lists, binary
search trees, AVL trees, and red-black trees.
Spen spends less than 0.4 s on each problem,
3 www.starexec.org, an Intel(R) Xeon(R) CPU E5-2609 at 2.40 GHz of and 10MB

cache.

http://www.starexec.org/

308 C. Enea et al.

including calls to SAT and SMT solvers. The first three lines of Table 1 demon-
strate that the two approaches implemented in Spen (based on tree automata—
column “SpenL”—and on proof search—column “SpenD”) are not only com-
plementary but also comparable on the common fragment. The improvements
discussed in this paper reduce the execution times by 10% within the division
sll0 entl and by 30% within FDB entl w.r.t. the old version [6].

Acknowledgement. This work was supported by the French ANR project Vecolib,
the Czech Science Foundation (project 17-12465S), the BUT FIT project FIT-S-17-
4014, the IT4IXS: IT4Innovations Excellence in Science project (LQ1602), and by the
European Research Council (ERC) under the European Unions Horizon 2020 research
and innovation programme (grant agreement No. 678177).

References

1. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 9

2. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 25

3. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results
for a spatial assertion language for data structures. In: Hariharan, R., Vinay,
V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer,
Heidelberg (2001). doi:10.1007/3-540-45294-X 10

4. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012). Elsevier

5. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

6. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS 2014. LNCS,
vol. 8858, pp. 314–333. Springer, Cham (2014). doi:10.1007/978-3-319-12736-1 17

7. Enea, C., Saveluc, V., Sighireanu, M.: Compositional invariant checking for overlaid
and nested linked lists. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 129–148. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37036-6 9

8. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separa-
tion logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 80–96. Springer, Cham (2015). doi:10.1007/
978-3-319-24953-7 7

9. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201–218. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6 15

10. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol.
7898, pp. 21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

http://dx.doi.org/10.1007/978-3-540-30538-5_9
http://dx.doi.org/10.1007/978-3-642-35182-2_25
http://dx.doi.org/10.1007/3-540-45294-X_10
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-12736-1_17
http://dx.doi.org/10.1007/978-3-642-37036-6_9
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-11936-6_15
http://dx.doi.org/10.1007/978-3-642-38574-2_2

SPEN: A Solver for Separation Logic 309

11. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

12. Pérez, J.A.N., Rybalchenko, A.: Separation logic modulo theories. In: Shan, C.
(ed.) APLAS 2013. LNCS, vol. 8301, pp. 90–106. Springer, Cham (2013). doi:10.
1007/978-3-319-03542-0 7

13. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 54

14. Qiu, X., Garg, P., Stefanescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: Proceedings of PLDI 2013. ACM Press (2013)

15. Sighireanu, M., Cok, D.: Report on SL-COMP’14. JSAT 9, 173–186 (2014)

http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-319-03542-0_7
http://dx.doi.org/10.1007/978-3-319-03542-0_7
http://dx.doi.org/10.1007/978-3-642-39799-8_54

From Hazard Analysis to Hazard Mitigation
Planning: The Automated Driving Case

Mario Gleirscher(B) and Stefan Kugele

Technische Universität München, Munich, Germany
{mario.gleirscher,stefan.kugele}@tum.de

Abstract. Vehicle safety depends on (a) the range of identified hazards
and (b) the operational situations for which mitigations of these hazards
are acceptably decreasing risk. Moreover, with an increasing degree of
autonomy, risk ownership is likely to increase for vendors towards regula-
tory certification. Hence, highly automated vehicles have to be equipped
with verified controllers capable of reliably identifying and mitigating
hazards in all possible operational situations. To this end, available meth-
ods for the design and verification of automated vehicle controllers have
to be supported by models for hazard analysis and mitigation.

In this paper, we describe (1) a framework for the analysis and design
of planners (i.e., high-level controllers) capable of run-time hazard iden-
tification and mitigation, (2) an incremental algorithm for constructing
planning models from hazard analysis, and (3) an exemplary application
to the design of a fail-operational controller based on a given control sys-
tem architecture. Our approach equips the safety engineer with concepts
and steps to (2a) elaborate scenarios of endangerment and (2b) design
operational strategies for mitigating such scenarios.

Keywords: Risk analysis · Hazard mitigation · Safe state · Controller
design · Autonomous vehicle · Automotive system · Modeling · Planning

1 Challenges, Background, and Contribution

Automated and autonomous vehicles (AV) are responsible for avoiding mishaps
and even for mitigating hazardous situations in as many operational situations
as possible. Hence, AVs are examples of systems where the identification (2a)
and mitigation (2b) of hazards have to be highly automated. This circumstance
makes these systems even more complex and difficult to design. Thus, safety
engineers require specific models and methods for risk analysis and mitigation.

As an example, we consider manned road vehicles in road traffic with an
autopilot (AP) feature. Such vehicles are able to automatically conduct a ride
only given some valid target and minimizing human intervention. The following
AV-level (S)afety (G)oal specifies the problem we want to focus on in this paper:

SG: The AV can always reach a safest possible state σ wrt. the hazards
identified and present in a specific operational situation os .

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 310–326, 2017.
DOI: 10.1007/978-3-319-57288-8 23

http://orcid.org/0000-0002-9445-6863

Hazard Mitigation Planning: Automated Driving 311

Table 1. Examples of endangerment scenarios and mitigation strategies.

Scenario of endangerment Possible mitigation strategy

Vehicle Driver RoadEnv

Vehicle Subsystem fault Dependability
pattern

Controlled shutdown car2x com.,
digital road signs

Driver Maloperation Passive safety Safe reaction (if controllable)

RoadEnv Unforeseen obstacle Emergency
braking assistant

Braking or circumvention Digital road
signs, x2car com.

IT attack Security pattern Safe reaction (if controllable)

Background. Adopted from [4,9], we give a brief overview of terms used in
this paper: We perceive a mishap as an event of harm, injury, damage, or loss.
A hazard (or hazardous state) is an event that can lead to a mishap. We consider
hazards to be factorable. Hence, a hazard can play the role of a causal factor of
another hazard or a mishap. We denote causal factors, hazards, and mishaps—
i.e., the elements of a causal (event) chain—by the term safety risk (risk state
or risk for short). We perceive the part of a causal chain increasing risk as
an endangerment scenario, and the part of a causal chain decreasing risk as
a mitigation strategy. Table 1 exemplifies different endangerment scenarios and
how these can be mitigated using corresponding strategies.

Mitigation strategies can be seen as specific system-level safety requirements
implemented by a given control system architecture. We assume that a con-
trol system architecture consists of features deployed on sensors, actuators, and
software components running on networked computing units (cf. Fig. 4a). By tra-
ditional driver assistance (TDA), we refer to driver assistance features already in
the field, e.g. adaptive cruise control (ACC) and lane keeping assistance (LKA).

We distinguish between the domains vehicle, driver, and road environment.
For highly and fully automated driving, not all domains have to be considered.
For example, in full automation (e.g. level 5 in [12]), the vehicle has to operate
under all road and environmental conditions manageable by a human driver and
therefore a driver does not have to be taken into account.

Contribution. Elaborating on previous work in [5,6], we contribute

(1) a framework for modeling, analysis, and design of planners (i.e., high-level
controllers) capable of run-time hazard identification and mitigation, and

(2) a procedure for constructing planning models from hazard analysis.

For this, we formalize the core engineering steps necessary for (2a) the identifica-
tion and analysis of scenarios of endangerment and (2b) the design of operational
mitigation strategies. Using an exemplary AV, we incrementally build up a risk
structure involving three hazards in the vehicle domain, as well as several strate-
gies to reach safe states in presence of these hazards. We discuss approaches to
model reduction suited for run-time hazard analysis and mitigation planning

312 M. Gleirscher and S. Kugele

where efficient identification of operational situations and acting therein play a
crucial role.

In this paper, we discuss related work in Sect. 2, our abstraction in Sect. 3,
and our modeling framework in Sect. 4. Section 5 shows a procedure for building a
hazard mitigation planning model. We present an AV example in Sect. 6, discuss
our approach in Sect. 7, and conclude in Sect. 8.

2 Related Work

Among the related formal methods available in robotics planning, embedded
systems, and automated vehicle control, we only discuss a few more recent ones
and highlight how we can improve over them.

Güdemann and Ortmeier [7] present a language for probabilistic system mod-
eling for safety analysis. Formalized as Markov decision processes (MDP), they
propose two ways of failure mode modeling (i.e., per-time and per-demand fail-
ure modes), and two ways of deductive cause consequence reasoning (i.e., quan-
titative and qualitative). Their model and reasoning can extend our approach.
However, our work (i) adds stronger guidelines on how to build planning mod-
els and (ii) puts hazard analysis into the context of autonomous systems and
mitigation planning.

Eastwood et al. [3] present an algorithm for finding permissive robot action
plans optimal w.r.t. to safety and performance. They employ partially observable
MDPs (helpful in regarding uncertainty and robot limitations) to model robot
behavior, and two abstractions from this model to capture a system’s modes and
hazards. Our framework uses three layers of abstraction (Σs, Σp, Σ), operational
situations to capture control modes, and a structure to capture hazards. While
they directly encode hazard severity for plan selection, our framework allows
the planner to calculate the risk priority based on a causal event tree towards
mishaps. As opposed to complete behavioral planning, our approach focuses the
construction of mitigation planning models. For example, for system faults we
can plan mitigations by using adaptation mechanisms of a given control system
architecture.

Jha and Raman [8] discuss the synthesis of vehicle trajectories from prob-
abilistic temporal logic assertions. Synthesized trajectories take into account
perception uncertainty through approximation of sensed obstacles by combining
Gaussian polytopes. In a similar context, Rizaldi and Althoff [10] formalize safe
driving policies to derive safe control strategies implementing worst-case braking
scenarios in autonomous driving. They apply a hybrid-trace-based formalization
of physics required for model checking of recorded [10] and planned [11] strate-
gies. [8,10,11] discuss low-level control for a specific class of driving scenarios,
whereas our approach provides for (i) the investigation and combination of many
related operational situations, thus, forming a more comprehensive perspective
of driving safety, (ii) regarding various kinds of hazards that might play a role
in high- and low-level control beyond safe and optimal trajectory planning and
collision avoidance.

Hazard Mitigation Planning: Automated Driving 313

Wei et al. [14] describe an autonomous driving platform, capable of bringing
vehicles to a safe state and stop, i.e., activating a fail-operational mode on crit-
ical failure, and a limp-home mode on less critical failure. These are mitigation
strategies we can assess in our framework. Their work elaborates on designing a
specific class of architectures. Additionally, we provide an approach to system-
atically evaluate risks and, consequently, derive an architecture design.

Babin et al. [1] propose a system reconfiguration approach developed with
the Event-B method in a correct-by-construction fashion using a behavior pat-
tern similar to our approach (particularly, Fig. 2b). Reconfiguration as one way to
mitigate faults is discussed in this work. Wardziński [13] discusses hazard identifi-
cation and mitigation for autonomous vehicles by predetermined risk assessment
(i.e., with safety barriers) and dynamic risk assessment. For both, he provides
argumentation patterns for creating AV safety cases. In addition to his work, the
abstraction and the method we propose covers both paradigms in one framework.
We provide formal notions of all core concepts.

Fig. 1. Abstractions for state and predicate modeling, and for hazard analysis.

3 Abstraction for Run-Time Hazard Mitigation

Figure 1 depicts three abstractions—Σs, Σp, and Σ—for run-time hazard mit-
igation in AVs. The state space Σs pertains to the quantization of continuous
signals from the physical world encompassing the driver (drv), the vehicle (veh),
and the road environment (renv). For instance, the quantity speed is represented
by the discrete state variable veh.speed, which in turn is used to formulate pred-
icates to obtain the abstract state space Σp. For example, a predicate over sensor
values p(veh.speed, veh.loc, renv.map) can encode exitTunnel , an invariant con-
straining the activity of leaving a tunnel. We describe this two-staged abstraction
in more detail in [6].

Here, we will work with the risk state space Σ whose concepts—actions,
hazard phases, their composition and ordering—are discussed below:

Actions. Let A be a set of actions. We abstract from control loop behav-
iors within and across operational situations by distinguishing four classes of
actions: endangerments E , mitigations M (see Fig. 2b), mishaps Em, and ordi-
nary actions Ao. Note that actions can take place in one or more out of the
three domains, drv, veh, and renv, depending on the quantities they modify.
We require E ,M,Ao, Em ⊂ A.

314 M. Gleirscher and S. Kugele

Definition 1 (Hazard Phases). Let H be a set of hazards. Given h ∈ H,
endangerment actions eh , eh

m ∈ A, and nh ∈ N\{0} mitigation actions mh
j ∈ A,

we define the phases of a hazard h as the set Ph = {0, eh , eh
m} ∪ {mh

j | j ∈
N \ {0} ∧ j � nh} whose elements denote the following:

0 : hazard h is (inact)ive,
eh : hazard h has been (act)ivated by an action eh ,
eh
m : (act)tivated hazard h has contributed to a mishap by an action eh

m, and
mh

j : hazard h has been (mit)igated by an action mh
j .

For each hazard h, Fig. 2a depicts Ph as a transition system where |Ph| = nh +3,
the indices s, e, c, i1, . . . , in � nh, the state mit subsumes nh − 1 phases, act
subsumes phases eh and eh

m . For example, in the vehicle domain, mh
s can model

degradation transitions and mh
e or mh

c can model repair transitions.
From all the sets of hazard phases, we compose a tuple space as follows:

Definition 2 (Risk State Space). Based on Definition 1, we define the risk
state space Σ as the set of |H|-tuples

{(ph1 , . . . , ph|H|) | ∀i ∈ {1, . . . , |H|} : hi ∈ H ∧ phi
∈ Phi

}.

Fig. 2. Core concepts for building a risk state space Σ.

We call any subset of Σ a region. Let σ, σ′ ∈ Σ with σ = (ph1 , . . . , ph|H|)
and σ′ = (p′

h1
, . . . , p′

h|H|). To quantify risk in scenarios of endangerment and
mitigation strategies (Table 1), we define a partial order over Σ:

Definition 3 (Mitigation Order). Let Ph be a set of phases for hazard h
(Definition 1) and ≺h = {(eh, 0), (eh,mh

j), (mh
j , 0), (eh

m, eh) | mh
j ∈ Ph}. By the

reflexive transitive closure1 �h= {(p, p) | p ∈ Ph} ∪ ⋃
n�1 ≺n

h, we define the
mitigation order �m ⊆ Σ × Σ, for states σ, σ′ ∈ Σ, as follows:

σ �m σ′ ⇔ ∀i ∈ {1, . . . , |H|} : phi
�h p′

hi
.

Intuitively, σ ≺m σ′ denotes “σ′ is better or further in mitigation than σ.”2

1 Here, for a relation R, Rn represents the composition of relations.
2 We use the convention σ ≺m σ′ ≡ σ �m σ′ ∧ σ �= σ′.

Hazard Mitigation Planning: Automated Driving 315

4 Concepts for Run-Time Hazard Mitigation

In this section, we explain the core concepts of deriving a risk structure for a
specific operational situation. Using the risk state space Σ and actions A, we
define the notions of risk structure, risk region, and operational situation:

Definition 4 (Risk Structure). A risk structure is a weighted labeled tran-
sition system (Σ,A,Δ,W) with

– a set Σ called the risk state space (Definition 2),
– a set A of actions used as transition labels,
– a relation Δ ⊆ Σ × A × Σ called labeled transition relation, and
– a set W of partial functions w : (Σ ∪ A ∪ Δ) → Ww called weights where the

set Ww can be, e.g. N,R, [0, 1], or {m, c, f}.3

To capture the notions of endangerment scenario and mitigation strategy
(Table 1) based on Δ, we consider paths and strategies:

Definition 5 (Paths, Strategies, and Reachability). By convention, we
write σ

a−→ σ′ for (σ, a, σ′) ∈ Δ. Then, for n, l ∈ N \ {0}, a path is a sequence
σ0

a0−→ . . . σn−1
an−1−→ σn. By Δl we denote the set of all paths of length l and by

Δ∞ =
⋃

l>0 Δl all paths over Δ. Furthermore, we call a set S ⊂ Δ∞ a strategy.

By reachΔ : Σ → 2Σ with reachΔ(σ) = {σ}∪{σ′ ∈ Σ | ∃σ
a−→ . . .

a′
−→ σ′ ∈ Δ∞},

we denote the set of states reachable in Δ from a state σ.

Endangerments. We consider an action a ∈ A as an endangerment, i.e., a ∈ E , if
σ
m σ′ for a transition (σ, a, σ′) ∈ Δ. The class E models steps of endangerment
scenarios. For example, a can stem from faults in drv, veh, and renv.

Mitigations. We consider an action a ∈ A as a mitigation, i.e., a ∈ M, if σ ≺m σ′

for a transition (σ, a, σ′) ∈ Δ. The class M models steps of mitigation strategies.
One objective of a good mitigation strategy is to achieve a stable safe state.

Operational Situations. States and regions in Σ both correspond to subsets of
Σs (Sect. 3). To limit the scope of a risk analysis, we use an operational situation
which combines an initial region with a (reasonably weak) invariant holding
along the driving scenarios in a specific road environment.

Definition 6 (Operational Situation). An operational situation is a tuple
(Σ0, {σ ∈ Σs | p(σ)}) where Σ0 ⊆ Σ and p is an invariant over Σs including all
representations of Σ0 in Σs. Let O be the set of all operational situations.

Below, we will work with a risk structure Ros = (Σ,A,Δ,W) and assume a
fixed operational situation os ∈ O associated with Ros . Hence, we use R solely.

3 (m)arginal, (c)ritical, (f)atal; for other examples of severity scales, see [4].

316 M. Gleirscher and S. Kugele

Risk Regions. We consider specific subsets of Σ called risk regions, partic-
ularly, the safe region saf , the hazardous region haz , and the mishap region
mis (see Fig. 2b). Safety engineers aim at the design of mitigations which (i)
avoid mis and (ii) react to endangerments as early and effectively as possible.
Then, Em reduces to unavoidable actions from so-called near-mishaps still in haz
towards mis. For example, we consider a successfully deployed airbag to be in
M such that mis is not reached in such an accident (more in Sect. 7).

Our definitions of risk regions depend on R: First, mis = {(ph1 , . . . , ph|H|) ∈
Σ | ∃i ∈ {1, . . . , |H|} : phi

= ehi
m}. We require mishaps to be final, i.e., ∀σ ∈ mis :

reachΔ(σ) = {σ}. Second, saf and haz vary with a given operational situation.
Moreover, they can be defined based on, e.g. weights and equivalences. However,
(0, . . . , 0) ∈ saf and, for an os , we start in the safe region iff Σ0 ⊆ saf .

Weights. By associating weights with elements of R, we quantify further details
on the physical phenomena of the controlled process relevant for risk analysis.

For example, given δ = (σ, eh , σ′) ∈ Δ with eh ∈ E , the probability of endan-
germent pr(δ) ∈ [0, 1] yields the probability that hazard h gets activated in σ′

by performing eh in σ. Furthermore, given δ = (σ,mh
j , σ′) ∈ Δ with mh

j ∈ M,

– the probability of mitigation pr(δ) ∈ [0, 1] yields the probability that hazard h
gets mitigated in σ′ by performing mh

j in σ.
– the cost of mitigation cs(δ) ∈ N yields the potential effort (i.e., time, energy,

other resources) of performing the mitigation mh
j .

For any mishap σ ∈ mis, sv(σ) ∈ {m, c, f} specifies its severity. Depending on
the abstraction, we can use qualitative (as shown above) or quantitative scales
for sv and cs. Anyway, we assume to have operators for sv and cs, e.g. see Fig. 3a.

Weights are typically calculated from measurements of the controlled process.
For example, the estimation of pr(σ,mh

j , σ′) might be result of a controllability
analysis of mh

j in σ (of an operational situation). Moreover, further quantities
(e.g. risk priority) might be (i) calculated from weights, (ii) be propagated along
Δ, and (iii) lead to an update of weights.

Risk Priority. Given σ ∈ Σ,mis ′ ⊆ mis, and a function rp : Σ → {m, c, f},
we can compute the minimum partial risk priority

rp(σ) = Pr(σ → ♦mis ′) ·sv min{σ′ ∈ (mis ′ ∩ reachΔ(σ)) | sv(σ′)} (1)

where Pr(σ → ♦mis ′) ∈ [0, 1] denotes the probability4 that from σ some
mishap σ′ ∈ mis ′ is eventually (♦) reached in R. This definition implements
a traditional measure of risk analysis (see, e.g. [4]), referring to the minimum
negative outcome (i.e., damage, injury, harm, loss) possibly reachable from σ in
a specific operational situation os ∈ O. Note that for σ ∈ mis, rp(σ) = sv(σ).

4 See, e.g. [2] for details about probabilistic temporal logic and reasoning.

Hazard Mitigation Planning: Automated Driving 317

Equivalences Over Σ. For simplification of complex risk structures R, we can
construct equivalence classes over states. From the structure of states in Σs, the
dynamics in Σs, and the elements of the control system architecture (Sect. 1),
we give a brief informal overview of equivalences over Σ to be considered:

We speak of feature equivalence, σ ≈f σ′, iff both, σ and σ′ map to the same
set of active features of the control system, i.e., in-the-loop no matter whether
they are fully operational, faulty, or degraded. Note that out-of-the-loop features
can be faulty, deactivated, or in standby mode. Next, we speak of degradation
equivalence, σ ≈d σ′, iff σ ≈f σ′ and both states share the same set of degraded
features. Furthermore, we speak of hazard (or fault) equivalence, σ ≈h σ′, iff
∀i ∈ {1, . . . , |H|} : phi

∈ Phi
\{0} ⇔ p′

hi
∈ Phi

\{0}, and, particularly, of mishap
equivalence, σ ≈hm

σ′, iff ∀i ∈ {1, . . . , |H|} : phi
= ehi

m ⇔ p′
hi

= ehi
m . Based on

≈h, we finally define:

Definition 7 (Mitigation Equivalence). Based on Definition 3, two states
σ, σ′ ∈ Σ are mitigation equivalent, written σ ≈m σ′, iff

σ ≈h σ′ ∧ ∀i ∈ {1, . . . , |H|} : phi

h ehi ⇔ p′

hi

h ehi .

5 Construction of Risk Structures

In this section, we describe an incremental and forward5 reasoning approach to
building a risk structure R.

Fig. 3. Operators and scheme

Identification of Hazards. Throughout the construction of R, we assume to
have a procedure hazId for the identification of a set of hazards H based on a
fixed control loop design L of a class of AVs and their environments, and a fixed
set O′ ⊂ O of operational situations (Definition 6). Failure mode effects and
fault-tree analysis (see, e.g. [4]) incorporate widely practiced schemes for hazId.
5 For generation of R, backward reasoning is the alternative not shown here.

318 M. Gleirscher and S. Kugele

Building the Risk Structure. Figure 3b shows the main steps of a procedure
constructRS which, given a set H and after termination, returns all elements
of a complete risk structure R. Here, completeness is relative to H and means
that R can no more be extended by (i) states which are reachable by exist-
ing actions in A, (ii) actions which allow reaching non-visited states in Σ, (iii)
transitions in Δ which are technically possible and probable, and (iv) further
knowledge by extending the domains of weights. Based on Fig. 3b, Algorithm 1
refines constructRS for a control loop L and an operational situation os ∈ O′.

Algorithm 1. constructRS(L, os)
1: Σ = Σ0, ∀σ ∈ Σ0 : rvm(σ) = rve(σ) = ∅
2: while H = hazId(L, os) and ∃σ ∈ Σ \ mis : H \ (rve(σ) ∪ rvm(σ)) �= ∅ do
3: for all σ ∈ Σ \ mis and H′ ⊆ H \ rve(σ) do � extend endangerments

4: if (σ′, eH′
j) ← activate(σ, H′) then � state/jth action estab. H′ or mishap

5: δ ← (σ, eH′
j , σ′)

6: if poss(δ) then � add endangerment?

7: (Σ, E , Δ, rve(σ
′)) ← (Σ ∪ {σ′}, E ∪ {eH′

j }, Δ ∪ {δ}, ∅)
8: if σ′ ∈ mis then
9: sv(σ′) ← estimateL,os (sv, σ′) � severity of mishap

10: end if
11: pr(δ) ← estimateL,os (pr, δ) � probability of endangerment
12: end if
13: else � activate returns empty tuple
14: rve(σ) ← rve(σ) ∪ H′ � i.e., H′ activated and mishap added
15: end if
16: end for
17: for all σ ∈ Σ \ mis and H′ ⊆ H \ rvm(σ) do � extend mitigations

18: if (σ′,mH′
j) ← mitigate(σ, H′) then � state/jth action mitig. H′ from σ

19: δ ← (σ,mH′
j , σ′)

20: if poss(δ) then � add mitigation?

21: (Σ, M, Δ, rvm(σ′)) ← (Σ ∪ {σ′}, M ∪ {mH′
j }, Δ ∪ {δ}, ∅)

22: pr(δ) ← estimateL,os (pr, δ) � probability of mitigation
23: cs(δ) ← estimateL,os (cs, δ) � cost of mitigation
24: end if
25: else � mitigate returns empty tuple
26: rvm(σ) ← rvm(σ) ∪ H′ � i.e., all options for H′ are checked
27: end if
28: end for
29: Σ ← Σ \ {σ ∈ Σ | σ �∈ ⋃σ0∈Σ0

reachΔ(σ0)} � removing unreachable states
30: . . . � further simplifications
31: end while
32: return (Σ, E ∪ M, Δ, {sv, pr, cs})

The while-loop (cf. line 2) accounts for the alternation between adding
endangerments and mitigations. By using the maps rve and rvm (cf. lines 2, 3,
14, 17, 26), the algorithm keeps track of the endangerment- and mitigation-
coverage of visited states, i.e., for which hazards σ has already been visited.

Hazard Mitigation Planning: Automated Driving 319

We assume to have (i) a function estimateL,os (cf. lines 9, 11, 22, 23) which
acts as an oracle for weights (Sect. 4) depending on (L, os), and (ii) a func-
tion poss (cf. lines 6, 20) which acts as an oracle for determining the technical
possibility of newly identified transitions.

The first for-loop checks for the addition of new transitions to Δ (cf. line 7).
The transition constructor activate returns a state with the given hazard or
mishap activated (i.e., phases eh or eh

m). Note that activate can generate σ′ ∈ mis
reachable via eH′

m ∈ Em.
The second for-loop checks for the addition of new transitions to Δ (cf.

line 21). The transition constructor mitigate returns a state with the given haz-
ards H′ mitigated to a new phase mh

hi
∈ Ph for each h ∈ H′.

Note that none of the constructors is idempotent, mitigate can construct
several mitigation phases for each hazard (cf. lines 18, 26) and activate can
construct two activation phases, eh and eh

m, both with the corresponding actions
(cf. lines 4, 14).

Model Reduction. To keep reasoning efficient, we have to apply reachability-
preserving simplifications to R (cf. lines 29f), e.g. equivalences such as in Def-
inition 7. The mitigation order (Definition 3) helps in reducing the state space
and in merging actions modifying phases of the same hazards (i.e., by hazard
equivalence).

Abstraction from Control System Architecture. In both stages of Algo-
rithm1, we need to analyze the given or envisaged architecture and to identify
state variables, e.g. for software modules, at an appropriate level of granularity.

In the endangerment stage (lines 3ff), we can perform dependability analyses
to identify events that can activate causal factors. Off-line, we then design specific
measures to reach the safe region again, and, on-line, we design generic measures
to be refined at run-time.

Moreover, the mitigation stage (lines 17ff) helps to revise a control system
architecture, e.g. by adding redundant execution units and degradation paths.
Moreover, we can pursue off-line synthesis of respective parts of the control
system architecture.

Hazard Mitigation Planning. First, hazId is hybrid in the sense that it
(i) performs the sensing of already known endangerment scenarios (e.g. near-
collision detection, component fault diagnosis) on-line, and (ii) allows the addi-
tion of new scenarios from off-line hazard analysis.

Second, a simple planner would continuously perform shortest weighted path
search in R to keep a list of all available lowest-risk mitigation paths (Defini-
tion 5) and coordinate optimized lower-level controllers.

Based on these two steps, we assume R to be continuously updated accord-
ing to the available information (i.e., adding or modifying endangerments and
mitigations according to known scenarios). It is important to have powerful and

320 M. Gleirscher and S. Kugele

precise update mechanisms, highly responsive actuation, and short control loop
delays. Main issues of signal processing are briefly mentioned in Sect. 7.

The notion of safest possible state (SG, Sect. 1) is governed by the accuracy
of Σs (Sect. 3), the completeness of the results of hazId, and the exhaustiveness of
R for a fixed setting L, os . According to Definition 3, for a pair (σ, σ′) ∈ Σ × Σ,
we might say that σ′ is the safest possible state iff we have

� ∃σ′′ ∈ reachΔM(σ) : σ′ ≺m σ′′ (2)

where ΔM = Δ \ {(σ1, a, σ2) ∈ Σ | a ∈ E)}. Any controller for SG would have
to find and completely conduct a shortest plan for (σ, σ′) to reach σ′.

6 Example: Fail-Operational Driver Assistance

Elaborating on an example in [6], we apply our framework and algorithm to haz-
ard analysis and elaboration of mitigation strategies. We use the abbreviations
introduced in Sect. 1.

Identifying an Operational Situation. We consider the situation os ∈ O:
“AV is taking an exit in a tunnel, at a speed between 30 and 90 km/h, with the
driver being properly seated, and the next road segments contain a crossing.”
Figure 4b depicts the corresponding street segment.

Fig. 4. Two cutouts of the road vehicle domain.

Modeling the Road Vehicle Domain. Figure 4a shows a simplified control
system architecture used for driver assistance systems. We model the relevant
state information according to the abstractions described in Sect. 3. State vari-
ables commonly used for road vehicles are listed in Table 2. For Σs, we assume
to have the variables6 (prefixed with their domains, in parentheses their types):

6 Variable types and usage depend on the AV sensors and car2X services through
which they are measured. We assume individual error estimators for all variables.

Hazard Mitigation Planning: Automated Driving 321

Table 2. Exemplary state variables of the different domains.

Domain State variables Abbreviation

Driver Physical presence, consciousness, vigilance, . . . drv

Vehicle Speed, loc(ation), fault conditions, . . . veh

RoadEnv Daylight, weather, traffic, road, . . . renv

veh.loc (coordinate), veh.speedvec (vector of floats), renv.map (street map7),
and drv.pos (enumeration). veh denotes all variables of this domain. For Σp, we
identify the following predicates8:

exitTunnel ≡ veh.route ⊂ renv.map ∩ (Pexit ∪ Ptunnel)
crossingAhead ≡ veh.route ∩ (renv.map ∩ Pcrossing) �= ∅

drvSeated ≡ drv.pos = seated

Furthermore, we use unspecified predicates:

inTunnel ≡ p4(veh.loc, renv.map) A ≡ p5(veh.faults)
L ≡ p6(veh.faults) R ≡ p7(drv.vigilance)

inCrossing ≡ px(veh.loc, renv.map) tunnelAhead ≡ py(veh.loc, renv.map)

The invariant for os is pos ≡ exitTunnel ∧ drvSeated ∧ crossingAhead. Note
that the AP is active in the initial state σ0 associated with os .

Notation. In the following (Figs. 5a, b and 6), for each state, H denotes that the
hazard H is active (phase eH), H that H contributed to a mishap (phase eH

m,
only in Table 3), and Hi that its ith mitigation phase is active (phase mH

i). We
do not indicate hazards which are in phase 0.

Incremental Forward Construction of the Risk Structure. Refining the
regions haz and saf (Fig. 2b), we construct R from three hazards A,L, and R
identified by hazId (Sect. 5). Table 3 sketches the construction of the first and
second increments towards R2, including the events A ≡“AP sensor s1 fault”
and L ≡“TDA LKAD software fault.”

Figure 5a shows Δ for R2. According to Algorithm1, we try to add the fault
condition L to σ0 and other states in R1 (i.e., black states in Fig. 5a). Based on
the action f L , this step yields the states L,A1L, and AL. Then, a mitigation
step yields the states L1 and AL1 and, finally, another step of endangerment
analysis based on the action f A yields AL1.

7 With, e.g. topological coordinate system, information about tunneled parts.
8 Here, Px refers to a pattern for the street map element class x which acts like a filter

on the street map data type. For sake of brevity, we omit details of sensor fusion
and street map calculations required for evaluating these predicates.

322 M. Gleirscher and S. Kugele

Table 3. Model after two increments (R2). ‖t denotes true parallelism, ; concatenation.

Risk Priority Estimation. From the state AL with sv(AL) = f , we can derive,
e.g. rp(A1) according to Eq. (1). We can as well derive rp(A2) = rp(A3) = m
because reaching AL by driving assistance control is no more possible.

Equivalences and Model Reduction. In Fig. 5a, for example,

– A2 ≈m A3 because in both states A is mitigated and other hazards are inactive
(0, cf. Definition 7),

– A1 ≈f σ0 because in A1 the degraded variants of LKA and ACC, i.e., LKAD

and ACCD, are in the loop,
– A1 ≈d A1L because in both states LKAD and ACCD are in the loop,
– A1L ≈f AL because in both states, LKA and ACC are in the loop, and
– A1L �≈h AL because ACC (part of AP) is faulty and ACCD (part of TDA) is

fully operational.

Simplifications can be derived from Fig. 5a, where we might (i) merge two states
(σ1, σ2) ∈ ≈d if rp(σ1) = rp(σ2), or (ii) merge two consecutive states on a “safe”
mitigation path, e.g. from any σ ∈ haz to σ0 if actions such as limp-home,
shutdown, and repair are feasible from σ.

Hazard Mitigation Planning: Automated Driving 323

Fig. 5. Risk structure R2 and its simplification R′
2.

Table 4. Adding endangerments for the third increment (R3).

3 Description Model increment

H Driver reaction time increases R ≡ p7(drv.vigilance)

Σ States R, LR, AR, ALR,A1R,A1LR, AL1R,L1R

E Action eR . . . “driver looks
sidewards” ‖t “hands go off steering
wheel”

eR E = {f A , f L , eR}

M mL
3 ≡ warn ‖t normalStop

Figure 5b shows a simplification R′
2 of R2. We omit irrelevant transitions (f L)

and collapse the mitigation-equivalent (≈m) states A2 and A3. Consequently,
with the states A2,3 and AL1 we get a refinement of saf . According to Eq. (2),
A2 is a safest possible state reachable from A.

Fig. 6. Risk structure after adding endangerments (in red) for the 3rd increment
(weights not shown, cf. Table 4). (Color figure online)

324 M. Gleirscher and S. Kugele

Next, Table 4 and Fig. 6 describe a cut-out of R3 after the third increment
where we added the event R ≡“Driver reaction time increases.”

7 Discussion of Limitations, Applicability, and Strengths

The abstraction Σs (Sect. 3) is subject to standard signal processing steps, i.e.,
sampling of continuous signals at discrete time points, quantization of dense
domains to form finite domains, and clamping of domains. We assume all signals
to be sampled faster then their respective Nyquist period, sufficiently small
quantums, and sufficiently large ranges of data types. Furthermore, we expect a
mitigation planner to be fast enough (sufficiently low latency) to provide outputs
for effective and optimal control. Note that the risk structure abstracts from the
low-level parameters necessary for actual control of mitigations which takes place
at the level of Σs.

The treatment of these issues will determine how accurate mitigations can
take place at the right time and duration. In addition, we might consider higher-
order mitigations to handle adverse impacts of first-order mitigations. However,
such impacts have to be identified as hazards to get recognized in R.

Elaborating on risk regions (Sect. 4), mis represents mitigation-less harmful
states, however, haz includes all states where mitigations are feasible. Conse-
quently, we allow “bad things to happen” as long as we have partial mitigations,
e.g. an airbag would prevent from reaching mis at a certain probability.

8 Conclusion and Future Work

We presented risk structures as a model to design high-level controllers capa-
ble of run-time hazard mitigation, i.e., of maintaining or reaching the safest
states in a given operational situation. We sketched an incremental approach to
develop mitigation strategies. Safety measures are a combination of reducing or
eliminating endangerments with constructing or strengthening mitigations. Risk
structures can help to derive safety requirements for a control system architec-
ture. Moreover, they can lay a basis for the evaluation, choice, and combination
of mitigation strategies. Our example highlights challenges to tackle in hazard
mitigation of fail-operational automated driving. Finally, we indicate how sev-
eral formalisms—temporal specification, predicate abstraction, and transition
systems—can coherently aid in hazard mitigation planning.

Future Work. Based on risk structures, we aim to evaluate criteria such as (i)
time, energy, and cost of mitigations, (ii) the role of human intervention, (iii)
resilience to change of operational situations, (iv) control system simplicity.

In the next steps, we want to efficiently automate the derivation of acceptable
mitigation strategies, and synthesize feasible and affordable mitigation strate-
gies. Based on weights, we can define desirable properties of mitigation strategies
implemented in R, e.g. monotonicity.

Hazard Mitigation Planning: Automated Driving 325

Definition 8 (Mitigation Monotonicity). Let S ⊂ Δ∞ be a strategy (Def-
inition 5) and n ∈ N \ {0}. We call S mitigation monotonous iff for each path
σ0

a0−→ . . .
an−1−→ σn ∈ S : ∀i ∈ {0, . . . , n − 1} : rp(σi) �sv rp(σi+1).

Intuitively, during planning we seek mitigation paths containing only endanger-
ments, if any, which do not increase risk priority. This might, however, be a
definition to be relaxed for practical use by, e.g. allowing rp-distances.

Given that we use our algorithm off-line, it is important to make the poss and
estimateL,os steps in Algorithm 1 interactive for the safety engineer. Moreover,
instead of elaborating os -specific risk structures off-line, we aim at using our
algorithm to generate such structures on-line given a specific operational situa-
tion, and combine this with a transition system switching between operational
situations. Given that we use our algorithm on-line, it is important to develop
simplification rules to be applied to Σ based on the equivalences in Sect. 4.

We plan to evaluate our results in the automotive industry whose aims include
checking whether fail-operational extensions of given in-vehicle network archi-
tectures for automated driving can be made acceptably safe.

Finally, for a regulatory agency to apply our approach to AV, we have to show
(i) our approach using a large example involving several operational situations,
(ii) how our abstraction can be verified, and (iii) that the limits of controllers
do not constrain our approach to achieve safe stable control loops.

Acknowledgments. We are grateful to Maximilian Junker for a thorough review
of this work. Moreover, we thank our project partners from the German automotive
industry for inspiring discussions and providing a highly innovative practical context
for our research. Furthermore, we thank our peer reviewers for suggestions on the use
of risk structures, signal processing, and regulatory certification.

References

1. Babin, G., Ait-Ameur, Y., Pantel, M.: Correct instantiation of a system recon-
figuration pattern: a proof and refinement-based approach. In: 17th International
Symposium on High Assurance Systems Engineering (HASE), pp. 31–38, January
2016

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Eastwood, R., Alexander, R., Kelly, T.: Safe multi-objective planning with a pos-
teriori preferences. In: 17th International Symposium on High Assurance Systems
Engineering (HASE), pp. 78–85, January 2016

4. Ericson, C.A.: Hazard Analysis Techniques for System Safety, 2nd edn. Wiley,
Hoboken (2015)

5. Gleirscher, M., Kugele, S.: Reaching safe states in autonomous road vehicles. In:
35th Annual International Conference on Computer Safety, Reliability and Security
(SAFECOMP). HAL, September 2016. https://hal.laas.fr/hal-01370229. extended
abstract

6. Gleirscher, M., Kugele, S.: Defining risk states in autonomous road vehicles. In:
IEEE 18th International Symposium on High Assurance Systems Engineering
(HASE), Singapore, January 2017

https://hal.laas.fr/hal-01370229

326 M. Gleirscher and S. Kugele

7. Güdemann, M., Ortmeier, F.: A framework for qualitative and quantitative for-
mal model-based safety analysis. In: IEEE 12th International Symposium on High
Assurance Systems Engineering (HASE), pp. 132–141, November 2010

8. Jha, S., Raman, V.: Automated synthesis of safe autonomous vehicle control under
perception uncertainty. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS,
vol. 9690, pp. 117–132. Springer, Cham (2016). doi:10.1007/978-3-319-40648-0 10

9. Leveson, N.G.: Engineering a Safer World: Systems Thinking Applied to Safety.
Engineering Systems. MIT Press, Cambridge (2012)

10. Rizaldi, A., Althoff, M.: Formalising traffic rules for accountability of autonomous
vehicles. In: IEEE 18th International Conference on Intelligent Transportation Sys-
tems, pp. 1658–1665, September 2015

11. Rizaldi, A., Immler, F., Althoff, M.: A formally verified checker of the safe dis-
tance traffic rules for autonomous vehicles. In: Rayadurgam, S., Tkachuk, O. (eds.)
NFM 2016. LNCS, vol. 9690, pp. 175–190. Springer, Cham (2016). doi:10.1007/
978-3-319-40648-0 14

12. SAE International: J3016: Taxonomy and Definitions for Terms Related to On-
Road Motor Vehicle Automated Driving Systems. Technical report, January 2014

13. Wardziński, A.: Safety assurance strategies for autonomous vehicles. In: Harri-
son, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 277–290.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-87698-4 24

14. Wei, J., Snider, J.M., Kim, J., Dolan, J.M., Rajkumar, R., Litkouhi, B.: Towards
a viable autonomous driving research platform. In: Proceedings of the 2013 IEEE
Intelligent Vehicles Symposium (IV), pp. 763–770, June 2013

http://dx.doi.org/10.1007/978-3-319-40648-0_10
http://dx.doi.org/10.1007/978-3-319-40648-0_14
http://dx.doi.org/10.1007/978-3-319-40648-0_14
http://dx.doi.org/10.1007/978-3-540-87698-4_24

Event-B at Work: Some Lessons Learnt
from an Application to a Robot Anti-collision

Function

Arnaud Dieumegard1(&), Ning Ge1,2, and Eric Jenn1,3

1 IRT Saint-Exupéry, 118 Route de Narbonne, 31432 Toulouse, France
{arnaud.dieumegard,eric.jenn}@irt-saintexupery.com
2 Systerel Toulouse, La Maison des Lois, 2 Impasse Michel Labrousse,

31036 Toulouse, France
ning.ge@systerel.fr

3 Thales Avionics, 105 Avenue du Général Eisenhower,
BP 63647, 31036 Toulouse Cedex 1, France

Abstract. The technical and academic aspects of the Event-B method, and the
abstract description of its application in industrial contexts are the subjects of
numerous publications. In this paper, we describe the experience of develop-
ment engineers non familiar with Event-B to getting to grips with this method.
We describe in details how we used the formalism, the refinement method, and
its supporting toolset to develop the simple anti-collision function embedded in
a small rolling robot. We show how the model has been developed from a set of
high-level requirements and refined down to the software specification. For each
phase of the development, we explain how we used the method, expose the
encountered difficulties, and draw some practical lessons from this experiment.

Keywords: Formal refinement � Software verification � Formal verification �
Anti-collision � Event-B

1 Introduction

The practical implementation details and the difficulties encountered during the
application of the Event-B method by “typical industrial engineers” are usually not
widely discussed. Therefore, in the current publication, we share the method we have
used, the difficulties we have encountered, and some lessons we have learnt when
applying this method to develop one particular function of our small rolling robot [1].

It is worth noting that even though this development was tightly driven by con-
siderations about aeronautical certification, the question of compliance with ARPs [2]
or DOs [3–5] objectives using Event-B is not directly addressed here.

The paper is organized as follows. Section 2 outlines our development process.
Section 3 introduces our case study: the anti-collision function of a small rover.
Section 4 details the elaboration of the software requirements using formal refinement.
Section 5 covers related works. We conclude in Sect. 6.

© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 327–341, 2017.
DOI: 10.1007/978-3-319-57288-8_24

2 Formal Refinement in an Industrial Development Process

Our experiment focuses on the following development activities: (i) formalization of
the system specification, (ii) definition of a refinement strategy, (iii) application of the
refinement strategy to elaborate a set of high-level software requirements compliant
with the initial specification. Subsequent software production activities are not detailed
and are the subject of an ongoing publication [6]. Other activities such as integration or
testing are not addressed.

The development process starts with a set of informal requirements expressed in a
natural language. In order to optimize the modelling and validation effort, the initial set
of requirements is decomposed into disjoint subsets, the processing of which is realized
sequentially. Processing a subset of the requirements involves several phases: for-
malization, where requirements are translated into Event-B constructs; validation,
where these constructs are validated against the initial user specification; refinement,
where these constructs are made more concrete; verification, where the correctness of
these constructs is proved. This process stops when (i) all subsets have been processed
and (ii) the set of modelling elements allocated to software is completely defined. The
overall development process is depicted on Fig. 1.

With respect to a typical development process in the aeronautical domain, this part
of the overall process covers part of the system-level specification and design activity (as
per ARP4754 [2]) and part of the software requirement activity (as per DO-178C [3]).

System
requirements

process

So ware
requirements

process

So ware Design

So ware
Coding

System requirements

HLR

LLR

Source code

Integra on

Fig. 1. Overall development strategy

328 A. Dieumegard et al.

In our case, we consider the last refinement of the Event-B model to carry
high-level requirements (HLR), i.e., “software requirements developed from analysis of
system requirements, safety-related requirements, and system architecture” (DO-178C).
The software code will be implemented from those HLR; this part of the process is
described in [6].

3 The Case Study

3.1 The TwIRTee Rover and the ARP Function

TwIRTee is the three-wheeled robot (or “rover”) used as the demonstrator of the
INGEQUIP project conducted at the Institut de Recherche Technologique of Toulouse
(IRT Saint-Exupéry). It is used to evaluate new methods and tools in the domain of
hardware/software co-design [1], virtual integration, and application of formal methods
for the development of equipment [6–9]. TwIRTee’s architecture, software, and hard-
ware components are representative of aeronautical, spatial and automotive systems.

A rover performs a sequence of missions (❶ on Fig. 2) defined by a start time and
an ordered set of waypoints to be passed-by. Missions are planned off-line and trans-
mitted to the rover by a supervision station (❷). To go from the first waypoint to the
last, the rover moves on a track materialized by a dark line on the ground. In a more
abstract way, a complete mission can be modelled by a path in a graph where nodes
represent waypoints, and edges represent parts of the track joining two waypoints.

A rover shares the tracks with several identical rovers. In order to prevent colli-
sions, each of them embeds a protection function (or ARP) which purpose is to
maintain some specified spatial (❸) and temporal separation (❹) between them. On
Fig. 2, temporal separations are represented by light green and light red areas super-
imposed on the map: basically, rover 2 (resp. rover 1) shall never enter the light green
(resp. light red).

In our implementation, the ARP essentially acts by reducing the rover speed and, in
some specific cases, by performing a simple avoidance trajectory. To take the

W1

Spa al separa on

Mission:
(W1,W4,W5)

W5

W4 W7

W6

Map

W8

Mission:
(W5,W2,W5)

Map

W2Rover 1

Rover 2W3

Temporal separa on

Posi on transmissionSupervision
sta on

Waypoint

Fig. 2. System overview (Color figure online)

Event-B at Work: Some Lessons Learnt 329

appropriate action, the ARP exploit the following information: the map, the position of
all other rovers transmitted by a centralized supervision station (❺), and its own
position.

For this paper, we rely on a simplified version of the ARP function where some
specification elements such as the rovers positions, speeds, decelerations, etc. are
represented as discrete values (no use of Real or Floating Point data). Interested readers
can refer to another study [9] conducted on this same function but covering different
formal modelling aspects.

3.2 Rodin and Event-B

Event-B [10] is a method to develop systems according to a correct-by-construction
approach. It is the system level modelling evolution of the B-method [11] successfully
applied in real-size industrial applications [12]. The Event-B method constructs a
correct model of a system via a series of refinements of its specification. The correction
of a refinement is ensured by proving automatically or manually a set of proof obli-
gations (PO) generated from the model.

The Rodin Platform1 is an Eclipse-based IDE for Event-B that provides effective
support for refinement and mathematical proof. The platform is open source, based on
the Eclipse framework. Its development started in 2004 during the RODIN project, and
continued within the DEPLOY and ADVANCE projects. The community is still active
regarding the development. The extensibility of the platform through the use of plugins
is of great interest as it allows to rely among others on (i) analysis tools for verification
(SMT solvers, model checkers) or validation (animators, simulators generators) of the
models and the refinements, (ii) traceability facilities for link with requirement docu-
ments, (iii) code generation tooling, (iv) automated refinements methods easing the
refinement work.

4 From System-Level Requirements to High-Level
Requirements

In our process, the latest refinement of the Event-B model represents software HLR. As
already studied in [10, 13], the development of a refinement strategy is the entry point
for the definition of Event-B models. It improves the understanding of the requirements
by the designer and the robustness of the development process by providing an
intermediate formalization phase between requirements and design. Refinement strat-
egy application produces Event-B refinements.

4.1 Building a Refinement Strategy

Our refinement strategy is based on Abrial [10], Butler et al. [13] and Su et al. [14]. The
work started with a thorough analysis of the requirements to identify the variables used

1 http://www.event-b.org/.

330 A. Dieumegard et al.

http://www.event-b.org/

in the system and classify them as either uncontrolled (environment), controlled
(system), or commanded (operator). Requirements are classified according to the same
three categories. The main role of the ARP function is to ensure the absence of collision
between rovers by controlling the deceleration of the rover. The controlled variable
deceleration of the control function is chosen as the first element of focus in the
requirements document for the elaboration of the refinement strategy.

Requirements Layering
The refinement strategy defines the order to process the requirements. This order is
determined from the dependencies between variables and, consequently, between
requirements. In our case study, we identified the deceleration feature as dependent of
the occurrence of conflicts and emergency braking. As a first abstraction, conflicts
might occur at any time and so might emergency braking. Our initial layer of refine-
ment was thus only composed of these three variables.

From this entry point, the next requirements layers are produced by gradually
introducing new features such as: fleet of rovers, distances between rovers, emergency
braking etc. Each feature is attached to a subset of the initial requirements. As some
requirements are linked to multiple features, they are attached to multiple layers and
their implementation is gradually completed along with the refinement of layers.

Complementary to the previous horizontal refinements, vertical data refinements
are also performed. For instance, the values of the deceleration variable, initially
constrained by a simple range in the early refinement, become later constrained by
axioms specifying the semantics of deceleration. Similarly, the calculus of the distance
between rovers that was simply defined as a value in a range is refined as a shortest path
function.

Lessons Learnt
Building a consistent, adequate and applicable refinement strategy is the first step
towards the correct understanding of the system and contributes to the correct mod-
elling of the system. If requirement classification is a rather systematic activity, their
layering (or sequencing) is more difficult. Layering starts with the identification of an
entry point from which the activity starts. Layering may be driven by the identification
of the minimal subset of features that ensures the capability to simulate and validate the
model at each layer.

4.2 Formalization of Requirements

Formalization starts with the definition of Event-B contexts containing sets, constant
variables and constant relations, the definition domain of which are specified as axioms.
Then machines are detailed with variables and relations with their definition domain
specified as invariants. Variables require the setting of their initial value in the special
INITIALIZATION event. Variables shall be used in events specifying the condition
under which their value changes (guards) and how their value changes (actions). Event
execution modifies the state of the system. Properties expected to be verified by the
system shall be added as invariants of the machine and shall hold in every event.

Event-B at Work: Some Lessons Learnt 331

Producing Event-B models from informal specification can be done using multiple
approaches. A first approach relies on modelling the states of the system as sets. In that
interpretation, state changes are represented by the “movement” of elements from one
set to another. This approach has been used for instance in an alternative modelling of
our use case in [9] where the study goal was on time and the data refinements relied on
the use of real values.

Our modelling approach, depicted in Fig. 3, is inspired from [10]. The function is
first abstracted as a hierarchic cyclic state machine comprising two states: the first one
updates the state of the environment of the system and the second updates the state of
the system itself (i.e., performs the function under design). Transition from one state to
the other is triggered by dedicated events (arp_state_env_start and
arp_state_fun_start) updating a state variable arp_state. Sub state
machines are triggered depending on activation variables ([mm|fm|cm|em]_ac-
tivated). This approach provides a clear separation between the environment and
the system under design, exposes the execution cycle, and so facilitates the production
of the executable code from the model. Unfortunately, exposing the execution cycle of
the function may also introduce implementation details too early in the refinement
process.

Lessons Learnt
Modelling the system using our approach does suffer from some serious limitations.
We assume that all other rovers in the environment do implement the same ARP
function as the one under design. For our implementation, this assumption was added
as a new environment requirement. Such assumption was not necessary in the alter-
native modelling approach as every rover in the system was explicitly modelled and
each of them implements the same ARP behaviour. Our modelling approach yields an
advantage regarding the formal verification: as we do not model all the rovers, a level
of universal quantification in the model is removed.

Vertical data refinements produce detailed specifications for variables and for
functions. These specifications may be purely declarative or imperative. In the first
case, implementation is provided outside of the Event-B world; in the second case,

Func on state machineEnvironment state machine

arp_state_fun_start

arp_state_env_start

fm
cm emmm

fm

Fig. 3. Event-B model as a circuit

332 A. Dieumegard et al.

Event-B is used to “code” the function. In our use case, for instance, an imperative
model of the simple “deceleration function” could be easily designed in Event-B.
However, this would be much more tedious for the “shortest path function”. Thus we
have favoured a pure declarative approach in Event-B, leaving the implementation
details to programming languages.

The choice of the “set-oriented” or “finite-state-machine-oriented” modelling
approach has an impact on efficiency. The use of sets increases abstraction and reduces
the modelling effort, but it increases the implementation work. Reciprocally, using the
finite state machine approach is less abstract, less compact, more difficult to write, but
simplifies the implementation. Additionally, this approach also facilitates the automatic
discharging of POs but at the price of adding invariants to propagate the values of
variables changed in sub states to the final state of the state machine. Note also that the
nature of the variables and the system under design are likely to favor one or the other
modelling approaches.

Finally, it is worth noting that writing Event-B models does not require more
knowledge than writing software. While using first order logic and set theory is a shift
from classical software engineering methods, this belongs to the mathematical back-
ground of any engineer. However, writing Event-B model requires a strong capability
of abstraction and a capability to describe without being able to execute…

4.3 Verification of Refinements

Verification of formal refinements in the Event-B method relies on the discharging of
automatically generated POs. POs can be automatically discharged using predicate
provers embedded in the Rodin toolset. Plugins have been developed to leverage the
increasing capabilities of SMT solvers such as Alt-Ergo2, Z33, CV44, or others. Formal
verification is conducted in parallel with formal refinement: as soon as any element is
added in an Event-B model, PO are generated and potentially discharged automatically.
In some way, this can be related to the automatic syntactic verifications performed by
current IDEs.

Refinement Verification in Practice
The number of generated POs increases with the size of the model. Even with auto-
matic verification provided by embedded PP and SMT solvers, some POs remain to be
proved “manually”. Hopefully, the proof plug-ins in Rodin are easy to use and very
intuitive for the users, and thus is of great help when manual proofs are required.

Unfortunately, diagnosing why some PO fails to be discharged manually or auto-
matically remains difficult. The reason may be that the property simply does not hold,
or that either the automatic prover or the user is not able to carry out the proof. In the
latter case, reasons may be the limited capabilities of the human or mechanical prover,

2 http://alt-ergo.lri.fr/.
3 https://github.com/Z3Prover/z3.
4 http://cvc4.cs.nyu.edu/web/.

Event-B at Work: Some Lessons Learnt 333

http://alt-ergo.lri.fr/
https://github.com/Z3Prover/z3
http://cvc4.cs.nyu.edu/web/

or missing lemmas. Discriminating the various situations is very hard and may require
a significant (but hard to estimate) effort.

Rodin embedded prover can be adapted through the definition/modification (with a
graphical interface) of profiles. Profiles customization finds its interest in case depen-
dent models as it provides tactics adapted to specific goals to be proved. We relied on
profiles customization in our use case in order to add tactics such as “domain rewriting”
that were of great help for the automation of the proof work.

Part of the proof work was additionally assisted by adding “helper” invariants. This
was unfortunately not enough to fully automate the formal verification, as about 1% of
the proofs remained to be done by hand (a total of 2442 POs including 15 proven by
hand). Remaining proofs relate to the use of non-linear arithmetic for which automatic
provers are not really efficient. We dealt with these proofs by adding theorems adapted
to the proof goals and by performing their proof by hand. The necessary work was not
complex but is time consuming due to the manual search for missing theorems.

Lessons Learnt
Formal verification is the most time-consuming activity in the refinements process.
This work is complex and requires experience and specific skills when automatic proof
fails to discharge all POs. Worse, the effort to complete a proof is difficult to estimate.
This problem is made even more critical due to the fact that no guidance can be
provided to complete a proof. Avoiding manual proof work would thus be a way to
avoid such limitation but would require modelling guidance on how to stay on the path
of what is automatically provable.

On the other side, proofs performed fully automatically and immediately may cover
other difficulties. Hence, our first proofs were performed in no time due to contra-
dictory axioms/invariants/guards. Unfortunately, avoiding such inconsistencies is dif-
ficult and detection cannot be done automatically. So we relied on the voluntary
insertion of inconsistent axioms/invariants/guards to check for the consistency of the
other axioms/invariants/guards.

After a relatively short training on the Event-B method, formalism and proof
techniques, it appears to us that modelling systems and proving them using the Rodin
toolset is a task that is accessible to engineers with some background in mathematical
logics. However, the time needed for the modelling and verification of a system
remains difficult to estimate. Worse, the effect of a simple model modification on the
proof effort (especially, manual) is difficult to estimate. We really miss appropriate
modeling guidance.

4.4 Validation of Formal Requirements

Ideally, the set of requirements is consistent and complete at each refinement level. In
reality, it is very likely that some requirements have been ignored, misunderstood, or
badly transcoded. As the rework of an Event-B model is fairly expensive, it shall be
validated as early and often as possible.

334 A. Dieumegard et al.

Executing the model has been identified by Event-B experts as the only means to
achieve validation [15, 16]. The production of simulators has been the subject of many
works [17–19] and tools have been developed for this purpose.

Simulator-Based Validation
In our experiment, we relied on ProB [20] complemented by B-Motion [21] and JeB
[22] as validation tools. The last two additionally provide means to graphically rep-
resent the execution of the model: this greatly improves stakeholders’ ability to validate
the Event-B models.

During the phase of requirement analysis, we developed a simulator including
movement dynamics of the rovers on a map using ScicosLab5 as depicted in Fig. 4.
The only purpose of the simulator was to validate our understanding of the specifi-
cation. Such simulator also has the interesting effect of producing simulation scenarios
that can be used as test vectors fed to the Event-B simulators [19]. Simulations relying
on such values directly contribute to the validation of Event-B models as they rely on
pre-validated sets of values. Integration of third party simulators and produced values
can be technically done relying on FMI (Functional Model Interface) and the related
plugin developed for integration in the Rodin platform [17].

Developing Event-B simulators is easy, especially during the first steps of refine-
ment. However, generating actual input vectors for the simulation can be quite tedious
and complex when the variables or constants are specified using non-deterministic
expressions.

We relied on JeB [18] for the generation of a web-based simulator and for the
generation of values for constants. JeB provides an automatic translation of Event-B
models to an executable JavaScript implementation. It is then possible to provide
JavaScript functions computing the values for constants (resp. variables and

Fig. 4. ScicosLab simulator with graphical display (b) and underlying model (a)

5 http://www.scicoslab.org/.

Event-B at Work: Some Lessons Learnt 335

http://www.scicoslab.org/

parameters). Such functions produce values that are pretty-printed using Event-B
notation. These values can then be used in the original Event-B model making JeB a
very handy tool for the production of test vectors for complex data (relations pairs
etc.…). Computed values correction is formally verified using PP and SMT solvers
when they are injected in the Event-B model. In our ARP function we produced values
for the refined function for the calculus of the deceleration to be applied by the rover
using JeB.

In control systems, liveness properties or correctness properties such as deadlock
freeness shall be verified to ensure the responsiveness of the system. Simulation can be
used to obtain a first level of confidence on the absence of deadlocks, before resorting
to formal proof. Deadlock freeness theorems can be generated using dedicated Rodin
plugins, but depending on the model size, their verification may become very chal-
lenging. Verifying these properties can also be done using model checking. But this
approach suffers from the classical limitations of model checkers. In our experiment,
we used a translation to another formalism and toolset (HLL and S3, see [6]) after
introducing a scheduling sequence of events to the system under design to tackle more
efficiently and automatically the verification of those properties.

Lessons Learnt
Validating a formal model with respect to a set of informal requirements is a difficult
task. Hopefully, the Event-B environment provides a set of very helpful animation
tools. Animation allows stakeholders to see the behavior of the formal model and
validate it. Furthermore, it allows to assess reachability and liveness properties that are
difficult (and sometime impossible) to express directly on the Event-B model and to
formally verify these properties using model checking. However, as for any test-based
approach, confidence on the validation depends on the coverage of the validation
scenarios.

4.5 Model Review

The review activity in a classical development process aims at ensuring the correct
implementation of requirements as code or the correct refinement of requirements, to
detect inconsistencies and misinterpreted requirements, and enforce the use of devel-
opment standard (e.g., code writing standards). Here, we consider three specific goals:
ensure a correct encoding of the designer’s intent, reduce the verification effort, and
support traceability.

Ensure Correct Encoding of Designer Intent
The correct encoding of the designer intent is ensured by the validity, correctness,
consistency and completeness of the formal model with respect to the requirements. We
provide here multiple elements supporting this goal.

Introduction of verification lemmas is a starting point advocated in many publi-
cations to assess the consistency of an Event-B model. As already stated, success in
proving obviously false theorems/invariants/guards put in contexts/machine/events
allows one to detect inconsistencies in contexts/machine initialisation/event guards and
parameters definitions.

336 A. Dieumegard et al.

Additional automated tooling for checking expressions could also help in our
verification process, as an example, checking if bounded logic variables are used in
quantified constructs or writing implications in the body of existentially quantified
expressions might raise a warning for the designer.

A proofreading approach to model review could also be applied to Event-B models
by having a reviewer to rewrite chosen guards and invariants using natural language.
The reviewer would then check if the natural language expressions are indeed correct
rewritings of the associated requirements. The opposite approach could also be done
and would be safer (reviewer to write the natural language expression of the guard
using FOL) but less straightforward for engineers. Proofreading should be focused on
complex guards and invariants that are more likely to contain errors and on invariants
stating key properties of the system under design.

Minimize Verification Effort
Verification is one of the most expensive activities in the development of embedded
critical systems. Minimizing verification efforts is thus of primary interest.

To facilitate the (possibly automatic) verification process, we have to add additional
lemmas to the model. Those lemmas were explicitly identified as “helper” lemmas, so
as to ease the work of assessing the correction of the model. After several modifications
of the model, some of those lemmas became unnecessary and were removed from the
model to lighten the verification. It is worth noting that some tautologies were kept in
the model even though they did not bring additional information as they appeared to be
very helpful to support “case splitting” and simplify the automatic proof.

The verification effort obviously strongly depends on the ability for the verifier to
understand the model. One way to achieve this goal relies on the compliance to a set of
well-defined modelling rules compiled in a “modelling standard”, in a way similar to
what is usually done for software coding. Many rules for code writing such as
MISRA-C [23] can be applied to the writing of logical expressions: avoid deep nesting,
avoid too long lines of code, line breaks position according to operators, indentation
consistency, parenthesizing consistency, avoid having two operator of different
precedence at the same level of indentation. Verification effort can also be strongly
reduced by an appropriate organization of the models. For instance, in our experiment,
we applied the following rule about model elements ordering: “the order of declaration
of constants, variables or parameters should match the order of appearance of their
respective definition (axioms, invariants, guards)”.

It is obvious but worth noting that adding comments in the model significantly
contributes to a better understanding of the intent of the designer and of the structure
and choices made during the design process. Comments shall be of help and not state
obvious information.

Existing tooling may also simplify the models and thus impact its understand-
ability. For instance, the “theory” plugin provides the capability to factorize properties
or expressions of the model and thus simplifies the writing (and, later, the under-
standing) of complex Event-B models.

We have provided here a few examples of good practices for the writing of
an Event-B model to produce more readable, reviewable and thus understandable
models. There exists many works and standards used in the industry to ensure such

Event-B at Work: Some Lessons Learnt 337

properties for code but to our knowledge there is a minimal work done on applying this
to logical specification. We plan on tackling these with more details on a dedicated
publication.

Traceability
Aeronautics certifications require to trace each design elements to some requirement.
The corresponding certification objective is “High-level requirements are traceable to
system requirements” (DO178 Annex A, table A-3, objective 6). In our experiment,
ensuring traceability during the refinement process first relied on making explicit the
mapping between the elements in the informal specification and Event-B constructs. At
high level, naming conventions allowed us to link each refinement layer defined by the
refinement strategy to its corresponding Event-B machine and context. Newly intro-
duced model element (constant, axiom, variable, invariant, event, guard and action)
were commented with the name of the requirement to which it was linked. If an
element could not be linked to a requirement, it was marked as “derived” and the
corresponding derived requirement was added to the specification.

We decided to use this approach to keep the traceability artefacts visible at all time.
An alternative solution would be to rely on the traceability plugin integrated in the
Rodin platform (RMF). This solution would simplify the traceability review process
and avoid cluttering of the models. Unfortunately, it was not available for the version
of Rodin we used in our experiment (such integration is planned to be provided at the
time of writing).

Lessons Learnt
We advocate that code review can be applied to Event-B models and may help
in (i) demonstrating the correct encoding of the intent of the designer in the formal
model; and (ii) minimizing the verification effort by adopting appropriate modelling
patterns.

Model review against a well-defined modelling standard is a simple and efficient
means to enhance the quality of the model and reduce the number of errors. The benefits
of such activity strongly overcome its cost. Hence, it shall be an integral part of the
Event-B models development process. We believe that the complexity of such a review
activity is affordable for software engineers with basic mathematical knowledge.

Additionally, generating appropriate documentation from Event-B models would
also greatly simplify the review work. Indeed, the way of displaying models in the
Rodin environment is not really adapted to a proper review activity. For instance, a
categorization of model elements and comments according to their purpose/role
(traceability, design choices, model element meaning, general information …) with
associated documentation generation would greatly help the review process.

Our approach to deal with traceability was applicable to our use case because of the
granularity of our requirements. Tracing more abstract requirements to specific model
elements would be difficult to manage and verify that way. Relying on an intermediate
level of (semi-)formal requirements as advocated in the use of the “extended problem
frame” approach [24] would be more generalizable.

338 A. Dieumegard et al.

5 Related Works

Research projects have produced a large literature on the methodology and tools around
the use of Event-B for system modelling. Project such as DEPLOY, for instance, [24]
have provided some very valuable results on the application of Event-B on industrial use
cases. In this work, they rely on the “extended problem frames” approach as an inter-
mediate formalism between informal requirements and Event-B models to further for-
malize relations between requirements elements and thus simplify the formalization
work. Model validation is tackled in their approach using traceability and animation
through the use of ProB. To assess deadlock freeness, they rely exclusively on ProB.

A complete approach for the design and conception of a pacemaker system [25] and
an adaptive cruise control has been developed by Singh [19]. Formalization of
requirements is done through the extraction of modes and variables and introduction of
refinement charts [25]. Event-B models are then produced, verified and validated [26].
The whole process is also confronted to a potential use in a software certification
environment [27].

Our work on the analysis and formalization of requirements does not provide
additional elements compared to previously presented state of the art applications. We
advocate on relying on animation technologies to improve the understanding of sim-
ulation results by stakeholders by providing graphical simulators generated using
B-Motion and/or JeB. Simulation input data may be produced through the use of
simulators generators like JeB. We propose to additionally rely on a transformation of
Event-B models to HLL for verification and validation. A similar approach is advo-
cated in the FORMOSE6 project relying on UPPAAL [28]. We propose an additional
review process to complement validation relying on software review techniques
ensuring a better detection of conception errors and misunderstanding of the specifi-
cation during Event-B models design.

6 Conclusion

This work focuses on the application of the Event-B method on part of the process
followed during an industrial development. We give some lessons and proposed some
of the simple practices that we applied during this experiment. Relying on the Event-B
method for the development of systems provides a framework for the formalization of
textual requirements. This is strengthening the traditional error prone formalization step
of a software development process. Formal modelling, verification and validation of
Event-B models at an early stage provide a very valuable and fast feedback on the
correction of requirements.

One important conclusion of our experiment resides in the very fact that we –

“standard” software engineers – were able to apply the method on a non-trivial problem
in a very reasonable time. This is in particular due to the great maturity of the toolset
and the efficiency of the underlying provers. However, this positive conclusion is

6 http://formose.lacl.fr/.

Event-B at Work: Some Lessons Learnt 339

http://formose.lacl.fr/

certainly largely due to the natural adequacy of our problem to the method. An
additional conclusion of our experiment is that classical verification and validation
activities shall be complemented by review activities. They strongly contribute to
reduce the number of errors and more generally to enhance the quality of the model.

Before moving to a large scale industrial application, some very important ques-
tions remain to be answered: what is the actual usage domain of the method, consid-
ering the constraints imposed by the capability of the automatic verification means?
How robust is the method to a change in the requirements? What are the good mod-
eling practices to enhance this robustness and to reduce the verification effort? Defi-
nitely, it is necessary to evaluate the method on different types of systems to detect
weak and strong points for its application.

This work will be pursued to answer these questions, and more specifically to
address the applicability of the Event-B method in a DO-178C compliant development
process. Additional tooling may be necessary in order to assess requirements coverage
and improve review activities. Purpose/role focused documentation generation could
serve these activities that needs to be conducted in a certification environment.

References

1. Cuenot, P., Jenn, E., Faure, E., Broueilh, N., Rouland, E.: An experiment on exploiting
virtual platforms for the development of embedded equipments. In: 8th European Congress
on Embedded Real Time Software and Systems (ERTS 2016) (2016)

2. SAE: SAE ARP4754 Certification Considerations for Highly-Integrated Or Complex
Aircraft Systems. Society of Automotive Engineers (SAE), Warrendale, USA (1996)

3. RTCA: DO-178C, Software Considerations in Airborne Systems and Equipment Certifica-
tion. Special Committee 205 of RTCA (2011)

4. RTCA: DO-333 Formal Methods Supplement to DO-178C and DO-278A. RTCA &
EUROCAE, December 2011

5. RTCA: DO-331 Model-Based Development and Verification Supplement to DO-178C and
DO-278A. RTCA & EUROCAE, December 2011

6. Ge, N., Dieumegard, A., Jenn, E., Voisin, L.: From Event-B to verified C via HLL, October
2016

7. Clabaut, M., Ge, N., Breton, N., Jenn, E., Delmas, R., Fonteneau, Y.: Industrial grade model
checking use cases, constraints, tools and applications. In: 8th European Congress on
Embedded Real Time Software and Systems (ERTS 2016), Toulouse, France (2016)

8. Ge, N., Jenn, E., Breton, N., Fonteneau, Y.: Formal verification of a rover anti-collision
system. In: Beek, Maurice H., Gnesi, S., Knapp, A. (eds.) FMICS/AVoCS -2016. LNCS,
vol. 9933, pp. 171–188. Springer, Cham (2016). doi:10.1007/978-3-319-45943-1_12

9. Singh, N.K., Ait-Ameur, Y., Pantel, M., Dieumegard, A., Jenn, E.: Stepwise formal
modeling and verification of self-adaptive systems with Event-B. The automatic rover
protection case study. Presented at the ICECCS 2016 (2016)

10. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, Cambridge (2010)

11. Abrial, J.-R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,
New York (1996)

340 A. Dieumegard et al.

http://dx.doi.org/10.1007/978-3-319-45943-1_12

12. Boulanger, J.-L.: Formal Methods Applied to Complex Systems: Implementation of the B
Method. Wiley, Hoboken (2014)

13. Butler, M.: Towards a cookbook for modelling and refinement of control problems (2009)
14. Su, W., Abrial, J.-R., Huang, R., Zhu, H.: From requirements to development: methodology

and example. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 437–455.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24559-6_30

15. Mashkoor, A., Jacquot, J.-P., Souquières, J.: Transformation heuristics for formal
requirements validation by animation. In: 2nd International Workshop on the Certification
of Safety-Critical Software Controlled Systems-SafeCert 2009 (2009)

16. Hallerstede, S., Leuschel, M., Plagge, D.: Refinement-animation for Event-B — towards a
method of validation. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S.
(eds.) ABZ 2010. LNCS, vol. 5977, pp. 287–301. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-11811-1_22

17. Savicks, V., Butler, M., Colley, J., Bendisposto, J.: Rodin multi-simulation plug-in.
Presented at the 5th Rodin User and Developer Workshop, Toulouse, France (2014)

18. Yang, F.: A simulation framework for the validation of Event-B specifications. Université de
Lorraine (2013)

19. Singh, N.K.: Reliability and safety of critical device software systems. Ecole Centrale de
Nantes (2011)

20. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003). doi:10.1007/
978-3-540-45236-2_46

21. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models with B-motion
studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825,
pp. 202–204. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04570-7_17

22. Yang, F., Jacquot, J.-P., Souquières, J.: JeB: safe simulation of Event-B models in
Javascript. In: 2013 20th Asia-Pacific Software Engineering Conference (APSEC), vol. 1,
pp. 571–576 (2013)

23. MIRA Ltd: MISRA-C:2004 guidelines for the use of the C language in critical systems
(2004)

24. Petre, L., Sere, K., Tsiopoulos, L.: Deploy methods: final report. D44, April 2012
25. Méry, D., Singh, N.K.: Formal specification of medical systems by proof-based refinement.

ACM Trans. Embed. Comput. Syst. 12(1), 15:1–15:25 (2013)
26. Méry, D., Singh, N.K.: Real-time animation for formal specification. In: Méry, D., Singh, N.

K. (eds.) Complex Systems Design & Management 2010, pp. 49–60. Springer, Heidelberg
(2010)

27. Méry, D., Singh, N.K.: Trustable formal specification for software certification. In: Margaria, T.,
Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 312–326. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16561-0_31

28. Behrmann, G., et al.: UPPAAL 4.0. In: Third International Conference on the Quantitative
Evaluation of Systems - (QEST 2006), pp. 125–126 (2006)

Event-B at Work: Some Lessons Learnt 341

http://dx.doi.org/10.1007/978-3-642-24559-6_30
http://dx.doi.org/10.1007/978-3-642-11811-1_22
http://dx.doi.org/10.1007/978-3-642-11811-1_22
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1007/978-3-642-04570-7_17
http://dx.doi.org/10.1007/978-3-642-16561-0_31

Reasoning About Safety-Critical Information
Flow Between Pilot and Computer

Seth Ahrenbach(B)

University of Missouri, Columbia, MO 65201, USA
SJK7v7@mail.missouri.edu

Abstract. This paper presents research results that develop a dynamic
logic for reasoning about safety-critical information flow among humans
and computers. The logic advances previous efforts to develop logics of
agent knowledge, which make assumptions that are too strong for real-
istic human agents. We introduce Dynamic Agent Safety Logic (DASL),
based on Dynamic Epistemic Logic (DEL), with extensions to account
for safe actions, belief, and the logical relationships among knowledge,
belief, and safe action. With this logic we can infer which safety-critical
information a pilot is missing when executing an unsafe action. We apply
the logic to the Air France 447 incident as a case study and provide a
mechanization of the case study in the Coq proof assistant.

1 Introduction

A common theme for aviation mishaps attributed to human error is for a pilot
to become overwhelmed by data, lose situational awareness, and provide unsafe
inputs to the flight controls. As yet, little work has been done to leverage the
power of formal methods to address this problem. This paper remedies that by
defining a dynamic logic of belief, knowledge, and safe action. We use the logic to
create an axiomatic model of agency suitable for reasoning about safety-critical
information flow among pilots and the flight computer. We mechanize this model
in the Coq Proof Assistant and apply it to the Air France 447 incident as a case
study.1

The research contributions of this paper include the development of a
dynamic logic that is suitable for reasoning about safety-critical information
flow. The dynamic logic is extended beyond most dynamic logics’ treatment of
action in that it treats both mere action and safe action, and captures the rela-
tionship between the two. The subsequent application and mechanization in Coq
explore novel uses of formal methods in aviation safety, beyond mere verification
of system component correctness. They introduce the idea of formally analyzing
the human component of the safety-critical systems.

Dynamic Logic is a type of modal logic used for reasoning about state tran-
sition diagrams of programs [3,8]. A diagram consists of nodes and edges, repre-
senting states of the system and labeled transitions between them, respectively.
1 Code: https://github.com/sethkurtenbach/DASL/blob/master/DASL.v.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 342–356, 2017.
DOI: 10.1007/978-3-319-57288-8 25

https://github.com/sethkurtenbach/DASL/blob/master/DASL.v

Reasoning About Safety-Critical Information Flow 343

It is distinguished from other logics by the fact that truth is dynamic, rather than
static, in its semantics. Thus, it is capable of representing the way actions change
the truth of propositions. It serves as a foundation for a variety of logics simi-
larly concerned with changes in some aspect of the truth as a result of actions.
This family of logics has been described as logical dynamics, and includes Public
Announcement Logic (PAL) and Dynamic Epistemic Logic (DEL) [5].

Logical dynamics allows researchers to model information flow, rationality,
and action in multi-agent systems [5]. In Ahrenbach and Goodloe [1], the authors
develop a static modal logic for knowledge, belief, and safety to analyze a family
of aviation mishaps involving a type of reasoning error suffered by a single pilot.
This paper extends that work by employing dynamic methodologies from logical
dynamics to the analysis of mishaps. The use of a dynamic logic rather than
a static logic connects safety-critical information and actions in a more natural
way, and allows for easier inference from action to information. The application
of these methods advances the discipline of logical dynamics by employing them
in the real world, beyond toy examples and logic puzzles, and likewise improves
the discipline of aviation safety by introducing a formal method suitable for
analyzing safety-critical information flow between pilots and machine.

Recent work at the intersection of game theory and logical dynamics focuses
on information flow during games. Van Ditmarsch identifies a class of games
called knowledge games, in which players have diverging information [6]. This
slightly relaxes the assumption of classical game theory that players have com-
mon knowledge about each other’s perfect information. This invites logicians
to study the information conveyed by the fact that an action is executed. For
example, if agent 1 asks agent 2 the question, “p?”, the information conveyed is
that 1 does not know whether p, believes that 2 knows whether p, and after the
action occurs, this information becomes publicly known. Many actions convey
such information, beyond mere speech acts. For example, when a pilot provides
flight control inputs, her action conveys information about what she believes
about the aircraft’s state, namely that it is in a state that safely permits those
inputs. Anyone observing her inputs, like the first officer or the flight computer,
can make such inferences about her mental picture based on her actions.

This paper proceeds as follows. In Sect. 2 we define the formal model, which
consists of a set of axioms in a dynamic modal logic for reasoning about pilot
knowledge, belief, and safety. Section 3 mechanizes the model in the Coq Proof
Assistant and applies it to case studies, illustrating the logic’s use as a formal
method for aviation safety. We offer a brief discussion of future work in Sect. 4
and conclude in Sect. 5.

2 Dynamic Agent Safety Logic

The logic for reasoning about information flow in knowledge games is called
Dynamic Epistemic Logic (DEL). As its name suggests, it combines elements of
epistemic logic and dynamic logic. Epistemic logic is the static logic for reasoning
about knowledge, and dynamic logic is used to reason about actions. In dynamic

344 S. Ahrenbach

logic semantics, nodes are states of the system or the world, and relations on
nodes are transitions via programs or actions from node to node. If we think
of each node in dynamic logic as being a model of epistemic logic, then actions
become relations on models, representing transitions from one multi-agent epis-
temic model to another. For example, if we have a static epistemic model M1
representing the knowledge states of agents 1 and 2 at a moment, then the action
“p?” is a relation between M1 and M2, a new static epistemic model of 1’s and
2’s knowledge after the question is asked. All of this is captured by DEL.

We are concerned with an additional element: the safety status of an action,
and an agent’s knowledge and belief about that. To capture this, we extend DEL
and call the new logic Dynamic Agent Safety Logic (DASL). The remainder of
this section presents DASL’s syntax, semantics, and proves its soundness.

2.1 Syntax and Semantics

The Dynamic Agent Safety Logic (DASL) used in this paper has the following
syntax.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Ki ϕ | Bi ϕ | [i, (A,a)]ϕ | [i, (A,a),S]ϕ,

where p ∈ AtProp is an atomic proposition, i refers to i ∈ Agents, a is the name
of an action, called an action token, belong to a set of such tokens, Actions,
and A refers to an action structure. The knowledge operator Ki indicates that
“agent i knows that ...” Similarly, the operator for belief, Bi can be read, “agent i
believes that...” The notion of action tokens and structures will be defined in the
semantics. The operators [i, (A,a)] and [i, (A,a),S] are the dynamic operators
for agent i executing action token a from action structure A in the former case,
and doing so safely in the latter case. Note that the S in [i, (A,a),S] stands for
‘safety’, and is not a variable, whereas the i, (A,a) are variables for agents, action
structures, and action tokens, respectively. One can read the action operators as
“after i executes a from A, ϕ holds.” We define the dual modal operators 〈Ki〉 ,
〈Bi〉 , 〈i, (A,a)〉 , and 〈i, (A,a),S〉 in the usual way.

The semantics of DASL involve two structures that are defined simultane-
ously, one for epistemic models, and one for action structures capturing the
transition relation among epistemic models. Additionally, we define numerous
helper functions that straddle the division between metalanguage and object
language.

Kripke Model. A Kripke model M ∈ Model is a tuple 〈W, {Ri
k}, {Ri

b}, w, V 〉.
It is a set of worlds, sets of epistemic and doxastic relations on worlds for agents,
a world denoting the actual world, and a valuation function V mapping atomic
propositions to the set of worlds satisfying them. Most readers will be somewhat
familiar with epistemic logic, the logic for reasoning about knowledge. Doxastic
logic is a similar logic for reasoning about belief [9].

Reasoning About Safety-Critical Information Flow 345

Action Structure. An action structure A ∈ ActionStruct is a tuple
〈Actions, {χi

k}, {χi
b}, a〉. It is a set of action tokens, sets of epistemic and dox-

astic relations on action tokens for agents, and an action token, a, denoting an
actual action token executed.

An action structure captures the associated subjective events of an action
occurring, including how it is observed by various agents, incorporating their
uncertainty. The action tokens are the actual objective events that might occur.
For example, if I am handed a piece of paper telling me who won the Oscar for
Best Actress, and I read it, and you see me read it, then the action structure will
include possible tokens in which I read that each nominee has won, and you will
consider each of these tokens to be possible. When I read the paper, I consider
only one action token to be the one executed. This action structure represents
that transition from one epistemic model, in which both of us considers all
nominees the potential winner, to an epistemic model in which I know the winner
and you still do not know the winner. We can think of the action structure A
as the general action “Agent 1 reads the piece of paper” and the tokens as the
specific actions “Agent 1 reads that nominee n has won the award.”

Model Relation. Just as Ri
k denotes a relation on worlds, [[i, (A, a)]] denotes

a relation on Kripke model-world pairs. It represents the relation that holds
between M,w and M ′, w′ when agent i executes action (A, a) at M,w and causes
the world to transition to M ′, w′.

Precondition Function. The Precondition function, pre ::Actions �→ ϕ, maps
an action to the formula capturing the conditions under which the action can
occur. For example, if we assume agents tell the truth, then an announcement
action has as a precondition that the announced proposition is true, as with
regular Public Announcement Logic.

Postcondition Function. The Postcondition function, post ::A × AtProp �→
AtProp, takes an action structure and an atomic proposition, and maps to the
corresponding atomic proposition after the action occurs.

post(A, p) = p if update(M,A,w, a, i) |= p, else ¬p.

Update Function. The Update function, update :: (Model × ActionStruct ×
W × Actions × Agents) �→ (Model × W), takes a Kripke model M , an action
structure A, a world from the Kripke model, an action token from the Action
structure, and an agent executing the action, and returns a new Kripke model-
world pair. It represents the effect actions have on models, and is more com-
plicated than other DEL semantics in that actions can change the facts on the
ground in addition to the knowledge and belief relations. It is a partial function
that is defined iff a model-world pair satisfies the action’s preconditions.

346 S. Ahrenbach

update(M,A,w, a, i) = (M ′, w′) where:

1. M = 〈W, {Ri
k}, {Ri

b}, w, V 〉
2. A = 〈Actions, {χi

k}, {χi
b}, a, pre, post〉

3. M ′ = 〈W ′, {R′i
k}, {R′i

b }, w′, V ′〉
4. W ′ = {(w, a)|w ∈ W,a ∈ Actions, and w |= pre(a)}
5. R′i

k = {((w, a), (v, b))|wRi
kv and aχi

kb}
6. R′i

b = {((w, a), (v, b))|wRi
bv and aχi

bb}
7. w′ = (w, a)
8. V ′(p) = post(A, p)

Safety Precondition Function. The Safety Precondition Function,
pres ::Actions �→ ϕ, is a more restrictive function than pre. Where pre returns
the conditions that dictate whether the action is possible, pres returns the con-
ditions that dictate whether the action is safely permissible. This function is
the key reason the dynamic approach allows for easy inference from action to
safety-critical information.

The logic DASL has the following Kripke semantics.

M,w |= p iff w ∈ V (p)
M,w |= ¬ϕ iff M,w �|= ϕ

M,w |= ϕ ∧ ψ iff M,w |= ϕ and M,w |= ψ

M,w |= Ki ϕ iff ∀v, wRi
kv implies M,v |= ϕ

M,w |= Bi ϕ iff ∀v, wRi
bv implies M,v |= ϕ

M,w |= [i, (A,a)]ϕ iff ∀M ′, w′, (M,w)[[i, (A, a)]](M ′, w′)
implies M ′, w′ |= ϕ

M,w |= [i, (A,a),S]ϕ iff ∀M ′, w′, (M,w)[[i, (A, a), S]](M ′, w′)
implies M ′, w′ |= ϕ

The definitions of the dynamic modalities make use of a relation between two
model-world pairs, which we now define.

(M,w)[[i, (A, a)]](M ′, w′) iff M,w |= pre(a)
and update(M,A,w, a, i) = (M ′, w′)

(M,w)[[i, (A, a), S]](M ′, w′) iff M,w |= pres(a)
and update(M,A,w, a, i) = (M ′, w′)

Reasoning About Safety-Critical Information Flow 347

2.2 Hilbert System

DASL is axiomatized by the following Hilbert system.
All propositional tautologies are axioms.

Ki is T (knowledge relation is reflexive)
Bi is KD45 (belief relation is serial, transitive, and Euclidean)
EP1: Ki ϕ ⇒ Bi ϕ
EP2: Bi ϕ ⇒ Bi Ki ϕ
EP3: Bi ϕ ⇒ Ki Bi ϕ
SP: [i, (A,a)]ϕ ⇒ [i, (A,a),S]ϕ
PR: 〈i, (A,a)〉 ϕ ⇒ Bi 〈i, (A,a),S〉 ϕ,

plus the inference rules Modus Ponens and Necessitation for Ki and Bi .
Above are the axioms characterizing the logic. Knowledge is weaker here than

in most epistemic logics, and belief is standard [7]. They are related logically
by EP(1–3), which hold that knowledge entails belief, belief entails that one
believes that one knows, and belief entails than one knows that one believes.
Finally, actions and safe actions are logically related by SP and PR, which hold
that necessary consequences of mere action are also necessary consequences of
safe actions, and that a pilot can execute an action only if he believes that he
is executing a safe action.

2.3 Soundness

Theorem 1 (Soundness). Dynamic Agent Safety Logic is sound for
Kripke structures with
(1) reflexive Ri

k relations,
(2) serial, transitive, Euclidean Ri

b relations,
(3) which are partially ordered (Ri

k ◦ Ri
b) ⊆ Ri

b, (Ri
b ◦ Ri

k) ⊆ Ri
b, and

Ri
b ⊆ Ri

k,
(4) [[i, (A, a), S]] ⊆ [[i, (A, a)]] and
(5) ([[i, (A, a), S]] ◦ Ri

b) ⊆ [[i, (A, a)]].

Proof. (1) and (2) correspond to the axioms that Ki is a T modality and Bi

is a KD45 modality in the usual way. (3) corresponds to EP1, EP2, and EP3.
Axioms AP through SB are reduction axioms. This leaves (4), corresponding to
SP, and (5) which corresponds to PR. Here we will prove (5). Let M be a Kripke
structure satisfying the five conditions above. Let A be an Action structure with
a and i as its actual action token and agent.

We prove (5) via the contrapositive of PR: 〈Bi〉 [i, (A,a),S]ϕ ⇒ [i, (A,a)]ϕ.
Assume M,w |= 〈Bi〉 [i.(A,a),S]ϕ. By the semantics of 〈Bi〉, there exists a
v, such that wRi

bv and v |= [i, (A,a),S]ϕ. From the semantics, it follows that

348 S. Ahrenbach

forall M ′, v′, if (M,v)[[i, (A, a), S]](M ′, v′) then M ′, v′ |= ϕ. By slightly abusing
the notation, and letting (W,w)Ri

b(W, v) be equivalent to wRi
bv, we can cre-

ate the composed relation ([[i, (A, a), S]] ◦ Ri
b). It then holds, by condition (5),

that (M,w)([[i, (A, a), S]] ◦ Ri
b)(M

′, v′) implies (M,w)[[i, (A, a)]](M ′, v′). So, for
all M ′, v′, if (M,w)[[i, (A, a)]](M ′, v′), then M ′, v′ |= ϕ. So, M,w |= [i, (A,a)]ϕ.

�

3 Case Study and Mechanization

We apply the logic just developed to the formal analysis of the Air France 447
aviation incident. We also mechanize the formalization in the Coq Proof Assis-
tant. Our mechanization follows similar work by Maliković and Čubrilo [12,13],
in which they mechanize an analysis of the game of Cluedo using Dynamic
Epistemic Logic, based on van Ditmarsch’s formalization of the game [6]. It is
commonly assumed that games must be adversarial, but this is not the case.
Games need only involve situations in which players’ payoffs depend on the
actions of other players. Similarly, knowledge games need not be adversarial,
and must only involve diverging information. Thus, it is appropriate to model
aviation incidents as knowledge games of sorts, where players’ payoffs depend on
what others do, specifically the way the players communicate information with
each other. The goal is to achieve an accurate situational awareness and provide
flight control inputs appropriate for the situation. Failures to achieve this goal
result in disaster, and often result from imperfect information flow. A formal
model of information flow in these situations provides insight and allows for the
application of formal methods to improve information flow during emergency
situations.

3.1 Air France 447

This case study is based on the authoritative investigative report into Air France
447 performed and released by France’s Bureau d’Enquêtes et d’Analyses pour
la Sécurité de l’Aviation Civile (BEA), responsible for investigating civil aviation
incidents and issuing factual findings [4]. The case is mechanized by instantiating,
in Coq, the above logic to reflect the facts of the case. One challenge associated
with this is that the readings about inputs present in aviation are often real
values on a continuum, whereas for our purposes we require discrete values. We
accomplish this by dividing the continuum associated with inputs and readings
into discrete chunks, similar to how fuzzy logic maps defines predicates with real
values [10].

This paper will formalize an excerpted instance from the beginning of the
case, involving an initial inconsistency among airspeed indicators, and the sub-
sequent dangerous input provided by the pilot. Formalized in the logic, the
facts of the case allow us to infer that the pilot lacked negative introspection
about the safety-critical data required for his action. This demonstrates that
the logic allows information about the pilot’s situational awareness to flow to
the computer, via the pilot’s actions. It likewise establishes a safety property

Reasoning About Safety-Critical Information Flow 349

to be enforced by the computer, namely that a pilot should maintain negative
introspection about safety-critical data, and if he fails to do so, it should be
re-established as quickly as possible.

According to the official report, at 2 h and 10 min into the flight, a Pitot
probe likely became clogged by ice, resulting in an inconsistency between air-
speed indicators, and the autopilot disconnecting. This resulted in a change of
mode from Normal Law to Alternate Law 2, in which certain stall and control
protections ceased to exist. The pilot then made inappropriate control inputs,
namely aggressive nose up commands, the only explanation for which is that he
mistakenly believed that the aircraft was in Normal Law mode with protections
in place to prevent a stall. This situation, and the inference regarding the pilot’s
mistaken belief, is modeled in the following application and mechanization of
the logic.

3.2 Mechanization in Coq

The following mechanization demonstrates progress from the artificially simply
toy examples normally analyzed in the literature to richer real-world examples.
However, it does not represent the full richness of the approach. The actions
and instrument readings mechanized in this paper are constrained to those most
relevant to the case study. The approach is capable of capturing the full richness
of all instrument reading configurations and actions available to a pilot. To do so,
one needs to consult a flight safety manual and formally represent each action
available to a pilot, and each potential instrument reading, according to the
following scheme.

Before beginning, we note that our use of sets in the following Coq
code requires the following argument passed to coqtop before executing: -
impredicative-set. In CoqIDE, this can be done by selecting the ‘Tools’ drop-
down, then ‘Coqtop arguments’. Type in -impredicative-set.

We first formalize the set of agents.

Inductive Agents: Set := Pilot | CoPilot | AutoPilot.

Next we formalize the set of available inputs. These themselves are not
actions, but represent atomic propositions true or false of a configuration.

Inductive Inputs : Set :=
HardThrustPlus | ThrustPlus

| HardNoseUp | NoseUp

| HardWingLeft | WingLeft

| HardThrustMinus | ThrustMinus
| HardNoseDown | NoseDown

| HardWingRight | WingRight.

350 S. Ahrenbach

We represent readings by indicating which side of the panel they are on. Typ-
ically, an instrument has a left-side version, a right-side version, and sometimes a
middle version serving as backup. When one of these instruments conflicts with
its siblings, the autopilot will disconnect and give control to the pilot.

Inductive Side : Set := Left | Middle | Right.

We divide the main instruments into chunks of values they can take, in order
to provide them with a discrete representation in the logic. For example, the
reading VertUp1 may represent a nose up reading between 0◦ and 10◦, while
VertUp2 represents a reading between 11◦ and 20◦.

Inductive Readings (s : Side) : Set :=
VertUp1 | VertUp2 | VertUp3 | VertUp4

| VertDown1 | VertDown2 | VertDown3 | VertDown4
| VertLevel | HorLeft1 | HorLeft2 | HorLeft3
| HorRight1 | HorRight2 | HorRight3 | HorLevel
| AirspeedFast1 | AirspeedFast2 | AirspeedFast3
| AirspeedSlow1 | AirspeedSlow2 | AirspeedSlow3
| AirspeedCruise| AltCruise | AltClimb | AltDesc | AltLand.

We define a set of potential modes the aircraft can be in.

Inductive Mode : Set := Normal | Alternate1 | Alternate2.

We define a set of global instrument readings representing the mode and
all of the instrument readings, left, right, and middle, combined together. This
represents the configuration of the instrumentation.

Inductive GlobalReadings : Set := Global (m: Mode)
(rl : Readings Left)
(rm : Readings Middle)
(rr : Readings Right).

The set of atomic propositions we are concerned with are those representing
facts about the instrumentation.

Reasoning About Safety-Critical Information Flow 351

Inductive Atoms : Set :=
| M (m : Mode)
| Input (a : Inputs)
| InstrumentL (r : Readings Left)
| InstrumentM (r : Readings Middle)
| InstrumentR (r : Readings Right)
| InstrumentsG (g : GlobalReadings).

Next we follow Maliković and Čubrilo [12,13] in defining a set prop of proposi-
tions in predicate calculus, distinct from Coq’s built in type Prop. The definition
provides constructors for atomic propositions consisting of particular instrument
reading predicate statements, implications, propositions beginning with a knowl-
edge modality, and those beginning with a belief modality. Interestingly, modal
logic cannot be directly represented in Coq’s framework [11]. We first define
propositions in first-order logic, which we then use to define DASL. This appears
to be the standard technique for mechanizing modal logics in Coq.

Inductive prop : Set :=
| atm : Atoms → prop

| imp: prop → prop → prop

| Forall : forall (A : Set), (A → prop) → prop

| K : Agents → prop → prop

| B : Agents → prop → prop

| Ck : list Agents → prop → prop

| Cb : list Agents → prop → prop.

We use the following notation for implication and universal quantification.

Infix "=⇒ " := imp (right associativity, at level 85).
Notation "\-/ p" := (Forall _ p) (at level 70, right associativity).

We likewise follow Maliković and Čubrilo [12,13] by defining an inductive
type theorem representing a theorem of DASL. The constructors correspond
to the Hilbert system, either as characteristic axioms, or inference rules. The
first three represent axioms for propositional logic, then the rule Modus Ponens,
then the axioms for the epistemic operator plus its Necessitation rule, then the
doxastic operator and its Necessitation rule. Do not confuse the Necessitation
rules with material implication in the object language. The final constructors
capture the axioms relating belief and knowledge. The axioms for dynamic modal
operators are defined separately, and are not included here.

352 S. Ahrenbach

Inductive theorem : prop → Prop :=
| Hilbert_K: forall p q : prop, theorem (p =⇒ q =⇒ p)
| Hilbert_S: forall p q r : prop,

theorem ((p=⇒ q=⇒ r)=⇒ (p=⇒ q)=⇒ (p=⇒ r))
| Classic_NOTNOT : forall p : prop, theorem ((NOT (NOT p)) =⇒ p)
| MP : forall p q : prop, theorem (p =⇒ q) → theorem p → theorem q

| K_Nec : forall (a : Agents) (p : prop), theorem p → theorem (K a p)
| K_K : forall (a : Agents) (p q : prop),

theorem (K a p =⇒ K a (p =⇒ q) =⇒ K a q)
| K_T : forall (a : Agents) (p : prop), theorem (K a p =⇒ p)
| B_Nec : forall (a : Agents) (p : prop), theorem p → theorem (B a p)
| B_K : forall (a : Agents) (p q : prop),

theorem (B a p =⇒ B a (p =⇒ q) =⇒ B a q)
| B_Serial : forall (a : Agents) (p : prop),

theorem (B a p =⇒ NOT (B a (NOT p)))
| B_4 : forall (a : Agents) (p : prop), theorem (B a p =⇒ B a (B a p))
| B_5 : forall (a : Agents) (p : prop),

theorem (NOT (B a p) =⇒ B a (NOT (B a p)))
| K_B : forall (a : Agents) (p : prop), theorem (K a p =⇒ B a p)
| B_BK : forall (a : Agents) (p : prop), theorem (B a p =⇒ B a (K a p)).

We use the following notation for theorem:

Notation "|-- p" := (theorem p) (at level 80).

We encode actions as records in Coq, recording the acting pilot, the observ-
ability of the action (whether it is observed by other agents or not), the input
provided by the pilot, and the preconditions for the action and the safety pre-
conditions for the action, both represented as global atoms.

Record Action : Set := act {Ai : Agents; Aj : Agents; pi : PI;
input : Inputs; c : GlobalReadings;
c_s : GlobalReadings}.

The variable c holds the configuration representing the precondition for the
action, while the variable c s holds the configuration for the safety precondition.

We encode the precondition and safety precondition functions as follows.

Function pre (a:Action) : prop := atm (InstrumentsG (c a)).

Function pre_s (a : Action) : prop := atm (InstrumentsG (c_s a)).

Reasoning About Safety-Critical Information Flow 353

In the object language, the dynamic modalities of action and safe action are
encoded as follows.

Parameter aft_ex_act : Action → prop → prop.
Parameter aft_ex_act_s : Action → prop → prop.

Many standard properties of logic, like the simplification of conjunctions,
hypothetical syllogism, and contraposition, are encoded as Coq axioms. As an
example, here is how we encode simplifying a conjunction into just its left con-
junct.

Axiom simplifyL : forall p1 p2,
|−− p1 & p2 → |−− p1.

We formalize the configuration of the instruments at 2 h 10 min into the flight
as follows.

Definition Config_1 := (atm (M Alternate2)) &
(atm (InstrumentL (AirspeedSlow3 Left))) &
(atm (InstrumentM (AirspeedSlow3 Middle))) &
(atm (InstrumentR (AirspeedCruise Right))).

The mode is Alternate Law 2, and the left and central backup instruments
falsely indicate that the airspeed is very slow, while the right side was not
recorded, but because there was a conflict, we assume it remained correctly
indicating a cruising airspeed.

The pilot’s dangerous input, a hard nose up command, is encoded as follows.

Definition Input1 := act Pilot Pilot Pri HardNoseUp

(Global Alternate2 (AirspeedSlow3 Left)
(AirspeedSlow3 Middle)
(AirspeedCruise Right))

(Global Normal (AirspeedCruise Left)
(AirspeedCruise Middle)
(AirspeedCruise Right)).

The action is represented in the object language by taking the dual of the
dynamic modality, ¬[i, (A,a)]¬True, equivalently 〈i, (A,a)〉 True, indicating
that the precondition is satisfied and the action token is executed.

354 S. Ahrenbach

Definition Act_1 := NOT (aft_ex_act Input1 (NOT TRUE)).

The actual configuration satisfies the precondition for the action, but it is
inconsistent with the safety precondition. The safety precondition for the action
indicates that the mode should be Normal and the readings should consistently
indicate cruising airspeed. However, in Config 1, the conditions do not hold.
Thus, the action is unsafe. From the configuration and the action, DASL allows
us to deduce that the pilot lacks negative introspection of the action’s safety
preconditions.

Negative introspection is an agent’s awareness of the current unknowns. To
lack it is to be unaware of one’s unknown variables, so lacking negative introspec-
tion about one’s safety preconditions is to be unaware that they are unknown.

Theorem NegIntroFailMode :
|−− (Config_1 =⇒

Act_1 =⇒
((NOT (K Pilot (pre_s(Action1)))) &
(NOT (K Pilot (NOT (K Pilot (pre_s(Action1)))))))).

In fact, in general it holds that if the safety preconditions for an action are
false, and the pilot executes that action, then the pilot lacks negative introspec-
tion of those conditions. We have proven both the above theorem, and the more
general theorem, in Coq.

Theorem neg_intro_failure :
forall (A Ao : Agents) (pi : PI) (inp : Inputs)

(m : Mode)
(rl : Readings Left) (rm : Readings Middle) (rr : Readings Right)
(ms : Mode)
(rls : Readings Left) (rms : Readings Middle) (rrs : Readings Right)
phi,

|−− (NOT
(aft_ex_act

(act A Ao pi inp (Global m rl rm rr) (Global ms rls rms rrs))
(NOT phi)) =⇒

NOT (atm (InstrumentsG (Global ms rls rms rrs))) =⇒
(NOT (K A (atm (InstrumentsG (Global ms rls rms rrs)))) &
(NOT (K A (NOT (K A (atm (InstrumentsG (Global ms rls rms rrs))))))))).

This indicates that negative introspection about safety preconditions is a
desirable safety property to maintain, consistent with the official report’s crit-
icism that the Airbus cockpit system did not clearly display the safety critical
information. The logic described in this research accurately models the report’s

Reasoning About Safety-Critical Information Flow 355

findings that the pilot’s lack of awareness about safety-critical information played
a key role in his decision to provide unsafe inputs. Furthermore, the logic sup-
ports efforts to automatically infer which safety-critical information the pilot is
unaware of and effectively display it to him.

4 Future Work

The case study presented in this paper is overly simplified due to space con-
straints. Future work will undertake the task of extending the approach to
other actions in the Air France 447 incident, and the safety-critical information
expressed by them. For example, when both pilots provided conflicting inputs
to the aircraft, the computer could have inferred that neither was aware of the
other’s actions. This will illustrate the use of the approach in a multi-agent con-
text. Similarly, as recommended by an anonymous reviewer, we shall apply the
approach to other aviation mishaps involving complicated safety-critical infor-
mation flow, specifically Asiana Airlines Flight 214 [14].

An important extension of the foundational work provided by this paper
is the construction of a system that takes advantage of the logic as a runtime
safety monitor. It will monitor the pilot’s control inputs and current flight con-
figurations, and in the event that an action’s safety preconditions do not hold,
infer which instrument readings the pilot is unaware of and act to correct this.
In order to avoid further information overload, the corrective action taken by
the computer should be to temporarily remove or dim the non-safety-critical
information from competition for the pilot’s attention, until the pilot’s unsafe
control inputs are corrected, indicating awareness of the safety-critical informa-
tion. Construction of a prototype of this system is underway.

5 Conclusion

This paper has described Dynamic Agent Safety Logic (DASL), a logic for rea-
soning about safety-critical information flow. It formalized actions and knowl-
edge in the way common to Dynamic Epistemic Logic, but also formalized the
notion of safe actions and beliefs. Additionally, it formalized a more realistic
model of human reasoning, capturing a weaker notion of knowledge than most
epistemic logics, and modeled the logical relationship between knowledge and
belief. It formalized a realistic notion of rationality. The logic was mechanized
in the Coq proof assistant and applied to the case of Air France 447 to validate
its usefulness as a formal method for aviation safety.

Acknowledgements. Seth Ahrenbach was partially supported by NSF CNS 1553548.
The author is grateful for the criticism and suggestions provided by anonymous review-
ers, and for the very generous assistance from Alwyn Goodloe, Rohit Chadha, and Chris
Hathhorn.

356 S. Ahrenbach

References

1. Ahrenbach, S., Goodloe, A.: Formal analysis of pilot error using agent safety logic.
In: Innovations in Systems and Software Engineering (submitted)

2. Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.C., Gimenez, E.,
Herbelin, H., Huet, G., Munoz, C., Murthy, C., Parent, C.: The Coq proof assistant
reference manual: version 6.1 (Doctoral dissertation, Inria) (1997)

3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001)

4. Bureau d’Enquêtes et d’Analyses: Final report on the accident on 1st June 2009
to the Airbus A330-203 registered F-GZCP operated by Air France flight AF 447
Rio de Janeiro-Paris. BEA, Paris (2012)

5. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press, New York (2011)

6. Van Ditmarsch, H.: Knowledge games. Bull. Econ. Res. 53(4), 249–273 (2001)
7. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning About Knowledge. The

MIT Press, Cambridge (2003)
8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
9. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)

10. Klir, G., Yuan, B.: Fuzzy Sets and Fuzzy Logic, vol. 4. Prentice Hall, New Jersey
(1995)

11. Lescanne, P.: Mechanizing common knowledge logic using COQ. Ann. Math. Artif.
Intell. 48(1–2), 15–43 (2006). APA

12. Maliković, M., Čubrilo, M.: Modeling epistemic actions in dynamic epistemic logic
using Coq. In: CECIIS 2010 (2010)

13. Maliković, M., Čubrilo, M.: Reasoning about epistemic actions and knowledge in
multi-agent systems using Coq. Comput. Technol. Appl. 2(8), 616–627 (2011)

14. National Transportation Safety Board: Descent below visual glidepath and impact
with Seawall Asiana Flight 214, Boeing 777-200ER, HL 7742, San Francisco,
California, 6 July 2013 (Aircraft Accident Report NTSB/AAR-14/01). NTSB,
Washington, DC (2014)

Compositional Falsification of Cyber-Physical
Systems with Machine Learning Components

Tommaso Dreossi1(B), Alexandre Donzé2, and Sanjit A. Seshia1

1 University of California, Berkeley, USA
{dreossi,sseshia}@berkeley.edu

2 Decyphir, Inc., San Francisco, USA
alex.r.donze@gmail.com

Abstract. Cyber-physical systems (CPS), such as automotive systems,
are starting to include sophisticated machine learning (ML) components.
Their correctness, therefore, depends on properties of the inner ML
modules. While learning algorithms aim to generalize from examples,
they are only as good as the examples provided, and recent efforts have
shown that they can produce inconsistent output under small adversar-
ial perturbations. This raises the question: can the output from learning
components can lead to a failure of the entire CPS? In this work, we
address this question by formulating it as a problem of falsifying sig-
nal temporal logic (STL) specifications for CPS with ML components.
We propose a compositional falsification framework where a temporal
logic falsifier and a machine learning analyzer cooperate with the aim of
finding falsifying executions of the considered model. The efficacy of the
proposed technique is shown on an automatic emergency braking system
model with a perception component based on deep neural networks.

Keywords: Cyber-physical systems · Machine learning · Falsification ·
Temporal logic

1 Introduction

Over the last decade, machine learning (ML) algorithms have achieved impres-
sive results providing solutions to practical large-scale problems (see, e.g.,
[2,8,10,14]). Not surprisingly, ML is being used in cyber-physical systems (CPS)
— systems that are integrations of computation with physical processes. For
example, semi-autonomous vehicles employ Adaptive Cruise Controllers (ACC)
or Lane Keeping Assist Systems (LKAS) that rely heavily on image classifiers
providing input to the software controlling electric and mechanical subsystems
(see, e.g., [3]). The safety-critical nature of such systems involving ML raises the

This work is funded in part by the DARPA BRASS program under agreement
number FA8750-16-C-0043, NSF grants CNS-1646208 and CCF-1139138, and by
TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corporation
program sponsored by MARCO and DARPA. The second author did much of the
work while affiliated with UC Berkeley.

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 357–372, 2017.
DOI: 10.1007/978-3-319-57288-8 26

358 T. Dreossi et al.

need for formal methods [18]. In particular, how do we systematically find bugs
in such systems?

We formulate this question as the falsification problem for CPS models with
ML components (CPSML): given a formal specification ϕ in signal temporal
logic (STL) [12], and a CPSML model M , find an input for which M does
not satisfy ϕ. A falsifying input generates a counterexample trace that reveals
a bug. To solve this problem, multiple challenges must be tackled. First, the
input space to be searched can be intractable. For instance, a simple model of a
semi-autonomous car already involves several control signals (e.g., the angle of
the acceleration pedal, steering angle) and other sensor input (e.g., images cap-
tured by a camera). Second, CPSML are often designed using languages (such
as C, C++, or Simulink), for which clear semantics are not given, and involve
third-party components that are opaque or poorly-specified. This obstructs the
development of formal methods for the analysis of CPSML models and may
force one to treat them as gray/black-boxes. Third, the formal verification of
ML components is a difficult, and somewhat ill-posed problem due to the com-
plexity of the underlying ML algorithms, large feature spaces, and the lack of
consensus on a formal definition of correctness [18]. Hence, we need a technique
to systematically analyze ML components within the context of a CPS.

In this paper, we propose a framework for the falsification of CPSML address-
ing the issues described above. Our technique is compositional in that it divides
the search space for falsification into that of the ML component and of the
remainder of the system, while establishing a connection between the two. The
obtained subspaces are respectively analyzed by a temporal logic falsifier and
an ML analyzer that cooperate. This cooperation mainly comprises a series of
input space projections, leads to small subsets in which counterexamples are eas-
ier to find. Further, our technique can handle any machine learning technique,
including the methods based on deep neural networks [8] that have proved effec-
tive in many recent applications. The proposed ML analyzer identifies sets of
misclassifying features, i.e., inputs that “fool” the ML algorithm. The analysis
is performed by considering subsets of parameterized features spaces that are
used to approximate the ML components by simpler functions. The information
gathered by the temporal logic falsifier and the ML analyzer together reduce the

Fig. 1. Automatic Emergency Braking
System. An image classifier is used to per-
ceive vehicles in the frame of view.

search space, providing an efficient approach to falsification for CPSML models.

Example 1. As an illustrative exam-
ple, let us consider a simple model
of an Automatic Emergency Braking
System (AEBS) as a closed-loop con-
trol system composed of a controller
(automatic brake), a plant (car trans-
mission), and a sensor (obstacle detec-
tor) (see Fig. 1). The controller regu-
lates the acceleration and braking of
the plant using the velocity of the
subject (ego) vehicle and the distance
between it and an obstacle. The sensor

Compositional Falsification of CPS with ML Components 359

used to detect the obstacle includes a camera along with an image classifier. In
general, this sensor can provide noisy measurements due to incorrect image clas-
sifications which in turn can affect the correctness of the overall system.

Suppose we want to verify whether the distance between the subject vehicle
and a preceding obstacle is always larger than 5 m. Such a verification requires
the exploration of an intractable input space comprising the control inputs (e.g.,
acceleration and braking pedal angles) and the ML component’s feature space
(e.g., all the possible pictures observable by the camera). Note that feature space
of RGB 1000 × 600 px pictures for an image classifier contains 2561000×600×3

elements. ��
At first, the input space of the model described in Example 1 appears

intractable. However, we can observe some interesting aspects of the relationship
between the “pure CPS” input space and its ML feature space:

1. Under the assumption of “perfect ML components” (i.e., all feature vec-
tors are correctly classified), we can study the CPSML model on a lower-
dimensional input space (the “pure CPS” one) and identify regions of values
that satisfy the specification but might be affected by the malfunctioning of
some ML modules;

2. Instead of verifying the ML components on their whole feature spaces, we can
focus only on those features related to the non-robust input values identified
in the previous step, and

3. If we are able to determine misclassifications on the restricted feature space,
then we can relate them back to CPSML input space, thus focusing the
falsification on a smaller input space.

These three observations constitute the core idea of the compositional falsi-
fication method proposed in this paper. Specifically, we use a temporal logic
falsifier, Breach [4], in Steps (1) and (3) to partition a given input set into val-
ues that do and do not satisfy a given specification, and an ML analyzer in
Step (2) to determine subsets of feature vectors that are misclassified by the ML
components.

The proposed method, however, presents certain challenges that need to be
addressed. First, we need to construct a validity domain of a specification against
a CPSML model with (assumed) correct ML components. Second, we need a
method to relate the non-robust input areas to the feature space of the ML
modules. Third, we need to systematically analyze the ML components with the
goal of finding feature vectors leading to misclassifications. We describe in detail
in Sects. 3 and 4 how we tackle these challenges.

In summary, the main contributions of this paper are:

• A compositional framework for the falsification of temporal logic properties
of CPSML models that works for any machine learning classifier.

• A machine learning analyzer that identifies misclassifications leading to
system-level property violations, based on two main ideas:

360 T. Dreossi et al.

– An input space parameterization used to abstract the feature space and
relate it to the CPSML input space, and

– A classifier approximation method used to identify misclassifications that
can lead to unsafe executions of the CPSML.

In Sect. 5, we demonstrate the effectiveness of our approach on an Automatic
Emergency Braking System (AEBS) involving an image classifier for obsta-
cle detection based on deep neural networks using leading software packages
Caffe [10] and TensorFlow [13].

Related Work

The verification of both CPS and ML algorithms have attracted several research
efforts, and we focus here on the most closely related work. Techniques for the
falsification of temporal logic specifications against CPS models have been imple-
mented based on nonlinear optimization methods and stochastic search strategies
(e.g., Breach [4], S-TaLiRo [1], RRT-REX [5], C2E2 [6]). While the verification
of ML programs is less well-defined [18], recent efforts [19] show how even well
trained neural networks can be sensitive to small adversarial perturbations, i.e.,
small intentional modifications that lead the network to misclassify the altered
input with large confidence. Other efforts have tried to characterize the correct-
ness of neural networks in terms of risk [21] (i.e., probability of misclassifying
a given input) or robustness [7] (i.e., the minimal perturbation leading to a
misclassification), while others proposed methods to generate pictures [16] or
perturbations [9,15] in such a way to “fool” neural networks. To the best of
our knowledge, our work is the first to address the verification of temporal logic
properties of CPSML—the combination of CPS and ML systems.

2 Background

2.1 CPSML Models

In this work, we consider models of cyber-physical systems with machine learning
components (CPSML). We assume that a system model is given as a gray-box
simulator defined as a tuple M = (S,U, sim), where S is a set of system states,
U is a set of input values, and sim : S × U × T → S is a simulator that maps
a state s(tk) ∈ S and input value u(tk) ∈ U at time tk ∈ T to a new state
s(tk+1) = sim(s(tk),u(tk), tk), where tk+1 = tk + Δk for a time-step Δk ∈ Q>0.

Given an initial time t0 ∈ T , an initial state s(t0) ∈ S, a sequence of time-
steps Δ0, . . . ,Δn ∈ Q>0, and a sequence of input values u(t0), . . . ,u(tn) ∈ U , a
simulation trace of the model M = (S,U, sim) is a sequence:

(t0, s(t0),u(t0)), (t1, s(t1),u(t1)), . . . , (tn, s(tn),u(tn))

where s(tk+1) = sim(s(tk),u(tk),Δk) and tk+1 = tk + Δk for k = 0, . . . , n.

Compositional Falsification of CPS with ML Components 361

The gray-box aspect of the CPSML model is that we assume some knowl-
edge of the internal ML components. Specifically, these components, termed
classifiers, are functions f : X → Y that assign to their input feature vec-
tor x ∈ X a label y ∈ Y , where X and Y are a feature and label space,
respectively. Without loss of generality, we focus on binary classifiers whose
label space is Y = {0, 1}. A ML algorithm selects a classifier using a training
set {(x(1), y(1)), . . . , (x(m), y(m))} where the (x(i), y(i)) are labeled examples
with x(i) ∈ X and y(i) ∈ Y , for i = 1, . . . , m. The quality of a classifier
can be estimated on a test set of examples comparing the classifier predic-
tions against the labels of the examples. Precisely, for a given test set T =
{(x(1), y(1)), . . . , (x(l), y(l))}, the number of false positives fpf (T) and false neg-
atives fnf (T) of a classifier f on T are defined as:

fpf (T) = | {x(i) ∈ T | f(x(i)) = 1 and y(i) = 0} |
fnf (T) = | {x(i) ∈ T | f(x(i)) = 0 and y(i) = 1} |

(1)

The error rate of f on T is given by:

errf (T) = (fpf (T) + fnf (T))/l (2)

A low error rate implies good predictions of the classifier f on the test set T .

2.2 Signal Temporal Logic

We consider Signal Temporal Logic [12] (STL) as the language to specify prop-
erties to be verified against a CPSML model. STL is an extension of linear
temporal logic (LTL) suitable for the specification of properties of CPS.

A signal is a function s : D → S, with D ⊆ R≥0 an interval and either S ⊆ B

or S ⊆ R, where B = {�,⊥} and R is the set of reals. Signals defined on B are
called booleans, while those on R are said real-valued. A trace w = {s1, . . . , sn}
is a finite set of real-valued signals defined over the same interval D.

Let Σ = {σ1, . . . , σk} be a finite set of predicates σi : Rn → B, with σi ≡
pi(x1, . . . , xn) � 0, � ∈ {<,≤}, and pi : R

n → R a function in the variables
x1, . . . , xn.

An STL formula is defined by the following grammar:

ϕ := σ | ¬ϕ |ϕ ∧ ϕ |ϕUIϕ (3)

where σ ∈ Σ is a predicate and I ⊂ R≥0 is a closed non-singular interval. Other
common temporal operators can be defined as syntactic abbreviations in the
usual way, like for instance ϕ1 ∨ ϕ2 := ¬(¬ϕ1 ∧ ϕ2), FIϕ := �UIϕ, or GIϕ :=
¬FI¬ϕ. Given a t ∈ R≥0, a shifted interval I is defined as t+I = {t+t′ | t′ ∈ I}.

Definition 1 (Qualitative semantics). Let w be a trace, t ∈ R≥0, and ϕ be
an STL formula. The qualitative semantics of ϕ is inductively defined as follows:

w, t |= σ iff σ(w(t)) is true

w, t |= ¬ϕ iff w, t �|= ϕ

w, t |= ϕ1 ∧ ϕ2 iff w, t |= ϕ1 and w, t |= ϕ2

w, t |= ϕ1UIϕ2 iff ∃t′ ∈ t + I s.t. w, t′ |= ϕ2 and ∀t′′ ∈ [t, t′], w, t′′ |= ϕ1

(4)

362 T. Dreossi et al.

A trace w satisfies a formula ϕ if and only if w, 0 |= ϕ, in short w |= ϕ. For
given signal w, time instant t ∈ R≥0, and STL formula ϕ, the satisfaction signal
X (w, t, ϕ) is � if w, t |= ϕ, ⊥ otherwise.

Definition 2 (Quantitative semantics). Let w be a trace, t ∈ R≥0, and ϕ be
an STL formula. The quantitative semantics of ϕ is defined as follows:

ρ(p(x1, . . . , xn) � 0, w, t) = p(w(t)) with � ∈ {<,≤}
ρ(¬ϕ,w, t) = − ρ(ϕ,w, t)

ρ(ϕ1 ∧ ϕ2, w, t) = min(ρ(ϕ1, w, t), ρ(ϕ2, w, t))
ρ(ϕ1UIϕ2, w, t) = sup

t′∈t+I
min(ρ(ϕ2, w, t′), inf

t′′[t,t′]
ρ(ϕ1, w, t′′))

(5)

The robustness of a formula ϕ with respect to a trace w is the signal ρ(ϕ,w, ·).

3 Compositional Falsification Framework

In this section, we formalize the falsification problem for STL specifications
against CPSML models, define our compositional falsification framework, and
show its functionality on the AEBS system of Example 1.

Definition 3 (Falsification of CPSML). Given a model M = (S,U, sim) and
an STL specification ϕ, find an initial state s(t0) ∈ S and a sequence of input
values u = u(t0), . . . ,u(tn) ∈ U such that the trace of states w = s(t0), . . . , s(tn)
generated by the simulation of M from s(t0) ∈ S under u does not satisfy ϕ,
i.e., w �|= ϕ. We refer to such (s(t0),u) as counterexamples for ϕ. The problem
of finding a counterexample is often called falsification problem.

We now present the compositional framework for the falsification of STL
formulas against CPSML models. Intuitively, the proposed method decomposes
a given model into two abstractions: a version of the CPSML model under the
assumption of perfectly correct ML modules and its actual ML components. The
two abstractions are separately analyzed, the first by a temporal logic falsifier
that builds the validity domain with respect to the given specification, the second
by an ML analyzer that identifies sets of feature vectors that are misclassified
by the ML components. Finally, the results of the two analysis are composed
and projected back to a targeted input subspace of the original CPSML model
where counterexamples can be found by invoking a temporal logic falsifier. Let
us formalize this procedure.

Let M = (S,U, sim) be a CPSML model and ϕ be an STL specification. Let
M ′ be a version of M with perfectly behaving ML components, that is, every
feature vector of the ML feature spaces is correctly classified. Let us denote by
ml the isolated ML components of the model M .

Under the assumption of correct ML components, the lower-dimensional
input space of M ′ can be analyzed by constructing the validity domain of ϕ,
that is the partition of the input space into the sets Uϕ and U¬ϕ that do and

Compositional Falsification of CPS with ML Components 363

do not satisfy ϕ, respectively. Note that considering the original model M , a
possible misclassification of the ML components ml might affect the elements of
Uϕ and U¬ϕ. In particular, we are interested in the elements of Uϕ that, due to
misclassifications of ml, do not satisfy ϕ anymore. This corresponds to analyze
the behavior of the ML components ml on the input set Uϕ. We refer to this
step as the ML analysis, that can be seen as the procedure of finding a subset
Uml ⊆ Uϕ of input values that are misclassified by the ML components ml. It
is important to note that the input space of the CPS model M ′ and the feature
spaces of the ML modules ml are different, thus the ML analyzer must adapt and
relate the two different spaces. This important step will be clarified in Sect. 4.

Finally, the intersection Uϕ∩Uml of the subsets identified by the decomposed
analysis of the CPS model and its ML components targets a small set of input
values that are misclassified by the ML modules and are likely to falsify ϕ. Thus,
counterexamples in Uϕ ∩ Uml ⊆ U can be determined by invoking a temporal
logic falsifier on ϕ against M .

Algorithm 1. CPSML falsification scheme
1: function CompFalsfy(M, ϕ) � M CPSML, ϕ STL specification
2: [M ′, ml] ←Decompose(M) � M ′ exact ML, ml ML modules
3: [Uϕ, U¬ϕ] ←ValidityDomain(M ′, U, ϕ) � Validity domain of ϕ w.r.t. M ′

4: Uml ← MLAnalysis(ml, Uϕ) � Find misclassified feature vectors
5: Uml

¬ϕ ←Falsify(M, Uϕ ∩ Uml, ϕ) � Falsify on targeted input
6: return U¬ϕ ∪ Uml

¬ϕ

7: end function

The compositional falsification procedure is formalized in Algorithm1.
CompFalsfy receives as input a CPSML model M and an STL specification ϕ,
and returns a set of falsifying counterexamples. At first, the algorithm decom-
poses M into M ′ and ml, where M ′ is an abstract version of M with perfectly
working ML modules, and ml are the ML components of M (Line 2). Then,
the validity domain of ϕ with respect to the abstraction M ′ is computed by
ValidityDomain (Line 3) and subsets of input that are misclassified by ml are
identified by MLAnalysis (Line 4). Finally, the targeted input set Uϕ ∩ Uml,
consisting in the intersection of the sets identified by the decomposed analysis,
is searched by a temporal logic falsifier on the original model M (Line 5) and a
collection of counterexamples is returned.

Example 2. Let us consider the model described in Example 1 and let us assume
that the input space U of the model M consists of the initial velocity of the sub-
ject vehicle vel(0), the initial distance between the vehicle and the proceeding
obstacle dist(0), and the set of pictures that can be captured by the camera. Let
ϕ := G[0,T](dist(t) ≥ τ) be a specification that requires the vehicle to be always
farther than τ from the preceding obstacle. Instead of analyzing the whole input
space U (including a vast number of pictures), we can adopt our compositional

364 T. Dreossi et al.

framework to target a specific subset of U . Let M ′ be the AEBS model with a per-
fectly working image classifier and ml be the actual classifier. We begin by comput-
ing the validity subsets Uϕ and U¬ϕ of ϕ against M ′, considering only vel(0) and
dist(0) and assuming exact distance measurements during the simulation. Next,
we analyze only the image classifier ml on pictures of obstacles whose distances
fall in Uϕ, say in [dm, dM] (see Fig. 2). Our ML analyzer generates only pictures
of obstacles whose distances are in [dm, dM], finds possible sets of images that are
misclassified, and returns the corresponding distances that, when projected back
to U , yield the subset Uϕ ∩ Uml. Finally, a temporal logic falsifier can be invoked
over Uϕ ∩ Uml and a set of counterexamples is returned. ��

Fig. 2. Compositional falsification
scheme on AEBS model.

This example illustrates how the
compositional approach relies on tools,
such as Breach [4], that compute valid-
ity domains and falsify STL specifica-
tions, as well as a ML analyzer. In the
next section, we introduce our ML ana-
lyzer that identifies misclassifications of
the ML component relevant to the over-
all CPSML input space.

4 Machine Learning
Analyzer

In this section, we define an ML ana-
lyzer that adapts the input of a model
to its classifiers feature spaces and iden-
tifies subsets of feature vectors for which
wrong labels are predicted. The analysis
involves the construction of an approxi-
mation function used to study the origi-
nal classifiers. In particular, given a clas-
sifier f : X → Y , the ML analyzer deter-
mines a simpler function f̃ : A → Y that
approximates f on the abstract domain
A. The abstract domain of the function
f̃ is analyzed and clusters of misclassi-
fying abstract elements are identified. The concretizations of such elements are
subsets of features that are misclassified by the original classifier f .

4.1 Feature Space Abstraction

Let X̃ ⊆ X be a subset of the feature space of f : X → Y . Let ≤ be a total
order on a set A called the abstract set. An abstraction function is an injective
function α : X̃ → A that maps every feature vector s ∈ X̃ to an abstract

Compositional Falsification of CPS with ML Components 365

element α(s) ∈ A. Conversely, the concretization function γ : A → X̃ maps
every abstraction a ∈ A to a feature γ(a) ∈ X̃.

The abstraction and concretization functions play a fundamental role in our
falsification framework. First, they allow us to map the input space of the CPS
model to the feature space of its classifiers. Second, the abstract space can be
used to analyze the classifiers on a compact domain as opposite to intractable
feature spaces. These concepts are clarified in the following example, where a
feature space of pictures is abstracted into a three-dimensional unit hyper-box.

Example 3. Let X be the set of RGB pictures of size 1000 × 600, i.e., X =
{0, . . . , 255}1000×600×3. Suppose we are interested in analyzing an image classifier
in the automotive context, i.e., on pictures of road scenarios rather than on
the whole X. Suppose that we focus on the constrained feature space X̃ ⊆ X
composed by the set of pictures of cars overlapped in different positions over
a desert road background. We also consider the brightness level of the picture.
The x and z positions of the car and the brightness level of the picture can be
seen as the dimensions of an abstract set A. In this setting, we can define the
abstraction and concretization functions α and γ that relate the abstract set
A = [0, 1]3 and X̃. For instance, the picture γ(0, 0, 0) sees the car on the left,
close to the observer, and low brightness; the picture γ(1, 0, 0) places the car
shifted to the right; on the other extreme, γ(1, 1, 1) has the car on the right, far
away from the observer, and with a high brightness level. Figure 3 depicts some
car pictures of S̃ disposed accordingly to their position in the abstract domain
A (the surrounding box). ��

Fig. 3. Example of feature space abstraction A (the surrounding box) and some con-
cretized element of the feature space X̃ (road pictures).

4.2 Approximation of Learning Components

We now describe how the feature space abstraction can be used to construct an
approximation that helps the identification of misclassified feature vectors.

366 T. Dreossi et al.

Given a classifier f : X → Y and a constrained feature space X̃ ⊆ X, we
want to determine an approximated classifier f̃ : A → Y , such that errf̃ (T) ≤ ε,
for some 0 ≤ ε ≤ 1 and test set T = {(a(1), y(1)), . . . , (a(l), y(l))}, with y(i) =
f(γ(a(i))), for i = 1, . . . , l.

Intuitively, the proposed approximation scheme samples elements from the
abstract set, computes the labels of the concretized elements using the analyzed
learning algorithm, and finally, interpolates the abstract elements and the cor-
responding labels in order to obtain an approximation function. The obtained
approximation can be used to reason on the considered feature space and identify
clusters of potentially misclassified feature vectors.

Algorithm 2. Approximation construction of classifier f : X → Y

1: function Approximation(A, γ, ε) � A abstract set (γ : A → X̃), 0 ≤ ε ≤ 1
2: TI ← ∅
3: repeat
4: TI ← TI∪ sample(A, f)
5: f̃ ← interpolate(TI)
6: TE ← sample(A, f)
7: until errf̃ (TE) ≤ ε

8: return f̃
9: end function

The Approximation algorithm (Algorithm 2) formalizes the proposed
approximation construction technique. It receives in input an abstract domain
A for the concretization function γ : A → X̃, with X̃ ⊆ X, the error
threshold 0 ≤ ε ≤ 1, and returns a function f̃ : A → Y that approxi-
mates f on the constrained feature space X̃. The algorithm consists in a loop
that iteratively improves the approximation f̃ . At every iteration, the algo-
rithm populates the interpolation test set TI by sampling abstract features
from A and computing the concretized labels accordingly to f (Line 4), i.e.,
sample(A, f)= {(a, y) | a ∈ Ã, y = f(γ(a))}, where Ã ⊆ A is a finite subset of
samples determined with some sampling method. Next, the algorithm interpo-
lates the points of TI (Line 5). The result is a function f̃ : A → Y that simplifies
the original classifier f on the concretized constrained feature space X̃. The
approximation is evaluated on the test set TE . Note that at each iteration, TE

changes while TI incrementally grows. The algorithm iterates until the error rate
errf̃ (TE) is smaller than the desired threshold ε (Line 7).

The technique with which the samples in TE and TI are selected strongly
influences the accuracy of the approximation. In order to have a good coverage
of the abstract set A, we propose the usage of low-discrepancy sampling methods
that, differently from uniform random sampling, cover sets quickly and evenly.
In this work, we use the Halton and lattice sequences, that are two common and
easy to implement sampling methods. For details see, e.g., [17].

Compositional Falsification of CPS with ML Components 367

Example 4. We now analyze two image classifiers: the Caffe [10] version of
AlexNet [11] and the Inception-v3 model of Tensorflow [13], both trained on the
ImageNet database.1 We sample 1000 points from the abstract domain defined
in Example 3 using the lattice sampling techniques. These points encode the x
and z displacements of a car in a picture and its brightness level (see Fig. 3).
Figure 4(a) depicts the sampled points with their concretized labels. The green
circles indicate correct classifications, i.e., the classifier identified a car, the red
circles denote misclassifications, i.e., no car detected. The linear interpolation of
the obtained points leads to an approximation function. The error rates errf̃ (TE)
of the obtained approximations (i.e., the discrepancies between the predictions
of the original image classifiers and their approximations) computed on 300 ran-
domly picked test cases are 0.0867 and 0.1733 for Caffe and Tensorflow, respec-
tively. Figure 4(b) shows the projections of the approximation functions for the
brightness value 0.2. The more red a region, the larger the sets of pictures for
which the neural networks do not detect a car. For illustrative purposes, we
superimpose the projections of Fig. 4(b) over the background used for the pic-
ture generation. These illustrations show the regions of the concrete feature
vectors in which a vehicle is misclassified. ��

(a) Sampling. (b) Interpolation projection. (c) Feature space analysis.

Fig. 4. ML analysis of Caffe (top) and Tensorflow (bottom) on a road scenario. (Color
figure online)

The analysis of Example 4 on Caffe and Tensorflow provides useful insights.
First, we observe that Tensorflow outperforms Caffe on the considered road
pictures since it correctly classifies more pictures that Caffe. Second, we notice
1 http://image-net.org/.

http://image-net.org/

368 T. Dreossi et al.

that Caffe tends to correctly classify pictures in which the x abstract component
is either close to 0 or 1, i.e., pictures in which the car is not in the middle of
the street, but on one of the two lanes. This suggests that the model might not
have been trained enough with pictures of cars in the center of the road. Third,
using the lattice method on Tensorflow, we were able to identify a corner case
misclassification in a cluster of correct predictions (note the isolated red circle
with coordinates (0.1933, 0.0244, 0.4589)). All this information provides insights
on the classifiers that can be useful in the hunt for counterexamples.

5 Experimental Results

5.1 Implementation Details

The presented falsification framework has been implemented in a Matlab toolbox
publicly available at https://github.com/tommasodreossi/FalsifCPSML. The
tool deals with Simulink models of CPSML and STL specifications. It consists
of a temporal logic falsifier and an ML analyzer that interact to falsify the given
STL specification against the decomposed Simulink model. As an STL falsifier,
we chose the existing tool Breach [4], while the ML analyzer has been imple-
mented from scratch. The ML analyzer implementation includes the feature
space abstractor and the ML approximation algorithm (see Sect. 4). The feature
space abstractor implements a picture generator that concretizes the abstracted
feature vectors. The approximation algorithm, that computes an approximation
of the analyzed ML component, gives to the user the possibility of selecting
the sampling sequence method, interpolation technique, and setting the desired
error rate. Our tool is interfaced with the deep learning frameworks Caffe [10]
and Tensorflow [13]. Our tool has been tested on a desktop computer Dell XPS
8900, Intel (R) Core(TM) i7-6700 CPU 3.40 GHz, DIMM RAM 16 GB 2132 MHz,
GPU NVIDIA GeForce GTX TITAN X, with Ubuntu 14.04.5 LTS and Matlab
R2016b.

5.2 Case Studies

For the experimental evaluations, we consider a closed-loop Simulink model
of a semi-autonomous vehicle with an Advanced Emergency Braking System
(AEBS) [20] connected to an image classifier. The model mainly consists of a
four-speed automatic transmission controller linked to an AEBS that automati-
cally prevents collisions with preceding obstacles and alleviate the harshness of
a crash when a collision is likely to happen (see Fig. 5). The AEBS determines a
braking mode depending on the speed of the vehicle vs, the possible presence of
a preceding obstacle, its velocity vp, and the longitudinal distance dist between
the two. The distance dist is provided by radars having 30 m of range. For obsta-
cles farther than 30 m, the camera, connected to an image classifier, alerts the
AEBS that, in the case of detected obstacle, goes into warning mode.

https://github.com/tommasodreossi/FalsifCPSML

Compositional Falsification of CPS with ML Components 369

Fig. 5. Simulink model of a semi-autonomous vehicle with AEBS.

Depending on vs, vp, dist, and the presence of obstacles detected by the
image classifier, the AEBS computes the time to collision and longitudinal safety
indices, whose values determine a controlled mode among safe, warning, braking,
and collision mitigation. In safe mode, the car does not need to brake. In warning
mode, the driver should brake to avoid a collision. If this does not happen, the
system goes into braking mode, where the automatic brake slows down the vehi-
cle. Finally, in collision mitigation mode, the system, determining that a crash
is unavoidable, triggers a full braking action aimed to minimize the damage.

To establish the correctness of the system and in particular of its AEBS
controller, we formalize the STL specification G(¬(dist(t)) ≤ 0), that requires
dist(t) to always be positive, i.e., no collision happens. The input space is vs(0) ∈
[0, 40] (mph), dist(0) ∈ [0, 60] (m), and the set of all RGB pictures of size
1000 × 600. The preceding vehicle is not moving, i.e., vp(t) = 0 (mph).

Fig. 6. Validity domain for G(¬(dist
(t)) ≤ 0). Proved (red crosses) and dis-
proved (green circles) candidate counter-
examples. Dotted (horizontal) line: image
classifier activation threshold. Dashed
(vertical) line: validity boundary of ϕ for
worst-case misclassifications. (Color figure
online)

At first, we compute the validity
domain of ϕ assuming that the radars
are able to provide exact measurements
for any distance dist(t) and the image
classifier correctly detects the presence
of a preceding vehicle. The computed
validity domain is depicted in Fig. 6:
green for Uϕ and red for U¬ϕ. Next,
we identify candidate counterexamples
that belong to the satisfactory set (i.e.,
the inputs that satisfy the specifica-
tion) but might be influenced by a
misclassification of the image classifier.
Since the AEBS relies on the classifier
only for distances larger than 30 m, we
can focus on the subset of the input
space with dist(0) ≥ 30. Specifically,
we identify potential counterexamples
by analyzing a pessimistic version of
the model where the ML component
always misclassifies the input pictures
(see Fig. 6, area with dashed boundary). From this sub-input space, we can iden-
tify candidate counterexamples, such as, for instance, (25, 40) (i.e., vs(0) = 25
and dist(0) = 40).

370 T. Dreossi et al.

Next, let us consider the Caffe image classifier and the ML analyzer presented
in Sect. 4 that generates pictures from the abstract feature space A = [0, 1]3,
where the dimensions of A determine the x and z displacements of a car and the
brightness of a generated picture, respectively. The goal now is to determine an
abstract feature ac ∈ A related to the candidate counterexample (25, 40), that
generates a picture that is misclassified by the ML component and might lead to
a violation of the specification ϕ. The dist(0) component of uc = (25, 40) deter-
mines a precise z displacement a2 = 0.2 in the abstract picture. Now, we need to
determine the values of the abstract x displacement and brightness. Looking at
the interpolation projection of Fig. 4(b), we notice that the approximation func-
tion misclassifies pictures with abstract component a1 ∈ [0.4, 0.5] and a3 = 0.2.
Thus, it is reasonable to try to falsify the original model on the input element
vs(0) = 25, dist(0) = 40, and concretized picture γ(0.5, 0.2, 0.2). For this targeted
input, the temporal logic falsifier computed a robustness value for ϕ of −24.60,
meaning that a falsifying counterexample has been found. Other counterexam-
ples found with the same technique are, e.g., (27, 45) or (31, 56) that, associated
with the correspondent concretized pictures with a1 = 0.5 and a3 = 0.2, lead to
the robustness values −23.86 and −24.38, respectively (see Fig. 6, red crosses).
Conversely, we also disproved some candidate counterexamples, such as (28, 50),
(24, 35), or (25, 45), whose robustness values are 9.93, 7.40, and 7.67 (see Fig. 6,
green circles).

For experimental purposes, we try to falsify a counterexample in which we
change the x position of the abstract feature so that the approximation func-
tion correctly classifies the picture. For instance, by altering the counterexam-
ple (27, 45) with γ(0.5, 0.225, 0.2) to (27, 45) with γ(1.0, 0.225, 0.2), we obtain a
robusteness value of 9.09, that means that the AEBS is able to avoid the car
for the same combination of velocity and distance of the counterexample, but
different x position of the preceding vehicle. Another example, is the robustness
value −24.38 of the falsifying input (31, 56) with γ(0.5, 0.28, 0.2), that altered to
γ(0.0, 0.28, 0.2), changes to 12.41.

Finally, we test Tensorflow on the corner case misclassification identified in
Sect. 4.2 (i.e., the picture γ(0.1933, 0.0244, 0.4589)). The distance dist(0) = 4.88
related to this abstract feature is below the activation threshold of the image
classifier. Thus, the falsification points are exactly the same as those of the com-
puted validity domain (i.e., dist(0) = 4.88 and vs(0) ∈ [4, 40]). This study shows
how a misclassification of the ML component might not affect the correctness of
the CPSML model.

6 Conclusion

We presented a compositional falsification framework for STL specifications
against CPSML models based on the separate analysis of a CPS system and
its ML components. We introduced an ML analyzer able to abstract feature
spaces, approximate ML classifiers, and provide sets of misclassified feature vec-
tors that can be used to drive the falsification process. We implemented our

Compositional Falsification of CPS with ML Components 371

framework and showed its effectiveness for an autonomous driving controller
using perception based on deep neural networks.

This work lays the basis for future advancements. We intend to improve
our ML analyzer exploring the automatic generation of feature space abstrac-
tions from given training sets. Another direction is to integrate other techniques
for generating misclassifications of ML components (e.g. [9,15]) into our app-
roach. One could also apply our ML analyzer outside the falsification context,
such as for controller synthesis. Finally, our compositional methodology could
be extended to other, non-cyber-physical, systems that contain ML components.

References

1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for
temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 21

2. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine
learning. Artif. Intell. 97(1), 245–271 (1997)

3. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv:1604.07316
(2016)

4. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17

5. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Effi-
cient guiding strategies for testing of temporal properties of hybrid systems. In:
Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp.
127–142. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9 10

6. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool
for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035,
pp. 68–82. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 5

7. Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers’ robustness to adversarial
perturbations. arXiv preprint arXiv:1502.02590 (2015)

8. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

9. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. CoRR, abs/1610.06940 (2016)

10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding.
In: ACM Multimedia Conference, ACMMM, pp. 675–678 (2014)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

12. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT-2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3 12

13. TensorFlow, M.A., et al.: Large-scale machine learning on heterogeneous systems
(2015). Software available from tensorflow.org

http://dx.doi.org/10.1007/978-3-642-19835-9_21
http://arxiv.org/abs/1604.07316
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/978-3-319-17524-9_10
http://dx.doi.org/10.1007/978-3-662-46681-0_5
http://arxiv.org/abs/1502.02590
http://dx.doi.org/10.1007/978-3-540-30206-3_12
https://www.tensorflow.org/

372 T. Dreossi et al.

14. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial
Intelligence Approach. Springer Science & Business Media, Heidelberg (2013)

15. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate
method to fool deep neural networks. In: IEEE Computer Vision and Pattern
Recognition, pp. 2574–2582 (2016)

16. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high
confidence predictions for unrecognizable images. In: Computer Vision and Pattern
Recognition, CVPR, pp. 427–436. IEEE (2015)

17. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory
30(1), 51–70 (1988)

18. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards verified artificial intelligence. CoRR,
abs/1606.08514 (2016)

19. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)

20. Taeyoung, L., Kyongsu, Y., Jangseop, K., Jaewan, L.: Development and evaluations
of advanced emergency braking system algorithm for the commercial vehicle. In:
Enhanced Safety of Vehicles Conference, ESV, pp. 11–0290 (2011)

21. Vapnik, V.: Principles of risk minimization for learning theory. In: NIPS, pp. 831–
838 (1991)

http://arxiv.org/abs/1312.6199

Verifying a Class of Certifying Distributed
Programs

Kim Völlinger(B) and Samira Akili

Humboldt University of Berlin, Berlin, Germany
voellinger@hu-berlin.de

Abstract. A certifying program produces in addition to each output a
witness that certifies the output’s correctness. An accompanying checker
program checks whether the computed witness is correct. Such a checker
is usually simpler than the original program, and its verification is often
feasible while the verification of the original program is too costly. By ver-
ifying the checker and by giving a machine-checked proof that the witness
certifies the output’s correctness, we get formal instance correctness, i.e.
a machine-checked proof that a particular input-output pair is correct.
This verification method was demonstrated on sequential programs. In
contrast, we are concerned with the correctness of distributed programs
which behave fundamentally differently. In this paper, we present a ver-
ification method to obtain formal instance correctness for one class of
certifying distributed programs. Moreover, we demonstrate our method
on the leader election problem using the theorem prover Coq.

Keywords: Certifying distributed program · Formal instance correct-
ness · Coq

1 Introduction

A major problem in software engineering is assuring the quality of software. Well-
known methods are testing and formal verification. While testing does not cover
all inputs, formal verification is often too costly. We suggest certifying programs
– a formal method that is, on the one hand, more rigorous than testing, and on
the other hand, less costly than formal verification.

A certifying program verifies the correctness of its output at runtime. The
idea is to adapt the underlying algorithm of a program at design time to protect
its user not only against a faulty implementation but also against a faulty algo-
rithm and a faulty execution (e.g. caused by a hardware failure). To this end, a
certifying program produces a witness in addition to each output that certifies
the output’s correctness. Since the witness is computed by the untrusted program
itself, a simple checker program checks whether the witness is correct. Further-
more, there is a verification method for certifying programs to achieve formal
instance correctness for an output – a machine-checked proof that a particular
input-output pair is correct.
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 373–388, 2017.
DOI: 10.1007/978-3-319-57288-8 27

374 K. Völlinger and S. Akili

In contrast, we are concerned with the correctness of distributed programs.
Certifying distributed programs behave differently to certifying sequential pro-
grams; for instance, the witness is distributed over a system and checked by
many checkers. In this paper, we present a verification method to achieve formal
instance correctness for one class of certifying distributed programs. As a case
study, we demonstrate our method on the leader election problem in networks
using the theorem prover Coq for program verification and theorem proving.
The whole formalization is available on GitHub1.

1.1 Structure of this Paper

We give the preliminaries in Sect. 2. In Sect. 3, we discuss how to apply the con-
cept of certifying sequential programs to distributed programs. We define a class
of certifying distributed algorithms. Our class is particularly interesting since
the witness is computed and checked in a distributed manner (Sect. 3.3). Hence,
the certification itself is distributed. For this class, we introduce a verification
method to obtain formal instance correctness (Sect. 3.4). In Sect. 4, we give a
certifying variant of solving the leader election problem in networks and demon-
strate our verification method on certifying leader election using the theorem
prover Coq. We present related work in Sect. 5, draw our conclusions in Sect. 6
and discuss future work in Sect. 7.

2 Preliminaries

In this section, we recap certifying sequential programs (Sect. 2.1), and a ver-
ification method to obtain formal instance correctness for certifying sequential
programs (Sect. 2.2).

2.1 Certifying Sequential Programs

The idea of a certifying program is to adapt the underlying algorithm of a
program such that it verifies the correctness of its output at runtime [7]. We
assume a program that takes an input x from a set X and produces an output y
from a set Y . The specification of the program is given by a precondition φ ⊆ X
and a postcondition ψ ⊆ X×Y . Let W be a set of potential witnesses. A witness
predicate for the specification is a predicate Γ ⊆ X × Y × W with the witness
property :

∀x, y, w : (φ(x) ∧ Γ (x, y, w)) −→ ψ(x, y) (1)

If the witness property holds for x, y, w, then the input-output pair (x, y) satisfies
the specification, and we call w a witness for ψ(x, y).

A (correct) certifying program produces in addition to each output a witness
such that the witness property is satisfied. However, the idea is that a user of a
1 https://github.com/voellinger/verified-certifying-distributed-algorithms/tree/

master/leader-election.

https://github.com/voellinger/verified-certifying-distributed-algorithms/tree/master/leader-election
https://github.com/voellinger/verified-certifying-distributed-algorithms/tree/master/leader-election

Verifying a Class of Certifying Distributed Programs 375

certifying program does not have to trust the program but a (simpler) checker
program that decides the witness predicate Γ . Figure 1 sums up the concept of
a certifying program.

certifying
program

input x
output y

witness w

acceptchecker:
Γ(x,y,w)? reject

Fig. 1. A certifying program accompanied by its checker.

As an example, we consider the problem of deciding if a graph is bipartite,
i.e. if its vertices can be divided in two partitions so that each edge has a vertex
in each of both partitions. A certifying variant of a program deciding that a
particular graph G is not bipartite additionally produces an odd cycle in G as
a witness. The witness predicate holds if the witness is a cycle of odd length
contained in G; it can easily be decided by a checker program. The witness
certifies the output: an odd cycle contained in G proves that G is not bipartite
since an odd cycle itself is not bipartite. Thus, the witness predicate has the
witness property. For a bipartite graph, the witness could be a bipartition.

There is always a certifying variant of a program, for instance, with a witness
that is the computation itself. In general, this is not a good witness, since proving
the witness property becomes program verification then. The challenge is to find
“good” witnesses.

2.2 Verification of Certifying Sequential Programs

The user of a certifying program has to trust its witness property, and its accom-
panying checker. A checker is usually much simpler than the original program,
and its verification is often feasible while the verification of the original program
is too costly. Rizkallah’s method is to use the theorem Prover Isabelle to give a
machine-checked proof for the witness property, and to verify the checker (e.g.
with VCC) [11]. By this combination of certifying programs with theorem prov-
ing and program verification, we achieve formal instance correctness for instances
for which the checker accepts.

3 Verification Method for a Class of Certifying
Distributed Programs

In this section, we give a verification method to obtain formal instance cor-
rectness for one class of certifying distributed programs. We begin with what
we consider to be a distributed program and with discussing the challenges of
applying the concept of certifying sequential programs to distributed programs.
Subsequently, we define a class of certifying distributed programs. Finally, for
this class, we give a verification method to obtain formal instance correctness.

376 K. Völlinger and S. Akili

3.1 Distributed Programs

A distributed system consists of computing components that can communicate
with each other by shared memory or message-passing channels. A distributed
algorithm describes for each component an algorithm such that all components
together solve one problem. For instance, there are distributed algorithms to
solve problems associated with distributing a computation over a system such
as coordination, communication or synchronization of the components. To give
some examples, there are distributed algorithms to elect a leader, find a consen-
sus or identify a substructure of the system such as a tree [10]. An implementa-
tion of a distributed algorithm is a distributed program.

3.2 Challenges of Certifying Distributed Programs

The distributed setting has all the challenges of the sequential setting, and
additionally, its own specific challenges [9, Sect. 1.3]. That is why distributed
programs are known to be especially hard to verify. While non-termination is
considered a fault in sequential programs, some distributed programs should
run continuously, e.g. communication protocols. Certification of non-terminating
programs poses questions such as when should a non-terminating program com-
pute a witness. For a terminating distributed program, each component holds
its output after termination. Hence, the output of the distributed program is
distributed over the system. The output’s distribution leads to questions such
as should there be a witness for each component or one witness for the whole
system, and should we verify the correctness of a component’s output or of the
network’s output. Hence, there is not only one way of applying the concept of a
certifying sequential program to distributed programs.

3.3 A Class of Certifying Distributed Programs

For defining a class of certifying distributed programs, we focus on networks (i.e.
distributed systems with message-passing channels) that are static (i.e. compo-
nents and channels do not leave the system) and asynchronous (i.e. no global
clock exists), and on distributed programs that terminate. After termination,
each component holds its local output and the global output of the distributed
program is the collective of the local outputs. Our approach is to make such a
distributed program certifying by making it compute many local witnesses that
together prove the global output’s correctness. The local witnesses are computed
and checked in a distributed manner at runtime. Hence, we present certifying
distributed programs where the certification itself is distributed.

We represent a network by a graph G that is a finite directed connected
graph with a vertex set V = {1, 2, . . . , n} and an edge set E that is symmetric.
Each vertex presents a component and two directed edges (i, j) and (j, i) present
a bidirectional channel between the components i and j. We call such a graph G
a network graph.

Verifying a Class of Certifying Distributed Programs 377

Let G be a network graph. Let X, Y and W be sets containing potential local
inputs, local outputs and local witnesses, respectively. A certifying distributed
program p of class C computes for a global input x ∈ Xn a global output y ∈
Y n, and in addition, a global witness w ∈ Wn. Hence, each component i ∈ V
computes for a local input xi ∈ X a local output yi ∈ Y and additionally a
local witness wi ∈ W . The specification of p is given by a (global) precondition
φ ⊆ Xn and a (global) postcondition ψ ⊆ Xn × Y n.

A global witness predicate is a predicate Γ ⊆ Xn × Y n × Wn with the
(global) witness property :

∀x,y,w : (φ(x) ∧ Γ (x,y,w)) −→ ψ(x,y) (2)

If the witness property holds for x, y, w, then the global input-output pair (x, y)
satisfies the specification, and we call w a global witness for ψ(x,y).

We want that the global witness predicate is decided in a distributed manner.
That is why we define a local witness predicate. A local witness predicate is a
predicate γ ⊆ X × Y × W with the composition property :

∀x,y,w : (φ(x) ∧ (∀i ∈ V γ(xi, yi, wi))) −→ Γ (x,y,w) (3)

For a triple (xi, yi, wi) ∈ γ, we call wi a local witness of component i. For the
class C, the global witness predicate Γ is checked after termination of p in the
way that each component i has a local checker that decides the local witness
predicate γ(xi, yi, wi) for i. Since the checking occurs after termination, we do
not have to care about asynchrony.

3.4 Verification Method for Class C

We give a verification method to obtain formal instance correctness, i.e. a proof
that a particular input-output pair is correct. Let p be a certifying distributed
program of class C. In order to obtain formal instance correctness for p, we have
to solve the following proof obligations:

– Witness Property : We have to give a machine-checked proof for the implica-
tion (2).

– Composition Property : We have to give a machine-checked proof of the impli-
cation (3).

– Correctness of the Local Checkers: We have to prove that the local checker ci
of each component i checks the local witness predicate γ(xi, yi, wi), assuming
the precondition φ(x) holds, i.e.

1. If φ(x) and (xi, yi, wi) ∈ γ, then ci halts and accepts.
2. If φ(x) and (xi, yi, wi) /∈ γ, then ci halts and rejects.

If we solve these proof obligations, we obtain formal instance correctness for each
instance on which all local checkers accept:

378 K. Völlinger and S. Akili

Theorem 1. Let G = (V,E) be a network graph with |V | = n. Let X, Y and W
be sets. Let φ ⊆ Xn be a precondition and ψ ⊆ Xn×Y n a postcondition. Let Γ ⊆
Xn×Y n×Wn be a global witness predicate for φ and ψ, and let γ ⊆ X ×Y ×W
be a local witness predicate for φ, Γ , and G. Let (x,y,w) ∈ Xn ×Y n ×Wn. Let
c be a local checker deciding γ. Assuming x ∈ φ, if c accepts on (xi, yi, wi) for
all i ∈ V , then (x,y) ∈ ψ.

Proof. (xi, yi, wi) ∈ γ for all i ∈ V since c decides γ. Since γ is a local witness
predicate and x ∈ φ, it follows from the composition property that (x,y,w) ∈ Γ .
From Γ being a global witness predicate and x ∈ φ, it follows by the witness
property that (x,y) ∈ ψ.

Notice that the program p itself is not mentioned in the theorem. The
machine-checked proofs and the verified local checkers can indeed be combined
with any program producing an input, output and witness. Moreover, the reader
may wonder why we do not prove: if (x,y) ∈ ψ, then there exists a global witness
w such that (x,y,w) ∈ Γ . In fact, with such a proof, we would reason about the
correctness of p. However, we do not want to establish the correctness of p but to
achieve formal instance correctness for p. Verifying formal instance correctness
is a different problem than verifying programs.

Verification Within Coq. We use the theorem prover Coq for theorem prov-
ing and program verification. Coq [4] is an interactive theorem prover that pro-
vides its user with a specification language, a higher-order logic, a richly-typed
functional programming language, and some proof automations. Moreover, Coq
implements a mechanism to extract programs written in Coq to languages like
Haskell and Objective Caml. Coq’s programming language is not turing-complete
since it allows only structural recursion enforcing that every program halts.

We use Coq for theorem proving in order to solve the proof obligations witness
property and composition property, and for program verification in order to solve
the proof obligation correctness of the local checkers. Moreover, we extract a
verified local checker from Coq to Haskell.

To model a network in Coq, we build upon the graph library Graph Basics [3]
that defines basic concepts of graph theory such as undirected graphs, trees or
connectivity. The purpose of this library is to express mathematical and com-
putational aspects of graph theory in the same formalism. To the best of our
knowledge, there is no other graph library for Coq.

3.5 Further Classes of Certifying Distributed Programs

We give a brief outlook of further classes of certifying distributed programs. One
modification is to define a different composition property:

∀x,y,w : (φ(x) ∧ (∃i ∈ V γ(xi, yi, wi))) −→ Γ (x,y,w) (4)

Verifying a Class of Certifying Distributed Programs 379

Hence, if at least one component satisfies the local witness predicate, then the
global witness predicate holds. We used such a composition property for a certi-
fying variant of distributed bipartite testing. Other logical combinations of local
witness predicates could be of interest as well.

A different modification is to certify local outputs instead of the global out-
put. Assume all components compute their distance to one component as often
done in routing protocols. If one component is buggy, then the local witness
predicate cannot hold for all components. However, many components probably
hold their actual distance. In this scenario, it would be interesting to verify local
outputs. To this end, we need a local witness property. For instance in the form: if
the component’s local witness predicate holds, then its local input-output pair is
correct. Since for many examples such a local witness property is too ambitious,
it could also have the form: if for all the components in a subnetwork the local
witness predicate hold, then the components of the subnetwork hold their cor-
rect local output. Additionally, we need a local specification and more reasoning
in general. In that case, we would have to adapt our verification method.

Another modification is to consider non-terminating distributed programs. In
this case, the witness and composition property would look significantly different
and the checking would become more difficult since it would be done on-line
by an reactive checker. Thus, non-termination would also lead to an adapted
verification method.

Considering unreliable communication channels or dynamic networks would
remarkably complicate the certification and verification. There are many more
modifications to take into account but they are outside the scope of this paper.

4 Case Study: Leader Election

As a case study, we consider the leader election problem: all components of
a network have to elect exactly one of them as a leader. Usually, a leader is
elected for coordination purposes. There are various distributed algorithms that
solve leader election. For instance, Lynch gives an asynchronous leader election
algorithm for a network of arbitrary topology and components that have unique
identifiers [6].

In this section, we first give a certification for leader election that belongs to
class C (see Sect. 3.3) and then we give a formalization in Coq.

4.1 Certifying Leader Election

The specification of the leader election problem states that the problem is solved
if all components of a network agree on exactly one of them as a leader. Thus,
in order to verify the global output’s correctness, we have to certify that all
components agree on the leader and that the elected leader exists. To certify the
agreement on the leader, the global witness consists in each component holding
the elected leader of its neighbors. From agreement in all neighborhoods, it
follows agreement in the network since neighborhoods overlap. To certify that

380 K. Völlinger and S. Akili

the elected leader exists, the global witness consists of a spanning tree in the
network that is rooted at the leader. In order to check the spanning tree in a
distributed manner, we use a characterization of the spanning tree using the
distance and the parent function. Note that a component cannot simply check
that the elected leader is a component of the network, since it doesn’t know all
components.

Let G = (V,E) be a network graph with |V | = n. The local input xi of a
component i is i’s neighborhood, i.e. i’s neighboring components and i’s chan-
nels. The local output yi of a component i is leaderi (i’s elected leader). The
postcondition ψ(x,y) states that there exists l ∈ V with leaderi = l for all
i ∈ V .

The local witness wi of a component i consists of:

– distancei (i’s distance from its elected leader),
– parenti (i’s parent in the spanning tree),
– distanceparenti (the distance that i’s parent has from its elected leader) and
– leaderj for all neighbors j of i (the elected leaders of i’s neighbors).

The global witness predicate Γ (x,y,w) holds if there exists l ∈ V (“the
elected leader and root of the spanning tree”) with leaderl = l such that
distancel = 0, parentl = l and leaderj = l for all neighbors j of l, and if
for all i ∈ V with leaderi �= i it holds that distancei > 0, parenti is a neighbor
of i, distancei = distanceparenti + 1 and leaderj = leaderi for all neighbors j
of i. By the global witness predicate, we can tell that the global witness w is a
spanning tree in G rooted at the elected leader.

The witness property states that if all components agree with their neighbors
on the leader then all components agree on exactly one leader, and if this elected
leader is the root of a spanning tree then the leader exists in the network.

The local witness predicate γ states the properties required by the global
witness predicate for the neighborhood of a component. There is one clause for
the elected leader and another clause for all the other components. Each compo-
nent i has a local checker ci deciding whether (xi, yi, wi) ∈ γ. The composition
property states that if the local witness predicate holds for all components then
the global witness predicate holds.

As an example, Fig. 2 shows a specific network graph and a spanning tree as
the global witness in this network. Moreover, for two components the properties
required to satisfy their local witness predicates are listed.

For the purpose of this paper, it is not important how a component com-
putes its local witness. However, there are distributed algorithms to compute a
spanning tree and Lynch even gives a leader election algorithm that is based on
a spanning tree [6].

4.2 Verification in Coq

As a proof-of-concept, we demonstrate our verification method to obtain formal
instance correctness (see Sect. 3.4) on certifying leader election using Coq. We

Verifying a Class of Certifying Distributed Programs 381

1

2

5 4

3

6

local witness predicate for 2:
- leader2 = 2
- distance2 = 0
- parent2 = 2
- leader1 = leader3
 = leader6 = leader2

local witness predicate for 3:
- leader3 = 3
- distance3 = distance2 + 1
- distance3 > 0
- parent3 = 2
- leader2 = leader4
 = leader5 = leader3

Fig. 2. A network graph with six components. A spanning tree is highlighted by dashed
lines. For the components 2 and 3, the properties required to satisfy local witness
predicates are listed. Component 2 is the elected leader.

begin with the formalization of the network graph and continue with solving the
proof obligations composition property, witness property and correctness of the
local checkers.

Network Formalization. We formalize the network as an undirected, con-
nected graph provided by the GraphBasics library. We define a vertex of the
graph as a Component with an unique identifier.

We construct the local input xi of a component i in such a way that the global
input x satisfies the precondition. Hence, for the following formalization of the
composition property and the witness property, we assume that the precondition
holds.

Composition Property. The composition property states that if the local
witness predicate holds for each component, then the global witness predicate is
satisfied. For certifying leader election, the local witness predicate is a disjunction
in which one clause applies for the elected leader and the other clause for all other
components (see Sect. 4.1). In Coq, we formalize each clause of the local witness
predicate as a single predicate: gamma root is the local witness predicate of the
elected leader and gamma i is the local witness predicate of all other components.

Each component i holds its values leaderi, parenti and distancei. From a
global perspective on the network, we can canonically define the functions leader,
parent and distance that each maps a component i to its corresponding value.
To instantiate the functions, we added additional properties to the local witness
predicate; for instance, we require the mapping between the component i and
its function value parent i by stating the equation parent i = parent i. In
the following Coq formalization of the local witness predicate, we commented
on such additional properties with (*x*):

382 K. Völlinger and S. Akili

Definition gamma_i
(i:Component)(leader_i:Component)(distance_i:nat)
(parent_i:Component) (leader_parent_i:Component)
(distance_parent_i:nat)(leader_neighbors:C_list)
:Prop :=
leader i <> i /\
parent i = parent_i /\ (*x*)
a (A_ends i parent_i) /\
a (A_ends parent_i i) /\
distance i = distance_i /\ (*x*)
distance_parent_i = distance parent_i /\
distance_i = distance_parent_i + 1 /\
leader i = leader_parent_i /\ (*x*)
leader_parent_i = leader (parent i) /\
(forall (k:Component),
In k leader_neighbors -> k = leader i) /\
(forall (c:Component),
In c (neighbors g i) -> In (leader c) leader_neighbors).

Definition gamma_root
(i:Component)(leader_i:Component)(distance_i:nat)
(parent_i:Component)(leader_neighbors:C_list)
:Prop :=
leader i = leader_i /\ (*x*)
leader_i = i /\
parent i = parent_i /\ (*x*)
parent_i = i /\
distance i = distance_i /\ (*x*)
distance_i = 0 /\
(forall (k:Component), In k leader_neighbors ->
k = leader i) /\
(forall (c:Component) , In c (neighbors g i) ->
In (leader c) leader_neighbors).

If the local witness predicate holds for all components, then only in the way
that there is one component (root – the elected leader) that satisfies the clause
gamma root and all other components satisfy the clause gamma i. Suppose there
is more than one component fulfilling the gamma root clause. Then there is
more than one component that has elected itself as a leader. Since the graph is
connected, there is a path between every component. Hence, there must be a
path between two components that have a different leader. If we follow the path,
there must be a pair of components that contradicts the property that neighbors
agree on their leader.

Suppose otherwise that all components fulfill the clause gamma i, then every
component has a parent that is not itself. As there is always an edge between
a component and its parent, there are as many edges as components in the
subgraph. Hence, this subgraph contains a cycle. Within a cycle the distance
property is violated leading to a contradiction.

As a consequence, we fix one component as root and formalize the compo-
sition property in Coq as follows:

Verifying a Class of Certifying Distributed Programs 383

Theorem composition_property:
forall (leader_root parent_root: Component)
(distance_root : nat)(leader_neighbors_root : C_list),

(gamma_root root leader_root distance_root parent_root leader_neighbors_root
) ->

forall (x:Component)(prop1: v x)(prop2: x <> root)
(leader_i parent_i leader_parent_i :Component)
(distance_i distance_parent_i: nat)(leader_neighbors_i : C_list),

(gamma_i x leader_i distance_i parent_i leader_parent_i distance_parent_i
leader_neighbors_i) ->

distance root = 0 /\
distance x = distance (parent x) + 1 /\
leader root = root /\
leader x <> x /\
leader x = leader (parent x) /\
parent root = root /\
v (parent x) /\
a (A_ends x (parent x)) /\
a (A_ends (parent x) x) /\
(forall (c:Component),
In c (neighbors g x) -> leader c = leader x) /\
(forall (c:Component),
In c (neighbors g root) -> leader c = leader root).

The proof of the composition property in Coq is straightforward and only uses
syntactic rewriting.

Witness Property. The witness property states that if the global witness
predicate holds, then the leader election problem is solved: the spanning tree
witnesses the existence of a leader, and by the agreement between neighbors,
there can only be one leader.

As an assumption in Coq, we state that the global witness predicate holds.
As a consequence, we can formalize the witness property as follows:

Theorem global_witness_property:
exists (l : Component), v l ->
forall (x:Component)(prop1: v x), leader x = l.

In order to prove the witness property, we formalize and prove additional prop-
erties. We define an inductive type Connection: a Connection is an undirected
path between two vertices, consisting of edges that are induced by the parent
function. A Connection is constructed from a parent to its child, and has a
length.

Moreover, we define the function parent iteration which takes a compo-
nent c and a natural number n as input and recursively applies the parent
function n-times on c. An ancestor of a component is a component that can be
obtained by the application of the parent iteration function on c.

The proof of the witness property rests upon three central lemmata. The first
lemma states that there is a Connection between every component and root:

384 K. Völlinger and S. Akili

Lemma path_to_root:
forall (n:nat) (x:Component) (prop1 : v x),
distance x = n ->
{el : A_list & Connection x root el n }.

We conduct a proof by induction on the distance of a component - the length of
the Connection. The base case follows from the assumptions. For the induction
step, we assume a Connection co between root and the parent of a component
x with length n. By definition of Connection, co can be extended by the edge
between x′s parent and x to a Connection co′. By definition, the length of co′

is n + 1 which equals the distance of x.
The second lemma states that a component x agrees with all its ancestors

on the leader:

Lemma parent_is_leader :
forall (n:nat)(x y: Component)(prop1: v x) (prop2:v y),
leader x = leader (parent_iteration n x).

We conduct a proof by induction on the argument n of the parent iteration
function. The proof is similar to the one presented above.

The third lemma states that if there is a Connection between a component
and root, then root is ancestor of the component:

Lemma parent_transitive_is_root :
forall (n:nat) (x: Component)(prop1:v x),
n = distance x ->
{el : A_list & Connection x root el (distance x) } ->
root = (parent_iteration (distance x) x) .

By induction, we can establish that if a Connection exists from component
x to component y with length n, then x is the result of applying the par-
ent iteration function n-times on y. Since we already proved that there is a
Connection between every component and root, we conclude that root is an
ancestor of each component.

We prove the witness property by case analysis. For the first case, we have
to prove that root is the leader of root which follows from the assumptions.
For the second case, we have to prove that all other components have root as
their leader. We first use the lemma parent is leader such that we are left
with proving that the leader of each ancestor of each component is root. Using
the lemma parent transitive is root, we establish that each component has
root as its ancestor. As root has itself as leader and all other components have
the leader of their ancestors as leader, we conclude that root is leader of each
component.

Correctness of the Local Checkers. As the certifying leader election belongs
to class C, every component has a local checker. The local checker of a component
i decides its local witness predicate γ(xi, yi, wi). Hence, the checker needs i’s local
input xi, i’s local output yi and i’s local witness wi.

The local input of a component i is the neighborhood of i in accordance to
the network Graph G. For modeling purposes, we define a function that takes

Verifying a Class of Certifying Distributed Programs 385

the network graph as input and generates a checker ci for each component i that
is initialized with i’s local input. Furthermore, we bundle i’s local output yi and
local witness wi in the variable checker input. We implement the local checker
in Coq as follows:

Definition checker (l: local_input) (c : checker_input) : bool :=
(((negb (beq c.(leader_i) l.(i))) &&
beq c.(leader_i) c.(leader_parent_i)) &&
beq_nat c.(distance_i) (c.(distance_parent_i)+1) &&
In_bool c.(parent_i) l.(neighbors)) &&
forallb_neigbors c.(leader_neighbors) c.(leader_i) ||
beq c.(leader_i) l.(i) &&
beq_nat c.(distance_i) 0 &&
beq c.(parent_i) l.(i) &&
forallb_neigbors c.(leader_neighbors) c.(leader_i).

Note that a local checker accepts if the disjunction of the clauses gamma root
and gamma i holds.

To verify correctness of a local checker ci, we have to prove that ci only
accepts if the local witness predicate holds for i. We formalize the checker cor-
rectness as follows:

Theorem checker_correctness (l: local_input)
(c: checker_input):
(leaderconsistency l.(i) c.(leader_parent_i)) /\
(distanceconsistency l.(i) c.(distance_parent_i)) /\
(componentconsistency l.(i) c.(leader_i)
c.(parent_i) c.(distance_i) /\
(neighborsconsistency l.(i)
c.(leader_neighbors_i))) ->

(checker l c = true) <->

((gamma_i l.(i) c.(leader_i)
c.(distance_i) c.(parent_i)
c.(leader_parent_i) c.(distance_parent_i)
c.(leader_neighbors_i) \/

gamma_root l.(i) c.(leader_i) c.(distance_i)
c.(parent_i) c.(leader_neighbors_i))).

The proof of the checker correctness is straightforward and uses syntac-
tic rewriting. Note that we added the helper predicates leaderconsistency,
distanceconsistency, neighborsconsistency and componentconsistency to
ensure consistency between two neighbouring components, i.e. to make sure their
witnesses match on corresponding values. For example, if a component i chooses
a component j as its parent (parenti = j), the value of distanceparenti equals
distancej . In a real network, the consistency check requires additional commu-
nication between the checkers. We can realize communication in Coq by making
the checker’s code reactive. As shown in [2], Coq suits to implement interactive
software. To model the communication, we can define an inductive type that
models the state transitions of the checker caused by incoming or outgoing mes-
sages. A similar approach was used to formalize the Border Gateway Protocol
(BGP) in Coq [13]. In order to extract checkers from Coq to e.g. Haskell that can
run on a real network, we have to integrate communication in our formalization.

386 K. Völlinger and S. Akili

Formal Instance Correctness. We solved the proof obligations composition
property, witness property and correctness of the local checkers for certifying
leader election using Coq. Thus, we achieved formal instance correctness for
certifying leader election.

5 Related Work

Literature offers more than 100 certifying sequential algorithms. A theory of cer-
tifying sequential algorithms along with several examples and further reading is
given in [7]. Some of these certifying sequential algorithms are implemented in the
industrial-level library LEDA (Library for Efficient Data Structures and Algo-
rithms) [8] – a library for combinatorial and geometric computing. In addition,
Rizkallah developed a verification method to achieve formal instance correctness
for certifying sequential programs and demonstrated her verification method on
some programs from the LEDA libraries. Her dissertation [11] points to her fur-
ther publications on this field. However, all this work was done for sequential
and not for distributed programs. Völlinger and Reisig gave a certification for
the shortest path problem in networks as an first example [12]. To the best
of our knowledge, there is no other research on certifying distributed programs
and no verification method to obtain formal instance correctness for certifying
distributed programs.

However, some techniques for making a distributed program self-stabilizing
share similarities to our approach of making a distributed program certifying.
The idea of self-stabilization is that a system in a faulty state stabilizes itself
to a correct state. To this end, the components of a system have to detect that
the system’s state is faulty whereby local detection is desired. As a consequence,
there are some similarities to proof labeling schemes [5] as well, since if there
exists a (silent) self-stabilizing program, then there exists a proof labeling scheme
for that program and vice versa [1]. In contrast, we separate the checking from
the computation, rely on witnesses, and integrate proofs for the witness property
and the composition property.

6 Conclusion

Since verification of a distributed program is often too costly, we investigated
a verification method to obtain formal instance correctness, i.e. a proof that a
particular input-output pair is correct. For this purpose, we considered certi-
fying programs. A checker of a certifying program is usually simpler than the
original program, and its verification is often feasible while the verification of
the original program is too costly. By verifying the checker and by giving a
machine-checked proof that the witness certifies the output’s correctness, we get
formal instance correctness. Rizkallah demonstrated this verification method on
certifying sequential programs.

Verifying a Class of Certifying Distributed Programs 387

In contrast, we are concerned with the correctness of distributed programs. In
this paper, we defined a class of certifying distributed programs that is particu-
larly interesting since the global witness is computed and checked in a distributed
manner (Sect. 3.3). Moreover, we presented a verification method to obtain for-
mal instance correctness for the defined class of certifying distributed programs
(Sect. 3.4). Furthermore, we gave a certifying variant of the leader election prob-
lem in networks (Sect. 4.1). As a case study, we demonstrated our verification
method on certifying leader election using the interactive theorem prover Coq
(Sect. 4.2).

7 Future Work

In order to evaluate our verification method, more case studies are of interest. We
expect that the library Graph Basics would be also helpful for the verification of
other certifying distributed programs. However, the library does not offer graphs
with weighted edges. Since weighted edges are necessary for the formalization
of computing shortest paths in a network, it could be an interesting extension.
A first step in this direction is the definition of the inductive type Connection
that adds the concept of the length of a path.

Moreover, we expect that the formalization of the spanning tree as a global
witness can be reused for further case studies, since a lot of our certifying dis-
tributed programs rely on a spanning tree.

Another interesting direction would be to investigate further classes of cer-
tifying distributed programs and to find a verification method to obtain formal
instance correctness for these classes.

References

1. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent
self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol.
8756, pp. 18–32. Springer, Cham (2014). doi:10.1007/978-3-319-11764-5 2

2. Claret, G.: Pluto: a first concurrent web server in Gallina. http://coq-blog.clarus.
me/pluto-a-first-concurrent-web-server-in-gallina.html

3. Duprat, J.: A coq toolkit for graph theory (2011). rapport de recherche. Ecole
Normale Superieur de Lyon

4. INRIA: The coq proof assistant. http://coq.inria.fr/
5. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),

215–233 (2010)
6. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San

Francisco (1996)
7. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.

Comput. Sci. Rev. 5, 119–161 (2011)
8. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric

Computing. Cambridge University Press, Cambridge (1999)
9. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for

Industrial and Applied Mathematics, Philadelphia (2000)

http://dx.doi.org/10.1007/978-3-319-11764-5_2
http://coq-blog.clarus.me/pluto-a-first-concurrent-web-server-in-gallina.html
http://coq-blog.clarus.me/pluto-a-first-concurrent-web-server-in-gallina.html
http://coq.inria.fr/

388 K. Völlinger and S. Akili

10. Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer, Hei-
delberg (2013)

11. Rizkallah, C.: Verification of program computations. Ph.D. thesis (2015)
12. Völlinger, K., Reisig, W.: Certification of distributed algorithms solving problems

with optimal substructure. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS,
vol. 9276, pp. 190–195. Springer, Cham (2015). doi:10.1007/978-3-319-22969-0 14

13. Weitz, K., Woos, D., Torlak, E., Ernst, M.D., Krishnamurthy, A., Tatlock, Z.:
Formal semantics and automated verification for the border gateway protocol. In:
ACM SIGCOMM Workshop on Networking and Programming Languages (NetPL
2016), Florianopolis, Brazil (2016)

http://dx.doi.org/10.1007/978-3-319-22969-0_14

Compact Proof Witnesses

Marie-Christine Jakobs(B) and Heike Wehrheim

Paderborn University, Paderborn, Germany
{marie.christine.jakobs,wehrheim}@upb.de

Abstract. Proof witnesses are proof artifacts showing correctness of
programs wrt. safety properties. The recent past has seen a rising interest
in witnesses as (a) proofs in a proof-carrying-code context, (b) certificates
for the correct functioning of verification tools, or simply (c) exchange
formats for (partial) verification results. As witnesses in all theses sce-
narios need to be stored and processed, witnesses are required to be as
small as possible. However, software verification tools – the prime sup-
pliers of witnesses – do not necessarily construct small witnesses.

In this paper, we present a formal account of proof witnesses. We
introduce the concept of weakenings, reducing the complexity of proof
witnesses while preserving the ability of witnessing safety. We develop a
weakening technique for a specific class of program analyses, and prove
it to be sound. Finally, we experimentally demonstrate our weakening
technique to indeed achieve a size reduction of proof witnesses.

Keywords: Software verification · Proof witness · Proof re-use

1 Introduction

In the past years, automatic verification of programs with respect to safety prop-
erties has reached a level of maturity that makes it applicable to industrial-size
programs. The annual software verification competition SV-COMP [4] demon-
strates the advances of program verification, in particular its scalability. Software
verification tools prove program correctness, most often for safety properties
written into the program in the form of assertions. When the verification tool
terminates, the result is typically a yes/no answer optionally accompanied by
a counterexample. While this is the obvious result a verification tool should
deliver, it became clear in recent years that all the information computed about
a program during verification is too valuable to just be discarded at the end.
Such information should better be stored in some form of proof.

Proofs are interesting for several reasons: (A) Proofs can be used in a proof-
carrying code (PCC) context [25] where a program is accompanied by its proof
of safety. Verifying this proof allows to more easily recheck the safety of the
program, e.g., when its provider is untrusted. (B) A proof can testify that the
verification tool worked correctly, and checking the proof gives confidence in its
soundness [5]. (C) Verification tools are sometimes unable to complete proving
(e.g., due to timeouts). A proof can then summarize the work done until the
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 389–403, 2017.
DOI: 10.1007/978-3-319-57288-8 28

390 M.-C. Jakobs and H. Wehrheim

tool stopped (see e.g. [6]) so that other tools can continue the work. All these
scenarios use proofs as witnesses of the (partial) correctness of the program.

For these purposes, witnesses need to be small. If the witness is very large,
the gain of having a witness and thus not needing to start proving from scratch
is lost by the time and memory required to read and process the witness. Our
interest is thus in compact proof witnesses. However, the proof artifacts that
software verification tools produce are often even larger than the program itself.

Large proofs are a well-known problem in PCC approaches (e.g. [1,2,22,24,
26,29]). To deal with the problem, Necula and Lee [24] (who employ other types
of proofs than automatic verification tools produce) use succinct representations
of proofs. A different practice is to store only parts of a proof and recompute
the remaining parts during proof validation like done by Rose [28] or Jakobs
[22]. An alternative approach employs techniques like lazy abstraction [9,20]
to directly construct small proofs. Further techniques as presented by Besson
et al. [2] and Seo et al. [29] try to remove irrelevant information from proofs that
are fixpoints. The latter two approaches have, however, only looked at proofs
produced by path-insensitive program analyses.

In this paper, we first of all present a formal account of proof witnesses.
We do so for verification tools generating for the safety analysis some form of
abstract state space of the program, either by means of a path insensitive or a
path sensitive analysis. We call this abstract reachability graph in the sequel, fol-
lowing the terminology for the software verification tool CPAchecker [8]. We
formally state under what circumstances proof witnesses can actually soundly
testify program safety. Based on this, we study weakenings of proof witnesses,
presenting more compact forms of proofs while preserving being a proof witness.
Next, we show how to compute weakenings for a specific category of program
analyses. Finally, we experimentally show our weakening technique to be able to
achieve size reduction of proof witnesses. To this end, we evaluated our weak-
ening technique on 395 verification tasks taken from the SV-COMP [3] using
explicit-state software model checking as analysis method for verification. Next
to proof size reduction, we also evaluate the combination of our approach with
lazy refinement [9] plus examine its performance in a PCC setting [22].

2 Background

Witnesses are used to certify safety of programs. In this section, we start with
explaining programs and their semantics. For this presentation, we assume to
have programs with assignments and assume statements (representing if and
while constructs) and with integer variables only1. We distinguish between
boolean expressions used in assume statements, and abbreviate assume bexpr
simply by bexpr, and arithmetic expressions aexpr used in assignments. The set
Ops contains all these statements, and the set Var is the set of variables occuring
in a program. Following Configurable Software Verification [7] – the technique
the tool CPAchecker, in which we integrated our approach, is based on –,
1 Our implementation in CPAchecker [8] supports programs written in C.

Compact Proof Witnesses 391

0: r:=0;

1: c:=1;

2: if (i==0) {

3: r:=1;

4: c:=c+1; }

5: c:=c+1;

6: if (r==1)

7: assert(c==3)

8:

�0 �1 �2

�5

�3

�4

�6

�8

�7

�e

r:=0 c:=1

i==0

¬(i==0)
r:=1

c:=c+1

c:=c+1

r=
=1

¬(r==0)

!(
c=

=
3)

(c=
=
3)

Fig. 1. Program isZero (i input variable) and its control-flow automaton

we model a program by a control-flow automaton (CFA) P = (L,ECFA, �0, Lerr).
The set L represents program locations, �0 is the initial program location, and
ECFA ⊆ L × Ops × L models the control-flow edges. The set Lerr ⊆ L of error
locations defines which locations are unsafe to reach. In the program, these safety
properties are written as assert statements. Note that all safety properties can
be encoded this way [23], and that we assume that all properties of interest are
encoded at once.

Figure 1 gives a small (completely artificial) program called isZero (which we
use later for explanation) and its control-flow automaton. Here, location �e is
the only error location. The program is called isZero since it tests whether the
input i is zero (which is recorded as value 1 in r). The assertion checks whether
the number of assignments to r or checks on r is 3 when r is 1. This number is
accumulated in the variable c.

The semantics of a program P = (L,ECFA, �0, Lerr) is defined by a labeled
transition system (L × C,ECFA,→) made up of a set of concrete states C plus
locations L, the labels ECFA (the control-flow edges of the program) and a
transition relation → ⊆ (L × C) × ECFA × (L × C). We write (�, c) e→ (�′, c′)
for ((�, c), e, (�′, c′)) ∈ →. A concrete state in C is a mapping c : Var → Z.

A transition (�, c)
(�,op,�′)−−−−−→ (�′, c′) is contained in the transition relation → if

either op ≡ bexpr, c(bexpr) = true2 and ∀v ∈ Var : c(v) = c′(v), or op ≡
x := aexpr, c′(x) = c(aexpr), and ∀v ∈ Var \ {x} : c(v) = c′(v). We call
(�0, c0)

e1→ (�1, c1) · · · en→ (�n, cn) a path of P if (�i, ci)
ei→ (�i+1, ci+1), 1 ≤ i < n,

is a transition in TP . The set of all paths, i.e. (partial) program executions,
2 To get c(bexpr) substitute the variables v occurring in bexpr by c(v) and apply

standard integer arithmetic.

392 M.-C. Jakobs and H. Wehrheim

of program P is denoted by pathsP . Finally, a program is safe if no program
execution reaches an error location, i.e., ∀(�0, c0)

e1→ (�1, c1) · · · en→ (�n, cn) ∈
pathsP : �n /∈ Lerr.
We build our technique for witness compaction on top of the configurable program
analysis (CPA) framework of Beyer et al. [7] which allows to specify customized,
abstract interpretation based program analyses. The advantage of using CPAs
is that our results are not just valid for one analysis, but for a whole range of
various analyses (namely those specifiable as CPAs). A CPA for a program P is
a four-tuple A = (D,�,merge, stop) containing

1. an abstract domain D = (C,A, �·�) consisting of a set C of concrete states,
a complete lattice A = (A,�,⊥,
,�,�) on a set of abstract states A and a
concretization function �·� : A → 2C , with

��� = C and �⊥� = ∅,
∀a, a′ ∈ A : a
 a′ implies �a� ⊆ �a′�,

∀a, a′ ∈ A : �a� ∪ �a′� ⊆ �a � a′�, ∀a, a′ ∈ A : �a � a′� ⊆ �a� ∩ �a′�,

2. a transfer function � ⊆ A × ECFA → A defining the abstract semantics:
∀a ∈ A, e ∈ ECFA s.t. �(a, e) = a′

{c′ | c ∈ �a� ∧ ∃�, �′ : (�, c) e→ (�′, c′)} ⊆ �a′�,

3. a merge operator merge and a termination check operator stop steering the
construction of the abstract state space, and satisfying (a) ∀a, a′ ∈ A : a′

merge(a, a′) and (b) ∀a ∈ A,S ⊆ A : stop(a, S) =⇒ ∃a′ ∈ S : a
 a′. Both
of these operators will play no role in the following, and are thus not further
discussed here.

Based on a given analysis A, an abstract state space of a given program is
then constructed in the form of an abstract reachability graph (ARG). To this
end, the initial abstract state a0 ∈ A is fixed to be �, and the root of the ARG
becomes (�0, a0). The ARG is then further constructed by examining the edges
of the CFA and computing successors of nodes under the transfer function of the
analysis A. The stop operator fixes when to end such an exploration. An ARG
for a program P = (L,ECFA, �0, Lerr) is thus a graph G = (N,EARG , root) with
nodes being pairs of locations and abstract values, i.e., N ⊆ L × A and edges
EARG ⊆ N × ECFA × N . We say that two nodes n1 = (�1, a1) and n2 = (�2, a2)
are location equivalent, n1 =loc n2, if �1 = �2. We lift the ordering on elements in
A to elements in L × A by saying that (�1, a1)
 (�2, a2) if �1 = �2 and a1
 a2.
We write n

e→ n′, e ∈ ECFA, if (n, e, n′) ∈ EARG , and n
e� n′ if n = (�, a),

n′ = (�′, a′), e = (�, op, �′) ∈ ECFA and a
e� a′.

3 Proof Witnesses and Weakenings

Abstract reachability graphs represent overapproximations of the state space of
the program. They are used by verification tools for inspecting safety of the

Compact Proof Witnesses 393

program: if no error location is reachable in the ARG, it is also unreachable
in the program, and the tool can then testify safety. Thus, ARGs are excellent
candidates for proof witnesses. However, our definition of an ARG only fixes the
syntactical appearance and allows ARGs that are not necessarily proper proof
witnesses (and real overapproximations), e.g., our definition allows that an ARG
could simply have ignored the exploration of certain edges in the CFA.

Definition 1. An ARG G constructed by an analysis A is a proof witness for
program P if the following properties hold:

Rootedness. The root node root (�0,�),
Soundness. All successor nodes are covered:

∀n ∈ N : n
e� n′ implies ∃n′′ : n

e→ n′′ ∧ n′
 n′′,

Safety. No error nodes are present: ∀(�, ·) ∈ N : � /∈ Lerr.

(Sound) verification tools construct ARGs which are indeed proof witnesses
(unless the program is not safe). When such an ARG is used as a proof wit-
ness, safety of the program can then be checked by validating the above three
properties for the ARG. Such checks are often less costly than building a new
ARG from scratch. This makes proof witnesses excellent candidates for proofs
in a proof-carrying code setting.

Proposition 1. If an ARG G is a proof witness for program P , then P is safe.

However, ARGs are often unnecessarily complex witnesses. They often store
information about program variables that is either too detailed or even not
needed at all. Our interest is thus in finding smaller witnesses. In terms of
the analysis, too much detail means that the information stored for program
locations is unnecessarily low in the lattice ordering
. We build our compaction
technique on the following assumption about the size of witnesses.

Assumption. The weaker (i.e., the higher in the lattice ordering) the
abstract values stored for program locations, the more compact the
witness.

As an example justifying this assumption take the weakest element �: as it
represents the whole set of concrete states, it brings us no specific information at
all and can thus also be elided from a witness. This assumption is also taken in
the work of Besson et al. [2]. We base the following approach on the assumption –
which our experiments also confirm – and define weakenings for proof witnesses.

Definition 2. A function w : L × A → L × A is a weakening function for a
domain D = (C,A, �·�) and program P = (L,ECFA, �0, Lerr) if it satisfies the
following two properties:

– (�, a)
 w(�, a) (weakening),
– w(�, a) =loc (�, a) (location preserving).

394 M.-C. Jakobs and H. Wehrheim

A weakening function for D and P is consistent with the transfer function if the
following holds:

– for all e ∈ ECFA, n ∈ L × A: w(n) e� implies n
e�,

– for all n1 ∈ L × A: if w(n1) = n′
1 and n′

1
e� n′

2, then for n2 s.t. n1
e� n2:

n′
2
 w(n2).

While formally being similar to widenings [13] used in program analysis dur-
ing fixpoint computation, weakenings serve a different purpose. And indeed,
widening functions are too limited for being weakenings as they do not take the
program under consideration into account.

Weakening functions are applied to ARGs just by applying them to all nodes
and edges: for an ARG G, w(G) = (w(N), w(E), w(root)), where w(E) =
{(w(n1), e, w(n2)) | (n1, e, n2) ∈ EARG}. Note that w(root) = root since the
root already uses the top element in the lattice.

Theorem 1. If an ARG G is a proof witness for program P and w is a weak-
ening function for D and P consistent with the transfer function, then w(G) is
a proof witness for program P as well.

Proof. We use the following notation: G = (N,E, root) is the ARG, w(G) =
(w(N), w(E), w(root)) = (N ′, E′, root′) its weakening. We need to show the
three properties of proof witnesses to be valid in w(G).

Soundness. The most interesting property is soundness. We need to show that
∀n′

1
e� n′

2, n
′
1 ∈ N ′, there is an n′

3 ∈ N ′ : n′
1

e→ n′
3 ∧ n′

2
 n′
3.

Let n1 ∈ N be the node with w(n1) = n′
1.

w(n1)
e� n′

2

⇒ { w consistent with transfer function }
∃n̂ : n1

e� n̂

⇒ { soundness of G }
∃n2 ∈ N : n1

e→ n2 ∧ n̂
 n2

⇒ { construction of G′ }
w(n1)

e→ w(n2) in G′

⇒ { w consistent with transfer function }
n′
2
 w(n2)

Thus, choose n′
3 := w(n2).

Rootedness, Safety. Both follow by w being a weakening function, and w(G)
being constructed by applying w on all nodes of the ARG.

4 Variable-Separate Analyses

The last section introduced proof witnesses, and showed that we get a smaller,
yet proper proof witness when using a weakening consistent with the transfer

Compact Proof Witnesses 395

function. Next, we show how to define such weakening functions for a specific
sort of program analyses A. In the following, we study analyses that use map-
pings of program variables to abstract values as its abstract domain D. We call
such analyses variable-separate because they separately assign values to vari-
ables. Examples of variable-separating analyses are constant propagation and
explicit-state model checking (both assigning concrete values to variables), inter-
val analysis (assigning intervals to variables), sign analysis (assigning signs to
variables), or arithmetical congruence (assigning a congruence class c̄m to vari-
ables, i.e., variable value is congruent to c modulo m).

Definition 3. A variable-separate analysis consists of a base domain
(B,�B ,⊥B,
B ,�B ,�B) that is a complete lattice equipped with an evaluation
function evalB on variable-free expressions such that

– evalB(bexpr) ∈ 2{true,false} \ ∅ and
– evalB(aexpr) ∈ B,

for vars(aexpr) = vars(bexpr) = ∅.
B is lifted to the variable-separate analysis with domain A = BVar where

– a1
A a2 is obtained by pointwise lifting of
B:
∀v ∈ Var : a1(v)
B a2(v),

– expression evaluation is obtained by replacing variables with their values:
a(expr) = evalB(expr[v �→ a(v) | v ∈ vars(expr)]),

– a1
bexpr� a2 if true ∈ a1(bexpr) and

a2 = a1 �
�

a∈A,true∈a(bexpr)

a,

– a1
x:=aexpr� a2 if a2(y) = a1(y) for y �= x and a2(x) = a1(aexpr).

Note that the execution of an assume statement (bexpr) further constrains
the successor state to those satisfying bexpr. The analysis uses the meet operator
� for this. As an example analysis in our experiments, we use explicit-state model
checking [15]. It tracks precise values of variables, however, if combined with lazy
refinement [9] it does not track all but just some variables, and therefore does
not plainly build the complete state space of a program.

Example 1. Explicit-state model checking uses the flat lattice B = Z ∪ {�,⊥}
with ⊥
 b and b
 � for all b ∈ B, all other elements are incomparable.
The operators � and � are the least upper bound and greatest lower bounds
operators, respectively. Assigning � to a variable amounts to not tracking the
value of that variable or the analysis failed to determine a precise, concrete
value. The evaluation function computes the usual arithmetic semantics (denoted
�expr�), except on � elements (which can appear in expressions when variables
are instantiated according to an abstract value).

evalB(bexpr) �
{

true if ∃zi ∈ Z : �bexpr[�i �→ zi]� = true
false if ∃zi ∈ Z : �bexpr[�i �→ zi]� = false

396 M.-C. Jakobs and H. Wehrheim

Here, we write �expr[�i �→ zi]� for replacing all � occurrences in expr by (pos-
sibly different) elements from Z.

evalB(aexpr) =

{
�aexpr� if no � in aexpr

� else

Figure 2 shows the ARG computed for program isZero when using explicit-
state model checking without lazy refinement. We directly elide variables which
are mapped to � as these will not be stored in a proof witness.

�0

�1, r : 0

�2, c : 1, r : 0

�2, c : 1, i : 0, r : 0

�4, c : 1, i : 0, r : 1

�5, c : 2, i : 0, r : 1

�6, c : 3, i : 0, r : 1

�7, c : 3, i : 0, r : 1

�8, c : 3, i : 0, r : 1

�5, c : 1, r : 0

�6, c : 2, r : 0

�8, c : 2, r : 0

r:=0

c:=1

i==0 ¬(i==0)

r:=1

c:=c+1

c:=c+1

c:=c+1

r==1

¬(r==1)

c==3

Fig. 2. ARG of program isZero using
explicit-state model checking

�0

�1, r : 0

�2, c : 1, r : 0

�2, c : 1

�4, c : 1, r : 1

�5, c : 2, r : 1

�6, c : 3, r : 1

�7, c : 3

�8

�5, r : 0

�6, r : 0

�8

r:=0

c:=1

i==0 ¬(i==0)

r:=1

c:=c+1

c:=c+1

c:=c+1

r==1

¬(r==1)

c==3

Fig. 3. Weakened witness of program
isZero

For variable-separate analyses, we obtain weakenings by computing the set
of variables relevant at an ARG node. This is similar to the computation of live
variables [27], where, however, the variables to be tracked are tailored towards
not introducing new paths in the weakening that were not present in the ARG.
The computation of relevant variables has similiarities with program slicing [30]
as we compute backward dependencies of variables. For (�, a) ∈ N , we define

− init(�, a) := {v ∈ vars(op) | ∃e = (�, op, �′) ∈ ECFA, (�, a) � e�},

− trans(�,op,�′)(V�′) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(V�′ \ {x}) ∪ vars(aexpr)
if op ≡ x := aexpr ∧ x ∈ V�′

V�′ ∪ vars(bexpr)
if op ≡ bexpr ∧ vars(bexpr) ∩ V�′ �= ∅

V�′ else

The definition of init aims at keeping those variables for which the ARG
has already determined that a syntactically possible outgoing edge is seman-
tically impossible; the definition of trans propagates these sets backwards via

Compact Proof Witnesses 397

dependencies. Together, this gives rise to a family of equations (rel(�,a))(�,a)∈N

for the nodes in the ARG:
rel(�,a) =

(
init(�, a) ∪

⋃
(
(�,a),e,(�′,a′)

)
∈EARG

transe(rel(�′,a′))
)

\ {v ∈ Var | a(v) = �}

Note that we remove all variables from this set that are assigned � in a, since
no knowledge from previous nodes is required to compute this information. We
use (Rel(�,a))(�,a)∈N to stand for the smallest solution to this equation system
that can be computed by a fixpoint computation starting with the emptyset of
relevant variables for all nodes3.

Definition 4. Let (Rel(�,a))(�,a)∈N be the family of relevant variables. We define
the weakening wrt. Rel for nodes (�, a) ∈ N as

weakenRel(�, a) := (�, a′) with a′(v) =
{�B if v /∈ Rel(�,a)

a(v) else

For all (�, a) /∈ N , we set weaken(�, a) := (�, a).

Figure 3 shows the weakened ARG for program isZero. We see that in several
abstract states fewer variables have to be tracked. Due to init, the weakened
ARG tracks variables r and c at locations �6 and �7. Furthermore, it tracks those
values required to determine the values of these variables at those locations.

The key result of this section states that this construction indeed defines a
weakening function consistent with the transfer function.

Theorem 2. Let G be an ARG of program P constructed by a variable-separate
analysis, (Reln)n∈N the family of relevant variables. Then weakenRel is a weak-
ening function for G consistent with �.

This theorem follows from the following observations and lemmas: (a) (�, a)
A

weakenRel(�, a) follows from �B being the top element in the lattice B, and (b)
weakenRel(�, a) =loc (�, a) by definition of weaken.

Lemma 1. Let n∈N be an ARG node, e∈ECFA an edge. Then weakenRel(n) e�
implies n

e�.

Proof. Let e = (�, op, �′), op = bexpr, n = (�, a) (otherwise the CFA would
already forbid an edge), weaken(�, a) = (�, a′). Proof by contraposition.

(�, a) � e�
⇒ { definition of init }
init(�, a) = vars(bexpr)
⇒ { definition of Rel }

init(�, a) \ {v ∈ Var | a(v) = �} ⊆ Rel(�,a)
⇒ { definition of weaken }
a′(bexpr) = a(bexpr) �� true

⇒ { definition of transfer function }
(�, a′) � e�

3 The fixpoint exists as we have a finite number of variables Var .

398 M.-C. Jakobs and H. Wehrheim

Lemma 2. Let n1 ∈ N be a node of the ARG. If weaken(n1) = n′
1 and n1

e� n2,
then ∀n′

2 such that n′
1

e� n′
2 we get n′

2
 weaken(n2).

Proof. Let n1 = (�1, a1), n2 = (�2, a2), n′
1 = (�1, a′

1), n
′
2 = (�2, a′

2), e =
(�1, op, �2). Let furthermore V2 = Rel(�2,a2) and V1 = Rel(�1,a1).

Case 1. op ≡ x := aexpr.

– x ∈ V2: Then by definition of Rel, vars(aexpr) \ {v ∈ Var | a1(v) = �} ⊆ V1.
We have to show n′

2
 weaken(n2). We first look at x.

a′
2(x)

= { def. � }
a′
1(aexpr)

= { def. weaken, vars(aexpr) \ {v ∈ Var | a1(v) = �} ⊆ V1 }
a1(aexpr)

= { def. � }
a2(x)

 { def. weaken }
weaken(a2)(x)

Next y �= x, y ∈ V1.
a′
2(y)

= { definition �, y �= x }
a′
1(y)

= { def. weaken }
a1(y)

= { def. � }
a2(y)

 { def. weaken }
weaken(a2)(y)

Next y �= x, y /∈ V1. Note that by definition of Rel, y /∈ V2, hence a′
1(y) =

�B = weaken(a2)(y).
– x /∈ V2: We have a′

2(x)
 weaken(a2)(x) since weaken(a2)(x) = �B by defini-
tion of weaken. The case for y �= x is the same as for x ∈ V2.

Case 2. op ≡ bexpr. Similar to case 1, using the fact that if a1(y) = a′
1(y) then

(a1 �
�

a∈A,true∈a(bexpr)

a)(y) = (a′
1 �

�

a∈A,true∈a(bexpr)

a)(y).

Compact Proof Witnesses 399

5 Experiments

The last section has introduced a technique for computation of weakenings. Next,
we experimentally evaluate this weakening technique for the explicit-state model
checking analysis. In our experiments, we wanted to study three questions:

Q1. Does weakening reduce the size of proof witnesses?
Q2. Does explicit-state model checking with lazy refinement [9] benefit from

weakening?
Q3. Do PCC approaches benefit from ARG weakenings?

To explain question 2: Lazy refinement already aims at “lazily” including
new variables to be tracked, i.e., as few as possible. The interesting question
is thus whether our weakenings can further reduce the variables. For question
3, we employed an existing ARG-based PCC technique [22]. To answer these
questions, we integrated our ARG weakening within the tool CPAchecker [8]
and evaluated it on category Control Flow and Integer Variables of the SV-
COMP [3]. We excluded all programs that were not correct w.r.t. the specified
property, or for which the verification timed out after 15 min, resulting in 395
programs (verification tasks) in total. For explicit-state model checking with and
without lazy refinement we used the respective standard value analyses provided
by CPAchecker. Both analyses generate ARGs.

We run our experiments within BenchExec [10] on an Intel R© Xeon E3-1230
v5 @ 3.40 GHz and OpenJDK 64-Bit Server VM 1.8.0 121 restricting each task
to 5 of 33 GB. To re-execute our experiments, start the extension of BenchExec
bundled with CPAchecker4 with pcc-slicing-valueAnalysis.xml.

Q1. We measure the size reduction of the proof witness for explicit-state model
checking by the number of variable assignments v �→ Z stored in the weak-
ened ARG divided by the number of these assignments in the original ARG (1
thus means “same number of variables”, <1 = “fewer variables”, >1 = “more
variables”). In the left of Fig. 4, we see the results where the x-axis lists the
verification tasks and the y-axis the size reduction. For the original ARG, the
number of variable assignments was between 10 and several millions. Our exper-
iments show that we always profit from ARG weakening. On average the proof
size is reduced by about 60%.

Q2. The right part of Fig. 4 shows the same comparison as the diagram in the
left, but for ARGs constructed by lazy refinement. Lazy refinement already tries
to track as few variables as possible, just those necessary for proving the desired
property. Still, our approach always reduces the proof size, however, not as much
as before (which was actually expected).

Q3. Last, we used the weakenings within the PCC framework of [22]. This uses
ARGs to construct certificates of program correctness. Although the certificate
stores only a subset of the ARG’s nodes, the comparison of the number of variable

4 https://svn.sosy-lab.org/software/cpachecker/trunk/ rv 24405.

https://svn.sosy-lab.org/software/cpachecker/trunk/

400 M.-C. Jakobs and H. Wehrheim

Fig. 4. Comparison of number of variable assignments in original and weakened ARG
for explicit-state model checking without (left) and with lazy refinement (right)

Fig. 5. Comparison of validation times for certificates from original and weakened ARG
constructed by explicit-value state model checking with and without lazy refinement

assignments still looks similar to the graphics in Fig. 4. Thus, we in addition
focused on the effect of our approach on certificate validation. Figure 5 shows
the speed-up, i.e., the validation time for the certificate from the original ARG
divided by the same time for the certificate from the weakened ARG, both for
analyses with and without lazy refinement. In over 70% (50% for lazy refinement)
of the cases, the speed-up is greater than 1, i.e., checking the certificate from the
weakened ARG is faster. On average, checking the certificate constructed from
the weakened ARG is 27% (21% for lazy refinement) faster.

All in all, the experiments show that weakenings can achieve more compact
proof witnesses, and more compact witnesses help to speed up their processing.

6 Conclusion

In this paper, we presented an approach for computing weakenings of proof
witnesses produced by software verification tools. We proved that our weakenings

Compact Proof Witnesses 401

preserve the properties required for proof witnesses. We experimentally evaluated
the technique using explicit-state model checking. The experiments show that
the weakenings can significantly reduce the size of witnesses. Weakenings can
thus successfully be applied in all areas in which proof witnesses are employed.
In the future, we plan for more experiments with other program analyses.

Related Work. Our computation of relevant variables is similar to the com-
putation of variables in slicing [30] or cone-of-influence reduction. Our “slicing
criterion” and the dependencies are tailored towards the purpose of preserving
properties of proof witnesses.

A number of other approaches exist that try to reduce the size of a proof.
First, succinct representations [24,26] were used in PCC approaches. Later,
approaches have been introduced, e.g. in [1,22,28], that store only a part of the
original proof. Our approach is orthogonal to these approaches. In the exper-
iments we combined our technique with one such approach (namely [22]) and
showed that a combination of proof reduction and weakenings is beneficial.

A large number of techniques in verification already try to keep the generated
state space small by the analysis itself (e.g. symbolic model checking [12] or
predicate abstraction [19]). Giacobazzi et al. [17,18] describe how to compute
the coarsest abstract domain, a so called correctness kernel, which maintains the
behavior of the current abstraction. Further techniques like lazy refinement [9,20]
and abstraction slicing [11] (used in the certifying model checker SLAB [14])
try to reduce the size of the explored state space during verification, and thus
reduce the proof size. In our experiments, we combined our technique with lazy
refinement for explicit-state model checking [9] and showed that our technique
complements lazy refinement.

Two recent approaches aim at reducing the size of inductive invariants com-
puted during hardware verification [16,21]. While in principle our ARGs can be
transformed into inductive invariants and thus these approaches would theoret-
ically be applicable to software verification techniques constructing ARGs, it is
not directly straightforward how to encode arbitrary abstract domains of sta-
tic analyses as SAT formulae. We see thus our technique as a practically useful
reduction technique for proof witnesses of software verifiers constructing ARGs.

We are aware of only two techniques [2,29] which also replace abstract states
in a proof by more abstract ones. Both weaken abstract interpretation results,
while we look at ARGs. Besson et al. [2] introduce the idea of a weakest fixpoint,
explain fixpoint pruning for abstract domains in which abstract states are given
by a set of constraints and demonstrate it with a polyhedra analysis. Fixpoint
pruning repeatedly replaces a set of constraints – an abstract state – by a subset
of constraints s.t. the property can still be shown. In contrast, we directly com-
pute how to “prune” our abstract reachability graph. Seo et al. [29] introduce the
general concept of an abstract value slicer. An abstract value slicer consists of
an extractor domain and a backtracer. An extractor from the extractor domain
is similar to our weaken operator and the task of the backtracer is related to the
task of trans. In contrast to us, they do not need something similar to init since

402 M.-C. Jakobs and H. Wehrheim

their abstract semantics never forbids successor nodes (and they just consider
path-insensitive analyses).

Summing up, none of the existing approaches can be used for proofs in the
form of abstract reachability graphs.

Acknowledgements. This work was partially supported by the German Research
Foundation (DFG) within the Collaborative Research Centre “On-The-Fly Comput-
ing” (SFB 901). The experiments were run in the VerifierCloud hosted by Dirk Beyer
and his group.

References

1. Albert, E., Arenas, P., Puebla, G., Hermenegildo, M.: Reduced certificates for
abstraction-carrying code. In: Etalle, S., Truszczyński, M. (eds.) Logic Program-
ming. LNCS, vol. 4079, pp. 163–178. Springer, Heidelberg (2006)

2. Besson, F., Jensen, T., Turpin, T.: Small witnesses for abstract interpretation-
based proofs. In: Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 268–283.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71316-6 19

3. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K.
(eds.) TACAS 2014. LNCS, vol. 8413, pp. 373–388. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54862-8 25

4. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

5. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchang-
ing verification results between verifiers. In: Zimmermann et al. [31], pp. 326–337

6. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model
checking: a technique to pass information between verifiers. In: FSE, pp. 57:1–
57:11. ACM, New York (2012)

7. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-73368-3 51

8. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 16

9. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR and
interpolation. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793,
pp. 146–162. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37057-1 11

10. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fis-
cher, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer,
Cham (2015). doi:10.1007/978-3-319-23404-5 12

11. Brückner, I., Dräger, K., Finkbeiner, B., Wehrheim, H.: Slicing abstractions. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 17–32. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75698-9 2

12. Burch, J., Clarke, E., McMillan, K., Dill, D., Hwang, L.: Symbolic model checking:
1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

http://dx.doi.org/10.1007/978-3-540-71316-6_19
http://dx.doi.org/10.1007/978-3-642-54862-8_25
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-662-49674-9_55
http://dx.doi.org/10.1007/978-3-540-73368-3_51
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-37057-1_11
http://dx.doi.org/10.1007/978-3-319-23404-5_12
http://dx.doi.org/10.1007/978-3-540-75698-9_2

Compact Proof Witnesses 403

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL, pp.
238–252. ACM, New York (1977)

14. Dräger, K., Kupriyanov, A., Finkbeiner, B., Wehrheim, H.: SLAB: a certifying
model checker for infinite-state concurrent systems. In: Esparza, J., Majumdar, R.
(eds.) TACAS 2010. LNCS, vol. 6015, pp. 271–274. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-12002-2 22

15. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. TCAD 27(7), 1165–1178 (2008)

16. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive validity
cores for safety properties. In: Zimmermann et al. [31], pp. 314–325

17. Giacobazzi, R., Ranzato, F.: Example-guided abstraction simplification. In:
Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G.
(eds.) ICALP 2010. LNCS, vol. 6199, pp. 211–222. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14162-1 18

18. Giacobazzi, R., Ranzato, F.: Correctness kernels of abstract interpretations. Inf.
Comput. 237, 187–203 (2014)

19. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). doi:10.
1007/3-540-63166-6 10

20. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL,
pp. 58–70. ACM, New York (2002)

21. Ivrii, A., Gurfinkel, A., Belov, A.: Small inductive safe invariants. In: Formal Meth-
ods in Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, 21–24 Octo-
ber 2014, pp. 115–122. IEEE (2014)

22. Jakobs, M.-C.: Speed up configurable certificate validation by certificate reduction
and partitioning. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 159–174. Springer, Cham (2015). doi:10.1007/978-3-319-22969-0 12

23. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4),
21:1–21:54 (2009)

24. Necula, G., Lee, P.: Efficient representation and validation of proofs. In: LICS, pp.
93–104. IEEE (1998).

25. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119. ACM, New York (1997)
26. Necula, G.C., Rahul, S.P.: Oracle-based checking of untrusted software. In: POPL,

pp. 142–154. ACM, New York (2001)
27. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis, 1st edn.

Springer, Berlin (2005). (corr. 2. print. edn.)
28. Rose, E.: Lightweight bytecode verification. J. Autom. Reason. 31(3–4), 303–334

(2003)
29. Seo, S., Yang, H., Yi, K., Han, T.: Goal-directed weakening of abstract interpreta-

tion results. In: TOPLAS, October 2007, vol. 29(6) (2007)
30. Weiser, M.: Program slicing. In: ICSE, pp. 439–449. IEEE Press, Piscataway (1981)
31. Zimmermann, T., Cleland-Huang, J., Su, Z. (eds.): Proceedings of the 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, Seattle, WA, USA, 13–18 November 2016. ACM, New York (2016)

http://dx.doi.org/10.1007/978-3-642-12002-2_22
http://dx.doi.org/10.1007/978-3-642-14162-1_18
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/3-540-63166-6_10
http://dx.doi.org/10.1007/978-3-319-22969-0_12

Qualification of a Model Checker for Avionics
Software Verification

Lucas Wagner1(B), Alain Mebsout2, Cesare Tinelli2, Darren Cofer1,
and Konrad Slind1

1 Advanced Technology Center, Rockwell Collins, Cedar Rapids, USA
{lucas.wagner,darren.cofer,konrad.slind}@rockwellcollins.com

2 The University of Iowa, Iowa City, USA
{alain-mebsout,cesare-tinelli}@uiowa.edu

Abstract. Formal methods tools have been shown to be effective at
finding defects in safety-critical systems, including avionics systems in
commercial aircraft. The publication of DO-178C and the accompanying
formal methods supplement DO-333 provide guidance for aircraft manu-
facturers and equipment suppliers who wish to obtain certification credit
for the use of formal methods for software development and verification.

However, there are still a number of issues that must be addressed
before formal methods tools can be injected into the design process for
avionics systems. DO-178C requires that a tool used to meet certification
objectives be qualified to demonstrate that its output can be trusted. The
qualification of formal methods tools is a relatively new concept present-
ing unique challenges for both formal methods researchers and software
developers in the aerospace industry.

This paper presents the results of a recent project studying the qual-
ification of formal methods tools. We have identified potential obstacles
to their qualification and proposed mitigation strategies. We have con-
ducted two case studies based on different qualification approaches for
an open source formal verification tool, the Kind 2 model checker. The
first case study produced a qualification package for Kind 2. The sec-
ond demonstrates the feasibility of independently verifying the output of
Kind 2 through the generation of proof certificates and verifying these
certificates with a qualified proof checker, in lieu of qualifying the model
checker itself.

Keywords: Qualification · Certification · Model checking · Software
verification

1 Introduction

Civilian aircraft must undergo a rigorous certification process to establish their
airworthiness. Certification encompasses the entire aircraft and all of its compo-
nents, including the airframe, engines, and on-board computing systems. Many
of these systems utilize software. Guidance for the certification of airborne
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 404–419, 2017.
DOI: 10.1007/978-3-319-57288-8 29

Qualification of a Model Checker for Avionics Software Verification 405

software is provided in DO-178C: Software Considerations in Airborne Systems
and Equipment Certification [1].

Formal methods tools have been shown to be effective at finding and eliminat-
ing defects in safety-critical software [2]. In recognition of this, when DO-178C
was published it was accompanied by DO-333: Formal Methods Supplement to
DO-178C and DO-278A [3]. This document provides guidance on how to accept-
ably use formal methods to satisfy DO-178C certification objectives. However,
there are a number of issues that must be addressed before formal methods tools
can be fully integrated into the development process for aircraft software. For
example, most developers of aerospace systems are unfamiliar with which for-
mal methods tools are most appropriate for different problem domains. Different
levels of expertise are necessary to use these tools effectively and correctly. Fur-
ther, evidence must be provided of a formal method’s soundness, a concept that
is not well understood by most practicing engineers. Similarly, most develop-
ers of formal methods tools are unfamiliar with certification requirements and
processes.

DO-178C requires that a tool used to meet its objectives must be qualified in
accordance with the tool qualification document DO-330: Software Tool Qual-
ification Considerations [4]. The purpose of the tool qualification process is to
obtain confidence in the tool functionality. The effort required varies based on
the potential impact a tool error could have on system safety. The qualification
of formal verification tools poses unique challenges for both tool developers and
aerospace software engineers.

Previous NASA-sponsored work has described in detail how one might use
various formal methods tools to satisfy DO-178C certification objectives [5].
This paper presents the results of a subsequent study designed to address the
qualification of formal methods tools. The goal of the effort was to interpret the
guidance of DO-330 and DO-333 and provide critical feedback to the aerospace
and formal methods research communities on potential pitfalls and best practices
to ensure formal methods tool users and developers alike can successfully qualify
their tools.

We are aware of several commercial tool vendors who have successfully qual-
ified formal methods tools. For example, Polyspace by MathWorks and Astreé
by AbsInt both have DO-178C qualification kits available. In the early stages
of this project we helped to organize a Dagstuhl Seminar on Qualification of
Formal Methods Tools [6] to engage both formal methods researchers and cer-
tification experts. The seminar included presentations on qualification work for
the Alt-Ergo theorem prover [7], SPARK verification tools [8], and the CompCert
compiler [9], as well as experience reports on qualification guidance and efforts
in other industries. A good summary of tool qualification requirements in other
domains is found in [10].

In this paper we examine the qualification of a model checker for use in
verification of avionics software. The success of model checking is largely due to
the fact that it is a highly automated process, generally requiring less expertise
than an interactive theorem prover [11]. One clear strength of model checkers

406 L. Wagner et al.

is their ability to return precise error traces witnessing the violation of a given
safety property. However, most model checkers are currently unable to return
any form of corroborating evidence when they declare a safety property to be
satisfied. When used to satisfy certification objectives for aircraft software, a
model checking tool would therefore need to qualified.

An alternative is to instrument the model checker so that in addition to its
safety claims, it generates a proof certificate, which is an artifact embodying
a proof of the claims. Such a certificate can then be validated by a qualified
certificate checker. By reducing the trusted core to the certificate checker, this
approach facilitates the integration of formal method tools into the development
processes for aircraft software. It redirects tool qualification requirements from a
complex tool, the model checker, to a much simpler one, the certificate checker.

The main contribution of this paper is presentation of these two approaches
to qualification as applied to the Kind 2 model checker [12]. Section 2 provides a
brief overview of the certification guidance for software in commercial aircraft.
Section 3 describes the tool qualification process that is used to establish trust
in the tools that are used in avionics software development. Sections 4 and 5
describe two case studies that illustrate different approaches to qualification:
direct qualification of the Kind 2 model checker and qualification of the certifi-
cate checker for a proof-generating enhancement of the model checker. Section 6
provides conclusions and lessons learned from the project. The complete NASA
technical report and qualification artifacts are available at [13].

2 Aircraft Software and Certification

Certification is defined in DO-178C as legal recognition by the relevant certifi-
cation authority that a product, service, organization, or person complies with
its requirements. In the context of commercial aircraft, the relevant certification
authority is the FAA in the U.S. or EASA in Europe. The requirements referred
to are the government regulations regarding the airworthiness of aircraft oper-
ating in the National Airspace System (NAS). In practice, certification consists
primarily of convincing representatives of a government agency that all required
steps have been taken to ensure the safety, reliability, and integrity of the aircraft.
Certification differs from verification in that it focuses on evidence provided to
a third party to demonstrate that the required activities were performed com-
pletely and correctly, rather on performance of the activities themselves.

The stakeholders in the civil aviation domain (regulators, airframers, equip-
ment manufacturers) have developed a collection of guidance documents defining
a certification process which has been accepted as the standard means to comply
with regulations. The process includes system development, safety assessment,
and design assurance. DO-178C focuses on design assurance for software, and
is intended to make sure that software components are developed to meet their
requirements without any unintended functionality.

DO-178C does not prescribe a specific development process, but instead
identifies important activities and design considerations throughout a develop-
ment process and defines objectives for each of these activities. It identifies five

Qualification of a Model Checker for Avionics Software Verification 407

Fig. 1. DO-178C certification activities required for Level A software.

software levels, with each level based on the impact of a software failure on the
overall aircraft function. As the software criticality level increases, so does the
number of objectives that must be satisfied. Depending on the associated soft-
ware level, the process can be very rigorous (Level A) or non-existent (Level E).
Objectives are summarized in a collection of tables covering each phase of the
development process. Figure 1 shows the objectives required for the most critical
avionics software, Level A.

One of the foundational principles of DO-178C is requirements-based testing.
This means that the verification activities are centered around explicit demon-
stration that each requirement has been met. A second principle is complete
coverage, both of the requirements and of the code that implements them. This
means that every requirement and every line of code must be examined in the
verification process. Furthermore, several metrics are defined which specify the
degree of structural coverage that must be obtained in the verification process,
depending on the criticality of the software being verified. A third principle

408 L. Wagner et al.

is traceability among all of the artifacts produced in the development process.
Together, these objectives provide evidence that all requirements are correctly
implemented and that no unintended function has been introduced.

When DO-178C was developed, guidance specific to new software technolo-
gies was provided in associated documents called supplements which could add,
modify, or replace objectives in the core document. New supplements were devel-
oped in the areas of model-based development, object-oriented design, and for-
mal methods, as well as an additional document containing expanded guidance
on tool qualification. DO-178C and its associated documents were published in
2011 and accepted by the FAA as a means of compliance with airworthiness
regulations in 2013.

3 Qualification

Guidance governing tool qualification is provided in Sect. 12.2 of DO-178C. A
tool must be qualified if the following two conditions are met:

1. Any of the processes of DO-178C are eliminated, reduced, or automated by
the use of a software tool, and

2. The output of the tool is used without being verified.

This means that if a tool is used to identify software defects rather than,
for example, demonstrating that source code satisfies its low-level requirements
(a DO-178C objective), then qualification is not required. Similarly, if a tool is
used to generate test cases, but those test cases will be manually reviewed for
correctness, then qualification is not required.

When it is determined that tool qualification is required, the purpose of
the qualification process is to ensure that the tool provides confidence at least
equivalent to the processes that were eliminated, reduced, or automated by the
tool.

Tool qualification is context-dependent. If a tool previously qualified for use
on one system is proposed for use on another system, it must be re-qualified in
the context of the new system.

DO-330 outlines a process for demonstrating a tool’s suitability for satisfying
DO-178C objectives that it is being used to eliminate, reduce, or automate.
The qualification process is similar to the software verification process defined
in DO-178C. Qualification amounts to accomplishing a set of activities with
corresponding objectives to:

– Identify the DO-178C objectives that the tool is eliminating, reducing, or
automating

– Specify which functions of the tool are being relied upon
– Create a set of requirements that precisely identify those functions
– Develop a set of test cases showing that the tool meets those requirements.

Qualification of a Model Checker for Avionics Software Verification 409

3.1 Tool Qualification Level

As in the certification process itself, there are varying levels of rigor associated
with tool qualification. The Tool Qualification Level (TQL) is similar to the soft-
ware level in DO-178C and defines the level of rigor required by the qualification
process. TQL-1 is the most rigorous, while TQL-5 is the least rigorous.

The required TQL is determined by identifying the tool’s impact on the
software development process. The impact is characterized by determining the
impact of a error in the tool. DO-178C provides three criteria to characterize
the impact of an error in the tool:

Criterion 1. A tool whose output is part of the airborne software and thus
could insert an error.

Criterion 2. A tool that automates verification processes and thus could fail
to detect an error, and whose output is used to justify the elimination or
reduction of:

– Verification processes other than those automated by the tool, or
– Development processes that could have an impact on the airborne software.

Criterion 3. A tool that, within the scope of its intended use, could fail to
detect an error.

A code generator in a model-based development process is an example of a
Criterion 1 tool. We expect that most formal methods tools will be used as part
of the software verification process and will, therefore, fall into Criteria 2 or 3.
That is, they will not be used to generate airborne software, but will be used to
verify that the airborne software is correct.

The distinction between Criteria 2 and 3 depends on exactly which processes
the tool is eliminating, reducing, or automating. For example, if an abstract inter-
pretation tool determines that division-by-zero cannot occur and this is used to
satisfy DO-178C objectives related to the accuracy and consistency of the source
code (Objective A-5.6), then the tool is Criterion 3. However, if those results are
also used to justify elimination of robustness testing related to division-by-zero in
the object code (Objectives A-6.2 and A-6.4), then the tool becomes a Criterion 2
tool. An unofficial rule of thumb is that when a tool addresses objectives from
multiple tables of DO-178C (corresponding to different development phases), it
is likely a Criterion 2 tool.

The required TQL is determined by the combination of its impact and the
DO-178C software level to which the tool is being applied, as shown in Table 1.

In summary, formal methods tools used to satisfy verification process objec-
tives of DO-178C will usually need to be qualified at TQL-5. TQL-4 qualification
would only be required if the tool is determined to fall into Criterion 2 and it is
being used in the verification of Level A or B software.

410 L. Wagner et al.

Table 1. Determination of tool qualification level.

Software level Criterion

1 2 3

A TQL-1 TQL-4 TQL-5

B TQL-2 TQL-4 TQL-5

C TQL-3 TQL-5 TQL-5

D TQL-4 TQL-5 TQL-5

3.2 DO-330 and Tool Qualification Objectives

Once the TQL is determined, the required tool qualification objectives are
defined by DO-330. Like DO-178C, these objectives are summarized in a col-
lection of tables. Table 2 shows the number of objectives to be satisfied in each
area for TQL-4 and TQL-5. Note that objectives for a particular TQL are cumu-
lative, so that the TQL-5 objectives are a subset of the TQL-4 objectives.

Table 2. DO-330 tool qualification objectives.

DO-330 Qualification Objectives TQL-4 TQL-5

T-0: Tool Operational Processes 7 6
T-1: Tool Planning Processes 2
T-2: Tool Development Processes 5
T-3: Verification of Outputs of Tool Requirements Process 8
T-4: Verification of Outputs of Tool Design Process 1
T-5: Verification of Outputs of Tool Coding & Integ. Process
T-6: Testing of Output of Integration Process 2
T-7: Verification of Outputs of Tool Testing 2
T-8: Tool Configuration Management 5 2
T-9: Tool Quality Assurance Process 2 2
T-10: Tool Qualification Liaison Process 4 4

Total number of objectives 38 14

Table 2 highlights an important distinction between the qualification objec-
tives. The gray rows (qualification objective tables T-1 through T-7) are objec-
tives related to the development processes of the tool itself. The other rows (T-0
and T-8 through T-10) are objectives related only to the use of the tool. Thus
there is a clear distinction between the tool developer context and the tool user
context. Furthermore, TQL-5 qualification only requires objectives from the tool
user context. This means that TQL-5 qualification is significantly simpler than
TQL-4 because it does not require information about how the tool was devel-
oped. If a tool was built by a third party, TQL-4 qualification may be difficult
to achieve. In particular, since many formal methods tools arise from academic
research activities, the artifacts required for TQL-4 qualification may not be
available.

Qualification of a Model Checker for Avionics Software Verification 411

Another interesting point is that tool qualification is always performed in the
context of a particular aircraft development effort. This means that certain tool
functions may not be utilized or addressed in a qualification. For example, qual-
ification of a model checker may only need to cover variables of primitive data
types while ignoring composite types such as arrays, records, and tuple types, if
those are not relevant for the given application.

Once the proper TQL is determined and the objectives have been identified,
qualification is simply a matter of demonstrating that each objective is satisfied.
For a TQL-5 qualification, the bulk of this effort is associated with DO-330
Table T-0, Tool Operational Processes, and involves defining and verifying Tool
Operational Requirements which describe tool capabilities necessary to satisfy
the claimed certification objectives.

4 Case Study: Kind 2 Model Checker

The first case study describes the activities and artifacts necessary to complete
a TQL-5 qualification of the Kind 2 model checker based on the guidance in
DO-330. Our goal is to provide a concrete example that illustrates the qualifica-
tion process for a typical formal methods tool and could be used as a pattern by
others. We also identify challenges or lessons learned in the process. The quali-
fication package is available as part of the NASA final report for the project.

Kind 2 [14] is an open-source, multi-engine, SMT-based automatic model
checker for safety properties of programs written in the synchronous dataflow
language Lustre [15]. It takes as input a Lustre file annotated with properties to
be proved, and outputs for each property either a confirmation or a counterex-
ample, a sequence of inputs that falsifies the property.

This case study is based on earlier work [5] in which various formal methods
were used to satisfy DO-178C and DO-333 objectives for verification of a rep-
resentative Flight Guidance System (FGS). In one of the examples, the Kind 2
model checker was used to verify that a model of the FGS mode logic satisfies
its high-level requirements. This qualification case study extends that work by
performing the activities needed to qualify Kind 2 for accomplishing the certifi-
cation objectives described in the earlier work.

In this example, the mode logic was expressed as a state machine model
in Simulink Stateflow, and serves as low-level requirements for the source code
that will be generated from it. A Rockwell Collins tool was used to translate this
model into Lustre for analysis by the Kind 2 model checker. Textual high-level
requirements for the model logic were manually translated to Lustre and merged
with the mode logic Lustre model. The overall tool chain is shown in Fig. 2. This
case study is limited to qualification of the model checker and ignores (for now)
the model translation tools.

412 L. Wagner et al.

Fig. 2. Verification using qualified Kind 2 model checker.

4.1 Need for Tool Qualification

In this case study Kind 2 is being used to automate processes that satisfy the
objectives of Verification of Outputs of Software Design Process (DO-178C Table
A-4). This includes, for example:

– A-4.1 Low-level requirements comply with high-level requirements.
– A-4.2 Low-level requirements are accurate and consistent.
– A-4.7 Algorithms are accurate.

Furthermore, the outputs of Kind 2 will not be independently verified. This
establishes the need for qualification.

The required TQL is established by determining the impact of Kind 2 on the
software development process. In this context the tool:

– Cannot insert an error into the airborne software.
– Could fail to detect an error in the airborne software.
– Is not used to justify the elimination or reduction of other verification processes

or development processes that could have an impact on the airborne software.

Therefore, Criterion 3 applies so Kind 2 should be qualified to TQL-5.

4.2 Tool Qualification Objectives

The work performed to satisfy TQL-5 qualification objectives is summarized
below:

T-0.1. Tool qualification need is established. (Rationale for tool qualification
and determination of the required TQL is described in Sect. 4.1.)

T-0.2. Tool Operational Requirements are defined. Definition of the Tool Opera-
tional Requirements (TOR) and their verification in objective T-0.5 are the key

Qualification of a Model Checker for Avionics Software Verification 413

qualification activities. The Tool Operational Requirements identify how the
tool is to be used within the software life cycle process. This objective requires
the identification of the tool usage context, tool interfaces, the tool operational
environment, tool inputs and outputs, tool operational requirements, and the
operational use of the tool. The focus here is on the tool performance from
the perspective of the tool user and what capabilities the tool provides in the
software development process.

We have specified 111 TORs that must be verified for Kind 2. These require-
ments cover:

– The features of the Lustre language used by Kind 2 in this context
– Input validation features
– Properties that must be correctly analyzed as true or false.

Since the requirements will be verified by testing performed on Kind 2, they
cover a finite subset of the Lustre grammar. Conservative bounds on the length
of inputs are established and validated.

T-0.3. Tool Executable Object Code is installed in the tool operational envi-
ronment. Identification of the specific versions of the tool and its dependencies,
instructions of how to install the tool, and a record of actually installing the tool
are required to meet this objective. Qualification was based on Kind 2 version
1.0.1 and the Z3 SMT solver [16] (version 4.4.2).

T-0.5. Tool operation complies with the Tool Operational Requirements. This
objective demonstrates that the tool complies with its TORs. This objective is
covered in three parts. First, the review and analysis procedures used to verify
the TORs are defined. Secondly, we identify a set of tests, referred to as the
Tool Operational Test Cases and Procedures, that when executed, demonstrate
that Kind 2 meets its TORs. Finally, the results of actually executing the test
procedures within the Tool Operational Environment must be collected.

T-0.6. Tool Operational Requirements are sufficient and correct. This objective
is satisfied by ensuring that the TORs adequately address the tool usage context,
the tool operational environment, the input accepted by the tool, the output
produced by the tool, required tool functions, applicable tool user information,
and the performance requirements for the tool.

T-0.7. Software life cycle process needs are met by the tool. This objective is
satisfied by the review, analysis, and testing results used to satisfy the TORs.

Other Objectives (T-8, T-9, T-10). Tool configuration management, quality
assurance, and qualification liaison process. Most of the data required by these
objectives are highly dependent on the context and the processes of the appli-
cant organization and can only be meaningfully defined for an actual software
development and tool qualification effort.

414 L. Wagner et al.

4.3 Results

The purpose of this qualification package was to provide a complete case study
containing a detailed set of tool operational requirements and test procedures.
It is anticipated that this qualification package contains all of the necessary
information such that it could be used within an avionics certification effort. No
barriers were found that would prevent qualification of Kind 2.

One interesting result from the Tool Qualification Liason process is T-10.4
Impact of Known Problems on TORs. During verification of the TORs, some
errors were identified. These have either been corrected or will be corrected
in the near future. However, such errors do not preclude use of the tool in
certification activities, as long as the impact and functional limitations on tool
use are identified.

The qualification package and results were reviewed by certification experts
at Rockwell Collins and determined to meet the requirements of DO-330. Suc-
cessfully using it would require an applicant to provide detailed information to
support the tool qualification objectives from Table T-8, T-9, and T-10, which
are specific to an organization’s configuration management, quality assurance,
and certification practices respectively. We expect that it could be used as the
starting point for tool qualification in an actual avionics software development
effort or as a pattern for qualification of another tool.

5 Case Study: Proof-Generating Model Checker

The second qualification case study is based on a proof-generating version of
the Kind 2 model checker that is supported by a separate proof checker [14]. In
this approach, the proof checker verifies the output of the model checker. This
removes the need to qualify a complex tool (the model checker) and instead
requires qualification of a much simpler one (the proof checker). By reducing
the trusted core to the proof checker, we may be able to reduce the qualification
effort required and enhance the overall assurance.

This case study is based on the same software development context as the
first, and involves using the model checker to satisfy the same certification objec-
tives for verifying the FGS mode logic. The qualification package developed for
the proof checker tool is available as part of the project final report.

5.1 Development of a Proof-Generating Version of Kind 2

For this effort we have used the SMT solver CVC4 [17] with Kind 2. CVC4 is
a solver for first-order propositional logic modulo a set of background theories
such as integer or real linear arithmetic. Our work relies heavily on the proof
production capabilities of CVC4. A unique aspect of CVC4 proofs is that they
are fine grained. This means they are very detailed and checking them is only
a matter of carefully following and replaying the steps in the proof certificate.
In contrast, proofs produced by other solvers require the final proof checker to
perform substantial reasoning to reconstruct missing steps.

Qualification of a Model Checker for Avionics Software Verification 415

Fig. 3. Verification using Kind 2 and a qualified proof checker.

The proof checker which was qualified in this case study, named Check-It, is
an instantiation of the Logical Framework with Side Conditions (LFSC) proof
checker [18]. The resulting tool architecture is shown in Fig. 3, which includes
both the unqualified Kind 2 model checker and the qualified Check-it proof
checker.

Kind 2 is used to generate two separate proof certificates:

– A proof certificate (PC) for safety properties of the transition system corre-
sponding to Lustre model being verified.

– A front-end certificate (FEC) that provides evidence that two independent
tools have accepted the same Lustre input model and produced the same first
order logic (FOL) internal representation.

The PC summarizes the work of the different analysis engines used in Kind
2. This includes bounded model checking (BMC), k-induction, IC3, as well as
additional invariant generation strategies. In practice it takes the form of a k-
inductive strengthening of the properties.

This intermediate certificate is checked by CVC4, from which we extract
proofs to reconstruct safety arguments using the rules of k-induction. Proofs are
produced in the language of LFSC.

To make the whole process efficient and scalable, certificates are first min-
imized before being checked. An iterative process takes care of this phase by
efficiently lowering the bound k and removing any superfluous information con-
tained within the certificate.

The FEC is necessary to ensure that the proof in the PC is actually about
the input model provided. Without this step, it is possible that the (unqual-
ified) model checker could produce a valid PC that is unrelated to the input
model. The FEC is generated in the form of observational equivalence between
two internal representations generated by independently developed front ends.
In our case, the two front ends are Kind 2 itself and JKind, a Lustre model
checker inspired by Kind but independently developed by Rockwell Collins [19].
Observational equivalence between the two FOL representations is recast as an
invariant property. Checking that property yields a second proof certificate from

416 L. Wagner et al.

which a global notion of safety can be derived and incorporated in the LFSC
proof.

The trusted core of this approach consists of:

– The LFSC checker (5300 lines of C++ code).
– The LFSC signatures comprising the overall proof system in LFSC, for a total

of 444 lines of LFSC code.
– The assumption that Kind 2 and JKind do not have identical defects that

could escape the observational equivalence check. We consider this reasonable
since the tools were produced by different development teams using different
programming languages.

5.2 Qualification of Check-It

The approach of using a qualified tool to check the results of an unqualified
tool is not unprecedented. FAQ D.7 of DO-330 provides guidance for exactly
this “two tool” approach. Recall that qualification of a tool is necessary when
it is used to eliminate, reduce, or automate DO-178C processes and when the
outputs of the tool are not verified. Kind 2 and Check-It are used to satisfy the
same objectives for the FGS mode logic as described in Sect. 4. The outputs of
the Kind 2 analysis, a set of proof certificates, are verified using the Check-It
proof checking tool. According to the guidance in DO-330 FAQ D.7, this process
is acceptable if the Check-It tool is qualified.

Determination of required TQL is the same as in Sect. 4. Check-it is used
only to verify proof certificates produced by Kind 2 and so it is a Criterion 3
tool. Therefore, Check-It must be qualified at TQL-5.

The qualification objectives for Check-It were the same as for Kind 2, so
we only address the differences here. Since Check-It is simpler than Kind 2,
defining its TORs was comparatively straightforward. Inputs to the tool are
proof certificates (PC and FEC) that are composed of proof rules defined in six
signature files. We have specified 82 TORs that must be verified for Check-It.

Objectives for verification of tool operation were accomplished by a com-
bination of peer review and testing. Test cases cover presence and validity of
certificates, compatibility with certificates produced by Kind 2, performance
requirements, and proof rule acceptance. Peer review of the proof rules in the
signatures files used by Check-It was conducted to identify any potential trust
issues. Results from this review were used to identify additional test cases (for
example, to preclude the acceptance of unsound rules).

DO-330, FAQ D.7 provides additional information on the use of a qualified
tool (Check-It) to check the results of an unqualified tool (Kind 2). This FAQ
identifies factors that should be considered to prevent the possibility of errors in
both the unqualified tool and the qualified tool. The primary concern is to iden-
tify the interaction between tools in the case of various failures in the unqualified
tool (for example, if Kind 2 fails to produce a PC or a FEC, or if either is found
to be incorrect by Check-It).

Qualification of a Model Checker for Avionics Software Verification 417

The FAQ also identifies four additional concerns that apply in this situation,
and which have been addressed in the qualficiation package:

– Coverage of verification objectives for the unqualified tool’s output
– Operating conditions of the qualified tool
– Common cause avoidance
– Protection between tools

5.3 Results

To summarize, we found nothing about the “two tool” proof-checking approach
that would prevent successful tool qualification. Checking the PC validates the
Kind 2 analysis and checking the FEC provides an argument that the emit-
ted PC corresponds to the original Lustre file. If Kind 2 produces incorrect,
malformed, or missing certificates Check-It highlights the error. The tools use
dissimilar technical approaches, one performing model checking and the other
proof checking, minimizing the chance for any common cause failure. The TORs
for Check-It were much simpler to define and verify than for Kind 2. However,
the proof checking approach was more challenging to explain to certification
experts and, consequently, would be inherently riskier to implement. We esti-
mate the overall effort of this approach to be about 75% of the effort required
to qualify Kind 2 itself. An added benefit, however, is that the qualified proof
checker could be reused with future improved versions of Kind 2 (provided the
proof format remains the same), or even with other model checkers which would
produce certificates in the same format.

6 Conclusions

In this paper we have explored the qualification of formal methods tools within
the context of avionics certification. This effort produced useful examples and
artifacts for two qualification case studies, and also provided insight into the
qualification process for formal methods tools that should be useful to software
developers, tool developers, tool users, and certification experts. Combined with
the prior work on Formal Methods Case Studies for DO-333, it provides a com-
prehensive set of case studies for using and qualifying formal method tools for
avionics software development.

The work reveals that qualification at TQL-5 can be a straightforward task.
The guidance of DO-330 does not require any activities that are especially
difficult or costly for qualification of a model checker. However, the guidance
does suggest that tools from the research community may be difficult to qual-
ify at TQL-4 due to the requirements for tool development artifacts including
tool requirements, test cases, tool design, and architectural descriptions. For-
mal methods tool developers who desire to have their tools used in the avionics
industry should keep this in mind.

In addition, this work highlights the need for good software engineering prac-
tices for formal methods tools used in certification. The relatively high complex-
ity of internal translations, optimizations, and analysis algorithms increases the

418 L. Wagner et al.

likelihood that defects will be identified. Bug tracking facilities are absolutely
essential for users to understand a tool’s limitations.

Lastly, we developed a proof-generating enhancement of the Kind 2 model
checker, and explored the impact of this capability on tool qualification. We pro-
duced qualification packages for both Kind 2 and for the proof checker for certifi-
cates generated by Kind 2. We determined that the “two tool” proof checker app-
roach was viable from a qualification standpoint and provides increased assur-
ance. However, it was not dramatically easier or less costly to qualify and was
definitely more difficult to explain and justify to certification experts.

Based purely on cost and perceived risk, we expect that TQL-5 qualfication
of a model checker would be the approach preferred by most avionics software
developers. The qualified proof checker approach provides significant advantages
in terms of greater assurance and modularity, which may be attractive for devel-
opers interested in “future-proofing” their verification process. By keeping the
model checker separate and free from the need for qualification, improved fea-
tures and functionality can be more easily incorporated without impacting the
qualified (and therefore less flexible) proof checker.

Acknowledgments. This work was funded by NASA contract NNL14AA06C.

References

1. RTCA DO-178C: Software considerations in airborne systems and equipment cer-
tification, Washington, DC (2011)

2. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.S.: Formal methods: prac-
tice and experience. ACM Comput. Surv. 41, 19 (2009)

3. RTCA DO-333: Formal methods supplement to DO-178C and DO-278A, Wash-
ington, DC (2011)

4. RTCA DO-330: Software tool qualification considerations, Washington, DC (2011)
5. Cofer, D., Miller, S.: DO-333 certification case studies. In: Badger, J.M., Rozier,

K.Y. (eds.) NFM 2014. LNCS, vol. 8430, pp. 1–15. Springer, Cham (2014). doi:10.
1007/978-3-319-06200-6 1

6. Cofer, D., Klein, G., Slind, K., Wiels, V.: Qualification of formal methods tools
(Dagstuhl seminar 15182). Dagstuhl Rep. 5, 142–159 (2015)

7. OCamlPro: Alt-ergo (2013). https://alt-ergo.ocamlpro.com/
8. AdaCore: SPARK Pro (2014). http://www.adacore.com/sparkpro/
9. Leroy, X.: A formally verified compiler back-end. J. Autom. Reason. 43, 363–446

(2009)
10. Camus, J.L., DeWalt, M.P., Pothon, F., Ladier, G., Boulanger, J.L., Blanquart,

J.P., Quere, P., Ricque, B., Gassino, J.: Tool qualification in multiple domains:
status and perspectives. In: Embedded Real Time Software and Systems, Toulouse,
France, 5–7 February, vol. 7991. Springer (2014)

11. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53, 58–64 (2010)

12. Champion, A., Mebsout, A., Sticksel, C., Tinelli, C.: The Kind 2 model checker.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 510–517.
Springer, Cham (2016). doi:10.1007/978-3-319-41540-6 29

http://dx.doi.org/10.1007/978-3-319-06200-6_1
http://dx.doi.org/10.1007/978-3-319-06200-6_1
https://alt-ergo.ocamlpro.com/
http://www.adacore.com/sparkpro/
http://dx.doi.org/10.1007/978-3-319-41540-6_29

Qualification of a Model Checker for Avionics Software Verification 419

13. NASA: Qualification of Formal Methods Tools Under DO-330 (2017). https://
shemesh.larc.nasa.gov/fm/FMinCert/DO-330-case-studies-RC.html

14. Mebsout, A., Tinelli, C.: Proof certificates for SMT-based model checkers for
infinite-state systems. In: FMCAD, Mountain View, California, USA, October
2016. http://cs.uiowa.edu/∼amebsout/papers/fmcad2016.pdf

15. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow pro-
gramming language LUSTRE. In: Proceedings of the IEEE, pp. 1305–1320 (1991)

16. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 24

17. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

18. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Form. Methods Syst. Des. 41, 91–118 (2013)

19. Gacek, A.: JKind - a Java implementation of the KIND model checker (2014).
https://github.com/agacek/jkind

https://shemesh.larc.nasa.gov/fm/FMinCert/DO-330-case-studies-RC.html
https://shemesh.larc.nasa.gov/fm/FMinCert/DO-330-case-studies-RC.html
http://cs.uiowa.edu/~amebsout/papers/fmcad2016.pdf
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
https://github.com/agacek/jkind

SpeAR v2.0: Formalized Past LTL Specification
and Analysis of Requirements

Aaron W. Fifarek1(B), Lucas G. Wagner2, Jonathan A. Hoffman3,
Benjamin D. Rodes4, M. Anthony Aiello4, and Jennifer A. Davis2

1 LinQuest Corporation, Dayton, USA
aaron.fifarek@linquest.com

2 Rockwell Collins, Cedar Rapids, USA
{lucas.wagner,jen.davis}@rockwellcollins.com

3 Air Force Research Laboratory, Wright-Patterson AFB, USA
jonathan.hoffman.2@us.af.mil

4 Dependable Computing, Charlottesville, USA
{ben.rodes,tony.aiello}@dependablecomputing.com

Abstract. This paper describes current progress on SpeAR, a novel
tool for capturing and analyzing requirements in a domain specific lan-
guage designed to read like natural language. Using SpeAR, systems
engineers capture requirements, environmental assumptions, and criti-
cal system properties using the formal semantics of Past LTL. SpeAR
analyzes requirements for logical consistency and uses model checking to
prove that assumptions and requirements entail stated properties. These
analyses build confidence in the correctness of the formally captured
requirements.

1 Introduction

This paper presents SpeAR (Specification and Analysis of Requirements)
v2.0 [1], an open-source tool for capturing and analyzing requirements stated
in a language that is formal, yet designed to read like natural language.

Requirements capture and analysis is a challenging problem for complex sys-
tems and yet is fundamental to ensuring development success. Traditionally,
requirements suffer from unavoidable ambiguity that arises from reliance on nat-
ural language. Formal methods mitigates this ambiguity through mathematical
representation of desired behaviors and enables analysis and proofs of properties.

SpeAR allows systems engineers to capture requirements in a language with
the formal semantics of Past Linear Temporal Logic (Past LTL) [3] and supports
proofs of critical properties about requirements using model checking [2]. More-
over, the SpeAR user interface performs validations, including type-checking,
that provide systems engineers with real-time feedback on the well-formedness of
requirements. Initial feedback from systems engineers has been positive, empha-
sizing the readability of the language. Additionally, our use of SpeAR on early
case studies has identified errors and omissions in captured requirements.

Approved for Public Release; Distribution Unlimited (Case Number: 88ABW-2016-
6046).

c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 420–426, 2017.
DOI: 10.1007/978-3-319-57288-8 30

SpeAR v2.0: Formalized Past LTL Specification 421

2 Related Work

Previous work has investigated the role of formal methods in requirements engi-
neering. Parnas laid the foundation for constraint based requirements with the
four variable model: monitored inputs, controlled outputs, and their software
representation as inputs and outputs [11]. The Software Cost Reduction (SCR)
method builds upon the four variable model using a tabular representation of
requirements and constraints [10]. SCR provides tool support for formal analysis,
including a consistency checker and model checker. SpeAR also builds upon the
four-variable model but expresses requirements in a language that is designed
to read like natural language instead of a tabular representation. In contrast
to tools like ARSENAL [8] that provide formal analysis of natural language
requirements, engineers use SpeAR to capture requirements directly in a formal
language, avoiding the introduction of potential ambiguity.

Previous versions of SpeAR [5] used pre-defined specification patterns [4]
that were found to be too rigid in practice. SpeAR v2.0 introduces a language
providing the formal semantics of Past LTL that is more flexible, allowing users
to capture requirements directly, rather than choosing from pre-defined patterns.

3 Formal Requirements Capture

SpeAR captures requirements in a formal language that not only provides the
semantics of Past LTL, but is also designed to read like natural language. Pre-
vious versions of SpeAR required explicit scoping for temporal operators, using
an awkward syntax, for example:

while signal > threshold :: always output == ON;

SpeAR v2.0 eliminates this syntax and provides English alternatives for
most operators, such as equal to, greater than, less than or equal to,
implies, and not. Additionally, SpeAR provides aliases for many operators
so that systems engineers can more naturally express their requirements. With
these English alternatives, the previous example can be written as:

if signal greater than threshold then output equal to ON

This syntax is much closer to natural language.
We motivate further discussion of the SpeAR language by describing partial

requirements for the thermostat of a simple heating system. As seen in Fig. 1a,
the thermostat is represented by a three-state automaton describing reactions
to changes in the ambient temperature.

3.1 SpeAR File Stucture

SpeAR promotes grouping requirements according to system components
enabling modularity and reuse. Requirements are captured in files laid out in a

422 A.W. Fifarek et al.

Heater
Off

Heater
On

Error

Am
bient < Target

Am
bient >= Target

Tim
er >Tim

eout

Thermostat

Target Temp.
(config.)

Heater

Ambient Temp.
(controlled)

Heater Cmd
(ON, OFF, ERROR)

Ambient Temp.
(monitored)

Environm
ent

(a) (b)

Inputs:
ambient is a temperature
target is a temperature

Outputs:
heater_command is a heater_operating_state

State:
timer is an int

Assumptions:
a0: previous heater_command equal to ON implies

ambient greater than or equal to previous ambient
Requirements:

r0: if ambient less than target and
timer less than or equal to TIMEOUT then

heater_command equal to ON
r1: if ambient greater than or equal to target and

timer less than or equal to TIMEOUT then
heater_command equal to OFF

r2: if timer greater than TIMEOUT then
heater_command equal to ERROR

r3: timer equal to previous(timer) + 1
Properties:

p_heat: if heater_command equal to ON then
ambient less than target

p_off: if heater_command equal to OFF then
ambient greater than or equal to target

p_error: if heater_command equal to ERROR then
timer greater than TIMEOUT

p_elatch: once heater_command equal to ERROR
implies heater_command equal to ERROR

Fig. 1. (a) Simple heating system with associated (b) partial thermostat SpeAR file

common structure. Partial requirements for the thermostat, a component of the
heating system, are shown in Fig. 1b.

Inputs, Outputs, State: Inputs represent monitored or observed data from
the environment, as well as inputs from other components. Outputs represent
data to the environment, as well as outputs to other components. State repre-
sents data that is not visible to the environment or to other components. For
example, the thermostat monitors the ambient and target temperatures for a
room (inputs), controls the heater by sending a signal that turns it on or off
(outputs), and has a counter that tracks heating duration (state).

Assumptions: Assumptions identify necessary constraints on inputs from the
environment and from other components. For example, the thermostat assumes
that the ambient temperature rises when the heater is on (a0). This constraint is
an assumption: the thermostat cannot directly control the ambient temperature.

Requirements: Requirements identify constraints that the component must
guarantee through its implementation. For example, the thermostat will send a
signal to turn the heater on when the ambient temperature is lower than the
target temperature (r0).

Properties: Properties represent constraints that the system should satisfy
when operating in its intended environment. Properties can be used to validate

SpeAR v2.0: Formalized Past LTL Specification 423

Table 1. Past time temporal expressions with SpeAR equivalences

SpeAR Past LTL

Previous φ with initial value false Yφ

Previous φ with initial value true Zφ

Historically φ Hφ

Once φ Oφ

φ since ψ φ S ψ

φ triggers ψ φ T ψ

that the requirements define the correct component behavior or to prove that
certain undesirable conditions never arise. For example, the heater is only on
when the ambient temperature is below the target temperature (p heat).

3.2 SpeAR Formal Semantics

The formal semantics of SpeAR is as expressive as Lustre [9] and is based upon
Past LTL [3] but omits future looking operators. We define this subset as Past-
Only LTL, which allows users to express temporal behaviors that begin in the
past, with arbitrarily long but finite history, and end at the current step (i.e.,
transition). Supported temporal operators in SpeAR are shown in Table 1, where
ϕ and ψ are propositions—unlike Past LTL, SpeAR provides support for a gen-
eral previous operator that can be used on all legal types in the model, not
just boolean types. In addition to temporal operators, SpeAR provides basic
arithmetic, logical, and relational operators.

4 Analysis

In addition to capturing requirements formally, SpeAR provides an analysis plat-
form. SpeAR performs type checking, dimensional analysis of unit computations,
and other well-formedness checks on the requirements in real-time. Once require-
ments have passed these checks, the user can analyze the requirements for logical
entailment and logical consistency.

4.1 Logical Entailment

SpeAR enables systems engineers to prove that stated properties are conse-
quences of captured assumptions and requirements. This capability provides
early insight into the correctness and completeness of captured requirements.

Formally, SpeAR proves that the conjunction of the Assumptions (A) and
Requirements (R) entails each Property (P) as shown in Eq. (1).

A1 ∧ A2 ∧ · · · ∧ An ∧ R1 ∧ R2 ∧ · · · ∧ Rm � Pi (1)

424 A.W. Fifarek et al.

SpeAR proves entailment by (1) translating SpeAR files to an equivalent Lustre
model and (2) analyzing the Lustre model using infinite-state model checking.
SpeAR presents a counterexample if the requirements do not satisfy a property.

In the thermostat example seen in Fig. 1b, there are four properties: p heat,
p off, p error, and p elatch. Two properties describe the nominal behavior of
the system: (1) p heat asserts the heater is on if the ambient temperature is less
than the target temperature, (2) p off asserts the heater is off if the ambient
temperature is greater than or equal to the target temperature. Two properties
describe the error behavior of the system: (1) p error asserts the system is in
the error state if a timeout occurs, (2) p elatch asserts that after the system
enters the error state it remains in that state.

Logical entailment allows systems engineers to prove the captured require-
ments and assumptions satisfy all of the stated properties.

4.2 Logical Consistency

Logical entailment is only valid if the captured requirements and assumptions
are not conflicting. When there is a conflict among requirements or assumptions,
the logical conjunction of the constraints is false, and thus the logical implication
described in Eq. (1) is a vacuous proof (i.e., false =⇒ true).

Currently, SpeAR provides partial analysis to detect logical inconsistency.
Logical inconsistency can exist for all steps and inputs, for example when two
constraints are always in conflict. Logical inconsistency may also occur only
during certain steps or as a result of certain inputs.

SpeAR analyzes requirements for logical inconsistency that is provable within
the first N steps, for some user-selected N . This is accomplished by (1) translat-
ing SpeAR files to an equivalent Lustre model and (2) searching for a counterex-
ample to the assertion that the conjunction of the assumptions and requirements
cannot be true for N consecutive steps, beginning at the initial state, as shown in
Eq. (2). Since we use counterexample generation to check consistency, we need a
minimum step count to prevent the model checker from merely confirming that
the requirements are consistent on the first timestep (a 1-step counterexample).

¬((A1 ∧ A2 ∧ · · · ∧ An ∧ R1 ∧ R2 ∧ · · · ∧ Rm) ∧ (StepCount >= N)) (2)

If the requirements are proven inconsistent for the first N steps, SpeAR alerts
the user to the inconsistency and identifies the set of constraints in conflict. If,
however, a counterexample is found to Eq. (2), SpeAR declares the requirements
to be consistent even if the constraints are inconsistent at step N +1 or for some
other set of inputs. This result may mislead the systems engineer to conclude
that the requirements are consistent when in fact they are inconsistent. Future
versions of SpeAR will address this issue by implementing the stronger concept
of realizability [6]—a proof that all requirements and assumptions are consistent
for all steps and combinations of inputs that satisfy the assumptions.

SpeAR v2.0: Formalized Past LTL Specification 425

5 Conclusion and Future Work

SpeAR is a tool for capturing and analyzing formal requirements in a language
that provides the formal semantics of Past LTL and is also designed to read like
natural language. In addition to type checking and real-time validation of well-
formedness, SpeAR provides two analyses that depend upon model checking:
logical entailment and logical consistency. Logical entailment proves that speci-
fied properties, which define desired behaviors of the system, are consequences
of the set of captured assumptions and requirements. Logical consistency aims
to identify conflicting assumptions and requirements.

Systems engineers familiar with, but not experts at, formal methods provided
positive initial feedback: SpeAR is more readable than typical formal languages
and is worth the effort of learning. Additionally, applying SpeAR to requirements
for a stateful protocol revealed a set of unreachable states; a decision was based
on a variable whose value was overwritten on the current step. This error rep-
resented an incomplete understanding of the requirement that would have been
difficult to identify through testing or inspection. After all contributing errors
were found and fixed, SpeAR was used to prove that all states were reachable.

While this paper presents current progress on SpeAR v2.0, development and
improvement is ongoing. We will expand logical consistency analysis to include
realizability, allowing users to prove that the requirements are consistent for all
steps and inputs. We will incorporate recent work in inductive validity cores [7]
to provide logical traceability analysis, allowing users to identify which require-
ments and assumptions are used to prove each property—unused requirements
and assumptions should be deleted as they overconstrain the system.

We are continuing to refine SpeAR and assess its utility by applying it to
the development of unmanned autonomous systems and other research efforts.
These results will be presented in future publications.

References

1. https://github.com/lgwagner/SpeAR
2. Baier, C., Katoen, J.P., Larsen, K.G.: Principles of Model Checking. MIT Press,

Cambridge (2008)
3. Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of past LTL. In: Hu,

A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 245–259. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-30494-4 18

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for
finite-state verification. In: FMSP 1998 Proceedings of the Second Workshop on
Formal Methods in Software Practice, pp. 7–15. ACM, New York (1998)

5. Fifarek, A.W., Wagner, L.G.: Formal requirements of a simple turbofan using the
SpeAR framework. In: 22nd International Symposium on Air Breathing Engines.
International Society on Air Breathing Engines, University of Cincinnati (2015)

6. Gacek, A., Katis, A., Whalen, M.W., Backes, J., Cofer, D.: Towards realizability
checking of contracts using theories. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 173–187. Springer, Cham (2015). doi:10.
1007/978-3-319-17524-9 13

https://github.com/lgwagner/SpeAR
http://dx.doi.org/10.1007/978-3-540-30494-4_18
http://dx.doi.org/10.1007/978-3-319-17524-9_13
http://dx.doi.org/10.1007/978-3-319-17524-9_13

426 A.W. Fifarek et al.

7. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient generation of inductive validity
cores for safety properties. arXiv e-prints, March 2016

8. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSE-
NAL: automatic requirements specification extraction from natural language. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 41–46.
Springer, Cham (2016). doi:10.1007/978-3-319-40648-0 4

9. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data flow
programming language LUSTRE. Proc. IEEE 79(9), 1305–1320 (1991)

10. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing
requirements specification: the SCR toolset at the age of ten. Int. J. Comput.
Syst. Sci. Eng. 20(1), 19–53 (2005)

11. Parnas, D.L., Madey, J.: Functional documents for computer systems. Sci. Comput.
Program. 25, 41–61 (1995)

http://dx.doi.org/10.1007/978-3-319-40648-0_4

Just Formal Enough? Automated Analysis
of EARS Requirements

Levi Lúcio1(B), Salman Rahman1, Chih-Hong Cheng1, and Alistair Mavin2

1 fortiss GmbH, Guerickestraße 25, 80805 München, Germany
{lucio,cheng}@fortiss.org, salman.rahman@tum.de

2 Rolls-Royce, PO Box 31, Derby, UK
alistair.mavin@rolls-royce.com

Abstract. EARS is a technique used by Rolls-Royce and many other
organizations around the world to capture requirements in natural lan-
guage in a precise manner. In this paper we describe the EARS-CTRL
tool for writing and analyzing EARS requirements for controllers. We
provide two levels of analysis of requirements written in EARS-CTRL:
firstly our editor uses projectional editing as well as typing (based on a
glossary of controller terms) to ensure as far as possible well-formedness
by construction of the requirements; secondly we have used a controller
synthesis tool to check whether a set of EARS-CTRL requirements is
realizable as an actual controller. In the positive case, the tool synthe-
sizes and displays the controller as a synchronous dataflow diagram. This
information can be used to examine the specified behavior and to itera-
tively correct, improve or complete a set of EARS-CTRL requirements.

1 Introduction

When writing requirements for software systems in natural language problems
such as ambiguity, vagueness, omission and duplication are common [17]. This is
due to the large gap between natural language and the languages in which code
is expressed. Natural language requirements describe a wide range of concepts
of the real, abstract and imaginary worlds. By contrast, programming languages
are used to describe precise sequences of operations inside a machine. Natural
language can be partial, ambiguous and subjective, whilst code can typically be
none of those things.

EARS (Easy Approach to Requirements Syntax) is an approach created at
Rolls-Royce to capture requirements in natural language [17]. EARS is based
on practical experience, but has been shown to scale effectively to large sets of
requirements in diverse domains [15,16]. Application of the approach generates
requirements in a small number of patterns. EARS has been shown to reduce or
even eliminate many problems inherent in natural language requirements [17]. In
spite of its industrial success, we are not aware of any published material describ-
ing tool support for EARS. The method is primarily aimed at the early stages
of system construction, as a means of providing clear guidance to requirements
engineers when using natural language to describe system behavior. Automat-
ing the writing and analysis of EARS requirements has not been attempted thus
c© Springer International Publishing AG 2017
C. Barrett et al. (Eds.): NFM 2017, LNCS 10227, pp. 427–434, 2017.
DOI: 10.1007/978-3-319-57288-8 31

428 L. Lúcio et al.

far. It is however reasonable to expect that, due to the semi-formal nature of the
EARS patterns, automated analysis of EARS specifications can be implemented
to improve software development methodologies already in place at Rolls-Royce
and elsewhere.

In this paper we will describe our initial work in the direction of automating
the analysis of EARS requirements. As domain of application, we have chosen
to focus on the construction of controller software. In particular, the EARS
requirements for the controller running example we present in this study have
been validated by a requirements engineer at Rolls-Royce. Aside from being
industrially relevant, the controller domain lends itself well to analyses and syn-
theses, given its constrained nature. The contributions described in this paper
are as follows:

– An editor for EARS specifications, called EARS-CTRL, based on the projec-
tional editor MPS (Meta Programming System) [2]. Sentences written in our
MPS EARS-CTRL editor have the “look and feel” of pure natural language,
but are in fact templates with placeholders for which meaningful terms are
proposed to the requirements engineer.

– Automated check of realizability of the requirements as a real controller is
provided at the push of a button. Additionally, when the controller is real-
izable, a synchronous dataflow diagram [14] modelling the specified behavior
is generated. This information can be used iteratively to check whether the
set of EARS-CTRL requirements correctly express the desired behavior of the
natural language requirements written in EARS.

2 Running Example

Our running example for this study is a liquid mixing system. The controller
for this system, depicted in Fig. 1, is supposed to behave as follows: when the
start button is pressed, valve 0 opens until the container is filled with the first

valve 0

valve 2

liquid level 1

liquid level 2

emergency stop

start bu on

valve 1
s rring
engine

Fig. 1. Liquid mixing system

Just Formal Enough? Automated Analysis of EARS Requirements 429

liquid up to the level detected by the liquid level 1 sensor. Valve 0 then closes
and valve 1 opens until the container is filled up with the second liquid up to
the level detected by the liquid level 2 sensor. Once both liquids are poured into
the container, they are mixed by the stirring motor for a duration of 60 s. When
the mixing process is over, valve 2 opens for 120 s, allowing the mixture to be
drained from the container. It is possible to interrupt the process at any point
using an emergency stop button. Pressing this button closes all valves and stops
the stirring engine.

3 Expressing and Analyzing Requirements

The first step when writing a set of requirements using EARS-CTRL is to iden-
tify the vocabulary to be used. Figure 2 depicts the glossary for the liquid mixing
system we have presented in Sect. 2. The glossary defines the name of the con-
troller being built, the names of the components of the system that interface
with the controller (together with informal descriptions of their purpose), and
the sensors and actuators those components make available. Rules expressing
relations between signals are also expressed here.

Fig. 2. EARS-CTRL glossary for the container fusing controller

Once the glossary is defined, the EARS-CTRL requirements can be written.
Our editor is built using MPS, a projectional meta-editor for DSL development.
The projectional capabilities of the editor make it such that requirements can be
edited directly as abstract syntax trees projected onto a textual view. In practice
this means that each requirement can be added as an instance of a template with
placeholders. These placeholders are then filled by the requirements engineer
using the terms defined in the glossary.

Fig. 3. Example of adding an EARS-CTRL requirement

430 L. Lúcio et al.

3.1 Well-Formedness by Construction

In Fig. 4 we depict the action of adding an EARS requirement using our editor.
Note that two aspects of well-formedness by construction are enforced at this
point: firstly, by using EARS templates instances, we guarantee that the form of
the requirement is correct; secondly, the editor provides suggestions for the terms
that are added to each of the placeholders as a range of possibilities extracted
from the glossary. Figure 3 illustrates some examples for the action associated
with the valve 2 component of the system. Note that in the suggestions asso-
ciated to this placeholder two constraints are enforced: (a) only actions associ-
ated with actuators are proposed, and (b) the actions for component valve 2
are limited to the ones that are described in the glossary in Fig. 2.

Fig. 4. EARS-CTRL requirements to describe the controller for the liquid mixer system

3.2 Realizability Analysis

Well-formedness by construction, as described in Sect. 3.1, guarantees a certain
level of correctness of individual requirements. EARS-CTRL provides additional
mechanisms for analyzing the interplay of individual requirements in a specifica-
tion. In particular, at the press of a button the tool can decide whether the set of
requirements is realizable as a concrete controller. Note that non-realizability is
typically due to conflicting requirements. This analysis is executed by (a) trans-
forming EARS-CTRL requirements in LTL (Linear Temporal Logic) formulas,
and (b) running the GXW synthesis [6] tool autoCode4 [7] via an API to attempt
to synthesize a controller for those formulas.

Just Formal Enough? Automated Analysis of EARS Requirements 431

In Fig. 4 we depict a set of requirements1 for the running example from Sect. 2
that is actually not realizable – as can be understood from the pop-up message
in the fig. obtained after running the analysis. When revising the specification,
we realized that requirements Req1 and Req9 were in conflict. The reason for
this conflict was that, according to Req9, the emergency button can be pressed
at any moment thus closing valve 0. However, Req1 states that valve 0 opens
when the start button is pressed. Thus, logically valve 0 could be simultaneously
open and closed – a contradiction.

Fig. 5. Updated requirement to allow realizing the liquid mixer controller

To eliminate the contradiction we have replaced Req1 in the set of require-
ments in Fig. 4 by the requirement in Fig. 5.2 Adding the condition until emer-
gency button is pressed to the original version of Req1 disallows valve 0 being
simultaneously open and closed.

When a set of EARS requirements is realizable, EARS-CTRL imports a syn-
chronous dataflow diagram from the autoCode4 tool that describes the behavior
of the specified controller. The controller can be visualized inside the EARS-
CTRL tool as a block diagram using MPS’s graphical rendering capabilities.
Due to space limitations, we direct the reader to the project’s website [3] for
an image of the controller generated for the running example. Note that the
synthesized controller is imported into EARS-CTRL as an MPS model, making
it possible to further implement automated analyses on this artifact.

3.3 The EARS-CTRL Tool

The EARS-CTRL tool is available as a github project [1]. Note that the tool
is distributed as an MPS project and requires MPS [2] to be installed as pre-
requisite. Together with the functional running example, we distribute with the
project the realizable EARS-CTRL requirements for a simple engine controller,
a sliding door controller and quiz controller.

4 Related Work

The quest for automatically generating controller implementation from specifi-
cations dates back to the ideas of Church [8]. However, it was not until recently
1 For analysability reasons, EARS-CTRL’s syntax is slighty different from EARS’.

In particular EARS disavows the usage of “until” clauses and composed logical
expressions in a requirement.

2 The requirement in Fig. 5 is an instance of template While A, when B the system
shall C until D. The corresponding LTL is of the form C → (BW (D ∨ ¬A)), W
being the weak-until operator.

432 L. Lúcio et al.

that researchers investigated practical approaches to the problem. Methodolo-
gies such as bounded synthesis [19] or GR-1 [18], and the combination of com-
positional approaches [10] have proven to be applicable on moderately-sized
examples. Based on these results that stand on solid logical foundations, sev-
eral projects produced research on the generation of logic formulas from natural
language, with the goal of achieving reactive control synthesis from natural lan-
guage. The ARSENAL project starts from specifications written in arbitrary
natural language [11] and also uses GR-1 as the underlying synthesis engine.
The work of Kress-Gazit et al. focuses on the synthesis of robot controllers [13].
Their methodology is based on using template-based natural language that
matches the GR-1 framework. The work of Yan et al. [20] applies to full LTL
specifications and includes features such as guessing the I/O partitioning and
using dictionaries to automatically derive relations between predicates (such as
open(door) = ¬closed(door)), in order to detect inconsistencies in specifications.

The workflow presented in this paper, although also targeting the use of nat-
ural language, starts with a methodologically different approach. Conceptually,
the tool proposes a formal language with a fixed interpretation, while hiding
the formality from end-users; in fact an end-user specifies the required system
behavior using only natural language. Therefore, for scenarios such as the rela-
tion between open(door) and closed(door), the negation relation is not decided
during controller synthesis phase but is given during the requirements design
phase. Although our tool supports producing generic LTL formulas, our decision
for using the autoCode4 tool and the GXW language subset lies on the rationale
that, for iterative validation of requirements, it is necessary that designers under-
stand the structure of controllers. For tools [5,9,12] supporting GR-1 or bounded
synthesis, the synthesized controller is commonly a generated via BDD dump-
ing or via creating explicit state-machines which can have thousands of states,
making user interaction and inspection difficult. The work presented here largely
draws inspiration from and builds on the knowledge obtained when building the
AF3 [4] tool for the model-driven development of software.

5 Conclusions and Future Work

Due to the early nature of this work, two main technical issues remain to be
addressed: (a) the fact that expressing and analysing complex states such as
“the valve is 3/4 closed” or “the quantity of liquid in the container is under
quantity X” cannot be reasonably done within EARS-CTRL (due to the boolean
representation in autoCode4 of sensors and actuators); and (b) lifting the infor-
mation provided by the analysis engine autoCode4 for debugging EARS-CTRL
requirements is currently manually done.

The work described in this paper is an early analysis of the gap between con-
strained natural language expressed using EARS and logical specifications that
can be automatically transformed into controllers. Note that while the former
enables humans to write requirements that are as unambiguous as possible, the
latter are developed for computers to process. While these worlds may overlap,
they were not necessarily designed to do so.

Just Formal Enough? Automated Analysis of EARS Requirements 433

Ideally, our tool would have as starting point “pure” EARS requirements.
However, given the gap mentioned above, we had to slightly adapt “classic”
EARS to make it amenable to formal treatment, as briefly mentioned in Sect. 3.
The implicit question posed by the title of this paper – whether EARS is just
formal enough for automated analyses (and syntheses) – is thus partly answered
by this work, although additional research is needed. Future efforts will thus
concentrate on automatically bridging this gap such that engineers using EARS-
CTRL are as unaware as possible of the underlying automatic mechanisms of
our tool.

Acknowledgements. This work was developed for the “IETS3” research project,
funded by the German Federal Ministry of Education and Research under code
01IS15037A/B.

References

1. EARS-CTRL GitHub project. https://github.com/levilucio/EARS-CTRL.git
2. Meta Programming System. https://www.jetbrains.com/mps/
3. Wiki for the EARS-CTRL project. https://github.com/levilucio/EARS-CTRL/

wiki
4. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: tooling

concepts for seamless, model-based development of embedded systems. In: ACES-
MB (Co-located with MoDELS), pp. 19–26 (2015)

5. Bohy, A., Bruyère, V., Filiot, E., Jin, N., Raskin, J.-F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
652–657. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31424-7 45

6. Cheng, C.-H., Hamza, Y., Ruess, H.: Structural synthesis for GXW specifications.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 95–117.
Springer, Cham (2016). doi:10.1007/978-3-319-41528-4 6

7. Cheng, C.-H., Lee, E., Ruess, H.: autoCode4: structural reactive synthesis. In:
TACAS 2017, accepted for publication, Tool available at: http://autocode4.
sourceforge.net

8. Church, A.: Applications of Recursive Arithmetic to the Problem of Circuit Synthe-
sis – Summaries of talks, Institute for Symbolic Logic, Cornell University (1957).
Institute for Defense Analysis, Princeton, New Jersey (1960)

9. Ehlers, R.: Unbeast: symbolic bounded synthesis. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 272–275. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 25

10. Filiot, E., Jin, N., Raskin, J.-F.: Compositional algorithms for LTL synthesis. In:
Bouajjani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 112–127.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15643-4 10

11. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSE-
NAL: automatic requirements specification extraction from natural language. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 41–46.
Springer, Cham (2016). doi:10.1007/978-3-319-40648-0 4

12. Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: a tool for property
synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp.
258–262. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73368-3 29

https://github.com/levilucio/EARS-CTRL.git
https://www.jetbrains.com/mps/
https://github.com/levilucio/EARS-CTRL/wiki
https://github.com/levilucio/EARS-CTRL/wiki
http://dx.doi.org/10.1007/978-3-642-31424-7_45
http://dx.doi.org/10.1007/978-3-319-41528-4_6
http://autocode4.sourceforge.net
http://autocode4.sourceforge.net
http://dx.doi.org/10.1007/978-3-642-19835-9_25
http://dx.doi.org/10.1007/978-3-642-15643-4_10
http://dx.doi.org/10.1007/978-3-319-40648-0_4
http://dx.doi.org/10.1007/978-3-540-73368-3_29

434 L. Lúcio et al.

13. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Translating structured English to
robot controllers. Adv. Robot. 22(12), 1343–1359 (2008)

14. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proc. IEEE 75(9), 1235–
1245 (1987)

15. Mavin, A., Wilkinson, P.: Big ears (the return of “easy approach to requirements
engineering”). In: RE, pp. 277–282. IEEE (2010)

16. Mavin, A., Wilkinson, P., Gregory, S., Uusitalo, E.: Listens learned (8 lessons
learned applying EARS). In: RE, pp. 276–282. IEEE (2016)

17. Mavin, A., Wilkinson, P., Novak, M.: Easy approach to requirements syntax
(EARS). In: RE, pp. 317–322. IEEE (2009)

18. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005). doi:10.1007/11609773 24

19. Schewe, S., Finkbeiner, B.: Bounded synthesis. In: Namjoshi, K.S., Yoneda, T.,
Higashino, T., Okamura, Y. (eds.) ATVA 2007. LNCS, vol. 4762, pp. 474–488.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-75596-8 33

20. Yan, R., Cheng, C., Chai, Y.: Formal consistency checking over specifications in
natural languages. In: DATE, pp. 1677–1682 (2015)

http://dx.doi.org/10.1007/11609773_24
http://dx.doi.org/10.1007/978-3-540-75596-8_33

Author Index

Ábrahám, Erika 288
Ahrenbach, Seth 342
Aichernig, Bernhard K. 19
Aiello, M. Anthony 139, 420
Akili, Samira 373
Amrani, Moussa 52
André, Étienne 35
Aréchiga, Nikos 139

Bellettini, Carlo 115
Bensalem, Saddek 178
Blom, Stefan C.C. 247
Bonfanti, Silvia 295
Borges, Mateus 131
Bozga, Marius 178
Butler, Michael 84

Camilli, Matteo 115
Carissoni, Marco 295
Casinghino, Chris 282
Cheng, Chih-Hong 427
Cofer, Darren 404

Darabi, Saeed 247
Davis, Jennifer A. 420
Demyanova, Yulia 265
Dieumegard, Arnaud 327
Donzé, Alexandre 357
Dreossi, Tommaso 357
Dross, Claire 68

Enea, Constantin 302

Fantechi, Alessandro 146
Fifarek, Aaron W. 420
Filieri, Antonio 131
Francis, Michael 99
Frenkel, Hadar 1

Gargantini, Angelo 115, 295
Ge, Ning 327
Gleirscher, Mario 310
Grumberg, Orna 1

Haxthausen, Anne E. 146
Hoang, Thai Son 84
Hocking, Ashlie B. 139
Hoffman, Jonathan A. 420
Huisman, Marieke 247

Illous, Hugo 212

Jackson, Paul B. 194
Jakobs, Marie-Christine 389
Jenn, Eric 327
Jha, Susmit 99
Johnson, Taylor T. 194
Jones, Benjamin F. 163

Knight, John C. 139
Kowalewski, Stefan 288
Kugele, Stefan 310

Lemerre, Matthieu 212
Lengál, Ondřej 302
Lúcio, Levi 427

Macedo, Hugo Daniel 146
Makhlouf, Ibtissem Ben 288
Martel, Matthieu 230
Mashkoor, Atif 295
Mavin, Alistair 427
Mebsout, Alain 404
Mediouni, Braham Lotfi 178
Moy, Yannick 68

Nguyen, Hoang Gia 35
Nouri, Ayoub 178

Ortiz, James 52

Păsăreanu, Corina S. 131
Petrucci, Laure 35
Phan, Quoc-Sang 131
Pike, Lee 163
Pinto, Alessandro 99

Rahman, Salman 427
Raman, Vasumathi 99
Rival, Xavier 212
Rodes, Benjamin D. 420
Rümmer, Philipp 265

Sahai, Tuhin 99
Scandurra, Patrizia 115
Schobbens, Pierre-Yves 52
Schupp, Stefan 288
Seshia, Sanjit A. 357
Shapiro, Brandon 282
Sheinvald, Sarai 1
Sighireanu, Mihaela 302
Slind, Konrad 404

Snook, Colin 84
Sogokon, Andrew 194
Sun, Jun 35

Tappler, Martin 19
Tinelli, Cesare 404

Vojnar, Tomáš 302
Völlinger, Kim 373

Wagner, Lucas G. 404, 420
Wehrheim, Heike 389

Zuleger, Florian 265

436 Author Index

	Preface
	Organization
	Contents
	An Automata-Theoretic Approach to Modeling Systems and Specifications over Infinite Data
	1 Introduction
	2 Preliminaries
	3 Variable Automata: Non-determinism Vs. Alternation
	3.1 NVBWs Are Not Expressive Enough for *-VLTL
	3.2 Alternating Variable Büchi Automata
	3.3 AVBWs Can Express All of *-VLTL
	3.4 AVBWs Are Not Complementable
	3.5 Variable Automata: From AVBW to NVBW

	4 Fragments of *-VLTL Expressible by NVBWs
	5 Model Checking in Practice
	6 Conclusions and Future Work
	References

	Learning from Faults: Mutation Testing in Active Automata Learning
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Mealy Machines
	3.2 Active Automata Learning

	4 Test-Suite Generation
	4.1 Test-Case Generation
	4.2 Test-Case Selection
	4.3 Mutation-Based Selection

	5 Evaluation
	5.1 Measurement Setup

	6 Conclusion
	References

	Parametric Model Checking Timed Automata Under Non-Zenoness Assumption
	1 Introduction
	2 Preliminaries
	3 Undecidability of the Non-Zeno Emptiness Problem
	4 CUB-Parametric Timed Automata
	4.1 Parametric Clock Upper Bounds
	4.2 CUB Parametric Timed Automata
	4.3 CUB PTA Detection
	4.4 Transforming a PTA into a Disjunctive CUB-PTA

	5 Zeno-Free Cycle Synthesis in CUB-PTAs
	6 Experiments
	7 Conclusion
	References

	Multi-timed Bisimulation for Distributed Timed Automata
	1 Introduction
	2 Preliminaries
	3 An Alternative Semantics for DTA
	3.1 Multi-timed Actions
	3.2 Multi-timed Labeled Transition Systems
	3.3 A Multi-timed Semantics for icTA

	4 Multi-timed Bisimulation
	4.1 Strong Multi-timed Bisimulation
	4.2 Decidability

	5 Related Work
	6 Conclusions
	References

	Auto-Active Proof of Red-Black Trees in SPARK
	1 Introduction
	2 Preliminaries
	2.1 SPARK 2014
	2.2 Auto-Active Verification
	2.3 Red-Black Trees

	3 Red-Black Trees in SPARK
	3.1 Invariants and Models
	3.2 Implementation
	3.3 Specification
	3.4 Proof Principles
	3.5 Ghost Code

	4 Development and Verification Data
	5 Related Work
	6 Conclusion
	References

	Analysing Security Protocols Using Refinement in iUML-B
	1 Introduction
	2 Background
	2.1 VLAN Tagging
	2.2 Event-B
	2.3 iUML-B
	2.4 Validation and Verification

	3 Development
	3.1 M0: An Abstract Model of VLAN Security
	3.2 M1: Introducing Switches and Devices
	3.3 M2: Introducing Tagging
	3.4 Analysis

	4 Summary of Approach
	5 Conclusion
	References

	On Learning Sparse Boolean Formulae for Explaining AI Decisions
	1 Introduction
	2 Motivating Example
	3 Problem Definition
	4 Learning Explanations as Sparse Boolean Formula
	5 Experiments
	6 Related Work
	7 Conclusion and Future Work
	References

	Event-Based Runtime Verification of Temporal Properties Using Time Basic Petri Nets
	1 Introduction
	2 Background on Time Basic Nets
	3 Event-Based Runtime Verification
	4 The MahaRAJA Framework
	5 Experimental Validation
	6 Related Work and Comparative Evaluation
	7 Conclusion
	References

	Model-Counting Approaches for Nonlinear Numerical Constraints
	1 Introduction
	1.1 Symbolic Execution and SPF
	1.2 Quantification of Information Leaks

	2 Model Counting Techniques and Tools
	3 Evaluation
	4 Conclusion
	References

	Input Space Partitioning to Enable Massively Parallel Proof
	1 Introduction
	2 Input Space Partitioning and Parallel Proof
	3 Reducing Per-Slice Proof Time
	4 Case Study
	5 Conclusion
	References

	Compositional Model Checking of Interlocking Systems for Lines with Multiple Stations
	1 Introduction
	2 The New Danish Route-Based Interlocking Systems
	2.1 Specification of Interlocking Systems
	2.2 The RobustRailS Verification Method and Toolkit

	3 Method
	3.1 Linear Cuts on Multiple Station Lines
	3.2 A Compositional Model Checking Approach

	4 Soundness and Completeness of the Approach
	4.1 Soundness
	4.2 Completeness

	5 Experiments
	5.1 Experimental Approach
	5.2 Two Stations Case Study
	5.3 EDL: The Real World Case Study

	6 Conclusion
	References

	Modular Model-Checking of a Byzantine Fault-Tolerant Protocol
	1 Introduction
	2 Formal Model
	2.1 Calendar Automata
	2.2 Symbolic Fault Injection: A Synchronous Kibitzer
	2.3 Abstract Transition Systems

	3 Modeling and Verification for Oral Messages
	3.1 OMH (m) Algorithm
	3.2 Model Sketch
	3.3 Invariants

	4 Experimental Results
	4.1 Scalability
	4.2 Modular Verification
	4.3 Proof Effort Remarks

	5 Related Work
	6 Conclusions
	References

	Improved Learning for Stochastic Timed Models by State-Merging Algorithms
	1 Introduction
	2 Related Works
	3 Background
	3.1 Deterministic Real-Time Automata (DRTA)
	3.2 Stochastic Interpretation of a DRTA

	4 The RTI+ Learning Procedure
	4.1 Building the APTA
	4.2 The Learning Process
	4.3 Compatibility Evaluation
	4.4 Shortcomings

	5 Learning More Accurate Models
	5.1 Unfolded APTA
	5.2 Constructive-Bound APTA
	5.3 Tightened-Bound APTA
	5.4 Evaluation

	6 Experiments
	6.1 Evaluation Procedure
	6.2 Benchmarks
	6.3 Results

	7 Conclusion
	References

	Verifying Safety and Persistence Properties of Hybrid Systems Using Flowpipes and Continuous Invariants
	1 Introduction
	2 Safety and Persistence for Hybrid Automata
	2.1 Preliminaries
	2.2 Bounded Time Safety and Eventuality
	2.3 Unbounded Time Safety
	2.4 Combining Unbounded Time Safety with Eventuality to Prove Persistence
	2.5 Using Persistence to Prove Safety

	3 An Example Persistence Verification Problem
	4 Verifying Persistence
	4.1 Continuous Invariant
	4.2 Verified Integration

	5 Outlook and Challenges to Automation
	6 Related Work
	7 Conclusion
	References

	A Relational Shape Abstract Domain
	1 Introduction
	2 Overview and Motivating Example
	3 Concrete Semantics
	4 Abstraction
	5 Analysis Algorithms
	5.1 Basic Abstract Post-conditions
	5.2 Materialization and General Abstract Post-conditions
	5.3 Folding and Lattice Operations
	5.4 Analysis

	6 Experimental Evaluation
	7 Related Works
	8 Conclusion
	References

	Floating-Point Format Inference in Mixed-Precision
	1 Introduction
	2 Preliminary Elements
	2.1 Elements of Floating-Point Arithmetic
	2.2 Overview of Our Method
	2.3 Related Work

	3 Abstract Semantics
	3.1 Abstract Domain
	3.2 Transfer Functions

	4 Constraint Generation
	4.1 Constraints for Arithmetic Expressions
	4.2 Systematic Constraint Generation

	5 Experimental Results
	6 Conclusion
	References

	A Verification Technique for Deterministic Parallel Programs
	1 Introduction
	2 Background
	2.1 OpenMP
	2.2 Permission-Based Separation Logic
	2.3 Iteration Contract

	3 Syntax and Semantics of Deterministic Parallelism
	3.1 Syntax
	3.2 Semantics

	4 Verification Approach
	4.1 Verification
	4.2 Soundness

	5 Verification of OpenMP Programs
	6 Related Work
	7 Conclusion and Future Work
	References

	Systematic Predicate Abstraction Using Variable Roles
	1 Introduction
	1.1 Introductory Examples of Domain-Specific Abstraction

	2 Predicate Abstraction and Refinement
	2.1 Solving Horn Clauses with Predicate Abstraction
	2.2 Craig Interpolation with Templates

	3 Role-Based Predicates and Templates
	3.1 Definition of Roles
	3.2 Role-Based Predicates and Templates

	4 Evaluation
	References

	specgen: A Tool for Modeling Statecharts in CSP
	1 Introduction
	2 The Dining Philosophers: An Example
	2.1 The Generated Model
	2.2 Finding the Deadlock
	2.3 More Complicated Properties
	2.4 Performance

	3 Translation Enhancements
	4 Conclusion and Future Work
	References

	HYPRO: A C++ Library of State Set Representations for Hybrid Systems Reachability Analysis
	1 Introduction
	2 Hybrid Systems Reachability Analysis
	3 The HYPRO Library
	4 Experimental Evaluation
	References

	Asm2C++: A Tool for Code Generation from Abstract State Machines to Arduino
	1 Introduction
	2 Abstract State Machine Methodology
	3 Code Generation Process
	4 Illustrative Example
	5 Related Work
	6 Conclusions and Future Work
	References

	SPEN: A Solver for Separation Logic
	1 Introduction
	2 Logic Fragment
	3 Satisfiability Checking
	4 Entailment Checking
	5 Experimental Results
	References

	From Hazard Analysis to Hazard Mitigation Planning: The Automated Driving Case
	1 Challenges, Background, and Contribution
	2 Related Work
	3 Abstraction for Run-Time Hazard Mitigation
	4 Concepts for Run-Time Hazard Mitigation
	5 Construction of Risk Structures
	6 Example: Fail-Operational Driver Assistance
	7 Discussion of Limitations, Applicability, and Strengths
	8 Conclusion and Future Work
	References

	Event-B at Work: Some Lessons Learnt from an Application to a Robot Anti-collision Function
	Abstract
	1 Introduction
	2 Formal Refinement in an Industrial Development Process
	3 The Case Study
	3.1 The TwIRTee Rover and the ARP Function
	3.2 Rodin and Event-B

	4 From System-Level Requirements to High-Level Requirements
	4.1 Building a Refinement Strategy
	4.2 Formalization of Requirements
	4.3 Verification of Refinements
	4.4 Validation of Formal Requirements
	4.5 Model Review

	5 Related Works
	6 Conclusion
	References

	Reasoning About Safety-Critical Information Flow Between Pilot and Computer
	1 Introduction
	2 Dynamic Agent Safety Logic
	2.1 Syntax and Semantics
	2.2 Hilbert System
	2.3 Soundness

	3 Case Study and Mechanization
	3.1 Air France 447
	3.2 Mechanization in Coq

	4 Future Work
	5 Conclusion
	References

	Compositional Falsification of Cyber-Physical Systems with Machine Learning Components
	1 Introduction
	2 Background
	2.1 CPSML Models
	2.2 Signal Temporal Logic

	3 Compositional Falsification Framework
	4 Machine Learning Analyzer
	4.1 Feature Space Abstraction
	4.2 Approximation of Learning Components

	5 Experimental Results
	5.1 Implementation Details
	5.2 Case Studies

	6 Conclusion
	References

	Verifying a Class of Certifying Distributed Programs
	1 Introduction
	1.1 Structure of this Paper

	2 Preliminaries
	2.1 Certifying Sequential Programs
	2.2 Verification of Certifying Sequential Programs

	3 Verification Method for a Class of Certifying Distributed Programs
	3.1 Distributed Programs
	3.2 Challenges of Certifying Distributed Programs
	3.3 A Class of Certifying Distributed Programs
	3.4 Verification Method for Class C
	3.5 Further Classes of Certifying Distributed Programs

	4 Case Study: Leader Election
	4.1 Certifying Leader Election
	4.2 Verification in Coq

	5 Related Work
	6 Conclusion
	7 Future Work
	References

	Compact Proof Witnesses
	1 Introduction
	2 Background
	3 Proof Witnesses and Weakenings
	4 Variable-Separate Analyses
	5 Experiments
	6 Conclusion
	References

	Qualification of a Model Checker for Avionics Software Verification
	1 Introduction
	2 Aircraft Software and Certification
	3 Qualification
	3.1 Tool Qualification Level
	3.2 DO-330 and Tool Qualification Objectives

	4 Case Study: Kind 2 Model Checker
	4.1 Need for Tool Qualification
	4.2 Tool Qualification Objectives
	4.3 Results

	5 Case Study: Proof-Generating Model Checker
	5.1 Development of a Proof-Generating Version of Kind 2
	5.2 Qualification of Check-It
	5.3 Results

	6 Conclusions
	References

	SpeAR v2.0: Formalized Past LTL Specification and Analysis of Requirements
	1 Introduction
	2 Related Work
	3 Formal Requirements Capture
	3.1 SpeAR File Stucture
	3.2 SpeAR Formal Semantics

	4 Analysis
	4.1 Logical Entailment
	4.2 Logical Consistency

	5 Conclusion and Future Work
	References

	Just Formal Enough? Automated Analysis of EARS Requirements
	1 Introduction
	2 Running Example
	3 Expressing and Analyzing Requirements
	3.1 Well-Formedness by Construction
	3.2 Realizability Analysis
	3.3 The EARS-CTRL Tool

	4 Related Work
	5 Conclusions and Future Work
	References

	Author Index

