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Abstract. Abstract argumentation has emerged as a central field in
Artificial Intelligence. Although the underlying idea is very simple and
intuitive, most of the semantics proposed so far suffer from a high com-
putational complexity. For this reason, in recent years, an increasing
amount of work has been done to define efficient algorithms. However,
so far, the research has concentrated on the definition of algorithms for
static frameworks, whereas argumentation frameworks (AFs) are highly
dynamic in practice. Surprisingly, the definition of evaluation algorithms
taking into account such dynamic aspects has been mostly neglected. In
this paper, we address the problem of efficiently recomputing the exten-
sions of AFs which are updated by adding/deleting arguments or attacks.
In particular, after identifying some properties that hold for updates of
AFs under several well-known semantics, we focus on the most popular
unique-status semantics (namely, the grounded semantics) and present
an algorithm for its incremental computation, well-suited to dynamic
applications where updates to an initial AF are frequently performed to
take into account new available knowledge.

1 Introduction

Abstract argumentation has emerged as a central field in Artificial Intelli-
gence [3,10,26,42,44,45]. Although the underlying idea is very simple and intu-
itive, most of the semantics proposed so far suffer from a high computational
complexity [22–25,28–32]. Complexity bounds and evaluation algorithms for
argumentation frameworks (AFs) have been deeply studied in the literature,
but this research focused on ‘static’ frameworks, whereas, in practice, AFs are
not static systems [4,5,19,27,39]. Typically an AF represents a temporary sit-
uation as new arguments and attacks continuously can be added/removed to
take into account new available knowledge. This may change significantly the
conclusions that can be derived. For instance, when a new attack is added to an
AF, existing attacks may cease to apply and new attacks become applicable.

Surprisingly, the definition of evaluation algorithms and the analysis of the
computational complexity taking into account such dynamic aspects have been
mostly neglected, whereas in these situations incremental computation tech-
niques can greatly improve performance. Sometimes changes to the AF can
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Fig. 1. AFs A0 and A = +(g, h)(A0)

make small changes to the set of conclusions, and recomputing the whole
semantics from scratch can be avoided. For instance, consider the situation
shown in Fig. 1: the initial AF A0, where h is not attacked by any other argu-
ment, is updated to AF A by adding attack (g, h). According to the most
popular argumentation semantics, i.e. grounded, complete, ideal, preferred, sta-
ble, and semi-stable [15,20,21], the initial AF A0 admits the extension E0 =
{a, h, g, e, l,m, o}, whereas the extension for the updated framework A becomes
E = {a, c, g, e, l,m, o}. As it will be shown later, for the grounded semantics
the extension E can be efficiently computed incrementally by looking only at a
small part of the AF, which is “influenced by” the update operation. This part
is just {h, c} in our example, and we will show that the membership of the other
arguments to E does not depend on the update operation, and thus we do not
need to compute them again after performing update +(g, h).

Contributions. The main contributions are as follows:

– We introduce the concept of influenced set consisting of the arguments whose
status could change after an update. The influenced set refines the previously
proposed set of affected arguments [4,39] and makes the computation more
efficient.

– We present an incremental algorithm for recomputing the grounded exten-
sion. It is very efficient as it (iteratively) computes the status of influenced
arguments only and when it finds that the status of arguments derived at
some step cannot be changed by subsequent steps then it stops.

– We present experimental results showing the effectiveness of our approach.

Plan of the paper. We start by discussing related works in Sect. 2, and reviewing
Dung’s abstract argumentation framework in Sect. 3, where updates are intro-
duced. Next, we identify some sufficient conditions on the updates that guar-
antee that the semantics of an AF does not change, and introduce the concept
of influenced set in Sect. 4. Then we provide our algorithm for incrementally
computing the grounded semantics in Sect. 5. In Sect. 6 we present experimental
results on two datasets showing that our incremental approach outperforms the
computation from scratch of the grounded semantics. Finally, we draw conclu-
sions and discuss future work in Sect. 7, where we also discuss how the results
presented in the paper carry over to the case of sets of updates to be performed
simultaneously.
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2 Related Work

There have been several efforts coping with dynamics aspects of abstract argu-
mentation. In [12,13] the principles according to which the extension does not
change when the set of arguments/attacks are changed have been studied. How-
ever, this work does not consider how the extensions of an AF evolve when new
arguments are added or some of the old ones are removed. [17,18] addressed
the problem of revising the set of extensions of an AF, and studied how the
extensions can evolve when a new argument is considered. However, they focus
on adding only one argument interacting with one initial argument (i.e. an argu-
ment which is not attacked by any other argument). The work in [17,18] has
been extended in [11], where the evolution of the set of extensions after perform-
ing a change operation (addition/removal of arguments/interaction) is studied.
Dynamic argumentation has been applied to decision-making of an autonomous
agent in [1], where it is studied how the acceptability of arguments evolves when
a new argument is added to the decision system. However, they do not compute
the whole extensions and also focused on the case where only one argument is
added to the system.

The division-based method, proposed in [39] and refined in [4], divides the
updated framework into two parts: affected and unaffected, where only the status
of affected arguments is recomputed after updates. However, the set of affected
arguments consists of those that are reachable from the updated arguments,
which is often larger than the set that actually needs to be considered when
recomputing the extension. For the AF of Fig. 1, all the arguments in the chains
originated by h turn out to be ‘affected’. But we only need to recompute the
status of h and c after the update. Recently, [48] introduced a matrix represen-
tation of AFs and proposed a matrix reduction that, when applied to dynamic
AFs, resembles the division-based method in [39]. In [5,9] an approach exploiting
the concept of splitting of logic programs [40] was adopted to deal with dynamic
argumentation. However, the technique considers weak expansions of the initial
AF, where added arguments never attack previous ones. Recently, [16] studied
the relationship between argumentation and logic programming [14,35,36].

[8] investigated whether and how it is possible to modify a given AF in
such a way that a desired set of arguments becomes an extension, whereas
[43] studied equivalence between two AFs when further information (another
AF) is added to both simultaneously. [6] focused on specific expansions where
new arguments and attacks may be added but the attacks among the old argu-
ments remain unchanged, while [7] characterized update and deletion equiva-
lence, where adding as well as deleting arguments and attacks is allowed (dele-
tions were not considered in [6,43]).

To the best of our knowledge, this is the first paper that exploits the ini-
tial extension E0 of an AF A0 not only for computing the set I(u,A0, E0) of
arguments influenced by an update u but also for recomputing the status of
the arguments in I(u,A0, E0) by applying early termination conditions. A short
version of this paper appeared in [37].
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3 Preliminaries

We assume the existence of a set Arg whose elements are called arguments. An
(abstract) argumentation framework [20] (AF ) is a pair 〈A,Σ〉, where A ⊆ Arg
is a finite set whose elements are referred to as arguments, and Σ ⊆ A × A is
a binary relation over A whose elements are referred to as attacks. Essentially,
an AF is a directed graph in which the arguments are represented by the nodes
and the attack relation is represented by the set of directed edges. An argument
is an abstract entity whose role is entirely determined by its relationships with
other arguments.

Given arguments a, b ∈ A, we say that a attacks b iff (a, b) ∈ Σ. An argument
a attacks a set S ⊆ A iff ∃ b ∈ S such that a attacks b.

We use S+ = {b | ∃a ∈ S : (a, b) ∈ Σ} and S− = {b | ∃a ∈ S : (b, a) ∈ Σ} to
denote the sets of all arguments that are attacked by S and attack S, respectively.

A set S ⊆ A defends a iff ∀b ∈ A such that b attacks a, there is c ∈ S such
that c attacks b.

A set S ⊆ A of arguments, is said to be

(i) conflict-free, if there are no a, b ∈ S such that a attacks b;
(ii) admissible, if it is conflict-free and it defends all its arguments.

An argumentation semantics specifies the criteria for identifying a set of
arguments considered to be “reasonable” together, called extension. A com-
plete extension (co) is an admissible set that contains all the arguments that it
defends. A complete extension S is said to be:

– preferred ( pr) iff it is maximal (w.r.t. ⊆);
– semi-stable ( ss) iff S ∪ S+ is maximal (w.r.t. ⊆);
– stable ( st) iff it attacks each argument in A \ S;
– grounded ( gr) iff it is minimal (w.r.t. ⊆);
– ideal ( id) iff it is contained in every preferred extension and it is maximal

(w.r.t. ⊆).

Given an AF A and a semantics S ∈{co, pr, ss, st, gr, id}, we use ES(A)
to denote the set of S-extensions of A.

All the above-mentioned semantics except the stable admit at least one
extension, and the grounded and ideal admit exactly one extension [15,20,21].
That is, for S ∈ {co, pr, ss, gr, id} it is the case that ES(A) 	= ∅, while
Est(A) may be empty. Semantics gr and id are called unique status semantics
as |Egr(A)| = |Eid(A)| = 1, whereas the others are called multiple status seman-
tics. It is well-known that, for any AF A, Egr(A) ⊆ Eco(A) and Eid(A) ⊆ Eco(A),
and Est(A) ⊆ Ess(A) ⊆ Epr(A) ⊆ Eco(A).

Example 1. Consider the AF A0 shown in Fig. 2. Then, the set of admissible
sets is { ∅, {a}, {d}, {a, d}, {b, d} }, and ES(A0) with S ∈{co, pr, ss, st, gr,
id} is as reported in the second column of Fig. 3. ��
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Fig. 2. AF A0

Example 1.
Fig. 3. Sets of extensions for the AF of Example 1, and changes
in the sets after performing updates +(b, d) and −(c, b).

The argumentation semantics can be also defined in terms of labelling. A
labelling for an AF A = 〈A,Σ〉 is a total function L : A → {in,out,un}
assigning to each argument a label. L(a) = in means that argument a is accepted,
L(a) = out means that a is rejected, while L(a) = un means that a is undecided.

Let in(L) = {a | a ∈ A ∧ L(a) = in}, out(L) = {a | a ∈ A ∧ L(a) = out},
and un(L) = {a | a ∈ A ∧ L(a) = un}. In the following, we also use the triple
〈in(L), out(L), un(L)〉 to represent L.

A labelling L is said to be admissible (or legal) if ∀a ∈ in(L) ∪ out(L) (i)
if L(a) = out then ∃ b ∈ A such that (b, a) ∈ Σ and L(b) = in; and (ii) if
L(a) = in then L(b) = out for all b ∈ A such that (b, a) ∈ Σ. L is a complete
labelling iff conditions (i) and (ii) hold for all a ∈ A.

Between complete extensions and complete labellings there is a bijective
mapping defined as follows: for each extension E there is a unique labelling
L = 〈E,E+, A \ (E ∪ E+)〉 and for each labelling L there is a unique extension
in(L). We say that L is the labelling corresponding to E.

In the following, we say that the status of an argument a w.r.t. a labelling L
(or its corresponding extension in(L)) is in (resp., out, un) iff L(a) = in (resp.,
L(a) = out, L(a) = un). We will avoid to mention explicitly the labelling (or
the extension) whenever it is understood.

Updates. An update u for an AF A0 consists in modifying A0 into an AF A by
adding or removing arguments or attacks.

In the following, we focus on updates consisting of adding/deleting one attack
between arguments belonging to A0. As we discuss in Sect. 7, focusing on single
attack updates is not a limitation as multiple (attack) updates to be performed
simultaneously can be simulated by means of a single attack update.

Concerning the addition (resp. deletion) of a set of isolated arguments, it is
easy to see that if A is obtained from A0 through the addition (resp. deletion)
of a set S of isolated arguments, then, let E0 be an extension for A0, E =
E0 ∪ S (resp. E = E0 \ S) is an extension for A that can be trivially computed.
Of course, if arguments in S are not isolated, we can first delete all attacks
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involving arguments in S; adding an attack between an argument in A0 and a
new argument can be simulated as well.

We use +(a, b) (resp. −(a, b)) to denote the addition (resp. deletion) of an
attack (a, b), and u(A0) to denote the application of update u = ±(a, b) to A0.

Updating an AF implies that its semantics (sets of extensions or labellings)
changes, as shown in the following example.

Example 2. Consider the AF A0 of Example 1. For each semantics S, the set
ES(A1) of extensions for A1 = +(b, d)(A0) is reported in the third column of
Fig. 3. If update −(c, b) is performed on A1, then ES(A2) with A2 = −(c, b)(A1)
is as shown on the last column of Fig. 3. ��

4 Influenced Arguments

In this section, we first identify conditions ensuring that a given S-extension
continues to be an S-extension after an update, and then introduce the influenced
set that will be used to limit the set of arguments that needs to be recomputed
after an update. In addition, arguments not in the influenced set can be used to
derive extensions for the updated AF.

The following two propositions introduce sufficient conditions guaranteeing
that a given S-extension is still an S-extension after performing an update.

Proposition 1. Let A0 be an AF, u = +(a, b) an update, S a semantics, E0 ∈
ES(A0) an extension of A0 under semantics S, and L0 the labelling corresponding
to E0. Then E0 ∈ ES(u(A0)) if

– S ∈{co, st, gr} and one of the following conditions holds:
• L0(a) 	= in and L0(b) 	= in,
• L0(a) = in and L0(b) = out;

– S ∈{ pr, ss, id} and L0(b) = out.

Proposition 2. Let A0 be an AF, u = −(a, b), S ∈ {co, pr, ss, st, gr}, and
E0 ∈ ES(A0) an extension of A0 under S. Then E0 ∈ ES(u(A0)) if one of the
following conditions holds:

(1) L0(a)=out;
(2) L0(a)=un and L0(b)=out.

Example 3. Consider the AFs A1=+(b, d)(A0) and A2=−(c, b)(A1), where A0

is the AF of Example 2. For S ∈ {co, pr, ss, st}, extension {a, d} of A1 is still
an extension of A2 as L0(c)=out (see Fig. 3). The grounded extension ∅ of A1

is still a grounded extension of A2, whereas the ideal extension {a, d} of A1 is
not the ideal extension of A2. ��

Given an AF A = 〈A,Σ〉 and an argument b ∈ A, we denote as ReachA(b)
the set of arguments that are reachable from b in A. We now introduce the
influenced set.
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Definition 1 (Influenced set). Let A = 〈A,Σ〉 be an AF, u = ±(a, b) an
update, E an extension of A under a given semantics S, and let
–

I0(u, A, E) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∅ if E ∈ ES(u(A)) [i.e., the conditions of Prop. 1/2 hold] or

∃(z, b) ∈ Σ s.t. z ∈ E ∧ z �∈ ReachA(b);

{b} otherwise;

– Ii+1(u,A, E) = Ii(u,A, E) ∪ {y | ∃(x, y) ∈ Σ s.t. x ∈ Ii(u,A, E) ∧ 	 ∃(z, y) ∈
Σ s.t. z ∈ E ∧ z 	∈ ReachA(b)}.

The influenced set of update u w.r.t. AF A and the extension E is I(u,A, E) =
In(u,A, E) such that In(u,A, E) = In+1(u,A, E). ��

Thus, the set of arguments that are influenced by an update of the status of
b are those that can be reached from b without using any intermediate argument
y whose status is known to be out because it is determined by an argument
z ∈ E which is not reachable from (and thus not influenced by) b.

Example 4. For the AF A0 = 〈A0, Σ0〉 of Fig. 1, whose grounded extension is
E0 = {a, h, g, e, l,m, o}, we have that ReachA0(h)=A0 \{a, b}, and the influenced
set of u = +(g, h) is I(u,A0, E0) = {h, c}. Note that d 	∈ I(u,A0, E0) since it
is attacked by a ∈ E0. Thus the arguments that can be reached only using d
cannot belong to I(u,A0, E0) either.

For A = u(A0), whose the grounded extension is E = {a, c, g, e, l,m, o}, we
have that S = I(u,A, E) is still {h, c}. Therefore, only the status of arguments
in S could change and their status can be determined by considering a restricted
AF containing only arguments in S ∪ S−. ��
Proposition 3. Given an AF A = 〈A,Σ〉, an update u = ±(a, b), and an
extension E, the complexity of computing the influenced set of u w.r.t. A and E
is O(|Σ|).

All the arguments not belonging to the influenced set of an update will still
belong to an extension of the updated AF.

Theorem 1. Let A0 be an AF, and A = u(A0) be the AF resulting from per-
forming update u = ±(a, b) on A0. Let E0 ∈ ES(A0) be an extension for A0

under any semantics S ∈{co, pr, ss, st, gr, id}. Let I = Arg \ I(u,A0, E0) be
the set of the arguments that are not influenced by u in A0 w.r.t. E0. Then, either
ES(A) = ∅ or there is an extension E ∈ ES(A) for A such that (E∩I) = (E0∩I).

Observe that the set of extensions may be empty only for the stable semantics.
For all of the other semantics, the theorem suggests the following strategy for
computing an extension of the updated AF: derive it by first projecting out the
set of arguments not influenced by the update and then extend the so-obtained
set by using the information provided by it.

We conclude this section by introducing a refinement of Proposition 1 that
makes use of the influenced set. This result will be used in the next section to
restrict the input AF.
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Proposition 4. Let A0 be an AF, u = +(a, b), S ∈ {co, pr, ss, st, gr}, and
E0 ∈ ES(A0) an extension of A0 under S. Then E0 ∈ ES(u(A0)) if

– one of the conditions of Proposition 1 holds or
– the next three conditions hold:

(1) L0(a) = out,
(2) L0(b) = in, and
(3) either (i) S ∈ {co, st, ss, pr} or (ii) a 	∈ I(u,A0, E0) and S = gr.

Example 5. Consider AFs A0 and A1 = +(b, d)(A0) of Examples 1 and 3. For
S ∈ {co, pr, ss, st}, extension E0 = {a, d} for A0 is still an extension of the
AF A1 as L0(b) = out and L0(d) = in (see Fig. 3). However, the grounded
extension E′

0 = {d} for A0 is not guarantee to be a grounded extension for A1

as neither Proposition 1 nor conditions 1) and 3.ii) of Proposition 4 hold (b is
un and b ∈ I(+(b, d),A0, E

′
0)). ��

5 Recomputing the Grounded Semantics

Given an AF A0, the grounded extension E0 for A0, an update u for A0 yield-
ing A = u(A0), we address the problem of efficiently computing the grounded
extension E of the updated AF A starting from E0.

For any AF A = 〈A,Σ〉 and set S ⊆ A of arguments, we denote with
Π(S,A) = 〈S,Σ ∩ S × S〉 the subgraph of A induced by the nodes in S.
Moreover, given two AFs A1 = 〈A1, Σ1〉 and A2 = 〈A2, Σ2〉, we denote as
A1 � A2 = 〈A1 ∪ A1, Σ1 ∪ Σ2〉 the union of the two AFs.

Our algorithm first identifies the restricted subgraph of the given AF con-
taining the arguments influenced by the update.

Definition 2. (Restricted AF for grounded semantics). Given an AF A =
〈A,Σ〉, a grounded extension E for A, and an update u = ±(a, b), the restricted
AF of A w.r.t. E and u (denoted as Rgr(u,A, E)) is as follows.

– Rgr(u,A, E) is empty if I(u,A, E) is empty or one of the conditions of Propo-
sition 4 holds.

– Rgr(u,A, E) = Π(I(u,A, E), u(A)) � T1 � T2 where:
• T1 is the union of the AFs 〈{a, b}, {(a, b)}〉 s.t. (a, b) is an attack of u(A)

and a 	∈ I(u,A, E), a ∈ E, and b ∈ I(u,A, E);
• T2 = 〈{c |Check(c)}, {(c, c) |Check(c)}〉, where Check(c) is true if

∃(e, c) ∈ Σ such that c ∈ I(u,A, E) and e 	∈ I(u,A, E) and e 	∈ E∪E+. ��
Hence, AF Rgr(u,A, E) contains, in addition to the subgraph of u(A) induced

by I(u,A, E), additional nodes and edges containing needed information on the
“external context”, i.e. information about the status of arguments which are
attacking some argument in I(u,A, E). Specifically, if there is in u(A) an edge
from node a 	∈ I(u,A, E) whose status is in to node b ∈ I(u,A, E), then we add
the edge (a, b) so that, as a does not have incoming edges in Rgr(u,A, E), its
status is confirmed to be in. Moreover, if there is in u(A) an edge from a node
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e 	∈ I(u,A, E) to a node c ∈ I(u,A, E) such that e is un, we add edge (c, c) to
Rgr(u,A, E) so that the status of c cannot be in. Using fake arguments/attacks
to represent external contexts has been exploited in a similar way in [2], where
decomposability properties of argumentation semantics are studied.

Example 6. Continuing Example 4, Rgr(+(g, h),A0, E0) consists of the subgraph
induced by I(u,A0, E0) = {h, c} as well as the edge (g, h) which is an attack
towards argument h ∈ I(u,A0, E0) coming from argument g outside I(u,A0, E0)
labelled as in. Hence, Rgr(+(g, h),A0, E0) = 〈Ad, Σd〉 with Ad = {g, h, c} and
Σd = {(g, h), (h, c)}. ��
Example 7. Consider the AF A0 = 〈{a, b, c, d, e, f, g},
{(a, b), (b, a), (c, d), (d, c), (a, c), (b, c), (f, c), (g, f)}〉 and the update u = +(e, d).
We have that

(i) the grounded extension of A0 is E0 = {g, e} (i.e. arguments a, b, c, d are
all labeled as un);
(ii) the influenced set is I(u,A0, E0) = {c, d}; and
(iii) the restricted AF is Rgr(u,A0, E0) = 〈{c, d}, {(c, d), (d, c)}〉 � T1 � T2

where T1 = 〈{e, d}, {(e, d)}〉 and T2 = 〈{c}, {(c, c)}〉.
That is, Rgr(u,A0, E0)=〈{c, d, e}, {(c, d), (d, c), (e, d), (c, c)}〉. ��

Algorithm 1 first checks if the restricted AF (computed w.r.t. update u =
±(a, b)) is empty (Line 3). If this is the case, then E = E0. Otherwise, the status
of arguments in S = I(u,A0, E0) needs to be recomputed and the extension E of
u(A0) is constructed at Line 6 by combining the arguments in E0 not belonging
to the influenced part and the arguments returned by Function IFP (incremental
fixpoint), which is invoked with AF Ad = 〈Ad, Σd〉 (the restricted graph of A)
and starting extension E0 ∩ Ad (the restriction of E0 to Ad).

Function IFP first computes the set of nodes which are labelled in and an
initial set of nodes which are labelled out. If no argument can be labelled in,
it returns the empty set. Otherwise, it iteratively applies function G that takes
as input the set of arguments Sout which have been labeled out so far and
the subset Δout ⊆ Sout of arguments which have been labelled out in the last
step, and returns the arguments b ∈ Δ+

out such that for every attack (a, b) ∈

Algorithm 1. Incr-Grounded-Sem(A0, u, E0)
Input: AF A0 = 〈A0, Σ0〉, u = ±(a, b), grounded extension E0;
Output: Revised grounded extension E
1: Let S = I(u, A0, E0);
2: Let Ad = 〈Ad, Σd〉 = Rgr(u, A0, E0);
3: if (Ad = ∅) then
4: E = E0;
5: else
6: E = (E0 \ S) ∪ IFP(Ad, E0 ∩ Ad);
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Function 1. IFP(A, E0)
Input: AF A = 〈A, Σ〉, Extension E0;
Output: Extension E
1: Sin = Δin = { a | � ∃(c, a) ∈ Σ };
2: if (Sin = ∅) then
3: return Sin

4: Sout = Δout = Δ+
in;

5: repeat
6: Δin = G(Sout, Δout) \ Sin;
7: Δout = Δ+

in \ Sout;
8: Sin = Sin ∪ Δin;
9: Sout = Sout ∪ Δout;

10: until Δin ⊆ E0

11: if (Δin = ∅) then
12: return Sin;
13: else
14: return Sin ∪ (E0 \ (Sin ∪ Sout));

Σ, argument a ∈ Sout (i.e. a is labelled out).1 Function G returns the set
Δin of arguments which are labeled in at Line 6. Arguments labeled out are
immediately derived by taking Δ+

in, that is the arguments which are attacked by
some argument which has been labelled as in (Line 7). Function G is iteratively
applied until, in the last step of the repeat loop, all arguments derived are
confirmed to be in the extension E0 of the AF A0 being updated (i.e., Δin ⊆ E0).
Finally, if Δin is empty, then it just returns the set of arguments labeled as in
(in this case, the status of all the arguments in the restricted AF has been
recomputed by function G), otherwise it returns Sin union the arguments in E0

whose status has not been recomputed by function G.

Example 8. Consider the AF A0 of Fig. 1 where E0 = {a, h, g, e, l,m, o} and
I(u,A0, E0) = {h, c}. Algorithm 1 computes the grounded extension E of the AF
A = +(g, h)(A0) as follows. The restricted AF Ad = 〈Ad, Σd〉 = Rgr(u,A0, E0)
is computed (at Line 2) obtaining Ad = {g, h, c} and Σd = {(g, h), (h, c)}. As
Ad is not empty, Function IFP with actual parameters Ad and E0 ∩ Ad =
{g, h} is called at Line 6. Function IFP first computes Sin = Δin = {g} and
Sout = Δout = {h}. Next, at the first iteration of the repeat loop, it is computed
Δin = G({h}, {h}) = {c} (Line 6) and Δout = ∅ (Line 7) as there is no argument
attacked by c in Ad. Then the function terminates returning the set {g, c} and
E turns out to be the set {a, g, e, l,m, o} ∪ {g, c}. ��
Theorem 2. For any AF A = 〈A,Σ〉, the complexity of computing IFP(A, E0),
with E0 ⊂ A, is O(|A| × d̄ 2), where d̄ is the maximum input degree of a node
(i.e., the maximum number of attacks towards an argument in A).
1 Similarly to the characteristic function F of an AF [20], function G infers new argu-

ments that can be labelled in. But it is more efficient as it only uses arguments
labelled in the last step.
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Theorem 3. For any AF A0 = 〈A0, Σ0〉 with grounded extension E0, and u =
±(a, b), the complexity of Algorithm Incr-Grounded-Sem(A0, u, E0) is O(|Σ0| +
|I(u,A0, E0)| × d̄ 2), where d̄ is the maximum input degree of a node.

Theorem 4. Given an AF A0, an update u=±(a, b) for A0 yielding A = u(A0),
and the grounded extension E0 of A0, Algorithm 1 computes the grounded exten-
sion E of A.

6 Experimental Results

We implemented a prototype for incremental computation of argumentation
semantics using the Java argumentation libraries provided by the Tweety
project [47].

Datasets. We used two datasets taken from the International Competition on
Computational Models of Argumentation (ICCMA)2:

(i) REAL consists of 19 AFs 〈A0, Σ0〉 with |A0| ∈ [5K, 100K] and |Σ0| ∈
[7K, 143K];

(ii) SYN consists of 24 AFs 〈A0, Σ0〉 with |A0| ∈ [1K, 4K] and |Σ0| ∈
[14K, 172K].

The AFs in the two datasets have a different structure: on average,
|ReachA0(a)| is around 2200 for arguments a in SYN, while it is about 10 for
REAL; moreover, the average number of attacks per argument for REAL is 1.5
while it is 26 for SYN.

Algorithms. For each AF A0 = 〈A0, Σ0〉 in each dataset, we first computed the
grounded extension E0. Then, we randomly selected an update u of the form
+(a, b) (with a, b ∈ A0 and (a, b) 	∈ Σ0) or −(a, b) (with (a, b) ∈ Σ0). Next, we
executed the following algorithms:

(i) BaseG which computes the grounded semantics E of the updated AF u(A0)
from scratch. It finds the fixpoint of the characteristic function of an AF as
implemented in the libraries of Tweety [47]. This algorithm was also used to
compute the initial extension E0 which is taken as input by the incremental
algorithms;

(ii) Incr-Grounded-Sem (IncrG for short) which incrementally computes the
grounded extension E by implementing Algorithm 1 (note that it also
includes the computation of the influenced set and the restricted AF).

All experiments have been carried out on an Intel Core i7-4790 CPU 3.60 GHz
with 16 GB RAM running Ubuntu 14.04 64bit. All data points reported on the
figures are averages over 20 trials (except those for BaseG which are averages of
5 trials, as it can take hours in some cases due to the huge size of the datasets
considered).
2 http://argumentationcompetition.org.

http://argumentationcompetition.org
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Fig. 4. Run times (ms) of BaseG and IncrG over REAL.

Fig. 5. Run times (ms) of BaseG and IncrG over SYN.

Results. Figures 4 and 5 report the run times (log scale) of BaseG and IncrG for
computing the grounded extensions of the updated AFs versus the number of
arguments over REAL and SYN, respectively.3 The experiments also showed that,
on average, the size of the influenced set w.r.t. that of the input AF for REAL
(resp. SYN) is about 0.01% (resp. 1%).

3 Data points with the same x-axis value are due to AFs in the datasets having the
same number of arguments.
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From these results, we can draw the following conclusions:

– The overall time needed by our algorithm for incrementally computing the
grounded extension is orders of magnitude better than the time needed to
recompute the whole extension from scratch.

– The definition of influenced set substantially restricts the portion of the AF
to be analysed for recomputing the semantics of an AF after performing
an update. It is worth noting that this means that even using any non-
incremental algorithm taking as input the restricted AF would result in a
performance improvement, since the size of the input data to be processed
would be significantly smaller.

7 Conclutions and Future Work

We presented an incremental approach for computing the grounded extension
of updated AFs. Our algorithm exploits the initial extension of an AF for com-
puting the set of arguments influenced by an update, and for detecting early
termination conditions during the recomputation of the status of the arguments.
The experiments showed that the incremental computation outperforms the base
(non-incremental) computation. In fact, the time needed by our algorithm for
incrementally computing the grounded extension is orders of magnitude better
than the time needed to recompute the whole extension from scratch.

Although in this paper we focused on updates consisting of adding/removing
only one attack, our technique can be extended to deal with the case of multiple
updates. Indeed, in [38] a construction is provided for reducing the application
of a set of updates {+(a1, b1), . . . ,+(an, bn), −(a′

1, b
′
1), . . . ,−(a′

m, b′
m)} on AF

A0 to the application of a single attack update +(v, w) on an AF obtained from
A0 by adding some new arguments/attacks and replacing some existing ones.
Thus, this construction can be used to simulate the simultaneous application of
a set of updates by a single attack update of the type considered in this paper.

Moreover, our approach can be extended to work in the case of the incre-
mental computation of the ideal extension of an AF. In fact, the definition of
influenced set can be used as it is to compute the part of the AF consisting
of the arguments whose status can change after performing an update, and an
appropriate definition of restricted AF Rid(u,A, E) for the ideal semantics can
be provided [38]. Once the restricted AF is identified, even a non-incremental
algorithm taking as input the restricted AF could be used to recompute the
status of influenced arguments.

We plan to continue our work along two directions. First, we will investigate
the application of the techniques developed in this paper to other (multiple sta-
tus) semantics. Indeed, the influenced set is defined already for non-deterministic
semantics, and the identification of restricted AFs for these semantics would
enable the use of existing (non-incremental) algorithms taking as input a smaller
AF for computing extensions. We envisage the definition of incremental algo-
rithms that make use of initial extensions for computing extensions after updates
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for multiple status semantics where we need to deal with the additional issue
that extensions can be split/merged after an update.

Our second direction of research for future work is related to the recent
investigations of the integration of argumentation and database repairing tech-
niques [46]. In fact, database reparation is often modelled as interactive reason-
ing process [41], and the user can profitably exploit argumentation techniques to
identify and resolve the conflicts between tuples, possibly specifying preferences
among repairs suggested by the system [33,34]. Given the interactive nature of
this process, we believe it would benefit from the use of incremental algorithms
for the computation of the arguments justifying repairs, and thus plan to explore
this issue in the future.
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